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Abstract

Safety has not received sufficient attention in the medical robotics community despite

a consensus of its paramount importance and the pioneering work in the early 90s. Partly

because of its emergent and non-functional characteristics, it is challenging to capture

and represent the design of safety features in a consistent, structured manner. In addition,

significant engineering efforts are required in practice when designing and developing

medical robot systems with safety. Still, academic researchers in medical robotics have to

deal with safety to perform clinical studies.

This dissertation presents the concept, model and architecture to reformulate safety as

a visible, reusable, and verifiable property, rather than an embedded, hard-to-reuse, and

hard-to-test property that is tightly coupled with the system. The concept enables reuse and

structured understanding of the design of safety features, and the model allows the system

designers to explicitly define and capture the run-time status of component-based systems

with support for error propagation. The architecture leverages the benefits of the concept

and the model by decomposing safety features into reusable mechanisms and configurable

specifications. We show the concept and feasibility of the proposed methods by building an
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open source framework that aims to facilitate research and development of safety systems

of medical robots. Using the cisst component-based framework, we empirically evaluate

the proposed methods by applying the developed framework to two research systems – one

based on a commercial robot system for orthopedic surgery and another robot soon to be

clinically applied for manipulation of flexible endoscopes.
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Chapter 1

Introduction

For the past three decades since the first reported robotic surgical procedure in 1985

(Kwoh et al., 19851), a variety of medical robot systems have been developed both in

academia and industry. These robot systems have helped to improve clinical results and

enabled surgical procedures and techniques that would not have been possible otherwise

in various areas. Prominent examples of such application areas include neurosurgery,

orthopaedic surgery, laparoscopic surgery, radiosurgery, and telesurgery. Commercial

products are also being used in the modern operating room or interventional suite.2 For

example, the da Vinci system (Intuitive Surgical, Inc., Sunnyvale, CA, USA) was used in

80% of radical prostatectomies performed in the U.S. in 2008.2

Broadly, research in medical robotics comprises three areas (Taylor, 20063): (1) modeling

and analysis of images, patient anatomy, and surgical plans, (2) interface technology relating

the “virtual reality” of computer models to the “actual reality” of the patient, operating room,

1



CHAPTER 1. INTRODUCTION

and surgical staff, and (3) systems science permitting these components to be combined

in a modular and robust manner with safe and predictable performance. So far, much

of the advancement of the domain has been driven by innovations and improvements in

the first two areas, whereas the third area – especially safety – has not received as much

attention as the other two areas. However, the importance of the systems science is rapidly

increasing as the size and complexity of medical robot systems significantly increase to

achieve challenging medical functionality requirements, while at the same time meeting

non-functional requirements such as safety, performance, and reliability.

Within medical robotics, safety has been perceived as the crucial property of medical

robot systems. The pioneering work with focus on safety is found in the literature as early

as 1991 (Taylor et al., 19914), as well as other early work on safety (e.g., Kazanzides,

1992;5 Davies, 19936 and 1996;7 Taylor, 19968). There exist other works that presented

software-based approaches to safety (e.g., system architecture and state-based approach

by Kazanzides et al., 1992;5 verification and validation-based software design method

by Fei et al., 20019). Most of these works addressed safety issues in an application- and

system-specific manner, or in the form of general safety design guidelines.

Despite these early efforts and the recognition of the importance of safety, system design-

ers still find the following two issues challenging: (1) inability to capture the knowledge and

experience with safety of medical robot systems, and (2) significant amount of engineering

effort to build medical robot systems with safety. Currently, there is no safety standard that

specifically governs the design of medical robot systems; rather, developers conform to

2
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existing medical device standards, such as IEC-60601 and IEC-62304. Similarly, medical

robots are subject to the same regulatory approval processes as other medical devices. By

definition, medical robots are examples of safety-critical systems because human lives

depend on their correct operation. As in other safety-critical domains, developers must

invest significant engineering effort to ensure that every device they design is safe and

meets regulatory requirements. In particular, such considerable engineering effort is unlikely

available to academic researchers in practice. Yet, they have to design and develop medical

robot systems to be safe in order to perform clinical trials. This obviously leads to a desire

to capture the “best practices” that can be reused when designing new systems, thereby

quickly building prototypes of safe medical robot systems with less engineering efforts.

Safety has been one of the active research topics in various areas and disciplines, and has

been investigated extensively outside the medical robotics domain. Examples include the

traditional safety-critical application systems domain, the dependable computing domain,

and the software engineering domain that includes safety engineering and component-

based software engineering. The existing body of work from these domains could provide

substantial references and guidance for safety research in medical robotics. However, they

have to be carefully adopted; safety of medical robot systems is distinctly different from

that of other areas because: (1) humans must be present in the robot’s workspace, (2) one of

the humans is usually anesthetized and cannot escape, and (3) the robot may be holding a

sharp instrument and be required to “injure” the human to perform the surgical intervention.

Thus, these domain characteristics should be considered when adopting prior knowledge
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Figure 1.1: Conceptual flow of this dissertation

and experience from outside medical robotics.

1.1 Proposed Solutions

This dissertation addresses the aforementioned challenges by essentially improving reusabil-

ity and testability of safety. These improvements would facilitate reuse of prior experience

and knowledge on safety while reducing engineering effort to build safe medical robot

systems. Our proposed methods to improve these properties are comprised of four key

elements: concept, model, architecture, and case study. These elements are the key topics of

each chapter (Chapter 3-6) and each element is built upon what comes before.

Fig. 1.1 conceptually depicts the progression through the dissertation. Starting from the

concept, we progressively develop our methods through the model and the architecture, and

validate the methods using the case study. The high-level description of each element is as

follows:
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• Concept (Chapter 3): The concept represents the Safety Design View (SDV), a con-

ceptual framework that defines the design space of safety features of medical robot

systems. This design space identifies essential components of safety features, while at

the same time capturing the system designer’s design decisions on the deployment

options.

• Model (Chapter 4): The model refers to the Generic Component Model (GCM),

an abstract component model that can explicitly represent the operational status of

component-based systems using its state-based semantics without relying on particular

component models.

• Architecture (Chapter 5): The architecture is a safety-oriented layered architecture

that enables reuse of safety features by decomposing a safety feature into a reusable

mechanism and a configurable specification. This architecture is used to implement a

run-time environment for the GCM, called the Safety Architecture for Engineering

Computer-Assisted Surgical Systems (SAFECASS).

• Case Studies (Chapter 6): The case studies demonstrate how to apply the proposed

methods to a set of safety features of two existing medical robot systems: a commercial

medical robot system for orthopaedic surgery (the ROBODOC® System), and a

research system for minimally invasive endolaryngeal surgery (the Robo-ELF System).

We empirically evaluate and validate our proposed methods through these two case

studies.

To illustrate our methods, we introduce an example of a simple safety feature that checks
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f = ReadForce()

f > fTH

Use f

Handle
Yes

No

Figure 1.2: Simple example: Design of force sensor-based safety feature. Force feedback,
f , is read from the force sensor and is checked against the pre-defined threshold, fT H.
Typically, an error event is generated if f exceeds fT H, and the error is handled accordingly.

force feedback from a force sensor and generates an error event when the force feedback

exceeds a pre-defined threshold. Fig. 1.2 shows the typical design of this safety feature.

Despite its simple design, this force sensor-based safety feature is one of the most widely

used safety features in the medical robotics domain, as described in Chapter 2.

When developing this safety feature, the system designers are likely to encounter prac-

tical issues in terms of testability and repeatability. For example, it would be extremely

difficult to manually test what happens if f is exactly equal to fT H, or becomes fT H± 0.0001

(boundary conditions). Although such test conditions may be simulated once or twice, it

is not practically feasible to repeatedly perform regression testing over time, possibly with

varying fT H values (e.g., to find the optimal threshold value that leads to the least false

positives). Furthermore, it is not possible to repeatedly test sensor failure cases that lead to

permanent damage, such as internal hardware failure (e.g., damaged sensor), external sensor

cabling issues (e.g., physically disconnected cables), and irregular magnetic or electric

interference (e.g., electric shock). Although these issues can be lessened with the help of
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additional test code or a dedicated testing library, they tend to be application- or system-

specific and thus are not likely reusable across systems. Thus, by applying our methods, we

aim to improve testability of this system.

To begin with, we apply our concept – the Safety Design View (Chapter 3) – to this

safety feature for structured understanding of the design of it. We first identify the four

essential components of run-time safety mechanisms: monitoring, detection, reaction, and

recovery. These four components are defined by the Mechanism View (Sec. 3.2.1). The

comparison of f against fT H represents monitoring and detection, and the handling of

excessive force feedback indicates reaction and recovery. This is denoted by the green tags

in Fig. 1.3. Next, we identify where each of these components is implemented in the system.

For consistent and systematic representation, the SDV defines a canonical architecture of

medical robot systems, which is called the System View (Sec. 3.2.2). It is essentially a

layered architecture and is comprised of four layers: Hardware, Control, Workflow, and

Human layers. For demonstration purposes, we assume that the system designer chose

a particular deployment option, as shown on the right side of Fig. 1.3. The SDV is a

two-dimensional plane formed by combining the Mechanism View on the horizontal axis

with the System View on the vertical axis (Sec. 3.3). In this manner, the SDV allows us to

capture and describe the design of safety features in an explicit, consistent, and structured

manner, thereby facilitating sharing of safety experience and knowledge.

Next, we apply our model – the Generic Component Model (Chapter 4) – to the example.

The GCM describes the run-time status of component-based systems using its state-based
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MonitoringMonitoring

f = ReadForce()

f > fTH

Use f

Handle
Yes

No

Detection

Monitoring

Recovery

Reaction

HW

ReRDM

LC

HC

WF

HU

Figure 1.3: Simple example with the Safety Design View (concept). On the left side, the
four essential components of run-time safety mechanisms are tagged in green. On the
right side, the Safety Design View presents system designer’s decisions on the deployment
options, i.e., which elements are deployed to which layers of the system.

semantics (Sec. 4.3). Its three essential elements are states, events, and filters. The three

abstract states – Normal, Warning, and Error – and transitions between the states define the

state machine. A set of state machines collectively represents the current operational status

of the system. The state transitions are initiated by events, which are generated by filters.

The GCM also defines a mechanism for error propagation (Sec. 4.3.7) that systematically

notifies other components of the occurrences of errors.

Fig. 1.4 depicts the new design of the example after applying the GCM, where the major

changes are represented in the yellow box. The force threshold check is wrapped as a filter

and an error event is explicitly defined as E_FORCE_ERROR. This event is generated when

excessive force feedback is detected and initiates a state transition from Normal to Error,

and results in error propagation to other connected components. The state-based semantics

of the GCM defines this sequence of actions. It should be noted that the GCM is defined at
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Figure 1.4: Simple example with the Generic Component Model (model). The design of
existing safety features are represented in terms of the three elements of the state-based
semantics of the Generic Component Model: filters, events, and states. They are represented
in the yellow box.

the model level using the minimal structural elements (components and interfaces). That is,

it does not contain any code-level specifics and is not dependent on a particular component

model.

For these reasons, the GCM is neither executable nor verifiable at run-time. Thus, we

provide a run-time environment for the GCM, called the Safety Architecture for Engineering

Computer-Assisted Surgical Systems (Chapter 5). Based on the domain characteristics

of medical robotics (Sec. 5.3), the design requirements of the run-time environment are

identified (Sec. 5.4). Our approaches to achieve the design requirements are the framework

independence and safety design decomposition (Sec. 5.5). Considering these elements

all together, we design and implement a safety-oriented layered architecture, called the

SAFECASS-based architecture (Sec. 5.6). It provides a set of tools that can facilitate the
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system development process.

Now that the GCM becomes executable within the SAFECASS, we can actually execute

the GCM-enabled example. Fig. 1.5 illustrates this change. Note that the yellow box

now represents the SAFECASS, instead of the GCM. In this design, one key change is

that we now maintain the specifications of the GCM elements (i.e., events and filters) in a

separate text file (the JSON format). Such SAFECASS artifacts are used to deploy safety

features into the system at run-time and allow us to easily change the system behavior by

just modifying parameters of this artifact. For example, the following code snippet can

be used as a SAFECASS artifact for the simple force sensor-based safety feature (some

parameters are arbitrarily chosen or simplified for demonstration purposes; see Chapter 5

for more details):

Code 1.1: Example of JSON specification for the force sensor-based safety feature

1 {
2 "component": "Force",
3 "event": [
4 { "name" : "E_FORCE_WARNING",
5 "severity" : 10,
6 "state_transition": [ "N2W" ]
7 },
8 { "name" : "/E_FORCE_WARNING",
9 "severity" : 10,

10 "state_transition": [ "W2N" ]
11 },
12 { "name" : "E_FORCE_ERROR",
13 "severity" : 20,
14 "state_transition": [ "N2E", "W2E" ]
15 },
16 { "name" : "/E_FORCE_ERROR",
17 "severity" : 20,
18 "state_transition": [ "E2N", "W2N" ]
19 },
20 { "name" : "E_SENSOR_FAILURE",
21 "severity" : 30,
22 "state_transition": [ "N2E", "W2E" ]
23 },
24 { "name" : "/E_SENSOR_FAILURE",
25 "severity" : 30,
26 "state_transition": [ "E2N", "W2N" ]
27 }

10
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28 ],
29 "filter" : [
30 { // common fields
31 "class_name" : "FilterThreshold",
32 "target" : {
33 "type" : "s_A",
34 "component" : "Force"
35 },
36 "type" : "ACTIVE",
37 // fields specific to threshold filter
38 "argument" : {
39 "input_signal" : "Force",
40 "threshold" : 5.0,
41 "tolerance" : 0.5,
42 "event_onset" : "E_FORCE_ERROR",
43 "event_completion": "/E_FORCE_ERROR"
44 }
45 }
46 ],
47 "service" : [
48 { "name" : "InterfaceProvidingForce",
49 "dependency" : {
50 "s_R" : [ ],
51 "s_A" : true ,
52 "s_F" : true
53 }
54 }
55 ]
56 }

To deploy the safety features defined in this artifact, it is necessary to modify the code-level

implementation. Assuming one particular implementation for the simple force sensor-based

safety feature, the following code snippets show the original and new code structure side-

by-side (the variables and functions that begin with a capital letter represent class member

variables and functions; see Chapter 6 for more details):

Before: After:
1 void Force::Run(void) 1 void Force:: RunNormal(void)
2 { 2 {
3 f = ReadForce (); 3 f = ReadForce ();
4 4
5 if (f > f_threshold) { 5 // Update/use latest reading f
6 // Handle excessive force 6
7 } else { 7 UpdateStatus ();
8 // Update/use latest reading f 8 }
9 } 9

10 } 10 #define ON_EVENT(evt_name)\
11 if (e == Coordinator ->GetEvent(evt_name))
12
13 void Force:: RunWarning(const SC::Event * e)
14 {
15 ON_EVENT("E_FORCE_WARNING") {...}
16
17 RunNormal ();
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18 }
19
20 void Force:: RunError(const SC::Event * e)
21 {
22 ON_EVENT("E_SENSOR_FAILURE") {...}
23 ON_EVENT("E_FORCE_ERROR") {
24 // Handle excessive force
25 }
26
27 UpdateStatus ();
28 }
29
30 void Force:: UpdateStatus(void)
31 {
32 if (sensor_failure_detected) {
33 Coordinator ->GenerateEvent(

"E_SENSOR_FAILURE");
34 }
35 }

As Chapter 5 and 6 describe in detail, these changes not only allow us to read key information

of the system (e.g., deployed filters, outstanding events, current states), but also to write data

into the system at run-time (e.g., fault injection, event generation) using the services and

tools that the SAFECASS provides. The ability to fully access the key data of the system at

run-time is crucial to improving testability of safety.

The benefits of our proposed methods in terms of reusability and testability are high-

lighted when we compare the original design of the example in Fig. 1.2 and the SAFECASS-

enabled design in Fig. 1.5. These benefits include:

• Improved testability: The abilities to read key data from the system and to write test

data to the system enable fault injection and event generation at run-time without code

compilation or system restart. These features are provided in two different forms: the

interactive standalone utility (the console utility; Sec. 5.6.7.1) and the application

programming interfaces (APIs).

• Configurable, flexible, and traceable safety specification: The SAFECASS arti-
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Figure 1.5: Simple example with SAFECASS (architecture). Read and write operations
are represented in blue and red, respectively. The green boxes indicate the parameters that
the SAFECASS artifacts define and thus can be easily modified to change the design of the
safety feature.

facts contain safety specifications used to deploy safety features to the system. Because

safety specifications are decoupled from code and are separately maintained, it be-

comes possible to easily change the design of safety features, to track the changes of

safety specifications over time (e.g., using version control software), and to perform

automated testing based on specifications (e.g., unit testing, regression testing).

• Reusable safety mechanisms: The state-based semantics of the GCM and the

SAFECASS are designed to be application-, framework-, and component model-

independent. Once their correctness is verified (via, for example, formal methods),
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they can be reused later without having to verify their correctness again, thereby

reducing engineering effort when building new systems with safety.

Through our case studies (Chapter 6), we empirically validate these benefits by applying

the proposed methods to two existing medical robot systems: (1) a commercial robot system

for orthopaedic surgery, called the ROBODOC® System (Sec. 6.2), and (2) a research

robot system for minimally invasive laryngeal surgery, called the Robotic Endo-Laryngeal

Flexible (Robo-ELF) Scope System (Sec. 6.3). The commercial ROBODOC system

(THINK Surgical, Inc., Fremont, CA, USA) has a solid set of safety features that have

obtained the U.S. Food and Drug Administration (FDA) approval and European Union (EU)

CE marking, and has been in clinical use since 1992. The Robo-ELF includes several safety

features and received JHU Institutional Review Board (IRB) approval for clinical use after

the FDA determined that an Investigational Device Exemption (IDE) was not required. With

our full access to the source code of both systems, we apply the SAFECASS to a set of

safety features of those systems at the code-level, while maximally preserving their original

design. The idea is to evaluate and validate the benefits and effectiveness of the proposed

methods by comparing the original design with the new, SAFECASS-enabled design in

terms of testability and reusability.

For each robot system, we perform the safety design refactoring process with the

following steps:

1. Understanding of the system: We provide a brief introduction to each robot system

that includes a target surgical application, system components (hardware and software),

14
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and system design requirements. We also represent the system design using the System

View (Sec. 3.2.2) to better understand the system design rationale.

2. Identification of safety features: Based on the design documents accessible to us

(e.g., published academic literature), we present a summary of safety features of the

system. The safety features of the ROBODOC and the Robo-ELF are summarized in

Secs. 6.2.1.2 and 6.3.1, respectively.

3. Application of SAFECASS: We integrate SAFECASS with each system in two

steps: (1) defining safety specification in the JSON10 format, and (2) code-level design

refactoring.

In our case studies, a subset of identified safety features of the ROBODOC is selected for

illustration purposes, whereas the entire set of safety features of the Robo-ELF is presented.

Although there are variations on how to modify the design of safety features of each robot

system, the safety specifications are similar to the JSON example shown in Code listing 1.1,

with code-level changes similar to the ones presented above.

1.2 Thesis Statement

A structured understanding of safety designs and a safety-oriented layered architecture

with a state-based semantics can facilitate research and development of component-based

medical robot systems, thereby enabling sharing and reuse of knowledge and experience on

safety.
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1.3 Thesis Contributions

This dissertation presents our methods – the concept, the model, and the architecture – that

reformulates safety as a visible, reusable, and verifiable property, rather than an invisible,

hard-to-reuse, and hard-to-test property that is deeply embedded in the system. The methods

address challenges in safety research by defining a new perspective on safety and by

providing a software environment that facilitates the design and development process of

component-based medical and surgical robot systems. Each chapter describes contributions

of the chapter in more detail, but we provide a summary of the major contributions reported

in this dissertation here:

Safety Design View: Developed a conceptual model that captures the design rationale of

safety features and the system designer’s decisions in a structured, systematic manner.

• Identification of the four essential components of safety features

• Identification of the canonical architecture of medical robot systems that can system-

atically capture the system designer’s decisions on deployment options

• Definition of the design space of safety features in medical robotics

Generic Component Model: Proposed a generic model, based on the dependability formal-

ism, with component model-independent semantics and a programming model that supports

error propagation.
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• Proposal of a generic model that can represent the operational status of component-

based robot systems at run-time in an explicit, systematic, and structured manner

• Design of a state-based semantics that enables error propagation across the component

boundary

• Design of an event mechanism with the concepts of onset and completion events,

outstanding events, and rules for prioritizing events

Safety Architecture for Engineering Computer-Assisted Surgical Systems (SAFECASS):

Designed a safety-oriented layered architecture that provides a run-time environment for the

Generic Component Model.

• Proposal of a safety-oriented architecture for component-based robot systems

• Implementation of a run-time environment for the Generic Component Model using

the SAFECASS-based architecture

• Development of the cisst framework extensions for the SAFECASS, including cisst-

specific safety features that improve the system development process in practice

Case Studies: ROBODOC® and Robo-ELF: Empirical evaluation of the proposed

methods and architecture using safety features of a commercial surgical robot system for or-

thopaedic surgery (ROBODOC) and a research system for minimally invasive endolaryngeal

surgery (Robo-ELF).

• Empirical validation that the design and implementation of the SAFECASS meets its
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design requirements

• Empirical validation of the effectiveness and applicability of the SAFECASS-based

approach using safety features of two surgical robot systems, one for orthopaedic

surgery and the other for endolaryngeal surgery

1.4 Organization

The body chapters of this dissertation follow the flow of the key elements of our proposed

methods, i.e., concept, model, architecture, and case study. Fig. 1.6 shows the overall flow

of this dissertation along with the key topics and the contributions of each chapter.

Chapter 2 presents a comprehensive review on safety and safety-related topics in three parts.

The first part provides a brief overview on safety outside the robotics domain, which include

the dependable computing domain and the safety engineering domain. Topics covered

include fault categories and classification, fault detection and diagnosis, fault tolerance,

safety engineering, and component-based software engineering. The second part reviews

safety research in the robotics domain, where safety is mostly considered in the context of

the physical human robot interaction. The third part presents an extensive survey on safety

research within the medical robotics domain, along with a set of domain-specific safety

features, medical device standards, and safety-related activities.

Chapter 3 proposes the Safety Design View (SDV), a conceptual framework that can
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Figure 1.6: Flow of this dissertation with contributions of each chapter. The numbers on
the top right corners of the green boxes represent chapters.

capture and describe both the design-time and the run-time characteristics of safety features

of medical robot systems in a systematic and structured manner. SDV identifies essential

elements and enabling components of safety features of medical robot systems, thereby

allowing us to define and describe safety features of medical robot systems in a generic,

consistent, and structured manner.

Chapter 4 describes the Generic Component Model (GCM), an abstract component model

with minimal structural elements. The GCM is generic enough to be specialized for other
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component models, yet it is expressive enough to represent the complete description of the

system status without relying on a particular component model. Its state-based semantics

can explicitly capture and describe the operational status of component-based robot systems

at run-time, and supports error propagation across the component boundary.

Chapter 5 presents the design and architecture of the Safety Architecture for Engineering

Computer-Assisted Surgical Systems (SAFECASS), which provides a run-time environment

for the GCM. Starting from the four design requirements that consider the domain character-

istics, this chapter proposes a safety-oriented layered architecture called the SAFECASS-

based architecture. It also presents the detailed design and implementation of SAFECASS in

terms of the essential elements of the GCM. By actually building a software framework, this

chapter shows that it is possible to build a run-time environment for the GCM that meets the

four design requirements.

Chapter 6 illustrates two case studies with which we empirically evaluate the proposed

methods and architecture. In these case studies, we demonstrate in detail how the SAFE-

CASS and the SAFECASS-based architecture can be applied to existing systems to improve

the design of safety features and to benefit from the proposed methods. In this chapter,

we use the cisst component-based framework and two surgical robot systems, one for

orthopaedic surgery (the ROBODOC System) and another one for minimally invasive en-

dolaryngeal surgery (the Robo-ELF System). Based on this empirical evaluation, we show

that the current design and implementation of SAFECASS effectively achieves its four
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design requirements, thereby facilitating research and development of safety systems for

medical robots.
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Chapter 2

Literature Review

Since an industrial robot was first used for a CT-aided stereotactic neurosurgery as a surgical

tool holder in 1985,1 a variety of medical and surgical robot systems have been developed

both in academia and in industry. In the medical robotics domain, safety has been considered

as the most crucial property from the beginning, and the pioneering work with focus on

safety is found in the literature as early as 1990 (Taylor et al., 199011). However, safety as

a research problem has not received much attention yet, and prior works on safety in the

medical robotics domain approached safety in an application- and system-specific manner.

In contrast, safety has been one of major research topics in various areas and disciplines

outside the medical robotics domain, such as the traditional safety-critical application

systems domain, the dependable computing domain, and the software engineering domain.

A system is safety-critical if the failure of the system can lead to consequences that are

determined to be unacceptable.12 Examples of such systems include medical devices,

22



CHAPTER 2. LITERATURE REVIEW

aerospace systems, automotive systems, nuclear power plant control systems, rail-way

control systems, air traffic control systems, and weapon control systems. Although the

domain characteristics of medical robotics are different from those of other domainsi, the

existing body of work in those areas could be substantial references for safety research in

medical robotics.

This chapter consists of three parts. The first part explores prior works on safety outside

the robotics domain (Sec. 2.1). This part presents an overview of safety-related works in

different domains, but does not attempt to provide an extensive survey. The second part

reviews safety research in the robotics domain (Sec. 2.2), where safety is mostly considered

in the context of the physical human robot interaction (pHRI). Lastly, the third part presents

an extensive survey on safety research within the medical robotics domain (Sec. 2.3).

2.1 Outside Robotics

Safety is a system property13 that requires a systems approach, and thus safety has been a

research topic in various system- or safety-related areas. Among those areas outside medical

robotics, this section highlights some of the prior works in three different areas: dependable

and secure computing (Sec. 2.1.1), software engineering (Sec. 2.1.2), and component-based

software engineering (Sec. 2.1.3).
iRefer to Sec. 5.3 for domain-specific characteristics of medical and surgical robot systems.
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2.1.1 Dependable Computing

In the dependable and secure computing community, safety is considered as one of the

attributes of dependability, an integrating concept that encompasses safety at a higher

level. Based on the domain expertise, Avizienis et al. (2004) established the dependability

formalism that extensively defines the basic concepts and taxonomy of dependable and

secure computing.14 According to this formalism, dependability of a system is defined as the

ability to avoid service failures that are more frequent and more severe than is acceptable, and

its attributes include availability, reliability, safety, integrity, and maintainability. Although

this abstraction to define one integrating concept for these attributes appears to be somewhat

debatableii, this dependability formalism and semantics have been widely adopted, as proved

by the citation count of the paper being more than 3,200iii.

The threats to dependability are faults, errors, and failures, and they successively form

the fundamental chain of dependability and security threats. The starting point of this chain

is faults, which are major threats to system dependability. It has been shown that the lack

of error and fault handling coverage drastically limits the improvement of dependability.

Although safety is not necessarily achieved by just preventing faults, errors, or failures,

proper handling of them makes a system more dependable and thus improves system safety.

iiIn safety engineering, there was an opinion that did not agree with the idea of abstraction for safety:
“However, attempts to integrate several qualities into one abstraction (like dependability, which has been
proposed as a combined measure of reliability, safety, security, availability and just about every other quality)
seem misguided. These global abstractions have only disadvantages, since they inhibit understanding and
control.” (Safeware, Leveson 199515)

iiias of October 2014 from Google Scholar
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This sections presents an overview on the following three topics in more details:

• Fault categories and classification (Sec. 2.1.1.1) : “What is a fault and what types of

faults can happen?”

• Fault detection and diagnosis (Sec. 2.1.1.2) : “How to detect faults and what needs to

be identified?”

• Fault tolerance (Sec. 2.1.1.3) : “How to tolerate faults to keep the system running?”

2.1.1.1 Fault Categories and Classification

Lipow (1979)16 reported fault categories that occur during software development phases as

logic, data handling, interface, data I/O, computational, database, data definition, and others.

Marick (1995)17 surveyed fault categories focusing on software (e.g., data handling, logic

error, I/O failure) and showed quantitative summaries on relative occurrences of the faults.

Compared to these software-oriented classifications, Avizienis et al. (2004)14 presented an

extensive and comprehensive classification of faults, which covers not only software-related

faults, but also faults from various aspects of the system (e.g., hardware, environments,

human-machine interface, human factors) across all the development phases. They classified

faults according to the eight basic viewpoints (a.k.a., the elementary fault classes) and

identified 31 likely fault combinations that are divided into three partially overlapping

groups: development faults, physical faults, and interaction faults. In our prior work (Jung

201118), we presented a hierarchical fault model for component-based software systems that

can be used to design and analyze possible faults of component-based robotic systems in a
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Figure 2.1: Classes of 31 likely fault combinations (from Avizienis (2004),14 ©2004 IEEE)

structured manner.

2.1.1.2 Fault Detection and Diagnosis

With the growing demand for dependability of modern technical systems, a wide variety of

fault detection and diagnosis (FDD) methods have been developed in diverse disciplines

such as chemical engineering, control engineering, automation engineering, and reliability

engineering.19

Zhang and Jiang (2008)19 reported an extensive bibliographical review on reconfigurable

fault-tolerant control systems with 376 references starting from 1971. The review also
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Figure 2.2: Classification of FDD methods (adapted from Zhang (2008)19)

presented a classification of FDD methods, as in Fig. 2.2. Venkatasubramanian et al. (2004)

reviewed the three different categories of FDD in a series of three articles: quantitative

model-based methods,20 qualitative models and search strategies,21 and process history-

based methods.22 Isermann (1997,23 200524) presented an introduction to the field of

FDD and described the general scheme of different supervision methods. This scheme is

an abstraction of various FDD and supervision methods, and identifies a set of essential

elements to construct supervisory systems with FDD iv. His book on the fault-diagnosis

systems25 comprehensively covers fault-related topics from fault definition to fault detection,

fault tolerance, and related applications.

ivThe concept and structure of this abstract scheme inspired the design of the safety-oriented software
architecture described in Chap. 5.
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Figure 2.3: Fault tolerance techniques (adapted from Avizienis (2004)14)

2.1.1.3 Fault Tolerance

The concept of fault tolerance was formulated by Avizienis in 1967:26 “We say that a

system is fault-tolerant if its programs can be properly executed despite the occurrence of

logic faults.”27 The dependability formalism defines four categories to attain the attributes

of dependability and security:26 fault prevention, fault tolerance, fault removal, and fault

forecasting. Fault tolerance aims to avoid service failures in the presence of faults by error

detection and system recovery, and Fig. 2.3 shows the techniques for fault tolerance.

Fault tolerance has been studied in areas where the continuous operation of the system

is important, such as high-confidence computing domains and mission-critical application

domains. One of the early works on fault tolerance is the design and construction of an

experimental computer – called the Self-Testing And Repairing computer – of which fault

tolerance design includes dynamic (standby) redundancy, replaceable subsystems, and a

program rollback provision to eliminate transient errors.28 Randell (1975)29 discussed a

method for structuring complex computing systems using recovery blocks, conversations,
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and fault-tolerant interfaces to facilitate the provision of dependable error detection and

recovery facilities. Avizienis (1997)26 presented a guideline for designing fault-tolerant

systems with the bottom-up approach that included specification, implementation, evaluation,

and modification. Zhang and Jiang (2008)19 also extensively reviewed fault tolerant control

techniques and methods in the area of automatic fault tolerant control (AFTC).

In the medical robotics domain, the dependability formalism and semantics have not yet

been widely adopted, although some prior works introduced the concept of dependability

(e.g., Dowler 1995,30 Duchemin 2004,31 Sanchez 201432). To benefit from the comprehen-

sive and precise definition of concepts and terminologies of the dependability formalism,

we follow the formalism throughout this thesis.

In the medical robotics domain, fault tolerance has not yet been recognized as an

important system property. One reason is that it is often sufficient for medical robot systems

to be fail-safe because the robot can be generally brought to a safe state by powering off the

motors, and the medical intervention can continue via the conventional or manual method if

the system fails to operate correctly.33 Although switching to the conventional method is

feasible in general, it is desirable if the system can tolerate faults or errors of the system

and continue the tasks. It would be even more ideal if faults or errors can be prevented

in advance. If no conventional method is available or the human cannot continue the task

without the robot, fault tolerance may be required as an essential property of medical robot

systems.
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2.1.2 Software Engineering for Safety

In software engineering, the pioneering work on safety is found as early as 1986. Leveson

(1986)34 attempted to survey software safety with the description of outstanding issues and

research topics, and laid the foundation for safety as a separate research topic with many

challenging problems.35

Leveson (1995)15 is the standard reference for system safety.36 Recognizing safety as

an emergent property13, system safety emphasizes the importance of a systems approach in

dealing with safety issues and this approach is called Safeware15. Safeware presents the safe

design techniques in order of the precedence, as in Fig. 2.4, and these techniques are grouped

into four: hazard elimination, hazard reduction, hazard control, and damage reduction.

Safeware also describes various traditional models and techniques for hazard analysis such

as checklists, hazard indices, fault tree analysis (FTA) , management oversight and risk tree

analysis, event tree analysis (ETA), cause-consequence analysis, hazards and operability

analysis (HAZOP), interface analysis, failure modes and effects analysis (FMEA), failure

modes, effects, and criticality analysis (FMECA), fault hazard analysis (FHA), state machine

hazard analysis (SMHA), task and human error analysis techniques, and evaluation of hazard

analysis techniques.15

Kelly (1998)37 proposed an approach to the development, presentation, maintenance and

reuse of the safety arguments within safety cases using a graphical notation, called the Goal

Structuring Notation (GSN). GSN provides a structured approach to managing and presenting
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Figure 2.4: Safe design techniques in order of their precedence (adapted from Leveson
(1995)15)

safety cases. Safety-critical industries, such as aerospace and automobile industries, have

adopted this approach to improve the structure, rigor, and clarity of safety arguments.38

One interesting concept is the Safety Case Patterns39 that enables the systematic reuse of

common structures in safety case arguments across different systems.

In the International Conference on Software Engineering (ICSE) 2000 edition of The

Future of Software Engineering (FoSE), Lutz (2000)36 summarized six key areas in software

engineering for safety as follows:

1. Hazard analysis

2. Safety requirements specification and analysis

3. Designing for safety

4. Testing

5. Certification and standards
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6. Resources

Based on this review of the state-of-the-art in these six key areas, she provided a road map

for software engineering for safety with six challenges that have to be addressed: (1) further

integration of informal and formal methods, (2) constraints on safe product families and

safe reuse, (3) testing and evaluation of safety-critical systems, (4) run-time monitoring, (5)

education, and (6) collaboration with related fields.

Leveson (2004,40 201141) presented a new approach to safety, called STAMP (Systems-

Theoretic Accident Model and Processes), based on modern systems theory. The rationale

behind this new approach is that the traditional models and techniques in safety and reliability

engineering (e.g., FTA and FME(C)A) have changed very little, whereas technological

advancements are making fundamental changes to the way modern systems operate and

interact with the environment.41

Continuing a roadmap for the software engineering for safety by Lutz in 2000,36 Heim-

dahl (2007)35 presented a follow-up discussion on the challenges to the future of software

engineering for safety in FoSE 2007. The four issues addressed are: (1) education and

training of software engineering professionals, (2) software certification, (3) model-based

development, and (4) data intensive systems.

In the latest edition of the FoSE (2014), Hatcliff et al. (2014)42 presented a comprehensive

and critical review of the state-of-the-art and challenges of modern software engineering

for safety, including current practices, the desired goals, and gaps and barriers to reaching

the desired goals. Based on this review, they provided possible research directions in
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software engineering for safety and safety certification as follows: (1) development of

the measurable “confidence”, (2) further understanding of evidence, (3) improvement of

requirements specification to drive the development and verification, (4) effective ways of

performing compositional certification, (5) specification for functional and performance

timing requirements, (6) development of tools to facilitate qualification and verification, and

(7) more scalable, more practical formal methods.

2.1.3 Component-based Software Engineering

As robotics technology advanced and enabled tasks that had not been possible earlier, the

scale and complexity of robot systems have significantly increased. Traditional programming

models such as object-oriented programming were not adequate for such large and complex

systems. Within the robotics community, there was an early recognition of these system

issues.

In the early 1990s, Component-based Software Engineering (CBSE)43 emerged as

an effective programming model that can deal with various aspects of large and complex

systems. The fundamental philosophy of CBSE is software reuse, which is the use of existing

software to construct new software while promoting the development of maintainable,

reliable, and affordable software systems.44 In the software engineering community, CBSE

has been proved as an effective approach to many system development issues.

Noting the benefits of CBSE, the robotics community started to adopt CBSE since

early to mid 2000,45 and the community’s experience with CBSE showed that CBSE is
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highly effective in achieving advanced tasks with complex requirements. Proved by its

successful and wide adoption by various component-based software frameworks, CBSE has

become the de facto standard programming model in robotics.46–49 A short list of robotics

software frameworks that provide component-based development environments includes

Orocos,50 Orca,51 ROS,52 cisst,49 OPRoS,53 and OpenRTM.54 The robotics literature provides

comparative studies and reviews of different robot software frameworks (Shakhimardanov

et al., 2007,55 2010a,56 and 2010b;57 Elkady and Sobh, 201247). However, the semantics or

formalism for error propagation that can explicitly define, capture, and handle errors has not

yet been introduced to the robotics community.

In CBSE, there has been a stream of research in the area of safety analysis and evaluation

of component-based software systems (e.g., how to model errors, how to represent failure

propagation between components).

Fenelon (1994)58 introduced modular concepts to specify the failure behavior of compo-

nents, called the Failure Propagation Transformation Notation (FPTN). The basic entity is a

FPTN-Module which contains specifications for failure propagation, failure transformation,

and detection and generation of internal failures. Its failure semantics defines timing failures

(e.g., too early or too late), invalid values, commission, and omission.

Kaiser (2003)59 proposed the Component Fault Trees (CFT), an extension of the tradi-

tional Fault Trees (FT),60 to allow the encapsulation and distribution of partial FTs within the

boundary of components, thereby enabling compositional hazard analysis for component-

based systems. Each instance of CFT is independent from each other, and a CFT is connected
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to another CFT via input and output ports.

Grunske (2005)61 investigated how to adapt traditional safety analysis and assessment

techniques to component-based systems and evaluated different safety analysis techniques

such as failure propagation and transformation notation, CFT, and parametric contracts.

In another work in 2005,62 he proposed the State-Event Fault Trees (SEFT) to facilitate a

quantitative safety analysis of component-based systems. SEFT has a state-event semantics

that can describe the stochastic behavior of a component at a low level using states and

events. In 2006, he integrated component-based safety evaluation techniques and failure

propagation model with the SaveCCM component model for the early estimation of failure

and hazard probabilities.63

Domis (2008,64 200965) proposed the Safe Component Model (SCM) that exploits one of

the basic principles of CBSE: separation of concerns. Focusing on the hierarchical structure

of components, SCM separates specification from realization, and functional properties

from nonfunctional properties. With this approach, SCM enables the tight integration of

safety analysis into the component-oriented and model-based development process.

2.2 Robotics

In modern personal robotics, tasks that robots perform often involve humans. Compared to

the early generation of robots (e.g., industrial robots) where their workspace was physically

isolated from humans, modern personal robots operate closely with humans and their
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workspace often has significant overlap with that of humans. Naturally, this leads to

more attention to the issue of safety, which was publicly recognized within the robotics

community:

“We need to build systems that are safe even in the event of a failure of sensors,

actuators, wiring, software, and computers. We cannot afford to take unnecessary

risks in laboratories and demonstrations. Just because it has not happened does

not mean that it cannot happen–one serious injury or worse would set our field

back significantly.”

– Peter Corke, IEEE Robotics & Automation Mazagine (2011)66

In robotics, there have been a few different approaches to safety. The physical human

robot interaction (pHRI)67 is one area that explores the safety aspects of robot manipulators

to minimize injury or impact on the human due to physical contacts or collisions with

the robot. Topics of interests in that area include collision detection and reaction, impact

characterization, injury analysis, and control strategy or architecture. Heinzmann and Zelin-

sky (2003)68 proposed a control strategy for robot manipulators that provides quantitative

safety guarantees and limits the potential impact force in case of collisions. Bicchi and

Tonietti (2004)69 reported a quantitative analysis of the inherent trade-off between safety

and performance based on the severity of injuries due to collisions. Haddadin systematically

investigated the area of collision detection and impact/injury minimization due to collisions

through a series of works (2008,70 2009,71 201172), and recently published a book on these

topics.73 Recently, he introduced robotics research on this area to the safety-critical systems
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domain.74

Another area of work in robotics in terms of safety is FDD and fault tolerance. In the

early 1990s, Visinsky and Walker investigated fault detection and fault tolerance of robot

systems. In 1993, they proposed a layered control framework that consists of the servo,

interface, and supervisor layers to enable hierarchical fault detection and fault tolerance

for different robots.75 They also conducted a survey (1994)76 on fault tolerant research in

the robotics domain, exploring possible research topics for robotic fault tolerance such as

fault detection and error recovery. Another approach to fault detection includes Verma’s

work on the run-time fault detection and diagnosis using particle filters in 2004.77 They

presented a set of algorithms that improved the accuracy of fault detection and identification

under noisy environments using variable resolution particle filters and unscented Kalman

filters. Carlson (2004)78 reported a summary of discussions and activities of the ICRA 2004

workshop on fault detection, identification, and recovery (FDIR) for robots. The workshop

identified safety as one of the five key areas that can further enhance the FDIR performance,

along with adaptation, knowing when to ask for help, overcoming wireless communications

problems, and unsupervised learning.

One interesting approach is the integration of international standards with the develop-

ment process for robot systems. Doukas (2006)79 applied the IEC 61499 function block to a

PID control loop for a robot arm, and evaluated the applicability and effectiveness of the

function block for robot application systems. Hanai (2012)80 presented a system develop-

ment process that follows the guideline of the IEC 61508 (e.g., appropriate safety integrity
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level) with the use of SysML and the IEC 61499 function blocks. This standard-based

approach is also found in the medical robotics domain (refer to Sec. 2.3.2 for more details).

Woodman (2012)81 proposed a safety-oriented system development methodology for

personal robot systems, called the safety-driven control system architecture. Built on top of

the traditional hazard analysis techniques, the safety protection system is configured based

on a safety policy to prevent the controller from activating actuators that may lead to unsafe

events. Recently, Tadele (2014)82 presented a survey on safety in robotics in three respects:

collision-focused safety criteria and metrics, mechanical design and actuation, and controller

design.

