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Abstract

Advances in machine learning and streaming systems provide a backbone to transform
vast arrays of raw data into valuable information. Leveraging distributed execution, analysis en-
gines can process this information effectively within an iterative data exploration workflow to solve
problems at unprecedented rates. However, with increased input dimensionality, a desire to simul-
taneously share and isolate information, as well as overlapping and dependent tasks, this process
is becoming increasingly difficult to maintain. User interaction derails exploratory progress due to
manual oversight on lower level tasks such as tuning parameters, adjusting filters, and monitoring
queries. We identify human-in-the-loop management of data generation and distributed analysis as
an inhibiting problem precluding efficient online, iterative data exploration which causes delays in
knowledge discovery and decision making. The flexible and scalable systems implementing the ex-
ploration workflow require semi-autonomous methods integrated as architectural support to reduce
human involvement. We, thus, argue that an abstraction layer providing adaptive asynchronous
control and consistency management over a series of individual tasks coordinated to achieve a global
objective can significantly improve data exploration effectiveness and efficiency. This thesis intro-
duces methodologies which autonomously coordinate distributed execution at a lower level in order
to synchronize multiple efforts as part of a common goal. We demonstrate the impact on data
exploration through serverless simulation ensemble management and multi-model machine learn-
ing by showing improved performance and reduced resource utilization enabling a more productive
semi-autonomous exploration workflow. We focus on the specific genres of molecular dynamics and
personalized healthcare, however, the contributions are applicable to a wide variety of domains.

Primary Reader: Yanif Ahmad, PhD
Secondary Readers: Thomas Woolf, PhD and Randal Burns, PhD
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Chapter 1

Introduction

Increased networking speeds and steady growth in computational power combined with

a global proliferation of Internet connectivity has spurned a ”Big Data” revolution in computing

science. Both commercial and researching communities are trying to keep pace with this expansion

as technological capabilities quickly evolve. Organizations who once managed internal server rooms

to process gigabytes of data locally have shed the administrative burden and now yield to cloud

providers overseeing petabytes of data with computation moving toward the exascale. The aggre-

gation of data from social media, near ubiquitous injection points through mobile technology, and

a cultural psychological shift in the willingness to share information provides tremendous opportu-

nities in data analytics. Advances in machine learning algorithms and streaming data management

systems provide a backbone to transform vast arrays of raw data into valuable information, creating

a means to accelerate the synthesis and discovery of new knowledge. This process, data exploration,

is increasingly becoming more difficult with the vast expansion of information systems. This is a

problem which we must address and one which is at the forefront of many research efforts. Any solu-

tion must be both effective and efficient given the increasing pace of technology to process raw data.

In this research effort, we examine the challenges of enabling data exploration in the contemporary

”Big Data” Information Age and provide an adaptive framework to overcome them.

1



CHAPTER 1. ADAPTIVE CONTROL

1.1 Big Data

Over time, as Moore’s Law has dictated the advances in computational power, we have

simultaneously seen a migration from single server to multi-host processing which can integrate a

diversity of technologies. From locally managed servers to globally deployed cloud resources, contem-

porary computing environments are becoming increasingly reliant on distributed system technology.

File systems, such as Hadoop (HDFS), Gluster, and Lustre have replaced parallel network systems

and are now mainstays in many server rooms with cloud vendors providing their own internally

optimized solutions. Physical servers, once individually configured with specific operating systems,

are now commonly deployed with virtualization hypervisors and containerization engines such as

VMWare or Docker. This capability facilitates the sharing of resources for diversified applications

and allows users to quickly migrate data processing across a myriad of platforms.

Data management has seen a new breed of systems in support of both transactional and

analytical processing needs. Many modern Big Data applications are built on top of a more flexible

and scalable NoSQL, key-value based data organization concept, shedding the structured relational

database model. Dynammo and Cassandra, for example, have served as the backbone systems which

propelled Amazon and Facebook to become multi-billion dollar companies. Simple, structured and

serializable text based formats, such as XML, YAML or JSON found in systems such as MongoDB,

facilitate cross-platform integration and communication. Furthermore, many systems capitalize on

decreased memory costs to store and process information entirely in RAM, such as Redis and mem-

cached. While these technologies do not replace existing SQL based, online transactional processing

systems (OLTP) which still remain as the dominant data management tool, they serve an essential

role, enabling a rich set of data science capabilities. In fact, many OLTP systems, such as Vertica

and Oracle, have embraced these changes, providing in-memory storage and column based access.

Data analytical engines leverage the distributed and unstructured nature of these storage

and management technologies to effectively process mass amounts of information and solve problems

2



CHAPTER 1. ADAPTIVE CONTROL

at unprecedented rates. Leveraging a map-reduce programming model, applications such as Spark or

Dryad, can now efficiently perform tasks which had been computationally unfeasible in the past.1,2

In a map-reduce design, a system distributes the same executable program to many nodes, each of

which maps one or more operations to locally stored data, organizes and shuffles the output by keys

to connected nodes who subsequently reduce the collected data through an aggregation method.

Applying this iterative programming model, streaming systems, such as Flink or Twitter’s Storm,

perform these tasks in an online fashion, capable of analyzing data in real time. Many of these

frameworks provide a relatively simply user application programming interface (API) for languages,

such as Java, R, and Python

Figure 1.1: Layered stack of ”Big Data” Systems

Other supporting soft-

ware in the Big Data ecosys-

tem include management, mon-

itoring, as well as higher level

applications for visualization

and web interface. To provide

a fault tolerance capability and

to ensure eventual consistency,

many of these systems rely on

a distributed consensus pro-

tocol (e.g. Paxos) and de-

ploy services such as Apache

ZooKeeper alongside their sys-

tems. The workload manage-

ment tools, Mesos and YARN, are also interwoven in a distributed environment to dispatch, monitor,

and balance computational tasks and resources.

This description of the Big Data revolution provides a backdrop and sets the scene in what
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we describe as the contemporary operating environment for computer science. Given this setting,

how can we find opportunities to capitalize on these advances and better improve our society and

the world around us? We, thus focus our attention on the direct correlation between the raw data

and the knowledge we seek to gain though data exploration.

1.2 Data Exploration

Data exploration is a process by which we extract information from raw data and transform

it into knowledge. Its origin dates to the mathematician, John Tukey, who professed exploratory

data analysis as a goal for statisticians to identify unseen correlations, associations, and meaning

from data.3 He believed that we should focus more scientific efforts on identifying new hypotheses to

test as opposed to only confirming or denying existing ones. Beyond the exploratory data analysis

professed by Tukey, we extend the term data exploration to include the search for an objective,

which may be known or unknown, within a given set of data. In executing data exploration, we

may not know specifically what we are looking for, however, we can conceptually grasp that we

are looking for something. An abstract concept, we attribute this as the process of acquiring new

knowledge. With rare events, for example, we may not be able to describe or identify the anomaly,

but we want to detect it. This is a common struggle in fighting disease and Cyber security: how do

we detect an new pathogen or zero-day attack?

To best conceptualize data exploration, we can envision it as traversing up the knowl-

edge pyramid, depicted in Figure 1.2, a common model used in data science and information

management domains.4 This image shows the tiers of the data, information and knowledge with

wisdom at the peak. At the lowest level, we find the raw input which, in a computational set-

ting, can be collected from sensors or input devices, or generated as output from another process.

The next tier is the transformation of data into a useful and organized form, answering the ba-

sic questions of who, what, when, and where associated with the raw data. Above that rests
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the knowledge tier whereby we apply the data and information from the tiers below. Analytics,

which encompasses the process by which we implement these techniques to ”move up the pyra-

mid,” takes as its input either of the lower two tiers and produces either information or knowledge.

Figure 1.2: The DIKW pyramid linking raw
data at the bottom with knowledge and
wisdom at the top. The feedback control
(dashed arrow) highlights the contemporary
online nature of the process.

In the context of this research, we scope data explo-

ration into these three tiers and view the peak, wis-

dom, as the integration of exploratory output into a

larger context. We, thus, define data exploration as

the process of extracting knowledge from data. By

specifically stating knowledge from data, we imply

that information is the bridging step to enable the

exploratory process. We add a dashed line connect-

ing the knowledge back to the data tier reflecting the

adaptive control focus in this research effort.

1.2.1 Raw Data Input

We can characterize data domains in a va-

riety of ways. The recent rise in Big Data capabilities has only added depth to these characteristics.

The first and intuitive description is the sheer volume of the dataset. This is characterized by its

dimensionality, defining the number of input features or attributes, and the number of individual

elements. Although we organize data using a multitude of techniques, in all cases, data can be

either structured or unstructured. Traditionally, we associate structured data with a MxN matrix

or entity table in a database containing N columns representing the features and M rows represent-

ing the data items. In contrast, key-value organization, which has become increasingly popular in

contemporary systems, is well suited with unstructured data as well as sparse datasets. This latter

classification denotes the density of feature values for individual elements in a dataset; for example,

rows in a wide table with only a few values entered would be considered sparse. Beyond merely
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sparse, datasets may be incomplete with elements or features missing from portions of the data.

Another classification delineates between online and offline data processing. Static, or

offline, datasets are immutable. We can process and analyze them with the a prior understanding

that the input will not change. In contrast, online data is subject to change, such as real time

streaming information or a live, transactional database which may update during the exploration

process. Interestingly, we can always capture and store an online dataset as an offline one and

process an offline dataset in an online, streaming fashion.

We also characterize data based on the associated genres from which it derives. Some

traits include temporal, where elements are organized by time such as streaming medical data,

or spatial with data organized by location such as input associated with geography or cosmology.

Other categories may include graphic or image based and text or language based data. Within these

domains, we can categorize the elements as independent observations or as data whose values are

dependent on one or more other elements. The underlying datatypes, which can be continuous,

discreet or boolean, or any combination thereof, provide a deeper means of describing a domain.

1.2.2 Data Exploration Objectives

In viewing the end state of the exploration process, we typically define the target goal within

the context of an application, such as detecting cancerous cells or associating correlations in retail

purchases. Common among all the applications is the underlying purpose of acquiring knowledge.

To provide a generalized framework quantifying data exploration, we align the objectives into the

following three categories: (1) uncovering unknown patterns, correlations or others meanings in

existing data, (2) searching for anomalous outliers, and (3) gaining a better understanding of the

input domain. The first two directly address the desire to acquire new knowledge and they align

with the fields of study data mining and rare event detection. The last of these, with which we

associate the term, situational awareness, applies to the inverse of reducing the level of uncertainly

of our data and information or to use a military concept: reducing the Fog of War. We explain these

6



CHAPTER 1. ADAPTIVE CONTROL

categories in more detail below.

Data Mining

The first of these three objectives is the classical focus of exploratory data analysis. In

this context, the goal is to identify unique patterns within a dataset can reveal correlations among

input elements or features within a domain. Many of the techniques applied include graphical or

visual aids which can assist the human analyst in the process along with other less human interactive

algorithms and machine learning models.

Contemporary interactive media, queries, and tools can drive an exploration session and

lead to more in-depth knowledge discovery. Common examples include applying a principal compo-

nent analysis (PCA) algorithm and clustering data in a lower dimension to identify the groupings

of elements within a dataset. Another example is commonly found in marketing where retailers

perform frequent item analysis to identify purchasing patterns among their customers. These tools

may discover unknown correlations which can helps steer advertising decisions, such as the revelation

that a significant portion of customers who purchase beer at a certain time of the day tend purchase

diapers, leading the retailer to move diapers and beer closer together in the store.5

Rare Event Detection

The second objective we identify is the detection of rare events. Also described as rare class

mining, outlier or anomaly detection, this goal refers to the set of algorithms, issues, and concepts

of classifying and sampling events which are extremely unlikely. Defined in a statistical manner: a

99.9% accurate systems which can properly classify an event will, in contrast, incorrectly classify

0.1% of its input data. If rare events occur at a scale below 0.1%, then such systems cannot reliably

identify the anomalies. By using the term rare, we refer to those events which are really interesting,

defined as occurring at a rate below that which a reasonable person would either expect to observe

in a given timeframe or the likelihood of identifying an element from among a population.6

We discuss this objective in more depth in Chapter 2 as the motivation behind this research
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effort is directly linked to rare event detection. Detecting a threat, in the scope of Cyber security,

for example, is a rare event detection problem. The threat’s online actions are the anomalies among

the billions of operations occurring within a computer system every second. However, the problem

of rare event detection is common throughout society. Examples include the manufacturing industry

of trying to identify a product defect before is it packaged and delivered or in the health industry

in trying to detect a disease before it can spread.

Situational Awareness

The term situational awareness (SA) has historically referred to a human’s level of under-

standing of a surrounding environment. It applies in both a spatial and temporal sense in that as

the environment changes around a person, in both time and space, that individual’s level of compre-

hension of her surrounding also changes. While its roots can trace back for centuries in warfare, the

term situational awareness is more recent, dating to the U.S. Air Force whose crews employed this

term in both the US-Korean and US-Vietnam Wars claiming that situational awareness of their sur-

roundings was a decisive advantage in air combat operations.7 The concept, however, is applicable

to many genres outside the military with extensive research studies and models. Target use cases

include fields such as air traffic control and vehicle navigation units, which employ these concepts to

make operational decisions.8 We now see situational awareness as a critical factor extending beyond

the scope of military application and beyond the perspective of one individual: organizations seek to

attain common SA among its members and even computing systems must maintain SA in order to

drive decisions. This latter extension is especially important as our society becomes more dependant

on autonomous capabilities, such as self-driving cars.

We highlight situational awareness within the context of data exploration because they

share the same workflow and underlying objective. In both cases, the system, person or team, must

acquire new information to gain knowledge. In the case of SA, that knowledge is incorporated into an

existing picture. Uncertainty, represented as holes or gaps in the comprehension of the surrounding
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environment, must be reduced. This process, equivalent to the military concept of reducing the

Fog of War, a term developed by Carl von Clausewitz in the late 1800’s, describes uncertainly in

battle. While the literal metaphor implies a Soldier’s lack of awareness of his surroundings due to the

extensive fog of smoke on the battlefield, the actual concept pertains to the military commander’s

awareness of the combat environment, enemy, and friendly forces.9 Reducing this fog requires the

commander to explore the accessible information at his disposal and reduce any gaps by adjusting

collection assets to gather more data. The underlying goal is to improve the understanding - or

new knowledge - of the situation in order to make a more informative decision. Maintaining a high

level of SA, as with acquiring new knowledge, is predicated on the ability of the individual, team,

or system to process and update new information. We thus view situational awareness as a data

exploration task whose objective is to acquire knowledge in order to reduce uncertainty (or the Fog

of War) and improve the underlying comprehension of an environment.

1.3 Applications

We highlight these objectives and present opportunities through five use cases: scientific

simulation, healthcare, Cybersecurity, and military intelligence and autonomous vehicle navigation.

Scientific and Engineering Simulations. Computer simulations have become an integrated

component within the scientific and engineering research and development community. With sensors,

such as high powered telescopes and spectroscopy devices costing in the hundreds of thousands to

millions - or even billions - of dollars the advantages of conducting computer simulations are clear

and apparent. Simulations are also a critical risk mitigating factor in areas such as biomedicine

where research on infectious diseases carries additional possibility of exposure to harmful organisms.

Costs aside, in some scientific fields, simulation is the only viable option for research: studying and

understanding aircraft failure or natural disasters, for example, is only otherwise possible in the

aftermath of actual events. While computer simulation cannot perfectly replicate a live experiment,
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it is a tremendous asset to the research effort. Any improvements in simulation execution and

implementation can have a compounding influence on the underlying science.

Cybersecurity. Rare event detection, data exploration, and situational awareness are all

important tasks in the daily effort of computer administration and Cyber security. Network and

system logs are often referred as haystacks of data for which administrators seek the proverbial

needle to build a common description of a system’s health. Popular distributed solutions, such as

Spark10 or Dryad2 provide efficient and effective tools to process and analyze massive amounts of

data; however, they treat input sources as external injection points. Such solutions lack a feedback

loop mechanism to systematically steer log collection parameters and rely on the human system

administrator to configure parameters. Other tools, such as intrusion detection and prevention

systems (IDPS) analyze streaming network data and provide responsive actions; however, they

have several limitations. Chief among them is the extensive human involved parameter tuning.11

Furthermore, while these systems can defend and respond to threats, they cannot proactively steer

heterogeneous network and system settings to provide a more encompassing internal Cyber picture,

or Cyber Situational Awareness. This latter capability is completely lacking in the field. We envision

a capability whereby systems proactively focus resources on identifying internal vulnerabilities and

weaknesses and combine a current operating picture with a threat assessment to better secure a

system before it is targeted for an attack.

Healthcare. More so than ever, we are collecting a surplus of personal health information

with advanced sensors and even wearable devices. Combining this raw data with an efficient means

to collect, store, and analyze the information creates the means to better understand health trends

or fight diseases. With records migrating from a paper-based filing system to completely digital

medium, doctors can more easily fuse multiple analytical techniques to drive health recommendations

and decisions. Integrated hospital equipment which can automatically store and process raw data

for not only one patient, but for a entire hospital or even series of hospitals provides a input means
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to collect information for downstream analysis. Combined with wearable technologies feeding not

only a patient’s health profile, but also social networks and research databases, we are now seeing

unprecedented aggregation of new statistics on a global scale. Each person’s localized, or personalized

dataset may be a small piece; however, when placed within the context of the larger population,

we can now create tailored analytics or personalized models suited to each individual. This gives

rise to the challenge of balance between sharing data and securing private information. Systems

which can manage this duality can bring about considerable gains in data exploration, providing

applications in areas such as personalized health monitoring or disease warning. Such capabilities

provide the means to detect the onset of a fatal condition, such as septic shock or cardiac arrest, with

the ultimate goal of saving a life. Although risks to personal privacy and security are inherent in

the process and should be carefully mitigated, the opportunities to benefit society are tremendous.

Military Intelligence. A challenging application, Military Intelligence Analysis represents

the integration of modern technology into a relatively monolithic structure. A continuous cycle of

collection and analysis, the methodology involves creating a holistic view of an operating environment

to predict an adversary’s future actions.12 By focusing a vast array of assets to gather information on

physical and information environment factors within a determined area of interest, military analysts

gather raw data and synthesize intelligence in order to develop likely scenarios, known as courses of

action. Throughout the process, analysts identify intelligence shortcomings, known as intelligence

gaps, in order prioritize reconnaissance and surveillance resources. One could classify the military

intelligence process as a massive streaming system which is time tested and refined over centuries.

Its major shortcoming is the significant reliance on human interaction. While recent development

in automated data management collection have improved capabilities, they have only exacerbated

the resultant Big Data challenges. Today’s military forces can overcome such challenges by seeking

to integrate automated and adaptive data support systems into its analysis cycle.

Autonomous Vehicles. Another direct application we foresee for this research rests within
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the decision making process of an autonomous vehicle. Many autonomous decisions, such as whether

to stop at an oncoming yellow light or when to make a left turn across traffic, require continuously

updated SA. Furthermore, complex, even morally impacting choices necessitate an efficient and

effective data analysis and decision making workflow which can quickly process new data to make

decisions: a car may some day have to choose between hitting a deer trying to jump across the street

or swerving into oncoming traffic - with either choice potentially resulting in a major accident or

fatality. We believe that the interjection of a mediation control loop to prioritize data collection and

analysis tasks localized to the vehicle is a prime use which can benefit from this research.

1.4 Challenges

Traditionally, data exploration has been a single scoped effort with static input and a

terminating objective. Statisticians have previously spent days, weeks, or years combing through

offline datasets in the hopes of identifying new knowledge. While this workflow still has a place in

modern society, the demand for a more expedient process is the prevailing norm, presenting

a challenge for data exploration systems to overcome. In part, and somewhat ironically, this situation

has arisen out of the exact technological era in which we live. More capabilities has led to a

society characterized by instantaneous information gratification with high expectations in computing

systems to provide immediate responses to data requests. Projected into the next decade and beyond,

this demand will only increase as autonomous vehicle take over roads and personalized healthcare

becomes the norm. Our modern, on-demand culture has put the onus on computer scientists to rise

up and develop systems which can efficiently deliver knowledge in order to keep pace.

Even more challenging, internally within the field, we are seeing an imbalance of ad-

vances within computer science. Some areas, such as machine learning, are making dramatic

steps forward with new algorithms and methodologies. The integration of their evolving capabilities

and requirements has led to a clash with older, existing architectures. Computational resources,
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algorithms, and storage technologies originally designed for smaller, local deployments are unable

to maintain pace with the blossoming of data science. The underpinning of traditional data man-

agement technologies, relational database management systems (RDBMS), simply cannot scale to

the meet the sheer volume of data or the analytical demands. Reliant on global visibility of a data

domain to performing tuning and other optimization techniques, these system are tied a structured

data schema with limited flexibility. Relaxing the stringent requirements of ACID (atomicity, consis-

tency, integrity, durability), many Big Data systems instead seek to provide an eventually consistent

guarantee while maintaining availability and partition-tolerance in accordance with the proven CAP

Theorem.13 This has established a paradigm shift in software architecture and development allowing

organizations to capitalize on the benefits gained through more dispersed and asynchronous solutions

brought about with integrated distributed systems.

As we have stated, contemporary computing environments supporting Big Data analytics

are characterized with flexible, scalable, and distributed systems. With applications built on top of

a NoSQL, key-value based organization, data analytical engines leverage the unstructured nature

of the storage and management technologies to effectively process mass amounts of information

and solve problems at unprecedented rates. They require persistent computing nodes with tightly

integrated protocols and services which depend on dedicated hardware with long running processes to

manage and dispatch individual executable tasks. However, although they are designed to scale, at

some point, adding more resources does not improve performance. In addition, the same

challenge also arises when trying to bring analytics into a diverse set of environments. This includes

supercomputing, to improve data exploration over scientific simulations as well as non-traditional

computing environments, such as the modern battlefield.

1.4.1 Problem Statement

In the examples listed above, we described data exploration within a cyclic and iterative

context. Knowledge generated from one step is not only the output, but also a means to help drive
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input decisions for subsequent data exploration steps by steering the input of raw data generation

(see Figure 1.3). As analytic systems become more evolved and dataset sizes continue to grow at

a record pace, the overhead and ancillary requirements to manage and drive exploration incurs a

tremendous burden on the overall system. As this is still a semi-autonomous process, the key and

central component within this loop, the human, becomes a bottleneck. Instead of focusing on the

more important tasks associated with exploration, namely making decisions, determining what infor-

mation is interesting, and driving the knowledge synthesis at a higher level, the human-in-the-loop

finds himself delving into lower level tasks. These tasks, such as tuning parameters, adjusting filters,

monitoring queries, and scanning lower level patterns are more amenable to computer oversight.

While one could argue that data exploration should be completely independent of human interac-

tion, we focus on the process as a semi-autonomous one. We perceive autonomous exploration as a

philosophical viewpoint, one which is outside the scope of this research effort.

Figure 1.3: The Data Exploration Loop. Input is the raw data from source, such as network, sensor,
or other stream. The data tier (orange) addresses storage and organization and feeds the analysis
tier (green) to transform data into information and knowledge. User interfaces (purple) provide
human interaction while the systems tier (blue) integrates the whole process. The output (in black)
also helps to drive subsequent data exploration tasks by steering raw data generation. The dashed
red lines represent the human-in-the-loop problem we foresee as the human becomes overly involved
in lower level tasks which delays outcomes and results.
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Given that the human will always be a central figure in data exploration, we identify

the human-in-the-loop as a major setback in executing data exploration within the contemporary

computing landscape. Because humans partake in lower-level tasks, the entire exploration process is

withheld from reaching its performance potential. This results in delayed decisions and knowledge

discoveries; outcomes which can be extremely problematic and catastrophic. We, thus, identify the

source problem which drives this thesis as follows:

Problem Statement

Human-in-the-Loop management of data generation and distributed analysis tasks

inhibits efficient online, iterative data exploration causing delays in knowledge

discovery and decision making.

These challenges in data exploration require new solutions and methodologies. We believe

the current computer science field lacks architectural support for semi-autonomous methods to

efficiently implement the process. This support, enabled through abstraction layers and lower level

coordination of autonomous tasks, can help reduce the manual tasks to manage the system allowing

the human to focus on the higher level efforts, such as making decisions and synthesizing knowledge.

We foresee opportunities through better synchronizing efforts of dispersed resources combining to

progress a data exploration goal. Applying an adaptive control methodology with asynchronous

consistency management, we aim to improve the computer science field along this direction. We

first offer some background on this topic to pinpoint where our work best fits in the computing

community.

1.5 Adaptive Control Background

The concept of adaptive control has been studied for decades. Commonly associated with

nonlinear control, research has focused on the means with which to continuously adapt a closed-loop

system containing at least one non-linear component to remain withing a prescribed specification.14

A common use case is a home thermostat which controls whether a furnace should turn on or off
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based on sensors placed throughout the home. Adaptive control for systems dates to the 1960’s with

its origin based in NASA technology used as part of the Apollo program. One of its derivations

and popular algorithms, the Kalman filter,15 is a methodology which continuously gathers sensory

data and updates a systems active state. Accounting for noise from internal erroneous readings or

external factors, the Kalman filter reduces uncertainty via a covariance calculation to update a new

state based on previous values. Systems can subsequently adapt execution, such as by changing

speed or direction.

Since the turn of the 21st Century, we have seen the rise of combining streaming data with

historical data into an autonomous system. Darema proposed the Dynamic data driven application

systems (DDDAS)16 paradigm as a means to collect data online and leverage its value to steer the

measurement and modeling process through a synergistic feedback control-loop. We note that our

work falls under the DDDAS classification in that we process data during execution to dynamically

control performance. During this time, we have also seen a rise of data management advances to

traditional systems providing an enabling capability to support adaptive control and integration of

analytical tasks. These include column oriented storage for databases,17 human interactive query

capabilities through systems such as CONTROL (or continuous output and navigation technology

with refinement),18 and query approximation techniques which provide users with a less accurate

but more timely response aimed at establishing a more interactive, exploratory data session.19,20

Integration of adaptive exploration techniques into data management systems has recently

seen a rise in development and research. Kersten, Idreos, Manegold, and Liarou presented the

visionary concept of an interactive data exploration engine to enhance the scientific processes.21

One notable example of adaptive control in database management systems is Automated Query

Steering with integrates automated data exploration with database systems.22 The system features

an iterative process which builds a user profile to classify database objects as relevant or irrelevant.

Subsequently, it automates query formulation, query processing, and result reviewing to strategically

sample data items for user interaction. Together it combines machine learning, data exploration,
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and sampling techniques to steer user queries toward more interesting results. Specifically, AIDE is

demonstrated on evidence-based medicine where a domain expert can interactively work in tandem

with the automated exploration engine.22 It employs decision tree classifiers as an ideal means to

model both numerical and categorical data.

Although recent advances have allowed adaptive control to integrate with traditional data

systems, the capabilities can more effectively integrate into un-structured, key-value based technolo-

gies, such as MongoDB, Cassandra, Dynamo or Redis. With recent algorithmic advances, to include

map reduce data processing,23 we are now seeing a path forward to automate the exploration pro-

cess. Building a feedback capability on top of the MapReduce framework, HaLoop,24 for example,

provides interface support for iterative applications. An extension of the Hadoop API, it contains a

loop control mechanism to continually dispatch map-reduce operations until a user defined termina-

tion condition is met. As a key contribution, HaLoop integrated dynamic control of task scheduling

into the map-reduce jobs thereby significantly improving the key bottleneck in the framework, the

shuffle. Inspired by this dynamic scheduling capability, we integrated loop control within the time

delayed scheduling HPC, but target more general purpose programming.

1.6 Thesis Statement

We have outlined how contemporary advances in computational processing and techno-

logical capabilities have brought about a surge in data availability. This ”Big Data” phenomena

has rendered existing architectures insufficient to handle the data demand. This doctoral thesis

addresses the data exploration problem in the Big Data era focusing on data and system integration

approaches to improve this field. We argue that an abstraction layer providing adaptive asyn-

chronous control and consistency management over a series of smaller tasks coordinated as part of a

global effort can significantly improve data exploration effectiveness and efficiency. We support this

though a demonstration of systems executing scientific simulations and machine learning training
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whose tasks integrate into a global objective coordinated with asynchronous controls designed to

improve performance while reducing resource utilization. The thesis statement is summarized into

the following:

Thesis Statement

An abstraction layer providing adaptive asynchronous control and consistency

management over iterative, distributed data exploration can significantly improve

exploration performance

We focus our efforts on a part of this larger problem, applying our methodology to the

specific genres of scientific simulations and personalized healthcare. However, our contributions are

applicable to a wide variety domains specifically targeting incomplete datasets represented as tem-

poral and online. These methods are agnostic to the volume of data in terms of both dimensionality

and sheer size and can apply to both independent and dependant data. We highlight applications

in both the medical and scientific domains, but these techniques can easily extend to include image

data, network and other input sets. While some fields, such as natural language processing, are

not an ideal target to apply these techniques, we believe our research is extendable to a variety of

fields. To further frame the problem, we categorize the issues pertaining to data exploration into

the following components which correspond to the data exploration loop in Figure 1.3:

1. Data (in orange). Data related efforts concern the selection and organization of the input and

intermediary storage of the exploratory problem. Example efforts include feature engineering

and storage management.

2. Analysis (in green). Analysis includes the methods and models to execute the exploratory

process representing the tasks of creating information from raw data and knowledge from

information. A significant focus of contemporary research in computer science and applied

mathematics, this includes algorithms, statistical models, and machine learning.

3. User (in purple). User related issues include both the visualization of data and the declar-

ative means with which to interact with a system.
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4. Systems (in blue). Systems components focus on the abstraction of data exploration pro-

cesses across all domains and applications. Systems solutions are an enabling effort to

provide efficient capabilities for the other components.

We specifically address the data and systems components listed above by integrating adaptive tech-

niques into simulation scheduling and machine learning. In the first part of this research we show a

novel means of data organization to more effectively carry out the data exploration process using a

feature lattice. In the second part, we focus on adaptive control through a mediation control loop

using knowledge acquired to improve data collection. Finally, in the third effort, we extend the

exploration process to a multi-domain setting to improve machine learning of localized, or person-

alized data. In all cases, we seek to provide a more efficient and effective process for attaining a

given exploratory goal with ultimate objective of reducing the lower level, burdensome tasks from

the human-in-the-loop to make exploration more semi-autonomous. Our main takeaways are:

• We demonstrate a significant reduction in computing resource utilization allowing increased

productivity in data exploration. Specifically, our adaptive control methodology for simula-

tion ensemble management improves starting points through advanced sampling techniques.

With each independent task producing more productive outcomes, as shown through increased

rare event detection, the collective efforts aggregate to provide greater contribution to a com-

mon, synchronized objective. The end result is a system which converges faster to a global

data exploration goal using less cost. This, in turn, frees resources to run more simulation,

exploration, or other analytical tasks and enable the system to be less human dependent.

• We justify the need to develop synchronization primitives as an abstraction for distributed

machine learning training. Similar to adaptive control in simulations, any system which aims to

autonomously steer multiple, isolated tasks necessitates synchronization mechanisms. Applied

to the complex, distributed training environments of modern machine learning applications,

such as that found within personalized health, this need is further in demand. With multiple
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training tasks sharing dependent, overlapping efforts, which we describe as semi-isolated model

training, the field requires more sophisticated and developed abstraction primitives. These

controls enable the user to better coordinate the efforts of the asynchronous, dependent tasks

with the goal of improving training efficiency and effectiveness as well as helping to reduce the

human involvement in lower level tasks of monitoring progress and tuning parameters.

In chapter 2-4, we also provide more background and related work on the current research status

pertaining to the technologies on which we focus as well as specific open directions we foresee. As

an overview, the remainder of this thesis divides as follows.

In Chapter 2, we focus on data organization as a means to bridge raw data and information.

Using this structure, we lay out a data exploration solution to enable adaptive control by examining

how it applies to rare event detection. Our novel approach to data exploration centers around a

lattice structure which organizes data features to drive input sampling as part of the exploratory

process. We target the objective of identifying and classifying rare events, specifically, the rare states

and transitions among them within molecular dynamic simulations. Critical knowledge which affects

drug design and disease prevention, understanding how biomolecular systems function in these rare

events is an elusive and challenging task consuming a significant portion of supercomputing clusters

worldwide. We demonstrate how a sampling technique can identify and select more optimal starting

coordinates for each simulation resulting in a 22.5x improvement over naive techniques.

In Chapter 3, we build on these data concepts to provide a systems solution implementing

an adaptive control mediation loop. This solution contains two abstraction components: one to

drive the exploration process and another to manage data as part of a shared global state. We focus

on high performance computing to demonstrate how a serverless framework can execute adaptive

data exploration. We developed it into a data-driven in-situ analysis and control (DINSAC) simu-

lation ensemble manager. Utilizing in-memory data services executing locally inside the computing

cluster, DINSAC couples simulation execution with in-situ analysis supporting query based sam-
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pling and dynamic control. This chapter addresses the systems challenges presented above solving

them through a middleware technology. It integrates the data organization and sampling techniques

presented in Chapter 2 alongside simulation execution. Capitalizing on the improved exploration

outcomes from lattice based sampling, we demonstrate how the serverless framework synchronizes

the efforts of multiple, isolated tasks to reduce resource utilization.

In Chapter 4, we re-frame the exploration process by transitioning from the independent

tasks of simulations to the dependent tasks found in multi-model machine learning. In contrast

to the previous two chapters, which treated all input as one, unified global domain, we, instead,

show how to improve exploration with increased data representation through many, semi-isolated

sub-domains. This process enables a more localized exploration solution tailored to a specific - or

personalized - effort. Specifically, we address multi-model training in distributed machine learning

as applied to healthcare. Addressing the challenges associated with providing personalized solutions,

namely striking a balance between data sharing and data isolation, we show how synchronization

and adaptive controls are necessary to improve machine learning outcomes. Extending the lessons

learned from synchronizing the efforts of dispersed, independent simulations, we address the need

to control asynchronous execution among many, dependent models. Our work shows how the field

should establish abstract synchronization primitive mechanisms to provide users more control over

training in order to improve the data exploration process.

Finally in chapter 5, we provide open directions for future research. We expand on the

serverless framework presented in Chapter 3, showing how it can serve as a nucleus for a large

scale multi-user simulation ensemble management system. As an orthogonal effort, we also describe

how explainability can help improve adaptive control in data exploration by opening the black box

of analysis tasks. We conclude by describing the integration of the main contributions presented

herein. Specifically, we present the case for using a feature lattice approach to organize multiple,

semi-isolated models for both training and testing in machine learning and argue how this framework

should be considered for data exploration systems.
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Chapter 2

A Lattice Based Approach to Rare

Event Detection in Molecular

Dynamics

Rare event detection is a challenging problem. It entails distinguishing a proportionally

small subset of data from among a very large one and is a task we routinely encounter throughout

society. Juxtaposed alongside the technological surge to acquire and process information within the

Big Data era, this problem is increasingly becoming more difficult. Addressing this problem from a

data centric perspective, we present a solution aimed at improving overall system effectiveness. As

part of an adaptive execution-analysis-control feedback loop, our methodology autonomously steers

data exploration toward the identification and execution of rare events. To drive this process, we

introduce a novel data analytics technique by exploiting a feature lattice to organize raw data and

identify optimal system input parameters. We evaluate our adaptive approach on molecular dynamic

simulations and demonstrate a rate of rare event observation increase on average by a factor of 22.5x

over comparable naive techniques. We show how the value gained in improving data exploration not
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only out-weighs the costs in computing resources but it substantially reduces time spent to meet

scientific goals.

2.1 Introduction

Expansions in analytics have created a surge in new technologies and solutions to meet

today’s big data challenges. Advances in distributed processing, streaming data management sys-

tems, and machine learning provide a backbone to transform vast arrays of raw data into valuable

information, creating a means to accelerate the synthesis and discovery of new knowledge. The past

decade of exponential growth in computational processing power and network connectivity speeds

combined with expanding Internet connectivity have led to a significant rise in stream processing

systems. This presents both opportunities and challenges when integrating and applying new tech-

nologies and solutions to existing processes. Such applications take advantage of multiple hardware

resources and software solutions to accomplish more computational tasks in a faster time span. This

ensues a data deluge dilemma with humans as the central bottleneck. In this chapter we address

exploration at the data layer and present a solution utilizing a feature lattice to drive the exploration

process.

2.1.1 Challenges

As outlined in the opening chapter, rare event detection is a challenging problem. It entails

distinguishing a proportionally small subset of data from among a very large one and is a task we

routinely encounter throughout society. Examples include identifying a network vulnerability from

among billions of computing operations per second or detect malignant cells in a human before they

can become cancerous or life threatening. In all cases, these events, items, or other phenomena

are intertwined into a large population whereby the proportionality is on the order of magnitude

of millions or more to one. A brute force solution to simply explore all possible choices (e.g. scan
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every cell in a human body) is impractical.

Adding complexity to this problem, rare events can easily be confused with common ones.

A simple comparison operation between two input data may not suffice to distinguish an outlier

from among a larger pool. We can also consider a third layer of complexity if we aim to improve

accuracy of a system by categorizing different anomalies. Trying to identify and distinguish a single

entity as a boolean function is one challenges task, but this problem becomes even more difficult if

the exploratory task is to identify and quantify multiple rare events. In this chapter, we view these

challenges within the scope of molecular dynamic simulations.

To overcome these challenges and enable adaptive control for simulation management,

we identify that improving the selection process for input data is a critical area to target. Our

sampling methodology and framework helps to dynamically steer individual simulations as part

of a larger ensemble. We stress, however, that techniques and framework presented herein are

applicable to other genres. They are suited for domains where generated data is prevalent and

continual modifications to input domain can drive the system toward a user-defined goal. The

primary contributions laid out in this chapter are listed below:

1. We utilize a data feature lattice to perform analytics on generated scientific data. This novel

approach, which is inspired from lattices used in traditional OLAP applications in database

management systems, organizes raw output to correlate high dimensional data with scientific

events.

2. An adaptive sampling technique combining multiple analytical methods which steer the system

towards either a data exploratory goal to gain new knowledge or a data convergence goal to

more comprehensively understand a structure.

3. We apply our methodology and framework to molecular dynamics simulations to demonstrate

a more efficient scientific exploration pipeline. Our results show improved simulation outcomes

by producing 22.5x more rare events in substantially less time as compared to traditional, naive
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exploration techniques.

We break this chapter into three sections. The first lays out the broad foundation linking

input and output in data exploration as well as identifying the key considerations when building an

adaptive exploratory framework. The next section discusses our exploratory methodology as applied

to scientific and engineering simulations, and specifically to biophysics and molecular dynamics. It

includes rare event detection using an OLAP-centric technique and a lattice based approach. The

final section covers specific implementation details and several experiments which highlight the

methodologies and adaptive steering presented herein.

2.2 Background

We traditionally view data exploration as a human involved process whereby a user employs

one or more techniques to find patterns or correlations in an existing dataset or database. We include

the caveat that in order to perform data exploration, it must be executed in an efficient manner.25

We provide a short background to lay the foundation on how we can integrate adaptive control into

the data exploration process. This includes data exploration objectives and techniques which we

link with input selection through sampling as a means to adapatively steer a system of tasks toward

a common goal.

2.2.1 Exploratory Techniques

We begin with the understanding that the exploration process is not a single effort task. We

view the process as a repetitive one with individual efforts, components, and executable operations

occurring in sequence or in a more disjoint and distributed manner. This is in contrast to a one-shot

effort, such as an explorer trying to cross the Ocean to discover a new world or traveling to Mars. By

framing the process in this manner, any analytical technique we apply, which can include statistical

methods, graphical tools or machine learning, can benefit from knowledge gained between iterations
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of the exploration process. This is how we extend simple exploration to be an adaptive exploration

approach.

The premise of an adaptive approach is derived from Bayesian inference. First formalized by

the mathematician, Thomas Bayes, Bayesian inference is a statistical method in which the probability

of a hypothesis is updated as new information is attained.26 It is often applied to decision making

where we use the knowledge of a past event to better predict future events. A prime example is a

game of chess: a player retains a running estimate of the current chess board, as the game progresses

and the chess pieces update at each turn, she assesses the likelihood of her adversary’s next move.

Based on that assessment, the player decides on her best possible move. Bayesian inference is

employed in our daily lives and found in many applications.

Extending Bayesian inference, we can also approach data exploration as a series of choices.

In each iteration, a system or user must select a subset of tasks to execute. For each one that

completes, we observe the outcome and decide whether to (1) re-run, or exploit, the task again or

(2) explore a new task. This is the premise behind the multi-armed bandit problem which was first

developed by Herbert Robbins in 1952 as a design methodology for sequential experiments.27 It

was later formalized by John Gittens in 1979 as a metaphor using slot machines.28 The goal of the

bandit is to select a set of levers in each turn which can best maximize the monetary payout. After

the turn of each lever, the bandit must decide whether to exploit a winning machine or explore a

new one. We project this explore/exploit paradigm onto rare event detection as a methodology to

perform adaptive control. In our case, a system can choose to either exploit a promising set of input

parameters to achieve a desired outcome (i.e. produce or detect a rare event) or it can explore a

new parameter space.

Now that we have outlined a basic methodology, our solution must identify the best way

to produce tasks which we aim to exploit. To implement this, we examine how to steer this process

toward this goal. Given that we are developing a system with a large set of subtasks, which can be

distributed in either time or space or both (we could employ this on a single host with tasks executed
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serially over time), can we a priori affect the outcome of a task without biasing the results?

We examine this question with the assumption that each task is a black box function where

we cannot alter the inner logic of the task. This enables our system to generalize as an abstraction

layer and apply to a myriad of fields. Thus, to affect the outcome and steer a task to improve

progress toward the overarching exploration goal, we focus our attention on the input. These can

be tunable parameters, starting coordinates, or any other source data. Given that our process is a

cyclic one, we seek ways to link output back to input as a way to adaptively improve our system.

