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Abstract 

Optical coherence tomography (OCT) is a real-time high-resolution imaging technology 

providing cross-sectional images of biological structures at a resolution of <1 to 20 µm and 

a penetration depth of 1 to 3 mm in most highly scattering tissues. OCT is in general non-

invasive and can perform real-time ‘optical biopsy’ with a resolution approaching standard 

low magnification histopathology but without tissue removal. Conventional OCT requires 

a bulky imaging probe, which limits most of the in vivo applications to ophthalmology and 

dermatology. The development of miniature OCT imaging probe has greatly expanded the 

scope of the applications (e.g., cardiology, gastroenterology, etc.). Recent technical 

advances in OCT has extended the imaging speed from a few kHz to a few hundreds kHz, 

enabling in vivo three-dimensional (3D) imaging. 

This dissertation describes the development of a high-speed endoscopic OCT 

imaging system. The system employs the Fourier domain mode locking laser technology 

at a wavelength range of 1300 nm to reach an axial resolution of 9.7 µm and an A-scan rate 

of 220 kHz. A Mach-Zehnder interferometer setup is used to achieve shot-noise limited 

detection. A generic OCT software platform is developed for data acquisition, processing, 

display, storage, and 3D visualization. Miniature OCT imaging probes are designed and 

fabricated for in vivo 3D OCT imaging. The utility of the high-speed endoscopic OCT 

system is demonstrated for clinical and basic researches in pulmonology and 
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gastroenterology. In addition, an ultrahigh-resolution endoscopic OCT system is developed 

at a wavelength range of 800 nm to reach an axial resolution of 3.0 µm and an A-scan rate 

of up to 20 kHz. Furthermore, a novel type of OCT contrast agents, scattering dominant 

gold nanocages, is developed with the aid of a cross-reference OCT imaging method. 

Finally, a multimodal endoscopic imaging system combines 1300 nm en face OCT and 

1550 nm two photon fluorescence is developed. 

Compared with most of other imaging modalities, high-speed endoscopic OCT has 

unmatched advantages including high spatial resolution, imaging speed, and non-

invasiveness / minimal invasiveness. The results in this dissertation suggest that high-speed 

endoscopic OCT may has a great impact on healthcare as well as basic research. 
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Chapter 1 Introduction 

1.1 Overview 

Medical imaging has greatly improved the accuracy and promptness of medical diagnosis 

and interventions by providing clinicians with tissue-related anatomical and functional 

information over the past fifty years. Currently, X-ray computerized tomography (CT), 

magnetic resonance imaging (MRI), ultrasound (US), and positron emission tomography 

(PET) are the most widely recognized medical imaging modalities used in common clinical 

practice, where a non-invasive assessment of tissue structures is achieved at a resolution of 

30 μm to 1 mm with a penetration depth of a few centimeters to the whole body [1, 2]. 

However, although less known, optical microscopy has also been used in clinic for a few 

hundred years to aid histological examination where a submicron resolution could be 

reached [3]. Nevertheless, the penetration depth of conventional optical microscopy is 

virtually negligible so that in vivo applications of such technology are rare. Though recent 

technological advances on optical microscopy (e.g., confocal microscopy, multi-photon 

microscopy, etc.) has pushed the penetration depth up to a few hundreds of microns, in vivo 

applications still remain limited.  

Current oncological diagnosis criteria for disease staging is excisional or ex vivo, 

which requires tissue biopsy followed by histological staining [3]. The whole procedure 

usually has a relatively long turnover time of a few days and the false negative rate, 

especially for early cancer detection, may be high  due to sampling error where the 
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cancerous lesion was missed when biopsy specimens were taken[4].  Medical imaging, on 

the other hand, has the capability of examining the whole organ in a timely fashion. 

However, such medical demand requires a medical imaging technology capable of 

assessing tissue microanatomy at a resolution of at least a few microns in a real-time 

fashion. Unfortunately, none of the technologies mentioned above would meet such 

requirements. However, optical imaging modalities that have been rapidly developed for 

the past a few decades showed a great potential of providing high-resolution medical 

images (such as diffuse optical tomography, confocal fluorescence, nonlinear optical 

imaging, optical coherence tomography, spectroscopy, and etc.) [5-9]. Besides reflectance 

and scattering, optical imaging modalities also provide spectroscopic information that 

presents physiological and molecular function of the tissue. In addition, optical imaging 

modalities can potentially reduce the instrumentation and operational costs. 

This dissertation describes one of the emerging optical imaging modalities, optical 

coherence tomography (OCT). It is a novel optical technique that provides real-time high-

resolution anatomical and functional information of biological tissue at a resolution of <1 

to 10 μm and a penetration depth of 1 to 3 mm which bridges the gap between currently 

used clinical medical imaging technologies and optical microscopy (as illustrated in Fig. 

1.1). The OCT technology was proven to be capable of detecting diseases in their early 

stages on many ex vivo tissue models. In addition, recent technological progress on 

miniature OCT imaging probes greatly expanded the scope of the OCT applications from 

ophthalmology and dermatology to cardiology, gastroenterology, pulmonology and others.  
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In this dissertation, the technological development of a compact, high-speed endoscopic 

OCT imaging system, including an OCT laser source, an OCT interferometer, an OCT 

software platform, and particularly a miniature OCT imaging probe, are discussed. Clinical 

applications in gastrointestinal tract and lower airway applications are investigated. OCT 

contrast enhancement and an endoscopic multi-modal imaging system are also briefly 

discussed. 

 

Figure 1.1 A plot between resolution and penetration depth of the medical imaging 

modalities. OCT bridges the gap between clinically-used medical imaging technologies 

and optical microscopy. 

1.2 Endoscopic Medical Imaging 

Endoscopic medical imaging usually refers to the examination of the interior of organs 

using a miniature medical imaging device directly insert into the human body. Because of 

the close proximity to the region of interest, endoscopic medical imaging could provide 

unprecedented diagnostic information to physicians over conventional imaging modalities. 
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Moreover, due to the small size of the devices used, most of the endoscopic medical 

imaging procedures are minimally invasive or non-invasive and are therefore safer.  

1.2.1 Surface Optical Endoscopy 

The idea of a modern endoscope was first proposed in Germany in the nineteenth century 

for examining canals and cavities of the human body [10]. Due to the technical limitations, 

the use of ridge endoscopes (e.g., laparoscope, hysteroscope) were first explored in the 

early twentieth century. In the 1950s, optical fiber bundle made flexible endoscopes (e.g., 

gastrointestinal endoscope, bronchoscope, etc.) possible by transmitting the light from the 

distal end of each fiber to the proximal end to form an image [11]. A few decades later, the 

advent of video endoscope by using charge-coupled devices (CCD) greatly expanded the 

scope of endoscopic applications in the 1990s [12]. Since then, endoscopes, in particular 

flexible endoscopes, have been widely adopted. 

 Conventionally, the light source for illumination used in an endoscope is a white 

light source (e.g., Xenon lamp) and an endoscope employing such a light source is called 

a white light endoscope. However, sometimes, a white light endoscope may not provide 

clinicians with enough image contrast. Therefore, a light source with a narrow optical 

bandwidth was utilized in endoscopic procedures to improve the image contrast. Clinically, 

a center wavelength of 415 nm (blue) and 540 nm (green) are commonly used [13]. These 

two wavelengths were chosen because both wavelengths are the absorption peaks of 

hemoglobin where narrow-band imaging improves the contrast of cardiovascular vessels. 
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Alternatively, chromoendoscopy was developed by using stains or dyes topically to 

enhance the image contrast in order to help clinicians with tissue characterization and 

differentiation [14]. There are three major stain mechanisms in chromoendoscopy, 

absorptive stains, contrast stains, and reactive stains. Absorptive stains (e.g., Lugol’s iodine, 

methylene blue, gentian violet) identify specific epithelia cells by preferential absorption 

or diffusion. Contrast stains (e.g., indigo carmine) permeate between mucosal crevices to 

highlight surface topography and mucosal abnormalities. Reactive stains (e.g., congo red, 

phenol red) change the color of a region of interest by binding with specific cellular 

constituents. 

Another type of optical endoscopic techniques are based on fluorescence, including 

autofluorescence endoscopy, confocal fluorescence endomicroscopy and nonlinear optical 

endomicroscopy [15, 16]. Autofluorescence endoscopy uses excitation light (i.e., 370-470 

nm) to illuminate a region of interest in tissues, which emits fluorescence light of longer 

wavelength from endogenous fluorophores (e.g., collagen, porphyrins, aromatic amino 

acids, flavins and NADH, etc.). The image contrast of autofluorescence endoscopy comes 

from concentration difference of those fluorophores, which helps to differentiate abnormal 

epithelium from normal mucosa (e.g, Barrett’s esophagus). Confocal fluorescence 

endomicroscopy and nonlinear optical endomicroscopy are newly developed optical 

imaging techniques. Similarly, both image contrasts come from exogenous or endogenous 

fluorophores. Unlike autofluorescence endoscopy, they provide much higher resolution 

microscopic optical images at subcellular scale in both lateral and depth directions. 
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1.2.2 Ultrasonic Endoscopy 

Ultrasonic endoscopy is another major imaging modality in the field of endoscopic medical 

imaging and has become popular in a variety of clinical applications (e.g., upper 

gastrointestinal (GI) cancer, lung cancer, and atherosclerosis) [17-21]. In an endoscopic 

ultrasound (EUS) system, small ultrasonic transducers were packed in an endoscopic form 

to obtain images of the internal luminal organs inside human body (e.g., wall structures 

and beyond) and the resolution of EUS is usually in the range of 50 to 100 μm. EUS can 

be broadly divided into two types: radial and linear EUS. The radial EUS provides an 

ultrasound image in a plane that is perpendicular to the probe axis and has been widely 

used in diagnostic procedures (e.g., intravascular ultrasound, and endobronchial 

ultrasound). Linear EUS produces an ultrasound image in a plane that lies along the probe 

axis, which is commonly used in image guided procedures (e.g., fine needle aspiration). 

1.3 Optical Coherence Tomography and Optical Biopsy 

OCT is a recently developed biomedical optical technology capable of providing depth-

resolved images of tissue microanatomy [22-24]. It is similar to medical ultrasonic imaging, 

although the detected signal becomes an optical echo delay signal rather than an acoustic 

one. Since the speed of light is much faster than the speed of acoustic wave, low coherence 

interferometry is employed in OCT technology to resolve a small optical echo delay 

spatially. Therefore, an axial resolution of <10 μm could be achieved in most OCT systems 

when a proper laser source is used. In addition, with optical heterodyne detection, the 
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detection sensitivity of an OCT system could reach its quantum limit so that an optical 

reflection signal as weak as or weaker than 10-10 of the incident optical power can be 

detected. 

1.3.1 Brief History of Optical Coherence Tomography 

Optical time domain reflectometry (OTDR) is a technique that preceded OCT. It was 

developed in the 1970s and was first used to characterize optical fiber network [25, 26]. In 

the 1980s, it was attempted to resolve depth information in biological tissues [27, 28]. In 

OTDR, an ultrafast laser source was utilized to detect the reflected time-of-flight of 

ultrashort laser pulses where its depth resolution depends on the narrowness of laser pulses 

and the bandwidth of a photodetector. The spatial resolution of most commercially 

available OTDR devices were greater than 5 cm [29]. Although the depth resolution could 

be improved with a great amount of expenses on the laser source, the detector, and the 

system, it could hardly exceed 15 μm in biological applications and the detection sensitivity 

tends to be lower than 70 dB due to the high noise level of a high speed photodetector and 

the low efficiency of nonlinear optical conversion [28]. Although high power laser source 

is able to improve the detection sensitivity to some extent, the high intensity that comes 

with the source may cause tissue damage in biological samples. Consequently, OTDR had 

very limited applications and was only demonstrated feasible on imaging transparent 

cornea and superficial skin. 
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Low coherence interferometry (LCI) is another technique that preceded OCT. It 

was first proposed in 1987 and was originally developed for high-resolution optical ranging 

in the same field as OTDR [30, 31]. The technique was sometimes referred to as optical 

coherence domain reflectometry (OCDR) to distinguish it from a similar technique used in 

optical fiber sensing, which is also referred to as LCI [32]. Instead of directly detecting 

time-of-flight of laser pulses, LCI detects an interference signal of reflected light from a 

sample with light reflection from a mirror, which greatly reduces the complexity of the 

system and increases the detection sensitivity. A depth resolution of <10 μm and a detection 

sensitivity of 120 dB were achieved using this technique. Similar to A-mode ultrasound 

imaging, LCI (or OCDR) could provide depth resolved informations and was immediately 

applied in ophthalmology in 1988 to acquire one-dimensional optical imaging (i.e., A-scan) 

[33]. 

The idea of OCT was first proposed in 1991 and has been widely adopted for the 

past 20 years [22]. With an optical imaging lens to focus the beam into a sample, OCT 

could provide spatial resolved information in lateral direction that is perpendicular to depth 

direction. A lateral scanning mechanism along with the depth scanning provided by LCI 

was employed in an OCT imaging system to acquire a two-dimensional optical imaging, 

providing spatial resolved information that is similar to B-mode ultrasound imaging. 

The conventional approach in implementing an OCT system was referred to as time 

domain OCT (TD-OCT). It requires the mechanical scanning of a mirror to achieve depth 

scan, which limits the imaging speed of a TD-OCT system (i.e., usually less than a few 
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thousand A-scan/sec) [34]. In contrast, Fourier domain OCT (FD-OCT), an alternative 

approach in implementing an OCT system, has no such a requirement. With a line scan 

detector or a wavelength swept laser source, the imaging speed of a FD-OCT system is 

significantly faster than a TD-OCT system, reaching as high as a few hundred kilo to a few 

mega A-scan/sec [35-37]. In addition, given the same imaging speed, a FD-OCT system 

has a much higher sensitivity, about 20-30 dB higher than a TD-OCT system [38-40]. 

1.3.2 Applications of Optical Coherence Tomography 

Upon invention, OCT immediately drew a lot of attention in dermatology and 

ophthalmology. Since then, OCT has been widely used from research labs to clinics to 

image both anterior and posterior segments of the eyes. By quantitatively measuring the 

thickness of the layered structures, OCT could help with diagnosis in ophthalmological 

diseases (e.g., age-related macular degeneration, retinoblastoma, etc.)  [41-45]. 

Furthermore, recent technical advances on pushed ophthalmological OCT into a new era 

with the imaging speed into Mega Hertz [37] and the imaging depth into full eye imaging 

[46]. In dermatology, OCT has been playing an active role in providing structural and 

functional information in a micron scale to dermatologist. It has been used to investigate 

normal skin, dermatitis, burns, wound healing, and skin cancers [47-52].  

Although the bulky size of an imaging probe in OCT systems obscures its 

accessible to many internal organs, the imaging capability of OCT on scattering tissues of 

the internal organs has been demonstrated by either surgical removal of the tissues (i.e., ex 
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vivo) or surgically opening the organs (i.e., in situ). Various types of internal organs, such 

as GI tract, blood vessel, lung, skeletal muscle, and non-retinal nerve fiber [53-58], have 

been studied for the purpose of demonstration of new technologies, characterization of both 

normal and diseased tissue properties, and measurement of physiological parameters. 

Besides clinical applications, OCT has also been used in the aspect of basic 

scientific research. In particular, it was proven to be an invaluable tool for imaging embryo 

in vivo in developmental biology. OCT imaging was performed in Rana pipiens tadpoles, 

Brachydanio rerio embryos and eggs, and Xenopus laevis tadpole’s embryos and its blood 

flow throughout the beating heart [59-64]. Moreover, OCT was sometimes used in tissue 

engineering to monitor the development and characterize the optical properties of the 

engineered tissues non-destructively [65-67].  

1.3.3 Optical Biopsy and Optical Coherence Tomography Endoscopy 

Unlike conventional excisional biopsy, optical biopsy refers to methods using an optical 

imaging modality (e.g., OCT) to acquire optical images of tissue microanatomy in situ, 

without the removal of the tissue from the body.  As opposed to excisional biopsy, optical 

biopsy has the advantages of non-invasive or minimal invasive, less painful, time efficient, 

and cost effective. More importantly, with recent technological advances, optical biopsy 

can easily cover the entire region of interest while excisional biopsy are usually performed 

in a few discrete sites sampled over the entire region. Compared to other endoscopic 
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medical imaging modalities (e.g., EUS), optical biopsy can usually provide images of much 

higher resolution to better assist clinicians in diagnosis.  

Among the optical imaging modalities available, OCT is probably one of the most 

promising techniques to perform optical biopsy in biological tissues in vivo [68-74]. In the 

cases of examining internal organs in vivo, an endoscopic form of OCT is required. A key 

component in such a system is a miniature OCT imaging probe along with a proper lateral 

scanning mechanism that drives the probe to acquire cross-sectional images of tissue 

microanatomy. 

As a branch of OCT, OCT endoscopy that is developed with the invention of 

miniature imaging probe greatly expanded the applications of OCT imaging. Now, with 

OCT imaging system, not only was superficial organ skin and transparent organ (e.g., eye) 

able to be imaged, but also was internal organs (e.g., blood vessel, lung, esophagus, etc.). 

In cardiovascular imaging, OCT has been shown to be able to identify various abnormal 

structures (e.g., measuring luminal structures, identifying vulnerable plaques) and assess 

treatment outcomes (e.g. stent apposition and neointimal thickening) [75-78]. In 

esophageal imaging, OCT has been shown to be a unique in vivo tool for identification of 

normal esophageal structures, detection of esophagitis and precancerous lesions, and 

assessment of disease progression in real time [74, 79-83]. In pulmonary imaging, OCT 

has also become one of the emerging imaging modalities and provided unprecedented 

structural and functional information of the lung [84-89].
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1.4 Scope of Dissertation 

The goal of this dissertation is to investigate the use of OCT for real-time endoscopic 

assessment of tissue microanatomy in vivo. The thesis consists technology development of 

a high-speed endoscopic OCT system and its clinical potentials. 

The dissertation is organized into technology and clinical applications sections. 

Chapter 2 provides the basic background of OCT imaging system, including the theory 

behind OCT and an overview of different approaches to OCT (i.e., time domain OCT, 

Fourier domain OCT). Chapter 3 briefly overviews four key subsystems of an endoscopic 

OCT system and describes the rationales of choices of the broadband light source, OCT 

interferometer, and miniature OCT imaging probe. Chapter 4 to 7 cover technical details 

of the four subsystems in a high-speed endoscopic OCT system. Chapter 4 first reviews the 

basic principle of a wavelength swept laser source, then introduces one of the wavelength 

swept lasers (i.e., Fourier domain mode locking laser) at 1300 nm wavelength range, 

including a wavelength the design of electronic circuit of the tunable filter driver, the 

optical cavity design, optical time multiplexing design, and the performance of the laser. 

In Chapter 5, the OCT interferometer is implemented by using a Mach-Zedher 

interferometer setup to reach a shot-noise limited detection. In addition, a hardware based 

calibration method (i.e., real-time uniform K-space sampling method) is introduced. 

Chapter 6 describes a generic software platform specifically designed for high-speed OCT 

imaging. Chapter 7 discusses the optical designs of the distal end of OCT imaging probes. 
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Two types of OCT imaging probes with different working distances are then designed and 

fabricated. 

Chapters 8 and 9 describe the investigation of high-speed endoscopic OCT to assess 

morphological changes in different internal organs. Chapter 8 demonstrates the 

performance of the high-speed endoscopic OCT in differentiating layered structures of 

lower airways in vivo in animal models. The in vivo OCT images can be well correlated 

with ex vivo histopathology results. In addition, high-speed endoscopic OCT can 

dynamically monitor the acute response of the lower airways to drugs and quantitatively 

measure the changes, such as airway luminal area and mucosal folding. Chapter 9 focuses 

on endoscopic OCT applications in upper gastrointestinal tract. The capability of the high-

speed endoscopic OCT system is first demonstrated in pig esophagus in vivo and human 

esophagectomy specimen ex vivo. An in vivo study of cryoablation effect on pig esophagus 

shows assessment of the cryoablation site in real time. Furthermore, the high-speed 

endoscopic OCT system is also used for basic research: quantitative assessment of 

esophageal structures in a guinea pig model of eosinophilia esophagitis in vivo. 

Besides a high-speed endoscopic OCT system at 1300 nm wavelength range, an 

ultrahigh resolution endoscopic OCT system at 800 nm wavelength range is introduced in 

Chapter 10. A better image quality and contrast are demonstrated with the ultrahigh 

resolution endoscopic OCT system due to the improved axial resolution and potentially 

high scattering effect. In Chapter 11, two other projects that is related to OCT imaging are 

described. The first one is a cross-reference OCT imaging method to assess the optical 
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properties of gold nanocages as OCT contrast agents. And another one is a compact 

endoscopic multimodal imaging system that combined 1310 nm en face OCT and 1550 nm 

two photon fluorescence imaging. 
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Chapter 2 Theory of Optical Coherence 

Tomography 

This chapter describes the basic theory of optical coherence tomography (OCT). A basic 

principle of low coherence interferometry is first discussed. The OCT interference signal 

and several key parameters (e.g., axial resolution, detection sensitivity) of a conventional 

time domain OCT system is then derived. Fourier domain OCT along with its key 

parameters is also analyzed in details. 

2.1 Introduction 

OCT is a recently developed optical imaging technology capable of providing high-

resolution, cross-sectional imaging of tissue microanatomy in vivo. OCT is usually 

considered as an optical analogy to medical ultrasound (US). In US, acoustic waves are 

delivered to biological samples and the corresponding echo delays from different depths 

are measured temporally. Since an optical wave is used in OCT, small optical echo delay 

(e.g., on the order of femtoseconds) is impossible to measure temporally due to the celerity 

of the speed of light. In order to solve this problem, OCT employs low coherence 

interferometry (LCI) or coherence gating.  Depending on the broadband light source used, 

the depth (or axial) resolution of OCT reaches from 1 to 10 µm, which is much higher than 

US. The imaging depth of OCT depends on the incident wavelength and the optical 

properties of the tissues and is usually between 1 to 3 mm. Compared to other optical 

imaging modalities, OCT requires much less level of light that is incident onto a biological 
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sample (e.g., <1 to 10 mW) to get structural information from the same/similar imaging 

depth. The major reason that OCT has such an advantage is that LCI provides an optical 

heterodyne gain to greatly increase the signal level. With a setup of LCI, one can easily 

reach the detection sensitivity down to a quantum limit — shot noise limit. 

Currently, based on detection scheme, there are two types of OCT systems — time 

domain OCT (TD-OCT) and Fourier domain OCT (FD-OCT). In TD-OCT, only the 

interference signal of all the wavelengths from a specific depth is detected at each time 

point. Hence, a depth scanning mechanism, usually mechanical scanning of a mirror, is 

required to acquire depth resolved information (i.e., axial scan or A-scan), which limits the 

imaging speed. On the other hand, a FD-OCT system detects the spectrum of the 

interference signal from all the depths simultaneously and the OCT A-scan is constructed 

via Fourier transform. Therefore, there is no requirement of a depth scanning mechanism 

in FD-OCT systems, resulting in 10 to 100 fold increases in imaging speed over TD-OCT 

systems. 

2.2 Low Coherence Interferometry 

OCT can be simply considered as a LCI setup with a lateral scanning mechanism of a light 

beam. A schematic of a LCI setup in Michelson interferometer form is shown in Fig. 2.1a. 

Light from a broadband light source (e.g., ultrafast laser, superluminescent diode) is sent 

to a beamsplitter (usually 50/50 to get the best efficiency) and is divided into two beams in 

two arms. After the beams are reflected back from mirrors in both arms, they are 

recombined in the beamsplitter. A stable interference signal could be observed once proper 

conditions are satisfied (i.e., same wavelengths, same polarization states, and a constant 

phase difference). If the mirror in one of the arms is replaced by a biological sample (named 
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sample arm) while the mirror in the other arm remains in place (named reference arm), the 

signal from the sample arm can be coherently gated by the reference arm signal; that is the 

backscattered light within the coherence length from the sample shows interference pattern 

whereas the signals outside the coherence length does not. Therefore, signals from different 

depths can be acquired by moving the mirror position in the reference arm to form depth-

resolved information. 

 

Figure 2.1 (a) A free space low coherence Michelson interferometer and (b) a fiber optic 

low coherence Michelson interferometer. 

The same experimental setup can be implemented in fiber optics. In this design as 

shown in Fig. 2.1b, the free space beamsplitter is replaced by a simple mode fiber coupler 

having the same function as the free space beamsplitter in Fig. 2.1a. A fiber optic LCI setup 

could greatly reduce the size, complexity and the cost of the system and make the system 

portable, which perfectly fits the need of biological and clinical applications. Therefore, 

most of experimental setups in OCT field are fiber optical based.

2.3 Time Domain Optical Coherence Tomography 

The basic principle of a TD-OCT system is similar to that of LCI, except that OCT 

introduces a lateral scanning mechanism to get spatial resolved information in both lateral 
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and axial directions. A schematic of a TD-OCT setup based on a Michelson interferometer 

is shown in Fig. 2.2. The beam in the sample arm is diverted via a scanning device (e.g., 

galvanometer scanner) to move the focused beam laterally on the sample. Conventionally, 

the depth direction is referred to as the z  direction while the lateral one is referred to as 

the x  direction. 

 

Figure 2.2 A schematic of a time domain optical coherence tomography system 

2.3.1 Time Domain OCT Axial Scan Signal [90] 

The interference signal in a TD-OCT system can be acquired by moving a mirror in the 

reference arm with a constant velocity of sv . The Doppler frequency shift caused by this 

movement is dependent on the wavelength   (or angular frequency 2 c ) of the 

incident light, which is 4 2d s sv v c , where c  is the speed of light. The intensity 

and electrical field spectra of the incident light to the interferometer are oI  and oE , 

respectively. The electric field spectra from both arms are s oE s E and 

r oE r E , where r  and s  are the electric field reflection coefficient 

spectra from the reference and the sample arm, respectively. The spectrum of the total 
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electric field of the combined signal at the detector is ( ) ( ) ( )D r sE E Eω ω ω= + . The 

interference signal measured at the detector is time averaged: 
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where ( )φ ω  is the phase difference between the reflected beams from two arms and may 

not be necessarily wavelength independent. The first term in Eq. (2.1) is a DC component 

because it usually remains constant if the spectrum of the light were kept unchanged. The 

second term in Eq. (2.1) is an AC component due to the detectable temporal oscillation 

(i.e., dω ). In general, the reflectivity of a mirror in the reference arm is independent of the 

wavelength within the range of interest (i.e., ( )r r ω= ). In most cases, it is the AC 

component of the interference signal that we are interested in. Therefore: 
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Eq. (2.2) can be converted in spatial domain: 

 ( ) ( ) ( ) ( ) ( )( )( )2
cos 2AC AC

D D s o
k

r
I z I v t I k c s k c kz k c dk

c
φ= = ⋅ ⋅ + ⋅∫  , (2.3) 

where k  is the wavenumber of the light. Eq. (2.3) shows that the TD-OCT interference 

signal contains depth resolved information as the depth dependent signal is the real part of 

the Fourier transform of the product of the incident light spectrum ( )oI ω   and the sample 
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reflectivity s . If the phase difference  is wavelength independent, Eq. (2.3) can be 

expressed as: 

 2 ReAC i
D oI z e FT I k c s k c ,  (2.4) 

which is the mathematical expression of an A-scan signal in TD-OCT. 

2.3.2 Key Parameters: Axial Resolution, Dispersion Mismatch, Lateral Resolution, Side 

Lobes, Imaging Depth and Detection Sensitivity 

A few key parameters in OCT system can be deduced from the derivation above. 

The axial resolution in OCT, which is defined as the full width half maximum 

(FWHM) of the image of an infinitely thin reflective surface (e.g., mirror), is also called 

point spreading function (PSF). It is governed by the bandwidth (or the coherence length) 

of the light source. The axial resolution can be measured by placing a mirror in the sample 

arm. Eq. (2.4) can be equivalently rewritten as: 

 ReAC i
D oI z e FT I k c  , (2.5) 

which indicates that the axial resolution is inversely proportional to the bandwidth of the 

light source: 1z k .  Converting into wavelength dependent form, the axial resolution 

is proportional to the square of the central wavelength divided by the bandwidth of the light 

source: 2
cz . Given the assumption that the spectrum of the light source is 

Gaussian shaped,, the theoretical limit of the axial resolution is expressed as [90]: 

 
2 22 ln 2 0.44c cz * . (2.6) 

* The derivation of axial resolution is in a unit of optical pathlength, which is equivalent to physical length 
in vacuum or in air. In a medium, the axial resolution in physical length is equal to the one in optical 
pathlength divided by the refractive ind  
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Dispersion, defined as the wavelength dependent velocity, exists in all the materials when 

the light travels inside them. Unlike most other optical fields, dispersion itself would not 

deteriorate the axial resolution in an OCT system. Dispersion mismatch between two arms, 

however, would degrade the axial resolution. If phase difference is expressed as an optical 

frequency dependency (i.e., ( )kφ φ= ), Eq. (2.3) then becomes: 

 ( ) ( ) ( ) ( ){ }Re FT FTi kAC
D oI z e I k c s k cφ   ∝ ⊗ ⋅ ⋅   , (2.7) 

where ⊗  is defined as the convolution of two functions. It is a common convention to 

express the phase function as a Taylor expansion around the central wavelength as shown 

below: 

 ( ) ( ) ( ) ( )2 3
0 0

0 0 1 0 2 32 6
k k k k

k k k kφ φ φ φ φ
− −

− = + ⋅ − + ⋅ + ⋅ + . (2.8) 

Dispersion mismatch, which can be described as nonlinear terms in phase function ( )kφ  

(i.e., group delay dispersion 2φ , third order dispersion 3φ , and higher order dispersion 

shown in Eq. (2.8)), causes a chirping in its phase function ( )i ke φ , leading to the broadening 

of the axial resolution as shown in Eq. (2.7). And the severity of the broadening depends 

on how much the chirping is. For example, the broadening effect of group delay dispersion 

2φ  on a Gaussian shaped PSF can be expressed as: 

 
( )24 2

2ln 2z
z

z
φ∆ +

′∆ =
∆

,  (2.9) 

where z′  is the actual axial resolution and z  is the theoretical limited axial resolution as 

shown in Eq. (2.6). Eq. (2.9) clearly shows that any GVD mismatch between the two arms 

in an OCT system could deteriorate the axial resolution. 
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Unlike other optical imaging techniques, the lateral resolution of an OCT system is 

independent on its axial resolution as the lateral resolution is still governed by the focusing 

power of the imaging probe in the sample arm of the OCT system. When the numerical 

aperture (NA) of the imaging probe in the sample arm is small, the propagating beam in 

the sample arm can be simply described as a scalar Gaussian beam [91]: 
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, (2.10) 

 where 2
0Rz  is called the Rayleigh range, 0  is the waist size. The lateral 

resolution can be defined as twice of the waist size: 

 0
0

22
NA

x . (2.11) 

And the conversion between this lateral resolution and a FWHM of beam spot in lateral 

direction is: 

 ln 2 0.589
2FWHMx x x .  (2.12) 

Direct measurement of a lateral resolution is sometimes difficult and requires extra 

instruments. But the lateral resolution can be calculated from measured confocal parameter

2 Rb z : 

 02bx   (2.13) 

Most of the broadband light sources do not have a Gaussian shape spectrum so that 

side lobes exist next to the main lobe when measuring their PSFs. Side lobe level is a key 
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parameter of TD-OCT in practical use since the side lobe from a strong scatter would 

overwhelm the main lobe from a weak scatter next to the strong one. The image quality 

would be fussy although the axial resolution of the system may not be bad. Although the 

side lobe is dependent on the spectral shape of the light source, it would be better to set the 

side lobes at least 20 dB lower than their main lobe. 

The imaging depth of TD-OCT is determined by how deep the reference arm is 

capable of scanning. In general, a deeper imaging depth in TD-OCT means slower imaging 

speed (i.e., A-scan rate). Several optical techniques (e.g., rapid scanning optical delay line) 

were employed in TD-OCT systems to achieve both deep imaging depth and fast imaging 

speed. Depending on the incident wavelength, the imaging depth in most OCT systems is 

from 1 to 3 mm. 

The detection sensitivity in an OCT system is defined as the ratio of a complete 

reflection (e.g., a mirror) in the sample arm over the noise level when the light from the 

sample arm is negligible. The overall noise in a photodetector comes from several noise 

sources, such as shot noise, excess noise, dark noise, thermal noise, 1/f noise and etc. 

