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Abstract

Data streams have emerged as a natural computational model for numerous appli-

cations of big data processing. In this model, algorithms are assumed to have access

to a limited amount of memory and can only make a single pass (or a few passes)

over the data, but need to produce sufficiently accurate answers for some objective

functions on the dataset. This model captures various real world applications and

stimulates new scalable tools for solving important problems in the big data era.

This dissertation focuses on the following two aspects of the streaming model.

1. Understanding the capability of the streaming model. For a vector aggregation

stream, i.e., when the stream is a sequence of updates to an underlying n-

dimensional vector v (for very large n), we establish nearly tight space bounds

on streaming algorithms of approximating functions of the form
∑n

i=1 g(vi) for

nearly all functions g of one-variable and l(v) for all symmetric norms l. These

results provide a deeper understanding of the streaming computation model.
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ABSTRACT

2. Tighter upper bounds. We provide better streaming k-median clustering algo-

rithms in a dynamic points stream, i.e., a stream of insertion and deletion of

points on a discrete Euclidean space ([∆]d for sufficiently large ∆ and d). Our

algorithms use k ·poly(d log ∆) space/update time and maintain with high prob-

ability an approximate k-median solution to the streaming dataset. All previous

algorithms for computing an approximation for the k-median problem over dy-

namic data streams required space and update time exponential in d.
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Chapter 1

Introduction

Data streams have emerged as a natural computational model for numerous applica-

tions of big data processing. In this model, algorithms are assumed to have access to a

limited amount of memory and can only make a single pass (or a few passes) over the

data, but need to produce sufficiently accurate answers for some objective statistics of the

dataset. This model captures various real world applications and stimulates new scalable

tools for solving important problems in the big data era. Typical examples of data streams

include network traffic data,1,2 data base transactions,3–5 sensor network data flows6 and

satellite data.7 Streaming algorithms also provide indispensable toolkits to different areas

of computing, which include but are not limited to, computational astronomy and physics,8

bioinformatics,9,10 finance,11 machine learning12 and optimization.13

Since its first systematic study in a seminal paper by Alon, Matias and Szegedy (1996),14

streaming algorithms have inspired numerous variants. Some well-studied models follow
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CHAPTER 1. INTRODUCTION

below:

• Aggregation Stream In this model, an underlying vector v ∈ Rn (v can also represent a

matrix) is initialized to 0. The stream is a sequence of pairs S = ((a1, δ1), (a2, δ2), . . . ,

(ai, δi)), where each ai ∈ [n] and δi ∈ R represents an increment to the ai-th coordinate

to v. For instance, at time t, the vector gains an update vat ← vat + δt. If we consider

the case δi as being restricted to positive integers, we obtain the insertion-only stream

model. For general δi ∈ R, the model is also called the turnstile model. A typical task

in the vector aggregation stream is as follows. Given a function f : Rn → R, obtain

an estimation to f(v) at the end of the stream while making a single pass over the

stream. The goal is to minimize the storage of the algorithm. A näıve solution to this

problem is to store the entire vector v. However, such an algorithm is not practical

since it uses space of at least Ω(n).

The most well-studied functions in aggregation streams are `p norms. A long line of

research has been devoted to investigating the space complexity of approximating `p

norms1, see e.g.7,14–16 Here `p : Rn → R is defined as

`p(v) =

(
n∑

i=1

|vi|p
)1/p

.

In particular, Indyk & Woodruff15 obtain the first nearly space optimal randomized al-

gorithm for approximating `p norm by storing Õ(n1−2/p) bits summary of the stream;

Indyk16 obtains the first nearly space optimal randomized algorithm for approximat-

1For 0 ≤ p < 1, `p is not a norm but still well-defined.

2



CHAPTER 1. INTRODUCTION

ing `p for 0 ≤ p < 2 by storing poly log n bits summary of the stream; BJKS17 obtain

the first nearly optimal lower bound for `p.

For other functions, Braverman and Ostrovsky,18 Braverman and Chestnut19 and

BCWY20 investigate the family of G-sum functions, i.e.,

G(v) :=
∑

i

g(vi),

for some function g : R → R. The space complexity of streaming the family of G-

sum functions are nearly completely characterized by the above papers. Recently,

BBCKY21 obtain the nearly tight space complexity results for symmetric norms. A

symmetric norm ` : Rn → R≥0 is the set of norms that is invariant under coordinate

permutation and sign flips of each coordinate. For instance,

`((v1, v2, . . . , vn)) = `((|vσ(1)|, |vσ(1)|, . . . , |vσ(n)|))

for arbitrary permutation σ : [n] → [n]. BBCKY21 show that the streaming com-

plexity is Õ(mmc2(`)), where mmc(·) is a function that characterizes the measure

concentration behavior of ` (see Section 3 for more details).

• Point Streams In this case, we are observing a sequence of points S = (p1, p2, . . . , pm)

from the some space Ω. The goal is to obtain an estimation of some function f on the

sequence S after one-pass over it. This class of streams also includes graph streams,22

i.e., each point is an edge or vertex of the underlying graph. A typical example of f

3



CHAPTER 1. INTRODUCTION

is clustering and Ω = Rd for some d > 0.2 For example, in the k-clustering case, the

function f is defined as

f(S) = arg min
Z⊂Ω:|Z|≤k

∑

s∈S
min
z∈Z

disti(s, z).

for some distance function dist(·, ·) and i ∈ {1, 2}. For i = 1, the problem is called

k-median. For i = 2, the problem is called k-means. There is a long line of research

of k-clustering in the context of insertion-only points stream (the points already in

the stream are not allowed to be removed). For example, Ref.23–30 and many others

have developed and improved streaming algorithms for computing a solution for k-

means and k-median approximately. In the dynamic points stream model, the points

are allowed to be deleted. In recent years, there has been a great deal of interest in

dynamic streaming algorithms, e.g., Ref.31–48 In 2004, Indyk49 introduced the model

for dynamic geometric data streams, in which a set of geometric points from a d-

dimensional discrete space Ω = [∆]d are updated dynamically, for some large ∆, i.e.,

the data stream is of the form insert(p) and delete(p) for p ∈ [∆]d. Frahling and

Sohler50 develop the first streaming (1 + ε)-approximation algorithms for k-means,

k-median, as well as other geometric problems over dynamic data streams. In their

paper, they propose an algorithm to maintain a coreset of size O(kε−O(d)) for obtaining

a (1 ± ε) approximation of k-clustering including k-means and k-median. A coreset

for clustering is a smaller weighted point set that summarizes the original geometric

dataset. Solving the clustering problem over the coreset provides an approximate

2In the actual computation, Ω is discretized. Therefore the storage of each point costs a finite number of
bits.
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CHAPTER 1. INTRODUCTION

solution for the original problem. It is one of the fundamental tools for solving the

k-clustering problem.

• Stochastic Stream In the stochastic stream, the updates of the stream are drawn from

a distribution. The stochastic stream is a special case of the points stream and the

aggregation stream except that we also require the algorithm to use a small number

of data points. Since the stochastic stream has gained tremendous interest in the

community of machine learning and optimization, we list it as a separate stream-

ing model. Usual examples of stochastic streams are vector streams. For instance,

S = (v1, v2, . . . , vm), where each vi ∈ Rd is a d-dimensional random vector drawn

independently from a multi-variate normal distribution with a fixed covariance ma-

trix. If we fix the distribution to be arbitrary deterministic distributions, the model

reduces to the usual insertion-only points stream. Recently, there has been a great

deal of interest in designing algorithm for problems on stochastic points streams. For

instance, in streaming principle component analysis (PCA), the goal is to obtain the

leading-k eigenvectors of the covariance matrix while using a small amount of space

and a small number of streaming points. The state-of-art algorithms are the Oja’s

algorithm and its variants.51–53 Some other examples include streaming singular value

decomposition (SVD)54 and streaming independent component analysis (ICA).55

Our Contributions Generally speaking, the goal of a streaming algorithm is to compute

a function of the input data efficiently in both space and time. Most of the work over the

last decade has been devoted to designing algorithms for different but specific functions.

5
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However, there is a lack of generic characterization, which diminishes both the theoretical

and the practical values of these streaming algorithms. For example, a theory may show

that some particular function is easy to be approximated; however, the function might be

slightly changed in practice due to implementation concerns, and then immediately the

theory ceases to hold. Moreover, a large number of important problems have polynomial or

even exponential gaps over the problem scale between space/time upper and lower bounds.

To resolve these important issues in streaming algorithms, we focus on the following

two aspects of the streaming model:

1. Fundamental hardness. My coauthors and I have established a hardness characteriza-

tion for much broader classes of functions in the streaming model.20,21 These results

provide a deeper understanding of how streaming algorithms work. We present these

results in detail in Chapter 2 and Chapter 3.

2. Tighter upper bounds. My coauthors and I have developed new algorithms for impor-

tant problems with tighter upper bounds.20,21,56,57 The algorithms enable important

problems to be solvable in the big data era. In this dissertation, we present one

of these results: namely a better streaming clustering algorithm in dynamic points

stream. This result is presented in Chapter 4.

In the next few paragraphs, we elaborate the contributions in more detail.

Characterize broader classes of functions that admit efficient streaming algo-

rithms. It is a fundamental question to ask which function class admits efficient streaming

6



CHAPTER 1. INTRODUCTION

and which does not. The first open problem of this kind was proposed by Alon, Matias, and

Szegedy (1999) on the g-sum function over vector aggregation streams. Let v ∈ Rn be an

n-dimensional vector, initialized as 0 ∈ Rn. The stream is composed of a sequence of up-

dates to the coordinates of v (i.e., +1,−1s to each coordinate). A g-sum function is defined

as
∑n

i=1 g(vi), where g : R→ R is a real function. Many important applications can be for-

malized as estimating a g-sum function, e.g., network traffic monitoring.2 About a decade

of theoretical research has been devoted to the streaming space/time complexity analysis of

g-sum estimation. However, these theoretical results were only on non-decreasing, periodic

functions or other simple forms, for example, polynomials. In Chapter 2, we show that

except for a very small class of functions, we give a complete answer of whether g-sum can

be solved efficiently (in space) in the streaming model. In particular, for those functions

for which g-sums admit efficient streaming, we develop space-efficient algorithms for them.

The functions we are unable to characterize have provable exotic mathematical structures

and have little practical value. This result nearly closes the open question of Alon, Matias,

and Szegedy.

Along the way, we have focused on understanding the streaming space complexities of

generic norms in a vector-updates stream. In Chapter 3, we bridge between the mathemat-

ical theory of finite normed space and the space complexity of streaming algorithms. We

show that for streaming algorithms of symmetric norm ` : Rn → R (a norm that is invariant

under coordinate permutation and negation), the space complexity is Θ̃(mmc(`)2). Here

mmc(`) is called modulus of concentration and is (informally) defined as the ratio of the max-

imum and median of `(X), where X is uniformly drawn from the n dimensional Euclidean

7



CHAPTER 1. INTRODUCTION

unit sphere. mmc(`) is an important quantity in the theory of finite-dimensional normed

space that governs many phenomena in high-dimensional spaces, such as large-deviation

bounds and the critical dimension in Dvoretzky’s Theorem. We give nearly optimal al-

gorithms and lower bounds for the streaming algorithms of every symmetric norm. This

set of norms not only contains the existing results (e.g. for `p norms, Θ̃(mmc(`p)
2) is the

correct space-bound) but also includes many more important functions for different tasks

(e.g. norms used in machine learning). To my best knowledge, our algorithms are the first

nearly space optimal streaming algorithms for a large portion of important functions falling

in our function class.

First polynomial space k-median algorithm for dynamic points stream. In Chap-

ter 4, we present data streaming algorithms for the k-median problem in high-dimensional

dynamic geometric points streams, i.e. streams allowing both insertions and deletions of

points from a discrete Euclidean space {1, 2, . . .∆}d. Our algorithms use kε−2poly(d log ∆)

space/time and maintain with high probability a small weighted set of points (a coreset)

such that for every set of k centers the cost of the coreset (1 + ε)-approximates the cost of

the streamed point set. We also provide algorithms that guarantee only positive weights in

the coreset with additional logarithmic factors in the space and time complexities. We can

use this positively-weighted coreset to compute a (1 + ε)-approximation for the k-median

problem by any efficient offline k-median algorithm. All previous algorithms for computing

a (1+ε)-approximation for the k-median problem over dynamic data streams required space

and time exponential in d. Our algorithms can be generalized to metric spaces of bounded

doubling dimension.