2.2.2 Input Selection

As we stated previously, one possible solution to data exploration entails a brute force

method. If we selected every possible input combination for all parameters, we could compile the

results and eventually achieve our goal, which, in the case of rare event detection, means that this

is a guaranteed solution, given the event exists. Computationally, this implies the if we add enough

resources to the problem, then we can solve it. However, this course of action is not only infeasible,

but in some genres impossible due to the sheer magnitude of the input parameter set. Thus, we

must find alternative solutions aside from a brute force one. To develop our solution, we draw from

concepts used in database management and statistical methods and provide a short overview of

these concepts below.

Sampling Methods

Sampling in a statistical context refers to selecting a subset of elements from a population.

The methods and techniques from which one samples vary as do the underlying reasons for selecting

a sample. Sampling is employed when processing a large data set is either infeasible or impossible;

thus, the sample is meant to serve as a proxy for the general population. In such cases, one can infer

an error value and bound the sampled result within an upper/lower tolerance. Certain issues among

sampling include what value(s) to sample, the sample size, how to select samples, and whether to
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sample with or without replacement. We provide a brief overview of some sampling technique which

are incorporated into our framework.

Basic Sampling. The most common, and simplistic method of sampling is a random uniform

sample. For a given domain, a single value is selected among all the possible values. This is considered

an unbiased sampling. The sample distribution may fall within an infinite range of potential values

(e.g. any real number between 0 and 1) or within a discrete set of values (0 or 1). We also consider

that multiple selections may be considered independent whereby one choice has no bearing on future

choices or the inverse, dependent where such a relationship exists. We can also introduce bias into

the sampler by applying an adjusted or skewed distribution. The most common of these, a Gaussian

normal, is a symmetric, bell-curve shaped probability.

Rejection Sampling. Used in Monte Carlo (MC) simulations, rejection sampling iteratively

makes a boolean choice over a sample of data. For each iteration, a sample is chosen and it is either

accepted or rejected according to an applied acceptance function.29 Because sampling from the actual

distribution function, P , is either impossible or too complex, a secondary distribution function is

provided such that it is used to determine acceptance. One classic example is the solution for pi,

π, where a random value (x, y) is chosen on a uniform distribution, x, y ∈ {−1, 1}, and accepted if

x2 + y2 ≤ 1.

Umbrella Sampling. Umbrella sampling employs output from a function or an existing

dataset to create an inverse distribution from which to sample. The technique is often applied

in an exploratory process to ensure coverage over a domain: given an input of previous choices,

we create an inverse or umbrella distribution over the regions in our exploratory space which are

sparsely covered. Within the context of rare event detection, and specifically applied to scientific

data exploration, we note that Torrie and Valleau first suggested an umbrella sampling approach to

molecular dynamic systems.30 They showed how one can more efficiently study the complete energy

landscape of a system by taking a biased sampling from a collection of simulations (as opposed to

a random, uniform sampling). To ensure full coverage, the bias should sample proportional to the
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inverse of the systems energy probability distribution (hence an umbrella). In addition, we note

that Palmer and Faloutsos showed how density based sampling improves over uniform sampling

technique31 by simply inverting samples based on density: regions with fewer data points are over-

sampled and highly clusters regions are under-sampled.

Stratified Sampling. With stratified sampling, we group the input dataset into district

categories, or clusters. We subsequently, create a distribution over each cluster, or strata, and either

reweight the sampling distribution of all input choices by factoring in a weight associated with

each strata or we could sample from among the clusters. This second technique implies a two-step

approach: one to select the strata and a second to select data from within the cluster, noting that

we could apply any of these sampling techniques at both of these steps. Stratified sampling is often

used to ensure inclusion of undersampled populations in a target distribution.

Importance Sampling. One of the drawbacks with basic sampling techniques is the lack of

specificity or an ability to steer (or affect) the results for a particular outcome. This often results

in wasted computation resources, such as outcomes producing redundant data, if we assume that

the same input produces the same output. In the exploratory process, we want to learn more about

unexplored input space, which has a higher likelihood of achieving this goal, given our assumption

correlating input to output. Importance sampling aims to overcome this limitation by factoring in

a target distribution into a source distribution when sampling. Often, this technique is necessary

when the target distribution is either too complex or impossible to sample directly. To implement

this technique, we representing the importance aspect of the problem (e.g. a rare event) through a

target distribution or an importance sampling density g(X), and calculate a weight with respect to

the source distribution, f(X). This provides a re-focusing or re-weighting with a reduced variance

resulting in a sampling that favors important samples.32 The likelihood ratio is given as:

w(X) =
f(X)

g(X)
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Using this weight, it is possible to establish the estimate with respect to the importance sampling

density, given N samples:

E(f) =
1

N

∑
f(xi)w(xi)

Approximate Query Processing

We reference the literature behind this database technique as we include these concepts

in our solution. Approximate query processing is a database management technique to overcome

the delay incurred when responding to queries over large data sets.33 This is a technique which

trades space for time. By approximation, a query plan allows for less than 100% accuracy in order

to provide more timely and efficient responses to user queries.19 The challenge is in determining

how to provide an approximation on a full data set and how to associate that approximation with

an error band or confidence interval. Various techniques to perform the approximation include,

sampling, which we highlighted in the previous section, caching which is a data-centric approach,

as well as other more analytical techniques which employ historical queries to predict future query

patterns.

Online Aggregation. Hellerstein, at el introduced online aggregation (OLA) as a means

to provide users with timely feedback of partial results while a DBMS continued to process the

remainder of a given query.34 They provided a user with information on approximate time to

completion and a confidence interval for accuracy as quantifiable measure to balance accuracy for

speed. Users could interject and make the computation much more effective (and efficient) by

identifying thresholds for accuracy, setting constraints for time, and prioritizing tasks among multiple

queries.

Core Sets. A coreset is a minimal set of points which approximates a large data set while

still maintaining the original properties of the source data. Operations performed on the coreset

provide near similar results as if performed on the full data set, within a tolerable error, ε, but at
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a much cheaper cost.35 Coresets are applicable to certain datasets, to include spatiotemporal data,

but identifying which points to retain is also a challenge.

Meta-Data Statistics. if we can identify secondary or summary statistics over our dataset,

then we can utilize them as part of a global sampling strategy to help focus the exploration process.

In a database this implying retaining specific information over (a) data distribution within a data

set, such as knowing that a certain percentage of queries will always select or group by a specific data

value, or (b) data values included in future queries, such as knowing that most queries will always

include a specific set of columns. Extending this concept, systems such as BlinkDB,36 employ an

adaptive framework centered around statistical stratified sampling of query column sets (QCS). This

allows the system to maintain an accessible sample set of data which can best meet future queries.

Bootstrapping

One of the critical aspects of providing an approximate sample for a general population

is ensuring an error component associated with the result. Systems often provide an upper/lower

bounds on the error as part of an aggregate functional computation (e.g. the approximated average

over a sampled set of numbers is µ̂ and it is accurate within 3% where 0.97(µ̂) � µ � 1.03(µ̂).

A major limitation in confidence bounds is the specificity associated to the aggregate function.

Each function requires its own separate confidence calculation. A more general approach is the

bootstrapping technique developed by Efron in 1979.37 The basic premise of bootstrapping is to (a)

select a sample data set, (b) generate a set of bootstraps from the sample, (c) apply an operator to

the bootstraps and then compare the aggregate results to the sample set. The distribution of the

bootstraps reflect the original data set due to the law of large numbers: as the sample size grows,

the approximation will more closely resemble the actual data. Furthermore, the distribution of all

bootstrap results provides a confidence interval on the as the error bounds of the operator over the

full data set.38
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2.3 Scientific Computing

2.3.1 Simulations

Molecular Dynamics (MD), one such scientific genre, employs computer simulation to trace

the energy and physical properties of biochemical structures. The process employs computing in-

tensive applications to iteratively calculate spatial locations and velocities for individual atoms and

determine the overall equilibrium for biomolecule, polypeptide protein or nucleic acid.39 Simulation

steps typically occur at the femtosecond time scale with each step calculating the energy and new

physical configuration of the bio-system; the collective set of timesteps define the biomolecule’s spa-

tiotemporal trajectory which represent anywhere from a few picoseconds to milliseconds of real-time

biophysical interactions.

The individual positions and velocities over time provide a partial means to describe the

characteristics of the underlying biophysical system. With additional factors, such as tensor angles,

temperature, atoms bonds, the comprehensive feature set defines high-dimensional energy landscape.

Temporal data and the changes over time compliment atemporal structure to provide a more com-

prehensive energy landscape description. In a more abstract classification, the system transitions

through varying states of activity. Among the most critical tasks for scientists is to better explore

and understand these various states and the transitions among them. Such information is critical

to fighting infectious diseases, developing drugs, and screening for cancer. Conducting simulations

facilitate exploring a protein’s global landscape to discover new features and to converge on how the

proteins act during different states of its existence.

With a recent rise in computational power, the MD community has capitalized on the

increased efficiency, parallelism, and processing speeds to execute simulations. Despite advances

to integrate graphical processing (GPU), parallel programming models (MPI), and remote memory

access through Infiniband networking (RDMA), scientific computing is inherently still reliant on a

supercomputing architecture dating back to the 1980’s with programs typically written in C, C++,
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or Fortran. We highlight the systems integration challenges in Chapter 3 and discuss the data centric

challenges below.

2.3.2 Data Challenges

Contemporary biophysics and biochemical computing in MD maintains a segregation be-

tween simulation execution and offline analysis. Users allocate resources on high performance com-

puting (HPC) clusters to run simulated experiments which can run from hours to days or even weeks

of total wall clock time. Carefully selecting critical start points can help to maximize the value of

generated data and the time spent performing simulation; however, due to the stochastic nature of

the experiment, one can never ascertain the simulation’s value until after completion. While some

efforts demonstrate how event detection can be more autonomous,40 it is still viewed an an offline

process. Due to resource limitations in a shared computing environment, users are faced with strict

storage ceilings. This results in a common Big Data dilemma whereby storage is insufficient to meet

streaming data demands to support down stream analysis tasks. Thus, users must either prioritize

and retain selective data or provide external resources to off-load overage. Scientists typically prefer

to retain everything, which leads to a follow on issue of data migration management.

Once completed, a system must move large amounts of data from clustered to remove

servers (either cloud or locally hosted) for offline analysis and processing. Control over data move-

ment is recognized as a major constraint within scientific computing41 entailing an extract, trans-

form, load (ETL) operation for each output item. Because users cannot pinpoint critical data to

retain as simulations execute, they must move it to remote locations in order to conduct offline

analysis. If a given scientific objective is not met, analysis results feed a refinement step to derive a

new set of input parameters for a next cycle of experiments. Although the data input requirements

are minimal in MD, targeting an optimal set of parameters can expend unnecessary and potentially

costly computing resources. It should also be noted that other scientific or engineering fields may

have a high input data requirement which would necessitate a secondary data migration task to
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move data back into the HPC. We argue that coupling online data management and analysis with

simulation execution inside the HPC environment can reduce the data transfer rate - essentially

eliminating the ’E’ and ’L’ from the ETL operation - and provide a means to reduce data retention

requirements by distinguishing critical and valuable data immediately after output generation.

A common input selection technique, parameter sweep (PS), organizes input data sets

with one or more open parameters and subsequently schedule workflow tasks to execute and analyze

results for the domain of input values. PS is a means for scientists to explore a large and potentially

unknown input space; however, PS can consume unnecessary resources in trying to explore biosystem

states which yield no significant output. Dynamic workflows which aim to iteratively influence

parameter sweep selection have been shown to improve overall system efficiency.42 However, a lack

of in situ analysis coupled with the parameter selection process limits their ability to be both adaptive

and accelerating during experiment execution. Such systems must either process a complete set of

experiment output en mass in an offline manner, whereby large amounts of data are potentially

moved across computing resources, or a human must interactively steer parameter selection toward

a desired end state. We argue that despite the data management overhead, integrating online

analysis process (OLAP) with simulation execution can be more efficient than an offline workflow

management process which relies on conventional processes, such as PS.

Coupling analysis with simulation would provide tremendous gains in not only steering sci-

entific input but also in prioritizing data for retention within the clustered computing environment.

Some solutions provide a supporting effort to facilitate experimentation, such as scientific workflow

management systems (SWfMS), which integrate various processes during the experimentation lifecy-

cle. Unfortunately, they lack a data management integration capability to make adaptive decisions.

This leaves the current state of the field lacking a data staging capability, in situ analysis of big

data, or integrated dynamic steering of scientific goals43 – all of which could tremendously benefit

the field. We recognize these shortcomings as potential research opportunities to improve scientific

computing.
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2.4 Methodology

Given the current state of MD computational simulations, we identify a set of objectives

upon which our framework is aligned. Specifically, we target users who have one of two primary

goals when conducting simulation experiments: (1) a discovery goal whereby users seek rare event

sampling to not only find the rare events, but also understand the relative frequency of occurrences

and the likelihood of states leading up to them; and, (2) a convergence goal whereby users desire

a more comprehensive picture of the feature space exhibited by a biomolecular structure. To meet

these goals, we leverage the research on bovine pancreatic trypsin inhibitor (BPTI). This 58-residue

polypeptide protein is well-studied since 2010 due to the published 1.03 millisecond labeled dataset.44

Consisting of 892 atoms, BPTI is known to exhibit five slow motion states and numerous fast-

motion sub-states. We aim to better understand the rates of transitions among these states and

sub-states and more comprehensively understand the global BPTI feature landscape. We, therefore,

present the following model for query based sampling with scientific simulation data exploration and

subsequently present a more novel approach using a feature lattice.

2.4.1 Data Representation

Simulation data in MD consists of a relatively small number of input parameters while

output consists of very large datasets, measured in gigabytes, terabytes or petabytes. Specifically,

our system input consists of initial starting coordinates for all atom positions in Cartesian Space

with input domains restricted to a bounded set of values as defined by the physics of the simulation

(e.g. atoms cannot physically overlap).

Incorporating high dimensional data for analysis is among the primary challenges within

the scientific computing field. Generating data down to the femtosecond timescale could produce up

to a gigabyte of output coordinate data every second of computing time; however, only a sampling

set is retained. Each stored frame, known as a conformation, represents a single atemporal data
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point for which we apply data labeling techniques. Aggregated data over time combines into a

temporal data point over which we apply a covariance matrix calculation.

The total number of primitives for a data element defines the total dimensionality of the

program in high-dimensional space (RN ). Additional values, such as temperature and force field,

are also potential input parameters along with alternative representations of data (e.g. φ, ψ angles).

Conveniently, the output schema is the same data as the input schema stored as a temporal collec-

tion of Cartesian points. In order to manage this vast amount of data, we employ common data

reduction techniques, to include root mean square distance calculation, as well as linear and kernel

principle component analysis. Using reduce dimensionality data, further clustering, processing and

classification is employed via KD Tree and K-dimensional grid structures to derive a hypercube, a

spatially defined structure which is discussed in more detail below.

Classification

Classification of data requires either a prelabeled comparative dataset or a scientific means

with which to categorize observations for unlabeled data. We leave the latter of these options as

future work to implement this framework for further expansion on data exploration and instead focus

on leveraging pre-labeled data. We employ the published 1ms D.E.Shaw labeled data set for BPTI44

as the basis for data labeling. Utilizing this data set, we define a feature classification strategy

integrating a small fraction of the total MD dimensionality. It is noted that accurately describing

the complete free energy landscape of BPTI in its entirety requires hundreds or even thousands of

dimensions which is outside the scope of this effort. Thus, we define a simplified feature classification

strategy, and from this, we detail both a single and multivariate labeling technique:

1. Single Variate Labeling. This technique ascribes a single label to each observed confor-

mation. For this experiment, we classify each observation with a state based on its observed

root mean square distance to a predefined set of centroid locations. RMSD is widely employed

within the biophysics community and has been demonstrated to show data correlations.45
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Each of the five known BPTI centroid positions are derived from the prelabeled dataset based

on several locally run simulations in implicit water solvent. We classify as a point as either in

a well or a transition out of one of the well states based on its aggregate proximity to each of

the centroids. We further specify both a primary label, the nearest centroid, and a secondary

label: the next closest centroid if the observed conformation is close to equidistant between

the two centroids. For the five states of BPTI, this provides a set of 25 difference labels or

bins into which we group atemporal data.

We observed that single value classification is very sensitive and difficult to clearly articulate.

This subtle point is illustrated in the center section of fig 2.1. In a single variate manner, this

image classifies as State 1; however, observe how the difference between its primary state and

States 0 and 2 are not very pronounced, especially given the variance as shown in the red error

bar. This is indicative of the challenges within MD when classifying and labeling data.

2. Multivariate Labeling. Instead of classifying data elements as existing in one specific state

or sub-state, we define an alternative data representation, which we call a feature landscape

consisting of a distribution of several features. With in the genre of MD, feature selection

is nearly endless: Cartesian Coordinates are one; however, torsion angles, velocities, and any

subset of data elements could be factored in a feature landscape. For purposes of this study,

we limit the scope of the feature landscape data items: the relative distances to a common

set of pre-defined state centroids. Using this metric and the total count of observation, we

establish three sets of features comprising a 20-dimensional data point. Figure 2.1 shows these

20 dimensions organized into three groups. The first represents the normalized single variate

count for the nearest neighbor for each observation in temporal or aggregated data (or even

a single observation). The second group describes the proximity to each centroid. To capture
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proximity, we employ a logistic function:

1

1 + e−k(−dic)

Where dic is the distance to centroid c for observation i. The constant, k, is a scale factor

which we have set to 10. The third group is a second-order, pairwise relationship of distances

to two centroids for each pair of centroids. Derived from landmark multidimensional scaling

(LMDS),46 this method uses only the five predetermined centroids as landmark points and then

calculates the distance between each preserving polarity which is highlighted on the graph for

positive and negative distance values. For example, the column for 2-3 is approximately -9

and is closer to centroid 2 than 3, hence it is red while the column for 2-4 is positive and closer

to state 4. For the five centroids of BPTI, this represents 10 pairs (non-directional), but this

feature space could easily become more complex by adding a third-order component.

Hypercubes

We employ a spatially defined hypercube data structure as the basis for our fist data

organization solution. The concept is derived from data cubes in database systems which has been

used in a variety of ways.47,48 Algorithmically, we create a KD Tree over the raw data set to

derive a clustered set of data points in either high dimensional space or in a reduced subspace

dimensionality. The resultant leaves of the tree cluster into k-dimensional hypercubes where points

within the hypercube represent data input values from which a sampling technique can draw. We

chose to implement a hypercube model to prepare data for an analysis and subsequent sampling

process due to the natural correlation between hypercube operations and query processing. Such a

technique has been recently shown to improve stream processing efficiency and effectiveness49 and

is related to techniques incorporating data cube and map-reduce processing.50,51

Associated with each hypercube is a weight value which can include number of points,
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(a) Source Data: Pre-labeled, from long run-
ning 1.03ms experiment (D.E. Shaw)

(b) Source Data: Generated locally from a
200ns adaptively controlled simulation

Figure 2.1: Graphical Representation of the MultiVariate Feature Landscape employed to describe
MD data. Each of the three sections in the two images defines a unified feature set: the left
five columns, C0..C4, define the normalized number of observed items with closest RMSD to the
given centroid. Next 5 columns, S0..S4, are absolute average distances to each state centroid. The
rightmost 10 columns pairwise relative distance measurements for RMSD to respective centroids.
Number of observations for this Hypercube is also indicate on the graph. Also note: vertical scale
only applies to the S0..S4 labels. Both of these images represent the same selected hypercube of
data after applying the same spatial clustering, K-D Grid, algorithm to different data sets. The left
image is from pre-labeled data and the right is from a generated generated data using our adaptive
framework.

volume, or a mass/density value. We can aggregate data within a hypercube using the previously

described feature landscape distribution as depicted in figure 2.1. Some of the operations over

hypercubes include: filter and mapping, set operations (union, intersection, difference), splitting

along one or more dimensions, projection or reduction to few dimensions, and a reweight operation

which we describe below. It is also important to note that these operations can be chained together

to create a more complex query over data with the end goal of producing a subset of hypercubes

with a sampling distribution in order to select subsequent input coordinates.

2.4.2 Query Based Control

Adaptive control ultimately requires a decision on which set of subsequent input values.

As with any decision support system, a controller needs a global assessment of the current state

and a list of potential decision choices. We represent the state as a status toward a user defined
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convergence goal and the latter as a resultant set of output from a sampling algorithm.

Bootstrapping for Convergence

We employ a bootstrapping technique to provide a general purpose metric on determining

system convergence. We use the size of this confidence interval (CI) as the premise for determining

convergence: data with a tighter CI have a more converged state. Specifically, we employ a non-

overlapping, blocking bootstrap algorithm which groups sets of observed conformation into a single

bootstrap. Over time, convergence is determined by calculated the bootstrap over all previous blocks:

Algorithm 1 Confidence Interval

1: [x̂i]← X
2: µ̂i = f(x̂i),∀ x̂i ∈ X :

3: µ̂ =

∑
µ̂i
|X|

4: δ = sort(µ̂i − µ̂∀µ̂i ∈ {B})

5: CI = (µ̂+ δlow, µ̂+ δhi), where low =
1− I

2
, hi = I +

1− I
2

Sampling

We provide multiple sampling techniques as part of this framework. As stated above,

sampling in a statistical sense refers to selecting a subset of elements from a population. In our

context the population is a stratified set of hypercubes for which we can attribute a weight, such

as number of observations, spatial size, or total convergence. For a given domain, a single value is

selected among all the possible values. As a naive approach, we provide a baseline comparison of

applying a uniform sampler over the set of grouped, single variate sets of bins as described above.

In contrast, we also incorporate an umbrella sampler which inverts a observed distribution

over a data set. To ensure full coverage, the bias should sample proportional to the inverse of the

systems energy probability distribution. We implement this umbrella sampling over the same set

of bins using the calculated convergence over each as the input distribution. Thus, states and sub-
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states which are least converged will be more likely selected as candidates for subsequent execution.

For both of these, when a bin is sampled for a subsequent control decision, a secondary uniform

sampling is performed to find a new starting coordinate.

We have also implement a multivariate nearest neighbor (MVNN) data sampling algorithm.

Based on nearest neighbor solutions in data analytics,52,53 this approach leverages the feature dis-

tribution as an input vector to a standard nearest neighbor search. For input, we use the umbrella

over system’s aggregate mean feature distribution among all previous data points. The resultant

target distribution is probed against each hypercube (or leaf) from a KDTree constructed among all

data points. Once probed, we retain the ten nearest hypercubes and use the normalized euclidean

distance among all 10 as a weight for the discrete probability distribution from which to sample.

As with single variate sampling, a secondary uniform sampling is performed to find a new starting

coordinate.

Reweight Operator

As a final sampling technique to support a data exploration task, we introduce the reweight

operator. Comparable to an ensemble learning techniques which leverages different machine learn-

ing techniques, the reweight operation applies two different clustering algorithm on the source data.

Using the hypercube data structure, we demonstrate how combining clustered atemporal data con-

sisting of single frame observations with temporal time windows of trajectories can highlight areas

of the data space that an objective convergence function can either explore or exploit in a active

learning fashion. This operation selects data points in one dimension from a set of clustered spatial

hypercubes, back-projects each sampled point to higher dimension, and then projects it into a target

subspace. Weight attributed to hypercubes from each source subspace, such as size, are combined a

part of a join operation using a user defined gamma function. The end result is an aggregated set of

hypercubes which can be sampled for select input parameters for subsequent simulation execution.

Defining how data aggregates among the different subspaces through the gamma function, γ
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Algorithm 2 Reweight Operator: ⊕R
Input: Sets of hypercubes and weights in two different subspaces, a lambda function (for data

projection) and a gamma function (or data aggregation):{Ha,Wa} , {Hb,Wb} , λa, γ
Output: Set of hypercubes with weights: (H ′,W ′) s.t.

∑
wi = 1, ∀wi ∈W ′

1: Back-project Hb to N-Space {H(b⊥N), wb} : Rb → RN
2: Project H(b⊥a) to a-Space

{
H(b⊥a) : wb

}
: RN → Ra

∀hb ∈ H(b⊥N): h(b⊥a) = λa(xb) ∀xb ∈ hb
3: Overlay: {Ha, wa}, {H(b⊥a), wb} on same sub-space
4: Join correlated data: Ha ./ H(b⊥a)
∀Ha, H(b⊥a): h

′
i = ha

⋃
h(b⊥a), w

′
i = γ(wa, wb)

5: Normalize, W ′: W ′ =
w′i∑
w′i

reveals how the adaptive sampling process can be finely tuned to steer simulation execution toward

potentially new interesting starting points. These starting points represent ideal positions which

ideally lead to rare event occurrences in the simulation (or events leading up to such occurrences

which can also provide insightful knowledge). The ultimate objective with this operation is to

support the data scientist in her data exploration tasks. We believe we have only covered a small

portion of the potential for this type of operation and leave additional research for future work.

Back Projection

To tie in the explainability lineage of output to input, we define a the concept of a back-

projection function. Its purpose is to serve as the inverse of the executing task and can be a significant

resource consuming operation. We implement it as the same operation employed to perform sam-

pling on data when transforming targeted output hypercubes into starting input parameters. This

operation relies on historical provenance of data as maintained in the online catalog through the

overlay service. In some cases, data retrieval back to higher dimension may require a file trans-

fer from an off-site or archived location. For our experimentation, we retained data locally within

the distributed file tier and still found that this operator back projected upwards of 100K points

from thousands of trajectory files consuming over 10 minutes. For this reason, we integrated an

in-memory caching overlay service to significantly improve data management support by a factor of

10. While back projection can retrieve original source data for reweighting, it can implement any
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aggregation function (e.g. return the mean Cartesian coordinates for a trajectory of atom positions).

We also recognize that one could project and retain data for all subspaces of reduce dimension data

locally and completely bypass a back projection requirement; however, even reduced dimension sub-

spaces can grow over time and require offloading and approximation due to local memory or storage

limitations.

2.5 Feature Lattice

We finally discuss our novel and contributing technique for data exploration. Building on

the sampling concepts listed above, the lattice is a different approach from the hypercube based

methodology. Drawing inspiration from formal concept analysis54 and online analytical processing

(OLAP), the lattice is based on data cube concepts representing a multidimensional array structure

for maintaining and computing summary statistics. Originally formulated by Gray,55 they enable

N-dimensional aggregations and relations as well as hierarchical tree-based organization. Typical

data cube operations include the roll-up for merging and the drill-down for refining aggregated data.

The lattice is constructed and maintained as part of the global control decision macrothread. We

first describe the background and then show how it integrates into the system pipeline to adaptively

steer data exploration.

2.5.1 Control Data Model

We represent the simulation ensemble output as a set of K-dimensional feature vectors for

N timesteps, defining an N ×K matrix. This input matrix can be an set of raw trajectory data or

it could be the result of a series of transformations; our design is flexible to support a variety of data

manipulation operations to produce this input matrix. Given this dataset, we define the feature

lattice as a graph model consisting of nodes and edges based on frequent itemsets from the input

matrix. Each node in the lattice, Ci = {Ki, Ni}, represents a unique subset of features, Ki ⊆ K,
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collectively observed in a set of timesteps (tuples), Ni ⊆ N . Using Figure 2.2 as reference, node C6

has the feature set, K6 = {A,B}. It also contains a set of tuples, N6, where both kA and kB were

simultaneously observed.

Lattice construction is predicated on a boolean function, Fa, which accepts a feature and

measurement, ki, and determines if the given feature is observed in the input event. A common

example function is the threshold calculation as shown below, however, any other boolean function

could be applied. Given a cutoff parameter, λ:

Fa(kn) =


1, if kn < λ

0, otherwise

We apply Fa to all features for all events, resulting in the incidence which is a 0-1 matrix of dimension

N ×K

We reduce the scope of the feature set, K, to K’ by removing all trivial features, k∗m. A

feature is deemed trivial if it is observed for every event or never observed at all. This can be relaxed

to adjust for potential noisy events by changing the threshold to meet or exceed a pre-determined

user-defined noise parameter, θn:

K ′ = {kn|Fa(k∗n) < θn and Fa(k∗n) > (1− θn)}

Traversing up the lattice, two nodes combine into a parent node by performing a union

operation on their feature sets and an intersection on their tuple sets. We formally state that a

parent-child relationship exists between two nodes, Ci, Cj , s.t. Cj is a parent of Ci iif Kj = Ki∪{kx}

where kx /∈ Ki. Extending our example, C7 is the parent node of C6, where K7 = {A,B} ∪ {C}

We conceptually create the complete power set lattice consisting of all combinations of all

features for all dimensions. Although fast algorithms exist,56,57 constructing the complete lattice is
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computationally expensive with complexity of O(nK) as it entails a union and intersection operation

on all adjacent nodes. For efficiency, we employ a max-miner algorithm58 to materialize only the

nodes whose item count exceeds a minimal support threshold, θ. We discuss the impact of this θ

parameter on sampling performance in Section 2.7.5. With respect to materialization, we define

two classical methods commonly found in system processing which answer the question: do we

materialize results immediately or defer computation until the results are needed? We highlight

these two techniques below:

Lazy. In a lazy approach, computation is performed only when needed. This method

provides more resources to the main task at head (e.g. answering user queries or performing analysis

tasks) and it may eliminate unnecessary processing if the materialized results, e.g. the lattice clusters,

are never used in subsequent efforts. This technique is the underpinning of functional programming

as functions are only evaluated when needed.59 The main drawback in lazy processing is that the

system must ensure it retains enough information to execute the computation when necessary. In

memory constrained systems, this could be problematic or require paging to secondary storage.

Greedy. In a greedy fashion, materialization is computed immediately when data is received.

In a classical data systems setting, this technique may be necessary since information may not be

available after a process executes. As noted, however, greedy processing incurs additional overhead.

Because we employ the lattice as part of an adaptive system, we defer computation in a lazy fashion

and forego the greedy approach, only executing the algorithm when we need to make a control

decision.

Once materialized, we add weighted edges in the lattice between all parent and child nodes.

We project a parent node’s distribution onto each of its child’s feature spaces by removing the one

extra feature, kx, and comparing distributions over the common feature set, Ki. Specifically, we

employ a modified earth mover’s distance (EMD) algorithm to calculate the distribution difference

between two nodes and set the resultant value as the corresponding edge weight in the feature lattice.

Referencing our example, the parent-child edge between nodes C6 and C7 has a weight of 0.2. This
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represents the relative EMD work to convert the distribution of values for node, C6, to node, C7

along the common feature set, Ki = {A,B}.

(a) Lattice Construction (b) Rolling up Nodes into Cuboids

Figure 2.2: Left: Feature Lattice is constructed with edge weights calculated from the distribution
difference of each child-parent node. Right: Two cuboids are identified by rolling up child nodes
into the parent with which it is most similar.

We trade accuracy for efficiency in order to enable lattice construction and support in

situ analysis and control inside the HPC which we will cover in Chapter 3. The modification

we apply to the standard EMD algorithm calculates an approximate value using corresponding

differences for each pair of single dimensional distributions over the two input data. Conceptually,

the EMD algorithm, is a linear programming model which finds the set of flow values, fij with a

given cost model, cij that minimize the work to transform one distribution into another.60 Our

modification calculates the flow from one distribution to a second for each feature, kn ∈ Ki and

subsequently aggregates the total flow for all features required to transform the set of one-dimensional

distributions. Histogram data is incrementally maintained using a predefined size and width of

bins over the data set. By fixing these parameters, the EMD cost model is reduced in complexity,

helping to speed up both individual operator execution and long-term lattice maintenance. Concepts

derived from incremental view maintenance approaches;61,62 these two factors are critical in allowing

DINSAC to perform in situ analysis and control in the HPC.

The key takeaway is the ability to compare adjoining parent-child nodes for similarity in
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high dimensionality enabling the system to aggregate nodes in the lattice. Parent and child nodes

with similar data distribution can collapse together: we formally state that a child rolls-up into

a parent node to form a cuboid. Iteratively, we roll-up all nodes to at most one parent node by

selecting the parent with the smallest weight until either no parent node exists or all parents nodes

have high edge weights, above a pre-determined threshold. This operation is shown in Figure 2.2

(b) where nodes, C1, C2 roll up into C6 which subsequently rolls up into C7 to form one cuboid. A

second cuboid is formed by rolling up C3 into C5.

2.5.2 Clustering and Sampling for Control

We cluster the lattice to identify high dimensional data patterns in the feature sets which

correspond to lower dimensional patterns or states in the scientific model. We first explain the

methodology employed, which derives from traditional correlation clustering techniques, and then

show how it relates to the data exploration process.

We establish clusters by assigning raw data points to one or more lattice cuboids. For each

row in the input matrix, we identify the corresponding cuboid containing the node with the same

feature set as the data point, if the node materialized during construction. If not, we traverse down

the lattice, iteratively reducing the data point’s feature set by one attribute to match it with a node

in a lower tier. If one or more matching nodes are found, we assign the data point to all associated

clusters with matching nodes in that tier. The algorithm is provided below:

As an additional step to improve downstream sampling, we plot the clusters in euclidean

space using the raw data from the input feature domain. We calculate cluster centroid coordinates

and employ a hierarchical, correlation cluster graphic based methodology to reduce the number of

clusters. This merging step iteratively identifies the two closest clusters and merges them together,

stopping when a pre-determined number of clusters is reached. We explore the impact of this

hierarchical step on sampling accuracy in Section 2.7.5.

The outcome of clustering produces groups of data which correlate in both high and low di-
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Algorithm 3 Lattice Clustering

1: Construct Lattice using Max-Miner Algorithm
2: Calculate EMD for every parent-child relationship
3: Collapse Lattice nodes to cuboids: {C} → {C ′}
4: Initialize all Di = { } for all Ci ∈ C ′
5: for en in E do
6: Assign en → Di based on best matching feature set

7: Prune D: Let D′ = {Di|LEN(Di) > 1}
8: Calculate centroids for all D′

9: G← pairwise distance for all centroids
10: while LEN(D′) > numcluster do
11: Select Di, Dj with smallest G(i,j)

12: Merge Di → Dj : Dj = Dj ∩Di

13: D′ = D′ −Di

14: return D′

(a) Feature A (b) Feature B

Figure 2.3: Correlation clustering. Distribution of measured values (in Angstroms) for two of the
input features, A and B. Dashed line is the aggregate distribution for all events where each corre-
sponding feature was observed in the output. Solid lines are distributions for clustered data colored
to show correlation with scientifically labeled states.

mensions. Applied to spatial-temporal data for a scientific simulations, the clusters identify a unique

state that the underlying simulated model exhibits. Specifically, we demonstrate this relationship

in 1D using molecular dynamics trajectory data from our experiment section which we graphically

represent in Figure 2.3. Here we depict two features, kA and kB , whose raw data is the distribution

of distances over time between two atoms within the biophysical protein structure, measured in in

Angstroms (10−10 meters). The dashed black lines are the distribution of values from the tuple

sets for the corresponding leaf nodes. The solid lines are the distributions of values for five resul-
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tant clusters. They plot as compact, well-defined, higher-dimensional distributions corresponding

to lower-dimensional states in the source scientific model: each of the five clusters identifies with a

unique state, labeled 0-4, as shown in the graph.

One additional advantage of a lattice is follow-on hierarchical clustering by aggregating

rolled-up cuboids. The natural structure of the lattice enables grouping sub-states in a taxonomic

manner to further improve data exploration. This can help with not only data classification, but

also with sampling for control by improving the input domain for a subsequent sampling strategy.

We provide the pseudo-code for the lattice clustering is provided in Algorithm 3.

We exploit the feature lattice structure to devise a sampling strategy and show how it can

meet a user-defined data exploration goal. In an ideal setting with unlimited time and resources,

optimal data exploration entails selecting every lattice node and subsequently choosing every possible

starting input parameter combination. Realistically, we revert to a sampling strategy to select the

best set of nodes with a limited resource budget of both time and space.

Figure 2.4: Output from the lattice clustering using the techniques described in Section 2.5.2. This
depicts a sub-lattice of 6 features with a majority of the nodes rolled-up into one large cluster. On
the right a smaller cluster is circled in red denoting a potentially ideal set of points to exploit for
running new simulation tasks.
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For our work, we define the exploration goal as producing rare events; the sampling objec-

tive is, thus, to select input parameters which will best meet this goal. To further complicate the

selection process, potential noise is introduced in the system due to the stochastic nature of simula-

tion execution resulting in erroneous or failed models. We, thus, factor in noise when selecting new

input parameters. Given that clusters in the lattice correspond to patterns or states in the scientific

model, we apply a scoring metric to each cluster, based on size and variance, to meet the data

exploration objective of finding rare events. The metric, which defines the probability distribution

function used to select new input parameters, is how the system selects starting coordinates from the

smallest clusters (rarity) with the lowest variance (less noise) as ideal candidates to run a new set

of simulations. Changing this scoring metric is how the system can apply to different user-defined

sampling strategies. The sampling result is shown in Figure 2.4 where the output from a sub-lattice

of BPTI is depicted with the smaller, detached lattice cluster.

2.6 Implementation

We implemented five adaptive sampling techniques: two supervised and three unsupervised.

Our supervised approaches assume a classification technique is provided whereby an autonomous

labeling algorithm processes streaming output and assigns a declarative label to each observed event.

The first technique, a simple uniform sampler, chooses an equal number of observed events from

which to restart. The second, a more targeted exploration technique, is a biased sampling approach.

It applies an adjusted, umbrella probability distribution and randomly samples from a set of observed

events using a weighted distribution. The three unsupervised techniques based on (1) the multi-

variate nearest neighbor (MVNN) algorithm, (2) the reweight operator and (3) the lattice-based

data structure are described in more detail below.

For much of the analytics tasks, we leveraged the numpy, SciPy, and SciKit Learn packages

for Python. We felt integrating these were a natural fit for the data science community. As much as
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possible, we implemented machine learning and clustering algorithms as provided by these packages.

In certain cases, we developed our own implementation of a KDTree and K-Dimensional Grid used

for spatial clustering and organization of data into hypercubes.

Hypercubes

Our recursive KD-Tree contains three primary data elements: the leaf size, the backing

data handler, and a root node. Inner nodes of the tree contain the middle or ”split” value along

with left and right children. Leaves contain a list of indices into the data handler and data value

upper and lower for a specific dimension and we note that a leaf is a hypercube. We construct the

KDTrees using read-optimized data arrays (ndarray which can be memmapped) and for adding data

to the node, we leverage a secondary, write-optimized deque. The implementation is designed for

offline storage using a compressed binary data encoding as a key to define a single hypercubes. This

way, the index lists within all the hypercube can be stored separately and retrieve lazily (only when

needed) allowing an efficient retrieval and recreation of the KDTree using only these compressed

binary keys. The one hyperparameter, the leafsize, tunes performance: a larger leaf size is a smaller

tree with less footprint, but will entail more I/O requests for insertions.

kd = KDTree(100, 15, np.array(feallist), ’median’)

nn, hc = dict(), kd.getleaves()

for key, hcube in hc.items():

hc_ftlndscp = [featlist[i] for i in hcube[’elm’]]

hc[key][’feat_landscape’] = np.mean(hc_ftlndscp, axis=0)

nn[key]=LA.norm(global_landscape - v[’feat_landscape’])}

Listing 2.1: Hypercube Construction using KDTree

Listing 2.1 shows the implementation for the hypercube construction. Parameters passed

into its construction in the first line include leafsize, maxdepth and the underlying data. The data

is the the raw, spatio-temporal trajectory output divided into windows. The final parameter, in this
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case median, dictates the space partitioning function used to perform a binary segregation of data

along a single dimension. We have implemented median, mean, midpoint, and max gap. The last

one is akin to a one-dimensional support vector machine which identifies the two points that are

farthest apart and splits the dimension at their midpoint. Once constructed, we collect the leaves

as the hypercubes, hc, and then create the feature landscape as we defined in 2.1. We employ a

separate feature listing data structure which is calculated in situ with the simulation output. The

final line in this listing creates the nearest neighbor index, nn, which is used in the two step sampling

approach:

neighbors = sorted(nn.items(), key=lambda x: x[1])[:N]

nn_keys, nn_wgts = zip(*neighbors)

nn_wgts /= np.sum(nn_wgts)

while numresources > 0:

selected_hc = np.random.choice(nn_keys, p=nn_wgts)

index = np.random.choice(hc[selected_hc][’elm’])

selected_index_list.append(index)

numresources -= 1

Listing 2.2: Two-Step sampling

The sampling algorithm, shown in Listing 2.2 starts by generating a list of the top-N neighbors for

each hypercube. After sorting and normalizing, the actual sampler first performs a biased selection

using the probability distribution of the weights; note that the weights are derived from the feature

landscape. This highlights how we can bring together knowledge derived from recently executed tasks

using dynamic analysis, or in situ as we will explore in the next chapter, to help drive the selection

of future tasks. This points to the core component of adaptive control where we intelligently steer

global progress by driving the sampling of individual task execution. The second sampling technique,

in this case uniform, could be any alternative sampling approach as well.
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Feature Lattice

The Lattice based implementation is also a customized python developed codebase. The

data structure is a standard python dictionary object, although we employ an OrderedDict where

necessary for efficiency in processing. Our basic construction algorithm is shown in Listing 2.3.

H = histograms(Ik, D, nbins, brange)

for node, parentlist in dlat.items():

for parent in parentlist.keys():

delta = H[node] - H[parent][[parent.find(i) for i in node]]

flow = np.zeros(len(node))

for k in range(len(delta)):

flow_k = 0

for i in range(nbins-1):

flow_k += delta[k][i]

delta[k][i+1] += delta[k][i]

flow[k] = flow_k

dlat[node][parent] = np.sqrt(np.sum(flow**2))

Listing 2.3: Feature Lattice Construction

During the initial few iterations of the adaptive control mediation loop, we construct the

complete lattice since the data size is small in scope. As the dataset grows, we transition to storing

the lattice indices in the catalog and only making updates to this structure using an alternate

algorithm. However, we show the full construction here for more clarity. Initial lattice structure, as

well as any new data items used to update the lattice, is implemented via the max-miner algorithm.

