
Stochastic Filtering on Shape Manifolds

by

Valentina Staneva

A dissertation submitted to The Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

December, 2016

c© 2016 by Valentina Staneva

All rights reserved



Abstract

This thesis addresses the problem of learning the dynamics of deforming objects in

image time series. In many biomedical imaging and computer vision applications

it is important to satisfy certain geometric constraints which traditional time se-

ries methods are not capable of handling. We focus on building topology-preserving

spatio-temporal stochastic models for shape deformation, which we combine with the

observed images to obtain robust object tracking. The shape of the object is modeled

as obtained through the action of a group of diffeomorphisms on the initial object

boundary. We formulate a state space model for the diffeomorphic deformation of the

object, and implement a particle filter on this shape space to estimate the state of

the shape in each video frame. We use a practical method for sampling diffeomorphic

shapes in which we generate deformations via flows of finitely generated vector fields.

Based on the observations and the proposed samples we obtain an approximate esti-

mate for the posterior distribution of the shape. We present the performance of this

framework on various image sequences under different scenarios.

We extend the random perturbation models to diffusion models on the manifold
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of planar (discretized) shapes whose drift component represents a trend in the shape

deformation. To obtain trends intrinsic to the shape, we define the drift as a gradient

of appropriate functions defined over the boundary of the shape. Given a sequence

of observations from the path of the suggested stochastic differential equations, we

propose a likelihood-ratio-based technique to estimate the missing parameters in the

drift terms. We show how to reduce the computational burden and improve the

robustness of the estimators by constraining the motion of the shapes to a lower-

dimensional submanifold equipped with a sub-Riemannian metric. We further discuss

how to apply this methodology to obtain estimates when we have only a limited

number of observations.

Primary Reader: Laurent Younes

Secondary Reader: Gregory Chirikjian
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Chapter 1

Introduction

In today’s abundance of imaging systems recording spatio-temporal signals in a

variety of settings: medical imaging, surveillance analysis, remote sensing, etc., there

is a demand to develop methods which use the collected information to infer properties

of the dynamical processes behind the motion of the observed objects. Inference

from time-series data is not a new problem: the rapid development of the theory of

stochastic processes in the 50’s paired with the push for industrial applications in

the post-war world yielded methods which are relevant today: the Wiener filter[95]

developed to improve radar communications during WWII laid out the foundations

of stochastic filtering and Gaussian process estimation; the Kalman filter developed

consequently and implemented in the navigation system of the Apollo Project is now

omni-present across domains; the work of Daniel Krige [55] which moved the Wiener

filtering theory to the spatial domain and applied it to mining valuation pioneered

the field of geostatistics, and is now applicable to any spatial data problem; Box and

Jenkins’ book [18] has been providing a comprehensive guide for modeling, estimation

and evaluation of discrete-time stochastic processes since its first edition (now in fifth
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CHAPTER 1. INTRODUCTION 2

edition). So, what is different, what more do we need? With more data available

we want to know more. The objects we are observing are high dimensional, and we

want to learn more details about them, and understand their complex structure and

behavior. We are particularly interested in the geometry of the objects. We don’t

simply want to know where they are, we want to know what their shape is at a given

time, we don’t simply want to know whether there is a change in shape, we want

to know what this change is and what has driven this change. This can allow us to

answer various scientific questions:

How do leaves grow?

How do cells react to external sources?

How do worms move?

How do skulls of chimpanzees evolve?

How does a healthy human heart beat?

How do tumors spread?

How do clouds form?

Our goal is to use statistics to infer answers from the observed data without relying

on the knowledge of the explicit physical or biological models describing the processes.

Ideally, when present, such knowledge should be used to further refine the estimates,

however, this will require customized treatment of the individual applications.

There are several common problems which need to be addressed when working

with time series data: defining a mathematical representation of the objects, choosing

appropriate stochastic models to describe the dynamics of the objects, estimating the

states of the hidden variables from a sequence of observations, and learning the miss-

ing model parameters. As we want to develop methodology which can study objects

of different geometry and variation, we need a general representation of the shape of
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the object: this could be either a parameterization of its boundary, or a subset of a

domain of the image. The spaces of shapes are in general infinite-dimensional and

nonlinear, which makes the task of statistical inference on them hard. Classical time

series methods often assume the dynamical systems of interest are driven by random

variables in finite-dimensional Euclidean space and thus can often provide closed-form

solutions or optimal algorithms (e.g. Kalman filter, Baum-Welch algorithm, etc.), but

are not capable of preserving the geometric properties of the shapes. Problems across

domains: robotics, communications, and DNA statistical mechanics (see [21] and [22]

for overview of theory and applications) have steered the development of extensions

of these methods to a variety of Lie groups and special manifolds (matrix groups, uni-

modular groups, etc.). In the same spirit, this thesis studies how time series analysis

can be extended to the manifold of shapes with the goal of solving practical image

analysis problems.

Thesis Overview and Contributions.

This thesis provides a statistical framework for online and offline learning of stochastic

processes on the manifold of shapes. Below we briefly summarize the contributions

of the thesis by chapter. Each chapter further contains a more detailed introduction

section which states its contributions in the context of the relevant background and

work.

• Chapter 2 provides background on shape representations used in imaging ap-

plications which are relevant to our work. The deformable template approach

of Section 2.5 is most suitable for describing smooth topology-preserving defor-

mations, and provides foundations for our framework.

• Chapter 3 addresses the problem of tracking the boundary of a deforming



CHAPTER 1. INTRODUCTION 4

object in a sequence of images. Mathematically, we solve a stochastic filtering

problem on the manifold of shapes. By construction, our approach ensures the

estimates we obtain preserve their topogy and thus avoids ambiguities caused

by boundary self-intersections. We provide two algorithms to address the prob-

lem: a particle filter (Section 3.4.1) (suitable for parallel implementation) and a

Resample-Move algorithm (Section 3.4.2) (capable of addressing sample impov-

erishment but computationally intensive). We demonstrate the performance on

simulated videos under the correct model, on simulated videos with deviations

from the correct model, and on natural and biomedical videos.

• Chapter 4 studies the convergence properties of the finite-dimensional distri-

butions introduced in Chapter 3 and their extension to infinite dimensions. We

establish the L2 convergence of Gaussian random fields indexed by contours.

We identify cases (for example, polygonal curves) in which convergence in re-

producing kernel Hilbert space norm does not hold.

• Chapter 5 addresses the problem of learning Itô diffusion processes from a

sequence of observed shapes. We formulate a continuous-time version of the

discrete stochastic flows in Chapter 3 and show that they coincide with the

formulation of a Brownian motion on the Riemannian/sub-Riemannian mani-

fold of landmarks. We incorporate shape-dependent drift terms, derive explicit

formulas for the likelihood-ratio estimates of their parameters, and simulate

their performance numerically. The learned models can in turn be used for

tracking, and furthermore for a variety of other tasks such as model selection,

classification, feature extraction, etc.

• Chapter 6 summarizes the results and discusses some open problems and future

directions of research.



Chapter 2

Shape Representations

In the recent years there has been substantial development in the statistical analysis of

shapes. It has been driven by many applications in biomedical imaging and computer

vision. In practice, we never observe shapes directly. Usually, we observe images and

the boundaries of the objects in them represent the shapes. There are a lot of open

problems in this domain: extracting the boundaries from the images (segmentation,

tracking), aligning the shapes and finding the correct correspondences of the points

on different shapes (shape registration), quantifying shape differences, classification,

interpolation, regression, filtering, etc.

The abundance of approaches to solving these problems partially stems from the

fact that there is no unique way to represent the shapes mathematically (i.e. there

is no unique parameterization). So we begin by summarizing several representations

which are relevant to this thesis and discuss the spaces of shapes associated with

them. We do not intend to give an extensive overview of all shape representations.

For more examples and details one can refer to some review works [78, 56, 101].

5



CHAPTER 2. SHAPE REPRESENTATIONS 6

2.1 Landmark spaces

In the late 70’s, David Kendall [54, 53] introduces the idea of a shape space as

the space of sets of labeled points (landmarks) after “removing” differences between

them based on “size”. In the past many shapes were recorded through landmarks:

biologists measure key points on leaves, doctors identify anatomical landmarks on

brain surfaces, etc. Often, the shapes are collected under different conditions, and

the interest is in quantifying differences in the geometry of the objects (and not the

variable location and size due to inconsistencies in the collection process). Formally,

one considers the space of nondegenerate configurations of n points in R
d modulo

some transformations: for example, Kendall’s shape space Σn
d consists of all such

configurations modulo translation, rotation, and scale. When d = 2, this space can

be identified with the complex projective space CP n−2.

The main practical challenges with the landmark representation of shapes occur

when there is no exact correspondence between the landmarks, for example, when the

points on the shape simply represent a discretization of the boundary or they have

been selected by different annotators who did not have a common selection strategy.

2.2 Signed distance functions

Implicit representations avoid the problem of representing the boundary of the shape

explicitly. A shape S is considered to be a subset of R2. The signed distance function

associated to S

ψ(x) =







dist(x, ∂S) if x ∈ S,

−dist(x, ∂S) if x 6∈ S,

(2.1)



CHAPTER 2. SHAPE REPRESENTATIONS 7

where ∂S is the boundary of S. Given ψ(x), one can obtain a representation of the

shape through its zero level set:

S = {x ∈ R
2|ψ(x) = 0}. (2.2)

This representation has proven extremely useful in addressing segmentation and

tracking problems, and has two important features:

1. it is implicit, i.e. it eliminates the need for parameterization of the boundary

shape,

2. it allows the shape to consist of multiple components and the number of com-

ponents does not need to be fixed.

Many image segmentation techniques rely on minimizing an energy functional defined

on the space of signed distance functions. As these functions are defined over the

whole domain of the image (not restricted to the shape boundary), a lot of efficient

numerical algorithms for the solution of the problems have been proposed [77].

Unfortunately, it is difficult to provide mathematical guarantees for their perfor-

mance due to the complexity of the space of signed distance functions: it is non-convex

so minimizers may not always exist, also, it is nonlinear so statistical formulations on

this space are not always well defined.

2.3 Probability fields

Cremers [26] proposes representing the shape through a probability field q : R2 →

[0, 1] which indicates the probability that a pixel in the image belongs to the shape.

As the space of probability fields and the relevant segmentation functionals over this
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domain are convex working with such a shape representation can guarantee global

optimization. It also allows one to incorporate statistical shape priors. The represen-

tation of the shape in this case is “distributional,” i.e. we cannot deterministically

define the shape. When the level sets of the probability field happen to be a set of

simple closed contours, then their interior could be defined as the shape. The study

of the statistical properties of these shapes requires assigning statistical models on

the space of probability measures, and determining the properties of their level sets

which is not trivial.

2.4 Spaces of closed curves

An explicit representation usually aims to directly parameterize the boundaries of

the shape. If the shape consists of one (compact) simply connected component, its

boundary is a Jordan curve. Such curves can be obtained by applying transformations

(with a certain level of smoothness) to the unit circle S1. The problem of establishing

point correspondence when working with landmarks transfers here to the problem of

not having a unique way to parameterize a closed contour with respect to time. So

one should consider spaces of curves up to reparameterization. The following two

spaces have been of interest to the imaging community:

Immersed Geometric Curves:

Bi = (S1,R2) = Imm(S1,R2)/Diff(S1). (2.3)

Embedded Geometric Curves:

Be = (S1,R2) = Emb(S1,R2)/Diff(S1), (2.4)
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which describe all C∞ immersions and embeddings of S1 in the plane modulo repa-

rameterizations. The main geometric difference is that immersed curves may cross

themselves, while embedded curves cannot. Mathematically, the space of immersed

geometric curves is not a manifold, as the action of the diffeomorphism group is not

free (i.e. there exists an element ϕ ∈ Diff(S1) and c ∈ Bi, such that c ◦ ϕ = c and

ϕ 6= Id). A restriction to only free immersions

Freely-Immersed Geometric Curves:

Bf = (S1,R2) = Immf (S
1,R2)/Diff(S1) (2.5)

results in a space which is a manifold [20]. Augmenting these spaces with the L2-

metric has provided a framework for evolution of curves by gradient flows minimizing

specific energy functionals and has led to various applications in computer vision.

However, as shown in [65] (Section 3.10), this metric is degenerate: the distance

between any two curves in this space vanishes. This urges authors to study other

metrics with more appropriate geometric interpretations. Metrics introduced in [66]

and [88] have led to practical applications to shape matching, segmentation, and

tracking.

2.5 Shapes through group actions

An alternative way of obtaining shapes is by starting with a “template” shape and

applying a sequence of transformations to deform it into a family of other shapes.

These transformations usually can be encoded by a group acting on the original

shape. This is known as a “deformable template” approach and has been pioneered
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by Grenander [45]. For example, in tracking problems we are interested in the motion

of an object so to describe the space of all its rigid transformations we need to consider

the orbit of the Euclidean group. In contrast to shape matching applications in which

we assume every two shapes related by a rigid transformation are the same, i.e. each

orbit is a point in the space, in the deformable template setting the orbit is the entire

space. It is advantageous that often theory developed for the action on one template

type can be extended to more complex templates. We will next introduce the space

of deformed landmarks through the action of the group of diffeomorphisms, and the

methodology can be applied to contours, surfaces, etc.

2.5.1 Landmark manifold under the action of a group of dif-

feomorphisms

In many applications, low dimensional matrix Lie group transformations are not

sufficient to describe all possible deformations of the objects of interest. Considering

more general smooth actions provides greater diversity within the shape space, while

restricting to a specific level of smoothness, generates classes of shapes which could be

suitable for particular applications. In the past ten years there has been an extensive

development in methodology and algorithms for shape analysis through diffeomorphic

mappings [67, 99, 89]. We first describe the space of “deformable landmarks”, which

is obtained through the action of diffeomorphisms on a set of points in R
n (in our

setting on R
2). The main advantage of this framework is that deformations of the

whole shape can be obtained by interpolating the landmarks, thus it can easily be

extended to curves and surfaces (even images, diffusion tensors, etc.). We will describe

this space with more detail, as it is relevant to our work.

Let χ0 be an ordered set of n distinct points in R
2 (x1, ..., xn). Let’s consider the
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space of configurations of these points obtained by transforming the original points

through a diffeomorphic mapping ϕ ∈ G:

Lmkn = G · (x1, ..., xn), (2.6)

where G ⊂ Diff (R2) is a group of diffeomorphisms from R
2 to R

2 with some pre-

defined level of smoothness. This space contains all ordered collections χ of n distinct

points in R
2 and is a submanifold of R2n. A path in this space can be denoted as

χ(t) : (x1(t), ..., xn(t)) and the tangent vector at χ can be represented by a set of

n two-dimensional vectors: c = (c1, c2, ..., cn). The structure of this space can be

induced from the properties of deformations belonging to the group G. The Large

Deformation Diffeomorphic Mapping framework ([52],[14]) suggests to approach the

problem of building deformation mappings by composing small diffeomorphisms, and

in practice this can be achieved by solving the flow equation:

∂ϕt = v(ϕt, t), ϕ0(x) = χ0, t ∈ [0, 1], (2.7)

where v(·, t) : R2 → R
2. We can see that by evaluating the vector field v at particular

set of landmarks we obtain tangent vectors to the path of deformation on the land-

mark manifold. The properties of the space of vector fields V determine the level of

smoothness of the mappings in G. [99]. A popular approach (Chapter 9 [99]) is to

assume that V is a Reproducing Kernel Hilbert Space (RKHS) with a kernel K(·, ·)I2,

where K : R2 × R
2 → R

2 is a positive-definite function and I2 is the 2 × 2 identity

matrix. As shown by Aronszajn [6], the kernel function uniquely determines the re-

producing kernel space. We will briefly summarize a few properties of Reproducing

kernel Hilbert spaces as they will be relevant to this thesis. We will first introduce
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an RKHS for scalar-valued functions, and then explain how to construct from it an

RKHS for vector fields.

Definition 2.1. (RKHS) Let V be a Hilbert space of scalar functions v ∈ V defined

on a domain D with a norm ‖v‖. Then V a reproducing kernel Hilbert space if for

each x ∈ D the evaluation functional is continuous, i.e. there is a constant c, such

that

|v(x)| ≤ c‖v‖, ∀v ∈ V. (2.8)

Proposition 2.2. (Reproducing property) Let V be a reproducing kernel Hilbert

space. Then there exists a function K : D ×D → R which satisfies for each x ∈ D

v(x) = 〈v,K(·, x)〉, ∀v ∈ V. (2.9)

The definition of an RKHS can be extended to vector fields.

Definition 2.3. (RKHS of vector fields) A space V of functions v : R2 → R
2 is

an RKHS, if for each x ∈ D and any vector a ∈ R
2, the functional v → aTv(x) is

continuous, i.e. there exists a constant c, s.t.

|aTv(x)| ≤ c‖v‖, ∀v ∈ V. (2.10)

The reproducing property for vector RKHS states that there exists a function

Γ : R2 → GL2(R), such that for each x ∈ D

aTv(x) = 〈v,Γ(·, x)a〉, ∀v ∈ V. (2.11)
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Now let’s consider a space V of vector fields v : R2 → R
2 such that each coordinate

function belongs to an RKHS with a kernel K : R2 → R. Set Γ(x, y) = K(x, y)I2,

where I2 is the 2× 2 identity matrix. We can show that V is a vector RKHS with a

kernel function Γ. As the reproducing property (2.9) holds for each coordinate, we

have for the standard basis {e1, e2} for R2

eTj v(x) = 〈v,Γ(·, x)ej〉, j = 1, 2, (2.12)

hence, (2.10) holds for any a.

Definition 2.4. (Restriction to a subset) Let D′ ⊂ D. K restricted to D′ is the

reproducing kernel to a RKHS VD′ consisting of the restrictions of the functions v

to D′ and with a norm ‖v′‖D′ equal to the minimum norm ‖v‖ among all functions

v ∈ V which agree with v′ on D′:

‖v′‖D′ = min
v∈V

{‖v‖ : v|D′ = v′}. (2.13)

Interpolation. Let the subdomain be equal to a set of n landmarks: D′ = χ. Then

the above optimization problem can be interpreted as an interpolation problem: we

are trying to find vector field of minimum norm defined on R
2 which evaluated at χ

has certain values. The solution of this problem has an explicit form:

v̂(x) =
n∑

i=1

K(x, xi)pi, (2.14)

where the coefficients {pi}ni=1 are such that the above system of equations holds when
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evaluated at the set of landmarks in χ:

v̂(xj) =
n∑

i=1

K(xj, xi)pi, j = 1, . . . , n. (2.15)

Let the vector p contain the stacked coefficients pi, K(χ) be a 2n × 2n matrix con-

taining blocks K(xi, xj)I2 for each i and j, and v(χ) be the vector of values of v at

each landmark. A closed form solution for the coefficients is

p = K(χ)−1v(χ), (2.16)

Riemannian Metric. The inner product on V induces an inner product on the

tangent space at each point χ of Lmkn

‖c‖2χ = ‖v‖2χ = cTK−1(χ)c. (2.17)

This metric on Lmkn has an alternative interpretation as a projection of a Riemannian

metric on the group of diffeomorphisms G via the infinitesimal group action (as the

map from G to Lmkn is a Riemannian submersion). A right-invariant metric on G can

be obtained by defining an inner product on the space of vector fields (the tangent

space at the identity) and translating it to the whole group through

‖v‖ϕ = ‖v ◦ ϕ−1‖id. (2.18)

We have the following relationship between the norms of tangent vectors on Lmkn
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and tangent vectors on G

‖c‖χ = ‖v‖ϕ, (2.19)

where χ = ϕ(χ0).

Geodesics. Many computer vision algorithms rely on comparing two shapes, which

requires calculating the distance between them. On a Riemannian manifold this

entails to finding the path of shortest length between them

min
χ(0)=χ0,
χ(1)=χ1

∫ 1

0

‖χ̇τ‖dτ, (2.20)

and it is equivalent to minimizing the energy of the path

min
χ(0)=χ0,
χ(1)=χ1

∫ 1

0

‖χ̇τ‖2dτ, (2.21)

which is a more tractable problem.

The geodesic equations in Lagrangian form are

ẍk,i +
n∑

l,l′=1

2∑

j,j′=1

Γ
(k,j)
(l,j),(l,j′)ẋl,jẋl′,j′ = 0, (2.22)

where xk,i is the i’th coordinate of the k’th landmark xk. Let’s denote the Riemannian

metric by g, then we can calculate the Christoffel symbols Γ
(k,j)
(l,j),(l,j′) by

Γ
(k,j)
(l,j),(l′,j′) =

1

2

(

∂xl′,j′
g(k,i),(l,j) + ∂xl,j

g(k,i),(l′,j′) − ∂xk,i
g(l,j),(l′,j′)

)

. (2.23)
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Computation of these symbols requires taking derivatives of the Riemannian metric

g, i.e. the inverse of the matrix K(χ). This task is analytically cumbersome and

numerically very sensitive to the condition number of the matrix.

Equation (2.22) can be formulated as a second-order system:

ẋk,i = vk,j, (2.24)

v̇k,j = −
n∑

l,l′=1

2∑

j,j′=1

Γ
(k,j)
(l,j),(l,j′)ẋl,jẋl′,j′ . (2.25)

The exponential map is the solution of the above system at time one with initial

conditions χ(0) = χ0 and v(0) = v0

expχ0
(v0) = χ(1), (2.26)

i.e. it is a mapping from an element of the tangent bundle of the landmark manifold

to a point on the manifold.

To avoid the difficulties with computing the Christoffel symbols, a Hamiltonian

version of the geodesic flow can be obtained by minimizing the kinetic energy of

the system with respect to the momenta of the moving landmarks. The momenta

are elements of the cotangent space of the landmark manifold and there is one-to-one

correspondence between tangent velocities (tangent vectors) and momenta (cotangent

vectors): the momentum p corresponding to a vector v needs to satisfy

(pv|v) = pTv v = ‖v‖2K = vTK(χ)−1v, (2.27)

i.e., pv = K(χ)−1v.
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The kinetic energy can be written as a function of the momenta: 1
2
‖v‖2 =

1
2
(p|K(χ)p) = 1

2
pTK(χ)p. The geodesic equations minimizing this energy define the

following Hamiltonian flow:

∂txk =
n∑

i=1

K(xk, xl)pl, (2.28)

∂tpk = −
n∑

k=1

2∑

i,j

∇1K
ij(xk, xl)pk,ipl,j. (2.29)

In matrix form the above system takes the form:

∂tχ = K(χ)p, (2.30)

∂tp = −1

2
∂χ(p

TK(χ)p). (2.31)

The exponential map in Hamiltonian form (we call it the co-exponential map) is a

mapping from the cotangent space to the manifold and represents the solution of the

above Hamiltonian system with initial conditions χ(0) = χ0 and p(0) = p0 at time

t = 1:

exp[
χ0
(p0) = χ(1). (2.32)

We use the flat symbol to indicate that the map is defined on the cotangent bundle.

Other geometric quantities on the deformable landmark manifold have been stud-

ied: for example, parallel transport is discussed in [102]; a formula for the sectional

curvature is derived in [63].
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2.5.2 Extension to contours

The above framework generalizes to curves. The reason is that the geodesic equations

on the space of landmarks are induced from the geodesic equations of the group of

diffeomorphisms acting on them. Since the diffeomorphisms are defined over R2, one

could look at their action on a closed 2D contour. Let γ0 represent the contour

template and G ⊂ Diff(R2) be a group of diffeomorphisms. We can consider the

space of curves belonging to the orbit of the action of G on the template:

M = G · γ0 = {ϕ(γ0)|ϕ ∈ G}. (2.33)

This space can be also equipped with a Riemannian metric, induced from the metric

on the space of diffeormphisms. We will consider geodesics associated with the cov-

ectors which can be expressed as an integral with respect to a measure µ on the unit

circle and a vector-valued function p(s′) defined on the unit circle:

(p|v) =
∫ 2π

0

v(γ0(s
′))Tp(s′)dµ(s′). (2.34)

The geodesic flow Φ is

∂τΦ(γ0(s), τ) =

∫ 2π

0

K(Φ(γ0(s), τ))p(s
′, τ)dµ(s′) (2.35)

∂τp(s, τ) = −
∫ 2π

0

∇1K(Φ(γ0(s), τ),Φ(γ0(s), τ))p(s, τ)
Tp(s′, τ)dµ(s)′,

(2.36)

and its existence and uniqueness properties have been justified in [39]. When the
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measure is a weighted sum of Dirac delta functions centered at set of landmarks these

equations coincide with (2.28). For more details and extensions one can refer to the

review articles [101, 89].



Chapter 3

Diffeomorphic Shape Tracking

3.1 Introduction

Obtaining topology-preserving methods for tracking geometric objects in a video se-

quence is important for visual tracking since often the objects being tracked are of

known unchanging topology, but their shape cannot be fully observed in the video due

to noise, clutter, or occlusions. In such situations methods for extracting the bound-

aries of the object (edge detection or segmentation algorithms) which rely only on the

data fail to preserve the original structure of the shapes. To avoid this problem one

needs to also incorporate a prior dynamical model for the evolution of the shape which

enforces the desired topological constraints. We propose a general-purpose stochastic

model, which does not require any precise knowledge about the specific dynamics

involved in the process, but can be refined if more information is available. We fuse

this model with the data by constructing a state-space system which describes the

dynamics of the object, and use particle filtering [49] to retrieve the deformation of

the object.

20
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3.1.1 Related work

There is an emerging literature on the combination of high-dimensional shape defor-

mation models with particle filtering. A method combining geometric active contours

with particle filtering has been proposed in [75]. Following ideas introduced in [97],

the authors develop a method in which the overall deformation of the contour is

split into global affine motion and local non-affine deformation. The affine trans-

formations are estimated through particle filtering while the nonlinear deformation

is approximated through a gradient descent procedure. Several extensions of this

idea have been proposed in a sequence of works [92, 90, 91], which apply particle

filtering to the estimation of more general deformations. In this approach the curves

are explicitly parameterized and the speed of their motion in the normal direction is

modeled using low-dimensional B-splines, which allows for filtering of the unknown

coefficients. As opposed to parameterizing the curves, the authors in [25] represent

the objects through signed distance functions, and construct dynamical systems di-

rectly on them. Although the signed distance function representation has been widely

used and successful in image segmentation problems, it poses challenging problems

when estimating dynamical systems since the space of signed distance functions is not

linear. In an attempt to avoid some of these difficulties, the authors suggest repre-

senting the curve by a function which indicates the probability of each pixel to belong

to the object [26] and thus ensure the space of shapes is convex. This probability-field

representation is explored further in various dynamical models proposed for tracking

curves in [71].