Our observation is that there is a growing body of work on safety in robotics as safety is

getting more attention within the robotics community. The research theme in robotics so

far mostly centers around the manipulator safety (e.g., collision detection and avoidance,

impact analysis and minimization). Although the domain-specific characteristics of medical

robot systems are different from those of (non-medical) personal robot systems, the medical

robotics domain can benefit from the existing body of work in robotics because manipulator

safety is one of the safety features that has been frequently used in the medical robotics

domain (refer to Sec. 2.3.1).
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2.3 Medical Robotics

An industrial robot was first used for a stereotactic neurosurgery application as a surgical

tool holder in 1985, and a wide variety of medical robot systems have been developed since

then. In the late 1980s and early 1990s, industrial robots were primarily used for surgical

applications because of their accurate and precise movements. From the early 1990s, more

application- and domain-specific requirements were incorporated into the design of medical

robot systems, and this led to the development of custom robot systems for particular

applications. Such custom robots have successfully enabled a wide range of surgical tasks

and solved challenging functional problems that conventional or manual tasks had suffered

from. For example, motion scaling combined with force sensing and tremor reduction allows

surgeons to perform microsurgery tasks at much smaller scale with higher precision.83 In

contrast, the non-functional properties of medical robot systems – particularly safety – have

not received much attention in the research community, although there have been discussions

and prior works on system- or application-specific safety.

Medical robot systems have domain-specific characteristics that are distinct from other

safety-critical systems or other non-medical robot systems, and thus their safety should be

considered with these domain-specific characteristics. In medical robotics, there have been

domain-specific design techniques and approaches to safety, and Sec. 2.3.1 presents a survey

of these efforts. Although many review or survey articles on medical robotics have been
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published v, there is no survey with particular emphasis on the safety aspect of medical and

surgical robot systems to the best of our knowledge. Sec. 2.3.2 shows a list of prior works

that tried to incorporate medical device standards into the system development process, or

discussed the standards. In addition, Sec. 2.3.3 summarizes recent projects or activities that

specifically focus on the safety aspects of medical and surgical robot systems.

2.3.1 Survey on Safety

This survey reviews prior works on the safety of medical and surgical robot systems. The

scope of literature that we reviewed is limited to academic articles and books. Although

various commercial medical robot systems exist in the market, the detailed design techniques

and methods for safety are not publicly accessible, and their experience on safety is rarely

shared with the academic community. In addition, we only selected (1) articles that describe

or discuss safety, safety designs, or safety features of the system, (2) articles of which the

main concept centers around safety, and (3) review or survey articles. This survey does not

attempt to collect an extensive list of medical robot systems that have been developed so far.

2.3.1.1 Domain-specific Safety Features

We reviewed about 100 articles and book chapters and identified 8 classes of domain-specific

safety features that have been frequently used in the domain. Table 2.1 shows those 8 classes

vA sampling of review/survey or tutorials/book chapters includes Howe (1999),84 Davies (2000),85 Cleary
(2001),86 Taylor (2003),87 Pott (2005),88 Taylor (2006),3 Kazanzides (2009),33 Troccaz (2009),89 Wolf
(2009),90 Dogangil (2010),91 OToole (2010),92 Moustris (2011),93 Beasley (2012),2 and Rosen (2012).94
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of safety features. The Class column defines the class ID of safety features, which the

survey result table in the next section (Table 2.2) uses to describe classes of safety features

discussed or described in the article. Each class is categorized by: (1) the Type field where

D represents the design techniques or methods that are considered at design-time and R

indicates the run-time safety features, and (2) the HW, SW, and HCI fields that represent the

characteristics of safety features (HW: hardware-based, SW: software-based, HCI: Human-

computer interface). The Examples column shows examples of particular safety design

features.

Each class of safety features is defined as follows:

1. Mechanical Constraints: This class of safety features imposes mechanical or physical

constraints on the design of robot manipulators or the way that the robot manipulator moves.

One representative example of this class is to limit the maximum velocity of the end effector

by using high gear reduction ratios or low power actuators. This type of safety feature is

found in prior works such as Taylor (1995),95 Stoianovici (1998),96 and Zhu (2000).97

2. Hardware/Software Interlocks: Interlocks in general are commonly used to enforce

correct sequencing or to isolate two events in time.15 For example, an interlock ensures

that an event does not occur inadvertently or while a particular condition exists, or that

an event occurs before another event. Two examples of this class of safety features are

the safety circuits to power off the robot in case of emergency and the dead-man switch7.

Examples of prior works that adopted this class of safety features include Degoulange
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(1998),98 Duchemin (2001),99 Dombre (2003),100 and Bast (2006).101

3. Redundant Sensing and/or Computation: Redundancy involves deliberate duplication

to improve reliability.15 Multiple devices or hardware components that perform identical

functions can be deployed to the system. Software can contain two types of redundancy:

data (e.g., CRC, checksums, parity bits, sequence numbers) and control (e.g., algorithmic re-

dundancy; multiple versions of the same algorithm). Examples of this class of safety features

include separate monitoring subsystems, redundant sensors such as dual position/velocity

encoders, and consistency checks (e.g., consistency of measured distances between fiducials).

Typically, safety features of this class perform continuous checking of measured quantities

at run-time in the background while the system operates, and generate error events if any

inconsistency is detected. A short list of prior works with the redundant design includes

Taylor (1991),4 Kazanzides (1992a),5 Guthart (2000),102 and Hagn (2008).103

4. Human-Computer Interface (HCI): One of the principal requirements that many medical

robot systems have widely adopted is that the surgeon must be the “decision maker” at all

times. By relying on the surgeon’s experience and knowledge, the robot system can operate

more safely. To support this feature, the system should allow the surgeon to interact with the

system to control the robot, and provide information about the current status of the system

and the environment, so that the surgeon has comprehensive information and awareness of

the situation and makes decisions to stop the robot or to abort the procedure. During this

interaction, any potential chance of human errors has to be minimized.
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To interact with the system, the system can be designed to enable intraoperative control

by the surgeon (“hands on” control), or can provide devices for the surgeon such as keyboards,

joysticks, touch screens, or pedals. For the surgeon’s situational awareness, the system can

visualize the current progress or pre-planned surgical plans, or the system health status.

The system can also provide the surgeon with sensory feedback such as visual, auditory, and

tactile feedback. To avoid or eliminate human errors, the user interface design techniques

such as the confirmation of selected actions or the simple user interface with clear messages

can be used. This class of safety features has been widely used, as seen in Fig. 2.5. Examples

of articles with this safety feature are Kobayashi (1999),104 Guthart (2000),102 and Guiochet

(2002).105

5. Environment Sensing: From the early days in medical robotics, a force sensor has been

frequently used to provide safety, an improved and intuitive human machine interface, or

tactile feedback. A short list of prior works that used a force sensor include Taylor (1989),106

Kazanzides (1992b),107 Lueth (1998),108 and Rodriguez (2005).109

6. Software Constraints: The idea of software constraints is conceptually similar to that

of the mechanical constraints. Essentially, the robot control software imposes virtual

constraints on the robot in terms of various quantities such as position, velocity, acceleration,

force, and torque, in order to limit the workspace or movement of the robot. The same idea

can also be applied to the singularity avoidance. This class of safety features was used by

Taylor (1991),4 Troccaz (1993),110 Harris (1997),111 and Sanchez (2014).32
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7. Diagnostic Tests: Safety features of this class are usually performed as part of the

application or the workflow during the procedure. For example, safety checks at power-up

can be performed after power shutdown due to errors in order not to power up the robot

system unless particular safety conditions are satisfied. Registration integrity tests during the

procedure, such as verification point checks using external trackers and fiducial registration

error (FRE) checks, are other examples. Prior works that used this class include Taylor

(1990),11 Davies (1996),7 Duchemin (2001),99 and Laible (2004).112

8. Software Engineering Techniques As the robot systems become larger and more com-

plex, different types of software engineering techniques have been adopted within the

medical robotics domain. Some works tried to integrate the international standards with the

system design process (e.g., Varley (1999),113 Rovetta (2000),114 Korb (2005),115 Guiochet

(2012);116 refer to Sec. 2.3.2 for further details). Other works adopted the state-based

design to benefit from its explicit and declarative characteristics (e.g., Guiochet (2002),105

Laible (2004),112 Gary (2006),117 Lum (2009)118). Recent work has also begun to apply

formal methods to the software of medical robot systems in order to verify the correctness or

safety property of the software (e.g., Muradore (2011),119 Kazanzides (2012),120 Kouskoulas

(2013).121
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Table 2.1: Category of domain-specific safety features

Class Safety Feature Type HW SW HCI Examples

1 Mechanical constraints D/R X

Low speed or small motor torque (slow motion)
Robot at distance (workspace limitation)
Lock-down during intervention (brakes, non-backdrivable)
Manipulator safety

2
Hardware/software
interlocks

R X X

Safety circuits for power cut-off

Power enable interlocks (software and/or hardware)
Dead-man switch
Safety timeout (watchdog)

3
Redundant sensing
and/or computation

R X X

Separate monitoring subsystem
Redundant sensors (position or velocity encoders)
Consistency checks (redundant registration checks)

4
Human-computer
interface (HCI)

R X X X

Intraoperative control by surgeon (“hands on” control)
Intraoperative monitoring by surgeon (“decision maker”)
Visualization (display of plans, progress, or current status)
Devices for surgeon to interact with system
Confirmation of selected actions
Sensory feedback (visual, auditory, tactile)
Simple HCI; clear messages

5 Environment sensing R X
Force/torque sensor
Vision and/or distance sensing

6 Software constraints R X

Dynamic constraints (safety volume, virtual fixture)
Singularity avoidance
Online monitoring

Table continued
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Table 2.1 – continued from previous page

Class Safety Feature Type HW SW HCI Examples

7 Diagnostic tests R X
Initial tests (safety check at power-up)
Fiducial registration error (FRE) tolerance

8
Software engineering
techniques

D X

Integration of safety standards
State-based design (state variable, state machine)
Use of formal methods
Testing (unit-tests, workflow tests)
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2.3.1.2 Survey Results

Table 2.2 compiles a complete list of the literature reviewed for this survey. Although there

exist early work in medical robotics (e.g., Garbini et al. (1987),122 Watanabe et al. (1987),123

Kosugi (1988)124), they do not meet our literature selection criteria, as described in Sec.

2.3.1, and thus are not included in the table.

The Reference column indicates the first author and publication year of each article.

Multiple names or publication years may appear if multiple articles have been published for

the same system. The Application shows the surgical procedure or clinical area for which the

system is designed. This field is in italics if it represents the main topic of the article (e.g.,

formal methods applied, verification of the safety of virtual fixtures). The Status represents

the development status and is defined as follows:

• D: Early in the development process (e.g., prototype, phantom study, in vitro study)

• C: Performed cadaver study or in vivo experiments (e.g., animal study)

• H: Completed clinical (human) trial

• P: Released as a commercial product

The Robot is the name of the system or the manipulator used, or the names of software

packages or system architectures. The DOF shows the degrees-of-freedom of the robot. In

the case of telesurgery systems that consist of the master and the slave subsystems, this

field represents “master DOF/slave DOF”. The Type represents the class of the system,

according to the classification of medical robot systems that has been used in the domain

(e.g., Troccaz,125 Davies,85 Wolf90):
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• P: Passive (unpowered) robots or motorized tool holders

• S: Semi-active or semi-autonomous robots

• A: Active or autonomous robots

• T: Remote manipulators for telesurgery (master/slave)

The Safety Features lists the class IDs, as defined in Table 2.1, for the safety features

described or discussed in the article.
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Table 2.2: List of articles or books reviewed

Reference Application Status Robot DOF Type Safety Features

Shao 19851

Kwoh 1988126 stereotactic neurosurgery H PUMA 200 6 P 1, 4

Davies 1989127 prostatectomy (TURP) D PUMA 200 6 A 3,4

Lavallee
1989,128 1992129 stereotactic brain surgery H n/a 6 A 1,4,6

Taylor
1989,106 1990,11

1991,4 1994130
orthopaedics D IBM 7576 SCARA 5 A 2,3,4,5,6,7

Davies 1991131, 132 prostatectomy (TURP) D PUMA 200 6 A 1,3,4,6

Drake 1991133 stereotactic brain surgery H PUMA 200 6 P/A 1,2,3,4,6

Taylor 1991134 craniofacial osteotomy D Modified SCARA 3+6 A 1,3,4,5,6,7

Kienzle 1992135 orthopaedics C PUMA 560 6 A 1,4,5
Kazanzides

1992,5, 107 1993,136

1995,137 1999,138

Cain 1993,139

Mittelstadt 1993140

orthopaedics P ROBODOCr 5 A 1,2,3,4,5,6,7,8

Villotte 1992,141

Glauser
1993,142, 143 1995144

stereotactic neurosurgery D (1992)
C (1995) Minerva 6 P 1,6

Fadda 1993145 orthopaedics D PUMA 560 6 A 3,5,6

Table continued
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Table 2.2 – continued from previous page

Reference Application Status Robot DOF Type Safety Features

Matsen 1993146 orthopaedics C PUMA 260 6 A 1,4,6

Ng 1993147 prostatectomy (TURP) H SARP 4 A 1,4,6
Troccaz

1993,110 1996,125

Schneider 2001148
mechanism design D PADyC 1,2,3,6 S 6

Kavoussi 1994149 laparoscopic surgery H AESOP n/a / 6 T 4,5

Sackier 1994150 laparoscopic surgery D AESOP 6 A 1,4,6

Davies 1995151 orthopaedics D Two-link manipulator 6 S 2,5,6

Masamune 1995152 stereotactic neurosurgery
(MRI compatible) D custom 6 A 1

Taylor 199595 laparoscopic surgery C LARS 6 A 1,2,3,4,5,6

Ng 1996153 prostatectomy with
ultrasound guidance D SARUD (SARP+US) n/a A 1,2,3,4

Funda 1996154 laparoscopic surgery C PLRCM 8 A 6

Brandt 1997,155 1999156 orthopaedics D CRIGOS 6 S/A 1,4,6

Davies 1997,157

Harris 1997158 orthopaedics D Acrobot 4 S 2,4,5,6

Harris 1997111 prostatectomy (TURP) H Probot 4 A 1,3,4,6

Table continued
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Table 2.2 – continued from previous page

Reference Application Status Robot DOF Type Safety Features

Cadeddu 1998159 endourology H PAKY 7+1 P 1,4

Degoulange 199898 ultrasound device holder D HIPPOCRATE 6 A 1,2,3,4,5,6,7

Lueth 1998108 maxillofacial surgery C OTTO (PUMA 500 +
MSS SurgiScope) 6+(6/7+1) A 1,4,5,6

Stoianovici 199896 image-guided
needle access H PAKY+MINI-RCM 7+3 P/A 1

Cavusoglu 1999160 laparoscopic telesurgery D Telesurgical Workstation 6 / 6 T 2,4

Kobayashi 1999104 laparoscopic neurosurgery D laparoscopic manipulator 2 P 1,2,4

Pierrot 1999161 ultrasound device holder C Hippocrate 6 A 1,2,3,4,5,6,7,8

Reichenspurner 1999,162

Ghodoussi 2002163 telesurgery H ZEUS 2*5 / 2*7+6 T 4

Taylor 1999164 microsurgery D Steady Hand 7 S 1,2,3,4,5

Tombropoulos 1999165 stereotactic radiosurgery D CARABEAMER (planner) 6 A 1,6

Varley 1999113 endoscopic surgery P EndoAssist n/a n/a 1,2,4,7,8

Guthart 2000102 MIS P da Vinci™ 2*7 / 2*6+4 T 2,3,4,5,6,7,8

Rovetta 2000114 telesurgery H custom
(industrial robot-based) n/a / 6 T 1,2,3,4,6,8

Table continued
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Table 2.2 – continued from previous page

Reference Application Status Robot DOF Type Safety Features

Zhu 200097 teleoperated ultrasound
diagnosis robot D custom 6 / 6 T 1,4,5,6

Duchemin 200199 reconstructive surgery D SCALPP 6 S/A 1,2,3,4,5,6,7

Engel 2001166 craniofacial surgery D Staubli RX90
(modified) 6 A 2,3,4,5,6,8

Fei 20019 urology D URObot 7+4 A 1,3,4,8

Gonzales 2001,167

Guiochet 2002105 tele-echography D TER 6 / 2 T 2,4,5,8

Jakopec
2001,168 2003169 orthopaedics H Acrobot 3 S 1,4,5,6

Masamune 2001170 image-guided
needle access D custom 7+3 A 1

Dombre 2003100 reconstructive surgery C Dermarob 6 A 1,2,3,4,5,6,7

Korb 2003171 craniotomy D RoboCKA
(Staubli RX90) 6 A 1,2,3,4,5,6,8

Cleary 2004,172

Gary 2006,117 2011173 image-guided surgery D IGSTK (software) - - 8

Laible 2004112 multi-purpose
tool holder D n/a 6 P/A 1,2,3,4,5,6,7,8

Korb 2005115 biopsy D B-Rob II 4 P 1,3,4,6,8

Plaskos 2005174 orthopaedics D Praxiteles 2 A 1,2

Table continued
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Table 2.2 – continued from previous page

Reference Application Status Robot DOF Type Safety Features

Rodriguez 2005109 orthopaedics H Acrobot 3+3 S 1,2,4,5,6

Bast 2006101 craniotomy D CRANIO 6 A 1,2,3,4,5,6,8

Fodero 2006,175

Lum 2006,176 2009118 MIS C RAVEN n/a / 2*7 T 1,2,3,4,6,8

Hagn 2008103
endoscopic surgery,

neurosurgery,
maxillofacial surgery

D DLR MIRO 7 T/S/A 1,3,4,5,6

Muradore 2011119 puncturing task - - - - 8

Guiochet 2012116 rehabilitation robotics D MIRAS - - 8

Kazanzides 2012120 correctness of concurrent
data exchange mechanism D cisst (software) - - 8

Kouskoulas 2013121 safety of virtual fixtures D Neuromate - - 6,8

Sanchez
2013,177 201432

single-port
laparoscopic surgery D ARAKNES 6(7) / 2*(6+1) T 1,2,4,6
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Figure 2.5: Relative frequency of each class of safety features used. The x axis represents

the class ID of safety features, and the y axis shows a relative ratio of occurrences of each

class.

Fig. 2.5 shows how many times each class of safety features are mentioned among

the articles reviewed. The x axis shows the class ID of the safety feature and the y axis

represents a relative frequency, i.e., a ratio of the number of cases where each class of

safety features was used, to the total number of cases. According to this figure, the most

widely reported safety feature is class 4 (HCI) and the least frequently reported is class 7

(self-diagnostic tests). However, this does not imply that class 4 is more effective or safer

than class 7 because the figure shows only the relative distribution derived from the set of

articles reviewed. Rather, this figure represents the relative availability of prior works that

a system designer can refer to when developing safety features for a new medical robot

system.
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2.3.2 Medical Device Standards

Currently, there is no safety standard that specifically governs the design of medical robot

systems;33 rather, developers conform to existing standards, such as IEC-60601 and IEC-

62304, that apply to medical devices. Similarly, medical robots are subject to the same

regulatory approval processes as other medical devices. As in other safety-critical domains,

developers must invest significant engineering effort to ensure that every device they design

is safe and meets regulatory requirements. This obviously leads to an effort to follow the

standards as design guidelines, or to integrate the standards with the system design and

development process, in such a way that the conformance to the standards helps to reduce

engineering effort for the regulatory approval processes.

Table 2.3 shows a summary of prior works that applied relevant medical device standards

to the development process of medical robot systems, or presented discussions about the

standards within the medical robotics domain.

Varley (1999)113 described a set of development methodologies around IEC 1508, which

were used in practice to develop an endoscopic camera manipulator (the EndoAssist by

Armstrong Healthcare) that has been approved for commercial use both in the U.K. (by the

Medical Devices Agency) and in the U.S. (by FDA).

Rovetta (2000)114 developed a telerobotic surgery system that performed a prostate

biopsy on a human patient. The system had a set of safety features, such as emergency stop,

enabling device, safety stop, reduced speed, and interlock, and they presented how each
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Table 2.3: Medical device standards used in medical robotics

Name Description References

IEC 60601 Medical electrical equipment Rovetta,114 Fei9

IEC 60812 FMEA and FMECA Kazanzides33

IEC 61025 FTA Laible,112 Korb115

IEC 61508 Functional safety of electrical/electronic/programmable
electronic safety-related systems Varley,113 Guiochet116

IEC 62304 Medical device software – Software life cycle processes Rovetta114

ISO 10218 Robots and robotic devices – Safety requirements for
industrial robots Rovetta114

ISO 14971 Medical devices – Application of risk management to
medical devices

Kazanzides,33

Guiochet116

510(k) Premarket notification (required for U.S. FDA approval) Fei9

MDD Medical Device Directive (93/42/EEC)
Required for EU CE Mark

Laible,112 Sanchez,177

Guiochet116

safety feature complies to relevant safety standards.

Fei (2001)9 proposed a systematic method (hazard identification and safety insurance

control) to analyze, control, and evaluate system safety from software, hardware, and policy

perspectives. Their software development cycle consist of multiple phases from the system

requirements to the system integration, where requirements, design, and tests form a closed

loop to ensure safety of each phase.

Laible (2004)112 presented an architecture of a fail-safe control for robotic surgery,

which includes a set of safety functions for error detection and error reaction. The safety

requirements of the system are derived from the Medical Device Directive (MDD) and FTA.

Korb (2005)115 showed the development process of a biopsy robot for clinical studies,

and described how they applied the risk analysis and safety assessment methods (FTA) to the

56



CHAPTER 2. LITERATURE REVIEW

robot system. They also presented the seven surgical robot risks (7 SRRs) that represent the

main critical topics of surgical robots in general. The 7 SRRs include (1) image processing

and planning, (2) registration and tracking, (3) movement, (4) reliability of control software,

(5) vigilance, (6) hygienic considerations, and (7) clinical workflow.

Starting with a discussion about the characteristics of medical robot systems, Kazanzides

(2009)33 presented a tutorial overview of safety design for medical robots and discussed

three safety considerations: safety requirements, risk assessment, and safety design.

Guiochet (2012)116 applied a set of safety standards to the design process of an assistive

robot system for standing, walking, and sitting, and presented a safety case argumentation

based on the Goal Structuring Notation (GSN).38

Sanchez (2013)177 presented the European standards 93/42/CEE and 2007/47/CE that

classify medical devices into 4 classes depending on the level of risk (Class I: low level of

risk, Class IIa: average level of risk, Class IIb: high level of risk, and Class III: critical level

of risk), and described how their design framework (the ARAKNES platform) complies

with those European directives as a Class IIb system.

2.3.3 Activities

In Europe, there have been large scale projects that focus on safety and/or place significant

emphasis on safety. Table 2.4 presents a list of such projects in three different areas: medical

robotics, (non-medical) robotics, and the safety-critical domain.

The ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery)
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Table 2.4: Safety-related European projects

Area Project Name Duration Description URL

Medical
Robotics ARAKNES 2008-2012 Array of Robots Augmenting the

KiNematics of Endoluminal Surgery araknes.org

Medical
Robotics SAFROS 2010-2013 Patient safety in robotics surgery safros.eu

Robotics PHRiENDS 2006-2009 Physical Human-Robot Interaction:
DepENDability and Safety phriends.eu

Robotics RoboSAFE 2013-2016 Trustworthy robotic assistant robosafe.org

Safety-
critical OPENCOSS 2011-2015 Open Platform for EvolutioNary

Certification of Safety-critical Systems opencoss-project.eu

is an European project that aims to develop a robot system for endoluminal surgery that

can transfer laparoscopy techniques into single-port laparoscopy. As part of the project,

the ARAKNES platform with a set of safety features for both hardware and software was

developed and presented (Sanchez 2013177 and 201432).

The SAFROS (Patient Safety in Robotics Surgery) is another safety-oriented project

in medical robotics. The goal of the project was to develop technologies for patient safety

in robotic surgery, and its aims included the development of metrics for patient safety and

methods that conform to safety requirements, and the application and verification of the

developed methods to surgical scenarios. The results of the project were presented as the

SAFROS method that addressed various components of surgical robot systems, such as

medical imaging and segmentation, operating room supervision, and image registration.

Outside medical robotics, the PHRiENDS and RoboSAFE are two safety-oriented

projects in robotics. The PHRiENDS (Physical Human-Robot Interaction DepENDability
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and Safety) aimed to develop technologies and key components for robots that can physically

but safely interact with humans within the context of intrinsically safe physical human robot

interaction (pHRI). The RoboSAFE project addresses safety issues with autonomous robot

systems that interact with humans. The goal is to develop a holistic methodology for

verification and validation that enables the design of safe and trustworthy robotic assistants

using three approaches: formal verification, simulation-based testing, and formal user

evaluation.

In the general safety-critical application domain, the OPENCOSS (Open Platform for

EvolutioNary Certification of Safety-critical Systems) is one active project that targets the

automotive, railway, and aerospace industries. It is an initiative to reduce development cost

due to the safety (re)certification of safety-critical systems using model-based approaches

and incremental techniques. The main idea is to reuse safety arguments and safety evidence

of existing components to make the safety certification process more cost-effective and

scalable.

2.4 Conclusions

This chapter presented a comprehensive review on safety and safety-related topics in dif-

ferent domains, including dependable computing, software engineering, and robotics. It is

important to understand existing methods and techniques for safety from related domains

because they have been proved and used as working solutions for real-life problems and
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systems in history. However, these methods and techniques may not be directly applicable

to medical and surgical robotics due to fundamental differences in domain characteristics.

In medical robotics, we reviewed prior work that addressed or involved medical device

standards. Additionally, we extensively reviewed the academic literature from 1985 to 2014,

focusing on safety, and presented the eight domain-specific safety features as follows: (1)

mechanical constraints, (2) hardware/software interlocks, (3) redundant sensing and/or com-

putation, (4) human-computer interface, (5) environment sensing, (6) software constraints,

(7) diagnostic tests, and (8) software engineering techniques.

One of our observations on safety research is that there exists an increasing attention

to non-functional properties of complex safety-critical systems. This applies to not only

traditional safety-critical domains, but also to the robotics domain, and particularly to the

medical robotics domain. Another observation is that most of recent approaches to safety

increasingly adopt systematic methods, rather than ad-hoc or application-specific methods.

This trend is consistent with the traditional recognition that safety is not a component or

subsystem property but an emergent property that requires systems approaches.13, 15 In

addition, recent work in robotics has also begun to progressively adopt software engineering

techniques, such as software architecture, formal methods, and system design with safety-

related standards. As medical and surgical robot systems evolve, it is likely that these trends

will be further accelerated and become more obvious as the system complexity will increase

significantly. Thus, a set of new approaches and methods to deal with safety would be

essential for more dependable medical robot systems. For the rest of this dissertation, we
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use these trends as motivating and underlying design principles.
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Chapter 3

Safety Design View

3.1 Introduction

A variety of medical and surgical robot systems have been developed both in academia and

industry. Commercial medical robot systems are being used in modern operating rooms and

academic researchers build prototypes of medical robot systems for clinical experiments.

These systems directly operate on a human, or even inside the human body, and thus the

system must be designed with safety. As described in the literature review (Sec. 2.3.2),

however, there is no safety standard for medical robot systems, and the system developers

conform to existing medical device standards (e.g., IEC-60601, IEC-62304).

Building safe medical robot systems in accordance with the medical device standards

typically requires a significant amount of engineering effort. Throughout the development

process, system designers acquire knowledge and experience in safety engineering. If such
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expertise could be systematically collected in a structured manner, it would facilitate sharing

of experience on the design and development of safe medical robot systems, and help us

to reduce engineering efforts for building new systems. When sharing the design of safety

features, it is important to understand what are the essential elements of safety features and

what properties or aspects of safety features have to be described. This leads to the question

of inherent characteristics of safety features, which can be addressed with the following

questions:

• “What constitutes safety features?”: What are the essential functional elements of

safety features? What should be considered when designing new safety features?

• “How can safety features be more effectively described, presented, and shared in a

systematic way?”

• “What is the design space (alternative design options) for safety features?”

There exists a body of previous work on safety of medical robot systems, as reviewed

in Sec. 2.3.2. But, the prior work mostly focused on system- or application-specific safety

features, and did not place much emphasis on the basic concepts and essential elements

of safety features. The conceptual foundation of safety would be essential to establish a

common ground for safety research in medical robotics.

This chapter proposes a conceptual framework that identifies essential elements and

enabling components of safety features of medical robot systems with consideration of

run-time aspects of the systems. The starting point is to recognize safety as a system

property.15 We treat safety as an emergent property that has meaning only when considered
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at the system-level, not at the individual component level.13 We also take into account

issues related to the deployment of safety features, which could practically have a significant

impact on their run-time characteristics or performance. These considerations lead us to

define the two views of safety features (Sec. 3.2). Based on these two views, we define

the design space of safety features, which can simultaneously present the mechanisms and

run-time aspects of safety features (Sec. 3.3).

The conceptual framework is based on many years of experience building and observing

medical robot systems both in industry and academia, as well as a review of the medical

robotics literature (Sec. 2.3). With the proposed framework, the goal is to: (1) systematically

understand the design and characteristics of safety features, (2) enable the accumulation

of prior experiences in a structured manner, and (3) facilitate sharing of knowledge and

experience on safety within the community.

The remainder of this chapter discusses the benefits, limitations, and opportunities for

further improvement of the proposed views (Sec. 3.4), future works (Sec. 3.5), as well as a

summary of contributions described in this chapter.

3.2 Two Views of Safety Features

When designing safety features for a medical robot system, we consider two different aspects:

functional components and deployment options. The functional components describe what a

safety feature does and how it improves the safety of the system, and are usually derived from

64



CHAPTER 3. SAFETY DESIGN VIEW

a set of safety requirements. The deployment options are about how to actually implement

safety features and how and where to deploy them in the system. The design of safety

features should take into account both aspects together because they are not independent

of each other. Thus, we propose two views that reflect each aspect: the Mechanism View

and the System View. These two views enable structured descriptions of safety features with

consideration of run-time characteristics.

In this section, we describe the definition and characteristics of each view, together with

an example that illustrates how each view is applied to some representative safety features

that have been frequently used in the medical robotics domain.

3.2.1 Mechanism View

The Mechanism View (Fig. 3.1) defines functional components of safety features, and

identifies the objective or behavior of a safety feature. Essentially, this view decomposes

safety features into functional components.

3.2.1.1 Definition

The run-time mechanisms decompose safety features into four functionally essential compo-

nents that provide a basis for understanding and presenting safety features. The four essential

components are monitoring, detection, reaction, and recovery. These four components are

based on our experience and observation in the domain, but similar concepts or models

are also found in the literature. In medical robotics, Laible (2004)112 presented a fail-safe
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(a) Essential components of run-time safety mechanisms

(b) Characteristics: Fail-safe systems focus on monitoring and detection, and

fault tolerant systems put more emphasis on reaction and recovery.

Figure 3.1: Mechanism View: Four essential components of run-time safety mechanisms

with their characteristics

design and an architecture of a commercial robot system for neurosurgical applications. This

system obtained the CE marking and was certified by a German notified body (TÜV Product

Service). Its safety functions consist of two tasks – error detection and error reaction – and

each task is classified into two categories: one-time tests and monitoring. In the control

systems domain, Isermann (1997)23 presented the generic scheme of fault detection and

diagnosis systems with supervision methods. This scheme defines tasks similar to the four

essential components that we define: monitoring (“monitoring”), diagnosis and decision

(“detection”), and actions that include stop operation, reconfiguration, maintenance, and

repair (“reaction” and “recovery”).

Each of the four components are defined as follows:
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3.2.1.1.1 Monitoring

The monitoring mechanism (“What to and how to monitor?”) reads quantities or states

of interest from the system. It is the starting point of run-time safety because it makes

run-time data available to the system and allows the system, including the human operator, to

be aware of its current status and the surrounding environment. One important requirement

of the monitoring mechanism is its minimal run-time overhead on the target object being

monitored. Otherwise, the monitoring mechanism may introduce adverse run-time impact

or burden (i.e., performance degradation) on the target.

In safety engineering, Leveson (1995)15 presented a set of requirements of monitors in

general as part of the safe design techniques:

• Detect problems as soon as possible after they arise and at a level low enough to

ensure that effective action can be taken before hazardous states are reached

• Be independent from the devices they are monitoring

• Add as little complexity to the system as possible

• Be easy to maintain, check, and calibrate

3.2.1.1.2 Detection

The detection mechanism (“How to detect events?”) determines whether any event

happened based on event specifications, and if it happened, it may include a process or

subsystem that identifies detailed information about the event, such as severity, location, or
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timing. When designing and implementing a detection mechanism, it is crucial to minimize

latency between the time when an event actually happened and the time when it is determined

to have happened.

3.2.1.1.3 Reaction

The reaction mechanism (“What to do when events are detected?”) defines initial

and immediate responses to any erroneous or undesired event. Widely used methods in

the domain are the fail-safe emergency pause (“E-pause”), which stops robot motion, or

emergency stop (“E-stop”), which disables robot motor power. Both methods subsequently

generate and propagate emergency events to the rest of the system. This approach has been

accepted as a working solution, mainly due to the characteristic of the medical intervention

where a fail-safe system is often sufficient.33

The reaction mechanism is usually implemented as part of the control loop of the system,

thereby avoiding time delay in the reaction mechanism due to human intervention.

3.2.1.1.4 Recovery

The recovery mechanism (“How to recover from events?”) represents policies, strategies,

or methods to recover from erroneous states of a system. This mechanism may depend on

human operators (e.g., workflow modifications such as switching to a conventional surgery

when the robot fails), or automatically restore its normal state if the system is able to handle

or tolerate such undesired events.
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In the dependability computing domain, recovery techniques are considered as part

of fault tolerance techniques. As depicted in Fig. 2.3, there are two types of recovery

techniques: error handling that includes rollback, rollforward, and compensation, and fault

handling that involves diagnosis, isolation, reconfiguration, and reinitialization.

3.2.1.2 Characteristics

Fig. 3.1b shows characteristics of safety features that the Mechanism View can reveal. A

safety feature is considered to be fail-safe if the focus is on the monitoring and detection

mechanism, and to be fault tolerant if more emphasis is placed on the reaction and recovery

mechanisms. This distinction is not mutually exclusive, though. Kazanzides (2009)33

previously pointed out the differences between fail-safe and fault tolerant systems, noting

that a fail-safe system is often sufficient for medical interventions, but fault tolerance may

be required for more advanced surgeries. One interpretation of this statement from the

Mechanism View’s standpoint is that safety features of advanced medical robot systems

may have better support for the reaction and recovery mechanisms.

3.2.1.3 Example

The use of a force sensor, and force threshold check, is one of the most widely used safety

features in the medical robotics domain. A force sensor software module (e.g., an object

or component) periodically monitors force feedback from the environment. If the module

detects excessive force beyond a predefined threshold, it initiates the emergency pause
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or stop as an immediate reaction, which then stops or powers off the robot as quickly as

possible. In the meantime, a signal is generated to inform the system of the event so that

other parts of the system can take appropriate reactions (e.g., emergency alert for users,

transition to E-pause or E-stop state). When the cause of the excessive force event is

removed, the system can recover from the emergency state to continue its previous task.

3.2.2 System View

The System View presents a hierarchical structure of medical robot systems, as shown in

Fig. 3.2. This hierarchical structure forms a layered architecture that has been used not only

within the medical robotics domain (e.g., Kazanzides (1992)5 and Ng (1996)153), but also

more widely adopted in the robotics domain (e.g., Visinsky (1993),75 Hagn (2008),103 and

Kortenkamp (2009)178).

3.2.2.1 Definition

The System View captures design decisions on the deployment of safety features by identi-

fying the layers in which functional components of the safety features are actually imple-

mented. Those design decisions are important factors that determine the effectiveness and/or

performance of safety features, and eventually the safety of the system.

As depicted in Fig. 3.2a, the System View defines a canonical robot system architecture

with the four layers: Hardware, Control, Workflow, and Human layers. This canonical robot

system architecture is based on the generic architectures of medical robot systems, as shown
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(a) Layered architecture of medical robot systems (b) Characteristics of each layer

Figure 3.2: System View: Layered architecture of medical robot systems with characteris-

tics of each layer

in Fig. 3.3, that reflects our experience and observation on the design and architecture of

various medical robot systems. The generic architectures include two different schemes:

one for autonomous or cooperative control-based systems (Fig. 3.3a), and the other one for

teleoperation systems (Fig. 3.3b). Although these block diagrams of the generic architectures

represent highly simplified medical robot systems, they identify a set of essential components

of the system and data flow among those components in a generic manner, providing an

abstraction for the canonical robot system architecture. Conceptually similar schemes and

architectures are found in the medical robotics literature (e.g., Speich and Rosen (2004),179

Rosen (2012)94).
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(b) Teleoperation systems

Figure 3.3: Block diagrams of generic architectures of medical robot systems. Dashed blue
arrows represent data flow towards the controller, whereas solid red arrows show output
from the controller. In terms of safety, the focus is on the red arrows that could potentially
lead to hazards.

The definition of each layer is as follows:

3.2.2.1.1 Hardware Layer

The hardware layer represents mechanical and electrical components of a safety fea-

ture as well as the use of, or reliance on, physical devices such as various sensors (e.g.,

force/torque sensor, accelerometer) and external tracking devices (e.g., optical tracker). One

representative safety feature that is typically deployed to this layer is electronic circuits for

E-Stop or E-Pause.
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3.2.2.1.2 Control Layer

The control layer implements the control loop between the hardware and applications

and provides a set of application-independent, but robot-specific, services for the upper

layers (the workflow and human layers). This layer consists of two sub-layers: high-level

control and low-level control. The high-level control performs tasks such as motion or

trajectory planning and typically runs at hundreds of Hz. The low-level control refers to

the servo-level control and is often implemented on dedicated devices (e.g., firmware on

controller boards).

3.2.2.1.3 Workflow Layer

The workflow layer implements application-specific logic or data (e.g., surgical planning,

patient-specific data processing) on top of the services that the control layer provides.

When developing multiple surgical scenarios or procedures that use the same robot, the

separation of the workflow layer from the lower layers (hardware and control) facilitates the

development process by enabling the reuse of resources and services from the control layer.

It also improves the system safety by isolating errors of the workflow from the lower layers.

3.2.2.1.4 Human Layer

The human layer represents activities or interactions with the human, such as human

intervention (e.g., decision making or supervision), and thus involves issues related to

human-machine interface. Of note, the human at this layer only includes people who use the
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system (e.g., surgeons, system operators, medical personnel), and does not include patients.

3.2.2.2 Characteristics

Each layer of the System View has its own characteristics that have a profound influence

on the characteristics of the run-time behavior of the safety features. We consider four

characteristics of each layer, as illustrated in Fig. 3.2b.

Responsiveness: The hardware layer uses dedicated hardware and electronic circuits

that are optimized for specific requirements. In contrast, humans have inherent physiological

limitations in sensing and processing of sensory information (e.g., limits on the temporal

resolution for visual stimuli, bandwidth limits on the range of audible sound). This makes

the hardware layer the most responsive layer, and the human layer the least responsive one.

This concept is also found in the medical robotics literature. For example, Engel (2001)166

presented the concept of “short reaction time” as one of the four design principles of a

robot system for craniofacial surgery, and described safety features of the system in terms of

reaction time.

Repeatability: Repeatability is one important property of safety features because exten-

sive and repetitive testing can prove that the safety features work as designed, and thus meet

their safety requirements. Like responsiveness, the human layer has the least repeatable

characteristic due to physiological fatigue, whereas the other layers can be heavily and

thoroughly tested via automated unit-testing frameworks.

Flexibility: Flexibility can be considered from two respects: design flexibility (e.g.,
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how easily can we change parameters or behaviors?) and adaptation flexibility (e.g., how

well can a layer adapt to changes in environment or conditions?). For both cases, hardware

provides the least flexible options to update parameters or to change logic, whereas humans

can adapt to changes in the surrounding environment. In this sense, the hardware layer is

least flexible and the human layer is most flexible.

Intelligence: The hardware layer has highly specialized and limited “intelligence” (e.g.,

sensors, electronic elements, firmware) and thus can only handle changes of the surrounding

environment that were anticipated during design. Humans, however, have experiences and

expertise that can deal with unexpected events, and thus some safety features should rely on

a human’s decisions or supervision for safer operations.

3.2.2.3 Example

We consider the force sensor-based safety feature again that was used for the Mechanism

View example, but from a different perspective. This feature can be deployed to the system

in different ways, depending on the vertical distribution of each run-time mechanism. For

example, we can deploy all run-time mechanisms, i.e., monitoring, detection, reaction and

recovery, to the high-level control layer. The implication of this option is that this design

does not rely on a human’s decisions, and the safety checking would be done as part of

the control loop. Another option is to deploy the first three mechanisms to the high-level

control layer and to rely on the human for the recovery mechanism. In this case, the recovery

mechanism becomes less responsive, harder to test, but more adaptable to changes and can

75



CHAPTER 3. SAFETY DESIGN VIEW

take advantage of the human’s experience and intelligence.

3.3 Safety Design View

The two views defined in the previous section allow us to look at two different aspects of

safety features separately. Now we combine these two views into a two-dimensional plane,

as shown in Fig. 3.4, with the Mechanism View on the horizontal axis and the System View

on the vertical axis. This two-dimensional plane forms the design space of safety features

and we call it the Safety Design View (SDV).

Monitoring Detection Reaction Recovery 

Workflow 

Co
nt

ro
l High-level Control 

Low-level Control 

Human 

Hardware 

Figure 3.4: Safety Design View: Design space of safety features. The Mechanism View

and System View are used as the x and y axis, respectively.
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3.3.1 Definition and Characteristics

SDV is a domain-specific view to elucidate the characteristics of safety features of medical

robot systems in a consistent and systematic manner. SDV represents the design space

of safety features, as in Fig. 3.4, and we use the term “SDV” and the “design space”

interchangeably.

SDV coherently presents the two different aspects of safety features – functional com-

ponents and deployment decisions – based on the Mechanism View and the System View.

The characteristics of the two views also apply to SDV in the orthogonal directions to each

axis. For example, characteristics of the high-level control layer in the vertical axis apply

to the entire row of the layer, and the design requirements or issues with the monitoring

mechanism apply to the entire column. This coherent presentation of safety features in the

design space allows SDV to capture design decisions on how to deploy safety features into

the system by identifying the distribution (or combination) of functional components of

safety features in the design space.

3.3.2 Case Study: Safety Features of ROBODOC®

To illustrate how to apply SDV to an actual system, we selected a commercial robot system

for orthopaedic surgery, the ROBODOC® system (THINK Surgical, Inc., Fremont, CA,

USA; formerly, Curexo Technology Corporation), as a case study. This system has a solid

set of safety features that obtained FDA approval and CE marking, and has been in clinical

77



CHAPTER 3. SAFETY DESIGN VIEW

Human

Workflow

High-level Control

Low-level Control

Hardware

Servo
Control JR3 Pendant

Motors, 
Encoders

F/T
Sensor

Digital
I/O

Motion Control 
System (MCS)

AppSimulator Monitor

Auditory Visual Tactile

Figure 3.5: Simplified System View of ROBODOC (not all the components of the system
are shown)

use since 1992. More importantly, a relatively large number of academic publications about

the system and safety designs are available.

The system view of ROBODOC is depicted in Fig. 3.5 where only the key elements of

the system are shown. Other elements of the system that are not shown here include the base,

bone motion monitor (BMM), digitizer, cutting motor, and irrigation. ROBODOC fits the

canonical system model, where the low-level control is performed on dedicated joint control

boards, the high-level control (e.g., Cartesian motion and force control) is a real-time loop

on a PC, and the application (workflow) runs in non-real-time on the same PC. The surgeon

interfaces with the system via graphical menus and a hand-held control pendant; in addition

to the buttons for selecting menu items, the pendant includes pause and stop buttons that
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freeze robot motion and turn off robot motor power, respectively.