Individual lattice nodes are materialized using a selection based query via numpy:

Ik[key] = np.where(np.logical_and(CM[:,list(node)], True).all(1))[0]

In this case, the 0-1 Matrix, CM is the molecular dynamic contact matrix. Raw data input to the

feature matrix is the filtered spatio-temporal positional coordinates for selected atoms within each
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residue. This matrix contains a 1 for two residues considered in contact and a 0 otherwise. It is

the input source for the basic lattice construction using the maxminer algorithm. We retain the

euclidean distances for all pair in all windows, D, for use in constructing the derived, feature lattice,

as described in Section 2.5.1 and depicted in Figure 2.2.

Reflecting on Listing 2.3, we note that this is a 3-layer nested loop. However, the inner

most layer is not an order of magnitude equivalent to N, meaning this runs in O(N2) time. Due

to the computational complexity of the EMD algorithm, we sought an alternative solution using

the approximated method for EMD which we mentioned previously and show in the second part

of this listing. This logic, which adds a weights to each edge in the lattice, finds the component-

wise difference for corresponding distributions. The algorithm subsequently finds flow, Fn for each

dimension, kn, shown as flow k by applying a fold operation: it accumulates a rolling sum of the

change of flow for each adjacent histogram bin along each dimension. Total approximate EMD work

to transform one distribution into another is solved by taking the square root of the sum of squares

of each Fk.

Lattice sampling follows a similar 2-step approach we outlined with hypercubes, however,

in this next code sample we show a deterministic selection for the inner item on the second selection:

cuboids = clusterlattice(dlat, CM, D, Ik)

cluster_weights, clust_items = [], []

for c in cuboids:

cluster_weights.append(score_funct_1(c))

cluster_items = sorted([score_funct_2(i) for i in c])

pdf = cluster_weights / np.sum(cluster_weights)

candidates = []

for i in range(num_tasks):

index = np.random.choice(len(pdf), p=pdf)

candidates.append(cluster_items[index][count[index]])

count[index] += 1

Listing 2.4: Feature Lattice Sampling
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The lattice is rolled up to organize and clustered into cuboids, as defined above. For each

cuboid, we apply two scoring functions. The first provides a single score for an entire cuboid; it

could be size, volume, or even variance using an eigen decomposition. The second calculates a

score for each item within the cuboid. For simplicity, we used the euclidean distance from the data

point to cuboid center in the distance space, D. When all combined into the controller’s logic, this

demonstrates how the organization of the data into a lattice helps to drive the sampling to select

the coordinates which are designed to steer the system to improve the data exploration objective.

2.7 Experiments

We conducted experiments utilizing the Maryland Advanced Research Computing Center,63

an HPC shared computing cluster. Each node consists of two Intel Xeon E5-2680v3 processors with

24 cores, and 128 GB of RAM. Nodes are interconnected with FDR-14 Infiniband providing 56

gbps throughput. The cluster employs an underlying Lustre file system with up to 2 PB of storage.

We wrote all overlay and macrothread implementations using Python v3.4. The catalog service is

built on top of the Redis NoSQL (v3.0) data store and we leveraged the Slurm workload manager to

schedule and queue jobs for execution. Scientific MD simulations are executed with the NAMD v2.10

simulation engine64 and we leverage the MDTraj API65 to perform analysis tasks for transforming

and processing simulation output trajectories. We achieve ensemble parallelism by running many

independent simulations on separate compute nodes. We note, however, that our system is capable

of leveraging MPI-based parallel simulation execution across multiple compute nodes.

Molecular dynamics (MD) employs simulations to trace energy and physical properties of

biochemical structures. Simulations iteratively calculate spatial locations for atoms at the femtosec-

ond (10−15) time scale. Specifically, we leverage the research on bovine pancreatic trypsin inhibitor

(BPTI), a well-studied polypeptide protein with a published 1.03 millisecond labeled dataset.44 Tra-

jectory data consists of sequential atemporal conformation positions of 892 atoms organized into 58

55



CHAPTER 2. LATTICE BASED APPROACH FOR RARE EVENT DETECTION

residue proteins. We associate a Cartesian coordinate with each residue and define the feature set,

K as the set of all pairs. Raw input is the euclidean distances for all pairs for each timestamp.

We reduce our dimensionality to 25 for efficiency, group spatial-temporal output into collective win-

dows, and calculate the median distance vector for each one. Each window, is thus, a single input

tuple for which we apply a threshold function to identify observed events and transform it into the

input matrix. Subsequent lattice construction is performed as described in Section 2.5. Experiment

Highlights:

• Data collected from two naive techniques and three adaptive ones

• Adaptive Simulations produce rare events

• Adaptively controlled simulations provide a better convergence strategy

• Experimental results finish up 60x faster

2.7.1 Adaptive Sampling for Rare Events

We demonstrate the improvements gained through iterative execution of shorter, controlled

simulations by comparing three adaptive sampling techniques utilizing the DINSAC framework

against two naive, long running sets of simulations. For this set of experiments, we define the

data exploration goal as executing simulations to produce physical structure conformations in rare

event states. Historical data on the BPTI polypeptide has shown the protein to spend 82% its time

in two of its common states, labeled 0 and 1.44 Translated into monetary costs, this equates to 18

cents of value for every dollar spent on computing resources; we quantitatively define value as the

amount of time a simulation produces rare events.

The first of the two baseline techniques employed consisted of a single, long running serial

simulation taking place over one week of computation time. The second naive technique mirrored

a traditional parameter sweep of input starting coordinates. To emulate this approach, we ran 10

simulations in a 36 hour period with each having different initial coordinates. For our adaptive
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sampling techniques, we used a consistent model of scheduling simulations lasting 4 ns in duration

with 25 jobs per control cycle.

Figure 2.5: Frequency of observed stables states (in ns) of MD motion for all trajectories. Note that
States 2,3 and 4 are rare. States 0 and 1 are common.

(a) Uniform (b) Biased (c) Lattice (d) Hist Data (e) De Novo

Figure 2.6: On Left: Heatmaps showing the sampling accuracy (a,b,c) for the three adaptive strate-
gies (uniform, biased, and lattice). Each row in the heatmap shows the output distribution for
sampling from the given start state. Right: Count of the number of observed transition events using
historical data (d) and using no prior data, de novo (e) for each of the five experiments.

As shown in Figure 2.5, the adaptive sampling strategies for biased and lattice based clearly

produce more rare events. The baseline naive serial approach, a typical method employed in scientific

computing, highlights the data discovery complexity. Despite running for one week straight, this

simulation only produced 4.5ns worth of rare event data out of 250ns of motion. This amounts to

1.8% of total time and 187.5 hours of unproductive computation resources expended.

Applying an offline, human-involved parameter sweep technique in the naive parallel experi-

ment to select targeted starting parameters helps to improve overall performance. This demonstrates

how starting in a rare state produces more rare observations. However, once a transition changes

the MD state to a common one, the observation space remains unchanged producing only common
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events (e.g. State 0). For both of these naive approaches, a lack of control reveals how simulations

can get stuck in a well and rarely visit more interesting states.

In contrast, adaptive sampling overcomes this drawback. Uniform sampling, as expected,

produces an evenly distributed set of events. The biased algorithm, which applies an umbrella

sampling approach, improves on the overall number of rare events. Adjusting sampling distributions

can further influence the biasing rate and allow the system to steer output to meet specific user

query demands. The drawback is that these approaches are supervised and require a user-provided

classification methodology. Applying a lattice based approach shows how the system can be tuned

to explicitly produce rare events in a unsupervised manner. The histogram results (in purple) show

that 92.5% of all observations are rare (states 2, 3, and 4), a drastic improvement over traditional

approaches which have historically shown 18% efficiency.

We further highlight the sampling improvement Figures 2.6 (a-c). These heat-maps depict

the sampling accuracy for the three adaptive techniques. In these graphs, the Y-Axis represents the

actual starting starting states for all simulations. Each row shows the final distributions with darker

boxes indicating more observations; white regions indicate no or very few observations for the labeled

state. While uniform sampling targeted an equal number of starting parameters, it mostly started

and finished in State 0. Biased sampling improved over uniform with a more dispersed distribution

of outcomes. Lattice clustering is shown to predominately sample and output rare events (States 2,

3 and 4).

2.7.2 Transitions

While identifying and observing rare event states is one scientific goal, capturing the critical

moment of transition among the states can be even more valuable in the data exploration process.

We show that by simply coupling analysis to track and process these events as data is generated

helps to steer future simulation execution. Given a labeling methodology to classify output in situ,

Figure 2.6 (d) shows how adaptive sampling can steer the data exploration goal.
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Among the three, biased sampling strategy was the best option using historical data. This

makes sense, given an online, supervised labeling technique: local analysis on trajectories identify

window(s) within the output as critical events; a subsequent global controller macrothread task

aggregates all critical event data and makes a control decision designed to increase the occurrence

of critical events in future simulations.

While a biased sampling strategy produced the most transitions among the given techniques

- 22.5x more than the comparable parallel naive technique and 34x over serial - it relies on an

externally defined labeling strategy. This classifier replicates a domain expert’s knowledge on how to

determine the low dimensional state based on observed high dimensional features. As an alternative

when such a labeling technique is not viable, we show how an unsupervised lattice based approach

using only the raw output can also meet the data exploration goal.

Sampling selects the clusters exhibiting the most collective activity based on a user-defined

criteria. We note that domain expertise can greatly improve the quality of sampling; providing a

declarative query engine on top of the lattice based structure would enable domain users to directly

influence the scientific exploration process, however, this is outside the scope of our research.

2.7.3 De Novo Data Exploration

The two previously discussed sets of experiments relied on historical data to drive the

sampling process. We now demonstrate how the control feedback loop coupled with in situ analysis

can perform in a de novo setting, i.e. without any historical data. Since we are assuming no prior

history, these experiments take, as input, pre-determined conformational positions and mirror the

scientific exploration of a newly discovered virus (e.g. Zika virus). To set up this experiment, we

use coordinates which reflect observed states in the BPTI protein. These observations represent

measurements which may be deduced from physical observations of the polypeptide using data

collected from molecular biology stereoscopy imaging. We ran the de novo experiment starting from

each of the five states. As a baseline, we also ran five simulations for 100ns worth of MD motions.
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Figure 2.7: Time series of molecular dynamic activity from experiments start de novo (without prior
data). Periods of low activity, known as a well state, are flat. High activity regions are indicative of
rare state transitions.

For comparison, we include the output from the naive serial simulation.

Summary results for this experiment are found in Figure 2.6 (e). We stress how naive

simulations are prone to remain in a stable state which explains the extremely low number of

transitions. The uniform and bias sampling techniques each exhibited transitions, but subsequent

re-sampling did not necessarily replay them. This attests to the stochastic nature of MD whereby

starting a new simulation from a previously identified rare event does not guarantee subsequent rare

events. Providing a lattice based approach demonstrates a more data centric solution to steer the

system toward rare event discovery. This is seen in the increased number of transitions with the

lattice technique showing a 21.5x improvement over a serial one and a 10x factor increase over the

parallel method.

We have also graphically presented the trajectory data in a time series in Figure 2.7. Each

of the lines represents activity in the MD protein based on the aggregate change in atom coordinates.

Periods of flat lines, such as the longer stretches in the serial and parallel methods, show little to no

change. This is a common output from traditional computer simulation executions over an extended

time period of days or even weeks. Occasionally the simulation exhibits a transition, but shortly

after it regresses into a stable position. Using a lattice based approach we show how DINSAC can

improve sampling and steer the system toward its scientific goal.
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2.7.4 Non-Lattice Exploration Techniques

We provide two experiment results focusing on raw feature exploration techniques describes

above. These experiments do not include the lattice based approach, which applies exploration

analysis over a derived feature set. These results are included as comparison and background efforts

as part of this thesis. They include the label-based approaches using root mean square deviation

(RMSD) labelling, hypercubes, multi-variate nearest neighbor (MVNN), and the reweight operator.

Accelerating Convergence

The next scientific objective we demonstrate is how dynamically sampled control accelerates

a convergence goal toward a more comprehensive understanding of the energy landscape. In this

scenario, scientists desire a more comprehensive understanding of the energy landscape exhibited by

a biomolecular protein. Using simulated BPTI and the statistical bootstrapping metric described

previously, we compare performance for several sampling techniques. We evaluate how each strategy

convergences on a stable set of values over time for each of the five states of BPTI using a multivariate

description. Aggregate convergence on the distances and pairwise relative distances for the entire

system in accordance with the multivariate landscape classification is shown in figure 2.8 (a). Subsets

of features from this technique are extracted to show how the system converges on features pertaining

to each of the five centroids in Figure 2.8 (b)-(f). To ensure consistent comparison we aligned

experiment results to a common timeline based on total analyzed simulation nanoseconds. For

insight into the impacts on wall clock time and resource utilization, see the resource management

and cost section below.

As shown in figure 2.8, our methodology provides an adaptive, controlling mechanism to

steer the system toward a more converged status in accordance with a specified strategy. Each of

the adaptive techniques performed better as compared to a naive approach. The graphs reveal how

a long running, serial execution (in yellow) takes longer to exhibit a protein state space. The parallel

technique (brown) provides decent results early since it employs a parameter sweep technique; how-
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(a) Average Convergence for all fea-
tures

(b) State 0 Features (c) State 1 Features

(d) State 2 Features (e) State 3 Features (f) State 4 Features

Figure 2.8: Convergence results on feature descriptions. Top left shows the aggregate convergence
for all ten features measures. Each of the other five show average convergence of features pertains
to the respective state.

ever, each of these Uniform sampling achieves a slighter lower convergence in longer time while biased

sampling shows how it can quickly achiever better results for the rarer, state 4 values. MVNN, which

is a non-probabilistic version, has a steady, predictable curve. The reweight operator demonstrates

its ability to exploit (an shown in the first 100ns) and explore as the simulation progresses. While

this does not show the actual convergence data for the BPTI protein due to the limited feature

dimensions, it reveals how an adaptive sampling technique can steer scientific experiment toward a

convergence goal. We believe this demonstration can extend to a much richer feature landscape for

more descriptive results on MD energy states.

Adaptive Data Exploration

In this section we show the advantages gained from the reweight operator. It is designed to

highlight areas for either exploitation or exploration in an adaptive learning fashion enabling data
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Figure 2.9: Heatmap from the reweight operation shown with projected number of points normalized
by column (top). Dark bands reveal possible states, which could be either in a well or transitions.
Select bands are labeled

exploration to occur dynamically as an experiment is progressing. Figure 2.9 shows the reweight

operator in action. The source data, hypercubes representing clustered temporal data, are projected

into hypercubes of clustered atemporal data. With no reliance on a prelabeled dataset, the aggre-

gation reveals correlated trends: darker bands are more commonly exhibited feature spaces, while

lighter colors are relatively unexplored characteristics of the MD protein. For each horizontal row

of clustered points, we apply the aggregate feature landscape using the mean value of each point.

We ascertain potential well states and transition points among the bands of points and have labeled

some selected ones as indicated. The larger clusters represent potential well states with labels in

grey with the unknown and relatively unexplored regions on blue labels.

Figure 2.10 shows the results with data normalized by row provided a description on how

the projections from temporal space are distributed. In a semi-autonomous manner, user can ingest

queries based on this projection to target potentially interesting regions (e.g. dark yellow or pink

boxes). As a reference we provide the two feature landscape graphs in the lower right representing
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Figure 2.10: Heatmap from the reweight operation normalized by row (bottom). This highlights
the distribution from temporal subspace. Two sample feature landscape graphs are provided as
reference to show how the reweight can identify potential rare events to explore: Lower graph is
indicative of state 0, upper graph is state 4, however variance indicates it is not a stable state and
thus a potential transition.

target exploration region. The lower graphs show a state 0 substate while the graph above show

a state 4 substate – these could be a well or a transition; however the variance from these graphs

indicates potential transition. Given a goal to understand rare events and transitions, we thus,

aggregate the collective group of hypecubes (circled in red) and filter the remainder to produce the

input distribution for a subsequent control decision. Sampling technique can be further chained to

provide either an umbrella, uniform, or even a nearest neighbor sampler. We believe this is an area

worth researching in more detail on how to best tune this operation (see section 2.9).

With no reliance on a prelabeled dataset, the aggregation reveals correlated trends: darker

bands are more commonly exhibited feature spaces, while lighter colors are relatively unexplored

characteristics of the MD protein. In a semi-autonomous manner, user can ingest queries based on

this projection to target potentially interesting regions (e.g. dark yellow or pink boxes). Alterna-

tively, we implemented an automated version which aggregates the projection horizontally and then

64



CHAPTER 2. LATTICE BASED APPROACH FOR RARE EVENT DETECTION

creates an umbrella sampling on the atemporal subspace for subsequent execution. We believe this

is an area worth researching in more detail on how to best tune this operation.

2.7.5 Lattice Resourcing: Findings and Analysis

To optimize performance and enable execution we identified critical implementation de-

cisions affecting both efficiency and accuracy. To further analyze this dichotomy, we conducted

micro-benchmark experiments on hierarchical correlation clustering. The algorithm, which initially

identified 150-2000 starting clusters, merged clusters until it reached a final set. For each, we calcu-

lated the aggregate probability distribution for two scientific exploration goals, finding rare events

and triggering transitions. The results, shown in Figure 2.11 (a) and (b) highlight the improved

probability of selecting starting parameters likely to meet these goals compared to non-adaptive

techniques. For targeting rare events, we found sampling efficiency improved to as much as 67x for

finding rare events and 31x for triggering transitions.

(a) Rare Events (b) Transitions (c) Rare Events (d) Transitions

Figure 2.11: Stochastic sampling efficiency of the lattice correlation clustering. The bar charts on
the left show sampling efficiency by varying the number of merged clusters. Efficiency is calculated
as compared to naive sampling. Two heatmap images on the right show the efficiency gained by
varying both the number of clusters (X-Axis) and the frequent item support threshold, θ (Y-Axis),
during lattice construction. Darker regions reflect combinations of variables with higher probabilities
for sampling both rare event and transitions.

We also studied the lattice construction impact on the sampling efficiency. Given a histor-

ical dataset of 100,000 observations, we varied both the support threshold value, θ, and the number

of final clusters. The colored heatmaps in Figure 2.11 (c) and (d), depict the probability of selecting
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input parameters likely to produce significant scientific events. Darker regions reflect combinations

of variables with higher probabilities. In general, lower support thresholds combined with fewer clus-

ters are more likely to produce better outcomes. From this study, we determined that over-clustering

can occur and that lower support threshold for lattice construction is more critical in identifying

extremely rare events.

2.8 Related Works

This research is a follow on effort to previously implemented Molecular Dynamics Database

at Johns Hopkins University.66 Comparably, MDDB sought to adaptively steer simulation execution

by providing a control abstraction layer to iteratively perform sampling over analyzed data. The end

result was to optimally execute only the most interesting simulations. In contrast, MDDB employed

a reinforcement learning technique aimed at maximizing a reward function for selecting techniques

which could better describe the full Markovian state model of the underlying system. While we

employ machine learning, it is not a fundamental component of this effort, but rather we focus on

the computer systems, data management, and sampling framework.

One of the earlier adaptations to improve database frameworks, MonetDB provided an

alternative viewpoint on data management systems through a redesign of the DBMS kernel. A

pioneer in the field, MonetDB67 recognized that contemporary applications, and mostly a growing

number of analytical engines, required access to many rows of data, but only a few select columns.

Fundamentally, it enabled column based data organization to drastically improve read optimization

for query processing – tasks vital to support big data analytics. Open source and widely used today

in many scientific research endeavors, MonetDB sparked a whole community of column based storage

engines.68,69

A derived implementation is the OSCAR system or Overload-Sensitive Management of

Archived Streams.70 In it, Chandrasekaran and Franklin note that combining both streaming (live)
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data with tradition DBMS (historical) data requires a novel approach to handle the continuous flow

of streaming data to address the challenges of overloading a system. While traditional DMBS can

offload, page, and delay processing, a streaming system cannot; such a technique would only delay

and further exacerbate an already overloaded system. While other potential solutions such load

shedding offer a potential solution this has the unfortunate side effect of losing data - an option

generally not preferred in scientific or engineer applications. OSCAR employed a logical multi-

resolution view of data at varying levels, such as 25%, 50%, and 75%, which is achievable in one,

two, or more physical copies of data. While OSCAR demonstrated a capability to integrate DBMS

concepts with streaming management systems, it did not address adaptive control. In addition while

maintaining multiple views of data for analytical processing is intriguing, we did not pursue this

technique, however, we feel this should be considered for certain applications to support OLAP and

leave this as an potential area for future research.

One interesting trend is to forego the database tier altogether. The data management

philosophy known as NoDB, professes this notion whereby user queries execute directly on raw

files.71 These systems incorporating an adaptive indexing concept to parse and tokenize data in

line with the query processing. This technique completely eliminates the data loading bottleneck

and drastically improves data-to-query time. This contrasts with the unstructured key-value storage

techniques found in systems such as Cassandra, Dynamo, and BigTable72–74

Among the more widely employed databases for the science community, SciDB75 uses an

array data model. To meet the unique demands of scientific data and overcome inefficiencies of

describing a scientific schema using a traditional RDBMS model, SciDB leverages multi-dimensional

arrays to not only organize data for processing, but also to seamlessly integrate data into processing.

This has allowed the system to enable math operations and lower level operators, such as those found

in LAPACK or BLAS packages to process data directly on its internal format. Using this framework,

SciDB is massively scalable while still capable of maintaining all the principles of ACID. It has

interfaces for Python and R programming languages, thus helping to bridge the gap between the
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database and analytics and is used by prominent organizations, to include NASA and the National

Institute for Health.

An extension on query approximation is to focus on building viable sample sets of data

from which queries can run to generate quick query responses within a given error range. BlinkDB36

employs an adaptive framework centered around statistical stratified sampling of query column sets

(QCS) to maintain an accessible sample set of data which can best meet future queries. Architec-

turally, BlinkDB contains an offline sampler which continuously updates the dataset and a runtime

selection module which manages an error-latency profile on queries. The offline module focuses on

identifying an optimal set of columns to include in a QCS on which to stratify and generate sample

quantities. The optimization takes into account (1) sparsity of a column – whereby a more sparse

column provides a more stratified sample (ergo, a non-sparse column is best sampled via uniform

sampling, and hence, does need not to be includes in a QCS); (2) workload prediction uses historical

queries to determine which columns are most likely to be included in future queries; and (3) storage

costs which are used to maximize the coverage of the columns included.

JetStream49 is a system designed for real-time analysis of distributed systems with changing

data sets. It uses OLAP data cubes to couple analysis when data is generated along with adaptive

filtering to meet bandwidth limitations. It employs a degradation technique to data analysis by using

a lossy compression algorithm to trade accuracy for availability while monitor available bandwidth

to keep the lossy component to a minimum. One of the design choices it implemented was to allow

users to decide query results needed in real time and what level of accuracy is needed in order

to maintain performance. Although JetStream focuses on bandwidth limitations across a wide-area

network with multiple data centers, the underlying data structure concepts are applicable in virtually

any venue to support an adaptive control system.

Combining active learning with human intensive tasks, such as image annotation, Moza-

fari, et al76 demonstrated how machine learning can help to focus human involvement enabling an

application to process more data at a faster rate. Implementing a nonparametric bootstrapping
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technique, they employed active learning to steer a global application toward a convergence goal at

an accelerated pace through an uncertainty classification algorithm. The computer iteratively selects

input datasets for crowd sourced annotation which are more optimally suited for human actions.

While our work is targets a separate field of research, we incorporate similar techniques as part of

our data driven control framework.

2.9 Open Directions and Takeaways

Expansion of reweighted sampling. This research effort merely introduced the potential

capabilities in combining multiple techniques to conduct sampling through a reweight operation.

Follow on research will expand on this operator and, more opportunistically, apply it to unlabeled

data sets. One novel approach is to apply view-centric method of correlating data across multiple

dimensions. The system would identify unique correlations among data by aggregating all views in a

collapsing join operation (e.g. perform all two-way joins on adjoining subspace hybercubes, followed

by all three-way joins, the four way joins, etc...). Although computationally expensive, optimization

would derive from incremental view maintenance techniques as developed through systems such as

Borealis, DBToaster, LinView, or K3.77–80

Another potential implementation for this sampling technique is align it with multiview

learning (MVL). MVL applies two different algorithms (or the same algorithm under different pa-

rameters) on the same data set and then combines the views in a subsequent step to either correlate

or better approximate the high-dimensional representation.81 By combining multiple views in a com-

plimentary fashion, an algorithm can more comprehensively describe or classify the high-dimensional

data set. For example, Shon, et al, applied this concept to implement robotic motion synthesis from

images by projecting multiple observation spaces into a single unified lower dimensionality latent

subspace.82 By creating a single shared subspace, they showed how views projected into different

dimensional spaces can be unified and correlated. Multiview learning techniques are well applied
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and studied in many applications, to include natural language processing, uncertainty quantification,

and image retrieval and synthesis. A future direction would be to further expand the reweighting

operation along these lines.

Heterogeneous Environments. One area of future research is to expand adaptive control and

data management integration across various computing platforms and locations. This effort coalesces

resources from HPC, cloud environments, locally manages hosts, as well as individual work stations

and mobile devices. A diversity of resources allows a dynamically adaptive system to capitalize on

technological benefits in real time and allow the scientific application to elastically allocate resources

to either reduce overall costs or to meet user time demands for accelerated convergence. This includes

a trigger to recognize on demand reduced cloud pricing opportunity, such as Amazon’s spot pricing

and Google’s preemptive instances, or to dispatch simulation tasks to external resources when an

HPC management queue is backlogged.

This endeavor would also expand the requirements and demands of a serverless support

system which we cover in the next chapter. The assumptions that failure impacts within the HPC

computing environment were minimal and that data storage access was universally available do not

apply when computing bridges across different medium. Implementing a more robust and resilient

serverless overlay model would be paramount to heterogeneous deployments. Furthermore, such an

approach may allow the system to leverage some persistent computing resources in locally controlled

assets for asynchronous communication and consensus management (e.g. to run a minimal paxos

state machine) while each homogeneous cluster operates is own distributed serverless protocol for

internal data management requirements. From a systems perspective managing data consistency

to maximize computing resources and steer an integrated application toward a unifies goal is a

welcoming challenge and open research opportunity as the dividing lines erode between cloud, HPC,

remove servers, and local devices.

Large scale, multi-user adaptive sampling. A long range goal of this system is to providing

a basic framework to maintain a long running system supporting multiple user analytical requests.
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For example, such a system is designed to simulate and explore a newly discovered micro-virus while,

multiple scientists provide exploratory and tailored queries into the system. This example presents

an opportunity to capitalize on the synergy of combining many user demands into one unifying

system: one, global analytical system should be preferable over individual users executing separate

analytical tasks. Although integrated, adaptive systems present additional overhead requirements,

such as scheduling and fairness policies, we believe the benefits would outweigh the costs. A future

direction would aim to develop a fair scheduling algorithm to ensure that each user’s scientific

experiment completes in less time than it would if she had conducted it in isolation. We exand on

this in more detail in Chapter 5.

Scientific and engineering fields rely on highly powered computational resources to conduct

modeling in support of research, development, and testing efforts. Simulation engines, residing in

supercomputing infrastructures, are highly optimized to perform their computation tasks. However,

they lack an integration with follow on data analytics. The offline cycle of simulation execution,

data migration, and analysis is an area ripe for modernization. We have developed a framework

which aims to recreate the traditional, scientific process of conducting experiments, collecting data,

analyzing results, and isolating specific data parameters for subsequent experiments in order to seek

a scientific objective. The significant contributing difference is the ability to perform this scientific

process through an online, semi-autonomous, query based sampling approach to dynamically steer

the experimentation process and improve science and engineering fields.

The methodologies described within this chapter are all designed to provide a data cen-

tric solution to facilitate with the exploration process. They enable the system to assume a more

autonomous role in data exploration by performing some of the lower level pattern matching tasks,

such as identifying correlations in the raw and derived data. This specifically addresses the human-

in-the-loop problem which we highlighted in Chapter 1. While we do not attempt to completely

automate data exploration, we aim shift the burden of some of the data tasks to the computer in
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order to free the human to focus on higher level objectives. To make this happen in the Big Data

Era, systems require new data-centric methodologies and techniques, which we have outlined in

this chapter. However, they also need a systems framework to bring together the data organization

and sampling requirements. We define this framework in a serverless fashion as a means to couple

execution and analysis in situ in a computing environment.
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Chapter 3

A Serverless Framework for HPC

in situ Data Analytics

The Big Data revolution has brought about major steps forward in information processing

and resource efficiency. With flexible, scalable distributed systems now capable of storing and

processing terabyte and even petabytes of data, we are now able to perform tasks once deemed

infeasible. Despite these advances, scientific experimentation involving high performance computing

(HPC) lacks the ability to capitalize on this trend due to stringent architectures and a reliance on

offline workflows to process generated data; analysis and exploratory requirements occur outside the

supercomputing infrastructure, often on less powerful systems. We argue for the integration of online

analytical processing (OLAP) tightly coupled with simulation execution and present two abstraction

frameworks to enable this integration: one is a design pattern we call macrothread and the other

is an overlay framework to provide data management in a serverless fashion. In our system, we

leverage in-memory data services tightly coupled with simulation execution inside the HPC cluster

to enable in situ data analytics supporting query based sampling and dynamic control. We evaluate

using a variety of sampling techniques to demonstrate how adaptive control can steer a system in
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support of data exploration and reduce costs associated with simulation execution.

3.1 Introduction

Computer simulations have become a critical tool in the scientific and engineering research

and development community. They drive down experimentation costs and serve a critical risk

mitigating role to study infectious diseases and other harmful pathogens. Executing in a high

performance computing (HPC) cluster, simulations are tightly coupled with underlying hardware to

maximize performance. Unfortunately the process has two major shortcomings. One is an inefficient

use of resources: many simulated experiments in HPC clusters often last days or weeks, however,

they only produce a small number of significant scientific phenomena. The second is a missed

opportunity to capitalize on HPC capabilities due to an inefficient analytical pipeline: simulation

output migrates to remote locations, typically to less capable hardware, for offline analysis.

We aim to overcome these two drawbacks by coupling in situ analysis with an execution

control methodology to enhance the quality of simulation output and better support the scientific

exploration objective. Our solution of coupling analysis with execution is enabled through an inte-

grated controlling loop framework. Here, a scientific analysis workflow is continuously tuned with a

decoupled, semi-autonomous control task to maximize domain-specific data exploration objectives.

Integrating these solutions within a high-performance computing (HPC) environment would allow

the community to capitalize on a high performance infrastructure, mitigate data migration chal-

lenges, and seize opportunities in data exploration. Thus, we strive to bridge HPC and analytics

through an adaptive control framework aimed at improving data exploration in scientific simulations.

3.1.1 Applications

Although we focus this research efforts on scientific simulations in high performance com-

puting, we note that the abstraction layers and framework presented are generalizable to any com-
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puting infrastructure. We offer an alternative application for this research as related to austere

environments which, like HPC execution, see tasks distributed in time and space. We also address

how this framework applies to multi-model machine learning which we will explore in depth in

chapter 4 as we project this abstraction from a set of isolated tasks to semi-isolated ones.

Forward Relief in Austere Environments. Austere environments are typically associated

with high latency and limited bandwidth. We often correlate them with challenging physical settings,

such as a desert or mountain range. Computationally, these environments are characterized with

sparse collections of resources having a variety of non-homogenous capabilities. A prime example

is a forward relief agency who brings with them some technical capabilities and can integrate into

existing, limited computing infrastructure in a desert, arctic, jungle, or other extreme setting. An

applicable exploratory tasks may necessitate the organization to perform some forward data analysis,

such as discovering an underlying source behind a rising epidemic. Another example, such as in a

naval setting, operational demands may require updated analysis of data collected from disconnected

submarines or other vessels, each possibly containing different capabilities and databases. Without

missing a beat Navy applications must continuously adapt with each ship needing to adjust course

settings and speeds to ensure maximum coverage of Seaborn objectives. In both of these cases,

gathered data cannot easily migrate to off-site locations for further processing. While they may have

some high performing and capable tools to gather data, they may not provide the same computational

resources for analytics. Any in situ analysis capability which they can employ would be beneficial.

Multi-Model Machine Learning. Machine learning applied to mutliple models is a technique

which we employ to accomplish many different tasks. The straightforward approach of transfer

learning uses information, such as model structure, hyperparameters or initialization values, from

one training session to improve performance in a secondary model. We may have many orthogonal

tasks to train concurrently on a source domain and assign one model to each task, such as classifying

images using many sets of target labels. Models and data domains may not necessarily overlap, but
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could be indirectly related. A global exploratory task, in this case, is to maximize accuracy across

all models while minimizing aggregate training time. As a secondary effort, acquiring and processing

data about the learning process, known as meta-learning data, can combine with an adaptive control

framework to improve the overall objective. Thus, any effort to not only co-locate the meta-learning

and analysis with the execution of training, but to also integrate into the underlying training is

application use case for our research.

We highlight that we apply this framework to multiple tasks which are isolated from each

other. With meta-learning or transfer learning, for example, input can derive from non-overlapping

datasets or training on each model can occur as completely separate task independent of all others.

This compares to the computer simulations executed in the HPC environment whereby each executed

job is independent of one another. We will contrast this relationship with a semi-isolated approach

as we extend the concept of adaptive control to dependant tasks in Chapter 4.

From this point forward, we focus this chapter on computer simulations in high performance

computing clusters. We note that the mediation loop and abstraction layers described herein are

extendable to these other computing environments, as we have outlined above. Specifically, these

techniques can apply anywhere we seek to co-locate the data analysis tools in situ with the executing

tasks.

3.1.2 Implementation Challenges

The Big Data operating environment is a stark contrast to legacy and seemingly monolithic

high performance computing infrastructures. We highlight these difference in Table 3.1 with a side by

side comparison. Contemporary data and analytic systems take a data centric approach to processing

by asynchronously distributing computational tasks where needed. This includes the popular general

processing systems of Spark, Kafka, Flink and Dryad.1,2, 83,84 This leads to applications and system

architecture which tend to be less hardware dependent, providing an abstraction layer for user

application interfaces in languages such as Python and R. They sit on top of a distributed data
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management tier, such as HDFS or HadoopDB,85,86 or even distributed globally with systems such as

Spanner87 which abstract the storage and facilitate couple of the processing with data shards. Using

consistency management tools, such as ZooKeeper,88 they can maintain shared state and execute

tasks asynchronously. In addition, they integrate with a resource management abstraction layer to

efficiently match task to resource through tools, such as Mesos or Yarn.89,90 While supercomputing

integrates resource management, the applications, however, depend more on hardware optimization

with code bases strictly in C or C++ making interoperability with analytical tools more challenging.

Simulation tools, in particular, are still reliant on these structured systems which integrate tightly

with underlying hardware. Such coupling, however, is paramount to leverage low level optimizations

and is the reason why languages, such as Fortran, are still prevalent in today’s modern programming

environment.

HPC Big Data

Mental Model CPU Centric: ”PetaFLOPs” Data Centric: ”PetaBytes”

Resourcing Strategy Data → Processing Processing → Data

Execution Allocation Ephemeral Persistent

Workflows Discrete, Serial Pipelined, DAG

Multi-Processing Synchronous, Parallel (MPI) Asynchronous, Distributed

Underlying Architecture Physical Hardware Virtualization/Containerization

Failure Ignored and/or Rescheduled Expected, Tolerated, Recovered

Languages C, C++, Fortran Python, R, Java

Table 3.1: Contrast between the high performance computing environment and Big Data.

Implementing a solution for in situ processing is met with the challenges of co-designing

both analysis and execution workflows. Traditionally segregated in time and space, analytical tools

are designed to operate after simulations complete and in off-site locations. in situ processing, where

analysis and simulation tasks co-locate on the same compute node, and in-transit processing, where

data is off-loaded to a secondary resource, provide a means to more efficiently meet scientific goals.

They can potentially reduce the end-to-end time for the scientific exploration pipeline from weeks

to hours.
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This direct, integrated coupling, however, is no easy task. It requires either a direct in-

terjection in the simulation or analytical engine codebase or the development of a middleware tier.

Extensions to simulation code bases, while achievable, force programmers to specify analytical ob-

jectives during development and, thus, limit exploration to single, focused tasks. Some simulation

engines, such as LAMMPS,91 provide a capability to directly interject analytical operations during

simulation execution, but they are very limited in scope and cannot take advantage of advanced

analytical methods.

The inverse, interjecting simulation code directly into the analytical tools, is also a chal-

lenging hurdle. As we highlighted in Table 3.1, the contrasting architecture make this integration

extremely difficult resulting in a complete redesign seem as a more appealing choice. The pop-

ular engine, CHARMM, for example, was originally released in 1983 and has not undergone any

major large-scale restructuring of its original code base.92 While it has remained flexible and endur-

ing, capable of integrating new methodologies and ideas throughout the years, incorporating it and

comparable applications, such as GROMACS or NAMD, into contemporary analytical processing

remains difficult.

In contrast, middleware solutions provide flexibility, but they must coordinate asynchronous

efforts among multiple computing nodes. Such solutions necessitate a data management capability

to efficiently store and process simulation output. Integrating existing analytical tools with synchro-

nized data management solutions, such as Postgres or SQLite, can serve this role, however, their

implementation leads to data inconsistency and deadlock when developed on top of the underlying,

distributed file layer.93 Comprehensive, distributed solutions, such as Spark on HDFS, require ad-

ditional overhead to directly manage the storage tier.94 While some efforts in in situ analysis have

made strides forward, they are relatively single focused on a single analysis task.95 Any solution

that aims to implement in situ processing and drastically improve simulation workflow efficiency

must address these difficulties.
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(a) Shortcomings (b) DINSAC Architecture

Figure 3.1: Left: Current scientific exploration methodology segregates execution and analysis both
logically and physically. Right: DINSAC in situ analysis and control architecture with an adaptive
feedback loop

3.1.3 Simulation Ensemble Management

One alternative to proving a query sampler with a scientific application is to completely

integrate the two concepts. This entails developing a simulation engine from the ground up with

a sampling strategy in mind. Such a solution allows a user to manipulate the execution on the fly

to model any known state. Unfortunately, this requires a priori knowledge of the system which

is rarely achieved in scientific genres and especially in MD. Thus, frameworks must develop data

models and processes to capture the essence of these system both at the macro and micro level.21

To overcome these shortcomings and challenges, we present the Data-driven in situ Analy-

sis and Control simulation (DINSAC) ensemble manager. Our system combines local in situ analysis

with in-transit processing as part of a global control methodology operating within the HPC en-

vironment. It integrates historical and streaming data to more optimally - and efficiently - meet

a user-defined data exploration objective. We employ a data feature lattice inherently designed to

organize raw output and correlate observations in a high dimension with scientific exploration ob-

jectives (e.g rare phenomena) in a lower dimension. This approach allows our system to link these

objectives with a task execution strategy aimed at selecting ideal starting conditions or parameters.
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Underpinning the system is an abstract framework designed to execute a scientific explo-

ration objective unifying the results of many, shorter tasks distributed in both space and time. To

synchronize efforts, an online, in-memory catalog service mediates data flow between the nodes en-

abling a cyclic execution-analysis-control feedback loop. The system collects and batches output

from individual tasks and merges it with historical data to make control decisions. New tasks are

scheduled and dispatched within the computing environment with updated input parameters de-

signed to produce improved results. Over several iterations, the system adaptively steers simulation

results to meet a user-defined exploration goal, such as the production of rare events.

Our system leverages the data feature lattice presented in the previous chapter to link an

analytical objective with a global exploration strategy by controlling task scheduling. It dispatches

many simulation jobs, each of which executes with locally coupled, in situ analysis operations, and

aggregates output into a unified scientific exploration effort. Running in-transit within the HPC

environment, a controller schedules subsequent tasks by selecting ideal input parameters derived

from the lattice to meet a user-defined, global exploration objective. We overcome the challenges

associated with in situ and in-transit processing by reducing dependency on the storage layer through

an overlay framework built on top of an in-memory data tier. Evaluated on molecular dynamics,

we demonstrate increased rare event observations by a factor of 22.5x while substantially reducing

time and costs to meet scientific goals.

3.1.4 Contributions

1. We have developed an abstract programming model to support ensemble management. Both

distributed and serverless, the design allows the sytem to implement the underlying details of

scheduling and data processing. It coordinates simulations, in situ analysis, and periodically

executed control jobs to operate as a unified, logical effort within the HPC. We demonstrate

improve acceleration of scientific experiments using a controlled and adaptive iterative process.

2. Addressing the challenges associated with in situ analytics, our system employs an overlay
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framework to provide an in-memory data management solution. Operating on top of existing

capabilities, our framework serves as a middleware layer to efficiently mediate data flow be-

tween simulation and analysis tasks and control jobs. It significantly reduces dependency on

the storage tier by capitalizing on in-memory stores and high-speed network interconnections

among compute nodes.

3. We demonstrate efficient resource utilization using an elastic allocation policy. Adaptive ca-

pabilities can enable a system to converge on an goal at a either a more cost efficient rate or

at a faster pace depending upon user resource priorities.

4. We provide findings, recommendations, and feedback on employing an in-memory, serverless

data service for online analytical processing in HPC. Using an abstract framework for providing

services to OLAP, we highlight architectural decision considerations and factors when deploying

in an HPC cluster.

The remainder of this chapter is divided into the following sections: Section 3.2 covers the

system control design considerations where outline the mediation control feedback loop. Section 3.3

and 3.4 provide the detailed design and architecture for the DINSAC system. We demonstrate how

it impacts data exploration and adaptive control in Section 3.6.