A recent direction in the field has been toward formulating the filtering problem
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directly on the space of shapes and taking advantage of its geometric structure. This

involves facing the nontrivial task of solving statistical problems on non-Euclidean

spaces. Particle filtering on matrix Lie groups has been initially proposed in [23],

and the idea has been later applied to video tracking of Euclidean and affine motion

[58, 59]. The advantage of working with matrix groups is the existence of explicit

parameterizations of their Lie algebras and hence of the groups themselves through

exponentiation. A more general framework can be designed for any finite-dimensional

manifold [79], but practical algorithms can only be obtained in special cases (the au-

thors consider the space of positive-definite matrices). In order to deal with a wide

range of shapes the authors in [87] define a nonlinear filter directly on the infinite-

dimensional space of immersed curves by introducing a Sobolev-type metric on this

space, which allows for an explicit computation of geodesics. The estimation is done

by designing a prediction-correction scheme which trades off between the predicted

curve and measured curves (obtained through segmentation).

3.1.2 Contribution

So far, none of the curve representations used in solving the tracking problem have

an intrinsic way to prevent the curves from intersecting themselves, which can create

ambiguities when trying to define the object enclosed by the curve. In our work we

formulate the filtering problem on the space of curves obtained by the action of dif-

feomorphisms on a fixed curve, which is the natural space to work with if we want to

track general smooth nonlinear deformations of shapes and simultaneously preserve

their topology. The model for the evolution of curves stems from the diffeomorphic

deformation approach originally proposed in [39]. Random diffeomorphic models in
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this setting have been considered more recently for shape growth in [93]. In our

work we restrict the deformation to particular subsets of the whole group of diffeo-

morphisms (using control points, in an approach similar to [4, 7, 32, 100, 81]) and

provide a simple-to-implement algorithm for particle filtering on this smaller space.

This approach still provides us with enough degrees of freedom to describe a wide

range of shape deformations, while reducing the dimensionality of the problem and

making the estimation on this space possible. In contrast to previous work we provide

a shape-dependent model for the noise on the space of curves, which is independent

of the choice of the parameterization of the curve. The variations of the curve are

induced by the ambient space, which allows us to construct stable methods for gener-

ating diffeomorphic deformations that can be easily extended to tracking one or more

objects in higher dimensions, which becomes a much harder task when working with

immersed manifolds as in [87, 11].

3.1.3 Organization

There are several important subtasks in formulating and solving the dynamical infer-

ence problem for shapes, some of which are nontrivial due to the complexity of the

space these shapes belong to. We describe how we have addressed them in our setting.

We begin in Section 3.2 with a description of a method for constructing distributions

of random diffeomorphic shapes based on Gaussian random vector fields. The ap-

proach involves moving the shape boundary along the flow of these vector fields and

comes down to solving simple differential equations. An extension to this approach is

discussed in Section 3.2.2. In Section 3.3 we describe the observation model we use:

a basic two-class Gaussian model on the pixel intensities of the image. Given the
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dynamical and observation models we estimate the state of the shape using particle

filtering, as described in Section 3.4.1. The numerical performance of the proposed

methods is demonstrated in Section 3.5.

3.2 Stochastic shape evolution

The shape spaces we consider in this work are equivalence classes of subsets of R2

under diffeomorphic transformations. Any set γ∗ ⊂ R
2 therefore generates the “shape

space” Diff ·γ∗ containing all sets φ(γ∗) where φ ∈ Diff , the set of all diffeomorphisms

of R2. In the following, the sets γ∗ will be plane curves, or finite unions of plane curves,

but most of the discussion can apply to more general sets in arbitrary dimension.

We define stochastic processes (γt, t ≥ 0), where t is an integer representing a

discrete observation time, and the γt’s belong to the same shape space, i.e., they can

be deduced from each other by a diffeomorphic transformation: γt ∈ Diff · γ0 for

all t. In most cases, we will couple the shape variables with an auxiliary process,

(χt, t ≥ 0), and we will refer to St = (γt, χt) as the state variable. Our construction

will also include a control variable, denoted by αt. We will consider evolution schemes

in the form of 





St+1 = F (St, αt)

αt ∼ P (· | St)

(3.1)

where F is a deterministic function and P a probability distribution. The second

equation should be interpreted as: the conditional distribution of αt given α0, . . . , αt−1

and S0, . . . , St only depends on St and is given by P (· | St) (we will later on consider

extensions in which the conditional distribution also depends on αt−1).
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3.2.1 Discrete stochastic flows

To obtain a diffeomorphic evolution, we will assume that the shape evolves, between

states t and t+ 1, according to a motion driven by an ordinary differential equation,

which will be associated with a smooth vector field on R
2, vt : R

2 → R
2 interpreted

as a shape velocity. We will let (x, τ) 7→ Φvt(x, τ) represent the flow associated to vt,

defined by

∂τΦ
vt(x, τ) = vt(Φ

vt(x, τ)), with Φ(x, 0) = x. (3.2)

(Note that t is fixed in this equation.) Given vt (which will be defined as a determin-

istic function, H, of the state and control variables), we set the shape transformation

to be

γt+1 = Φvt(γt, 1)

(i.e., the image of γt by the transformation x 7→ Φvt(x, 1)). The transformation of

the second component, χt, of the state variable can vary, but, in the simplest setting

in which χt also is a subset of R2, one can use the same definition

χt+1 = Φvt(χt, 1).

In all cases, we have the sequence of deterministic transformations (St, αt) → vt →

St+1 that specifies the function F in (3.1). We can also rewrite (3.1) by explicitly
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including vt, yielding 





St+1 = G(St, vt)

vt = H(St, αt)

αt ∼ P (· | St)

(3.3)

Under certain smoothness conditions on vt, the solution of (3.2) is such that

x 7→ Φvt(x, t) is a diffeomorphism at all times over which it is defined. We will design

the distribution P (· | St) so that a solution exists at all times with probability one.

3.2.1.1 Stationary random fields

In this first model, we let St = γt (no auxiliary state component), αt = vt and

assume that vt is a centered Gaussian random field (GRF) on R
2 with a fixed (state

independent) distribution. We assume that its covariance function takes the form

C(·, ·)I2 where C : R
2 × R

2 → R is some positive-definite function and I2 is the

identity matrix in R
2 so that, for all x, y ∈ R

2,

E[vt(x)vt(y)
T ] = C(x, y)I2. (3.4)

(In particular, the coordinates of vt are independent). Since vt is a Gaussian field, its

properties are completely determined by its covariance function. A natural choice is

to let C be radial so that the correlation between vector field values depends only on

the distance between their positions (this makes vt stationary and rotation invariant).

For most of our applications we assume that C is proportional to a Gaussian function
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over R2:

C(x, y) ∝ e−‖x−y‖22/2σ
2

, (3.5)

where σ > 0 is a parameter regulating how quickly the correlation decreases with

the increase of the distance between the points at which the vector field is evaluated.

Note that, in this case, P (· | St) does not depend on St.

The well-posedness of the model is ensured by the following result.

Proposition 3.1. Let v be a GRF defined over R
2, with zero mean and covariance

function C(x, y) = e−‖x−y‖22/2σ
2
I2. Then the solutions of (3.2) exist and are diffeo-

morphisms for any time with probability one.

Proof. Since the covariance C(x, y) is analytic, the realizations of v are analytic and

hence continuously differentiable almost surely [16]. This implies that each realization

of v defines a local flow of diffeomorphisms. To ensure that the solution can be

extended to arbitrary time intervals, one needs to control the growth of the vector

field. Let ξ denote one of the coordinates of v (therefore with covariance e−‖x−y‖22/2σ
2
).

To prove that the flow associated with ξ is complete, it is, for example, sufficient to

show that [40]

|ξ(x)| ≤ c(1 + ‖x‖) (3.6)

for some constant c and for almost all realizations of the random field. In [72], it is

shown that isotropic sample-path-continuous GRF ζ with covariance (x, y) 7→ r(x−y)
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satisfying |r(z)| = o(2/ log(|z|)) as z → ∞, are such that

sup
x∈Dk

ζ(x) → 2
√

log(k) as k → ∞ a.s., (3.7)

where Dk is the square of size k centered at 0. Applying this result to ξ, we find

that, for almost all realizations of ξ, there exists a constant c such that |ξ(x)| ≤

c
√

log(1 + ‖x‖). This proves that solutions of (3.2) exist at all times. Thus the

associated flow is a global flow of diffeomorphisms.

3.2.1.2 Projected random field

Even if conceptually simple, the previous approach is computationally challenging

since it requires, after discretization, sampling a random vector whose dimension

equals the size of the discretization grid. Of course, since the displacements are only

computed along the shape by integrating the flow over a finite time, it suffices to sam-

ple its values in a neighborhood of the shape, but the size of this neighborhood cannot

be decided a priori. To avoid this, we modify the previous construction, and restrict

vt to a finite-dimensional space, which will depend on the auxiliary state variable, χ

(which is made explicit below). More precisely, we assume that one attaches to each

instance of χ a finite collection of vector fields on R
2, denoted u1(·, χ), . . . , un(·, χ).

At a given discrete time t we let vt take the form

vt(x) =
n∑

k=1

uk(x, χt)αt,k.

We will denote V (χt) = span{uk(x, χt), k = 1, . . . , n} so that, by construction, vt ∈

V (χt). To simplify, we will also assume that the uk’s are always linearly independent,
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so that the αk’s are uniquely defined (and will provide the control variables described

in (3.1)).

To specify the rest of system (3.1), we need to define the conditional distribution

P (· | St) of the control variables αt. This distribution is chosen so that the resulting

distribution of vt is similar to the one of a random field with covariance C, where C

is fixed (i.e., shape-independent), which can be done in the following way.

Assume that GRF’s with covariance C belong with probability one to a topological

vector space V , and that V (χ) ⊂ V for all χ. Assign to each χ a family of linear

forms η1(χ), . . . , ηn(χ) ∈ V ∗ (the topological dual of V ) such that the matrix

K(χ) = ((ηk(χ) | ul(·, χ)), k, l = 1, . . . , n)

is always invertible, which ensures a one-to-one mapping between the basis functions

ul’s and the linear forms ηk’s. Recall, that by definition the covariance of a centered

Gaussian vector in V is a bilinear form such that

Cov(η, η̃) = E[(η|v)(η̃|v)T ], η, η̃ ∈ V. (3.8)

Since V (χ) is finite-dimensional, it is sufficient to consider the action of the co-

variance only on {ηk}nk=1:

Covv(ηk(χ), ηl(χ)) = E[(ηk(χ)|v)(ηl(χ)|v)T ]. (3.9)

We would like it to agree with the action of the covariance of a zero Gaussian vector
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field ξ ∈ V with covariance function C on {ηk}:

Covv(ηk(χ), ηl(χ)) = Covξ(ηk(χ), ηl(χ)). (3.10)

The covariance function C(·, ·) relates to the covariance form in the following way:

Cov(η, η̃) = (η|η̃C), (3.11)

where ηC(y) = (η|C(y, ·)). We conclude that

Covv(ηk, ηl) = E[(ηk(χ)|v)(ηl(χ)|v)T ] = (η|k(ηl|C(·, ·)) = C(χ)kl, (3.12)

where C(χ)kl = Covξ(ηk, ηl).

We can now identify what distribution of αt would define a covariance of vt such

that as if vt were a GRF with covariance C. Let’s expand for each k = 1, . . . , n:

(ηk(χt) | vt) =
(

ηk(χt)
∣
∣
∣

n∑

l=1

ul(x, χt)αt,l

)

=
n∑

l=1

(ηk(χt) | ul(x, χt))αt,l =
n∑

l=1

K(χ)klαt,l.

(3.13)

We would like the following equality to hold

E[(ηj(χt) | vt)(ηk(χt) | vt)T ] = C(χ)j,k. (3.14)
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Hence, we have

E





n∑

l=1

K(χ)jlαt,l

(
n∑

l′=1

K(χ)kl′αt,l′

)T


 = C(χ)j,k (3.15)

E

[
n∑

l=1

n∑

l′=1

K(χ)jlαt,lα
T
t,l′K(χ)kl′

]

= C(χ)j,k (3.16)

K(χ)E[αtα
T
t ]K

T (χ) = C(χ), (3.17)

and we conclude that αt should be a Gaussian vector with covariance matrix

Σ(χt) = K(χt)
−1C(χt)K(χt)

−T . (3.18)

In the simplest setting, we can choose V to be the space of all functions over

R
2 with the pointwise convergence topology and the linear forms to be evaluation

functionals at control points attached to χ, as described in the following example.

3.2.1.3 Control points and the associated RKHS

Control points.

Let χ = {x1, ..., xn} be a finite subset of R2. The basis elements of V (χ) will

be numbered with double indices, (k, j) for k = 1, . . . , n and j = 1, 2. Let K :

R
2 × R

2 → R be a symmetric positive definite function (a reproducing kernel), and

ukj(x, χ) = K(x, xk)ej, k = 1, . . . , n, j = 1, 2 where (e1, e2) is the canonical basis of

R
2. Define the corresponding linear form

(ηkj(χ) | v) := eTj v(xk)
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as an evaluation functional. Elements of V (χ) take the form

v(·) =
n∑

k=1

2∑

j=1

K(·, xk)ejαk,j =
n∑

k=1

K(·, xk)αk (3.19)

where αk = (αk,1, αk,2)
T ∈ R

2. It will be convenient to rewrite (3.19) in vector form

v(·) = K(·, χ)α

where, for x ∈ R
2, K(x, χ) is a 2 by 2n matrix formed by aligning 2 by 2 blocks

K(x, xk)I2, k = 1, . . . , n and α is a 2n column vector stacking up the vectors αk,

k = 1, . . . , n. More generally, if χ′ = (x′1, . . . , x
′
m), we will denote by K(χ′, χ) the

2m by 2n matrix formed with 2 by 2 blocks K(x′k, xl)I2, and let K(χ) = K(χ, χ).

Similarly, let C(χ) consists of 2 by 2 blocks of C(xk, xl)I2. With this notation, the

covariance matrix Σ is still given by (3.18), and the covariance function of v is

Cχ(x, y) = K(x, χ)K(χ)−TC(χ)K(χ)−1K(χ, y).

Using this approach, we bias the model toward a limited, small-dimensional, class

of diffeomorphisms. However, it turns out (from experimental evidence) that even

with a small number of control points this class can provide a wide variety of defor-

mations.

The structure of V (χ). The assumption that K is positive definite has several

useful implications. As shown by Aronszajn in [6] (page 344) we can construct a

unique reproducing kernel Hilbert space VK consisting of vector fields over R2, whose

reproducing kernel is K(·, ·)I2. Clearly V (χ) is a subspace of this space, and the
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realizations of the random fields v defined by (3.19) are in VK .

The inner product between an element v ∈ VK and an element w ∈ V (χ), with

w(·) =∑n
k=1K(·, xk)βk is given by

〈v, w〉VK
= 〈v,

n∑

k=1

K(·, xk)βk〉 =
n∑

k=1

βT
k v(xk) =

n∑

k=1

2∑

j=1

βkj(ηkj(χ) | v). (3.20)

The orthogonal projection of an element v in VK onto V (χ) needs to satisfy for

every basis element K(·, xk)ej

〈v,K(·, xk)ej〉 = 〈v̄, K(·, xk)ej〉. (3.21)

As the above equality is equivalent to

(ηkj(χ)|v) = (ηkj(χ)|v̄), (3.22)

the previous construction can be interpreted as letting the distribution of vt coincide

with the distribution of the orthogonal projection of a GRF with covariance C onto

the finite-dimensional space V (χt) (only loosely, since such a GRF does not belong

to VK in general).

This remark justifies the statement of the following proposition that assesses the

consistency of the distribution of random fields v with respect to their projections on

low dimensional subspaces.

Proposition 3.2. (Consistency with projections) Suppose χm and χn are two

point sets such that χn ⊂ χm, and let V (χn) and V (χm) be the corresponding repro-

ducing kernel Hilbert spaces restricted to those subsets. A random field vm ∈ V (χm)
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is defined to be consistent with the random field vn ∈ V (χn) when its orthogonal

projection v̄m onto V (χn) satisfies

Cov(v̄m) = Cov(vn). (3.23)

Let K(x, y) be the reproducing kernel associated with the inner product on V and let

C(x, y) be another positive definite function. Then selecting the covariance of vn to

be

Cn(x, y) = K(x, χn)K(χn)
−TC(χn)K(χn)

−1K(χn, y) (3.24)

ensures that vn is consistent with vm.

Proof. Let vm(·) =
∑m

i=1K(·, xi)ᾱ(m)
i and vn(·) =

∑n
i=1K(·, xi)ᾱ(n)

i . Denote the

projection of vm onto V (χn) by v̄m(·) =
∑n

i=1K(·, xi)ᾱi. The orthogonality condition

requires that

〈v̄m(·), K(·, xk)ep〉V = 〈vm(·), K(·, xk)ep〉V for k = 1, ..., n,

where {ep}2p=1 is the canonical basis of R2. After substituting the representations of

vm and v̄m this condition becomes

〈
n∑

i=1

K(·, xi)α(m)
i , K(·, xk)〉V = 〈

n∑

j=1

K(·, xj)ᾱj, K(·, xk)〉V for k = 1, ..., n.
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Using the reproducing property of the inner product we obtain:

m∑

i=1

K(xk, xi)α
(m)
i =

n∑

j=1

K(xk, xj)ᾱj.

This can written in a block form

K(χn, χm)α
(m) = K(χn)ᾱ (3.25)

Since

E(v̄m(x)v̄m(y)
T ) = K(x, χn)E(ᾱᾱT )K(y, χn)

T

with a similar expression for vn, it suffices to prove that E(ᾱᾱT ) = E(α(n)(α(n))T ).

Combining (3.18) and (3.25), this is equivalent to

Kn,mK
−1
m,mCm,mK

−1
m,mKm,n = Cn,n (3.26)

where we have written, for short, Kn,m = K(χn, χm), Km,m = K(χm) etc.

We can write out Km,m as

Km,m =







Kn,n Kn,m−n

Km−n,n Km−n,m−n






. (3.27)
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Letting M = (Kn−m,n−m −Km−n,nK
−1
n,nKn,m−n)

−1, we have

K−1
m,m =







K−1
n,n +K−1

n,nKn,m−nMKm−n,nK(χn)
−1 −K−1

n,nKn,m−nM

−MKm−n,nK
−1
n,n M






,

(3.28)

so that

Kn,mK
−1
m,m =

=

[

Kn,n Kn,m−n

]







K−1
n,n +K(χn)

−1Kn,nMKm−n,nK
−1
n,n −K−1

n,nKn,m−nM

−MKm−n,nK
−1
n,n M







=

[

I+Kn,m−nMKm−n,nK
−1
n,n −Kn,m−nMKn,m−nK

−1
n,n −Kn,m−nM+Kn,m−nM

]

= [I O] (3.29)

This yields

Kn,mK
−1
m,mCm,mK

−1
m,mKm,n = [I 0]







Cn,n Cn,m−n

Cm−n,n Cm−n,m−n






[I 0]T = Cn,n

(3.30)

as needed.
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3.2.1.4 Examples

We now describe several different ways of selecting the control points and show the

deformations they yield in Figure 3.1. For our experiments we select K(x, y) =

e−‖x−y‖22/2σ
2
K , where σK is a parameter which determines the level of fineness of the

deformations: large σK favors almost rigid motion, while small σK allows for more

elaborate evolution of the boundary.

Grid-based deformations. A possible approach is to approximate the station-

ary GRF model using a dense grid of points over the domain of the image. As already

noted, this can be a computationally heavy model. This model is unbiased, in the

sense that the set χ and the resulting distribution are independent of the shape, which

is not necessarily a desirable feature.

Boundary-based deformations. As we remarked, only values of the vector

field at points close to the boundary of the shape will affect the deformation. This

suggests placing the control points along the boundary of the shape. This defines a

vector field over the whole domain, such that its values are small far from the shape.

In this case, the set χ is attached to the shape and moves following the same flow,

resulting in a shape-dependent transition probability in the system. We have used

this model in most of our applications.

Knowledge-based deformations. We can modify this model, if we know that

only certain parts of the shape are driving the deformation, and select the control

points in these areas. Thus we can afford having a very low-dimensional representation

of the vector space, by selecting its basis in an “intelligent” way. For example, possible

locations could be along the medial axis of the shape, as illustrated in the third panel

of Figure 3.1.



CHAPTER 3. DIFFEOMORPHIC SHAPE TRACKING 38

Figure 3.1: Left: a grid-based model - unbiased, but numerically impractical; mid-
dle: a boundary-based model - useful for small perturbations of the contour; right:
knowledge-based model - useful for bigger deformations but with some prior knowl-
edge on the locations of the control points.

3.2.2 Second-order dynamics via geometric formulation

In the previous models, the velocity, vt, was either independent from the past, or only

depended on it via the current state St (as a deterministic function of the control

variables). This provides what is usually referred to as a first-order model. The

goal of this section is to generalize these models by allowing vt to also depend on its

previous value, vt−1, which would constitute a second-order model. This is written

compactly as






St+1 = G(St, vt)

vt = H(St, αt, vt−1)

αt ∼ P (· | St)

(3.31)

A natural model to consider is

vt = vt−1 + ξt, with ξt =
n∑

k=1

αkuk(·, χt) ∈ V (χt), (3.32)

where α follows a Gaussian distribution as defined before. However, recall that vt−1
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is a sum of rapidly decreasing radial-basis functions (RBF’s) centered on χt−1, and

since it is kept fixed during the integration of (3.2), the associated shape evolution

slows down as soon as the curve moves away from the original position of the control

points. This is not a major issue for the first-order models, since the underlying

covariance, C, can be scaled up or down to allow for large changes, but this is more

problematic for the second-order models, since the vector field vt−1 evaluated at χt

will always be reduced in magnitude compared to its original value at χt−1.

To address this problem we replace (3.2) by another evolution equation that gen-

erates a diffeomorphism as a flow of a time-dependent vector field initialized at v, but

follows the motion of the control points.

In Section 2 we introduced the equations for the geodesic flow on the manifold of

n landmarks. Given the initial velocity v, represented as v = K(·, χ)α, we let the

control points evolve according to this flow (in Hamiltonian form)







dχv

dτ
= K(χv, χv)βv

dβv

dτ
= −D1(K(χv, χv)βv)Tβv

(3.33)

where D1 represents differentiation with respect to the first χv variable in K(χv, χv),

βv is an auxiliary variable χv(0) = χ and βv(0) = α. We can define a time-dependent

vector field w : R2 × [0, 1] → R
2

wv(·, τ) = K(·, χv(τ))βv(τ), τ ∈ [0, 1]

which therefore satisfies wv(·, 0) = v, and a time-dependent diffeomorphism Ψv(·, τ)
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solution of

∂τΨ
v(x, τ) = wv(Ψv(x, τ), τ), x ∈ R

2. (3.34)

The deformation driven by Ψ interpolates the geodesic flow restricted on the space

of the control points to the whole plane and hence to any contour in R
2. It turns out

that the paths generated by this flow correspond to geodesics on the sub-Riemannian

manifold of (discrete) curves.

We can formulate a new first-order model given by γt+1 = Ψvt(γt, 1), χt+1 =

χv(1) = Ψvt(χt, 1) with vt = K(·, χt)αt, αt ∼ N (0,Σ(χt)). This model only differs

from the previous one in that Ψv replaces Φv. In practice, they are very similar for

small deformations. In this construction the evolution τ 7→ Ψv(·, τ) can be interpreted

as a geodesic in a group of diffeomorphisms equipped with a right-invariant metric for

which the tangent space at the identity is the RKHS associated to K. This implies, in

particular, that ‖wv(·, τ)‖K remains constant over time, which suggests introducing

the second-order model in which one sets vt = wvt−1(·, 1) + ξt, or, equivalently,

αt ∼ N (βvt−1(1),Σ(χt)).

3.2.3 Sub-Riemannian point of view

In this section we put the model described in Section 3.2.2 in the context of sub-

Riemannian geometry. Equation (3.33) defines a geodesic evolution equation for a

Riemannian metric in the small-dimensional space of control points (in which con-

trol points form a homogeneous space under the action of diffeomorphisms). One

may argue, however, that the Riemannian manifold of interest should be a similar
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homogeneous space under the action of diffeomorphisms, but for planar curves. In

this setting, control points constrain the set of allowed directions of motion on this

manifold, which is exactly the situation studied in sub-Riemannian geometry, when

one is interested in finding shortest paths on manifolds subject to constraints.

We first introduce a few notions from sub-Riemannian geometry. A sub-Riemannian

manifold is a manifold M equipped with:

• a distribution ∆, which is a family of spaces (∆γ, γ ∈M) indexed by the man-

ifold, such that each ∆γ is a k-dimensional subspace of the tangent space TγM

that can locally be represented as the span of k smooth vector fields evaluated

at γ (this representation is actually global in the situation we consider);

• an inner product 〈·, ·〉 on ∆γ.

A smooth curve c : [0, 1] → M is called a horizontal curve on M if its tangent

vector belongs to ∆γ at each γ. The inner product on ∆γ determines the length of a

horizontal path:

l(c) =

∫ 1

0

〈c′(τ), c′(τ)〉 1
2dτ, (3.35)

wich is used to define a distance onM called the Carnot-Caratheodory distance, which

is equal to the length of the shortest horizontal path connecting two points on M .

The path obtaining this minimum is called a geodesic on M :

d(γ0, γ1) = inf{l(c)|c(0) = γ0, c(1) = γ1, c
′(τ ∈ ∆c(τ))}; (3.36)

i.e. it equals the infimum of the length over all horizontal paths connecting two

points on M . A path which attains the minimum is called a geodesic on M . As in
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the case of classical Riemannnian geometry, one can equivalently obtain geodesics on

a sub-Riemannian manifold, by minimizing the energy of the path:

E(c) =

∫ 1

0

〈c′(τ), c′(τ)〉dτ. (3.37)

To simplify the presentation in our setting we will treat the shape space of curves as

a finite- (but high-) dimensional space, in which curves are discretized over finite sets

of m points (so that M ⊂ R
2m). Given an RKHS VK , this space can be equipped

with a Riemannian manifold structure, when the metric associated to a curve γ =

(x1, . . . , xm) is defined by

‖ξ‖2γ = min{‖v‖2VK
: v(xj) = ξj, j = 1, . . . ,m} = ξTK(γ)−1ξ

for ξ ∈ TγM ∼ R
2m, where the second identity comes from standard reproducing

kernel arguments [6].