Among these, shot noise arises from fluctuation of uncorrelated photons of a light source 

(e.g., a laser of completely coherent state), which is an inherent property of the light source 

that cannot be reduced or removed with a classical method. The statistics of shot noise 

follows Poisson distribution (i.e., n n , where n  is photon number ) [92]. Excess 

noise is another type of noise that comes from the fluctuation of correlated photons of a 

light source (e.g., thermal light source, chaotic light source). The statistics of excess noise 

of a thermal light source follows Bose-Einstein statistics (i.e., 2n n n ) [92]. A 

practical light source used in OCT has a photon fluctuation statistics between those two 
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noises. In order to get the best detection sensitivity, a broadband light source need to be 

carefully chosen and the power level of the reference arm has to be properly set (i.e., not 

too large and not too small). On the one hand, the power level has to be set small enough 

so that shot noise, not the excess noise, from the light source is dominant. On the other 

hand, since dark and thermal noises arise from either the photodetector itself or its 

amplification electronics, the power level in the reference arm has to be set large enough 

so that the shot noise from the light source overwhelms those two noise sources. This can 

be achieved by setting the power level in the reference arm properly [61]. 1/f noise is highly 

frequency dependent in electronics, which can be removed by carefully choosing a Doppler 

frequency. Hence, detection sensitivity is shot-noise limited. 

In a TD-OCT system employing a Michelson interferometer setup, the shot-noise 

limited detection sensitivity can be expressed as [93]: 

 10D.S. 10 log
2 NEB

sP ,  (2.14) 

where  is the quantum efficiency of the photodetector, sP  is the optical power of the 

incident light on the sample,  is the energy of a single photon and NEB is the noise 

equivalent bandwidth. Practically, as a loss of sensitivity exists in any OCT systems, a 

measured detection sensitivity is always lower than the above theoretical limit by a few 

dBs. A typical detection sensitivity of a TD-OCT system is about 100 dB to 110 dB. 

2.3.3 Disadvantages 

A major disadvantage of the TD-OCT system lies in the imaging speed. In a TD-OCT 

system, a mirror in the reference arm has to be mechanically scanned to acquire depth-

resolved information in the sample. A typical A-scan rate of a TD-OCT is usually on the 
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order of ~ 100 Hz to 2 kHz, which limits the imaging speed of a TD-OCT system. For 

example, a B-frame rate of such a system is on the order of 0.1 to 2 Hz. With the aid of a 

rapid scanning optical delay line and a resonant mirror, TD-OCT may reach up to 16 kHz 

under an extreme circumstance (e.g., small imaging depth) [94]. 

Another disadvantage of TD-OCT is a decrease of detection sensitivity that comes 

with an increase of the A-scan rate. As a higher imaging speed requires higher bandwidth 

of the detection components in the system, the detection sensitivity would decrease 

according to Eq. (2.14). Generally speaking, the detection sensitivity of a TD-OCT system 

with an A-scan rate on the order of a few kHz can be easily degraded to 90 dB and below 

[95], leading to poor imaging quality. 

2.4 Fourier Domain Optical Coherence Tomography 

In order to improve the imaging speed of OCT systems without sacrificing the detection 

sensitivity too much, another type of OCT systems named FD-OCT were developed 

especially with the aid of the technological advances on the line scan detector array and the 

wavelength swept laser source after the millennium. Similar to TD-OCT that came from 

optical coherence domain reflectometry, FD-OCT originated from optical Fourier domain 

reflectometry (OFDR), which was developed for characterization of the optical fiber and 

other optical components [30, 96]. In a FD-OCT system, the spectrum of the interference 

signal from all the depths are simultaneously detected and an OCT A-scan is constructed 

via Fourier transform from the acquired raw data. Therefore, there is no requirement of a 

depth scanning mechanism in FD-OCT systems, resulting in 10 to 100 fold increases in 

imaging speed over TD-OCT systems. 
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Unlike in TD-OCT, the spectrum of the interference signal is detected in FD-OCT 

as the raw data in either space (i.e., spectral domain OCT or SD-OCT) or time (i.e., swept 

source OCT or SS-OCT). The signal from different depths in the sample arm that interferes 

with the reflected signal in the reference arm shows different frequency in the wavenumber 

space. A depth resolved signal, therefore, can be computed using Fourier transform. The 

schematics of both SD-OCT and SS-OCT are shown in Fig. 2.3a and Fig. 2.3b, respectively.  

 

Figure 2.3 (a) A schematic of a spectral domain optical coherence tomography system and 

(b) a schematic of a swept source optical coherence tomography system. C: collimator; D: 

detector; FC: fiber coupler; G: grating; M: mirror. 

In SD-OCT, the spectral information of a broadband interference signal is decoded 

via a grating spatially and the dispersive signal is detected via a line scan detector array 

(e.g., CCD) as a function of the wavenumber (i.e., 2k ) with respect to the pixel 

position on the detector array (i.e., k k x ). In SS-OCT, the spectral information is 

decoded temporally in a wavelength swept laser source and the swept light is detected by 

a photodetector as a function of wavenumber with respect to the sweeping time (i.e., 

k k t ). Due to the nonlinear mapping between wavenumber and position (or time), most 

of the FD-OCT systems require a calibration procedure that convert a raw data into 
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wavenumber space (i.e., K space) before performing Fourier transform. The transformed 

data, therefore, become depth resolved (i.e., a function of the depth z ).  

2.4.1 Fourier Domain OCT Axial Scan Signal [97] 

For simplicity, we will only derive the interference signal of SD-OCT as shown in Fig. 

2.3a and the derivation in SS-OCT is identical. The intensity and electrical field spectra in 

K space of the incident light to the interferometer are oI k  and oE k , respectively. The 

electric field spectra from both arms are , ,s s s oE k z s k z E k  and 

r oE k r k E k , where r k  is the electric field reflection coefficient spectra from 

the reference arm, , ss k z  is the electric field reflection coefficient with respect to the 

wavenumber and the optical pathlength in the sample arm. The spectrum of the total 

electric field of the combined signal at the detector is: 

 
0 cos 2 , z cos 2

s

D r s

r s s s
z

E k E k E k

E k r k kz s k kz k dz
,  (2.15) 

where rz  and sz  are the optical pathlength in the reference and sample arms, respectively. 

The interference signal measured at the line scan detector array is then: 
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.  (2.16) 

Defining s rz z z , the AC component in Eq. (2.16) becomes: 
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If the reflectivity of the mirror in the reference and the phase difference between two arms 

are both wavelength independent over the region of interest (i.e., ( )r k r=  and ( )kφ φ= ), 

Eq. (2.17) is then reduced as: 
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∫
,  (2.18) 

which shows that the FD-OCT interference spectrum is the Fourier transform of the depth 

resolved reflection coefficient of the sample arm. Therefore, a depth resolved signal can be 

constructed via an inverse Fourier transform ( ) ( )1FT AC
D DI z I k−  =   . In particular, the 

depth resolved signal ( )DI z  is proportional to ( )r s z⋅  when the reflection coefficient in 

the sample arm is wavelength independent. All the detected raw signals in FD-OCT 

systems need to be discretized and processed to display on a modern display device. The 

inversed Fourier transform that is performed to construct the depth resolved signal should 

be discrete Fourier transform (DFT) in practical.  

2.4.2 Key Parameters: Axial Resolution, Lateral Resolution, Side Lobes, Imaging 

Depth, Detection Sensitivity and Its Roll-off 

Similar to TD-OCT, the axial resolution in FD-OCT is also proportional to the square of 

the central wavelength divided by the bandwidth of the light source. If a Gaussian shape 

spectrum of the light source is employed in a dispersion matched OCT system, the axial 

resolution can also be calculated with Eq.  (2.6). The axial resolution in FD-OCT systems 

would also be degraded when a dispersion mismatch between the two arms exists in the 
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system (similar to Eq. (2.7) and Eq. (2.9)). Unlike in TD-OCT, however, all the spectral 

information is acquired in an FD-OCT system so that the dispersion mismatch in an FD-

OCT system can be numerically compensated by multiplying a chirped phase function 

i ke  with the Hilbert transform of the signal in K space. However, such a numerical 

compensation could cause a reduction in the detection sensitivity, especially when the 

dispersion mismatch is large. The lateral resolution can be identically estimated with 

Eq.(2.11), Eq. (2.12) and Eq. (2.13) in FD-OCT systems. 

Besides the spectral shape of the light source, side lobes in FD-OCT also depend 

on DFT as a spectral leakage exists in DFT [98]. A numerical manipulation on spectral 

shape can be performed in FD-OCT to suppress the side lobes. However, such a 

manipulation usually leads to the broadening of the axial resolution when the side lobes 

are suppressed. An opposite numerical manipulation on spectral shape could improve the 

axial resolution with a penalty of the increase of the side lobes. Additionally, the detection 

sensitivity will be degraded due to the numerical amplification of the noise floor of the raw 

data. 

Unlike in TD-OCT, the imaging depth in FD-OCT is numerically determined by 

the discretization step of the raw data in wavenumber (i.e., imaging depth 2z k ). 

However, the discretized step should not be set beyond a physical limit (i.e., spectral 

resolving power of the FD-OCT system). In SD-OCT, the discretization step cannot be set 

smaller than the resolving power of the grating. In SS-OCT, the discretization step cannot 

be set beyond the instantaneous linewidth of the wavelength swept source. Otherwise, the 

image beyond the physical limit is meaningless and sometimes confusing. 
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An increase of detection sensitivity of FD-OCT over that of TD-OCT comes from 

DFT. In order to get the best detection sensitivity, the detection sensitivity of the raw data 

in FD-OCT should reach shot noise limit, which can be described in the same equation as 

Eq. (2.14). Since the interference signals of different wavenumbers are constructively 

added in DFT, the power of the transformed signal is proportional to the square of the 

effective size of data points M  in DFT (i.e., 2S M  ). On the other hand, the power of 

transformed shot noise is only proportional to the effective size of data points M  in DFT 

due to Wiener–Khinchin theorem. Hence, an M-fold increase in detection sensitivity of 

FD-OCT over TD-OCT under the same conditions (e.g., electronic bandwidth) is naturally 

gained from DFT [38-40]. In most FD-OCT systems, the effective data point size is on the 

order of 1000, which give us a gain of ~30 dB. However, the electronic bandwidth in FD-

OCT is at least 100 times higher than that in TD-OCT due to its faster A-scan rate. 

Therefore, most FD-OCT systems have a detection sensitivity of 100 to 120 dB, depending 

on their A-scan rate. 

Unlike TD-OCT, detection sensitivity roll-off, defined as the decay of the detection 

sensitivity over the imaging depth, is unique in FD-OCT systems. The contributions of 

detection sensitivity roll-off come from various sources and are different in SD-OCT than 

SS-OCT systems. In general, detection sensitivity roll-off would be set as small as possible 

so that the detection capability of a FD-OCT system keeps unchanged when the depth 

position of a scatter changes. 

2.4.3 Comparison between SD-OCT and SS-OCT 

There are two implementations in FD-OCT, which are spectral domain OCT (SD-OCT) 

and swept source OCT (SS-OCT). In SD-OCT, the broadband light is dispersed via a 
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grating and the dispersive angle is a function of the wavenumber of the light. The dispersive 

lights are then focused on the pixels of the line scan detector array. Since the position of 

the pixels can be uniquely mapped into K space, a spectrum of interference signal is then 

acquired to perform DFT. In SS-OCT, a wavelength swept laser source is required. Since 

there is a unique relationship between time and wavenumber within a single A-scan, one 

is able to acquire the spectral data via a point detector to perform DFT.  In general, both 

SD-OCT and SS-OCT systems require a calibration procedure to map the raw data 

uniformly into K space. But there are a few techniques could avoid this procedure, 

including directly sampling raw data that is linearly spaced in K space [99, 100] or 

numerically performing a non-uniform Fourier transform on raw data [101, 102].  

Although the basic principles of both systems are very similar, there are two distinct 

differences between them. First of all, the decisive factor of the imaging speed (i.e., A-scan 

rate) of a SD-OCT system and a SS-OCT system are different. The A-scan rate of a SD-

OCT system is determined by the line scan rate of the detector array while the A-scan rate 

of a SS-OCT system is determined by the wavelength swept rate of the laser source. 

Secondly, the contributions of the detection sensitivity roll-off are different in SD-OCT 

and SS-OCT systems. In SD-OCT system, the roll-off comes from the design of the 

spectrometer, including the finite size of the detector pixels, the resolving power of the 

grating and the diffraction effect of the focusing lens in front of the detector array (plus the 

aberrations existing in the spectrometer in reality). Depending on the bandwidth of the light 

source and the imaging depth, it usually ranges from 6 to 16 dB [103, 104]. In SS-OCT 

system, the roll-off mainly comes from the instantaneous linewidth of the laser source and 

a small portion of the roll-off comes from the electronic bandwidth of the detector. 
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Depending on the sweeping bandwidth, sweeping rate of the laser source and the imaging 

depth, it usually ranges from 1 to 6 dB [36, 105-107]. Furthermore, the phase stability of 

SD-OCT system is better than SS-OCT system since there is no temporal scanning 

mechanism in SD-OCT. 

2.5 Summary 

In summary, the basic theories of both TD-OCT and FD-OCT systems were discussed in 

this chapter. The acquired signals in both OCT systems were derived and the data 

processing to generate the depth resolved signals were shown. A few key parameters in 

both OCT systems were mathematically expressed in details, including the axial and lateral 

resolutions, the effect of dispersion mismatch between the two arms on the axial resolution, 

side lobes, and detection sensitivity. Finally the disadvantages of both OCT system, such 

as lower detection sensitivity in TD-OCT and detection sensitivity roll-off in FD-OCT, 

were also discussed.   
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Chapter 3 Overview of an Endoscopic Optical 

Coherence Tomography System 

In this chapter, the choices of broadband light source, OCT interferometer, and miniature 

OCT imaging probe are discussed, mainly focusing on the rationale behind those choices. 

The technical descriptions of all the subsystems in a high-speed endoscopic OCT system 

will be introduced in detail in the following four chapters.  

3.1 Introduction 

 

Figure 3.1 A block schematic of a high-speed endoscopic OCT imaging system. 

A high-speed endoscopic OCT system, as shown in Fig. 3.1, consists of four essential 

subsystems including a broadband light source, an OCT interferometer, a miniature OCT 

imaging probe, and an OCT software platform. A broadband light source has a capability 

of coherent gating to provide depth-resolved information. An OCT interferometer 

generates a depth-resolved signal via interfering a weak signal from the sample arm with a 

stronger signal from the reference arm. A miniature OCT imaging probe can focus the
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beam to the internal organs and collect the weak optical signal efficiently while maintaining 

a small form factor. At last, an OCT software platform controls and synchronizes all the 

hardware components and is able to acquire, process and save all the OCT data in real time. 

3.2 Choice of Broadband Light Source 

The wavelength range of the light source is usually discrete due to the availability of the 

spectra of light sources. Most OCT systems choose a central wavelength at the near infrared 

(NIR) region at 800 nm, 1060 nm, 1310 nm, and occasionally 1550 nm or beyond [108-

111]. The choice of the wavelength range primarily depends on the optical properties of 

the biological tissue and the requirement of the OCT applications.  

There is a tradeoff between the axial resolution and the penetration depth of an OCT 

system when choosing the incident wavelength of the light source. According to the OCT 

axial resolution equation (i.e., 2z ), it is well known that shorter wavelength 

provides better axial resolution if the spectral bandwidths are the same. However, 

scattering, which is a dominant optical phenomenon in the NIR region causing exponential 

decay in biological tissues, highly depends on the wavelength as the scattering significantly 

increases when the wavelength becomes shorter. For example, Rayleigh scattering cross 

section is inversely proportional to the fourth order of the wavelength (i.e., 41s ). 

Hence, the penetration depth of a longer wavelength is deeper than the one of a shorter 

wavelength (e.g., an 800 nm OCT system usually has a penetration depth of ~1.0 mm in 

turbid tissue while a 1300 nm OCT system can easily reach a penetration depth of ~ 3.0 

mm). Additionally, water absorption is another consideration in biomedical optics. The 

absorption of water molecules has an increase trend with respect to the wavelength with 

several absorption peaks in the NIR region [112]. Most OCT imaging in ophthalmology 
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chooses 800 nm or 1060 nm due to less water absorption and higher axial resolution 

whereas most OCT imaging of highly scattering tissue (e.g., epithelium) chooses 1310 nm 

or higher due to less scattering in tissues. 

Furthermore, practical considerations have to be taken into account as well. There 

are two commonly used broadband light sources for TD-OCT and SD-OCT: ultrafast laser 

and superluminescent diode (SLD)†; a wavelength swept laser, which is required for SS-

OCT, usually has a gain medium of a semiconductor optical amplifier (SOA) that is 

equivalent to SLD. In the wavelength range of 800 nm, solid state ultrafast lasers (e.g., 

Ti:Sapphire, Cr3+: LiSAF and Cr3+: LiCAF) and AlGaAs SLDs are common choices of the 

light sources in OCT systems [113-116]. Although solid state lasers usually provide much 

higher power and broader spectral bandwidth than the SLDs, SLDs have been widely 

adopted in the OCT community due to their compact size and lower cost (SLDs can be put 

in parallel to gain broader spectral bandwidth). InGaAs SLDs are commonly used in the 

range of 1060 nm, but their spectral bandwidths are limited among commercially available 

choices (e.g., <50nm) [117-119]. Although Nd:YAG solid state ultrafast laser and its 

family can provide much higher power in this wavelength range, most of them are Q-switch 

pulse laser so that their spectral bandwidth is too narrow to be used for OCT applications. 

In the range of 1300 nm or beyond, InGaAsP/InP SLDs are well developed choices due to 

high demand in telecommunications [120, 121]. For example, a commercially available 

SLD with a central wavelength of 1310 nm and a bandwidth of ~85 nm can reach an output 

power above 10 mW from a single mode fiber [122]. Solid state ultrafast lasers (e.g., 

Cr4+/Forstertie, Cr4+:YAG) can also provide a spectral bandwidth that is suitable for OCT 

† Supercontinuum generation and thermal light source are also sometimes used in OCT systems. But both 
of them suffers from intensity fluctuation and tends to have higher source noises. 
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imaging at this wavelength range [123, 124], but their cost is much higher than the SLDs 

so that they are less commonly used in reality. 

In order to achieve high imaging speed, an FD-OCT system was chosen to use in 

this dissertation. Between the two implementations, SS-OCT system is generally faster 

than SD-OCT system. Another practical consideration of choosing the type of an FD-OCT 

is that the availability of line scan detector array and/or light source. Until recently, there 

is no line scan detector array at the wavelength range beyond 1000 nm [125, 126]. And 

there is still no practically usable broadband wavelength swept laser source under 1000 nm 

[127]. Therefore, most SS-OCT systems use a wavelength range of 1060 nm, 1310 nm or 

beyond while most SD-OCT systems choose a wavelength range of 800 nm. 

Since the region of interest in this dissertation is highly scattering tissues in the 

internal organs, a wavelength range of 1310 nm was chosen to achieve an imaging depth 

of 2 – 3 mm. In addition, an SS-OCT setup was preferable in order to reach an A-scan rate 

of a few hundred kHz. 

3.3 Choice of OCT Interferometer Setup 

There are three fiber-optic based OCT interferometer setups commonly used in most OCT 

systems: Michelson interferometer, modified Michelson interferometer and Mach–

Zehnder interferometer. 
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Figure 3.2 A schematic of fiber optical Michelson interferometer. C: collimator; D: 

detector; FC: fiber coupler; M: mirror. 

The simplest interferometer setup as illustrated in Fig. 3.2 is Michelson 

interferometer, which has been described in the previous chapter. In short, a broadband 

fiber coupler is employed in this interferometer to split the incident light into sample and 

reference arms and recombine the reflected lights back from both arms to generate the 

interference signal. The split ratio of the fiber coupler is usually 50/50 in order to get the 

best efficiency. One of the disadvantages in this setup is that only half of the interference 

signal is sent to the photodetector while the other half is wasted by sending back to the 

laser source.

 

Figure 3.3 A schematic of fiber optical modified Michelson interferometer. BD: 

balanced detector; C: collimator; CIR: circulator; FC: fiber coupler; M: mirror.  

In order to utilize the other half of the interference signal, a modified Michelson 

interferometer was developed as illustrated in Fig. 3.3. A broadband fiber optic circulator, 
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where light that travels in the opposite directions takes different optical path, is placed 

between the light source and the fiber coupler so that the other half of the interference 

signal is able to be redirected to the photodetector instead of be sent back to the laser source. 

A balanced detection scheme is employed in this interferometer in order to utilize both 

interference signals. Due to an intrinsic property of the fiber coupler (i.e., there is a π  

phase shift between the two split beams in the fiber coupler), the AC components of the 

two interference signals to the balance detector have a phase difference of π  between them 

while the phases of the DC components remain the same. Because the output of a balanced 

detector is an amplified signal of the difference between the two optical inputs of the 

detector, the AC components of the interference signal is doubled while the DC 

components are cancelled with each other in the balanced detector. Compared to a single 

detector scheme, the differential mode signal of the balanced detector is doubled whereas 

the shot noise only increases by 2 , causing an increase in the detection sensitivity of the 

OCT system by 3 dB. Another accompanying benefit of balanced detection scheme is the 

cancellation of non-quantum noises (e.g., 1/f noise) to further improve the performance. 

However, the availability of a broadband circulator sometimes usually hinders the use of 

balanced detection scheme (e.g., the choice of a broadband fiber optic circulator at the 

wavelength of 800 nm is very limited). 
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Figure 3.4 A schematic of fiber optical Mach-Zehnder interferometer. BD: balanced 

detector; C: collimator; CIR: circulator; FC: fiber coupler; M: mirror. 

The incident light is evenly split via a 50/50 fiber coupler to the both arms in both 

aforementioned interferometer setups. But the necessary power to the reference arm is 

much less than the one in the sample arm in most OCT applications and an attenuator is 

necessarily inserted into the reference arm to avoid saturation of the detector.  In order to 

optimize the usage of the incident power, a Mach-Zehnder interferometer setup was 

developed as illustrated in Fig. 3.4. An unbalanced fiber coupler is used to split the incident 

light into sample and reference arms unevenly (e.g., 90/10) as the majority of the optical 

power is sent to the sample arm. There are two fiber optic circulators in both arms divert 

the reflected/backscattered light to the second fiber coupler with a split ratio of 50/50. The 

second fiber coupler combines the redirected beams from both arms to generate 

interference signals. A balanced detection scheme is then employed here to remove the DC 

component of the interference signals and to improve the detection sensitivity as described 

before. 
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In summary, we choose to use a Mach-Zehnder interferometer setup in this 

dissertation. 

3.4 Choice of Miniature OCT Imaging Probe 

Miniature imaging probes is one of the key components in an endoscopic OCT imaging 

system. Requirements of a miniature imaging probe for in vivo OCT applications includes 

a high lateral resolution, a compact overall size (including optics, protective components), 

mechanical robustness and flexibility. 

The practical consideration in designing an OCT imaging probe is to minimize its 

overall size as physical size of the probe is usually limited for in vivo applications. For 

example, the overall size of the entire assembly, including both optical and protective 

components, usually cannot exceed 2.5 mm for an imaging probe used along with a 

gastrointestinal endoscope. Unfortunately, a high lateral resolution requires a large optical 

size in an imaging probe. According to diffraction theory, a smaller spot size comes from 

higher numerical aperture (NA) of the focusing lens (i.e., 1x NA ), leading to a larger 

diameter in optics given the same focal length of the lens (i.e., NA D f ) [128]. The 

overall size of the entire assembly of the OCT imaging probe, therefore, would increase if 

a higher lateral resolution is desirable. Therefore, the primary challenge is to design the 

distal end optics in an OCT imaging probe in order to utilize a proper optical aperture to 

reach a desirable lateral resolution when the physical size of the probe is limited. 

Mechanical robustness and flexibility are, self-explanatorily, also essential for an imaging 

probe used in in vivo applications. 

Miniature imaging probes can be divided into forward-viewing and side-viewing 

probes based on the beam direction in the distal end of a probe. The beam direction in a 
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forward-viewing probe (as illustrated in Fig. 3.5a) is parallel to the longitudinal axis of the 

probe so that the field of view (FOV) is in front of the probe; hence it is particularly useful 

in applications such as image guided surgery.  A B-frame image can be acquired via some 

lateral scanning mechanism at either distal end (e.g., piezoelectric 

actuator/microelectromechanical systems (MEMS) scanner, MEMS scanning mirror, and 

angle rotation scanning as illustrated in Figs. 3.5b to 3.5d) [68, 71, 129-135], or proximal 

end of the probe (e.g., a rigid relay lens or a fiber bundle with galvanometer scanner as 

illustrated in Fig. 3.5e) [136, 137]. Limited by the size of the scanner, the overall size of 

forward-viewing imaging probes employing distal end scanning mechanism is usually 

relatively large (i.e., 1.65 to 7.5 mm in diameter). For forward-viewing probes with 

proximal end scanning mechanism, a major disadvantage is that they require either a rigid 

long lens or a fiber bundle, which greatly limits their applications. 
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Figure 3.5 (a) A simplified schematic of forward-viewing OCT imaging probe; schematic 

of (b) PZT scanning probe; (c) MEMS scanning probe; (d) angle rotation scanning probe; 

and (e) proximal end scanning mechanism in forward-viewing OCT imaging probe. GV: 

galvanometer scanner. 

On the other hand, a side-viewing probe as shown in Fig. 3.6a has a beam direction 

in the distal end that is perpendicular to the longitudinal axis of the probe, which is usually 

achieved using a micro reflector in the distal end to divert the beam by ~ 90 . The FOV, 

therefore, is on the side of the probe. The distal end optics of such a probe usually consists 

of rod lenses to get a desirable working distance. The optical design of the distal end optics 

includes gradient index (GRIN) lens [73, 74, 83, 138-140], GRIN fiber [141-144], ball lens 

[145, 146], and multi-element lens assembly [147, 148]. Among these, GRIN lens based 
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optical design is the most popular choice due to its relatively simple design, ease to 

assemble, and cost effectiveness. The lateral scanning mechanism in a side-viewing probe 

can be either linearly translating the OCT imaging probe to acquire side-viewing images 

as illustrated in Fig. 3.6b [72, 148-151] or rotating the probe to acquire circumferential 

images as illustrated in Figs. 3.6c and 3.6d. The rotation scanning mechanism can be 

further divided into rotating the whole probe from the proximal end via a fiber rotary joint

as illustrated in Fig. 3.6c [74, 83, 138, 140-145] or only the micro reflector for the distal 

end via a miniature motor as illustrated in Fig. 3.6d [71, 152-156].  

Figure 3.6 (a) A simplified schematic of side-viewing OCT imaging probe; schematic of 

(b) linearly translational scanning, (c) proximal end scanning, and (d) distal end scanning 

mechanism in a side-viewing OCT imaging probe. 

Since the region of interest of in vivo OCT applications is mostly tubular organs 

(e.g., esophagus, airways and blood vessels), a side-viewing imaging probe with a rotation 

scanning mechanism is usually preferable to acquire circumferential images of the entire 

organ lumens. Between proximal and distal end scanning schemes, the overall size of a 

proximal end scanning probe is usually smaller because a distal end scanner (e.g., DC 
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motor, MEMS scanner, ultrasound motor) is generally bigger and limits the overall size of 

a distal end scanning probe‡.  

Therefore, in order to acquire circumferential images while maintaining the probe 

as small as possible, we consequently choose to use side-viewing miniature OCT imaging 

probe with proximal end scanning mechanism in the imaging probe designs in this 

dissertation (as shown in Fig. 3.6c). 

3.5 Summary 

In summary, we briefly introduced four subsystems in a high-speed endoscopic OCT 

system. After comparing among different choices, (1) a wavelength swept with a central 

wavelength of 1300 nm was chosen to be built; (2) a fiber optic Mach-Zehnder 

interferometer that optimally utilizes the optical power and balanced detection scheme was 

then used to generate OCT signals, (3) a proximal-end driven, side-viewing OCT imaging 

probe was chosen in this dissertation. Their technical details will be discussed in the 

following chapters. 

 

‡ A motor smaller than 1.0 mm was not commercially available until recently. 
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Chapter 4 High-speed OCT Laser Engine — 

Fourier Domain Mode-locking Laser 

This chapter describes the basic principle of wavelength swept lasers. A few essential 

requirements to ensure a wavelength swept laser working properly were discussed. A 

double-buffered Fourier domain mode-locking laser was developed to achieve an A-scan 

rate of ~220 kHz. The basic performance of the laser was also tested. 

4.1 Basic Principles of Wavelength Swept Laser 

SS-OCT is one of the two FD-OCT implementations that greatly increased the imaging 

speed of an OCT imaging system (i.e., A-scan rate by 10 to 100 folds), which made three 

dimensional (3D) in vivo imaging possible. Among all the components in an SS-OCT 

system, wavelength swept laser is the optical source engine. Wavelength swept lasers were 

first used along with an OFDR for inspection of defects in optical fibers and waveguides 

[157-159]. Since the characteristic size of photonic devices is usually on an order to a few 

tens of micron and the devices are stationary, the lasers were swept within a very narrow 

bandwidth at a very slow rate (e.g., a few nanometers with one tenth Hz A-scan rate). Once 

wavelength swept lasers were adopted into the OCT field, their sweeping bandwidth and 

rate greatly increased (e.g., an A-scan rate of a few kHz and a bandwidth of >70 nm) [160]. 

The A-scan rate exceeded 10 kHz and the sweeping bandwidth expanded to >120 nm 

within a few years [36, 161]. These improvements made the SS-OCT system practically 

usable for real-time OCT imaging. Sooner after, the invention of Fourier domain mode-

locking (FDML) laser and MEMS scanner based short cavity wavelength swept laser 
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pushed the A-scan rate of the SS-OCT into a few hundreds kHz and expanded the sweeping 

bandwidth to >150 nm [105, 162-164]; a wavelength swept laser with such a high A-scan 

rate made in vivo 3D OCT imaging possible. Currently, the A-scan record was updated 

into multi MHz region [37, 107]. 

4.1.1 Conventional Wavelength Swept Laser 

 

Figure 4.1 A simplified schematic of a conventional wavelength swept laser. The green 

arrow indicates the light traveling direction inside the cavity. FC: fiber coupler; FG: 

function generator; GM: gain medium; TF: tunable filter. 

A conventional wavelength swept laser is typically made of a broadband high gain medium 

(e.g., semiconductor optical amplifier, or SOA) and a tunable optical bandpass filter (e.g., 

fiber optic Fabry-Perot filter) driven by a power function generator to form a laser cavity 

(e.g., a closed fiber optical loop) as shown in Fig. 4.1. One directional optical component 

(i.e., usually optical isolator) is utilized to ensure that light travels in a unidirectional 

direction. The output of the laser comes from a fiber coupler as shown in Fig. 4.1. Before 

the FDML and short cavity MEMS laser were invented, most of the wavelength swept 

lasers are setup this way. When laser first starts up, the light first builds up from amplified 
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spontaneous emission (ASE) inside the gain medium due to its high small signal gain (e.g., 

at least >20 dB).  When the broadband ASE light is sent to the tunable filter, only a very 

narrow bandwidth of the ASE light (e.g., <0.1 nm) selectively passes through the filter. 

The selected narrow bandwidth light is then amplified when it travels back to the gain 

medium. Since the length of the loop is relatively short, the selected light is allowed to 

travel several times inside the loop to build up enough power of lasing that is close to the 

saturation level of the gain medium before the tunable filter switches to another wavelength. 

As the selective wavelength of the tunable filter changes, the old lased light collapses and 

a new one builds up again. The maximal sweeping rate of a conventional wavelength swept 

laser is limited by the characteristic frequency for building up laser activity close to its 

saturation level inside a given optical cavity [36]: 
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,  (4.1) 

where G  is the small signal gain of the gain medium,  is the fraction of energy fed back 

into the cavity after each trip, f  is the FWHM linewidth of the tunable filter, c  is the 

speed of light, satP  is the saturation power of the gain medium, FW  is the full-width 

tuning range of the wavelength swept laser, ASEP  is the total ASE power of the gain 

medium, L  is the optical pathlength of the cavity, and  is a constant coming from a 

sinusoidal driving waveform. Since the driving waveform is usually sinusoidal, one 

sweeping period of a wavelength swept laser actually contains two wavelength sweeps, 

which are called forward (short to long wavelength) and backward (long to short 

wavelength) sweeps. 
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At any sweeping rate above satf , the output power of the wavelength swept laser 

rapidly declines as the laser is driven away from the saturation zone of the gain medium.  