For this case study, we selected a subset of the safety features of the ROBODOC system,

which have been also repeatedly used in the other medical robot systems, based on our

safety survey results (refer to Sec. 2.3.1 for details). Sec. 6.2.1.2 presents a more complete

list of the safety features of ROBODOC. The safety features that we consider in this section

include:

1. Force threshold checks (e.g., Kazanzides (1992b),107 Dombre (2003)100)

2. Redundant sensors (e.g., Cain (1993),139 Degoulange (1998),98 Engel (2001)166)

3. E-pause and/or E-stop (e.g., Kazanzides (1992a),5 Guiochet (2002)105)

4. Hardware or software limiting of speed or torque (e.g., Kazanzides (1993),136

Jakopec (2003),169 Laible (2004)112)

5. Dynamic constraints (a.k.a., Safety volume, virtual fixture) (e.g., Kazanzides (1995),137

Davies (1995),151 Zhu (2000)97)

In order to complete the SDV, it was first necessary to define some conventions. For

example, many safety features rely on hardware to measure a physical quantity, such as

position or force, and this feedback is acquired by one of the software layers (typically

low-level or high-level control). In this case, we place solid dots in the monitoring (M)

column corresponding to the rows for the hardware layer (HW) and the appropriate software

layer (e.g., LC or HC). With this convention, we applied SDV to these safety features and

Fig. 3.6 shows the results.

The force limit checking (Fig. 3.6a) shows a typical run-time safety mechanism where
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Figure 3.6: Representation of safety features of ROBODOC using Safety Design View.
The horizontal and vertical axes correspond to the Mechanism View and the System View,
respectively.

monitoring is done at the hardware layer, whereas detection and reaction occur at the control

layer, and recovery relies on the human. Compared to this, the redundant sensor (e.g.,

encoder mismatch) has more mechanisms implemented in the low-level control layer (Fig.

3.6b). ROBODOC included both an E-stop and an E-pause, where the former is initiated by

hardware and the latter by software. On SDV, it is straightforward to discern the differences

between them, as in Figs. 3.6c and 3.6d. The motor speed limit is implemented as part of

the high-level control loop (Fig. 3.6e) because that is where the trajectory generation was

performed (this safety feature limits the commanded joint speed, which could otherwise

become excessive near a kinematic singularity); for torque-controlled robots, a torque limit

would be used instead. The safety volume (Fig. 3.6f) appears similar to the motor speed or

torque limits, but also relies on the monitoring mechanism in the hardware layer to check
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the actual robot position measured by the encoders.

In Fig. 3.6, we found a “pattern” in the reaction and recovery mechanisms of the safety

features. This was, of course, part of the ROBODOC system design and SDV “captured” it.

For example, we note that all reactions involve at least one control layer (typically to stop

motion or initiate power-off), but also affect the workflow by stopping the normal sequence

to display an error message to the user. In all cases shown, the human (surgeon) is involved

in the recovery action. For the force threshold check, the workflow also initiated part of the

recovery by automatically backing away along the measured force direction. It is possible

for recovery to be performed without human involvement, where the system silently recovers

from an unsafe condition, but that was not the case for any of the above safety features.

3.4 Discussion

Our approaches to understanding and representing safety can be summarized as three

elements: the Mechanism View, the System View, and SDV. They are designed to better

present safety features of medical robot systems by simultaneously identifying run-time

safety mechanisms and capturing design decisions on deployment options. This section

discusses some of the design details of these elements as well as some limitations that we

experienced throughout this work.

We note that not all safety features can be represented by the four components of the

mechanism view. For example, one possible safety feature is to design the robot with
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low-power motors so that it has limited speed and/or torque. This is essentially a safety

feature that is implemented by changing a property of the system (it is different from a

software-imposed speed or torque limit, as presented in Fig. 3.6e). In our experience, these

types of safety features are typically confined to hardware design properties and are therefore

outside the scope of this work.

The current definition of the system view does not yet consider another type of human

– patients – because the focus is on engineered systems. However, patient safety is also a

crucial aspect and there is a body of work in this area, i.e., physical interactions between the

robot and human, such as Haddadin (2009,71 2012180).

The locations of black dots in the design-space of safety features (SDV) captures design

decisions about the deployment options of safety features, which reflects system designers’

experience and expertise. One possible use of SDV is to document and collect representative

safety features using SDV, and establish “canonical templates” of such safety features, which

describe or define how to design, implement, and deploy safety features as “best practices”

or design guidelines.

In the design-space of safety features, one limitation is that it can capture the data and

control flow horizontally, but is hard to do vertically. The Mechanism View has a notion

of “flow” from monitoring to recovery, but the System View does not. Sometimes safety

features behave in specific orders and may need specific timing requirements. For example,

if the workflow layer detects a safety violation, it may initiate part of the reaction, but would

likely need to request the control layer to stop motion or power off the motors. The ability to
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capture this sequence of actions between the system layers is a possible extension to SDV.

Through this work, we noticed that the effectiveness of SDV depends on the SDV

user’s experience and the degree of understanding of safety features, as well as the design

and architecture of the system. Because SDV is based on the concept of abstraction (of

mechanisms) and layers (of deployment options), the deeper the understanding is, the more

effective SDV becomes.

Despite its limitation in terms of expressiveness, SDV was effective and helpful for

clearly describing, documenting, and conveying the idea and design of safety features, based

on our experience. Especially, representing safety features of ROBODOC using SDV (Sec.

3.3.2) led to in-depth design discussions of its current safety design.

3.5 Conclusions and Future Works

We presented the Safety Design View (SDV), a conceptual framework that can capture

and describe both the design-time and the run-time characteristics of safety features of

medical robot systems in a systematic and structured manner. SDV is based on two views,

the Mechanism View and the System View, each dealing with safety mechanisms and

design decisions on the deployment of safety features. The goal of SDV is to: (1) explicitly

and intuitively describe safety features in a consistent and structured manner, (2) collect

“good” practices on the design of safety features, and (3) facilitate sharing of knowledge and

experience on safety within the community.

83



CHAPTER 3. SAFETY DESIGN VIEW

There are active discussions for safety standards of medical robotics in the community.

Prior to these discussions, or for more effective discussions, it is our hope that such a

common ground as SDV could be helpful. Also, it is possible that SDV may become an

additional method for conveying the safety design within a medical device company, and

between the company and regulatory agencies.

SDV has two possible directions for further works: one is to further elaborate and

improve the design and definition of SDV, and the other is to review and organize our safety

survey results into a set of “canonical templates” of safety features.

3.6 Contributions

The contributions of this thesis described in this chapter are as follows:

1. Mechanism View (Sec. 3.2.1)

– Identification of four essential components of safety features

We identified (1) four essential functional components that define run-time mech-

anisms of safety features, and (2) the Mechanism View that consists of those four

components. The Mechanism View is not restricted to the medical robotics domain,

but is applicable to any other domain.

2. System View (Sec. 3.2.2)

– Identification of canonical architecture of medical robot systems that captures system

designer’s decisions
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We identified (1) the canonical architecture of medical robot systems, and (2) the

System View that captures design decisions on the deployment of safety features,

which determine the effectiveness of safety features, and eventually influence the

safety of the system. The System View contains domain-specific components, and is

applicable to the medical robotics domain as well as the general robotics domains.

3. Safety Design View (Sec. 3.3)

– Definition of the design space of safety features in medical robotics

We defined a domain-specific view, Safety Design View (SDV), that can explicitly

describe the characteristics of safety features of medical robot systems and can capture

deployment decisions. SDV enables the description of safety features in a consistent

and structured manner, allows to collect best practices on the design of safety features,

and facilitates sharing of knowledge and experience on safety with the community.
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Generic Component Model

4.1 Introduction

The previous chapter described the Safety Design View (SDV) that lays the conceptual

foundation for this thesis. Specifically, the mechanism view identifies the four essential

components of safety features as monitoring, detection, reaction, and recovery. In addition,

the system view defines the four layers of the canonical architecture of medical robot systems

as the hardware, control, workflow, and human layers. As will become clearer throughout

this thesis, SDV allows us to define and describe safety features of robot systems in a generic,

consistent, and structured manner.

Component-based software engineering (CBSE) is now well established in various

domains, including the automotive,181 avionics/embedded,182 and robotics45 domains. Some

key characteristics of the component-based approach include (1) generic abstraction in
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software design, implementation, and deployment, (2) flexible configuration of software

(potentially run-time reconfiguration), and (3) promotion of reuse of third-party software.183

As proved both in academia and in industry, system designers have benefited from these

characteristics when designing and developing large, complex software systems.

In robotics, numerous component-based software packages have been released to fa-

cilitate robotics research.45, 47 Representative examples include Robot Operating System

(ROS)52 and OROCOS (Open Robot Control Software).50 These software frameworks have

mostly focused on the functional aspects of robot systems, whereas the non-functional

properties are not their primary interest. Attention to these non-functional properties, espe-

cially safety, is gradually increasing within the robotics community (e.g., Corke, 2011;66

Woodman et al., 2012;81 Tadele et al., 2014;82 Jung et al., 2014184).

Although some robotics packages (e.g., OROCOS) maintain a state machine that dis-

tinguishes normal states from error states, and other packages (e.g., OPRoS53) provide a

facility for fault management and recovery, support for systematic safety is still in its infancy.

In particular, most of the software frameworks in robotics suffer from the key limitation

that they are unable to model the effects of errors coming from the outside in a systematic

and structured manner. This is primarily because error semantics of those frameworks are

confined within the component boundary.

The literature outside the robotics domain provides a body of work on component-based

semantics for safety, which explicitly models error propagation across the component bound-

ary. They are called the model-driven safety analysis techniques and the goal is to identify
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all possible cases that can potentially lead to hazardous situations, and to demonstrate that

such probabilities are sufficiently low.61 Prior work and the state-of-the-art in this field are

presented in Sec. 4.2, along with a review of state-based approaches in medical robotics and

error propagation semantics. However, those model-driven analysis methods may not be

directly applicable to component-based robot systems where component models are typically

defined at the code level by the component framework; model-driven engineering is not yet

widely adopted by the robotics community.48 Thus, to apply model-driven safety analysis

to robot systems, it would be necessary to reverse engineer existing code to obtain the

models. Although it is technically possible to perform reverse engineering, it would require

considerable effort. Recent work in robotics has begun to apply model-driven engineering

to the development of component-based robot systems to benefit from its maintainable and

deterministic characteristics.48

In medical robotics, a programming model that is commonly accepted by the medical

robotics community does not yet exist, although there are experience reports on software

engineering techniques such as agile methods (Gary et al., 2011173) and CBSE (Jung et al.,

201449). The ideal model would be based on the component-based approach, as in robotics,

with support for error propagation. It would be even more desirable if such a model is

inherently generic, extensible, and customizable so that it can be specialized in a flexible

manner to adapt to existing component models in robotics, thereby achieving reusability

and interoperability. Our work aims to develop such a model.

In this chapter, we describe a generic, abstract component model, called the Generic
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Component Model (GCM). As presented in Sec. 4.3, GCM is essentially an abstraction of

various component models with minimal structural elements, yet it is expressive enough

to represent the complete description of the system status without relying on a particular

component model. GCM enables a structured approach to designing and implementing

safety features, both at design-time and run-time. The basis of our approach is a state-based

semantics for component-based robotic systems, which explicitly represents the operational

status of the system at run-time in a systematic and structured manner with support for error

propagation. Sec. 4.4 discusses our approach in terms of the requirements for model-based

safety analysis techniques, addresses the room for improvement, and identifies differences

between our approach and the model-driven safety analysis techniques, mainly due to

domain-specific characteristics. Sec. 4.5 wraps up this chapter, and Sec. 4.6 provides a

summary of contributions of the work described in this chapter.

4.2 Related Works

Our work described in this chapter is a state-based semantics for the safety of component-

based robot systems, which can explicitly represent the run-time status of the system with

support for error propagation. The four key concepts are in italics: state-based, safety,

component-based, and error propagation. With these key concepts, this work has three areas

of related work: (1) safety analysis techniques, (2) state-based approaches to safety, and

(3) error propagation. There has been a body of research on these areas in the literature
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of different domains, such as safety engineering, safety-critical systems engineering, and

component-based software engineering. This section provides an overview of prior work on

these topics.

Sec. 4.2.1 presents an overview on various safety analysis techniques, including both

traditionally established techniques and state-of-the-art methods. Sec. 4.2.2 describes

state-based approaches to safety in the medical robotics domain, and Sec. 4.2.3 provides a

brief review on the error propagation semantics of the component models in robotics.

4.2.1 Safety Analysis Techniques

Many different safety analysis techniques have been proposed and are in use. Each method

has its own formalism with different coverage and goals, leading to different characteristics

(e.g., quantitative vs. qualitative, inductive vs. deductive). In the literature, there exist

articles that provide an overview, current practice, or comparative study of various safety

analysis techniquesi. This section presents a high-level overview of these techniques; more

detailed descriptions of each technique can be found in the literature.

Fig. 4.1 shows a classification of various safety analysis techniques based on the review

of the literature. Safety analysis techniques are divided into two categories: the traditional

methods that do not consider system architectures, and the model-driven methods that take a

system model or an architecture into account.

iThe literature includes Leveson (1995),15 Grunske et al. (2005),61, 62 Lisagor et al. (2006),185 Grunske
and Han (2008),186 Bloomfield and Bishop (2010),187 Jamboti and Liggesmeyer (2012),188 and Hatcliff et
al. (2014).42
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Safety Analysis Techniques

Traditional

State-Based

Statecharts, UML State Diagram

Petri Nets

Markov Chains

System

Preliminary Hazard Analysis (PHA)

Functional Hazard Assessment (FHA)

Event Tree Analysis (ETA)

Structural Model

Fault Tree Analysis (FTA)

Failure Modes and Effects Analysis (FMEA)

Failure Modes, Effects and Criticality Analysis (FMECA)

Hazard and Operability Studies (HAZOP)

Model-Driven

Failure Logic Modeling

Failure Propagation and Transformation Notation (FPTN)

Failure Propagation and Transformation Calculus (FPTC)

Component Fault Trees (CFTs)

State Event Fault Trees (SEFTs)

Architecture Analysis and Description Language (AADL)

Hierarchically Performed Hazard Origin and Propagation Studies

Failure Injection
Enhanced Safety Assessment for Complex Systems (ESACS)

Improvement of Safety Activities on Aeronautical Complex systems

Figure 4.1: Classification of safety analysis techniques in the literature (based on Grunske
et al. (2005)61 and Lisagor et al. (2006)185)

4.2.1.1 Traditional Methods

The traditional methods refer to a set of established safety analysis techniques that were

originally developed for mechanical or electrical systems, and then have been widely adopted

in industry, such as automotive, aerospace, and robotics.

The traditional methods are divided into three subclasses: (1) the system-level techniques,

(2) the structural model techniques, and (3) the state-based techniques. The system-level

techniques regard the system as a black-box, i.e., look at the system on a coarse and abstract

level to examine the effects of system-level failures. Because these techniques are applied to
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the system level, an internal structure of the system or a system architecture (e.g., whether

the system architecture is monolithic or component-based) is of no concern. Techniques

of this class include Preliminary Hazard Analysis (PHA), Functional Hazard Assessment

(FHA), and Event Tree Analysis (ETA). In contrast, the structural model techniques, such as

Fault Tree Analysis (FTA), Failure Modes and Effects Analysis (FMEA), Failure Modes,

Effects and Criticality Analysis (FMECA), consider the internal structure of the systemsii.

FTA and FME(C)A are among the most widely used techniques in industry. The state-based

techniques model system safety using custom states, rather than a two states abstraction

(normal vs. failed). These techniques use state-based methods to analyze and verify the

safety properties of the system. Examples of this class include Statecharts/UML state

diagram, Petri Nets, and Markov Chains. Other examples include Atlee and Gannon’s work

(1993)189 on model checking to verify safety properties for event-driven systems. Heimdahl

and Leveson (1996)190 presented the Requirements State Machine Language (RSML) that

automatically analyzes state-based requirements specifications in terms of completeness and

consistency.

These traditional safety analysis techniques predate CBSE and do not consider the

characteristics of component-based systems, such as the hierarchical structure, reuse of

components, and component composition. Although the traditional techniques can be

directly applied to component-based system without modification,61 the lack of support

for the inherent characteristics of CBSE makes the traditional safety analysis methods less
iiFor example, the FMEA analysis process begins with identifying the structural elements in a hierarchical

manner, and the decomposition of the system structures is deductively performed down to the basic functional
elements of the system.
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effective for analyzing large and complex component-based systems.61, 62

4.2.1.2 Model-Driven Methods

Since the traditional safety analysis techniques were developed before the emergence of

CBSE, they cannot leverage the characteristics of CBSE and this leads to challenges when

applying traditional methods to component-based systems. Grunske et al. (2005) presented

a summary of such challenges as follows:61

1. Composition of the safety property: Although safety is a system property that has

to be considered as a whole, the behavior of individual components in terms of safety

are also essential. Thus, safety analysis techniques for component-based systems need

to consider system safety using component behavioral models in order to construct

system-level safety cases from component-level quality properties such as correctness,

availability, and reliability.

2. Failure propagation: Component failures occur due to, not only internal failures, but

also failures propagated from other component(s).

3. Integration of development process: Safety analysis techniques must integrate into

the overall development process of the system as tightly as possible, for reuse and

compatibility purposes.

4. Complexity: When analyzing large and complex component-based systems, they

easily suffer from the state-explosion problem. It is important to find a proper level of
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abstraction that makes a model expressive enough and yet analyzableiii.

The model-driven safety analysis techniques address these challenges by incorporating

the characteristics of CBSE into the model, and this approach has been getting more attention

from researchers and practitioners.185, 191 These techniques are further classified according

to their approach: the failure logic modeling approach and the failure injection approach.

The failure logic modeling approach models the failure behavior of the system in an

incremental fashion as part of the design process. The key idea of this approach is to break

down the complex system-level analysis into the manageable failure behavior of individual

components. Then, artifacts of the traditional methods (e.g., FTs, FME(C)A tables) can be

automatically generated based on the results of the modeling process. Examples of these

techniques are Failure Propagation and Transformation Notation (FPTN) (Fenelon et al.,

199458), Hierarchically Performed Hazard Origin and Propagation Studies (HiP HOPS)

(Papadopoulos et al., 2001192), Component Fault Trees (CFTs) (Kaiser et al., 200359), Fault

Propagation and Transformation Calculus (FPTC) (Wallace, 2005193), State Event Fault

Trees (SEFTs) (Grunske et al., 200562), and Architecture Analysis and Description Language

(AADL) (Feiler et al., 2006182). Grunske and Han (2008)186 presented a comparative study

of existing safety evaluation methods with AADL from three perspectives: modeling support,

process support, and tool support. Jamboti and Liggesmeyer (2012)188 also presented another

comparison of model-based safety analysis techniques where they proposed a structured

way of combining CFTs into an integrated CFT (iCFT). Domis and Trapp (2008)64 proposed

iiiGrunske et al., (2005) states that “techniques on a practical granularity level and with a limited scope (i.e.,
expressing just the facts of interest) are necessary.”
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the Safe Component Model (SCM) that separates non-functional properties from functional

properties, and handles specification and realization separately.

The failure injection approach uses formal design models and modern model checking

techniques to automatically deduce failure modes of the system that can potentially lead

to unsafe conditions. This approach is motivated by the increasing acceptance of formal

models in industry, such as SCADE (Safety Critical Application Development Environment,

Esterel Technologies) or Simulink (Matlab), as well as the advances of formal verification

methods.185 Examples of safety analysis techniques with this approach includes the En-

hanced Safety Assessment for Complex Systems (ESACS) project and the Improvement of

Safety Activities on Aeronautical Complex Systems (ISAAC) project.

4.2.2 State-based Approaches in Medical Robotics

In medical robotics, state-based approaches have been used for safety, mostly as a means to

construct a system with deterministic and structured behaviors. Kazanzides et al. (1992)5

presented a state-based approach devised for a commercial orthopaedic surgery robot, called

ROBODOC®. This state-based approach controls the procedural flow of the system by the

values of state variables. This approach was empirically proven to be effective for reducing

the complexity of the application program, and also facilitated structured error or exception

handling mechanisms.

Cleary et al. (2004,172 2006117) adopted the state machine as the fundamental design

principle for inherent safety, determinism, repeatability, and testability, and applied it to
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the development of an open-source component-based software system for image-guided

surgery applications, called the Image Guided Surgery Toolkit (IGSTK). Other examples

that adopted the concept of states and state machine as part of the system design principle

include Varley (1999),113 Guthart and Salisbury (2000),102 Guiochet and Vilchis (2002),105

Korb et al. (2003),171 Laible et al. (2004),112 and Fodero et al. (2006).175

There is also a set of prior work that applied the traditional safety analysis techniques,

such as FMECA and FTA, to the design process of medical robot systems. A short list

of examples includes Pierrot et al. (1999),161 Guiochet and Vilchis (2002),105 Korb et

al. (2003),171 Laible et al. (2004),112 and Korb et al. (2005).115 However, no prior work

that adopted the model-driven safety analysis techniques is found in the medical robotics

literature, to the best of our knowledge. This is partly because CBSE has not yet been

adopted as a standard programming model within the medical robotics domain, although

there is a recent report on experiences with CBSE within medical robotics (Jung et al.,

201449).

4.2.3 Error Propagation Semantics

As described in the previous sections, the model-driven safety analysis techniques for

component-based systems include a semantics for error or failure propagation. Among

these techniques, the AADL Error Annex194 has recently attracted much attention because

of its success and wide adoption in the avionic and automotive domains.186 The AADL

Error Annex allows system designers to annotate AADL components with dependability
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information, such as error propagation policies and fault-tolerance policies. This information

is defined by the AADL error models that also define the general hardware and software

component error models.

In contast, no component model with the concept of error propagation is found in the

robotics domain, despite a proliferation of component-based robot software frameworks.

Some component models in robotics, such as Orocos and OPRoS, maintain a state machine

that makes a distinction between normal and non-normal states. However, those component

models are introspective, i.e., they only consider errors generated within the component

boundary, and do not take into account (the effects of) errors propagated from other compo-

nents. This lack of error propagation semantics limits the expressiveness of the component

model because components typically require data and/or services from other components.

Recently, Tadele (2014)82 recognized the significance of component interaction and error

propagation semantics in the context of risk assessment and safety analysis.

Fig. 4.2 illustrates an overview of the state-of-the-art and emerging areas of different

domains – medical robotics, robotics, and outside robotics – in terms of three topics: (1)

the adoption of CBSE, (2) support for error propagation semantics, and (3) research on the

model-based safety analysis techniques. The check mark represents that a topic has been

already adopted or established in a domain, and the circle indicates emerging topics or areas

for improvement. In medical robotics, it is our understanding that there is no consensus

on a standard programming model within the community, and that error propagation and

model-driven safety analysis techniques have not yet been investigated. In robotics, CBSE
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is a de facto programming model. In spite of the wide adoption of CBSE by researchers

and practitioners, no component model with support for error propagation is found. Outside

robotics, i.e., in the general software engineering domain including CBSE, the state-of-the-

art research activities center around the model-driven safety analysis techniques.

This figure leads to two obvious areas for contributions: (1) the introduction of the

concept and semantics of error propagation to the robotics domain, and (2) the proposal

of CBSE and the error propagation semantics as an effective programming model to build

large, complex, and safety-oriented medical robot systems.

Domain

Topics

CBSE Error
Propagation

Model-driven
Safety

Analysis

Medical Robotics O O

Robotics
(Non-medical) 4 O

Outside Robotics
(General SW Eng) 4 4 O

Figure 4.2: Room for improvement for each topic in each domain (SW Eng: Software Engi-
neering, 4: already established or adopted,O: emerging areas, i.e., room for improvement)
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4.3 State-Based Semantics for

Component-based Software Systems

The essential basis of Component-based Software Systems (CBSS) is a component model.

A component model defines what components are (semantics), how components are defined,

constructed, and represented (syntax), and how components are composed, assembled, or

deployed (composition).195 There is a wide variety of component models. A short list

of such component models outside the robotics domain includes Fractal,196 Palladio,197

AUTOSAR,181 and AADL.182 Due to its wide variety, there exists a field of study in CBSE

on the identification and classification of component models (e.g., Lau and Wang, 2007;195

Birkmeier, 2009198).

In robotics, component models are defined by robot software frameworks or middlewares

that provide the run-time environment for robot systems. A few examples of such software

packages include ROS,52 Orocos,50 BRICS,48 cisst,49 and OPRoS.199 However, the error

semantics of those component models are confined within the boundary of components, and

do not explicitly handle errors caused by other components through component interaction,

i.e., error propagation. Error propagation is a prerequisite for improved safety under

component-based robot systems because errors or failures of one component may cause

adverse effects on other components via connections between the two components.

The goal of the work described in this section is to define a generic semantics that
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explicitly captures and presents the operational status of component-based robotic systems

at run-time with support for error propagation. In Sec. 4.3.1, we first define the Generic

Component Model (GCM) that enables us to present the concepts without delving into

the details of a particular component model or implementation details. The concept of

two layers that enable the separation of concerns is introduced in Sec. 4.3.2. The GCM

defines the states and state machine (Sec. 4.3.3) that are adapted from the fault-error-failure

model of the dependability formalism.14 Each key element of the GCM is assigned with an

instance of this state machine and its run-time state is represented by state variables (Sec.

4.3.4). Sec. 4.3.5 presents the event that plays a key role in initiating state transitions. Sec.

4.3.6 introduces the filter, a unit of computation that provides a generic representation of

arbitrary algorithms and generates events based on the results of computation. Sec. 4.3.7

describes the error propagation semantics that defines how an event from one component is

propagated to other components in a systematic and structured manner. Sec. 4.3.8 presents

the state-dependent operational modes that enable different component behaviors depending

on the component state.

4.3.1 Generic Component Model

The Generic Component Model comprises the structural elements and the state-based

semantics to represent the operational status of component-based robot systems in an

explicit, structured, and component model-independent manner.

The starting point is to identify a minimal but essential set of structural elements that
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can be used as an abstraction of various component models. Such an abstraction with the

minimal structural elements would enable us to describe and represent the operational status

of the system in a generic and component model-independent manner. This leads us to visit

the definition of a component. One widely accepted definition is by Szyperski (2002):43

“A software component is a unit of composition with contractually specified interfaces and

explicit context dependencies only. A software component can be deployed independently and

is subject to third-party composition.” Lau and Wang (2007)195 presented another concise

definition: “A generally accepted view of a software component is that it is a software unit

with provided services and required services. The interface of a component consists of the

specifications of its provided and required services.” The commonalities between these two

definitions are that a component has interfaces, and that these interfaces define services. This

leads to the definition of the minimal structural elements: a provided interface and a required

interface, as depicted in Fig. 4.3. A component may have zero, one, or multiple instances

of provided and/or required interfaces. For generality, the minimal structural elements of

GCM does not include more fine-grained structural elements than interfaces. However,

this abstraction is generic enough to apply to different robotics frameworks. For example,

provided interfaces in cisst49 are collections of command execution elements that provide

related services; in this case, one GCM provided interface would map to one cisst provided

interface (collection of services). The same is true for cisst required interfaces. In contrast,

a ROS52 node (component) provides individual services and topics and thus each service or

topic would correspond to a separate GCM interface (e.g., a topic publisher is considered a
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<<component>>
PR

Figure 4.3: The Generic Component Model: The only structural elements are the provided
interface (“P”) and the required interface (“R”).

provided interface and a topic subscriber is considered a required interface).

GCM models service dependencies between interfaces as connections, i.e., point-to-

point communications. The notion of point-to-point communication is a generic, abstract

concept that is independent of a particular type of data communication schemes, such as

publish/subscribe, message passing, remote invocations, notifications, shared spaces, and

message queuing.200 For example, cisst connections and ROS services can be directly

mapped to GCM connections. In case of the ROS topic, multiple GCM connections can be

defined between a topic publisher and each of the topic subscriber(s).

With the structural elements, the GCM defines the state-based semantics to systemat-

ically capture and represent the operational status of components with support for error

propagation. The operational status is described in accordance with the state-based se-

mantics, which is in essence represented by the internal processing pipeline. As shown in

Fig. 4.4, the internal processing pipeline defines how data from other components or the

environment are processed, how events are generated, and what initiates states transitions.

Input Filter Event State
Generates Changes

Figure 4.4: Internal processing pipeline of Generic Component Model. Inputs from other
components or from the environment are processed by filters, which generate events that
may possibly initiate state changes.
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The internal processing pipeline consists of four elements: state, event, filter, and input.

These elements are described in more detail in the following sections.

4.3.2 Two Layers and Two Views

One of the design principles of modern software engineering is the separation of concerns,

which brings benefits such as reduced complexity, improved reusability, and simpler evo-

lution.201 In the GCM, this principle leads to a system architecture that splits the system

into two layers: the component framework layer and the application logic layer. These two

layers are defined within the boundary of a GCM component, as shown in Fig. 4.5.

The component framework layer represents the infrastructure of the system, which

provides the application with the component-based environment and related services such

as component composition and run-time management. Each component framework has its

own definitions for the component model, the thread execution model, or data exchange

mechanisms, which have nothing application-specific. That is, this layer has the framework-

Required

Interface(s)
Processing

Provided

Interface(s)

Component Framework

Application Logic

Figure 4.5: Two layers of Generic Component Model. The component framework layer
provides application-independent but framework-specific services, and the application logic
layer uses these services to implement application-specific logic or algorithms.
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<<component>> Component Framework Required

Interface(s)
Processing

Provided

Interface(s)

Application Logic

= +

System View Framework View Application View

Figure 4.6: Two views of Generic Component Model. The framework view and the
application view represent the status of the component framework layer and the application
logic layer, respectively. These two views are combined into the system view that presents
the overall status of the system.

specific but application-independent characteristics.

The application logic layer uses services provided by the component framework layer to

implement application-specific content via three elements: required interfaces, processing

unit, and provided interfaces. The interfaces enable inter-component data exchange and the

processing unit implements the application-defined behavior of a component, which leads to

the framework-independent but application-specific characteristics of this layer.

These two layers allow the system designers to consider the system from two different

viewpoints, and help the GCM manage events of each layer separately. This separation

of layers naturally leads to two different views of the system: the framework view and

the application view, as depicted in Fig. 4.6. Each view only considers the component

framework layer and application logic layer, respectively, and the characteristics of each

view follow those of each layer. These two views are “combined” into the system view that

represents the overall status of the system (refer to Sec. 4.3.4 for how to combine these two

views).
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4.3.3 States and State Machine

The GCM allows us to describe the run-time information about CBSS without relying on a

particular component model. The question here is how to define the “run-time information”

in such a way that it is not only expressive enough to describe the current status of a system

in a comprehensive manner, but also generic enough to capture various properties of a

system in a consistent way. One approach to achieving both goals – expressiveness and

generality – is to use states as a means of abstraction.

The semantics of the GCM state machine is based on the dependability formalism of

the dependability computing domain,14 which comprehensively defines the fundamental

concepts and taxonomy to address the dependability and security issues of computing

systems. This formalism includes the pathology of failure that defines the creation and

manifestation mechanisms of faults, errors, and failures. These are the three major threats to

dependability and Table 4.1 shows their definitions. There is a causal relationship among

these threats: faults are activated and cause one or more errors, errors are propagated to the

service interface, a service failure occurs, and the failure causes faults in the other systems.

Salfner et al. (2010)202 also presented a figure that clearly illustrates this causal relationship,

as shown in Fig. 4.7.
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Table 4.1: Definitions of three major threats to dependability and security14

Threat Definition

Fault Adjudged or hypothesized cause of an error

Error Part of the total state of the system that may lead to its subsequent service failure

Failure Event that occurs when the delivered service deviates from correct service

Fault
Undetected

Error Detected

Error

Failure

Symptom

activation

detection

affects external state

affects 
external 

state
side effects side effects

Figure 4.7: Interrelations of faults, errors, symptoms, and failures (adapted from Salfner
(2010)202)

4.3.3.1 States

The GCM defines three states: Normal, Warning, and Error. Normal is an initial state where

no threat is present and the system is working properly and correctly as specified. Warning is

an informative state where an error has not yet occurred but may possibly happen, and the

system is still working properly up to some extent (e.g., degraded mode or performance).

With this state, the system can have a chance to prevent errors in advance by reacting to

events accordingly (e.g., fault prevention using prognostic information). Error is a state

where the delivered service deviates from the correct service. Note that this definition is

slightly different from the original definition where there is a distinction between an error
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Table 4.2: Definitions of states in Generic Component Model

State Definition Description

Normal A state where no threat is present and
the system is working properly as spec-
ified.

Initial state; A state which is free from
any abnormal event.

Warning A state where an error has not yet oc-
curred but may possibly happen.

Informational state; Services are pro-
vided as in the Normal state.

Error A state where the delivered service de-
viates from the correct service.

Failure; Cannot guarantee any service.

and a failure. This is because the definition of services is different. In the original context,

a service is defined for the system, whereas a GCM service is defined for every essential

structural element of the system, i.e., components and interfaces.

Table 4.2 summarizes the definitions of the three states with more intuitive descriptions.

4.3.3.2 State Machine

The GCM state machine is an event-driven finite-state machine with the three states –

Normal, Warning, and Error – and six state transitions among the states, as shown in

Fig. 4.8. Transitions are defined between two different states; given a state, any state

except the same state can be the next state. The GCM state machine does not explicitly

define transitions to the same state, although the GCM handles such transitions by updating

information about the event that initiated the last state transition (refer to Sec. 4.3.5 for more

details).

There are two types of state transitions: transitions for error detection and transitions
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NORMAL WARNING ERROR

Error recovery

Error detection

Figure 4.8: State machine of Generic Component Model: Solid arrows represent transitions
due to the occurrence of abnormal events, whereas dashed arrows show transitions when
recovering from non-normal states.

for error recovery. The former includes transitions such as Normal to Warning/Error and

Warning to Error, and the latter includes the other three transitions, i.e., Error to Warn-

ing/Normal and Warning to Normal. A transition may or may not occur when an event is

generated, and the state machine maintains information about the event that caused the last

state transition. More details about this event maintenance mechanism are provided in Sec.

4.3.5.

4.3.4 State Variables

The GCM defines the state variable to indicate the current state of the GCM state machine.

One state variable is defined for each instance of the GCM state machine. A complete set of

state variables represents the instantaneous status of the entire system.

The GCM defines two different types of state variables. The first type is the actual state

variable that represents an instance of the GCM state machine. State variables of this type

are simply called “states” and are marked as sX(Y) where X indicates the element that the

state variable is associated with, and Y denotes arguments specifying the element X and
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Required

Interface(s)

Provided

Interface(s)

Component Framework Layer

Application Logic Layer

sA(i)sR(i,j)

ŝ(i,k)

sF(i)

Processing

ŝ(i)

sP(i,k)

Figure 4.9: State variables of Generic Component Model: sR(i, j), sA(i), sF(i), and sP(i, k)
are the actual state variables associated with instances of the GCM state machine, whereas
ŝ(i) and ŝ(i, k) represent the derived state variables, for component i, required interface j,
and provided interface k

timestamp. The second type is the derived state variable that is not associated with an actual

instance of the GCM state machine, but is derived from other state variables. To indicate

derived state variables, we use the hat symbol notation without a subscript: ŝ(Y).

Fig. 4.9 illustrates a complete set of state variables that represent the status of a GCM

component. The following sections describe each state variable.

4.3.4.1 Component State

GCM defines the component state that represents the current status of a component. Because

the GCM has the two views (the framework and application views) and the overall view

(the system view) (see Fig. 4.6), the complete description of component states requires three

different state variables that correspond to each view. Given the i-th component of a system
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at time t,

ŝ(i; t) := A component state in the system view (4.1a)

sF(i; t) := A component state in the framework view (4.1b)

sA(i; t) := A component state in the application view (4.1c)

Note that the hat notation is used for ŝ(i; t) to indicate that it is a derived state variable.

Each state variable follows the state definition in Table 4.2 and its value is one of Normal,

Warning, or Error. For brevity, we henceforth use N, W, and E, respectively. A set of states

is also defined to represent multiple component states in a vector form:

Ŝ(t) := A set of s(i; t) = {ŝ(1; t), ŝ(2; t), · · · }

SF(t) := A set of sF(i; t) = {sF(1; t), sF(2; t), · · · }

SA(t) := A set of sA(i; t) = {sA(1; t), sA(2; t), · · · }

Note that ŝ(i; t) has a correlation with sF(i; t) and sA(i; t), i.e., ŝ(i; t) is a function of

sF(i; t) and sA(i; t). We represent this relationship using the state product operator, ⊗:

ŝ(i; t) = sF(i; t) ⊗ sA(i; t) (4.2)

Given two states s1 and s2 as operands, Fig. 4.10a presents the definition of the state product

operator. If either s1 or s2 is N, the operator takes the other state variable as output. If either

is E, the output becomes E regardless of the other state variable. The output is W if both

states are W. Fig. 4.10b shows the pattern of the state product operation. Conceptually,
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the operator behaves in the same way as the “max” operator in terms of severity, i.e., given

two states, this operator chooses the one that is more “severe”. Fig. 4.10c illustrates the

state transformation. When a component queries another component’s state, the state is

“transformed” into either N or E. This is because the Warning state is an informational state

and does not matter to the other components as long as the service is provided correctly.

This helps to simplify not only the behavior of components that rely on other component’s

services, but also the GCM error propagation semantics, as described later in Sec. 4.3.7.

The original, non-transformed states are also available.

s1
s2 N W E

N N W E

W W W E

E E E E

(a) State product operation

s1
s2 N W E

N N W E

W W W E

E E E E

(b) Pattern of the operation

s1
s2 N W E

N
N

W

E E

(c) State transformation

Figure 4.10: Definition of state product operation

4.3.4.2 Interface State

The GCM also defines the interface state that represents the current status of an interface,

such as availability, correctness, and timeliness. One state variable is assigned to each

instance of interfaces, and two types of state variables are defined to handle provided
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interfaces and required interfaces separately. For the i-th component at time t,

sR(i, j; t) := A state of the j-th required interface in the application view (4.3a)

sP(i, k; t) := A state of the k-th provided interface in the application view (4.3b)

As in the component state, each state variable follows the state semantics described in Table

4.2 and its value is one of N, W, and E. A set of states is also defined to represent multiple

interface states:

SR(i; t) := A set of sR(i, j; t) = {sR(i, 1; t), sR(i, 2; t), · · · } (4.4a)

SP(i; t) := A set of sP(i, k; t) = {sP(i, 1; t), sP(i, 2; t), · · · } (4.4b)

In contrast to the component state, the interface state is defined only in the applica-

tion view. That is, all services are considered to be part of the application. Although some

component-based frameworks may provide framework-level services such as dynamic com-

ponent composition or component reconfiguration, GCM handles such framework-specific

services as part of the application for generality purposes.

4.3.4.3 Service State

Another state variable in the GCM is the service state. The service state variable is a derived

state variable, and indicates whether a provided interface can provide its service correctly
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considering its service dependencies. An individual service state variable is defined for each

provided interface instance. For the i-th component at time t, the service state is defined as

follows:

ŝ(i, k; t) := A service state of the k-th provided interface in the application view

A set of service states is also defined, as for the other state variables:

Ŝ(i; t) := A set of ŝ(i, k; t) = {ŝ(i, 1; t), ŝ(i, 2; t), · · · }

The definition of a service state variable varies depending on its service dependencies.

There can be cases where a service can be provided without relying on other resources, i.e.,

a service state variable that is independent from other state variables. For example, a service

that provides sensor readings for other components without computation does not need any

computation resource (e.g., CPU time). Such service states are defined as provided interface

states:

ŝ(i, k; t) = sP(i, k; t)

It is also possible that a provided interface requires other resources such as data from other

components or computation time to execute application-specific logic. In such cases, the

service state for the provided interface depends on other state variables. For example, a

trajectory generator component provides a service that allows another component to specify

the next goal position, and generates as output interpolated setpoint positions at a higher

rate. This trajectory generator component connects to a PID control component that accepts

setpoint positions as its control input. In this case, the trajectory generator component may
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fail to provide its service if (1) the connection between the trajectory generator component

and the PID control component is disconnected (sR becomes E), (2) the processing thread

crashes (sF becomes E), or (3) an exception is thrown when executing the application-

specific logic and the trajectory component fails to generate outputs (sA becomes E). This

service dependency information is represented using the state product operator:

ŝ(i, k; t) =
[
sR(i, j; t) ⊗ sF(i; t) ⊗ sA(i; t)⊗

]
sP(i, k; t) (4.5)

where the first three states between [ and ] are optional terms that are determined by

dependencies of the service. The order of states does not matter because the state product

operation is commutative.

The service state is the key element that enables error propagation in the GCM. Sec.

4.3.7 provides further details on the GCM error propagation.

In summary, Table 4.3 presents a complete list of state variables in the GCM. This

table essentially shows a “snapshot” of the run-time status of the component-based systems

at time t, thereby enabling the description of the status of a system in a structured and

comprehensive manner.

For convenience, we henceforth omit the parameter t from the list of state variable

arguments, except for cases where this would lead to confusion.
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Table 4.3: State variables of Generic Component Model (assumed at time t)

Id Component
Name

Component State Interface State

Service State
System
View

Framework
View

Application
View

Required
( j-th)

Provided
(k-th)

i Name ŝ(i) sF(i) sA(i)
sR(i, j)
SR(i)

sP(i, k)
SP(i)

ŝ(i, k)
Ŝ(i)

Entire System Ŝ SF SA - - -

4.3.5 Event

As described in Sec. 4.3.3.2, the GCM state machine is an event-driven finite-state machine

where events can directly change the status of the system by initiating state transitions. In

the GCM, the event semantics define what an event consists of, and how to define events.

The GCM event has five attributes: name, severity, transition, timestamp, and description.

The name is a unique identifier of an event and no duplicate name within a system is allowed.

The severity is the degree of criticality used for determining the relative priority of events.

The transition defines a set of possible state transitions that may occur due to an event, and

each transition is represented as a pair of the current state and the next state. The GCM

state machine (Fig. 4.8) defines six possible transitions: N → W, N → E, W → E and

E → W, E → N, W → N. The timestamp is the time when an event is generated, and

the description can include additional information about an event (e.g., error description

in human readable form). The first three attributes – name, severity, and transitions – are
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Table 4.4: Attributes of event in Generic Component Model

Id Attribute Definition Determined at

i

Name Unique identifier

Design-timeSeverity Relative degree of criticality

Transitions State transitions that may occur due to this event

Timestamp Time when an event was detected or generated
Run-time

Description Extra information

specified by the system designer as part of the system development process, whereas the

other two – timestamp and description – are determined at run-time. Table 4.4 summarizes

the five attributes of GCM events.