The introduction of control points to constrain evolution directly provides M

with a sub-Riemannian structure. More precisely, associate to each curve γ a set of n

control points, χ = χγ, typically with n much smaller than m. We will assume that

the control points form a subset of the discrete representation of the curve (χγ ⊂ γ)

(if not we can augment γ with these points). We want to restrict the evolution

∂τxk = v(xk, τ), xk ∈ γ

to vector fields taking the form

v(·, τ) = K(·, χγ)β(τ)
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with β(τ) ∈ R
2n. In terms of the manifold structure, this is equivalent to requiring

that

∂τγ = ξ(τ)

with ξ(τ) = K(γ, χγ)β(τ), i.e., to constraining the evolution to horizontal curves

associated to the distribution

∆γ = {K(γ, χγ)β,β ∈ R
2n}.

Solutions of this minimization problem are described by Pontryagin’s maximum prin-

ciple [35, 2, 17] and are called sub-Riemannian geodesics. The following result states

that the geodesics defined in the previous section are consistent with the sub-Riemannian

interpretation.

Proposition 3.3. The paths generated in (3.33) are normal sub-Riemannian geodesics

along the distribution ∆γ.

Proof. There are two types of paths which can arise as minimizers: normal geodesics,

which are solutions of a system of ODE’s similar to the classical geodesic equations,

and abnormal geodesics, which are a result of certain singularities of the system. For

our purpose it is sufficient to describe only normal geodesics on a sub-Riemannian

manifold. Let p be a costate variable which is of the same dimension as the state, γ.

We define the following Hamiltonian function

H(γ,p,β) = pTK(γ, χγ)β − 1

2
βTK(χγ, χγ)β. (3.38)

The Pontryagin maximum principle states that the optimal control for a normal
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geodesic satisfies

β∗ = argmax
β

H(γ,p,β) (3.39)

= K(χγ, χγ)
−1K(χγ, γ)p, (3.40)

and that the solution of the constrained optimization problem is







∂τγ
∗ = ∇pH(γ∗,p∗,β∗) = K(γ∗, χγ∗)β∗

∂τp
∗ = −∇γH(γ∗,p∗,β∗).

(3.41)

Since we assume that χγ is a subset of γ, the evolution equation for χ in (3.33) is

derived directly from restricting the first equation of (3.41). Writing γ = (x1, . . . , xm)

and assuming, without loss of generality, that the points are ordered so that χγ =

(x1, . . . , xn), the explicit form of the second equation in (3.41) is

∂τpk = −
m∑

j=1

∇1K(xk(τ), xj(τ))βk(τ)
Tpj(τ)−

n∑

i=1

∇2K(xi(τ), xk(τ))βi(τ)
Tpk(τ) +

+
n∑

j=1

∇1K(xk(τ), xj(τ))βk(τ)
Tβj(τ), for k = 1, ..., n (3.42)

∂τpk = −
n∑

i=1

∇2K(xi(τ), xk(τ))βi(τ)
Tpk(τ), for k = n+ 1, ...,m. (3.43)

From this, we can observe that solutions initialized with pk = 0 for k > n satisfy
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pk = 0 at all times. For these solutions, we have

K(χγ, γ)p = K(χγ, χγ)pn

where pn refers to the p restricted to its n first coordinates. From equation (3.39),

we obtain β∗ = pn. Given this, we have, for k ≤ n,

∂τβ
∗
k = −

n∑

j=1

∇1K(xk(τ), xj(τ))β
∗
k(τ)

Tβ∗
j (τ)−

n∑

i=1

∇2K(xi(τ), xk(τ))β
∗
i (τ)

Tβ∗
k(τ) +

+
n∑

j=1

∇1K(xk(τ), xj(τ))βk(τ)
Tβj(τ)

= −
n∑

j=1

∇1K(xk(τ), xj(τ))β
∗
k(τ)

Tβ∗
j (τ)

which is the second equation in (3.33).

3.2.4 Stochastic models for affine motion

Our framework allows us to model any smooth invertible deformation through flows

of diffeomorphisms; however, it is clear that in practice it is better to model any “big

motion” separately (as suggested in [97]), since there are simpler ways to describe such

deformations, as they usually involve fewer parameters and are easier to generate. We

propose two different methods to achieve this.
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3.2.4.1 Decomposition of the diffeomorphism

The simplest approach is to assume that affine and diffeomorphic actions operate in

turn, yielding a transition taking the form

γt = ϕt · Atγt−1.

with At ∈ GAff +(2), the subgroup of the affine group of R2 containing transforma-

tions with positive determinant. The matrix A can be easily parametrized through

the matrix exponential map: if {Ei}6i=1 is a basis for the Lie algebra of GAff (2), then

A is given by A = exp
(∑6

i=1 ciEi

)
, where c =

[

c1 . . . c6

]T

, and we will write for

short A = exp(c). A random affine transformation can be obtained by assuming that

these parameters are independent normally distributed random variables with distri-

bution c ∼ N (0, I6). (Assuming spherical covariance is no loss of generality since

this can always be achieved by a proper selection of the basis.) The diffeomorphism

ϕt can be generated by any of the previous models, although it seems reasonable to

restrict it to be first order while allowing the affine part to be first or second order.

For example, a possible first-order model involving control points would take the

form 





γt+1 = ϕt · Atγt

χt+1 = ϕt · Atχt

ϕt = Φvt(·, 1), At = exp(ct)

ct ∼ N (0, I6), vt = K(·, Atχt)αt

αt ∼ N (0,Σ(χt))
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For a second-order model in the affine component, one can simply replace the fourth

equation by

At = exp(ct)At−1

3.2.4.2 Decomposition of the vector field

A second option is to apply an affine component at the vector field level, extending

the definition of v in order to allow for the juxtaposition of an affine component and

a sum of RBF’s. In this setting, we consider vector fields taking the form

vaff (x) = v(x) +Mx+ b,

where M ∈ R
2×2 is a two-by-two matrix and b is a two-dimensional vector. This de-

composition is unique if v is assumed to vanish at infinity, which applies in particular

to the case in which v belongs to an RKHS, VK , generated by a kernel K such as the

ones we consider here. An interesting feature is that vector fields such as vaff also

form an RKHS. In particular, if E1, . . . , E6 form a basis for aff(2) = R
2×2 ×R

2, each

one being interpreted as an affine transformation x 7→ Eix, one can define the affine

kernel

Kaff (y, x) = K(y, x)I2 +
6∑

i=1

(Eiy)(Eix)
T (3.44)

combining the Hilbert structure on VK and the Euclidean structure on aff(2) for

which E1, . . . , E6 form an orthonormal basis (this comes as a direct consequence of

the reproducing property). For example, if one chooses the norm on aff(2) to take

the form

‖(M, b)‖2 = λtr(MTM) + µ‖b‖2,
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one finds

Kaff (y, x) = (K(y, x) + λxTy + µ)I2

as derived in [99]. More interestingly, one can separate, in the Lie algebra of the affine

group, the rotation, scaling, shearing and translation parts, introducing the basis

√
2E1 = I2,

√
2E2 =







0 −1

1 0






,
√
2E3 =







1 0

0 −1






,
√
2E4 =







0 1

1 0






,

of R2×2 and letting the norm on aff(2) be given by

‖(M, b)‖2 = λ1a
2
1 + λ2a

2
2 + λ3a

2
3 + λ4a

2
4 + µ‖b‖2

if M = a1E1 + · · ·+ a4E4. In this case, (3.44) gives

Kaff (y, x) = K(y, x)I2 +
λ1
2
yxT +

λ2
2
(xTy I2 − xyT )

+
λ3
2







x1y1 −x2y1

−x1y2 x2y2






+
λ4
2







x2y2 x1y2

x2y1 x1y1






+ µI2

Note that Kaff is not a scalar kernel in general unless all λ’s are equal.

This kernel can be directly plugged into the models that were introduced in Sec-

tions 3.2.1 or 3.2.2. Although the interpretation of this model is more subtle, in

practice we can generate deformations having interesting combined affine and non-

linear properties. Note also that the construction in this section closely relates to

multi-scale diffeomorphisms, as introduced in [76].
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3.2.5 Generalizing the Riemannian metric formulation

In the suggested models we have used the inner product of the RKHS associated to K

(the kernel that was used to discretize the vector fields using control points) to define

orthogonal projections or the Riemannian structure of geodesics. This was convenient

because it led to simpler mathematical expressions and computation. Conceptually,

one may argue that the two are different objects, the first one defining a numerical

discretization scheme of the vector fields and their associated stochastic models, while

the second one, via the RKHS structure, representing the energy, or cost, that can

be associated to variations of diffeomorphisms. In view of this, one can build more

general schemes, within the discussion of Section 3.2.1.2.

Fixing the reproducing kernel K, we can define the linear forms, ηk, and the basis

functions, uk, consistently by ensuring that

uk(x, χ) =
(

ηk(χ) | K(·, x)
)

.

Assume, to simplify matters, that (ηk(χ), k = 1, . . . , n) is a collection of vector mea-

sures. In this case, the entries of the matrix K(χ) are provided by integrals

(K(χ))k,l =

∫ ∫

(K(x, y)dηk(χ)(x)) · dηl(χ)(y) (3.45)

(recall that K is matrix valued). The control-point example is a special case in which

∫

v(x) · dηk,j(χ)(dx) = eTj v(xk).
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The interpretation of the construction as an orthogonal projection remains appropri-

ate if the coefficients of the matrix C(χ)) are defined as in Section 3.2.1.2, namely

(C(χ))k,l =

∫ ∫

(C(x, y)dηk(χ)(x)) · dηl(χ)(y). (3.46)

For such a construction to be feasible, however, the integrals in (3.45) and (3.46)

should be easily computable. This can be achieved, for example, if K and C are

Gaussian RBF’s (as in our experiments) and if η1, . . . , ηn are Gaussian measures

(possibly singular, like Dirac measures). Examples of some explicit computations in

similar settings can be found in [7, 100].

3.3 Observation models for shapes in images

In the previous section we have described several stochastic models for the evolution

of shapes. Our goal is to infer about a particular realization of these models based on

an observed image sequence. For that we need to specify an observation model which

gives the relationship between the state of the shape and the image. We describe

two models: one based directly on the image intensities, and another one based on

specific features extracted from the images. Alternative observation models can be

easily constructed and incorporated depending on the type of data available.

3.3.1 Region-based observation likelihood

Here we consider the following standard region-based approach. Let γ be the contour

which represents the shape in the image I. We associate with γ an ideal (continuous)

image I which is constant over the interior region, Rin of γ, and over its exterior region

Rout , with constant values given by µin and µout respectively. We assume that the
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observed image, I, is obtained by, first, discretizing I, then, adding independent noise

to each discrete value, the noise variances being denoted σ2
in and σ2

out in the inside

and the outside regions. The conditional observation density as the joint density is

then given by

p(I|γ) = const
∏

cj∈Rin

e−(Ij−µin)
2/2σ2

in ×
∏

cj∈Rout

e−(Ij−µout)2/2σ2
out , (3.47)

where cj is the central point of the jth pixel and Ij the corresponding image intensity.

We note that it is explicitly computable given a curve and an image. This model can

be directly extended to multiple contours delimiting multiple regions (like in the case

of double contours in Figure 3.3, or of the cardiac sequences in Figure 3.9a).

3.3.2 Feature-based observation likelihood

The approach described above is particularly useful when pixels in the regions inside

and outside of the contour have relatively uniform grayscale values, for example, when

we have a light object on a darker background. However, in many practical applica-

tions, the background, and sometimes the object itself, are very non-homogeneous.

For instance, in the presence of clutter, we need a different observation model. For

such situations it is better to assume that the final observations of the system are

features in the image obtained through an edge detection algorithm. The number of

features is random and they could be close to the boundary of the object - “real”

features, or further in the background - a result of noise or clutter.

The form of the features suggests that it is natural to model them as a spatial

point process X defined on a bounded domain Ω ⊂ R
2. X takes values in the space

of finite configurations of points in Ω, i.e. X : Ω → Y , where Y = ∪∞
n=1R

n. We



CHAPTER 3. DIFFEOMORPHIC SHAPE TRACKING 52

will denote any y ∈ Y as {n; x1, ..., xn} to emphasize that the number of points may

vary. We can further assume that X is a Poisson point process with an intensity

function λ : Ω → [0,∞), such that
∫

Ω
λ(x)dx < ∞. Define a measure Λ on Ω by

Λ(B) =
∫

B
λ(x)dx for any B ⊂ Ω, and a random counting measure X on Ω by

X(B) = (# points ofX inB). The definition of a Poisson point process states that

X(B) has Poisson distribution with a parameter Λ(B) (therefore E[X(B)] = Λ(B)),

and that X(B1) and X(B2) are independent random variables for disjoint sets B1

and B2. An interesting property of X (which can sometimes be used as a definition

of a Poisson point process [69]) is that conditional on X(B), the points of X in B

are i.i.d. random variables with density λ(x)/Λ(B). This allows us to describe the

density of X:

fn(x1, ..., xn) =
e−Λ(Ω)

n!
λ(x1)...λ(xn), (3.48)

which is crucial to define an observation likelihood.

To model the features in the image, we consider the following generalization of a

Poisson point process. Let X1 and X2 be two independent Poisson point processes on

Ω with corresponding intensity functions λ1 and λ2. Define a spatial point process X

as X(B) = X1(B) tX2(B) for every B in Ω: X is the superposition of X1 and X2,

assuming that points do not coincide. The number of points of X in B is then equal

to the total number of points of X1 and X2 in B, i.e. it follows Poisson distribution

with a parameter Λ1(Ω)+Λ2(Ω), where Λ1 and Λ2 are the corresponding measures. In

our context, X1 corresponds to the process generated by the boundary of the object,

so we model the dependence of λ1 on the curve γ in the following way:

λ1(x) = Ce−dist(x,γ)2/2σ2

, (3.49)
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where σ is a positive parameter and C is a constant which ensures that
∫

Ω
λ1(x)dx

is equal to the total number of points generated by X1. For a distance function we

use the minimal distance from the point x to a point on γ. The second process X2

describes all the remaining features, which are either features generated by the texture

of the object (belonging to the region inside the contour Rin), or features generated

by the clutter in the background (belonging to the region outside the contour Rout).

Let λin and λout be the corresponding densities of the features in the two regions.

We define λ2 to be piecewise constant on Ω: λ2(x) = λin1Rin
(x) + λout1Rout

(x). The

intensity function of all features then is

λ(x) = Ce−dist(x,γ)2/2σ2

+ λin1Rin
(x) + λout1Rout

(x). (3.50)

Now the observation likelihood given γ can be written as:

p({n; x1, ...xn}|γ) =
e−Λ(Ω)

n!

∏

xi∈Rin

(

Ce−dist(xi,γ)
2/2σ2

+ λin

)

×

×
∏

xi∈Rout

(

Ce−dist(xi,γ)
2/2σ2

+ λout

)

. (3.51)

The above model describes well the most likely contour in the image when the

boundary features are dense relative to the ones generated by clutter. However, when

there are a lot of “false” edges close to the boundary, more information is required

in order to distinguish the real edges from them. What is important to know in such

cases is the orientation of the edges. A simple estimate for the orientation of an edge

can be obtained from the gradient of the image. Most edge detection algorithms

involve the computation of the gradient so we can have the edge orientations for

free. We can easily incorporate these measurements in our statistical model using
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a marked point process. A marked point process Xm : Ω → Y is a standard point

process X with marks attached to each point: y = {n; x1, ..., xn;m1, ...,mn}. We take

the marks to represent the angle each edge makes with the x-axis, so the space of

marks is S
1. The distribution of the marks needs to be defined on the unit circle

and it has to depend on the discrepancy between the orientation of the edge and the

orientation of the boundary. We assume a mark m follows the Von Mises distribution

with parameters µ and κ:

p(m) =
eκ cos(m−µ)

2πI0(κ)
, (3.52)

where I0 is the modified Bessel function of the first kind. This distribution has the

property to be uniform on the circle for κ = 0 and peaked around µ for κ big. Let µ

be the orientation of the point on the boundary closest to x. Since the orientation of

the boundary should match that one of the edges close to the boundary, we select κ to

be proportional to the inverse of the distance between x and γ. Thus edges far from

the boundary will have relatively uniform orientation, which is consistent with the

fact that the orientation of clutter features does not depend on γ. Assuming that the

marks are independent given their position, the density of the marked point process

takes the form

fn(x1, ..., xn,m1, ...,mn) =
e−Λ(Ω)

n!

n∏

i=1

λ(xi)
n∏

i=1

p(mi|xi). (3.53)
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The final form of the likelihood is

p({n; x1, ...xn}|γ) ∝ e−Λ(Ω)
∏

xi∈Rin

(

Ce−dist(xi,γ)
2/2σ2

+ λin

)

×

×
∏

xi∈Rout

(

Ce−dist(xi,γ)
2/2σ2

+ λout

)

×
n∏

i=1

e
cos(mi−µ)

dist(xi,γ)

I0

(
1

dist(xi,γ)

) .

(3.54)

Other features can be used to build observation models. For example, an appear-

ance model based on color histograms has been extremely successful for tracking in

color videos [24]; the probabilistic formulation for optical flow provides an observation

model which incorporates spatio-temporal information.

3.4 Particle filtering in shape space

3.4.1 Particle filtering

Particle filtering was first introduced in the computer vision field through the Con-

densation algorithm [49] which opened a path for developing practical tracking algo-

rithms. This method, which relies on Monte Carlo simulations, is more versatile than

model-based methods, like the Kalman filter, and is well adapted to handle nonlinear

shape deformation models like the ones we consider here. Based on the stochastic

dynamical model from Section 3.2 and the observation model from Section 3.3, we

can construct a state-space system for the evolution of a shape boundary (Figure 3.2),
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that we summarize as: 





St ∼ PS(· | St−1),

It ∼ PI(· | γt),

where PS is the transition probability for our state variable S = (γ, χ) and PI is the

observation law. In tracking we are interested in sequentially estimating the posterior

probability ν(B) = Pr(S1, ..., St ∈ B | I1, ..., It) where B is a subset of configurations

for {S1, ..., St}. There is generally no closed-form expression for ν in a nonlinear and

non-Gaussian situation such as ours, and one needs to rely on approximation methods.

Monte Carlo methods, and in particular particle filtering, allow for the construction

of an estimate of η by an empirical measure, based on importance sampling from

tractable distributions.

The idea is to represent the posterior by a weighted set of particles. The algorithm

consists of two main steps which are iterated over time: generating a sample of states

{S(i)
t }Ni=1 (the particles) according to St ∼ PS(· | S(i)

t−1), and attaching a weight w
(i)
t to

each particle which relies on the existence of the observation likelihood pI(It | S(i)
t ).

The weighted sample {S(i)
t , w

(i)
t }Ni=1 can then be used to approximate the posterior at

time t. The algorithm often requires an additional step of resampling the particles

according to their weights, which results in obtaining an unweighted set of particles

{Ŝi
t}. The reader can refer to a broad overview of the theory and applications of the

particle filter and its extensions in [29].

We give the steps of this Importance Sampling-Resampling algorithm for estima-

tion with a first-order dynamical model on the nonlinear deformations in Table 3.1.

The structure of the algorithm allows for an easy parallelization which significantly

speeds up the performance. The last resampling step is necessary to prevent the
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Table 3.1: Importance Sampling-Resampling Algorithm

Importance Sampling-Resampling Algorithm

0. Initialize γ
(i)
0 = γ0, χ

(i)
0 = χ0 for i = 1, ..., N .

1. For each t, construct Σ(i) = K(χ
(i)
t−1)

−1C(χ
(i)
t−1)K(χ

(i)
t−1)

−1.

2. Sample α
(i)
t−1 ∼ N (0,Σ(i)).

3. Evolve the boundary points through

∂τΦ(γ
(i)
t−1, τ) = K(Φ(γ

(i)
t−1, τ), χ

(i)
t−1)αt,

and set γ
(i)
t = Φ(γ

(i)
t−1, T ).

4. Evolve the control points through

∂τΦ(χ
(i)
t−1, τ) = K(Φ(χ

(i)
t−1, τ), χ

(i)
t−1)αt,

and set χ
(i)
t = Φ(χ

(i)
t−1, T ).

5. Compute the weights by w
(i)
t = p(It|γ(i)t )/

∑N
i=1 p(It|γ

(i)
t )

6. Resample {γ(i)t }Ni=1 according to {w(i)
t }Ni=1.

[8] due to its simplicity and relatively good performance. First we generate N random

numbers:

uj = u+
j − 1

N
for j = 1, ..., N, (3.55)

where u ∼ U(0, 1/N). Then, we construct the cumulative distribution F associated

with the weights {wi}Ni=1, and set xj = xF−1(uj). The steps of the algorithm are as
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follows:

Table 3.2: Systematic Resampling

Systematic Resampling

1. set c1 = w1

2. for i = 2 : N , ci = ci−1 + wi ({ci}Ni=1 stores the cdf of the
particles)

3. sample u ∼ U(0, 1/N)

4. for j = 1 : N

uj = u+ (j − 1)/N

while uj > cj, i = i+ 1

x∗j = xi, w
∗
j = 1/N

endfor

5. replace {xi, wi} with {x∗j , w∗
j}

The performance of this method is comparable to other popular resampling schemes

like multinomial, stratified, and residual resampling [47], however, its asymptotic

analysis is harder since it produces dependent particle positions [28]. At the cost

of increasing the computational complexity, this algorithm can be easily modified to

stratified or residual resampling which enjoy more theoretical results.

Practice shows that the resampling step is inevitable. The restriction of having

finite and, often due to computational constraints, limited-sized samples, requires

high care in deciding what the criterion for resampling should be and what resampling
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scheme should be used.

3.4.2 Resample-Move algorithm

The main advantage of the particle filter for solving the tracking problem is that it

can sequentially update the estimate of the posterior distribution as new observations

become available. Also the method is very easy to implement and is naturally paral-

lelizable. Unfortunately, when used for large systems, it usually requires a substantial

number of particles in order for the estimate to converge to the true one [80], so care

should be applied when working with high-dimensional states or long-time sequences.

In this section we describe how the Resample-Move [38] algorithm can be applied in

our context to improve the performance of the particle filter.

MCMC methods provide alternatives to importance sampling which have better

convergence properties, since they employ dependent samples which move in the

direction of the true posterior. This, however, makes them iterative in nature and

hard to parallelize. Also, to apply such methods to the problem of tracking an

object over time, one needs to reestimate the whole posterior at each step, which is

extremely time- and memory-consuming and hence impractical. To unite the power

of both approaches, Gilks et. al. [38] propose the Resample-Move algorithm which

addresses the problem of sample impoverishment occurring after the resampling step.

The method has a broader applicability: it can also be used to battle the inaccuracy

of the proposed samples caused by the limitations of finite sampling or errors in the
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prior model, which makes it very suitable for our setting.

Let the set of particles {S(i)
1:t+1}Ni=1 define the empirical estimate for the posterior

based on the sequential importance sampling-resampling procedure. We can improve

this estimate using an MCMC approach. It is important to note that although S1:t+1

is a sequence of infinite-dimensional objects, their distribution is completely deter-

mined by the initial curve γ0, the initial location of the control points χ0 (both being

assumed to be deterministic), and the sequence of controls α0:t, and the latter ad-

mit probability density functions. Assuming that the estimate {α(i)
0:t−1}Ni=1 is reliable,

one only modifies α
(i)
t into αt

∗(i) for each i = 1, ..., N , so that the new estimate

{α(i)
0:t−1,α

∗(i)
t }Ni=1 becomes closer to the target posterior distribution. This is done

using MCMC sampling, based on the Metropolis-Hastings algorithm, for the poste-

rior distribution of interest, initialized with α
(i)
t . The procedure is repeated for each

i = 1, ..., N and provides the new sample {α∗(i)
t }Ni=1.

The Metropolis-Hastings algorithm iterates the following sequence of operations.

Let α′
t be the current state. The algorithm first generates a new state α′′

t with a

proposal density q(α′′
t |α′

t), which is then accepted with probability min{r(α′′
t |α′

t), 1},

where

r(α′′
t |α′

t) =
p(α1:t−1,α

′′
t |I1:t+1)q(α

′
t|α′′

t )

p(α1:t−1,α′
t|I1:t+1)q(α′′

t |α′
t)
,
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p(α1:t−1, ·|I1:t+1) being the posterior density treated as a function of αt (which deter-

mines the state γt+1).By Bayes rule we have that

p(α0:t−1,α|I1:t+1) =
p(It+1|α0:t−1,α)p(α|α0:t−1)p(α0:t−1|I1:t)

p(It+1|I1:t)
, (3.56)

which allows us to rewrite the expression for r using more familiar quantities:

r(α′′
t |α′

t) =
p(It+1|α0:t−1,α

′′
t )p(α

′′
t |α0:t−1)q(α

′
t|α′′

t )

p(It+1|α0:t−1,α′
t)p(α

′
t|α0:t−1)q(α′′

t |α′
t)
. (3.57)

We observe that p(It+1|α0:t−1,αt) is equivalent to the observation likelihood p(It+1|γt+1),

while p(αt|α0:t−1) is the prior density, and both distributions are computable. For the

proposal density, q, we consider two options: a random walk proposal and a Langevin

proposal.

Random Walk Proposal. Update the state by

α′′
t = α′

t + δε, (3.58)

para where ε ∼ N (0,Σε). To ensure that we preserve the smoothness properties of

the deformations which we generate through α′′
t , we select Σε = Σ(χt). This choice

also sets the scaling of the proposal covariance (up to a constant) to that of the prior

model, and allows one to tune the acceptance rate through δ. Since this proposal
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density is symmetric, r reduces to

r(α′′
t |α′

t) =
p(It+1|α0:t−1,α

′′
t )p(α

′′
t |α0:t−1)

p(It+1|α0:t−1,α′
t)p(α

′
t|α0:t−1)

. (3.59)

Langevin Proposal. Unless the importance sampling estimate is already good, the

random walk proposal can require a lot of iterations to converge. A Langevin proposal

can be more efficient, since it moves the particles toward regions of higher posterior

probability. For that, the update step involves the gradient of the log-posterior density

with respect to α′
t:

α′′
t = α′

t +
δ2

2
∇α′

t
log p(α0:t−1,α

′
t|I1:t+1) + δε. (3.60)

A representation for the logarithm of the posterior can be obtained from (3.56)

log p(α0:t−1,α
′
t|I1:t+1) = log p(It+1|α0:t−1,α

′
t) + log p(α′

t|α0:t−1) + const, (3.61)

where the final term is a constant with respect toα′
t. Define L(α

′
t) = log p(It+1|α0:t−1,α

′
t).