8



Chapter 2

Streaming Functions of One

Variable on Frequency Vectors

This chapter is based on paper BCWY (PODS 2016).20

2.1 Background

One of the main open problems in the theory of data stream computation is to character-

ize functions of a frequency vector that can be computed, or approximated, efficiently. Here

we characterize nearly all functions of the form
∑n

i=1 g(|vi|), where v = (v1, . . . , vn) ∈ Zn

is the frequency vector of the stream. This is a generalization of the famous frequency mo-

ments problem, where g(x) = xk for some k ≥ 0, described by Alon, Matias, and Szegedy,14

who also asked:

9
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VECTORS

“It would be interesting to determine or estimate the space complexity of the approximation

of
∑n

i=1 v
k
i for non-integral values of k for k < 2, or the space complexity of estimating

other functions of the numbers vi.”

The first question was answered by Indyk and Woodruff15 and Indyk16 who were the first to

determine, up to polylogarithmic factors, the space complexity of the frequency moments

for all k > 0. We address the second question.

Braverman and Ostrovsky18 and Braverman and Chestnut,19 answer the second ques-

tion for sums of the form given above when g is monotone. We extend their characterizations

to nearly all nonmonotone functions of one variable. Specifically, we characterize the set of

functions g for which there exists a sub-polynomial (1± ε)-approximation algorithm for the

sum above. Our results can be adapted to characterize the set of functions approximible in

poly-logarithmic, rather than sub-polynomial, space. Among the main techniques we use is

the layering method developed by Indyk and Woodruff15 for approximating the frequency

moments, and one may view our results as an exploration of the power of this technique.

Our results also partially answer an open question of Guha and Indyk at the IIT Kan-

pur workshop in 200658 about characterizing sketchable distances - our results characterize

nearly all distances that can be expressed in the form d(u, v) =
∑

i g(|ui− vi|). Besides the

aforementioned work on the frequency moments and monotone functions, other past work on

this question was done by Guha, Indyk, and McGregor59 as well as Andoni, Krauthgamer,

and Razenshteyn.60 Both of those papers address the same problem, but in domains dif-

ferent from ours. In the realm of general streaming algorithms, a result of Li, Nguyen,

and Woodruff61 shows that for any function g with a (1± ε)-approximation algorithm im-
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plementable in sub-polynomial space, there exists a linear sketch that demonstrates its

tractability. However, a drawback of that work is that the space complexity of maintaining

the sketching matrix, together with computing the output, may be polynomially large. Our

paper deals with a smaller class of functions than,61 but we provide a zero-one law and

explicit algorithms.

While several of our lower bounds can be shown via reduction from the standard index

and set-disjointness communication problems, to prove lower bounds for the widest class of

functions we develop a new class of communication problems and prove lower bounds for

them, which may be of independent interest. The problem, which we call ShortLinearCom-

bination, is: given a finite set {0, a1, . . . , ar, b} of possible frequencies, is there a frequency

in the stream of value b? Perhaps surprisingly, the communication complexity of Short-

LinearCombination depends on the magnitudes of the coefficients in any linear combination

expressing b in terms of a1, . . . , ar. We develop optimal communication bounds for this

problem. This hints at the subtleties in proving lower bounds for a wide class of functions

g, since by defining g(b) ≥ n · maxi g(ai), the communication problem just described is a

special case of characterizing the streaming complexity of all functions g. Our lower bounds

provide a significant generalization of the set-disjointness problem, which has found many

applications to data streams.

2.1.1 Applications

We now describe potential applications of this work.

11
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Log-likelihood Approximation One use for the approximation of non-monotonic func-

tions is the computation of log-likelihoods. Here, the coordinates of the streamed vec-

tor v are taken to be i.i.d. samples from a discrete probability distribution. The likeli-

hood of the vector v, under a distribution with probability mass function p(x), x ∈ Z, is

L(v) =
∏n
i=1 p(vi), and its log-likelihood is `(v) = −∑n

i=1 log p(vi). Notice that `(v) is of

the form
∑n

i=1 g(vi), for g(x) = − log p(x). When p(·; θ) is the distribution of a non-negative

random variable or if p(x; θ) is symmetric about x = 0, our results can be applied to de-

termine whether there is a streaming algorithm that efficiently approximates `. In general,

− log p(x) is not a monotonic function of x. For example, p(x) = λx
α

x! e
−α + (1− λ)x

β

x! e
−β is

a mixture of two Poissons, which is generally not monotonic. For any constants λ, α, β > 0,

the Poisson mixture log-likelihood − log p(x) satisfies our three criteria (to be described

later), hence the log-likelihood of the stream can be approximated in poly-logarithmic space.

Continuous distributions can be handled similarly by discretization.

Suppose that the distribution p comes from a family of probability distributions p(·; θ)

parameterized by θ ∈ Θ. When an efficient approximation algorithm exists, we describe a

linear sketch from which a (1±ε)-approximation ̂̀to `(v) can be extracted with probability

at least 2/3. The form of the sketch is independent of the function g, so if − log p(x; θ)

satisfies our conditions for approximability for all θ ∈ Θ, we derive an approximation to

each of the log-likelihoods `(v; θ) that are separately correct with probability 2/3 each. If Θ

is a discrete set then this allows us to find an approximate maximum likelihood estimator

for θ with only an O(log |Θ|) factor increase in storage. Recall, the maximum likelihood

estimator is θ̂ = argminθ∈Θ `(θ, v). Indeed, as usual we can drive the error probability
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down to any δ > 0 with O(log 1/δ) repetitions of the algorithm, so an additional factor

of O(log |Θ|) in the space complexity is enough. If ̂̀(θ; v) denote our approximations,

then t̂ = argminθ∈Θ
̂̀(θ; v) is the approximate maximum likelihood estimate, which has the

guarantee that `(t̂; v) ≤ (1 + ε)`(θ̂; v). When Θ is not finite one may still be able to apply

our results by discretizing Θ with poly(n) points and proceeding as above; whether this

works depends on the behavior of p(x; θ) as a function of θ.

Utility Aggregates Consider an online advertising service that charges its customers

based on the number of clicks on the ad by web users. More clicks should result in a higher

fee, but an exceptionally high number of clicks from one user make it likely that he is a

bot or spammer. Customers may demand that the service discount the cost of these spam

clicks, which means that the fee is a non-monotonic function of the number of clicks from

each user.

The ads application is an example of a non-monotonic utility function. Many utility

functions are naturally non-monotonic, and they can appear in streaming settings. For

example, extremely low or high trading volume in a stock indicates abnormal market con-

ditions. A low volume of network traffic might be a sign of damaged or malfunctioning

equipment whereas a high volume of network traffic is one indicator of a denial-of-service

attack.

Database Query Optimization A prominent application for streaming algorithms, in-

deed one of the initial motivations,14 is to database query optimization. A query optimizer
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is a piece of software that uses heuristics and estimates query costs in order to intelligently

organize the processing of a database query with the goal of reducing resource loads (time,

space, network traffic, etc.). Scalable query optimizers are needed for scalable database

processing,62,63 and poor query efficiency has been cited as one of the main drawbacks

of existing implementations of the MapReduce framework.64 Streaming algorithms and

sketches are a natural choice for such heuristics because of their low computational over-

head and amenability to distributed processing. By expanding the character of statistics

that can be computed efficiently over data streams, our results could allow database query

optimizers more expressive power when creating heuristics and estimating query costs.

Encoding Higher Order Functions An obvious generalization of the problem we con-

sider is to replace the frequency vector fi, i ∈ [n], with a frequency matrix fij , i ∈ [n] and

j ∈ [k], and ask whether there is a space efficient streaming algorithm that approximates

∑n
i=1 g(fi,1, . . . , fi,k). These could, for example, allow one to express more complicated

database queries which first filter records based on one attribute and then sum up the

function values applied to another attribute on the remaining records.

Let us demonstrate that when the coordinates of f are bounded and k is not too large,

we can replace this sum with a function of a single variable. Suppose that 0 ≤ fij ≤ b−1 ∈ N,

for all i, j. Upon receiving an update to coordinate (i, j) we replace it with bj copies of i.

The new frequencies are polynomially bounded if bk = poly(n).

Call the new frequency vector f ′ ∈ Zn. The sequence of values fi1, . . . , fik is im-

mediately available as the base-b expansion of the number f ′i , so we are able to write

14



CHAPTER 2. STREAMING FUNCTIONS OF ONE VARIABLE ON FREQUENCY
VECTORS

g′(f ′i) = g(fi1, . . . , fik), where g′ first recovers the base-b expansion and then applies g. Our

desire is to approximate
∑

i g
′(f ′i). Given even a well behaved function g, it is very unlikely

that g′ will be monotone, hence the need for an approximation algorithm for non-monotonic

functions if this approach is taken. It is also very likely that, because of the construction,

g′ has high local variability. This is a significant problem for algorithms that use only one

pass over the stream (as we show by way of a lower bound), but we also present a two pass

algorithm that is not sensitive to local variability.

2.1.2 Problem Definition

A stream of length m with domain [n] is a list D = 〈(i1, δ1), (i2, δ2), . . . (im, δm)〉, where

ij ∈ [n] and δj ∈ Z for every j ∈ [m]. The frequency vector of a stream D is the vector

V (D) ∈ Zn with ith coordinate vi =
∑

j:ij=i
δj . A processor can read the stream some

number p ≥ 1 times, in the order in which it is given, and is asked to compute a function of

the stream. We allow the processor to use randomness and we only require that its output

is correct with probability at least 2/3.

Our algorithms are designed for the turnstile streaming model. In particular, there

exists M ∈ N and it is promised that V (D) ∈ {−M,−M + 1, . . . ,M}n and the same holds

for any prefix of the list D. Our lower bounds, on the other hand, hold in the more restrictive

insertion-only model which has δj = 1, for all j. We use D(n,m) to denote the set of all

turnstile streams with domain [n] and length at most m.
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Given a function g : R→ R and vector V = (v1, v2, . . . , vn), let

g(V ) :=
n∑

i=1

g(|vi|).

Definition 2.1.1. Given g : Z≥0 → R, ε > 0, and D ∈ D(n,m) the problem of (g, ε)-SUM

on stream D is to output an estimate Ĝ of g(V (D)) such that

P
(

(1− ε)g(V (D)) ≤ Ĝ ≤ (1 + ε)g(V (D))
)
≥ 2/3.

We often omit ε and refer simply to g-SUM when the value of ε is clear from the context.

The choice of 2/3 here is arbitrary, since given a g-SUM algorithm the success proba-

bility can be improved to 1−1/poly(n) by repeating it O(log n) times in parallel and taking

the median outcome.

Our goal is to classify the space complexity of g-SUM. We ask: for which functions g can

(g, ε)-SUM be solved in space that is sub-polynomial in n? We call such functions tractable.

An Ω(ε−1) lower bound applies for nearly every function g, thus we only require that

the algorithm solve (g, ε)-SUM whenever ε decreases sub-polynomially. Our main results

separately answer this question in the case in which the processor is allowed one pass over

the stream and in the case in which O(1) passes are allowed. We are able to classify the

space complexity of almost all functions, though a small set of functions remains poorly

understood.
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2.1.3 Organization

Section 2.2 gives a high-level description of our results and states our main theorems.

We put off some of the more technical definitions until Section 2.3, which gives the definitions

needed to precisely state our main results as well as background on the main techniques for

our proofs. Next, Section 2.4 includes the intuition and proofs for our main theorems. It

describes one and two-pass algorithms and lower bounds. Section 2.5 discusses the functions

that we are unable to characterize in more depth.

2.2 Our Results

To begin with, we separate the class of functions g : Z≥0 → R into two complementary

classes: “normal functions” and “nearly periodic functions”. In fact, we do this differently

for 1-pass g-SUM than for multi-pass g-SUM. We define S-normal functions, for studying

one pass streaming space complexity, and P-normal functions for multiple passes. The

complements of these two sets are the S-nearly periodic functions and P-nearly periodic

functions, respectively. The distinction between S and P is not important to understand

our results at a high level, so we omit them for the rest of this section. See Section 2.5 for

more about this class of functions. We postpone the technical definitions until Section 2.3,

and give an informal overview here.

We are able to characterize the normal functions based on three properties which we

call slow-jumping, slow-dropping, and predictable. Slow-jumping depends on the rate of
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increase. Roughly, a function is slow-jumping if it doesn’t grow much faster than y = x2

at every scale. Slow-dropping governs the rate of decrease of a function. A function is

slow dropping if decreases no faster than sub-polynomially at every point. Finally, if a

function is predictable then it satisfies a particular tradeoff between its growth rate and

local variability. Interestingly, not just the properties themselves are important for our

proofs, but so is the interplay between them. Precise definitions for these properties are

given in Section 2.3.

Our proofs are by finding heavy hitters, for the upper bound, and by reductions from

communication complexity for the lower bound. See Section 2.4.1 for more thorough dis-

cussion of how the three properties relate to heavy-hitters and the other techniques we

use.