System designers define GCM events after performing a safety analysis that identifies

potential hazards of the system. Events are associated with hazards in such a way that

hazards can be prevented in advance by detecting associated events. The design-time event

attributes – name, severity, transitions – are determined based on the results of the safety

analysis and the system designer’s knowledge and experience. The GCM event does not

specify an algorithm or logic for event detection. System designers define event detection

algorithms using the GCM filter, which is described in the next section (Sec. 4.3.6). Once

GCM events are defined, all events are registered to the system so that the system will be

able to generate and handle these user-specified events.
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4.3.5.1 Onset and Completion Event

The GCM event semantics defines two different types of events: onset and completion events.

The onset event refers to the occurrence of an event, and the completion event represents

the resolution or completion of the event handling process for an associated onset eventiv.

The idea is to represent an event and related activities in terms of the two individual GCM

events and handle them separately. This distinction enables the structured and systematic

management of events.

By convention, the name of a completion event has a prefix “/”. For example, a

sensor_error event can be handled as a combination of two separate events: a sensor_error

event – as the onset event – that is generated if any sensor error is detected, and a

/sensor_error event – as the completion event – that is generated after the system has

recovered from the sensor error. In terms of the Mechanism View of SDV (Fig. 3.1), the

onset events are used as part of the monitoring, detection, and reaction mechanisms, whereas

the completion events are associated with the recovery mechanism.

It is not always possible to handle an event with a combination of an onset and a

completion event. Some events do not necessarily cause adverse effects on the system, and

thus the completion event is unnecessary or undefined. In such cases, completion events can

be undefined because these events do not typically initiate state transitions.

ivTo avoid confusion, the term “event” is used to refer to events in general, whereas the “GCM event” is
used to represent events defined by the GCM event semantics.
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4.3.5.2 Outstanding Event

Each instance of the GCM state machine maintains information about an onset event that

caused the last state transition, and this event is called the outstanding event. The outstanding

event is undefined if the current state is N; otherwise, it is set as the latest onset event that

caused a state transition to the current state. That is, given a time t and a state variable s that

is associated with an instance of the GCM state machine sm, an outstanding event eout(sm; t)

of the state machine is defined as follows:

eout(sm; t) =

ei if s = W or E
undefined (null) if s = N

where ei is the i-th GCM event registered to the system, which has caused the latest

onset event that caused the state transition. Each GCM state machine maintains only one

outstanding event at a time. The outstanding event changes if (1) a new GCM event of equal

or higher severity occurs, or (2) the current outstanding event is resolved. This implies that

newer GCM events of lower severity are not handled until the current outstanding event is

resolved. Furthermore, the current outstanding event can change even if it is not resolved

yet. The rationale is that handling the root cause of higher-priority events may also resolve

the problems causing lower priority events.

4.3.6 Filter

The previous sections described the state and event semantics in GCM. The state semantics

enables the generic representation of the system status, and the event semantics provides the
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event-driven mechanism that can explicitly capture and change states. The next question is

how to generate events in a generic and consistent manner. The GCM events are generated

by an element called a filter.

A filter is an abstract unit of computation that can represent any arbitrary algorithm and

can generate events as a result of computation. As shown in the internal processing pipeline

of the GCM in Fig. 4.4, the filter is the element between the input (from other components

or from the environment) and the event. The filter is based on the filter mechanism for the

fault detection and diagnosis of component-based robotic systems (Jung and Kazanzides,

2010).203 To avoid confusion, we henceforth adopt the term GCM filter to distinguish it

from the filter of the prior work, which we call the original filter. The original filter consists

of three generic elements: (1) one (or more) input(s), (2) a filtering algorithm, and (3) one

(or more) output(s). Essentially, the original filter takes in inputs, executes the filtering

algorithm defined and implemented by the system designers, and generates outputs. This

filtering mechanism requires a history buffer, which is a time-indexed circular buffer that

contains a history of data. Fig. 4.11 depicts the original filter and history buffer.

The GCM filter is derived from the original filter with additional features to support

the GCM event semantics. This extension includes (1) the specification of a state machine

associated with the GCM filter and (2) support for the event semantics of the GCM. After

the GCM filter is deployed, events generated by the filter are handled by a state machine

associated with the filter. It is possible to associate multiple filters with the same state

machine such that different events are generated using different filtering algorithms. As in
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Filtering

Algorithm

in(1)

in(2)

in(m)

out(1)
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(a) Filter

...
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0.2 3.8... ...t(k+1) 0.3 1.9 4.50.53 1.1

2.30.3 2.4
0.5 3.2... ...t(k) 0.4 1.3 4.20.50

...

out(n)...out(1)in(m)...in(1)T

(b) History buffer

Figure 4.11: Filter and history buffer (Jung and Kazanzides 2012203). A filter is comprised
of input(s), a filtering algorithm, and output(s). A history buffer maintains the history of
timestamped data.

Filter

Filtering

Algorithm

in(1)

in(2)

in(m)

out(1)

out(n)

eventState Machine

Figure 4.12: Filter of Generic Component Model. The GCM filter extends the original filter
and filtering mechanism to support the event semantics of the GCM. This extension includes
the specification of a state machine associated with the filter, which handles GCM events
that this filter generates. Note that the state machine in the filter is not an instance of the
GCM state machine – it is a specification of a state machine associated with the filter.

the original filter and filtering mechanism, GCM filters can also be cascaded into a filter

pipeline by using output(s) of a GCM filter as input(s) of another filter. Fig. 4.12 illustrates

the GCM filter where the extension is represented in green.

For the i-th component at time t, the p-th GCM filter associated with the component

state is represented as follows:

f p
X (i; t; in(i, p; t))

where X is F or A for the framework or application view, respectively, and in(i, p; t) is

a set of inputs to the p-th filter, i.e., {in(i, p, 1; t), · · · , in(i, p,m; t)} (m: total number of
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inputs defined for the p-th filter). A collective form, FF(i; t) and FA(i; t), is also defined to

represent a set of GCM filters.

For the j-th provided or required interface of the i-th component at time t, the q-th GCM

filter associated with the interface state is defined as follows:

f q
Y (i, j; t; in(i, j, q; t))

where Y is R or P for required or provided interfaces, respectively, and in(i, j, q; t) is a set

of inputs to the q-th filter, i.e., {in(i, j, q, 1; t), · · · , in(i, j, q, n; t)} (n: total number of inputs

defined for the q-th filter). FR(i, j; t) and FP(i, j; t) are also defined to represent a set of

GCM filters.

The GCM filter semantics defines a particular order in executing filter algorithms. This

order considers the two layers of GCM components and state variables shown in Fig. 4.9,

and applies to the four groups of filters, FF , FA, FR, and FP. The order of filter execution is:

FF −→ FR −→ FA −→ FP

The rationale of this order is as follows:

1. FF: To ensure that the component-based framework works correctly (e.g., no thread

crash, timeliness of thread scheduling).

2. FR: To make sure that the required services are available, i.e., the service is being

provided by other components properly (e.g., no disconnection, service availability).

3. FA: To check if the application layer has any issue (e.g., no logic error, no application-

level exception).
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4. FP: To determine the service states of provided interfaces for other components.

Within a group, the order of filter execution is determined by the filter ID. For example,

the order will be alphabetic or numeric if the type of the filter ID is defined as a string or

number, respectively. One possible extension to the current design is to tag a filter with a

property that specifies a priority, and to execute filters based on the priority. This would

allow designers to have more fine-grained control over the execution order of the GCM

filters at run-time.

4.3.7 Error Propagation

When an event occurs within a component, the error behavior of a system is determined by

the error model of individual components and the interactions between components. Error

propagation defines how abnormal events are propagated to other components, how states

are transformed during the propagation process, and how errors in one component affect the

status of the other components. This section describes a semantics for error propagation in

the GCM.

The goal of error propagation is to inform the other components of the occurrence

of error events so that the system can react to error events and update its run-time status

accordingly in a timely manner. The starting point of the error propagation semantics in the

GCM is the service state (Eq. 4.5) that comprehensively represents the service availability

of a provided interface with consideration of resource dependencies.

The error propagation is initiated if a service state, ŝ(i, k), changes to the Error state
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<<component>>
B

<<component>>
A

R1P1 P1

Figure 4.13: Minimal two-component system to illustrate error propagation in GCM

(N or W → E) or to the Normal state (E or W → N). Changes to the Warning state

(N or E → W) do not lead to error propagation because the service in the Warning state

is still considered to be correct from the external component’s perspective, although the

service is possibly provided in a degraded mode. Semantically, this is equivalent to the

state transformation, as shown in Fig. 4.10c, where W is considered as N from the outside.

Once initiated, the error event is forwarded to a (set of) required interface(s) connected

to the provided interface associated with the service state. Then, the state(s) of required

interface(s) becomes Error because its required service is unavailable. In this way, the error

events are propagated to other components through connections between components, and

the run-time status of connected components are affected by error propagation.

To illustrate error propagation, we consider a minimal system that consists of two

connected components, as depicted in Fig. 4.13, where Component A has one provided

interface P1 and Component B has one required interface R1 and one provided interface P1.

We are going to change some of the states of this system and illustrate how this change

affects the rest of the system via error propagation, as presented in Figure 4.14.

Initially (t=0), all states are N. We first consider cases where the component state of

Component A in the system view, ŝ(A), changes to W or E.

At t=1, if ŝ(A) becomes W, there are two possible cases depending on the definition
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State Vars Time (t) 0 1 2 3 4 5 6

ŝ(A) = sF(A) ⊗ sA(A) N W E N N N N

sP(A, 1) N N N W E N N

ŝ(A, 1) =

ŝ
′

(A, 1) = sP(A, 1)
ŝ
′′

(A, 1) = ŝ(A) ⊗ sP(A, 1)

N N N W E N N

N W E W E N N

sR(B, 1) N N E N E N N

ŝ(B) = sF(B) ⊗ sA(B) N N N N N W E

sP(B, 1) N N N N N N N

ŝ(B, 1) =


ŝ
′

(B, 1) = sP(B, 1)
ŝ
′′

(B, 1) = ŝ(B) ⊗ sP(B, 1)
ŝ
′′′

(B, 1) = ˆsR(B, 1) ⊗ ŝ(B) ⊗ sP(B, 1)

N N N N N N N

N N N N N W E

N N E N E N E

Figure 4.14: Illustration of error propagation. State changes that originally initiated error
propagation are marked with underline.

of the service state for P1, ŝ(A, 1). If P1 has no dependency on other resources for its

service, denoted by ŝ
′

(A, 1), the service state does not change. In contrast, the service state

becomes W if P1 relies on ŝ(A), and this is denoted by ŝ
′′

(A, 1). In both cases, however,

error propagation does not occur because ŝ(A, 1) does not change to E.

At t=2, ŝ(A) changes to E and ŝ
′′

(A, 1) becomes E, which then causes error propagation

through the connection between P1 of Component A and R1 of Component B. As a result,

the required interface state of Component B, sR(B, 1), changes to E. This state change may

or may not lead to the change of the service state of the provided interface of Component

B, ŝ(B, 1). Similar to the case of Component A, there can be three different definitions of

ŝ(B, 1), and each is represented as ŝ
′

(B, 1), ŝ
′′

(B, 1), and ŝ
′′′

(B, 1). At t=2, only ŝ
′′′

(B, 1)

becomes E due to its service dependency on sR(B, 1).
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At t=3, if sP(A, 1) changes to W, ŝ(A, 1) becomes W regardless of its definition, but error

propagation does not occur. However, error propagation occurs if sP(A, 1) becomes E (t=4),

and this causes ŝ
′′′

(B, 1) to change to E. The same logic applies to cases at t=5 and 6.

The distinction between component states and interface states allows the GCM to handle

component states and interface states separately, and this improves the expressiveness of the

GCM. For example, when an internal processing thread crashes, sP(i, k) can still remain N

if the service of the k-th provided interface consists of only “read” operations that do not

require computation, i.e., the thread execution of component i. However, there can be cases

where the component state and the interface state should be considered together, such as

visualizing the system-wide health status. In such cases, the definition of the component

state can be extended to consider the entire set of states of a component, such that all the

states are consolidated into one state. This is called the extended component state and is

defined as followsv:

ŝext(i) = SR(i) ⊗ sF(i) ⊗ sA(i) ⊗ SP(i)

= (sR(i, 1) ⊗ · · · ⊗ sR(i, j)) ⊗ sF(i) ⊗ sA(i) ⊗ (sP(i, 1) ⊗ · · · ⊗ sP(i, k))

(4.6)

4.3.8 State-dependent Operational Modes

The essential idea of the GCM is to explicitly define a set of minimal, but meaningful, states

so that the run-time status of the system can be systematically captured and described, and

vSec. 5.6.7.2 describes an example of how the extended component state is actually used for visualizing
the overall system status.
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Pre-process (filtering)

Post-process

NORMAL WARNING ERROR

ŝext(i)

Figure 4.15: State-dependent operational modes in GCM. Three separate modules corre-
spond to the three GCM states, and only one module is executed at a time depending on the
current extended component state, ŝext(i).

possibly controlled for testing and verification of safety features. This section describes how

this idea is applied to the code-level structure of a component in order to make the run-time

behavior of GCM components be more explicit and more structured.

The idea is to decompose the application logic into three separate processing modules

that correspond to the three states (N, W, E) and to execute only one module at a time

depending on the current extended component state, ŝext(i) (Eq. 4.6). We call this scheme

the state-dependent operational modes, which is depicted in Fig. 4.15. The Normal module

corresponds to the Normal state and implements the default behavior or logic of the com-

ponent. If ŝext(i) is W, the Warning module is executed to perform prognostic procedures.

For example, a data sampling rate of the monitoring mechanism can be increased for more

fine-grained monitoring. The goal is to prevent errors that can possibly happen. The Er-

ror module is executed if ŝext(i) is E. This module can be used to implement procedures for
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error recovery. In terms of the four essential elements of the Mechanism View (Fig. 3.1), the

Normal and Warning modules can be primarily used for monitoring and detection, whereas

the Error module is typically used for reaction and recovery.

This structure decouples code for the default behavior of a component from code for error

handling and error recovery. This decoupling facilitates the component testing process. For

example, each processing module can be easily tested by directly changing the component

state. We can also generate GCM events and inject it into a state machine of interest. In

this way, we can verify that (1) the state changes as expected, and (2) the behavior of the

component is correct for different states. If the same code should be reused between different

modules, system designers in practice can share code between the modules using techniques

such as the Template Method pattern (Gamma et al. 1994204).

4.4 Discussion

The Generic Component Model (GCM) is a generic semantics that can define and describe

the run-time status of component-based systems in a systematic and explicit manner. The use

of minimal structural elements – components and interfaces – and four types of state variables

leads to its component-model independence. The GCM also defines the error propagation

semantics that consider service dependencies defined by component connections.

In medical robotics, there is no consensus on a standard programming model within the

community, and error propagation and model-driven safety analysis techniques have not
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yet been investigated, as described in Sec. 4.2. The GCM is our proposal for an effective

programming model to build large, complex, and safety-oriented medical robot systems with

support for error propagation. Its inherently generic, extensible, and customizable design

allows us to adapt the GCM to existing component models in a flexible manner, thereby

achieving reusability and interoperability.

Unlike conventional safety analysis techniques of which the goal is to analyze the safety

property of a systemvi, the primary goal of the GCM is to develop a semantics that can

accommodate the design and implementation of safety features of component-based robot

systems. Still, we note that there are many overlaps between the design of the GCM and

the requirements of model-based safety analysis techniques. Grunske et al. (2005)61 defined

six requirements for model-based safety analysis techniques and used them to classify and

compare different analysis methods. We summarize these six requirements, followed by the

description of the GCM from each requirement’s perspective:

1. Appropriate component-level models: Each component must be annotated with an

appropriate evaluation model.

» The GCM annotates a component with four types of state variables, each represent-

ing a state of an instance of the GCM state machines (Fig. 4.9), and describes the

system status in terms of three generic states (N, W, and E) and outstanding events.

Although the GCM does not specify any particular error behavior of a component,

viAccording to Grunske et al. (2005):61 “The primary goal of safety analysis techniques is to identify all
failures on the system level that cause hazardous situations and to demonstrate that their probabilities are
sufficiently low.”
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it provides generic mechanisms for error handling and error propagation between

components, and allows system designers to implement application-specific behaviors

that refer to the operational state of a component.

2. Encapsulation and interfaces: The notation for the evaluation models should allow

encapsulation and composition by interfaces similar to component-based design

notations. The interfaces of the safety evaluation models should correspond as closely

as possible to the interfaces of the component models.

» The GCM is a generic representation of various component models and it can be

specialized for a particular component model. During this specialization process, a

particular component model is “augmented” by the GCM and a set of GCM state

machines is deployed to each component and interface of the system. Thus, the

components and interfaces of the GCM are semantically identical to those of the

system.

3. Dependencies on external components: Safety analysis techniques must be able to

express the dependencies of failures regarding provided services on failures regarding

required services and on internal failures of the component.

» The GCM service state (Sec. 4.3.4.3) represents its service dependencies on both

internal errors and external errors from other components. Based on the service state,

errors in one component are propagated to other components along the component

connection topology of the system.

4. Integration of analysis results: The goal of safety analysis techniques is not only vi-
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sualizing the system for better understanding, but also running analysis algorithms on

it. This requires that the algorithms are composable, i.e., the results from component

analysis can be integrated to the results on the system level.

» Although the primary goal is not safety analysis, the GCM represents the system

status using a hierarchical structure – system, components, interfaces – with the state

product operator, and a combination of the structure and the operator makes the GCM

composable. A partial set of system states can be combined with other sets, or can be

consolidated even into a single state according to the state transformation semantics,

as described in Sec. 4.3.4.1, as long as the two partial sets are in a proper hierarchy

(e.g., two different interfaces in the same component, two components in the same

system).

5. Practicable granularity: The techniques applied should be on the one hand rich

enough in details to express how different kinds of component behavior can influence

system safety, but on the other hand coarse enough to allow affordable analysis on

the system level.

» As described in Sec. 4.3.1, the rationale behind the design of the GCM is that

it should be generic and flexible enough to be specialized for particular component

models, while being expressive enough to capture and describe key information of the

system in terms of safety. Furthermore, the state product operator allows the GCM to

represent the system status at various levels of granularity, from a set of raw states in

its entirety to just a single state after consecutively applying the state product operator.

130



CHAPTER 4. GENERIC COMPONENT MODEL

6. Tool support: The safety analysis technique should be supported by appropriate and

ergonomic tools.

» The GCM does not specify any particular requirement for tool support because it

is an abstract model that requires specialization for a particular component model.

However, its specialization can have tool support, and the next chapter describes a

suite of tools in more detail (refer to Sec. 5.6.7). Briefly, the idea is to provide tools

that allow system designers to manipulate, i.e., read data from and write data to, the

internal processing pipeline of the GCM (Fig. 4.4).

The current design of the GCM is based on two assumptions. The first assumption is

that event handling and state transitions consume zero processing time, i.e., no processing

delay, and they are considered as atomic operations, i.e., no concurrency issues. Thus, no

temporal relationship is defined between events and state changes; only a causal relationship

is considered. In practice, however, event handling that includes event generation, event

delivery – possibly across networks – and event processing can take a significant amount

of time. Also, multiple processes and/or threads are typically used together for large and

complex systems. These assumptions can potentially lead to timing and concurrency issues.

For example, the current GCM semantics does not specify the component behavior if the

component state changes from N to E while executing one of the three state-dependent

modules. In practice, such timing and concurrency issues are handled by the design and

implementation of the GCM specialization process.

The second assumption is that event occurrences and state transitions in the GCM are
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modeled as deterministic events and transitions, rather than probabilistic ones. Probabilistic

events are useful for modeling a wider range of events, such as stochastic events. For

example, state transitions in State Event Fault Trees (SEFTs) can be modeled as one of

three different types: deterministic, stochastic, and triggered transitions.62 This leads to

the GCM’s inability to perform probabilistic safety analysis or stochastic modeling of sys-

tem state changes. Although these issues may limit the expressiveness and applicability

of the GCM, they provide opportunities for further improvement. For example, the addi-

tion of probabilistic semantics to the GCM would improve its expressiveness and enable

probabilistic safety analysis.

4.5 Conclusions

We presented the Generic Component Model (GCM), a generic model that consists of the

minimal structural elements (components and interfaces) and the state-based semantics that

represent the operational status of component-based robot systems at run-time in an explicit,

systematic, and structured manner.

The GCM is generic enough to be specialized for other component models, yet it is

expressive enough to represent the complete description of the system status without relying

on a particular component model. The essential elements of the state-based semantics of

GCM include the state, event, and filter. The filters process data and generate the events

that change the state. The use of the three abstract states (Normal, Warning, Error) enables
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the generic, consistent representation of the operational status of component-based systems.

The events are defined based on the results from safety analysis of the system, and the filters

provide mechanisms for monitoring and detection.

The error propagation model of the GCM systematically illustrates how the state of

a component is affected due to errors from the other component, i.e., error propagation

across the component boundary. This model could be useful for component-based software

frameworks in robotics, where no existing component model explicitly defines and handles

error propagation. In addition, the GCM introduces CBSE and error propagation semantics

to the medical robotics domain, as an effective means to improve the design of safety features

of medical robot systems.

One recent trend in the robotics community is to support data exchange between different

component-based frameworks in order to increase component reusevii. Towards this direction,

the GCM can facilitate such cross-framework efforts by providing a standardized semantics

and representation of the operational status of component-based systems.

4.6 Contributions

The thesis contributions described in this chapter are as follows:

1. Generic Component Model

– Proposal of generic model for component-based robot systems

viiThere have been recent reports on such cross-framework data exchange: OROCOS with ROS (Smits and
Bruyninckx, 2011205), OPRoS with ROS (Kang et al., 2012206), and BRICS with ROS.207
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We proposed a generic model that can be used to represent the operational status of

component-based robot systems at run-time in an explicit, systematic, and structured

manner. This model is an abstraction of various component models and is inherently

extensible and customizable so that it can be specialized for a particular component

model. To the best of our knowledge, no prior work in medical robotics presented

systematic approaches to describing the run-time status of component-based robot

systems.

2. State Machine

– Design of state-based semantics for Generic Component Model

We designed a state machine with three generic states, Normal, Warning, and Error.

This state machine is based on the dependability formalism of the dependable com-

puting domain. A set of state machines are deployed to the essential elements of

component-based systems in a hierarchical manner, thereby representing the system

status explicitly and systematically. This state-based semantics also enables error

propagation across the component boundary.

3. Event Mechanism

– Design of event semantics for Generic Component Model

We designed an event mechanism with the concepts of onset and completion events,

outstanding events, and rules for prioritizing events. This event mechanism is crucial

to state transitions in the Generic Component Model. Separation of the source of state
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transitions from the state machine itself facilitates testing of the Generic Component

Model and improves design flexibility.

4. Error Propagation

– Introduction of error propagation to component-based frameworks in robotics

We introduced the error propagation semantics to the field of component-based robot

software frameworks. Although error propagation plays a crucial role on the op-

erational status, there is no component model, in the robotics domain, that has the

concept of error propagation across the component boundaries.
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Chapter 5

Safety Architecture for Engineering

Computer-Assisted Surgical

Systems (SAFECASS)

5.1 Introduction

The previous chapter presented the Generic Component Model (GCM), a state-based seman-

tics that can explicitly describe the operational status of component-based robot systems.

The GCM is designed with component model independence using a minimal set of structural

elements – components and interfaces – so that it can be specialized for particular component

models. The four essential elements built around GCM include states, events, filters, and

inputs, and these elements fundamentally define and control the system behavior.
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Although the GCM is a generic model that enables us to semantically describe the

operational status of the system, it does not define any code-level specifics, nor is it directly

applicable to robot systems. Without an executable implementation, it is not feasible to

dynamically verify that the design of the GCM is correct and to evaluate how effective it is

at run-time. This recognition necessitates a software environment that provides a run-time

environment for the GCM.

The design space of such a run-time environment is relatively large in that the GCM does

not enforce any restriction on the design. However, the design should carefully consider

its essential design elements, such as design requirements, design goals to achieve, and the

design rationale of the GCM. Another important design element is the programming model

that determines the inherent characteristics of the system. In robotics, component-based

software engineering (CBSE) has been widely accepted as a de facto programming model.

Typically, a component model is defined by a robot software framework. As in various areas

in robotics, there exists a variety of robot software frameworks (e.g., Orocos, ROS, cisst,

OpenRTM, OPRoS, CLARAty), and each framework defines its own component model that

best fits their design requirements. The challenge here is to define a standard component

model that reasonably fits for inherently different robot systems. For this reason, a run-time

environment that only targets a particular component model is not likely applicable to other

component models. It would be ideal if the same run-time environment is flexible and

adjustable, so that it can support different component models in the same manner.

In this chapter, we describe a software framework called Safety Architecture for En-
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gineering Computer-Assisted Surgical Systems (SAFECASS) that provides a run-time

environment for the GCM, and discuss its design rationale. SAFECASS aims to provide

a run-time software environment based on the GCM semantics, while at the same time

supporting the domain characteristics of medical robotics. This is achieved by (1) de-

composing safety features into generic, reusable mechanisms and expressive, configurable

specifications, and (2) combining mechanisms and specifications within a safety-oriented

layered architecture, called the SAFECASS-based architecture. As a proof-of-concept,

we use the cisst component-based framework49 to demonstrate how SAFECASS achieves

component model independence and how component model-dependent parts are isolated

within SAFECASS and can be implemented by the framework.

The remainder of this chapter is structured as follows: Sec. 5.2 first provides a brief

overview of prior work on safety with systematic or framework-based approaches. Sec. 5.3

describes the domain characteristics of medical robotics, which provides the foundations for

the design requirements of SAFECASS, as described in Sec. 5.4. Then, Sec. 5.5 discusses

our approaches to achieve the design requirements identified. Next, Sec. 5.6 describes

the architecture and implementation of the GCM within SAFECASS. After presenting

a brief overview of different architectural styles for robot control systems in Sec. 5.6.1,

we propose a safety-oriented layered architecture for component-based systems. In the

following sections (Secs. 5.6.2 - 5.6.6), we describe the design and implementation of

each key element of the GCM in more detail, including the state machine, event, filter, and

coordinator. Each of these sections has a separate subsection that describes cisst-specific
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implementations. Sec. 5.6.7 describes tool support within SAFECASS, and Sec. 5.7

presents SAFECASS-based safety features that we introduced to cisst. Sec. 5.8 illustrates

how the system actually operates, using experimental data collected from a simple example

system. Finally, we discuss the design and current implementation in Sec. 5.9, followed by

our conclusions in Sec. 5.10.

5.2 Related Works

This section describes prior work on safety that presented systematic, architectural, or

framework-based approaches in three areas: (1) in medical robotics, (2) in robotics (outside

medical robotics), and (3) outside robotics.

In the medical robotics domain, prior work with systematic approaches to safety include

HISIC (Fei et al., 20019) and the Design Framework (Sanchez et al., 201432). The hazard

identification and safety insurance control (HISIC) is a systematic method for analyzing

and controlling the design process of medical robot systems with safety. It consists of

seven design principles that can be applied to software, hardware, and safety policies.

HISIC was applied to the development of a 3D ultrasound image-guided robot system.

Compared to SAFECASS, HISIC is a general guideline for designing and enhancing system

safety, rather than a framework enabling a run-time environment, and HISIC is closer to the

safety analysis techniques that we comprehensively described in Sec. 4.2.1. The Design

Framework is one of the state-of-the-art safety design guidelines to develop surgical robot
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systems in accordance with the European directives for medical devices. Starting from the

design cycle of a surgical robot, the framework presents design guidelines for electrical,

electromechanical, software, and operational safety. The ARAKNES project32 applied the

Design Framework to the development of a surgical robot system for single port laparoscopy.

The Design Framework also considers design elements that involve run-time issues, such as

hard real-time operating system and control software architecture, and discusses specific

implementations of safety features, such as watchdogs, emergency power-off, and kinematic

singularities. In contrast to SAFECASS, the Design Framework does not place much

emphasis on the reusability of safety features; mostly system- or application-level safety

features are discussed. More importantly, the framework lacks the concept of CBSE, which

may potentially lead to deployment issues as the scale and complexity of the system increase.

In robotics, the software architecture of robot control systems has been an active area

of research.178 Although there is no single architecture that fits for all cases, the layered,

hierarchical control architecture has been increasingly popular because of its flexibility and

multiple levels of abstraction. The robotics literature provides an overview of prior work

in the robot control architecture (e.g., Kortenkamp and Simmons, 2009;178 Nesnas et al.,

2006208). Starting from the sense-plan-act (SPA) paradigm in the late 1960s, the subsumption

architecture was developed by Brooks in the mid 1980s, which has been called the most

influential work in robotics history.178 Most of these are driven by functional requirements,

whereas non-functional properties, especially safety, are not of primary concern in these

architectures. SAFECASS, on the other hand, is designed with a safety-oriented layered

140



CHAPTER 5. SAFETY ARCHITECTURE FOR ENGINEERING
COMPUTER-ASSISTED SURGICAL SYSTEMS

architecture where the underlying semantics are based on the Generic Component Model.

Recently, Woodman et al. (201281) presented the safety-driven control system architecture,

called the safety protection system, with its implementation methodology in the area of

autonomous personal robotics. The safety protection system verifies the safety constraints

and enforces those constraints by controlling the actions of the robot system in order

to prevent unsafe operations. Despite conceptual similarities between this approach and

SAFECASS in terms of safety policy and architecture, it lacks the concept of components

and CBSE. Without CBSE, it is questionable how systematically this architecture and

approach would scale up for large and complex modern robot systems.

Outside the robotics domain, such as the real-time embedded systems domain and

dependable computing domain, there exists a large body of work that presented architecture-

or framework-based approaches to safety. A short list includes CHIMERA II (Stewart et

al., 1992209), GUARDS (generic upgradable architecture for real-time dependable systems;

Powell et al., 1999210), CADENA (component architecture development environment for

avionics systems; Hatcliff et al., 2003211), AUTOSAR (automotive open system architecture;

Heinecke et al., 2004181), and KARYON (kernel-based architecture for safety-critical control;

Casimiro et al., 2013212). Although target applications and system requirements vary, there

is one common design principle among these: the framework provides generic and adaptable

(and possibly verifiable) base mechanisms that can be instantiated into actual services or

instances using specifications or policies. Likewise, this distinction between mechanisms

and specifications is one of the fundamental design concept of SAFECASS, as discussed in
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Sec. 5.5.2.

In the private sector, there exists a recent report that presented a survey of the architec-

tural and design patterns (Hampton, 2012213). This report described and discussed various

architectural patterns for safety together with development practices. Although those archi-

tecture and design patterns provide an overview of various existing architectural approaches,

those architectures lack the domain characteristics of robot systems and the design of the

Generic Component Model as well. For these reasons, those architectures are not directly

applicable to SAFECASS.

5.3 Domain Characteristics

Medical robots are typically used in the operating room (OR) by highly trained surgeons.

The surgeons have specialized skills for particular surgical applications, and use medical

robot systems during the procedures. Currently, medical robots are categorized as medical

devices and must be approved as medical devices by the regulatory agencies. The conceptual

foundation of our approach to safety is based on these domain characteristics. In this section,

we describe the domain characteristics of medical robot systems from four perspectives:

environment, control, application diversity, and regulatory requirements.
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5.3.1 Unstructured Environments

Traditional industrial manufacturing robots are placed in a predictable and relatively fixed

environment where the workspace is designed considering robots, equipment, and man-

ufacturing processes.136 Compared to this predictable setting, the OR is an unstructured

environment that exhibits variations in numerous elements (variability), such as patient

anatomy, workspace configuration, surgical techniques, and technical skill of the OR team.140

For example, anatomical structures vary in size and shape depending on the patient, making

patient specific information (e.g., CT/MRI images) essential for surgery. Also, the medical

personnel have different levels of technical skills and/or background.

In addition, the workspace around the end effector of medical robot systems is unpre-

dictable. The robotic devices perform procedures on or inside the patient’s body (e.g.,

internal organs or structures) which has constant movements due to heart beats, body mo-

tions, or respiration. Furthermore, the robot can actively make changes to the surrounding

environment. During surgery, it is common that internal organs and structures significantly

deform when parts of them are resected, punctured, or sutured, and then deviate from

pre-planned models. This is a unique characteristic of medical robot systems.

It is often challenging to deal with the unpredictability and variability of the unstructured

surrounding environments, especially within information intensive systems that use a variety

of different types of data (e.g., high-frequency robot control data with small payload,

low-frequency real-time stereo HD vision data with large payload). To deal with these
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unpredictability and variability issues, medical robot systems not only require diverse

sensing techniques that can capture real-time information about the environment, but also

rely on domain expertise such as the surgeon’s knowledge, skills, and experiences, and

patient specific information. For these reasons, medical robot systems are information

intensive systems and are often called Computer-Integrated Surgery (CIS) systems.3, 87

5.3.2 Human-in-the-loop Control

When performing surgical procedures, the surgeon, as the decision maker, desires to have

full control over the surgical procedure for safety reasons. In traditional surgeries, highly

trained surgeons with procedure specific knowledge made decisions based on their direct

sensory perception on the patient’s body. In robot surgeries, however, surgeons control

the robot manipulator relying on the indirect sensory perception that the robot provides,

or they supervise robot motions to make sure that the robot is in the safe state. To enable

such features, one of the widely accepted control schemes in the medical robotics domain is

human-in-the-loop control, where surgeons actively participate in surgical procedures as

part of the control process. This concept is somewhat unique because the control scheme is

neither fully automated, nor fully manual, while allowing system users to have full control

over the surgery to exploit their expertise and to make decisions during the operation. To

enable this control scheme, it is essential that the robot system provides the surgeon with

sensory feedback, the current progress of procedures, and the overall status of the system.

They also aid the surgeon or medical personnel’s decisions during the operation.
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5.3.3 Application Diversity

In medical robotics, a wide variety of medical robot systems have been developed in

various application areas, such as neurosurgery, orthopaedic surgery, laparoscopic surgery,

microsurgery, telesurgery, and so forth (refer to Table 2.2 for more details). Each application

has highly procedure-specific requirements, which makes it less feasible to directly apply

a robot system designed for one particular application to another. Because of the high

development cost that involves approval by regulatory agencies, there have been approaches

to increasing the reusability of the system. Examples of such approaches include the

separation of the application-specific part from the common base system (e.g., Kazanzides

et al., 19925), and the modular design of the robot system that allows different tools to be

easily attached to, and detached from, the common robot manipulator (e.g., Guthart and

Salisbury, 2000102).

5.3.4 Regulatory Requirements:

Traceability and Testability

Medical robot systems are considered to be medical devices and thus to be used for clinical

tests or released as commercial products, they must be approved by regulatory agencies

such as the U.S. Food and Drug Administration (FDA). As part of the approval process,

extensive documentation is required to show the design history and traceability between
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requirements, implementation, and testing. Without a proper tool support, this process needs

to be performed manually. In case of large and complex systems, such “paper and pencil”

methods are often impractical to analyze every possible case, and are likely to introduce

more errors to the analysis process.186 Ideally, the system should provide tool support for

such testing and analysis processes in order to minimize manual labor and the possibility of

errors.

Unlike many other safety-critical industries, the medical device regulatory agencies do

not, in general, dictate specific design or manufacturing procedures that must be followed.

This enables some flexibility for manufacturers to define a quality system that best fits their

business and makes it possible to consider the development and use of a custom framework

to assist with the design, implementation, and testing of medical robot systems.

5.4 Design Requirements

Considering the domain characteristics and the GCM semantics, the design of SAFE-

CASS aims to address the following four requirements:

REQ. 1: Conformity to Generic Component Model

SAFECASS should be designed in accordance with the design rationale of the GCM.

The first requirement of SAFECASS is that a run-time environment that SAFECASS en-

ables should conform with the design rationale of the GCM. Specifically, this requirement

refers to (1) component model independence, i.e., SAFECASS should be reusable across
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different component models, and (2) explicit and structured state management, meaning

that SAFECASS should provide facilities that enable the explicit and structured state man-

agement.

REQ. 2: Flexibility and Reusability

SAFECASS should provide flexible and reusable facilities for defining and deploying
safety features to deal with the application diversity and the environment variability.

The second requirement is flexibility and reusability. As described in the previous section,

medical robot systems are used for various applications, such as orthopaedics, neurosurgery,

and laparoscopic surgery. Even within one application area, there are many factors that

contribute to the variability of the environment, including patient-specific anatomical struc-

tures, different surgical techniques or approaches, and workspace configurations. Thus,

SAFECASS must be designed to be flexible so that system designers can easily configure

and implement safety features for various applications. It is even more desirable if the

design of safety features can be systematically captured as a collection of use cases. Such a

collection, as prior experience, may form the foundation for the “best practices”, thereby

facilitating reuse across different systems or different applications.

REQ. 3: Testability

SAFECASS should provide system designers tools for testing to verify the system
behavior according to the GCM semantics.

The third requirement is testability. Testing plays a central role in verifying that the

system behaves as specified and its behavior meets the design requirements. The effective
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design of testing facilities makes it easy for system designers to access any key data of

the system. Ideally, a run-time environment that SAFECASS provides should improve

testability of the system by enabling individual access to the key elements of the GCM, i.e.,

states, events, filters, and inputs.

REQ. 4: Traceability

Safety-related artifacts within SAFECASS should be traceable.

The last requirement is traceability. Traceability between different instances of the same

system allows system designers to track changes over time and to identify the root-cause

of problems. This feature helps to expedite the regulatory approval process if a previous

version of the same system has already obtained clearance. It also facilitates the testing

procedure by reducing the size of test suites by identifying incremental changes.

5.5 Approaches

5.5.1 Framework Independence

The GCM is a generic model that consists of the structural elements and the state-based

semantics without specifying any code-level implementation details. This enables design

flexibility where we can implement a run-time environment for the GCM in different ways.

Fig. 5.1 illustrates two inherently different approaches. One option, as shown in Fig.

5.1a, is to choose a particular component framework and directly modify it to support the
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GCM. Although this approach is straightforward and leads to tight, seamless integration of

the GCM with the component framework chosen, this approach requires “deep” changes

on the existing component framework and thus binds the GCM to a particular component

framework. This makes it hard to reuse the run-time environment for the GCM for the

other component frameworks. As a result, it is necessary to develop the entire stack of the

run-time environment for the GCM whenever a new component framework is used.

Another option, as depicted in Fig. 5.1b, is to implement a run-time environment for the

GCM in the reusable, component framework-independent fashion and to bridge the run-time

environment with component frameworks via the generic APIs. Essentially, the idea is to

separate framework-specific parts from a reusable, framework-independent implementation.

This necessitates the framework extension within the framework, which provides framework-

specific functionalities for the GCM and uses the generic APIs to access the information

maintained by the GCM (e.g., states, events, filters). Compared to the aforementioned option,

this approach requires more design efforts due to layering overhead for the two additional

Component
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Structural
Elements
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Semantics

GCM

(a) Framework-dependent de-
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Figure 5.1: Two different designs of the run-time environment for the GCM
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elements, i.e., the generic APIs and the framework extension. However, the generic APIs

need to be designed only once as part of the framework-independent implementation, and

only the framework extension – rather than the entire run-time environment for the GCM –

needs to be implemented for a particular framework. More importantly, the advantages of

this approach include:

• Reusability: Once the framework-independent run-time environment for the GCM

is implemented, the same implementation can be reused for different component

frameworks (if the framework extension is provided).

• Maintainability: The separation between the framework-independent part and the

framework-specific part allows each part to be updated and maintained separately

(assuming the generic APIs remain the same).

• Use of multiple component frameworks: It is possible to use multiple, different

component frameworks within the same system. Despite the different component

models, the information maintained by the GCM can be shared across the different

component frameworks. This feature allows system designers to represent the opera-

tional status of the heterogeneous system in a consistent, systematic manner, and to

define and coordinate the system behavior in terms of the GCM.

We chose the second approach mainly to benefit from these advantages. As will be described

throughout this chapter, this design choice leads to profound effects on the overall design

and implementation of a run-time environment for the GCM.
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5.5.2 Safety Design Decomposition

One of the fundamental design principles of SAFECASS is reusability. As will be described

later, we apply this principle to various aspects of SAFECASS, such as architecture and

code-level designs and the design of safety features. The idea is to decompose a safety

feature into a reusable mechanism and a configurable specification, thereby handling each

part separately within SAFECASS. This approach, called safety design decomposition,

has two goals: (1) to make the mechanisms generic, configurable, and adaptable, thereby

reusable, and (2) to make the specifications expressive and comprehensive such that various

application-specific safety requirements can be captured.

This separation facilitates reuse of safety mechanisms across different applications.

One of the most widely used safety features in the domain is to power off the robot when

excessive force is detected. According to the mechanism view described in Sec. 3.2.1, this

safety feature can be decomposed into four mechanisms: monitoring of force feedback,

detection of excessive force feedback above a pre-defined threshold Fthresh, powering off

the robot as a reaction, and recovery from the excessive force feedback event. Although

there are a couple of parameters to specify the design of this safety feature (e.g., which

signal to monitor, which filter to use for detection), the key parameter is the pre-defined

threshold, Fthresh, that determines the occurrence of the event. If a system already supports

all the four mechanisms, different system behaviors can be easily defined by just changing a

single parameter, Fthresh. Fig. 5.2 illustrates this concept.
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Figure 5.2: Decomposition of safety features into reusable mechanisms and configurable
specifications. With the same mechanism, different safety features can be defined and
deployed to the system by using different specifications.
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Figure 5.3: Testing of safety features. The decomposition of safety features allows us to
test mechanisms and specifications separately, thereby enabling more extensive, modular,
and verifiable testing processes.

Another advantage of this design is that it is possible to test safety features in terms of

mechanisms and specifications, both together and individually. Typically, safety features

are tested as a whole at the system level when the system is online. Given test inputs,

the system is checked if the system behavior is correct in terms of outputs. In Fig. 5.3,

this is represented as the safety feature testing. Once safety features are decomposed into

mechanisms and specifications, we can test each part individually. For example, we can

perform unit tests on the mechanism to verify that the mechanism works correctly. Because

such testing can use any arbitrary specification, a set of automatically or systematically

152



CHAPTER 5. SAFETY ARCHITECTURE FOR ENGINEERING
COMPUTER-ASSISTED SURGICAL SYSTEMS

generated specifications can be used for rigorously testing corner cases and simulating

specific error scenarios. The same technique can be applied to the specification as well,

where we can validate consistency of specification. These concepts are illustrated as the

mechanism testing and the specification validation in Fig. 5.3. It should be noted that (1)

these decomposition-based tests can be performed individually at the subsystem or module

level, even when the parts of the system that are irrelevant to the tests are offline, and (2) the

conventional tests are still available as before.

5.6 Safety Architecture for Engineering Computer-

Assisted Surgical Systems (SAFECASS)

The Safety Architecture for Engineering Computer-Assisted Surgical Systems is developed

as an open source C++ framework that consists of the core library, tools, and examples.

SAFECASS aims to provide a run-time software environment for systematic safety research

in component-based medical robotics. In this section, we present the architecture and design

details of SAFECASS with discussions about our design decisions. This section is structured

as follows: Sec. 5.6.1 first presents the architecture of SAFECASS with design rationale.