In our models, this likelihood is a function of the curve γ′t+1 which is uniquely deter-

mined as a function of St and the new control α′
t. Since St is fixed in this part of the

algorithm, we have that L(α′
t) = L̃(γ′t+1(α

′
t)), and the gradient of interest is

∇α′
t
L(α′

t) =

(
∂γ′t+1

∂α′
t

)T

∇γ′
t+1
L̃(γ′t+1). (3.62)
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We recognize that L̃(γ′t+1) is the observation likelihood of γ′t+1, and we have an explicit

formula for it based on the observation model, from which it is easy to compute a

gradient. The curve γ′t+1 is obtained from α′
t via the solution of a differential equation,

and below we show how the gradient with respect to α′
t can also be obtained by solving

a differential equation. Note that the proposal density in this case is not symmetric,

and all terms in (3.57) need to be included. Note also that, if we set the level of the

noise ε to zero, we obtain a gradient descent method which minimizes the negative

log-posterior likelihood.

Log-likelihood gradient. Here we derive the gradient of the log-likelihood for the

Langevin proposal. We recall the form of the observation likelihood

L(γ′t+1) = log(p(It+1|γ′t+1)) =

= −
∑

xj∈Rin

( |It+1(xj)− µin|2
2σ2

in

− log(2πσ2
in)

2

)

+

−
∑

xj∈Rout

( |It+1(j)− µout|2 − log(2πσ2
out)

2σ2
out

)

=

= −
∑

xj∈Rin

( |It+1(xj)− µin|2
2σ2

in

− log(2πσ2
in)

2

)

+

+
∑

xj∈Rin

( |It+1(xj)− µout|2
2σ2

out

− log(2πσ2
out)

2

)

+ const. (3.63)
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We approximate the above sum by an integral over Rin:

L(γ′t+1) =

∫

Rin

[

−|It+1(x)− µin|2
2σ2

in

+
|It+1(x)− µout|2

2σ2
out

+ log

(
σin
σout

)]

dx+ const.

(3.64)

Defining the function f as

f(x) =
|It+1(x)− µout|2

2σ2
out

− |It+1(x)− µin|2
2σ2

in

− log

(
σin
σout

)

, (3.65)

we can write the log-likelihood as

L(γ′t+1) =

∫

Rin

f(x)dx, (3.66)

and its gradient as

∇γ′
t+1
L(γ′t+1) =

∫

γ′
t+1

fνds, (3.67)

with ν being the normal to the curve γ′t+1.

To compute
∂γ′

t+1

∂α′
t
, we observe that γ′t+1 is the end-point solution of the ODE

∂γτ (α
′
t)

∂τ
=

n∑

i=1

K(γτ (α
′
t), xi)α

′
i, (3.68)
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initialized at γt. Thus we have for j = 1, ..., n

∂

∂αj

(
∂γτ (α

′
t)

∂τ

)

=
∂

∂αj

(
n∑

i=1

K(γτ (α
′
t), xi)αi

)

, (3.69)

∂

∂τ

(
∂γτ (α

′
t)

∂αj

)

=
n∑

i=1

∂

∂αj

K(γτ (α
′
t), xi)αi +

n∑

i=1

K(γτ (α
′

t
), xi)

∂αi

∂αj

, (3.70)

which defines a differential equation for ∂γτ
∂αj

. Integrating this equation together with

(3.68) up to time T provides us with
∂γ′

t+1

∂α′
t
.

The last term in log p(α1:t,α
′
t|I1:t+1) is

log p(α′
t|α0:t−1) = −1

2
α′T

t Σ(χt)
−1α′

t, (3.71)

so the final form of the gradient is:

∇α′
t
log p(α0:t−1,α

′
t|I1:t+1) =

=

∫

γ′
t+1

[ |I(x)− µout|2
2σ2

out

− |I(x)− µin|2
2σ2

in

+ log

(
σin
σout

)](
∂γ′t+1

∂α′
t

)∗

ν −Σ(χt)
−1α′

t.

(3.72)

This derivation is also used it when we implement a direct gradient ascent procedure

to maximize this likelihood in Section 3.5.

In Table 3.3 we provide the steps of the Resample-Move algorithm when we use a

random walk proposal. The number of MCMC moves is set to M (in practice M is
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taken to be small, for example, equal to the number of available processors).

3.5 Numerical experiments

3.5.1 Initialization

We have initialized all our tracking experiments with an estimate for the boundary

of the object in the initial frame, which was obtained by hand segmentation (in some

cases it can be sufficient to use a reliable automatic segmentation method for the first

frame). Based on this initial boundary we estimated the parameters of the observation

likelihood, i.e. we calculated the means and variances of the image intensity values

in the regions determined by the boundary.

3.5.2 Importance sampling-resampling

We demonstrate the performance of the importance sampling-resampling algorithm

on simulated sequences (Figure 3.3), as well as on real videos (Figure 3.5 and Fig-

ure 3.6). The simulated sequences are created using the deformation model described

in Section 3.2. We have generated 50 frames, however we display only a subset of

them. We have used 1000 particles in the sampling scheme and we see that the es-

timated positions of the curves are consistent with the region boundaries. Usually

only a few particles survive the resampling scheme and those are the ones plotted in

the figure. The algorithm is also shown to be robust to occlusions and non-Gaussian
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noise.

In Figure 3.4 we display how the standard Chan-Vese segmentation algorithm per-

forms on the dumbbell example. The images have been processed using the algorithm

provided online through [37]. It can be seen that without extra constraints on the

shape, the segmentation splits the dumbbell into two parts.

In Figure 3.5 we compare the proposed method with a particle filter allowing

only for affine transformations. The sequence (180 frames) on which we perform the

comparison displays the motion of a paramecium which cannot be naturally described

by affine transformations. Paramecia often change their direction of motion based on

the objects they touch. Therefore, in our deformation model we have placed the

control points equidistantly along the boundary. Using this model as a prior in the

particle filtering scheme allows for good reconstruction of the boundary of the object.

In Figure 3.6 we combine affine and non-affine models to track the motion of

a fish in an aquarium. Main components of the fish motion are translation, rota-

tion and scaling, and we preestimate them using an affine particle filter (any other

method for affine registration could have been used). Then we incorporate these

affine transformations in the proposed model (by composing them with the nonlinear

diffeomorphism) and use importance sampling to estimate the final curves. We show

that this procedure also works well under noise and occlusion.
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Figure 3.7: The above sequence displays contraction of a haircell as a response to a
stimulant (image courtesy of J. Tilak Rathanater). The interior of the object consists
of irregular texture of varying color which is unsuitable for intensity-based models.
Particle filter (with MCMC) with an edge-based observation likelihood manages to
track the deformation of the cell. There is a slight lag in frame four (where the
contraction is fastest), but the algorithm manages to escape getting trapped by back-
ground false edges and extracts the correct boundary in the consequent frames.

is prone to getting trapped in local maxima and fails to track the shape.

3.5.4 Tracking cardiac motion

In this section we study the performance of these methods on the task of tracking

the deformation of the left ventricle of a human heart. Cardiac MRIs usually consist

of slices of the heart measured at different times of the cardiac cycle. Therefore,

the left ventricle can be represented by its outermost (epicardium) and innermost

(endocardium) layers. Single contour evolution methods have been previously used

to either track only the endocardium, or track the endocardium first and separately

track the epicardium afterwards. With our representation of the shape we can track

both the endocardium and the epicardium simultaneously. We use data from the

Sunnybrook Cardiac MR Database [74]. We apply the particle filter to a healthy
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heart image sequence in short-axis view by slightly modifying the model in Section

3.2.

Of particular interest when tracking heart sequences is measuring the width of

the left-ventricle wall. Because of this, constraining the motion of the walls by a

rigid prior can result in failing to extract important information from the images. On

the other hand, a small correlation between the boundary points yields deformations

which are not smooth enough to represent the walls of the heart. To achieve a

compromise between these two situations we use a non-homogeneous covariance for

the vector field values at the control points. In general, we expect points belonging

to the epicardium to be highly correlated between each other, and the same should

hold for points on the endocardium. However, we would like the two contours to

move relatively freely with respect to each other, subject to the constraint that they

do not intersect. We accomplish this by considering two different kernels Ksmall and

Kbig, where they both are assumed to be Gaussian kernels and σsmall (the width of

Ksmall) is smaller than σbig (the width of Kbig). We construct the following matrices:

Kσbig
(χendo), Kσbig

(χepi) (where χendo and χepi are the corresponding control points

on the endocardium and epicardium) and Ksmall(χ) (χ contains all the control points

as usual). Then we set the covariance of the Gaussian distribution defined over those

control points to be:

C(χ) =
1

2
Ksmall(χ) +

1

2







Kbig(χendo) 0

0 Kbig(χepi)






, (3.73)
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i.e. if xi and xj belong to the same contour, then

E[v(xi)v(xj)
T ] =

1

2
(Ksmall(xi, xj) +Kbig(xi, xj))I2, (3.74)

and if they belong to different contours, then E[v(xi)v(xj)
T ] = 1

2
Ksmall(xi, xj)I2. It

turns out that such a covariance, although harder to analyze analytically, has the

desired properties for tracking the heart. We display the result of tracking with such

a model in Figure 3.9b. As compared to the performance of the regular particle filter

(Figure 3.9a) we see that the modified model does not exhibit the problem of the

epicardium sticking close to the endocardium and missing the correct boundary. We

also provide the segmentation obtained through the direct likelihood maximization

technique as described in the previous section (Figure 3.10a) and the built-in seg-

mentation technique from the freely available software Segment [82] based on a 3D

volume (2D+T) active contour segmentation method (Figure 3.10b). We observe that

both of these methods tend to rely more on the image intensities, which results in a

failure to separate the heart walls from the papillary muscles, a phenomenon common

in heart segmentation. The particle filter relies on a sample of contours and thus is

more robust to this type of issues.

We also note that diffeomorphic tracking algorithms provide us with additional

information describing the deformation of the object: i.e. we can obtain trajectories

for the points on the object which are not only part of the boundary. This allows

us to study additional features: like expansion and contraction, by calculating the
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Jacobian of the deformation. For the cardiac sequence, we propagate the inner part

of the left ventricle using the deformation field of a single particle and calculate the

Jacobian of the transformation. The result is displayed in Figure 3.11.

(a) Importance sampling-resampling - homogeneous covariance (σ = 40, σK = 30): the
homogeneous covariance prevents the contours from separating and the expansion of the
left ventricle wall is not captured (this is more visible in frames 5 and 6).

(b) Importance sampling-resampling - non-homogeneous covariance (σsmall = 40, σbig =
50, σK = 30 ): the contours have more freedom to move independently and manage to
follow the walls of the ventricle (compare the positions of the epicardium with those in the
homogeneous case).

Figure 3.9: Tracking of a human heart left ventricle using particle filtering
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(a) Segmentation with a prior: here we simply maximize the observation likelihood subject
to a Gaussian prior constraint on the vector field. The outer contour gets trapped by few
darker pixels (frame 5).

(b) Segmentation using the Segment software (2D+T): the package provides satisfactory
automatic (no initial hand-segmentation needed) left ventricle segmentations. Note that
without a prior the final contours are not necessarily smooth.

Figure 3.10: Segmentation of a human heart left ventricle using deterministic methods
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Table 3.3: Resample-Move Algorithm

Resample-Move Algorithm

FOR i = 1, ..., N ,

0. Set α0 = α
(i)
t , γ0 = γ

(i)
t+1.

FOR k = 1, ...,M ,

1. Sample αtemp = αk−1 + δε, ε ∼ N (0,Σ).

2. Evolve the boundary points through

∂τΦ(γ
(i)
t , τ) = K(Φ(γ

(i)
t , τ), χ

(i)
t )αtemp,

and set γtemp = Φ(γ
(i)
t , T ).

3. Evolve the control points through

∂τΦ(χ
(i)
t , τ) = K(Φ(χ

(i)
t , τ), χ

(i)
t )αtemp,

and set χtemp = Φ(χ
(i)
t , T ).

4. Evaluate

r =
p(It+1|γtemp)

p(It+1|γk)
e−αT

tempΣ
−1αtemp/2

e−αT
k−1Σ

−1αk−1/2
.

5. Sample u ∼ U(0, 1).

6. If u < min(r, 1), set αk = αtemp, γk = γtemp, χk = χtemp,
else, set αk = αk−1, γk = γk−1, χk = χk−1.

END

7. Set α
(i)
t = αM , γ

(i)
t+1 = γM , χ

(i)
t+1 = χM .

END
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Figure 3.11: Jacobian field - in this figure we display how the tracking based on the
curve affects the points in the domain of the image. The color field indicates the
value of the determinant of the Jacobian of the deformation with respect to the first
frame. This can provide us with additional knowledge about the geometry of the
heart motion that is usually not available with static segmentation algorithms.



Chapter 4

Convergence of Gaussian Random

Fields Indexed by Curves

4.1 Introduction

In the previous chapter we constructed distributions of random shapes by defining

finitely-generated Gaussian random vector fields and deforming template shapes along

their flow. Although for numerical reasons we used a finite number of control points

to generate the vector fields, it is natural to ask the following question:

How do the random shapes behave as we increase the number of control points?

Mathematically, to answer this question we need to study the properties of the

80
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distributions of the random vector fields generating the random shape deformations

as we place the control points in a way that they better approximate the boundary of

the shape of interest. Ideally, if we place the control points densely along a smooth

closed curve, we would like the limiting distribution of the vector fields to coincide

with some meaningful infinite-dimensional measure defined over the curve. Or, if we

reverse the problem, we would like to first define a distribution for the vector fields

defined on the contour, with properties which ensure that the deformations of the

contour along its flow are diffeomorphisms, and then consider approximations of it

through finitely-generated vector fields.

Contribution. In this chapter we study the convergence of a sequence of Gaus-

sian random fields indexed by a closed curve with covariance of the form as in (3.24).

We prove weak convergence with respect to L2-norm holds. We show some interesting

examples in which the convergence in RKHS norm does not hold: for example, when

the curve contains a flat region, or when the kernel of the RKHS and the covariance

are both Gaussian functions.

4.2 Convergence on L2(γ)

Let’s denote the curve by γ ⊂ R
2. Define a sequence of finite sets χn on γ such that

∪∞
n=1χn is dense in γ (each set contains n distinct points) and χn ⊂ χm for n ≤ m. Let

K(·, ·) be a reproducing kernel on γ. By restricting this kernel to the sets χn we obtain

a sequence of reproducing kernel Hilbert spaces V (χn). We assume that we are given
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a sequence of Gaussian random fields over R2 (ξn, n > 1) which are centered and their

covariances Cn(x, y) are such that the random fields are consistent with respect to

their finite-dimensional projections on given reproducing kernel Hilbert spaces (note

we are going to establish convergence properties for random fields with realizations

in R, i.e. for each coordinate of a random vector field). For consistency, we want

projection of the random field ξm with measure Pm onto V (χn) (where n < m) to

have the same distribution as ξn with measure Pn. We have already established two

cases when this is true. The first case is when we derive the covariance directly from

the reproducing kernel:

Case I : Cn(x, y) = K(x, χn)K
−1(χn, χn)K(χn, y). (4.1)

For points x, y ∈ χn, Cn(x, y) = K(x, y). In general the choice of the kernel for the

norm of the reproducing kernel Hilbert space is not necessary related to the choice of

the covariance. For the second case, we assume C(x, y) is a covariance reflecting the

properties of the Gaussian random field defined over γ. We can build approximate

Gaussian random fields ξn by requiring that Cn(x, y) = C(x, y) for points x, y ∈ χn.

If we ensure that the consistency property holds, we obtain the following form of the

covariance:

Case II: Cn(x, y) = K(x, χn)K(χn, χn)
−1C(χn, χn)K(χn, χn)

−1K(χn, y). (4.2)
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Although the first case is covered by the second case when K = C, we present them

separately as the treatment in the first case is more straightforward and easier to

follow.

Theorem 4.1. Under the following assumptions:

Case I: K is continuous;

Case II: K,C are continuous and V (C) ⊂ V (K),

Pn converge weakly to a Gaussian measure on L2(γ).

Before we begin the proof, we provide the following corollary when the covariance

and the reproducing kernel are both Gaussian.

Corollary 4.2. Let C(x, y) = 1
2πσ2

1
e−‖x−y‖2/2σ2

1 and K(x, y) = 1
2πσ0

e−‖x−y‖2/2σ2
0 . For

σ0 ≤ σ1 the sequence of measures Pn converge weakly to a Gaussian measure P on

L2(γ).

Proof. (Corollary 4.2) We need to show that the conditions of Theorem 4.1 are sat-

isfied. The first case is trivial, as the Gaussian kernel is continuous. For the second

case, an equivalent condition for the RKHS with kernel C to belong to a RKHS with

kernel K is that there a positive constant B such that BK−C is nonnegative definite

[6](Corollary IV2, p. 383). Set B = σ1/σ0, and consider the inverse Fourier transform
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of this difference:

F−1{BK − C} = 2πσ2
1F−1

{
1

2πσ2
0

e−‖x−y‖22/2σ
2
0 − 1

2πσ2
1

e−‖x−y‖22/2σ
2
1

}

= (4.3)

= 2πσ2
1(e

−2σ2
0‖x−y‖22 − e−2σ2

1‖x−y‖22). (4.4)

Clearly when σ0 < σ1, the right side is positive so by Bochner’s theorem we conclude

that K − C is a positive definite function, and V (C) ⊂ V (K).

Proof. (Theorem 4.1)

Pointwise Covariance Convergence. We will first show using properties of repro-

ducing kernel Hilbert spaces that Cn(x, y) → C(x, y) as n→ ∞ for x, y on γ.

Case I: We recall that the form of the orthogonal projection of K(·, x) on V (χn) is

πV (χn)[K(·, x)] = K(χn, x). (4.5)

Therefore, we can rewrite Cn(x, y) as

Cn(x, y) = K(x, χn)K
−1(χn, χn)K(χn, y) = (4.6)

= 〈πV (χn)(K)[K(·, x)], πV (χn)(K)[K(·, y)]〉Vγ(K). (4.7)
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By Theorem 6E of (Parzen, 1959 [73]) we have that

〈πV (χn)(K)[K(·, x)], πV (χn)(K)[K(·, y)]〉Vγ(K) → 〈K(·, x), K(·, y)〉V (γ), (4.8)

and we conclude

lim
n→∞

Cn(x, y) = 〈K(·, x), K(·, y)〉V (γ). (4.9)

When x or y belongs to γ, Cn(x, y) → K(x, y).

Case II: Theorem 1 in [30] states that Vγ(C) ⊂ Vγ(K) implies also the existence of

a nonnegative self-adjoint bounded linear operator G : Vγ(K) → Vγ(C) which satisfies

G[K(·, x)] = C(·, x) ∀x ∈ γ, (4.10)

and ‖G‖ ≤ B, such that BK − C ≥ 0. If we apply this operator to an element of

Vχn
(K)

which takes the form v(·) =∑n
i=1K(·, xi)αi, we obtain

Gv = G

[
n∑

i=1

K(·, xi)αi

]

=
n∑

i=1

C(·, xi)αi. (4.11)

Also, recall that the vector of coefficients of the projection of K(·, y) onto Vχn
(K) is
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K(χn, χn)
−1K(χn, y). Thus we obtain

G[πVχn (K)[K(·, y)]] = G

[
n∑

i=1

K(·, xi)[K(χn, χn)
−1K(χn, y)]i

]

=

= C(·, χn)K(χn, χn)
−1K(χn, y).

(4.12)

This yields an alternative representation of the covariance:

Cn(x, y) = 〈πVχn (K){K(·, x)}, G[πVχn (K){K(·, y)}]〉V (γ). (4.13)

Since G is self-adjoint and nonegative, we can define the following inner product:

〈〈f, g〉〉 = 〈f,Gg〉V (γ)(K). (4.14)

The corresponding inner product space is a reproducing kernel Hilbert space, and we

denote its reproducing kernel by K̂(x, y). With the above notation,

Cn(x, y) = 〈〈πVχn (K){K(·, x)}, πVχn (K){K(·, y)}〉〉. (4.15)

We will show that Cn(x, y) → 〈〈K(·, x), K(·, y)〉〉 as n→ ∞. For that we will use

the following theorem by Parzen (Theorem 6D,[73]), which we summarize using our

notation
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Theorem 4.3. Let {Vn, n = 1, 2, ...} be a sequence of Hilbert subspaces of V which

are either (i) monotone non-decreasing; that is, Vn ⊂ Vn+1, or (ii) monotone non-

increasing; that is Vn ⊃ Vn+1. Define V∞ to be, in case (i), the Hilbert subspace of V

spanned by the union ∪∞
n=1Vn, and, in case (ii), the intersection ∩∞

n=1Vn. Let v1, v2, ...

be a sequence of vectors in V such that for every integer m and n

πVm
[vn] = vm if m ≤ n. (4.16)

Then there is a unique vector v in V∞ such that vn = πVn
[v] ∀n and

lim
n→∞

‖vn − v‖ = 0 iff lim
n→∞

‖vn‖2 ≤ ∞. (4.17)

If w is a vector in V such that for all n

vn = πVn
[w], (4.18)

then

v = πV∞ [w]. (4.19)

We will set V = Vγ(K̂) (the vector space with the newly introduced inner product),

and for V1, V2, ... we will take the corresponding sequence of restricted subspaces

Vχ1(K̂), Vχ2(K̂), .... They are clearly nested and non-decreasing. We consider the
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sequence of vectors
{
vn|vn = πVχn (K)[K(·, x)]

}
. We will show that πVχm (K̂)vn = vm

for m ≤ n.

πVχm (K̂)[πVχn (K)[K(·, x)]] = πVχm (K̂)

[
n∑

i=1

K(·, xi)[K(χn, χn)
−1K(χn, x)]i

]

=

=
m∑

j=1

K̂(·, xj)
[

K̂(χm, χm)
−1

n∑

i=1

K(χm, xi)[K(χn, χn)
−1K(χn, x)]i

]

j

=

=
m∑

j=1

K̂(·, xj)
[
K(χm, χm)

−1K(χm, χn)K(χn, χn)
−1K(χn, x)

]

j
=

=
m∑

j=1

K̂(·, xj)
[
K(χm, χm)

−1K(χm, x)
]

j
=

= πVχm (K̂)[K(·, x)]. (4.20)

Consider v = πγ(K̂)[K(·, x)]. It, of course, belongs to Vγ(K̂), and we have

vn = πVχm (K̂)[K(·, x)] = πVχm (K̂)[πVγ(K̂)K(·, x)] = πVχm (K̂)[v], (4.21)

thus showing that (4.18) is satisfied, and vn → v in the norm of Vγ(K̂). From

‖πVχn (K̂)[K(·, x)]− πVγ(K̂)[K(·, x)]‖Vγ(K̂) → 0, (4.22)

‖πVχn (K̂)[K(·, y)]− πVγ(K̂)[K(·, y)]‖Vγ(K) → 0, (4.23)
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and using the polarization identity, we conclude that

〈〈πVχn (K̂)[K(·, x)], πVχn (K̂)[K(·, y)]〉〉 → 〈〈πVγ(K̂)[K(·, x)], πVγ(K̂)[K(·, y)]〉〉, (4.24)

and hence

lim
n→∞

Cn(x, y) = 〈〈πVγ(K̂)[K(·, x)], πVγ(K̂)[K(·, y)]〉〉 =

= 〈πVγ(K)[K(·, x)], πVγ(K)[K(·, y)]〉Vγ(K).

(4.25)

Clearly, when x, y ∈ γ, limn→∞Cn(x, y) = C(x, y).

Boundedness. Here we will also show that for each n Cn(x, y) is bounded by a

function which integrable on γ.

Case I: By Cauchy-Schwartz

Cn(x, y) = 〈πVχn (K)[K(·, x)], πVχn (K)[πVχ
(K)(·, y)]〉Vγ(K) ≤

≤ ‖πVχn (K)[K(·, x)]‖Vγ(K)‖πVχn (K)[K(·, y)]‖Vγ(K) ≤

≤ ‖K(·, x)‖Vγ(K)‖K(·, y)‖Vγ(K) = K(x, x)K(y, y), (4.26)

which is a constant.
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Case II: Similarly,

Cn(x, y) = 〈πVχn (K)[K(·, x)], G[πVχn (K)[K(·, y)]]〉V (γ) ≤

≤ ‖πVχn (K)[K(·, x)]‖Vγ(K)‖G[πVχn (K)[K(·, y)]]‖Vγ(K) ≤

≤ ‖K(·, x)‖Vγ(K)‖G‖‖K(·, y)‖Vγ(K) ≤ BK(x, x)K(y, y). (4.27)

Weak Convergence. Now we would like to show that for a general choice of

Cn(x, y) → C(x, y), the corresponding probability measures converge weakly. There

are different ways to formulate the condition for weak convergence of Gaussian mea-

sures on a Hilbert space. It usually comes down to showing the convergence of the

means and the covariance operators, and also showing relative weak compactness of

the measures. The following set of conditions in (Baushev, 1986 [12]) are necessary

and sufficient for the convergence of a sequence of Gaussian measures Pn to a Gaussian

measure P on L2(γ)

(i) ‖µn − µ‖ → 0, where µn and µ are the means corresponding to the measures

Pn and P

(ii) 〈Cne
∗
i , e

∗
j〉 → 〈Ce∗i , e∗j〉, where Cn and C are the corresponding covariance oper-

ators and {e∗i } is the dual basis in L2(γ)∗

(iii) ‖xn − x‖ → 0, where xn =
∑∞

k=1〈Cne
∗
k, e

∗
k〉1/2ek and x =

∑∞
k=1〈Ce∗k, e∗k〉1/2ek.