Zero-One Laws for Normal Functions

A nonnegative function f is called a sub-polynomial function if, for all α > 0, limx→∞

xαf(x) = ∞ and limx→∞ x−αf(x) = 0. Formally, we study the class of functions g such

that g-SUM can be solved with sub-polynomial accuracy ε = ε(n) using only an amount

of space which is sub-polynomial. We call such functions p-pass tractable if the algorithm

uses p passes. In this paper we prove the following theorems.

Theorem 2.2.1 (1-pass Zero-One Law). A function g ∈ G is 1-pass tractable and normal

if and only if it is slow-jumping, slow-dropping, and predictable.

Theorem 2.2.2 (2-pass Zero-One Law). A function g ∈ G is 2-pass tractable and normal

if and only if it is slow-dropping and slow-jumping.
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The main difference between the two theorems is that predictability is not needed in

two passes. The message is that large local variability can rule out 1-pass approxima-

tion algorithms but not 2-pass approximation algorithms. Theorem 2.2.2 extends to any

subpolynomial number of passes.

Most functions one encounters are normal, which include convex, concave, monotonic,

polynomial, or trigonometric functions, as well as functions of regular variation and un-

bounded Lipschitz-continuous functions.

2.3 Preliminaries

In describing the requirements and space efficiency of our algorithms for g-SUM, we

use the set of sub-polynomial functions.

Definition 2.3.1. A function f : R≥0 → R≥0 is sub-polynomial if for any α > 0, the

following two conditions are satisfied: a) limx→∞ xαf(x) =∞ and b) limx→∞ x−αf(x) = 0.

We use subpoly(x) to represent the set of sub-polynomial functions in the variable

x. Examples of sub-polynomial functions include polylogarithmic functions and some with

faster growth, like 2
√

logn. The set of poly-logarithmic functions is a subset of the sub-

polynomial functions. Formally, we study the class of functions g such that (g, ε)-SUM can

be solved with any accuracy ε ∈ subpoly(n), using only sub-polynomial space. Our algo-

rithms assume an oracle for computing g and that the storage required for the value g(x)

is sub-polynomial in x. Regardless, our sketches are sub-polynomial in size, but without

these assumptions it could take more than sub-polynomial space to compute the approx-
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imation from the sketch. We restrict ourselves to the case M ∈ poly(n). This restriction

is reasonable because if it grows, say, exponentially in n, then an algorithm can store the

entire frequency vector and compute g(V (D)) exactly in polylog(nM) space.

Definition 2.3.2. A function g : Z≥0 → R is p-pass tractable if given any sub-polynomial

function h(x) and any ε ≥ 1/h(nM) there exists a sub-polynomial function h∗(x) and a

p-pass algorithm A that solves (g, ε)-SUM for all streams in D(n,m) and n,M ≥ 1 using

no more than h∗(nM) space in the worst case.

Replacing the storage requirement, which is h∗(nM), with h∗(n) logM would also be

natural, but since we consider M ∈ poly(n) the two definitions are equivalent. It simplifies

our notation a little bit to write h∗(nM). Unless otherwise noted, for the rest of this paper

we require that g(0) = 0 and g(x) > 0, for all x > 0. The choice g(0) = 0 is equivalent

to requiring that g(V (D)) does not depend on the particular choice of n in the model;

specifically it avoids the following behavior: if g(0) 6= 0 then given a single stream D the

value of g(V (D)) differs depending on the choice of the dimension, even though the stream

remains the same. Functions with g(0) 6= 0 may be of interest for some applications. The

laws for these functions are very similar to the case when g(0) = 0 and we provide them in

Appendix 2.6.1.

As shown in,65 functions with g(x) = 0, for some integer x > 0, are not nα-pass tractable

for any α < 1, unless g is nonnegative and periodic with period min{x > 0 | g(x) = 0},

which must exist if g is periodic and g(0) = 0. It is also shown in65 that if a non-linear

function g takes both positive and negative values, then g is not nα-pass tractable, for any

α < 1. Without loss of generality, we can assume g(1) = 1 because a multiplicative approx-
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imation algorithm for the function g′(x) := g(x)/g(1) is also a multiplicative approximation

algorithm for g. Finally, for simplicity of notation we will often extend the domain of g

symmetrically to Z, i.e., setting g(x) = g(−x), for all x ∈ Z≥0, which allows us the simpler

notation g(|vi|) = g(vi). In summary, we study the functions in the class

G ≡ {g : Z≥0 → R, g(0) = 0, g(1) = 1,∀x > 0, g(x) > 0}

Our results are based on three characterizations of the variation of the functions. We

now state the technical definitions mentioned in Section 2.2.

Definition 2.3.3. A function g ∈ G is slow-jumping if for any α > 0, there exists N > 0,

such that for any x < y if y ≥ N , then g(y) ≤ b yxc2+αxαg(x).

Slow-jumping is a characterization of the rate of growth of a function. Examples of

slow-jumping functions are xp, for p ≤ 2, x22
√

log x, and (2 + sinx)x2, while functions like

2x and xp, for any p > 2, are not slow jumping because they grow too quickly.

Definition 2.3.4. A function g ∈ G is slow-dropping if for any α > 0 there exists N > 0,

such that for any x < y, if y ≥ N , then g(y) ≥ g(x)/yα.

Whether a function is slow-dropping is determined by its rate of decrease. The func-

tions1 (log2 1 + x)−11(x > 0) and (2 + sinx)x2 are slow-dropping, but any function with

polynomial decay, i.e. x−p, for p > 0, is not slow-dropping.

Given a function g, x ∈ N, and ε > 0 define the set: δε(g, x) := {y ∈ N | |g(y)− g(x)| ≤

εg(x)}.
11(·) denotes the indicator function.
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Definition 2.3.5. A function g is predictable if for every 0 < γ < 1 and sub-polynomial ε,

there exists N such that for all x ≥ N and y ∈ [1, x1−γ) with x + y /∈ δε(x)(g, x) we have

g(y) ≥ x−γg(x).

Predictability is governed by the local variability of a function and its rate of growth.

For example, the function g(x) = x2 is predictable because g(x + y)/g(x) = (1 + y
x)2 ≈ 1

when y � x, or more precisely πε(x) ⊇ {y | |x − y| ≤ εx/3}. That function has low local

variability. On the other hand, the function (2 + sinx)1(x > 0) is locally highly variable

but still predictable. Notice that even x+ 1 /∈ πε(x), for say ε = 0.01, but g(1)/g(x) ≥ 1/3

so the inequality in the definition of predictability is satisfied. A negative example is the

function (2+sinx)x2, which is not predictable because it varies quickly (by a multiplicative

factor of 3) and grows with x.

As we will show, the three conditions above can be used to characterize nearly every

function in G in both the single-pass and O(1)-pass settings. We remark here that the char-

acterization has already been completed for monotonic functions. The tractability condition

for nondecreasing g proved by18 is equivalent to g being slow-jumping and predictable. For

nonincreasing functions, it is a consequence of19 that polynomially decreasing functions

are not tractable while sub-polynomially decreasing functions are tractable. The “nearly

periodic” functions are formally defined next.

Let S be the set of non-increasing sub-polynomial functions on domain Z≥0 and P be the

set of strictly increasing polynomial functions on Z≥0. We now define the sets of S-nearly

periodic functions and P-nearly periodic functions. The motivation for these definitions
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jumps ahead to our lower bounds, but we will explain it here. The reductions used in some of

our lower bounds boil down to finding three integers x < y and x+y such that g(x)� g(y)

and g(x) 6≈ g(x + y). The reductions fail when g(x) ≈ g(x + y), where the meaning of

“≈” depends on whether we are bounding 1-pass or multi-pass algorithms. For the 1-pass

reduction to fail it is necessary that 1
g(x) |g(x)− g(x+ y)| decreases as x increases, hence the

S-nearly periodic functions. The 2-pass reduction fails as long as max( g(x)
g(x+y) ,

g(x+y)
g(x) ) is not

polynomially large in y, hence the P-nearly periodic functions.

Definition 2.3.6. Given a set of functions S, call g(x) S-nearly periodic, if the following

two conditions are satisfied.

1. There exists α > 0 such that for any constant N > 0 there exists x, y ∈ N, x < y and

y ≥ N such that g(y) ≤ g(x)/yα. Call such a y an α-period of g;

2. For any α > 0 and any error function h ∈ S there exists N1 > 0 such that for all

α-periods y ≥ N1 and all x < y such that g(y)yα ≤ g(x), we have |g(x+ y)− g(x)| ≤

min{g(x), g(x+ y)}h(y).

A function g is S-normal if it is not S-nearly periodic.

The first condition states that the function is not slow-dropping. For example, if g is

bounded then there is an increasing subsequence along which g converges to 0 polynomially

fast. To understand the second condition, take h to be a decreasing function or a small

constant. In loose terms, it states that if x < y and g(x) � g(y), then g(x) ≈ g(x + y).

The choice of the set of functions S determines the relative accuracy implied by “≈”. We

will apply the definition with S set to either S or P, that is, with either subpolynomially or
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polynomially small relative accuracy.

An S-nearly periodic function (it is also P-nearly periodic) can be constructed as follows.

For each x ∈ N, let ix = max{j : 2j |x} and let gnp(0) = 0 and gnp(x) = 2−ix . For

example, gnp(1) = 1, gnp(2) = 1/2, gnp(3) = 1, gnp(4) = 1/4, etc. The proof that g is

nearly periodic appears in Section 2.5, but for now notice that it satisfies the first part

of the definition because gnp(2
k) = 2−k and, as an example of the second part, we have

gnp(2
k + 1) = gnp(1) = 1. One may guess that a streaming algorithm for such an erratic

function requires a lot of storage. In fact, gnp can be approximated in polylogarithmic

space! Section 2.5 has the proof.

The following containment follows directly from the definition of the nearly periodic

functions.

Proposition 2.3.7. Every S-nearly periodic function is also P-nearly periodic. Every P-

normal function is S-normal.

2.3.1 Heavy Hitters, Communication Complexity, and CountSketch

Our sub-polynomial space algorithm is based on the Recursive Sketch of Braverman

and Ostrovsky,66 which reduces the problem to that of finding heavy hitters.

Definition 2.3.8. Given a stream D ∈ D(n,m) and a function g, call j ∈ [n] a (g, λ)-heavy

hitter of V (D) if g(|vj |) ≥ λ
∑

i 6=j g(|vi|). We will use the terminology λ-heavy hitter when

g is clear from the context.

Given a heaviness parameter λ and approximation accuracy ε, a heavy hitters algorithm
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returns a set {i1, i2, . . .} containing every (g, λ)-heavy hitter and also returns a (1 ± ε)-

approximations to g(vij ) for each ij in the set. Such a collection of pairs is called a (g, λ, ε)-

cover.

Definition 2.3.9. Given a stream D ∈ D(n,m), a (g, λ, ε)-cover of V (D) is a set of pairs

{(i1, w1), (i2, w2), . . . , (it, wt)}, where t ≤ n and the following are true:

1. ∀k ∈ [t], |wk − g(|vik |)| ≤ εg(|vik |), and

2. if j is a (g, λ)-heavy hitter of V (D), then there exists k ∈ [t] such that ik = j.

Formally, a p-pass (g, λ, ε, δ)-heavy hitter algorithm is a p-pass streaming algorithm

that outputs a (g, λ, ε)-cover of V (D) with probability at least (1− δ).

Theorem 2.3.10 (66). Let λ = ε2

log3 n
and δ = 1

logn . If there exists a (g, λ, ε, δ)-heavy hitter

algorithm using s bits of space, then there exists a (g, ε)-SUM algorithm using O(s log n)

bits of space.

A similar approach has been used in other streaming algorithms; it was pioneered by

Indyk and Woodruff15 for the problem of approximating the frequency moments. Their algo-

rithm uses the streaming algorithm CountSketch of Charikar, Chen, and Farach-Colton,67

and ours will as well. Given λ, ε, and δ, a CountSketch using space O( 1
λε2

log n
δ logM)

gives an approximation v̂i to the frequency of every item i ∈ [n] with the following guar-

antee: with probability at least (1 − δ), |vi − v̂i| ≤ ε
√
λF2 for all i ∈ [n]. By adjust-

ing the parameters slightly we can treat the output of CountSketch(λ, ε, δ) as a set of

k = O(1/λ) pairs (ij , v̂ij ) such that {ij}kj=1 contains all of the λ-heavy hitters for F2 and

|vij − v̂ij | ≤ ε
(∑

j>k v̄
2
j

)1/2
≤ ε
√
λF2, for all j = 1, 2, . . . , k, where (v̄1, . . . , v̄n) is a reorder-
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ing of the frequency vector from largest to smallest absolute magnitude.