3.2 System Control

Traditional data exploration processes require significant human interaction. Data scien-

tists collect results and output from sensors, simulations, or other streaming systems into a single

location to perform offline, decoupled analysis. Although much effort in research focuses on improv-

ing data analysis techniques through machine learning and analytical engines, little effort is diverted

to understanding and improving the systems framework to build a more supportive infrastructure.

While there are many factors to consider when designing a system for adaptive data explo-

ration, we focus on some of the principle architectural choices. We first layout the general framework
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as a single system consisting of many, smaller tasks, each of which contributes to a global objective.

In the case of data exploration, each task could be an analytic job or scientific simulation whose

output contributes a small part to the overarching goal. We could also generalize this application

to larger deployments of sensors dispatched across a vast geographic region trying to detect the

onset of a natural disaster or to network and system administration services trying to prevent an

intrusion. To build an adaptive control framework, we identify the following considerations as part

of our design process mediation control, global data management, task and resource management,

and level of user interaction.

3.2.1 Mediation Control Loop

Performing continuous and dynamic updates to drive global optimization requires a global

control structure. We, thus, iteratively divide training into sessions whereby the system updates a

shared global state and resource allocations are divided among model training requests from clients

which applies a series of local optimization techniques in support of a global optimization strategy.

Each iteration of the loop performs a framework which applies a modified OODA model96 which

was defined by Colonel John Boyd in 1976. We describe each of these:

1. Observe. The observation phase of the control loop entails receiving, updating, aggregating

data. In includes data transformation and calculating any secondary or derived information.

Data can come from a variety of sources and in this phase it must be consolidated and organized

for processing. Observation should also account for meta-data statistics such as execution costs,

resource costs, future estimations. In addition, source data, of both new and old, should be

evaluated (or reevaluated) using a quality based metric, such as accuracy, correctness, staleness,

or validity. From a computational and systems perspective, we classify the aggregate collection

of observed data as the a global state. We also want to identify any information gaps where

additional collection may be required.

82



CHAPTER 3. SERVERLESS FRAMEWORK

2. Orient: The second phase, orientation, is what Boyd argues to be the most important. It is

in this phase whereby we consolidate all of the information and interpret it into an assessment.

As humans, we apply our own cultural, genetic, and experience biases to the data. This affects

how we understand the situation and can have a drastic impact on the follow on decision. In a

computational setting, we view this phase as the analysis processing phase and could replace

the term, orient, with analyze (and re-coin this loop as OADA). In this analysis phase, we

process information though a variety of statistical or machine learning techniques. We also

want to include the local bias which may occur in a distributed processing setting: when nodes

each have a local view of a shared global state, they may provide different analysis results which

equates to a local bias in analysis processing.

3. Decide. The decision is the key action driving the loop process. Every decision should

move the overall system toward the common goal. While the single exploratory goal may be

the driving factor, any decision made must balance its effectiveness with efficiency. It must

account for resource availability and other scheduling considerations. In some cases a less goal-

progressing option in one step of the loop may provide significant resource efficiency which can

enable larger goal-progressing leaps in subsequent control steps.

4. Act. The action is execution control overseeing tasks and performance. It includes dispatching

and scheduling tasks to meet objectives. In this phase, we may employ event triggers to identify

completion or when to initiate the next decision cycle. Computationally, this includes responses

to external pressures, such as faults, latency, or data imbalance.

3.2.2 Resource Management

Scheduling which tasks to to execute in a given sequence or at a given time as well as

where to execute them is a resource management task. Ultimately, a scheduler aims to maximize

task execution (productivity) with a finite amount of computational resources. In some cases, an
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objective function strive to execute minimal acceptable productivity by utilizing the minimal amount

of resources; in other cases, the system may aim to always maximize 100% of available resources.

Much of the background research on workload management can be found in Krompass, et al.97 It

is best to divide the decision into three different time-based question:

1. Admission control: Decision to determine if a job or query should be accepted to run. Based

on an estimated cost, a system can accept or reject the request; alternate options may be to

hold or warn the user as well.

2. Scheduling: Proactive, preventative mechanism aimed at precluding a system overload (or

unstable or undesirable) state. At its core, scheduling is queue management to determine

when to launch a specific job or query. Management can take the form of a priority queue,

FIFO, sorted (e.g. largest first), or none (e.g. all queries are equal).

3. Execution control: Reactive response to a runtime event, such as an overloaded system, starved

query, or a resource-hogging task. This can vary in types of events triggered and how to

respond. When managing tasks, potential actions include: stop, kill, kill and requeue, suspend

and resume, as well as none, warn, and reprioritize. We also note that execution control

includes other real-time tasks, such as load balancing and fault tolerance.

With the HPC environment for which our simulation ensemble manager is targeted, we note

that scheduling is generally provided through an established system, such as Slurm. Providing an

abstraction layer on top of this is necessary and we include it as part of the system framework herein.

We present a serverless design below to support data exploration within the HPC environment. For

data management, we define an overlay framework providing a serverless, in-memory infrastructure

locally within a computing cluster. In order to support local in situ processing and couple it with a

global analysis task for simulation control, we also introduce an abstract programming model, which

we call, macrothread. The macrothread is the abstraction primitive to execute the mediation control

loop overseeing execution decisions and enabling adaptive control in support of the data exploration
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objective. We describe these two components below.

3.3 In-Memory Analytics Overlay

To support data management requirements, we define an abstract protocol providing a

serverless data support capability locally within the computing cluster. This solution is a vital and

integral component to couple analysis and simulation execution. Although alternatives exist, such as

persistent, remotely hosted servers in off-site or cloud based locations, the latency incurred in data

throughput cannot sufficiently support analytical tasks. Within the HPC environment, attached

networking though DRMA via Infiniband not only outperforms off-site networking connectivity, but

also disk I/O transaction. In fact, data transfer rates across nodes have been shown to meet speeds

as fast as a CPU’s capability to read data for processing.98 Thus, local networking should no longer

be considered a bottleneck with system architectural design for HPC; scientific computing should,

instead, incorporate on-line, in-memory data management services for experiment input or in-line

analysis. We demonstrate this capability by implementing both a data catalog and a cache on top

of a Redis key-value store as well as a garbage collection and data movement service, although the

abstract protocol is not limited to these services.

3.3.1 Catalog Design

The catalog bridges macrothreads’ data dependencies. Worker threads notify the catalog

upon completion and register all newly generated output data. A controlling function, which could

integrate into the catalog, subsequently decides when to schedule tasks to drive overall system

convergence by adjusting parameter(s) affecting adaptability, acceleration, and elasticity. As a result,

the catalog provides much of the functionality found in traditional DMBS as outlined by Hellerstein,

Stonebraker, and Hamilton.99 This includes the transaction storage manager and specifically, the log

and buffer manager. Additionally, the collection/fusion component mimics the shared component
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and utilities of a typical DBMS, to include catalog management, local file storage management (akin

to cache management), and garbage collection. Finally, the collection/fusion layer is responsible for

updating the current state of system. This specifically is calculating the objective function, but could

include other related tasks such as tracking user query results. When viewing this system design,

we consider all possible operating environments, not just stable and dedicates server resources.

Thus, we consider providing such capability in a disjoint, time delayed, and distributed computing

environment. Although we focus on HPC, these are applicable in other, austere settings such as

geo-spatially disperse and military battlefield systems.

We explored several techniques to meet data analytical and control requirements. They

range from a complete serverless implementation, such as using a file based data management pro-

tocol, to a dedicated, always-available transactional database. Consideration for these alternatives

is provided below.

1. File-based. This technique is void of any separate catalog. Tasks within the adaptive frame-

work update transaction logs on stable storage and rely on underlying operating system mech-

anisms for locking and transaction consistency. While this solution is simple to implement and

eliminates resource overhead, it may only be feasible where data throughput is very minimal

due to the significant cost of disk I/O. A serverless implementation, such as SQLite, relies

on the underlying operating system to provide consistency management with distributed file

systems, such as Lustre, as a primary data storage tier. An application must rely on the oper-

ating system to manage data consistency. In a shared computing environment, attaining such

control is not feasible to provide optimization at a higher application level which can lead to

data inconsistency and deadlock. SQLite, in particular, warns users to explicitly refrain from

using its API for multiple connections with networked or distributed file storage. As increased

number of users attempt to update the same distributed file, data operations can become im-

properly interleaved leading to unresolved transactional ordering.93 This ultimately leaves the

data system in an unstable state with a lack of common consensus resulting in concurrency

86



CHAPTER 3. SERVERLESS FRAMEWORK

conflict and data inconsistencies .

2. Persistent Service. Following the classic master-client model, a persistent or logically per-

sistent process executes and handles data requests. For stable environments, this is a trivial

server with client worker tasks accessing the master on demand to get/receive data. For all

other environments, to support limited execution (in time) within a computing node, the cat-

alog server may not be truly persistent; thus, it must be capable of shutting down and storing

all state to stable storage. The latency between server instances represents a service gap; ex-

ecuting tasks reliant on the catalog would need to either block and wait for a catalog service

or access a file based transaction log. Implementing a master service ensures the most data

consistent and data available solution since all data messaging must pass through the same

online service. Likewise, this represents a single point of failure in the system, which can be

mitigated via a fault tolerant or consensus based replication service, such as Zookeeper. In-

creased allocation of resources, especially when incorporating fault tolerance could make the

service overhead extraneous; however, this is application and user specific prioritization.

3. Data Store. A data store solution implements the catalog as only a data structure. In this

scenario, a running process loads system state into memory from shared storage and exists as

long as necessary to meet the executing task data flow demands. This technique supports a

serverless framework, since any task can be programmed to assumed the duties of the catalog.

In an HPC setting, this allows processes running on a computing node within the operating

cluster to endure as either a separate scheduled task or as a persistent worker thread. Upon

initialization, a worker task would first detect the presence of a catalog service on the network

and, if not found, it assumes the role as the catalog service. Absent any discovery service, the

worker would subsequently need to advertise itself (e.g. through the shared file via a persistent

file) as the active node to receive data input. While the worker incurs initial overhead to load

the current state, it eliminates the transactional disk I/O overhead associated with a completely
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file-based, serverless solution by retaining all data in memory. Limitations occur when the state

reaches available memory for a given node forcing data to swap to local disk - an additional

overhead cost although less than that of a serverless solution which reads and writes to shared

storage. This also reduces the dependency on the underlying storage infrastructure to handle

transactional file locks by restricting the file locking to the initial loading and final saving of

state when the service is terminating.

One could aim to implement all three of these solutions in a flexible manner, allowing

the system to maintain a low overhead, but capable of providing a persistent catalog service to

meet demand. Normal operations should target a data store approach where a process runs within

the computing environment to handle notification requests and schedule tasks. Continually, the

process monitors the amount of overhead it consumes within the system and when its projected

costs exceed a threshold, the system establishes itself as a persistent service. Ultimately, we decided

on a technology capability through a serverless means with a data store approach for a catalog.

3.3.2 Overlay Model

We developed the overlay protocol (see Figure 3.2) to support in situ analysis data man-

agement and analytical requirements. This protocol is the means to provide a reliable service, such

as Redis or even Spark, inside the HPC environment. Is it designed such that any executing task can

assume the role as an overlay node, if needed. The primary advantage of a serverless approach is to

allow ephemeral allocation of physical resources while maintaining a global state for a long running,

logical ensemble effort. This protocol is the means to provide a reliable service inside the HPC

environment. It leverages in-memory data storage and avoids complicated distributed file storage

architecture. By serverless, we specifically imply that any executing task can assume the role as an

overlay node, providing data services to the system. It is not implemented to replace other data

management solutions, but rather to work on top of and in conjunction with these capabilities.

A single instance of the service executes as a running process on a computing node within
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Figure 3.2: Overlay Protocol State Machine. Basic underlap version is shown in yellow with the
added overlap version in orange

the operating environment. Upon initialization, it loads global system state into memory from shared

storage and advertises itself to other processes asynchronously through the shared file system. We

rely on the assumption of a dedicated and dependable file tier: distributed and network storage in

HPC provides a resilient means to retain system state when the overlay service is not needed and to

serve a reliable means of asynchronous communication. However, because one can never assume a

complete lack of failure, the protocol is designed to recover from non-responsive nodes and problems

with file-based communication. For any catastrophic failures or intrusion based attack we rely on

externally provided resources. We also note that distributed, consensus based protocols, such as

Paxos,100 would be an ideal alternative to provide asynchronous communication; however, providing

such a service within the computer cluster would, itself, present the same challenges as running any

other service. We therefore would recommend to HPC administrators that such a service should be

provided to customers as a means to better integrate analytics with supercomputing.

89



CHAPTER 3. SERVERLESS FRAMEWORK

Figure 3.3: Overlap Protocol Flow Diagram

While the overlay ser-

vice process incurs initial over-

head to load the global state, it

eliminates the transactional disk

I/O overhead associated with

a serverless, file-based solution.

Individual task longevity is de-

signed such that it can exist only

as long as necessary to meet the

system data flow demands. It

can detect an idle timeout and

shutdown to save on unnecessary

CPU costs; however, this deci-

sion is tempered with a balance between reducing idle CPU resource allocation and retaining an in-

memory store to preclude service unavailability due to data loading or other initialization demands.

To provide users with a choice, we developed an alternative, overlapping protocol to maintain the

service when demand requires it while also abiding by resource time limitation, such as a computing

task getting preempted to shutdown or a job which has reached its scheduled or allowable time limit.

As shown in Figure 3.3, the process first detects the presence of an active service on the

network and, if not found, assumes the role as the catalog service as a master by creating a lock file.

If the service is detected, the process ensures the master is active and responsive, thus, providing

a fault tolerant capability. Given that all tasks within an HPC have a time limit threshold and

to ensure continuous overlapping coverage, the service can initiate a handover procedure to assume

control of the service from the current master. This handover process allows the service to logically

persist in an environment where physical persistence of tasks is not feasible. During the handover

process, both nodes revert to a read only status in order to transfer state. To support fault tolerance,
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we included both a timid and aggressive mode for initiating a handover: at most only one aggressive

node is either active or scheduled in the queue. Any other tasks can fulfill a timid role whereby they

only assume control when a master is either failed or expiring. This separation within the protocol

prevents processes from continually replacing each other as the master.

To help steer cost decisions, we identified the critical factors as measuring the amount

of continuous idle time for the overlay service process (Overlap cost) against the aggregate delay

incurred on clients who may request data from an unavailable service (Underlap cost). The follow

two equations solve for the worst case scenarios in each model whereby all active nodes try to request

data concurrently.

Given the following:

T = Total Time

N = Number of clients in the system

V = Number of overlay nodes in the system

Cc = Unit cost per client

Cn = Unit cost per overlay node

L = Loading time

H = Handover time

D = Duration of a single executing task, such as a simulation.

S = Scheduled TTL for each overlay instance.

Cost decisions should meet the following:

TLCcN

D
< Underlap <

TLCcN
2

D
Overlap <

THCcN

S
+ CnV

Since the scheduled handover time is fixed, the overlapping handover time is predictable;

however, the underlap is bounded between a best case, where the service only need to load once per

control decision and a worse case, where it loads and shutdown once for every client node, N. If the

overlay service idle time for one node is less than this aggregate costs, then it should implement a

logically persistent overlapping protocol. If the service is a catalog or cache, for example, L is directly

related to the size of the dataset: as a simulation system progresses over time, the catalog grows

in size and, thus, retaining an active service may provide more cost effective services. Depending
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upon dynamic changes in the experiments (e.g. changes to the number of resources dispatched per

control job or varying the length of an simulation), some of these parameters change over time. In

addition, determining the relationship between handover time, H, and loading time, L, impacts this

as well. We note this relationship in our findings (see Section 3.6.2). This is presented as a general

consideration for costs when deciding on a systematic approach to supporting analytics in HPC.

Other factors, such as price changes or queuing priorities should also be considered when deciding

on persistence in data management support.

3.4 Macrothreads

While the overlay service protocol provides data management support, we introduce the

workflow process framework, macrothread, to support computing execution and analysis tasks. Akin

to a processing thread defined in operating systems, a macrothread represents a single executable

task. It fits within a larger streaming framework concept whereby macrothreads initiate with up-

stream data as input and produce downstream data as output. We define two components which

comprise the macrothread: a worker responsible for executing the macrothread’s associated task,

and a manager which monitors progress and controls execution by scheduling the workers. We first

provide a background on decision control considerations to enable adaptive steering:

3.4.1 Decision Control Consideration

In any genre, adaptive steering of a system toward a common objective requires a decision

methodology. This is the realization and implementation for the OODA mediation control loop

described in Section 3.2.1. One possible solution is to isolate this to a few, critical decision points

made by a single source, such as an Admiral deciding to steer a ship in a different direction. This

provides simplicity and consistency, but it is also limits the quality of the decision to the amount of

information and data collected at the sole source, noting that a lack of any knowledge is equivalent
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to a random guess. In contrast, we could enable smaller more localized decisions as part of a

larger group. Each individual decision is smaller in scope, requiring less information to make an

intelligent choice; however, to be effective globally, each of the local decisions requires coordination

and synchronization.

1. Centralized. A centralized decision methodology is simply a single point of authority. It

follows the traditional master/worker pattern whereby data is processed and submitted in one

part of the system (the workers) and collected to support a decision at another (the master).

Computationally, this translates to the system maintaining a continuously running process to

monitor both execution and analysis results in order to make control decisions in real time.

The master controller dispatches job requirements to the workers, scheduling any tasks on

resources, as necessary. From a data perspective, this reduces the consistency requirement

to one single process, which maintains a current view of a global state of information. The

controller would be responsible for scheduling and dispatching all tasks. While this is a simple

solution to implement it may not be feasible in HPC or austere environments. In addition, the

master can be a bottleneck or a single point of failure.

2. Locally Scoped. De-centralized in real time where each task executes a local control decision.

Decision would include the scope of analysis/control and could be made either before the actual

analysis (e.g. how much scope to analyze) or after (e.g. does a archive/garbage collect) or

both. It would also include a control decision of what job(s) to launch next. Each task would

have to deconflict with other running nodes. Nodes could be capable of canceling scheduled

jobs and re-scheduling them based on the updates convergence toward the global objective.

Each control decision should include staleness of data and estimate of a current global state

given a local view of the shared state. Based on this estimate, the task must make a globally

impacting decision (e.g. whether to launch a simulation or an analysis task in the HPC cluster)

based on the current local view of the global state. While this eliminates any potential single
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point of failure, it adds additional coordination and consistency control between executing

tasks.

3. Plan-based. Instead of making a real time decision, the control decision is a plan of action

which tries to predict the best set of tasks execute which will optimize resources and make the

best possible progress toward global convergence. It can either run at set intervals or after

some pre-determined time or event trigger. This option requires less coordination, but the

effectiveness of a scheduling decision is dependant upon accuracy of estimation. This is an

alternative approach

Ultimately, we opted for the serverless approach following a locally scoped decision method-

ology. This overcomes the limitations of HPC whereby persistent scheduling may not be available.

It also provides a basis for alternative environments where stable computing platforms may not be

reliable.

3.4.2 Architecture

Akin to a processing thread defined in operating systems, a macrothread represents a single

executable task. It fits within a larger pipelined framework whereby macrothreads initiate with

upstream data as input and produce downstream data as output. In applying the DINSAC system

framework to scientific simulations, we define two logical macro-threads with a data management

overlay service. Referencing Figure 3.1 (b), at the beginning of the pipeline, the (1) simulation and

analysis tasks accept starting coordinates, Pn, and run an externally provided scientific simulation

engine, NAMD. Leveraging local, shared memory, coupled in situ analysis tasks, built on top of

MDTraj for our molecular dynamics application, process output using the same computing resource

nodes. Downstream output, ∆S, which is reduced and transformed, merges into the (2) online

overlay data catalog, which we have implemented on top of a Redis NoSQL database. A secondary

data movement task serves as an online, in-memory cache to lazily copy output to the Lustre file
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storage tier for archiving.

Downstream, the (3) controller macrothread collects batches of output from the catalog.

It aggregates and merges locally generated simulation output with historical data and using the

updated, global data model, the controller selects new parameters, Pn. The controller is also re-

sponsible for running a user-defined sampling strategy to drive exploration. Finally, it schedules

new simulations via the workload manager and restarts the feedback loop. The complete design

for the macrothread and overlay service working in tandum is depicted in Figure 3.4. As a core

component in the serverless architectural design, any macrothread can assume a role as an overlay

service provider. Upon initialization, every worker and manager task performs an active check on

the in-memory data service. This ensures service availability in support of the global exploration

effort and allows the data service to persist inside the HPC cluster.

Figure 3.4: Design for macrothread and overlay framework as envisioned inside the HPC cluster. At
top is a snapshot in time showing a view of the HPC with the framework operations. The bottom
graph shows how manager thread (in blue) schedule worker threads (in gold) over time with data
input / output transferring between online catalog overlay (in red) and the underlying Lustre file
system. Note that the top graph is the snap shot in time at the right end of the bottom graph time
horizon
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Manager

MANAGER ():

IF NOT catalog.available():

catalog = EXEC OVERLAY_SERVICE()

S = catalog.load(state)

Iimmed, Idefer = fsplit(S)
IF Iimmed == 0:
DELAY_SCHEDULE(MANAGER)

ELSE:

FOR i IN Iimmed:
SCHEDULE(WORKER, i)

SCHEDULE(MANAGER)

Worker

WORKER (jobid):

IF NOT catalog.available():

catalog = EXEC OVERLAY_SERVICE()

input = ffetch(jobid)
S = catalog.load(state)

output = fexec(input, S)
registry = CATALOG(catalogFile)

IF NOT catalog.available():

catalog = EXEC OVERLAY_SERVICE()

catalog.append(output)

Figure 3.5: Pseudo Code for the Macrothread’s Manager and Worker abstract algorithms

We provide the pseudo-code for both the manager and worker algorithms in Figure 3.5

Managers are the component which implement adaptive and elastic resource allocation. The manager

reads in a global state and determines the number of worker tasks to schedule on the HPC queue.

Workers perform the underlying objective, such as executing scientific simulations: they retrieve

data upon initialization, execute their assigned task, and update the catalog with new data. As this

is a distributed system, as much as possible, the system performs append-only transactions into the

data management service.

Workers perform the underlying scientific objective tasks, such as executing simulations

or implementing machine learning algorithms. Using a user-defined fetch function, ffetch, workers

retrieve data on demand prior to execution. Such a capability integrated into the framework allows

the system to implement additional optimizations, if necessary, such as a pre-fetch operation. In this

scenario, when a manager schedules workers, it can initiate a request to retrieve large, off-site data

files for local caching in-memory inside the HPC cluster in a distributed overlay caching service.

Workers subsequently execute their tasks and update the catalog with new data. Finally, in both

algorithms shown in Figure 3.5, the macrothreads perform an active check on catalog availability.

Integral to the implementation, the catalog service provides the metadata and state for the system.

This DBMS based concept is a critical piece which allows the system to perform in situ analysis
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with execution. Furthermore, it provides the medium through which control structures can update

input parameters to adaptively steer execution. As shown, either a manager or a worker can assume

the role as an overlay service node in accordance with the protocol specified above. We show this

algorithm implementation in Listing 3.1 below.

1 while retry < MAX_RETRY:

2 try:

3 self.catalog = RedisClient(settings.name)

4 if self.catalog.isconnected and self.catalog.ping():

5 break

6 self.start_local_catalog()

7 except (redis.RedisError, OverlayNotAvailable) as e:

8 self.start_local_catalog()

9 self.catalog.loadSchema()

10 self.load(self._mut, self._immut, self._append)

11 ...

12 self.save(self._mut)

13 if self.localcatalogserver:

14 self.localcatalogserver.join()

Listing 3.1: The macrothread execution code

This code provides a detailed look at how macrothreads comes ”online” in the serverless

framework. It first attempts to connect to an existing Redis catalog in the overlay service as a client

(a RedisClient) in lines 1-5. If necessary, it starts one locally in the event one is not detected in

line 6 or its unavailable and caught as an exception in lines 7-8. Once connected, the macrothread

immediately loads the schema for further processing followed by the shared global state organized as

mutable, immutable, or append only data structures. These latter two are particularly important in

implementing lattice construction or in managing the hypercubes we described in Chapter 2. Once

loaded, the macrothread executes its underlying task. Upon completion, the macrothread pushes

the results downstream and updates any mutable global state which this marcothread may have

affected. Finally, if the macrothread had stared a local catalog service, it joins that background
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thread before terminating.

As we have shown, each macrothread contains a set of user defined functions and state.

Combined, they determine the exact tasks that a worker thread should execute and the manner

in which input data is divided for scheduling. This framework enables the underlying scientific or

engineering system to adapt in response to analyzed data, elastically grow or shrink resources in

order to capitalize on opportune costs, or accelerate more quickly toward an desired end state.

Adaptability

By introducing an iterative scheduling approach, our system allows for incremental changes

to job priorities whereby data analysis results directly influence subsequent input parameters. By

running several smaller simulations, the system adapts it long term course of execution to improve

the scientific experimentation process. This can either ensure system convergence toward stability,

integrate an adaptive learning approach of exploiting opportunities found during analytics, or ex-

plore undiscovered regions of interest to gain new knowledge. If necessary, the system can recall

scheduled tasks and preempt running ones to replace them with input selected to have a better con-

tribution toward overall system goals. By interweaving an iterative simulation-analysis-control loop,

the system adapts as output is generated enabling it to complete faster than a naive serial-based

approach.

Acceleration

We define acceleration as the increased rate at which the system moves towards a converg-

ing state. With a user defined objective function, we demonstrate acceleration toward a system goal

by scheduling tasks which probabilistically have the highest proportion of contribution toward this

goal. By introducing a cyclic control mechanism, the framework operates in a feedback loop which

inherently drives the overall system towards a faster rate of convergence: output from upstream

analysis threads feed a downstream controller process which, in turn, samples input data for sub-
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sequent execution. While maximizing overall acceleration is a natural goal, it comes at a cost of

resource utilization. We argue that factoring resource costs into the acceleration of the system is

necessary in order to account for fluctuations or variance in resources. This is well apparent in cloud

base cost models where pricing may vary at different utilization times: ideally the system should

maximize acceleration when utilization costs are minimal and reduce acceleration when costs are

more expensive. This, naturally ties closely with elasticity.

Elasticity

Adaptive steering of simulation convergence enables the system to optimize resource schedul-

ing to meet user demands. Specifically, we explore how the system can save cost or time through

elastic allocation of resources. A system which recognized that it is accelerating toward its goal can

increase resource allocation dynamically to achieve its overall objective in a quicker time span. Like-

wise, the system can also consider fluctuations in resource costs, such as changes in cloud instance

prices, and shrink or grow resource allocations in order to meet a user’s budget.

Figure 3.6: The Adaptive Control framework with macrothreads for both Simulation-Analysis and
Control. In-Memory locally hosted Overlay services for a data catalog and cache are shown as well.
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3.5 Implementation

Given the macrothread and overlay framework outlined above, we apply these system con-

cepts to the MD computational simulation experimentation process. This includes representing the

data, implementing data reduction and machine learning algorithms, and applying various sampling

techniques. We implement two marcothreads: The first executes and perform in situ analysis on a

single simulation. The second aggregates output from a collection of simulations, applies a specific

sampling technique, and allocates resources for subsequent simulation execution.

The framework is a Python code base designed as a prototype to provide abstract pro-

gramming interface. We designed the macrothread class an abstract data type with the intention of

having data scientists implement this framework by defining their own split, fsplit, execution, fexec,

and fetch, ffetch functions. Additional implementations can also define a termination function to

allow the adaptive simulation execute without any human supervision and cease once a convergence

goal or other hard limitation is triggered, such as restricting total number of CPU hours consumed

to affix a strict budget.

The abstract class for the macrothread framework is shown in Listing 3.2. This first

portion of this class shows methods used to interact with the overlay catalog service. Data ele-

ments are registered with the catalog as key-value pairs. This mirrors the underlying unstructured,

key-value storage executing in-memory inside the HPC cluster. We separate data into mutable,

immutable, and append only, proving separate implementations for each. Specifically, upon com-

pletion of the execute function, the macrothread will append any new data acquired registered

under with addAppend and it will merge changes with the catalog for keys registered with addMut.

This optimizes overall data management by minimizing the complex operations of updating existing,

mutable data. The load and save methods interact with the overlay catalog to retrieve and store

data reliably. These functions check for the existence of the overlay service in the network and, if

not found, initiate the overlay service protocol as described in Section 3.3. We highlight that the
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macrothread manager and worker algorithms, shown in 3.5, will always call these methods before

and after execution; however, users can also connect with the catalog during execution calls.

class macrothread(object):

def __init__(self, filename, mt_name):

# Methods to register data elements with catalog

def addMut(self, key, value=None):

def addImmut(self, key, value=None):

def addAppend(self, key, value=None):

# Load/Save state to/from catalog

def load(self, *keylist):

def save(self, *keylist):

# Registers a downstream macrothread

def register_downnode(self, mthread):

# Implementations should define these methods

@abc.abstractmethod

def term(self):

@abc.abstractmethod

def split(self):

@abc.abstractmethod

def execute(self, item):

def configElasPolicy(self):

"""Default to re-run manager every minute"""

self.delay = 60

def fetch(self, item):

"""Default to identity function"""

return item

# Main execution entrypoint

def run(self):

Listing 3.2: The Macrothread Abstract Class
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The fterm, fsplit, fexecute, functions corresponding to term(), split() and execute(item)

are defined as abstract methods for user-defined implementation. Note that the execute function

accepts a single item parameter which is designed as a lightweight element passed via the sched-

uler. When implemented with Slurm, we pass this parameter as a command line option with the

execution call. It is designed as an index to retrieve a larger input, such as simulation parameters,

using the ffetch function, fetch(item). The method, configElasPolicy, serves as the controlling

mechanism to shrink or grow execution. As shown, we have a simple delay defaulting to 60 seconds,

a functionality mirroring a common event loop; however, this method is designed for flexibility and

can dynamically adjust resource allocation. A manager process invokes this call when it executes

in order to set resource allocations (e.g. time in this case) for the subsequent manager’s execution.

Finally, the run method serves as the entrypoint into the program executing the design methodology

described in Section 3.4. It detects whether the marcothread is executing as a manager or worker

based on the presence of input parameters and executes the appropriate algorithm.

We provide a simplified example of a macrothread implementation in Listing 3.3. This

shows how to extend the abstract macrothread class to execute a garbage collection process within

the HPC to clean up intermediate files which may have been left from simulations or analysis tasks

and are no longer needed. We present this as a toy example capable of running multiple, distributed

collection tasks in order to highlight the asynchronous, serverless implementation.

This sample garbage collector executes on a time based policy reading in a list of jobs in the

global state and removing any whose reference count is at zero. The three immutable data elements

allow external control of the collector: while the macrothread, itself, does not change these values,

another process or even a user, can directly update the state in the online catalog affecting elasticity

and termination. These, along with a list of all jobs, represent the shared global state.
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class garbageCollect(macrothread):

def __init__(self, fname):

macrothread.__init__(self, fname, ’gc’)

self.addImmut(’haltFlag’)

self.addImmut(’gcDelay’)

self.addImmut(’nTasks’)

self.addMut(’jobList’)

def term(self):

return self.data[’haltFlag’]

def split(self):

return [self.data[’nTasks’]], None

def configElasPolicy(self):

self.delay = self.data[’gcDelay’]

def execute(self, idx):

jobConfigList = {}

for i, job in enumerate(self.data[’jobList’]):

if i % idx == 0:

jobConfigList[job] = self.load(job)

for job, config in jobConfigList.items():

if config[’gcRefCount’] == 0:

if os.path.exists(config[’workdir’]):

shutil.rmtree(config[’workdir’])

self.data[’jobList’].remove(job)

return None

if __name__ == ’__main__’:

mt = garbageCollect(__file__)

mt.run()

Listing 3.3: MacroThread Use Case: Garbage Collection

When the marcothread is scheduled via a Slurm queue and executed, this state is loaded

into local memory via the run() method. Subsequently, a manager tasks schedules worker jobs

and when the workers are allocated resources, they implement the underlying garbage collection

algorithm, defined in the execute method. Note how the local view of the global state is available
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through the local dictionary, self.data. In this case, the worker loads all job configurations for

which it is assigned (deterministically allocated via the modulo function). This occurs immediately

upon execution when the catalog is available. Asynchronously, the workers perform the collection

task to remove unused files and delete the job from the active job list.

For the underlying catalog and caching service, we chose to build our overlay service frame-

work on top of a Redis key-value store. Although we considered a more traditional SQL data man-

agement tool, such as Postgres, we felt that the flexibility of a key-value store was more beneficial.

In addition, we considered running Redis directly without an overlay framework within the HPC

environment. This option would have necessitated running an additional discovery protocol within

the HPC. As previously noted a persistent discovery service through an consensus protocol imple-

mentation, such as Zookeeper would provide tremendous benefit to bridge analytics and HPC. We

leave this as a recommendation to HPC administrators for consideration. Finally, one additional

benefit with Redis is the single-threaded nature of the managing client requests. This significantly

reduced data consistency problems, although it did not completely eliminate them and for those we

leveraged the overlay framework to implement a simple key locking mechanism on top of Redis.

All simulations executed in NAMD, a highly scalable molecular dynamics engine developed

by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced

Science and Technology at the University of Illinois at Urbana-Champaign.101 Although it provides

an MPI-enabled parallel processing capability to scale up to hundreds of computing nodes, we chose

to run all simulations on a single node, leveraging all available cores to ensure consistency across

all simulations. Simulation configuration utilized the Amber 99 force fields in implicit water with

a standard temperature of 310 kelvin. We found simulation rates of execution fluctuated greatly

which we have identified as a potential opportunity to further employ an data driven adaptive

control framework. A macrothread can constantly read its local progress and if a simulation is not

completely as fast as other simulations on the network, it can a make a local decision to preempt

and reschedule or abandon it current task in order to reduce operating costs.
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Although we have a tolerance for failure in the overlay framework as previously mentioned,

the macrothread component does not have a separate fault tolerance capability. By implementing

append only data structures throughout much of the system, a failed worker thread is easily recovered

by ensuing processes: if a control decision fails, the manager will simply reschedule another one.

Granted the loss of a manager is a critical loss and one which we leave for follow on research.

With regard to data loss, we adopted the assumption that a loss of a small amount of

output from simulations is tolerable given the vast amounts of data generated. This is acceptable

within MD where a molecule can become unstable due to the stochastic nature of the system: a

randomization process inherent in the modeling engines may place atoms in an untenable locations

causing the system to lose equilibrium and fail. We stress a small amount, as when we first ran

our experiments, we observed over 15% simulation failures. To overcome this, we integrated a retry

capability. The simulation macrothread assesses the expected amount of output and checks to see if

a certain percentage was produced in a decreasing amount for up to three chances (e.g. 75%, 50%,

25%) after which it merely processes whatever output it has.

3.6 Experiments

We conducted experiments utilizing the Maryland Advanced Research Computing Center

consisting of 750 compute nodes. Each node’s standard configuration consists of two Intel Xeon

E5-2680v3 processors with 12 hyperthreaded cores, 128 GB of RAM, and 500 GB of local hard disk

storage. Larger high memory nodes are utilized for database and in-memory caching which consists

of four Intel Xeon E7-8857v2 processors and 1 TB of RAM. Nodes are interconnected with FDR-14

Infiniband networking providing 56 gbps throughput. The cluster employs an underlying Lustre file

system with up to 2 PB of storage. To ensure consistency, each individual simulation was executed

on one dual-processor computing node. The experiment highlights include:

• Dynamic control reduces overall costs by 50.4%
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• Overhead costs account for 6.2% of total allocation

• Elasticity can save time or CPU costs

3.6.1 Efficiency in Lattice Based Exploration

Among the goals in coupling data analytics and control in situ with execution is ensuring the

price paid in excessive processing and resource usage provides value added to scientific productivity.

Over several experiments, we found the overhead for running an in-memory service and in situ

analysis and control accounted for on average 6.8% of total operating costs. The excess costs

translates to an average of 22.5x improvement in data exploration value.

Figure 3.7: Adding costs by coupling analysis with execution improves overall performance. Both
graphs highlight increased value over time (Y-Axis), as measured in CPU Hours (left) and Wall
Clock Time (right)

Figure 3.7 highlights the value gained by executing many, shorter, controlled simulation

jobs while adding control overhead to steer the process. A single, long running serial task can take

weeks to complete and barely produce any data exploration value. The serial experiment, shown in

brown, is barely visible. Running a parameter sweep technique by executing many jobs in parallel

from varying starting points provides some advantage over time. Interestingly, this human-involved

process is comparable to our automated uniform sampling technique. We stress offline human
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(a) Wall Clock Time (b) CPU Hours (c) Overhead (d) I/O Cost

Figure 3.8: Comparison of the costs incurred the five experiments: [S]erial, [P]arallel, [U]niform,
[B]iased, [L]attice. Captures wall clock time (a) and unit costs in CPU Hours (b). Overhead, shown
in red in (a) and (b) are expanded and broken by operation in (c). Subfigure (d) shows advantages
gained through in situ analysis. It includes time for off-site data movement [Off], local file storage
[Lstr], in situ analytics [InS] (without an in-memory cache) and in situ with an in-memory cache
[cah]. I/O costs include both network and disk overhead.

analysis is not included on this graph which adds to the overall effort of the scientific process.

Given historical data, a supervised, biased sampling approach sees a marked improvement

in overall results over time. Likewise, the lattice based approach also produced valuable scientific

output. The key difference among these two techniques is the underlying approaches: biased sam-

pling is a supervised technique and relies on a domain expert labeling schema; the lattice based

approach is unsupervised and purely data centric relying only on the raw output.

Compared to simulation execution, overall costs for overhead to perform in situ analysis

and control is negligible. Measured in CPU hours expended, which equates to financial cost per

unit, we found on average 6.8% of computing was dedicated to the services and operations other

than executing simulations for our adaptive approaches. In contrast, while the naive strategies have

no internal overhead, we did include – and highlight – the data transfer burden to move large,

raw output trajectories to remove locations for offline analysis. We also stress that additional data

analytical costs are not included in these figures other than disk I/O. Such tasks include ETL

(extract, transform, load), data reduction, and other human-interactive processing to complete the

data exploration objective.

The actual costs incurred are shown in Figure 3.8. Given that a majority of processing
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is consumed by the underlying scientific MD simulation, we show that adding a moderate amount

of overhead to improve the data exploration is a value-added expense, as measured in CPU Hours.

This is even more apparent when comparing the wall-clock times for shorter, controlled simulations

to the execution of a long running task. Granted, long running simulations may potentially explore

a deeper portion of the MD state space over time, adaptively restarting simulations increases the

chances of finding rare events and, thus, can achieve the same exploration goal at a much quicker

pace.

We further break down the overhead components to show where costs are dedicated in

DINSAC in Figure 3.8 (c). For adaptive techniques, disk and network I/O costs to move data out

of the HPC is significantly reduced as only relevant data is retained for downstream processing. For

MD output, only protein coordinates are stored in the on-line catalog. Offline archival storage is

always an option as well, but this task can occur as a background process. Much of the overhead

is attributed to analysis. This includes local analysis co-located with simulation tasks on compute

nodes as well as the global analysis macrothread tasks which drive system-wide control decisions

for the ensemble. As expected, local analysis is consistent among all three techniques. For the

global analysis operation, the lattice based approach incurred approximately two additional hours

of unit-cost compared to the two supervised approaches.

As described in Section 3.3, we incorporated flexibility to shut down the overlay and save

on costs or persist data services and support time sensitive operations. The major penalty for either

of these techniques is the amount of CPU time wasted by client processes (e.g. a controller worker

task) to wait on the service. In contrast, worker delay occurs if the serverless catalog is not active

in the network and a macrothread process must assume duties as an overlay node. We recommend

that systems which employ serverless architectures should consider adding such a flexible capability

in order to meet changing resource constraints and/or user demands.

As a final metric of comparison, we highlight the advantages gained through in situ exe-

cution by showing the time saved in I/O costs. Shown in Figure 3.8 (d), which compares I/O for
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500GB of data, off-line analysis requires nearly 3.7 hours to move output. This transfer includes

both disk I/O and the network requirement to copy data to a remote location. By coupling analytics

inside the HPC, we eliminate the network traffic, reducing data transfer overhead to 41.4 minutes.

We further demonstrate improved data access by running an in-memory cache service and reduce

all data transfer overhead to 3.5 minutes.

3.6.2 Resource Utilization and Cost Benefit Analysis

In this section we examine the internal overhead costs to provide database management

and decision control and show how the costs associated with integrating the framework are worth

the value gained in overall scientific experimentation. Among the goals in coupling data analytics in

situ with simulation execution is to ensure the overhead costs are minimal and provide value added

to system productivity. Over several experiments, we found that total costs for running both an

online catalog and caching service were less than 6.2% of total operating costs.

(a) Cost: Wall Clock Time (b) Cost: CPU Hours expended (c) Benefit: Convergence Progress

Figure 3.9: Resource costs of given experiments compared after generating 600ns of simulation data
in left and center with the benefit gained shown on the right

Figure 3.9 (a) highlights the time saved in executing many, shorter and controlled simulation

jobs. A single, long running serial task can take weeks to complete (in yellow); we found incorporating

an adaptive sampling technique reduces this window an average of 14.8 hours. As we have mentioned,

a single serial task could theoretically visit a much deeper state space along a single trajectory and

meet one scientific objective to provide coverage over a protein’s state space; however, we argue
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that achieving this objective with a single trajectory in one Brownian walk is extremely unlikely;

probabilistically the MD simulation will expend resources revisiting the same space, e.g. get stuck

in a well. Adaptive sampling techniques can couple with generated data to preclude the system

from exploring already visited (sub-)states and restart from input parameters most likely to reach

unexplored regions.