In our case the measures have zero mean so the first condition is trivially satisfied.
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To proceed we need to determine the form of the covariance operators Cn. First

note that the dual of L2(γ) can be identified with L2(γ), so Cn can be treated as an

operator on L2(γ). Let f, g be arbitrary functions in L2(γ), and µ and ν be Lebesgue

measures on γ. Then the covariance operator is such that

〈Cnf, g〉L2(γ) = E
[
〈f, ξn〉L2(γ)〈g, ξn〉L2(γ)

]
= E

[∫

γ

f(x)ξn(x)dµ(x)

∫

γ

g(y)ξn(y)dν(y)

]

=

=

∫

γ

∫

γ

f(x)E[ξn(x)ξn(y)]g(x)dµ(x)dν(y) =

= =

∫

γ

∫

γ

f(x)Cn(x, y)g(x)dµ(x)dν(y) =

=

∫

γ

g(x)

[∫

γ

Cn(x, y)f(y)dν(y)

]

dµ(x). (4.28)

Thus we see that the action of the operator on a function f is

Cn[f ](·) =
∫

γ

Cn(·, y)f(y)dν(y). (4.29)

Our first step is to show that 〈Cnf, f〉L2(γ) → 〈Cf, f〉L2(γ) for an arbitrary function

f .

lim
n→∞

〈Cnf, f〉L2(γ) = lim
n→∞

∫

γ

Cn[f ](x)f(x)dµ(x) =

= lim
n→∞

∫

γ

∫

γ

Cn(x, y)f(y)f(x)dµ(x)dν(y). (4.30)
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We have shown that limn→∞Cn(x, y) = C(x, y) for every x and y, and each Cn(x, y)

is bounded by a constant (we will denote this bound by B1) so we can apply the

dominated convergence theorem in (4.30). First,

∫

γ

∫

γ

|Cn(x, y)f(x)f(y)|dµ(x)dν(y) =

∫

γ

∫

γ

|Cn(x, y)||f(x)||f(y)| ≤

≤
∫

γ

∫

γ

B1|f(x)||f(y)|dµ(x)dν(y) =

= B1‖f‖2L1(γ) ≤ B1µ(γ)‖f‖2L2(γ) <∞,

(4.31)

where the last quantity is finite since γ is bounded and f ∈ L2(γ). Next,

∫

γ

∫

γ

|C(x, y)||f(x)||f(y)|dµ(x)dν(y) =
∫

γ

∫

γ

B2|f(x)||f(y)|dµ(x)dν(y) <∞ (4.32)

nonumber (4.33)

(4.34)

where B2 is the upper bound of C(x, y) which exists since it is a continuous function

on a compact domain.

Therefore, Cn(x, y)f(x)f(y) is bounded by the integrable function B1|f(x)||f(y)|
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and by DCT we can interchange the limit with the integral and obtain

lim
n→∞

〈Cnf, f〉L2(γ) = lim
n→∞

∫

γ

∫

γ

Cn(x, y)f(y)f(x)dµ(x)dν(y) =

=

∫

γ

∫

γ

C(x, y)f(x)f(y)dµ(x)dν(y) = 〈Cf, f〉L2(γ).

(4.35)

Now let’s define f = ei − ej. By the above conclusion we have

lim
n→∞

〈Cn(ei − ej), ei − ej〉 = 〈C(ei − ej), ei − ej〉 (4.36)

Therefore,

lim
n→∞

〈Cnei, ei〉+ 〈Cnej, ej〉 − 2〈Cnei, ej〉 = 〈Cei, ei〉+ 〈Cej, ej〉 − 2〈Cei, ej〉, (4.37)

and since the first two terms on the right hand side converge to the first two terms

on the left hand side, we have (ii)

lim
n→∞

〈Cnei, ej〉 = 〈Cei, ej〉. (4.38)

The third condition turns out to be equivalent to the convergence of the covariance
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operators in nuclear norm:

‖xn − x‖2 =
∥
∥
∥
∥
∥

∞∑

k=1

〈(Cn − C)ek, ek〉1/2ek
∥
∥
∥
∥
∥

2

=
∞∑

k=1

〈(Cn − C)ek, ek〉 = tr(Cn − C).(4.39)

First we need to check whether C and Cn are trace class operators. The answer

is positive due to the continuity of C(x, y) and the compactness of γ. By Mercer’s

theorem we can obtain the following representation for the kernel

C(x, y) =
∞∑

k=1

λkϕk(x)ϕk(y), for x, y ∈ γ (4.40)

where {λk} and {ϕk} are the eigenvalues and corresponding eigenfunctions of the

integral operator

[Cf ](·) =
∫

γ

C(·, x)f(x)dx, (4.41)

and this convergence is uniform. Let’s consider the form of the trace in this case

tr(C) =
∞∑

k=1

〈Cϕk, ϕk〉 =
∞∑

k=1

〈λkϕk, ϕk〉 =
∞∑

k=1

λk

∫

γ

ϕ(x)ϕk(x)dµ(x) =

=

∫

γ

[
∞∑

k=1

λkϕ(x)ϕk(x)

]

dµ(x) =

∫

γ

C(x, x)dµ(x) ≤ ∞. (4.42)

In the above calculation we were allowed to exchange the infinite sum with the integral

thanks to the uniform convergence. Cn is continuous on γ as well, as it depends on
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x and y only through the functions K(χn, x) and K(χn, y) which are continuous as

well. Therefore, by the above trace argument, we have

tr(Cn) =

∫

γ

Cn(x, x)dµ(x) ≤
∫

γ

C(x, x)dµ(x) ≤ ∞. (4.43)

Since Cn(·, ·) is bounded we can apply DCT again:

lim
n→∞

tr(Cn) = lim
n→∞

∫

γ

Cn(x, x)dµ(x) =

∫

γ

lim
n→∞

Cn(x, x)dµ(x) = tr(C). (4.44)

Thus (iii) is established and hence Pn
w−→ P , where P is a Gaussian measure on

L2
γ corresponding to the Gaussian random field defined over γ with zero mean and

covariance C(x, y).

4.3 Convergence in RKHS norm

In the previous section we showed the convergence of the random vector fields ξn with

covariance Cn(x, y) to the random vector field ξ with a covariance C(x, y) on γ. We

are interested in the properties of these random vector fields and how they affect the

types of shapes which can be obtained by evolving γ along their realizations. We have

already shown in Proposition 3.1 that the flow associated with stationary Gaussian

random vector fields with Gaussian-kernel covariance is diffeomorphic. We are also

interested in deformations generated by time-dependent vector fields such as in (3.33).
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It has been shown in [99] (Theorem 8.7 p.165), that if the vector field ξ belongs to a

RKHS with a sufficiently nice kernel, the solutions of the flow are diffeomorphisms,

thus the random shapes have the same topology as the original shape. Clearly, every

χn as an element of V (χn) belongs to Vγ since it can be written as a finite linear com-

bination of the kernel functions with normally distributed coefficients. The question

is whether their limit ξ belongs to V (γ) too, i.e. whether these vector fields converge

in the norm of the reproducing kernel Hilbert space.

In short, we would like to know whether the realizations of a Gaussian random

field ξ with covariance given by the kernel C belongs to a reproducing kernel Hilbert

space with a kernel K. The circumstances under which this is true have been studied

in [30]. The following zero-one law holds for any continuous kernels C and K and

continuous realizations of the random vector fields (Theorem 3 in [30])

P (ξ ∈ Vγ(K)) = 1 or P (ξ ∈ Vγ(K)) = 0, (4.45)

and the probability is 1 when

sup
n

tr(C(χn)K
−1(χn)) <∞, (4.46)

where χn is a countably dense subset of points on γ. We can see that when C = K

the matrix product is an “infinite-dimensional” identity matrix and the supremum

is infinite, so the realizations of a Gaussian random field are never in the RKHS
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corresponding to its covariance.

The condition in (4.46) can be formulated in terms of the operator G defined in

the previous section: (4.46) is equivalent to G being a trace class operator. To obtain

a form for the trace of G first we need to select an orthonormal basis for Vγ(K). Recall

that in the previous section we constructed an orthonormal basis for L2(γ) using the

eigenfuctions ψ1, ψ2, ... associated with the kernel operator K. One can verify that

the inner product on Vγ(K) can be written in terms of inner products on L2(γ):

〈v1, v2〉Vγ
= 〈K−1v1, v2〉L2

γ
=

∞∑

k=1

〈v1, ψk〉L2
γ
〈v2, ψk〉L2

γ

λk
, (4.47)

and thus we can show that {
√
λkψk}∞k=0 form an orthonormal basis for Vγ(K). We

have

〈
√

λiψi,
√

λjψj〉Vγ(K) =
∞∑

k=1

〈
√
λiψi, ψk〉L2(γ)〈

√
λjψj, ψk〉L2(γ)

λk
. (4.48)

Since ψk’s are orthonormal on L2(γ), the only nonzero terms in the above sum are

the ones for which i = j = k, and then 〈
√
λiψi,

√
λiψi〉V = 1. We can define the trace

of G as

tr(G) =
∞∑

i=1

〈G
√

λiψi,
√

λiψi〉Vγ(K) =
∞∑

i=1

λi〈Gψi, ψi〉Vγ(K) =

=
∞∑

i=1

λi

∞∑

k=1

〈Gψi, ψk〉L2
γ
〈ψi, ψk〉L2

γ

λk
. (4.49)
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The only nonzero term in the second sum is when i = k, so we conclude

tr(G) =
∞∑

i=1

〈Gψi, ψi〉L2(γ). (4.50)

We see that the trace of G as an operator on Vγ(K) is the same as the trace of G as

an operator on L2(γ).

Another formulation can be obtained from the following relationship between the

norms

〈Gf, g〉Vγ(C) = 〈f, g〉Vγ(K) (4.51)

Similarly to K, we can define an operator C, and an inner product associated with

it:

〈f, g〉L2(γ) = 〈Cf, g〉Vγ(C) (4.52)

We can obtain several alternative representations of the trace:

tr(G) =
∞∑

i=1

〈Gψi, ψi〉L2(γ) =
∞∑

i=1

〈Gψi, Cψi〉Vγ(C) =
∞∑

i=1

〈ψi, Cψi〉Vγ(K). (4.53)

Let {ρi}∞i=1 be the eigenvalues associated with C. In the special case when the
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eigenfunctions of C and K coincide, the trace reduces to

tr(G) =
∞∑

i=1

〈ψi, Cψi〉Vγ(K) =
∞∑

i=1

〈ψi, ρiψi〉Vγ(K) =
∞∑

i=1

ρi
λi
. (4.54)

Example 1 (Circle domain): Let γ be S1 embedded in R
2. Then the eigenfunctions

of the Gaussian kernel are the spherical harmonics and do not depend on the width

of the kernel: i.e., they are the same for K and C. The corresponding eigenvalues

can be derived from the Funk-Hecke formula [68]:

λk = e2/σ
2

Ik(2/σ
2), (4.55)

where Ik are the modified Bessel functions of the first kind. For σ0 < σ1, the sum

tr(L) =
∞∑

k=1

e2/σ
2
1Ik(2/σ

2
1)

e2/σ
2
0Ik(2/σ2

0)
(4.56)

converges. If we substitute the definitions of the Bessel functions we obtain

tr(L) = (e2/σ
2
1−2/σ2

0)
∞∑

k=0

1
σ2k
1

∑∞
l=0

(1/σ1)2l

l!(k+l)!

1
σ2k
0

∑∞
l=0

(1/σ0)2l

l!(k+l)!

= (e2/σ
2
1−2/σ2

0)
∞∑

k=0

(
σ0
σ1

)2k
∑∞

l=0
(1/σ1)2l

l!(k+l)!
∑∞

l=0
(1/σ0)2l

l!(k+l)!

.

(4.57)
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Since σ0 < σ1,

tr(L) ≤ (e2/σ
2
1−2/σ2

0)
∞∑

k=0

(
σ0
σ1

)2k
∑∞

l=0
(1/σ0)2l

l!(k+l)!
∑∞

l=0
(1/σ0)2l

l!(k+l)!

= (e2/σ
2
1−2/σ2

0)
∞∑

k=0

(
σ0
σ1

)2k

<∞.

(4.58)

Thus the realizations of a Gaussian random field along the circle with covariance C

belong to Vγ(K).

Example 2 (Euclidean plane): Let’s first consider the case when the domain of

restriction is R
2. The form of the operator G can be easily identified on R

2, since

we can resort to properties of Fourier transforms. It can be written as an integral

transform on R
2

[Gf ](x) =

∫

R2

G(x, y)f(y)dy, (4.59)

where G(x, y) = e
−

‖x−y‖2

2(σ2
0−σ2

1) .

We note that

∫

R2

∫

R2

G(x, y)2dxdy = 1, (4.60)

so G(x, y) is a Hilbert-Schmidt kernel and the corresponding operator is compact.
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Applying Mercer’s theorem again, we obtain

tr(G) =

∫

R2

G(x, x)dx = ∞. (4.61)

We conclude that G is not trace class and realizations of random vector fields with

Gaussian covariance are never in an RKHS with a Gaussian kernel (no matter how

the kernel widths are chosen).

Example 3 (Line segment domain): Let the domain be I = (−1, 1). For simplic-

ity we will use σ = 1. First consider the Taylor expansion of K(·, x) at 0 (x ∈ I):

K(·, x) =
∞∑

k=0

∂kK(·, x)
∂xk

∣
∣
x=0

xk

k!
. (4.62)

We would like to know if this series converges in the V -norm.

First we note that the derivatives of the kernel belong to V , and their norm has

an explicit form. By the reproducing property we have for any function f in V :

f(x) = 〈f(·), K(·, x)〉V . (4.63)

Therefore,

∂f(x)

∂x
= lim

h→0

f(x+ h)− f(x)

h
= lim

h→0

〈f(·), K(·, x+ h)−K(·, x)〉
h

=

〈

f(·), ∂K(·, x)
∂x

〉

V

. (4.64)
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Repeating the same argument we have that

∂kf(x)

∂xk
=

〈

f(·), ∂
kK(·, x)
∂xk

〉

V

. (4.65)

Let’s take f(x) = ∂kK(x,y)
∂yk

and obtain

∂k

∂xk

(
∂kK(x, y)

∂yk

)

=

〈
∂kK(·, y)
∂yk

,
∂kK(·, x)
∂xk

〉

V

(4.66)

Since the kernel is translation invariant,

∂k

∂xk

(
∂kK(x, y)

∂yk

)

= (−1)k
∂2kK(x, y)

∂x2k
, (4.67)

and we conclude that

∥
∥
∥
∥

∂kK(·, x)
∂xk

∥
∥
∥
∥

2

V

= (−1)k
∂2kK(x, y)

∂x2k

∣
∣
∣
y=x

= H2k(x− y)K(x, y)|y=x =

= (−1)k(−1)k1× 3× ...× (2k − 1) =

= 1× 3× ...× (2k − 1), (4.68)

where Hk(x) is the Hermite polynomial of order k.
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We can use the above expression to show that the series in converges absolutely:

∞∑

k=0

∥
∥
∥
∥

∂kK(·, x)
∂xk

∣
∣
x=0

xk

k!

∥
∥
∥
∥
V

=
∞∑

k=0

∥
∥
∥
∥

∂kK(·, x)
∂xk

∣
∣
x=0

∥
∥
∥
∥
V

|x|k
k!

=

=
∞∑

k=0

[1× 3× ...× (2k + 1)]
1
2
|x|k
k!

. (4.69)

The ratio of two consecutive terms of this series is
√
2k + 1 |x|

k
which goes to zero as

k goes to infinity, and thus the series converges. The absolute convergence implies

the convergence in the V -norm. Since it also converges pointwise to K(x, y), we have

established the Taylor series expansion of K(·, x) in V .

Since we have picked 0 ∈ I we see that all functions ∂kK(·,x)
∂xk

∣
∣
x=0

belong to VI ,

so K(·, x) can be written as a limit of partial sums in VI and hence belongs to VI

itself. Since V is generated by K(·, x) for x ∈ R, we conclude that V ≡ VI . Thus the

operator G : VK(I) → VC(I) is equivalent to G : VK(R) → VC(R) and it is not trace

class.

This result can be extended to justify that the RKHS restricted to an arbitrary

flat segment in R
2 is equivalent to the RKHS over the whole line tangent to this

segment. Thus when γ contains any flat region, the realizations of the random vector

fields over γ do not belong to an RKHS with a Gaussian kernel.

So far we have seen some examples in which the realization of the random field

belong to a RKHS (the circle), and some examples in which it does not (line segment,

R
2). What can be said about general contours? Clearly, these contours cannot contain
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a flat region. Thus a minimum requirement is that the tangent to the curve (if it

exists) should be nonzero at every point on the contour.

We conjecture that the realizations of the random field belong to the RKHS when

the domain is an analytic curve, i.e. the parameterization γ(t) is an analytic function

with respect to t.



Chapter 5

Parameter Estimation in Diffusions

on the Space of Shapes

5.1 Introduction

We address the problem of learning the dynamics of shapes from a sequence of obser-

vations. Our goal is to build algorithms which capture intrinsic features of the shape

changes and which can be used in a variety of applications: tracking, classification,

regression. By building more informative prior distributions for these complex pro-

cesses we can address a wide variety of statistical problems with more precision and

less computation. Once we have learned the underlying models we can incorporate

them in a filtering algorithm and estimate the positions of the shapes when direct

observations are not available: for example, when we are given only a sequence of

105
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images without segmented shapes.

We split the task in two stages: first we need to construct appropriate parametric

models for the evolution of the shapes; next, we would like to estimate the missing

model parameters from a sequence observations. We select to model the evolution of

the shapes with diffusion processes which on one hand are flexible enough to describe

a wide variety of shape deformations, and on the other hand posses some general

theory and well-established properties. As the structure on the space of shapes is

non-Euclidean, we need to resort to working with diffusions on manifolds.

5.1.1 Related work

The subject of studying diffusions of shapes dates back to the work of Kendall [54],

where Brownian motion is considered on the space of points in R
n after excluding

similarity transformations. A more recent work by Ball et. al. [9] adds an additional

drift term to the random perturbations of the shapes to construct Ornstein-Uhlenbeck

processes in the appropriate Kendall and Goodal-Mardia coordinates. The authors

obtain the stationary distributions of the proposed processes which facilitates the

parameter estimation. In our work we are interested in shapes which do not change

their topology so their deformations can be appropriately described by stochastic flows

of diffeomorphisms [57]. Such processes have been studied in the context of images

in [19], in the context of landmarks in [93], and extended to the infinite-dimensional

spaces of curves and surfaces in [94].
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5.1.2 Contribution

While these previous models concentrate on modeling general random shape pertur-

bations and their properties, we focus on the tasks of constructing more informative

parametric deformations for shapes (here 2D contours) and estimating their underly-

ing parameters from a discrete sequence of observations.

We extend the model proposed in Section 3.2.1 and [83], which already includes

a shape-based noise term, by introducing additional drift terms describing various

shape motions. In the process we formally define a diffusion process on the landmark

manifold. We justify that the selected noise model yields a well-posed process on

the manifold and that it coincides with the sub-Riemannian formulation of Brownian

motion on this space. We provide a procedure for simulating diffusion sample paths,

derive explicit formulas for the likelihood-ratio estimates of their drift parameters

from the observed shapes, and demonstrate their numerical performance when true

parameters are known.

5.1.3 Organization

We begin with introducing in Section 5.2.1 several different ways for constructing

diffusions on manifolds. Some of those are better suited for numerical simulation,

others are easier to study analytically or provide more intuitive interpretation. Next

in Section 5.3, we define the noise model of our choice and relate the corresponding

diffusion to Brownian motion on a Riemannian or sub-Riemannian manifold. In
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Section 5.4 we introduce several drift models and show sequences of shapes they can

yield in Section 5.5. In Section 5.6 we address the task of estimating the missing

diffusion parameters. Finally, in Section 5.7 we discuss the properties of the solutions

of the proposed diffusion stochastic differential equations.

5.2 Diffusions of shapes

We represent the boundary of the shape by a sequence of m distinct points in R
2

denoted by χ. The space of all such contours M forms a 2m-dimensional manifold

as described in Section 2.5.1.

Our goal is to define diffusion equations on M of the form

dχt = A(χt, θ)dt+B(χt)dWt, (5.1)

where χt specifies a process on M, A(χt, θ) is an element of Tχt
M with a parameter

θ, and B(χt)dWt corresponds a to Brownian motion on M with a mixing matrix

B(χt) whose details we will specify later. In the following sections, we will denote

by M a general d-dimensional Riemannian manifold, with a generic element X or x.

Specializing the discussion to landmark manifold results, we take M = M, d = 2m,

and a generic element will be denoted by χ.
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5.2.1 Diffusions on manifolds

There are several approaches for formulating diffusion processes (and their corre-

sponding SDE’s) on manifolds. Here we concentrate on the ones relevant to our

work; for a more extensive treatment of the topic one can refer to the rich literature

in [33, 48, 15]. We discuss both Stratonovich and Itô formulations.

Stratonovich SDE’s on Manifolds. Since Stratonovich calculus follows classi-

cal differentiation rules, it is easy to define Stratonovich SDE’s in local coordinates,

which would appropriately transform under change of coordinates. For that we sim-

ply define A to be a smooth vector field on a d-dimensional manifold M and B(Xt)

to be a mapping from R
n to TXt

M (n ≤ d) at each Xt, and define the stochastic

differential equation on M as

dXt = A(Xt)dt+B(X) ◦ dWt, (5.2)

where Wt is an n-dimensional Brownian motion, and B converts a Brownian motion

on R
n to a process on the tangent bundle of M (a more general formulation allows

for a time-dependent drift A(Xt, t), but will focus on the time-independent case). A

solution of (5.2) is any process Xt which satisfies the above equation in any local

chart. Let {ai}di=1 and {bik}di=1 be the coefficients of the vector fields A,B1, ...Bn in
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the local chart. The Stratonovich equation then takes the form

dX i(t) = ai(Xt)dt+
n∑

k=1

bik(Xt) ◦ dwk(t), i = 1, ..., d, (5.3)

and under change of parameterization ϕ : Rd → R
d the equations transform according

to

dϕi(Xt) =
n∑

j=1

∂jϕ
iaj(ϕ(Xt)) +

n∑

j=1

n∑

k=1

∂jϕ
ibjk(ϕ(Xt)) ◦ dwk(t). (5.4)

Alternatively, we can consider n smooth vector fields on M denoted as B1, ..., Bn

(Bi :M → TM for i = 1, ..., n) and define the SDE

dXt = A(Xt)dt+
n∑

k=1

Bk(Xs) ◦ dwk(s), (5.5)

whose solution satisfies for any smooth function with compact support on M

f(Xt)− f(X0) =

∫ t

0

Af(Xs)ds+

∫ t

0

n∑

k=1

Bkf(Xs) ◦ dwk(s), (5.6)

or equivalently

df(Xt) = Af(Xt)dt+
n∑

k=1

Bkf(Xt) ◦ dwk(t). (5.7)

Selecting n = d is not necessary, however, this choice becomes important in the
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special case when the manifold of interest is parallelizable, i.e. when there exists a

global frame of vector fields E1(X), ..., Ed(X) on M . Then the local representation

becomes global.

Fortunately this is true in for M = M. By evaluating the kernel at each indi-

vidual point on the curve, we obtain a basis of vector fields on the tangent space:

{K(χ, x1)ep, ..., K(χ, xm)ep} (p = 1, 2), which varies smoothly when changing the

points, i.e. we have m smooth independent vector fields which when evaluated at

a fixed point form a basis for the tangent space at that point. We denote them by

E1(χ), ..., E2m(χ). Then we can write the above SDE in this basis

dχt =
2m∑

k=1

αk(χt)Ek(χt)dt+
2m∑

k=1

Ek(χt) ◦ dwk(t). (5.8)

Itô SDE’s on Manifolds. In a given coordinate chart we can define the following

Itô equation [50]:

dχi(t) = âi(Xt)dt+
n∑

k=1

bik(Xt) · dwk(t), i = 1, ..., 2m, (5.9)

where the pairing b · dw corresponds to the classical Itô differential.

Under change of coordinates, Itô equations are required to satisfy Itô’s formula:

dϕi(Xt) =
d∑

j=1

∂jϕ
iâj(Xt)dt+

1

2

d∑

j=1

n∑

k=1

n∑

l=1

∂klϕ
ibjk(Xt)b

j
l (Xt)dt+

d∑

j=1

n∑

k=1

∂jϕ
ibjk(Xt) · dwk(t),

(5.10)
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and the equation can be converted from Itô to Stratonovich form and vice versa using

the standard rules

dχi(t) =

[

âi(Xt)−
1

2

d∑

j=1

n∑

k=1

bjk(Xt)∂jb
i
k(Xt)

]

dt+
n∑

k=1

bik(Xt) ◦ dwk(t), i = 1, ..., d.

(5.11)

One can observe that in order for the Itô formula to be satisfied, under change

of coordinates the transformation of â has to depend on the bk’s, i.e. it cannot be

defined as a vector field on the manifold. A global definition of Itô equations can be

given by introducing a special bundle (Itô bundle [15, 41]), and then Itô equations

can be defined as its sections.

Diffusions through the Riemannian Exponential Map. An alternative

approach to defining Itô equations resorts to the Riemannian structure on the man-

ifold of interest and the associated exponential map (Baxendale[13], Belopolskaya-

Daletsky[15] forms). Let expX : TXM → M be the Riemannian exponential map on

M and consider the equation

dXt = expXt
(A(Xt)dt+B(Xt)dWt), (5.12)
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where the forward stochastic differential

A(Xt)dt+B(Xt)dWt (5.13)

corresponds to the class of diffusion processes in TXt
M whose drift and noise terms

coincide locally with A and B, i.e. they satisfy the equation

u(t+ s) =

∫ t+s

t

Ã(uτ )dτ +

∫ t+s

t

B̃(uτ )dwτ , (5.14)

where Ã(uτ ) is a vector field on TXt
M, and B̃(uτ ) : R

n → TXt
M, Ã(0) = A(Xt) and

B̃(0) = B(Xt) in a neighborhood around the origin of TXt
M and zero outside.

Definition 5.1. (p.153 7.28 [41]) A solution of (5.12) is a process Xt, for which

at every Xt there exists a neighborhood in which Xt+s (for s ≥ 0 such that Xt+s is in

the neighborhood) coincides with a process from the class expXt
(A(Xt)dt+B(Xt)dWt)

a.s..

Let’s consider the Taylor series expansion of the exponential map. For any curve

X(t) on M in a local chart we have:

X(t) = X(0) + tẊ(0) +
1

2
t2Ẍ(0) + o(t2). (5.15)



CHAPTER 5. PARAMETER ESTIMATION IN SHAPE DIFFUSIONS 114

Thus

expX(tv) = X + tv − 1

2
t2ΓX(v, v) + o(t2), (5.16)

where ΓX

(
∂
∂xi ,

∂
∂xj

)
= Γk

ij
∂

∂xk and Γk
ij the Christoffel symbols associated with the

connection on M. Using this expansion one can obtain a local chart formulation of

(5.12):

dXt = A(Xt)dt−
1

2

d∑

k=1

Γk
ij

n∑

l=1

bil(Xt)b
j
l (Xt)

∂

∂xk
dt+

n∑

k=1

bk(Xt) · dwk(t). (5.17)

We observe that the drift coefficients of the Itô equation contain a correction term

due to the non-flatness of the manifold:

âk = ak −
1

2
Γk
ij

n∑

l=1

bil(Xt)b
j
l (Xt). (5.18)

Diffusions as a Limit of a Random Walk on a Manifold. Intuitively, we

would want a diffusion to be a limit of small steps on the manifold in a given direction

with noise added to them. Baxendale [13] introduces an approach closest to this idea.