We establish our lower bounds using communication and information complexity. Sev-

eral of our lower bounds can be shown by reduction from standard INDEX and DISJ

problems, as well as a combination of them (related combined problems were used in 65,68).

In the INDEX(n) problem, there are two players Alice, given a set A ⊆ [n], and Bob, given

b ∈ [n]. Alice sends a message to Bob, and with probability at least 2/3, Bob must deter-

mine whether b ∈ A. Any randomized one-way protocol for INDEX(n) requires Alice to

send Ω(n) bits.69 In an instance of DISJ(n, t) there are t players each receiving a subset of

[n] with the promise that either the sets are pairwise disjoint, or there is a single item that

every set contains and other than this single item, the sets are pairwise disjoint. The players

must determine which case they are in. The randomized, unrestricted communication com-

plexity of DISJ(n, t) is Ω(n/t).17,70–72 In the DISJ+IND(n, t) problem, t+1 players are given

sets A1, A2, . . . , At+1 ⊆ [n], such that |At+1| = 1, with the promise that either the sets are

disjoint or there is a single element contained in every set and they are otherwise disjoint.

A standard argument shows the one-way communication complexity of DISJ+IND(n, t) is

Ω(n/t(log n)) (see Theorem 2.6.12).

To obtain stronger lower bounds for the nearly periodic function sums, we use the

information complexity framework.

Definition 2.3.11 (ShortLinearCombination problem). Let u = (u1, u2, . . . ur) be a vector in

Zr for some integer r. Let d > 0 be an integer not in {|u1|, |u2|, . . . , |ur|}. A stream S with

frequency vector v is given to the player, v is promised to be from V0 = {u1, u2, . . . , ur, 0}n

or V1 = {EMB(v, i, e) | v ∈ V0, i ∈ [n], e ∈ {−d, d}}, where EMB(v, i, e) is to embed e onto
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the i-th coordinate. The (u, d)-DIST problem is to distinguish whether v ∈ V0 or v ∈ V1.

This problem is a generalization of the DISJ(n, t) problem. We show a Ω(n/q2) bits

lower bound for it where q =
∑r

i=1 |qi| and qi are the integers such that minq{q1, q2, . . . , qr |
∑r

i=1 qiui = d}. For more details, we refer the reader to Appendix 2.6.7.

2.4 Zero-One Laws for Normal Functions

First, we develop some intuition about why the three conditions, slow-dropping, slow-

jumping, and predictable, characterize tractable normal functions. Next comes the two pass

and one pass algorithms followed by the lower bounds. Finally, we prove Theorem 2.2.1

and 2.2.2 in Section 2.4.6.

2.4.1 Our Techniques

The upper and lower bounds are both established using heavy hitters. Using a ε2

log3 n
-

heavy hitters subroutine that identifies each heavy hitter H and also approximates g(fH),

the algorithm of Braverman and Ostrovsky66 (Theorem 2.3.10) solves g-SUM with O(log n)

storage overhead. We will show that if g is tractable then a subpolynomially sized CountS-

ketch suffices to find heavy hitters for g. On the lower bounds side, typical streaming lower

bounds, going back to the work of Alon, Matias, and Szegedy, are derived from reductions to

communication complexity that only require the streaming algorithm to detect the presence

of a heavy hitter. Thus the problem of characterizing tractable functions can be reduced to

characterizing the set of functions admitting subpolynomial heavy hitters algorithms.
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Now let us explain how each of the three properties relates to heavy hitters. For

this discussion let α = ε2/ log3 n be the heaviness parameter needed by Braverman’s and

Ostrovsky’s algorithm and let H ∈ [n] be the identity of some α-heavy hitter.

Slow-jumping and Slow-dropping A function that satisfies these two conditions can-

not increase much faster than a quadratic function nor can it decreasy rapidly. This means

that if H is a heavy hitter for g then it is also a heavy hitter for F2. Concretely, suppose

that there exists an increasing subpolynomial function h such that g(y)/g(x) ≤ (y/x)2h(y)

and g(x) ≥ g(y)/h(y), for all x ≤ y, so that g is slow-jumping and slow-dropping (Propo-

sitions 2.4.1 and 2.4.2 show that such an h always exists if g is slow-jumping and slow-

dropping). A bit of algebra shows that g(fH) ≥ α
∑

i g(fi) implies f2
H ≥ α

h(M)2

∑
j f

2
j , so

H is a α′ := α
h(M)2 -heavy hitter for F2. CountSketch suffices to identify all α′-heavy hitters

for F2 with O(α′ log2 n) bits, so this gives an α-heavy hitters algorithm for g that still uses

subpolynomial space.

If a function is not slow-jumping then a heavy hitter may be too small to detect and we

prove a lower bound by reduction from DISJ+IND in a very similar fashion to the original

lower bound for approximating the frequency moments by Alon, Matias, and Szegedy.

If a function is not slow-dropping then fH may be hidden below many small frequen-

cies. In this case, a reduction from the communication complexity of INDEX usually works

to establish a one-pass lower bound (two player DISJ can be used for a multipass lower

bound). Here is a preview of the reduction that will also explain the genesis of the nearly

periodic functions. Suppose g(1) = 1 and there is an increasing sequence nk ∈ N such that
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g(nk) ≤ 1/nk. Alice and Bob can solve an instance (A ⊆ [nk], b ∈ [nk]) of INDEX as follows.

Alice creates a stream where every item in A has frequency nk and the items in [nk] \A do

not appear. To Alice’s stream Bob adds one copy of his item and they jointly run a stream-

ing algorithm to approximate g(f). The result is an approximation to either |A|g(nk) + 1

or (|A| − 1)g(nk) + g(nk + 1). If g(nk + 1) differs significantly from g(nk) + 1 ≈ 1 then

Bob can determine whether b ∈ A by checking the approximation to g(f). The reduction

fails if g(nk + 1) ≈ 1 and such a fuction may be tractable! A prime example is gnp from

Section 2.3, which we demonstrate in Section 2.5.

At this point, one might have in mind our two pass heavy hitters algorithm. The

algorithm is to use a CountSketch on the first pass to identify a subpolynomial size set

of items containing all α-heavy hitters and then use the second pass just to tabulate the

frequency of each of those items exactly. The details and proof of correctness for that

algorithm are in Section 2.4.2. Local variability of the function is irrelevant for two passes

because we can compute the frequencies exactly during the second pass, and that is why a

function need not satisfy predictability to be two pass tractable. A one pass algorithm will

have to get by with approximate frequencies.

Predictable Predictability is a condition on the local variability of the function. It

roughly says that if y � x then either g(x + y) ≈ g(x) or g(y) is on the same scale2

as g(x). The first conclusion has an obvious interpretation; it means that substituting an

2More precisely, g(y) is not much smaller than g(x), if g is slow-dropping then g(y) cannot be much larger
than g(x), either.
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approximation to x yields an approximation to g(x). CountSketch returns an approxima-

tion to the frequency of every heavy hitter, so, in the first case, we can just as well use the

approximation and there is no need to determine the frequency exactly.

The second conclusion allows local variability, but it must be accompanied by some

“global” property of g, namely, g does not change a whole lot over the interval [y, x]. For

an illustration of how predictability works, suppose that H is a heavy hitter and there is

some y � fH such that g(y) ≥ 2g(fH). Our algorithm cannot substitute fH + y for fH

because this could lead to too much error. But, approximating fH to better accuracy than

±y using a CountSketch, one would generally need more than (fH/y)2 counters, which

could be very large. Notice that y, if it occurs as a frequency in the stream and suppose it

does, is a heavy hitter, and if g is slow-jumping and slow-dropping then y is also a heavy

hitter for F2 by our previous argument. It follows that the error in the frequency estimate

derived from the CountSketch is less than y, in particular an estimate of fH derived from

the CountSketch will be more accurate than ±y. The result is that we get an error estimate

for the CountSketch that is improved over a näıve analysis. The approximate frequency f̂H

satisfies g(f̂H) ≈ g(fH) and is accurate enough for Braverman and Ostrovsky’s algorithm.

When g is locally variable but not predictable, we get a one pass lower bound by a reduction

from INDEX.
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2.4.2 Two Pass Algorithm

We we will now show that any λ-heavy hitter for a slow-dropping, slow-jumping, S-

normal function is also F2 λ
′-heavy for λ′ modestly smaller than λ. This means that we can

use the CountSketch to identify heavy hitters in one pass for the Recursive Sketch. For a

heavy hitters algorithm we also need a (1± ε)-approximation to each item’s contribution to

g-SUM, we can easily accomplish this in the second pass by exactly tabulating the frequency

of each heavy hitter identified in the first pass. This algorithm works as long as we identify

every heavy hitter in the first pass, which CountSketch guarantees, and the space required

remains small provided that we do not misclassify too many non-heavy hitters (so that we

do not tabulate too many values in the second pass). The procedure is formally defined in

Algorithm 1. Note that by Proposition 2.3.7 P-normal functions are also S-normal, hence,

the algorithm works for slow-dropping and slow-jumping P-normal functions.

The next two propositions describe equivalent definitions of slow-dropping and slow-

jumping that are useful in describing the algorithm.

Proposition 2.4.1. g ∈ G is slow-dropping if and only if there exists a sub-polynomial

function h such that for all y ∈ N and x < y we have g(x) ≤ g(y)h(y).

Proof. The “if” direction follows immediately from the definition of the class of sub-polynomial

functions.

For the “only if”, suppose that g(x) is slow-dropping. Specifically, for any α > 0

there exists N > 0 such that for all y ≥ N and x < y we have yαg(y) ≥ g(x). Let Ni

be the least integer such that y1/ig(y) ≥ g(x), for all y > Ni and x < y. The sequence
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Ni is nondecreasing. Consider the increasing function i(y) = max{i : Ni ≤ y} and set

h(y) = y1/i(y). For all x < y we have h(y)g(y) ≥ g(x) by construction.

To see that h is sub-polynomial, let β > 0. First, h ≥ 1 hence h(y)yβ → ∞. Second,

let i∗ ≥ 2/β then for all y ≥ Ni∗ we have

h(y) ≤ y1/i∗ ≤ yβ/2.

Thus h(y)y−β → 0, which completes the proof.

Proposition 2.4.2. g ∈ G is slow-jumping if and only if there exists a sub-polynomial

function h(x) such that for any x < y we have g(y) ≤ by/xc2h(by/xcx)g(x).

Proof. Again, the “if” direction follows immediately from the definition of the class of

sub-polynomial function. The reverse direction follows from the same argument as Propo-

sition 2.4.1.

Given g and a sub-polynomial accuracy ε, Propositions 2.4.1 and 2.4.2 each imply the

existence of a non-decreasing sub-polynomial function. By taking the point-wise maximum,

we can assume that these are the same sub-polynomial function H : N → R. In particular

H satisfies:

• g(y) ≥ g(x)/H(y), for all x < y, and

• g(y) ≤ (y/x)2yαH(y)g(x), for all x < y.

The space used by our algorithm depends on the sub-polynomial functions governing the
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slow-dropping and slow-jumping of g. If these are polylogarithmic then the algorithm is

limited to polylogarithmic space.

Lemma 2.4.3. Let g be a function that is slow-jumping and slow-dropping. There exists

a sub-polynomial function h such that for any D ∈ D(n,m) with frequencies v1, v2, . . . , vn,

if g(vi) ≥ λ
∑

j g(vj) then

v2
i ≥

λ

h(|vi|)
∑

|vj |<|vi|
v2
j .

Proof. By Proposition 2.4.2, there exists a nondecreasing sub-polynomial function h such

that for all y ∈ N and x < y we have g(y) ≤ (y/x)2h(y)g(x).

For any j that satisfies |vj | < |vi|, we have g(vi) ≤ g(vj)(
vi
vj

)2h(|vi|). Therefore,

g(vi) ≥ λ
∑

j

g(vj) ≥ λ
∑

|vj |<|vi|

g(vi)

h(|vi|)

(
vj
vi

)2

.

By rearranging, we find

v2
i ≥

λ

h(|vi|)
∑

|vj |<|vi|
v2
j ≥

λ

h(|vi|)
∑

|vj |<|vi|
v2
j .

Algorithm 1 A 2-pass (g, λ, 0, δ)-heavy hitters algorithm.

1: procedure 2-Pass Heavy Hitters(g, λ, ε, δ)
2: First Pass:
3: S ←CountSketch( λ

2H(M) ,
1
3 , δ) discarding the frequency estimates

4: Second Pass:
5: Compute vj for all i ∈ S
6: return (j, vj), for all j ∈ S
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Algorithm 1 computes CountSketch3 with r = O(log n) and b = O(H(M)
λε2

) over the

stream and extracts the 2H(M)/λ items with the highest estimated frequencies. Denote

this list as (ij , v̂ij )
2H(M)/λ
j=1 . The 2-pass algorithm then discards the estimated frequencies

v̂ij and tabulates the true frequency of each item ij on the second pass.