We calculate total costs measured in CPU hours on a per core bases. Every worker and

overlay task allocated 24 cores each, the maximum number available on a single node (hence costing

24 credits per hour); manager tasks only allocated one, but their processing overhead is minimal

at less than one minute per job. Thus, manager overhead is not included in these results as they

account for less than 0.1% of the total costs. As shown in red in Figure 3.9 (b), overhead costs

associated with adaptive sampling are not a major setback. When employing an online catalog and

a caching service, we found the total costs incurred an average of 6.2% of the total costs as measured

in CPU hours. Taken into consideration averaged over across all experiments, dynamic allocation

completes in 50.4% of the time as compared to naive simulation execution and, as shown in 3.9 (c),

it provides more data exploration benefit with more converged results.

Overhead costs further sub-divide into two major categories. The first major cost incurred

involves data management through overlay services, which includes the online data storage catalog

and an online cache. As described in Section 3.3, we explored both an underlap and overlap method

for managing serverless framework. The underlap technique allows a service to shutdown and save

all in-memory storage to disk in order to reduce the costs of idling in the HPC. Overlapping the

service ensures that a node is active somewhere in the cluster at any given time. The major penalty

for either of these techniques is the amount of CPU time wasted by client processes (e.g. a controller

worker task) to wait on the service to come online. Underlap delay occurs due to the load time

when a process first detects an absence of the catalog (or cache) on the network and it must assume

duties as the master overlay node; during loading times the service is unavailable. In contrast,

overlap delays occur as as result of the handover between two nodes; during the handover period,
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the protocol allows for read-only transactions. We found the handover period is approximately 4.8

times longer than the simple loading time. Recalling the proposed cost equations:

TLCcN

D
< Underlap <

TLCcN
2

D
, Overlap <

THCnN

S
+ CnT

As a simple example of how to apply this equation to determine the best cost benefit for

a service, we demonstrate using data garnered from experiments conducted. By fixing the number

of jobs per control decision to 25 at a cost of 24 credits allocated per job, the simulation runtime to

30 minutes, the total time to 600 minutes (10 hours) and setting H = 4.8L based on derived data,

we can solve for the costs associated with overlap and underlap protocols:

(10hr)(15sec)(25)(24credits/hr)

(30min)
< Underlap <

(10hr)(15sec)(25)2(24credits/hr)

10hr

Overlap =
(10hr)(4.8)(15sec)(25)(24credits/nodehr)

(4hr)
+ (24credits/hr)(10hr)

Solving for these costs, implementing an underlap variant shows estimated costs for the

service between 2400 and 60000 credits while the overlap costs are estimated to be no more than

1740 credits. Compared with the actual costs of the overlap protocol at 1087 credits, this shows

how we can attribute a cost estimate to the protocol.

As mentioned in section 4, the caching service provided a 10 factor improvement for the

reweight operator. This order of magnitude optimization is shown in figure 3.10 where we compare

two adaptive sampling techniques. In these four experiments, we allocated 100 jobs per control

decision and measured the time conducting the Back Projection and resampling. This task is a

heavy data transfer intensive one requiring the sampler to retrieve a file from the underlying storage

tier and perform a random access to select a specific coordinate position. The graph shows the
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average time spent performing the back projection operation both with and without a cache for 50

control decisions clearly highlighting the benefits of integrating an in-memory serverless protocol

with simulation and data analytics inside the HPC.

Figure 3.10: Time spent in data transfer to per-
form the back projection operation for two differ-
ent sampling techniques. Red shows time incurred
for disk I/O traffic without a cache; Blue de-
picts the time to back project the same amount of
data using locally hosted, in-memory cache over-
lay service

One additional advantage is the im-

plicit advantage of capitalizing on local memory

when coupling simulation and analysis. This

demonstrates how the framework reduces the

traditional data science task of ETL to a simple

transform operation by eliminating the need to

extract or load data. We leveraged native linux

RamDisk capability to write simulation output

files in DCD format directly to local memory

on the computing node and subsequently refer-

ence the same memory location for the ensuing

in situ process to classify, reduce, and cluster

data. Although modest in comparison given that BPTI in implicit solvent is a fairly small system,

this technique saved an additional read and write operation for each simulation executed. This

accounts for 5 seconds of time saved on each traditional ETL operation which is modest compared

to the 26.4 minute average to run a single simulation for 1 ns. In total, in situ analysis saved an

average of 33 CPU hours for every macrosecond of simulation execution. For larger systems ran in

explicit solvent, this savings could be very significant given that simulations can run in parallel, but

data transfer cannot.

Finally, we provide a graphical overview of the framework in action showing the lifecycle

for a single experiment. The graphic shown in Figure 3.11 visualizes one iteration of an experiment

employing the reweighting sampling technique. This experiment, which took approximately eight

hours, shows every macrothread worker task which ran in the HPC cluster. This includes 700
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Figure 3.11: Graphical view of a simulations executed with overlay and macrothread frameworks

independent simulations (in blue) and 29 controller jobs (in green). Depicted in red are the points

in time during which a worker task actively communicated with the catalog overlay. Note that the

controllers have near continuous communication; however, we highlight them in green to distinguish

them from other jobs. Conversely, simulation tasks only communicate twice during execution. Data

I/O for these threads occurs when they first initiate to load the current state when send downstream

output back to the catalog upon completion. The red bars aggregated all data below showing points

in time when the service is more active and when it is idle. This visualization provides insight into the

asynchronous execution in HPC. During the first hour of this execution, scheduling is fairly consistent

with a series jobs completing every 30-40 minutes. The stochastic nature of the simulation results

in varied execution lengths resulting in overlapping and asynchronous data flow. The controller

framework, however, is able to smoothly manage this and dispatch simulations accordingly. Also
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shown is the gradually increasing time to perform in situ data analysis for control decision; by the

300 minute mark, total data generated has exceeded 100GB. The controller tasks begin to overlap

with multiple threads executing concurrently. Configured to growth elastically in a greedy manner,

the system adapts to the availability of computing nodes in the cluster and accelerates the analysis

process. A more conservative approach would defer control decision and save some computing costs

while completing in a longer time span.

3.6.3 Elastic Resources Allocation

We compare cost benefits of different elasticity control plans by varying execution scope

both at the single thread layer, individual simulation runtime, and at the macrothread control layer,

the number of simulation jobs to schedule for each decision. We demonstrate how the system can

be tuned to meet a user defined objective to either minimize running time or minimize costs. For

this experiment, we implemented shorter, 250 picosecond simulations and varied the number of jobs

to execute at various intervals from 5 to 200.

By elastically growing streaming resources (i.e. expanding the streaming faucet of data),

we show how the system can quickly burst a number of jobs and improve convergence in short period

of time. This is shown in Figure 3.12 where the green lines show high expenditure of resources in the

first hour of execution. In contrast, shrinking the resource allocation can achieve a slightly better

convergence goal at less cost, but at a much slower pace in real time as shown by the smaller step

size in blue. Specifically, we found that we can achieve comparable scientific goals in as little as 20%

of the execution time.

We also found that granular control of resource allocation can save as much as 21% of the

total CPU hours expended. A more granular approach, while slower, ensures the system halts as

soon as the convergence goal is achieved providing better parameter selection due to the increased

number of control decisions. This last reason accounts for the variance in the final CPU costs as

listed on figure 3.12: the 100-step size happened to complete prior to the 150ns termination trigger
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Figure 3.12: Comparison of 150ns of Simulation Experiments varied by the number of jobs launched
on each decision cycle.

Elasticity Cost Comparison
Step Size Final CI Time (Hrs) CPU Cost

5 0.040 8.43 1460
10 0.043 3.91 1351
25 0.054 3.81 1362
50 0.168 2.04 1462
75 0.099 1.10 1555
100 0.110 1.53 1711
200 0.167 1.38 1561

Figure 3.13: Cost shown in both real time (hrs) and in monetary costs (as CPU hours)

and hence, it ran extra jobs to reach termination.

One constant among the experiments run is the unit cost per computing hour. If we allow
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unit cost to vary as is the case with spot instance in cloud infrastructure, a larger allocation of

resources could achieve comparable results at comparable costs but at a much quicker pace. In

addition, shown above the graph is the relative amount of parallelism observed for each experiment.

Notably, the larger step sizes were never able to consistently achieve a full 100% level of parallelism.

In fact, the 100 step size variant shows how it never gets to leverage available nodes until the 1.5

hour mark. Likewise, the 10-step implementation is able to achieve greater than 10 concurrent jobs

due to overlapping controlling tasks: over time a controller puts new jobs on the queue while existing

jobs are running due to backlog in HPC execution.

3.7 Related Work

Initially, we considered combining the efforts of SciDB with a scientific workflow manager.

SciDB75 leverages multi-dimensional arrays to not only organize data, but also to seamlessly inte-

grate data into processing. Scientific Workflow Management Systems (SWfMS) which employs a

business analysis approach for simulations. SWfMS provide a high-level, abstract mechanism to fa-

cilitate a scientist’s ability to design, deploy, monitor, and analyze experimentation.102,103 Modern

systems can bring together operational process, such as running simulations or gathering external

scientific observed data, with analytical engines and other computational intensive processes. They

can operate in homogeneous environments or heterogeneous ones whereby the workflows can stitch

resources from HPC, grid, cloud, and locally operated clusters. Often presented as a DAG, SWfMS

connect pipelined processes to pass data from one tier to the next and provide a provenance database

to track a datum lifecycle throughout the workflow. However, while SWfMS bridge analysis tasks

and simulation engines, they perform so in an offline fashion43 and target more high-level abstract

views which falls short of integrating at the data management layer or providing in situ online anal-

ysis along side experimentation execution. Copernicus,104 further integrates workflow processes by

distributing execution across many platforms. A comparable ensemble manager which employs a
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client-server design pattern, it lacks the data-driven control to steer a unifying exploration objective.

Our work parallels concepts introduced with Cumulon105 which aims to capitalize on dy-

namic cost prices targeting Amazon EC2 cloud services. Huang, et al demonstrate how an active cost

modeling process can optimize fluctuating prices (due to to supply/demand) in order to maximize

resource utilization. They a implemented a structured fault tolerant system which can recover from

unexpected and sudden lost resources (e.g. spot instances are instantly removed and work is lost)

by combining reliable primary nodes with cheaper, transient nodes to accomplish a large-scale data

analysis task. By employing a stochastic model to estimate costs at varying prices and numbers of

transient nodes, the model predicts when spot instances would be reclaimed and work lost. Measur-

ing the estimated synchronization time is critical since it could be extraneous computational work

– at some point of diminishing returns, added transients nodes would be cost ineffective. Thus, the

optimization strives to identify this ideal point.

Dataspaces106 is a data management framework providing a virtual shared space abstrac-

tion layer to executing tasks enabling services, such as analysis, monitoring and visualization, to

access live streaming data. It is an asynchronous, in-memory capability designed to integrate simu-

lation processes with external, in situ processing jobs. Building on top of this framework, the authors

in107 implement both in situ analysis and in-transit analysis. They present resource optimization

improvements through topological analysis, descriptive statistics, and visualization for molecular

dynamic simulations. Presenting in situ analysis scheduling as a numerical optimization problem,108

demonstrates a significant reduction in overall end-to-end time for both simulation and analysis.

This effort focuses on when to implement in situ analysis by affecting job scheduling as compared to

our work which focused on how to integrate analysis with execution. Clustering algorithms to sup-

port large scale distributed simulations levering in-memory data is presented in.109 Similar to this

effort which focuses specifically on clustering for feature-based objects tracking, our system couples

analytical tasks directly in-memory and alongside executing simulation processes. Our efforts bring

together many of these advances. Distinct from these, we focused on not only how to interject in
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situ processing within the HPC, but also on leveraging the output to couple analysis and control to

select simulation input in order to improve the larger, scientific exploration objective as a unified

ensemble managing many, shorter simulation processes.

Other HPC data management efforts have also focused on integrating DBMS techniques

inside supercomputing. One solution implements Spark on HDFS in HPC.94 Other approaches,

include IndexFS and ShardFS,,110,111 which are middleware technologies designed to support file

indexing for distributed file systems, such as Lustre. Unlike these solutions, our framework does

not focus on the storage layer. Pertaining to data cubes, orthogonal efforts have emerged since

the work was first introduced in.55 Research has focused on materialization, construction, and

optimizations with algorithms for bottom-up crawling (BUC)112 and efficient processing.113 We see

our lattice-based approach as building on top of these concepts.

3.8 Open Directions and Takeaways

We foresee future work in adaptive control and in situ data management by integrating

diverse computing platforms and locations into a heterogeneous and multi-user ensemble manage-

ment. This effort coalesces resources from HPC, cloud environments, and locally managed hosts,

enabling the system to capitalize on technological benefits of each environment. Adaptive, real time

response presents opportunities to exploit cloud pricing fluctuations, such as Amazon’s spot pricing,

or to react to external pressures, such as dispatching tasks to alternate resources when a scheduling

queue is backlogged. We discuss a multi-user ensemble manager in detail in Chapter 5.

Scientific and engineering fields rely on highly powered computational resources to conduct

modeling in support of research and development efforts. Simulation engines, residing in supercom-

puting infrastructures, are highly optimized for performance, but lack an integration with follow

on data analytics. Our research efforts on this framework aim to recreate the traditional, scientific

process of conducting experimentation, observation, and analysis through an adaptively controlled
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simulation ensemble manager. In doing so, we have shown how an online, data-driven in situ sam-

pling approach to dynamically steer simulation parameters can improve science exploration efforts

in HPC. This solution addresses the human-in-the-loop problem specified in Chapter 1. Specifically,

we have demonstrated how a semi-autonomous system can assume some of the lower level tasks of

tuning parameters, adjusting filters, and monitoring queries. This, in turn, frees the human to focus

on higher level tasks in the data exploration process.

Throughout this chapter, we viewed simulations as independent, isolated tasks. Each task

executed as a black box function taking as input, starting coordinates, and producing, as output a

trajectory. We could easily switch the simulation ensemble management with a different field, more

specifically, targeting machine learning. Instead of executing simulation jobs at each decision point,

we schedule training tasks over models. The adaptive feedback loop analyzes the global progress over

all models, such as calculating the global sum of the collective training convergence, and scheduling

model training accordingly. However, if the models were not strictly isolated tasks, but rather

overlapping, or semi-isolated, then we could integrate more intelligent controlling methods as part

of a global optimization strategy.

We thus re-frame the original data exploration problem presented in Chapter 1 in a different

context, addressing how both the data and the systems layers can integrate into the analysis layer.

Combining the adaptive controlling abstract concepts presented in this chapter, we extend the

exploratory scope from a single focused effort to a multi-model problem. In Chapter 2, we presented

a lattice based approach for identifying rare events in a molecular dynamic simulation; however, we

treated every simulation as a single input data stream to build one feature lattice in order to explore

BPTI. What if, instead, we had constructed five separate lattices, one for each of the five states of

BPTI?

This question alludes to two common challenges in machine learning: over-generalization

and over-fitting. In the case of BPTI that we have just described, any machine learning training
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task may over-generalize for any one of the individual states. For example, a model to train the task

of predicting the likelihood of a transition to state 3 may not produce an accurate result for any one

of the input states. The converse, training a model on a lattice constructed from only a subset of

nodes of one state, may also produce an inaccurate model since it would result in over-fitting on the

training data. We, thus, seek to strike a balance between the two challenges and concurrently train

multiple models to provide a more effective solution.

This objective gives rise to resource demand constraints and other data challenges. If

constructing and maintaining one lattice is compute intensive, then multiple lattices may be infea-

sible. In addition, given that rare events produce very minimal data, can we even gather enough

input to generate a viable data structure for these states? We address these challenges through a

semi-isolated, multi-model analyical approach in machine learning. Leveraging distributed systems

abstraction primitives, we implement an adaptive control technique to steer data analysis toward

a more effective and efficient goal. As a further extension, we can also integrate a multi-model

approach with the data features lattice. This would enable adaptive control of a data exploration

system integrated into machine learning; a future direction we mention in the final chapter.
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Chapter 4

Distributed Machine Learning for

Semi-Isolated Models

We present a system design pattern for machine learning applied to multiple models contain-

ing overlapping data domains. We quantify these as semi-isolated models whereby sub-components

of each must remain isolated from all others, but models can share selected parameters and oper-

ators. As input, we organize data in a hierarchical manner where an individual domain represents

a localized subset of a global population. We want to train each model separately, as if it were

isolated, but leverage the overlapping components to provide a more accurate and better predic-

tive model. We describe this design pattern and present it as a solution to support localized, or

personalized, data analytic applications. In addition, we show how asynchronous primitives can

dynamically affect distributed training, providing a better balance between resource efficiency and

training effectiveness. We argue this is a necessary abstraction layer for machine learning systems

by demonstrating how this capability can improve on existing solutions. As a running example we

apply our methodology to personalized healthcare; we identify a single patient’s data among all pa-

tients bedded in a given hospital as a sub-domain with an associated semi-isolated model designed
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to predict the likelihood of a given hazard in that patient, such as detecting the onset of septic

shock. Implemented on top of TensorFlow using both synchronous and asynchronous execution, we

evaluate this framework on both the MIMIC II research dataset and on real world data. With a

custom developed optimization operator, we show a 6-8X speed up for training time with prediction

accuracy as high as 96% and demonstrate an adaptive optimization approach which improves on

current state-of-art machine learning training.

4.1 Introduction

In Chapters 2 and 3, we demonstrated an approach to improve the exploration workflow

though data organization and systems integration solutions. Data organization, in particular, allows

the system to provide more autonomous oversight into lower level pattern matching: it self-organizes

a feature lattice to cluster nodes which exhibit similar multi-variate data distributions. This, in turn,

enables the human-in-the-loop to focus on more important tasks in the larger scoped problem, such

as understanding a virus or developing a new drug.

Since data exploration is normally part of a larger effort, we now delve into the issues of

applying the lattice within this larger context. Specifically, we seek to apply an associated analytic

task to our data which drives an application domain requirement. For example, in studying a

virus, a user has determined that a transition to particular state is critical in applying a specific

neutralizing antibody. The user needs to know the likelihood of this transition occurring in order

to assess the validity that the antibody can be further developed to fight a disease. The scientist

could develop a single model using all observed conformation trajectory windows as training input

data, however, such a technique fails to provide specific representation for any single virus sub-state.

Even if the scientist trained the same machine learning task over each lattice cluster, any one cluster

could still represent multiple data subsets leaving the resultant model to the same over-generalized

consequence. In contrast, some clusters, which aptly represent a well defined sub-state, can over-fit

122



CHAPTER 4. DISTRIBUTED MACHINE LEARNING FOR SEMI-ISOLATED MODELS

Figure 4.1: Over-generalization vs Over-fitting. Projecting the data points from a lattice node as
defined in Chapter 2, we can create a single model to train a given task (shown on the left). However,
this model suffers from over-generalization and does not accurately provide predictions for any one
of the input data subsets. On the right, we highlight two subsets of data and show how we can train
two models for each. Unfortunately, each of these models suffers from over-fitting.

the data inhibiting the model from providing an accurate prediction on the objective task. We,

thus, identify a requirement to simultaneously prevent over-generalization and over-fitting during

machine learning training.

We highlight this dichotomy in Figure 4.1 which depicts the feature lattice data organization

output we described in Chapter 2. In this example, we show the itemset and data for the smaller set

of nodes, labeled Cluster {A,C}. We follow up this clustering with a subsequent prediction task to

determine the likelihood that any one molecular dynamic conformation would transition into State

3, which in our application domain example may be a critical point at which a scientist can affect

the virus with an antibody. Extending this example, we also note that the data within this cluster is

comprised of two different subsets characterized as State 1 and State 2, shown in purple and green,

respectively. Applying a single model to all the data in this cluster (on the left of the figure) has the

unfortunate drawback of over-generalization, whereby a resultant prediction is not highly accurate
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for either of these two subsets of data. In contrast, we could train two separate models for each of

the data subsets (on the right); however, this solution suffers from over-fitting whereby the trained

model is unable to accurately predict on unseen generated data conformations.

While this dilemma has a relatively low impact on molecular dynamics, this problem can

be a significant obstacle to requirements in other domains. Projecting this same dichotomy on a

different field, such as healthcare, we can better articulate the challenges associated in precluding

both over-generalization and over-fitting. In lieu of training a machine learning task to predict the

likelihood of a transition to a specific state, a typical heathcare requirement would instead seek to

train a model to predict the likelihood that a person may contract a particular disease. We replace

the spatio-temporal dataset of molecular dynamic motions with the longitudinal data of a patient’s

medical history. We categorize a global input domain as all historical data for all patients in a given

population group; a single person is considered a localized sub-domain. Because every person has

a very unique family history, genetic make-up, and lifestyle habits, a model trained for a global

population group cannot provide the necessary fidelity for a single patient. Such a model trained

using the entire input dataset may over-generalize and under-represent the importance of a specific

trait for an individual prediction.

As we noted with molecular dynamics and depicted in Figure 4.1, training a model for each

sub-domain is a potential solution. However, it results in over-fitting the model especially since the

input domain lacks sufficient data for any single person. For example, training a supervised model

for a patient using only her medical history to predict heart disease cannot provide an accurate

assessment if she has never been diagnosed with the condition (i.e no positive labeled data exists).

In contrast, as we previously mentioned, we could create one single model applicable for the entire

global population. Unfortunately, this second approach limits localized accuracy for any one input.

A model trained on everyone’s data to predict a given disease is less likely to accurately predict this

disease in any individual. We, thus, identify a shortcoming in this field associated with personalized

models, or in the case of medicine, personalized healthcare, which is the requirement to strike a
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balance between over-generalization and over-fitting.

In scoping this effort, we restate this requirement as the need to provide a localized solution

tailored for a subset of data within a larger population, to which we associate the term personal-

ization. Specifically, we aim to train a model providing a personalized prediction fitted specifically

for a population subset which, for example, can be one person. To solve this, we identify the differ-

ing requirements in training and provide an architectural design for this genre using a multi-model

training methodolody. We overlap training among all models creating a common dependency; each

parameter space divides into an isolated and a shared space. Our approach optimizes localized and

isolated portions of the models to preclude over-generalization while integrating into a paired, global

training process which optimizes the shared parameter space and precludes over-fitting.

Our approach contrasts to much of the research in machine learning optimization which

focuses on a single model with a sole task to map an input domain to an outcome. Model training

supporting multiple tasks is often viewed as a purely separate problem and addressed with traditional

distributed or parallel systems. From a systems perspective, this is typically implemented through an

abstraction layer treating each as an executing process: the system schedules and prioritizes model

training, but does so without any internal knowledge of the data or execution. While this ensures

task isolation, it precludes data and computational sharing among the different models. In contrast,

model sharing and reuse can help improve machine learning outcomes, but if uncoordinated, it can

become resource intensive and computationally infeasible.

We, thus, seek to merge an application and systems approach and improve on machine

learning effectiveness while also maintaining resource efficiency. In our architectural framework,

we train multiple models concurrently where each shares a portion of the execution graph. We

quantify these as semi-isolated models whereby sub-components of each must remain isolated from

all others. As input, we identify hierarchical sub-domains within a population sharing common data

points. Throughout this paper, we use a running example of personalized healthcare. This is an

extension of the work presented by Soleimani, et al, which focused on reliable uncertainty aware
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event prediction,114 where longitudinal patient data is not only sparse, but can have missing entries.

We identify a hospital patient’s medical history as a sub-domain within a global population of all

patients in one or more hospitals. The machine learning task applied in the example is to predict

the likelihood for a given hazard in a patient, such as the onset of septic shock.

Implementing this on a single computer follows an arduous sequential process which can

be infeasible for a large population. Extending to a distributed environment, training can scale but

only in a limited capacity. Due to the structured nature of the training, a synchronized solution

ensuring data consistency of the global space among the distributed nodes provides a very effective

technique, but at a cost of resource efficiency. The systems goal of this effort it to maximize all

computational resources in a distributed machine learning setting to best improve overall model

performance. The caveat to this goal is that maximization of system resources should provide value

added productivity to the application objective.

To achieve this capability, a system demands synchronization primitives capable of pro-

moting an objective to either support model accuracy or resource efficiency when needed. Synchro-

nization at global computational steps ensures data consistency but at a cost of resource efficiency.

Asynchrony, in contrast, can allow a system to progress a training object at a much quicker pace, but

it can potentially degrade overall performance. Contemporary systems, most notably TensorFlow,

provide some capabilities to statically define such primitives, but are limited.

We have thus developed a capability on top of TensorFlow to control the level of asynchrony

in a dynamic and adaptive manner, providing a better balance between resource efficiency and

training effectiveness. Such a dynamical technique can enable a system to enforce a consistent

data view among all distributed nodes to promote improved accuracy or it can loosen consistency

requirements, allowing nodes to maximize local resources promoting faster execution. We, thus, aim

to improve machine learning optimization workload management for model training and testing and

demonstrate this as applied to semi-isolated models in support of personalized healthcare.
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4.1.1 Background

Within machine learning only a small subset of published efforts seek to exploit internal

data management or computational capabilities to improve overall performance across multiple

training tasks. The closest genre is transfer learning whereby the knowledge gained from one model

is used to train a secondary one. Traditionally, the techniques include leveraging the parameters,

hyperparameters, or model structure of an already trained model, known as the source, to a new

untrained model, known as the target. Its purpose is to reduce the overall training time or to improve

accuracy of the secondary model.115

Transfer learning divides into two basic categories: the first, inductive learning, implies

that source and target tasks are different while using the same or a similar input. We note that

if the two input domains are different, an implied relationship exists between them. Examples of

inductive transfer learning include using the same input image set to label two different output

spaces: a source task which labels animal images as cats and dogs with a corresponding target task

using the same input images, but labeling them as sleeping or eating. In contrast, transductive

transfer learning focuses on transferring knowledge from one model to another where the source

and destination tasks are the same. This is a more direct association between multiple models with

many applied techniques include importance sampling of the domain116 and parameter weighting

and reuse.117 In many of these cases, the techniques apply to artificial neural networks using an

image or language processing input domain. In addition, research in this field also includes multi-

task learning, where different tasks are trained concurrently.118,119 It distinguishes from transfer

learning, where source model is trained before the target model.

4.1.2 Motivation

Our work applies to the space overlapping both transductive learning and multi-task learn-

ing, specifically, focusing on applying a computer systems framework to optimize concurrent training

and improve accuracy for multiple models within a single operational environment. We identify two
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motivating reasons to pursue this research effort. One derives from the need to improve training

effectiveness for better accuracy of a single, or personalized model, and the other addresses efficiency

to provide training results in a timely manner.

The first motivating reason to develop this approach stems from a lack of data in any

one of the isolated target tasks within a multiple model environment. A problem arises whereby

domains lack sufficient data on which to train resulting inaccurate or non-converged models. In some

cases, a lack of labeled input data to create a viable training dataset precludes supervised machine

learning techniques; in fact, labeling, itself, is often viewed as a separate problem. If we aggregate

these smaller domains into a larger population, sufficient data exists to create a training dataset

applicable to everyone. However, using only the global population data without a locally scoped,

trained model results in a generic solution which may not accurately provide a prediction for any

one domain

We, thus, seek to improve training effectiveness by striking a balance between the extremes

of training only a single global model and training many isolated models. This, naturally, requires

data sharing among the models which we include in the methodology below. Our application of a

multiple model approach addresses this shortcoming: to create a personalized model for healthcare,

for example, the system lacks an abundance of source data for a single person. While one could create

such a model using an isolated personalized domain, the lack of data hinders model performance.

The second reason addresses the need to provide training in a resource efficient manner.

This entails employing a static set of resources to either train more models in less time or train

models which converge to a solution in less time (we could also present this as using a varying set

of resources to train as accurately as possible within a fixed time). In the baseline case of multiple,

independent models, a solution already exists whereby training is dispatched with a trivial parallel

approach. Since each model and source dataset is isolated, training more models in a shorter time

merely requires adding resources where training limitation is bounded strictly by cost alone. This is

a simple, linear scaling of the resources to the number of trained models. However, when domains
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and models overlap, isolated, parallel execution does not scale linearly. Outcomes from one model

have a direct impact on the performance of other models, leading to a dependency among the tasks;

adding more resources does not necessarily improve performance or reduce training time, and can

potentially reduce model accuracy. The relationship, thus, requires a synchronized effort at either

the data or algorithm layer or both. We study the synchronization impacts on training to identify

a means to control synchronization, providing a capability to improve machine learning efficiency

without sacrificing substantial accuracy.

4.1.3 Challenges

We identify the following shortcomings in multiple model machine learning optimization

and identify opportunities to improve the field:

1. Concurrent training of dependent models does not scale. With model performance tied

directly to the underlying infrastructure, such as GPU resources, a single model’s predictive

accuracy is improved with additional resources. This entails either more time on a static set

of computing nodes or more computational power to achieve better results in a static time

frame. Although many factors influence model training performance, such as the training

dataset and hyperparameter selection, the amount of resources dedicated to the training task

directly correlate with accuracy. For isolated models, this scaling is linear, as stated above, but

with dependent models, this scaling is not clearly identified. The hurdle of understanding how

scalability impacts performance is one that must be understood in order to increase training

capability.

2. No current solution exists to dynamically mediate model training. Training several

models concurrently necessitates a resource management solution in order to efficiently allocate

and utilize resources (time, memory, GPU) while simultaneously optimizing aggregate model

performance. We define aggregate model performance as the collective accuracy of all models;
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in the personalized model, this is the prediction accuracy for everyone in the population. Multi-

model machine learning would benefit from the ability to make traditional systems management

decisions within the training process. Such examples include discarding or preempting non-

productive training efforts and developing work scheduling plans for executing nodes. While

such efforts have been applied to hyper-parameter optimization, they have not been directly

applied to concurrent model training across different models.

3. Data Management is segregated and isolated, precluding data sharing opportuni-

ties. Current machine learning systems are designed to train a single model and/or support

efforts of multiple, isolated models. Techniques, such as between graph replication, where a

model and data are replicated across many worker nodes, support the efforts to train a single

set of shared parameters. Personalized models, in contrast, require both isolated parameters

unique to each node, and a shared global state among the models. Contemporary frameworks,

to include TensorFlow, in its open source version, lack this capability to concurrently support

shared and isolated data models within the same executing graph. They can support limited

implementations, but are tailored to support a specific class of algorithms, most commonly

found within convolution neural networks (CNN).

4.1.4 Applications

While the direct application of our methodology aims to improve health monitoring and

disease detection, it is not isolated to this use case. We identify the following potential use cases

where such a systematic approach to personalized model training management and optimization

would directly apply.

Personalized Health Care. In general, personalized healthcare refers to dividing a popula-

tion into various groups in order to separately diagnose and apply treatment to each. The motivating

reason is that we acknowledge everyone is unique with different history, lifestyles, and genomes. A

diagnosis or treatment applied to one person may be counter-effective on another. Taken to the
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extreme, we can potentially define a personalized healthcare profile for everyone in a given popula-

tion, which includes machine learning models to predict health risks, diseases, and make treatment

recommendations.

As a running example, we apply our framework to the detection of sepsis. Formally, we

define sepsis as a progressive inflammatory response due to internal infection resulting in the fatal

condition of septic shock.120 It is difficult to monitor and detect and any early warning to its onset

can be life saving. In this case, we refer to the application of machine learning as a decision support

effort helping hospital staff prevent the onset of shock. However, given that hospital lengths of stay

are short and routine doctor visits are often sparse over a person’s lifetime, sufficient data may not

exist to create such unique models. Data collected from a bedded patient in a hospital is limited to

a short span of time and lacks an abundance of data, let alone labeled data as input for a machine

learning approach. Creating a personalized model tailored to the individual which can predict the

onset of disease or the likelihood of a sudden fatal condition, such as septic shock, is challenging.

Such an application can benefit from combining a global population dataset with an individual

subset to create a personalized predictive model. Although we utilize this example throughout the

paper, our methodology is extendable to other fields outside of medicine.

Internet Of Things As devices become more computationally capable, each is gaining the

ability to integrate into a localized machine learning system. From kitchen appliances to televisions,

home networks are slowly permeating throughout society; the ability to perform machine learning

at home already exists. In addition, the list of sensors and data inject points is also increasing over

time with improved video devices, wearable technology, and even personal digital assistants. Data

analytics is already intersecting with the internet of things (IoT) to create an environment well

suited to leverage the capabilities provided through incremental or on-demand machine learning and

further improve everyday life. The potential applications include home security, energy efficiency,

and even lawn care. Given this robust home environment, we identify the need to optimize the local

computing resources within a personalized setting (e.g. home server, cloud appliance, or even mobile
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device) to train a set of models which integrate data from a variety of sources. Specific examples may

include: (1) developing a model to process home security video for suspicious activity and alert the

server to increase recording time or frame rate, and (2) tracking home network activity to passively

monitor and label children online behavior.

Time Sensitive Models. In some situations, the critical resource is time where a model is

required as fast and as accurate as possible. Such cases may include emergency response or military

operations. In these situations, features, tasks, and requirements may not be known in advance, pre-

cluding a system from developing models a priori which can be employed immediately for prediction

or classification. Infectious disease response may seek to develop models which can quickly assess

a human for contamination, severity, and contagiousness. A military unit may need to integrate

newly discovered intelligence into a series of decision support systems applied to battlefield data in

support of ongoing operations. In both scenarios, time is a vital resource where any optimization to

improve performance across all training efforts would provide tremendous benefit.

4.2 Machine Learning

Machine learning is a genre within computer science that uses data to develop models to

predict or discover information. Within machine learning, we focus on the systems employed to

support supervised learning algorithms leveraging a labeled data set, consisting of an output for

each input element, to learn a predictive function capable of classifying a newly unseen input. One

common example is character recognition which accepts an image as input and produces an letter

as output. Applied to personalized healthcare and septic shock, each model represents a function

mapping a person’s historical, demographic, and longitudinal data to make a prediction on the

likelihood of a prescribed sepsis condition.

In comparison, regression algorithms find the ”best fit” manifold for a multi-dimensional

dataset and, in a more broad categorization, unsupervised learning garners information from an
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unlabeled input domain. While the methodology and techniques contained herein can apply to

regression and even unsupervised learning, they are not included in the scope of this paper. In

this section, we discuss the system frameworks underpinning the tools employed in contemporary

development environments. We highlight and focus on the TensorFlow platform, as it is among the

most robust, capable, and widely used. Subsequently, we discuss training methodology and how

it can vary in a distributed setting. Finally, we identify the specific distinctions which separate

semi-isolated, multiple-model training from the traditional approach to machine learning.

4.2.1 Systems and Architecture

Machine learning has made incredible strides over the past decade due to significant ad-

vances in computational processing. Beginning with the large algorithmic leap presented by Ge-

offrey Hinton in 2006 where he and his colleagues presented a deep belief network,121 researchers

have moved quickly to improve performance and system efficiency to train large, multi-layered, deep

neural networks using gradient descent process.

We divide the machine learning process into three phases. The first is to build a model

defining a function to map an input X to an output Y . Models, Mi, are algorithms traditionally

represented as direct acyclic graphs, although in certain cases, cyclic graphs are acceptable. The

second is to train the model which consists of executing the graph repeatedly to update and improve

the model as an optimization problem minimizing an objective function, f . The last is to test the

converged parameters whereby we use the trained model to make predictions on new data input.

Most systems focus on the first two of these phases, but many are providing a service capability to

more efficiently support testing and prediction.

While developing a single-node, multi-threaded implementation is feasible, such a solution

is geared toward a single-focused task. Extending such capability or scaling the model to support

a larger data domain necessitates a more broad architectural design and implementation. Systems

such as Torch122 and Theano123 provide an interface and runtime engine to enable more users to
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construct and develop complex machine learning models. A precursor to other machine learning

engines, such as Google DistBelief framework124 and Caffe,125 these systems were revolutionary in

the field as they presented a graph based engine with user-friendly programming extensions on top

of scripting languages Lua and Python while leveraging compiled routines to train large models

efficiently.

Distributed Machine Learning

Figure 4.2: Distributed Machine Learning. The
parameter server design employs one set of nodes
to only manage the data input/output while a an-
other set consists of workers executing a replicated
copy of the same machine learning model.124

Extending beyond a single system, dis-

tributed machine learning leverages the aggre-

gate computational resources of many nodes to

perform a single, unified machine learning ob-

jective. The basic design pattern for multi-host

machine learning derives from the parallel ver-

sion of the classic stochastic gradient descent al-

gorithm.126 This effort was a natural extension

of multi-threaded, single node implementation.

Similar to multi-threaded execution, distributed

systems must ensure message coordination and

parameter synchronization, a service provided

by the executing machine learning engine. A relatively new territory in the field, distributed ma-

chine learning can further extend the limits of model complexity. However, the distributed approach

to machine learning, naturally has its own advantages, disadvantages and considerations which we

describe below.

The critical difference in a distributed setting is that computation and data are no longer

co-located. Each node maintains its own local view of the shared parameter values and applies

its view at the beginning of each training step for forward feed graph computation. Based on a
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user-defined training methodology, these views can either be fully consistent or inconsistent (note:

we could enforce that parameters are eventually consistent or use a looser term and merely state

less than fully consistent; however for simplicity we state that parameters are either fully consistent

or not). While many machine learning systems provide a means to coordinate training using either

of these two, TensorFlow provides an extended flexibility for users to define their protocols which

can integrate these two extremes. We leverage this flexibility in designing the methodology for

personalized model training.

In 2011, Agarwal and Duchi presented the parameter server model which they referred to

as delayed stochastic optimization.127 The model, depicted in Figure 4.4 applies gradient updates

at the master every time a worker completes forward feed execution of the graph. Using a global

timestamp clock, the system tracks gradient age. The authors showed how the error resulting from

executing back propagation with older gradients in asynchronous execution scaled with the number

of nodes.

Shortly after Google published its open source version for machine learning system, Dist-

Belief, the precursor to TensorFlow. It implemented an asynchronous version of stochastic gradient

descent called, Downpour SGD. using a parameter server model with a single graph replicated to

each executing worker.124 The DistBelief pattern segregates node functionality into a state and

stateless execution. The stateless nodes, the workers, are responsible for the compute intensive

task of executing the model graph. The stateful nodes, known as the parameter servers, perform

simple computations, such as applying gradient updates, and focus system resources on data I/O

since mutable state changes frequently during training. Systematically, this isolates the data write

operations to few or a even single node, and allowing the workers to execute in a stateless fashion.

Project Adam enhanced the parameter server model for an improved convolution neural

network design.128 The Adam architecture distributed parts of the model to different nodes while

retaining a common part which is replicated among all nodes. This allows data parameters local

to the sub-components of the graph to remain isolated and reduce the synchronization to a smaller
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portion of the model.

The Hogwild! system demonstrated and theoretically showed performance benefits of exe-

cuting multi-threaded machine learning without any synchronized data consistency controls.129 This

lockfree approach enables single processing threads to update shared data asynchronously, including

allowing a thread to overwrite updates from other concurrently executing threads. In stochastic

gradient descent, this technique proves very effective since data access is generally sparse with each

processing step only modifying a small relative portion of the global parameters. Through ex-

perimentation, the authors demonstrated near linear speed increased with extremely limited data

inconsistency or error. Extended beyond single node system, the lockfree approach has been proven

effective and efficient in machine learning application. Building on top of these successes, Petuum,130

offers even more optimized lower level system integration, although it focuses on load balancing and

reducing network latency.

TensorFlow

TensorFlow131 is a machine learning system providing a programming interface and run-

time engine to execute a wide variety of algorithms. Models are implemented as dataflow graphs

encapsulating both state and computation: nodes represent operations, such as add, reshape, or

reduce, and edges represent data as multidimensional arrays, or tensors, passed from one operator

to another. Users define a set of operators with associated parameters and subsequently execute the

graph in a session. Sessions manage the data flow between nodes by feeding input values into the

graph as immutable objects executing any arbitrary sub-graph within the model.

In TensorFlow’s delayed execution design, a preprocessing phase builds an executable model

prior to training. This enables the engine to optimize for hardware performance and add control

flow operations to the user-defined graph. This has the one disadvantage of forcing static graph

construction prior to execution for a distribution system, precluding dynamic manipulation during

training without completely rebuilding the graph. The training phase consists of executing the graph
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and iteratively updating mutable state to optimize an objective function. Applied to traditional,

neural network models, this consists of the forward feed and backward propagation. However, the

underlying Tensorflow engine is designed to provide maximum flexibility, enabling users to develop

any arbitrary models using control flow primitives, such as conditional operators and while loops to

meet algorithm demands. It can execute multiple, concurrent, even overlapping subgraphs on the

same device in a multi-threaded fashion, thus enabling lower level optimization tailored to specific

hardware implementations.

With hardware capable of supporting multiple graphical processing units configured to

provide general purpose programming, an empowered user can leverage TensorFlow on a single server

to implement very complex models containing millions of parameters. However, model complexity

ultimately reaches a computational boundary for a single node system and scalability can only be

achieved through a distributed, multi-node solution.

As is the case with other machine learning systems mentioned, in TensorFlow worker nodes

operate with a global parameter updated from a specific timestep, t. A staleness factor, τt is

attributed to the gradient produced by this worker when it completes it local forward feed calculation

on the loss function. Global calculations of parameters can account for this staleness factor by

dropping older gradients.

The primary challenge for distributed execution is the management and consistency control

of the large parameter sets for the training model among the executing nodes in the system. One

extreme is to provide a standard locking mechanism on all data sources where each node attains

a mutex lock on a shared memory location in order to make an inplace update on a parameter

value. While this ensures consistency, it introduces significant overhead. In contrast, a system can

completely remove all locks and allow the nodes to make updates to data values at will, as mentioned

with Hogwild! which is extremely effective on sparsely updated data. However, for more dense data

updates, systems require a means to synchronize among the working nodes which is the basis behind

a the parameter server design found in the Project Adam and DistBelief systems. TensorFlow follows
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this similar pattern, but provides more capability and functionality in data synchronization.