Keeping increasing the sweeping rate, the laser would reach “single roundtrip limit” [36]: 

 f
sngl

FW

c
f

L
. (4.2) 

At frequencies near snglf , the laser output decreases by several orders of magnitude 

with respect to its saturation limit and most of the laser output is filtered ASE light. A 

typical conventional wavelength swept laser has a ~8 meter long cavity that is mainly made 

of SMF28e+ optical fiber. Assuming a gain medium of SOA with a performance shown in 

[165], a tunable filter of fiber optic Fabry-Perot filter with a fineness of 700, and a 70/30 

fiber coupler to pick up the light from the cavity, the saturation limited and single roundtrip 

limited frequencies calculated are then: 

 
9.32 kHz
11.62 kHz

sat

sngl

f
f

.  (4.3) 

Such a sweeping frequency may be high enough for real-time 2D OCT imaging, but 

insufficient for 3D OCT imaging. As a matter of fact, most conventional wavelength swept 

lasers work at a sweeping rate of <10 kHz. By reducing the cavity length, the A-scan rate 

of a wavelength swept laser up to 115 kHz was achieved using a diffractive grating and a 

rotating polygon mirror as a tunable filter [166]. However, the performance of such a laser 

at higher sweeping rate is quite poor. 
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4.1.2 Fourier Domain Mode-locking Laser 

In order to increase the maximal sweeping rate of a wavelength swept laser, FDML laser 

was proposed in 2006, which provided a broad sweeping range, narrow instantaneous 

linewidth, and high output power [105]. 

Figure 4.2 A simplified schematic of a Fourier domain mode locking laser. The green arrow 

indicates the light traveling direction inside the cavity. DL: optical delay line; FC: fiber 

coupler; FG: function generator; GM: gain medium; TF: tunable filter. 

As mentioned in the previous subsection, building up the lasing at each wavelength 

in a conventional wavelength swept laser takes time and therefore limits the sweeping rate 

of the laser. The essential concept of a FDML laser takes two steps. First, a very long 

optical delay line is used to store all the filtered ASE lights of all the wavelengths in a 

single sweep; the stored lights of all the wavelengths is amplified via the gain medium 

when the tunable filter selects them sequentially in the next cycle. The lased lights of all 

the wavelengths are then built up after a few cycles. A FDML laser can be considered as a 

mode-locking laser with periodic spectral modulation. Based on this concept, a very long 

dispersion managed optical delay line (e.g., a long spool of single mode fiber) is 

incorporated into the optical cavity to store the filtered ASE lights of all the wavelengths 
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as shown in Fig. 4.2. The tunable filter is then driven synchronously at the same period as 

the cavity roundtrip time (or a harmonic of the roundtrip time).  

As mentioned above, FDML operation requires precise synchronization between 

the roundtrip time of the light inside the optical cavity and the sweeping period of the 

tunable filter. The driving frequency of the tunable filter is given by [105]: 

 1
d

d

cf
N L

,  (4.4) 

where c  is speed of light, L is the optical pathlength of the cavity and N is a positive 

integer representing the harmonic order of the roundtrip time. The synchronization 

condition can also be expressed as the gating time of the tunable filter at a given wavelength 

[105]: 

 f
g

d FWf
,  (4.5) 

where df  is the driving frequency of the tunable filter and the definitions of other variables 

are the same as in Eq. (4.1). In practice, g  must be controlled to less than 510  of d  in 

order to ensure optimal operation. 

Under ideal conditions (i.e., dispersion free and no thermal fluctuation, etc.), 

consecutive sweeps in a FDML laser should have the same phase and are mutually coherent. 

Unlike a conventional wavelength swept laser, the gain medium of an ideal FDM laser 

works deep inside the saturation region, which provides higher output power, narrower 

instantaneous linewidth, less ASE noise, and better phase stability. In practice, a FDML 

laser works under a quasi-stationary operational condition due to the existence of 

dispersion, thermal and polarization fluctuation caused by the long optical delay line, and 

mechanical instability caused by the tunable filter. When dispersion exists inside the laser 
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cavity, the lights of most wavelengths in the cavity (except one or two wavelengths) would 

gradually shift out of the narrow spectral window of the tunable filter when they propagate 

inside the loop, causing the existed lasing collapses. Meanwhile, a new lasing with slightly 

wavelength shift builds up. Eventually, these two concurrent processes would 

complementarily oscillate over time and reach equilibrium. Mathematically, it can be 

described in a simple model. The maximal variation in roundtrip time is: 

 FW
disp

eff

L D
n

,  (4.6) 

where D  is the group dispersion delay coefficient of the optical cavity and effn  is the 

effective refractive index of the cavity at the central wavelength. An FDML laser cannot 

operate continuously if disp  is greater than the gating time of the tunable filter g . 

Therefore the linewidth of the tunable filter f  has to be greater than [167]: 
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FW

f
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n

.  (4.7) 

It is noticed that Eq. (4.7) is proportional to the group dispersion delay coefficient D  but 

independent to the length of the optical cavity. Although a longer optical cavity is more 

dispersive, the gating time of the tunable filter g  also increases accordingly. In addition, 

the requirement in Eq. (4.7) quadratically increases with respect to the full-width sweeping 

range of the FDML laser FW , which suggests that the requirement of the linewidth of 

the tunable filter has to be dramatically increased when a larger sweeping range is needed. 

Ideally, a FDML laser can work under any sweeping frequency (A-scan rate) by 

changing the length of the optical cavity. In practice, the sweeping frequency is limited by 

the mechanical frequency response of the tunable filter and most commercially available 
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tunable filter can only be safely driven at a few discrete resonant frequencies under 100 

kHz to achieve a broad sweeping spectral range unless it is custom designed or driven 

under an extreme condition[168]. Therefore, most FDML laser works at a sweeping 

frequency from 20 kHz to 60 kHz [100, 105, 169].  

4.1.3 Buffered Fourier Domain Mode-locking Laser 

As discussed in the previous subsection, the sweeping speed of a FDML laser is limited by 

the mechanical performance of the tunable filter. Unfortunately, it is quite hard for a 

tunable filter to sweep at a frequency of a few hundred kHz while maintaining a broad 

sweeping spectral range. Another drawback that exists in a FDML laser as well as a 

conventional wavelength swept laser, which is less pronounced, is that there are both 

forward and backward sweeps in each sweeping period. Although they have similar 

transient power characteristics, the noise floor of forward sweep is significantly higher than 

that of backward sweep. Hence, a FDML with unidirectional scans is desirable. In order to 

solve the above problems, buffered FDML was proposed to further improve the A-scan 

rate of the laser as well as providing unidirectional scans [162] 

The schematic of a buffered FDML is shown in Fig. 4.3. In order to get rid of the 

forward sweeps from a FDML laser, the gain medium in the laser has to be turned off 

synchronously when the tunable filter is at forward sweeps. Two fiber couplers are placed 

at evenly spaced locations inside the cavity to get two copies of the backward sweeps that 

have a time interval of half sweeping period between them (labeled as 1 and 2 in Fig. 4.3). 

The two copies are then combined together via another fiber coupler outside the cavity and 

are boosted via an external booster optical amplifier (e.g., SOA). In this setup, the A-scan 
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rate of the buffered FDML laser is twice as an unbuffered FDML laser at the same 

sweeping frequency. 

Figure 4.3 A simplified schematic of a buffered Fourier domain mode locking laser. The 

green arrow indicates the light traveling direction inside the cavity. DL: optical delay line; 

FC: fiber coupler; FG: function generator; GM: gain medium; ISO: optical isolator; PC: 

polarization controller; TF: tunable filter. 

Moreover, the A-scan rate can be further improved by a FDML laser with a double-

buffered cavity setup as shown in Fig. 4.4a. In such an FDML laser, the tunable filter is 

driven over a wavelength sweeping range that is larger than one free spectral range (FSR) 

of the backward sweeps; the gain medium inside the cavity is only turned on within the 

time span covering one FSR or less. Using the same optical cavity design as the one in 

single buffered FDML (as shown in Fig. 4.3), two copies of the sweeps with a time interval 

of half sweeping period are outputted from two fiber couplers (labeled as 1 and 2 in Fig. 

4.4a and illustrated in Fig. 4.4b). The two copies of the sweeps are then sent to an optical 
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time multiplexing setup outside the cavity, which consists of two 50/50 fiber couplers and 

an optical delay line.  

 

Figure 4.4 (a) Schematic of a double buffered Fourier domain mode locking laser and (b) 

an illustration of time multiplexing of the double buffered Fourier domain mode locking 

laser. DL: optical delay line; FC: fiber coupler; FG: function generator; GM: gain medium; 

ISO: optical isolator; PC: polarization controller; TF: tunable filter. 

The basic steps in the optical time multiplexing setup is: (1) mix and split the two 

copies of the sweeps by the first coupler, (2) delay half of the mixed copies by a quarter of 
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the sweeping period (labeled as 3 in Fig. 4.4a and illustrated in Fig. 4.4b), and (3) 

recombine four copies together by the second coupler (labeled as 4 in Fig. 4.4a and 

illustrated in Fig. 4.4b). Therefore, the A-scan rate of a double buffered FDML laser is 

quadrupled to its sweeping frequency. Since the two couplers attenuate the light more than 

6 dB, another optical amplifier is placed at the end of the optical path to boost the total 

output power. The buffering order number can be further increased by keep putting optical 

time multiplexing setups in series [139]; the A-scan rate of a multiple buffered FDML laser 

is 2n  times of its fundamental sweeping frequency, where n  is the buffering order number 

of the laser. 

4.2 Design of a Double-buffered Fourier Domain Mode-locking Laser 

In this dissertation, a double-buffered FDML laser was built to achieve an A-scan rate of 

~220 kHz. The fundamental sweeping frequency of the FDML laser was determined by 

the mechanical frequency response of the tunable filter. The optical cavity design that is 

followed by the description in the previous section was chosen to form a single buffered 

FDML laser. An optical time multiplexing setup was employed to quadruple the A-scan 

rate to achieve double buffering stage. 

4.2.1 Tunable filter and its Driver 

The most essential and decisive component in a FDML laser is the tunable filter that can 

selectively allow a narrow linewidth of light to pass through over a broad wavelength 

sweeping range (in other words, having a high finesse) at a fast sweeping frequency. 

Here we chose a fiber optic Fabry-Perot tunable filter from Lambda Quest LLC 

[170]. The tunable filter (S/N: X552) has a FSR of 164.0 nm with a finesse of 700, which 

gives us a linewidth of ~0.23 nm. It can be safely driven over a few tens of kHz. The 
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frequency response of this tunable filter (i.e., sweeping range per unit drive voltage versus 

sweeping frequency) was measured as shown in Fig. 4.5, where the fundamental resonant 

frequency is shown to be 53 kHz.  

Figure 4.5 Mechanical frequency response of the Fabry-Perot tunable filter (S/N: X552). 

Its fundamental resonant frequency is at ~53 kHz as indicted by green dashed line. The 

drive frequency was set at ~55 kHz to avoid instability at the resonant frequency while 

maintaining a wide sweeping range. 

The electric characteristics of the tunable filter is simply equivalent to a capacitor; 

a higher drive voltage and a higher drive frequency can both lead to a higher drive current. 

Therefore, its drive frequency cannot be too far away from its resonant frequency in order 

to maintain a broad sweeping range and an acceptable drive current at the same time. 

However, a severe instability was observed when the tunable filter was driven too close to 

its resonant frequency. A drive frequency of 55 kHz was, therefore, chosen to balance the 

two dilemma. At this frequency, the tunable filter can sweep over 300 nm at a peak-to-peak 

voltage of 4.5 V and the maximal driving current was measured to be about 700 mA. 
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Due to the nonlinear response and high hysteresis of the tunable filter, a pure 

sinusoidal drive waveform is usually preferable. Most modern arbitrary function generators 

are driven by digital clocks from a phase-locked loop (PLL) circuits, in which jitter 

inevitably exists. And jitter would cause phase noise in the clock signal, leading to a 

distortion of sinusoidal waveform. Since the jitter is random, any high order distortion is 

out of phase with the fundamental frequency of the sinusoidal waveform. This phenomenon 

would cause instability in a FDML laser. Therefore, the sinusoidal waveform was 

generated from an ultralow distortion arbitrary function generator (Stanford Research 

System DS360).  

Figure 4.6 Schematic of tunable filter driver. There are three ports, which are input, DC 

offset, and output, in this circuit. A sinusoidal waveform was first amplified via a closed 

loop power amplifier; the amplified signal was then combined with a DC offset voltage to 

drive the tunable filter. 

The drive waveform was then amplified via a home built power amplifier, the 

schematic of which is shown in Fig. 4.6. The operational power amplifier used here was 

PA02A from Apex Microtechnology, which is a Class A/B power amplifier to balance 
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between efficiency and linearity. The power amplifier was driven by a ±8V dual power 

supply with bypass capacitors. It has a gain bandwidth product of 4.5 MHz and can provide 

power bandwidth of up to 350 kHz. Due to the fact that the tunable filter is a capacitive 

load, the closed loop gain of -3 was chosen (i.e., 2 1R R ), which provided enough stability 

3R ) was put in series after the 

power amplifier to provide extra phase margin to keep the circuit stable. In order to avoid 

overdriving the tunable filter, two current limiting resistors in the circuit (i.e., between pin 

1 and 2; pin 7 and 8) clamped the drive current at 2 A. To prevent the two reflective surfaces 

in the tunable filter from colliding with each other, a drive waveform has to be positively 

biased. In order to do so, a DC offset was combined with amplified AC signal through a 

LC bridge (i.e., 1 5L C ). However, to eliminate the flyback from the inductor 1L , the DC 

offset was slowly charged via a RC circuit (i.e., 4 6R C ). Since the noise in the driving 

waveform greatly affects the performance of the tunable filter driver, a pair of DC power 

supplies were carefully chosen to ensure minimal voltage ripples.  

 

Figure 4.7 Photos of PCB board of the tunable filter driver; (a) front side and (b) back side. 
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A few practical considerations had to be taken into account when designing the 

drive. The printed circuit board (PCB) are shown in Fig. 4.7 on both sides. Since the 

designed working frequency is under 1 MHz, two layered PCB was used. In addition, the 

tunable filter is a capacitive load so that most of the power is dissipated on the power 

amplifier. A heat sink, therefore, need to be properly selected and installed. Moreover, 

resistors array was used as feedback resistors (i.e., 1R  and 2R ) to minimize the temperature 

dependency of the gain. Finally, current limiting resistors (i.e., 3R  and 4R ) and DC 

combiner (i.e., 1 5L C ) were carefully chosen to ensure they are able to hold a high current. 

This driver was tested to work properly with a drive frequency of <200 kHz. 

4.2.2 Optical Cavity Design 

Once the fundamental sweeping frequency was set to ~55 kHz, the total length of the 

optical cavity was calculated to be 5450.77 meters in optical pathlength. Considering most 

of the optical cavity is made of optical fiber spools (i.e., SMF28e+), the physical length of 

the optical cavity was designed to be 3713.82 meters. The schematic of the optical cavity 

in the double-buffered FDML laser was illustrated in Fig. 4.8. The actual lengths of the 

two fiber spools in the cavity acting as optical time delay line were chosen to be 1848 and 

1856 meters, respectively. The length of the rest cavity, including an SOA, a fiber optical 

tunable filter, two fiber couplers, and two fiber optic isolators, are approximately 12 meters. 

Therefore, the actual optical cavity length was ~3716 meter. In order to achieve a stable 

power output of a double-buffered FDML laser of a sweeping range of 150 nm at a central 

wavelength of 1310 nm, the requirement for the linewidth of the tunable filter, which was 

modified from Eq. (4.7) to adopt the double buffered FDML laser, was: 
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Figure 4.8 Schematic of the optical cavity in designed double buffered FDML laser. DL: 

optical delay line; FC: fiber coupler; FG: function generator; ISO: optical isolator; SOA: 

semiconductor optical amplifier; TF: tunable filter. 

The SOA (i.e., BOA1132S from Thorlabs Inc.) was turned on less than a quarter of 

each period (i.e., duty cycle: 22%) by a laser diode driver (LDTC 2/2 E from Wavelength 

Electronics, Inc.). And the laser diode driver was modulated by a square shaped waveform 

from an arbitrary function generator that was synchronized with the function generator that 

drove the tunable filter. Two broadband two-stage fiber optic isolators were placed at both 

end of the SOA to ensure about 60 dB isolation so that the light travels inside the cavity in 

a unidirectional way. The tunable filter driven by a home-built driver described in previous 

subsection was placed in front of one of the isolators to select a narrow linewidth of the 

light at a given time; its driving waveform was synchronized with the modulation drive 

waveform of the SOA. Two broadband fiber couplers were used to pick up partial light 

from the cavity as two half sweeping period apart copies. In order to keep the power levels 
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from two couplers close to each other, an 80/20 fiber coupler was placed between the first 

optical delay lines and the tunable filter while a 70/30 fiber coupler was placed between 

the two optical delay lines. Since the gain medium is a polarization dependent SOA, a 

manual fiber optic polarization controller was placed in the optical loop to manage the 

polarization state inside the cavity. 

4.2.3 Optical Time Multiplexing Design 

Based on the optical cavity design, the two copies of the sweeps from the inner cavity 

above were separated in half of the period of the driving waveform, which provided an A-

scan rate as twice as the driving frequency of the tunable filter. In order to further increase 

the A-scan rate, an optical time multiplexing setup was implemented as described in 

previous section. In short, the two copies of the sweeps were mixed via a 50/50 fiber 

coupler so that both arms of this coupler have two identical copies of the combination of 

two temporal separated sweeps. One of the copies was then delayed by a quarter of the 

period of the driving waveform through an optical delay line while another copies was not. 

These two copies were combined via a second 50/50 fiber coupler to generate four copies 

of the sweeps. Since there are more than 6 dB loss in this setup, another SOA (i.e., 

BOA1132S from Thorlabs Inc.) was used to boost the output. In order to manage the 

polarization states in the optical time multiplexing setup, three polarization controllers 

were placed in this setup as shown in Fig. 4.9.  
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Figure 4.9 Schematic of the optical time multiplexing setup in designed double buffered 

FDML laser. DL: optical delay line; FC: fiber coupler; ISO: optical isolator; PC: 

polarization controller; SOA: semiconductor optical amplifier. 

4.2.4 Performance of the double-buffered FDML 

The actual sweeping frequency of the double-buffered FDML laser was measured to be 

about 54.95 kHz, which gave us an A-scan rate of 219.8 kHz. The total output power from 

the laser was measured to be about 65 mW. The optical spectrum from the laser was 

measured by an optical spectrum analyzer. It was shown in Fig. 4.10a that a full bandwidth 

of the sweeps is ~135 nm and a FWHM of the bandwidth is ~90 nm. The bandwidth, which 

determines the axial resolution of the SS-OCT system using such a laser, was limited by 

the bandwidth of the SOA in the FDML laser. Interference results of the four copies of the 

sweeps were shown in Fig. 4.10b via a Mach-Zehdner interferometer with an FSR of 30 

GHz (i.e., equivalent to an optical pathlength difference of 5.0 mm between its two arms). 

The copies from different ports in the double buffered FDML laser was indicated with 

encircled numbers that are defined in Fig. 4.4. Although there were slight differences of 
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the spectral shape among these four copies of the sweeps, their point spread functions (PSF) 

were very similar to each other.  

Figure 4.10 (a) Output spectrum of the double buffered FDML laser measured by optical 

spectrum analyzer. (b) An interference signal of a Mach-Zehnder interferometer with a 

FSR of 30 GHz. The encircled numbers indicate the four copies of the sweeps as labeled 

in Fig. 4.4. (c) The point spread function of 9.7 μm at an imaging depth of ~765 μm. (d) 

The point spread functions at different imaging depths indicate a detection sensitivity roll-

off of -1.6 dB/mm. 

A PSF of 9.7 μm at an imaging depth of ~765 μm was shown in Fig. 4.10c and a 

detection sensitivity roll-off of 1.6 dB/mm was measured in Fig. 4.10d, which is close to 

the reported results [162, 171]. At last, OCT images of a human fingernail were displayed 

in Fig. 4.11 to test the performance of the FDML laser. 
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Figure 4.11 (a) A representative OCT image of human finger nailbed in vivo. (b) A 

representative endoscopic OCT image of pig bronchus in vivo. 

4.3 Future Improvement 

There are two major limitations in the FDML laser, which comprises the performance of 

the laser. 

Although this laser works close to the zero dispersion wavelength of the optical 

fiber (i.e., 1313 nm), there is still some small residual dispersion inside the optical cavity, 

which decrease the spectral bandwidth and the instantaneous linewidth of the laser.  Thus, 

a dispersion compensation setup can further improve the performance of the FDML laser 

[106, 172]. 

Due to the long length of the optical delay lines used in the FDML laser, the 

polarization state in the laser was influenced by both mechanical vibration and thermal 

fluctuation. A FDML laser, thus, usually requires lots of degrees of freedom to manage its 

polarization state. Potentially, however, this could be improved by employing a sigma ring 

cavity [172]. Such a setup could compensate the polarization state completely when the 

light travels inside the cavity twice in the opposite directions. Combining with other 

polarization managed components (e.g., SOA, fiber coupler, etc.), the whole FDML laser 

can be free of dispersion management. 
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Unfortunately, these two aforementioned improvements have not been 

implemented in current FDML setup yet due to the limited bandwidth of a few 

indispensable components (e.g., chirped fiber Bragg grating and Faraday rotator mirror). 

The implementation will become feasible in the future when the components with broader 

bandwidth are developed. 

4.4 Summary 

In this chapter, we first introduced the basic principle of wavelength swept lasers. Among 

those wavelength swept lasers, FDML lasers were thoroughly discussed. Based on the 

conclusions and analysis in the first section, a double-buffered Fourier domain mode-

locking laser was developed in the second section to achieve an A-scan rate of ~220 kHz 

and the basic performance of the laser was tested. 
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Chapter 5 OCT Interferometers and Detection 
Electronics 

This chapter describes the OCT interferometer setup used in the high-speed endoscopic 

OCT system used in this dissertation and demonstrated how to achieve a shot-noise limited 

detection in the imaging system. Real-time uniform K-space sampling, a hardware based 

method that was developed for calibration of the OCT interference signal is introduced. 

5.1 OCT Interferometers 

 

Figure 5.1 Schematic of the endoscopic OCT interferometers. BD: balanced detector; 

C: collimator; CIR: optical circulator; FC: fiber coupler; M: mirror; MZI: Mach-

Zehnder interferometer; PC: polarization controller. 

The endoscopic OCT interferometer setups that were employed in the high-speed 

endoscopic OCT system is illustrated in Fig. 5.1, which consists of two Mach-Zehnder 

interferometers. 5% of the light from the double buffered FDML laser described in the last 
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chapter was sent to an auxiliary interferometer to generate a calibration interference signal 

of a free spectral range (FSR) of 60 GHz by an all-fiber Mach-Zehnder interferometer with 

a 5-mm optical pathlength difference between its two arms; the rest 95% of the light was 

delivered into the OCT interferometer to generate the OCT interference signals. The 

calibration signal was directly sent to the high-speed digitizer to calibrate the OCT data. 

Alternatively, an optional K-clock generator can convert the calibration signal into digital 

clock signal that drives the digitizer, which will be described in Section 5.3. The light to 

the OCT interferometer was split via a 90/10 fiber coupler (Dual window wideband coupler 

from LIGHTEL), where 90% of the light was sent to the sample arm and 10% of the light 

was sent to the reference arm. Two fiber optic circulators were placed in both arms to 

redirect the reflected/backscattered light from both arms to a 50/50 fiber coupler (Ultra flat 

dual window wideband coupler from LIGHTEL) where the interference signal was 

generated. Two manual polarization controllers was placed on the two arms to match and 

optimize the polarization states of both signals. A balanced detection scheme was 

employed at the end of the interferometer. It should be pointed out that there are three major 

advantages using this interferometer setup. First of all, the majority of the light power was 

sent to the sample arm so that the OCT signal detection would not suffer from power 

deprivation. Secondly, the balanced detection scheme can remove the DC components as 

well as some types of the noises from the total interference signal. Finally, the balanced 

detection scheme can also improve the detection sensitivity of the system by 3 dB if shot 

noise limited detection is assumed. 
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5.2 Shot-noise Limited Detection 

In order to display OCT images on a screen, the optical interference signals have to be first 

converted into electronics via photodetectors. Detection electronics in a SS-OCT system is 

essentially balanced detectors, which is consisted of a pair of balanced PIN photodiodes 

and amplification electronics. Currently, most detection electronics used in SS-OCT 

systems are commercially available ones. In the OCT interferometer, a balanced detector 

(PDB430C from Thorlabs Inc.), which has an optical spectral range from 800 to 1700 nm 

and an electronic bandwidth of 350 MHz, detects the OCT signals. In the auxiliary 

interferometer, another balanced detector from Newport Corp. (1617-AC-FC), which has 

an optical spectral range from 900 to 1700 nm and an electronic bandwidth of 800 MHz, 

detects the calibration signals. 

In order to get the best detection sensitivity in an OCT system, detected signal has 

to be set into a shot noise limited detection region, which is mainly adjusted by setting a 

proper optical power level in the reference arm. The noise level of the balanced detector in 

the OCT interferometer (i.e., Thorlabs PDB430C) was measured as a function of the 

incident optical power to the detector in Fig. 5.2. A shot noise model was also built in Fig. 

5.2 as a blue dash line, which has a 5 dB/decade slope. The shot noise limited detection 

region was indicated as blue area in Fig. 5.2 (i.e., when the incident optical power is greater 

than 30 µW). On the other hand, the incident optical power in the reference arm should not 

be set too large for two reasons: (1) excess noise might become dominant; and (2) the 

optical heterodyne gain may become too high and the detector will be electronically 
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saturated easily. Therefore, the incident optical power in the reference arm was finally set 

to be around 50 μW.

Figure 5.2 The measurements of electronic noise from the balanced detector (Thorlabs 

PDB430C) versus the incident power to the detector. A shot noise model is shown as blue 

dash line that has a 5 dB/decade slope. 

5.3 Real-time Uniform K-space Sampling Method 

The method and results described in this section have been published in [100]. 

Since the driving waveforms in most wavelength sweeping lasers are sinusoidal 

and frequency response of the tunable filters are usually nonlinear and hysteretic, the 

wavenumber sweeping speed is not linear with respect to time, which requires a calibration 

procedure prior to Fourier transform. The axial resolution, otherwise, would be severely 

degraded without calibration (i.e., red curve in Fig. 5.3); an uncalibrated point spread 
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function usually looked skewed with lots of big side lobes, which represented the raw data 

is chirped in time. 

Figure 5.3 A comparison of point spread functions of the SS-OCT system (a) before 

calibration and (b) after calibration. 

An interference signal was generated via an auxiliary interferometer with a fixed 

optical pathlength difference (i.e., 5.0 mm) to calibrate actual OCT interference signal into 

a linear-in-wavenumber fashion. After calibration, the discrete signal became uniformly 

distributed and the point spread function recovered to its theoretical limit (i.e., blue curve 

in Fig. 5.3). The software based numerical calibration algorithm will be discussed in the 

next chapter. Here we focused on a hardware based data acquisition method, which is real-

time uniform wavenumber space (K-space) sampling method using high-speed digital 

electronics in order to control the digitizer to sample the data in a non-uniform fashion in 

temporal space but uniform in K-space. 
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5.3.1 Principle and Method 

The basic idea of the hardware based method is to use the interference signal from the 

auxiliary interferometer to generate a digital clock signal (K-clock) to drive the high speed 

digitizer. Although the period of the clock signal varies in temporal space, it keeps the same 

in K-space. Therefore, the actual OCT interference signal should be uniformly digitalized 

via a high speed digitizer driven by the K-clock. 

There are three major design considerations in order to implement such a method. 

Conventionally, the numerical calibration algorithm usually uses the calibration signal to 

identify two data points on the OCT signal with equal K-spacing for every fringe cycle of 

the calibration signal (e.g. the extrema or zero-crossing points). Under the Nyquist 

sampling theorem the imaging depth is thus the same as the optical path difference in the 

auxiliary interferometer. For the same reason, the uniform K-space sampling method 

requires two clock cycles with an equal K-space interval for each fringe cycle of the 

calibration signal. The second one is related to high-speed digitizer. Most high-speed, high 

resolution digitizers use an ADC with a pipeline architecture that requires a clock duty 

cycle close to 50% to prevent the ADC from malfunctioning and prevent degradation of 

the spurious-free dynamic range (SFDR). Moreover, as most high-speed digitizers prefer 

to operate in a continuous mode in order to avoid repeated reset of internal circuitry (and 

the associated loss of speed), a dummy clock signal is thus needed to fill the idle gap 

between two consecutive OCT A-scans. Other two practical considerations are the 

propagation delay and jitter time of the external clock circuitry. Since the optical frequency 
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information is encoded in time in an SS-OCT system, the propagation delay time of the 

external clock relative to the OCT signal must be carefully calculated and compensated. In 

addition, the electronic jitter time also needs to be minimized to avoid random triggering 

of the ADC. Thus a high-speed logic gate with minimal jitter time becomes critical for 

generating a stable external clock signal.  

The block diagram of the K-clock generator is shown in Fig. 5.4a. In order to 

generate two clock cycles for each period of the calibration signal, a broadband 90° phase 

shifter was employed to produce a quadrant signal from the original calibration signal. The 

original and quadrant signals (Fig. 5.4b) were sent to two separate zero-crossing detection 

devices (Fig. 5.4a), which output two square-waves with “level high” corresponding to the 

positive portion of the original and the quadrant signal, respectively (Fig, 5.4c). The two 

square waves were then combined through an exclusive OR (XOR) gate, which generated 

an external clock pulse when the two square waves overlap (Fig. 5.4d). This method 

produced two clock pulses for each period of the calibration signal. To fill the empty gap 

on the external clock between adjacent A-scans, a dummy clock signal (the pulses in green 

color in Fig. 5.4d) was generated within the time duration complementary to the time gate 

for the zero-crossing detection, and then combined with the zero-crossing clock signal by 

a XOR gate to form a final external clock (both the green and black pulses in Fig. 5.4d), 

which triggered a high-speed digitizer on the rising edges for uninterruptedly digitization 

in a uniform K-space fashion. 
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Figure 5.4 (a) Block diagram of the K-clock generator. (b) Illustration of the original MZI 

signal (blue line) and its quadrant signal after the broadband 90° phase shifter (red line). 

(d) Illustration of zero-crossing signals generated from the MZI and quadrant signals in (b). 

(d) External clock signal that combines the XOR gate output with a gap-filling dummy 

clock. The vertical dotted lines indicate the rising edges of the signals. 

The schematic of the K-clock generator circuit is shown in Fig. 5.5. The circuit is 

a mixed signal circuit where the phase shifter (JSPQ-65W + from Mini-Circuits) and the 

input of the zero-crossing detectors (MAX9693 from Maxim Integrated Products, Inc.) is 

analog and the rest of the circuit is digital. In order to suppress the interference between 

analog and digital circuit, the analog and digital ground are connected via a 10 μH inductor 

(i.e., 1L ). The digital logic level used in this circuit was emitter-coupled logic (ECL). 
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Figure 5.5 Schematic of the K-clock generator circuit 
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Unlike commonly used logics (e.g., TTL and CMOS), the transistors in the ECL logic are 

never in saturation so that the change of states in ECL is very fast (i.e., propagation time is 

usually less than 1 ns and jitter is usually on the order of 10 ps). The combination of a 

quadrant phase shifter and an XOR gate (MC100EL08 from ON Semiconductor) ensures 

the external clocks have an ~50% duty cycle. For our current off-the-shelf simple phase 

shifter, the change in phase unbalance over more than 3 octaves (5 MHz to 65 MHz) is less 

than 2°, and the resulted duty cycle only varies around 50% ± 0.3%, which helped maintain 

and maximize the SFDR of an ADC during the entire A-scan. As a result, the designed 

circuitry can generate a clock signal for A-scan rates from 20 to 100 kHz. The dummy 

clock and the ENABLE window signal§ that generated externally in low-voltage transistor-

transistor logic (TTL) were first converted into ECL logic via a logic converter 

(MC100EP91 from ON Semiconductor). The inverted ENABLE window signal was used 

to turn off the zero-crossing detectors via a fan-out device (MC100EL11 from ON 

Semiconductor). Meanwhile, the dummy clock was gated by the ENABLE window signal 

via an AND gate (MC100EL05 from ON Semiconductor). The K-clock signal was then 

combined with the gated dummy clock signal via an XOR gate (MC100EL08 from ON 

Semiconductor). A XOR gate was used here instead of an OR gate because the logic of the 

K-clock signal was random when the zero-crossing detector was disabled.  At last, the 

§ Two ENABLE signals are shown in the schematic only for debugging purpose. They are identical when 
the K-clock generator properly works.  
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combined signal was converted to low-voltage TTL via a logical convertor (MC100EPT25 

from ON Semiconductor) so that the signal can be accepted by the high-speed digitizer 

(ATS9462 from Alazartech Inc.). 