Lemma 2.4.4. If g is a function that is slow-dropping and slow-jumping then the CountS-

ketch used by Algorithm 1 finds all of the (g, λ)-heavy hitters.

Proof. From the slow-dropping condition and Lemma 2.4.3, for every x < y ∈ N we have

1. g(y)H(y) ≥ g(x) and

2. g(vi) ≥ λ
∑

j g(vj) implies

v2
i ≥

λ

H(M)

∑

|vj |<|vi|
v2
j .

Let D ∈ D(n,m), suppose i satisfies g(vi) ≥ λ
∑n

j g(vj). Since

g(vi) ≥ λ
∑

|vj |≥|vi|
g(vj) ≥

λ

H(M)

∑

|vj |≥|vi|
g(vi),

there are at most H(M)λ−1 items with frequencies as large or larger than vi in magnitude.

Thus, a CountSketch for λ/2H(M)-heavy hitters, as is used by Algorithm 1, serves to

identify the λ-heavy heavy hitters for g in one pass.

Theorem 2.4.5. A function g ∈ G is 2-pass tractable and S-normal if it is slow-dropping

and slow-jumping.

3A CountSketch is a matrix with r and b rows. See67 for details about these parameters.
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Proof. If a function is slow-dropping then it is S-normal. By Theorem 2.3.10, it is sufficient

to show that Algorithm 1 is a sub-polynomial memory (g, λ, ε, δ)-heavy hitters algorithm

for λ = ε2

log3 n
, ε = 1

H(Mn) , and δ ≤ 1
logn .

This is a 2-pass (g, λ, 0, δ)-heavy hitters algorithm, and it requiresO(h(M)
ε2

log4 n log nM log log n)

space. The algorithm is correct with probability at least (1− δ) because this is true for the

CountSketch. Therefore, g is a 2-pass tractable function.

2.4.3 One Pass Algorithm

The only impediment to reducing the two pass algorithm to a single pass is local variabil-

ity of the function. The algorithm must simultaneously identify heavy hitters and estimate

their frequencies, but local variability could require tighter estimates than seem to be avail-

able from a sub-polynomial space CountSketch data structure. If an S-normal function is

predictable then we almost immediately overcome this barrier. In particular, the definition

means that given any point x and a small error y = o(x) either |g(x+ y)− g(x)| ≤ εg(x) or

g(y) is reasonably large, and while it is clear how the first case helps us with the approxi-

mation algorithm, the second is less clear. The slow-dropping and slow-jumping conditions

play a role, as we now explain.

Proposition 2.4.6. A function g is predictable if and only if for every sub-polynomial

ε > 0 there exists a sub-polynomial function h such that for all x ∈ N and y ∈ [1, x/h(x))

satisfying x+ y /∈ δε(x)(g, x) it holds that g(y) ≥ g(x)/h(x).

Proof. The “if” direction follows directly from the definition of sub-polynomial functions.
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To prove the “only if” direction, let γi = 1/i. Since g is predictable, there exists Ni

such that either x + y ∈ δε(x)(g, x) or g(y) ≥ x−γg(x) for x ≥ Ni and y ∈ [1, x1−γ). Let

i(z) = max{i ∈ N | Ni ≤ z}, for z ≥ N1, and define h(z) = z1/i(z), for z ≥ N1, and

h(z) = max1≤x′,y′<N1 g(x′)/g(y′), for z < N1. Then h is a sub-polynomial function. The

claim is that h satisfies the conclusion of the lemma. Let x ∈ N and y ∈ [1, x/h(x)). If

x < N1 then y ≤ x < N1 because h ≥ 1. Furthermore,

g(y)h(x) = g(y) max
1≤x′,y′<N1

g(x′)
g(y′)

≥ g(y)
g(x)

g(y)
= g(x).

If x ≥ N1, let i = i(x) ≥ 1, so that x ≥ Ni and h(x) = x1/i. Since g is predictable, if

y ∈ [1, x/h(x)) and y + x /∈ δε(x)(g, x) then g(y) ≥ x−1/ig(x) = g(x)/h(x).

Let rε(x) := max{y | x+ y′ ∈ δε(x), for all |y′| ≤ y}.

Lemma 2.4.7 (Predictability Booster). If g is slow-dropping, slow-jumping, and pre-

dictable, then there is a sub-polynomial function h such that for all y ∈ [rε(x) + 1, x/h(x))

we have g(y) ≥ g(x)/h(x).

Proof. According to Proposition 2.4.6, there exists a sub-polynomial function h′ such that

for all y ∈ [1, x/h′(x)) if x+ y /∈ δε/2(x) then g(y) ≥ g(x)/h′(x). Without loss of generality

h′ governs the slow-jumping of g as well, hence g(x) ≤ (x/x′)2h′(x)g(x′) for all x′ ≤ x.

We consider two cases:

1. |g(x)− g(x+ rε(x) + 1)| > εg(x) and

2. |g(x)− g(x− rε(x)− 1)| > εg(x).
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In the first case, by the definition of rε and predictability we have g(rε(x) + 1) ≥

g(x)/h′(x). In the second case, let x′ = x−rε−1. If g(x′) ≥ 2g(x) then |g(x′)−g(x)| > εg(x′),

as long as ε < 1/2. Otherwise, |g(x′)− g(x)| ≥ εg(x) ≥ ε
2g(x′). Now, from predictability at

x′ and the definition of h′, we find that

g(rε(x) + 1) = g(x− x′) ≥ g(x′)
h′(x′)

≥ g(x)

4h′(x)2
,

where the last inequality follows because g is slow-jumping and x′ ≥ x/2 (w.l.o.g., choose

h′(x) > 2).

Now, since g satisfies the slow dropping condition there exists a nondecreasing sub-

polynomial function h′′ such that g(y′) ≥ g(r′)/h′′(y′) for all y′ ∈ N and r′ ≤ y′. Thus, if

y ∈ [rε(x) + 1, x/h(x))

g(y) ≥ g(rε(x) + 1)

h′′(y)
≥ g(x)

4h′(x)2h′′(x)
,

so we take h to be the product of 4(h′)2 and h′′.

Recall the sub-polynomial function H from the last section and let it also satisfy

Lemma 2.4.7 with ε replaced by ε/2. In particular H now satisfies three conditions:

• g(y) ≥ g(x)/H(y), for all x < y, and

• g(y) ≤ (y/x)2H(y)g(x), for all x < y.

• for all y ∈ [rε/2(x) + 1, x/h(x)) we have g(y) ≥ g(x)/H(x).

Let y be the (additive) error in our estimate of frequency x of a (g, λ)-heavy hitter. If
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rε(x) > |y| then we are fine. If not, consider the point x+ rε(x) + 1 (or x− rε(x)−1), which

has |g(x+ rε(x) + 1)− g(x)| > εg(x) and therefore g(rε(x) + 1) > g(x)/H(M). Now, since

x is the frequency of a (g, λ)-heavy hitter it happens that rε(x) + 1, were it a frequency in

the stream, would be (g, λ/H(M))-heavy and thus λ/H(M)2-heavy for F2. Presuming that

there are not too many items in the stream with frequency larger than rε(x), this implies

that CountSketch produces an estimate for x with error smaller than rε(x). Now, since g

satisfies the slow dropping condition there cannot be too many frequencies larger than rε(x)

in the stream because

g(z) ≥ g(rε(x) + 1)

H(M)
≥ g(x)

H(M)2
, for all z > rε,

which implies that there are at most 1
λH(M)2 frequencies in this range.

Algorithm 2 A 1-pass (g, λ, ε, δ)-heavy hitters algorithm.

1: procedure 1-Pass Heavy Hitters(g, λ, ε, δ)
2: Ŝ, V̂ ←CountSketch( λ

3H(M) ,
ε

2H(M) , δ/2)

3: F̂2 ←AMS(ε, δ/2)
4: S ← {i ∈ Ŝ : |g(v̂i)− g(v̂i + y)| ≤ εg(v̂i + y),

5: for all − ε
2H(M)

√
F̂2 ≤ y ≤ ε

2H(M)

√
F̂2}

6: return (j, v̂j), for all j ∈ S

2.4.4 One Pass Lower Bounds

The proof of the following theorem is broken up into Lemmas 2.4.9, 2.4.10 and 2.4.11.

Theorem 2.4.8. If g ∈ G is a 1-pass tractable S-normal function, then g is slow-jumping,

slow-dropping, and predictable.
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Proof. Immediate from Lemmas 2.4.9 , 2.4.10, and 2.4.11.

Lemma 2.4.9. If an S-normal function g ∈ G is not slow-dropping, then g is not 1-pass

tractable.

Proof. Suppose g is not slow-dropping. Then there exist 0 < α ≤ 1 and integer sequences

y1, y2, . . . ∈ N and x1, x2, . . . ∈ N, with yk increasing, such that xk < yk and g(xk) ≥ yαk g(yk),

for all k ≥ 1. Furthermore, since g is S-normal we may choose the sequences so that there

exists a sub-polynomial function h satisfying

|g(xk + yk)− g(xk)| >
1

h(yk)
min{g(xk), g(xk + yk)}, (2.4.1)

for all k. We claim that one can take |g(xk + yk) − g(xk)| > g(xk)/h(yk). If g(xk + yk) <

1
2g(xk) then this is true because the constant function 2 is sub-polynomial. On the other

hand, if g(xk + yk) ≥ 1
2g(xk) then replacing h by 2h in (2.4.1) does the job. Also, note that

1/h(x) is still a sub-polynomial function.

Let A be a 1-pass (g, ε)-SUM algorithm with ε = (3h(n))−1. We will show that A uses

Ω(nα) bits on a sequence of g-SUM problems with n = y1, y2, . . ., hence g is not tractable.

Let n = yk and x = xk and consider the following protocol for INDEX(nα) using A. Alice

receives a set A ⊆ [nα] and Bob receives an index b ∈ [nα]. Alice and Bob jointly create a

notional stream D and run A on it. Alice contributes n copies of i for each i ∈ A to the

stream and Bob contributes x copies of his index b. If b /∈ A there are |A| items in the

stream with frequency n and one with frequency x; whereas if b ∈ A then |A|−1 frequencies

are equal to n and one is n + x. Alice runs A on her portion of the stream and sends the
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memory to Bob along with the value |A|. Bob completes the computation with his portion

of the stream. Let Ĝ be the value returned to Bob by A. Bob decides that there is an

intersection if Ĝ
|A|g(n)+g(x) /∈ [1− ε, 1 + ε].

With probability at least 2/3, Ĝ is a (1 ± ε)-approximation to g(V (D)); suppose that

this is so. If b ∈ A then g(V (D)) = (|A| − 1)g(n) + g(x + n) and otherwise the result is

g(V (D)) = |A|g(n) + g(x). Without loss of generality g(n) < εg(x), thus the difference

between these values is

|g(n) + g(x)− g(x+ n)| > |g(x)− g(x+ n)| − εg(x)

≥ 2εg(x)

≥ ε(g(x) + nαg(n))

≥ ε(g(x) + |A|g(n)).

Thus Bob’s decision is correct and g-SUM inherits the Ω(nα) lower bound from INDEX(nα).

Lemma 2.4.10. If an S-normal function g ∈ G is not slow-jumping, then g is not 1-pass

tractable.

Proof. Since g is not slow-jumping, there exist α > 0, a strictly increasing sequence

y1, y2, . . . ∈ N, and a sequence x1, x2, . . . ∈ N such that xk ≤ yk and g(yk) > s2+α
k xαkg(xk),

where sk = byk/xkc. Without loss of generality yk is strictly increasing. According to

Lemma 2.4.9, we can assume that g is slow-dropping, since otherwise it is not 1-pass
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tractable. Hence, there exists N ∈ N such that for all x ≥ N and r ≤ x we have

1
2x

αg(x) ≥ g(r). If xk ≤ N for all but finitely many k, we may assume this holds for

all k. Otherwise, by taking a subsequence, we can assume xk > N holds for all k.

Let rk = yk − skxk be the sequence remainders. Before proceeding with the reduction

we will establish the bound 2g(rk) ≤ g(yk). If xk ≤ N , for all k, then sk is unbounded

while xkg(xk) is bounded away from zero. This means that g(yk) is unbounded while g(rk)

is bounded and we can assume y1 is large enough that g(yk) ≥ 2g(rk) holds for all k.

Otherwise xk > N , for every k, hence 2g(rk) ≤ xαkg(xk) ≤ g(yk), for each k, from the

definition of N .