One of TensorFlow’s greatest advantages is its capability to support very large models on

many nodes. Like other distributed engines, TensorFlow provides data consistency controls at each

step while maximizing parallel execution opportunity for computation. By assigning distinct sets of

mutable state to specific stateful nodes, TensorFlow, like other parameter server based systems, can

execute write operations on the shared global parameters while allowing stateless computations to

safely read updates. Additional inter-node communication through data queues facilitates the timing

and coordination between steps to inform workers when to read parameter updates and proceed to

subsequent execution. A critical distinction in contrast to the traditional architecture, Tensorflow

removed the computational limitations on parameter servers. Instead, the system organizes nodes

into jobs, where any node in any job can execute part or all of the dataflow graph, providing an

opportunity for developers to capitalize on algorithm requirements to meet unique demands, such

as training isolated models for personalized health care.

4.2.2 Training

Machine learning is the process of developing and executing a black box function mapping

an input domain to an output label. We define the input domain, D, consisting of the input feature

set, X, and the output, Y with an implied association of input to output, or X → Y . The primary

objective of training a machine learning model, M, is to use given data to learn the function,

F(·) = P (Y |X). The model consists of an algorithm along with associated mutable - or trainable

- parameters, w. Training the model requires optimizing an objective function, f , to minimize the

difference between the model’s performance and the actual result for a provided labeled dataset. At

each step in the training phase, a computational engine executes one forward pass of the algorithm

resulting in an observed output, Y ′, calculates the amount of loss in the system using the objective

function, and updates model parameters using the gradient change with respect to the loss function:
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wt = ∇(t−1)w

This process is aptly known as gradient descent. By descent, optimization attempts to tra-

verse down a cost effective path to minimize the objective function, f . At each step in the training

process, the objective function is evaluated and gradients are calculated and applied to update pa-

rameters for subsequent training iterations. Training continues indefinitely until the process reaches

a user-defined stoppage criteria, such as converging to local minima or exhaustion of limit-based

resources (e.g. time).

Implementing machine learning in a distributed setting is not a novel concept. A fully

synchronized methodology for classic algorithms, such as stochastic gradient descent, follows a very

similar approach to a multi-threaded, single node solution: each executing processes selects its

own random batch of input data and calculates a single gradient update. Once all processes have

completed, a single, master process accumulates each gradient and applies an aggregated version to

the trainable parameters in the model. Using the updated parameters, each process continues on

its next step in the training cycle. This simple synchronization process ensures data consistency

at each step while maximizing parallel execution opportunity for computation. With a single node

performing write operations on the shared global parameters, all other process threads can safely

read updates. Additional message processing can facilitate timing and coordination to ensure local

parameter updates occur only after global parameters are updated.

While the fully synchronized method provides a means to vastly improve training effec-

tiveness, the distributed execution introduces new overhead costs and challenges. Implementation

requires additional layers of system component complexity to develop message passing protocols,

networking, and data coordination. This has the side effect of adding more programming, process-

ing, communication overhead, and supporting systems. Other networking, input and output, also

contribute to overall delay, specifically in a constrained environment where nodes compete for shared
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resources. A typical resource, such as data access, can result in reduced efficiency at the local level.

That is, if two nodes need to share a common access path, either one will receive, on average half

the available bandwidth. This results in a longer access time to read/write data, contributing to

latency in model training. Another cause for system latency results from data imbalance among

the working nodes. When distributed, data is sometimes not perfectly divided; this cause leads

to the effect whereby some nodes must consume more resources to perform model training. This

phenomena, data skew, results in a subset of slower progressing nodes, known as stragglers, which

stagnate global optimization of the model.

Synchronization

Figure 4.3: Profiling synchronized execution. This figure is a snapshop of training time for 120
iterations of the distributed LMC Algorithm. Each vertical bar represents a single global time step
of training and highlights the ”fastest worker” for the corresponding step. The blue bar indicates
actual processing time to complete local work and the added red above indicates how long that
worker waited to continue to the ensuing step.

Traditional distributed architectures, to include TensorFlow, determine the optimization

technique a priori of whether to enforce a consistent data view at each step of training or to allow each
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workers to execute local optimization with a potentially different value for globally shared state. This

distinction, known as the contrast between a synchronized and asynchronous execution, has a direct

impact on model training efficiency and its effectiveness of prediction accuracy. Synchronizing data

at each step promotes a more accurately trained model, but the coordination adds latency which

increases the time to reach convergence. Asynchronous training, in contrast, maximizes resource

utilization, but may degrade model accuracy or prevent it from attaining a more optimal state.

In a synchronized setting, TensorFlow, like other distributed machine learning systems,

enforces a consistent state for all workers’ computation at each global step. Locally, each node reads

the current global parameter values from the parameter server(s) and perform its forward feed step on

its local share of the global data, calculating a single gradient update. Subsequently, each node waits

for all others workers to complete this same step. Known as a barrier, this synchronization primitive

control technique ensures data consistency but at a cost of resource efficiency since workers are

blocked from performing any operations. Once all gradients are aggregated, the parameter server(s)

apply an aggregated version to the trainable parameters in the model. Using the updated parameters,

each worker continues on its next step in the training cycle. It should be noted that because gradient

updates are communicative for synchronized training, the order in which the parameter server applies

updates within the same global timestep can be arbitrary.

A fully synchronized algorithm which ensures total data consistency can only progress as

fast as the slowest node. Because each executing process must wait until all other processes complete

local execution prior to receiving updated parameters, slower nodes can hinder progress. This is

graphically shown in Figure 4.3 depicting a 120-iteration sample of training. Each bar in this graph

represents the operational processing for the fastest worker on a single global timestep in a training

session. The height of the blue bars represent actual work performed and the red component is

lost execution time due to idle processing. If we capitalize on this opportunity to eliminate the

computing resources which wait in idle, we can improve overall system performance provided it can

be accomplished with little to no loss in algorithm performance.
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In an ideal setting, this fully synchronized methodology can provide the most accurate

and efficient solution. In this scenario, all memory and computational processing are uniformly

distributed with each parallel node supporting identical hardware configuration. If they each execute

the same amount of computational operations, then global processing should follow a routine pattern

whereby all threads start and finish local work at the same time, allowing the master to quickly

update global state and initiate the next training step. Realistically, parallel processing rarely meets

this ideal goal. Some processes finish local computation early and must wait on straggling efforts

from other threads.

Figure 4.4: Distributed model of delayed stochastic optimiza-
tion.127 Worker nodes submit gradient updates gi calculated from
a previous timestamp, (t − n) to the Master. The Master applies
updates, increments the global timestep clock to and returns to the
new parameter, x(t) to that worker. Synchronized training would
have all workers submit a gradient gi(t) and all receive the same
new parameters, X(t+ 1).

To eliminate the idle

time in the distributed sys-

tem, we can remove the

barrier point and allow the

nodes to execute training asyn-

chronously. The key advan-

tage is the increased computa-

tion time spent optimizing the

model; however, the lack of a

shared global view among the

nodes represents a source of in-

consistency in the system. With workers calculating an objective function using different initial

parameters, global updates can actually lead to digressive results. In addition, the order in which

parameters are applied also has an impact on the overall system state since each node may read

different views of the data at different points in time.

This design, shown in Figure 4.4, reveals how each gradient, g, can have a unique timestep

from each worker, g(t−n). Because distributed systems, are by nature, non-deterministic as a result

of other external pressures, such as network latency, gradient updates may arrive at different times.
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One key metric used in this setting is the staleness of a given update, which is measured in the

number of global timesteps from the initial point a worker begins local computation to the time the

master receives the resultant gradient update. The staleness factor can have a significant impact

on overall performance. To counter this effect, we identify the aggregation of gradients as a tuning

parameter which we call asynchrony affecting the amount of synchronization during model training.

4.2.3 Unique Aspects of Semi-Isolated Models

To support an overlapping training effort providing a localized model within a global con-

text has some distinct characteristics. We term this as semi-isolated multi-model machine learning,

since only a portion of the model parameters must be isolated. Described below, we present the

unique challenges and requirements for this class of machine learning. Specifically, highlighting three

primary differences pertaining to the input domain, the training requirements, and the testing/ser-

vicing phase.

Input Domain

The first key distinction is the organization of data into hierarchical input domains to

support personalized applications. We define localized domains as subsets of the global one, Di ∈ DG ,

given that all sub-domains share the same input feature space, X. In addition, all local sub-domains

segregate into disjoint subsets such that:

DG =
⋃ I

lim
i=1
Di, for each, i ∈ I subset of data

Each sub-domain has an associated machine learning model, Mi, which is unique, or

personalized for that input sub-domain. We retain the same algorithm and objective function for

all models, but establish localized parameters for each, wi. In addition, all models share a set of

global parameters, wG with a common set of operators. Applied to personalized health care data,
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for example, we specify each patient, as a unique, localized data subset consisting of that person’s

historical, longitudinal data, such as heart rate or blood pressure over time along with her static

demographic data (e.g. age, gender). This design provides a framework to develop hierarchical,

taxonomy of sub-domains organizing data in a multi-layer tree structure of populations. In this

extension, every inner node of the tree has a common set of parameters which are shared among all

descendent nodes. Leaves of the tree represent the personalized models. However, for the scope of

this research effort, we focus on the division of data into sub-domains applied to a two-layer global

and local hierarchy.

We highlight the contrast between aggregating all data to train a single, unified model

and of developing completely separate, isolated models. While complete aggregation is a possible

implementation, it precludes the desire to develop personalized models providing a tailored, more

accurate prediction function to the end user. Likewise, creating completely isolated models is not

a feasible approach since each individual lacks sufficient training data to develop a unique model.

Our approach, thus, balances between extreme globalization, or over-generalization, of data which

defines a single, unified model, and complete segregation of models where every domain is trained

separately and can result in over-fitting. This separation of localized data to support personalized

models creates a distinct need for isolation in the machine learning implementation.

Training Requirements

The second key distinction pertains to the training demands for alternating updates to local

and global parameters. In contrast to a typical machine learning implementation, which updates a

single set of parameters, w, at each step, a personalized model must optimize one set of parameters,

wi, as a single step within the global optimization process. Thus, for each step to train the set of

shared parameter, wG, the engine must execute numerous training steps on a single model, Mi.

For single machine implementations, this process is a sequentially executed algorithm.

At each step, the machine learning system loads local parameters into memory, executes training
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Algorithm 4 LMC Algorithm: Single Node Training

for t in MAX ITERs do
Di ← select random sub-domain
Optimize wi (AdaGrad, L-BFGS)
Calculate global gradient → ∇t
Apply global gradient: wG(t+1)

= wGt −∇t
for i in N do

Optimize wi (AdaGrad, L-BFGS)

to optimize the local parameters while keeping the global parameters fixed. Once converged, the

algorithm computes and applies a global gradient update, freezing the local parameters, but allowing

the global one to mutate. Using the new global parameters, the algorithm progresses to the next

iteration using a different sub-domain of data, Di and corresponding local parameters, wi. Model

selection can either proceed in a stochastic fashion, where sub-domains are randomly selected at

each step, or a sequential one, where all models are trained in sequence.

We briefly note the opportunistic potential of including data-driven input model selection,

which we described in Chapter 2, as an alternative to the batching or random selection associated

with stochastic optimization. One of the drawbacks with basic sampling techniques is the lack of

specificity or an ability to steer (or affect) the model training. Importance sampling aims to overcome

this limitation by factoring in a target distribution into a source distribution when sampling. Often,

this technique is necessary when the target distribution is either too complex or impossible to sample

directly. Representing the importance aspect of the problem through a target distribution, or a

importance sampling density gs(X), and calculating a weight with respect to the source distribution,

fs(X) provides a re-focusing (or re-weighting) with a reduced variance resulting in a sampling that

favors important samples.32

We note sampling as a potential key issue in this training methodology because each step,

is itself, a complete training subset. Improved model selection can be a critical factor in improving

overall time to convergence. Selecting the most opportune order to train models would certainly

result in the best outcome and we note that, especially, the asynchronous nature of training results

in varying rates of convergence, even when the order of data input is held constant. Unfortunately,
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knowing this sequence a priori is not possible. Ergo, if we can apply an adaptively controlled

technique which can make dynamic input decisions, we can drastically improve training efficiency

and effectiveness.

Testing

The third key distinction is found in the testing phase. To serve models using new data,

traditional, trained models only process a single forward feed pass of the model to make a single

prediction. The model servicing component requires no mutable state and normally consumes fewer

resources. This often results in smaller, condensed versions of the trained model enabling machine

learning systems to permeate throughout society reaching more devices which less capable hardware.

In contrast, to predict on personalized models, the system must execute local optimization of the

sub-domains parameters, wi. Global parameter, wG, become immutable but the system allows local

parameter to update, until at such point, sufficient local data within the sub-domain exists; we note

that this is equivalent to a completely isolated and independent model.

The servicing component, must thus, tie directly into the training phase. This is especially

the case with TensorFlow, and other major machine learning system, where we cannot leverage

the optimized model prediction capability found within these servicing modules. For our purposes,

we have identified an online prediction capability as a coupled requirement with machine learning

training. This requirement is akin to traditional transfer learning since we are using the training

from previous models to perform local optimization and prediction on a new dataset. The challenges

arise from creating a labeled dataset in real time (or near real time) to support the training of the

new sub-domain.

4.3 Methodolody

This section covers the technical implementation for the distributed algorithm implemented

the Linear Models of Coregionalization (LMC) framework. It includes an detailed description of the
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global optimization design patterns for both a synchronized and asynchronous setting along with

the local optimization techniques. In addition, this section addresses how we tackle the challenges

of data skew and our methods for providing an online prediction capability to service the model on

new input sub-domains. We also present additional implementation details

4.3.1 Global Optimization

The global optimization is divided into two separate components: training at the local

node for a single sub-domain, and the aggregation step to optimize the global parameters. As a

comparison, the algorithm depicted in Algorithm 4, above, shows the basic steps to train both

global and local parameters, wG and wi, respectively, for implementing the algorithm on a single

machine where each step is performed sequentially.

Executing on a single node, the LMC algorithm can readily manage data flow between local

and global optimization logic within a single TensorFlow graph. Updates to local parameters in step

3 which overwrite stored TensorFlow variables as each new batch of patients is sampled have no

impact on the remainder of the executing code other than to support local and global optimization

in steps 4 and 5. In contrast, such changes to variable parameters can have significant impact in a

distributed setting if these TensorFlow variables are declared on a commonly shared, global graph.

Shown in Algorithm 5, we present the implementation pseudo-code for the distributed

LMC Algorithm. This is the synchronized logic for both the master and worker nodes. The key

changes are the added SEND/RECV operations for data coordination between master and worker. In

TensorFlow, we implement this using a standard message queue as an operator in the model graph.

The workers, otherwise, perform the same local optimization; the master node stores all workers’

gradients upon receipt and updates global parameters when its has accumulated each worker’s

update. This version of the algorithm does not account for fault tolerance in execution. However, to

account for lost worker nodes, the master would need to change the number of expected gradients

from N to (N − 1), and then update this same value when (or if) the recovering node rejoins the
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cluster and continues training. In addition, the system may benefit from a data redistribution to

reallocate data assigned to the lost node.

Algorithm 5 Distributed LMC Algorithm (Synchronized)

Input: NumWorkers (N), InitParam (wG), GlobalOptMethod, (fm)

Master

Set A, t = 0
SEND wG, 0 to each worker
while true do

RECV ∇i from worker, i
accumulate: ∇A = ∇A +∇i
A = A+ 1
if A == N then
∇G(t) = ∇A/A
wG(t+1) = wG(t) + fm(∇G(t))
t = t+ 1
A = 0
∇A = ∇A ∗ 0
if t == MAX ITERS then

t = −1

SEND wG, t to each worker

Worker

while True do
RECV wG, t from master
if t < 0 then

BREAK

Di ← select random sub-domain
Optimize wi (AdaGrad, L-BFGS)
Calculate global gradient → ∇i
SEND ∇i to master

for Di in D do
Optimize wi (AdaGrad, L-BFGS)

Multi-Session, Multi-Graph execution

To implement the back-and-forth optimization between both global and local parameters

in a distributed setting, we leveraged two separate graphs executing in alternating sessions in Ten-

sorFlow. Although we initially considered creating a single, uniform design using either in-graph or

between graph models, we found neither of these were a feasible solution to meet the algorithm’s

demand. This shortfall in depicted in Figure 4.5. In-graph replication, where operators and data are

allocated for each executing device, is not scalable as the number of workers increase. We performed

a few simple checks on creating a single graph with this technique. Unfortunately, the current LMC

graph requires approximately 4 GB of memory (not including data and intermediate requirements

to support processing). While we could have used very large, memory intense nodes, we could not

support such a very large graph nor could this scale in the number of models to a larger population.

Alternatively, we implemented a between graph solution where one graph is constructed
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Figure 4.5: TensorFlow replication strategies. Left : Between graph replication enforces parameter
consistency for local variable, wL. Right : In-graph replication provides an isolated model for each
worker, however, increased network latency and graph size make this option infeasible.

and replicated for each worker. When executing, we discovered that the local variables defined for

each worker are not truly local: they are shared among all workers and exist on a single device in

accordance with the parameter server design pattern. While each executing node retains a copy for

local execution, the Tensorflow engine can periodically update these values. Typically, this has little

impact on a traditional training step which executes one forward feed and one backward propagation

as a single global training step. Furthermore, because we developed a custom operator to execute

optimization over the personalized model, the local graph executes multiple times within a single

session. We discovered that our local variables were synchronizing across all distributed nodes after

approximately 40-50 timesteps whereby, every node’s local view updated to reflect the values stored

in the parameter server at that point in time.

Ultimately, we pursued the dual global/local graph pattern. The master executes solely

within the global graph, managing the gradient coordination queues to SEND and RECV, as well as

accumulating and processing the aggregated gradients with the user-specified global optimization

method, fm. Additional python control logic enables the master to process asynchronization prim-

itives as defined below. The worker alternates between the two graphs: it communicates with the
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master via queues and otherwise performs TensorFlow operations locally. The basic logic to execute

the two graphs are shown in Listing 4.1.

# Define the cluster

isSupervisor = (FLAGS.job_name == ’ps’)

tf_hostname = lambda i: nodegroup + ’-%d.’%i + svcname

ps_hosts = [tf_hostname(0)]

worker_hosts = [tf_hostname(i+1) for i in range(num_workers)]

clusterDef={"ps": ps_hosts, "worker": worker_hosts}

cluster = tf.train.ClusterSpec.__init__(self, clusterDef)

# Define Local Session / Graph

serverLocal = tf.train.Server.create_local_server()

with tf.device("/cpu:0"):

sessionLocal = tf.Session()

manylmc = manyLMC_joint_model.ManyLMC(train_data, id_list)

manylmc.define_local_graph()

local_vars, global_vars = manylmc.define_data_local()

# Define Global Session / Graph

serverGlobal = tf.train.Server(cluster,

job_name=FLAGS.job_name,

task_index=FLAGS.task_index)

graphGlobal = tf.Graph()

with graphGlobal.as_default():

with tf.device(’/job:ps/task:0’):

manylmc.define_global_graph(global_vars)

...

global_init_op = tf.global_variables_initializer()

supervisor = tf.train.Supervisor(graph=graphGlobal,

is_chief=isSupervisor,

init_op=global_init_op)

sess_config = tf.ConfigProto(log_device_placement=(FLAGS.verbose>2))

sessionGlobal = supervisor.prepare_or_wait_for_session(

serverGlobal.target,

config=sess_config,

start_standard_services=False)

manylmc.setSession(sessionLocal, sessionGlobal)

Listing 4.1: Global Graph for Gradient Processing
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The first block defines the cluster specification automatically based on the prescribed number of

workers, a environment variable passed in as a configurable parameter. Note that because we use

deterministic hostnames, in our case through the Kubernetes container management statefulset, we

can derive the fully qualified name and assign it accordingly. Otherwise, this would need to be passed

in as well through an environment variable or accessible via a discovery or shared state service, such

as Zookeeper or Dynamo.

The local session block creates the TensorFlow service on the node and instantiates the

LMC joint model model, manylmc. This is the driver object defining the model over the local shard

of training data. Note how we create the local graph first to define this object, which separates

the local and global parameter list. The operators pertaining to the global session and graph are

defined on the master, denoted with the ps label. Worker nodes are limited to interaction with

the queue nodes only. When the supervisor object calls prepare or wait for session, the master

only initializes all global variables and waits for all workers to join the session. We have added

additional signaling and messaging (not shown) which ensures the nodes are all joined before any

training begins to ensure any one node does not race ahead and bias training.

Synchronous Execution

Depicted in Figure 4.6, the global optimization step shows the alternating processing be-

tween local operations, in yellow, and global ones, in blue. A single iteration begins with the master

sending a new set of global parameters, wG, to each worker node input queue, {N0, N1, .., Nn}. Once

received, each worker samples a window of local input which is a subset of one patient’s longitudinal

data or batch of windows with each a subset of different patients’ data. We define a set of patient

windows as overlapping with each containing the same initial start point, but different end points.

Local optimization over a window minimizes the objective function with respect to the sample data

and executes for up to 500 iterations using either via the custom operator described in Section 4.3.2

or with Python SciPy’s minimize module. In either case, we found convergence is usually achieved
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Figure 4.6: Implementation design for the distributed version of the Synchronized LMC Algorithm.
Nodes in the yellow are executed on a locally isolated Tensorflow graph on each worker. Nodes in
blue are part of the global graph and executed at the master.

within the first 50-100 steps. Once converged, the local worker calculates a global gradient, ∇i

and submits it to the master’s queue for processing in the global session. To synchronize gradient

calculations globally, each worker subsequently waits in idle until the master produces a new global

parameter. Concurrently, the master accumulates all workers’ gradients for a the given timestep,

∇A; when all are received, it calculates a new global parameter, w′G, and notifies all workers to

continue execution. To calculate a new, w′G, we provide a primitive enabling the system to execute a

user-specified optimization strategy, fm, of which we have implemented Adagrad, Adam, RMSprop

and, simple gradient descent.

We provide two synchronous execution strategies. The first is the baseline, or full synchro-

nization where each worker submits one gradient update to the master in each timestep. In this

scenario, all worker gradient updates aggregate into a single, global parameter update. As a second

extension of this, we also include a mini-batch capability where nodes train on a set of patients
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within a single timestep. The aim of mini-batch execution is to reduce the overall idle time at each

worker, but at the cost of potentially hindering overall global progress since the system calculates

fewer global parameter updates for each local worker optimization step.

We show the basic graph operators used to construct the global portion of the this pattern

in Listing 4.2. This highlights the major operators for gradient processing which are used for both

synchronous and asynchronous execution.

wGlobal = tf.Variable(wG_init, dtype=tf.float64)

gradAccum = tf.Variable(tf.zeros_like(wG_init), dtype=tf.float64)

asynchrony = tf.placeholder(tf.int32, shape=[])

gradQueue = tf.FIFOQueue(maxQSize,

dtypes=[tf.int32, tf.int32, tf.float64],

shapes=[[], [], wGlobal.get_shape()])

...

submitGrad = gradQueue.enqueue([myIndex, self.ts_i, self.grad_i])

storeGrad = tf.assign_add(gradAccum, gradQueue.dequeue())

avgGrad = tf.divide(gradAccum, tf.to_double(asynchrony))

update_wG = tf.assign_add(wGlobal, learnRate * f_m(avgGrad))

applyGrad = [tf.assign_add(self.tsGlobal, 1), update_wG]

Listing 4.2: Global Graph for Gradient Processing

The essential, core tensor objects used for gradient processing are defined in the first part of this

listing. This includes the global parameters, wG,∇A, A, and the queue to receive update locally

processed gradients from the workers. The workers each submit gradients, ∇i with the origin

timestamp corresponding to the start of local optimization. The master’s basic logic for processing

is shown in final four lines and includes the optimization function, fm, which could be AdaGrad,

Adam, or another optimizer technique. We also note that these operations correspond to the global

components of the graph design in Figures 4.6 and 4.7.
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Figure 4.7: Asynchronous Training. Just as the synchronized version, local execution is depicted in
yellow and global operation are in blue. The light blue box shows the shared global variables which
are written by the master and read by the workers.

Asynchronous Execution

In the asynchronous version, shown in figure 4.7, workers perform the same basic processes

as stated above. They each sample patient(s), execute local optimization and output a global gra-

dient. The critical difference among the worker’s logic is the lack of a wait step in the asynchronous

variant. Instead of blocking on the next timestep parameter update, wG(t+1)
to begin local exe-

cution, workers, instead, read in the current global parameters, wG(t) immediately. Each worker

retains the value of t as the source timestep in global gradient submission. This value can be used

to calculate gradient delay, or staleness, τ , at the master supporting adaptive decisions regarding

gradient pruning or parameter updating.

TensorFlow provides staleness factoring as part of its optimization techniques. However, its

application for staleness only supports pruning strategies whereby gradients with a staleness above

a predetermined threshold are discarded. In addition, gradient application is performed individually
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on a first in, first out basis where gradients are applied in the order in which they are received at the

master. We extend this range of synchronizing primitives by demonstrating asynchronous policies

in distributed machine learning. Specifically, we show how the master can leverage measurable data,

such as data skew and staleness, to influence prioritization for gradient calculations.

For global optimization and gradient application, we retain an asynchony setting, A, which

serves as a tuning lever between more or less asynchrony. Lower values denote more asynchrony

with more incremental updates to global parameters; this results in more diversity among the global

views for the parameters, wG, at all the workers. Higher values for A, in contrast, provide a less

diversity among these views and we claim this is less asynchrony. Our results have shown that high

asynchrony can lead to better overall performance; however, it also can have a higher variance.

Applying a more sophisticated approach, we show how the master can organize received

gradients and execute additional preprocessing before updating parameters. Specifically, we show

how the master can select and prune updates. We implemented this variant using a priority queue

consisting of gradients sorted in two different manners: one is by the timestep from which they were

originally calculated, the second is by the gradient similarity to global progress which we describe in

more detail below. We have implemented the following asynchronous gradient application strategies:

1. First-In, First-Out (FIFO). FIFO is the most basic and commonly applied asynchronous tech-

nique. Requiring very little overhead, the master applies each gradient in the order in which it

was received. By applying every gradient to the the global parameters without any aggregation,

the system implements gradient optimization as a standard parameter server model.

2. Least Stale First (LSF). This strategy applies gradients in the most recent order based on

global timestep when the worker initiated local optimization. Given that the staleness for a

gradient, τ is the difference between the timestep associated with the calculated gradient and

the actual global timestep at the master when received, we retain a sorted priority queue for

each gradient received based on τ . To apply at each global step, the master pops the top-A
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gradients based on the level of asynchrony. As an alternative, we also have optionally explored,

Most Stale First (MSF). The compliment to LSF, this strategy applies gradients in the order

in which they were calculated based on the global timestep and staleness factor, τ .

3. Cosine Similarity (COS). We apply an alternative strategy to selectively apply gradients based

on how similar each is to the global progress. Using the cosine similarity function, we compute

cosine distance between a given worker’s gradient, wi and the global progress:

1−
wi · (wG(t) − wG0

)

‖wi‖2‖(wG(t) − wG0)‖
2

We define global progress at a timestep, t, as the difference between the parameters at that step

and an initial value for parameters. We include an initial bootstrapping period and set wG0 to

a parameters after this initialization period (for simplicity, we fix the initial parameters to the

values after the first 10 updates and found this improved performance for cosine calculation).

Using the cosine distance, we continually apply gradients which are most in-line with the global

progress (see Figure 4.8); however, this technique can also apply the least similar gradients as

well or alternate between. This is akin to an adaptive updating momentum factor, but instead

of factoring in the momentum, we selectively apply gradients.

To prioritize in these alternate approaches, the master waits until a set number of gradients

are received, selecting the top A-gradients to apply. As an additional tunable parameter, we can also

determine how long the master waits until it makes a gradient decision; this is affected by controlling

the minimum queue size. An abstract primitive technique, we can let the master defer a control

decision in order to acquire more candidates from which to select for prioritization as part of the

update calculation. Specifically, we state the master will aggregate the top A gradients from among

a pool of A + k gradients. A larger candidate pool can provide a better gradient step, but it can

also preclude model progression by delaying updates to global parameters.

We note that both the LSF and the COS approaches represent an adaptive technique to

156



CHAPTER 4. DISTRIBUTED MACHINE LEARNING FOR SEMI-ISOLATED MODELS

Figure 4.8: Cosine Similarity gradient selection policy. The zoomed in view shows a decision point
for the master server which must prioritize gradients. Cosine similarity calculation of each gradient
(in blue) to the global mean descent (in red) provides a comparison score to select gradients.

affect the global outcome. This adaptive strategy connects back to previous work on adaptive control

data exploration from a systematic perspective.

Once calculated, the master updates the shared global parameters and increments it global

timestep counter. By applying highest priority gradients and pruning those that are stale or lower

priority, the master ensures that the global updates are applied with more current information. The

drawback of this technique is the lost work: each discarded gradient corresponds to a computational

resource which did not contribute to model progression.

In addition, we identify dynamic adaptation of synchronization parameters as a means

to dynamically steer optimization toward a more efficient or a more effective path. This includes

factoring each gradient by a weighted distribution, such as inverse data skew, to affect the global

optimization. We implemented this using real time data skew, but found this had little impact on

overall performance, given that we perform a load balanced sharding algorithm prior to training (see

Section 4.3.5). In addition, we all employ momentum in an adaptive fashion to improve convergence

time (Section 4.3.3).
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4.3.2 Local Optimization

Solving for the local parameter, wi, we employ a limited memory Broyden - Fletcher -

Goldfarb - Shanno (L-BFGS) Algorithm. This solution iteratively identifies a new parameter, w′

and calculates a objective loss, f(w′) and gradient g(w′), until a termination condition is met. While

Tensorflow provides out-of-the box optimization operators, such as Gradient Descent and Adagrad,

these performed very poorly on the semi-isolated model for LMC. We have thus employed both a

SciPy optimization and a custom developed operator built using the TensorFlow OpKernal module.

The first local optimization strategy employs the SciPy minimize package within Python.

This solution, derived from the GPFlow module132 wraps a Python callable around a TensorFlow

session call which passes into the SciPy minimize function with a set of solver options. This technique

introduces significant overhead for each step of the optimization algorithm as the underlying param-

eters are casted between a TensorFlow ”tensor,” backed by the Eigen unsupported Tensor package,

and the Python numpy, ndarray object. While both are statically allocated memory objects for

dense operations, they not only require internal wrapping overhead when passed back and forth,

but each of the two programming interfaces implement differing memory management protocols.

Specifically, numpy statically allocates a fixed block of memory (which is not necessarily contiguous)

for each ndarray upon creation. Numpy operations are designed to leverage this static allocation

supporting lower level, vectorized operations. In contrast, TensorFlow may reallocate memory for

objects during execution supporting other optimization techniques in a multithreaded environment.

This is especially apparent in the distributed TensorFlow adaptation where variables reside on a

separate systems.

To improve the efficiency, we identified the need to implement an optimization solution

within a single TensorFlow session call. Execution control to perform local optimization is conducted

via a co-routine programming design pattern. The two routines which execute concurrently are the

Tensorflow graph, operating within a session, and an extension of the C++ implemented L-BFGS.133

We implement the co-routine pattern using two lock-free threads which alternate control: one blocks
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while the other executes. We originally designed the solution using a single mutual exclusive (mutex)

lock whereby each thread obtained a lock prior to execution; however, we found this was not necessary

and only added overhead.

Figure 4.9: Co-routine design: On the left, the main executing thread operates within a TF while
loop context calculating tensors for loss, f, and gradient, g. On the right, the L-BFGS solver updates
input parameter, x, notifies the main thread and wait for updated tensors.

As shown in Figure 4.9, the two threads operate in a lockfree mutually exclusive execution

pattern. On the left, the main TensorFlow thread which calls the custom solver operator, performs

one pass forward of the graph calculating both the loss function, f , and the gradient, g, over

the local parameters, wi. Because we have defined the entire likelihood function and local gradient

calculation within a TensorFlow while loop context, the engine will re-run the graph using updated

tensor values for the input variable, wi. When the graph invokes the solver operator, it passes the

updated, f, g values as tensors to the optimizer thread, shown on the right, and blocks execution.

The solver thread continues its execution where it left off in the L-BFGS algorithm until it reaches a

request for a new f and g using a new w′. Once requested, the solver thread notifies to main thread

to rerun the graph and it blocks execution until the graph returns with new values for f and g.

We also provide a profiled view of graph operations taking place for one iteration of local

optimization. Shown in Figure 4.10, we highlight, in red, the major components of execution for the

LMC Algorithm. This includes overhead for flow control, the index and tensor processing operator,
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Figure 4.10: TensorFlow profile of the custom operator depicting one loop iteration over a 50 mil-
lisecond time period (X-Axis). Each row corresponds to a thread of execution. Green/Purple nodes
are individual operators in the TensorFlow graph. Top left: Loop control overhead for the Custom
operator and while context. Top: Many, shorter reshape, slice, and indexing operators which have
very limited multi-threading support. Center and Right: Operators performing the objective func-
tion and the gradient calculation. Note the barrier in between enforcing serial executing of these
two sub-graphs.

as well as the objective function, f() and the gradient calculation g(). This profiling reveals how the

custom operator consumes only a smaller portion of total execution time (depicted as the X-axis)

while the GPFlow operators to perform index and reshaping on tensors consume a significantly

larger portion. Because of the limited mutli-threading support for these operations, optimization

is limited. This contrasts to the heavily optimized TensorFlow operators to calculate the objective

function and gradient on the right half of the image.

For additional implementation details on the customized operator, see Appendix A.
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4.3.3 Adaptive Strategies

Integrated within the model design, we include data-driven, dynamic capabilities in the ma-

chine learning process with the goal of overcoming systematic deficiencies and improving algorithmic

performance. Specifically, we have implemented several techniques to steer training outcomes toward

(1) a better objective state, such as producing a more accurate machine learning model, or (2) a

converged system state using less resources, such as less time, or, in some cases, both of these two

objectives. We describe these adaptive techniques below.

Adaptive Gradient Norm

The first is an adaptive check on individual gradient magnitudes. We observed a distinct

difference in data distributions between real world evidence (RWE), such as real time data input

from hospital metrics and staff workers, as compared to fabricated benchmarking data, such as the

Mimic II dataset.134 Aside from the many known benefits of using RWE, most notably the direct

application to real world demands,135 RWE captures additional factors among a population, such

as outlier cases or human data collection errors which are hard to replicate in simulated data.

To account for such outliers, we apply an adaptive normalization technique to all gradients.

For each gradient received at the master, ∇i, we calculate the L2−norm, ||∇i|| =
√∑

xj2, where

∇i is a vector of size j. We retain a sliding window, W g
n over all gradients consisting of the previous

n gradient norms. Performing simple statical calculations, we clip the magnitude of all gradients to

be less than two standard deviations from the average over this window. Thus, for large gradients

where ||∇i|| > 2σW g
n , we scale them using:

∇′i =
2σW g

n(∇i)
||∇i||

Note that we set a max tolerable magnitude of 2-standard deviations from the window

mean; however, this could also be an adjustable parameter.
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Adaptive Momentum

The learning rate, α is the hyperparameter applied to the gradient update at each training

step. It is the adjustment to the stepsize corresponding to the gradient norm. Often a critically

tuned value, the learning rate can have significant impact on model accuracy and convergence rate:

if set too high the model may converge quickly, but never attain accurate results, if set to low the

model may eventually very accurate, but at a cost of exceptionally high resources.

In contrast to setting a static parameter, one can define a heuristic to adjust the learning

rate as the algorithm progresses. Known an annealing functions, these simple techniques decay the

learning rate over time. Common examples include α′ = α0/(1 + kt) , α′ = α0e
−kt where t is the

timestep and k is a tunable hyperparameter. We include an annealing function presented in136 which

uses two hyperparameters to define a delay, τ , and a forgetting rate, κ:

αt = (t+ τ)−κ

More popular strategies for adaptive gradients optimization include AdaGrad,137 which

divides a learning rate by the square root of the sum the L2-norm of all received gradients and Adam

which maintains an exponential moving average of both the gradients and the squared gradients,

but adds a decay rate.138 We employ the AdaGrad technique in both local optimization, prior to

executing L-BFGS algorithm, and provide it, along with Adam, as an option for global optimization.

For adaptive techniques, more robust methods should maintain a memory of the gradient

direction for previous timesteps. One simple technique is to employ a momentum term when up-

dating parameters. This term retains previous timestep gradient calculations and gets added to the

current optimization step:

w(t+1) = α∇twt − µm∇(t−1)

A relatively new concept, accounting for implicit momentum within distributed execution
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captures the impact of asynchronous systems in machines learning.139 As more nodes are adding

into distributed training, the momentum of learning changes. Thus, when applying gradients asyn-

chronously, one should always account for the implicit momentum in the system. The authors

proposed an implicit value for momentum as

µm = 1− 1

N

where N is the number of nodes in the system. We extend this as a more adaptive approach to

µm = 1− A

N

where A is the number of applied gradients, or asynchrony, for a single timestep.

4.3.4 Online Prediction

The training component described in the Section 4.3.1, details the global optimization to

train the common components, wG of the prediction model among all sub-domains. Referring to

the tree structure taxonomy of input domains, this equates to training the parameters associated

with the root node of the tree. Additional optimization is necessary to train each sub-domain

and develop the semi-isolated models. Section 4.3.2, which describe the parameter optimization, is

implemented for both training and testing. Once the global optimization phase is converged, or it

exceeds a pre-determined number of training iterations, the system conducts localized and isolated

testing and evaluation on a training subset of the input data. Decoupled from the global training

optimization, testing can occur either in sequence after training or at a later time and it can be

distributed in a strict parallel fashion. That is, since the global parameters, wG are fixed in this

stage, each model can train in complete isolation, enabling a linear scaling of resources: to train

more models quickly one needs to only add more systems. As a solution, we have developed a

separate executable component to conduct online prediction of live data. This capability is designed
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to support medical practitioners with real time predictions of the likelihood of sepsis occurring within

a future, user-defined time horizon.

However, maintaining prediction capabilities in real time can be a resource efficiency prob-

lem whereby data generation exceeds a systems capability to continually train and predict outcomes.

To overcome this, the system can apply dynamic selection techniques to prioritize model selection.

For example, models whereby predictive outcomes are high should be prioritized over lower scoring

models. As applied to personalized healthcare in hospitals: those patients with a higher likelihood

of experiencing a sepsis condition should have their personal model updated at a faster rate as

compared to routine patients.

4.3.5 Data Sharding

In order to distribute data among the worker nodes, we have implemented a pre-processing

data sharding algorithm resulting in a 10x improvement on data allocation. The purpose of this

component is to diminish the impact of data skew. which we described in Section 4.2.2, on training

in the distributed environment. Specifically, this process creates an set of S shards for the N nodes

where S >> N . To facilitate allocation of nodes, we assign values to S and N which are powers of 2;

specifically, S is 128 and N is between 2 and 64; however, this technique can support any value for

N , provided N < S. A primary advantage of this methodology to easily distribute shards of data

using the modulo function where each node is given the shards corresponding to its index in the

cluster of workers. For example, in a 32-node system with 128 shards, worker #1 processes patients

in shards 1, 33, 65, an 97.

The algorithm to create the shards provides a load balancing capability which helps to

decrease overall training time. It begins by collecting a count of the number of data elements for

each patient in the input dataset and filtering out patients which do not meet user-provided minimal

selection filters (e.g. hospital length of stay less than six hours). Subsequently, we split the data into

positive and negative patients based on outcome labels and perform stratified sampling to identify
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the training set, {T+, T−} and the test set {E+, E−} for both positive and negative patients. Using

the count of the number of data items for each patients, we sort the sets from largest to smallest

and conduct a greedy load balancing allocation by assigning each patients to shards whereby

sn = {ti|i mod S == n,∀ti ∈ T+}+ {tj |j mod S == n,∀tj ∈ T−}

The impact on using a load balanced sharding methodology produces data allocated more

evenly across each node in the system. We show the impact of data distribution on system efficiency

in Table 4.1. This captures the variance of execution time among the nodes within a single distributed

training session. As a baseline, we show how a random, uniform sampling strategy can result in

significant data skew with some nodes continuing execution as long after others have finished. The

far right column shows the results after implementing our sharding algorithm. With data more

evenly balanced among all the workers, all nodes complete training and testing within a few minutes

of each other.

# Nodes Random Distribution (Baseline) Load-Balanced Sharding

4 7.72 0.67
8 13.26 2.95
16 17.67 1.70
32 21.62 3.03

Table 4.1: Comparison of data skew. This table shows the difference in variance for training time
among the nodes in a given cluster. Each row represents a cluster configuration comparing the
baseline distribution technique against our load-balanced sharding technique.

As one final finding on data allocation, we stress that the initial allocation is only an

estimate of expected training and testing time. We assumed, initially, that patients with more data

would take longer to train and that by evenly dispersing patients’ data among the nodes by size, we

could achieve more balanced systematic testing, in terms of time. Our hypothesis was upheld and

validated for this data domain as demonstrated by the results in Table 4.1; however, other factors,

such as data quality, can impact training and testing time. For other domains or datasets, a more
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dynamic, adaptive technique may be required to reallocate and rebalance data among nodes during

testing and training. The current distributed LMC framework can easily be adapted to include a

more dynamic load balancing methodology whereby the master node collects training time metrics

for each patient and, as needed, reallocated patients to different workers (e.g. from the slower nodes

to the faster ones) using a partition table or through messaging queues.

4.3.6 Additional Implementation Details

This section covers some additional details on the supporting logic and framework to sup-

port the training and testing effort.

Preprocessing. The driver program, contains the entrypoint (the main function) for the

LMC training systems. Prior to execution, it processes input parameters, reads source data, creates

the shared global cluster, and builds the TF graphs. To facilitate a shared state among all modules

on a given node, we leverage the TensorFlow app.flags settings. This provides a singleton based

key value store to manage state. The system reads in environment variables and any command line

arguments as input parameters to the program. Some additional settings are also inferred in the

logic, such as automatically detecting cloud and containerization environments (AWS/Kubernetes).