A few practical considerations had to be taken into account when designing the 

generator. Since the circuit work close to 100 MHz, a four layered printed circuit board 

(PCB) are designed as shown in Fig. 5.6 on both sides. The most of the lines on the top 

layer of the PCB is mostly signal; the middle two layers are digital ground and -5.2V power 

layers; other power layers and bypass capacitors are laid out on the bottom layer. The 

footprint of all the discrete components on the board were small surface mount to reduce 

their parasitic capacitance. In order to further minimize the noise in analog portion in the 

circuit, an analog ground was poured around the phase shifter. Additionally, all the lines 

that transmit the digital signals were transmission lines, which means that the line width 

were carefully chosen to match the input impendence among the IC chips (i.e, 50 Ω) in 

order to minimize the reflection among the chips. This circuit was tested to work properly 

with a frequency of <130 MHz. 
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Figure 5.6 Photos of PCB board of the K-clock generator; (a) front side and (b) back side.
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5.3.2 Performance and Results 

Figure 5.7 (a) MZI interference signal. The upper and lower insets show the MZI signal at 

the beginning (or end) and the center of an A-scan, respectively, indicating that the MZI 

signal frequency varies during wavelength scanning. (b) External clock signal during 

forward wavelength scanning with the FFP-TF driven by a 40 kHz sinusoidal wave. The 

insets show the duty ratio of the external clock keeps very close to 50% which is essential 

to keep the high-speed digitizer working properly and continuously. 

The K-clock signal was measured with an FDML laser of a sweeping frequency of 40 kHz. 

The total number of fringe cycles of the forward scan signal is 409 and the corresponding 

number of the sampled data points per A-scan is therefore 818. It is noted that the frequency 

of the MZI signal varies a lot, e.g., the frequency of the slow fringe region (~25 MHz) with 

a zoomed-in version shown in the upper inset of Fig. 5.7a is less than half of the fast fringe 

region (~55 MHz) with a zoomed-in version shown in the lower inset. The external clock 

signal is shown in Fig. 5.7b which was to trigger the high-speed digitizer in a point by point 

fashion. The trigger frequency in the middle portion of the clock signal is about 110 MHz, 

while the clock frequency slows down to about 50 MHz at the edge of each A-scan. The 

frequency of the “dummy” clock should be high enough to fill in enough clock cycles in 

order to keep the digitizer working continuously, and in our case it was chosen to be 28 

MHz or higher. It should be noted that the duty ratio of the external clock over the entire 
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A-scan is close to 50% as shown in the insets in Fig. 5.7b, which is required for maintaining 

a good FSDR for a high-speed digitizer as mentioned previously. 

Figure 5.8 Depth dependent point spread function of an FDML-based SS-OCT system 

equipped with the real-time linear K-space sampling method revealing no axial resolution 

degradation throughout the imaging depth of 2.5 mm. 

The measured axial resolution is 9.3 to 9.5 μm in air as shown in Fig. 5.8 for a 

FDML laser of a sweeping frequency of 40 kHz, and the axial resolution remains almost 

the same throughout the entire imaging depth of 2.5 mm and the detection sensitivity roll-

off is about -1.55 dB/mm (as shown in Fig. 5.8). 

The performance of the real-time linear K-space sampling method in an FDML-

based SS-OCT system was demonstrated by imaging human fingertip and nail fold. The 

imaging beam was delivered to and scanned over the tissue with a handheld probe. The 

raw data of each A-scan of about 818 points are processed in real time via 4096 points fast 

Fourier transform after zero-padding, and the transformed A-scan size is 2048 pixels 

corresponding to an optical path of 2.5 mm. Representative OCT images are shown in Fig. 
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5.9. Both images have been rescaled along the depth direction by the average tissue index 

of refraction (i.e. ~1.4). The final image size is about 1024 x 1700 pixels corresponding to 

a physical dimension of 2 x 1.4 mm (lateral x depth). Structures such as sweat duct (SD), 

stratum corneum (SC), epidermis (E), nail fold (NF), and nail root (NR) can be clearly 

identified. 

Figure 5.9 Representative images acquired with an FDML-based SS-OCT system equipped 

with the real-time linear K-space sampling method. (a) Finger tip and (b) finger nail fold 

of a human volunteer. 

Comparing to software based calibration algorithm, this method has two 

advantages. Firstly, it reduces the speed demand in OCT signal digitization, data transfer, 

processing and real-time saving because it does not require oversampling as in the software 

based calibration algorithm. Secondly, this method in principle may provide a better phase 

stability. 

Although this method was only tested under an SS-OCT system with an A-scan 

rate of 40 kHz, the home-built electronic circuit can support up to 100 kHz A-scan rate 

under the same circumstances (e.g., same sweeping wavelength range, same imaging depth, 

etc). The same principle of this method can be applied to another circuit that supports 

higher A-scan rate.  
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5.4 Summary 

In this chapter, we first described the Mach-Zehnder interferometer setup used in the high-

speed endoscopic OCT system. A power level on the reference arm was properly set up in 

order to get a shot-noise limited detection. In addition, besides commonly used software 

based calibration method, a hardware based method, i.e., real-time uniform K-space 

sampling, was developed for calibration of the OCT interference signal was demonstrated. 
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Chapter 6 High-speed Optical Coherence 

Tomography Software Platform 

This chapter describes basic mechanism of the software platform, including the choice of 

the software development kits, the synchronous mechanism among different modules in 

the software and the data flow transferred in the software. Data acquisition, data processing, 

data display and data storage modules are further discussed in details to show how to 

achieve real-time data acquisition, processing, display and storage in a high-speed OCT 

system. 

6.1 Software Platform and High-speed Data Rate Management 

Data throughput has been significantly increased by several orders and reached the era of 

gigabyte per second since the development of FD-OCT systems with a few hundreds of 

kHz A-scan rate. Accordingly, the requirements of data flow management in an OCT 

software, including data acquisition, processing, and storage, has also become higher. Due 

to the technical advances on computer and semiconductor industry, the requirements can 

be fulfilled in a relatively simple and cost-effective way. 

In this dissertation, an OCT software program written in C++ on a personal 

computer with a Windows® operating system was developed to provide a software 

platform in order to (1) control and synchronize all the hardware components (e.g., high-

speed digitizer, fiber rotary joint, translational stages, etc.); (2) process acquired raw data 

and display the processed data in real-time; (3) save acquired raw data into a permanent 
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storage device continuously in real-time; and (4) synchronize the data flow among the 

functions in the software (e.g., acquisition, processing, display and saving). The basic block 

flow of the OCT software is illustrated in Fig. 6.1. Basic functions (e.g., data acquisition, 

data processing, etc.) in the software are encapsulated into different modules. There are 

five essential modules including core, data acquisition, data storage, data processing, and 

display modules to make the software work properly. Except the core module, each module 

can be categorized into synchronous and asynchronous modules. A synchronous module, 

which controls a large amount of data (e.g., data processing), was executed in a separate 

thread on the CPU; the high-speed data was flown among the synchronous modules that 

was controlled by a core module to synchronize with other synchronous modules. On the 

other hand, an asynchronous module, which controls low speed external devices (e.g., 

translational stage control), was directly called by the core module whenever necessary. 

The basic data flow in the software is described as follows. The raw data was first 

acquired by the high speed digitizer and transferred into the buffer on the computer 

memory in data acquisition module. The raw data was then shared between data storage 

and data processing modules when the buffer was full; The raw data was directly written 

into an external permanent storage device (e.g., hard drive) through data storage module 

while it was also transferred into the graphic processing unit (GPU) to be processed in data 

processing module. The processed data was shown on a display device controlled by 

OpenGL when it was ready. A histogram of the processed data was also evaluated in real 

time and transferred back to CPU in order to control the contrast of the final images.  
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Figure 6.1. Block flow of the OCT software. Modules are shown as blue blocks; 

hardware components are shown as purple blocks; GPU modules are shown as orange 

blocks. Red arrow: high-speed data flow; blue dotted line: control commands from the 

core module; red dotted block: thread; double dashed line: computer bus. 

The graphic user interface (GUI) of the software was developed using Qt 

development framework 4.8 [173] under GNU lesser general public license (LGPL) v2.1 

[174]. When the program started, the GUI in the software first loaded a configuration file 

written in extensible markup language (XML) format [175], which contained all the preset 

parameters for each module. One of the advantages of using configuration file is that the 

software is able to flexibly load various combinations of the modules based on the 

requirements of different experiments. After tuning the parameters by the user (if 

necessary), the software initiates all the modules that has been loaded accordingly. The 

initialization includes buffer allocation in CPU and GPU, testing and setting hardware 

components, etc. When each module was successfully initiated, the software was then 

ready to acquire and process the data. 
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Figure 6.2. Schematic of data synchronization among different synchronous modules 

wrapped in threads. T0: internal thread of the digitizer driver for data acquisition; T1: 

data acquisition; T2: data processing; T3: data storage.  

In order to manage the high-speed data flow efficiently, a buffer was created during 

initiation of the software and shared among all the synchronous modules. The basic 

schematic of data flow in the software is illustrated in Fig. 6.2. The synchronization flow 

was ultimately regulated by an internal thread of the digitizer driver for data acquisition 

(i.e., T0 in Fig. 6.2), the period time of which was usually a multiple of B frame period. 

The threads controlling the data acquisition module (i.e., T1 in Fig. 6.2) was woken up 

whenever the internal thread finished. T1 quickly filled up the buffer shared among other 

threads and released the write access to this buffer afterwards; it then woke up other threads 

and sent out a write request for the next buffer; T1 finally went to sleep after it finished 

every tasks in this cycle.  Meanwhile, the data storage and processing threads (i.e., T2 and 

T3 in Fig. 6.2) that were woken up by T1 gained the read access to the shared buffer, started 

saving and processing the raw data in the buffer simultaneously, and released the read 

access after their jobs were complete; they then sent out a read request for the next available 

buffer before they went to sleep. T1, on the other hand, would not be woken up until the 

internal thread finished. It would automatically gain the write access to the buffer since it 

requested the control before it went to sleep. 
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In order to make the data flow work properly as described above, a synchronization 

object was needed to guard the shared buffer. The synchronization object used in the 

software was slim reader/writer (SRW) locker [176]. Comparing with other 

synchronization objects (e.g., mutex object, critical section object), SRW locker is more 

efficient and has much less overhead time (e.g. < 50 μs). The SRW locker was locked in 

the exclusive mode when acquired raw data was filled into the buffer so that other threads 

cannot be granted access to the same buffer. But the raw data was locked in the shared 

mode during processing, saving the data so that other synchronous modules can share the 

buffer among them. 

6.2 Data Acquisition 

The data acquisition in the high-speed endoscopic OCT system was achieved via a high-

speed digitizer (i.e., Alazartech ATS9360) [177]. The averaged data acquisition rate 

reached 880 Megabytes per second with the 220 kHz FDML laser reported in Chapter 4. 

The software program controlled the high-speed digitizer via the software development kit 

library ATS-SDK v6.1.0 from the vendor [2]. The digitizer was programmed in the NPT 

AutoDMA mode in order to acquire the data and transfer the data from board into computer 

memory in a high trigger repetition rate fashion. In the NPT AutoDMA mode, the thread 

that controls the data acquisition module in the program (i.e., T1 in Fig. 6.2) pushed a list 

of internal buffers, each of which as big as a B frame size, into a first in-first out (FIFO) 

queue in the user mode of Windows® operating system via calling a function related to the 

digitizer’s driver in the kernel mode (i.e., T0 in Fig. 6.2). After entering the kernel mode 

in T0, the digitizer driver digitized the analog OCT signal while filling up the digitized data 

into the internal buffer simultaneously. As mentioned, T1 then was kept asleep until the 
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internal buffers were full and returned to the user mode. The digitizer can work very 

efficiently in such a mode and the only overhead exists in this mode is a reset time of about 

10 clock cycles between two consecutive triggered records. 

Once the internal buffers were full, T1 transferred the data from the internal buffer 

into the buffer shared among the other modules with the guard of the SWR locker so that 

other modules would not be able to read the buffer accidentally. Due to the fact that 

Windows® operating system is not a real time operating system (i.e., thread scheduling on 

Windows NT® runs at an interval of 10 or 15 ms) [178],  a frequent thread switching (e.g., 

thread sleep and waking up) is undesirable and should be avoided whenever possible. 

Meanwhile, the frame rate in a high-speed OCT system is usually very high (e.g., 50 to 

1000 fps). Therefore, frequently switching all the threads for every frame is unrealistic and 

potentially causes the loss or corruption of the acquired data during thread switching. In 

order to solve this challenge, the size of the shared buffer was set to be a multiply of the B 

frame size. Therefore, the shared buffer clustered multiple B frames to increase the 

switching time among different threads so that it was greater than the thread scheduling 

interval time.  

6.3 Data Processing and Display 

High data throughput from the digitizer requires high performance data processing solution 

and real time display in order to help researchers and potentially the clinicians in the future 

to assess the results in real time. In the past decade, technological advances on 

semiconductor industry has greatly improved the performance of the field-programmable 

gate array (FPGA), digital signal processor (DSP) and general purpose graphic processing 

unit (GPU) while significantly reducing the cost. Theses electronics have all been brought 
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into the OCT field to improve the data processing speed [179-186]. Meanwhile, 

programmable shading languages, such as OpenGL GLSL [187], Nvidia Cg [188], 

Microsoft HLSL [189], designed for 3D computer graphics have been also greatly 

advanced. Unlike traditional fixed graphic rendering pipeline (e.g., prior to OpenGL 2.0, 

DirectX 9.0), such high level shading languages provide us with a more powerful and 

flexible rendering pipeline to visualize the processed data in either 2D or 3D fashion. In 

this dissertation, we chose to use a GPU-based data processing solution using compute 

unified device architecture (CUDA) developed by Nvidia along with OpenGL GLSL 

shading language to process and display the OCT data on a single consumer level graphic 

adaptor (e.g., Nvidia GTX 590, $<800 when purchased in 2011). Comparing to FPGA and 

DSP solutions, there are three advantages using a GPU-based data processing solution. 

First of all, it is more cost-effective for developing an OCT platform in a laboratory based 

environment. Secondly, GPU-based data processing solution is naturally integrated with 

the data display module employing the shading language on the same hardware component. 

At last, both GPU and shading language support a development environment of C/C++, 

which is compatible with our software development environment. 

6.3.1 Data Processing Algorithm on GPU 

Unlike commonly known CPU that usually has only one large and complex algorithm logic 

unit (ALU) per core, GPU contains hundreds to thousands of small and simplified ALUs 

which are dedicated to fixed and floating point algorithmic operations. Therefore, GPU 

excels at parallel processing of multiple data through the same procedure, which perfectly 

fits the need of OCT data processing (i.e., multiple A-scans of data follow the same data 

processing steps). 
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Once the thread that handles data processing module (i.e., T2 in Fig. 6.2) was 

woken up via SWR locker, there were two steps in CPU-based processing for calibration 

data and four steps in a GPU-based data processing pipeline for OCT data as shown in Fig. 

6.3. Since the driving waveforms in most wavelength sweeping lasers are sinusoidal and 

frequency response of the tunable filters are usually nonlinear and hysteretic, the 

wavenumber sweeping speed is not linear with respect to time, which requires a calibration 

procedure prior to Fourier transform. In order to calibrate the OCT data into uniformly 

distributed wavenumber space (i.e., K-space), the calibration data were generated from a 

Mach-Zehnder interferometer with a fixed optical path difference between two arms (i.e., 

cosI k k z  where z  is constant). They was interpolated into denser sampling rate in 

order to accurately find the extrema (i.e., k z n ), which are evenly spaced in the K-

space (i.e., k z ). Since the wavelength swept laser is sweeping every A-line with 

the same drive waveform, the calibration data needs be only acquired and processed once 

before processing the OCT data. Therefore, these two steps could be placed in CPU. The 

only data need to be transferred to GPU for OCT data processing is the positions of these 

extrema points. 

Figure 6.3. Data processing steps on GPU. 

The data processing steps for OCT data in GPU can be divided into four steps:  1) 

all the acquired raw data was first transferred from the computer memory to graphic device 
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memory. 2) Every A-scan of the raw data was converted from 16-bit integer into single-

precision floating point format and then calibrated based on the extrema data positions of 

the calibration signal so that all the data was uniformly spaced in K-space. This procedure 

could be bypassed if uniform K-space sampling method as described in Chapter 5 is 

employed during data acquisition. 3) One dimensional fast Fourier transform (FFT) 

operation was then performed on each A-scan of the calibrated data to form a two 

dimensional data of complex number, which was depth-resolved in the transformed 

direction. 4) The depth-resolved intensity and phase information can be extracted from the 

2D data of complex number and then normalized between 0 and 1. 

The GPU SDK used in the software is Nvidia CUDA v4.2. The first step could be 

directly implemented by calling a single function from the CUDA library. The second step 

required its own kernel function to perform such an operation. In this step, the raw data 

was mapped into a texture memory because interpolation in a texture memory was 

accelerated via specialized designed texture filtering units in GPUs. Due to the fact that the 

calibrated data was not evenly spaced in the original raw data, this method provided much 

faster interpolation than any other conventional methods implemented on GPUs. In the 

third step, a built-in FFT library (i.e., CUFFT) in CUDA SDK was used to perform a single-

precision FFT operation. At last, a kernel function was written in the fourth step to calculate 

the amplitude and the phase of the depth-resolved data from complex FFT transformed 

data as well as to rescale the calculated results between 0 and 1. The final results were 

directly mapped into texture memory for the purpose of data display via OpenGL. The 

benchmark test of each steps in the data processing took place on an Nvidia GTX 590 GPU. 

A high performance GPU timer, which provides time stamps with an accuracy of <1 µs, 
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was placed among the aforementioned steps in the data processing pipeline. Hence, the 

consumed time of each step can be accurately recorded. Buffer consisting of 4096 A-lines 

was processed in this benchmark test and the processing time of each step was scaled to 

the time of each A-line. Both linear and cubic interpolation methods were tested in the 

benchmark. The effective number of data points after the interpolation was about 900 and 

2048-point FFT operation was performed in this test with zero padding. The benchmark 

test results (i.e., Fig. 6.4a) showed: 1) the cubic interpolation took about 70% more time 

than the linear interpolation in the interpolation step; and 2) data transfer from computer 

memory to graphic device memory is the most time consuming among all the data 

processing steps, which is larger than the summation of the rest three steps. 

 

Figure 6.4. (a) Benchmark results of each step of data processing on an Nvidia GTX 590 

GPU and (b) parallel streaming on GPU to accelerate data processing. Interp: interpolation.  
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 Since the most time consuming step is data transfer, the GPU wastes most of its 

time in waiting for data transfer completion. It would be better if data transfer can be 

executed in parallel with the rest three data processing steps. Since CUDA v4.0, a concept 

of stream on GPUs, which is analogous to thread on CPU has been introduced in GPU 

programming. Based on the benchmark results in Fig. 6.4a, the most time consuming step 

among those four steps above was data transfer from computer memory to device memory 

as the bus interface of PCI Express v2.0 used by Nvidia GTX 590 limits its data transfer 

rate. Therefore, these four steps could be organized into two streams in GPU to further 

accelerate the data processing procedure at a cost of allocation of multiple buffers for 

storage of the intermediate results shared between streams (as shown in Fig. 6.4b). After 

the optimization, the performance of the data processing module was benchmarked to be 

1.5 M A-scan/sec on Nvidia GTX 590 and data processing speed reached 2.4 M A-scan/sec 

if only the last three steps on GPU are taken into account (under a condition of a cubic 

interpolation with 1k resampling rate) ** . The benchmark results showed such a data 

processing module running on Nvidia GTX 590 greatly exceeded the requirement of the 

designed high-speed endoscopic OCT system (i.e, 220 k A-scan/sec). The extra computing 

power on the GPU was used to calculate other time consuming tasks, such as en face 

projection, speckle variance OCT, etc. (as shown in Fig. 6.5). 

There are two major advantages using the data processing pipeline as described 

above. First of all, the data processing module is completely compatible with any Nvidia 

graphic card released later than late 2010 (i.e., supports CUDA v4.0 or later), which means 

** The benchmark were taken in July 2011. With the new technologies used in newer GPU, the results can 
be significantly improved with a newest graphic card. Similar results can be achieved with a mainstream 
Nvidia graphic card that costs ~$300. 
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the source code can be compiled and run successfully without any modification. The 

optimization for different GPU can be automatically achieved during compilation. 

Secondly, the data processing module is scalable as the number of streams used in the data 

processing module can be expanded and more data processing steps can be added into the 

streams and re-arranged among the streams. Hence the data processing speed can be further 

improved when necessary. 

Figure 6.5. En face projection of (a) OCT intensity images of a USAF 1951 resolution 

chart in real time and (b) speckle variance OCT images of mouse ear in real time.  

6.3.2 Data Display Module on GPU 

The processed data was stored in the texture memory on the GPU, which can be directly 

accessed via OpenGL shading language GLSL. One of the benefits using texture memory 

is that a texture can be mapped onto any geometric shaped surface flexibly and efficiently 

in GLSL. Therefore a single B frame of the processed data can be displayed in either a 

rectangular or a polar view (as shown in Fig. 4.9). However, the working mechanism of 

the data display module was slightly different between a 2D and a 3D display mode.  
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In the 2D display mode, the data display module worked asynchronously with 

respect to the data processing module. Since multiple B frames are accumulated and 

processed simultaneously, the display module was woken up at the same frequency as the 

frame rate by a preset timer. Each time the display module was waken, it only displayed a 

single B frame of data from the processed data in the texture memory that contained 

multiple B frames of data. A double buffered texture memory was set up to avoid write/read 

conflict between data processing and display module. Eventually, all the B-frames in the 

texture memory would be displayed on the screen. In order to display a 2D image with 

different colormaps (i.e., grayscale, inverted grayscale, hot, etc.), the B frame data was first 

displayed onto an intermediate OpenGL pixel buffer object (PBO). With a simple 

secondary 1D texture mapping in GLSL, various colormaps can be applied onto the image 

in the OpenGL PBO and a final image was displayed on an actual display device by 

mapping the OpenGL PBO as a texture onto a rectangular surface (as shown in Fig. 6.6a).  

In the 3D display mode, the data display module worked synchronously with the 

data processing module, which means that the module was only waken up after the data 

processing was completed. The processed data that contains multiple B frames of data was 

stored in a 3D texture memory. A 3D rendering algorithm was applied to display the 3D 

dataset onto a 2D OpenGL PBO in a perspective view. Then similar to the operation in 2D 

display model, a selected colormap was applied onto the image in the OpenGL PBO and a 

pseudo colored image can be displayed on an actual display device (as shown in Fig. 6.6b 

and 6.6c). 
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Figure 6.6. Real time display of (a) a 2D OCT image of an pig bronchus in vivo in four 

different colormaps in a rectangular view, (b) a 3D visualization of an OCT dataset of 

human brain tissue ex vivo and (c) a 3D visualization of an OCT dataset of pig bronchus 

in vivo. 

6.4 Data Storage 

The information of the data may be partially lost when the data is in the data processing 

pipeline (e.g., conversion from integer to floating point, interpolation, etc.). In order to be 

able to perform more comprehensive data processing (e.g., averaging, speckle reduction, 

Doppler, etc.), only the raw data was stored in a permanent storage device on the computer. 

As mentioned in the previous section, the averaged raw data rate is about 880 

MB/sec for the designed SS-OCT system with an A-scan rate of ~220 kHz. And it needs 

to be noted that data with such a data rate cannot be sustainably stored to any common 

external storage device on a personal computer (i.e., hard drive). Here a cost effective 

storage solution on a personal computer was proposed: to use a solid state disk (SSD) array. 
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Unlike a conventional hard drive, SSD does not require a disk head and disc spinning to 

write data into the disk. Therefore, SSD usually has a constant read/write speed across the 

whole disk. Recent technical advances on SSD enabled a sustainable write speed of a high-

end consumer level SSD about 300 – 400 MB/sec with an affordable cost of $1 to $2 per 

GB. Although a single SSD still does not have enough write speed for the designed OCT 

system, RAID can further improve the write speed by forming a disk array and writing data 

into multiple disks in parallel. 

Figure 6.7. (a) An illustration of a RAID0 disk array adopted in the computer. (b) 

Randmom data write performance test of the RAID0 setup over the whole disk array. 

In the computer built for the designed OCT system, a RAID controller (3ware 9750-

4i ) combined four SSDs (OCZ Technology Vertex 3Mxx) into a RAID0 disk array to 

expand the write speed as illustrated in Fig. 6.7a. The array cluster size and block size of 

the file system used on the disk array were finely tuned to further optimize the write 

performance of the disk array. The write performance was tested by writing random data 

into the disk array over the entire array by a free software (i.e., ATTO from ATTO 

Technology) as shown in Fig. 6.7b. At the beginning of the test, an increase of the write 

speed, due to the fact that the data is first stored in on-board memory of the RAID controller, 

was observed. When more data was sent to the controller, the data was eventually written 
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into the disk array. The sustained write speed of the disk array was tested to be at least 1.5 

GB/sec, which is much greater than the design requirement. 

Similar to the data processing module, the data storage module also runs in a 

synchronous thread (i.e., T3 in Fig. 6.2). It was woken up via a SWR locker by data 

acquisition module when the shared buffer that stored the raw data were ready. In order to 

get the best write performance of the disk array, the raw data had to be written into the disk 

array in fixed size blocks, that is, the buffer that contained the raw data was divided into 

blocks of 1MB size, which were sequentially written into the disk array. A benchmark was 

also performed to test the actual write performance in the software and a result of 1.57 

GB/sec was achieved. 

6.5 Summary 

In this chapter, we first described the software platform designed for the high-speed 

endoscopic OCT system in order to acquire, process, display, and save the data in real time, 

mainly focusing on how to manage the high speed data rate (i.e., 880 MB/sec) and 

synchronize the data among the different modules in the software. Data acquisition, data 

processing and display, and data storage modules were then discussed in details in separate 

sections. All modules were tested to ensure they were able to handle such a large data rate 

with enough design margin. 
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Chapter 7 Side-viewing Optical Coherence 

Tomography Imaging Probe 

This chapter briefly compares a few approaches in fabricating a miniature side-viewing 

OCT imaging probe. Short and large working distance OCT imaging probes are then 

discussed in details. Paraxial models of the distal end of imaging probes are developed and 

validated by using ray tracing models. Fabrication of OCT imaging probes are introduced 

as well as the measurements of a few key parameters. At last, the design of the proximal 

end of imaging probes are discussed. 

7.1 Introduction 

Miniature OCT imaging probe is one of the most critical components in an endoscopic 

OCT system. Its optical performance directly affects the lateral resolution, signal-to-noise 

ratio (SNR), and overall quality of the OCT images. And its mechanical properties (e.g., 

size and robustness, etc.) limit the applicability of the endoscopic OCT imaging. 

Based on the beam direction on the distal end of the imaging probe, OCT imaging 

probes are commonly categorized into forward-viewing [129, 190-192] and side-viewing 

probes [68, 80, 138, 193-199]. One advantage of side-viewing OCT imaging probes over 

forward-viewing ones is that it can provide B-frame OCT images in a full circumferential 

view (or at least a majority of the full circumferential view); such a field of view provided 

is more convenient for visualization since the shape of most internal organs is tubular. In 

order to acquire a full circumferential B-frame OCT image, a scanning mechanism needs 
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to be implemented in the endoscopic OCT system by either driving a micro motor where a 

mirror is attached to the distal end of the probe [195, 199] or rotating the entire probe from 

its proximal end [193, 194, 198]. Until last year [200], the relatively large physical 

dimension of the micro motor remained a big obstacle for the distal end scanning imaging 

probe to be applied to in vivo applications as their diameter can hardly be smaller than 2.0 

mm.  Therefore, in this chapter, we focused on side-viewing OCT imaging probes that are 

driven from their proximal end.  

7.2 Distal End Optical Design of OCT Imaging Probes 

The physical dimension of the OCT imaging probe may be the limiting factor for the in 

vivo application of OCT imaging in many cases. From the clinical perspective, the imaging 

probes should be as small as possible to minimize their intervention with the imaged 

internal organs. From the optical perspective, on the other hand, the small dimension of an 

imaging system would limit the size of stop aperture of the optics (i.e., numerical aperture 

or NA), and will lead to a poor lateral resolution. Therefore, one of the most important 

criteria in designing a miniature OCT imaging probe is to increase the effective NA of the 

probe by expanding the beam width within the micro optics with a limited diameter. 

 There are a few approaches to build a miniature probe, all of which based on a 

similar concept: focusing the expanded beam from a single mode fiber to a designed focal 

plane as illustrated in Fig. 7.1. The beam from a single mode fiber first passed an optical 

component to expand the beam width; the expanded beam was then focused by a micro 

focuser, which could also be achieved via several other ways. A micro prism or reflector 

was placed at the distal end to deflect the beam by about 90° to achieve side-viewing.  
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Figure 7.1. An illustration of a miniature OCT imaging probe. The beam from a single 

mode fiber first passes an optical component to expand the beam width. The expanded 

beam was then focused by a micro focuser. A micro prism or reflector was placed at the 

distal end to deflect the focused beam. SMF: single mode fiber. 

The first approach is the fused fiber lens design. In this design, the distal end of the 

imaging probe is constructed with a single mode fiber, a multimode fiber, and a gradient 

index (GRIN) fiber [141-143, 197, 201]. By thermally fusing these fibers together, the 

multimode fiber acts as a beam expander and the GRIN fiber acts as the focuser. The optical 

size of the imaging probe in this design is usually smaller than 300 μm and the overall size 

can be controlled under 1.0 mm or even smaller. Such a probe has been used in 

intravascular imaging [202], imaging guided fine needle aspiration [143], and parenchymal 

lung imaging [142]. Due to the limited diameter in this design, the working distance of the 

imaging probe is usually designed to be small in order to maintain an acceptable lateral 

resolution. One technical difficulty of this design is that thermal fusion, which changes the 

optical properties of the hot zone between fibers, usually causes a reduction of coupling 

efficiency and a degradation of the beam profile. Therefore, a lot of practical considerations 

and fine tuning are required to build such an imaging probe.  

Another approach to build an OCT imaging probe is to use standard miniature 

spherical lens or lenses, including ball lens [145, 146, 196]. In this design, a short length 

of air/fiber gap between the single mode fiber and the miniature spherical lens acts as a 
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beam expander and a spherical lens or lens group acts as the beam focuser. Although one 

can borrow a lot of examples and experiences from conventional bulky lens designs, the 

limited choice of small size spherical lenses hinders the applicability of this design (i.e., 

the spherical lenses less than 2.0 mm is very limited). Moreover, in order to keep the rigid 

part at the distal end of the OCT imaging probe short, the focal length of the lens has to be 

small enough (e.g., <5.0 mm), which would cause severe spherical aberration. Although 

the aberration may be reduced by using multiple lenses to split the focusing power, the 

optical design is complicated and the cost is increased. Therefore, multiple lenses were 

usually only used when high lateral resolution and chromatic aberration are critical. 

Nevertheless, due to a relatively complicated design, the applications of this type of 

imaging probes are limited, with its primary applications in the large GI tract [196]. The 

ball lens design can be implemented in very small OCT imaging probes [145]. Similar to 

miniature spherical lens, however, ball lens also suffers from severe spherical aberration. 

In addition, ball lens can be only used to form a very short working distance OCT probe 

due to its fabrication limitation. 

The third approach, which is the most commonly used, is to use GRIN lens as a 

beam focuser [68, 80, 138, 141, 194, 197, 198]. In this design, a glass spacer is sometimes 

applied before the GRIN lens to form a compound lens in order to fully utilize the available 

NA within the GRIN lens. Since both the GRIN lens and the glass spacer have planar 

surfaces, it is much easier to customize such optical components into various lengths and 

the alignment is more tolerable than spherical lens. It is also much easier to find 

commercially available GRIN lens smaller than 1.0 mm in diameter so that the overall size 

of the probe using this design can be controlled under 2.0 mm. This type of OCT imaging 
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probes have been applied in various applications, such as cardiovascular, GI imaging, and 

pulmonary imaging, etc. 