Let A be a (g, ε)-SUM algorithm with accuracy ε = 1/12. Consider the DISJ+IND(n, t)

problem, where t = sk and n = s2+α
k xαk . Denote x := xk, y := yk, s := sk and r := rk.

The t + 1 players receive sets A1, A2, . . . , At ⊆ [n] and an index b ∈ [n]. As before, the

players jointly run A on a notional stream and share |Ai|. Each player i places x copies

of each j ∈ Ai into the stream except for the final player who places r copies of his index

b. Let n′ =
∑

i |Ai| be the total size of the t players’ sets. On an intersecting instance

the result of g-SUM is a1 := (n′ − t)g(x) + g(y), and on a disjoint instance the result is

a2 := n′g(x) + g(r).
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The difference is

a1 − a2 ≥ g(y)− g(r)− tg(x) >
1

2
g(y)− tg(x)

≥ 1

6
(g(y) + (2s2+αxα)g(x))− sg(x)

=
1

6
(g(y) + (s2+αxα + s2+αxα − 6s)g(x))

≥ 2ε(g(y) + s2+αxαg(x))

= 2ε(n′g(x) + g(y)), (2.4.2)

where the last inequality holds for all sufficiently large n. Thus, the index player can

correctly distinguish which case has occurred, and the algorithm requires Ω(n/t2) = Ω(yα)

bits.

Lemma 2.4.11. If an S-normal function g ∈ G is not predictable, then g is not 1-pass

tractable.

Proof. Since g is not predictable, there exists a sub-polynomial function ε and constant

γ > 0 such that some infinite sequence xk, yk satisfies the following:

• xk →∞ and yk ∈ [1, x1−γ
k ),

• xk + yk /∈ δε(xk)(g, xk), and

• xγkg(yk) < g(xk).

The proof is by a reduction from INDEX(n) with n = ε(xk)x
γ
k/4. Suppose A is an algorithm

for (g, ε/4)-SUM. Alice receives a set A ⊆ [n] and Bob receives an index b ∈ [n]. Alice adds
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yk copies of i to the stream, for each i ∈ A, runs A on her portion of the stream, and sends

the contents of the memory to Bob. Bob adds xk copies of b to the stream and completes

the computation.

The stream has |A| frequencies equal to yk and one equal to xk, if there is no intersection,

or |A| − 1 equal to yk and one equal to xk + yk, if there is an intersection. Recall that

xk + yk /∈ δε(g, xk), hence |g(xk)− g(xk + yk)| > εg(xk), and by construction

|A|g(yk) ≤
ε(xk)

4
xγkg(yk) ≤

ε(xk)

4
g(xk).

Therefore, Bob can correctly distinguish whether b ∈ A whenA yields a (1±ε/4)-approximation.

Thus (g, ε/4)-SUM requires Ω(n) bits.

2.4.5 Two Pass Lower Bounds

Theorem 2.4.12. If a P-normal function g ∈ G is tractable then g is slow-dropping and

slow-jumping.

Proof. Immediate from Lemmas 2.4.13 and 2.4.14.

Lemma 2.4.13. If a P-normal function g ∈ G is not slow-dropping, then g is not O(1)-pass

tractable.

Proof. Suppose A is a p = O(1) pass algorithm that solves (g, ε)-SUM and g does not satisfy

slow-dropping condition. Then there exists α > 0 such that for any N > 0, there exists

y > N and x < y satisfying g(y) < g(x)/yα. Separately, since g is P-normal, there exists
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β > 0 such that for any N > 0 if g has an α-period y > N then there is an α-period y > N

and x < y such that g(y) ≤ g(x)/yα and |g(x+ y)− g(x)| > yβ min(g(x), g(x+ y)).

Let γ = min(α, β). Consider the following protocol for DISJ(n, 2), where n = yγ/2.

First, consider g(x+ y) ≤ g(x). Since |g(x+ y)− g(x)| > yγg(x+ y) and yγg(x+ y) ≥

g(x+y), then g(x) ≥ yγg(x+y). The players jointly create a stream where Player 1 inserts

x copies of each element of her set S1 into the stream, and Player 2 inserts y copies of every

element a not in her set S2. First Player 1 creates her portion of the stream, runs the first

pass of A on it, and sends the memory to Player 2. She completes the first pass with her

portion of the stream, and returns the memory to Player 1. The players continue in this

way for a total of p passes over the stream.

Let V denote the frequency vector of the resulting stream. If there is an intersection,

let S1 ∩ S2 = {a}. Then S1 ∩ S̄2 = S1\{a}, and g(V ) is r1 = (|S1| − 1)g(x + y) +

(n − |S2| − |S1|)g(y) + g(x) + g(y). If there is no intersection, the value of g(V ) is r2 =

(|S1| − 1)g(x+ y) + (n− |S2| − |S1|)g(y) + g(x+ y). Notice that

|r2 − r1|
r1

≥ |g(x+ y)− g(x)|
g(x)

≥ 1

2
,

for sufficiently large n. For any ε < 1/2, A is able to distinguish the 2 cases, which gives a

lower bound on the memory bits used by A is Ω(n/p).

The case g(x + y) > g(x) is the same except Player 2 inserts y copies of each element

that is in her set S2. Thus, A uses Ω(n/p) bits of memory, hence g is not O(1)-pass
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tractable.

Lemma 2.4.14. If a P-normal function g ∈ G is not slow-jumping, then g is not O(1)-pass

tractable.

Proof. Suppose A is a p = O(1) pass algorithm for (g, ε)-SUM. If g is not slow-jumping,

then there exists α > 0 such that for any N > 0, there exists x < y ∈ N and y ≥ N but

g(y) > by/xc2+αxαg(x). Notice that for y > x we have by/xc ≥ y/2x, so by adjusting α we

can assume g(y) > (y/x)2yαg(x).

We can further assume g is slow dropping, since otherwise g is not O(1)-pass tractable

by Lemma 2.4.13. Thus, there exists a nondecreasing sub-polynomial function h(x) > 1

such that g(x) ≤ h(y)g(y).

Consider an instance A1, A2, . . . , At ⊆ [n] of DISJ(n, t), where t = dy/xe and n =

( yx)2 yα

2h(y) . Each of the first t − 1 players, inserts x copies of her elements into the stream

and the tth player inserts y − (t − 1)x < x copies of her elements into the stream. The

players pass the memory and repeat to run the p passes of A as before. Notice that

g(y − (t− 1)x) ≤ h(x)g(x) by the slow dropping condition.

Let n′ =
∑

i |Ai|, and let V be the frequency vector of the stream created. If there is

no intersection, the value of g(V ) is

(n′ − |At|)g(x) + |At|g(y − (t− 1)x) ≤ n′h(x)g(x)

≤ nh(x)g(x) ≤ 1

2
g(y).
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On the other hand, if there is an intersection then y is the frequency of some item in the

stream, and therefore g(V ) ≥ g(y). Thus A distinguishes between the cases. The algorithm

uses Ω(n/pt2) = Ω(yα/2/p) bits of memory, which proves that g is not p-pass tractable.

2.4.6 Zero-One Law Proofs

Theorem 2.2.1 1-pass Zero-One Law. A function g ∈ G is 1-pass tractable and S-normal

if and only if it is slow-jumping, slow-dropping, and predictable.

Proof. The lower bound is proved as Theorem 2.4.12, hence the algorithm remains. With

the Recursive Sketch of Theorem 2.3.10, it is enough to show that Algorithm 2 is a (g, λ, ε, δ)-

heavy hitters algorithm for λ = ε2/ log3 n and δ = 1/ log n.

By Lemma 2.4.4, the Count Sketch used by Algorithm 2 returns a list of pairs (ij , v̂ij )

containing all of the λ/3H(M)-heavy elements for F2. By definition, any item ij that

survives the pruning stage has |g(v̂ij )−g(vj)| ≤ εg(vj). Hence, it only remains to show that

every (g, λ)-heavy hitter survives the pruning stage.

Suppose i′ is the index of the (g, λ)-heavy hitter that minimizes rε/2(vi′). Now suppose

that we insert a new item i′′ in the stream with frequency vi′′ = rε/2(vi′) + 1. Then

g(vi′)

H(M)
≤ g(vi′′) ≤ H(M)g(vi′),

where the first inequality follows from Lemma 2.4.7 and the second because g is slow-

dropping. Thus, this item is a (g, λ
3H(M))-heavy hitter and the constant term on the pa-
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rameter b for the Count Sketch can be chosen to guarantee additive error no more than

vi′′/3 ≤ rε/2(vi′)/3. The same guarantee holds for the stream without i′′, thus for every

(g, λ)-heavy hitter ij we have

|v̂ij − vij | ≤
1

3
rε/2(vi′) ≤

1

3
rε/2(vij ),

where the last inequality holds by the choice of i′. Furthermore, for every −rε/2(vi′)/3 ≤

y ≤ rε/2(vi′)/3 we have |(v̂ij + y)− vij | ≤ rε/2(vij ) and thus

|g(v̂ij )− g(v̂ij + y)| ≤|g(v̂ij )− g(vij )|

+ |g(vij )− g(v̂ij + y)|

≤εg(v̂ij + y).

With probability at least 1 − 2δ/2 = 1 − δ both the Count Sketch and the AMS

approximation of F2 meet their obligations, in this case the output is correct. By the

guarantee of CountSketch, we can safely assume that rε/2(v′i) ≥ ε/2H(M)

√
F̂2, heavy

hitters will survive the pruning stage.

Theorem 2.2.2 2-pass Zero-One Law. A function g ∈ G is 2-pass tractable and P-normal

if and only if it is slow-dropping and slow-jumping. Furthermore, every slow-dropping and

slow-jumping S-normal function is also 2-pass tractable.

Proof. The lower bound is proved as Theorem 2.4.12. The upper bound is governed by

Proposition 2.3.7 and Theorem 2.4.5.
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Here are a few examples. The functions x2 lg(1+x), (2 + sin log(1 + x))x2, and elog1/2(1+x)

are all 1-pass tractable because they are all slow-dropping, slow-jumping, and predictable.

On the other hand, 1/x is not slow-dropping, x3 is not slow-jumping, and (2 + sin
√
x)x2

is not predictable, so none of these functions is 1-pass tractable. The last of the three is,

however, slow-jumping and slow-dropping, and hence it is 2-pass tractable.

2.5 Nearly Periodic Functions

Nearly periodic functions are highly constrained to almost repeat themselves like a

periodic function. These functions admit large changes in value that would imply a large

lower bound on their space complexities, if they did not satisfy the many constraints.

2.5.1 Example Nearly Periodic Function

Constructing a tractable nearly periodic function turns out to be a non-trivial exercise.

This section provides such a construction.

Definition 2.5.1. Let x =
∑∞

j=0 aj2
j ∈ N, for aj ∈ {0, 1}, be the binary expansion of the

integer x. Define ix := min{j : aj = 1}, the location of the first non-zero bit of x. The

function is gnp(x) = 2−ix , for x > 0, and gnp(0) = 0.

Proposition 2.5.2. gnp is S-nearly periodic.

Proof. Since there is an infinite sequence {1, 2, 4, . . . , 2n . . .} such that gnp(x) = 1/x, the

first condition of near-periodicity is satisfied. It is remains to show that the second condition
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is also satisfied.

Let γ > 0 be a constant. Consider any integer x > 0. By construction gnp(x) = 2−ix .

Let y > x be another integer. Similarly, we have gnp(y) = 2−iy . If gnp(x)/gnp(y) = 2iy−ix ≥

yγ , then iy − ix ≥ γ lg y. Choose N = d21/γe. For any y > N , we have iy − ix > 1 and

therefore ix+y = ix. Thus, gnp(x+ y) = gnp(x).

Proposition 2.5.3. gnp is 1-pass tractable.

Proof. We demonstrate that one can find (gnp, λ)- heavy hitters in poly(λ−1 log n logM)

space. It is sufficient to demonstrate an algorithm that will find a single (gnp, λ)-heavy

hitter, since we can reduce the heavy hitters problem to this case by hashing the stream

O(λ−2) ways and running this algorithm on each substream.

Suppose that j∗ is the single (gnp, λ)-heavy hitter with frequency x. Let v1, v2, . . . , vn ≥

0 be the frequencies in the stream, and let U = {j : ivj ≤ ix}. By definition gnp(vj) ≥ gnp(x)

for j ∈ U , hence |U | ≤ 1 + λ−1 ≤ 2λ−1.

Let C = O(λ−2). Apply a uniform hash function h : [n] → [C] to separate the stream

into C substreams S1, S2, . . . , SC . With constant probability, no two elements of U are in

the same substream, so suppose that this happens.