First we recall the definition of a Wiener process on an infinite-dimensional space.

Definition 5.2. (Wiener process on an infinite-dimensional space) A process

Wt on a separable Fréchet space E is called a Wiener process on E generated by a

Gaussian measure µ, if it satisfies the following properties:
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(a) it has continuous sample paths

(b) it has independent increments

(c) the distribution of Wt+s −Wt is independent of s

(d) W0 = 0

(e) the distribution of W1 is µ.

Let µ be a zero mean Gaussian measure on C(TM) (the continuous vector fields

on M), and let Wt be the associated Wiener process. Let A be a smooth vector field

on M. Set Ut = tA +Wt. Define a partition π = {t0 = 0, t1, ..., tN = T}. Suppose

Xπ
tj
satisfies

Xπ
tj+1

= expXπ
tj

(∆jUt(Xtj)), j = 0, ..., N − 1. (5.19)

It can be shown that under suitable conditions Xπ
tj
converges to a Markov process Xt

on [0, T ] as the mesh π becomes denser, which corresponds to the Itô SDE:

dXt = dUt. (5.20)

Finally, this approach provides us with a meaningful discretization scheme for

small values of dt

Xt+dt = expXt
(A(Xt)dt+B(Xt)Wt), (5.21)
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where Wt is a Wiener process on R
n, or equivalently

Xt+dt = expXt

(

A(Xt)dt+
n∑

k=1

Bk(Xt)εk(t)
√
dt

)

, (5.22)

where εk(t)’s are independent standard normally distributed r.v.’s.

Since in our setting the exponential map can be numerically computed, defining

diffusion processes through it is preferable for simulating diffusion paths and elimi-

nates the need to resort to Stratonovich equations or computing correction terms.

Diffusions through Infinitesimal Generators. We introduce here one more

approach to defining diffusions which facilitates the interpretation of the properties

of the processes we construct. In the second part of his work on stochastic differential

equations on manifolds [51] Itô discusses the topic of building a diffusion process on

a manifold whose infinitesimal generator coincides with a given second order elliptic

operator. The infinitesimal generator of a Markov process is an operator L acting on

the space of compactly supported twice-differentiable functions on M in the following

way

Lf(x) = lim
h→0

1

h
[E[f(Xh)|X(0) = x)]− f(x)] =

∂

∂h
E[f(Xh)|X(0) = x]|h=0

. (5.23)

If we denote the transition semigroup of the process as

[Phf ](x) = E[f(Xh)|X(0) = x)], (5.24)
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we have Lf = ∂hPhf|h=0
and LPtf = ∂hPt+hf|h=0. Applying Dynkin’s formula we

obtain:

Ptf(Xt)− P0f(X0) =

∫ t

0

LPτfdτ (5.25)

Exf(Xt)− f(x) =

∫ t

0

LExf(Xτ )dτ (5.26)

Ex[f(Xt)− f(x)−
∫ t

0

Lf(Xτ )dτ ] = 0, (5.27)

and we conclude that f(Xt)−f(x)−
∫ t

0
Lf(Xτ )dτ is a martingale. We can alternatively

take this result as a definition of the generator L of the Markov process.

The question of existence of a process for which (5.27) holds is called the Mar-

tingale Problem [85, 86], and is a coordinate-free approach of studying properties of

SDE’s on manifolds. The problem is well studied in the case of diffusion processes.

Let’s consider the Stratonovich differential equation (5.2)

df(Xt) = (Bkf)(Xt) ◦ dW k
t + (Af)(Xt)dt (5.28)

df(Xt) = (Bkf)(Xt) · dW k
t +

1

2
d(Bkf)(Xt) · dW k

t + (Af)(Xt)dt (5.29)

df(Xt) = (Bkf)(Xt) · dW k
t +

1

2
Bj(Bkf)(Xt)dt+ (Af)(Xt)dt. (5.30)
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Let L = 1
2
B2 + A. Then we have

f(Xt)− f(X0) =

∫ t

0

Bkf(Xτ ) · dW k
τ +

∫ t

0

L(f(Xτ ))dτ. (5.31)

We observe that the first term on the right-hand side is an Itô integral with respect to

a Brownian motion so it is a local martingale. Hence, f(Xt)−f(X0)− 1
2

∫ t

0
L(f(Xτ )dτ

is a local martingale as well, and we conclude that L is the generator of the diffusion

process. Its form in local coordinates is:

L =
1

2

n∑

k=1

B2
k + A =

1

2

n∑

k=1

bik(Xt)
∂

∂xi

(

bjk(Xt)
∂

∂xj

)

+ ai
∂

∂xi
=

=
1

2

n∑

k=1

bik(Xt)b
j
k(Xt)

∂

∂xi

∂

∂xj
+

1

2

n∑

k=1

bik(Xt)
∂

∂xi
bjk(Xt)

∂

∂xj
+ ai

∂

∂xi
=

=
1

2
Bij

∂

∂xi

∂

∂xj
+ âi

∂

∂xi
, (5.32)

where Bij =
∑n

k=1 b
i
k(Xt)b

j
k(Xt) and â is the drift of the diffusion equation in Itô form

(5.9).

Alternatively, taking any positive semidefinite matrix Bij and a vector a we can

define a second-order (semi-elliptic) operator L and construct a diffusion which has

such a generator (under certain regularity conditions discussed in Section 5.7).
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Let’s define an operator in local coordinates:

(Lf)(Xt) =
n∑

j=1

aj(χt)∂jf(Xt) +
1

2

∑

jk

Bjk(Xt)∂kjf(Xt). (5.33)

The diffusion process generated by it satisfies

lim
h→0

E(Xi(t+ h)) = ai(X(t)), (5.34)

lim
h→0

E[(Xi(t+ h)−Xi(t))(Xj(t+ h)−Xj(t))|X(s) : 0 ≤ s ≤ t] = Bij(X(t)),

(5.35)

and the vector a and the matrix B are defined as the infinitesimal mean and the

infinitesimal covariance of the process. If we can find a smooth bik(Xt) such that

Bij(Xt) =
n∑

k=1

bik(Xt)b
j
k(Xt), (5.36)

then the stochastic process takes the form:

dX i(t) = ai(Xt)dt+
n∑

k=1

bik(Xt) · dwk(t), i = 1, ..., d. (5.37)

To fully determine a diffusion process on the shape manifold we need to define its

infinitesimal mean and covariance and we discuss appropriate choices for them in the

next two sections.
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5.3 Noise models

In this section we discuss the choice of an infinitesimal covariance, which in turn

determines the form of vector fields B1, ..., Bn, and the covariance of the noise in the

diffusion equations. To focus on the properties of the noise we will consider diffusions

for which the drift A(χt) is zero, i.e. the motion of individual points is driven only

by the mixing of the individual Brownian motions. Motivated by the consistency

arguments in Section 3.2.1.2 we would like the correlation between two points to be

C(x, y) = K(x, χn)K
−1(χn, χn)K(χn, y), (5.38)

where K(x, y) = e−
‖x−y‖2

2σ2 . In this case the correlation between two points in χn is

K(x, y). Evaluating at each x ∈ χm the full diffusion matrix becomes:

C(χm, χm) = K(χm, χn)K(χn, χn)
−1K(χn, χm). (5.39)

This choice, in addition to possessing the consistency property, is also driven by

geometric motivation as it relates to the Brownian motion on the manifold. Before

we address this connection, however, we first want to ensure this covariance gives rise

to a well-defined process.

Well-posedness. Let’s consider a process with zero infinitesimal mean and in-

finitesimal covariance as in (5.39). In order to define an associated SDE, we need to

be able to write C(χm, χm) as a product C(χm, χm) = Σ(χm)Σ(χm)
T , where Σ(χm) is
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smooth in some appropriate sense to allow to define vector fields on M. First we note

that K(χn, χn) is a positive definite matrix whenever all points in χm are distinct.

Therefore, there exists a unique positive definite square root of K(χm, χm) which we

will denote by K(χm, χm)
1/2. We can then decompose the covariance as:

C(χm, χm) = (K(χm, χn)K(χn, χn)
−1/2)(K(χm, χn)K(χn, χn)

−1/2)T (5.40)

The entries of the matrices K(χm, χn) and K(χn, χn) are an analytic function of

χm, so we can state that K(χm, χm) is continuously differentiable as a function of χm

(in the space of matrices with some matrix norm). Below we justify that the square

root is continuously differentiable too.

Proposition 5.3. (Smoothness of matrix square roots) Let A ∈ Sn
+, where

Sn
+ denotes the space of n-dimensional real positive definite matrices. Consider the

unique symmetric positive definite square root of A: S =
√
A (S2 = A, S ∈ Sn

+). The

function f(A) =
√
A is continuously differentiable.

Proof. We will employ the inverse function theorem. Let’s define the map g : Sn
+ →

Sn
+ satisfying g(S) = S2. First we note that the existence of the symmetric positive

definite square root justifies that g is onto while its uniqueness ensures g is 1-1, hence

g is a bijection on Sn
+.

Next we observe that g is a smooth map and we look at its derivative. We recall

that Sn
+ is a differentiable manifold. The tangent space at a point S on this manifold
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is equivalent to the space of symmetric matrices. We consider a small perturbation

of S in the direction of the tangent vector H: for t small enough S+ tH stays on Sn
+.

Then

dg(S)H =
d

dt
g(S + tH)|t=0 = S2 + tSH + tHS + t2H2|t=0 = SH +HS (5.41)

We can show that dg has a full rank on Sn
+, i.e. SH +HS = 0 implies H = 0 for any

S ∈ Sn
+. Let’s take an eigenvalue-eigenvector pair for S: λ, v (clearly λ is positive).

Then

SH +HS = 0 ⇒ SHv +HSv = 0 ⇒ SHv = −λSv (5.42)

If Hv 6= 0 we have that λ and −λ are both eigenvalues for S, and since S is positive

definite we reach a contradiction, hence Hv = 0. Since this is true for any eigenvector

of S, and we can select the eigenvectors of S to form a basis for Rn we show that H

is equal to zero in this basis.

Since dg is full rank, by the inverse function theorem g is a local C1-diffeomorphism

at each point on Sn
+. As we also know that g is a bijection, we conclude that g

is a global C1-diffeomorphism, and that the square root function is continuously

differentiable.

We conclude that, since K(χn, χn)
1/2 is continuously differentiable and both ma-

trix inversion and multiplication are smooth operations,
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Σ(χm) = K(χm, χn)K(χn, χn)
−1/2 is continuously differentiable as well, and the pro-

cess (written in Belopolskaya-Daletsky form)

dχt = expχt
(Σ(χt)dWt) (5.43)

is well-posed on the manifold.

In practice, we do not implement the exponential map directly. Instead, we use the

Hamiltonian formulation of the geodesic equations and use the co-exponential map

(2.32), evaluated at the initial momentum corresponding to the differential Σ(χt)dWt.

When we expand Σ, the differential becomes K(χm, χn)K(χn, χn)
−1/2dWt, and we

realize that its covector formulation is simply K(χn, χn)
−1/2dWt. So we have

dχt = exp[
χt

(
K(χn(t), χn(t))

−1/2dWt

)
. (5.44)

Brownian Motion on a Riemannian manifold

We discuss here the most famous example of a diffusion – the Brownian motion and

its generator – the Laplace-Beltrami operator. For that we require the manifold to

possess a Riemannian structure. Let’s denote the metric coefficients by gij and those

of its inverse by gij. Assume that the vector fields B1, ..., Bm form an orthonormal

frame with respect to this metric; this implies that in local coordinates: bikgijb
j
l = δk,l,

and bikb
j
k = gij. The matrix Bij appearing in the infinitesimal generator becomes the
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inverse of the metric tensor. The full form of the infinitesimal generator is

L =
1

2
gij

∂

∂xi

∂

∂xj
+

1

2
Γk
ijg

ij ∂

∂xk
. (5.45)

Using the direct relationship between the Christoffel symbols and the metric

Γk
ij =

1

2
gkl
(
∂gli
∂xj

+
∂glj
∂xi

− ∂gij
∂xm

)

(5.46)

one can verify that the generator can also be written in the more familiar way

L =
1

2
gij

∂

∂xi

∂

∂xj
+

1

2
|g|−1/2 ∂

∂xi
(|g|1/2gij) ∂

∂xj
=

1

2
|g|−1/2 ∂

∂xi

(

|g|1/2gij ∂

∂xi

)

=
1

2
∇ · ∇,

(5.47)

which is the traditional definition of the Laplace-Beltrami operator as the divergence

of the gradient.

We observe that the Laplace-Beltrami operator has an additional first order term

(containing the Christoffel symbols) in contrast to the classical Laplacian which has

only the second order term. Clearly they coincide when the manifold is flat and the

Christoffel symbols are zero. On a general manifold one uses the exponential map

to generate Brownian motion, which yields an extra correction term to the drift. So

if we evaluate the exponential map at A(Xt, t) = 0, we obtain the following local
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coordinate formulation of the SDE (i = 1, ..., d)

dXi = −1

2

d∑

k=1

Γk
ij

d∑

l=1

bil(Xt)b
j
l (Xt)dt

︸ ︷︷ ︸

Riemannian correction drift

+
d∑

k=1

bk(Xt)dwk(t)

︸ ︷︷ ︸

Brownian motion

. (5.48)

Thus, in local coordinates the Brownian motion has a nonzero drift, and the in-

finitesimal generator has an associated first order term. Although we do not use this

representation for sampling, the form of the equations in local coordinates will be

useful later in Section 5.7.

Brownian Motion on a Sub-Riemannian Manifold

Note that when n ≤ d the Bi(X)’s form a basis only for an n-dimensional subspace

of TXM (they form a basis for the distribution HX). The notion of a metric does not

exist on a sub-Riemannian manifold (the inner product is not defined for vectors not

belonging to the distribution), therefore, the above definition of Brownian motion

cannot be automatically extended to the sub-Riemannian case. Instead, we resort

to the notion of a cometric [70] which corresponds to the inverse of the metric in

Riemannian geometry. We first introduce the bundle map: β̃ : T ∗M → TM in the

following way:

• im(β̃X) = HX

• p(v) = 〈β̃X(p), v〉 for v ∈ HX and p ∈ T ∗
XM .

Now we can define the cometric as the contravariant tensor β : T ∗M × T ∗M → R
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satisfying

β(p1, p2) = p1(β̃(p2)) = 〈β̃(p1), β̃(p2)〉, for p1, p2 ∈ T ∗M. (5.49)

It is clear that β is degenerate since β̃ is not onto.

In local coordinates, we can refer to the cometric as gij(x) (and gij(x) is not well

defined). Formulas in Riemannian geometry which can be written in terms of the

inverse of the Riemannian metric can be generalized to the sub-Riemannian case. We

observe that the Laplace-Beltrami operator contains the Christoffel symbols, whose

direct computation requires the derivatives of the Riemannian metric, and thus cannot

be automatically generalized to sub-Riemannian manifolds. We define the raised

Christoffel symbols (as introduced by [46], [84]):

Γkpq =
1

2

(

gjp
∂gkq

∂xj
+ gjq

∂gkp

∂xj
− gjk

∂gpq

∂xj

)

. (5.50)

The classical Christoffel symbols specify the covariant derivative and appear in the

geodesic equations on a Riemannian manifold (2.22). Similarly, the raised Christoffel

symbols appear in the Hamiltonian formulation of the geodesic equations on a sub-

Riemannian manifold:

ẍi(s) = Γijk(x(s))pj(s)pk(s), i = 1, ..., d (5.51)
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for some initial conditions on the covectors pj(0) for j = 1, ..., d. We recall that there

is no one-to-one correspondence between covectors and horizontal vectors.

Differentiating both sides of the equality gilglj = δij, we obtain:

∂gil

∂x
glj = −gil glj

∂x
. (5.52)

The following relationship between the classical and raised Christoffel symbols is

deduced

gijΓk
ij = gijgkm

(
∂gmi

∂xj
+
∂gmj

∂xi
− ∂gij
∂xm

)

= (5.53)

= −gij ∂g
km

∂xj
gmi − gij

∂gkm

∂xi
gmj + gkm

∂gij

∂xm
gij = (5.54)

= −gim∂g
kj

∂xm
gji − gmj ∂g

ki

∂xm
gij + gkm

∂gij

∂xm
gij = (5.55)

= −gij
(

gmi∂g
kj

∂xm
+ gmj ∂g

ki

∂xm
− gmk ∂g

ij

∂xm

)

= −gijΓijk. (5.56)

The third equality was obtained by renaming the indices of the first two terms, the

next one – by using the symmetry of the Riemannian metric.

Therefore, the Laplace-Beltrami operator can be written in terms of the raised

Christoffel symbols as:

L =
1

2

(

gij
∂

∂xi

∂

∂xj
− gijΓ

ijk ∂

∂xk

)

. (5.57)
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This representation improves upon (5.45) as it does not require calcultion of

derivatives of the metric, but still depends on gij which is not well defined on a

sub-Riemannian manifold, so more intrinsic formulation should be sought.

On a Riemannian manifold the definition of the Laplace-Beltrami operator as

the divergence of the gradient is possible due to the existence of the Riemannian

volume form and this definition is intrinsic. On a sub-Riemannian manifold there

is no natural way to define a volume form, hence, there does not exist a unique

definition of the corresponding sub-Laplacian operator (the generator of the sub-

Riemannian Brownian motion). There has been a lot of recent work toward providing

an appropriate formulation for the sub-Laplacian: based on the Hausdorff volume [1],

based on Popp’s volume (introduced by Popp and discussed for the first time in [70]),

etc [42, 43, 3].

Rather than settling on a choice of volume, in a recent work Gordina, et. al. [43]

suggest choosing the sub-Laplacian operator so that the resulting process is a limit

of a suitably defined random walk on the manifold. The proposed definition is based

on a Riemannian metric which is compatible with the sub-Riemannian metric on the

manifold. A metric gij on M is called compatible if when restricted to the horizontal

distribution H coincides with the sub-Riemannian metric: 〈v, w〉M = 〈v, w〉H for

v, w ∈ H. In our particular setting there is a natural choice for a Riemannian metric

on the manifold: the one induced by the reproducing kernel evaluated at χm. The

Riemannian metric provides a one-to-one correspondence between the tangent and
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cotangent spaces of the manifold, thus given a vector in horizontal distribution we

can identify a unique covector associated to it. Let Φg
t+s(x, v) be the Hamiltonian

flow for g on M with an initial condition x and p = g(v) (the map g here indicates

the correspondence between v and p based on the metric). For our choice of a metric

this corresponds to solving the exponential map as defined in (3.33). Gordina, et al.

define the sub-Laplacian operator in the following way:

Lf(x) =

∫

SHx

{

∂

∂t

∂

∂s
f(Φg

t+s(x, v))

∣
∣
∣
∣
s=0,t=0

Ux(dv)

}

, (5.58)

where the integral is calculated over the unit sphere in the horizontal distribution

SH§
, Φg

t is the flow along a horizontal geodesic, and Ux is the rotationally invariant

measure on the distribution. In local coordinates the generator takes the form

L =
1

m

m∑

i,j=1

{

βij ∂2

∂xi∂xj
−

m∑

k,q,r=1

Γijkgiqβ
qrgrj

∂

∂xk

}

, (5.59)

where βij = 〈β(dxi), β(dxj)〉. Clearly, on a Riemannian manifold, where βij = gij,

this reduces to a scaled version of the Laplace-Beltrami operator (5.57). The corre-

sponding SDE in local coordinates is

dXi = −1

2

d∑

k=1

Γijk

d∑

q,r=1

giqβ
qrgrjdt

︸ ︷︷ ︸

sub-Riemannian correction drift

+
1

2

d∑

k=1

bkdwk(t)

︸ ︷︷ ︸

Brownian motion

, (5.60)
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where βij =
∑n

l=1 b
i
lb

j
l .

In our setting the matrix with entries βqr takes the form:

β =







K(χn)
−1 0

0 0






. (5.61)

Thus giqβ
qrgrj is the ij’s entry of the matrix

K(χm)







K(χn)
−1 0

0 0






K(χm) = K(χm, χn)K(χn, χn)

−1K(χn, χm) = C(χm).

(5.62)

Further, bil(χt) is the il’th entry of Σ(χm) = K(χm, χn)K(χn, χn)
−1/2.

Therefore, we conclude that the model we have proposed in (5.43) coincides with

this definition of Brownian motion on sub-Riemannian manifold.

5.4 Drift models

In this section we discuss various models for the drift in the diffusion.
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5.4.1 Constant drift

A simple drift formulation assumes the coefficients of the vector field are constant

with respect to some basis of vector fields E1, ...En on M:

A(χt, θ) =
n∑

i=1

Ei(χt)θi. (5.63)

The choice of a basis is important: a drift constant with respect to one basis may

not be constant with respect to another one. We will consider two special cases: the

basis obtained by evaluating the kernel at a set of control points (i.e. the covector

associated with the drift is fixed):

A(χt,θ) =
n∑

i=1

K(χt, xi)θi = K(χt)θ, (5.64)

or an orthonormal basis as defined in Section 5.3

A(χt, θ) = Σ(χt)θ. (5.65)

As usual, we allow for the vector fields E1(χt), ..., En(χt) to span only a subspace of

the tangent space when n < m.

The diffusion process with this drift written in Belopolskaya-Daletskiy form

dχt = expχt
(K(χt)θdt+Σ(χt)dWt), (5.66)
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can be interpreted as a random walk with a fixed trend.

5.4.2 Shape gradient drifts

Although intuitively simple, the constant drift model does not preserve its properties

under change of coordinates. Thus, we are urged to construct models which possess

drift terms with intrinsic properties. A natural approach is to consider a “potential”

function U :→ R, and the corresponding stochastic gradient flow with a drift −∇U .

Thus the drift will “push” the process toward the minimizer of the potential function.

The “strength” of this push can be determined by a parameter θ, yielding a process

dχt = θ∇U(χt) + B(χt)dWt, (5.67)

where B(χt) can represent the Brownian motion coefficients in a Riemannian or sub-

Riemannian sense, and the diffusion is in Belopolskaya-Daletsky form.

Riemannian gradient. As U is a function on the Riemannian manifold M, the

gradient is a vector field on M and satisfies for any other vector field v:

(dU |v)χ = 〈∇U, v〉χ, (5.68)

where (dU |v)χ represents the action of the differential of U on v evaluated at χ.
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In local coordinates the inner product can be written as

〈∇U, v〉χ = (∇UM
χ )TK(χ, χ)−1vχ, (5.69)

where by ∇UM
χ we denote the evaluation of the Riemannian gradient to distinguish

from the Euclidean gradient ∇Uχ. Further, the action of the differential can be

written in terms of the Euclidean inner product

(dU |v)χ = ∇UT
χ vχ. (5.70)

The condition in (5.68) becomes

∇UT
χ vχ = (∇UM

χ )TK(χ, χ)−1vχ, (5.71)

hence the form of the Riemannian gradient is

∇UM
χ = K(χ, χ)∇Uχ. (5.72)

The evaluation at an individual point is

∇M
xi
U =

m∑

j=1

K(xi, xj)∇xi
U. (5.73)

Horizontal gradient. When working on a sub-Riemannian manifold and equipped
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only with a sub-Riemannian metric, we resort to the definition of a horizontal gra-

dient: a vector field in the distribution H which satisfies for every horizontal vector

field v

(dU |v) = 〈∇HU, v〉H. (5.74)

Let’s assume the form of the horizontal gradient in local coordinates is ∇H
χm
U =

K(χm, χn)α and the form of an arbitrary vector field in local coordinates is v =

K(χm, χn)β. According to (5.74) the coefficients of the horizontal gradient need to

satisfy

∇UT
χm

K(χm, χn)β = αTK(χn, χn)β, (5.75)

i.e.

α = K(χn, χn)
−1K(χn, χm)∇χm

U, (5.76)

and therefore

∇H
χm
U = K(χm, χn)K(χn, χn)

−1K(χn, χm)∇χm
U. (5.77)

This formulation will be used in the models in the next two sections.
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5.4.2.1 Mean-reverting drift

In this section we mathematically describe a process for which the shape is free to

vary from step to step but in the long run does not deviate much from a fixed template

shape. We are motivated by the following definition of the Ornstein-Uhlenbeck process

on R:

dXt = θ(µ−Xt) + dWt, θ > 0. (5.78)

Like Brownian motion, this process is Gaussian and Markovian, however, it also

admits a stationary distribution (and is the unique process which possesses these three

properties simultaneously). The stationary behavior can be understood by rewriting

the drift of the process as a gradient of a function:

dXt = θ∇Xt

[

−(Xt − µ)2

2

]

+ dWt. (5.79)

The drift of the process can now be interpreted as a force pushing toward the min-

imizer of the squared distance between Xt and the fixed element µ, and, due to the

stochastic effect of the Brownian motion term, the process ends up oscillating around

the mean (hence the commonly used name “mean-reverting” process). To transfer

this idea to the space of shapes, we define the potential function as U = dist(χt, µ)

where µ is a mean shape (in practice, it can be represented by a template shape

calculated from a set of training data). In a Riemannian framework it is natural to
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take this distance to represent the length of the geodesic path connecting Xt and µ,

i.e. solution of the following minimization problem:

dist(χt, µ) = min
v: χt=expµ(v)

‖v‖ (5.80)

The gradient of the distance reflects the rate of change of the minimizer of (5.80)

with respect to a change in the shape χt, which is not a trivial problem.

Instead, we define U to be a function which simply measures the area of mismatch

between the shapes determined by χt and µ. Since area is invariant under parame-

terization, it is an intrinsic geometric property. For that first we can construct two

binary images of the same pre-determined size Bχt
and Bµ which are nonzero in the

interior of the corresponding contours. Then we let U = |Bχt
−Bµ|, i.e. the number of

mismatched pixels. The continuous version of U would give us the area of mismatch

of the two regions, and can be written as an integral of a function over the region

enclosed by χt (denoted by Ωχt
):

U(χt) =

∫

R2

|Bχt
− Bµ| ∝

∫

Ωχt

(|1− Bµ(x)| − |0− Bµ(x)|
︸ ︷︷ ︸

F (x)

)dx. (5.81)

Now we simply observe that the function U(χt) can be written as an integral of a

function over the domain of the shape χt:
∫

Ωχt
F (x)dx. We can obtain the gradient

by applying the divergence theorem to convert the integral to one over the boundary

of the region which can be further discretized to obtain an explicit form. We provide
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details in Section 5.4.2.3.