Secs. 5.6.2 through 5.6.5 describe in detail how the essential elements of the GCM are

implemented in SAFECASS. Sec. 5.6.6 introduces the key entity, called the coordinator,

which maintains run-time data of the GCM (e.g., states, events) and coordinates activities

within SAFECASS. Finally, Sec. 5.6.7 describes tool support for system introspection and
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visualization of run-time states.

5.6.1 Architecture

Since robot architectures and programming began in the late 1960s,178 there has been a body

of research on the architectures for robot control systems. Practical challenges imposed by

the domain-specific functional requirements of robot systems have driven the evolution of the

robot control architecture, whereas safety was not a primary focus of those architectures. As

safety is receiving more attention in robotics, various approaches have been proposed, such

as integration with safety standards and application of formal methods to the verification

of safety properties of robot systems. Among those methods, our focus is on architectural

approaches.

Fig. 5.4 shows different architectural styles with which safety features can be imple-

mented. The first style is the monolithic architecture (Fig. 5.4a), where safety features are

“embedded” in the system along with other functional elements of the system. This style

leads to tight coupling between safety features and the rest of the system, thereby achieving

highly application-specific safety features. At the same time, however, it is hard to reuse

those safety features for other systems or applications due to the same reason.

The second style is the framework-based architecture (Fig. 5.4b) where a system con-

sists of two layers: the framework layer and the application layer. These two layers are

consistent with the GCM model of the architecture. This architecture represents typical

component-based systems where the framework layer provides a component-based envi-
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(c) SAFECASS-based

Figure 5.4: Evolution of the architectures of robot systems with safety features

ronment on which the application layer is built, as well as framework-level services that

the application layer uses. Each layer tends to maintain its own safety features because of

the inherently distinctive characteristics of each layer, as discussed in Sec. 4.3.2. From

the safety perspective, this structure is similar to the monolithic architecture in that safety

features are still embedded in the system.

The third style is what we propose, called the Safety Architecture for Engineering

Computer-Assisted Surgical Systems (SAFECASS)-based architecture. As depicted in Fig.

5.4c, this architecture extends the framework-based architecture by (1) applying the con-

cept of safety design decomposition to each layer, and (2) introducing a new layer called

the SAFECASS layer. In this architecture, safety features of each layer are decomposed

into mechanisms and specifications. The mechanisms are moved to the SAFECASS layer,

whereas the specifications remain at each layer as before. In this way, this architecture real-

izes separation between mechanisms and specifications. This SAFECASS-based architecture
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is conceptually inspired by the safety kernel (Wika, 1995214) and safety executive (Leveson

et al., 1983215, 216) approaches. Like the security kernel217 in the security computing domain,

the safety kernel coordinates various monitoring mechanisms between devices (hardware)

and application software, and enables centralization and encapsulation of safety mechanisms

with the advantages of reusability and possible formal verification of the operations of the

executive.15

Fig. 5.5 shows a more detailed view of the architecture of SAFECASS. The following

sections describe each layer in more detail.

5.6.1.1 SAFECASS Layer

The SAFECASS layer is mainly comprised of three parts: the core library, the middleware,

and the back-end tools.

The core library is a C++ library that provides a code-level implementation of the

essential elements of the GCM, and services and utilities that facilitate use of the GCM.

The essential elements of the GCM are implemented as the base mechanisms, and SAFE-

CASS provides four base mechanisms: state machines, events, filters, and coordinator. In

Fig. 5.5, each mechanism is represented as the base state machine, the base event, the

base filter, and the base coordinator. Secs. 5.6.2 through 5.6.6 describe the detailed design

of these. One important decision on the design of the base mechanisms is that they are

implemented as objects, rather than components. Defining a component requires a com-

ponent model, which necessitates the introduction of a particular thread execution model
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Figure 5.5: Safety Architecture for Engineering Computer-Assisted Surgical Sys-
tems (SAFECASS)

to SAFECASS. This is not a desirable design because it unnecessarily complicates not

only the design of SAFECASS, but also the integration process between SAFECASS and

the framework layer. The rationale is that SAFECASS should provide only generic and

fundamental functionality without enforcing any additional threading model on the system.

In this way, the base mechanisms become inherently customizable and extensible to the

needs of safety features of the upper layers, i.e., the framework and the application layers.

The middleware represents a standalone network infrastructure that enables inter-process
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communication (IPC) within SAFECASS. It provides a dedicated communication channel

for SAFECASS to exchange messages. Supporting IPC is essential because modern robot

systems are typically comprised of multiple processes in order to achieve challenging

functional requirements, such as real-time robot control (typically 1 kHz) and run-time

vision stream processing (up to around half a gigabyte video stream per second at 30+

frames per second).49 The middleware is a standalone facility that does not rely on data

exchange services that the framework layer provides. This independent communication

infrastructure within SAFECASS improves data communication redundancy of the overall

system. Messages are serialized and exchanged in the JavaScript Object Notation (JSON)

format, which is a lightweight, text-based, language-independent data interchange format.10

Currently, SAFECASS uses IceStorm, a publish-subscribe event distribution service from

ZeroC.218

The back-end tools are comprised of a set of additional tools and services, such as

run-time visualization, interactive console (for system introspection, fault injection, and

event generation), and database support. Sec. 5.6.7 describes more details of these tools and

services.

The system designer can optionally deploy the Supervisor to the system to form a

hierarchy in the system information management. The Supervisor exchanges messages with

every process of the system to access key information in each process. The Supervisor can

also be used to impose particular safety policies or strategies on the system. Currently, the

Supervisor is implemented as a lightweight, standalone process and thus can be dynamically
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launched or terminated at any time.

5.6.1.2 Framework Layer

The framework layer provides a component-based environment for the system; typically,

this layer is provided by an existing component-based framework such as cisst, ROS, or

Orocos. This layer is augmented by the extension for Safety Architecture for Engineering

Computer-Assisted Surgical Systems that provides (1) a set of framework-specific mecha-

nisms derived from the base mechanisms, and (2) the framework-specific features required

by SAFECASS. In Fig. 5.5, the framework-specific mechanisms are shown as the State

Machine, Event, Filter, and Coordinator. Depending on a framework, the base mechanisms

can be directly used without specialization. The framework-specific features represents a set

of “glue” code that provide framework-specific services required by SAFECASS, such as

SAFECASS bootstrapping code and access to internal data of the framework. In addition,

the framework layer defines the specifications of framework-specific safety features. SAFE-

CASS uses these software artifacts – usually configuration files – to deploy and configure

framework-specific safety features.

Currently, we use the cisst package49 as a component-based framework, and implemented

the cisst extension for SAFECASS. A brief overview of the cisst package is provided in

Appendix A.
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5.6.1.3 Application Layer

The application layer is a thin and lightweight layer in terms of the safety-related mechanism.

This is a result of the SAFECASS-based architecture where the two underlying layers –

the framework and SAFECASS layers – provide all the necessary mechanisms. Typically,

this layer contains components that implement application-specific logic and the functional

behavior of the system. Because of the large design space of these components, a particular

structure cannot be enforced on the components of this layer. Instead, the framework allows

system designers to facilitate the design of application-specific safety features. For example,

the framework provides a set of APIs that enable the application components to access the

information managed by the GCM (e.g., states, outstanding events). The framework also

supports the state-dependent operational modes of the GCM, where the application logic

can be decomposed into three separate processing modules, each corresponding to the three

GCM states (N, W, E), as described in Sec. 4.3.8.

5.6.1.4 Deployment Concept

One of the main design goals of SAFECASS is to provide system designers with a run-time

environment where safety features can be easily instantiated and deployed to the system

with minimal code-level changes. This is achieved by the SAFECASS-based architecture

and the decomposition of safety features. Fig. 5.6a illustrates a typical component-based

distributed system built with the framework architecture. If we apply SAFECASS to this
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system, the system is augmented with SAFECASS, as in Fig. 5.6b, changing its architecture

to the SAFECASS-based architecture.

Although the introduction of SAFECASS appears to bring significant changes to the

original system, the part of the system that actually changes is limited to the extension for

SAFECASS and the specifications of safety features of each layer. If a component-based

framework already supports SAFECASS, i.e., the extension for SAFECASS is already

available, the only “visible” changes to the original system include (1) adding code snippets

for bootstrapping SAFECASS, and (2) defining safety specifications for the framework

and application layers. This concept is illustrated in Fig. 5.7, where these changes are

represented as the “extension for SAFECASS”, “Spec/F”, and “Spec/A1” and “Spec/A2”.
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Figure 5.6: Deployment view of SAFECASS
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Figure 5.7: Concept of the deployment of SAFECASS: The deployment of SAFECASS to
an existing system requires minimal changes to the original system. The only changes
required include code snippets for bootstrapping SAFECASS (as part of the extension for
SAFECASS) and safety specifications that are used to instantiate safety features.
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exit/on_exit
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entry/on_entry
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ERROR
entry/on_entry
exit/on_exit

Figure 5.8: UML state diagram of the SAFECASS state machine. All possible state changes
and state transitions are explicitly modeled and can be handled.

5.6.2 State Machine

The base state machine implements the GCM state semantics that defines the three GCM

states – Normal, Warning, Error – and the six transitions between the states, as described in

Sec. 4.3.3. According to the design principle of the GCM state machine, an implementation

of the GCM state machine should enable the explicit, generic representation of the run-time

status of the system. It should also allow the framework to handle any state entry/exit action

or state transition in a structured manner.

Fig. 5.8 shows the UML state diagram of the SAFECASS state machine. Each state
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Figure 5.9: UML class diagram of the SAFECASS state machine class
(SC::StateMachine)

defines entry and exit actions (on_entry() and on_exit()), where a system designer can

specify any activity that is executed upon entering and exiting a state.

The SAFECASS state machine is implemented as the SC::StateMachine class of which

detailed design is depicted in Fig. 5.9. We omit the namespace prefix “SC::” from the names

of SAFECASS classes unless the omission leads to confusion. The three enumerations –

StateMachineType, StateType, TransitionType – define the four types of state variables,

the three GCM states, and six state transitions, respectively. The StateMachine class

maintains OutstandingEvent that represents the outstanding event (Sec. 4.3.5.2). When a
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GCM event occurs, StateMachine::ProcessEvent() handles the event and makes state

transitions, if necessary, based on the event specification (described in the next section).

The SAFECASS state machine class maintains an instance of the GCMStateMachine

class that provides an underlying state machine mechanism, which is implemented using

the Boost Meta State Machine (MSM) library.219 The MSM library enables a quick and

easy implementation of state machines with high run-time performance using the template

meta programming technique.220 This run-time performance gain comes in exchange for the

increased overhead at compile-time, which is acceptable in SAFECASS.

The design of the SAFECASS state machine allows the framework to easily override

the default handlers for state entry/exit actions and state transitions. This is enabled by

the separation of the event handler (i.e., the StateEventHandler class) from the state ma-

chine (i.e., the GCMStateMachine class). Upon a state transition, GCMStateMachine calls

a state transition handler that corresponds to the transition, which is one of the following:

on_N2W(), on_N2E(), on_W2N(), on_W2E(), on_E2N(), and on_E2W(). Then, a state tran-

sition handler internally calls OnTransition() of StateEventHandler with a transition

type as an argument, which actually handles state transition events. State entry/exit actions

are handled in the similar manner by OnEntry() and OnExit() of StateEventHandler.

5.6.2.1 cisst Implementation

cisst uses the default implementation of the base state machine of SAFECASS without

specialization. Although it is possible to completely catch and handle state change and state
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transition events, cisst currently does not employ this feature.

5.6.3 Service State

As described in Sec. 4.3.4.3, the service state represents whether a provided interface can

provide its service correctly, considering its service dependencies, i.e., on which state(s)

the provided interface state depends. The service state in its complete form is defined in

Eq. 4.5, which encodes the service dependency information into a single state. In the GCM,

the service dependency is the key element that determines the impact of errors and error

propagation.

Most component-based software frameworks in robotics do not explicitly capture the

service dependency information at the framework level. Thus, SAFECASS relies on the

system designer to provide this information in the JSON format as part of the safety

specification. Additional details of this format are described in the following section.

5.6.3.1 Configuration File

Code 5.1 shows an example of a JSON specification that defines the service state dependency.

The system designer defines the service state dependency for each component and the

specification is loaded into SAFECASS as part of the system initialization process. The

name of a component is specified with the key component. The key service defines an

array of service dependency information. Each element of the array specifies the name of

a provided interface and identifies the state variables on which it depends. To completely
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Code 5.1: Example of JSON specification of the service state dependency
1 {
2 "component" : "aComponentName",
3 "service" : [
4 { // provided interface name
5 "name" : "provided_interface_1",
6 // dependency information
7 "dependency" : {
8 // s_R: depends on required interface(s)
9 // s_A: depends on component state in the application view

10 // s_F: depends on component state in the framework view
11 "s_R" : [ "required_interface_1", "required_interface_2" ],
12 "s_A" : true ,
13 "s_F" : true
14 }
15 },
16 { "name" : "provided_interface_2",
17 "dependency" : {
18 "s_R" : [ "required_interface_2" ],
19 "s_A" : true ,
20 "s_F" : false
21 }
22 }
23 ]
24 }

define service states of a component, a set of array elements that correspond to each provided

interface have to be defined.

5.6.4 Event

The SAFECASS event implements the GCM events. As summarized in Table 4.4, a GCM

event has five attributes: name, severity, transitions, timestamp, and description. Fig. 5.10

shows the design of the SAFECASS event class, SC::Event, that has the five attributes.

The Name is a unique string name of the event and is used as an identifier of the event.

For readability, SAFECASS uses a prefix “EVT_” and “/EVT_” for the onset and completion

events.

The Severity determines the relative priority of the event and ranges from 1 to 255,
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Figure 5.10: UML class diagram of the SAFECASS event class (SC::Event). The XOR
represents the concept of the onset and completion events. That is, the Transitions
attribute is allowed to contain only either one (or all) of the first three transitions or one (or
all) of the others.

where the maximum severity of 255 is an arbitrarily chosen value. The range is divided

into three groups: 1-200 for SAFECASS events in the application layer, 201-250 for

SAFECASS events in the framework layer, and 251-255 for the broadcast events. The

SAFECASS events for the framework layer have higher severity values than those for the

application layer because the correct execution of the application layer relies on the correct

services that the underlying framework provides. For example, a component cannot perform

any computation or data exchange with other components if its processing thread crashes.

The broadcast events can be used to define critical events that need to be simultaneously

broadcast to all the state machines in the system. SAFECASS uses a prefix “EVT(B)_” and

“/EVT(B)_” for the names of onset and completion broadcast events.

The Transitions defines possible state transitions associated with a SAFECASS event.

When a SAFECASS event occurs, the SAFECASS state machine determines the next state

based on the current state, the severity and possible transitions of the event. The six state

transitions of the GCM state machine are represented as “N2W”, “N2E”, “W2N”, “W2E”, “E2N”,
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and “E2W”. In accordance with the GCM’s distinction between the onset and completion

events, transitions of the onset events can include one or all of N2W, N2E, and W2E, whereas

those of the completion events can contain one or all of the others, i.e., W2N, E2N, and E2W.

The Timestamp represents a timestamp when a SAFECASS event was generated, and

the What contains a detailed description of the event in human readable format. These two

fields are determined at run-time.

5.6.4.1 Configuration File

The three design-time attributes – name, severity, transitions – are defined by the system

designer in the JSON format. Code 5.2 shows an example of this event specification. SAFE-

CASS reads the file on start up and populates the internal data structure accordingly based

on the event specification. The other two run-time attributes – timestamp and description –

are not specified in the configuration; they will be set later at run-time.

5.6.4.2 cisst Implementation

SAFECASS provides a complete implementation of the GCM events that do not require any

framework-specific feature, and thus cisst directly uses the base event mechanism without

any modification or specialization.
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Code 5.2: Example of JSON specification of GCM events
1 {
2 "component": "aComponentName"
3 "event": [
4 // Sensor warning
5 { "name" : "EVT_SENSOR_WARNING",
6 "severity" : 10,
7 "state_transition": [ "N2W" ]
8 },
9 { "name" : "/EVT_SENSOR_WARNING",

10 "severity" : 10,
11 "state_transition": [ "W2N" ]
12 },
13 // Sensor error
14 { "name" : "EVT_SENSOR_ERROR",
15 "severity" : 15,
16 "state_transition": [ "N2E", "W2E" ]
17 },
18 { "name" : "/EVT_SENSOR_ERROR",
19 "severity" : 15,
20 "state_transition": [ "E2N", "W2N" ]
21 }
22 ]
23 }

5.6.5 Filter

The GCM filter is an abstract unit of computation with the filtering algorithm where the

system designer can implement arbitrary application-specific logic (Sec. 4.3.6). The two

key requirements on the implementation of the GCM filter are flexibility and extendibility

so that any custom algorithm can be deployed to the system in a consistent and systematic

manner. SAFECASS provides an implementation of the GCM filters via the base filter.

5.6.5.1 Structural Elements

The GCM filter is comprised of inputs, filtering algorithm, outputs, and the additional

elements to support the GCM event semantics. This section describes in detail how each of
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#"RefreshSamples()"""":"bool
#"AddInputSignal()"""":"bool
#"AddOutputSignal()""":"bool
#"GenerateEventInfo()":"string
+"ConfigureFilter()=0":"bool
+"InitFilter()=0"""""":"bool
+"RunFilter()=0""""""":"void
+"CleanupFilter()=0""":"void
+"Enable()"""""""""""":"void
+"EnableDebugLog()"""":"void
+"InjectInput()""""""":"void

#"UID"""""""""""""":"unsigned"int
#"FilterType""""""":"FilteringType
#"FilterState"""""":"FilterStateType
#"SafetyCoordinator:"Coordinator"*
#"InputQueue""""""":"vector

FilterBase

INTERNAL
EXTERNAL

<<enum>>
FilteringType

DISABLED
ENABLED
DETECTED

<<enum>>
FilterStateType

+"SetHistoryBufferInstance()":"void
+"FetchNewValueScalar()"""""":"void
+"FetchNewValueVector()"""""":"void
+"PushNewValueScalar()""""""":"void
+"PushNewValueVector()""""""":"void

#"Name"""""""""""""":"string
#"Type"""""""""""""":"SignalType
#"HistoryBufferIndex:"int
#"PlaceholderScalar":"double
#"PlaceholderVector":"std::vector<double>

SignalElement

SignalElementType

+"ComponentName:"string
+"InterfaceName:"string
+"StateMachineType:"StateMachineType

FilterTargetType

1

1

InputSignals
OutputSignals

SCALAR
VECTOR

<<enum>>
SignalType

1..n

1

21

1..n

1

+"GetNewValueScalar()=0;;:"void
+"GetNewValueVector()=0;;:"void
+"PushNewValueScalar()=0;:"void
+"PushNewValueVector()=0;:"void

HistoryBufferBase

EVENT_DETECTION_EDGE
EVENT_DETECTION_LEVEL

<<enum>>
EventDetectionModeType

Figure 5.11: Class diagram of the SAFECASS base filter class (SC::FilterBase). The
extension from the original filter design203 is represented in green, and the fault injection
facility is shown in blue.

these elements is implemented within SAFECASS.

1. Input: Multiple inputs can be used, and each input is called an input signal. In Fig.

5.11, the SignalElement class implements the signal. Although the GCM is independent

of a particular component model, it requires component framework-specific mechanisms

to access data because each component framework maintains and manages information
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in a framework-specific manner. The key element that enables loose coupling between

SAFECASS and the component-based framework is the history buffer, which is implemented

as the HistoryBufferBase class that only contains pure virtual methods. This forces a

component framework to provide a derived class that implements those pure virtual methods

in a framework-specific manner. This derived class is called the derived history buffer

class, and is the key element that enables SAFECASS filters to access internal data of the

framework.

A new input signal can be added by FilterBase::AddInputSignal(). Internally, this

creates a new instance of the signal (SignalElement) that has a pointer to an instance

of HistoryBufferBase. Then, the newly created signal instance is added to the list of

input signals that the base filter maintains (FilterBase::InputSignals). When a filter

is executed, RefreshSamples() is called to update the cache of each input signal, while

iterating the list of input signals.

2. Filtering Algorithm: The filtering algorithm is defined by FilterBase::RunFilter().

Because this is a pure virtual method, filters derived from FilterBase should provide a

filter-specific implementation of this method. SAFECASS provides a guideline on the

implementation of the filtering algorithm as follows:

1. Call RefreshSamples() to refresh the cache of all input signal(s).

2. Implement a filtering algorithm that uses (the history of) the input signal(s).

3. Define the serialization of event(s) that a filter may generate (via GenerateEventInfo()).
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If an algorithm requires the history of the input signal(s), it can be implemented in the

derived classes. In this way, SAFECASS allows the system designer to design and deploy

any arbitrary algorithm with an arbitrary number of input signals in a flexible and extendible

manner.

3. Output: The output of the GCM filter is managed in a similar manner to the input.

An output signal is added by FilterBase::AddOutputSignal(), which internally creates

a new instance of SignalElement and adds it to the list of output signals of each filter

(FilterBase::OutputSignals). In the case of the input signal, the placeholder is used as

a cache of the latest value retrieved from the history buffer. The output signals, on the other

hand, use the placeholder as original output data.

4. Extension: The GCM filter is derived from the original filter203 with additional fea-

tures to support the GCM event semantics, as shown in Fig. 4.12. The extension and its

implementation within SAFECASS include the following:

• Specification of a state machine associated with the GCM filter:

» FilterTargetType

• Support for GCM event generation:

» FilterBase::GenerateEventInfo() and FilterBase::SafetyCoordinator

• Life cycle management of the GCM filter:

» ConfigureFilter(), InitFilter(), RunFilter(), and CleanupFilter() of

FilterBase
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• Fault injection facility

» FilterBase::InjectInput() and FilterBase::InputQueue

Fig. 5.11 represents these methods and variables in green. Among the methods for the

life cycle management of filters, only RunFilter() is required to be defined by system

designers; the other methods are internally called by SAFECASS. Of course, system

designers can override and customize those methods, if necessary.

SAFECASS also provides the fault injection facility that allows system designers to

inject (a vector of) test data into the system. Depending on how deep fault injection is

performed, i.e., which element of SAFECASS the test data is injected to, two different

modes for fault injection are supported: shallow fault injection and deep fault injection.

In shallow fault injection, test data is injected to the internal queue of the filter

(FilterBase::InputQueue). At the next iteration of filter execution, if the internal queue

is not empty, the filter dequeues one element and uses it instead of the real input signal.

When the internal queue becomes empty, the filter once again uses the latest value of the

real input signal.

Deep fault injection occurs in the history buffer, a level deeper than shallow fault

injection. When test data is injected, the filter enqueues it to the internal queue of the history

buffer, rather than the filter, by calling PushNewValueScalar() or PushNewValueVector()

of the input signal, depending on the type of the test data. Because these two methods require

a framework-specific implementation, deep fault injection is only available if a component

framework supports the optional requirement. More specifically, the optional requirement
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necessitates an implementation of (1) the internal queue of the history buffer, (2) APIs to

enqueue test data to the internal queue, and (3) a mechanism to “intercept” application

requests for the data so that an element from the queue can be returned instead of the actual

data. This latter requirement is difficult to implement in most component-based frameworks,

with the exception of cisst (see Sec. 5.6.5.7).

Both shallow and deep fault injection use the same API, FilterBase::InjectInput(),

with test data to inject and a boolean flag specifying the fault injection mode. In Fig. 5.11,

the fault injection facility is represented in blue.

5.6.5.2 Filtering Modes

The SAFECASS provides an option that defines two different filtering modes: internal

filtering and external filtering. The main difference between the two execution modes is

which thread performs the actual computation for filters. In internal filtering, filters and

filter pipelines (henceforth, simply “filters”) are installed on a component being monitored –

the target component – and filters are executed by the thread of the component (Fig. 5.12a).

This approach requires a “hook” into the target component to request that it execute the

internal filters; typically, this can be implemented in the framework routine that invokes

the component’s main processing method (e.g., the Run method in cisst). The advantage of

internal filtering is that all internal resources are available to the thread of the component,

so it involves no other mechanism for data sampling, thereby guaranteeing that filters

are executed as long as the target component runs. The disadvantage, however, is that
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<<component>>
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History Buffer
(default)

filter 1
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filter 2
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(a) Internal filtering
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<<component>>
Target

History Buffer
(default)
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Filters

filter 2

History Buffer
(monitor)

(b) External filtering

Figure 5.12: Two filtering modes in SAFECASS : Internal vs. external filtering modes

internal filtering consumes processing resources of the target component to execute filters,

introducing run-time overhead. This may not be desirable in cases where components have

strict restrictions on the execution time (e.g., hard real-time performance), especially when

a filtering algorithm requires heavy computation.

In contrast to internal filtering, external filtering deploys filters in a separate component

that monitors the target component, called the monitor component, and uses the thread

of the monitor component to process the filters. Thus, external filtering does not use any

processing resource of the target component, although this filtering requires additional

run-time overhead for data retrieval from the target component. To enable external filtering,
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SAFECASS requires the framework to provide more substantial features. These features are

implemented using the framework services and include (1) the definition, instantiation, and

deployment of the monitoring component, (2) establishing connections between the moni-

toring component and the target component, and (3) setting up data retrieval mechanisms.

As a result, the run-time characteristics of external filtering inherently follow those of the

framework services.

Fig. 5.12b illustrates the two filtering modes. Essentially, the component executes filters

which read input data from the history buffer, execute the filtering algorithm, and write filter

output data to the history buffer. The main difference between the two modes is where the

component filters are deployed (i.e., to the target component in internal filtering and to the

monitor component in external filtering), and as a result, which thread executes the filtering

algorithms. It should be noted, however, that the post-filtering process that generates and

handles GCM events is almost the same in both cases, possibly with timing differences due

to the thread execution model.

One design consideration of the external filtering approach is the component execution

model of the monitor component, i.e., how the monitor component acquires and manages

its execution thread, how the thread is executed, and when and how it retrieves data from

the target component. If the monitor runs periodically, SAFECASS inherently becomes

a periodic system and can take advantage of characteristics of periodic systems such as

implicit flow control and the protection of the system from erroneous overload conditions

due to faults.221 However, this leads to implicit delay in filter processing and thus may result
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in the late detection of error events. On the other hand, if the monitor is driven by signals

or events, SAFECASS becomes an event-driven system and filter processing delay can be

minimized, but shielding an event from faults becomes difficult. That is, the system may

suffer from hyperactivity due to spurious events, and thus a mechanism to suppress unwanted

signals is required.221 Also, it is necessary to separately detect underactivity of the target

component; with SAFECASS, this can easily be handled by deploying framework-level

filters to detect issues such as thread crash or overrun.

In summary, Table 5.1 presents a list of features that a framework should provide for the

SAFECASS filter facility through the framework extension. Because the SAFECASS filter

mechanism relies on these features, SAFECASS is only applicable to frameworks that

provide those features. The data storage of the history buffer represents a framework-

specific implementation of the history buffer. Any implementation of the history buffer

that provides thread-safe access to data (possibly with timestamp) would suffice. The data

access of the history buffer refers to a feature that allows SAFECASS to read data from,

and to write data to, the history buffer. As described earlier, reading data is an essential

requirement, whereas writing is an optional feature. The filter initialization is a feature that

establishes connections between filter inputs/outputs and the history buffer on system start up,

by calling the SetHistoryBufferInstance() method of the SignalElement class. The

filter execution is a key feature that actually executes the filtering algorithm by calling the

RunFilter() method of each filter instance at run-time. Considering the thread execution

model, the system designer determines the timing of execution and which thread to use for
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Table 5.1: List of features that the framework extension should provide for the filter facility
of SAFECASS. Two optional features are the write-to-buffer feature and the support for the
two filtering modes.

Element Feature Description

History Buffer

Implementation Derived history buffer (derived from the base history buffer)

Data
Storage Framework-specific implementation of the history buffer

Data
Access Read data from the buffer; Write data to the buffer (optional)

Filter

Initialization Connect filter input/output signals to the history buffer

Execution Execution of filtering algorithms

Modes
(optional) Support for two filtering modes: internal/external filtering

filtering. The filtering modes is an optional feature. Depending on the data exchange model

of the framework, one of the two modes may not be feasible, but at least one mode must be

supported.

Again, the two optional features of the framework extension are (1) the feature to write

data to the history buffer (for deep fault injection), and (2) the feature to support the two

filtering modes.

5.6.5.3 Event Generation Modes

When detecting and generating GCM events via GCM filters, the event detection comes

in two flavors: edge-triggered and level-triggered. In the edge-triggered mode, the GCM
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filter generates the onset event only once on its first occurrence, whereas the GCM filter in

the level-triggered mode keeps generating onset events whenever the event is detected. In

general, level-triggered events without careful design can possibly flood the system with

numerous duplicate events, which may lead to problems in event handling (e.g., when/how

to know if an event is handled properly and thus subsequent events should be ignored, or

when the filter should stop generating events). However, duplication of events improves

the robustness of the system against sporadic failures in the event delivery mechanism. In

contrast, edge-triggered events may be missed if the event delivery mechanism is not reliable.

But, they do not suffer from either the event flooding issue or the event handling problem,

which generally leads to a simplification of the overall system design. When designing

filters for the system, the system designer should take these characteristics into account.

The base filter class, SC::FilterBase, represents these two different modes as the

SC::EventDetectionModeType enum. Although the base filter currently uses the edge-

triggered mode by default, derived filters can override this property.

5.6.5.4 Configuration File

As in the case of GCM events, the GCM filters are defined in the JSON format. On startup,

SAFECASS reads this specification either from a configuration file or from a string. Then

it creates and configures instances of GCM filters based on the specification, and deploys

these instances to the system as specified.

Code 5.3 presents an example of a filter specification. The filter configuration consists
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Code 5.3: Example of JSON specification of GCM filters
1 {
2 "component": "aComponentName"
3 "filter" : [
4 // filter 1: threshold filter
5 {
6 // -- common fields
7 "class_name" : "FilterThreshold",
8 //
9 "target" : {

10 // type of state machine associated with this filter
11 // s_F: framework state
12 // s_A: application state
13 // s_P: provided interface state
14 // s_R: required interface state
15 "type" : "s_F",
16 "component" : "component_name",
17 "interface" : "interface_name"
18 },
19 // filtering modes (INTERNAL or EXTERNAL)
20 "type" : "INTERNAL",
21 // debug enable (true or false; default: false)
22 "debug" : false
23 // -- threshold filter specific fields
24 "argument" : {
25 "input_signal" : "ForceY",
26 "threshold" : 0.8,
27 "tolerance" : 0.1,
28 // output values
29 "output_above" : 1,
30 "output_below" : 0,
31 // names of events to be generated
32 "event_onset" : "EVT_FORCE_Y_EXCESSIVE",
33 "event_completion": "/EVT_FORCE_Y_EXCESSIVE"
34 }
35 }
36 ]
37 }

of two parts: the common part and filter-specific part. The common part is required by

the base filter class and contains attributes common to all filters. The class_name is a

name of the filter class to use. SAFECASS uses this string name to dynamically create

filter instances. For dynamic creation, SAFECASS provides the filter factory facility

(SC::FilterFactory) using the Factory Pattern,204 where a set of pre-defined filter classes

are “registered” to the facility by name (of type string) at compile time, and are dynamically

instantiated later based on the name. SAFECASS provides a set of off-the-shelf filters
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that implement basic operations, such as bypassing and thresholding, but it also allows

the system designer to define and use custom filters (the following section describes more

details about how to define the custom filters). The target specifies a GCM state machine

with which this filter is associated. The type determines the filtering mode of this filter.

It should be noted that the two filtering modes can be switched just by updating a single

parameter. Verbose logs can be enabled or disabled per filter instance on startup via the

debug attribute (set to false by default). It is also possible to set this attribute at run-time via

the FilterBase::EnableDebugLog() method.

The filter-specific arguments are specified as a JSON value under the keyword argument.

The content and format of the value are defined by an individual filter. Because the value

is expressed in JSON format, the filter designers can benefit from its extendible and ex-

pressive syntax, such as a collection of name/value pairs, an ordered list of values, and

various data types. In Code 5.3, for example, the thresholding filter of which class name

is FilterThreshold requires seven attributes to be defined. These attributes are described

in more detail in the next section (Sec. 5.6.5.5). Also note that the value of the filter

keyword is defined as an array type (i.e., enclosed by JSON array delimiters [ and ]), so

that one configuration file can contain specifications for multiple filters.

5.6.5.5 Basic Filters

The SAFECASS provides a set of off-the-shelf filters as part of the core library. They are

called the basic filters, and three basic filters are currently available: the bypass, change
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Table 5.2: List of the off-the-shelf basic filters that SAFECASS provides. The Type field
follows the data type definition of JSON.10

Class Name
Filter-specific Attributes

Name Type Description

FilterBypass input_signal string Name of input signal

FilterChangeDetect

input_signal string Name of input signal

baseline number Baseline value

event_onset string Name of onset event

event_completion string Name of completion event

FilterThreshold

input_signal string Name of input signal

threshold number Threshold value

tolerance number Tolerance (margin) value

output_above number Output value if
input ≥ (threshold + tolerance)

output_below number Output value if rising edge was detected and
input < (threshold + tolerance)

event_onset string Name of onset event

event_completion string Name of completion event

detection, and threshold filters. Table 5.2 presents a list of these basic filters with the

definition of filter-specific attributes.

The Bypass filter is the most basic filter where its output is identical to its input. Although

this filter may not be particularly useful in practice, its minimal structure provides a reference

for system designers on how to design filters.

The ChangeDetect filter generates GCM events if the value of the new input is (i)
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different from the baseline, and (ii) different from that of the last input. The intended use

of this filter is to monitor discrete signals, such as counters and flags, to detect changes

and to generate onset and completion events. The onset event occurs when a new input

changes from the baseline to any other value, and the completion event occurs when a

new input becomes the baseline. Conceptually, the onset and completion event correspond

to the rising and falling edge (edge-triggered). The baseline is specified as the baseline

attribute, and the names of onset and completion event are defined as the event_onset and

event_completion attributes. This filter is suitable for detecting changes of digital signals,

rather than analog signals that tend to fluctuate.

The Threshold filter checks if a new input exceeds the threshold value with a margin of

tolerance. If the input exceeds the threshold beyond the margin, the filter output becomes

output_above and the event_onset event is generated. If an event_onset event occurred

earlier and a new input becomes less than threshold with the margin, the filter output

becomes output_below and the event_completion event is generated.

Despite the short list of the basic filters, they are comprehensive, flexible, and expressive

enough (1) to replace some existing application-specific safety features with filter-based

implementations, and (2) to design new framework-specific safety features. The next chapter

(Chap. 6) illustrates the use of these filters for two different medical robot systems.
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5.6.5.6 Custom Filters

The basic filters are useful for quickly prototyping safety features because they can be

easily deployed to the system if a JSON specification is provided. If the basic filters are not

adequate for application-specific safety features, system designers can define new filters,

called custom filters. The SAFECASS filter facility helps the system designer easily define

custom filters by providing pre-defined macros.

Assuming the name of a new custom filter is “FilterCustom”, a new filter can be defined

with the following four steps:

1. Define a new filter class: Define a custom filter class, FilterCustom, that is derived

from the base filter class (SC::FilterBase).

2. Define input(s) and output(s): Add input and output signal(s) to the constructor of

FilterCustom by calling AddInputSignal() and AddOutputSignal().

3. Define filtering algorithm (and life cycle handlers): Implement a custom filtering

algorithm in RunFilter(). Optionally, the other three filter life cycle handlers can be

overridden by defining ConfigureFilter(), InitFilter(), and CleanupFilter().

4. Register a new filter to SAFECASS: Register FilterCustom to SAFECASS using two

helper macros that SAFECASS provides. First, add the following macro to the header file:
#include "filterBase.h"

class SCLIB_EXPORT FilterCustom: public SC:: FilterBase
{

// here come other declaration and definitions

SC_DEFINE_FACTORY_CREATE(FilterCustom );
};
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Next, add another macro to the source file to register the new class to the SAFECASS filter

factory:
#include "filterCustom.h"

SC_IMPLEMENT_FACTORY(FilterCustom );

This macro internally instantiates an instance of the filter, enabling the filter factory to

dynamically create additional instances of the filter. Once these steps are completed, the

new filter class, “FilterCustom”, can be used in the JSON specification, as if it were one of

the basic filter classes.

5.6.5.7 cisst Implementation

Table 5.1 summarizes a list of features that have to be provided for SAFECASS through

the framework extension. Based on this table, Table 5.3 describes how the extension of

cisst implements each feature.

In cisst, the mtsHistoryBuffer class is added to the cisstMultiTask library to provide

an implementation of the derived history buffer. mtsHistoryBuffer internally maintains a

pointer to an instance of the cisst state table, which provides a thread-safe, efficient, and

lock-free data exchange mechanism between components (Kazanzides et al., 2008)222i. The

derived history buffer in cisst uses the state table as its data storage back-end, and supports

both read and write operations on the state table. Because cisst components systematically

use the state table to provide data to other components, it is possible to support deep fault

injection, as described in Sec. 5.6.5.1. Specifically, the SAFECASS can inject values into

iRecently, the correctness of the state table was verified using formal methods (Kazanzides et al., 2012).120
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Table 5.3: Summary of the extension of cisst that provides framework-specific features for
Safety Architecture for Engineering Computer-Assisted Surgical Systems

Element Feature Implementation in cisst

History Buffer

Implementation mtsHistoryBuffer in cisstMultiTask (new)

Data
Storage mtsStateTable in cisstMultiTask (existing)

Data
Access mtsStateTable in cisstMultiTask (both read and write supported)

Filter

Initialization mtsSafetyCoordinator in cisstMultiTask (new)

Execution mtsStateTable::Advance() executes FilterBase::RunFilter()

Modes
(optional) mtsSafetyCoordinator (both filtering modes supported)

the target component state table, which are then used by other components; note, however,

that the target component typically uses its member data directly and therefore would not be

affected by changes to its state table.

The filters are initialized by the mtsSafetyCoordinator class that is derived from

the base coordinator, which is described in the next section. Filters are executed by the

component to which they are deployed. That is, internal filters are executed by the target

component, whereas external filters are executed by the monitor component. Within the

component, filters are executed by the mtsStateTable::Advance() method, which is

called at every iteration of the component processing loop, after the user-defined code in the

Run method. In addition, cisst supports both the internal and external filtering modes. A filter

is added by calling the AddFilter() method of mtsSafetyCoordinator; internally, this

filter calls either AddFilterInternal() or AddFilterExternal(), depending on whether
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it is an internal or external filter, respectively.

5.6.6 Coordinator

The base coordinator is the key entity that enables a run-time environment for GCM. The

core features that it provides include (1) maintaining the system status in terms of the GCM

states, (2) providing the framework layer with APIs that facilitate an implementation of the

framework extension for SAFECASS, and (3) coordinating states and events in accordance

with the GCM semantics. The SC::Coordinator class provides an implementation of the

coordinator, as illustrated in Fig. 5.13.

The coordinator maintains three key data structures: GCMMap, EventMap, and FilterMap.

The GCMMap is a set of instances of the GCM class, which implements the structural elements

of the GCM. For each component in the system, an instance of the GCM is created to maintain

a complete set of GCM state machine instances of the component, connection topology

of the system, and service dependency information. The state of a particular component

or an interface can be queried by GetComponentState() or GetInterfaceState() of

Coordinator:
State:: StateType GetComponentState(const std:: string & componentName ,

const Event* & e,
GCM:: ComponentStateViews view = SYSTEM_VIEW) const;

State:: StateType GetInterfaceState(const std:: string & componentName ,
const std:: string & interfaceName ,
const Event* & e,
GCM:: InterfaceTypes type) const;

It is also possible to fetch the entire set of states at once via GetStateSnapshot().

The EventMap maintains a set of Events. Each instance of Events contains a list of
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+"ReadConfigFile()""""":"bool
//"States
+"AddComponent()""""""":"int
+"AddInterface()""""""":"bool
+"GetComponentState()"":"StateType
+"GetInterfaceState()"":"StateType
+"GetStateSnapshot()""":"string
+"ResetStateMachines()":"void
//"Events
+"AddEvent()""""""""""":"bool
+"GetOutstandingEvent():"Event
+"OnEvent()"""""""""""":"bool
+"OnEventPropagation()":"bool
+"OnEventHandler()=0000:"bool
//"Filters
+"AddFilter()=0"""""""":"bool
+"AddFilterFromJSON()"":"bool
+"GetFilters()""""""""":"FiltersType
//"Service"states
+"AddServiceStateDependencyFromJSON():"bool
//"Connections
+"AddConnection()"""""":"bool
//"APIs"for"applications
+"InjectInputToFilter():"bool
+"GenerateEvent()"""""":"void
+"BroadcastEvent()""""":"bool
+"SetEventHandlerForComponent():"bool
+"SetEventHandlerForInterface():"bool

#"Name:"string
#"Mutex:"boost::mutex
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Figure 5.13: Class diagram of the SAFECASS base coordinator class (SC::Coordinator)

registered events to a component, and explicitly defines which events may occur within

the component, based on the event specification, as described in Sec. 5.6.4.1. If an event

occurs, OnEvent() is called with detailed event information encoded in the JSON format.

Internally, OnEvent() calls OnEventHandler() to inform the framework of the occurrence

of the event, thereby allowing the framework to handle the event in a framework-specific

manner. When a service state changes and an error event is propagated across the component

boundary, OnEventPropagation() is called to handle event propagation.

The FilterMap has the same structure as the EventMap; it is a set of Filters that is

associated with each component and maintains a list of filter instances deployed to the

189



CHAPTER 5. SAFETY ARCHITECTURE FOR ENGINEERING
COMPUTER-ASSISTED SURGICAL SYSTEMS

component. Although the coordinator provides helper methods to add filters, the method

that actually deploys a filter to the framework, i.e., AddFilter(), must be provided by the

framework as part of the framework extension for SAFECASS.

Additionally, Coordinator provides a set of utility functions for applications, including

InjectInputToFilter() for fault injection, GenerateEvent() for manually (i.e., without

GCM filters) generating GCM events, and BroadcastEvent() for manually generating

GCM broadcast events. The APIs of these functions are as follows:
bool InjectInputToFilter(FilterBase :: FilterIDType fuid ,

const std::vector <double > & inputs ,
bool deepInjection = false);

bool InjectInputToFilter(FilterBase :: FilterIDType fuid ,
const std::vector < std::vector <double > > & inputs ,
bool deepInjection = false);

void GenerateEvent(const std:: string & eventName ,
State:: StateMachineType type ,
const std:: string & what ,
const std:: string & componentName ,
const std:: string & interfaceName = "");

bool BroadcastEvent(const std:: string & eventName , const std:: string & what);

5.6.6.1 cisst Implementation

In cisst, the cisstMultiTask library provides most of the framework extension, which defines

the mtsSafetyCoordinator class derived from the base coordinator (SC::Coordinator).

Currently, mtsSafetyCoordinator is implemented as part of the cisst local component

manager, i.e., the mtsManagerLocal class. This class effectively corresponds to the Manager

Component Client (MCC) in Fig. A.3. Thus, mtsSafetyCoordinator is instantiated and

deployed only once per process in parallel with the cisst local component manager.
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Figure 5.14: SAFECASS tool support: console enables access to the internal processing
pipeline of the Generic Component Model. This access includes both read and write
operations, each represented in blue and red, respectively.