On each substream Sk with frequencies v
(k)
1 , . . . , v

(k)
n we run the following algorithm D =

O(log n) times independently in parallel: (i) Sample pairwise independent Bernoulli(1/2)

random variables X1, . . . , Xn. (ii) Compute m =
∑

j Xjv
(k)
j and im. (iii) Output 2−im .

Consider the set of D values output by this algorithm. If there is a single item j∗ with
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minimum i∗ := i
v

(k)
j∗

, then a Chernoff bound implies that very nearly D/2 values are equal

to 2−i
∗
, and this is the maximum value among all of the pairs. In this case, the label j∗ can

be found in post-processing by binary search. Let Xj,` denote the value of the jth Bernoulli

variable on the `th trial. Specifically, one finds the set M ⊆ [D] of trials for which 2−im is

equal to the maximum among the D values, and with high probability, only j∗ will satisfy

Xj,` = 1 for all ` ∈M and Xj,` = 0 for all ` ∈ [D] \M . We can detect the case where there

is more than one item with minimum i
v

(k)
j

because either the number of maximizing values

will be too large or the binary search will fail to yield a unique element.

The single-heavy-hitter algorithm now outputs the pair (j∗, 2−i
∗
) if the number of max-

imizing values is correct and the binary search yields a unique element or nothing if either

of those conditions fails. With the extra hashing step mentioned at the beginning this

yields a 1-pass O(λ−4 log n logM)-space (gnp, λ)-heavy hitters algorithm, thus gnp is 1-pass

tractable.

2.5.2 More Lower Bounds

The set of nearly-periodic function defeat the standard reduction from the DISJ and

INDEX problems. Theorem 2.5.7 shows how one can use the ShortLinearCombination

problem, of Definition 2.3.11, to provide space lower bounds on g-SUM algorithms for some

nearly periodic functions g.

Definition 2.5.4. For any N > 0 and non-increasing sub-polynomial function h(x), define

the (N,h)-dropping set of f to be DN,h(f) = {x | 1 ≤ x ≤ N, f(x) ≤ h(N)/N}.

Proposition 2.5.5. Let f be a nearly-periodic function, then for all n0 > 0, there exists
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N > n0 and a sub-polynomial function h such that |DN,h| > 0.

Proof. Choose N = n0 + 1, h(x) = f(1)N , i.e. h(x) is a constant function. Then 1 in DN,h

because 1 ≤ N and f(1) = h(N)/N .

Definition 2.5.6. An α-indistinguishable frequency set of [n] is a tuple (s, d), where s ⊆ [n]

is a subset and d ∈ [n], d /∈ s is a integer such that (s, d)-DIST problem requires Ω(nα) space.

Theorem 2.5.7. Let function f : R → R+, symmetric, nearly-periodic and f(0) = 0. If

there exists a non-increasing sub-polynomial function h(x) and constants α > 0, 0 < δ < 1,

such that for any n0 > 0, there exists N > n0 and a integer set |S| > 0 satisfying the

follows,

1. 0 < |DN,h(f)| ≤ N1−δ;

2. S ⊆ |DN,h(f)| and d ∈ [N ] such that (S, d) is a α-indistinguishable frequency set of

N ;

3. f(d) ≥ h(d),

then for any n0 > 0, there exists a stream of domain N > n0, any one-pass randomized

streaming algorithm A that outputs a 1± ε(N) approximation of f -SUM with probability

at least 2/3, requires space Ω(nα0 ) bits, where ε(x) < 1 is a sub-polynomial function.

Proof. Suppose we have an algorithm A that gives a 1±ε(N) approximation to f -SUM with

probability at least 2/3. We can now use A to construct a protocol that solves (S, d)-DIST

problem on domain N . The algorithm is straightforward: run A on the input stream. If the

result A outputs is ≤ h(d)/N δ, then there is no frequency of absolute value d in the stream.
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This is so since the g-SUM is at most
∑

a∈S f(a) ≤ N1−δ/N . Otherwise, if the output is

at least h(d)(1 − ε(N)). By the guarantee of A, it can distinguish the 2 cases. The space

needed of A inherits the lower bound of (S, d)-DIST problem, thus Ω(Nα) bits.

2.6 Appendix for Chapter 2

2.6.1 The Case of g(0) 6= 0

When g(0) = 0, we have to re-address the lower bound of using INDEX since the

elements not contributing to the frequency vector still contribute to the g-SUM. Therefore,

we re-define the nearly periodic functions in the next section. We further show that functions

crossing the axis are not 1-pass tractable and functions with zero points are not tractable

unless they are periodic in Section 2.6.3. We prove the same 1-pass zero one law in the

remaining 2 sections. The proof turns out to be very similar to the g(0) = 0 cases with

small number of additional tweaks. Note that we only provide the turnstile model lower

bounds.

2.6.2 Redefinition of Nearly Periodic

For the g(0) 6= 0 case, we have the following definition of nearly-periodic.

Definition 2.6.1. Given a set of functions S, call g(x) S-nearly periodic, if the following

two conditions are satisfied.

1. There exists α > 0 such that for any constant N > 0 there exists x, y ∈ N, x < y and
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y ≥ N such that g(y) ≤ g(x)/yα. Call such a y α-period of g;

2. For any α > 0 and any error function h ∈ S there exists N1 > 0 such that for all

α-periods y ≥ N1 all x < y such that g(y)yα ≤ g(x) we have |g(x) − g(x − 2y)| ≤

min{g(x), g(x− 2y)}h(y).

A function g is S-normal if it is not S-nearly periodic.

Let all functions be G∗0 = {g : N→ R+, g(x) = g(−x), and g(0) = 1}.

2.6.3 Crossing the Axis

If g ∈ G∗0 and there exist x, y ∈ N such that g(x) > 0 > g(y), we have the following

lemma.

Lemma 2.6.2. Let g ∈ G∗0 , if g(1) < 0, then any algorithm solves g-SUM requires Ω(n)

space.

Proof. Consider the following INDEX(n) reduction. Alice and Bob jointly create a stream as

following. Let A be Alice’s set. n1 = |A|. Let n2 = b n−n1
−g(1)c. Let C = (n1+n2)g(1)+(n−n1).

We have 0 ≤ C < g(1). Alice choose a domain [n+n2] for the algorithm and output 1 copy

of each of her element. Bob receives the memory content of the algorithm from Alice as

well as n, n1, n2. Bob outputs −1 copy of his index and also adds to the stream one copy

of each of the following elements: n+ 1, n+ 2, . . . , n+ n2.
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If there is an intersection, the result of g-SUM is

(n− n1) + (n1 + n2 − 1)g(1) + g(0) = C + g(0)− g(1);

If there is no intersection, the result is

(n− n1 − 1) + (n1 + n2)g(1) + g(1) = C + g(1)− g(0).

Then a constant approximation algorithm can distinguish the two cases. The algorithm

inherits an Ω(n) bound from INDEX.

Lemma 2.6.3. Let g ∈ G∗0 and g(1) > 0, if there exists y ∈ N such that g(y) < 0 < g(1),

then there exits z ∈ N such that g(1 + z) 6= g(1− z).

Proof. If for every z, g(1 + z) = g(1 − z), we have g(2) = g(0) = 1 and for any w,

g(w+ 2) = g(w). Therefore 2 is a period of the function. Now, consider the following cases,

1) if y even, then g(y) = g(2by/2c)) = g(0) (2 is a period), which is a contradiction that

g(y) < 0; 2) if y odd, then g(y) = g(2by/2c+ 1) = g(1) > 0, contradicting g(y) < 0.

Proposition 2.6.4. Let g ∈ G∗0 and g(1) > 0, if there exists y ∈ N such that g(y) < 0,

then any algorithm solves g-SUM requires Ω(n) space.

Proof. Consider the following reduction from INDEX(n). Let n′ = b−(n − 1)g(1)/g(y)c

and z ∈ N be the integer given by Lemma 2.6.3. Let C = (n − 1)g(1) + n′g(y). We have

0 < C < −g(y). Alice and Bob jointly create a data stream in domain n+n′: Alice outputs

1 copy of every element in her set, and −1 copy of every element not in her set. Bob outputs
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y copy of each of the elements i+ 1, i+ 2, . . . , i+ n′ and z copy of his index. If there is no

intersection, the result of g-SUM is

(n− 1)g(x) + n′g(y) + g(z − 1) = C + g(z − 1).

If there is an intersection, the result of g-SUM is

(n− 1)g(x) + n′g(y) + g(z + 1) = C + g(z + 1)

Therefore any constant approximation algorithm can distinguish the two cases, implying an

Ω(n) bound for the memory of the algorithm.

Proposition 2.6.5. Let g ∈ G∗0 if g(x) = 0 and g(2x) 6= g(0) then g is not 1-pass tractable.

Proof. Consider the INDEX(n) reduction. Alice and Bob jointly create a stream as follow-

ing, Alice output x for every element in her set, −x for every element not in her set. Bob

output x for his index. If there is an intersection, the g-SUM result is g(2x). If there is no

intersection, the result is g(0).

Proposition 2.6.6. If function g ∈ G∗0 with g(x) = 0 for some x ∈ N is tractable, then g

is periodic.

Proof. By reduction from INDEX(n), Alice output x for each of her elements and −x for

each of her non-elements. Bob output k + x for his index. If there is an intersection, the

g-SUM result is g(k + 2x). If there is no intersection, g-SUM is g(k). If g(k + 2x) 6= g(k)
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for any k, a constant approximation algorithm can distinguish the 2 cases. Therefore, 2x is

a period of the function.

Therefore, we only consider the following set of functions,

G0 = {g : N→ R+, g(x) = g(−x) > 0, and g(0) = 1}

2.6.4 Lower Bounds

Theorem 2.6.7. If an S-normal function g ∈ G0 does not satisfy slow dropping, then g is

not 1-pass tractable.

Proof. The reduction to INDEX(nα) is similar to the case of g(0) = 0. Now Alice outputs n

copies of the elements in A and also outputs −n copies of i if i 6∈ A. Bob output x−n copies

of his index. If there is an intersection the g-SUM result is g(V (D)) = (nα − 1)g(n) + g(x)

and otherwise is g(V (D)) = (nα − 1)g(n) + g(x − 2n). Since g is not nearly periodic, the

algorithm is able to distinguish the two cases.

Theorem 2.6.8. If an S-normal function g ∈ G0 is not slow-jumping, then g is not 1-pass

tractable.

Proof. The reduction to DISJ+IND is the same to the case of g(0) = 0.

Now by slow dropping, there exists a sub-polynomial function h(x) such that g(0) ≤

g(x)h(x). The g-SUM result differs from g(0) = 0 case by (n−n′)g(0) (or (n−n′+ t)g(0)),

which is comparable to (n− n′)g(x). Therefore, we can apply the same analysis.
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Theorem 2.6.9. If an S-normal function g ∈ G0 is not predictable, then g is not 1-pass

tractable.

Proof. Still use the same reduction to INDEX with the g(0) = 0 case. Now the g-SUM

results differs by (n − |A|)g(0). By slow dropping, there exists a sub-polynomial function

h(x) such that g(0) ≤ h(y)g(y). Therefore, all the analyses remain the same.

2.6.5 Upper Bound

The algorithm should still work by the following 2 lemmas.

Lemma 2.6.10. Let g ∈ G0 be an S-normal function that is slow-jumping and slow-

dropping. There exists a sub-polynomial function h such that for any D ∈ D(n,m) with

frequencies v1, v2, . . . , vn, if g(vi) ≥ λ
∑

j g(vj) then v2
i ≥ λ

h(|vi|)
∑
|vj |<|vi| v

2
j .

Proof. The proof is the same as in the g(0) = 0 case with additional care of g(0) = 1.

Lemma 2.6.11. If g ∈ G0 is slow-dropping, slow-jumping, and predictable, then there is a

sub-polynomial function h such that for all y ∈ [rε(x)+1, x/h(x)) we have g(y) ≥ g(x)/h(x).

Proof. The proof is the same as in the g(0) = 0 case with additional care of g(0) = 1.

2.6.6 Lower bound for DISJ+IND

Theorem 2.6.12. The randomized one-way communication complexity of DISJ+IND(n, t)

is Ω(n/t log n).
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Proof. We give a reduction from DISJ(n, t + 1). Let P be any randomized protocol for

DISJ+IND(n, t). Run in parallel ` = d96 log ne independent copies of P through the first

t players. This produces ` transcripts. Player t + 1 now takes the each of the transcripts

and computes the final value of each once for every element he holds, as if it was the only

element he held. No communication is need for this part because P is a one-way protocol

and t+ 1 is the final player.

Player t+ 1 then takes the majority vote among the independent copies of P for each

element. If any vote signals an intersection then he reports intersection; otherwise he reports

disjoint.