In this chapter, we choose using a compound lens that consists of a glass rod spacer 

and a GRIN lens to build OCT imaging probes. Two types of OCT imaging probes were 

designed and built based on different application requirements: short working distance 

imaging probes (i.e., working distance is shorter than 4.0 mm) and long working distance 

imaging probes (i.e., working distance is longer than 8.0 mm)††. 

7.3 Short Working Distance OCT Imaging Probe 

A short working distance OCT imaging probe is designed for imaging internal organs with 

a small luminal area (i.e., D < 6-7 mm), such as lower airways, blood vessels, etc. A 

compound lens, which consists of a glass rod spacer and a GRIN lens with a diameter of 

1.0 mm, was used to exploit the available NA in the micro optics in order to make a lateral 

resolution of the imaging probe comparable to the axial resolution. The design is similar to 

previously reported papers [89, 194, 198].  

7.3.1 Paraxial Model 

The distal end of the OCT imaging probe is first modeled using first-order, paraxial 

approximation. There are several paraxial approximation methods, such as Newton 

equations, Gaussian optics, etc. For convenience, here we chose to use ray transfer matrix 

analysis (also known as ABCD matrix analysis). In ABCD matrix analysis, optical 

components between two planes can be described as a 2×2 matrix while each ray at any 

plane can be written as a 1×2 vector, which describes the distance from the optical axis and 

†† Working distance used in this chapter is commonly defined as the distance from the exit plane of the last 
optical component that focuses the beam (e.g., GRIN lens) to the focal plane unless it is defined otherwise. 
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the angle with the optical axis. By multiplying every matrices of simple optical components, 

we can get a 2×2 matrix that describes the whole optical system. One advantage of using 

ABCD matrix analysis is that it can describe a paraxial Gaussian beam as well as optical 

rays in ray optics. So key parameters, such as working distance and beam spot size at the 

focal plane (i.e., lateral resolution), can be simply derived from the final matrix. Since the 

beam from the single mode fiber is very similar to a Gaussian beam and the NA in an OCT 

imaging probe is usually smaller than 0.1, ABCD matrix analysis gives us a very accurate 

prediction on those parameters. 

Figure 7.2. An abstract model of the distal end of the OCT imaging probe that consists 

of three optical components and two optical surfaces as described. 

Figure 7.2 describes an abstract mode of the distal end of the OCT imaging probe‡‡, 

where the ABCD matrices describe each optical component and optical surface with the 

glass rod spacer as s , the surface between the glass rod spacer and the GRIN lens as 

s g , the GRIN lens as g , the surface between the GRIN lens and the air as g a , and 

the air between the GRIN lens and the focal plane as aM  : 

‡‡ The micro reflector only changes the beam propagating direction so that it is not included in this model. 
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where sL , gL , and wdL  are the length of the glass rod space, the GRIN lens, and the air 

(i.e., working distance), respectively, sn  and 0n   are the refractive indices of the glass rod 

space and air, gn  is the on-axis refractive index of the GRIN lens, and α  is the alpha value 

of the GRIN lens (i.e., ( )2
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The complex beam parameters sq  and fq  of Gaussian beams from the single mode fiber 

and at the focal plane are both purely imaginary, which can be expressed as: 

 s
f
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+
=

+
. (7.3) 
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Since fq  and sq  are purely imaginary (i.e., f fq i z= ⋅  and s Rq i z= ⋅ , where fz  and Rz  

are the Rayleigh range of the Gaussian beam at the focus and of the single mode fiber, 

respectively), we have: 

 f R f Rz z C i z D B i z A− + ⋅ = + ⋅ .  (7.4) 

Since all the elements in the ABCD matrix are real, Eq. (7.4) can be written as: 

 f R

f R

z z C B
z D z A
− =

=
  (7.5) 

From Eq. (7.5), the Rayleigh range of the Gaussian beam of the single mode fiber Rz  can 

be derived as: 

 R
B Dz
A C
⋅

= −
⋅

.  (7.6) 

From Eq.(7.6), we can solve the working distance wdL  and the spot size of the beam at the 

focal plane fx∆   is§§: 
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,  (7.7) 

 where 02ω  is the beam width from the single mode fiber (i.e., 21 e− ), which is 9.2 µm at 

a wavelength of 1310 nm. 

§§ The spot size is defined here as the twice of the radius location when the intensity is 
21 e  of the central 

intensity. The FWHM spot size should be converted accordingly (i.e., 0.589 fx⋅∆  ). 
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Figure 7.3. (a) The working distance and the spot size of the imaging probe is controlled 

by the length of the glass rod spacer when the length of the GRIN lens is preset to be 

2.2 mm. (b) The maximal beam width within the GRIN lens is also controlled by the 

length of the glass rod. 

Two of the parameters in the above formula are usually variables when fabricating 

an OCT imaging probe: the length of the glass rod spacer sL  and the length of the GRIN 

lens gL . In practice, we usually first polishes a set of GRIN lenses with a fixed length, 2.20 

mm in this case. By changing the length of the glass rod spacer sL , the working distance 

can be set from 1.5 to 3.0 mm and the spot size can be tuned from 10 to 23 μm accordingly. 

For example, for a working distance of 3.00 mm, the length of the glass rod spacer needs 

to be tuned to ~1.05 mm with the corresponding spot size of 23.4 μm as shown in Fig. 7.3a.

One thing need to be pointed out is that ABCD matrix analysis is for an optical 

system without aperture limit. Therefore, beam vignetting has to be examined by using 

ABCD matrix analysis to calculate the maximal beam width inside the optical system (i.e., 

inside the GRIN lens). A monotonic relationship between the length of the glass rod spacer 

and the maximal beam width inside the GRIN lens as shown in Fig. 7.3b indicates that the 

maximal beam width increases as the length of the glass rod spacer increases. It is noticed 

in Fig. 7.3b that the NA of the micro optics (i.e., <300 μm) was not fully utilized in 
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designing short working distance probe because a too tightly focused beam would greatly 

reduce the depth of focus (DOF), and a short DOF would degrade the imaging quality 

where it is out of focus in an OCT image. Here, a lateral resolution was intentionally chosen 

to be comparable with the axial resolution (e.g., 9.5 µm).  

7.3.2 Zemax Model 

Zemax® is a commercial optical design software by ray tracing every rays passing through 

the optical system. It can simulate the optical performance of an optical system in an almost 

realistic fashion. Optical aberrations, such as spherical and chromatic aberrations, can be 

calculated within the software. Therefore, a Zemax model was built based on the 

parameters from the ABCD matrix analysis to validate the paraxial results. 

Shown in Fig. 7.4 is the Zemax simulation results of an OCT imaging probe with a 

diameter of 1.0 mm and a designed working distance of 3.0 mm. As shown in Fig. 7.4a, 

the actual working distance was calculated as 3.07 mm, which is only 70 µm larger than 

the result of the ABCD matrix analysis. The difference merely comes from the different 

definitions of the focus; in the Zemax model, the focus is defined as the smallest RMS spot 

size while defined as a paraxial focus in ABCD matrix analysis. The maximal beam width 

within the GRIN lens calculated was about 230 µm***, which was also consistent with the 

ABCD matrix analysis shown in Fig. 7.3b. Shown in Fig. 7.4b is the spherical aberration 

in such a design. Comparing with the diffraction limited spot size (i.e., 23.4 µm), the 

spherical aberration was negligible. The chromatic aberration calculated was also 

*** The NA of the beam from the single mode fiber (i.e, SMF-28e+) is 0.092 in Zemax model instead of 
0.14 shown in the specification of the fiber. The definition of the NA in SMF-28e+ fiber specification is 
1% power level of a 1D far-field scan. But the definition of the NA used here is taken from Gaussian beam 
and the encircled energy is only ~86%. Therefore the NA used here is smaller than the one in the fiber 
specification. 
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negligible compared with the confocal parameter of 657 μm as shown in Fig. 7.4c. . Other 

short working distance OCT imaging probes with different working distances were also 

validated with Zemax® software (data not shown) and the Zemax results showed a good 

consistency between ABCD matrix analysis and real ray tracing results. Therefore, it is 

suggested that the actual optical model of a short working distance OCT imaging probe 

can be accurately predicted by the ABCD matrix analysis and Zemax models can provide 

fine tuning when finalizing the parameters, such as actual working distance or spot size.  

 

Figure 7.4. (a) Ray tracing result of an OCT imaging probe consists of a 1.05 mm glass 

rod spacer and a 2.2 mm GRIN lens (SLW-1.0) shows a working distance of 3.07 mm 

and that the maximal beam width within the GRIN lens is about 230 μm. (b) beam spot 

size at the focal plane at different wavelengths (1310±50 nm) with a scale bar of 1.0 μm. 

The diffraction limited spot size is 23.4 μm from ABCD matrix analysis. (c) Chromatic 

focal shift over 100 nm wavelength region is about 14.2 μm while the confocal 

parameter of the focused Gaussian beam is 657 μm. 

A short working distance OCT imaging probe with micro optics of 0.7 mm in 

diameter was also designed followed by the same procedure as discussed above.  
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7.3.3 Fabrication Steps and Tolerance 

 

Figure 7.5. A schematic of the distal end of a short working distance OCT imaging 

probe. The optical portion consists of a single mode fiber, a glass rod spacer, a GRIN 

lens, and a micro reflector. All the optical components were packed into an 18 Ga 

hypodermic tube with a window opens on side. The whole assembly was then inserted 

into a transparent plastic tube. 

The final design of the distal end is shown in Fig. 7.5. During the fabrication of the distal 

end of the imaging probe, both the glass rod spacer and the GRIN lens were first polished 

to designed lengths. Since it is important for endoscopic OCT imaging to minimize the 

back reflection from any optical surface in the imaging probe, the entrance plane of the 

glass rod spacer was polished with an angle of 8° to reduce the back reflection from this 

surface. The compound lens, which was made by gluing the glass rod spacer and the GRIN 

lens together, was connected via optical glue with a single mode fiber  (i.e., SMF-28e+® 

from Corning Inc.) inside a hollow torque coil that delivers the rotation from the proximal 

ends to the distal ends. The end of the single mode fiber was also cleaved into an 8° angle 

to further reduce the back reflection. After curing the optical glue, the working distance 

was experimentally confirmed to be close to the designed value (i.e., ±50 μm). The spot 

size was then calculated from the measured confocal parameter, which should also be close 

to the designed value. A large deviation of the spot size from its designed value is usually 
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caused by defected optical components or poor alignment among them, both of which 

could be avoided. The double pass efficiency of the imaging probe was measured by 

measuring the back reflection with a reflective mirror placed at its focal plane, and it should 

be kept as high as possible in order to achieve the best imaging performance. When 

fabricating short working distance OCT imaging probes, the double pass efficiency can 

usually be controlled between -1.5 and -2.5 dB. The back reflection was also measured and 

is required to be lower than -50.0 dB for proper OCT imaging. Angled polishing the end 

surface of the single mode fiber and the first surface of the glass rod spacer could further 

reduce the back reflection down to -55.0 to -62.0 dB. 

A micro rod reflector was placed in front of the compound lens to diverge the beam 

about 90°. The diverging angle should be close to but not exactly equal to 90° in order to 

avoid specular reflection from the plastic tube and the angle difference away from 90° 

should be no less than half the angle of the focused beam cone, which is approximately 

equal to the NA of the focused beam. The whole optical components, glued to the torque 

coil, were housed inside an 18 Gauge stainless hypodermic tube (i.e., inner diameter: 1.02 

mm; outer diameter: 1.27 mm) with a window that opens on one side. The whole assembly 

was then put into a transparent plastic tube (i.e., inner diameter: 1.30 mm; outer diameter: 

1.78 mm) for insulation and protection from the biological tissue during in vivo 

experiments. 
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Figure 7.6. (a) The change of working distance with respect to the change of the length 

of the GRIN lens at different length when the length of the glass rode spacer is 1.05 mm. 

(b) The change of working distance with respect to the change of the length of the glass 

rod spacer lens at different length when the length of the GRIN lens is 2.2 mm. 

Inconsistencies between the actual OCT imaging probe and the designed model 

may arise due to fabrication errors. To evaluate how severe the error might be, a simple 

tolerance model was developed based on ABCD matrix analysis as shown in Fig. 7.6. 

Taking as an example an imaging probe with a working distance of 3.0 mm described in 

previous subsections, the working distance shifts at a rate of about -70 μm every 10 μm 

increase in GRIN lens length when the length is around 2.20 mm. Meanwhile a similar 

phenomenon was also observed when the length of the glass rod spacer changes (i.e., about 

-55 μm per 10 μm increase in glass rod spacer length when the spacer length is around 1.05 

mm). Therefore, an error up to ±125 um in working distance may be introduced as the 

inaccuracy of glass rod spacer and GRIN lens polished in the lab is about ±10 μm.  To 

improve the accuracy of working distance, we come up with a neat strategy where the glass 

rod spacer is intentionally polished shorter (i.e, ~100 μm). The variation in working 

distance, thus, are subsequently compensated by changing the distance between the single 

mode fiber and the glass rod spacer which is filled with optical glue.  As the distance 

between the single mode fiber and the glass rod spacer is usually of a few hundred microns 
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in a short working distance probe, there is enough flexibility in the adjustment of working 

distance. The final working distance acquired using this approach is usually close to the 

designed value (i.e., ±50 µm).  

7.3.4 Proximal End 

A flexible torque coil consists of multiple layers of counter-wound wires that delivers 

rotational and pull back motion from the proximal end of the probe to the distal end of the 

probe. When selecting a proper torque coil, there is a tradeoff between the stiffness that 

delivers precise rotation and translation and the flexibility that helps the incorporation of 

the imaging probe with standard video endoscope. A more stiffness torque coil may be 

preferable in upper GI applications whereas a more flexible torque coil is desirable in 

pulmonary applications. Here we chose to use two types of torque coils with different 

designs. The first type has an outer diameter of 0.83 mm and an inner diameter of 0.36 mm, 

which is suitable for a rotation speed of up to 60 revolutions per second. The second type 

has an outer diameter of 0.75 mm and an inner diameter of 0.30 mm, which is suitable for 

a lower rotation speed of up to 20 revolutions per second. The overall length of shorter 

working distance probes is about 1.5 meters, which makes them compatible with 

conventional video endoscope. 

A piece of 16 Gauge hypodermic tube was used at the proximal end of an imaging 

probe to 1) bridge between the FC/APC fiber connector and the torque coil to deliver the 

rotational and translation motion, and 2) protect the fused fiber at the proximal end. The 

hypodermic tube needed to concentrically align with the ferrule in an FC/APC fiber 

connector to ensure that rotational motion can be smoothly delivered without any off-axis 

spinning even at a high rotation speed.  
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7.4 Large Working Distance OCT Imaging Probe 

A large working distance OCT imaging probe is designed for imaging internal organs with 

a large luminal area (i.e., D >15 mm), such as esophagus, colon, etc. Similar to a short 

working distance OCT imaging probe, a compound lens that consists of a glass rod spacer 

and a GRIN lens with a diameter of 1.0 mm, was also used. But due to the limited aperture 

size in the large working distance OCT imaging probe, the available NA in the micro optics 

has to be fully utilized in order to improve the lateral resolution as high as possible. 

7.4.1 Paraxial Model 

The same ABCD matrix model was analyzed as described in Fig. 7.2. Unlike in short 

working distance OCT imaging probes, to design the probe, we first increase the length of 

the glass rod spacer to fully utilize the available NA of the GRIN lens.  

Figure 7.7. (a) The maximal beam width within the GRIN lens is also controlled by the 

length of the glass rod. A 6.40 mm glass rod spacer gives a maximal beam width within 

the GRIN lens of ~ 795 μm. (b) The working distance and the spot size of the imaging 

probe is controlled by the length of the GRIN lens when the length of the glass rod spacer 

is preset to be 6.40 mm. 

Due to the manufacture limitation, the effective area in a GRIN lens is usually no 

more than 80% of the diameter of the GRIN lens (i.e., 800 μm). Therefore, the maximal 

beam width within the GRIN lens should be set at close to 800 μm by optimizing the length 
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of the glass rod spacer to 6.40 mm as shown in Fig. 7.7a. Once the length of the glass rod 

spacer is fixed, the working distance and the spot size can be tuned by changing the length 

of the GRIN lens. For example, the length of the GRIN lens needs to be ~0.58 mm when 

the working distance is designed to be 10.0 mm, and the corresponding spot size is then 

21.4 μm as shown in Fig. 7.7b. 

7.4.2 Zemax Model 

Figure 7.8. (a) Ray tracing result of an OCT imaging probe consists of a 6.40 mm glass 

rod spacer and a 0.58 mm GRIN lens (SLW-1.0) shows a working distance of 10.0 mm 

and that the maximal beam width within the GRIN lens is about 808 μm. (b) beam spot 

size at the focal plane at different wavelengths (1310±50 nm) with a scale bar of 4.0 μm. 

The diffraction limited spot size is 21.4 μm from ABCD matrix analysis. (c) Chromatic 

focal shift over 100 nm wavelength region is about 42.2 μm while the confocal 

parameter of the focused Gaussian beam is 549 μm. 

Similarly, a Zemax model was created to validate the ABCD matrix analysis results. Shown 

in Fig. 7.8 is the Zemax simulation results of an OCT imaging probe with 1.0 mm in 

diameter and a designed working distance of 10.0 mm. As shown in Fig. 7.8a, the actual 

working distance was calculated as 10.1 mm, which is 100 μm larger than the result of the 
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ABCD matrix analysis. The maximal beam width within the GRIN lens is about 808 μm, 

which is also very close to the ABCD matrix analysis results shown in Fig. 7.7b. The 

spherical aberration in such a design was shown in Fig. 7.8b; the aberration is larger than 

the one in a short working distance probe as shown in Fig. 7.3b. Seidel aberration 

coefficients analysis in Zemax suggested that the aberration mainly comes from the larger 

beam width within the GRIN lens, which is consistent with the theoretical analysis [203, 

204]. Nevertheless, the spherical aberration has negligible effect on the broadening of the 

spot size (i.e., a diffraction limited spot size of 21.4 μm). The chromatic aberration was 

calculated in Fig. 7.8c, which is also smaller than the confocal parameter of 549 μm. The 

Zemax results showed a good consistency between ABCD matrix analysis and real ray 

tracing results. 

7.4.3 Astigmatism Correction 

The method and results described in this section have been published in [198].  

In conventional side-viewing OCT imaging probe, the beam is diverted by 90° with 

a reflector and then passes through a transparent plastic protective tube. The tube, however, 

acts as a negative cylindrical lens, which diverges the beam along the azimuthal direction 

perpendicular to the longitudinal axis of the catheter [140]. This common effect is 

imperceptible in a short working distance probe because the diverging power of the plastic 

tube is negligible compared with the focusing power of the probe. However, it is much 

more problematic in a large working distance probe when the diverging power of the plastic 

tube is able to counteract the focusing power of the probe. The degradation of the beam 

can often be severe, in particular when the transparent tube has a small radius and a 

relatively thick wall. For a plastic tube with a 0.7 mm radius and an 
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the calculated ratio of the beam spot size in the azimuthal direction to the one in the 

longitudinal direction (defined as the astigmatism ratio) is ∼40 as shown in Fig. 7.9a, which 

was observed on the beam profile photograph captured on the target focus plane as shown 

in Fig. 7.9c. To compensate for the astigmatism, the beam needs to be refocused along the 

azimuthal direction. One solution is to replace the commonly used flat reflector with a 

cylindrical reflector. The numerical simulations show that a cylindrical reflector with an 

∼20.5 mm radius of curvature would fully compensate for the cylindrical effect caused by 

the plastic tube as shown in Fig. 7.9b. The beam profiles before and after the correction of 

astigmatism by using a cylindrical mirror are shown, respectively, in Figs. 7.9c, 7.9d, 

which clearly demonstrate that the proposed approach can effectively correct the 

astigmatism and restore the round shape of the beam profile. 
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Figure 7.9 (a) Logarithm of the calculated astigmatism ratio versus the ratio of the tube 

profile distorti

severe for a tube of a smaller radius. (b) Calculated beam spot size in the azimuthal 

direction on the target focus plane (i.e., 10 mm away from the GRIN lens and 

perpendicular to the beam axis) and the actual focused position on the azimuthal 

direction versus the curvature radius of the astigmatism-correcting cylindrical reflector. 

Simulation shows that a cylindrical reflector with an 20.5 mm radius could refocus the 

beam back to the target working distance. (c) Photograph of the beam profile on the 

target focal plane when a conventional flat reflector was used in the catheter, where 

severe distortion was evident. (d) Photograph of the beam profile when a cylindrical 

concave reflector of an 

beam profile was restored. 
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7.4.4 Fabrication Steps and Tolerance 

Figure 7.10. A schematic of the distal end of a large working distance OCT imaging 

probe. The optical portion consists of a single mode fiber, a glass rod spacer, a GRIN 

lens, and a cylindrical reflector. All the optical components were packed into an 18 Ga 

hypodermic tube with a window opens on side. The whole assembly was then inserted 

into a transparent plastic tube. 

Shown in Fig. 7.10 is the final design of the distal end of a large working distance OCT 

imaging probe. Most of the fabrication steps and parameter specifications are similar to 

those described in subsection 7.3.3 except that a curved micro reflector was used to deflect 

the beam instead of a flat micro reflector. A cylinder of a diameter of 20.5 mm, which was 

made of stainless steel, was first manufactured as a mold and polished via different grades 

of polishing pastes. The finest polishing paste was 1.0 μm. A rod of 1.0 mm in diameter, 

which was made of softer material (e.g., plastics, aluminum, etc.), was chosen to make the 

curved micro reflector. The rod was first cut into small length piece (i.e., 2.0 mm in length) 
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and its one side was grinded as angled flat surface (e.g., 40°). The angled curved surface 

was then grinded and polished from the flat surface via the diamond polishing compounds 

on the spinning stainless cylindrical mold. The diamond compounds used here were 10, 5, 

3, 1, 0.25 μm in the order of from coarse to fine. Finally, the curved surface was coated 

with a protective gold or silver reflective layer. The double pass efficiency of a large 

working distance probe can usually be controlled between -3.0 to -4.0 dB owing to the 

larger beam width inside the GRIN lens and the larger spherical aberration. The total length 

of a large working distance probe is usually ~2.2 m, which is compatible with an upper GI 

endoscope. 

 

Figure 7.11. (a) The change of working distance with respect to the change of the length 

of the GRIN lens at different length when the length of the glass rode spacer is 6.40 mm. 

(b) The change of working distance with respect to the change of the length of the glass 

rod spacer lens at different length when the length of the GRIN lens is 0.58 mm. 

Similarly, tolerance errors were also modeled as shown in Fig. 7.11. Taken as an 

example a large working distance probe with a working distance of 10.0 mm as described 

in previous subsections, the working distance shifts at a rate of about -570 μm every 10 

μm increase in GRIN lens length when the length is around 0.58 mm as shown in Fig. 

7.11a. This rate is almost one order of magnitude higher than that in a short working 
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distance probe. However, the working distance shift rate of the glass rod spacer, as shown 

in Fig. 7.11b, is still on the same order of magnitude as that in a short working distance 

probe. Therefore, the length tolerance need to be more tightly controlled in a large working 

distance OCT imaging probe (i.e., a tolerance of ±5 µm is desirable). Using the same 

method proposed in subsection 7.3.3, the working distance can still be controlled to the 

designed value within ±200 µm. 

7.5 Summary 

In this chapter, we first compared two approaches in fabricating a miniature side-viewing 

OCT imaging probe. A compound lens that is consisted of a glass rod spacer and a GRIN 

lens is preferably chosen. Short and large working distance OCT imaging probes are then 

discussed in the following sections. In each section, a paraxial model of the distal end of 

imaging probes was first developed to optimize the optical design quickly. A ray tracing 

model was then built in Zemax in order to validate the paraxial model results. In the large 

working distance probe section, astigmatism was discussed and corrected using a home 

built curved micro reflector. In addition, we discussed the fabrication steps of OCT imaging 

probes and a few key parameters that was monitored during the fabrication. A simple 

tolerance model was developed based on the paraxial model to show which parameter was 

more sensitive to the design target and guide the practical fabrication work.  At last, the 

design of the proximal end of imaging probes was discussed. 
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Chapter 8 Endoscopic Optical Coherence 

Tomography in Lower Airway Imaging 

This chapter first briefly reviews the importance of lower airway imaging and the 

limitations of current imaging modalities. The OCT system and animal protocol we use are 

then discussed, followed by results from three studies conducted in the lower airways in 

animal models, including high-speed OCT imaging of lower airways, correlation between 

in vivo OCT images and ex vivo histopathology, and dynamic OCT imaging of lower 

airways.  

8.1 Background and Introduction 

Obstructive lung diseases (OLD) are a category of respiratory diseases characterized by 

airflow limitation often associated with pathological changes in the lower airways of the 

lungs. One of the two major subsets of OLD are chronic obstructive pulmonary disease 

(COPD) characterized by irreversible airflow obstruction and persistent inflammation to 

noxious environmental stimuli (e.g., cigarette smoke) [205]. COPD encompasses a 

spectrum of diseases, where chronic bronchitis and emphysema lay at both ends of, with 

most individuals fall in between. COPD affects 12 to 16 million people in the United States 

and is the 4th most common cause of morbidity and mortality among adults in the United 

States [206]. The other major subset in OLD, asthma, is a common chronic inflammatory 

disease of the airways characterized by variable and recurring symptoms including 

reversible airflow obstruction and bronchospasm. It affected more than 24.6 million people 
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including 7.1 million children in 2009 [207]. Although it is well known that there are 

morphological changes in OLD (e.g., hypertrophy and hyperplasia of airway smooth 

muscle, airway epithelial remodeling, and hyperplasia and hypersecretion of goblet cells), 

little is understood about how those changes affects the pathophysiology of the diseases, 

such as airway remodeling and the change of elastic properties of the airways [205]. 

Quantitative analysis of the structure of the airways, which includes the luminal area, the 

wall thickness, and wall morphology, plays an important role in helping physicians to 

understand the pathogenesis of the OLD. Currently there is a great diagnostic and 

therapeutic value for developing and applying technologies such as OCT imaging to 

monitor the morphological changes of the lower airways in vivo real-time. 

Lower airway imaging has greatly advanced in the past decade. Flexible white light 

bronchoscope (WLB) allows physicians to examine lower airways from trachea to 

segmental bronchi of the 4th to 5th generations. However, it is a semi-quantitative imaging 

tool due to the image distortion from the bronchoscope lens and the image display system. 

In addition, WLB could only accesses the luminal surface of relatively large lower airways 

[88, 208]. Biopsy guided by flexible WLB is prone to sampling error and may cause 

complications including bleeding and persistent air-leak. High-resolution computed 

tomography (HRCT) has also been widely adopted for thoracic imaging; it provides an 

imaging resolution of 0.25 mm at the highest with a slice thickness of 0.75 mm [209]. Thus, 

HRCT could only resolve airways with a diameter greater than 1 to 2 mm under optimal 

conditions, and is limited to gross anatomical identification of the diameter changes. 

As mentioned in previous chapters, endoscopic OCT holds a strong promise for 

assessment of lower airways in a minimally invasive fashion [84, 85, 87, 88]. In particular, 
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a micrometer scale resolution of endoscopic OCT enables precision measurements of the 

airway luminal area, wall thickness, as well as airway smooth muscle and other layered 

structures. Of greater interest, OCT is capable of differentiating tissue components of the 

airway wall such as cartilage, epithelium and potentially the airway smooth muscle. High-

speed endoscopic OCT developed in this dissertation makes it possible to perform three-

dimensional imaging and hence dynamic volumetric assessment of the structural changes 

of the airway in real time.  

8.2 Material and Methods 

In this chapter, we aimed to visualize and assess wall thickness and luminal area of lower 

airways as well as dynamically monitor changes in these structures in animal models. 

8.2.1 High-speed Endoscopic OCT System 

The high-speed endoscopic OCT system used in this chapter was described in Chapter 3 to 

7. Imaging parameter varied due to system upgrades (e.g., FDML laser sweeping speed). 

In short, two home built FDML laser sources were used here. Both have a central 

wavelength of 1310 nm and a full range sweeping range of ~150 nm, which provided an 

axial resolution of ~ 9.3 to 9.5 µm in air. The sweeping frequencies are 40 kHz and 220 

kHz, respectively. Such swept laser sources provide a frame rate of 10 to 55 frames per 

second when each frame contains 4096 A-scans. Four short working distance OCT imaging 

probes were designed and built with different working distances for acquiring 3D in vivo 

full circumferential OCT images of lower airways of various diameters. The basic 

parameters of these four imaging probes are listed in Table 8.1. 
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Probe 
No. OD (mm) WD1 

(mm) 
WD2 
(mm) Δx (µm) BR (dB) 2-Pass Efficiency (dB) 

1 1.78 1.84 0.45 16.0 < -58.9 > -1.74 

2 1.78 2.42 1.03 20.5 < -59.8 > -1.66 

3 1.78 2.95 1.56 23.4 < -60.2 > -2.50 

4 1.27 1.75 0.62 16.9 < -58.6 > -2.0 

Table 8.1 Basic parameters of shorter working distance OCT imaging probes. OD: overall 

diameter (including plastic tubing); WD1: working distance between the GRIN lens and 

the focal plane; WD2: working distance from the outer surface of the plastic tubing to the 

focal plane; Δx: lateral resolution ( 21 e ); BR: back reflection; 2-Pass Efficiency: double 

pass efficiency. 

The overall diameter of the OCT imaging probe including the protective plastic 

tubing has to be less than 2.0 mm, which is smaller than the diameter of the working 

channel on the commonly used bronchoscope (i.e., 2.0 – 2.8 mm). The total imaging depth 

was set at either 2.5 or 5.0 mm based on the calibration/clock signal from the Mach-

Zehnder interferometer. The detection sensitivities of these OCT imaging probes were 

above 120 dB with 40 kHz FDML laser and above 110 dB with 220 kHz FDML with an 

incident power of 15 – 20 mW at the sample arm. All the raw data generated from the high-

speed endoscopic OCT system were processed, displayed and saved real-time. 

8.2.2 Animal Protocols 

Since swine lower airways is anatomically similar to humans, 11 pigs was used to test the 

performance and robustness of the high-speed endoscopic OCT system for lower airways 

imaging. During the experiment, a female pig was anesthetized and placed on a table in 

one of the animal facilities at John Hopkins University. An endotracheal tube (ETT) was 

introduced into the trachea through an oral route to maintain ventilation and oxygenation. 

A bronchoscope was inserted via the ETT to visually inspect central trachea and primary 
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bronchi, lobar and segmental bronchi. Before OCT imaging, the protective plastic tubing 

surrounding the OCT imaging probe was marked with an interval of 1 cm. One of the OCT 

imaging probe surrounded by the marked plastic tubing was delivered through the working 

channel of the bronchoscope (as shown in Fig. 8.1a) so that the imaging probe can be 

monitored on the video screen during OCT imaging (as shown in Fig. 8.1b). Once the OCT 

imaging probe was deployed into the target region, endoscopic OCT imaging was 

performed by rotating and pulling back the OCT imaging probe. Therefore, 3D dataset of 

the swine lower airways was acquired. Among the pigs, 4 of them were injected with one 

or multiple boluses (5 ml each) of 0.08 mg/ml methocholine intravenously to simulate an 

episode of acute asthma attack. The OCT imaging probe was positioned at the same 

location to dynamically monitor the response of the lower airway to methocholine. 

Repeated 2D OCT images were acquired during the experiment. 

 

Figure 8.1 (a) An OCT imaging probe assembly including the plastic tubing passes 

through the working channel of a video bronchoscope. (b) A snapshot of the video 

acquired from a video bronchoscope showing an OCT imaging probe assembly is 

deployed into one bronchi. 

For certain pulmonary diseases, pig bronchus may not be the best model as it 

contains more cartilages than human’s. Dog airways, on the other hand, has more 

physiological similarities to human’s than pig’s. Therefore, a canine model was also 

explored to first perform a correlation study between in vivo endoscopic OCT images and 
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standard ex vivo histopathology. After a female dog was anesthetized, a bronchoscope was 

used to map the bronchial network structure prior to performing OCT imaging. The 

protective plastic tubing was marked with an interval of 5 mm and the OCT imaging probe 

with the marked tube was passed through the working channel of the bronchoscope and 

into the lower airways. During the OCT imaging, the location of the imaged bronchus was 

recorded. Afterwards, the whole lung was dissected and fixed in 10% formalin under a 

normal physiological pressure for 24 hours following the OCT imaging. The lung 

specimens were located according to the mapped bronchial network structure after fixation, 

followed by hematoxylin and eosin staining. The OCT images were then compared with 

the corresponding histology slides. 