The parameter θ determines how strongly the shape is attracted to the mean

shape:

dχt = −θ∇MU(χt)dt+B(χt)dWt. (5.82)

This model can easily be generalized to the case when we have multiple template

shapes µ1, ..., µp and we would like to learn how the object is attracted to each of

them. We can consider

dχt = −
p
∑

i=1

θi∇Mdist(χt, µi) + B(χt)dWt. (5.83)

We call this a “regression drift”.

5.4.2.2 Shape descriptor drifts

In the absence of a template shape, we consider more general characteristics of the

shape. For example, suppose that we have knowledge about the average length Lµ

and area Aµ of the object. Since these are scalar measures, the potential function

can simply be set to the quadratic deviation of the shape’s length and area from the

mean values: we set U1(χt) = −1
2
|Lχt

− Lµ|2, U2(χt) = −1
2
|Aχt

− Aµ|2, and define
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A(χt, θ) = θ1∇MU1 + θ2∇MU2:

dχt = −1

2
θ1∇M|Lχt

− Lµ|2 −
1

2
θ2∇M|Aχt

− Aµ|2 +B(χt)dWt, (5.84)

dχt = −θ1(Lχt
− Lµ)∇ML(χt)− θ2(Aχt

− Aµ)∇MA(χt) + B(χt)dWt, (5.85)

dχt = −[(Lχt
− Lµ)∇ML(χt) (Aχt

− Aµ)∇MA(χt)]







θ1

θ2






dt+B(χt)dWt.

(5.86)

The gradients of these functions are also computable and we provide the derivations

in the next section.

We can generalize to p shape descriptors mi with average values mi
µ by defining a

potential function

U(χt) =

p
∑

i=1

θidist(m
i(χt),m

i
µ)

2, (5.87)

where the distance is appropriate for the space each shape descriptor is defined in.

5.4.2.3 Discretized gradients

In this section we provide explicit calculations of the gradients appearing in the shape

models described in the previous two sections and discuss some of their properties. We

first obtain the Euclidean gradients and then Riemannian/sub-Riemannian gradients
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can be obtained by equations (5.72) and (5.77).

Template mismatch:

The mismatch from the template is calculated according to

U =

∫

Ωχt

F (x)dx, (5.88)

where F (x) = |1 − Bµ(x)| − |Bµ(x)| = 1 − 2Bµ(x) (Bµ takes values 0 or 1). As this

function is discontinuous at the boundary of the template, a smoothed version of Bµ

should be used instead. Now that F is differentiable (and also bounded) the gradient

of U can be obtained using the divergence theorem

∇U =

∫

Ωχt

∇F (x)dx =

∫

χt

F (x) · νdx, (5.89)

where ν is the outer pointing unit normal along the boundary of the shape.

We recall that χt represents the polygon determined by the points x1(t), ..., xm(t) ∈

χt. As χt is piecewise smooth, we can write the integral as

∫

Xt

F (x) · νdx =
m∑

i=1

∫

xixi+1

F (x) · νdx, (5.90)

where xixi+1 indicates the line segment from xi to xi+1 and xm+1 = x1. We assume

that F (x) is close to constant along the line segments (here we clearly introduce an

error since we know that F (x) depends on the binary image Bµ and can change values
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rapidly along its boundary) and thus approximate

∇U ≈
m∑

i=1

F (xi)Ni|xixi+1|, (5.91)

where Ni indicates the outward normal (when points are ordered clockwise) at the

midpoint of the line segment xixi+1, and |xixi+1| is the length of the segment. In our

implementation we first reparameterize the contour by arc length, and then evaluate

the function and the normal at the newly created points to simplify the integral

computation.

Area:

The area of a polygonal curve with points x1..., xm is

A =
1

2

m−1∑

i=1

det(xi, xi+1). (5.92)

The Euclidean gradient of the discretized area with respect to the xi’th point takes

the form:

∇xi
A =

1

2







x
(2)
i+1 − x

(2)
i−1

x
(1)
i−1 − x

(1)
i+1






, (5.93)

where the superscripts indicate the coordinates of the points.

Using the relationship between Euclidean and Riemannian gradients in (5.72) we
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can derive the explicit form of the Riemannian area gradient:

∇M
xi
A =

1

2







∑m−1
j=1 K(xi, xj)(x

(2)
j+1 − x

(2)
j−1)

∑m−1
j=1 K(xi, xj)(x

(1)
i−1 − x

(1)
i+1)






. (5.94)

Length:

We represent the length in the following way

L(χ) =
m−1∑

i=1

‖xi − xi+1‖, (5.95)

where ‖·‖ is the Euclidean norm. To obtain the derivative we consider a displacement

h1, ..., hm and calculate

dL(h) =
d

dt

m−1∑

i=1

‖xi + thi − xi+1 − thi+1‖|t=0

=
m−1∑

i=1

(xi − xi+1)
T (hi − hi+1)

‖xi − xi+1‖
. (5.96)

The length gradient is

∇L =
xi − xi+1

‖xi − xi+1‖
− xi−1 − xi

‖xi−1 − xi‖
. (5.97)

We make the important observation that the gradient of the length becomes ill-

defined when points coincide. We introduce a better behaved shape descriptor with
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similar properties in the next section.

Energy:

The energy of a contour γ is defined as

E(γ) =

∫

γ

‖γ′‖2ds. (5.98)

Its polygonal approximation is

E(X) = m

m∑

i=1

‖xi − xi+1‖2, (5.99)

assuming that the coordinates of the set of landmarks are stored in X (which is an

n× 2 matrix). Let’s look at its vector form. The squared length function is

E(X) = ‖X −M1X‖2, (5.100)

where

M1 =















0 1 0 . . .

0 0 1 0

...
... 0

. . .

1 0 . . . 0















(5.101)
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We define the following matrix

L = (I −M1)
T (I −M1), (5.102)

so we have E(X) = XTLX and ∇E = LX.

We first note that the energy of a contour is not invariant under reparameteriza-

tion. Further, while the length of the discrete contour does not depend on the position

of the contour in the plane, the discrete energy grows when the contour moves further

from the origin. To have a function which is invariant of the position of the shape,

we introduce X ′ as the coordinates of X after subtracting the center of mass:

X ′ = X − 1X/n, (5.103)

where 1 is the matrix of ones. We see that X ′ =M2X, with

M2 = I − 1

n
1. (5.104)

The modified energy is

E(X ′) = X ′TLX ′ = XTMT
2 LM2X, (5.105)
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and the gradient is

∇E ′ =MT
2 LM2X. (5.106)

5.5 Simulation of shape paths

We generate artificial observations from the suggested dynamical shape models by

numerically integrating the corresponding SDEs.

The initial shape is a circle of radius 10. The diffusion is simulated up to time

T = 30 and the time step is dt = 0.05 (except (d) dt = 0.1). The deformation kernel

width is set to σ = 10. Below we display the sequences on a 3D plot in which the 3rd

dimension corresponds to time. The black stripes correspond to the locations of the

control points.
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Figure 5.1: Driftless Diffusion

Figure 5.2: Constant Drift Diffusion

Figure 5.3: Mean-reverting Diffusion (initial shape is a circle, template shape is a
dumbbell)
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Figure 5.4: “Regression-like” Diffusion (with two template shapes: one vertical ellipse
and one horizontal ellipse)

Figure 5.5: Shape Descriptor Drift Diffusion (with length and area terms)

5.6 Estimation of drift parameters in shape diffu-

sions

Given observations {χt, t ∈ [0, T ]} from the Itô process χt on M satisfying

dχt = A(χt, θ)dt+B(χt)dWt, χ0 = x, (5.107)
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(note we assume we have continuous measurements) we would like to find an estimate

for the drift parameters stored in θ. Although in practice we can never obtain obser-

vations in continuous time, methods for estimating the parameters in this case lead

to natural approaches to the problem in the case when observations occur at discrete

times. We consider likelihood-based estimation, but before addressing how to solve

the problem on the space of shapes, we provide some background of the methodology

for processes in Euclidean space.

5.6.1 Maximum likelihood estimation for processes on R
n

In this section we discuss the topic of obtaining maximum likelihood estimates for

drift parameters in diffusion processes on R
n:

dXt = A(Xt, θ)dt+B(Xt)dWt, X0 = x, t ∈ [0, T ]. (5.108)

Let Pθ be the measure generated by the process Xt. A likelihood function for θ

is obtained by introducing the measure P corresponding to process (5.108) when

A(Xt, θ) = 0 (driftless diffusion), and considering the Radon-Nikodym derivative of

Pθ with respect to P . Assume that the matrix C(x) = B(x)B(x)T is non-singular.

Girsanov theorem states that under the following Novikov condition

Eθ exp

(∫ T

0

A(Xt, θ)
TC(Xt)

−1A(Xt, θ)dt

)

<∞, (5.109)
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Pθ is absolutely continuous with respect to P and the corresponding Radon-Nikodym

derivative takes the form

dPθ

dP
(X) =

∫ T

0

A(Xt, θ)
TC(Xt)

−1dXt −
1

2

∫ T

0

A(Xt, θ)
TC(Xt)

−1A(Xt, θ)dt.

(5.110)

When C is not invertible (which is always the case when n < m), C−1 can be

substituted with B((BTB)†)2BT , where (BTB)† is the generalized pseudo-inverse of

BTB [98]. A likelihood function can be defined l(θ,X) = dPθ

dP
(X), and an MLE

estimate for θ can be obtained by maximizing l with respect to θ. Specific properties

of the estimator can be obtained in many situations. For example, when Xt is one-

dimensional and the drift is A(Xt, θ) = θa(Xt), the form of the MLE estimate is:

θ̂(ξ) =

∫ T

0
a(Xt)Xtdt

∫ T

0
a2(Xt)dt

, (5.111)

and following results hold under additional regularity conditions ([61], Theorem 17.2,

p. 202):

Bias(θ, T ) =
d

dθ
Eθ

(∫ T

0

a2(Xt)dt

)−1

, (5.112)

MSE(θ, T ) =
d

dθ
Eθ

(∫ T

0

a2(Xt)dt

)−1

+
d2

dθ2
Eθ

(∫ T

0

a2(Xt)dt

)−2

. (5.113)
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When measurements are observed at discrete equally sampled times: t0, t1, ..., tN

with h = ti+1 − ti, the approximation of the likelihood ratio is

lh,N(θ,X) =
N∑

i=1

A(Xti−1
, θ)TC(Xti−1

)−1(Xti −Xti−1
)−

−h
2

N∑

i=1

A(Xti−1
, θ)TC(Xti−1

)−1A(Xti−1
, θ).

(5.114)

which can be maximized to obtain an MLE estimate for θ. The MLE estimator has

many desirable properties: under the condition that Nh3 → 0 (moderately increasing

design), it can be shown that it is consistent, asymptotically normal and efficient [98].

5.6.2 Discrete likelihood ratio

To obtain intuition of what the likelihood ratio represents for diffusions on a manifold,

we look at its approximation by considering a discretized version of the diffusion

evaluated at finitely many time points t0, ..., tN with distance between them ∆j =

tj+1 − tj. Using the Belopolskaya form of the Itô equation, we can write the process

as

χtj+1
= expχtj

(

∆jA(χtj , θ) +
√

∆j

n∑

i=1

Bi(χtj)εi(tj)

)

, j = 0, ..., N − 1,

(5.115)
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where Bi’s represents a (not necessarily orthonormal) basis for Tχtj
M , and εi’s are

independent standard normally distributed r.v.’s.

We are interested in pθ(χ0:N) and each χtj+1
= F (χj, ε) and F represents the

transformation in (5.115). Let’s write for short χ0:N = Φ(ε), then

pχ0:N ,θ(x) = pε,θ(Φ
−1(x))|DΦ−1(x)|. (5.116)

First let’s compute pε,θ(Φ(χ0:N)). We can rewrite (5.115) in terms of εi’s, by

introducing the Riemannian logarithm map logχtj
(χtj+1

) = exp−1
χtj

(χtj+1
) (we assume

that if the observations are not far apart the inverse of the exponential map is well

defined):

n∑

i=1

Bi(χtj)εi(tj) = logχtj
(χtj+1

)/
√

∆j −
√

∆jA(χtj , θ). (5.117)

The matrix form of the above equation is

εtj = B(χtj)
−1
(

logχtj
(χtj+1

)/
√

∆j −
√

∆jA(χtj , θ)
)

, (5.118)

Φ−1(χ0:N) = B(χtj)
−1
(

logχtj
(χtj+1

)/
√

∆j −
√

∆jA(χtj , θ)
)

. (5.119)

Since the εtj ’s are normally distributed, their joint density given the observed
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path is

pε,θ(Φ
−1(χ0:N))) ∝

N∏

j=0

e
−εTtj

εtj /2 =

= exp

( N∑

k=1

− logχtj
(χtj+1

)TB(χtj)
−TB(χtj)

−1 logχtj
(χtj+1

)/2∆j+

+ logχtj
(χtj+1

)TB(χtj)
−TB(χtj)

−1A(χtj , θ)−

− ∆j

2
A(χtj , θ)

TB(χtj)
−TB(χtj)

−1A(χtj , θ)

)

. (5.120)

Next, we look at the form of the Jacobian:

|DΦ−1(x)| = |DΦ(Φ−1(x))|−1, (5.121)

where

[DΦ(ε)]j+1 = ∂1F (χi, εi)δχi + ∂2F (χj, εj)δεj. (5.122)

We observe that the Jacobian of Φ is triangular, and its determinant is

|DΦ−1(χ0:N)| =
N∏

j=1

det(∂2F (χj, εj)), (5.123)
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with

∂F (χj, εj)u = D expχj
(logχj

χj+1)(
√

∆jB(χj)u). (5.124)

This transformation does not depend on θ, and will cancel in the likelihood ratio.

Define the driftless process

χtj+1
= expχtj

(

√

∆j

n∑

i=1

Bi(χtj)εi(tj)

)

, j = 0, ..., N − 1. (5.125)

The density of ε for the driftless process is

pε,θ(Φ
−1(χ0:N)) ∝ exp

( N∑

j=1

− logχtj
(χtj+1

)TB(χtj)
−TB(χtj)

−1 logχtj
(χtj+1

)/2∆j

)

,

(5.126)

and the density of χ0:N is

pχ0:N
(Φ−1(χ0:N)) ∝ pε,θ(Φ

−1(χ0:N))|DΦ−1(χ0:N)|, (5.127)

where has |DΦ−1(χ0:N)| the same form as the determinant of the Jacobian for process

with drift, and these terms will cancel when we calculate the likelihood ratio.
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The final form of the likelihood ratio is

pθ(χ1:N)

p(χ1:N)
∝ exp

( N∑

j=0

logχtj
(χtj+1

)TB(χtj)
−TB(χtj)

−1A(χtj , θ)−

− ∆j

2
A(χtj , θ)

TB(χtj)
−TB(χtj)

−1A(χtj , θ)

)

. (5.128)

If α(χtj , θ) contains the coefficients of A(χtj , θ) in the basis B(χtj), then

pθ(χ1:N)

p(χ1:N)
∝ exp

(
∑N

j=0 logχtj
(χtj+1

)TB(χtj)
−Tα(χtj , θ)− ∆j

2
α(χtj , θ)

Tα(χtj , θ)
)

.

(5.129)

5.6.3 Girsanov theorem on manifolds

Girsanov theorem has been generalized to differentiable manifolds by Elworthy in [33]

(p. 263). Let Xt and Yt be two processes on an m-dimensional Riemannian manifold

M (with a metric 〈, 〉):

dXt = A(Xt, θ)dt+
m∑

k=1

Bk(Xt) ◦ dwk(t), (5.130)

dYt =
m∑

k=1

Bk(Yt) ◦ dwk(t). (5.131)
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Let’s denote by PX and PY the measures corresponding to Xt and Yt. Let’s also

assume that B1, ..., Bn are orthonormal. Under the Novikov condition

EPX
exp

(
1

2

∫ T

0

〈A(Xt, θ), A(Xt, θ)〉dt
)

<∞, (5.132)

Girsanov theorem states that PX ∼ PY and

dPX

dPY

(X) = exp

(∫ T

0

〈A(Xt, θ), dXt〉 −
1

2

∫ T

0

〈A(Xt, θ), A(Xt, θ)〉dt
)

. (5.133)

In coefficient form the likelihood ratio is:

dPX

dPY

(X) = exp

(∫ T

0

α(Xt, θ)
TB(Xt)

−1dXt −
1

2

∫ T

0

α(Xt, θ)
Tα(Xt, θ)dt

)

.(5.134)

Let ρ ∈ C([0, T ],M), i.e. it is a continuous path on M . Then we would like to

maximize the function lρ(θ):

lρ(θ) = E

[
dPX

dPY

(X)

∣
∣
∣
∣
X = ρ

]

(5.135)

with respect to θ, where ρ is the observed process.

5.6.4 Likelihood ratio estimates

We derive the likelihood ratio function for the drift models proposed in Section 5.4.

We note that in all the considered cases the drift is linear with respect to the parameter
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θ. This simplifies the likelihood maximization and we provide explicit MLE estimates.

5.6.4.1 Constant drift

We write the drift in a matrix form

A(χt, θ) = K(χt)θ = Kχt
θ (5.136)

dµχ

dµχ0

(χ) = exp

{∫ T

0

〈A(χt, θ), dχt〉 −
1

2

∫ T

0

〈A(χt, θ), A(χt, θ)〉dt
}

=

= exp

{∫ T

0

〈(Kχt
θ, dχt〉 −

1

2

∫ T

0

〈Kχt
θ,Kχt

θ〉dt
}

=

= exp

{∫ T

0

θTdχt −
1

2

∫ T

0

θTKχt
θdt

}

. (5.137)

Given the observations χt0 , ..., χtN , we can approximate the differential dχtj ≈

log(χtj , χtj+1
) (that such a discretization is valid is justified in Theorem 7.37 [34]).

Since we usually work with the Hamiltonian formulation of the exponential map,

we can first find the initial momentum αj which maps χtj to χtj+1
, and then set

log(χtj , χtj+1
) = K(χtj)αj. This allows us to obtain an approximation to the likeli-

hood ratio:

dµχ

dµχ0

(χ) ≈ exp

{
N−1∑

j=0

θT log(χtj , χtj+1
)− 1

2

N−1∑

j=1

∆jθ
TKχtj

θdt

}

, (5.138)
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and then optimize with respect to θ

θ̂ =
1

T

n∑

i=1

K−1
χti

log(χti , χti+1
). (5.139)

If we actually obtain the true piecewise momenta which connect the data points we

would have

θ̂ =
1

T

N−1∑

j=0

K−1
χtj

log(χtj , χtj+1
) = (5.140)

θ̂ =
1

T

N−1∑

j=0

K−1
χtj
Kχtj

αj = (5.141)

θ̂ =
1

T

N−1∑

j=0

αj (5.142)

Thus the estimator can be interpreted as a time average of the initial momenta

connecting consecutive observations. As the time step is assumed to be small, the

differential can be further approximated by dχtj ≈ χtj+1
− χtj :

θ̂ =
1

T

N−1∑

j=1

K−1
χtj

(χti+1
− χti). (5.143)

Note that when the metric is the identity matrix, then the exponential map is simply
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addition, and we have

θ̂ =
1

T

N−1∑

j=0

(χtj+1
− χtj) =

1

T
(χ(T )− χ(0)). (5.144)

5.6.4.2 Mean-reverting drift

The likelihood ratio is

dµχ

dµχ0

(χ) = exp

(

θ

∫ T

0

〈∇dist(χt, µ), dχt〉 −
1

2
θ2
∫ T

0

‖∇dist(χt, µ)‖2dt
)

, (5.145)

which gives an estimate for θ

θ̂ =

∑N−1
j=0 〈∇dist(χtj , µ), log(χti , χti+1

)〉
∑N−1

j=0 ‖∇dist(χtj , µ)‖2dt
.
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5.6.4.3 Shape descriptor drift

The likelihood ratio is

dµχ

dµχ0

(χ) = exp







∫ T

0

[θ1 θ2]







(Lχt
− Lµ)∇L(χt)

T

(Aχt
− Aµ)∇A(χt)

T






dχt−

− 1

2

∫ T

0

[θ1 θ2]







(Lχt
− Lµ)∇L(χt)

T

(Aχt
− Aµ)∇A(χt)

T













(Lχt
− Lµ)∇L(χt)

T

(Aχt
− Aµ)∇A(χt)

T







T 





θ1

θ2






dt






.

(5.146)

Setting the derivative to zero we obtain

∫ T

0







(Lχt
− Lµ)∇L(χt)

T

(Aχt
−Aµ)∇A(χt)

T













(Lχt
− Lµ)∇L(χt)

T

(Aχt
−Aµ)∇A(χt)

T







T

dt







θ1

θ2






=







∫ T

0
(Lχt

− Lµ)∇L(χt)
T dχt

∫ T

0
(Aχt

−Aµ)∇A(χt)
T dχt






,

(5.147)

and the estimate for θ becomes







θ̂1

θ̂2






=







∫ T

0







(Lχt
− Lµ)∇L(χt)

T

(Aχt
−Aµ)∇A(χt)

T













(Lχt
− Lµ)∇L(χt)

T

(Aχt
−Aµ)∇A(χt)

T







T

dt







−1 





∫ T

0
(Lχt

− Lµ)∇L(χt)
T dχt

∫ T

0
(Aχt

−Aµ)∇A(χt)
T dχt







(5.148)
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To simplify the notation we defineMj as the Grammian matrix of ∇|L(χtj)−L|2 and

∇|A(χtj)− A|2, and set

b =







∑N−1
j=0 〈∇|L(χtj)− L|2, log(χtj , χtj+1

)〉
∑N−1

j=0 〈∇|A(χtj)− A|2, log(χtj , χtj+1
)〉






.

Then estimate based on the discrete observations is







θ̂1

θ̂2






=

(
N−1∑

j=0

Mj∆j

)−1

b. (5.149)

5.6.5 Estimation results

We present the performance of the likelihood ratio estimator for the different types

of diffusion drifts. It is known for Euclidean diffusions that if dt → 0, and T → ∞

the likelihood-ratio estimator is consistent. We look at the numerical convergence

of the estimates in our case as time increases while keeping the time step fixed. We

perform the estimation experiment 100 times and plot how each estimate of θ changes

with time. The results are displayed in the figures below: on the left the parameter

estimates for each experiment are plotted against the true parameter represented by

a red line; on the right we summarize the distribution by displaying the quantiles

for the sample at different levels. In all cases, we observe that as time increases, the

average of the MLE estimates approaches the true parameter.
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Figure 5.6: Estimation of a constant drift (first parameter)

Figure 5.7: Estimation of the coefficient in a mean-reverting drift (the initial shape
is a circle and the template shape is a dumbbell)

Remark: in the estimation procedure we use the true momenta α′
ts and the true

control points. In real applications these will not be available and they need to be

computed using the logarithm map or its approximation when it does not exist (the

question of existence is further discussed in Section 6.2).
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(a) Estimation of the coefficient corresponding to the gradient of the distance to fixed area

(b) Estimation of the coefficient corresponding to the gradient of the distance to fixed length

Figure 5.8: Estimation of the coefficients in a shape descriptor drift; there is significant
variation in the initial estimates of the coefficients, some of which are outside of
the vertical range of the above plots, but with time they quickly approach the true
parameter

5.7 On the properties of the solutions of shape dif-

fusion equations

In this section we discuss the properties of the solutions of the proposed diffusions.
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5.7.1 Definitions

Weak vs. Strong Solutions. There are two distinct notions of a solution of a

stochastic differential equation. A process Xt adapted to a filtration Ft associated

with some probability space paired with a Ft-adapted m-dimensional Brownian mo-

tion which together satisfy (5.6):

f(Xt)− f(X0) =

∫ t

0

Af(Xs)ds+

∫ t

0

n∑

k=1

Bkf(Xs) ◦ dwk(s), (5.150)

for any compactly supported function f ∈ M is called the weak solution of (5.8). If

Xt is adapted to the filtration FW
t generated by Wt, then it is a strong solution on

the probability space associated to FW
t . A defining property of strong solutions is

that the process at any time can be written as a function of the initial condition and

the Brownian motion: X(·) = F (X0,W (·)) a.s.. The existence of such a function and

its smoothness are important in the study of the flow of the shape over time, so we

are interested in strong solutions.

Pathwise Uniqueness vs. Uniqueness in Law. Pathwise uniqueness requires

that any two solutions are equal a.s., and since this concept is not affected by the

choice of filtration, it applies to both weak and strong solutions. Another notion

of uniqueness is uniqueness in law, which requires that any two solutions have the

same probability distribution (under the assumption that they have the same initial
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distribution). Since this definition directly deals with the laws of the processes, it

does not depend on the probability spaces they are defined on, and hence it also

applies to strong and weak solutions.

Important results by Yamada & Watanabe [96](Proposition 1 and Corollary 3)

state

pathwise uniqueness ⇒ uniqueness in law,

weak solution + pathwise uniqueness ⇒ (unique) strong solution.

Other relationships exist: for example, when the coefficients are bounded and the

mixing matrix has a bounded inverse (Theorem 4.2 [10])

uniqueness in law + strong solution ⇒ pathwise uniqueness.

We will discuss different conditions more thoroughly in the next section.

5.7.2 Conditions for existence and uniqueness

In this section we include some results on existence and uniqueness of SDEs on man-

ifolds. Some of the earliest work on this subject was done by Itô, who formulates

sufficient conditions for existence and uniqueness of stochastic differential equations

in Itô form on a general differentiable manifold [50]. Consider the stochastic differ-

ential equation in local coordinates:

dX i(t) = âi(Xt)dt+
n∑

k=1

bik(Xt) · dwk(t), i = 1, ..., n. (5.151)
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Assume that âi and bik are bounded in the following sense: there exists a coordi-

nate system in which |âi(Xt)| < K and |bik(Xt)| ≤ K for some constant K (chart-

independent), such that in that coordinate system the neighborhood of each point

on the manifold is mapped to the interior of the unit sphere in R
n and the point

is mapped to the center of this sphere. If additionally the coefficients are continu-

ously differentiable, then there exists only one solution to the stochastic differential

equation given some initial condition (Theorem 3.1 [50]). The solution is strong and

pathwise unique in the sense of the definitions above. Alternatively, we can directly

analyze the coefficients of the generator of the process (5.33). When the coefficients

âj, Bjk and the coefficients of the inverse of the matrix B are all bounded and con-

tinuously differentiable, there exists a continuous Markov process with the desired

generator (Theorem [51]). Global existence and uniqueness conditions are provided

by Gliklikh [41] (Theorem 7.36, Remark 7.39) : a strongly unique solution of (5.12)

exists if the norms of the tangent vectors A(Xt, θ) and the linear operators B(Xt) are

bounded and

‖trΓm′(B(m′), B(m′))‖ ≤ C (5.152)

for m′ ∈ Vm(r) holds on the balls Vm(r) in the charts of a uniform Riemannian atlas

where the bound C is independent of the ball and the chart.