For input, the system is designed to support data read from both file-based and Postgres sources. An

interface package provides an abstraction layer in between the LMC framework and the data source.

It is designed to process all extraction, transformation and loading operations prior to executing any

Tensorflow based logic.

Input and Output. The system is designed to support both file base input and output

as well as database integration. For file based support, we use comma separated value files (.csv)

and numpy binary objects (.npy). Usfuel for testing and debugging the file base support allows

developers to create local sandbox versions of the distributed program on their local machine. For

database integration, we utilize the PostgreSQL database management system. The model is set

up to support two dataset sources: the first is the Mimic II dataset,134 a research developed data
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model, and hospital generated data using the Clarity data model, with data update in real time. We

have implemented an abstraction layer over the data input to facilitate expansion of data sources to

include more than these two as it can be easily extended for to support other formats such as HDFS

or key-value stores.

Distributed Cluster. TensorFlow implementations for a distributed cluster follow an ar-

chitecture consisting of one or more parameter servers supporting any number of ”worker” nodes.

Although typical deployment utilize parameters servers to manage all data structures operating

within an event handler loop, we implement our design using a more traditional master-worker

pattern. The master performs synchronization and communication tasks and is capable of adaptive

adjustments to system wide parameters, such as the learning rate or alternating between synchronous

and asynchronous learning steps. Specifically, within TensorFlow, the master and the workers are

implemented as two separate jobs within the cluster.

Cloud Deployment. To facilitate distributed execution, we leveraged the Kubernetes con-

tainer management system inside Amazon Web Services (AWS). Individually, each node executes

as a pod on a single elastic cloud compute (EC2) instance. Coordinated through a Kuberbernetes

statefulset object which provides deterministic hostnames, each pod starts a docker image with a

set of input parameters, executes a startup script and implements the training algorithm. Using

a postgres backend database, workers read in patients data and output metrics, parameters, and

other data. Upon completion, the master node collects all workers’ local optimzation metric data

and calculate aggregate output scores.

Fault Tolerance. Fault tolerance is currently provided in the cloud deployed version through

AWS and a Kubernetes statefulset. If a running pod fails, the Kubernetes manager will instantly

restart the pod on an available node. If the entire node fails, the AWS cloud provider will start a

new node and once the instance is online, the Kubernetes manager will assign the lost pod to that

existing node. Internally, we have included design capability supporting fault tolerance within the

LMC framework. If a working node fails during training, it will restart and recover lost work. Since
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gradient updates are submitted to the master at each interval, global progress is never lost when a

worker node fails. Master node failure can be catastrophic, but we have we have designed the system

to more readily support failure and provide a brief overview for a more robust solution below.

For local parameter values, the system can currently checkpoint parameters, wi, to an

associated database. When a node recovers, it would restore all values from the previous checkpoint

and begin executing local training where it had left off, losing only the updates from the previous

checkpoint. There is a resource trade off for fault tolerance: saving intermediate data requires

computational resources and storage; thus, these requirement must be balanced against the desire

to maximize progress on the machine learning objective. For the master node, the system stores all

global updates, wG at each interval. Since all nodes execute the same program, the system can be

configured to enable a worker node to serve as a back up master node, continuing global optimization

from the point of failure. This would require additional engineering work and a decision on whether

to off-load the back up worker’s computation to other nodes or dual-purpose this node as both a

worker and a master.

4.4 Experiments

We executed several experiments testing optimization techniques, scalability, cost, and syn-

chronization strategies.

Metrics

• Time. To quantify the efficiency for a given setting, we utilize wall-clock time for execution.

Unless otherwise specified, time is measured in minutes and is independently collected on each

node. It includes the time from program initialization to experiment completion.

• Accuracy. We quantify effectiveness for a given technique, strategy, or setting using sensi-

tivity and specificity performance measures. Accuracy is measured by executing optimized
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models with a testing dataset to make a boolean prediction for a hazard. Predictions are sub-

sequently compared against the actual results to quantify a true positive rate (TPR) and false

positive rate (FPR) as well as true negative and false negative rates. We utilize the following

two scoring metrics:

1. Receiver Operating Characteristic Area Under Curve (ROC AUC). This measures the

sensitivity and specificity for predictions made by a model against a test set of data. It

is factors the true positive rate of all predictions against the false positive rate. A ROC

AUC of 1.0 is a perfect prediction score.

2. Positive Predictive Value Area Under Curve (PPV AUC). This measures the recall preci-

sion among all positive predictions. Is it defined as the number of true positive outcomes

divided by the total number of predictions for which a model returned positive. These

score are given the nomenclature, recall precision.

Independent vs Aggregate: A prediction is made on each window for each patient. We calculate

two sets of scores: one treats each window as a unique prediction score and the other groups

each all windows for a patient into a single prediction. These are each labeled independent

and aggregate in the scoring nomenclature.

Vanilla vs Robust. We calculate TPR and FPR on each window to make one set of prediction

scores, which we label vanilla as a baseline comparable metric for time event prediction.

In addition, we include an alternative scoring metric to address the challenges of accurately

predicting over windows with limited data input. For these windows, we defer the prediction

by not labeling it as positive or negative, although the window is included among the total

number of prediction when calculating TPR and FPR. This scoring metrics is labeled with the

population robust nomenclature.

Given the two aggregation techniques and two scoring standards for both ROC AUC and PPV

AUC, we calculate eight total accuracy scores. We highlight Aggregate Population Robust and
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Aggregate Population Robust Recall Precision as the two we assess most accurately reflect the

domain and application for personalized healthcare. We refer to these as ROC AUC and PPV-

TPR for the remainder of this section and these are the scores we show in the summary tables

below. We also list the eight metrics explained above:

– *Aggregate Population Robust (ROC AUC)

– *Aggregate Population Robust Recall Precision (PPV-TPR)

– Aggregate Vanilla

– Aggregate Vanilla Recall Precision

– Independent Robust

– Independent Robust Recall Precision

– Independent Vanilla

– Independent Vanilla Recall Precision

Experiment Set Up

All results demonstrated are collected from experiments executing on the Amazon Web

Services (AWS) Elastic Cloud Computing (EC2). To facilitate implementation, we leveraged the

Kubernetes container management system (v1.5.4) to deploy a set of workers with a single master

as part of a Tensowflow (v1.0.1) distributed cluster. A single individual training and testing im-

plementation requires N+1 nodes where N represents the number of worker hosts along with one

master host acting as the parameter server. We establish the following experiment hyperparameters

for which we separately vary within each experiment:

1. Local Optimization Operator. This is a choice in the local optimization routine to either

utilize the Python SciPy minimize operator or the custom developed one which we described

in Section 4.3.2.
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2. Global Synchronization Policy. We vary the global parameter updating strategy policy by

applying the techniques defined in Section 4.3.3. This includes fully synchronous global updates

and the techniques defined for asynchronous execution.

3. Amount of Asynchrony. This defines the number of gradients aggregated at each step of global

optimization.

4. Number of workers in the given experiment. We vary the number of workers to demonstrate

scalability.

5. System Configuration. To highlight cost and value, we vary the number of cores per node.

6. Number of Training Iterations. As indicated in each experiment, we specify the number of

training steps executed at each worker. This step refers logic executed in reference to Algorithm

5 from Section 4.3.1.

Settings Nomenclature

We use a short nomenclature to distinguish these variables which denotes the synchroniza-

tion policy and amount of asynchrony. Where appropriate, we also include other distinguishing

annotations. We provide the following examples with explanation to better explain this nomencla-

ture:

SYNCH - Synchronous Policy

FIFO2 - Asynchronous Policy using First-In, First-Out, with asynchrony of 2 gradients per

timestep

COS10 - Cosine Similarity policy with 10 gradients applied at each timestep.

We further describe the system set up, the values at which non-varying hyperparameters

are fixed, and any specific nomenclature below with each experiment.
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Synchronous Training
Solver ROC AUC PPV-TPR Time

SciPy 0.96 0.68 6:34:36.0

CustOp 0.95 0.71 56:58.8

Asynchronous Training
Solver ROC AUC PPV-TPR Time

SciPy 0.93 0.63 3:07:47.4

CustOp 0.96 0.73 24:36.6

Table 4.2: SciPy vs CustomOp. Comparison of local optimization operator. Top: Compared using
synchronous training method. Bottom: Comparison of the average of 6-8 iterations of asynchronous
training for each operator.

4.4.1 Exp 1: Local Optimization

Question: Does an optimization operator executing within a single TensorFlow graph ses-

sion improve overall training efficiency without sacrificing model accuracy?

Set Up: This experiment only varies the choice of operator employed for local optimization

between the SciPy and CustomOp operator. We test these two using a 32-worker cluster using

both synchronous and asynchronous execution policies. For the asynch policy in this section, we

aggregate two gradients per global time step using the FIFO method; for this section we refer this

as ”asynchronous” as we focus on the comparison between the SciPy and the CustomOp, but note

that we could have used any of the asynchronous policies. We fix the system configuration using

16 cores per node and train each using 2400 iterations per worker. For source data, we utilize a

one-year sample of 73,624 bedded patients from real world evidence (RWE). We filter out short stay

patients, or those with hospital length of stay (LOS) less than six hours, reducing the dataset to

29,471 patients. Of these patients, 1,542 have been identified as positive for severe sepsis. From

this, we randomly select 60% of the patients as the training source, preserving 40% for testing.

Table 4.2 shows the results comparing the SciPy operator an the CustomOp. Clearly, the

CustomOp completes training in much less time with accuracy scores as good as the SciPy using

either method of global optimization. We stress that each of these training sessions execute the
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same number of global optimization steps and the only difference between the two synchronous

versions and the two asynchronous ones are the local operator employed. The customized operator

implementation eliminates memory allocation and session management overhead and drastically

reduces optimization training time.

Figure 4.11: Scatter plot comparing Convergence of AUC scores as measured over the duration of
training in global timesteps. Left : ROC AUC metric. Right : PPV-TPR metric.

We show a supplemental set of results comparing CustomOp with SciPy. Figure 4.11, high-

lights the gains in efficiency with from the CustomOp as opposed to the SciPy variant. We show

significant improvement through a reduction in training time by a factor of nearly 8X when com-

paring the fully consistent, synchronized versions, SYNCH-32, for SciyPy (in black) and CustomOp

(in gray). In addition, we provide result for asynchronous execution, which will be explored below,

highlight the more effective and efficient cluster of red points in the upper left portion of the graph

as opposed to the SciPy results in blue along the center of these graphs.

Conclusion: The major takeaway is the impact on convergence for using a single-session

optimization operator: CustomOp reduces synchronized training to 1/6 of the time as compared

to the SciPy operator and for asynchronous, we see this ratio reduce to 1/8. Accuracy scores

are also slightly higher for the customized operator as compared to the SciPy implementation for

asynchronous execution, although in the synchronous variant, SciPy performs slightly better. By
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keeping control flow within a single run session, we have shown a means to reduce TensorFlow

overhead attributed to alternating between Eigen data objects used in TensorFlow and numpy

ndarrays in python and recommend this as a design consideration.

4.4.2 Exp 2: Scalability

Question: How does adding working to a training cluster affect overall training time and

performance when global parameters are synchronized at each training step?

Set Up: We now use the CustomOp local optimizer to focus on the impact on training when

we scale the number of workers in a distributed machine learning cluster. For these experiments,

we used the MIMIC II dataset, selecting a sample of 3150 patients which is randomly divided in to

a 75%/25% training/testing split. Each patient’s training data is further subdivided into at most

10 windows. System configuration is standardized with a common instance platform consisting of

16 cores and 30 GB of RAM per node and vary the number of workers, as indicated, in the cluster.

Each experiment executed 1000 global training steps using the synchronous optimization strategy.

We measured the time each node spent in a certain phase of execution defined as:

Initialize: Includes time to load data, build the local TensorFlow graph, and join the cluster

as part of the distributed global session.

Train: Time spent executing the computations of the local graph.

Wait: Idle time an executing worker is waiting to receive global updated parameters from the

master.

Test: Portion of execution after global optimization is complete when a workers tests and

predicts on its local shard of testing data.

The first key point to highlight is the scaling of wait time which increases as we add worker

nodes. However, we found that idle time levels off after 16 workers to about 10.5 minutes - about
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Figure 4.12: Comparison of Execution time for the major training phases. Left : Varying the number
of workers. Right : Varying the batch size of data for each worker.

half of the total execution time - for each training session. As expected, smaller configurations have

much less idle time which is a direct factor of the slowest worker. Considering that the data is non-

homogenous, a single training step can vary depending on the amount and nature of the selected

input data. This results in workers’ local models converging at significantly different rates within

the same global timestep. As data distributes across more nodes with increased workers, the system

has a higher probability of training one of these ”slower” patients in each training step. Because

the synchronized methodology dictates that each step is dependant on the slowest node, if any node

selects a ”slow” patient, then all workers will wait in idle until that model completes training locally,

which, experimentally, we observed stops increasing at around 16 nodes.

The second key point is that accuracy generally improves as we add workers up to the 12-

worker configuration. This is shown in Figure 4.13 comparing the accuracy scores for the different

variations in this experiment. We highlight that the 12 worker performance scores all resulted in a

2 standard-deviation improvement over all configuration of 8-workers or less. For all metrics, except

aggregate pop robust recall precision (aprrp), accuracy improves as we add workers up to 12 Beyond

that, we observer fluctuations in the results which could be side effect of a converged system. Since

we are executing the same number of iterations in each session at each worker, training may converge
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apr Agg Pop Robust ipr Indep Pop Robust
aprrp Agg Pop Robust Rec Prec iprrp Indep Pop Robust Rec Prec

av Agg Vanilla iv Indep Vanilla
avrp Agg Vanilla Rec Prec ivrp Indep Vanilla Rec Prec

Figure 4.13: Comparison of AUC metrics with acronyms provided. For definitions of each, refer to
Section 4.4. Top: Comparison of scalability by varying the number of workers in the distributed
cluster. Note that we observed the best performance with 12 workers which showed at least 2
standard deviation improvement over the baseline 1 worker configuration. Bottom: Using a fixed
cluster size of 8 workers, the compares adjusting the batchsize applied at each worker in each
timestep.

faster with 12 workers. With 16 or more, training had already converged when we stopped execution

and we observe the oscillating scores. The one exception, aprrp, has higher recall with fewer workers

due to a lower true positive rate (TPR) among the predictions.

The graph also show how increasing workers reduces both the initialization and local learn-

ing/prediction phases of the algorithm. With increased data distribution, each worker requires less

local computation. The single node execution spends almost all of its time in these two phases

whereas the same gross computation is distributed across several nodes as the system scales up. We

also note that the total training time is not exactly consistent across the different configurations.
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Much of the relatively small variances in time is attributable to external system pressures. This

includes network traffic from other executing jobs in the cloud based cluster environment.

In another set of experiments, we increased the batchsize to train multiple patient data

within a single training cycle. For these five configuration, we fixed the total number of workers

at 8 with 16 cores per worker and varied the amount of data the workers on which each workers

trained among the different experiments. We found that batchsize resulted in a linear scaling of both

execution time and waiting time. Furthermore, we discovered that performance actually decreased as

we increased the batchsize. Thus, our findings have shown that with the current algorithm, varying

batchsize is not a promising effort; however, with a much larger scaled problem leveraging batchsize

could be a possible means to improve efficiency as long as it does not diminish performance.

Conclusion: We identify two critical findings pertaining to the impact of scaling working

on both the wait time, which affect overall training time, and on model accuracy. Given that each

worker performed the same amount of computational execution locally, We found that idle time

increases as we add workers, but levels off after 16. We also found training to converge when we

have 12 workers or more. Thus, for this dataset and training, we identify that the best configuration

is 16 workers for efficiency and 12 workers for effectiveness, resulting in an optimal configuration

range of 12-16 workers. The main takeaway is that by increasing scalability, one can improve

efficiency and effectiveness up to a certain point, after which adding additional workers does not

improve performance.

4.4.3 Exp 3: Synchronous vs Asynchronous

Question: Can an asynchronous global methodology for training semi-isolated models

demonstrate comparable accuracy results at a fraction of the time as compared to synchronous

execution?

Set Up: Now that we have demonstrated the impact of scaling workers in a distributed
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cluster, we turn our attention to compare synchronous against asynchronous execution. Based on

our findings from the previous experiment, we will fix the total number of workers in the cluster at

12 and compare the two strategies. Each experiment trains for an average of 2500 iterations per

worker for a total of 12x2500 = 30, 000 global gradients. Because of the non-deterministic nature

of asynchronous execution, some workers contribute more work than others, however, by fixing the

aggregate number of work, we can properly compare synchronous against asynchronous execution.

We utilize the same 1-year dataset described in experiment #1 above, but use a subsample

of the testing set consisting of 10% of the total source population (as opposed to 40%) while retain-

ing the same ratio of positive to negative patients. We found the subsampling has no impact on

our experiment and allows us to more efficiently focus on the comparison of synchronous and asyn-

chronous execution. As the global optimization method, we employ AdaGrad with a fixed learning

rate of 0.025 using the CustomOp for local optimization.

For this experiment, we compare synchronized gradient updates against the baseline First-

In, First-Out (FIFO) asycnhronous technique where gradients are applied in the order at which

they are received at the master. We also vary the amount of asynchrony, A, in each experiment at

intervals of 1, 2, 4, 6, and 12 to explore the impact of aggregating gradients at different rates.

Method ROC AUC PPV-TPR Training Time

SYNCH 0.913 0.586 53.19

FIFO1 0.912 0.600 26.93

FIFO2 0.909 0.598 26.91

FIFO6 0.909 0.601 27.14

FIFO12 0.908 0.622 27.05

Table 4.3: Synchronized vs Asynchronous results. Note that time includes only the training phase
and is measures in minutes.

We show the summarized results in Table 4.3 with the accuracy graphs in Figure 4.14. In

addition, we captured the accuracy over time for these experiments in Figure 4.15. For efficiency, we

clearly see that asynchronous execution is must faster than synchronous. In fact, all of the 12-worker

asynchronous experiments in this section completed at about the 27 minute mark. As highlighted in
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Figure 4.14: Comparison of AUC metrics for synchronized execution (in black) and asynchronous
using a FIFO technique. We vary gradient aggregation among 1, 2, 6 and 12 per global timestep.

Figure 4.15: Convergence of AUC scores as measured over the duration of training in global
timesteps. Left : ROC AUC metric. Right : PPV-TPR metric.

the previous experiment, the difference is reflected in the idle time workers spend waiting on updated

global parameters at each step. By eliminating idle time in the distributed cluster, we reduce the

training time by one half.

The second aspect to explore is how asynchrony impacts training effectiveness. Overall

ROC AUC results are fairly consistent among all variants (apr, av, ipr and iv). Synchronous

has the highest score; however, is not a statically significant difference between that method and the

others. However, for the PPV-TPR scores (aprrp, avrp, iprrp and ivrp), we observe improve-

ments by as much as 2 standard deviations with especially higher precision recall with asynchronous

execution as compared to synchronous. In controlling asynchrony, we find FIFO-12 to be the most
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effective and efficient: it provides more consistency among the workers at each step, but capitalizes

on continuous execution by precluding idle time due to its asynchronous method.

Highlighting the accuracy score over the duration of training, observe that FIFO-12 actually

achieves better performance in less time, reaching nearly 0.90 AUC-ROC within 1000 iterations

(see Figure 4.15), which equates to approximately 10 minutes. While we also observe slightly less

difference among the other variants.

Sync vs Async (32 Worker Configuration)

Figure 4.16: Convergence of AUC scores as measured over the duration of training in global timesteps
for 32 worker configurations. Left : ROC AUC metric. Right : PPV-TPR metric.

As reinforcement of the results from the 12 worker configuration, we conducted similar

experiments using a 32-worker set up. We compare the fully synchronized coordination policy

with two asynchronous variations: FIFO 2 and FIFO 32 where we set the asynchrony value to 2

and 32 respectively. As shown in the ribbon plot in Figure 4.16, we found that providing more

consistency (FULL, in black)) produces the best overall accurate results. Furthermore, a stronger

consistent policy of aggregating more gradients per timestep (FIFO 32, in blue) also perform slightly

better than aggregating fewer gradients. By progressing the optimization with more updates, we also

observed higher variance in the outcome as depicted with the much wider ribbon band of convergence

(FIFO 2, in green).
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Sync vs Async (1-Month Dataset)

We provide additional evidence of the impacts identified with asynchronous execution using

a 1-month dataset from real world evidence of hospitalized patients. For these experiments, we use

the SciPy operator and a system configuration with 16 cores per node. We fix the total number of

local updates applied at 3200 and vary the number of nodes as well as the number of global updates

executed as each node. We compare synchronous training using 8, 16, 24, and 32 workers against the

basic FIFO asynchronous policy using 8 and 32 workers. In addition, we provide two variations of

asynchrony for each configuration. The one month dataset contains 6088 bedded patients, split 60%

training, 40% testing, with each patient’s training data further subdivided into at most 10 windows.

Figure 4.17: Model performance for AUC scores on CDM 1-Month dataset using accuracy score
(left) and recall precision (right). Each ellipse encompasses a min/max of data points for the given
training session with the center point denoting the average.

Conclusion: These result also clearly show the reduction in overall training time between

asynchronous execution which eliminates all idle time which we highlighted in the previous two

sections. We see very little, if any, drop off in training effectiveness and, thus, argue that training

asynchronously is the preferable option for distributed machine learning over semi-isolated models.

We also note that adjusting the amount of asynchrony, as we have done by controlling the number

of gradients aggregated at each global timestep, can serve as a tuning hyperparameter for model
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training.

Here we showed how asynchronous can perform better than synchronous execution and

that we can affect training outcomes by adjusting the level of asynchony. Although this technique

applies a simple FIFO methodology, combining asynchrony with adaptive techniques can be more

effective. We now explore more adaptive approaches and demonstrate how they can improve results

above and beyond the effectiveness we have already seen.

4.4.4 Exp 4: Asynchronous Control

Question: Can we apply an adaptive technique to an asynchronous execution policy and

improve on model training performance?

Set Up: We use the same set up as in the previous experiment with 12 workers executing

the same 2500 iterations and use the same training and testing dataset. In this case, we are only

varying asynchronous global optimization methods. Specifically, we compare the FIFO strategy

against the least stale first (LSF) and the cosine similarity (COS) as well as showing the impact of

adaptive momentum which we described above.

For these results, we focus solely on effectiveness of training with the AUC scores. We

begin with the impact of the global optimizater applied at the master. We show how our adaptive

implicit momentum technique compares against Adam and AdaGrad using both low and high value

set for the asynchrony tuning we described in the previous section. Specifically, we compare FIFO2

as the lower setting and FIFO12 as the higher setting.

We observe that adaptive implicit momentum improves on the AdaGrad optimizer we had

employed in previous experiments. This technique is comparable to the Adam optimizer, even

out-performing with a larger asychrony value.

We complete the comparison of asynchrony by showing how an adaptive approach to gra-

dient application can improve the global training objective. We make one small change in this
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Asynch Method Optimizer ROC AUC PPV-TPR

FIFO2 ADAGRAD 0.909 0.598

FIFO2 ADAGRAD w/Momemtum 0.914 0.595

FIFO2 ADAM 0.917 0.620

FIFO12 ADAGRAD 0.903 0.622

FIFO12 ADAGRAD w/Momemtum 0.915 0.632

FIFO12 ADAM 0.915 0.616

Table 4.4: Asynchronous results comparing optimizer and adaptive momentum techniques using
both a lower and higher setting for asynchrony.

experiment set up by using FIFO10 instead of FIFO12 as the higher setting. This ensures we keep

asunchrony less than the total number of workers to enable the adaptive strategies to apply (i.e. if

A = N , then our forumla for adaptive momentum, 1−A/N , is canceled out). In both cases, we set

k = 2 and let the master wait until it receives A + 2 total gradients before making a decision on

gradient application.

Using FIFO as the baseline, we compare it against both the least stale first (LSF) and

the cosine similarity (COS) strategies. For these experiments, we fix the global optimizer by using

ADAM, considered among the best optimizer choices, in order to demonstrate improvement above

the current state-of-the-art in machine learning optimization.

Asynch Method ROC AUC PPV-TPR

FIFO2 0.909 0.598

LSF2 0.927 0.623

COS2 0.930 0.658

FIFO10 0.908 0.622

LSF10 0.920 0.617

COS10 0.923 0.636

Table 4.5: Asynchronous methods comparing gradient policies. Compared against First-In, First-
Out (FIFO), the results show the added benefit of using adaptive strategy for steering global training
toward a common machine learning objective. Both the Least Stale First (LSF) method and the
Cosine Similarity (COS) method return better outcomes with the COS2 showing the best of all
techniques.

The results in Table 4.5 and Figure 4.18, show how the adaptive techniques of LSF and COS

can further improve on the results obtained previously. Because the distributed nature of the system

implies a non-deterministic ordering of gradients, the global parameters may be updated differently in
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Figure 4.18: Performance scores for the gradient aggregation policy techniques of FIFO, LSF, and
COS. Left : ROC AUC metric. Right : PPV-TPR metric.

different executions. We can, however, control this ordering and apply a more productive capability.

Using a adaptively controlled methodology, we can steer the training objective toward a better goal,

or, alternatively, toward the same goal but at a quicker pace. By letting a master organize and apply

gradients in a selective and intelligent fashion, the system, as whole, can converge to a better result.

We also note that we did not further explore internal hyperparameter options, such as changing the

master’s delay before making a decision. We leave additional fine tuning for these adaptive strategies

as an open direction for future work.

Conclusion: Focusing on the effectiveness of training, we observed that adaptive approaches

to global optimization improve on traditional machine learning techniques. Specifically, we find

that a Cosine Similarity technique, whereby gradients are applied in the order in which they are

most similar to global progress, has proven to be the top performing strategy of all with which

we have experimented. This demonstrates how an asynchronous primitive, in this case controlling

an adaptive gradient application, can dynamically affect distributed training, providing a better

balance between resource efficiency and training effectiveness. This highlights a future direction in

distributed machine learning systems which should look to incorporate such capabilities into existing

architectures.
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4.4.5 Exp 5: Cost

Question: We conclude our experiments by re-visiting the effectiveness vs efficiency paradigm

by asking, which configuration is preferable to find the most cost benefit solution for machine learn-

ing training: fewer nodes with more cores per nodes or many cheaper nodes each with a limited

number of cores?

Set Up: These experiments utilize the same MIMIC II dataset and the fully synchronized

global optimization strategy as described in experiment #1. However, in this case, we fix the

aggregate number of cores (as best as possible) among the different configurations listed, but allow

the number of workers and the number of cores per worker to vary for each of the five configurations

we tested. We note that we fix this at 128 cores, except for 4x36 which has 144 cores. This is due to

Amazon instance availability which does not provide a 32-core system at the comparable processor

model. The nomenclature used reads #workers X #coresPerWorker.

We note that, in general, the ratio of cost to cores is about the same between the variants:

for example, a 16-core EC2 instance costs approximately $0.80 per hour and a 2-core instance costs

approximately $0.10 per hour. Granted the prices vary slightly based on specific instance type and

region, however, in general the costs are comparable per hour. Thus, overall efficiency to train a

model can be measured by the total training time per unit. We also do not include any added

benefit for leveraging spot price instances. We did, however, utilize spot pricing to help reduce

overall experiment costs, but are including the listed prices for on-demand EC2 instances. While

spot prices can help drive down costs, they are applied evenly across all systems, and, thus had no

impact on the results.

The results in Table 4.6 show that for synchronized training, a configuration of 8 workers

with 16 cores was the best balanced mix. As we increase the number of workers, we increase the

amount of idle time among all the executing nodes since each must wait on the slowest worker to
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# Workers CPUs Hourly Rate Time (hrs) ROC AUC Cost

4 36 $1.675 0.53 0.808 $3.73

8 16 $0.838 0.36 0.818 $2.60

16 8 $0.419 0.60 0.828 $4.68

32 4 $0.209 1.04 0.807 $7.71

64 2 $0.105 2.38 0.788 $17.22

Table 4.6: Tabular comparison of cloud costs for system configurations. Total cost factors in the
number of nodes, cost per unit, and the total time required for machine learning. In general, the
16 worker, 8-core configuration is the most valuable at comparable rate of $2.60. Costs based on
Amazon EC2 On-Demand prices as of July 3, 2017.140

Figure 4.19: Comparison of accuracy metrics using various configuration of workers X cores per
worker. For metric acronyms see Figure 4.13

progress the algorithm. This is shown in configuration 64x2 which used the least expensive EC2

instance type (m4.large), but took three times as long as the more robust nodes. On the other

extreme, the 4x36 configuration had much less idle time, but each node also had must more data

to process. We also highlight that the most effective configuration were the 16x8 workers as shown

in Figure 4.19. Reinforcing the findings from our second experiment, we see that training performs

optimally when we have 16 workers.

Conclusion: The key takeaway is that neither extreme between (a) many cheaper comput-

ing nodes and (b) fewer more powerful nodes is preferable; a balance between the two is more ideal.

For the given dataset, we found that the 8x16 configuration produced the most cost effective mea-

sure; however, the 16-worker configuration returned the highest accuracy. The optimal cost benefit

lies somewhere in between these two extremes and that the exact fit depends on the dataset to be
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trained as well as any other hyperparameters. We recommend that users determine the best course

of action when choosing a cluster configuration based on priorities. To maximize cost savings and

achieve the best possible outcome, do not go too low in cluster configuration: a relatively smaller

cluster with better processing power per node is the best choice. To maximize model performance,

use sightly more nodes and, if necessary to remain within a fixed budget, use slightly fewer cores

per nodes.

4.5 Open Directions and Takeaways

We foresee future work in this effort on three directions. The first is an natural extension

of the techniques we have developed. This includes additional hyperparameter adjustments and

fine tuning to gain a better understanding of how these adaptive approaches affect the global/local

training pattern. We believe we have only begun to explore this space and additionally, more

intelligence adaptive approaches are yet to be uncovered. We also describe two other orthogonal

efforts:

Hierarchical Personalized Models. In describing the semi-isolated model, we initially stated

that this research effort focused on only a global and a local layer. Every individual model shares the

same set of global parameters and each had a unique and isolated portion of the model. However,

we could develop a taxonomy of sub-domains where each subset in a multi-tiered hierarchy shares a

common set of parameters. Training would need to be more involved and require an adjustment to

the algorithm as well as scheduling and dispatching of sub-domains in a distributed cluster.

Sampling for Control. As an alternative direction, we could integrate a mediation control

loop to better sample sub-domains for training. The current implementation randomly selects input

at each step using a naive uniform distribution. However, we could add an additional component to

organize and adapt the system and selectively choose models at each step. This direction implies

an importance sampling methodolody whereby we could incorporate a lattice-based approach to
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organized sub-populations.

We have implemented a distributed version of the linear models of coregionalization algo-

rithm. Our framework provides a two-graph methodology which combines a globally shared model

with a locally trained optimization graph implemented at each worker node. A master node updates

global parameters in either a synchronous or asynchronous fashion. In conclusion, we feel this effort

has enabled training and prediction for personalized medical machine learning models in a more

time efficient and practical manner and that it can integrate into real world hospital use.
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Chapter 5

Takeaways and Open Directions

We began this thesis with an overview of the current computing landscape. In its descrip-

tion, we identified the modern challenges of interjecting evolving capabilities into structured data

management architectures. The specific problem we identified pertained to human-in-the-loop man-

agement of data generation and distributed analysis tasks. This human directed oversight inhibits

efficient online, iterative data exploration leading to delays in knowledge discovery and decision mak-

ing. This dilemma has put a strain on systems to maintain pace with data exploration requirements

which can result in severe consequences in certain fields and settings, to include military operations

or personalized healthcare. Our goal all along was to address this problem through architectural

support to reduce the human requirement and shift the burden to a more semi-autonomous ca-

pability. We focused on the data and systems components of the exploratory process to enable a

human to focus on higher level tasks. In Chapters 2, we showed how a lattice based data organi-

zation approach precludes human oversight in pattern matching allowing the system to steer input

parameter selection for exploratory tasks. We implemented this concept in Chapter 3 through a

serverless framework integrated into scientific simulations in high performance computing. In Chap-

ter 4, we demonstrated adaptive asynchronous primitives in distributed machine learning providing

a capability to enable more autonomous hyperparameter tuning.
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Throughout, we retained a running theme of improving system efficiency and effectiveness

by coordinating efforts of individual tasks with an adaptive control methodology. We addressed

the shortcoming of a data exploration workflow hindered by a human-in-the-loop; we overcame this

problem by coordinating asynchronous execution through an abstraction mechanism to reduce the

human direct involvement in lower lever tasks, such as parameter selection, data filtering and query

monitoring. We applied these techniques to two direct use cases of scientific computer simulations in

high performance computing and machine learning for personalized healthcare. In both, we showed

how to coordinate the efforts of many, shorter independent tasks to collectively reach a common

data exploration objective.

As part of the molecular dynamics effort, we identified how the human-in-the-loop was

a hindrance to efficiently executing the data exploration task. Traditional scientific simulation

workflows entail a bio-physicist to carefully select a set of input parameters for a given experiment.

The jobs execute in high performance computing node over the course of several days or even

weeks resulting in very large trajectory output data files, typically measured in multiple terabytes.

Specifically, we found that a single long running serial simulation for even a small bio-molecular

system can take a week to execute and output a file approximately 250 gigabytes in size. As part

of the human-in-the-loop process, the scientist manually copies the raw data file(s) out of the HPC

cluster to a local resource, which, itself can take an extraordinary amount of time. Given that

average internet speed is approximately 7.2 Mbps,141 transferring this raw trajectory output could

take approximately 79 hours. Only the preparatory step, this is followed with further processing

and examination on local resources which are typically less capable than the supercomputing nodes.

The subsequent task of filtering raw data and pattern matching consumes additional days whereby

the scientist uses interactive tools, such as a jupyter notebook to understand shortfalls in the data

collection in order to identify a new set of input parameters. This all results in a very prolonged

turn-around time to execute a follow up set of experiments and drive the iterative data exploration

objective.
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Our methodology to integrate an architectural framework was specifically aimed to pre-

clude the human scientist from performing these manual, time-intensive tasks. We demonstrated a

capability which completely eliminates the need to copy and filter raw data. We instead injected a

more semi-autonomous capability to push analytics closer to data generation and keep the raw data

filtering requirement within the supercomputing infrastructure. We also highlight that this frame-

work specifically allows the human-in-the-loop to focus her efforts on conducting off-line analysis

over the reduced and filtered data. The scientist can instead become forward-thinking by applying

the information gained to synthesize new knowledge and integrate the outcomes into higher level

queries focused on solving domain specific problems.

The second use case focused on the integration of dependent tasks within machine learning

applied to personalized healthcare. In this case, we identified the parameter tuning efforts as very

human intensive ones. While some autonomous hyper-parameter optimization technique exists, they

do not address the optimization for multiple, dependent model training. Such applications, found

within localized training for personalized healthcare, require additional coordination layers to finely

tune consistency requirements at the lower level. This includes a mechanism to determine when mod-

els are diverging and need to coordinate for consistency and the ability to apply a more adaptively

steering gradient selection policy, such as the least stale first or using a cosine distance function we

introduced, on top of an optimization technique. Similar to the lattice which assumed many of the

lower level pattern matching tasks, the asynchronous primitives outlined within Chapter 4, demon-

strated how we can enable the system assume a more semi-autonomous role in data exploration.

The human-in-the-loop, can instead focus on the outcomes of the model, such as addressing the

actions to take in response to a positive prediction of the onset of sepsis in a given patient.

Although we targeted applications pertaining to supercomputing and machine learning, the

framework and methodologies presented herein are applicable to other domains. Our efforts provide

a proof of concept as a means to improve resource utilization for a variety of operating environments,

including high performance computing clusters, austere settings, and military battlefield systems. By
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demonstrating a significant reduction in resource utilization, we showed how to improve productivity

in data exploration. The mediation control loop and sampling methodologies outlined in Chapters

2 and 3 serve as a roadmap: future efforts should seek to drive input sampling via data organization

techniques, such as the data lattice. Applying these adaptive controls and synchronization primitives,

individual tasks become more productive, as we demonstrated through increased rare event detection.

Their collective efforts aggregate to provide greater contribution to a common objective. We have,

thus, shown how to focus human efforts and improve data exploration.

We conclude with three open directions for future work in adaptive control for data ex-

ploration. For the first, we revisit the application we mentioned in Chapters 3 where the serverless

framework could extend to a multi-user system. We frame the research issues pertaining to users,

scheduling and fairness policies. Our second direction is an orthogonal one within machine learning.

When we initially addressed the analysis tier of data exploration we viewed the underlying tasks

as black box functions, commonly associated with machine learning. However, what if we sought

to open the black box and understand what happens inside as a means to garner information and

further improve data driven control of our process? We examine the background behind this con-

cept known as explainability. Finally, we describe how we could apply the feature lattice concept

presented in chapter 2 with the multi-model approach in chapter 4 as a bridge to enhance machine

learning training and servicing.

5.1 Multi-User Ensemble Management

A long range goal of the molecular dynamics database project is to provide a basic frame-

work to support large scale, multi-user analytical requests for a consolidated research effort. Gen-

eralizing beyond scientific simulations, we feel opportunities exist to capitalize on the synergy of

combining many user demands into one unifying system. Such an integrated, adaptive system

would need to tackle additional challenges, such as scheduling and fairness. We present the follow-
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ing design as a foundation for this conceptual system which can extend the work we have already

demonstrated.

5.1.1 User Interaction

A larger deployed system which supports multiple users must determine that amount of

interaction either required or allowed for its user base. We identify the following potential categories

of human interaction:

1. None: Closed loop, internal feedback system without any interactive users. Simulation-

generated data serves as the input stream to the analysis tier. Analysis task results are

fed into the system control which drive decisions on subsequent tasks to launch based on an

initially established system-wide objective function.

2. Read-Only: Users can ask simple, read-only queries based on generated data. Typical user

queries involved asking select/project-like queries on either raw data, local-diffused data, or

global data. Should consider integrating a QoS with user queries so users can receive either a

guarantee of results or a confidence index on accuracy (or ”as-of-time”) for the data. System

would need to prioritize user requests with on-going system control tasks which are meeting

an objective function.

3. Interactive: Users can ask both read and write queries. In addition to the factors of read

queries, this type of interaction allows the user to impact running processes which could entail

anything from stopping analysis to updating the objective function directly.

4. Crowd Sourced: A long-term goal of the system. In this case, a crowd of scientific experts

can influence the system control decision based on their pattern of queries. There is no direct

user-interaction with the system control, but the objective function will change over time to

ideally become optimal.
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5.1.2 Solutions for Job Scheduling

In a multi-user cluster, the system must make resource decisions among a myriad of com-

peting demands. Specifically, the system must decide how to divide a finite number of computing

hours, given multiple users who want answers to queries. While this resource decision is commonly

applied throughout systems operations, processes are treated as isolated entities. The critical dif-

ference in our system is the interdependence of the tasks which integrate into a common objective.

We, thus, ensure an abstraction layer between the users and the actual tasks which can assume a

many-to-many relations: one task can support multiple users and likewise one user’s query may

require multiple tasks to complete.

In our framework, we view part of the system’s responsibility as receiving queries trans-

forming them into potential jobs via a sampling strategy. We recognize that an additional declarative

interface and query processor would be required. Given this, we foresee the outcome of this step as

a probability distribution over a set of potential jobs. Using the distribution, the system can then

drive decisions to (1) decide among the users who receive resource prioritization and then (2) which

specific job to schedule. Given a finite number of computer hours, N , we identify two potential

models to implement this layer:

Allocate and Sample

In this two step process, the system first executes a fair-policy scheduling algorithm to

distribute a portion of the computer hours to each user.
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Advantages Disadvantages
EQ/WD Simple Long running users (not near

convergence) may never finish
EQ/SL Simple, Deterministic Some users may never finish;

cannot launch for continuous val-
ues

MM/WD Fair allocation among users Need to convert CI -¿ discreet #
of computing hrs

MM/MM Fair among uses and jobs Complex: 2 layers of resource
computation

MM/SL Fair & Deterministic Some jobs may never run; cannot
launch for continuous values

• EQ: Equal Allocation of resources: Each user receives N
|U | hours in either a parallel (divide-

and-conquer) or a round robin fashion.

• MM: Max-min algorithm. Implementation to maximize the minimum amount of resources

needed among all users. Define max per user as the largest confidence interval among all

sampling variables. CI’s would need to be represented in a common unit of measure with

users specifying a desired CI and error, (e.g. as states, select high-level data variable X to be

discovered (determined, solved, identified) at CI = 95% within an error of Θ = 3%). Thus,

each user’s max is a function applied to that user’s confidence interval. This can be represented

as follows:

• WD: Weighted Distribution Probability distribution over a continuous interval value (with

a µ, ρ) or a set of discreet values (s.t. sum is 1)

• SL: Sort and Launch Given set of discreet values, sort in descending order and submit each

in succession until all resources are consumed. May loop if needed or launch more than one

task per value.