Animal handling was performed in accordance with Johns Hopkins University 

institutional animal care and use committee (IACUC). 

8.3 Results 

8.3.1 In vivo Endoscopic OCT Images of Swine Lower Airways

Figure 8.2 Representative 2D circumferential OCT images of swine segmental bronchi in 

vivo with various diameters: (a) ~2.5 mm, (b) ~3.5 mm, and (c) ~4.5 mm. E: epithelium; 

BM: basement membrane; SM: smooth muscle; C: cartilage; G: gland. Scale bar: 1.0 mm 

Microarchitectural structures of pig bronchus can be visualized in vivo in a cross sectional 

fashion with an endoscopic OCT imaging system. The OCT imaging probe has to be 
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carefully chosen based on the diameter of the bronchus in order to get an optimal imaging 

quality. Figure 8.2 shows three representative OCT image snapshots of pig segmental 

bronchus with different diameters between ~2.5 to ~4.5 mm. Pig segmental bronchus 

structure is characterized by C-shaped cartilages as shown in Fig. 8.2a-c. Other layered 

structures can be clearly identified, such as epithelium, basement membrane, and bronchial 

glands. Thin layers of smooth muscle present between basement membrane and cartilage 

can sometimes be visualized as well (as shown in Fig. 8.2b-c). 

 

Figure 8.3 3D reconstruction of a pig segmental bronchi in vivo acquired by the high-

speed endoscopic OCT system in (a) a side view and (b) fly-through view. Yellow 

arrows in (a) indicate bronchial branching 

Animal respiration is one of the most critical problems in in vivo 3D endoscopic 

OCT imaging. One of the advantages that high-speed endoscopic OCT system provides is 

that 3D dataset can be acquired within a short period of time where animal respiration can 

be held manually. The reconstruction of one representative 3D dataset is visualized in Fig. 
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8.3 with two different views. More global information can be directly visualized from 3D 

reconstruction (e.g., yellow arrows in Fig. 8.3a indicate bronchial branching). 

Another way to visualize the in vivo 3D dataset is to show en face images by 

unwrapping the airway along the circumferential direction in an orthogonal view. Figure 

8.4 shows three en face images at different imaging depths of pig lower airways from lung 

parenchyma to distal bronchi. In the left portion of en face images in Fig. 8.4b and c where 

the lung parenchyma is (i.e., ~ 4 mm long), alveoli can be visualized as the sac-like 

structures and a blood vessel passing through the alveoli can also be identified. In the 

middle portion of the en face images where the respiratory or terminal bronchiole is (i.e., 

~7 mm long), blood vessels and their branches can be identified with a negative image 

contrast due to the high absorption of blood. Alveoli sometimes can be seen at a deeper 

depth (as shown in Fig. 8.4c). In the right portion of the en face images where distal bronchi 

is (i.e., ~ 4 mm long), cartilages can be seen with a  large size and a negative imaging 

contrast due to their low scattering in Fig. 8.4b; small glands could also be detected under 

the cartilages in Fig. 8.4c. The zigzag patterns shown in Fig. 8.4 comes from the heart beat 

and the high torque from tortuous bronchial network.   
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Figure 8.4 En face images of pig lower airways in vivo from lung parenchyma to distal 

bronchi at (a) 0 μm, (b) 200 μm, and (c) 400 μm below the airway surface in an 

orthogonal view. Total field of view: 4.0 × 15 × 2.5 mm (circumferential × longitudinal 

× depth). Av: alveoli; BV: blood vessel; c: cartilage; G: gland. Scale bar: 1.0 mm 

8.3.2 Correlation between in vivo OCT images and ex vivo Histopathology 

Although the OCT images in previous subsection have shown a great capability of OCT 

imaging in resolving and identifying layered structures in lower airways, an experiment 

was performed to confirm that the layered structures seen on OCT images can be correlated 

with the golden standard: ex vivo histopathology. Figure 8.5 shows two examples of the 

correlation between in vivo OCT images and ex vivo histopathology. Shown in Fig. 8.5a is 

an in vivo OCT image of dog bronchus with its corresponding histopathology micrograph 

shown in Fig. 8.5b. Several features, such as epithelium, cartilage, smooth muscle and 
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adjacent blood vessel and bronchi that are identified on the OCT image can be confirmed 

on the corresponding histology. 

 

Figure 8.5 (a and c) in vivo OCT images of canine bronchi and (b and d) their corresponding 

histopathology micrographs. The inlets in (c) and (d) are 3X zoomed in of the regions 

encircled in (c) and (d). E: epithelium; C: cartilage; BV: blood vessel; SM: smooth muscle; 

BR: bronchi. Scale bar: 1.0 mm. 

Shown in Fig. 8.5c and 8.5d is another example of in vivo OCT image with its 

corresponding ex vivo histopathology. In the inlets of Fig. 8.5c and 8.5d, which are the 3X 

zoomed in images of the regions encircled in those figures,  structures like epithelium, 

smooth muscle, and cartilage, can be identified from the OCT image and confirmed on the 

corresponding histopathology micrograph.  
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Moreover, wall thickness was measured in both OCT images and their 

corresponding histopathology micrographs. An example is given in Fig. 8.6a where an 

OCT image of a small dog airway and its corresponding histopathology micrograph are 

shown. The measurements of wall thickness were taken at the locations where there are 

clearly distinct local similarity between two walls on both images. Since the OCT images 

are displayed in a scale of optical path, all the measurements of wall thickness on OCT 

images were divided by an average group refractive index of 1.38. When the results were 

quantitatively analyzed, it is noticed that the measurements are consistent between OCT 

images and histopathology if there are clear boundaries at both sides of the bronchial wall 

(e.g., labeled in yellow in Fig. 8.6a) whereas the measurements have relatively larger errors 

if the boundaries are unclear (e.g., labeled in red in Fig. 8.6a). A total of 25 bronchial walls 

were measured among 4 correlation pairs. Among these results, 10 measurements came 

from the wall with clear boundaries while 15 are from the wall without clear boundaries. 

A scatter plot shows a nice correlation between OCT and histology measurements 

of wall thickness. A linear fitting with an intercept of zero (i.e., y a x= ⋅ ) shows a slope of 

1.01 ± 0.02 with an adjusted coefficient of determination (i.e., adjusted 2R ) of 0.994, 

showing that the OCT and histology measurements are surprisingly consistent. A slope 

statistically significantly larger than 1.0 was originally expected because shrinkage of 

tissue usually happens during the histology sample preparation. However, it is possible that 

the averaged group refractive index of the bronchial tissue was overestimated and therefore 

lowered the slope close to 1.  Nevertheless, if the measurements on histology micrographs 

are considered as golden standard, relative error is then defined as: 

 OCT Measurment -  Histology Measurement 100%
Histology Measurement

× . (8.1) 
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 A histogram of the relative error is displayed in Fig. 8.6c where all of the errors 

are within 20%, suggesting a great correlation between OCT and histology measurements 

if clear boundaries are able to be identified. 

The data in Fig. 8.6d are more scattered than those in Fig. 8.6b and the adjusted 2R  

of 0.961 is worse than the one in Fig. 8.6b, suggesting that the OCT measurements became 

less accurate when the boundaries are hard to be identified. This finding is confirmed by 

the histogram as shown in Fig. 8.6e, where relative errors became larger as well. In addition, 

the linear fitting result in Fig. 8.6d suggests that the wall thickness on OCT images were 

consistently under measured compared to histology measurements (i.e., a slope of 0.870 ± 

0.045). This observation is also confirmed by the histogram as shown in Fig. 8.6e where 

the majority of the relative errors fell between -10% to 0. This might be due to the fact that 

the outer boundary delineated on OCT images based on intensity was underestimated from 

the actual outer boundaries. However, data in Fig. 8.6d still shows a reasonable linear 

correlation between OCT and histology measurements even when the outer boundaries of 

the bronchial wall is not clear. 
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Figure 8.6 (a) An exemplary correlation pair of in vivo OCT images of canine bronchi 

and histopathology micrograph. Bronchial walls were picked and measured on both 

images. Yellow label shows a wall with clear boundaries on both sides whereas red label 

shows a wall without clear boundaries on both sides. A: airway; BV: blood vessel. Scale 

bar: 0.5 mm. (b and d) Correlations between OCT and histology measurements of the 

wall thickness if clear boundaries are (b) able to be identified or (d) hard to identify. (c 

and e) Histogram plots of the relative errors between the two measurements if clear 

boundaries are (b) able to be identified or (d) hard to identify. 

135 
 



One thing needs to be pointed out is that the correlation between OCT images and 

histopathology micrographs are imperfect (i.e., only within 1 mm accuracy) and tissue 

deformation was also not taken into account. Nevertheless, the preliminary results of the 

quantitative comparison between OCT and histology measurements of wall thickness 

shows that endoscopic OCT has a great potential of quantitatively analyzing the structures 

of the lower airway in vivo. 

8.3.3 Dynamic OCT Imaging of Swine Lower Airways 

 

Figure 8.7 Three in vivo endoscopic OCT images of pig bronchi response (a) before, (b) 

during, and (c) after methocholine challenge. MF: mucosal folding; C: cartilage; BV: 

blood vessel. Scale bar: 1.0 mm. 

Among the four methocholine challenged animals, two of them had noticeable response to 

the drug. Figure 8.7 shows three OCT images of the same location (or close locations) in a 

pig bronchi before (as shown in Fig. 8.7a), during (as shown in Fig. 8.7b), and after (as 

shown in Fig 8.7c) methocholine challenge. In all three phases, the OCT images clearly 

showed layered structures. In addition, with these images, luminal volumetric changes and 

morphological changes of the epithelium could be evidently identified; while the luminal 

area of the bronchi was greatly reduced with noticeable musical folding during the 

136 
 



methocholine challenge, the luminal area was partially restored and musocal folding 

returned to the previous level after the effect of the drug was washed out. 

 

Figure 8.8 A time course of the luminal area of the pig bronchus response to the 

methocholine challenge. 

By analyzing these in vivo OCT images, quantitative results can be drawn from the 

OCT dataset. Figure 8.8 shows that the luminal area of the pig bronchus was reduced during 

the bronchoconstriction and partially recovered to 90% of the previous level. The 

bronchoconstriction began at about 10 seconds after the injection (i.e., t=0 sec) and lasted 

for about 17 seconds. The most reduction of the luminal area (~ 50%) occurred about 27 

seconds after the injection. Bronchodilation started from 27 seconds after the injection and 

lasted for about 50 seconds, which is much slower than bronchoconstriction. 

Mucosal folding was also quantitatively analyzed. Three mucosal folding structures 

of similar size were chosen and tracked among all the OCT images; the heights and widths 

of these structures were measured. Averaged height and width of these mucosal folding 

structures as well as their standard deviations are shown in Fig. 8.9a. It is clearly shown 
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that mucosal folding is more evident as the folds were increased by ~43% in height and 

decreased by ~45% in width during the bronchoconstriction. Similar to the luminal area 

change, both height and width of the mucosal folding were partially recovered to the 

previous level during the bronchodilation. On the other hand, the averaged mucosal folding 

size remained more or less the same except for a spike increase just after the injection of 

the drug as shown in Fig. 8.9b.   

 

Figure 8.9 (a) Change of averaged height and width of mucosal folding with their 

standard deviations. (b) Change of averaged size of mucosal folding with its standard 

deviation. 

8.4 Summary 

In this chapter, we first introduced a brief background of lower airway imaging, in 

particular the limitations of current imaging modalities in lower airway imaging. The high-

speed endoscopic OCT imaging of lower airways was then demonstrated in animal models. 

In addition, a correlation study was performed to show that in vivo endoscopic OCT has a 

potential of differentiating layered structures that were correlated with the ex vivo

histopathology results. At last, dynamic endoscopic OCT imaging of lower airways was 

performed to monitor the airway response to methacholine in real time. 
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Chapter 9 Endoscopic Optical Coherence 

Tomography in Upper Gastrointestinal Tract 

Imaging 

This chapter briefly reviews the background including the importance of esophageal 

imaging and the limitations of current clinic diagnosis. The OCT system and animal 

protocol are then discussed. Three studies have been conducted in esophagus imaging in 

this chapter, which are high-speed endoscopic OCT imaging of pig esophagus in vivo and 

human esophagectomy specimen ex vivo, a pilot study of in vivo assessment of cryoablation 

treated pig esophagus, and in vivo assessment of esophageal structures in a guinea pig 

model of eosinophilic esophagitis.  

9.1 Background and Introduction 

Esophageal cancer has the third lowest five-year survival rate of only 16% among all types 

of cancers, and the life quality of the patients who have surgical resection of esophagus is 

usually very poor. Over 95% of the esophageal cancer is either squamous cell carcinoma 

or adenocarcinoma [210]. The squamous cell carcinoma is more prevalent in Asian 

countries while adenocarcinoma is more common in Western Europe and the United States 

[211, 212]. Recent studies suggested that the incidence of esophageal adenocarcinoma 

(EAC) has increased six fold in the past three decades, and the increasing rate is faster than 

any other cancer [210]. Approximately 50% of all new EACs arise from patients with 

chronic gastroesophageal reflux disease (GERD) and Barrett’s esophagus (BE) [213], and 

BE is thought to be responsible for at least 4% of all cancer deaths in the United States 
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[214].  BE, which is usually associated with chronic GERD, is an abnormal condition of 

the esophagus where the normal stratified squamous epithelium is replaced by specialized 

columnar epithelium found in lower GI tract (i.e., referred to as intestinal metaplasia). 

Although BE itself is asymptomatic, it is associated with an approximately 40-fold 

increases in risk of progression to dysplasia and adenocarcinoma over general population 

[215, 216]. Neoplastic changes in BE develop in stages from non-dysplastic metaplasia to 

increasing grades of dysplasia and eventually to adenocarcinoma. Therefore, early 

detection of esophageal cancer or esophageal premalignant lesions such as BE could 

significantly improve the survival rate and improve the life quality of the patients. 

 Current clinical diagnosis of BE is conducted by performing upper GI endoscopy 

followed by biopsies of the columnar lined esophagus [217]. The appearance of the mucosa 

of BE and normal epithelium are visually different under the endoscope. If abnormal 

mucosa is evident under the endoscope, multiple biopsies are then taken to look for 

intestinal metaplasia, dysplasia and other premalignant lesions. The current biopsy strategy, 

which takes biopsy samples at four circumferential quadrants at intervals of 1-2 cm along 

the esophagus, only covers 5% of susceptible area and yields a very high sampling error. 

Moreover, screening BE in selective populations at higher risks and surveillance of BE’s 

progression are both recommended to use the same diagnostic [217]. 

Endoscopic ablation of BE is considered a relatively safe treatment and may lead 

to a regrowth of squamous epithelium[218]. However, residual BE remained after ablation 

may become subsquamous BE once the newly developed squamous epithelium grows over 

remnant BE [219]. Unfortunately. subsquamous BE is unable to be identified by current 

diagnostic method, leading to a high risk of developing EAC. 
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Endoscopic OCT has a capability of providing in vivo cross sectional images with 

an axial resolution of 1 – 15 μm and an imaging depth of 1 – 3 mm. Integrated with a 

standard upper GI endoscope, endoscopic OCT is an ideal tool for esophageal imaging. In 

particular, it has been proven that OCT is capable of identifying subsquamous BE [220]. 

Various OCT imaging probes have been developed to demonstrate that OCT can 

differentiate the layered structures of normal esophagus and identify abnormalities in 

diseased esophagus in vivo [70, 80, 83, 221-224]. Technical advances on laser source and 

photodetectors have significantly improved the imaging speed of the OCT system, making 

3D OCT imaging possible. Meanwhile, large working distance OCT imaging probes could 

provide a full circumferential cross sectional image of the esophagus [74, 79]. Combining 

these two technologies together, there is a great potential in the surveillance/screening of 

the entire esophagus in vivo without any removal of esophageal tissue [225, 226].  

Not only endoscopic OCT can provide a new imaging modality in clinics, it may 

also be a powerful tool in basic research. The pathogenesis of lots of GI diseases (e.g., 

esoinophilic esophagitis, inflammatory bowel disease and their link to oncogenesis, etc.) 

still remain unclear [227-230]. Most of these disease models have only been developed on 

small animals (e.g., mouse, rat, guinea pig, etc.) so far [231, 232]. Analysis of structural 

changes in these disease models is very important and could potentially unveil the 

pathogenesis of these diseases. However, the imaging modalities that could analyze 

structural changes in vivo on small animals is currently limited as an imaging resolution of 

micron scale is required. Interestingly, high-speed endoscopic OCT has the capability of 

providing such analysis on a volumetric dataset of the esophagus. 
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9.2 Material and Methods 

In this chapter, we aimed to visualize the layered structures in the esophagus and assess the 

cryoablation effect on the esophagus using a swine model. We also demonstrated the 

possibility of using endoscopic OCT as a research imaging tool to study the thickness 

change of esophageal mucosa of esoinophilic esophagitis in a guinea pig model. 

9.2.1 High-speed Endoscopic OCT System 

The high-speed endoscopic OCT system used in this chapter was described in Chapter 3 to 

7. Imaging parameter varied due to system upgrades (e.g., FDML laser sweeping speed). 

In short, two home built FDML laser sources were used here. Both of the sources have a 

central wavelength of 1310 nm and a full range sweeping range of ~150 nm, which 

provided an axial resolution of ~ 9.3 to 9.5 μm in air. The sweeping frequencies were 40 

kHz and 220 kHz, respectively. Such swept laser source provide a frame rate of 10 and 55 

frames per second when each frame contains 4096 A-scans. 

Figure 9.1 (a) A schematic of double lumen balloon. The scale in this schematic is not 

proportional to the actual balloon. (b) Photos of an OCT imaging probe inside an inflated 

double lumen balloon and the distal end of the OCT imaging probe (inset). 
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Three large working distance OCT imaging probes were designed and built with a 

working distance of 10.0 mm for acquiring 3D in vivo full circumferential OCT images of 

the pig esophagus. The basic parameters of those four imaging probes are listed in Table 

9.1 (i.e., Probe No. 1, 2, and 3). The OCT imaging probes were then inserted into a double 

lumen balloon as illustrated in Fig. 9.1a. The outer balloon is transparent and inflatable, 

and has a maximal outer diameter of 18.0 mm when inflated. The inner diameter of the 

inner transparent tubing is ~ 1.40 mm where the OCT imaging probe can pass through. 

Ideally, the overall diameter of the double lumen balloon should be small enough to pass 

through the working channel on the commonly used upper GI endoscope (i.e., 2.8 – 6.0 

mm). Current double lumen balloon cannot pass through a 2.8 mm working channel of an 

upper GI endoscope due to the size limit of the deflated outer balloon. The whole assembly 

of an inflated double lumen OCT imaging probe is shown in Fig. 9.1b. The total imaging 

depth was set either at 2.5 mm based on the calibration/clock signal from the Mach-

Zehnder interferometer. The detection sensitivities of those OCT imaging probes were 

above 115 dB with 40 kHz FDML laser with an incident power of 15 – 20 mW at the 

sample arm. A short working distance OCT imaging probe was also used for acquiring 3D 

in vivo full circumferential OCT images of the guinea pig esophagus. The basic parameters 

of those four imaging probes are also listed in Table 9.1 (i.e., Probe #4). The performance 

of this imaging probe is similar to those described in the previous chapter. All the raw data 

generated from the high-speed endoscopic OCT system were processed, displayed and 

saved in real-time. 

  

143 
 



Probe 
No. OD (mm) WD1 

(mm) 
WD2 
(mm)  BR (dB) 2-Pass Efficiency (dB) 

1 1.27 10.38 9.88 23.5 < -58.3 > -3.51 

2 1.27 10.16 9.66 25.7 < -59.0 > -3.30 

3 1.27 11.20 10.70 21.2 < -58.5 > -3.71 

4 1.27 1.84 0.45 16.0 < -58.9 > -1.74 

Table 9.1 Basic parameters of four OCT imaging probes used in upper GI studies. Three 

of them are large working distance OCT imaging probes (#1, 2, and 3) for large animal 

imaging and the left one is a short working distance one for small animal imaging.  OD: 

overall diameter of the imaging probe; WD1: working distance between the GRIN lens and 

the focal plane; WD2: working distance from the outer surface of the plastic tubing to the 

-Pass Efficiency: double pass 

efficiency. 

9.2.2 Animal Protocols 

Three pigs were used to test the performance of the high-speed endoscopic OCT system 

for esophageal imaging. During the experiments, a female pig was anesthetized and placed 

on a table in one of the animal facilities at the University of Washington or the Johns 

Hopkins University. An overtube was introduced into the esophagus. The deflated balloon 

was passed through the overtube and into the esophagus. An upper GI endoscope was 

inserted via the overtube to visually inspect the esophagus and find the region of interest. 

Once the OCT imaging probe was deployed into the targeted region, the double balloon 

was fully inflated and a 2 to 5 cm long segment of pig esophagus was imaged using a spiral 

scanning pattern with a 20 μm spacing between adjacent circumferential images. Among 

the pigs, one of them was treated with endoscopic spray cryoablation with pressured carbon 

dioxide [233, 234]. Endoscopic OCT imaging was performed immediately after the 

ablation treatment to monitor the acute structural changes after the treatment and assess the 

effect of cryoablation. Besides in vivo experiments, several ex vivo pig esophagus and 
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human esophagectomy specimens were also imaged using large working distance OCT 

imaging probes with a double lumen balloon. 

The high-speed endoscopic OCT imaging was also applied to a guinea pig model 

of eosinophilic esophagitis to assess the structural changes of the esophagus. Two groups 

of male guinea pigs were imaged using endoscopic OCT system and each groups have 4 

guinea pigs. Two groups of guinea pigs were actively sensitized by 3 intraperitoneal 

injection of 10 mg/kg ovalbumin (OVA) in saline every 48 hours. Three weeks after the 

last injection, all the animals were challenged with aerosolized 0.1% OVA for 30 seconds. 

One group of guinea pigs were only challenged once and endoscopic OCT imaging was 

performed before and after this challenge, whereas another group was challenged every 

morning for 3 weeks and endoscopic OCT imaging was performed once at the end. Prior 

to the OCT scan, animals were anesthetized by intraperitoneal injection of ketamine (80 

mg/kg) and xylazine (7 mg/kg). A short working distance OCT imaging probe was then 

inserted into the esophagus to a depth of 10 cm past the incisor. The imaging probe was 

driven with a spiral scanning pattern with a 25 µm spacing between two adjacent 

circumferential images to obtain a 3D volumetric OCT dataset. The thickness of the 

esophageal layers were measured in the 3D dataset afterwards. In short, OVA sensitized 

animals were used as controls while guinea pigs challenged with OVA for 1 day and 3 

weeks were used as acute and chronic inflammation models, respectively.  

9.3 Results 

9.3.1 Endoscopic OCT Esophageal Imaging 

Microarchitectural structures of pig esophagus can be visualized in vivo in a cross sectional 

fashion with endoscopic OCT imaging system. Figure 9.2a shows one representative OCT 
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image snapshot of normal pig esophagus. Layered structures can be clearly identified, such 

as epithelium, laminar propria, muscularis mucosa, submucosa, and muscularis propria. A 

cutaway 3D image reconstructed from a series of 2D images is shown in Fig. 9.2b. 

Human esophagectomy specimens were also imaged ex vivo using the same OCT 

imaging system. Figure 9.3a shows one representative OCT image snapshot of a human 

esophagectomy specimen from a patient with esophageal cancer. Unlike the normal 

esophagus, the layered structures on the abnormal specimen became less clear and lots of 

submucosal glands appeared on the OCT images (as indicted by red arrows in Fig. 9.3a). 

Similarly, a cutaway 3D image reconstructed from a series of 2D images is shown in Fig. 

9.3b.  

  

146 
 



Figure 9.2 (a) Representative 2D circumferential OCT images of pig esophagus in vivo. 

The central void region is intentionally reduced in order to magnify the actual OCT image 

region. (b) A 3D reconstruction of OCT images of pig esophagus in a hot colormap. E: 

epithelium; LP: laminar propria; MM: muscularis mucosa; SM: submucosa; MP: 

muscularis propria. Scale bar: 1.0 mm 

Figure 9.3 (a) Representative 2D circumferential OCT images of human esophagectomy 

specimen ex vivo. The central void region is intentionally reduced in order to magnify the 

actual OCT image region. Red arrows indicate submucosal glands (b) A 3D reconstruction 

of OCT images of human esophagectomy specimen in a hot colormap. Scale bar: 1.0 mm 
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9.3.2 In vivo Assessment of Cryoablation on Normal Pig Esophagus – A Pilot Study 

 

Figure 9.4 (a and b) Representative 2D circumferential OCT images of pig esophagus 

in vivo after cryoalbation. (c and d) Diferent views of 3D reconstruction of OCT images 

of pig esophagus in a hot colormap. Scale bar: 1.0 mm in (a) and b), 5.0 mm in (c) and 

(d) 

One pig was used to image its esophagus after the animal was treated with cryoablation 

with pressured carbon dioxide. Figure 9.4a and 9.4b show two representative OCT image 

snapshots of pig esophagus after the cyroablation. Similar to Fig. 9.2a, layered structures 

can be identified from epithelium down to muscularis propria. In the cutaway 3D 

reconstruction images shown in Fig. 9.4c and 9.4d, a cryoablation site can be clearly 

visualized from different views (i.e., Fig. 9.4c was viewed from outside of the esophagus 

and Fig. 9.4 d was viewed from inner lumen of the esophagus). 
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Figure 9.5 (a to f) En face images of pig esophagus in vivo after cryoablation at (a) 0 

μm, (b) 100 μm, (c) 350 μm, (d) 450 μm, (e) 550 μm, and (f) 900 μm below the 

esophegal surface in an orthogonal view. Total field of view: 56.6 × 20 × 2.5 mm 

(circumferential × longitudinal × depth). Red arrows indicates the cryoablation sites. 

Scale bar: 1.0 mm 

The 3D dataset of the pig esophagus was then unwrapped along the circumferential 

direction in an orthogonal view. Six en face images of a thickness of ~ 50 μm at different 

depths are shown from Fig. 9.5a to 9.5f, which approximately correspond to (a) surface, 

(b) epithelium, (c) lamina propria, (d) muscularis mucosa, (e) submucosa, and (f) 

muscularis propria. Although the cryoablation is usually used to only treat layers in mucosa, 

cryoablation sites on this esophagus as indicated by red arrows could be identified from 

epithelium down to muscularis propria. Different gross characteristics are also shown on 

the en face images. For example, dense stratified squamous epithelium are shown as 

uniform high scattering signal in Fig. 9.5b; interwoven patterns shown in Fig. 9.5d and 9.5f 

suggest that smooth muscle fibers exist in the layers of muscularis mucosa and muscularis 

propria. 
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9.3.3 In vivo Assessment of Esophageal Structures in a Guinea Pig Model of 

Eosinophilic Esophagitis 

Eight guinea pigs that were arranged into two groups were imaged using a high-speed 

endoscopic OCT imaging system. One of the groups was imaged before and after the OVA 

challenge. And twelve 3D datasets were acquired in total. Fig. 9.6 shows three 

representative OCT image snapshots and one longitudinal cross sectional OCT image of 

guinea pig esophagus acquired in vivo from one of the 3D datasets. The corresponding 

locations of three circumferential OCT images (i.e., Fig. 9.6a to 9.6c) are labeled as dotted 

red lines in longitudinal cross sectional OCT image as shown in Fig. 9.6d.  

Figure 9.6 (a to c) Representative 2D circumferential OCT images of guinea pig esophagus 

in vivo at different longitudinal locations as labeled in (b). (b) A longitudinal cross sectional 

OCT images of guinea pig esophagus in vivo. SC: stratum corneum; EP: epithelium; LP: 

laminar propria; MM: muscularis mucosa; SM: submucosa; MP: muscularis propria. Scale 

bar: 1.0 mm in (a) to (c); 1.0 mm in depth direction of (d) and 5.0 mm in longitudinal 

direction of d. 
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Layered structures (e.g., stratum corneum, epithelium, muscularis propria) can be 

identified on both types of images. Other layers such as lamina propria, muscularis mucosa, 

and submucosa are thin in guinea pig, and cannot be always differentiated from each other 

on all the acquired OCT images. 

The thickness of the esophageal layers were analyzed from the 3D datasets, which 

are categorized into 3 groups (i.e., control, acute, and chronic groups). The thickness was 

calculated from the measurement of the optical path on OCT images divided by an 

averaged refractive index of biological tissue (i.e., 1.38). Since the layers of lamina propria, 

muscularis mucosa, and submucosa are not always able to be differentiated, theses three 

layers are grouped together. The measurements of the three layers shown in Fig. 9.7 are: 

(control v.s. acute and chronic) 64.8±4.8 v.s. 68.3±4.2 and 54.3±4.9 µm in stratum corneum; 

56.4±2.6 v.s. 60.9±3.8 and 58.0±3.0 µm in epithelium; 199.7±15.4 v.s. 205.6±14.3 and 

161.4±8.3 µm in in lamina propria to musclaris propria. The thicknesses of stratum 

corneum and epithelium didn’t change among the groups. However it is suggested that 

there is a trend of decrease in the thickness of the layers from lamina propria to muscularis 

propria from control/acute group to chronic group, although no statistical significance was 

found (p value: 0.108 between control and chronic groups; 0.061 between acute and 

chronic groups). These findings are consistent with those concluded from the 

histopathology micrographs, which together suggests that there is no significant structural 

change in a guinea pig model of eosinophilic esophagitis. 
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Figure 9.7. The thickness measurements of the esophageal layers on a guinea pig model 

based on the data acquired from the high-speed endoscopic OCT imaging system. 

9.4 Summary 

In this chapter, we first reviewed the background of esophageal imaging and the limitations 

of current clinic diagnosis. The high-speed endoscopic OCT imaging of pig esophagus in 

vivo and human esophagectomy specimen ex vivo was then demonstrated. Moreover, a 

pilot study of in vivo assessment of cryoablation treated pig esophagus was performed. At 

last, an in vivo experiment of a guinea pig model of eosinophilic esophagitis was conducted 

to assess esophageal structures change in real time.  

152 
 



Chapter 10 Ultrahigh Resolution Endoscopic 

Optical Coherence Tomography Imaging  

This chapter briefly reviews the rationale of developing ultrahigh resolution endoscopic 

OCT imaging at the wavelength range of 800 nm. An ultrahigh resolution endoscopic OCT 

system is then discussed. Two preliminary studies, including guinea pig esophagus in vivo 

and guinea pig bronchus ex vivo, were used to demonstrate the performance of the system.  

10.1 Introduction 

In previous chapters, a portable high-speed endoscopic OCT imaging system at a central 

wavelength of 1300 nm that enabled translational imaging of internal luminal organs such 

as the gastrointestinal tract or airways was introduced. Due to technical difficulties, most 

OCT imaging probes developed so far were designed for working at the wavelength around 

1300 nm, which provides an excellent axial resolution about 7-20 μm and an imaging depth 

about 2-3 mm [80, 191, 193-195, 197, 198]. Although this axial resolution is already much 

better than any other clinically used imaging modalities (e.g., ultrasound, MRI, etc.), a 

higher resolution that approaches low magnification histology result is highly desirable  in 

order to resolve fine tissue structures such as airway smooth muscle, intestinal crypts, and 

structural changes associated with early stage diseases. Considering the quadratic 

dependence of the axial resolution on the center wavelength c  of the OCT light source 

(i.e.  2 /cz  where  is the 3dB bandwidth of the source spectrum), compared to 

1300 nm, it would be more convenient to achieve an ultrahigh axial resolution with a 
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broadband light source at 800 nm. In addition, an 800 nm source could also potentially 

provide improved image contrast owing to the increased light scattering and less tissue 

absorption at 800 nm. Ultrahigh-resolution OCT imaging at 800 nm with excellent contrast 

has been demonstrated with a bench-top system [41]. However, ultrahigh-resolution 

endoscopic OCT imaging at 800 nm remains challenging due to the difficulties in 

managing chromatic aberration and polarization over a broadband spectrum etc., and so far 

only a few achromatic endoscopic OCT setups have been reported [192, 196]. The designs 

in those endoscopes are rather complicated and expensive, involving multi-element 

achromatic microlenses. Besides, none of the endoscopic setups has the capability of 

performing high-speed three dimensional (3D) circumferential imaging over a large 

volume. 