In general, boundedness or Lipschitz continuity are not always required to obtain
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existence and uniqueness of solutions of SDEs. One can obtain similar results un-

der weaker conditions, as long as the coefficients are sufficiently smooth and their

growth is controlled. For example, local Lipschitz continuity and linear growth can

be sufficient (Durrett (page 190, Theorem 3.1)) [31]. Under the following conditions:

|bik(x)− bik(y)| ≤ Kn|x− y|, i = 1, . . . , d, (5.153)

|âi(x)− âi(x)| ≤ Kn|x− y|, i = 1, . . . , d, (5.154)

when |x|, |y| ≤ n, and

d∑

i=1

2xiâi(x) + Bii(x) ≤ C(1 + |x|2), (5.155)

the SDE in (5.9) (as an equation on R
n) has a unique strong solution.

In general, to show existence of solutions on a manifold, one can either directly

justify the global conditions, or show existence in local coordinates and justify that

solutions in different charts can be pieced together (or that there is a global chart).

5.7.3 Solutions on the landmark manifold

We recall that M is an open subset of R
2m (the subset on which the landmarks

are all different), so any diffusion can be written in a global chart on this subset.

We can show the existence of local solutions on the landmark manifold by showing
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the existence of local solutions in this chart, and further, if we can justify that the

solutions can be extended to the whole chart without leaving it (i.e. landmarks do

not coincide), we obtain global solutions. We discuss here the case when the drift is

zero and n = m. Note that still an extra drift term appears in the local representation

resulting from the Riemannian correction 5.48. So one needs to study the properties

both of the noise terms and the Riemannian correction drift term.

Properties of the noise term. As we have shown in Section 5.3 the smooth-

ness and the positive-definiteness of the covariance matrix ensure its square roots

are smooth which allows us to define the diffusion process with smooth coefficients

(they correspond to smooth vector fields on the landmark manifold). Further, the

covariance matrix consists of the evaluations of the Gaussian kernel at the landmark

points and the matrix is positive definite. Since the Gaussian kernel is Lipschitz,

the coefficients of the matrix are Lipschitz. A positive definite matrix with Lipschitz

coefficients has a unique positive square root which also has Lipschitz coefficients [36].

Properties of the Riemannian correction term. We recall that the correction

term on a Riemannian manifold (m = n) takes the form

corrk(χ) =
1

2
Γk
ij

m∑

l=1

bil(χ)b
j
l (χ) =

1

2
Γk
ijg

ij(χ) =
1

2
|g|−1/2 ∂

∂xi
(|g|1/2gik) =

=
1

2

∂

∂xi
gik +

1

2
|g|−1/2 ∂

∂xi
(|g|1/2)gik =

=
1

2

∂

∂xi
Bik

︸ ︷︷ ︸

fk

+
1

2
|B|1/2∂|B|−1/2

∂xi
Bik

︸ ︷︷ ︸

hk

, (5.156)
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where B is the cometric. First we note that it is a sum of product of differentiable

functions, so the coefficients are differentiable and, hence, locally Lipschitz. This,

together with the smoothness of the noise coefficients, justifies the existence of a

local solution. Further, we observe that the first term in the above sum consists of

derivatives of the Gaussian kernel, so it is bounded with bounded derivatives, i.e. it

is globally Lipschitz. However, it is harder to say at first look what the properties of

the second term are.

The term simplifies in the case of two landmarks: x1 and x2. The form of the

cometric is

B =







1 e−
‖x1−x2‖

2

2σ2

e−
‖x1−x2‖

2

2σ2 1







(5.157)

and hence the metric is

B−1 =
1

1− e−
‖x1−x2‖

2

σ2







1 −e−
‖x1−x2‖

2

2σ2

−e−
‖x1−x2‖

2

2σ2 1






. (5.158)

The first term is easy to calculate:

fj(x1, x2) =
∂

∂xi
Bij =

xj − xj′

σ2
e−

‖xj−x
j′ ‖

2

2σ2 , (5.159)

where j′ corresponds to the coordinate not equal to j.
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The j’th coefficient of the second term in the correction is

hj(x1, x2) = |B|1/2∂|B|−1/2

∂xi
gij = −1

2
|B|1/2|B|−3/2∂|B|

∂xi
gij = −1

2
|B|−1∂|B|

∂xi
gij =

= −1

2

1

1− e−
‖x1−x2‖

2

σ2

∂

∂xi

(‖x1 − x2‖2
σ2

)

e−
‖x1−x2‖

2

σ2 gij =

= −1

2

1

e
‖x1−x2‖

2

σ2 − 1

∂

∂xj

(‖x1 − x2‖2
σ2

)

−

−1

2

1

e
‖x1−x2‖

2

σ2 − 1

∂

∂xj′

(‖x1 − x2‖2
σ2

)

e−
‖x1−x2‖

2

2σ2

. (5.160)

Expanding the derivatives, we obtain

h1(x1, x2) = −1

2

1

e
‖x1−x2‖

2

σ2 − 1

x1 − x2
σ2

− 1

2

1

e
‖x1−x2‖

2

σ2 − 1

x2 − x1
σ2

e−
‖x1−x2‖

2

2σ2 =

=
1

2

x1 − x2
σ2

e−
‖x1−x2‖

2

2σ2 − 1

e
‖x1−x2‖

2

σ2 − 1
=
x1 − x2
2σ2

e−
‖x1−x2‖

2

2σ2
1− e

‖x1−x2‖
2

2σ2

e
‖x1−x2‖

2

σ2 − 1
=

=
x1 − x2
2σ2

e−
‖x1−x2‖

2

2σ2
−1

e
‖x1−x2‖

2

2σ2 + 1
(5.161)

and

h2(x1, x2) =
x1 − x2
σ2

e−
‖x1−x2‖

2

2σ2
1

1 + e
‖x1−x2‖

2

2σ2

. (5.162)

So for the case of two landmarks the correction term is well defined even if the
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two landmarks coincide. It is also continuous and bounded. We can see that as

‖x1 − x2‖ → ∞, the product of the first two terms goes to zero, and the last term

goes to zero, as well. Further, the derivatives are bounded too. Let r = (x2−x1)
√
2σ.

Then,

h1(x1, x2) =
r√
2σ

e−r2

1 + er2
, (5.163)

and

∂h1
∂r

=
1√
2σ

e−r2 − 1 + 2r − 3re−r2

(1 + er2)2
, (5.164)

and the full derivative is

∂h1
∂x1

= − 1√
2σ

e−‖x1−x2‖2 − 1 + 2(x2 − x1)− 3(x2 − x1)e
−‖x1−x2‖2

(1 + e‖x1−x2‖2)2
. (5.165)

The denominator goes to infinity as r → ∞ much faster than the nominator, so the

derivative is bounded, from which we conclude that h1 is Lipschitz continuous. Same

can be shown for h2.

We conclude that all the coefficients in the drift and noise terms for two-landmark

diffusion equations are Lipschitz, and hence the solution exists at all times and is a

homeomorphic flow. This property guarantees that the solution also never leaves the

chart.
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Proposition 5.4. Suppose (5.43) in local coordinates (as an SDE on R
4) has a global

solution defined for which an associated global flow of homeomorphisms exists. Then

no two landmarks meet along the path of the solution and the solution stays on the

landmark manifold for all times.

Proof. (of Proposition 5.4) Let’s denote this flow starting from time 0 and ending at

time t by F0,t. Assume the two landmarks x1 and x2 meet at some time t. Denote the

hyperplane defined by x1 = x2 byH12. Therefore, we have assumed that the stochastic

flow maps a set of points outside of H12 to a set of points on H12: F0,t(χ) = χ̄ where

χ 6∈ H12 and χ̄ ∈ H12. We can check that once two landmarks coincide, their equations

in the system become identical, and any solution restricted to H12 is equivalent to

the solution of the stochastic differential equation with one of the two points x1 or

x2 dropped, i.e. the flow on the corresponding lower-dimensional space. As this flow

is also a homeomorphism, F−1
0,t (χ̄) should map to an element on H12. Therefore, we

reach to a contradiction with the assumption that there exists χ 6∈ H12, such that

F (χ) = χ̄ and we conclude that the landmarks cannot meet.

Extensions to higher dimensions. On manifolds of more than two landmarks,

the formula for the correction term does not automatically simplify, and one needs to

consider the properties of the term in the limit of landmarks coinciding, and establish

the behavior of the solutions when approaching the boundary of the manifold.



Chapter 6

Conclusion and Future Directions

In this thesis we addressed diverse aspects of statistical inference of stochastic pro-

cesses on the manifold of shapes: modeling, online filtering, offline learning, and

applications. Our work reveals both the opportunities for advancement in this under-

explored area and the challenges associated with statistics on manifolds, and high-

dimensional inference. Below we outline several future directions of research.

6.1 Customized tracking models

We demonstrated that our general particle filter formulation is useful for tracking of

wide variety of objects in videos. What is more important is that the framework allows

for easy incorporation of constraints on the evolution models and the properties of

the image observations, which can lead to highly customizable algorithms for special

applications. Next we describe how this can be done in two possible scenarios: in

171
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case of heart tracking and cell tracking.

6.1.1 Multi-region cardiac tracking

In Section 3.5.4 we presented results of tracking the motion of the left ventricle of the

heart in MRI sequences. One of the biggest challenges of this task is the detection

of the epicardium (the outer wall of the chamber) as it often gets blended with the

background when expanded. We have modeled the image as a three-region represen-

tation of the heart: left ventricle, left ventricle wall, and outer background. However,

we know that this is a very simplified representation of all other objects observed

in the image: right ventricle, apex, pericardium, interventricular septum, other or-

gans, muscles, and tissue. The cumulative motion of these components follow the

topology-preserving assumptions we have already made. We also have the additional

knowledge that certain parts of the background do not move. A customized model

which incorporates this information would include the following

1. extract the boundaries of all the regions of interest in the initial frame and

extract summary statistics (needed for the observation model in Section 3.3.1)

2. specify a random diffeomorphic model to deform the set of boundaries: this

will be essentially the same as the models used before - the difference that

some of the boundaries are not closed contours does not pose a problem as the

deformations are defined everywhere on R
2.

3. add the additional constraints that a set of points does not move, i.e. v(x) = 0
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for x ∈ Rstatic. Points with zero initial momenta remain static according to our

models.

Such a system will be best to implement with a interactive interface within which

a user can annotate the initial boundaries and set some immobility constraints, and

then run a cardiac tracking algorithm.

6.1.2 Organelle tracking

The availability of high-resolution microscopic images opens interesting problems:

Can we track the location and shape of individual cellular organelles within a cell?

Is it possible to do this simultaneously for many cells interacting with each other?

Usually individual organelles appear to float freely within a cell, however, they

are constrained by by a couple of rules: they cannot leave the cell and cannot cross

boundaries, i.e. their motion preserves the topology. We have already proposed

a model which allows the epicardium and endocardium of the heart to move more

freely with respect to each other in Section 3.5.4. Less restrictive deformation vector

fields for multiple shapes have been proposed in [5] in the context of registration.

Stochastic models in this framework are yet to be developed and tested.

6.2 Controllability

In Section 3.2.3 we have presented the sub-Riemannian interpretation of the flows

driven by control points. Experimentally we have observed that we can generate a
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wide variety of shapes using this procedure. However, a side question is

Can we generate all possible shapes?

In the context of the manifold of deformable landmarks (Section 2.5.1), a shape

is a set of m landmarks. Therefore, we would like to know whether starting from

an initial configuration of landmarks we can deform them into another arbitrary

configuration of landmarks through a sub-Riemannian flow driven by n landmarks

where n ≤ m, i.e. whether there any two points on the landmark manifold can be

connected through a horizontal curve. In control theory, this concept is known as

controllability. Let R∆(x0) be the reachability set associated with the dynamical

system in (3.2.3), i.e. the set of points which can be reached by moving along the

distribution ∆. A dynamical system is controllable if R∆(x0) = M. Chow’s theorem

[70](p. 9–10) provides a condition for controllability based on the properties of the

vector fields in the horizontal distribution. If the vector fields and their brackets span

the whole tangent bundle of the manifold (the distribution is bracket-generating), then

any two points can be joined through a path in the distribution. Although we did

not require to establish controllability for forward simulation of shapes, the property

becomes important when we need to calculate logarithm maps between two shapes

(controllability establishes whether the logarithm exists). Obtaining such results for

various types of kernels can have applications outside of the image processing domain.



CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS 175

6.3 Convergence in RKHS norm

In Section 4 we raised the question of convergence of random vector fields along

a contour in RKHS norm with Gaussian kernels for which the covariance is also a

Gaussian kernel. Because the Gaussian kernel is not square integrable on R
2 (which

is also true for any other radially symmetric kernel), the trace condition in (4.46) does

not hold for domains containing an open interval or an open ball and convergence

fails. Furthermore, Mercer’s theorem does not hold for non-square-integrable kernels,

which does not allow us to construct eigenbasis for the RKHS to facilitate our anal-

ysis. However, the Gaussian kernel is not the only kernel which provides sufficient

smoothness conditions for generating diffemorphic shapes. Other Sobolev norms and

corresponding kernels have been used for diffeomorphic shape matching [64, 62], so

studying the random field convergence properties for a broad class of kernels can

guide to designing better numerical approximation schemes and statistical models.

6.4 Estimation of diffusion parameters from sparse

observations

We have only scratched the surface of learning dynamical processes of shapes from

observations. In Section 5.6.2, we have addressed the parameter estimation problem

when the observations X0, ..., XT are closely observed and when the direct approxima-

tion of the stochastic integrals in the likelihood ratio (5.128) is reliable (for example,



CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS 176

when working with videos or dense image sequences). However, for many biomedical

applications it is impossible or expensive to obtain high temporal resolution (for ex-

ample, in longitudinal studies). Fortunately, the proposed approach can be further

extended to the case when only sparse observations are observed. As before, the

maximum likelihood estimate for θ maximizes Pθ(X1 = x1, ..., XT = xT ). As solving

the optimization problem directly is intractable, we introduce the full path of Xt as a

hidden variable Zt, and take an E-M approach to obtain an estimate for θ. Of course,

the likelihood of the full path is not well defined, so we need to consider the likelihood

ratio with respect to some process not depending on θ. As usual we pick this process

to be the one corresponding to the driftless diffusion. Let’s define

L(θ;Z,X) =
dPZt

dPWt

(Z,X) (6.1)

(this is the likelihood ratio evaluated at the random path Z with discrete observations

X). The steps of the E-M algorithm are:

E-step Q(θ|θold) = EZ|X,θold logL(θ;Z,X) (6.2)

M-step θnew = argmax
θ
Q(θ|θold). (6.3)

First, we note that we have a closed form formula for the full likelihood ratio
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L(θ;Z,X). Nevertheless, the expectation of this function cannot be computed ex-

plicitly, and we need to resort to a Monte Carlo approximation of Q based on samples

from PZ|X . We observe that Z|X is a diffusion process constrained to hit the obser-

vations x0, ..., xT . To sample from this process, we need to sample a sequence of

subpaths between every two observations, which reduces the problem to sampling

from the corresponding diffusion bridge. Luckily, a diffusion bridge on manifold is a

diffusion process itself (as is true for diffusions in Euclidean space), so as long as we

establish the form of its drift and noise terms, we can simulate it using the exponential

map. We outline the formulation of the diffusion bridge on R
n to reveal what kind of

steps will be necessary to achieve a solution on a manifold.

Sampling Diffusion Bridges on R
n. For simplicity, we assume that we have

only two observations x0 and xT , so we want to sample from

dZt = A(Zt)dt+B(Zt)dWt, Z0 = x0, ZT = xT . (6.4)

This is equivalent to sampling from the unconstrained diffusion

dZ̄t = A(Z̄t)dt+
1

2
B(Z̄t)B(Z̄t)

∗∇z log p(t, Z̄t, T, xT )dt+B(Z̄t)dWt, (6.5)

where p(t, Zt, T, xT ) is the transition probability from Zt at time t to xT at the

final time. Unfortunately, the dependency of the drift and the diffusion coefficients

on the state make the diffusion non-Gaussian and we do not have a closed form
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for p(t, Zt, T, xT ) which prevents us from sampling the paths using a simple Euler-

Maruyama scheme. Instead, we can achieve the sampling by importance sampling:

we sample from a process whose paths are easy to generate, and associate a weight

to each sample path which is equal to the Radon-Nikodym derivative of the target

distribution with respect to the proposal distribution evaluated at this path. The

proposal processes suggested in [27] provide a good starting point.

6.5 Diffusion properties

In Section 5.7 we showed that while existence of local solutions of the proposed diffu-

sions follows directly from the smoothness of the metric, establishing global properties

is a non-trivial task due to the boundary of the landmark manifold. We have estab-

lished the global existence for the very special case of a two-landmark manifold, and

it is an interesting question how to set up an inductive argument to extend this result

to any dimension. In high dimensions, we need to consider all possible combinations

of landmarks approaching each other, so direct Taylor-expansion calculations might

not be feasible. As many conditions for proving properties of SDE solutions are suffi-

cient but not necessary, different approaches should be compared to obtain strongest

results. For example, going a step further and studying the properties of the curva-

ture of the manifold may allow showing that the diffusions have global smooth flow

[60]. Further study of the gradient drifts could reveal whether the processes possess

ergodic properties, which in turn can inform about appropriate parameter estimation
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procedures and their statistics.

6.6 Toward a unified framework

A unified framework for stochastic filtering of shapes can be built by considering a

hidden diffusion process on the infinite-dimensional manifold of closed curves with

discrete-time image observations. The advantage of working directly with curves

is that we can eliminate errors due to discretization or spurious landmark corre-

spondence. Although diffusions on infinite-dimensional manifolds have been studied

thoroughly by Belopolskaya and Daletsky in [15], estimation on these spaces (from

discrete observations) is an open and exciting topic to be explored in the future.
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de la Société Mathématique de France, vol. 46, pp. 131–141, 1976.

[14] M. F. Beg, M. Miller, A. Trouve, and L. Younes, “Landmark matching via

large deformation diffeomorphisms,” International Journal of Computer Vision,

vol. 61, no. 2, pp. 139–157, 2005.

[15] Y. I. Belopolskaya and Y. L. Dalecky, Stochastic Equations and Differential

Geometry. Springer, 1990.

[16] Y. K. Belyaev, “Analytic random processes,” Probability Theory and its Appli-

cations, vol. 2, no. 4, pp. 402–407, 1959.

[17] B. Bonnard and M. Chyba, Singular trajectories and their role in control theory.

Springer, 2003.

[18] G. Box and G. Jenkins, Time Series Analysis: Forecasting and Control.

Holden-Day, San Francisco, 1970.

[19] A. Budhiraja, P. Dupuis, and V. Maroulas, “Large deviations for stochastic

flows of diffemophisms,” Bernoulli, vol. 16, no. 1, pp. 234–257, 2010.
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[39] J. Glaunès, A. Trouvé, and L. Younes, “Modeling planar shape variation via

Hamiltonian flows of curves,” in Analysis and Statistics of Shapes, Modeling and

Simulation in Science, Engineering and Technology, chapter 14. Birkhäuser.
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Appendix A

Sequential Importance Sampling

We describe the basic structure of the Sequential Importance Sampling algorithm,

which is also known in the literature as a particle filter [44], or the CONDENSATION

algorithm [49].

Consider a hidden Markov model for a dynamical system, in which the sequence

of states x0, x1, ..., xt, ... cannot be observed directly, but we have available a sequence

of observations y0, y1, ..., yt, ..., which provide us with some information about the

unknown states. In the following discussion we will abuse notation by denoting the

conditional density of a sequence of random variables x0, ..., xt on a sequence of ran-

dom variables y0, ..., yt by p(x0:t|y0:t). We assume that

(i) the states follow a first order Markov process:

p(xt+1|x0:t) = p(xt+1|xt) (A.1)
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(ii) given the state sequence, the observations are independent mutually and with

respect to the dynamical process:

p(y1:t, xt+1|x0:t) = p(xt+1|x0:t)
t∏

i=1

(yi|xi) (A.2)

(iii) we can sample from the initial state density p(x0).

(iv) we can sample from the transition density p(xt+1|xt).

(v) we can evaluate pointwise the observation density p(yt|xt).

The first two assumptions simplify certain densities which will be useful later on.

First note that, if we integrate (A.2) with respect to xt+1, we obtain:

p(y1:t|x0:t) =
∫

p(y1:t, xt+1|x0:t)dxt+1 =

∫

p(xt+1|x0:t)dxt+1

︸ ︷︷ ︸

1

t∏

i=1

p(yi|xi) =
t∏

i=1

p(yi|xi).

Therefore,

p(xt+1|x0:t, y1:t) =
p(y1:t, xt+1|x0:t)
p(y1:t|x0:t)

=
p(xt+1|x0:t)

∏t
i=1(yi|xi)

∏t
i=1(yi|xi)

= p(xt+1|xt). (A.3)
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Also we have

p(y1:t+1|x0:t+1) = p(yt+1|y1:t, x0:t+1)p(y1:t|x0:t+1) =

=
p(yt+1|y1:t, x0:t+1)p(y1:t, xt+1|x0:t)

p(xt+1|x0:t)
=

=
p(yt+1|y1:t, x0:t+1)p(xt+1|x0:t)

∏t
i=1 p(yi|xi)

p(xt+1|x0:t)

= p(yt+1|y1:t, x0:t+1)
t∏

i=1

p(yi|xi).

(A.4)

One the other hand, by (A.3)

p(y1:t+1|x0:t+1) =
t+1∏

i=1

p(yi|xi), (A.5)

so

t+1∏

i=1

(yi|xi) = p(yt+1|y1:t, x0:t+1)
t∏

i=1

p(yi|xi), (A.6)

from where we conclude that

p(yt+1|y1:t, x0:t+1) = p(yt+1|xt+1). (A.7)
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We are interested in the posterior density p(x0:t|y1:t) or in some cases only in its

marginal, the filtering density p(xt|y0:t). Our goal is to estimate these densities online,

i.e. as each new observation becomes available we would like to be able to update

the estimates for the target densities of the new state. In order to do that we would

need the following recursive formula for the posterior density:

p(x0:t+1|y1:t+1) =
p(yt+1|x0:t+1, y1:t)p(x0:t+1|y1:t)

p(yt+1|y1:t)
(A.8)

= ktp(yt+1|x0:t+1, y1:t)p(xt+1|x0:t, y1:t)p(x0:t|y1:t) (A.9)

= ktp(yt+1|xt+1)p(xt+1|xt)p(x0:t|y1:t), (A.10)

where kt = p(yt+1|y1:t) is independent of x. To derive a similar formula for p(xt+1|y1:t+1),

we need to integrate both sides of this equality with respect to x0:t:

∫

p(x0:t+1|y1:t)dx0:t =

∫

ktp(yt+1|xt+1)p(xt+1|xt)p(x0:t|y1:t)dx0:t (A.11)

p(xt+1|y1:t) = ktp(yt+1|xt+1)

∫

p(xt+1|xt)p(xt|y1:t)dxt (A.12)

= ktp(yt+1|xt+1)p(xt+1|y1:t). (A.13)

Since these formulas involve integrals which cannot be evaluated analytically, it is

reasonable to try to approximate them through Monte Carlo methods. However, a
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direct Monte Carlo approach would not be tractable since sampling from the poste-

rior density is usually impossible. Instead, we select a proposal density π(x0:t|y1:t),

from which it is easy to sample and whose support is included in the support of the

posterior density. Then, we could use the samples generated from π(x0:t|y1:t) to esti-

mate the target densities. This approach is known as importance sampling, or, when

it is applied recursively to a sequence of random variables, as sequential importance

sampling.

Suppose we are trying to estimate the expected value of some function of the joint

state ft(x0:t) at time t with respect to the posterior density:

I(ft) =

∫

ft(x0:t)p(x0:t|y1:t)dx0:t. (A.14)

Let w(x0:t) =
p(x0:t|y1:t)
π(x0:t|y1:t)

. Now we can write I(ft) as

I(ft) =

∫
ft(x0:t)w(x0:t)π(x0:t|y1:t)dx0:t
∫
w(x0:t)π(x0:t|y1:t)dx0:t

. (A.15)

If we draw a sample {xi0:t}Ni=1 of size N from the proposal density, we can approximate

I(ft) by

ÎN(ft) =

∑N
i=1

1
N
ft(x

i
0:t)w(x

i
0:t)dx

i
0:t

∑N
i=1

1
N
.w(xi0:t)dx

i
0:t

(A.16)
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In order to simplify the calculations we choose the prior as our proposal density, i.e.

π(x0:t|y1:t) = p(x0:t). (A.17)

From the Markov property, we have

p(x0:t+1) = p(x0:t)p(xt+1|x0:t) = p(x0:t)p(xt+1|xt) = p(x0)
t∏

k=0

p(xk+1|xk), (A.18)

which gives the following recursive relation for the proposal density:

π(x0:t+1|y1:t+1) = p(xt+1|xt)π(x0:t|y1:t). (A.19)

From equation (A.16) we can see that knowing the values of the weights w(xi0:t) for

each particle can give us the value of ÎN(ft). At the first step π(x0) = p(x0), so each

weight w(xi0:t) equals 1, and the normalized weights w̃i
0 equal 1/N . For the subsequent

steps we obtain

w̃i
t+1 ∝ w(xi0:t+1) =

p(xi0:t+1|y1:t+1)

π(xi0:t+1|y1:t+1)
∝ p(xit+1|xit)p(yt+1|xit+1)p(x

i
0:t|y1:t)

p(xit+1|xit)π(xi0:t|y1:t)
(A.20)

w̃i
t+1 ∝ p(yt+1|xit+1)w̃

i
t. (A.21)

Since we can evaluate the transition density pointwise and we can generate new

sample states from the transition density, we can evolve the weights over time, and
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thus obtain an estimate for the posterior. From the strong Law of Large Numbers we

have

lim
N→∞

ÎN(ft) = I(ft), (A.22)

and by the Central Limit Theorem

lim
N→∞

√
N(ÎN(ft)− I(ft)) ∼ N (0, σ2

ft), (A.23)

where σ2
ft
= 1

N

∫ p2(x0:t|y1:t)
π(x0:t|y1:t)

(ft(x0:t)− I(ft))
2dx0:t.
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