5.6.7 Tool Support

SAFECASS provides tools to facilitate the development process. These tools are designed

with no dependency on services that the framework provides. This self-contained design

allows the tools to be used across different frameworks. Currently, SAFECASS supports

two tools: console and viewer.

5.6.7.1 Console: Interactive Console

The console is a command line utility to interact with the system. The core feature of this

tool is to allow system designers to access (read/write) the internal processing pipeline of

the GCM that fundamentally defines and controls the behavior of the system. Fig. 5.14

depicts this concept, where blue and red represent read and write operations, respectively.

The features that the console provides center around the four elements of the internal

processing pipeline: input, filter, event, and state. The input to the filter can be retrieved
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for monitoring and overridden for testing purposes (deep fault injection) through the fault

injection facility, as described in Sec. 5.6.5.1.

Using console, it is possible to access the information about filters, both as a group

and individually, such as a list of filters in the system, a list of input and output signals of

a particular filter, and the current status (enabled/disabled) of a filter. The shallow fault

injection can also be easily performed via console.

In addition, the console can show the information of any event registered to the system.

It can also directly generate GCM events using the SAFECASS event generation mechanism.

This event generation is distinct from the filter-based event generation in that events gener-

ated by filters are handled by a pre-defined state machine associated with the filter, whereas

events generated by the direct mechanism can be handled by any arbitrary, user-specified

state machine. The console can generate broadcast events as well.

The state information of the system can be retrieved in its entirety in the JSON format.

Because states can change only with the occurrence of GCM events, the console does not

allow any state to be manually set.

Other features that console provides include showing a list of connections, information

about service state dependencies, and fault injection of a series of data from a file.

Based on our experience, we find that the features that the console provides are particu-

larly useful for debugging and introspecting the run-time system status.
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Figure 5.15: SAFECASS tool support: viewer visualizes the current states of the system.

5.6.7.2 Viewer: Run-time State Viewer

The viewer is a graphical user interface (GUI) tool that visualizes the run-time status

of component-based systems in an effective, intuitive manner. The viewer uses the D3

package223 as its visualization module and the Qt framework for its GUI.

Fig. 5.15 shows how the viewer visualizes the states of the system in a structured manner.

The innermost layer in the darkest color (Proc-p) is called the process layer, and represents
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a set of processes in the system. Although the figure shows only one process (p-th process),

multiple segments will show up in case of multi-process systems. The next layer is called

the component layer. Under the segment of the p-th process, this layer contains a set of

segments where each segment, shown as Comp-i, represents the extended component state,

ŝext(i) (Eq. 4.6), of the i-th component in the p-th process. The next outer layer, called the

meta layer, consists of a group of three segments that present three different types of states:

• The System segment: Component states in the system view, ŝ(i) (Eq. 4.1a)

• The Required segment: State product of all required interface states, SR(i) (Eq. 4.4a)

• The Service-k segment: Service state of the k-th provided interface, ŝ(i, k) (Eq. 4.5)

The outermost layer represents a set of actual states. In contrast to the other layers that

present derived states or a collective form of states, this layer contains only the actual states.

Within each segment of the meta layer, the following state variables are presented:

• The System segment: Component state in the framework view, sF(i) (Eq. 4.1b), and

the same state in the application view, sA(i) (Eq. 4.1c)

• The Required segment: j-th required interface state, sR(i, j) (Eq. 4.3a)

• The Service-k segment: k-th provided interface state, sP(i, k) (Eq. 4.3b)

When a GCM event occurs, the event is handled by a designated, actual state machine that

corresponds to one of the segments in the outermost layer. This event is then consecutively

propagated by the event propagation mechanism towards the center, crosses the process

boundary, and is handled by other relevant state machine(s). Whenever any state changes,
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(a) Occurrence of Warning event
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(b) Occurrence of Error event

Figure 5.16: The viewer visualizes the operational status of the overall system in an intuitive,
effective, and structured manner.

the coordinator publishes the system status update message to the SAFECASS network,

making the viewer refresh its visualization.

The color of each segment indicates the current state of the state machine corresponding

to the segment. The Normal, Warning, and Error states are represented as white, yellow, and

red. As illustrated in Fig. 5.16, this color-coded state representation visualizes the overall

status of the system in an intuitive, effective, and structured manner. This tool can also

visualize which parts are affected by the event. For example, Fig. 5.17a shows a snapshot

of a SAFECASS-based system where an Error event occurred. Despite a large number of

states in the system, it is possible to visually identify which part of the system was affected

by the event.

The viewer is also interactive. If there is any outstanding event associated with a segment,
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Figure 5.17: The viewer allows the system designer to visually inspect the impact of
Error events with intuitive and interactive visualization.

the detailed information of the event is displayed as a pop up on the chart. Furthermore,

it is possible to click any segment on the chart to “zoom in” the segment, so that only

the segment clicked and its child segments are displayed. As an example, if the segment

corresponding to the component “CONTROL” in Fig. 5.17a is clicked, only the segment and

its child segments are displayed, as in Fig. 5.17b. In this case, the viewer hides the process

layer and the component layer becomes the innermost layer. If the circle at the center is

clicked, the viewer returns to the default view, i.e., Fig. 5.17a.

5.7 Framework Support: cisst
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In the framework-based architecture, it is essential to guarantee that the framework provides

correct, reliable services for the application layer because the correct execution of the

application inherently relies on those services. Currently, the SAFECASS only supports

the cisst component-based framework. This section describes the SAFECASS-based safety

features that we introduced to cisst.

The framework layer has less variability than the application layer, and provides generic

and application-independent services for the application layer. From a variety of different

framework-level events that may cause adverse effects on the system, we select three events

as exemplary cases: thread overrun, thread exception, and command queue full events.

These events are among the major threats to the correct and timely services of the framework

layer. Despite their potentially critical impact on the system, software systems are often

implemented with the ideal assumption that timing errors will never occur.224 Within large

and complex component-based systems, it tends not to be easy to systematically detect those

events, nor to identify the source of errors. In the following sections, we describe three safety

features that we developed to address each event in a systematic and structured manner

based on SAFECASS. The specifications of these safety features in cisst are presented in

their entirety in Code B.2 in Appendix B.

5.7.1 Thread Overrun

The first safety feature is a facility that systematically manages thread overrun events. Robot

control systems typically run under real-time operating systems, primarily because of the
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strict timing requirements to maintain control stability. Despite correct design, thorough

analysis, and extensive testing, timing errors do occur in practice, due to, for example,

interrupts occurring more frequently or executing longer than expected and variations in

processing speed.224 Among these, the most common timing error is the missed deadline,

where a real-time thread fails to complete its execution on time.224 In practice, such timing

errors are not detected until more catastrophic failures occur, and can lead to service failures

with non-obvious reasons for the cause of such failures. In the real-time embedded domain,

or more broadly speaking, the high-assurance software systems domain, there exists prior

work on the detection and handling of timing errors (e.g., Stewart et al. (1992,209 1997209),

Caccamo et al. (2002),225 Santos (2008)226).

The cisst framework only provided preliminary support for the detection of thread over-

run. Specifically, the base component class with a thread maintained a boolean variable

(mtsTask::OverranPeriod) that represented the thread overrun status, but it was the com-

ponent designer or application developer’s role to check the variable and handle the thread

overrun events; the framework did not handle thread overrun events. That is, these events

are ignored unless the component designer or application developer – hereafter, the user –

explicitly handles those events. Due to additional implementation overhead on the users,

the system’s reliance on users to add the manual checking of the overrun status would be

problematic in practice as the number of components increases.

Motivated by these necessities, we introduced SAFECASS to cisst and implemented

a mechanism to detect and handle thread overrun events, as a new safety feature within
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cisst. With this change, the design of cisst is improved such that the framework is more

involved in the detection and handling of thread overrun events. First, we define a pair

of GCM events: EVT_THREAD_OVERRUN and /EVT_THREAD_OVERRUN. Each represents the

onset and completion events of thread overrun. Then, we use the Threshold filter to

detect thread overrun. cisst creates an instance of the filter for every component that is

executed periodically, i.e., of type mtsTaskPeriodic, and deploys the filter instance to

the component with the threshold set to the nominal period of each component. At each

iteration of those components, the actual execution time of the user code is monitored. When

a filter is executed, the onset event is generated if a thread overrun is detected, changing the

component state from N to W. As reaction, the user handles thread overrun in an application-

specific manner. Different timing error handling techniques can be adopted, such as use

of soft real-time threads, imprecise computations, and adaptive real-time scheduling.224 In

the following iteration, the completion event is generated if a component is recovered from

thread overrun, i.e., the execution time is less than the threshold. This completion event

restores the component state back to N. Note that the GCM events associated with thread

overrun declare state transitions only between N and W. Thus, the component state cannot

be E due to thread overrun.

The major benefit of the SAFECASS-based safety feature is that the framework is

more heavily involved in the detection and handling of thread overrun than before, thereby

enabling automatic, configurable installation of the safety feature throughout the system. In

addition, the user does not need to check the overrun status manually for each component.
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This greatly simplifies the application code. Furthermore, the user can focus on application-

specific content for reaction and recovery, rather than dealing with monitoring and detection

as part of the application-specific logic.

5.7.2 Thread Exception

The enhancement of the thread exception handler is the second safety feature that we added

to cisst. When a thread executes the user code, the occurrence of C++ exceptions leads

to the partial and incomplete execution of the application logic. This may not affect some

components with little logic, such as sensor or device “wrapper” components because sensor

feedback may be available at the next iteration. However, it would be a critical issue for

components with heavy, complex logic, such as robot control components, because part of

the code that the thread failed to execute may render the service unavailable, or may break

the consistency of internal states.

cisst provides a facility that handles thread exceptions as part of the framework services

(OnStartupException() and OnRunException() of mtsTask). The default behavior of

these handlers was simply to leave a log message about the occurrence of the exception.

Although the user can override these handlers to implement an application-specific exception

handler, the fact that an exception occurred was not propagated to other components.

Because of the potential possibility of unavailable services due to repetitive thread exceptions,

the lack of error propagation is not desirable.

To enable error propagation as part of the exception handlers, we defined two GCM
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events, EVT_THREAD_EXCEPTION and /EVT_THREAD_EXCEPTION. Compared to the thread

overrun events that are generated by the filter, these events are directly generated by a call

to the GenerateEvent() API that the SAFECASS Coordinator provides. The onset event

is generated at the end of the existing exception handlers, whereas the completion event is

generated on the completion of execution of the user code. The two events define transitions

between N and E, which leads to error propagation according to the GCM semantics (Sec.

4.3.7).

5.7.3 Command Queue Full

Lastly, the detection and reaction of the command queue full error is a new safety feature

added to cisst using the SAFECASS services. cisst uses the Command Pattern204 for data

exchange between components – the service requester and the service provider – where an

interface provides services via command objects. Each command object maintains internal

first-in, first-out (FIFO) queues to process requests. A command queue full error occurs

when any of these internal queues becomes full because of either too slow request processing

(i.e., dequeuing) or too fast command requests (i.e., enqueuing), and thus cannot enqueue

any more requests. Once this happens, further requests are dropped and thus in effect ignored

until at least one pending element is dequeued and processed.

The previous implementation of cisst supported the detection of the command queue full

errors. When they occurred, the service provider component generated log messages and re-

turned a particular error code (mtsExecutionResult::COMMAND_ARGUMENT_QUEUE_FULL).
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The service requester component checked this return code to determine if its last request was

successfully queued. There are several issues with this implementation. First, it was difficult

to identify and locate the exact source of the error when it occurred. From the service

provider’s perspective, error logs did not identify the complete information of the owner of

a command object, i.e., names of the component and the interface to which the command

object belongs. These logs only showed the name of the command object associated with

the full queue. Secondly, the service requester had no means to check the status of the

service provider other than the return code. Thus, the system designer had to manually

check the return code for each and every function call for command requests as part of the

application logic. This led to the duplication of error handling code for every command

request. For this reason, system designers in practice were tempted to skip error handling or

ignored the return code and dealt with such issues by trial-and-error that typically involved

time-consuming debugging processes. Lastly, it was not feasible to perform prognostic fault

detection; the command queue full event was detected only after they actually occurred.

To address these issues, we applied SAFECASS down to the command object-level.

We first refactored the previous design of the command object so that each instance of the

command object maintains the names of the owner component and the owner interface. Then,

we defined two GCM events, EVT_COMMAND_QUEUE_FULL and /EVT_COMMAND_QUEUE_FULL,

to represent the onset and completion events. Next, we added code snippets to generate the

onset event on the detection of the command queue full error. With the onset event, the state

of the provided interface to which the command object belongs becomes E. The service

202



CHAPTER 5. SAFETY ARCHITECTURE FOR ENGINEERING
COMPUTER-ASSISTED SURGICAL SYSTEMS

state of the provided interface is successively changed to E by the GCM error propagation.

As a result, all the connected components are notified of the error and thus have a chance to

react to the error accordingly. The completion event is generated when the current state of

the provided interface is E and the queue is not full. With this new design, it is now possible

to exactly identify which command objects cause problems. Also, the service requester can

check the current status of the service provider prior to actually committing a request. This

allows the service requester to adaptively control the flow of command requests, thereby

achieving more reliable communication between components. In addition, this new facility

would simplify the code-level implementation for command requests, return code checking,

and error handling on the requester’s side.

Currently, we use code snippets embedded in the command-level to generate the GCM

events on the detection of the command queue full error, but it is possible to replace the

embedded code snippets with a filter-based scheme. With slight modification, this design

can be further improved to enable prognostic fault detection, so that a Warning event can be

generated and handled prior to the actual occurrence of an Error event. This can be easily

achieved with just two steps: (1) registering the remaining size of each queue to the history

buffer and (2) installing a threshold filter on each command object instance with a threshold

of, for example, 80% of the queue size (this can be adjusted simply by modifying a JSON

specification). This would help to consolidate code snippets distributed over the code into a

central place (e.g., constructors of command objects), thereby simplifying code and thus

improving code maintainability.
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Figure 5.18: Simple system with two components

5.8 Illustrative Example

To illustrate overall operation of SAFECASS, we present experimental results based on

data that we collected using a simple system with two components, as shown in Fig. 5.18ii.

The Sensor component represents a typical sensor or hardware device wrapper component

where its sensor feedback is periodically updated and is provided via the provided interface,

PS . The Control component reads sensor feedback from PS via its required interface, RC,

and implements the control logic.

For demonstration purposes, the Sensor component internally maintains two indepen-

dent variables – Value1 and Value2 – and defines two pairs of events: (/)EVT_WARNING (sever-

ity: 10, transition: N � W) and (/)EVT_ERROR (severity: 20, transition: N � E). Two

instances of the Threshold filter (Sec. 5.6.5.5) are installed to generate these events. Each

filter instance monitors Value1 and Value2 against thresholds of 5.0 and 10.0, respectively,

and generates onset or completion events if the value exceeds or falls below the thresh-

old. To simplify the demonstration, the Control component defines no event and only

handles errors propagated from the Sensor component. Both components are executed at

10 Hz and we simulate warning and error conditions by changing the two variables of the

iiThis simple system is implemented and provided as one of the examples of the Safety Architecture for
Engineering Computer-Assisted Surgical Systems.
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Sensor component.

To demonstrate the differences between the filter’s two modes of event generation (Sec.

5.6.5.3), we repeat the same test scenario with filters in each mode. The test scenario defines

a particular pattern of the event generation: a warning event→ an error event→ a warning

event superseded by an error event (event prioritization). Although the actual values for

the input variables are randomly generated, the pattern and timing of warning and error

conditions are almost the same for both cases.

5.8.1 Edge-triggered Mode

Fig. 5.19 presents the results when the Threshold filters are configured to operate in the

edge-triggered mode.

Initially, both values are below the threshold and nothing occurs. At t=5.2464 (sec),

the filter of the Sensor component detects that Value1 is larger than the threshold of 5.0,

and immediately generates EVT_WARNING at t=5.2465. At t=7.3362, the filter detects that

Value1 falls below the threshold and thus generates /EVT_WARNING at t=7.3363.

(/)EVT_ERROR occurs in a similar manner to (/)EVT_WARNING at t=9.3224 and

t=11.3026 when Value2 exceeds and falls below the threshold at t=9.3222 and 11.3025.

Because of the connection between the two components, (/)EVT_ERROR are propagated

to the Control component (EVT_SERVICE_FAILURE), changing its state from Normal to

Error on t=9.3226 and back to Normal on t=11.3027.

At t=13.2810, another instance of Value1 exceeding the threshold is detected and
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(a) Timing diagram: Dotted horizontal lines in red represent thresholds, dotted vertical lines in black indicate
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Sensor/Framework

Sensor/Application

Sensor/P SensorValue

Control/Framework

Control/Application

Control/R ReadSensorValue

Control/P ControlValue

:56:31 :56:32 :56:33 :56:34 :56:35 :56:36 :56:37 :56:38 :56:39 :56:40 :56:41 :56:42 :56:43 :56:44 :56:45

:56:31 :56:32 :56:33 :56:34 :56:35 :56:36 :56:37 :56:38 :56:39 :56:40 :56:41 :56:42 :56:43 :56:44 :56:45

EVT_WARNING EVT_ERROR EVT_WARNING EVT_ERROR

EVT_SERVICE_FAILURE EVT_SERVICE_FAILURE

(b) Event and state diagram: Each block in yellow/red represents Normal and Error events with the name of

the outstanding event above the blocks. The horizontal axis is the time (“:mm:ss” format) and the vertical axis

represents a set of states in the system.

Figure 5.19: Event and state change timeline with edge-triggered filters

EVT_WARNING is immediately generated at t=13.2811, setting the outstanding event to

EVT_WARNING. Now, Value2 exceeds the threshold of 10.0 at t=15.2655 – before Value1

falls below the threshold – and EVT_ERROR is generated, changing the state of the Sensor and

Control components to Error. Because the severity of EVT_ERROR (20) is higher than that

of EVT_WARNING (10), EVT_WARNING is superseded by EVT_ERROR and the outstanding event

becomes EVT_ERROR. This is an example of the event prioritization. At t=17.2510, Value2

falls below the threshold and EVT_ERROR is generated, resetting the states back to Normal.
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Although /EVT_WARNING is generated at t=19.2363, this event is ignored because the current

state is Normal.

Fig. 5.19b presents a different view of the same experiment. It visualizes the timeline of

state changes, the names of outstanding events, and the duration of each outstanding event.

5.8.2 Level-triggered Mode

Fig. 5.20 shows the behavior of the same system when filters are set to the level-triggered

mode. In terms of timing, the behavior is mostly similar to the previous case. The major

difference is that the filter keeps generating the onset events in the level-triggered mode until

the completion events are generated.

This inherent difference results in one significant difference when event prioritization

occurs. In the edge-triggered mode, after /EVT_ERROR was generated for the second time,

the state was changed to, and remained at, Normal due to the event prioritization. In a

way, EVT_WARNING was indirectly resolved or suppressed by /EVT_ERROR. In case of the

level-triggered mode, however, the state is changed to Normal when /EVT_ERROR occurs,

and then is changed to Warning again after a sampling period (0.1 seconds in our setup),

because the filter generates EVT_WARNING at the next iteration. This results in different

states after /EVT_ERROR occurs: Normal in the edge-triggered mode and Warning in the

level-triggered mode. This difference is easily noticeable when we compare the two event

and state diagrams (Fig. 5.19b and Fig. 5.20b). Note that errors propagated from the

Sensor component, EVT_SERVICE_FAILURE, are still handled in the same manner as before,
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Figure 5.20: Event and state change timeline with level-triggered filters

regardless of the event detection mode; they are directly generated by the SAFECASS, not

by filters. The system designer should consider these characteristics and potential state

differences when designing the system and filters.
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5.9 Discussion

In this chapter, we have presented the Safety Architecture for Engineering Computer-

Assisted Surgical Systems (SAFECASS) that provides a run-time environment for the

Generic Component Model (GCM). Starting with the four design requirements that consider

domain characteristics, we designed a layered architecture, called the SAFECASS-based

architecture. The SAFECASS-based architecture allows SAFECASS to be independent

from the component framework layer, while providing reusable services for the framework.

To validate our approach, we used the cisst component-based framework and implemented

the cisst extension for SAFECASS. The key design concepts that underpin the overall design

and architecture are separation and framework independence.

The design of SAFECASS tried to achieve the design requirements throughout the over-

all design process. In accordance with the design rationale of GCM, SAFECASS is reusable

for different component frameworks, and the system status is managed in an explicit and

structured manner based on the GCM semantics (REQ. 1). We presented two approaches

to reusability: the framework independence and the safety design decomposition. The

framework independence enables reuse of SAFECASS across different frameworks. This is

achieved by the SAFECASS-based architecture that loosely couples the SAFECASS layer

with the framework layer via the generic APIs of SAFECASS. The safety design decompo-

sition splits safety features into generic, reusable safety mechanisms and configurable safety

specifications. This decomposition is instrumental in achieving flexibility and reusability
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(REQ. 2). Particularly, the use of JSON makes safety specifications expressive and flexible,

while keeping safety mechanisms generic and customizable. Composing safety features as a

combination of safety mechanisms and safety specifications allows us to reuse the mech-

anisms across systems and applications. The separation between safety mechanisms and

safety specifications also facilitates the testing process by making subsystems, modules, and

even safety specifications available for individual testing and verification processes (REQ.

3). Furthermore, because safety specifications are extracted and managed separately in the

JSON format, it is possible to trace any change to safety specifications by tracking changes

through, for example, the version control system (e.g., svn, git). The safety mechanisms are

also implemented in the code and are typically maintained by the version control system.

Thus, the design of safety features as a whole, i.e., the combination of the safety mechanism

and the safety specification, becomes traceable. There is another aspect of traceability, which

is tracing from requirements to specification, implementation, and to testing. Although the

current design of SAFECASS does not directly address this aspect, the separation between

mechanisms and specifications could be a useful element to make traceable connections

between requirements, specifications, implementation, and testing (REQ. 4).

One important design consideration that fundamentally affected the architecture of

SAFECASS is the degree of SAFECASS’s dependence on the services that the framework

provides. At one end of the spectrum, where the current design of SAFECASS lies,

SAFECASS attempts to minimize its reliance on the framework services, such as inter-

process communication (IPC) and event management (e.g., event generation/dispatch/
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handling), by implementing equivalent but independent services as part of SAFECASS.

Although this design requires significant implementation overhead on the SAFECASS side,

SAFECASS can rely on its own services – once the implementation is in place – no

matter which component framework is used. Also, use of a separate IPC infrastructure in

SAFECASS improves data communication redundancy. Furthermore, such a self-contained

design allows system designers, who have a decent understanding of the thread execution

model of the framework, to focus on the framework side when integrating SAFECASS with

existing systems. At the other end of the spectrum, SAFECASS could maximally use

the framework services. Compared to the aforementioned case, this design requires less

features to be implemented on the SAFECASS side and leads to tighter and more seamless

integration of SAFECASS within the framework. However, this design loses the benefits of

framework independence and increased data communication redundancy. Also, this design

complicates the overall design if different component frameworks are simultaneously used

in the same system. Furthermore, because SAFECASS has to rely on a thread execution

model of the framework, the system designer has to have a thorough understanding of the

thread execution model of each framework to resolve any potential conflicts among different

thread execution models. Considering these two design options, we chose the first option,

which has minimal dependency on the framework services.

One assumption that the current design of SAFECASS relies on is that the underlying

network middleware for IPC is ideal; the middleware guarantees timely, correct, and reliable

data delivery across networks. Although this is not a practical assumption, those issues have
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been extensively studied in other disciplines, such as dependable computing and distributed

computing domains, and thus are beyond the scope of this work. Of course, it is possible to

adopt techniques and design methods from those domains and to apply them to the design

of the SAFECASS IPC infrastructure.

Another assumption that SAFECASS makes is that it is sufficient to make a system

fail-safe, rather than fault tolerant, in accordance with the safety design rationale described

by Kazanzides (2009).33 In terms of fault tolerance, the current design of SAFECASS has a

single point of failure. Currently, instances of SC::Coordinator in each process are the

only objects that maintain key information of the system, such as states and outstanding

events. Because SAFECASS does not offer any mechanism to improve data resiliency

or fault tolerance, those key data are prone to critical errors (e.g., process crashes) and

are irrecoverable. Although fault tolerance is generally desirable, its benefits come with

increased design complexity and implementation overhead. Like the IPC infrastructure,

fault tolerance is an area that has been extensively investigated in other domains, as reviewed

in Sec. 2.1.1.3, and there exist various, established techniques (e.g., Fig. 2.3). Our goal of

this chapter is to prove that it is possible to use the GCM at run-time by actually building

a run-time environment for the GCM, considering the domain characteristics of medical

robotics.
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5.10 Conclusions

This chapter presented the design and architecture of Safety Architecture for Engineering

Computer-Assisted Surgical Systems (SAFECASS), which provides a run-time environment

for the Generic Component Model (GCM). Starting from the design requirements that

consider the domain characteristics, we described our approaches, and proposed our safety-

oriented layered architecture called the SAFECASS-based architecture. We also presented

the detailed design and implementation of SAFECASS in terms of its essential elements,

i.e., states, events, filters, and the coordinator. Throughout this chapter, we showed that it is

possible to build a run-time environment for the GCM with the four design requirements that

consider domain characteristics: (1) conformity to the GCM (particularly, component model

independence and explicit state management), (2) flexibility and reusability, (3) testability,

and (4) traceability.

Recently, safety is getting more attention not only within medical robotics, but also

in the general robotics domain. Although there exists prior work outside robotics that

proposed framework-based approaches to safety, it may not be effective to directly apply

them to medical robot systems, mainly due to differences in the domain characteristics. In

robotics, there is a wide variety of component-based software frameworks that facilitate

the development of robot systems. However, a safety-oriented system architecture has not

yet received much attention. Within medical robotics, numerous prior work explored the

safety issues of medical robot systems considering domain characteristics. But, we found no
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prior work that (1) presents a framework-based approach to safety, (2) provides a run-time

software environment, based on a safety-oriented architecture, that aims to facilitate research

and development of safety systems for medical robots, and (3) adopts component-based

software engineering as the programming model.

One possible direction for future work includes applying SAFECASS to other prominent

robot software frameworks, such as OROCOS or ROS. This will help us to further refine

the design of SAFECASS and facilitate safety research by allowing researchers to use

different frameworks with the common foundational GCM semantics. In the longer term,

SAFECASS aims to establish a run-time software environment for safety research and

development in medical robotics, and possibly in robotics as well. Within such a software

environment, SAFECASS will facilitate the development of safe medical robot systems in

accordance with the GCM semantics. A collection of reusable mechanisms and configurable

specifications for application-specific requirements will enable the accumulation of safety

knowledge and experiences across various applications and systems. In this way, system

designers will be able to share their expertise in a structured manner, and benefit from those

shared experiences in the form of SAFECASS artifacts. In the longer term, SAFECASS is

expected to facilitate the testing and certification of medical robot systems.

5.11 Contributions

The contributions presented in this chapter are as follows:
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1. Architecture: SAFECASS-based Architecture

We proposed a safety-oriented, layered architecture for component-based robot sys-

tems, called the Safety Architecture for Engineering Computer-Assisted Surgical

Systems (SAFECASS)-based architecture. This architecture adopts component-based

software engineering (CBSE) as the programming model. The component framework-

independence of the architecture improves reusability and maintainability of the

system, and allows the heterogeneous use of component-based frameworks within

the same system. In addition, the decomposition of safety features makes the design

of safety features more explicit, reusable, testable, and traceable within this architec-

ture. To the best of our knowledge, no prior work in medical robotics presented a

safety-oriented architecture that (1) adopts CBSE as the programming model, and (2)

considers the domain characteristics in a structured, systematic manner.

2. Implementation: Run-time environment for the Generic Component Model

We designed and implemented the SAFECASS that provides a run-time software

environment for the Generic Component Model (GCM) using the cisst component-

based framework. The SAFECASS inherits the characteristics and benefits of the

SAFECASS-based architecture, as summarized above. The SAFECASS allows

system designers to design and build safety systems of medical robots in accordance

with the GCM, thereby facilitating research and development of safety systems for

medical robots.
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3. Framework extensions for cisst to support SAFECASS

We developed the cisst framework extension that allows SAFECASS to be used within

cisst. As part of the extension, we updated the design of two existing safety features

(thread overrun and thread exception) and added a new feature (command queue full)

that can be used to improve the robustness of data exchange between components.
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Chapter 6

Case Studies: ROBODOCr and

Robo-ELF

6.1 Introduction

The previous chapter presented the SAFECASS architecture and the design of the Safety

Architecture for Engineering Computer-Assisted Surgical Systems (SAFECASS) that pro-

vides a run-time environment for the Generic Component Model (GCM). Considering the

domain characteristics, we defined the four design requirements of the SAFECASS, and

presented the two key concepts of our approaches: the framework independence and the

decomposition of safety features. We also showed how the SAFECASS can be used with

component-based software frameworks, using the cisst component-based framework as an

example.
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Our contention of the previous chapter is that the design and implementation of the

SAFECASS meet its four design requirements, thereby facilitating the research and devel-

opment of safety features of medical robot systems. This chapter attempts to prove this

hypothesis by (1) applying the SAFECASS and the state-based semantics of the GCM

to existing surgical robot systems and (2) empirically comparing the original design and

the SAFECASS-based design. For this validation, we use two medical robot systems: the

research ROBODOC® System for orthopaedic surgery, and the Robotic Endo-Laryngeal

Flexible (Robo-ELF) Scope System for minimally invasive laryngeal surgery. We have full

control over the entire source code of these systems, which use cisst as their underlying

component-based framework.

The following sections (Secs. 6.2 and 6.3) describe more details of these two robot

systems. For each system, we first present a brief introduction to the system, including

its design and architecture, and summarize a list of its safety features. Then, we illustrate

how the proposed methods can be applied to the system to improve the design of safety

features, while maximally preserving the original design and implementation of the safety

features. Sec. 6.4 reviews these case studies and discusses how the SAFECASS meets its

four design requirements, based on our experience. Finally, Sec. 6.5 concludes this chapter

with a remark on future work, and Sec. 6.6 presents a list of contributions described in this

chapter.
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6.2 Case 1: ROBODOCr System for

Orthopaedic Surgery

As part of a collaborative research project with the manufacturer, we have one research

ROBODOC system installed at JHU and have full access to the source code of the original

product software. The commercial ROBODOC system (THINK Surgical, Inc., Fremont,

CA, USA) has a solid set of safety features that have obtained FDA approval and EU

CE marking, and has been in clinical use since 1992. Additionally, the medical robotics

literature provides a relatively large number of academic publications on the system, which

cover various aspects of the system, including hardware and software architectures, safety

designs, and system design rationale. The authenticity and open accessibility of the design of

safety features provide us with a solid foundation for our empirical, comparative evaluation.

We first present a brief history and introduction of the ROBODOC system and summarize

a list of its safety features based on the academic publications (Sec. 6.2.1). Next in Sec.

6.2.2, we describe how we change the monolithic architecture of the commercial system to

the framework-based architecture for the research ROBODOC system. During this change,

we use the code that was actually used for the commercial ROBODOC system. Although

the commercial system and the research system have different architectures, we maximally

preserve the original design and implementation of the safety features. Then, we apply the

SAFECASS to this research system, changing its architecture from the framework-based
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to the SAFECASS-based architecture (Sec. 6.2.3). As part of this change, we consider the

framework layer and the application layer separately and perform code/design refactoring of

safety features in the application layer. Throughout the SAFECASS application process,

the benefits and design considerations of the SAFECASS-based approaches are highlighted,

from the system designer’s perspective, with discussion of limitations and applicability.

6.2.1 Background

This section briefly describes the history of the ROBODOC system and presents a set of

safety features in the literature. The list of the literature that we reviewed includes Taylor

et al. (1990,11 1991,4 1994,130 1996227), Kazanzides et al. (1992,5, 107 1993,136 1995,137

1996,228 1999138), Mittelstadt et al. (1993,140 1996229), and Cain et al. (1993139).

6.2.1.1 Overview of the ROBODOC System

The ROBODOC® system has been developed to increase the accuracy and efficacy of

surgical procedures such as cementless Total Hip Replacement (THR) surgery and Total

Knee Replacement (TKR) surgery by enabling surgeons to precisely specify the desired

prosthesis placement in a preoperative CT scan of the patient and then use the robotic system

to accurately machine the bone to achieve that plan.

It began as a joint project between the University of California, Davis and IBM Re-

search. The canine system (alpha prototype)4, 5, 107, 130, 227 was developed for canine THR

in a well-controlled, supervised research environment, i.e., under the active supervision of
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the developing engineers. It was first clinically used in 1990 for canine patients at a veteri-

nary hospital in Sacramento, California and performed 26 canine surgeries.229 This alpha

prototype went through fundamental changes and improvements229 to evolve into a beta

(investigational) medical device that was operated by surgical teams–without engineers–for

human clinical trials at multiple clinical sites. The beta version of ROBODOC was the

subject of an FDA-authorized, multi-center clinical trial in the United States, and performed

over 200 sugeries at a hospital in Frankfurt, Germany.228 It was then further developed as a

commercial-level product to be used in Europe and this required an architectural change

from a centralized architecture to a distributed architecture.228

Fig. 6.1 shows the ROBODOC System. The two main components of the ROBODOC

System are the ORTHODOC™ Preoperative Planning System (ORTHODOC)230 and the

ROBODOC Surgical Assistant (ROBODOC). ORTHODOC allows the surgeon to develop

a preoperative plan that ROBODOC can execute. The two inputs to ORTHODOC are a

Computed Tomography (CT) scan of the patient’s femur and a set of implant models based on

data from the implant manufacturers. Using implant models and a three-dimensional model

of the femur constructed from the CT data, the surgeon visually determines an appropriate

implant model with its precise location. Once the plan is finalized, the preoperative plan is

recorded and transferred to ROBODOC via a transfer medium (tape or CD).

ROBODOC reads the preoperative plan from the transfer medium and machines a cavity

for the implant in the femur according to the plan. To precisely execute the plan, it is required

to register the patient’s femur in the preoperative plan with the intraoperative physical reality
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(a) ORTHODOC: Preoperative Planning (b) ROBODOC: Surgical Robot

Figure 6.1: ROBODOC System: The two main components are the ORTHODOC and the
ROBODOC (Courtesy: THINK Surgical Inc.).

(i.e., the robot’s workspace coordinates). Calibration of the robot kinematic parameters and

the cutting tool’s dimensional parameters also play a vital role in achieving high dimensional

accuracy. Based on clinical input, the specification of the robot’s placement accuracy

(deviation from the preoperatively planned position) is less than 1.0 mm, and that of the

dimensional accuracy (deviation of the machined shape from its ideal dimensions) is less

than ±0.4 mm on a cross-section (or ±0.2 mm on each side).138

6.2.1.2 Safety Features of ROBODOC

The principal safety requirements of ROBODOC were defined by a surgeon, who was a user

of the system, as follows:4, 11
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• The robot should never “run away”: No single-mode hardware failure or system error

should cause the application software to lose control of the robot motions.

• The robot should never exert excessive force on the patient: Any cutting force sub-

stantially more than needed means something may be wrong and the robot better stop

its current motion.

• The robot’s cutter should stay within a pre-specified positional envelope relative to

the volume being cut: A systematic positional shift in the placement or shape of the

hole should be prevented.

• The surgeon must be in charge at all times: The system must provide the surgeon

with timely information about its current status and the surgeon must be able to stop

motions at any time.

A set of safety features distributed throughout the system were designed to achieve these

principle safety requirements. The following presents a partial list of the safety features

of ROBODOC based only on the published, academic literature. At the end of each safety

feature is the class of each entry in terms of the category of domain-specific safety features

presented in Table 2.1.

1. System integrity monitoring (with redundant sensors): The real-time control loop

periodically monitors system integrity, such as tolerance checking of primary and

redundant encoders at each joint, with the capability to turn off the robot arm.

» Class 3 (redundant sensing and/or computation)

2. Use of state variables for error handling: State variables are defined to represent
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application-specific procedural flow and are used for error or exception handling.

» Class 8 (software engineering techniques)

3. Dedicated processor for the safety system: The safety system runs on a separate

processor to isolate it from errors in other subsystems and has a direct hardware

interface to power off the system.

» Class 3 (redundant sensing and/or computation)

4. Force/torque checks with two thresholds: Force and torque feedback from the force

sensor are monitored against two thresholds, PAUSE (1.5 kg-f) and STOP (3.0 kg-f).

PAUSE halts all robot motion and turns off the cutter, whereas STOP removes power

from both the robot and the cutter.

» Class 5 (environment sensing)

5. Speed limiter (low speed): The low-level software implements the speed limiter.136

It operates on the output of the trajectory generation functions and limits the robot’s

speed and torque. The rationale of this safety feature is that the surgical staff can stop

the robot before any hazard occurs if the robot is slow and weak.

» Class 6 (software constraints)

6. Safety volume (dynamic constraints): During cutting, the software verifies that the

cutter tip is within a pre-planned safety volume, with a 3 mm margin for error. The

safety volume is derived from the prosthesis geometry, but is independent from the

file containing the cutting paths.

» Class 6 (software constraints)
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7. Notification of exceptions to application: Any reflex action initiated by a safety

system leads to an exception to the application which interrupts the normal procedural

flow and invokes a handler function for error recovery.

» Class 8 (software engineering techniques)

8. Error detection: Data integrity checks (e.g., if there is any corruption of critical

data), data rationality checks (e.g., if case-specific data are reasonable), detection of

procedural errors (e.g., if surgeons make procedural errors that can compromise both

safety and system performance).

» Class 6 (software constraints)

9. Startup diagnostics: During start up, all safety- and performance-related components

are verified to make sure that they are functioning within specified tolerances.

» Class 7 (diagnostic tests)

10. User oversight with emergency pause/stop: An external custom pendant with five

buttons, including emergency pause and stop, helps surgeons to interact with the

system and a graphical display in the operating room provides the current status of

the surgical procedure.

» Class 4 (human-computer interface)
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Figure 6.2: Monolithic architecture of the commercial ROBODOC system where only the

application layer exists (simplified view; not all the components of the system are shown).

6.2.2 Research ROBODOC System

The architecture of the ROBODOC system has evolved i from a centralized architecture to

a distributed architecture to address the commercial requirements, including compliance

with European directives (CE marking) and improved usability and serviceability.228 In

terms of the architectural style for safety, as shown in Fig. 5.4, this system has a monolithic

architecture. Fig. 6.2 depicts the system with its key elements, along with the five layers of

the System View and the application layer.

As part of a collaborative research project with the manufacturer of the robot (THINK

Surgical, Inc.), we have one research robot system installed on site with full control over

the entire software. This research system has the same kinematic design and hardware

architecture as the commercial system, but uses different joint (low-level) controller boards

iRefer to Kazanzides et al. (1992,5 1996228) for more detailed description on the evolution of the architec-

ture of the ROBODOC system.
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and a different operating system (QNX or Linux) on the control PC. We ported the commer-

cial system software to the research system, which involved (1) converting the system to a

component-based design using the cisst framework, (2) taking advantage of the portability

of cisst to run the software on QNX or Linux, instead of DOS (used by the commercial

system), and (3) developing a component to interface to the new low-level joint controllers.

The following section briefly describes how we integrated the code base of the com-

mercial system into the component-based environment, despite inherent differences in the

programming model and the architectural style.

6.2.2.1 From Monolithic to Framework-Based

An architectural change from the monolithic to the framework-based architecture begins

with the introduction of a component-based framework to the system. For the research

ROBODOC system, we use the cisst component-based framework.49 The existing core

modules are wrapped as cisst components or reusable C++ libraries. The common services,

such as data exchange, thread execution, and event management (i.e., event generation, event

distribution, event handling), are replaced by the framework services that cisst provides.

Although this change makes the system operate in accordance with the data exchange and

thread execution models of cisst, the design and implementation of safety features are

maximally preserved throughout the change. This process is conceptually depicted in Fig.

6.3, where the framework layer is introduced below the application layer.

The software of the research ROBODOC system includes (1) the interface to the low-
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Application

Framework

(cisst)

Application

Figure 6.3: Framework-based architecture of the research ROBODOC system. The un-
derlying framework layer (cisst) provides the application layer with the component-based
environment and the common services, such as data exchange, event management, and
thread execution.

level controller on commercial controller boards that support motor control at up to 500

Hz, (2) the high-level controller (e.g., Cartesian motion control, joint control, force control)

that runs on a PC as a real-time loop, and (3) the application component that defines the

procedural workflow and is executed in non-real-time on the same or a different PC, possibly

with a graphical user interface (GUI).

This system is fully functional and has been used for investigating research problems.

For example, we have used this system to develop new methods for the calibration of robot

kinematic parameters using nonlinear optimization methods.231 We also applied a similar

approach to the calibration of bone cutting tool parameters.232
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6.2.3 Application of SAFECASS

The research ROBODOC system is now fully functional within the component-based

environment. The next step is to apply SAFECASS to this system in order to empirically

evaluate the effectiveness and applicability of our SAFECASS-based approach. This process

begins with extending the current architecture of the system from the framework-based

architecture to the SAFECASS-based architecture, as described in Sec. 6.2.3.1. Sec. 6.2.3.2

presents how we apply SAFECASS to the system to improve the design and implementation

of safety features for the application layer. Then, Sec. 6.2.3.3 illustrates how the system

behaves when warnings or errors occur, using visualization of states and events based on

experiment results that we collected.

6.2.3.1 From Framework-Based to SAFECASS-Based

As discussed in Sec. 5.6.1, the safety features of the research ROBODOC are still embedded

in the system and tightly coupled with the other functional parts of the system, as in the

commercial ROBODOC. To apply SAFECASS to the research ROBODOC system, we first

introduce the SAFECASS layer to the system, as depicted in Fig. 6.4. Once SAFECASS is

in place, we decompose safety features of each layer (i.e., the framework layer and the

application layer) into reusable mechanisms and configurable specifications, and deploy

them to the system. This necessitates code-level refactoring. On the right side of Fig.

6.4, the specifications from each layer are represented as the “SAFECASS Artifacts for
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Extension for SAFECASS

SAFECASS

SAFECASS 

Artifacts for

Application

SAFECASS

Artifacts for

Framework

Application

Framework

(cisst)

Application

Figure 6.4: SAFECASS-based architecture of the research ROBODOC system where the
SAFECASS layer is introduced to the system. This introduction requires the framework
extension for the SAFECASS. The framework layer and the application layer maintain
SAFECASS artifacts that define the specifications of safety features of each layer.

Application” and “SAFECASS Artifacts for Framework”. Note that the SAFECASS layer

is completely hidden from the application layer, which is an inherent characteristic of the

layered architecture. In the following sections, we describe further details of this change by

layer.