In this chapter, we are going to introduce an ultrahigh resolution endoscopic OCT 

system with a novel optical design of the OCT imaging probe that was recently developed. 

10.2 Ultrahigh Resolution Endoscopic OCT System 

The methods described in this section have been published in [235]. 

10.2.1 Light Source and Interferometer 

Figure 10.1 illustrates the endoscopic spectral-domain OCT system at 800 nm which 

integrated a miniature OCT imaging probe in the sample arm. A broadband Ti:Sapphire 

laser with a central wavelength of 825 nm and a full width of half maximum ~150 nm was 

used as the light source (as shown in the inset of Fig. 10.1), which  is highly linearly 

polarized and will significantly ease the polarization mode dispersion (PMD) management 

in such an endoscopic OCT system. One polarizer (indicated by PL in Fig. 10.1) was used 
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to control the total power sent to the interferometer and the output power from the catheter 

tip was kept at about 4 mW. 

 

Figure 10.1 Schematic of the ultrahigh-resolution spectral-domain endoscopic OCT 

imaging system and the spectrum of the Ti:Sapphire laser source. C: multi-element 

achromatic collimator; CCD: line scan CCD; G: grating; M: mirror; MESL: multi-element 

scan lens; P: linear K mapping prism; PC: polarization controller; PL: polarizer; PP: prism 

pair; R: fiber-optic rotary joint. 

The light from the laser was coupled into a single mode fiber (i.e., Corning HI-780). 

A 50/50 broadband fiber coupler that was made of the same fiber (i.e., wavelength flattened 

coupler from Gould fiber optics), was used to form a Michelson interferometer as described 

in Chapter 5.  In order to match the dispersion between the sample and the reference arm, 

a prism pair made of SF11 flint glass was inserted in the reference arm. The flint glass 

provides a much higher group velocity dispersion (GVD) and third-order dispersion (TOD) 

than crown glass (e.g., BK7) and optical fiber around 800 nm, and therefore more 

effectively minimizes the dispersion mismatch between the two arms while keeping a 
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considerably large air gap in the reference arm. A fiber polarization controller was placed 

in the reference to match the polarization states of the two arms to get the maximal fringe 

signal. In order to optimize the axial resolution, the spectra returned from both arms 

(measured at the detection port of the interferometer) were tuned separately to achieve a 

near Gaussian shape while maintaining maximum spectral overlap between the two arms. 

The axial resolution of the diffractive catheter based endoscopic OCT system was able to 

reach as high as 3.0 μm in air as shown in Fig. 10.2. This was slightly worse than what was 

afforded by the laser source due to the suboptimal spectral throughput bandwidth of the 

fiber coupler and the collimators in the OCT system. It is noticed that the residual TOD 

mismatch between the two arms was almost negligible and can be further numerically 

compensated to slightly improve the side lobe of the point spread function (see in Fig. 10.2). 

Figure 10. 2 Point spread function of the ultrahigh resolution endoscopic OCT system. Blue 

line is the point spread function transformed from the detected spectrum and red dashed 

line is the point spread function with a numerical compensation of residual third order 

dispersion. 
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10.2.2 Linear-in-wavenumber Spectrometer 

For detection, a custom designed, home built broadband linear-in-wavenumber 

spectrometer was employed (as shown in Fig. 10.3a). The home built spectrometer, in 

principle, is similar to the one reported in [236], but covers a much broader spectrum. The 

function of a linear-in-wavenumber spectrometer in a SD-OCT system is similar to the 

real-time uniform K-space sampling method in an SS-OCT system introduced in Chapter 

5. One of its advantages is that no calibration is required as the raw data from CCD can be 

directly used to perform FFT operation to get the depth-resolved signal. Another benefit is 

that the detection sensitivity would be improved.  In this spectrometer, the light from a 

single mode fiber was first collimated by a custom made achromatic collimator. A volume 

holographic grating (1200 line pairs/mm, 830 nmc , 80% transmission efficiency, from 

Wasatch Photonics) was used in the spectrometer to disperse the detected light. A BK7 

prism with an apex angle of 56.4° was inserted after the grating to achieve a linear 

wavenumber distribution over a broad spectrum (750-950 nm). A custom designed multi 

element scan lens, which is made of four air gapped spherical lenses, was used to focus the 

linearly dispersed light onto a line scan CCD camera. The CCD (e2v AViiVA EM4) has 

2048 pixels of 14 μm size that covers a 250 nm wavelength range with a line scan rate up 

to 70k/second at a 12 bit resolution.  
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Figure 10.3 (a) Linear-in-wavenumber spectrometer and (b) detection sensitivity fall-off. 

The imaging depth was calibrated to be 1.23 mm corresponding to a measured 16 

dB detection sensitivity fall-off (see in Fig. 10.3b) using a form of 20log[A(z)], where A(z) 

is the intensity of the Fourier transformed interference signal at different depth z. The fall-

off was close to its theoretical prediction, which used linear time invariant model that 

combined the effects of the grating resolution, the diffraction of a Gaussian beam, and finite 

CCD pixel size. The measured detection sensitivity of the endoscopic OCT system was 

around -105 dB at an imaging depth of 400 μm when the incident power on the sample was 

about 4 mW. OCT images were acquired, processed, displayed and stored in real-time with 

each frame consisting of 2048 × 2048 (lateral × axial) pixels. 

10.2.3 Diffractive Imaging Probe for Ultrahigh Resolution OCT Imaging 

The major challenge in an ultrahigh resolution endoscopic OCT system is to develop a 

miniature OCT imaging probe that manages chromatic aberration and polarization over a 

broadband spectrum. The design of the previously reported imaging probes were rather 

complicated and expensive, involving multi-element achromatic microlenses. Here, we 

proposed a novel design of an imaging catheter that utilized a diffractive lens for chromatic 

aberration management, hereby named as diffractive imaging probe. Different from those 
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reported in [192, 196], the diffractive lens can be readily applied to a conventional imaging 

catheter that uses a GRIN lens, with almost no compromise to the catheter from factors 

such as diameter, weight, rigid length, etc.. 

Conventional refractive lenses use curved surface of the optical materials and 

Snell’s law to form focusing power, which makes most of the refractive lenses show similar 

chromatic aberrations (i.e., a positive lens has higher focusing power with the light of 

shorter wavelength). On the other hand, diffractive lenses use thin circular micro structure 

patterns and laws of interference and diffraction to alter the phase of the light and form 

focusing power. The flexibility of the phase pattern can manipulate the light to almost any 

desired profile. Hence, a diffractive lens, which easily shows a reverse chromatic aberration 

with proper design (i.e., a positive lens has higher focusing power with the light of longer 

wavelength), can be used in management of the chromatic aberration in lens design as seen 

in Fig. 10.4, even in commercial lenses (e.g., Canon EF 70-300 mm f/4.5-5.6 DO [237]). 

Another advantage of diffractive lenses is that they are easy to be miniaturize, which makes 

them be a perfect candidate of the management of chromatic aberration in micro optics.  

 

Figure 10.4 Schematic of the management of chromatic aberration by diffractive optic 

elements. 
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Gradient index (GRIN) lenses show a similar chromatic aberration to refractive 

lenses due to the optical property of the material. Therefore, using a diffractive lens to 

manage the chromatic aberration is similar to those situation with refractive lenses. Here, 

we first developed a Zemax model to simulate and optimize the optical design of the 

diffractive lens. Since the optical path is cylindrically symmetric, the Binary 2 surface was 

chosen to simulate the diffractive lens in the Zemax model. The Binary 2 phase profile can 

be described in the following polynomial expansion: 

 2

1

N
i

i
i

M A , (7.1)

where M is the diffraction order that is usually 1, N  is the number of polynomial 

coefficients in the series, iA is the coefficient on the 2 thi  power of , which is the 

normalized radial aperture coordinate. 

Figure 10.5 Zemax simulation result of the focal shift of an OCT imaging probe without a 

diffractive lens (in blue line) and with a diffractive lens (in red line). 
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In the Zemax model, we used two terms (i.e., 2N ) in the phase profile of the 

diffractive lens as described in Eq. (7.1). After optimization, the diffractive lens was a 

phase mask with circular phase retardation rings up to 7th order. According to the Zemax 

results, the focal shift of an OCT imaging probe as described in Chapter 7 is about 55 μm 

over a bandwidth of 220 nm at 800 nm wavelength range as displayed in blue line in Fig. 

10.5. With the diffractive lens, however, the focal shift can be reduced about 8 μm at the 

same conditions as displayed in red line in Fig. 10.5. The performance of the diffractive 

imaging probe is close to a well corrected achromatic at this wavelength range. 

Based on the simulation results, Fig. 10.6a illustrates the configuration of the 

diffractive catheter, which consists of a single-mode fiber (SMF), a 1-mm diameter glass 

rod, a 1-mm diameter GRIN lens, and a diffractive lens of an ~1 mm diameter. The 

combination of a glass rod and a GRIN lens with a proper length and pitch number allowed 

for maximal use of the limited numerical aperture (NA) of the 1-mm optics, and enabled 

the focusing of the beam to a designed focal point (i.e. 1.9 mm in our case) with a highest 

lateral resolution (i.e. 6.2 μm in our case) [198]. Due to the optical properties of the glass 

rod and GRIN lens, a significant amount of chromatic aberration is introduced in the 

imaging system (i.e., with a greater than 70 μm  longitudinal focal shift for a wavelength 

range of 750 950 nm according to ray-tracing simulation). The diffractive lens was 

directly applied after the GRIN lens to alleviate the aforementioned chromatic aberration 

over the broad spectrum. The diffractive lens had a very weak focusing power causing only 

a small overall focal shift around 200 μm, which has been taken into account during the 

imaging probe design. At the distal end of the catheter, a 45º micro reflector was attached 
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to the end of the probe to divert the focused beam 90º for side-viewing imaging. The total 

length of the diffractive imaging probe was measured to be ~1 meter. 

 

Figure 10.6 (a) Schematic of an ultrahigh-resolution OCT imaging probe utilizing a 

diffractive lens to alleviate chromatic aberration. (b) Reflected spectra of the imaging 

probes with a diffractive lens (upper panel) and without a diffractive lens (lower panel) 

when the mirror position was moved from the focal point by 1 Rayleigh range ZR by an 

optical spectrum analyzer. 

To show the effect of the diffractive lens on compensating chromatic aberration, 

the reflected spectrum by a mirror at the focal point of the catheter was compared with 

those reflected at one Rayleigh length RZ  away from the focal point as shown in the top 
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panel of Fig. 10.6b. As a comparison, the reflected spectra of a conventional imaging 

catheter with the same design but without a diffractive lens were also measured as shown 

in the lower panel of Fig. 10.6b. The results clearly demonstrated the reduction of 

chromatic aberration in the catheter with the aid of the diffractive lens. However, the 

reduction did not match the Zemax simulation results since the diffractive lens used in the 

probe was designed for the longer wavelength. 

In order to achieve 3D circumferential scanning, a fiber rotary joint is required to 

couple the source light to the rotating diffractive catheter (and the backreflected light 

detected by the catheter to the OCT interferometer) through a stationary SMF. Most 

commercially available fiber rotary joints involve a pair of lenses for coupling light 

between a stationary and rotating SMF and are generally designed for the 1310/1550 nm 

spectral range. At the spectral range of 800 nm the chromatic aberration of optical materials 

is much larger and the mode field diameter of an SMF is smaller.  As a result, a standard 

rotary joint becomes very challenging to use for coupling light between a stationary and a 

rotating SMF. Here, a mechanical coupling scheme similar to the one reported in [141] was 

employed as shown in Fig. 10.7a. In brief, a 126 μm capillary tube filled with an index 

matching liquid was used to connect a stationary fiber and the rotating catheter with the 

catheter rotated by a DC motor through a timing belt. The whole rotary unit was then 

mounted on a translational stage to enable 3D circumferential imaging. The measured 

throughput of the tubular rotary joint was greater than 90% and the fluctuation of the 

double-pass coupling efficiency during 360º rotation was less than 6% at a rotation speed 

of 10 revolutions per second (as shown in Fig. 10.7b). 
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Figure 10.7 (a) Photo of fiber rotary joint and (b) fluctuation of the double-pass coupling 

efficiency of the fiber rotary joint. 

10.3 Results 

Some of the results described in this section have been published in [235]. 

10.3.1 In vivo Endoscopic OCT Esophageal Imaging

A preliminary study of 3D imaging of guinea pig esophagus in vivo was performed to test 

the performance of the ultrahigh-resolution diffractive imaging probe. The experiment was 

under an imaging protocol approved by the Johns Hopkins University Animal Care and 

Use Committee. For in vivo imaging, the A-scan rate of the line scan CCD was reduced to 

either 10 kHz or 20 kHz in order to match the rotation speed of the tubular fiber-optic rotary 

joint at 5 or 10 revolutions per second. A representative snapshot of 2D circumferential 

800 nm ultrahigh resolution OCT images of a guinea pig esophagus in vivo was displayed 

in Fig. 10.8a. As a comparison, a series of 1300 nm high-speed OCT images of a guinea 

pig esophagus in vivo was displayed in Fig. 10.8b. A small region in two OCT images 

indicated by the dotted boxes in Figs. 10.8a and 10.8b are zoomed in by three times as 

shown in Figs. 10.8c and 10.8d, respectively. It is clearly shown that better axial resolution 

of 800 nm ultrahigh resolution endoscopic OCT imaging provided much better image 

quality and contrast over 1300 nm high-speed endoscopic OCT imaging. 
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Figure 10.8 Representative snapshot of (a) 800 nm ultrahigh resolution OCT images and 

(b) 1300 nm high-speed OCT images of a guinea pig esophagus in vivo. (c) and (d) 3X 

zoomed-in regions of the dotted boxes in (a) and (b), respectively. 

Furthermore, in vivo 800 nm ultrahigh resolution endoscopic OCT image was 

compared with ex vivo histology. A representative snapshot of 2D circumferential OCT 

images of a guinea pig esophagus in vivo is displayed in Fig. 10.9a while the corresponding 

Masson’s trichrome stained histology is shown in Fig. 10.9b. To better visualize the fine 

structures on the OCT images and correlate those with histology, a small region in the OCT 

image and the histology micrograph as indicated by the dotted boxes in Figs. 10.9a and 

10.9b are zoomed in by three times as shown in Figs. 10.9c and 10.9d, respectively. Good 
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correlation between OCT images and corresponding histology is evident on these zoomed-

in images where all the layered esophageal structures, such as stratum corneum, epithelium, 

lamina propria, muscularis mucosae, submucosa, and muscularis propria, can be clearly 

identified. It is noticed that a thick layer of stratum corneum on the tissue surface provides 

strong scattering on the OCT images due to its high keratin content, and it can be clearly 

differentiated from the stratified epithelium layer below that exhibits less scattering. More 

interestingly, lamina propria and submucosa that contain abundant collagen fibers show 

very strong scattering signal on the zoomed-in OCT image (Fig. 10.9c), which is confirmed 

on the corresponding histology (Fig. 10.9d). Fine structures, such as a thin layer of 

muscularis mucosae that is embedded between lamina propria and submucosa can also be 

easily identified on the OCT image. Such structures are very hard to identify on 1310 nm 

OCT images. Figure 10.10 shows a cutaway view of a 3D image reconstructed from a 

series of 2D images along the longitudinal axis of the esophagus with a pitch of 10 µm. 
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Figure 10.9 (a) Representative 2D circumferential in vivo OCT image of guinea pig 

esophagus and (b) its corresponding histology micrograph. (c) and (d) 3X zoomed-in 

regions of the dotted boxes in (a) and (b), respectively. SC: stratum corneum; EP: 

epithelium; LP: lamina propria; MM: muscularis mucosae; SM: submucosa; MP: 

muscularis propria. Scale bars: 500 μm in (a) and (b); 250 μm in (c) and (d). 
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Figure 10.10 Cutaway view of a 3D reconstruction of 800 nm ultrahigh resolution 

endoscopic OCT image of guinea pig esophagus in vivo 

10.3.2 Ex vivo Endoscopic OCT Bronchus Imaging 

A similar study of guinea pig bronchus ex vivo as the one described in the last subsection 

was also performed. Two sets of correlation between 2D circumferential OCT images and 

ex vivo histology micrographs are displayed in Fig. 10.11, where OCT images are Figs. 

10.11a and 10.11c and their corresponding histology are Figs. 10.11b and 10.11d, 

respectively. Structures, such as epithelium, cartilage, and smooth muscle, can be clearly 

identified on both sets of the images. Compared with 1300 nm high speed endoscopic OCT 

images shown in Chapter 9, layered structures, in particular smooth muscle, was able be 

differentiated more clearly on 800 nm ultrahigh resolution endoscopic OCT images. 
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Figure 10.11 (a) and (c) are representative 2D circumferential ex vivo OCT image of guinea 

pig bronchus; (b) and (d) are its corresponding histology micrograph. E: epithelium; C: 

cartilage; SM: smooth muscle. Scale bars: 500 μm; 

10.4 Summary 

In this chapter, we first discussed the importance of ultrahigh resolution endoscopic OCT 

imaging. An 800 nm ultrahigh resolution endoscopic OCT system was then introduced, 

including a Ti:Sapphire ultrafast laser source, a Michelson interferometer, a linear-in-

wavenumber broadband spectrometer, and the novel optical design of a diffractive OCT 

imaging probe. At last, two preliminary animal experiments demonstrate the performance 
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of the system and showed one of the directions in future development of endoscopic OCT 

imaging technology.  
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Chapter 11 OCT Contrast Enhancement and 

Endoscopic Multi-modal Imaging 

This chapter describes another two projects related to OCT imaging during my Ph.D. study. 

The first project is on developing a cross-reference OCT imaging method to assess the 

optical properties of gold nanocages and to synthesize novel scattering-dominant gold 

nanocages that could be used as OCT contrast agents. The second project is to on 

developing a compact endoscopic multimodal imaging system that combined 1310 nm en 

face OCT and 1550 nm two photon fluorescence imaging.  

11.1 Gold Nanocages as Optical Coherence Tomography Contrast 

Agent 

The methods and results described in this section have been published in [238]. 

11.1.1 Introduction 

The imaging contrast of OCT comes from the optical properties of biological tissue (i.e. 

scattering and absorption) and is often dominated by scattering in the near infrared (NIR) 

region. Unfortunately, the intrinsic OCT imaging contrast can be very weak in many cases 

for discerning pathological change. Similar to other clinically used medical imaging 

modalities, exogenous contrast agents have been used for enhance OCT imaging contrast 

and potentially gaining molecular specificity. An ideal OCT contrast agent is expected to 

have a small size (i.e. less than 100 nm) for effective systemic delivery, and should be 

strong in backscattering in order to reflect more photons that can be collected to the detector. 
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In addition, the contrast agents should be biocompatible and easy to conjugate for active 

targeting. Several types of contrast agents, such as core-shell microsphere, air-filled micro-

bubbles, dyes and structured gold nanoparticles, have been developed for improving OCT 

contrast [239-246]. Most of them are either too large or are dominated by absorption (i.e., 

absorbing the imaging photons as opposed to enhancing backscattering). Gold nanocages 

are a relatively new class of structured nanoparticles with a hollow interior and a thin, 

porous, yet robust walls, synthesized using a galvanic replacement reaction between Ag 

nanocubes and HAuCl4 in an aqueous solution [241, 247], which have a much larger 

extinction cross section (i.e., the sum of scattering and absorption) than other contrast 

importantly, the optical properties of gold nanocages can be tailored by modulating the 

nanostructure geometric parameters including size, wall thickness and wall porosity. 

However, previously demonstrated gold nanocages are absorption dominant at a NIR 

region (i.e., 800 nm), which made the nanocages less attractive as an OCT contrast agent 

[240, 241]. Therefore, a new class of gold nanocages is desirable to enhance their scattering 

cross section over the total extinct cross section. 

The optical properties of the OCT contrast agents should be ideally assessed in the 

development of the agents with a simple and quick yet accurate method. So synthesis 

conditions could be retuned in order to optimize the optical properties of the contrast agents. 

Typically the method of choice is the integrating sphere method, which has been used for 

quantitatively characterizing optical properties of scattering samples [248]; however, the 

results are sensitive to many experimental parameters and can often have large fluctuations. 

Thus a new and easy-to-use method is needed for rapid characterization of the contrast 
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agents. Characterization of optical properties using an OCT system has been investigated 

previously [246, 249, 250]. However, the effect of a focused incident beam in a scattering 

sample has not been carefully considered or eliminated in those models, which would 

reduce the accuracy of measurement results. In this section, a new generic method was 

proposed for quickly and accurately characterizing the optical properties of OCT contrast 

agents, including the total extinction, scattering, absorption and backscattering cross 

sections, by using an OCT system itself. 

11.1.2 Characterizing Optical Properties by Using Cross-referencing OCT Imaging 

The depth-dependent OCT backscattering intensity can be modeled as: 

 
2

0 01 , sin ext zdi z K e hd z ,  (11.1) 

where z  is the imaging depth,   and  are respectively the azimuthal and polar angle in 

a spherical coordinate system,  is the half collection cone angle of the objective lens in 

the sample arm (and 1sin NA  , NA is the numerical aperture of the imaging objective 

lens) ,   is the angular dependent differential scattering coefficient,  ext  is the total 

extinction coefficient,  1K  is a system constant which depends on the detection system 

(such as the incident power and photo detector gain etc.), and h z  is the geometric factor 

function describing both the focusing and scattering effects on the imaging beam in a turbid 

medium as described previously [240, 251]. Considering the scattering is azimuthally 

symmetric in highly scattering samples and the NA of the imaging lens in most OCT 

systems is small (i.e. around 0.1 or even smaller), the equation can be reduced to [240, 251, 

252]: 
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where bs  is backscattering coefficient and 1 sin 2K K  is a new system constant. We 

notice that there are three unknowns (i.e., K , bs ,  ext ) and one function (i.e., h z ) in 

Eq. (11.2).  Extracting the unknowns, particularly those in a multiplicative form, from this 

equation by multi-parameter fitting generally yields very large errors and is not always 

feasible. 

In order to overcome the challenges involved with direct curve fitting, the basic 

principle is to introduce one type of scattering nanoparticles, of which the optical properties 

(i.e. scattering, absorption, and backscattering cross-sections or coefficients) can be 

conveniently calculated. Mie theory was used for spherical particles [253] while discrete 

dipole approximation (DDA) was used for nonspherical ones. DDA is a numerical method 

for computing scattering of electromagnetic radiation by particles of arbitrary shape. Here 

an open source implementation package of DDA (i.e., DDSCAT) written in FORTRAN 

was chosen [254].  In this package, fast Fourier transform and conjugate gradient method 

are used to calculate convolution problem, which allows to calculate scattering by large 

particles (compared to the wavelength). In order to expedite the DDSCAT simulation speed, 

Intel FORTRAN Compiler [255] and Intel Math Kernel Library (MKL) [256] were used 

to optimize the code in the compilation time on a Linux operating system. When a noble 

metal particle that is emerged in a medium was numerically simulated in DDSCAT, a few 

considerations of parameter choice need to be taken in account. First of all, all the 

calculated wavelength is the wavelength in the medium instead of in vacuum; the 

dispersion relation of refractive index of the particle with respect to the wavelength should 
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be changed accordingly as well†††. Secondly, due to the fact that the module of the complex 

refractive indices of the noble metals are usually large in the optical wavelength region, the 

wavelength in such metals are much smaller than the wavelength in vacuum. Therefore, 

the lattice spacing in DDSCAT should be adjusted accordingly to reduce the numeric error. 

However, too small lattice spacing would increase the computation time significantly. To 

balance between the numeric accuracy and the computation time, for example, the lattice 

spacing for gold in 800 nm should be 10 nm. More detailed explanation of the usage of this 

software is listed in Appendix A.  

Two identical samples (phantoms) made of the given nanoparticles (e.g. silica 

nanospheres) with a known concentration are first prepared. The test nanoparticles (i.e. 

gold nanocages in our case) are then added to one of the phantoms (named test phantom), 

while the other phantom serves as the reference phantom. OCT imaging is then performed 

over the test and reference phantoms under the same experimental conditions (i.e., with the 

same incident power, focused spot size, focusing depth, etc.). The corresponding OCT 

signals are: 

 

( ) ( )
( )

( ) ( ) ( )
( )

 

for the reference phantom with only silica nanospheres ,

 

for the test phantom with both silica and test nanoparticles .

ref
ext

ref test
ext ext

zref
ref bs ref

zref test
test bs bs test

i z K e h z

i z K e h z

µ

µ µ

µ

µ µ

−

− +

=

= +
  (11.3) 

Here ( )ref ref
bs extµ µ  and ( )test test

bs extµ µ  are the backscattering (and extinction) coefficients of 

reference and test phantoms, respectively; ( )refh z  and ( )testh z  are the geometric factor 

††† Newest released DDSCAT v7.2 is able to automatically calculate the change of the wavelength by 
setting a parameter: refractive index of ambient medium. 
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functions in the reference and test phantom, respectively. If the scattering properties 

between reference and test phantoms do not differ dramatically (e.g., within an order of 

magnitude), it can be reasonably assumed (as confirmed experimentally in this paper) that 

the difference in the geometric factor function between the test and reference phantoms is 

negligible, i.e., ( ) ( )ref testh z h z≈ . Therefore, by subtracting the logarithm of the two OCT 

signals in Eq. (11.3), we cancel out both the system constant and the geometric factor 

function and obtain the following depth-dependent cross-referencing function: 

 1ln ( ) ln ( ) ln( 1)
2

test
test bs

test ref ext ref
bs

i z i z z µµ
µ

− = − + + .  (11.4) 

Linear fitting can then be applied to Eq. (11.4) with respect to the imaging depth z , the 

slope of which gives the total extinction coefficient test
extµ  of the test phantom. In addition, 

we will also obtain the y-intercept of the Eq. (11.4) (at 0z = ) from the linear fitting, 

denoted as ( )ln 1 2test ref
bs bsb µ µ= + . Since the backscattering coefficient of the reference 

phantom ref
bsµ  can be precisely calculated by the scattering theory (or experimentally 

measured), the backscattering coefficient of the test sample test
bsµ  can then be easily found, 

i.e., 

 ( )2 1test b ref
bs bseµ µ= − ⋅ .  (11.5) 

The next parameter to consider is the total scattering coefficient scaµ  of test 

nanoparticles, which can be deduced from the backscattering coefficient bsµ  of the test 

nanoparticles using bs scakµ µ= ⋅  , where k  can be derived by the scattering theory for 

nanoparticles of a given size and shape (and by averaging over the nanoparticle orientations 

if the nanoparticle does not have a spherical shape). The absorption coefficient of the test 
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nanoparticles is then given by test test test
abs ext scaµ µ µ= − .  This algorithm is fast and only involves 

OCT measurements. The above linear fitting procedure is very robust compared to the 

multivariable curve fitting procedure. More importantly, the new algorithm can provide a 

whole set of optical properties of the phantom made by the test nanoparticles, including 

test
extµ , test

scaµ , test
absµ  and test

bsµ . 

A validation experiment was first performed to verify it on mock nanoparticles. In 

this experiment, home synthesized silica nanospheres of 180±20 nm diameter was used as 

the reference nanoparticles. The reference and test phantoms were made of 5% gelatin 

embedded with 50 and 100 mg/mL fused silica nanospheres, respectively. Therefore, the 

test and the reference nanoparticles are both at a concentration of 50 mg/mL in the 5% 

gelatin phantom. The optical properties, including the scattering (no absorption) and 

backscattering cross sections, of the fused silica nanosphere at the given concentration in 

the medium can be analytically predicted by the Mie scattering theory, and the angular 

dependent scattering pattern as shown in Fig. 11.1. OCT imaging was conducted using a 

7-fs Ti:Sapphire laser as the light source with a center wavelength at 825 nm and a 3dB 

spectral bandwidth of ~150 nm. The NA of the imaging lens in the sample arm was about 

0.1 and the averaged power on the sample arm was ~ 4 mW. OCT images of the two 

phantoms were acquired by scanning an imaging beam across the two side-by-side 

phantoms in order to maintain the same experimental conditions. 
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Figure 11.1. (a) Angular dependent scattering pattern of 180 nm silica nanospheres in a 

5% gelatin phantom at the wavelength of 825 nm calculated by the Mie scattering 

theory. (b) Angular dependent scattering pattern of 75 nm gold nanocages in a 5% 

gelatin phantom at the wavelength of 825 nm calculated by a numerical method based 

on discrete dipole approximation (DDA). The scattering pattern is averaged over various 

nanoparticle orientations. 

After OCT imaging of both phantoms, A-scan OCT intensity signals were obtained 

as a function of  imaging depth by averaging along the B-scan direction in order to remove 

heterogeneity of the phantom samples and reduce the speckle noise. The first step is to 

extract the total extinction and back scattering coefficients from the averaged A-line signals 

(e.g., averaged over 500 A-lines). By applying the aforementioned algorithm to the test and 

reference A-scan OCT intensity signals, the extinction coefficient of test silica nanospheres 

was extracted in the test phantom (at a mass concentration of 50 mg/mL) as 

-10.640 mmtest
ext . To deduce the extinction cross section of a single fused silica 

nanosphere, we first need find out the molar concentration of the silica nanospsheres in the 

test phantom by converting the mass concentration to the molar concentration. And the 

molar concentration was found to be 9.88 nMtestc .  The extinction cross section of a 

fused silica nanosphere is then given by  16 21.08 10  mtesttest
ext ext AN c  (where  AN

is Avogadro constant). This extinction cross section is very close to the theoretical value 
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16 21.16 10  mMie
extσ −= ×  predicted by the Mie theory. The ratio of the backscattering 

coefficients of the test to the reference nanoparticles  denoted by test ref
bs bsµ µ  can be found 

from Eq. (11.5), and the resulted value is 0.96 which is very close to the theoretical limit 

of 1 in this case (considering test and reference silica nanospheres had the same 

concentration in this experiment). We notice that the accuracy of the algorithm in 

determining the extinction coefficient and the backscattering ratio of the test and the 

reference nanoparticles is excellent; warranting that neglecting the geometric factor 

function ( )h z  in Eq. (11.4) is safe. 

The next step is to separate the total scattering and absorption coefficient of the test 

fused silica nanospheres from the total extinction coefficient. Since the backscattering 

coefficient of reference silica nanospheres was calculated by the Mie theory as 

-10.695 mmref
bsµ = , we were able to deduce the backscattering coefficient of test silica 

nanospheres to be -10.667 mmtest
bsµ =  (from Eq. (11.5)). From the scattering pattern 

predicted by the Mie theory (as shown in Fig. 11.1a), the ratio of the total scattering to the 

backscattering coefficient is 1.008k = . Therefore, the total scattering coefficient of test 

silica nanospheres is -1/ 0.661 mmtest test
sca bs kµ µ= =  , and the absorption coefficient of the test 

silica phantom is  -10.0214 mmtest test test
abs t scaµ µ µ= − = −  (which, in theory, should be zero). It 

is noted that the relative errors in the extinction coefficient between the experimental 

measurements and theoretical predictions are within 7%, demonstrating the feasibility of 

the proposed cross-referencing method for optical properties characterization. 

Similar experiments of different concentrations of fused silica nanospheres were 

repeated three times and all results showed that the relative measurement errors (i.e. the 
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variation in the characterization results) in the extinction and backscattering cross sections 

were no more than 3% among experiments, confirming the robustness of this method for 

optical properties characterization. 

Two issues need to be considered in order to use the cross-referencing method 

properly. Firstly, in order to linearly fit the difference curve represented by Eq. (11.4), the 

A-scan OCT intensity signals from the reference and the test phantom need to be 

significantly above the noise floor of the OCT system. An alternative is to choose a segment 

from the entire depth profile of the OCT intensity. Secondly, the cross-referencing method 

assumes an approximation that the difference in the geometric factor function h z  in the 

test and reference phantom is negligible. In addition to the depth-dependent transparent-

medium-equivalent point-spread function [257],  also takes into account the scattering 

effect on the point-spread function in a turbid medium [251]. In theory, h z  would 

change as the scattering property changes and thus the two h z  ’s would not perfectly 

cancel out each other in the two A-scan signals (from Eq. (11.3) to Eq. (11.4)). However, 

from what we experimentally observed in the next subsection, the change in h z  was 

negligible even the scattering coefficient changed by about 2 mm-1 from the reference to 

test phantom. 