Fair Scheduler Algorithm:

Given:

µi → Calculated variable estimate for variable, Vi
Clo, Chi → Confidence Interval

Θi → User Defined Error toleration

Rt → Available compute resources (e.g. hrs, nodes) allocated at time, t

RD → Resources desired to use at time, t (based on external usage)

RI → Idle Resources

NOTE: Rt ≤ RD

Let:

Θ∗i =
CIhi − CIlo

µi
, ∀i ∈ Vi
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Θ∗t =

∑
Θ∗i,t
|Vi|

, NOTE: Θ∗ will converge to O(n
−1
2 )

Rt = Rt−1 +
(

1√
t
k − Θ∗t

)
∗ RSTEP , k is a constant

RD = Rt + MIN(RI , Rt)
~D = {RD ∗ (Θ∗i −Θi)}, ∀i ← User Demand Vector

(***may want to normalize ~D if
∑ ~D < 1)

Solve:

Apply Max-Min: f( ~D, Rt)

Aggregate and Sample

As an alternative, the system can aggregate all user values into one large global pool. This

would change the scheduler’s fair scheduling policy from one of a fair-to-user to one of fair-to-jobs,

where all user jobs are competing for resources (vice users). Implementation would be a two step

process: (1) aggregate all users into one global set of values or probability distribution function

(which we note is akin to running the reweight operator which we described in Chapter 2) and

then, (2) sample among global set of all values. This may not be advantageous to the previous

model, but it does allow for users jobs to be distributed in accordance with a global probability.

The only scenario where this could be beneficial is if it could identify overlapping user demands and

bias sampling accordingly. Ergo: this method tries to run jobs which may benefit multiple users,

promoting synergy in the system.

5.1.3 Allocation and Deallocation

One final part of this research effort which we explored is the manner in which resources

are fairly allocation. We also examined the inverse, deallocation, which coincides with the same

considerations of long-running queries in database management systems. We provide background

material on those two topics since they directly apply to this concept system:

Fairness

For single threaded tasks, the decision is moot: give all resources to the task until comple-

tion; however, in a multi-user or resource competitive environment, the scheduler needs to balance

user goals to complete a given task/query with resource utilization. Known as a fairness policy,

the system aim to ensure each user receives a fair share of the resources while maximizes resource

utilization. Several techniques have been developed to strike a balance between optimization and
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fair use to ensure all users make progress toward a goal and preventing starvation - the condition

where one or more users is denied any resources. Several naive approaches are baseline comparisons

for any resource management policy:

1. Equal Allocation. Each user receives the exact same amount of resources. If a cluster has N

nodes with K users, then each users receives exactly N
K share of the resources exclusively. A

comparable policy, round robin, evenly distributes resources in time (vice space) by iteratively

scheduling all N nodes to each user. While this policy is fair, it does not optimize resource

utilization.

2. First Come First Serve (FCFS). Users compete in an aggressive (greedy) fashion for available

resources where uses consume everything all available resources they request. While this may

optimize resource utilization, it may prevent some users from making progress (e.g. one user

can request everything and leave nothing for everyone else).

3. Shorted Job First (SJF) and Shortest Time-To-Completion First (STFC). Similar in nature,

these two policies identify the ideal next user to schedule on a queue. In SJF, the system

uses the user’s estimated resource requirements while in STFC, the system prioritizes based

on which user is expected to complete her execution the soonest.142 In either case, users with

long running jobs or queries which are far from completion may never make progress.

4. Proportional Scheduler. As an extension to a basic equal allocation fair scheduler, a propor-

tional scheduler factors in a weight per user for each allocation. Thus, users receive a fair share

proportional to their associated weights. Weight can be tied to priority, completion time, or

requested resources. If proportions are not fairly distributed (e.g. one user has a significantly

large priority or request), starvation for lower-weighted users can still occur.

5. Max-Min Allocation. With max-min allocation, the objective of a scheduler is to maximize

the minimum required allocation for each user. Allocation is conducted in an iterative fashion

whereby each allocation choice is to fairly distribute either the minimum requested resource

for each user or a fair amount (whichever is smaller). Formally, if U = vector of user requests

(for each user where ui > 0, and N = # of available nodes (or resources), then the scheduler

allocates MIN( N|U | , MIN(ui)) each round until all resources are allocated. The main limitation

of max-min policies is the dependence on accurate resource requests.

197



CHAPTER 5. TAKEAWAYS AND OPEN DIRECTIONS

6. Dominant resource fairness (DRF). Implemented in the Mesos framework, DRF is a max-min

strategy which overcomes the limitation of accurate user resource requests while balancing

multiple uses across multiple resources.143 Ghodsi, et al define four common properties a fair

scheduler should consider:

(a) Sharing Incentive: each user is better off sharing the cluster

(b) Strategy Proofness: users cannot benefit by lying about resource demands

(c) Envy-freeness: uses should not prefer another user’s allocation (fairness)

(d) Pareto efficiency: zero-sum of resources (gain to one user is a reduction for another)

DRF identifies a dominant resource per user and then subsequently selects the user with the

smallest dominate share and executes. An an extension the authors implements a weighted

DRF which incorporates a weight in the the calculation of each user’s dominant share.

7. Lottery Scheduler. As an implementation of a weighted proportional scheduler, a lottery sched-

uler144 treats the weights as a probability distribution. Every time resources must be allocated,

the system distributes individual allocations randomly using the user’s weights (demand, prior-

ity, request) as the pdf. While this ensures probabilistic fairness given sufficient resources and

ensures 100% optimization usage, it does not provide deterministic fairness (e.g. users could

be starved of resources if they have a low probability to receive resources). Lottery scheduling

can be applied to the local distribution with a individual users’ tasks and, thus, provide a

global probabilistic resource scheduling solution where each user has competing tasks.

8. Stride Scheduler. The deterministic version of a lottery scheduler, a stride scheduler selects

tasks using a logical time-stamping system. Each unit of time is a quantum and users are

given tickets to use quantums where the number of tickets is directly proportional to the user’s

weight (priority, demand, etc..). A user’s pass is her next earliest available time slot when she

can receive resources. The stride algorithm iteratively selects the user with the lowest pass

value, allocates resources, and then increments the user’s pass by her stride value. The stride

is inversely proportional to the user’s weight; thus, users with a high weight get allocated

more frequently. How the inverse function is applied to the calculate the weights determines

the relative allocation among the users. Using a ticket analogy provides for extensions such

as a global ticketing system which can allocate quantums to individual user tasks, user ticket
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inflation/deflation to change priorities without changing other allocation policies, and ticket

transfers between users. One potential pitfall is that a super-user could demand a very large

portion of the quantum; to overcome this, the authors developed a hierarchical stride schedule

which groups users into a tree structure: users are consolidated in a binary tree with leaves

representing users and internal nodes containing the minimal pass of all subordinate users, and

aggregate stride and ticket values (for all subordinate branches). Tickets are issued recursively

down the tree and each node in the allocation path updates its pass accordingly.

Managing Long Running Queries

The determination of how to handle long-running queries is an execution decision. It is a

reaction to event in which the system must consider if and hot to interfere with the on-going process

acting on behalf of a query. As mentioned above, the system can do anything from nothing to kill.

By introducing an external source to the system (a.k.a. user interaction), we must explore how to

handle long running queries which may have multiple and possibly conflicting objectives.

The primary concern with long running queries is what do with them if/when they become

contentious and/or need to be stopped and/or need to be rescheduled. Queries could be stopped

due to a variety of reasons, to include system overload, priority of other tasks, external system

maintenance, change of objective function, and others. For simplicity and to bound the issue, it is

probably best to explore this decision in HPC for scientific purposes as a factor of query priority

with respect to both time and space as opposed to resource contention, fault tolerance, or other

reason. For example, a user submits a query and the system must decide if it needs to free up

disk resources for intermediate results (space) and if it needs to schedule it immediately or if it

can queue it at a more ideal time in conjunction with system convergence tasks whereby it could

opportunistically leverage cached intermediate results and minimize overall CPU time to respond to

the user. This would have to be intertwined with QoS expectations provided to the user, resource

budget constraints within the computing environment, garbage collection policies, I/O to archived

data, and the ratio or prioritization of tasks between system convergence and user queries. There

are various ways to react when the system must decide on interrupting a process:

1. Nothing: Doing nothing means letting the process finish to completion. The system could warn

the user (or admin). Doing nothing could impact other processes’ decisions (e.g. archiving,

garbage collection).
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2. Kill (& Restart): A process is terminated and no state is saved. Any data or work produced

by the process is considered lost and would need to restarted from its initial state. Because

no results/data are expected in return, the system should attempt to kill a process at the first

opportunity in order to minimize lost resources. The system can decide at any point whether

to restart that query, provided its initial state is not dependant or does not factor into any

other tasks (e.g. garbage collection, resource utilization).

3. Stop (& Resume): A process is halted in place. Depending upon the nature of the process,

it could return intermediate results to the user. When stopping, the system must decide (or

prioritize) whether it saves the process’s state so that it can either resume operations or be

referenced for a future use. When stopping the system has control over when to best stop the

process (e.g. checkpoint immediately or continue until the next potential checkpoint operation)

or whether it should stop in place and revert to the previous checkpointed location; with the

latter, the system would have to replay lost work in order to return to the process’s state.

4. Rescheduling: System allows a current process to finish, but changes schedule of follow-on

tasks. For example, the system could have a simulation task running with an immediate

analysis task to follow; it could allow the simulation task to run and reschedule the analysis

for a later time.

Other factors to consider with long running queries:

• Proactively determine optimal checkpointing moments during execution which is described

in145 as a means of query suspend and resume. This could be natural analysis breaks. For

example, after every window it analyzed, the system follow up with a quick aggregation cal-

culation and outputs the result to disk. This allows the system to have checkpoints already

established and makes stopping and resuming the analysis task much more efficient.

• Keep a progress tracking metric to drive stopping vs killing decisions in the future. The

metric should include statistics on how much work is completed, how much useful data is

generates/available, how much
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5.2 Explainability

Explainability (a.k.a. ”Semantic Provenance”) of dynamic systems defines the the efficacy

linking feature sets (spatial, cause) with the lineage of events (temporal, effects). If a function links

input to an output, then explainability defines the linkage from output to input; we, define this a

back-projection function. If we could understand where an output derived, then we could select the

perfect input for our exploratory system, such as telescopic coordinates to view a future cosmological

event or simulation starting points to observe a specific action.

An orthogonal effort explored as part of this research endeavor is to incorporate any knowl-

edge garnered from within a machine learning model into the adaptive process. This concept, still

in its infancy and not well structured in literature is deemed explainability. If we could understand

how the latent features directly tie to a labeled outcome, we could utilize the inner model parameters

more effectively in steering our training. As a future consideration, such understanding could even

lead to a dynamic model system whereby we actually change the structure of localized models based

on the relationship between output and either input or latent features. We start with a background

on the literature in provenance, describing the forward trace of input to output and then describe

the inverse concept of explainability.

5.2.1 Provenance in Data Management

Traditional DBMS literature defines provenance as the lineage of data which traces raw data

from its input (e.g. the source table) to its output (e.g. a tuple in a resultant query). Provenance

adds value to data by explaining how it was obtained as well as providing a means of correctness

and attribution. Uses include view updates, expressiveness, and annotation propagation. In con-

temporary data warehouses and distributed or online analytics, understanding the source of data

can play a critical role in trust giving more value to the output and clarifying the correctness of a

result.146 From a systems perspective, retaining this lineage in an online fashion, a database can

more efficiently update and maintain a view.

One of the earliest efforts which formally defines data provenance was in147 where Cui et al

clarify that a lineage of an output tuple is the collection of all input data which contributes to that

tuple. For a simple, select-join-project (SJP) query, this is merely the input tuple from the source

tables matching the selection and projection criteria in the associated relations. More complicated
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lineage is defined as well for aggregations, inner queries, and others.

Collectively, describing the source data set is known as the why-provenance148 component

and is often referred to as the witness, or the subset of necessary input data items to ensure a given

tuple exists in an output view. Here, provenance refers to explaining why a tuple, t, is formed,

specifically linking a set of source to a destination. Formally, we state the lineage of a tuple is

defined as the collection of input data that contribute to the output tuple, t, and/or the data that

helped to produce t. This notion is based on the witnesses to a query. A witness is a subset of the

database which ensures that a given tuple is in the output. Since the total number of witnesses can

be exponentially high, a witness basis is often uses which encompasses only a compact representation

of the of the set of all witnesses. In addition, we can also view, in a more detailed manner, the how-

provenance of data lineage. This describes not only the set of source tuples, but also the manner

in which they contributed. Finally, we can also define the where-provenance which pertains to the

location of the source data contributing to the output tuple. Specifically, it refers to the source

tables in a database from which the input rows contributed.

When applying provenance, we often consider the overhead associated with the process.

Because it is added computation associated with a result and not the actual result, we must decide

when and how to perform this step, known as materialization. In a lazy approach, computation

is performed only when needed. The main drawback in lazy processing is that the system must

ensure it retains enough information to execute the computation when necessary. Specifically with

provenance, this may require additional techniques to infer information from the source data set if

that information is not available after query execution (e.g. data is transformed and no longer in

its original state). Conversely, in a greedy fashion, materialization is computed immediately. With

provonance, this mean that the lineage information is produces when the query is executed. This

allows the provenance of an output element to be derived from the results of the query as it is

returned to the user. This may be a necessary technique when the provenance information may

not be available after query processing. As noted, however, greedy processing incurs additional

overhead.

5.2.2 Explainability in Data Analysis

While the notion of lineage and provenance provides a means to interpret an output tuple

in a relational data model, this concept does not generalize from data management to data analysis.
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Specifically, we view this through the perspective of a machine learning systems used for analytical

processing. These systems solve complex, often non-linear problems using highly connected deep

neural networks. Combining a myriad of input features they produce a means to predict output for

a given input. One way to describe the explainability is to define what happens ”inside the box.”

In a deep neural net, for example, such explainability could be viewed as identifying the hidden,

latent nodes within the model which most contribute to an outcome. These learned features provide

a direct lineage from source nodes to output classification or prediction. However, the nature and

complexity of the underlying model makes such a task untenable for human consumption.

Defined in terms of input, one way to view explainability is purely by describing an output

item by using the input feature set. Such a technique is more akin to the why-provenance of

data management described above. Input features provide a witness basis for an predicted output.

In cases such as decision support (e.g. medical recommendations), this may provide a sufficient

explanation for result: A triage model recommends a patient to be admitted into a hospital because

she has several contributing symptoms along with a history of pneumonia. Such simplified, seemingly

linear explanations, may not always be as apparent.

The concept of applying explainability to an analysis process is akin to answering the ques-

tion, what happens inside the black box? If we view a machine learning algorithm as a ”black box”

function with input features and an output result, the goal of an explanation is to help humans bet-

ter understand the underlying functionality. When applied to a deep neural networks, for example,

this entails providing a meaning or value to the hidden layers and the latent features. Lipton de-

scribes three different ways to view transparency.149 The first is the human layer whereby a model

is transparent if a human can comprehend the entirety of it at once – in a less boolean sense, a

model’s simulatability is described in terms of the amount of the underlying model that a human

can comprehend. The second is the data layer, which is the decomposability of the model. This

implies an explanation in terms of the feature space and relies on a set of interpretable features

as a baseline, excluding complex or derived features which, themselves, are not explainable. The

final layer is the algorithmic one, whereby an explanation provides insight into the nature of how an

algorithm reaches a given outcome. This latter element of transparency provides a context under

which we can prove a given algorithm converges or produces a given result. Unfortunately, due

to the complex nature of machine learning models, one can never ”prove” that they are bound to

converge on a specific result.
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We could view explainability as an extension of trust. The application of trust in technology

was fully explored by Muir150 who studied the adoption of an automatic system as compared to a

manual one. She found that trust is the principle value which directly influences a human’s decision

on whether to adopt an automated process. The notion of trust is predicated on uncertainly and

vulnerability in so much as one must rely on trust if she lacks complete confidence in a result or

possesses some degree of risk in the consequences of accepting a result. Stating in the contrast:

an individual has no need to trust anyone or anything if he is completely certain of the validity of

information/process and has no risk to its consequences.151 Applied to the modern digital age, the

very complex nature of contemporary digital system precludes complete human certainty. In various

studies, information which reduces this level of uncertainty, has been shown to increase trust and,

hence, acceptance of the predicted knowledge or adoption of the automated system.

Trust is the focus for systems such as LIME, where the authors152 take a more human-

centric approach. They see explainability as a presentation of evidence (e.g. textual or visual

artifact) to provide a qualitative description which relates a subset of an input domain, such as a

group of pixels or a set of words, to the predicted result. This definition is centered around the

underlying motivation of the concept of trust: a doctor is more apt to trust a predicted result if

he/she has a better understanding of why the model reached is predicted conclusion. This attests

to an aspect of human nature whereby the more information we garner about a problem, the more

likely we are to use it.

An alternative viewpoint of explainability is to define it within the context of data ex-

ploration, which is our application in this effort. Such context creates a means to understand why

underlying correlations exist leading to previously undiscovered knowledge. Often in our data explo-

ration process, we define correlations but not necessarily causality: two input points, for example,

which cluster together are said to ”correlate”, but do we really know why? A K-means algorithm

merely provides a label for each individual data point, it does not provide any reason or mechanism

to discern why two points exist within the same cluster. We can, however, infer such correlations

based on the data items and describe their associations in terms of the feature space.

Finally, we can also view explainability in a spatio-temporal sense. Unlike independent

and identically distributed datasets (i.i.d), spatio-temporal data is a series of dependant data where

the value of one timestep is dependant on the previous step. Explainability can be redefined as

understanding the temporal lineage of the data. At a higher-dimension, this temporal association
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can be completely described in terms of the input features. This allows us to draws connections

between higher and lower dimensions of datasets.

5.3 Multi-Model Clustering

We now examine the integration of the data exploration contributions presented herein as

multi-model clustering with a lattice based approach for adaptive control. In Chapter 2, we presented

the feature lattice as a means to organize and cluster data to drive a sampling process. It purpose

was to facilitate the sampling process and provide a increasingly updated data structure which can

continuously improve the candidate pool of input parameters which provided the most probable

outcomes to improve the data exploration objective. We can apply this same methodology to multi-

model machine learning, and specifically to semi-isolate models for both training and testing. We

first discuss the related context, meta-learning and the describe how the lattice can improve on this

process.

5.3.1 Meta-Learning

Meta-learning, loosely termed the process of ”learning how to learn” is described as a sub-

system within machine learning which adapts with experience gained by exploiting metaknowledge

that is collected with from prior learning on one or more domains.153 Inherent in the metalearning

process is bias – or the influence of choosing a hypothesis to steer a training objective. It is distinct

from traditional learning in that traditional approaches discover or ”learn” a model as applied to

a specific domain in order to to solve a single focused task. Metalearning, in contrast, derives ex-

perience across multiple domains and applications in order to discover insight or knowledge about

the learning process. It can be viewed as a supporting effort to help users improve underlying ma-

chine learning tasks and it ties directly into the adaptive control framework and semi-isolated model

approaches we presented.

The common application of metalearning is algorithm recommendation. A general search

and matching problem, algorithm recommendation seeks to identify the best possible class of models

given a descriptive objective task. It helps users narrow the search scope and recommend the single

best class of algorithm to solve a problem, such as determining a specific clustering approach between

K-mean, self-organizing maps, or a linkage algorithm.154 Once a class of algorithms is determined,
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metalearning can also apply to the model design phase. A typical use case is to identify the best

existing model from which to warm-start a new task by initializing parameter values. Extending

these concepts to the more general application of model discovery, metalearning can facilitate the

combination of base models to identifying a more appropriate ”super model” for the user. We can

specifically apply a feature lattice to organize input models based on a subset of the feature domain.

Using the lattice or hypercube approach, we can identify groups of models which cluster together

and leverage this knowledge to warm-start new model training based on the parameters from all

other models in the cluster.

Metalearning can also help account with resource management decisions. Akin to a cost

model used within query optimization, metalearning is the process of retaining various statistics and

features on the learning process. Such data can be recalled to estimate training time or resource

requirements. Direct applications of training cost estimates can steer decisions on hyperparameter

optimization, model training prioritization, or cost-benefit of continued training. We can employ

metalearning by simply gathering and analyzing model statistics, such as parameter values or train-

ing accuracy, or by applying a secondary function to calculate a derived score or metric. One example

may entail performing a k-NN algorithm on data items with common features to identify degree of

redundancy (similar input and output), correlation (different input, same output), or inconsistency

(same input, different output). An alternative view for meta-learning is landmarking, which refers

to information garnered from the performance of either simplified models over a common dataset

or the performance of various models using simplified datasets.155 The key concept is to quickly

compare and assess model or data selection as well as gauge performance expectations in order to

make more detailed training, resourcing, and hyperparameter decisions. We can apply our data

exploration solution in a meta-learning construct through a multi-model clustering approach with

an adaptive controlling methodology in order to further improve on both model training and testing.

5.3.2 Implementation Concept

We organize models based on the input feature set. This is where a domain expert can help

drive the process, providing feature engineering oversight. For example, with personalized healthcare,

we can organize patients by static boolean features (e.g. family history of a disease). Using multiple

features, we can categorize sub-domains in a concept features lattice as outlined in Chapter 2 and

identify low dimensional latent attributes, akin to the various states of a molecular dynamic system.
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We can subsequently roll-up or drill down domains as part of the exploration process. Clustering

and organizing models can subsequently drive the training and the testing phases.

Training

During the training phase, the goal, as we have mentioned previously, is to maximize model

accuracy while minimizing resource utilization. The solution employs various adaptive techniques

to the LMC algorithm which, at its core, resembles stochastic gradient decent (see Algorithm 4).

In the dual global-local graphs outline in Chapter 4, we randomly selected models for training at

each iteration. However, could we, at each global training step, decide on a more optimal model or

category of models from which to sample instead of a uniform random selection?

Clustered models offer a structure by which we can apply stratified sampling or any of the

other sampling techniques highlighted in Chapter 2. We note that importance sampling has been

used in machine learning156 although we feel this is an area worthy of additional research efforts. We

believe we can further enhance importance sampling in gradient descent approaches by leveraging a

feature lattice to organize and cluster input sub-domains as part of a multi-model system.

Our sampling strategy would appropriately fit into this context so long as we do not in-

troduce bias into the training and overfit our model. Integrating meta-learning concepts mentioned

above, we can also incorporate statistical methods we have demonstrated. Employing the techniques

we introduced to track convergence using a bootstrapping approach, we could allocate and prioritize

resources to train sub-domains which are less converged over those that are more converged in order

to improve aggregate training efficiency in the multi-model system.

Testing

Although we briefly covered the testing and servicing requirements of a multi-model sys-

tem in Chapter 4, we believe adaptive techniques, data organization, and sampling approaches are

paramount to scalability. In particular, the healthcare example we followed applied to patients in

a single hospital and although we have extended this capability to support multiple hospitals, the

system only trained on prediction of the onset of septic shock. If we entertained multiple tasks, (e.g.

cardiac arrest, stroke), then this problem becomes even more complex.

To solve this, we could use the feature lattice to organize the testing dataset. After training

one model for each node in the lattice, we use the organized structured to identify and warm-start
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new models. We could even cluster the lattice using a roll-up operation to further reduce the

problem complexity. As each personalized model is selected, we can leverage its peer models from

the same node (or cluster) to warm-start new parameters. In addition, the parameters can be further

maintained as an aggregation over all models within the same node: i.e. as we train more models,

we create more robust average parameters. Adaptively, we can select nodes and/or sub-domains to

test in one of two ways: (1) at the coarse grain level to provide better clusters, the system samples

sub-domains contained within nodes whose average parameter values are least converged, and (2)

at the fine grain level, we can use a nearest neighbor selection and train sub-domains who have

the fewest neighbors within an epsilon bubble or who have the largest epsilon bubble of k-nearest

neighbors. This last approach gives us a mechanism to identify the models which are not only

untrained, but also most unlike any other model in system and, hence requiring the most training

with the inverse assumption that models which are close in proximity (i.e. nearest neighbors) are

most likely to be similar and, thus, the target model would require less training time. To summarize,

these approaches help drive resource decisions with a cost-based decision, which, in turn, provide

the tool to conduct adaptive control with sampling over multiple models in machine learning.
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Appendix A

Distributed LMC: CustomOp

Implementation

Under the hood, TensorFlow uses the C++ unsupported/Eigen library. Highly efficient and

optimized, the Eigen package is widely used in many applications. In order to improve optimization

efficiency, we sought a solution to minimize the TensorFlow session overhead and opted for a custom

operation developed in C++. This technique employed a extension of the OpKernel class compiled

in C++ and imported into the TensorFlow application as a shared objected. The UML for the

operator is provided in Figure A.1. The steps to implement such a solution are provided below:

1. (C++) Define the input and output tensors. The first step is to provide datatypes for the tensor

objects. If the operator needs to infer tensor sizes, one must also provide a shape function.

Tensorflow provides a set of datatypes based on numpy (e.g. float64, int32). Optionally one

can define an alias to a list of these types and allow the graph to pass multiple data types;

however, output must be specifically declared. To formally define the operator for use in

Tensorflow, invoke the macro REGISTER OP by providing the appropriate input and output

information:
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Figure A.1: UML diagram implementing a custom L−BFGS solver operator within TensorFlow.

REGISTER_OP("SolverOp")

.Input("f: float64")

.Input("g: float64")

.Input("x_in: float64")

.Input("t: int32")

.Output("status: int32")

.Output("x_out: float64");

2. (C++) Inherit the OpKernel class. The base class used to for all custom operations in Ten-

sorflow is OpKernel. C++ implementation need to extent this class and override the compute

function which is the callable invoked in he Tensorflow graph within a session. The function

call contains one parameter, OpKernelContext which provides reference objects for all the

input and output tensors.

class SolverOp : public OpKernel {
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public:

void Compute(OpKernelContext* context) override {

//Implementation goes here

}

};

3. (C++) Register operation call with a device. This provides a named operator to the Tensorflow

graph along with allowable devices. GPU implementation are possible and can further improve

the algorithm efficiency. This step is implemented via a macro call, REGISTER KERNEL BUILDER

REGISTER_KERNEL_BUILDER(Name("SolverOp")

.Device(DEVICE_CPU), SolverOp);

4. (Shell) Compile and Build. Compiling using g++ is useful for debugging. The compiler needs

to know the location of the Tensorflow library which are defined the environment variable,

TF INC below. Also be sure to use the same version which will be employed in the application.

The following is a sample compilation command line:

g++ -std=c++11 -Wno-write-strings -fno-inline -g

-o solver_op.so -fPIC -I $TF_ALL_INC -I $TF_INC

-lpthread -shared solver_op.cc -O2

It may be necessary to use the bazel toolkit in order to fully to integrate the custom operator

into the Tensorflow application. This will require building Tensorflow from source (note: TF

will only build in its entirety once). Further information on using bazel can be found at

https://bazel.build/versions/master/docs/install.html.

5. (Python) Load and integrate. In the Tensorflow application, the custom operator is exposed

by invoking the tf.load op library command. This will provide a module reference to the
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shared object file and the custom operator class is called by invoking the registered name.

Note that Tensorflow’s naming convention require camelcase definition in the C++ which will

result in underscore notation in Python (this is a quirk).

custom_op_library = tf.load_op_library(custom_op_lib)

status = custom_op_library.solver_op(f, g, x, token)

As shown in step 1 above, our implementation of this operator contains four input and one

output tensor. They include the f and g tensors which are the loss and gradients, a reference to the

xi parameter, and a token. The use of a reference object provides the calling operator access to the

source tensor’s memory handle. In this case, we pass in the memory address for the xi parameter

which represents the batch of patients’ local variable tensor in the graph. This allows us to optimize

data update for the iterative L-BFGS algorithm: instead of passing a new local parameter, x′i back

to the TF graph, the custom op updates the parameter in place. We note that xi passed into the

from the TF graph is only set initially; however, each time the TF engine invokes this operator, the

memory address may have changes – hence it is necessary to always pass in the most recent memory

address for this parameter.

The final input parameter, a token, is used as a means to communicate from TF graph to

the custom op. This token is used to set the max number of iteration the L-BFGS algorithm should

run which allows us to configure this a as tunable parameter in the system. This same token can

also be used to pass in a termination flags, if needed, to provide a preemption capability. For two

way communication, the output value, status, represents a signal from the C++ operator to the TF

graph in python using the following convention:

1 → Inner loop execution (linesearch)

Positive N → Outer loop completed (N=# iterations)

Negative N → Optimization complete (N=# iterations)

The co-routine concept describe in 4.3.2 is implemented with three object classes (see UML,
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Figure A.1). The custom solver operator (as described above) inherits the TensorFlow OpKernel

class and defines the compute function which is invoked at each call in the TF graph. This class runs

in the main execution thread of the TF program and maintains state in between session calls; we

leverage this stateful design and define driver and solver objects to implement the numerical Eigen

optimization. The L-BFGS algorithm executes its own thread via the a TFLbsfgSolver minimize

function call, using the provides problem object’s value() and gradient() method calls to request

a new f and g, respectively.

We extend the base Problem class in the numerical solver with a TFOptimizer class to

mediate data flow between the two co-routines. This object serves as a driver class containing

blocking routines in both threads with and shared data objects. We have retained a single mutex

lock to facilitate proper a termination sequence, ensuring the optimizing thread properly joins with

the main thread upon completion.
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Distributed LMC Technical

Documentation

B.1 Getting Started

This README walks through the detailed instructions to install, use, develop, and deploy

the the distributed LMC machine learning framework for training and predicting health events

(e.g. severe sepsis) in patients. If you would like to bypass this and simply run (and go) with a

pre-packaged version, we have created a docker image, damsl/tf:dev (TAG TBD) which includes

all software, dependencies and a sample data file. To get going:

1. Pull the Docker image and start a container:

docker pull damsl/tf:dev

docker run -it --entrypoint=/bin/bash damsl/tf:dev

2. Then, execute the local run script:

./golocal.sh
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This will start one master service and one worker node on the local host (inside the con-

tainer) on ports 2220 and 2221. By default, the worker’s output will display in stdout and the

master’s output is redirected to /tmp/lmc.ps. These locations and all other program parameters

can be modified by changing the start golocal.sh script.

B.2 Install and Set up

Prerequisite Requirements include:

• Python v2.7 (python v3 not yet supported)

• Tensorflow v1.0.1 (see note below)

• gcc 4.8.2+

Additional python packages needed to run LMC are listed in the file, requirements.txt.

Note: If you plan on extending/developing the customized L-BFGS operator (in C++) you

will need to install and build Tensorflow from source using the Google Bazel build system. For more

information: https://www.tensorflow.org/install/install sources.

Input Sources

1. File based input (MIMIC). Mimic file based input is provided by setting the patient data

command line flag to the loation of the csv-formatted patients data file.

2. CDM Data (file). To use a locally stored, numpy-formatted CDM data source, set the flag to

‘LOCAL’

3. DB Integration. Setting the patient data flag to ‘SQL’ will povide a connection to the AWS-

located Postgress service. When running locally (outside of AWS), be sure to set the database

to ‘test.’ When running on AWS, set the database to ‘dw’ which has a pre-configured connec-

tion setting included. In addtion, you will need to set the environment variable DB PASS to
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the database password. Optionally, you can also set the connection for name, host, and user

via command line options (password will need to be provided).

B.3 Execution

The LMC Framework is invoked via the python script, joint model.py. While some

options/features are currently directly integrated into the code (e.g. hard-coded feature list options),

many are passed in via command line options. The Tensorflow engine provides a global flags object,

tf.app.flags which stores global configuration. To see the complete list of options, type python

joint model.py --help or see the set flag() function call near the top of the joint model.py file.

Be sure to set the LMCHOME environment variable to the location of the source directory (which

is, by default the current working dir).

Local Execution Within a cluster of host machines, the framework operates with one

parameter server (a.k.a the master) and 1 or more worker hosts (note: a host refers to a single server).

Each host runs the exact same python code – the only difference is the assigned job (which is either

ps or worker) and the task index. Both of these are set as command line options, --job name and

--task index passed into the program. In addition, set the flags --ps hosts and --worker hosts

with the corresponding list of machines names and ports. NOTE: worker index numbers MUST

match the corresonding list passed into worker hosts (e.g. if node b is the first worker, it

must have task index=0). The following example best illustrates a simple, 3-node configuration:

In this example, the Master will run on node a. Two workers will run on hosts, node b and

node c. All will use port 2222 on their local machine. The following command should be executed

on each machine:

On node a run:

python joint_model.py \

--ps_hosts=node_a:2222 \

--worker_hosts=node_b:2222,node_c:2222 \
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--job_name=ps \

--task_index=0

On node b run:

python joint_model.py

--ps_hosts=node_a:2222 \

--worker_hosts=node_b:2222,node_c:2222 \

--job_name=worker \

--task_index=0

On node c run:

python joint_model.py \

--ps_hosts=node_a:2222 \

--worker_hosts=node_b:2222,node_c:2222 \

--job_name=worker \

--task_index=1

For larger deployments and for better orchestration, it is recommended to put this com-

mand inside a bash run script and set environment variables (see the run scripts for more detailed

examples).

AWS/Kubernetes Integration The distributed version is designed to operate on the

opsdx AWS cluster. Cluster configuration/orchestration is automated via a Kubernetes statefulset

integrated with a service to manage deterministic hostnames. Run-time environment variables are

defind within the pod-spec template definition (defined in the execution yaml file) and passed into the

docker container run script, gok8s.sh. These parameters subsequently pass into the lmc framework

via command line options (see below on how to add a new command line option). For kubernetes,

The LMC framework is designed to automically detect a k8s environment and construct the cluster

(the ps host and worker host list) based on the number of workers. To execute the framework on

AWS:

1. (optional) Create a Launch Configuration. To select a specific instance type, you need copy

and create a new launch config (you cannot modify an existing launch config in AWS). To set

initial docker docker images or add other startup commands, modify the user data script in
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the advanced detailed panel. For spot pricing, select the spot price check box and enter a price

in the launch.

2. Start the Nodes. In the AWS web interface, select an ASG and up-scale the ASG to the

desired number of nodes (e.g. 3 nodes for a 2-worker + 1-master configuration). Be sure to

select the desired launch config. For spot pricing, check the current prices and, if needed,

switch availabilty zones (you may need to configure a new subnet for this).

3. Set runtime configuration. Modify the yaml file with appropriate runtime parameters: it

is important to set the number of replicas key and NUM WORKERS environment variable,

where the number of replicas is always 1 more than the number of workers. In addition, be

sure the opsdx nodegroup value corresponds to the ASG in which you want to run (i.e. if you

selected the tf1 ASG, be sure to set the nodegroup value to ‘tf1’ at the bottom of the yaml

file).

4. Apply. Launch the statefulset using the following command and ensure that both the names-

pace(s) are created and you have set up a secrets file connecting to the backend DB: kubectl

apply -n tf1 -f tflmc.yaml -f dbpass.yaml

5. Delete. When the job completes, you need to manualy delete the statfulset: kubectl delete

-n tf1 tflmc1

6. (optional). If you are down, you can down-scale the ASG to 0 nodes.

B.4 Implementation Details

PSQL Database The tools/db.py file is designed as a standalone module – You can

import it as a local session on OPSDX and use it in an interactive (or jupyter) Python environment.

To connect to it, you need to set the DB PASS environment variable which is set upon launch in

the gok8s.sh script, but needs to be set in any local session. The test database is accessible from

outside AWS, but has limited capabilities. To access the dw (or dev/prod) databases, you need to
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connect from inside the AWS local subnet. Some notes on schema, setup and I/O:

• Output metrics (timing and AUC scores) are written in key-value form to the table tflmc metrics.

For this table. All nodes ID-s of 999 corresond to the master node.

• Global parameters (and local params when implemented) are stored as numpy arrays.

• There is a catch-all key-value table whch stores JSON formatted data. Every experiment’s

runtime config is stored in this table under the key, ‘flags’

Logging and Output The program uses two directories to output data files. The

WORKDIR ennvironment variable defines the location of a tempoarary working directory – it

should be local to the host machine. This includes params files, index files and the node’s log

file. An output directory, defined via the OUTDIR environment variables, serves as the location for

cluster-consolidated files. It is currenly only used for local cluster deployments (non-SQL) to collect

metric, log and other data from workers nodes for processing at the master; however, it can serve as

a consolidation point for any other large data files. The output directory should be accesible to all

nodes (e.g. an NFS share).

For logging, we utilize the standard Python logging module to print routine an debugging

information to both console and to file. A custom timelogger objects is defined and implemented

(see the tools folder) which provides elapased timestamp messages relative to program start.

Program Parameters Tensorflow provides a globally accessible key-value module, which

can be accessed anywhere in the codebase where tensorflow is imported. The module, tf.app.flags,

is used to process input parameters and for program configuration settings. All options are defined

in the set flags() method which is defined near the top of the joint model.py file. To add a new

parameter:

1. Add the appropriate data definition call in the set flags() method and be sure to use the correct

data type (e.g: tf.app.flags.DEFINE integer(’new param’, 0, ’My New param’).
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2. For k8s: Update the yaml file to include the environment variable which must match the

variable in the gok8s.sh run script. (e.g. add -name: NEW PARAM ENV VAR with a value field

set to your desired value)

The Custom LBFGS Operator Written in C++, the custom op extends the PatWie

C++ numerical solver (https://github.com/PatWie/CppNumericalSolvers). It uses the Eigen

Matrix and Eigen Tensor libraries which are header-only libraries (https://eigen.tuxfamily.

org/dox/).

NOTE: Although similar, eigen Tensors are different from Eigen Matrices. Tensors are part

of unsupported Eigen library. For a good online reference use this link: https://bitbucket.org/

eigen/eigen/src/677c9f1577810e869f4f09881cabc3e503a810c1/unsupported/Eigen/CXX11/src/

Tensor/README.md Some details: Under the hood, Tensorflow stores data as memory-mapped Eigen

Tensors. When accessing the tensor, you actually create a map to the data object and then access

the underling data handle.

240

https://github.com/PatWie/CppNumericalSolvers
https://eigen.tuxfamily.org/dox/
https://eigen.tuxfamily.org/dox/
https://bitbucket.org/eigen/eigen/src/677c9f1577810e869f4f09881cabc3e503a810c1/unsupported/Eigen/CXX11/src/Tensor/README.md
https://bitbucket.org/eigen/eigen/src/677c9f1577810e869f4f09881cabc3e503a810c1/unsupported/Eigen/CXX11/src/Tensor/README.md
https://bitbucket.org/eigen/eigen/src/677c9f1577810e869f4f09881cabc3e503a810c1/unsupported/Eigen/CXX11/src/Tensor/README.md


Vita

Benjamin A. Ring, Lieutenant Colonel, U.S. Army was commissioned as an Armor Officer in

1996 with a Bachelor in Computer Science from the U.S. Military Academy in West Point, NY as an

honor graduate. After completing the Armor Officer Basic course, he was assigned to the 1st Infantry

Division in Schweinfurt, Germany with 1-77 Armor Battalion and served tours in both Bosnia and

Kosovo. In 2000, upon completion of the Armor Captain’s Career Course as the distinguished honor

graduate, he was assigned to 1-8 Cavalry, 1st U.S. Cavalry Division, Ft. Hood, Texas. From 2002-03,

he commanded the headquarters company and in 2003-04, he commanded A/1-8 CAV, to include

combat deployment to Iraq. In 2006, he earned his Masters in Computer Science from Boston

University and taught at West Point, 2006-09, receiving his Assistant Professor promotion in 2008.

From 2010-11, he served as Senior Systems Manager for Task Force 101, Regional Coalition Forces

East in Afghanistan, and from 2011-14, he was the Academic Systems Manager for the U.S. Army

Command and General Staff College, Ft. Leavenworth, KS. A member of Upsilon Pi Epsilon and

Phi Kappa Phi Honor Societies, he has several publications in both technical and leadership journals.

His military decorations include the Bronze Star, the Defense and Army Meritorious Service medals,

the Combat Action Badge, and the Parachute and Air Assault Badges. Beginning in September,

2017, Lt. Colonel Ring will be assigned as the Chief Operations Officer, U.S. Army Cyber Protection

Brigade, Ft. Gordon, GA.

241


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Big Data
	Data Exploration
	Raw Data Input
	Data Exploration Objectives

	Applications
	Challenges
	Problem Statement

	Adaptive Control Background
	Thesis Statement

	A Lattice Based Approach to Rare Event Detection in Molecular Dynamics
	Introduction
	Challenges

	Background
	Exploratory Techniques
	Input Selection

	Scientific Computing
	Simulations
	Data Challenges

	Methodology
	Data Representation
	Query Based Control

	Feature Lattice
	Control Data Model
	Clustering and Sampling for Control

	Implementation
	Experiments
	Adaptive Sampling for Rare Events
	Transitions
	De Novo Data Exploration
	Non-Lattice Exploration Techniques
	Lattice Resourcing: Findings and Analysis

	Related Works
	Open Directions and Takeaways

	A Serverless Framework for HPC in situ Data Analytics
	Introduction
	Applications
	Implementation Challenges
	Simulation Ensemble Management
	Contributions

	System Control
	Mediation Control Loop
	Resource Management

	In-Memory Analytics Overlay
	Catalog Design
	Overlay Model

	Macrothreads
	Decision Control Consideration
	Architecture

	Implementation
	Experiments
	Efficiency in Lattice Based Exploration
	Resource Utilization and Cost Benefit Analysis
	Elastic Resources Allocation

	Related Work
	Open Directions and Takeaways

	Distributed Machine Learning for Semi-Isolated Models
	Introduction
	Background
	Motivation
	Challenges
	Applications

	Machine Learning
	Systems and Architecture
	Training
	Unique Aspects of Semi-Isolated Models

	Methodolody
	Global Optimization
	Local Optimization
	Adaptive Strategies
	Online Prediction
	Data Sharding
	Additional Implementation Details

	Experiments
	Exp 1: Local Optimization
	Exp 2: Scalability
	Exp 3: Synchronous vs Asynchronous
	Exp 4: Asynchronous Control
	Exp 5: Cost

	Open Directions and Takeaways

	Takeaways and Open Directions
	Multi-User Ensemble Management
	User Interaction
	Solutions for Job Scheduling
	Allocation and Deallocation

	Explainability
	Provenance in Data Management
	Explainability in Data Analysis

	Multi-Model Clustering
	Meta-Learning
	Implementation Concept


	Bibliography
	Distributed LMC: CustomOp Implementation
	Distributed LMC Technical Documentation
	Getting Started
	Install and Set up
	Execution
	Implementation Details

	Vita