6.2.3.2 To Application: Cutting

In the previous chapter (Sec. 5.7), we presented three safety features that we introduced to

cisst using SAFECASS, and described how SAFECASS can be applied to a component-

based framework to deploy these features in a simple, flexible, and systematic manner. They

handle framework-specific and application-independent events, and thus are applicable to

any application built on top of cisst.
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We now turn to the application layer. This layer handles application-specific events that

have a wide range of variations in terms of the design and characteristics. Although it is

difficult for SAFECASS to provide generic solutions that fit for diverse application structures,

SAFECASS facilitates the design and deployment of safety features by providing APIs and

a structured programming scheme. We describe this approach by applying SAFECASS to

the research ROBODOC system (hereafter, ROBODOC) as an illustrative example.

Among many applications of ROBODOC, we select the Cutting application. Cutting was

developed by the company to more easily test the machining of the cavity for an artificial

implant in total hip replacement (THR) surgery. This application is a representative example

of ROBODOC in that it provides significant functionality for THR surgery, including safety

features and the ability to perform the entire cutting procedure based on the pre-planned

cut file; primarily, it lacks the registration capabilities of the full THR application. We

apply SAFECASS to Cutting and perform code/design refactoring on a subset of safety

features of Cutting. In terms of the architecture of ROBODOC where applications are

separated from the base technology,5 many of these safety features are part of the base

technology and thus are common to the other ROBODOC applications as well. Among

various components of Cutting, our focus is on the three key components of the system that

operate at different layers in terms of the System View, as shown in Fig. 6.5: (1) the JR3

(force sensor) component of the low-level control layer, (2) the CONTROL component of the

high-level control layer, and (3) the Cutting component of the workflow layer.

We first summarize the prerequisites for SAFECASS-based code/design refactoring, and
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Human
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Low-level Control

Hardware

Motion 
Controller Pendant

Simulator Monitor

Monitor
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CONTROL
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Figure 6.5: Three key components of the research ROBODOC: Cutting, CONTROL, and
JR3. Each of these components that operate in three different layers of the system represents
three typical types of components in robotic systems. The SAFECASS is applied to these
three components of inherently different characteristics.

then describe more details of how SAFECASS can be applied to each component, thereby

illustrating the benefits of SAFECASS in terms of flexibility, reusability, testability, and

traceability.

6.2.3.2.1 Prerequisites

The three prerequisites for SAFECASS are: (1) the availability of the history buffer, (2)

key data registered to the history buffer, and (3) support for deep fault injection (optional).

As described in Sec. 5.6.5.7, cisst uses the state table as the history buffer. Every cisst com-

ponent with a processing thread (i.e., components of type mtsTask) maintains internal state

tables. The system designer registers the key variables of components to the monitoring

state table by calls to AddData() of the mtsStateTable class:
StateTableMonitor.AddData(foo , "foo");
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StateTableMonitor.AddData(bar , "bar");

This enables SAFECASS to access data registered to the state table. In most cases, it

also enables deep fault injection because other components will call a Read command that

accesses data from the state table in a thread-safe manner (this is the usual implementation

in cisst).

6.2.3.2.2 JR3: Low-level Control

The JR3 component is a force sensor wrapper component that provides 6 degree-of-

freedom force feedback (3 forces and 3 moments) for the system. Force feedback is used

for various purposes, such as providing safety features (by preventing excessive force)ii,

enabling tactile search capabilities (e.g., pin/post finding during calibration and registration),

and an improved human-machine interface (i.e., force control).107

This component periodically monitors the sensor status to detect any warning or error. If

any non-normal status is detected, it sets its warning or error flags accordingly. If nothing is

detected, it reads the latest force/torque feedback from the sensor and updates its local cache

(state table) that would be provided for other components upon request. This is a typical

implementation of a device wrapper component with straightforward error checking and

error reporting as safety features. Code 6.1 shows the simplified code of the JR3 component

implemented as a cisst component. The variables and functions that begin with a capital

letter represent class member variables and functions.

iiAs described in Sec. 2.3.1.2, the force sensor-based safety is one of the most widely used safety features
in medical robotics.
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Code 6.1: Simplified code of JR3 component of research ROBODOC

1 #include "JR3.h"
2
3 JR3::JR3(const std:: string & name): mtsTaskPeriodic(name , 0.005) // 5 msec period
4 {
5 // Reset variables
6 // Register variables to the state table
7 // Create provided interface
8 }
9

10 void JR3::Run(void)
11 {
12 // Process commands and events from other components
13 ProcessQueuedCommands ();
14 ProcessQueuedEvents ();
15
16 // Read sensor status values from sensor device
17 Device ->GetError(Error);
18 Device ->GetWarning(Warning);
19 Device ->GetErrorCount(ErrorCount);
20
21 if (no_error) {
22 Device ->GetForceTorque(FT);
23 } else {
24 // Handle errors
25 }
26 }

Although this typical implementation performs error checking, this design suffers from

inherent limitations in terms of testability and error propagation. To dynamically test

this implementation, this code requires a separate testing facility or code-level changes.

For example, it is possible to simulate sensor errors by manually adding test code and

test data. However, such manual testing would require an event-based mechanism (i.e.,

event generation, event delivery, event handling) to trigger the execution of the test code

at a desired timing, and another event to disable the test code. Furthermore, it has to be

recompiled whenever the test code – possibly test data as well – changes and the robot

system may have to be restarted, making it a time consuming process. In addition, this

test code is “embedded” in this component and thus is not reusable for other components.

More importantly, this design does not support error propagation in a systematic manner.
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Although it is possible to define error events for error propagation, the disadvantage with

this implementation is that it would force other components connecting to this component

to define event handlers for those error events. This would be an implementation burden on

the other components. Furthermore, it may not be possible to enforce this requirement on

other components if, for example, the JR3 component designer does not have code-level

access to the other components, or design changes on other components are not allowed. To

address these limitations, we apply SAFECASS to this component and perform design and

code refactoring, thereby improving testability and error propagation.

The application of SAFECASS to the component is performed in two steps: (1) defining

a safety specification, and (2) code structure refactoring.

1. Definition of safety specification: The starting point is to define a JSON specification file

that defines GCM events, GCM filters, and GCM service state dependency information. The

first step is to analyze “what can go wrong”, i.e., failure modes of the sensor device, based on

the documentation of the sensor. This can be skipped if the safety analysis has already been

performed. According to the official JR3 documentation,233 there exist three types of abnor-

mal events: warning, error, and error count. Examples of these events are strain gauges near

saturation (warning), strain gauges saturated (error), and communication error (error count).

Thus, we define three pairs of GCM events, each pair corresponding to each abnormal event:

(/)EVT_JR3_WARNING, (/)EVT_JR3_ERROR, and (/)EVT_JR3_ERROR_COUNT. In addition,

we define another pair of GCM events, (/)EVT_JR3_DEVICE_ACCESS_ERROR, to represent

errors that may occur if an access to the device fails due to, for example, the device driver
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not yet loaded into the kernel or an insufficient privilege.

The next step is to determine “how to detect” these events. Because JR3 represents

the abnormal status as non-zero error codes, it is sufficient to monitor if there exists any

non-zero sensor status value. This can be easily achieved by using the ChangeDetect filter,

one of the basic filters of SAFECASS. Thus, we deploy three instances of this filter (of type

“FilterChangeDetect”), each associated with the first three GCM events. In the case of

EVT_JR3_DEVICE_ACCESS_ERROR, it is directly generated by code snippets embedded in the

code, and thus no filter is defined for this event.

The implication of defining these events and filters is that we react to abnormal events

by generating GCM events that correspond to the abnormal events. The complete JSON

specification of safety features for the JR3 component is presented in Code B.3 in Appendix

B.3.

2. Refactoring of code structure: The use of the safety configuration file defined in the

previous step necessitates code structure refactoring that aims to exploit the state-dependent

operational modes of the GCM (in Sec. 4.3.8) and the services that SAFECASS provides.

The cisst extension for SAFECASS supports the state-dependent execution semantics

that allows component designers to define three different behaviors of the component via the

RunNormal(), RunWarning(), and RunError() methods of the base component. Within

cisst, component designers have flexibility in determining whether to override the default

behavior. If a user component overrides none of these methods, the method for the default

behavior, Run(), is executed all the time. If any of those methods is overridden, the
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overridden method(s) will be executed accordingly depending on the extended component

state, ŝext(i) (i: a unique ID of a user component under consideration), that comprehensively

captures all the states within the component.

The following code snippets show the original and new code structure side-by-side

where the new SAFECASS-based JR3 overrides all three methods.

Before: After:
1 void JR3::Run(void) 1 void JR3:: UpdateStatus(void)
2 { 2 {
3 ProcessQueuedCommands (); 3 if (!Device ->GetError(Error)) {
4 ProcessQueuedEvents (); 4 Coordinator ->GenerateEvent("
5 å EVT_JR3_DEVICE_ACCESS_ERROR");
6 Device ->GetError(Error); 5 Error = 0;
7 Device ->GetWarning(Warning); 6 }
8 Device ->GetErrorCount(ErrorCount); 7 if (!Device ->GetWarning(Warning)) {...}
9 8 if (!Device ->GetErrorCount(ErrorCount)) {...}

10 if (no_error) { 9 }
11 Device ->GetForceTorque(FT); 10
12 } else { 11 void JR3:: RunNormal(void)
13 // Handle error case 12 {
14 } 13 ProcessQueuedCommands ();
15 } 14 ProcessQueuedEvents ();

15
16 if (!Device ->GetForceTorque(FT)) {
17 Coordinator ->GenerateEvent("

å EVT_JR3_DEVICE_ACCESS_ERROR");
18 FT.SetZero ();
19 }
20
21 UpdateStatus ();
22 }
23
24 #define ON_EVENT(evt_name)\
25 if (e == Coordinator ->GetEvent(evt_name))
26
27 void JR3:: RunWarning(const SC::Event * e)
28 {
29 ON_EVENT("EVT_JR3_WARNING") {...}
30 ON_EVENT("EVT_JR3_ERROR_COUNT") {...}
31
32 RunNormal ();
33 }
34
35 void JR3:: RunError(const SC::Event * e)
36 {
37 ON_EVENT("EVT_JR3_DEVICE_ACCESS_ERROR") {...}
38 ON_EVENT("EVT_JR3_ERROR") {...}
39
40 ProcessQueuedCommands ();
41 ProcessQueuedEvents ();
42
43 UpdateStatus ();
44 }

RunNormal() essentially implements the same functionality that the previous Run()

method defines. However, the key difference is that RunNormal() can now rely on the
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fact that there is no outstanding warning or error event at the time of execution. This

is possible because ŝext(i) has already been determined to be Normal. Such reliance

on ŝext(i) simplifies the implementation by separating error checking and error handling

code from the core functional code, which is in this case to read force sensor feedback

(GetForceTorque()). However, it is still necessary to check errors that may occur with

GetForceTorque() because such errors may change the operational state by generating

EVT_JR3_DEVICE_ACCESS_ERROR. If this error occurs, force/torque feedback is reset as a

response. At the end of the execution, the latest sensor state is retrieved from the sensor

by calling UpdateStatus(). This call may change the operational state at the following

iteration, if ŝext(i) becomes Warning or Error.

RunWarning() is executed if ŝext(i) is Warning. The component can access the informa-

tion about the outstanding event, which SAFECASS passes as an argument, i.e., a const

pointer to a GCM event. By checking the name and the detailed information of the outstand-

ing event, it is possible to determine what caused a state transition to Warning and why. This

provides the component with the ability to react differently to warning events depending

on the cause of the event. Since the safety specification of the JR3 component defines

two warning events, EVT_JR3_WARNING and EVT_JR3_ERROR_COUNT, two event handlers

are implemented to generate more detailed logs about the warning event based on the JR3

documentation. At the end of the iteration, RunNormal() is called again because the JR3

component is still able to provide its service for other components.

RunError() is called when ŝext(i) is Error. As in RunWarning(), the two GCM events
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are handled separately by event handlers dedicated for each event, where the system designer

can define event-specific reaction and recovery behaviors. One possible strategy for recovery

is to reset the variables that represent the current sensor states, followed by a call to

UpdateStatus(). Then, at the next iteration, ŝext(i) would remain Error if the problem

persists; otherwise, it would become Normal if the cause of the error has been resolved.

Although the code length has increased after code refactoring, the additions are mostly

new code snippets to enhance error detection and handling and lead to design benefits.

First, the three separate Run() methods explicitly define the three different behaviors of

the JR3 component in each state, allowing the component designers to focus on each state.

In addition, part of the safety mechanisms performed by filters do not show up in the new

design, thereby simplifying the code. Instead, the JSON safety specification explicitly

defines a safety mechanism (i.e., a type of filter) with a set of parameters that determine the

filter’s specific behaviors. Once the correctness of the mechanism (i.e., an implementation

of the filter) is thoroughly verified and validated, the component designer can use the filter

with a reliance on the mechanism.

One reason why the JR3 component was able to benefit from the filters is because the

code that may change the component state can be well isolated and consolidated into a

single method, UpdateStatus(). However, if the component state may change in many

different places of the code within a component, the design of the filters acts as a limitation

due to its inability to support fine-grained timing control of the state change. This occurs

when the processing logic of a component is complex, or when a component maintains
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application-specific state machines. The following two sections exemplify these cases and

further discuss how SAFECASS handles them.

6.2.3.2.3 CONTROL: High-level Control

The Control component is the essential component that provides core functionalities

for the system, such as robot control (e.g., trajectory generation, force control) and safety/

integrity checks. It also provides various services for other components that enable system

status monitoring, simulation, and interactive console. This component is designed to be

reusable for different applications of ROBODOC in accordance with its original architecture,

where it was called the Motion Control System (MCS).5

A large portion of the code of the component is dedicated to extensive and thorough

consistency checks on the system status. At a high level, these safety features monitor the

key variables of the component at each iteration. If any abnormality or inconsistency within

the system is detected, the component reacts by executing a reflex reaction, such as stopping

robot motion or powering off the motors, and then generating a system event. Depending

on the cause, the system recovers from the situation by a pre-planned recovery plan or

via human intervention (e.g., asking the human to resolve the problem). Code 6.2 shows

the code structure of the Control component. Although this code is highly simplified for

presentation purposes and only includes one safety check (for excessive force), it shows the

essential flow of the component. A similar structure is also found in the literature (e.g., the

AESOP robot control, Hayashibe et al., 2006234).
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Code 6.2: Simplified code of CONTROL component of research ROBODOC

1 #include "ControlTask.h"
2
3 ControlTask :: ControlTask(const std:: string & name)
4 : mtsTaskPeriodic(name , 0.01) // 10 msec period
5 {
6 // Reset variables
7 // Register variables to the state table
8 // Create provided interfaces
9 // Create required interfaces

10 }
11
12 void ControlTask ::Run(void)
13 {
14 try {
15 // Read feedback from joint controllers
16 // Read feedback from force sensor
17
18 // Process commands and events from other components
19 ProcessQueuedCommands ();
20 ProcessQueuedEvents ();
21
22 // Check excessive force
23 if (excessive_force) {
24 // Generate E_FORCE_FREEZE , E_FORCE_EPO , or E_FORCE_HW_EPO
25 }
26
27 // Perform motion control (STARTUP , SHUTDOWN , HOME , FCOMPLY , ..)
28
29 // Send next goal position to low -level controller
30 if (no_error) {
31 Servo.LoadPVT(pvt);
32 }
33 } catch (const McsError & e) {
34 GenerateMcsEvent(e);
35 }
36 }

The design of this component is much more complicated than that of the JR3 component,

mainly due to its diverse logic, algorithms, and structures for robot control and various

services for other components. In the current design, safety features are tightly coupled with

other code that implements functional behaviors. As in the case of the JR3 component, it is

difficult to perform systematic testing of safety features using this code and to identify the

design of safety features in terms of the Mechanism View (Sec. 3.2.1). To address these

limitations, we apply SAFECASS to this component through the two-step approach that we

described in the previous section.
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1. Definition of safety specification: The design and implementation of safety features in

the current design are the results of safety analysis that have obtained FDA approval and

EU CE Marking. Thus, they provide us a solid, authoritative baseline for evaluation of

design refactoring, and also allow us to define a safety specification for this component by

simply mapping a subset of the ROBODOC events to the GCM events. Among numerous

ROBODOC events, we selected the following five events that tend to frequently occur in

practice, based on our experience. The five events are:

• E_FORCE_FREEZE: Emergency pause (E-pause) when the magnitude of an instanta-

neous force vector exceeds the lower threshold.

• E_FORCE_EPO: Emergency power off (E-stop) when the magnitude of an instantaneous

force vector exceeds the higher threshold.

• E_FORCE_HW_EPO: E-stop if any force sensor error is detected.

• E_MANIPWR: Motors on the manipulator are powered off.

• E_PEND_PAUSE: E-pause due to the human operator pressing the pendant pause button.

The names of the GCM events are set as those of the ROBODOC events with their previous

prefix “E” replaced by “EVT_CONTROL_MCS”. For example, the GCM event that corresponds

to E_FORCE_FREEZE is EVT_CONTROL_MCS_FORCE_FREEZE. In addition, we define another

GCM event, EVT_CONTROL_MCS, to collectively represent the rest of the ROBODOC error

events outside our selection.

Compared to the JR3 component that has a simple logic with a straightforward safety

feature, the Control component implements complex algorithms for robot motion control
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and interacts with numerous other components. Furthermore, a set of full-fledged safety

features are already embedded in the algorithms. Although it is still possible to deploy

filters to replace existing safety features, such refactoring may require changes in the logic

or in the design of existing safety features. In such cases, an alternative option is to skip

filtering and to directly generate events. For this purpose, SAFECASS provides APIs that

allow the system designer to generate GCM events without GCM filters: GenerateEvent()

and BroadcastEvent() of the SC::Coordinator class (see Sec. 5.6.6 for more details).

These inline APIs allow us to use the SAFECASS services in accordance with the state-

based semantics of the GCM, while at the same time keeping the timing of monitoring and

detection mechanisms exactly the same as before. We find these APIs particularly useful for

cases where safety features are distributed over lengthy code with tight coupling between

functional code and safety features.

Code B.4 in Appendix B.4 presents the complete JSON specification of safety features

for the Control component.

2. Refactoring of code structure: To enable safety features defined in the first step, the

Control component has to be updated such that its functional part remains effectively

the same as before, whereas its safety features are adapted for the state-based semantics

of the GCM. As in the JR3 component, we first define the three Run() methods for the

state-dependent execution and implement event handlers for each GCM event:

Before: After:
1 void ControlTask ::Run(void) 1 void ControlTask :: RunNormal(void)
2 { 2 {
3 try { 3 try {
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4 // Read joint controllers 4 // Read joint controllers
5 // Read force sensor 5 // Read force sensor without error check
6 6
7 ProcessQueuedCommands (); 7 ProcessQueuedCommands ();
8 ProcessQueuedEvents (); 8 ProcessQueuedEvents ();
9 9

10 .... 10 ....
11 11
12 } catch (const McsError & e) { 12 } catch (const McsError & e) {
13 GenerateMcsEvent(e); 13 GenerateMcsEvent(e);
14 } 14 }
15 } 15 }

16
17 void ControlTask :: RunWarning(const SC::Event * e)
18 {
19 // framework warning
20 ON_EVENT("EVT_THREAD_OVERRUN") {...}
21
22 RunNormal ();
23 }
24
25 void ControlTask :: RunError(const SC::Event * e)
26 {
27 // framework error
28 ON_EVENT("EVT_THREAD_EXCEPTION") {..}
29
30 // error propagated from other components
31 ON_EVENT("EVT_SERVICE_FAILURE") {..}
32
33 // errors generated within this component
34 ON_EVENT("EVT_CONTROL_MCS_FORCE_FREEZE") {..}
35 ON_EVENT("EVT_CONTROL_MCS_FORCE_EPO") {..}
36 ON_EVENT("EVT_CONTROL_MCS_FORCE_HW_EPO") {..}
37 ON_EVENT("EVT_CONTROL_MCS_MANIPWR") {..}
38 ON_EVENT("EVT_CONTROL_MCS_PEND_PAUSE") {..}
39
40 ProcessQueuedCommands ();
41 ProcessQueuedEvents ();
42 }

In the SAFECASS-based design, the new Control component handles not only the GCM

events defined by the safety specification (lines 34-38), but also other GCM events from the

framework (lines 20 and 28). With the event handlers for each GCM event, this structure

explicitly shows (1) the fact that the component designer considered the two events from the

framework layer, and (2) how to handle each individual event (recall that GCM events are not

handled, i.e., practically ignored, unless specific event handlers are provided). Furthermore,

the new design also handles error from other components (line 31). The service failures

of other components are propagated as EVT_SERVICE_FAILURE. If this event is propagated,

the component is able to identify which component and interface failed to provide the
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correct services for it using the SAFECASS APIs such as GetComponentState() and

GetInterfaceState().

Another design element to note is that RunNormal() is called at the end of RunWarning()

so that the component is able to continue providing its services without disruption, possibly

at a degraded mode if ŝext(i) is Warning. Although not shown above, it is also possible for

the component designer to call RunNormal() from RunError(). As a result, RunNormal()

can be called for instances where ŝext(i) in not Normal. This necessitates APIs that enable

the inline check of the current state of particular elements in the component. In cisst, the

following APIs – wrappers of the SAFECASS APIs – are provided for this purpose as part

of the extension for SAFECASS (in the mtsTask class):
SC::State:: StateType GetComponentState(void) const;
SC::State:: StateType GetProvidedInterfaceState(const std:: string & interfaceName) const;
SC::State:: StateType GetProvidedInterfaceState(const std:: string & interfaceName ,

const SC::Event* & e) const;
SC::State:: StateType GetRequiredInterfaceState(const std:: string & interfaceName) const;
SC::State:: StateType GetRequiredInterfaceState(const std:: string & interfaceName ,

const SC::Event* & e) const;

One benefit of the new design of the Control component is the ability to explicitly and

completely handle all state transitions of ŝext(i). This can be easily achieved by overriding

the default state transition handlers of the cisst component class (mtsTask) as follows:

1 void ControlTask :: OnNormal2Warning(const SC::Event * e) {..}
2 void ControlTask :: OnNormal2Error(const SC::Event * e)
3 {
4 ON_EVENT("EVT_SERVICE_FAILURE") {
5 const SC::Event * e = 0;
6 if (SC::State::ERROR == GetRequiredInterfaceState("ForceSensor", e)) {
7 // Set force hardware flag if any error detected
8 statev.force.error = 1;
9 }

10 }
11 }
12
13 void ControlTask :: OnWarning2Normal(const SC::Event * e) {..}
14 void ControlTask :: OnWarning2Error(const SC::Event * e) {..}
15 void ControlTask :: OnError2Warning(const SC::Event * e) {..}
16 void ControlTask :: OnError2Normal(const SC::Event * e) {..}
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6.2.3.2.4 Cutting: Workflow

The Cutting component, a component in the workflow layer, implements a test workflow

for the THR application that provides most of the key functionality to perform THR surgery

with application-specific safety features. It also provides a graphical user interface (GUI)

where the surgeon can interact with the system. The component is structured using a state-

based approach where the procedural flow is controlled by the state variables, called SVAR,5

as shown below:
TOP_LEVEL top;

BEGIN_SVAR (task_A );

BEGIN_SVAR (subtask_A_1 );
// code

END_SVAR (subtask_A_1 );

BEGIN_SVAR (subtask_A_2 );
// code

END_SVAR (subtask_A_2 );

END_SVAR (task_A );

BEGIN_SVAR (task_B );
// code

END_SVAR (task_B );

Briefly, each state variable is an instance of the SVAR class that internally maintains its

dependencies (on the other SVAR states) and current states (i.e., reset, started, finished,

skipped). The implementation includes two macros, BEGIN_SVAR and END_SVAR, and the

code between these macros is executed only if a state variable or its dependencies are not

finished yet. The SVAR variables are used to hierarchically arrange the procedural flow,

where the top of the hierarchy is defined as a “top-level” entry point (TOP_LEVEL), which

can be branched to at any time, from anywhere within the application. It is reported5 that

this structure (1) facilitates error (exception) handling, (2) is well suited for structuring a
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surgical workflow that has a well-defined ordering, and (3) improves the organization and

readability of the code.

Code 6.3 shows the simplified code structure of the Cutting component. This compo-

nent defines only one required interface to use services provided by the CONTROL component

in the lower layer, such as system startup/shutdown, robot homing, execution of motion

primitives, and system status checks.

Code 6.3: Simplified code of Cutting component of research ROBODOC

1 #include "cuttingTask.h"
2
3 CuttingTask :: CuttingTask(const std:: string & name): mtsTaskContinuous(name)
4 {
5 // Create required interface
6 }
7
8 void CuttingTask ::Run(void)
9 {

10 bool finished = false;
11
12 TOP_LEVEL maintop;
13
14 while (! finished) {
15 try {
16 BEGIN_SVAR (leg_setup);
17 // initialize safety volume
18 END_SVAR (leg_setup);
19
20 BEGIN_SVAR (check_workspace);
21 if (CheckWorkspace () == false) {
22 // error handling
23 quit_top ();
24 }
25 END_SVAR (check_workspace);
26
27 BEGIN_SVAR (done_cutting);
28 // perform cutting
29 END_SVAR (done_cutting);
30
31 finished = true;
32 } catch () {
33 quit_top ();
34 }
35 }
36 }
37
38 bool CuttingTask :: CheckWorkspace ()
39 {
40 bool within_workspace = false;
41
42 if (..) {
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43 within_workspace = true;
44 } else {
45 within_workspace = false;
46 }
47
48 return within_workspace;
49 }

Compared to the JR3 and CONTROL components, this component has distinctive char-

acteristics. Its SVAR-based code structure maintains its own application-specific states to

control the procedural workflow, and provides structured error handling and error recovery

mechanisms. These mechanisms override the thread execution model of the framework and

execute the thread based on the state variables. Because of these characteristics, the goal

of design refactoring is not to modify its current design. Rather, the goal is to “augment”

the component with the state-based semantics of the GCM, while maximally preserving its

original design that has empirically proven and validated benefits.

As in the other components, the design refactoring process consists of two steps:

1. Definition of safety specification: Among various application-specific error events,

we select the outside workspace error as an example. This error occurs if any part of

the pre-planned bone cutting path is outside the robot’s workspace. An error recov-

ery plan dedicated to this particular error is also defined (i.e., ask the human operator

to move the cutter to a different position). The JSON specification names this event

EVT_Cutting_OUTSIDE_WORKSPACE in accordance with the GCM event naming conven-

tion.
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The execution of the Cutting component is not periodic; it is controlled by application-

specific state variables. Because the GCM filters should be executed periodically, this

characteristic makes the filter-based event generation mechanism not suitable for this com-

ponent. Thus, we generate this event using the SAFECASS API (GenerateEvent()), rather

than via filters. For this reason, the specification of the Cutting component does not define

any GCM filter.

Code B.5 in Appendix B.5 shows the complete JSON specification of safety features for

the Cutting component.

2. Refactoring of code structure: Since we preserve both the SVAR-based structure of

the Cutting component and the original procedural workflow, the goal of code refactoring

is to represent ROBODOC events in terms of the GCM events. Specifically, this refers

to (1) determining the timing to generate the onset and completion events considering the

procedural workflow, and (2) adding code snippets accordingly to generate those events.

In the case of EVT_Cutting_OUTSIDE_WORKSPACE, the onset event is generated inside

the CheckWorkspace() method when any part of the cut path is determined to be outside

the robot’s workspace. The pre-defined reaction to this error is to call quit_top() that

branches to TOP_LEVEL (other detailed reactions are omitted for demonstration purposes).

Thus, we generate the completion event right before the call to quit_top(). The code

snippets that generate the onset and completion events are shown in lines 41 and 20 on the

right side of the code below:

Before: After:
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1 void CuttingTask ::Run(void) 1 void CuttingTask ::Run(void)
2 { 2 {
3 bool finished = false; 3 bool finished = false;
4 4
5 TOP_LEVEL maintop; 5 TOP_LEVEL maintop;
6 6
7 while (! finished) { 7 while (! finished) {
8 try { 8 try {
9 9 // error from other components

10 10 const SC::Event * e = 0;
11 11 if (SC::State::ERROR ==
12 GetRequiredInterfaceState(e)) {
13 12 ON_EVENT("EVT_SERVICE_FAILURE") {..}
14 13 }
15 14
16 ... 15 ...
17 16
18 BEGIN_SVAR (check_workspace); 17 BEGIN_SVAR (check_workspace);
19 if (CheckWorkspace () == false) { 18 if (CheckWorkspace () == false) {
20 // error handling 19 // error handling
21 quit_top (); 20 Coordinator ->GenerateEvent(
22 } "/EVT_Cutting_OUTSIDE_WORKSPACE")
23 END_SVAR (check_workspace); å ;
24 21 quit_top ();
25 22 }
26 23 END_SVAR (check_workspace);
27 24
28 ... 25 ...
29 26
30 finished = true; 27 finished = true;
31 } catch () { 28 } catch () {
32 quit_top (); 29 quit_top ();
33 } 30 }
34 } 31 }
35 } 32 }
36 33
37 bool CuttingTask :: CheckWorkspace () 34 bool CuttingTask :: CheckWorkspace ()
38 { 35 {
39 bool within_workspace = false; 36 bool within_workspace = false;
40 37
41 if (..) { 38 if (..) {
42 within_workspace = true; 39 within_workspace = true;
43 } else { 40 } else {
44 within_workspace = false; 41 Coordinator ->GenerateEvent(
45 } "EVT_Cutting_OUTSIDE_WORKSPACE");
46 42 within_workspace = false;
47 return within_workspace; 43 }
48 } 44

45 return within_workspace;
46 }

Another GCM event to consider is EVT_SERVICE_FAILURE that occurs when a service failure

event is propagated from the Control component. This error propagation event is explicitly

handled by a code snippet wrapped with the inline check of the current state of the required

interface (lines 10-13 in the right side of the code).

We demonstrated how SAFECASS can be applied to the design of the Cutting compo-

nent in the workflow layer while preserving the existing logic and “flow” of the component.
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Even though the component is structured to define the procedural workflow and application-

specific states, the flexibility of SAFECASS allows us to augment the component with the

state-based semantics of the GCM, so that we capture the onset and completion events of an

existing application-specific event with just a single function call. We also illustrated that

SAFECASS enables the handling of error propagation from other components in an explicit

and structured manner with almost no additional implementation overhead. Although we

considered only one application event for demonstration purposes, the same approach and

refactoring strategy can be applied to other types of application-specific events in a similar

manner.

6.2.3.3 Experiment Results

In this section, we illustrate how the SAFECASS-enabled Cutting application behaves when

user-defined warning or error events occur. Because the SAFECASS provides access to

the key elements of the system, we can easily inject faults or errors to the system and

systematically verify if the system response is correct.

To demonstrate a series of sequential error propagation throughout the system, we choose

the JR3 component that runs in the lowest hierarchy of the system, as depicted in Fig. 6.5.

This component monitors the sensor status information that the sensor firmware maintains,

and generates events if any abnormal condition is detected. The sensor firmware provides

two two-byte integers that represent the current sensor status. Each of the 16 bits of these

integers is a bit field indicating the warning or error state. In C code, they are defined as
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follows (excerpted from the official document233):

1 struct warning_bits
2 {
3 unsigned fx_near_sat : 1;
4 unsigned fy_near_sat : 1;
5 unsigned fz_near_sat : 1;
6 unsigned mx_near_sat : 1;
7 unsigned my_near_sat : 1;
8 unsigned mz_near_sat : 1;
9 unsigned reserved : 10;

10 };
11
12 struct error_bits
13 {
14 unsigned fx_sat : 1;
15 unsigned fy_sat : 1;
16 unsigned fz_sat : 1;
17 unsigned mx_sat : 1;
18 unsigned my_sat : 1;
19 unsigned mz_sat : 1;
20 unsigned reserved : 4;
21 unsigned memory_error : 1;
22 unsigned sensor_change : 1;
23 unsigned system_busy : 1;
24 unsigned cal_crc_bad : 1;
25 unsigned watch_dog2 : 1;
26 unsigned watch_dog : 1;
27 };

These values allow us to easily simulate arbitrary warning and error conditions simply by

setting or resetting bits of the values. In this way, we can introduce to the JR3 component

various warning and error events, check if events are generated in a timely manner, and

verify if state changes are correct.

For presentation purposes, we increased the period of the JR3 component from 5 msec

to 0.5 sec; otherwise, it would be difficult to visualize state changes. While the Cutting

application was running, we performed the deep fault injection (Sec. 5.6.5) using the console

utility (Sec. 5.6.7.1) as follows:

1 > filter list
2 Component: "CONTROL"
3 [5] s_F "CONTROL" FilterThreshold "ExecTimeTotal" EVT_THREAD_OVERRUN ,

/EVT_THREAD_OVERRUN
4 Component: "JR3"
5 [6] s_F "JR3" FilterThreshold "ExecTimeTotal" EVT_THREAD_OVERRUN , /EVT_THREAD_OVERRUN
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6 [7] s_A "JR3" FilterChangeDetect "Warning" EVT_JR3_WARNING , /EVT_JR3_WARNING
7 [8] s_A "JR3" FilterChangeDetect "ErrorCount" EVT_JR3_ERROR_COUNT ,

/EVT_JR3_ERROR_COUNT
8 [9] s_A "JR3" FilterChangeDetect "Error" EVT_JR3_ERROR , /EVT_JR3_ERROR
9 Component: "SafetyMonitor"

10 [4] s_F "SafetyMonitor" FilterThreshold "ExecTimeTotal" EVT_THREAD_OVERRUN ,
/EVT_THREAD_OVERRUN

11
12 > filter dinject
13 usage: filter dinject [safety_coordinator_name] [filter_uid] [input(s)]
14
15 > filter dinject LCM 7 1 1 1 1
16 > filter dinject LCM 9 1 1
17 > filter dinject LCM 7 1 1 1 1 1 1 1 1 1
18 > filter dinject LCM 9 1 1

Lines 1-10 show a list of filters deployed to each component in the system. Each line

displays brief information of each filter, such as the filter id (between [ and ]), a type of the

state machine associated with the filter (s_F: the state machine represents the framework

state, s_A: the state machine represents the application state), the name of filter class, and so

on. In this experiment, the filter id 7 and 9 were used to generate warning and error events.

By entering Line 15 followed by Line 16 with a bit of manual delay (around 0.5 second),

we performed deep fault injection to simulate the individual warning and error conditions,

respectively. Next, we entered Line 17, immediately followed by Line 18, to introduce

an error event prior to the completion of the existing warning event (event prioritization).

Although we used “1” as a warning and error code for simplicity, any other value that can be

represented using the warning_bits and error_bits structures could be also used instead.

Fig. 6.6 illustrates the results (edge-triggered filters).
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(a) Timing diagram: Red and blue arrows represent onset and completion events (horizontal

axis: time in seconds).
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(b) Event and state diagram: Each block in yellow/red represents Normal and Error events

with the name of the outstanding event. The horizontal axis is the time (“:mm:ss” format)

and the vertical axis represents a set of states in the system.

Figure 6.6: Timeline of events and state changes of the Cutting application

Overall, the pattern and timing of event occurrences and state changes are consistent

with the results that we presented in the previous chapter (Sec. 5.8). As the error propagation
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(a) Initial states (b) Occurrences of Error

Figure 6.7: Visualization of state changes of the Cutting application (using the viewer
application)

mechanism of the GCM is designed, warning events were not propagated, whereas error

events were successively propagated from the JR3 component to the CONTROL component

and to the Cutting component. During this error propagation, error events in the component

were transformed into EVT_SERVICE_FAILURE and were propagated across the component

boundary. Also, the outstanding events and event prioritization worked as expected.

Fig. 6.7 shows the snapshots of the viewer (Sec. 5.6.7.2), which visualizes the state

changes of the Cutting application. Initially, all the states were Normal, as shown in Fig.

6.7a. When EVT_JR3_ERROR occurred, the error was propagated to other components,

changing the color of segments to red. As depicted in Fig. 6.7b, the viewer also showed the

more detailed information about the outstanding event. In this particular case, the pop up

displayed a set of attributes of EVT_JR3_ERROR.
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Figure 6.8: The Robotic Endo-Laryngeal Flexible (Robo-ELF) Scope System (Olds et al.,
2012236)

6.3 Case 2: Robotic Endo-Laryngeal Flexible

(Robo-ELF) Scope System

The Robotic EndoLaryngeal (Robo-ELF) System is a simple clinically usable robot that

manipulates flexible endoscopes in laryngeal surgery (Olds et al., 2011235 and 2012236). This

system was developed to provide the surgeon with the ability to control a flexible endoscope

with only one hand and the ability to release the controls and perform bimanual surgery if

necessary. As shown in Fig. 6.8, the system is comprised of four components: (1) a robot

with three active and two passive joints, (2) a five degree of freedom passive positioning

arm, (3) a malleable scope shaft support, and (4) a joystick controller.
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Figure 6.9: Robo-ELF: Overall system design237

The design of the overall system is depicted in Fig. 6.9.237 The software system of

Robo-ELF, represented as the gray box (“PC”), is built on cisst (Jung et al., 201449) and

runs on Linux (Ubuntu). The features that the software provides include high-level robot

motion control, safety checks, Qt-based graphical user interface (GUI), and interfaces to the

low-level commercial motion controller (the Galil Motion Controller) and to an external

device for emergency stop.

Fig. 6.10 shows the System View (Sec. 3.2.2) of Robo-ELF. The same color scheme

used in Fig. 6.9 is also used in this figure for consistency. The software system has two

components: the RobotGUI in the Workflow layer and the RobotTask in the High-level

Control layer. We focus on the RobotTask component, which implements the safety features

of the system.

The RobotTask component is periodically executed (at 20 Hz). At each iteration, it

performs a set of safety checks and consistency checks to detect any abnormal condition
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Figure 6.10: Robo-ELF: System View

in the system. If any error is detected, exceptions are thrown and caught by the pre-

defined exception handlers. Otherwise, it reads inputs from the input device (joysticks)

and controls the robot motions based on the inputs. The overall workflow of system safety

checks implemented in the RobotTask component is illustrated in Fig. 6.11, where the four

essential run-time safety mechanisms, i.e., the four components of the Mechanism View

(Sec. 3.2.1), are tagged in the green boxes.

6.3.1 Safety Features of Robo-ELF

The system hazards of Robo-ELF have been analyzed through failure modes and effects

analysis (FMEA),238 and five safety features are implemented in the RobotTask component.

Each safety feature is associated with a custom C++ exception class of which an instance is
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Figure 6.11: Robo-ELF: System safety check workflow (adapted from Olds et al.237).
Tagged in the green boxes are the four components of the Mechanism View (i.e., monitoring,
detection, reaction, and recovery).

thrown if safety checks detect any anomaly or inconsistency within the system. The five

safety features and the custom exception classes associated with each safety feature are as

follows:

• Emergency Stop (E-Stop): A software-activated emergency stop switch that can

power off the robot motors at any time.

» Class EStopException

• Encoder/Potentiometer Check: A feature to detect mismatch between the encoder

value and the potentiometer value with a threshold.

» Class EncoderException

• Galil Over-Voltage Check: A feature to stop robot motions if too much voltage is
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applied to the motor.

» Class MotionException

• Input Joystick Check: A feature to verify if the joystick input reading is valid and

its switches are in the valid state.

» Class InvalidInputException

• Watchdog Timer: A watchdog to monitor the connection between the PC and the

low-level motion controller. Two time limits are used: (1) 75 msec that does not stop

robot motions, and (2) 125 msec that triggers E-Stop, stopping the robot.

» Class WatchdogException

6.3.2 Application of SAFECASS

As in the previous case using the ROBODOC, we perform the design refactoring with two

steps:

1. Definition of safety specification: We first define four pairs of GCM events with

the prefix of “EVT_RobotTask_”, each corresponding to the first four exception classes :

(/)EStop, (/)Encoder, (/)Motion, and (/)InvalidInput. For the last exception class,

i.e., WatchdogException, we define two pairs of GCM events because the two different

time limits lead to two different behaviors of the system: (/)Watchdog_Warning and

(/)Watchdog_Error. The former defines transitions between Normal and Warning, whereas

the latter defines transitions to and from Error. Although it is possible to introduce GCM
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custom filters to further simplify the design of safety features, no GCM filter is defined

for the RobotTask component to maximally preserve the current design for demonstration

purposes. The RobotTask component has one provided interface, “ProvidesThroatRobot”,

that provides robot status for the GUI component. Because the service state of this provided

interface becomes Error when application errors occur, we specify this information to enable

error propagation.

The following code partially presents the specification (see Sec. B.1 for the complete

specification):

1 {
2 "component": "RobotTask",
3 "event": [
4 // WatchdogException (warning)
5 { "name" : "EVT_RobotTask_Watchdog_Warning",
6 "severity" : 10,
7 "state_transition": [ "N2W" ]
8 },
9 { "name" : "/EVT_RobotTask_Watchdog_Warning",

10 "severity" : 10,
11 "state_transition": [ "W2N" ]
12 },
13 // WatchdogException (error)
14 { "name" : "EVT_RobotTask_Watchdog_Error",
15 "severity" : 10,
16 "state_transition": [ "N2E", "W2E" ]
17 },
18 { "name" : "/EVT_RobotTask_Watchdog_Error",
19 "severity" : 10,
20 "state_transition": [ "E2N", "W2N" ]
21 },
22 // Here come additional definitions of other events:
23 // (/) EVT_RobotTask_EStop
24 // (/) EVT_RobotTask_Encoder
25 // (/) EVT_RobotTask_Motion
26 // (/) EVT_RobotTask_InvalidInput
27 ],
28 "service" : [
29 { "name" : "ProvidesThroatRobot",
30 "dependency" : {
31 "s_R" : [ ],
32 "s_A" : true ,
33 "s_F" : true
34 }
35 }
36 ]
37 }
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2. Refactoring of code structure: The following code presents a side-by-side comparison

of the original design of the RobotTask component (slightly simplified and modified for

presentation purposes) and its new design after applying the SAFECASS to the component.