11.1.3 Scattering-dominant Gold Nanocages 

The basic protocol for synthesizing scattering-dominant gold nanocages is similar to the 

one reported previously [258] but with some modification. In essence, HAuCl4 aqueous 

was titrated into a solution of silver nanocubes (of ~ 68 nm in edge length) as a template 

under room temperature and with a titration rate of 0.25 mL/minute. The templates were 

180 
 



gradually etched away, resulting in gold nanocages with hollow interiors and pores on the 

wall (as shown in inset of Fig. 11.2(a)). The optical properties (such as scattering, 

absorption, and SPR peak wavelength) of gold nanocages can be precisely tuned by 

controlling size, wall thickness and porosity. The optical properties of the gold nanocages 

were fully characterized by means of the cross-referencing OCT imaging described in the 

previous subsection, aiming to provide quick feedback to optimize nanocage synthesis 

conditions for achieving scattering dominating optical properties and thus OCT imaging 

contrast enhancement with the nanocages. 

Figure 11.2. (a) OCT images of the phantoms without nanocages (left) and with 

nanocages (right). Inset: a TEM image of gold nanocages. (b) Intensity plots of the OCT 

signals on a linear scale as a function of imaging depth. (c) Ratio of the two signals in 

(B) on a logarithmic scale as a function of imaging depth. Scale bar: 200 μm in (a); 100 

nm in inset in (a). 

Similar to the experiment described in the previous subsection, two identical 

phantoms were made by embedding 50 mg/mL fused silica nanospheres into 5% gelatin, 
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whose optical properties again can be calculated using the Mie theory. Gold nanocages 

were added to one of the phantoms at a nominal concentration of 1.0 nM. OCT imaging of 

the test (with nanocages) and reference (without nanocages) phantoms were performed 

under the same conditions as mentioned in the previous subsection. 

Figure 11.2a shows the OCT images of the reference phantom (on the left) and the 

test phantom (on the right), respectively, and the decay curves of the OCT intensity along 

imaging depth in both cases are given in Fig. 11.2b. Using the cross-referencing method, 

the extinction coefficient and the backscattering coefficient of gold nanocages in the test 

phantom were calculated from the slope and y-intercept of Eq. (11.4), and the resulted 

values are -11.71 mmAu
extµ =  and -11.34 mmAu

bsµ = , where the backscattering coefficient 

-10.695 mmref
bsµ =  of the reference nanoparticles (fused silica nanospheres) predicted by 

Mie theory was used for Eq. (11.5).  Figure 11.2c shows the ratio of the two depth-

dependent signals shown in Fig. 11.2b, and the nearly perfect linear relationship of this 

ratio versus imaging depth also implies that the potential difference in  ( )h z  of the test and 

reference phantoms can be safely neglected. To calculate the scattering coefficient of the 

nanocages from the backscattering coefficient, we need first to find the relationship 

constant k in Au Au
bs t scakµ µ= ⋅ . A numerical simulation method based on DDA was used to 

calculate the orientation averaged, angular dependent scattering pattern and the result is 

shown in Fig. 11.1b, from which the parameter tk  is found to be 1.385. The scattering 

coefficient of nanocages is then given by -1/ 0.967 mmAu Au
sca bs tkµ µ= =  . The absorption 

coefficient is thus 10.743 mmAu Au Au
abs ext scaµ µ µ −= − = . We notice that the ratio of the scattering 

to the absorption coefficient is about 1.31, showing the scattering dominance in the optical 
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extinction coefficient. To independently validate the optical properties obtained from OCT 

phantom imaging, integrating sphere experiments were performed to directly measure the 

optical properties of the nanocages, where the ratio of scattering to absorption coefficient 

was found to be ~1.27 at the central wavelength (825 nm) of the OCT source, and this ratio 

was very close to the one obtained by cross-referencing OCT method. Taking into account 

the nanocage concentration (1 nM), the corresponding cross sections of a gold nanocage 

can be found as 15 22.84 10  mextσ −= × , 15 21.61 10  mscaσ −= ×  and 15 22.23 10  mbsσ −= × . It 

is noted that the measured cross sections differ from the ones predicted by DDA 

simulations (i.e.  15 23.30 10  mDDA
scaσ −= ×  and 15 21.95 10  mDDA

absσ −= × ). One major reason 

accounting for this discrepancy is the potential loss of gold nanocages during sample 

preparation which was inevitable; thus the actual concentration could be lower than the 

nominal one, underestimating the overall cross section values. 

11.1.4 Contrast Enhancement of Gold Nanocages 

The very first scattering-dominant gold nanocages were used as a contrast agent for in vivo 

OCT imaging of tumor on a xenograft mouse model. Three male Balb/c nude mice, 6–8 

weeks of age and about 25 g of average weight, were obtained from Taconic Farmer (One 

Hudson City Centre, Hudson). Approximately 65 10×  human epidermoid carcinoma cells 

(A-431) suspended in 50 µL PBS were injected subcutaneously into the ear of the mice 

where tumors developed in the ears of two of the three mice. 10 days after tumor cell 

inoculation, OCT imaging of the mouse tumor on the ear was performed before and after 

4 fractionated tail vein injections (24 hours apart) of PEGylated gold nanocages (150μL of 

1nM solution per injection). The animal experimental procedures in this study were 

approved by the Johns Hopkins University IACUC. 
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Figure 11.3. In vivo OCT images of a mouse ear tumor (induced with A431 cell line) (a) 

before and (b) after intravenous injection of gold nanocages, respectively. (c) Depth-

dependent OCT intensity plots from the tumor on a logarithm scale before (blue curve) 

and after (red curve) the administration of gold nanocages. (d) The ratio of the two 

curves in (C) and its moving-average results on a logarithm scale. Scale bar: 200 μm 

Figures 10.3a and 10.3b show representative OCT images of the tumor before and 

after the administration of gold nanocages, respectively; the corresponding decay curves 

on a logarithm scale are shown in Fig. 11.3c. It is evident that the presence of gold 

nanocages increases the backscattering in the tumor, thus enhancing OCT imaging contrast. 

More interestingly, fine structures were able to be observed after the injection of gold 

nanocages (as shown in Fig. 11.3b). It is noted that the contrast enhancement is 

approximately ~2.4 dB on average, and to the best of our knowledge, this is the highest 

OCT contrast enhancement by nanoparticles of a similar size and at a similar concentration. 

The contrast enhancement (in dB) and its moving average versus imaging depth are shown 
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in Fig. 11.3d, which suggest that the accumulation of the gold nanocages started ~70 μm 

below the epidermis (where the tumor boundary is supposed to be as indicated by the 

arrows in Fig. 11.3a, 10.3b and 10.3d) and reached its peak around 300 μm beneath the 

surface. 

11.2 Endoscopic Multi-modal Imaging System: Two-photon 

Fluorescence and Optical Coherence Tomography 

The method and results described in this section have been published in [259]. 

11.2.1 Introduction 

Besides OCT, two-photon fluorescence (TPF) microscopy is recently developed as a high-

resolution optical imaging modality. Both OCT and TPF hold a strong promise for 

performing noninvasive “optical biopsies” of biological tissues at a resolution approaching 

that of standard histology without the need for tissue removal. Different from OCT, TPF 

provides depth-resolved micron/submicron-scale images with an imaging contrast coming 

from endogenous or exogenous fluorophores, thus providing molecular or biochemical 

information about biological tissues beyond the capability of OCT [260]. The two 

complementary imaging modalities provide important yet different optical information 

based on unique contrast mechanisms.  There is, hence, a strong motivation for developing 

an integrated platform for performing both OCT and TPF imaging. Previous works have 

demonstrated the possibility of combining the two imaging techniques using a bench-top 

scanning microscope platform [249, 261, 262], which involves free-space optics and is 

generally bulky. In vivo applications and potential clinical translation of the dual-modality 

imaging technology, particularly for imaging internal organs, requires a flexible and 

compact platform. In this section, a compact dual-modality imaging platform enables 1310 
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nm en face OCT and 1550 nm TPF imaging has been developed, consisting of a flexible 

miniature endomicroscope and small footprint fiber laser sources. The advantages of 

choosing these two wavelengths for this integrated multimodal imaging platform include: 

1) compact fiber-optic light sources where components are widely available at both 

wavelengths; 2) capability of delivering both wavelengths in the same fiber (i.e., SMF-

28e® or a double-clad fiber – DCF); and 3) similar propagation and dispersion 

characteristics at both wavelengths in the single-mode fiber SMF-28e® and the DCF. 

11.2.2 Endoscope Design 

The miniature multimodal endomicroscope was developed based on a previous reported 

[263, 264]. A schematic of this endomicroscope is shown in Fig. 11.4.a. In essence, an 

optical fiber was attached to a tubular piezoelectric (PZT) actuator of a 2.0 mm diameter, 

with a ~10-mm long fiber cantilever standing outside the PZT tube as shown in Fig. 11.4b. 

The outer surface of the piezoelectric tube is divided into four quadrants, forming two pairs 

of drive electrodes (i.e., ±x and ±y). A circular scanning pattern is achieved when two 

orthogonal sinusoidal drive waveforms with a frequency at or near the mechanical resonant 

frequency (i.e., ~1.5 kHz in this case) of the fiber cantilever are applied to the two pairs of 

electrodes. By modulating the drive voltage with a slow sinusoidal envelope, a spiral 

scanning pattern is achieved (as illustrated in Fig. 11.4c).  

The fiber employed in this endomicroscope is a customized DCF. The core 

diameter of the DCF is ~8 μm, similar to that of SMF-28e®, ensuring both 1550 nm TPF 

excitation light and 1310 nm OCT light can be delivered in single mode through the core. 

The DCF had a large inner cladding ( 175 μm) suitable for effective collection of the TPF 
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signal. The NA of the DCF core and inner cladding were 0.14/0.12 (at 1310 nm/1550 nm) 

and 0.267 (at 1550 nm), respectively.  

The overall diameter of the endoscope is about 2.8 mm, including the protective 

metal tubing. The sweeping DCF tip was imaged to the sample by a miniature aspherical 

compound lens with a maximum NA of 0.8 and a magnification of ~0.22 (along the 

direction of fiber to sample) [265]. The micro compound lens offered a minimal chromatic 

focal shift from the OCT wavelength (1310 nm) to the TPF excitation wavelength (1550 

nm), which was ~10 μm in theory (according to ray tracing simulation) and ~11 μm by 

experiment. 

11.2.3 System Description 

 

Figure 11.5. Schematic of TPF/OCT multimodal endomicroscope system. BD: balanced 

detector; C: circulator; CL: coupling lens; DCF: double-clad fiber; DM: dichroic mirror; 

ENDO: miniature endoscope; EOM: electro-optic modulator; FC: fiber coupler; LP: 

long pass filter; M: mirror; PMT: photomultiplier tube; RSOD: rapid scanning optical 

delay line; WDM: wavelength division multiplexer. 

A schematic of the multimodal endomicroscopic system is illustrated in Fig. 11.5. The 

multimodal system consists of two modules: a 1550 nm TPF and a 1310 nm en face OCT 
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endomicroscopy systems. In the TPF module, a 1550 nm passive mode-locked amplified 

fiber laser generated ultrashort laser pulses (i.e., ~300 fs with a repetition rate of 42.5 MHz) 

with a maximum average power of ~155 mW in soliton mode as previously described in 

[265] so that the laser pulse remains relatively unchanged inside either the single-mode 

fiber (SMF-28e® or the customized DCF). Therefore, the TPF system does not require any 

further dispersion compensation [265]. Furthermore, reduced scattering at the NIR two-

photon excitation and emission wavelengths potentially improves the imaging penetration 

depth. In the OCT module, the light generated by a fiber-coupled superluminescent diode 

served as a compact light source, which had a 13 mW output power and a central 

wavelength 1300 nm with a 3 dB bandwidth of 80 nm, was delivered into a Michelson 

interferometer of the OCT system. A high-isolation wavelength division multiplexer 

(WDM) made of SMF-28e® was employed to combine the 1310 nm OCT light source with 

the 1550 nm TPF excitation laser, which significantly simplified the procedure of 

integrating the two imaging modalities. 

On the collection (i.e., return) path, in order to separate the TPF and the OCT signal, 

a customized dichroic mirror (i.e., DM in Fig. 11.5) of a transmission efficiency >90% for 

1550 nm and >70% for 1310 nm and a reflectivity >99.97% for 700-900 nm was placed 

between the pair of coupling lenses. A photomultiplier tube (PMT) was used to collect the 

TPF signal reflected from the dichroic mirror. For OCT detection, although some of the 

backscattered OCT light from the sample entered the inner cladding of the DCF in the 

endoscope, the SMF-28e® in the sample arm of the OCT module (e.g. the WDM) can filter 

it out to avoid “ghost” OCT images. In order to perform optical heterodyne detection, an 

electro-optic modulator was inserted into the reference arm of the OCT module to introduce 
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a Doppler frequency. A rapid scanning optical delay line (RSOD) was used to compensate 

the dispersion mismatch between the two OCT arms and to select or scan the imaging depth 

as reported previously [266]. A balanced detection scheme was used in the OCT module 

to eliminate any DC components and increase the detection dynamic range. 

It is noted that OCT and TPF imaging shares the same scanning endoscope but two 

independent detection paths; thus the two imaging modalities can run simultaneously with 

the same field of view and imaging speed. Different from a typical bench-top microscope 

system, the dual-modality endomicroscope system was drawn upon fiber optics except a 

short-distance free space to place the dichroic mirror and separate the OCT and 

fluorescence signals. The overall system is thus very compact and easy to use, which would 

be critical for future in vivo and clinical applications. 

11.2.4 Results 

Simultaneous TPF and OCT imaging was performed on cell culture and biological tissue 

(ex vivo) to test the performance of the multimodal endomicroscopic imaging platform. 

The resolutions were ~2.5 × 10.0 μm (lateral × axial) in air for OCT and ~1.2 × 5.7 μm 

(lateral × axial) for TPF imaging. Imaging was performed through a cover glass placed on 

top of the tissue sample and by a dry micro objective lens of a working distance 200 μm in 

air. The powers incident on the sample were ~30 to 50 mW (at 1550 nm for TPF) and ~4.0 

mW (at 1310 nm for OCT). The sweeping range of the DCF fiber tip was either ~450 or 

~675 μm in this study, which resulted in a ~100 or 150 μm field of view on the sample 

after the micro compound lens. With a spiral scanning pattern, a frame rate of ~3.0 

frames/second was achieved with each frame consisting of 512 spirals. The fluorescence 

189 
 



dye used for TPF imaging was indocyanine green (ICG) or ICG nanocapsules, which has 

an NIR emission peak around ~810 nm. 

A431 cancer cells were incubated on a coverslip with anti-EGFR conjugated ICG 

micelles so that the cell membranes were immunostained with the ICG micelles [267, 268]. 

Figures 10.6a and 10.6b show one set of representative OCT and TPF images of the same 

cell culture sample acquired simultaneously with the multimodal imaging platform. The 

superimposed OCT and TPF image is shown in Fig. 11.6c where the whole cell topology 

can be easily identified with OCT while the cell membrane is enhanced under TPF imaging. 

As the cells were cultured on a flat coverslip and the sample was relatively transparent, any 

phase perturbation in the system could be manifested to visible artifacts on the OCT image 

such as the concentric ring patterns shown in Fig. 11.6a, which could be caused by the 

periodic instability in the galvanometer mirror in the reference arm. 

 

Figure 11.6. (a) OCT and (b) TPF images of A431 cancer cells immunostained with 

anti-EGFR conjugated ICG micelles. (c) Superposition of the OCT and TPF images. 

Scale bar: 25 μm 

For tissue imaging, different samples from a nude mouse were harvested 15-20 min 

after local administration of 50 μL of 10 μM ICG solution. Figures 10.7a and 10.7b show 

representative OCT and TPF images taken simultaneously from adipose tissue. The 

adipocytes were clearly visualized under OCT with low reflectance from the large lipid 
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droplets within the adipocytes (indicated by red arrows). In comparison, the locally 

administrated ICG was found mainly diffused among the adipocytes as shown on the TPF 

image. The merged image from the two modalities is shown in Fig. 11.7c, and the OCT 

and TPF images overlap well, particularly around the cell membranes. In addition to cell 

culture imaging, simultaneous OCT and TPF imaging was also performed on tissue 

samples from the small intestine, and the representative OCT and TPF images are shown 

in Figs. 11.7d and 10.7e, respectively. The circular structures on the OCT image may 

represent the intestinal villi (indicated by blue arrows) with the lacteals (indicated by red 

arrows) shown as the areas of lower backscattering on the OCT image. Similar structures 

were visualized on the TPF image as well. The brighter fluorescent spots (indicated by 

yellow arrows) on the villi may suggest either the enterocytes or lymphocytes actively 

absorbed the ICG molecules. The superposed image is shown in Fig. 11.7f and the nice 

overlapping features suggest that the endoscopic multimodal imaging platform is able to 

produce well-correlated images even with highly scattering tissues. 
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Figure 11.6. (a) OCT, (b) TPF and (c) superposed images of mouse adipose tissue with 

local ICG administration. Red arrow shown in (a) and (b) indicates one of the adipocytes 

visualized under both imaging modalities. (d) OCT, (e) TPF and (f) superposed images 

of mouse small intestine tissue with local ICG administration. Blue arrows shown in (d) 

and (e) indicate villus structures and red arrows indicate lacteals. The stronger 

fluorescence dots indicated by yellow arrows shown in (e) may be either enterocytes or 

lymphocytes. Both sets of images show great correlation between two imaging 

modalities. Scale bar: 50 μm 
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11.3 Summary 

In this chapter, we described another two projects related to OCT imaging during my Ph.D. 

study. One of the projects was to develop a cross-reference OCT imaging method to assess 

the optical properties of gold particles and to synthesize novel scattering-dominant gold 

nanocages that could be used as OCT contrast agents. In this project, an average contrast 

enhancement of ~2.4 dB was achieved by the gold nanocages in an in vivo mouse tumor 

model. Another project was to develop a compact endoscopic multimodal imaging system 

that combined 1310 nm en face OCT and 1550 nm two photo fluorescence imaging. In this 

project, ex vivo experimental results suggested a potential of using optical imaging 

modalities with different contrast mechanism to provide complimentary diagnostic 

information. 
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Chapter 12 Conclusion and Future Perspective 

12.1 Summary of Thesis Work 

Optical coherence tomography (OCT) is an emerging high resolution optical imaging 

modality capable of providing cross-sectional images of tissue microanatomy in vivo. The 

non-invasiveness of OCT imaging provides optical biopsy with a resolution approaching 

standard histopathology, but without the need of tissue removal. The image contrast in 

OCT comes from the optical properties of the biological tissue and the change in tissue 

optical properties associated with various diseases at different stages offer the foundation 

of OCT assessment of the progression of the diseases. The axial resolutions of OCT ranges 

from 1 to 30 µm with a typical imaging penetration depth from 1 to 3 mm in most highly 

scattering tissues, which makes OCT well suited for imaging superficial epithelium where 

many diseases originate from. Technical advances on high speed wavelength swept laser 

and line scan detector array in the past decade has improved the imaging speed of OCT by 

2 to 3 orders of magnitude. Real time OCT imaging and 3D OCT imaging has become not 

only possible but also popular in research laboratories as well as in clinics. Moreover, the 

fiber optic based miniature OCT imaging probe/endoscope, which is a critical component 

for in vivo OCT imaging of internal organs, have drawn more and more attentions.  

The scope of the multidisciplinary, collaborative research presented in this 

dissertation was to develop a state-of-the-art high speed endoscopic OCT imaging system 

and to investigate its potential for in vivo assessment of the internal organs. The 

development of a high speed endoscopic OCT imaging system consists of the construction 
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of a high speed wavelength swept laser source (i.e., FDML), an optimized OCT 

interferometer, the development of a sophisticated software platform that is able to handle, 

process and display the huge dataset generated from the high speed OCT system, and the 

design and fabrication of robust miniature OCT imaging probes that can efficiently deliver 

the light source to the sample and collect the very weak signal from the sample. The clinical 

applications involved in vivo lower airway and esophageal 3D OCT imaging by using the 

high speed endoscopic OCT system. Two other OCT related projects were also discussed 

at the end of the dissertation. 

The Fourier domain mode locked (FMDL) laser is one of the wavelength swept 

laser ideal for a 3D swept source OCT imaging due to its unprecedented high sweeping 

rate, wide sweeping range, and high power output. A critical balance between a wavelength 

sweeping range and stable output power in a FDML laser has to be carefully chosen in 

order to optimize the operating performance of the laser. Counterintuitively, the dispersion 

and its effect to the laser performance only depends on the length of the laser cavity. 

Current bottleneck of the FDML sweeping rate is the mechanical response of the tunable 

filter to the driving frequency. In order to further improve the A-scan speed with the 

currently available tunable filter, a time multiplexing technique was employed in the 

FDML laser to form a buffered/double buffered FDML laser. 

An OCT interferometer is a fundamental subsystem in an OCT system, where the 

OCT signal that provides depth-resolved information is generated from. An OCT 

interferometer was built based on Mach-Zehnder interferometer setup to (1) optimally 

utilize the output power of the laser and (2) implement balanced detection in order to 

achieve a shot-noise limited detection. A hardware based real-time uniform K-space 
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sampling was proposed and implemented to avoid a time consuming data processing 

procedure of interpolation and further improve the performance of the OCT system. 

A flexible and sophisticated software developed for real time OCT imaging is a 

critical part of a high speed endoscopic OCT system. An OCT imaging software written in 

C/C++ was developed for data acquisition, data processing, data display, and data storage. 

Basic functions in the software were wrapped into separate modules so that they can be 

grouped and loaded into the software flexibly to fulfill different experimental requirements. 

The basic requirements of an OCT imaging probe include: (1) the efficiency in 

delivering and collecting light to and from samples; (2) the robustness of the mechanical 

design; (3) the simplicity of the optical design so that the probe can be fabricated in a time 

and cost effective way. The optical designs of two types of side-viewing OCT imaging 

probe and the considerations behind these designs have been thoroughly discussed. 

Mechanical design and fabrication of these imaging probes were also mentioned.  

Two internal organs were chosen to investigate the feasibility of using high-speed 

endoscopic OCT imaging system as an in vivo assessment tool for diseases, such as chronic 

obstructive pulmonary disease and Barrett’s esophagus. Experimental results suggested 

that such a high speed system has a great potential to not only differentiate layered 

structures of the internal organs in vivo, but also dynamically monitor the structural 

changes and the treatment outcomes in real time. 

Another two OCT related projects were discussed in the last chapter. The first one 

is to develop a cross-reference OCT imaging method to assess the optical properties of 

gold nanoparticles. By using this method, scattering-dominant gold nanocages was 

successfully synthesized for the first time. An averaged contrast enhancement of ~2.4 dB 
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was achieved by the gold nanocages in an in vivo mouse tumor model. The other project is 

to develop a compact endoscopic multimodal imaging system that combined 1310 nm en 

face OCT and 1550 nm two photo fluorescence imaging, both of which provides depth 

resolved en face images with distinctly different contrast mechanism.  

12.2 Future Work 

Future efforts for the high speed endoscopic OCT imaging system could be divided into 

three areas: (1) improvement of the imaging speed; (2) improvement of the imaging 

resolution; and (3) functional endoscopic OCT imaging. 

First of all, the imaging speed of an endoscopic OCT system can be further 

improved to achieve real time 3D volumetric imaging. As a matter of fact, multimega Hz 

of imaging speed of OCT system has been demonstrated [168, 269]. However, there are 

still a few technical hurdles in order to apply such technology into endoscopic OCT 

applications. One of the technical obstacles is the scanning mechanism of the OCT imaging 

probe. Most of the miniature OCT imaging probes are proximal end driven; a rotation speed 

of a few hundreds to one thousand Hz of such a scanning mechanism is impractical for in 

vivo and clinical applications. Distal end scanning is, however, more appreciated for an 

ultrahigh speed endoscopic OCT imaging system. A distal scanning imaging probe has just 

been demonstrated at up to 3200 revolutions per second [270]. Another limitation is that 

the high-speed OCT systems have low detection sensitivity due to a higher bandwidth of 

the OCT signal. And an OCT imaging probe intends to collect less OCT signal and provide 

poorer transmission efficiency than a bulky OCT imaging lens because of its limited optical 

aperture and relatively simple optical design. 
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Secondly, most of the OCT imaging probes developed so far were designed to work 

at a wavelength around 1300 nm, which provides an axial resolution of 5 to 20 μm. 

However, a higher resolution is more desirable in order to resolve fine tissue structures 

such as airway smooth muscles, intestinal crypst. In addition, a short wavelength region is 

preferable due to the quadratic dependence of the axial resolution (i.e., 2z ). As 

descibled in Chapter 10, an ultrahigh resolution OCT imaging probe of an axial resolution 

of 3.0 μm was recently demonstrated in our lab to be able to acquire full circumferential 

ultrahigh resolution OCT images for the first time [271]. Therefore, a robust and portable 

ultrahigh resolution endoscopic OCT system should be preferably developed in a near 

future. 

Finally, functional OCT has been proven to provide unique and useful information 

on bulky OCT setups, such as Doppler and phase retardation. Functional endoscopic OCT 

is highly desirable. For example, Doppler OCT provides optical microangiography images. 

However, its applications is highly restricted due to the limited access of the bulky imaging 

probe to the superficial or transparent biological samples. Combined with endoscopic OCT 

system, Doppler OCT would be able to provide microvascular information of the internal 

organs. Such information could bring a lot of opportunities in both research and clinical 

applications.  
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Appendix A DDSCAT 

A.1. Introduction 

DDSCAT is an open source package applying discrete dipole approximation (DDA) for 

calculating scattering and absorption of light by particle of arbitrary geometry and complex 

refractive index. It was developed in FORTRAN 90 by Bruce T. Drain and Piotr J. Flatau, 

who applied fast Fourier transform (FFT) and conjugate gradient method to calculate 

convolution problem in the DDA method [254]. 

A.2. Compilation of DDSCAT 7.0 

The DDSCAT version used in this dissertation is 7.0 [272]. The original DDSCAT source 

code package was developed for Linux/Unix system, although it can be compiled on a 

Microsoft Windows system by using a Linux-like environment such as Cygwin [273]or a 

GNU development environment such as MinGW [274]. In order to properly compile 

DDSCAT on a native Microsoft Windows environment, the source code that manage the 

input and output was modified to functions that are supported on native Microsoft 

Windows environment. To expedite simulation speed, single precision floating point was 

used in the source code. In addition, Intel Math Kernel Library (MKL) was dynamically 

linked to the program in order to further improve the performance of the simulation [256]. 

Furthermore, Intel FORTRAN compiler was used to optimize the compilation procedure 
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on an Intel Core 2 CPU that supports the[255] instruction set extensions of MMX, SSE, 

SSE2 and SSE3 . 

A.3. Applicability of DDSCAT 7.0 

In order to get an accurate simulation result, there are a few considerations when using 

DDSCAT. First of all, the lattice spacing d  should be small compared to the incident 

wavelength [254]: 

 1m kd ,  (L.1) 

where m is the complex refractive index of the particle material, and 2k  is the 

wavenumber.  

Eq. (L.1) is valid when 1 2m , which is a critical condition when simulation 

noble metals in the near-infrared region. When imaginary part of the complex refractive 

index m  is large (which is the case of the noble metals in the near-infrared region), the 

numeric error of the simulation results tends to increase. The error can be reduced by 

reducing the lattice spacing smaller than the criterion shown in Eq. (L.1). However, too 

small lattice spacing would increase the computation time significantly. To balance 

between the numeric accuracy and the computation time, for example, the lattice spacing 

for gold in 800 nm should be 10 nm. 

The choice of lattice spacing was test with simulations of a gold and silver 

nanosphere of a diameter of 60 nm. The simulation results were compared with Mie 

scattering theory and the relative error was within 2.5%. 
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A.4. Parameter File of DDSCAT 7.0 

In order to execute the compiled DDSCAT, a parameter file named ddscat.par is required. 

In the parameter file, the iterative algorithm and FFT method are specified along with other 

essential input parameters. 

A.4.1 An example of ddscat.par 

One file of ddscat.par, which was used for simulation of gold nanocages is displayed here: 

’ ========= Parameter file for v7.0.7 ===================’ 1 
’**** Preliminaries ****’ 2 
’NOTORQ’ = CMTORQ*6 (NOTORQ, DOTORQ) --either do or skip torque calculations 3 
’PBCGS2’ = CMDSOL*6 (PBCGS2, PBCGST, PETRKP) -- select solution method 4 
’FFTMKL’ = CMDFFT*6 (GPFAFT, FFTMKL) 5 
’GKDLDR’ = CALPHA*6 (GKDLDR, LATTDR 6 
’NOTBIN’ = CBINFLAG (NOTBIN, ORIBIN, ALLBIN) 7 
’**** Initial Memory Allocation ****’ 8 
100 100 100 = dimensioning allowance for target generation 9 
’**** Target Geometry and Composition ****’ 10 
’FROM_FILE’ = CSHAPE*9 shape directive 11 
60 60 60 = shape parameters 1 - 3 12 
1 = NCOMP = number of dielectric materials 13 
’alloy.tab’ = file with refractive index 1 14 
’**** Error Tolerance ****’ 15 
1.00e-5 = TOL = MAX ALLOWED (NORM OF |G>=AC|E>-ACA|X>)/(NORM OF AC|E>) 16 
’**** Interaction cutoff parameter for PBC calculations ****’ 17 
5.00e-3 = GAMMA (1e-2 is normal, 3e-3 for greater accuracy) 18 
’**** Angular resolution for calculation of <cos>, etc. ****’ 19 
0.5 = ETASCA (number of angles is proportional to [(3+x)/ETASCA]ˆ2 ) 20 
’**** Wavelengths (micron) ****’ 21 
0.4 0.7 10 'LIN' ’LIN’ = wavelengths (first,last,how many,how=LIN,INV,LOG) 22 
’**** Effective Radii (micron) **** ’ 23 
0.02954 0.02954 1 'LIN' = aeff (first,last,how many,how=LIN,INV,LOG) 24 
’**** Define Incident Polarizations ****’ 25 
(0,0) (1.,0.) (0.,0.) = Polarization state e01 (k along x axis) 26 
1 = IORTH (=1 to do only pol. state e01; =2 to also do orth. pol. state) 27 
’**** Specify which output files to write ****’ 28 
1 = IWRKSC (=0 to suppress, =1 to write ".sca" file for each target orient. 29 
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1 = IWRPOL (=0 to suppress, =1 to write ".pol" file for each (BETA,THETA) 30 
’**** Prescribe Target Rotations ****’ 31 
0. 0. 1 = BETAMI, BETAMX, NBETA (beta=rotation around a1) 32 
0. 90. 3 = THETMI, THETMX, NTHETA (theta=angle between a1 and k) 33 
0. 0. 1 = PHIMIN, PHIMAX, NPHI (phi=rotation angle of a1 around k) 34 
’**** Specify first IWAV, IRAD, IORI (normally 0 0 0) ****’ 35 
0 0 0 = first IWAV, first IRAD, first IORI (0 0 0 to begin fresh) 36 
’**** Select Elements of S_ij Matrix to Print ****’ 37 
6 = NSMELTS = number of elements of S_ij to print (not more than 9) 38 
11 12 21 22 31 41 = indices ij of elements to print 39 
’**** Specify Scattered Directions ****’ 40 
’LFRAME’ = CMDFRM (LFRAME, TFRAME for Lab Frame or Target Frame) 41 
2 = NPLANES = number of scattering planes 42 
0. 0. 180. 10 = phi, thetan_min, thetan_max, dtheta (in deg) for plane 1 43 
90. 0. 180. 10 = phi, thetan_min, thetan_max, dtheta (in deg) for plane 2 44 
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A.4.2 Explanation of Key Parameters in ddscat.par 

There are a few key parameters in ddscat.par file. They are critical for simulation of gold 

nanoparticles, which will be explained in this subsection. Other parameters are described 

in [272]. 

Line 4 specifies the iterative algorithm. Among three supported algorithms, 

PBCGS2 has the fastest rate of convergence for noble metals. Line 5 specifies the FFT 

method. FFTMKL was recommended to get much better performance than the other 

method. GKDLDR was recommended for the lattice dispersion relation in Line 6. Line 11 

specifies the choice of the particle. Here a customized cage shape file was created in a file 

named shape.dat. Line 14 specifies the name of the file that contains the complex refractive 

index with respect to the wavelength in the surrounding medium. In Line 22, all the 

calculated wavelength is specified, which is also the wavelength in the medium instead of 

in vacuum. Line 27 specifies how many polarization states need to be calculated. Since we 

are only interested in the cross sections (e.g., scattering and absorption cross sections), only 

one polarization state is required. 
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