Before: After:
1 class robotTask: public mtsTaskPeriodic 1 class robotTask: public mtsTaskPeriodic
2 { 2 {
3 // Exception for EStop 3 // Exception for EStop
4 class EStopException { 4 class EStopException {
5 public: 5 public:
6 EStopException(const string & msg) {} 6 EStopException(const string & msg) {
7 7 Coordinator ->GenerateEvent(
8 8 "EVT_RobotTask_EStop");
9 9 }

10 virtual void raise() { throw *this; } 10 virtual void raise() { throw *this; }
11 }; 11 };
12 12
13 // Exception for EncoderException 13 // Exception for EncoderException
14 class EncoderException { 14 class EncoderException {
15 public: 15 public:
16 EncoderException(const string & msg) {} 16 EncoderException(const string & msg) {
17 17 Coordinator ->GenerateEvent(
18 18 "EVT_RobotTask_Encoder");
19 19 }
20 virtual void raise() { throw *this; } 20 virtual void raise() { throw *this; }
21 }; 21 };
22 22
23 // Exceptions for other events 23 // Exceptions for other events
24 class MotionException {...}; 24 class MotionException {...};
25 class WatchdogException {...}; 25 class WatchdogException {...};
26 class InvalidInputException {...}; 26 class InvalidInputException {...};
27 }; 27 };
28 28
29 void robotTask ::Run(void) 29 void robotTask :: RunNormal(void)
30 { 30 {
31 ProcessQueuedCommands (); 31 ProcessQueuedCommands ();
32 ProcessQueuedEvents (); 32 ProcessQueuedEvents ();
33 33
34 try { 34 try {
35 RunSafetyChecks (); 35 RunSafetyChecks ();
36 36
37 if (safe_condition) { 37 if (safe_condition) {
38 // read user inputs 38 // read user inputs
39 // perform robot control 39 // perform robot control
40 ManualControl (); 40 ManualControl ();
41 } 41 }
42 } 42 }
43 catch (EStopException & e) { 43 catch (EStopException & e) {
44 EStopExceptionHandler (); 44 EStopExceptionHandler ();
45 45 Coordinator ->GenerateEvent(
46 46 "/EVT_RobotTask_EStop");
47 } 47 }
48 catch (EncoderException & e) { 48 catch (EncoderException & e) {
49 EncoderExceptionHandler (); 49 EncoderExceptionHandler ();
50 50 Coordinator ->GenerateEvent(
51 51 "/EVT_RobotTask_Encoder");
52 } 52 }
53 catch (MotionException & e) {...} 53 catch (MotionException & e) {...}
54 catch (WatchdogException & e) {...} 54 catch (WatchdogException & e) {...}
55 catch (InvalidInputException & e) {...} 55 catch (InvalidInputException & e) {...}
56 } 56 }

57
58 #define ON_EVENT(_name)\
59 if (e == Coordinator ->GetEvent(_name))
60
61 void robotTask :: RunWarning(SC::Event * e)
62 {
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63 // framework warning event
64 ON_EVENT("EVT_THREAD_OVERRUN") {...}
65
66 // application warning event
67 ON_EVENT(
68 "EVT_RobotTask_Watchdog_Warning") {
69 Coordinator ->GenerateEvent(
70 "/EVT_RobotTask_Watchdog_Warning");
71 }
72
73 RunNormal ();
74 }
75
76 void robotTask :: RunError(SC::Event * e)
77 {
78 // application error events
79 ON_EVENT("EVT_RobotTask_EStop") {
80 EStopExceptionHandler ();
81 Coordinator ->GenerateEvent(
82 "/EVT_RobotTask_EStop");
83 }
84
85 ON_EVENT("EVT_RobotTask_Encoder") {
86 EncoderExceptionHandler ();
87 Coordinator ->GenerateEvent(
88 "/EVT_RobotTask_Encoder");
89 }
90
91 ON_EVENT(
92 "EVT_RobotTask_Watchdog_Error") {..}
93 ON_EVENT(
94 "EVT_RobotTask_Motion") {..}
95 ON_EVENT(
96 "EVT_RobotTask_InvalidInput") {..}
97
98 ProcessQueuedCommands ();
99 ProcessQueuedEvents ();

100 }

We focus on the design changes specific to Robo-ELF because the previous section about

ROBODOC has already described the process and rationale of design refactoring.

We first modify the constructors of the five custom exception classes so that the onset

event of each exception is generated whenever any exception is thrown (Lines 7 and 17).

By generating GCM events in the constructors, we minimize timing delays between error

detection and event generation. The generation of onset events allows the SAFECASS to be

notified of the occurrences of events and to update the system status accordingly in a timely

manner (see Sec. 5.8 for more about event processing delay and state change timing based

on experiments).
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Next, we define the three different methods to enable the state-dependent operational

modes (Sec. 4.3.8). RunNormal() is identical to the original Run() method except for the

additional changes in the catch clauses to generate completion events after finishing error

handling (Lines 45 and 50).

RunWarning(), defined in Line 61, handles the watchdog warning event, which is the

only application-specific warning event of the RobotTask component. The original code

handles this warning event by generating logs, followed by resetting the watchdog timer

to allow recovery. Thus, RunWarning() simply generates the completion event and calls

RunNormal() to continue its execution.

In addition, we define RunError() as in Line 76 to enable event-based testing. Practi-

cally, RunError() due to application-specific events is never called because RunNormal()

detects and handles all application-specific error events, including the generation of com-

pletion events, and thus the component state remains only Normal or Warning, but not

Error. Still, we duplicate the identical exception handlers within the ON_EVENT macro in

RunError() for testing purposes.

Using the SAFECASS tools such as the console utility (Sec. 5.6.7.1), we can easily

generate events and verify that the behavior of each exception handler is correct. The

advantage of this event-based testing is that it provides us a way to test safety features

without having to simulate error conditions by directly manipulating variables. Of note,

there are cases where simulating and reproducing the same error scenarios are not easily

achievable without a substantial amount of test code, because of the inability to use exact
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data with exact timing.

6.4 Discussion

In this chapter, we presented how the design of the safety features of the ROBODOC and

Robo-ELF systems can be improved in terms of testability and traceability, by introducing

the SAFECASS to these systems. The introduction of SAFECASS necessitated an archi-

tectural change to the SAFECASS-based architecture. After this architectural change, we

demonstrated how to exploit the SAFECASS-based architecture and the services that the

SAFECASS provides to implement or improve safety features. In each system, we selected

a set of components of inherently different characteristics from different layers in terms of

the System View, and described how the design of each component can be improved by

SAFECASS.

First, we revisit the four design requirements of the SAFECASS, as defined in Sec. 5.4,

and discuss how the current design and implementation of the SAFECASS meets each

requirement, based on our experience with these case studies.

1. Conformity to Generic Component Model: Although cisst is the only framework that

we used for our case studies, we confirmed that the current design and implementation of the

SAFECASS can represent the application-specific operational status of the ROBODOC and

Robo-ELF systems using only the minimal structural elements of the GCM (i.e., components

and interfaces) without relying on particular aspects of the component model in use (i.e.,
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the cisst component model). Together with the framework-level features that are associated

with component model-specific structural elements, as described in Sec. 5.7, we learned that

the state-based semantics of the GCM implemented by the SAFECASS enables the explicit

and structured state management of the overall system by providing tools and APIs in terms

of states, events, and filters.

2. Flexibility and reusability: Throughout the case studies, we confirmed that it is possible

to design and implement safety features with flexibility using the SAFECASS-based archi-

tecture and the SAFECASS. We consider its flexibility in terms of the safety specification,

the event generation, and the state-dependent execution, as follows:

• Safety specification: The ability to easily change JSON safety specifications greatly

facilitated the development and debugging processes. Any parameter in the specifica-

tions of events, filters, and service state dependencies can be easily modified with no

code compilation required.

• Event generation: The SAFECASS provides two options to generate events, by filters

or by a direct call to the SC::Coordinator::GenerateEvent() method. Because

filters are defined by JSON specifications, the filter-based event generation is inher-

ently flexible and configurable. One limitation is that the timing of event generation

is dependent on the framework extension. In case of cisst, all filters are executed

and events are generated after the execution (i.e., one iteration) of the user code

is completed. Thus, this filter-based event generation is suitable for periodic com-
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ponents where the code for the operational status update is well isolated (e.g., the

JR3 component). Alternatively, the event generation via APIs is better suited for the

other cases, i.e., if a component is aperiodic, if the operational status can change

in many different places of the code (e.g., components for robot control), or if the

code to update the operational status is intertwined with application-specific logic

or algorithms. It should be noted that these two options for event generation are not

mutually exclusive; they can be used simultaneously within the same component.

• State-dependent execution: Using the state query APIs, such as GetComponentState()

and GetInterfaceState(), it is possible to control the flow of execution depending

on any state of interest in the system. One example is the extended component state,

ŝext(i), that considers the entire set of states of a component, such that all the states are

consolidated into one state. In case of the research ROBODOC, the JR3 and CONTROL

components used this feature to implement the state-dependent operational modes

(Sec. 4.3.8).

3. Testability: One property that we found to be particularly improved is testability. The

fault injection facility of SAFECASS greatly facilitated the development process, especially

for the debugging and run-time verification. Specifically, using the interactive console utility

(Sec. 5.6.7.1), we were able to (1) generate any registered GCM event to directly change a

state of any state machine in the system at any time, (2) inject test data into GCM filters to

verify the correctness of filters (shallow fault injection), and (3) simulate the occurrences of

error events by injecting a sequence of test data into the history buffer (deep fault injection).
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Also, the run-time state viewer utility (Sec. 5.6.7.2) helped to visually and interactively

inspect the system state. For example, the default view (Fig. 5.17a) presented the entire

set of state machines in the system, and thus was useful for checking if any state machine

was in the non-normal state. The pop up window that the viewer displayed when the mouse

was moved over a segment (i.e., a state machine) showed the detailed information of the

outstanding event of the segment, if any. This feature helped us to quickly follow the “trail”

of error propagation and identify the root cause of the error.

4. Traceability: Another benefit of SAFECASS that we experienced is that safety properties

become more visible, structured, and thus traceable. For example, the safety specifications

explicitly declared the entire set of GCM events that can possibly occur in the system.

Each individual event had an unique name (enforced by SAFECASS), which allowed us to

effectively track down the part of the code that detects and handles the event (e.g., ON_EVENT

macro with an event name). Those specifications also completely captured the entire set of

parameters for GCM filters in the JSON format. We have maintained these configuration

files in the version control system (git) and it is possible to track any change in any of these

configuration files over time. Although we did not have access to the original FMECA

table of the commercial ROBODOC system, we were able to systematically trace our

safety specifications and mechanisms back to the original safety features in the commercial

ROBODOC system.

Through the case studies presented in this chapter, we empirically evaluated the effec-

tiveness and applicability of the SAFECASS by applying it to two existing systems with
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safety features, rather than implementing new safety features. The main reason is to be able

to compare the new SAFECASS-based design of safety features with the original design.

Because the safety features of the two systems provide us with a solid, authentic baseline

for comparison, we were able to highlight the benefits of SAFECASS in the new design in

terms of its four design requirements.

Another benefit of the use of SAFECASS is that a systematic and structured error

propagation and handling mechanism becomes available to the component with virtually no

additional implementation overhead, once the component-based framework supports the

SAFECASS. Because SAFECASS internally handles error propagation and collectively

represents the service state with either Normal or Error, handling of error propagation only

necessitates handling of the EVT_SERVICE_FAILURE event with the detailed information

of the outstanding event. This helps to improve the organization of the structure of error

handling within the component.

6.5 Conclusions

In this chapter, we demonstrated in detail how the Safety Architecture for Engineering

Computer-Assisted Surgical Systems (SAFECASS) and the SAFECASS-based architecture

can be applied to existing systems to improve the design of safety features. For this

study, we used the cisst component-based framework and two surgical robot systems: a

commercial surgical robot system for orthopaedic surgery, called the ROBODOC system,

269



CHAPTER 6. CASE STUDY: ROBODOCr AND ROBO-ELF

and a research robot system for endo-laryngeal surgery, called the Robo-ELF Scope. In case

of the ROBODOC, we built a research version of the system by adapting the original code of

the commercial system to the component-based environment, and applied SAFECASS to the

research system. We performed design refactoring on three application-specific components

with inherently different characteristics: a sensor wrapper component, a real-time robot

control component, and a component with surgical workflow and graphical user interface.

Similarly, we also described how the SAFECASS can be applied to the control and GUI

components of the Robo-ELF. By empirically evaluating the effectiveness and applicability

of SAFECASS-based approaches, these case studies have shown that the current design and

implementation of SAFECASS achieve its four design requirements: (1) conformity to the

Generic Component Model, (2) flexibility and reusability, (3) testability, and (4) traceability.

Although we considered one particular component framework in robotics (cisst), two

instances of surgical robot systems (the ROBODOC and Robo-ELF systems), and two surgi-

cal application areas (orthopaedic surgery and minimally invasive endolaryngeal surgery),

our belief is that the SAFECASS-based approaches are generic and flexible enough to be

applicable to other component frameworks, different types of medical robot systems, and

various surgical applications. In our present and future work, we aim to extend the cover-

age of our case studies in these three respects. This would provide us with opportunities

to further refine and enhance the design and implementation of the SAFECASS, thereby

experimentally validating our belief with more use cases.
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6.6 Contributions

The contributions in this chapter are as follows:

1. Validation: Design and implementation of the SAFECASS

– Empirical validation of the design and implementation of the SAFECASS

Through the case studies described in this chapter, we have shown that the current

design and implementation of the SAFECASS meet its four design requirements

and provide a run-time environment for the Generic Component Model (GCM) in

accordance with the state-based semantics of the GCM.

2. Validation: SAFECASS using the ROBODOC and Robo-ELF systems

– Empirical validation of the effectiveness and applicability of the SAFECASS-based

approaches using safety features of two surgical robot systems

We empirically evaluated the effectiveness and applicability of the state-based ap-

proaches to safety by refactoring application-specific safety features of the ROBODOC

and Robo-ELF systems for orthopaedic surgery and endolaryngeal surgery, respec-

tively. Through these case studies, we confirmed that the state-based approaches are

expressive and systematic enough to implement safety features that are equivalent to

the original design, and improve the design of safety features in terms of testability,

reusability, traceability, and flexibility.
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Conclusions

“We do not have the luxury of learning from experience, but must attempt to

anticipate and prevent accidents before they occur.”

– Safeware, N. Leveson, 199515

In this dissertation, we presented our methods that reformulate safety as a visible,

reusable, and systematically verifiable property of component-based robot systems. Starting

from a literature review on safety in various domains, we progressively developed our

methods through the concept (the Safety Design View), the model (the Generic Component

Model), and the architecture (the Safety Architecture for Engineering Computer-Assisted

Surgical Systems), and validated the methods using two existing medical robot systems:

the ROBODOC® System for orthopaedic surgery and the Robo-ELF Scope System for

minimally invasive endolaryngeal surgery.

The Safety Design View (SDV) is a conceptual framework that defines the design space
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of safety features of medical robot systems. This design space comprises two axes: the

Mechanism View and the System View. The Mechanism View defines essential components

of safety features as monitoring, detection, reaction, and recovery. The System View identi-

fies a canonical architecture of medical robot systems that captures the system designer’s

decisions on the deployment of safety features. By combining these two views, the SDV

(1) enables the description of safety features in a consistent and structured manner, (2)

allows to collect best practices on the design of safety features, and (3) facilitates sharing of

knowledge and experience on safety.

The Generic Component Model (GCM) consists of the minimal structural elements

(components and interfaces) and the state-based semantics that represent the operational

status of component-based robot systems in an explicit, systematic, and structured manner.

The GCM is generic enough to be specialized for other component models, yet it is expressive

enough to completely describe the system status without relying on a particular component

model. The essential elements of the state-based semantics are the state, event, and filter. The

use of the three abstract states (Normal, Warning, Error) enables the generic and consistent

representation of the operational status of the system. State changes are initiated by events,

and events are generated by filters. The error propagation model of the GCM systematically

defines how the state of a component is affected due to errors from the other components.

The Safety Architecture for Engineering Computer-Assisted Surgical Systems (SAFE-

CASS) is a run-time environment for the GCM. The SAFECASS provides an implementation

of both the structural elements and the state-based semantics of the GCM. The two fun-

273



CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

damental design principles of the SAFECASS-based architecture are (1) the framework

independence and (2) the decomposition of safety features into reusable mechanisms and

configurable specifications. Using this architecture, we built a software framework to show

that it is possible to build a run-time environment for the GCM. By providing application-

and framework-independent tools, the SAFECASS aims to facilitate safety research in

medical robotics and the development of safe medical robot systems in accordance with the

GCM.

We presented case studies that illustrate how the proposed methods can be applied to

existing systems to improve the design of safety features. For these case studies, we used

the cisst component-based framework, a subset of the safety features of the commercial

ROBODOC system, and the entire set of safety features of the Robo-ELF system. We per-

formed design refactoring on different types of components with distinctive characteristics,

which are commonly found in robot systems. They include: a sensor wrapper component,

a real-time robot control component, and a surgical workflow component with graphical

user interface. By empirically evaluating the effectiveness and applicability of our methods,

we showed that the current design and implementation of SAFECASS achieve its design

requirements.

The methods presented in this dissertation address challenges in safety research by defin-

ing a new perspective on safety of medical robots and by providing a software environment

that facilitates the design and development process of component-based medical and surgical

robot systems. These methods would improve reuse of prior experience and knowledge
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on safety and reduce engineering effort to build safe medical robot systems. Among the

three research areas in medical robotics3 – modeling and analysis, interface technology, and

systems science – our methods presented in this dissertation have made contributions to the

advancement of the least developed research area in medical robotics, i.e., systems science.

To further improve the current design and implementation, future work can be explored

in a few directions. One obvious direction is to expand a list of use cases. Although the

developed methods are carefully designed to be application-, framework-, and component

model-independent, we have used one component-based framework (cisst) and two ap-

plication systems (the ROBODOC for orthopaedic surgery and the Robo-ELF system for

laryngeal surgery). It would help us to further refine the design and implementation of

the SAFECASS if the SAFECASS is applied to other robot software frameworks, such

as OROCOS or ROS, and to other medical and surgical robot systems including the da

Vinci Research Kit (Kazanzides et al., 2014239). In particular, use of the SAFECASS across

different robot software frameworks would be worth investigating in that it will enable reuse

and sharing of safety knowledge and experience among each framework’s user communities.

Another possible direction is to develop automated run-time safety analysis tools based

on the GCM and the SAFECASS. Currently, the SAFECASS provides APIs and tools that

enable the introspection and manipulation of the system status in terms of the states and

events (e.g., fault injection, event generation). As an extension of these features, it could be

possible to automatically generate various test scenarios and to verify if the system behavior

is correct. For example, given a list of events, we can generate a sequence of events at
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random, certain, or pre-defined times and test if the system handles those events properly.

In case of multi-process systems, we can simulate disconnection events and check whether

such events are gracefully handled or not.

Other areas of exploration include the application of formal methods to the state-based

semantics of the GCM and the implementation of the SAFECASS. Formal methods have

emerged outside robotics, and are gaining increasing attention within the robotics commu-

nity, especially for safety- or mission-critical applications. By thoroughly and extensively

verifying the correctness of the GCM and the SAFECASS, system designers would be able

to reuse the services that the SAFECASS provides without having to verify its correctness.

Likewise, the integration of international safety standards with the GCM and the SAFE-

CASS would be another opportunity to help us to reduce engineering effort in building safe

medical robot systems.

276



Appendix A

Overview of the cisst Package

This section provides a brief overview of the cisst package, to provide sufficient back-

ground for Chapters 5 and 6. More detailed materials are available on the cisst web-site

(github.com/jhu-cisst).

Disclaimer: This section has been published as part of Jung et al., (2014).49

Component-based software engineering (CBSE) has been widely adopted within the

robotics community as an effective programming model to deal with challenges in building

complex robotics systems.45, 46 Similar problems are also found in the medical robotics

domain. At Johns Hopkins University, we have been developing an open-source component-

based framework, called the cisst packagei, to facilitate the development of various medical

and surgical robot systems. Although the cisst package was originally developed for

iThe cisst is an acronym for Computer-Integrated Surgical Systems and Technology, and was named after
the CISST Engineering Research Center established by the National Science Foundation.
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computer-assisted intervention (CAI) systems, we also use it for other robotics applications,

such as space robotics.240

Table A.1: Fact sheet of the cisst package

Language C++

License Open source

Programming Model Component-based Software Engineering

Supported OS
(Both 32 and 64 bits)

Windows, Linux, Mac OS X

Real-time Linux (RTAI, Xenomai), QNX

Application Domain Robotics, Medical and Surgical Robotics

Language Binding Python

Web Sites
cisst: http://cisst.org/cisst

SAW: http://cisst.org/saw

A.1 The cisst Component-based Framework

The cisst package241 is a collection of open-source, cross-platform libraries.242 The founda-

tional libraries include the linear algebra and spatial transformation library (cisstVector), the

component-based framework to define, deploy, and manage components (cisstMultiTask),

the multi-channel video acquisition, processing, and display library (cisstStereoVision), the

standard data type library to facilitate data exchange in component-based systems (cisstPa-

rameterTypes), and the robot kinematics, dynamics, and control modules (cisstRobot).
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Figure A.1: Block diagram of the structure of the cisst component. A cisst component
contains a list of interfaces for data exchange and time-indexed circular buffers (i.e., state
tables222) for data archival and lock-free data retrieval.

The cisst libraries form the basis of the Surgical Assistant Workstation (SAW) pack-

age.243 SAW is a collection of reusable components based on cisst with standardized

interfaces that enable rapid prototyping of CAI systems, especially those that benefit from

enhanced 3D visualization and user interaction. SAW provides diverse off-the-shelf applica-

tion components that range from hardware interface components (e.g., to robots, tracking

systems, haptic devices, force sensors) and software components (e.g., controller, simulator,

ROS bridge). One recent addition to SAW is an open-source telerobotics research platform

that is based on retired clinical da Vinci® Surgical Systems.239 These systems use several

SAW components, coupled with open-source electronics, to create a research platform that

has already been replicated at more than 10 institutions (see research.intusurg.com/dvrk).

This section briefly introduces the cisst component-based environment that the cisstMul-

tiTask library provides in three aspects: component model, computation, and communication.
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A.2 Component: cisst Component Model

The cisstMultiTask library defines the cisst component model, which is implemented by the

mtsComponent base class. Fig. A.1 and A.2 show an overview of the structural elements of

a cisst component and its UML class diagram, respectively.

Several different types of components are derived from this base class, including

mtsTaskPeriodic, mtsTaskFromSignal, mtsTaskContinuous, and mtsTaskFromCallback.

All of these derived components contain a Run method, whereas the base class does not.

Another type of derived class, the svlFilterBase, is defined as a base class for components

of the cisstStereoVision library. A component contains a list of provided interfaces, required

interfaces, output interfaces, and input interfaces, and the latter two interface types are

relevant to the cisstStereoVision library.

cisst uses the Command Pattern,204 where a service is represented as an object. Each

provided interface can have multiple command objects which encapsulate the available

services, as well as event generators that broadcast events with or without payloads. Four

strongly-typed command object classes are defined to handle commands with no parameters,

one input parameter, one output parameter, or one of each. Each required interface has

multiple function objects that are bound to command objects to use the services that the

connected command objects provide. It may also have event handlers to respond to events

generated by the connected component. As with the command objects, four corresponding

function object classes are defined. When two interfaces are connected to each other, all
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#"Create()
#"Configure()
#"Start()
#"Suspend()
#"Kill()
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Figure A.2: UML class diagram of the cisst components

function objects in the required interface are bound to the corresponding command objects

in the provided interface, and event handlers in the required interface become observers of

the events generated by the provided interface.

A component can have multiple instances of a state table, which is a time-indexed

circular buffer.222 This table keeps the history of data registered to it, which can be used for

data collection, online signal processing or for fault detection and diagnosis.203

The connection between components in the same process is established by the Manager

Component Client (MCC) shown in Fig. A.3, which is unique within the process and

manages all components in the same process. Each component is internally connected to

the MCC when it is registered to the system. MCC provides a set of services via these
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internal connections: (1) Dynamic component composition: Users can create, configure,

deploy, start, stop, resume, and connect components at run-time, (2) Distributed lightweight

logging facility: Logs can be generated in any process in the system and be collected

across a networkii, and (3) System information retrieval: Users can easily access the system

information, such as run-time state of components or a list of names of structural elements.

Port for internal interfaces 

Port for user (or application) 
defined interfaces 

Process boundary 

Local connection 

Remote connection 

Figure A.3: Managing cisst components distributed over a network. The Manager Compo-

nent Client component, unique within a process, connects to every component in the same

process. The Manager Component Server component is unique in the entire system and

connects to all the Manager Component Client components in the system. Connections

among these manager components enable a set of services for user components, such as

dynamic component composition and system information retrieval via the Command Pattern.

The architecture of cisstMultiTask has been extended to support various system config-

iiWe found this feature to be useful, especially in real-time robot control systems where massive logging

leads to heavy disk I/O and thus affects real-time performance of components.
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urations, from multi-threaded scenarios to multi-process and multi-host systems.244 This

extension primarily relies on the component-based data exchange mechanism (i.e., the en-

capsulation of services) via a network layer. The main idea is to extend the local connection

between components to the remote (i.e., logical local) connection by the introduction of

“proxy” components (i.e., the Proxy Pattern204, 245). The proxy components mediate data

exchange between the original components across the network. The network layer uses the

Internet Communication Engine (ICE)218 as middleware, but is not dependent on it because

the abstraction of the network layer allows any other middleware, even a native socket,

to be used. This extension introduced another type of manager, the Manager Component

Server (MCS) as shown in Fig. A.3. The MCS manages all MCC(s) in a system and

maintains system-wide information such as a list of processes, components, interfaces, and

connections. With the extension, users can use two different configurations, the standalone

configuration that supports only multi-threaded systems and the networked configuration

that supports not only multi-threaded systems but also multi-process (and multi-host) sys-

tems. Furthermore, depending on the characteristics of components, both configurations can

be deployed together to support the optimal performance of multi-threaded components in

the same process as well as data exchange between different processes across a network.

The conversion from the standalone configuration to the networked configuration requires

minimal user code-level changes and can be done seamlessly by the MCC. Thus, users can

employ the same programming model for different configurations in a flexible and consistent

manner.
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All the structural elements of cisst components are represented by a string. Together

with signature and data type information, this string is used to determine if a connection can

be established.

A.3 Computation: Thread Execution Model

A cisst component can have its own internal processing thread or use an external thread or

thread pool, and can be executed with a set of different computation schemes depending

on four criteria: (1) the characteristics of data that it processes (“Usage”), (2) the existence

of its own internal processing loop (“Processing Loop”), (3) the thread source (“Thread

Source”), and (4) the run-time behavior of computation (“Computation Scheme”). Table

A.2 summarizes the cisst thread execution model based on these criteria.

Table A.2: Thread execution model of cisst

Usage Processing
Loop Thread Source Computation

Scheme

API Wrapper No N/A N/A

Image/video Yes External
(thread pool) Stream

Data/control Yes

Internal

Continuous

Periodic

Event/signal

External Callback

(other component) Stream
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A component can be defined without its own processing loop. In this case, the component

is typically used for wrapping external libraries (API Wrapper) and thus cisst does not

manange any computation or threading.

If a component has a user-defined processing loop to execute within its context, two

types of components can be defined depending on the characteristics of data that it primarily

processes: a component for imaging and video data (image/video) and a component for

general data or control (data/control).

The stream is designed to efficiently process real-time image or video data by sequentially

executing multiple processing components, with minimal processing latency. We call these

types of components filters. A typical stream requires CPU-intensive computations because

it processes a large data set at a relatively low frequency (usually around 30-60 Hz). For

example, the size of HD stereo vision data in 24-bit RGB format is about 11.86 MB per

frame and this amounts to 355.96 MB per second at 30 Hz. In the Stream scheme, filters

do not have their own internal processing thread but use a set of threads from thread pool

provided by a Stream Manager. The Stream Manager maintains the thread pool and allocates

all the threads to one filter at a time to process large data in parallel, thereby achieving

minimal latency.

Components for data/control are suitable for processing robot control data or other types

of data in general, where payload size is relatively small and thus data is processed with

less computation than filters but at much higher frequencies (on the order of kHz). These

components can have their own internal thread or run in another thread space. A component
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with its internal processing thread may execute its processing loop with three different

schemes: continuous (no delay between execution of the processing loop; run the loop

as soon as the current loop finishes), periodic (constant interval between execution), and

event/signal-based (execution only when an event or signal arrives). A component without

its own processing thread assumes no thread execution model and relies on an external

thread or component that determines its computation scheme. One use case of this type of

component is to implement callbacks from external libraries or devices. Another use case

is called stream (the last row of the table). This is similar to the image stream described

above, except that the thread source can be any other component and the stream is therefore

limited to a single thread, rather than the thread pool provided by the Stream Manager.

This is useful if multiple components are required to run synchronously because they can

be grouped together such that the processing thread of the first component sequentially

provides the processing thread for a second component and can then be chained to all the

components in the group. With this computation scheme, the order of execution is specified.

A.4 Communication: Data Exchange Model

Use of the Command Pattern for data exchange between components enables loose coupling

between two connected components, and this forms the basis of a lock-free, thread-safe, and

efficient data exchange mechanism.222 Data exchange uses strongly-typed payloads and the

cisstParameterTypes library provides a set of standardized payload types that are frequently
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used in robotics.

This data exchange mechanism also allows the component-based framework to support

both multi-threaded systems (which provides the best real-time performance) and multi-

process distributed systems.244 Because the programming model remains the same for both

types of systems, it enables consistent and flexible deployment of components, thereby

facilitating the system design process.

Recently, the correctness of this data exchange mechanism has been analyzed and proven

using formal methods.120, 246
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Safety Architecture for Engineering

Computer-Assisted Surgical

Systems (SAFECASS) Artifacts

B.1 RobotTask

Code B.1 is a SAFECASS specification of safety features for the RobotTask component of

the Robo-ELF system. Refer to Sec. 6.3.2 for more details.

Code B.1: SAFECASS artifact for RobotTask component of Robo-ELF
1 {
2 "component": "RobotTask",
3 "event": [
4 // EStopException
5 { "name" : "EVT_RobotTask_EStop",
6 "severity" : 10,
7 "state_transition": [ "N2E", "W2E" ]
8 },
9 { "name" : "/EVT_RobotTask_EStop",

10 "severity" : 10,

288



APPENDIX B. APPENDIX: SAFECASS ARTIFACTS

11 "state_transition": [ "E2N", "W2N" ]
12 },
13 // WatchdogException (warning)
14 { "name" : "EVT_RobotTask_Watchdog_Short",
15 "severity" : 10,
16 "state_transition": [ "N2W" ]
17 },
18 { "name" : "/EVT_RobotTask_Watchdog_Short",
19 "severity" : 10,
20 "state_transition": [ "W2N" ]
21 },
22 // WatchdogException (error)
23 { "name" : "EVT_RobotTask_Watchdog_Long",
24 "severity" : 10,
25 "state_transition": [ "N2E", "W2E" ]
26 },
27 { "name" : "/EVT_RobotTask_Watchdog_Long",
28 "severity" : 10,
29 "state_transition": [ "E2N", "W2N" ]
30 },
31 // EncoderException
32 { "name" : "EVT_RobotTask_Encoder",
33 "severity" : 10,
34 "state_transition": [ "N2E", "W2E" ]
35 },
36 { "name" : "/EVT_RobotTask_Encoder",
37 "severity" : 10,
38 "state_transition": [ "E2N", "W2N" ]
39 },
40 // MotionException
41 { "name" : "EVT_RobotTask_Motion",
42 "severity" : 10,
43 "state_transition": [ "N2E", "W2E" ]
44 },
45 { "name" : "/EVT_RobotTask_Motion",
46 "severity" : 10,
47 "state_transition": [ "E2N", "W2N" ]
48 },
49 // InvalidInputException
50 { "name" : "EVT_RobotTask_InvalidInput",
51 "severity" : 10,
52 "state_transition": [ "N2E", "W2E" ]
53 },
54 { "name" : "/EVT_RobotTask_InvalidInput",
55 "severity" : 10,
56 "state_transition": [ "E2N", "W2N" ]
57 }
58 ],
59 "service" : [
60 { // provided interface name
61 "name" : "ProvidesThroatRobot",
62 // dependency information
63 "dependency" : {
64 "s_R" : [ ],
65 "s_A" : true ,
66 "s_F" : true
67 }
68 }
69 ]
70 }
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B.2 cisst Framework

Code B.2 presents a Safety Architecture for Engineering Computer-Assisted Surgical Sys-

tems (SAFECASS) artifact that specifies cisst-specific safety features within the cisst frame-

work. According to this specification, cisst defines three pairs of the GCM events and installs

one filter to every component that owns a thread (of type mtsTask). Refer to Sec. 5.7 for

more details.

Code B.2: SAFECASS artifact for the cisst component-based framework
1 {
2 "component": "", // set by SAFECASS when deployed
3 "event": [
4 // Thread overrun
5 { "name" : "EVT_THREAD_OVERRUN",
6 "severity" : 201,
7 "state_transition": [ "N2W" ]
8 },
9 { "name" : "/EVT_THREAD_OVERRUN",

10 "severity" : 201,
11 "state_transition": [ "W2N" ]
12 },
13 // Thread exception thrown
14 { "name" : "EVT_THREAD_EXCEPTION",
15 "severity" : 201,
16 "state_transition": [ "N2E" ]
17 },
18 { "name" : "/EVT_THREAD_EXCEPTION",
19 "severity" : 201,
20 "state_transition": [ "E2N" ]
21 },
22 // Command queue full (for provided interface)
23 { "name" : "EVT_COMMAND_QUEUE_FULL",
24 "severity" : 201,
25 "state_transition": [ "N2E" ]
26 },
27 { "name" : "/EVT_COMMAND_QUEUE_FULL",
28 "severity" : 201,
29 "state_transition": [ "E2N" ]
30 }
31 ],
32 "filter": [
33 // Filter to detect periodic thread overrun
34 { "class_name" : "FilterThreshold",
35 "target" : {
36 "type" : "s_F",
37 "component" : "" // "component" defined above is used instead
38 },
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39 "type" : "ACTIVE",
40 "argument" : {
41 "input_signal" : "", // set by SAFECASS when deployed
42 "threshold" : 0.0, // set by SAFECASS when deployed
43 "tolerance" : 0.0, // tolerance margin
44 "output_above" : 1,
45 "output_below" : 0,
46 "event_onset" : "EVT_THREAD_OVERRUN",
47 "event_completion" : "/EVT_THREAD_OVERRUN"
48 },
49 "last_filter" : true
50 }
51 ]
52 }

B.3 JR3

Code B.3 is a SAFECASS specification of safety features for the JR3 component of the

research ROBODOC system. This specification is based on the official documentation of the

JR3 force sensor (JR3 Inc., Woodland, CA, USA). Refer to Sec. 6.2.3.2.2 for more details.

Code B.3: SAFECASS artifact for JR3 component of ROBODOC
1 {
2 "component": "JR3",
3 "event": [
4 // Device access error (due to error with device driver or hardware itself)
5 { "name" : "EVT_JR3_DEVICE_ACCESS_ERROR",
6 "severity" : 20,
7 "state_transition": [ "N2E", "W2E" ]
8 },
9 { "name" : "/EVT_JR3_DEVICE_ACCESS_ERROR",

10 "severity" : 20,
11 "state_transition": [ "E2N", "W2N" ]
12 },
13 // Non -zero error count (error_count ). See JR3.cpp for details.
14 {
15 "name" : "EVT_JR3_ERROR_COUNT",
16 "severity" : 15,
17 "state_transition": [ "N2W" ]
18 },
19 { "name" : "/EVT_JR3_ERROR_COUNT",
20 "severity" : 15,
21 "state_transition": [ "W2N" ]
22 },
23 // Non -zero warning bit(s) (WARNING_BITS ). See JR3.cpp for details.
24 { "name" : "EVT_JR3_WARNING",
25 "severity" : 10,
26 "state_transition": [ "N2W" ]
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27 },
28 { "name" : "/EVT_JR3_WARNING",
29 "severity" : 10,
30 "state_transition": [ "W2N" ]
31 },
32 // Non -zero error bit(s) (ERROR_BITS ). See JR3.cpp for details.
33 { "name" : "EVT_JR3_ERROR",
34 "severity" : 20,
35 "state_transition": [ "N2E", "W2E" ]
36 },
37 { "name" : "/EVT_JR3_ERROR",
38 "severity" : 20,
39 "state_transition": [ "E2N", "W2N" ]
40 }
41 ],
42 "filter" : [
43 { // common fields
44 "class_name" : "FilterChangeDetect",
45 "target" : {
46 "type" : "s_A",
47 "component" : "JR3"
48 },
49 "type" : "ACTIVE",
50 //"debug" : true ,
51 // fields specific to on/off state filter
52 "argument" : {
53 "input_signal" : "Warning",
54 "baseline" : 0,
55 "event_onset" : "EVT_JR3_WARNING",
56 "event_completion": "/EVT_JR3_WARNING"
57 }
58 },
59 {
60 "class_name" : "FilterChangeDetect",
61 "target" : {
62 "type" : "s_A",
63 "component" : "JR3"
64 },
65 "type" : "ACTIVE",
66 "argument" : {
67 "input_signal" : "ErrorCount",
68 "baseline" : 0,
69 "event_onset" : "EVT_JR3_ERROR_COUNT",
70 "event_completion": "/EVT_JR3_ERROR_COUNT"
71 }
72 },
73 { "class_name" : "FilterChangeDetect",
74 "target" : {
75 "type" : "s_A",
76 "component" : "JR3"
77 },
78 "type" : "ACTIVE",
79 "argument" : {
80 "input_signal" : "Error",
81 "baseline" : 0,
82 "event_onset" : "EVT_JR3_ERROR",
83 "event_completion": "/EVT_JR3_ERROR"
84 }
85 }
86 ],
87 "service" : [
88 { "name" : "JR3Interface",
89 "dependency" : {
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90 "s_R" : [ ],
91 "s_A" : true ,
92 "s_F" : true
93 }
94 }
95 ]
96 }

B.4 Control

Code B.4 is a SAFECASS specification of safety features for the CONTROL component of

the research ROBODOC system. The GCM events defined here correspond to a subset of

events that are used for the commercial ROBODOC system. Refer to Sec. 6.2.3.2.3 for

more details.

Code B.4: SAFECASS artifact for CONTROL component of ROBODOC
1 {
2 "component" : "CONTROL",
3 "event" : [
4 // Generic MCS event
5 { "name" : "EVT_CONTROL_MCS",
6 "severity" : 10,
7 "state_transition": [ "N2E", "W2E" ]
8 },
9 { "name" : "/EVT_CONTROL_MCS",

10 "severity" : 10,
11 "state_transition": [ "E2N", "W2N" ]
12 },
13 // E_FORCE_FREEZE
14 { "name" : "EVT_CONTROL_MCS_FORCE_FREEZE",
15 "severity" : 20,
16 "state_transition": [ "N2E", "W2E" ]
17 },
18 { "name" : "/EVT_CONTROL_MCS_FORCE_FREEZE",
19 "severity" : 20,
20 "state_transition": [ "E2N", "W2N" ]
21 },
22 // E_FORCE_EPO
23 { "name" : "EVT_CONTROL_MCS_FORCE_EPO",
24 "severity" : 30,
25 "state_transition": [ "N2E", "W2E" ]
26 },
27 { "name" : "/EVT_CONTROL_MCS_FORCE_EPO",
28 "severity" : 30,
29 "state_transition": [ "E2N", "W2N" ]
30 },
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31 // E_FORCE_HW_EPO
32 { "name" : "EVT_CONTROL_MCS_FORCE_HW_EPO",
33 "severity" : 40,
34 "state_transition": [ "N2E", "W2E" ]
35 },
36 { "name" : "/EVT_CONTROL_MCS_FORCE_HW_EPO",
37 "severity" : 40,
38 "state_transition": [ "E2N", "W2N" ]
39 },
40 // E_MANIPWR
41 { "name" : "EVT_CONTROL_MCS_MANIPWR",
42 "severity" : 10,
43 "state_transition": [ "N2E", "W2E" ]
44 },
45 { "name" : "/EVT_CONTROL_MCS_MANIPWR",
46 "severity" : 10,
47 "state_transition": [ "E2N", "W2N" ]
48 },
49 // E_PEND_PAUSE
50 { "name" : "EVT_CONTROL_MCS_PEND_PAUSE",
51 "severity" : 50,
52 "state_transition": [ "N2E", "W2E" ]
53 },
54 { "name" : "/EVT_CONTROL_MCS_PEND_PAUSE",
55 "severity" : 50,
56 "state_transition": [ "E2N", "W2N" ]
57 }
58 ],
59 "service" : [
60 { // provided interface name
61 "name" : "Robot",
62 // service state dependency information
63 "dependency" : {
64 "s_R" : [ "ForceSensor", "AMCInterface", "PendantRequired" ],
65 "s_A" : true ,
66 "s_F" : true
67 }
68 },
69 { "name" : "prmRobot",
70 "dependency" : {
71 "s_R" : [ "ForceSensor", "AMCInterface", "PendantRequired" ],
72 "s_A" : true ,
73 "s_F" : true
74 }
75 }
76 ]
77 }

B.5 Cutting

Code B.5 is a SAFECASS specification of safety features for the Cutting component of

the research ROBODOC system. Refer to Sec. 6.2.3.2.4 for more details.
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Code B.5: SAFECASS artifact for Cutting component of ROBODOC
1 {
2 "component": "Cutting",
3 "event": [
4 { "name" : "EVT_Cutting_OUTSIDE_WORKSPACE",
5 "severity" : 10,
6 "state_transition": [ "N2E", "W2E" ]
7 },
8 { "name" : "/EVT_Cutting_OUTSIDE_WORKSPACE",
9 "severity" : 10,

10 "state_transition": [ "E2N", "W2N" ]
11 }
12 ]
13 }
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Glossary

G | S

G

Generic Component Model is a generic model that can be used to represent the operational

status of component-based robot systems at run-time in an explicit, systematic, and

structured manner. The model comprises (1) the structural elements that only contain

components, interfaces, and connections between interfaces, and (2) the state-based

semantics that use the structural elements to explicitly describe the run-time status of

the system with support for error propagation across the component boundary. The

use of minimal structural elements makes the model inherently generic, extensible,

and customizable so that it can be specialized in a flexible manner to adapt to existing

component models in robotics, thereby achieving reusability and interoperability. The

state-based semantics defines states, events, filters, and inputs, thereby enabling a

structured, systematic approach to designing and implementing safety features in

accordance with the mechanism view of the Safety Design View. 100
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S

Safety Architecture for Engineering Computer-Assisted Surgical Systems (SAFECASS)

is a run-time environment for the Generic Component Model. The SAFECASS pro-

vides an implementation of both the structural elements and the state-based semantics

of the Generic Component Model. The fundamental design principle of the SAFE-

CASS is the decomposition of safety features into reusable mechanisms and config-

urable specifications. This principle governs its safety-oriented layered architecture

and overall design that consider the domain characteristics of medical robotics. The

SAFECASS shows that it is possible to build a run-time environment for the Generic

Component Model with the four design requirements: (1) conformity to the Generic

Component Model, (2) flexibility and reusability, (3) testability, and (4) traceability.

The SAFECASS aims to establish a run-time software environment for safety research

in medical robotics, and to facilitate the development of safe medical robot systems in

accordance with the Generic Component Model. A collection of reusable mechanisms

and configurable specifications for application-specific requirements will enable the

accumulation of safety knowledge and experiences across various applications and

systems. 153

Safety Design View is a conceptual framework that can capture and describe both the

run-time mechanisms and design decisions of safety features of medical robot systems

in a systematic and structured manner. This conceptual framework is presented as
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Glossary

the two-dimensional plane that represents the design space of safety features, with

the Mechanism View on the horizontal axis and the System View on the vertical axis.

The goal of Safety Design View is to (1) explicitly and intuitively describe safety

features in a consistent and structured manner, (2) collect “good” practices on the

design of safety features, and (3) facilitate sharing of knowledge and experience on

safety within the community. 76
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Acronyms

C | G | S

C

CBSE Component-based Software Engineering. 33

CBSS Component-based Software Systems. 99

G

GCM Generic Component Model. 100

S

SAFECASS Safety Architecture for Engineering Computer-Assisted Surgical Systems.

137

SDV Safety Design View. 76
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