If every one of the |At+1| ≤ n majorities is correct then the final player’s report is

correct. Let Xi, for i ∈ At+1, be the number among the ` copies of P with the correct

outcome when the final player completes protocol using i ∈ At+1. Then Xi is Binomially

distributed from ` trials with success probability at least 2/3. Using a Chernoff Bound we

find

P (Xi ≤ `/2) = P

(
Xi ≤ (1− 1

4
)
2

3
`

)
≤ exp

{−1

32
µ

}

≤ exp

{−1

32
· 2

3
`

}
≤ 1

n2
.

Thus, with probability at least 1 − 1
n every majority vote is correct, hence our DISJ(n, t)

protocol is correct for n ≥ 3.

Let T1, T2, . . . , T` be the transcripts. The total cost of this DISJ protocol is
∑`

i=1 |Ti|.

Since DISJ(n, t+ 1) requires Ω(n/t) bits of communication, at least one of the protocols has
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length Ω(n/t`) = Ω(n/t log n), hence |P| = Ω(n/t log n) bits of communication.

2.6.7 Lower bound for ShortLinearCombination

The 3-frequency Distinguishing Problem

We first define the ShortLinearCombination problem for three frequencies, which we call

(a, b, c)-DIST for short.

Definition 2.6.13. A stream S with frequency vector v is given to a one-pass streaming

algorithm. v is promised to be from V0 = {−a, a,−b, b, 0}n or V1 = {EMB(v, i, e) | v ∈

V0, i ∈ [n], e ∈ {−c, c}}, where a, b, c > 0 and

EMB(v, i, e)j =





vi i 6= j

e i = j

(in other words, V1 is given by replacing a coordinate of a vector v from V0 with −c or c).

The (a, b, c)-DIST problem is for the algorithm to distinguish whether v ∈ V0 or v ∈ V1.

To study this problem, we first consider the special case where c = gcd(a, b) = 1.

Proposition 2.6.14. If gcd(a, b) = 1, then any randomized algorithm solving (a, b, 1)-DIST

with probability at least 2/3 requires Ω(n/max(a, b)2) bits of memory.

Proof. We use the same notation as in,17 and in particular refer to that work for background

on information complexity. Without loss of generality, we assume a > b. Consider a

communication problem in which Alice is given a vector v1 and Bob is given a vector v2,
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for which v = v1 − v2 ∈ V0 ∪ V1. The players are asked to solve the (a, b, 1)-DIST on v.

This problem is OR-decomposable with primitive DIST(x, y), where DIST(x, y) = 1 if and

only if |x − y| = 1. Consider a randomized protocol Π which succeeds with probability at

least 2/3 in solving this problem, and suppose Π has the minimum communication cost of

all such protocols. We now call (a, b, 1)-DIST f for short. The following is well known (see,

e.g.,17),

R2/3(f) ≥ ICµ,2/3(f),

where R2/3(f) is the communication complexity of the best randomized protocol (with error

probability at most 2/3) on the worst case input, µ is any distribution over the input space,

and ICµ is the information complexity of the best protocol over the input distribution µ.

We now construct an input distribution µ as follows. Let D be chosen uniformly at random

over {Alice, Bob}, E is chosen uniformly from {a, a+ 1, a+ 2, . . . ,m− a}, where m� a is

a sufficiently large integer for which the coordinates of the vector jointly created by Alice

and Bob will never exceed m. Denote by ξ the joint distribution of (D,E). Based on the

value of D and E, the input distribution γ of Alice and Bob is decided as follows: if D

chooses Alice, then the input X of Alice is chosen uniformly at random from the multiset

{E− a,E− b, E,E,E,E,E+ a,E+ b}, and Bob is given E; if D chooses Bob, γ just swaps

the role of Alice and Bob. Clearly, γ is a product distribution conditioned on (D,E). We

have that ζ = (γ, ξ) is a mixture of product distributions. Let η = ζn, and let µ be the

distribution obtained by marginalizing (D,E) from η. Since every joint vector created above

is from V0, µ is a collapsing distribution for f (see17). Then by Lemma 5.1 and Lemma 5.5
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of,17 we have the following direct sum result:

I(X,Y; Π(X,Y) | D,E) ≥ n · CICζ,2/3(DIST).

We now expand the terms of CICζ,2/3(DIST). Let [a,m− a] = {a, a+ 1, a+ 2, . . . ,m− a},

Ue be the random number from the uniform distribution on multiset K ≡ {e − a, e +

a, e, e, e, e, e − b, e + b}, and Ψ be the transcript of a communication-optimal randomized

protocol for the primitive function DIST. Let βe,y be the distribution of Ψ(e, y) and βe =

1
8

∑
y∈K βe,y be the average distribution. The following inequalities follow from Lemma

2.45 and Lemma 2.52 in Bar-Yossef’s PhD thesis,73 the Cauchy-Schwarz inequality, and the

triangle inequality.
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CICζ,2/3(DIST)

=
1

2|m− 2a|
∑

e∈[a,m−a]

[I(Ue; Ψ(Ue, e))

+ I(Ue; Ψ(e, Ue))]

=
∑

e∈[a,m−a]
ej∈K

Pr[Ue = ej ]

2(m− 2a)
[KL(βe,ej ||βe)

+KL(βej ,e||βe)]

(Bar-Yossef’s Thesis Proposition 2.45)

≥ 1

8 ln 2(m− 2a)

∑

e∈[a,m−a]
j∈{−a,−b,0,..0,a,b}

[h2(βe+j,e, βe)

+ h2(βe,e+j , βe)]

(Cauchy-Schwarz)

≥ 1

16 ln 2(m− 2a)

∑

e∈[a,m−a]

[(h(βe,e, βe) + h(βe,e+a, βe))
2

+ (h(βe−a,e, βe) + h(βe,e, βe))
2

+ (h(βe,e, βe) + h(βe,e+b, βe))
2

+ (h(βe−b,e, βe) + h(βe,e, βe))
2]

(Triangle inequality and Cauchy-Schwarz)

≥C
m

∑

e∈[2a,m−2a]

h2(βe,e, βe+a,e+a) + h2(βe,e, βe+b,e+b), (2.6.1)

where C is a constant. Now we are able to group the terms. By the Euclidean algorithm,

62



CHAPTER 2. STREAMING FUNCTIONS OF ONE VARIABLE ON FREQUENCY
VECTORS

there exist integers p and q such that pa + qb = 1. Let q be such an integer with smallest

absolute value. We then have a/b ≤ |q| ≤ a and |p| ≤ |q|. Therefore, for any i ∈ [4,m/4a−4],

we can select up to |p|+ |q| terms from the range [4ai− 2a, 4ai+ 2a] to group in the above

equation. Without loss of generality, assume y > 0. First, using the Cauchy-Schwarz

inequality, we have

CICζ,2/3(DIST) ≥ C

4ma

∑

i

( ∑

e∈[4ai−2a,4ai+2a]

h(βe,e, βe+a,e+a) + h(βe,e, βe−a,e−a)

+ h(βe,e, βe+b,e+b) + h(βe,e, βe−b,e−b)
)2

.

Next, group the terms using the triangle inequality such that whenever combining an a-term

h(βe,e, βe′+a,e′+a), follow this by combining bq/pc b-terms h(βe,e, βe′′−b,e′′−b). Therefore, the

combined term e′ is always guaranteed to be in [4ai−2a, 4ai+2a]. There might be a concern

that a term is combined twice, namely, that there exist |q1| ≤ |q2| ≤ |q|, |p1| ≤ |p2| ≤ |p| and

(q1, p1) 6= (q2, p2) such that p1a+ q1b = p2a+ q2b. But this is impossible since gcd(a, b) = 1

and (p− (p2−p1))a+(q− (q2− q1))b = 1 contradicts that q has the smallest absolute value.

Therefore, we are left with,

CICζ,2/3(DIST) ≥ C ′

ma

∑

i∈[4,m/4a−4]
e=4ai

h2(βe,e, βe+1,e+1). (2.6.2)

Now invoke the Pythagorean lemma of,17 stating that h2(βe,e, βe+1,e+1) ≥ 1/2(h2(βe,e, βe+1,e)+

h2(βe+1,e, βe+1,e+1)), as well as the correctness of the protocol, stating that the h2(βe,e, βe,e+1)
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terms can each be lower bounded by a positive constant. Thus,

CICζ,2/3(DIST) ≥C
′′

a2
. (2.6.3)

The above proof also makes use of the following lemma.

Lemma 2.6.15. Let a, b be two integers such that gcd(a, b) = 1 and b < a. Then there

exist integers x, y such that ax + by = 1. Let y be such an integer with smallest absolute

value. Then b/a ≤ |y| ≤ a and |x| ≤ |y|.

Proof. To see that |y| ≤ a, w.l.o.g., we assume y > a. Then y = qa + r, where r < a < y

and q < y. Thus ax + b(qa + r) = 1, and (qb + x)a + rb = 1 contradicts that y has the

smallest absolute value. It is clear that |y| ≥ a/b. It remains to show that |x| ≤ |y|. This

holds since x = (1− by)/a and b < a.

Now we look at a more general case.

Theorem 2.6.16. Let a, b, c be positive integers such that c 6= a and c 6= b. Suppose there

exist integers p, q such that ap + bq = c. Let q be such an integer with smallest absolute

value. Then any randomized algorithm solving (a, b, c)-DIST with probability at least 2/3

requires Ω(n/q2) bits of memory.

Proof. The proof of this theorem is a modification of the proof of the previous proposition.

With a similar distribution (replacing 1 with c), we have that Equation (2.6.1) holds. The

remaining task is to show a partition scheme of the terms such that Θ(m/(|p|+ |q|)2) terms
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survive. Choose an arbitrary e ∈ [4a2,m − 4a2]. W.l.o.g. assume p > 0. We can combine

the following |p|+ |q| terms,

h2(βe,e, βe+a,e+a) + h2(βe+a,e+a, βe+2a,e+2a)

+ . . .+

+ h2(βe+pa−a,e+pa−a, βe+pa,e+pa)

+ h2(βe+pa,e+pa, βe+pa−b,e+pa−b)

+ h2(βe+pa−b,e+pa−b, βe+pa−2b,e+pa−2b)

+ . . .+

+ h2(βe+pa+qb+b,e+pa+qb+b, βe+pa+qb,e+pa+qb)

≥ 1

|p|+ |q| [
p∑

i=1

h(βe+(i−1)a,e+(i−1)a, βe+ia,e+ia)

+

|q|∑

j=1

h(βe+pa−(j−1)b,e+pa−(j−1)b, βe+pa−jb,e+pa−jb)]
2

(Cauchy-Schwarz)

≥ h2(βe,e, βe+1,e+1)

|p|+ |q| (Triangle inequality).

Choose an e. This forbids the choice of another e from the above terms. In fact, e uniquely

determines two arithmetic progressions: e, e+ a, e+ 2a, . . . , e+ pa and e+ pa− b, e+ pa−

2b . . . , e+ pa+ qb. Now, in order to choose a new e′, the value e′ cannot be a number from

the above two progressions, and the progressions determined by e′ cannot share a term with

one of e. Therefore, because we chose e, 2(|p|+ |q|) terms are not available for a new choice

of e′. By choosing e from [4a2,m− 4a2] one at a time, we can find (m− 8a2)/a different e

65



CHAPTER 2. STREAMING FUNCTIONS OF ONE VARIABLE ON FREQUENCY
VECTORS

for the purpose of combining terms. Denote the set of these e by S. In summary, we have,

CICζ,2/3(DIST) ≥ C

m(|p|+ |q|)
∑

e∈S
h2(βe,e, βe+1,e+1). (2.6.4)

Since h2(βe,e, βe+1,e+1) is bounded below by a constant as indicated in the previous propo-

sition, and since |S| = m− 8a2 = Ω(m), we have CICζ,2/3(DIST) = Ω(1/q2).

The above lower bound is tight in the sense that there is a protocol that uses O(n/q2)

memory bits and solves (a, b, c)-DIST.

Proposition 2.6.17. Let a, b, c, p, q be integers satisfying the same conditions as in the pre-

vious theorem. Then there is a randomized algorithm solving (a, b, c)-DIST with probability

at least 2/3 using O(n/q2) · poly(log n) bits of memory.

Proof. Before the beginning of the stream, we partition [n] into t contiguous pieces each of

size n/t, where t = Õ(n/q2), and the Õ notation hides logarithmic factors in n. For the

i-th piece of the universe, let the corresponding substream restricted to elements in the i-th

piece be denoted by Si. For each Si, we maintain a counter Ci for which

Ci =
∑

l:h[l]=i

vlξl =
∑

x∈{a,b,1}
zi,xx

where ξl ∼ {−1,+1} are uniform 4-wise independent random bits and zi,x =
∑

l:h[l]=i,|vl|=x ξl.

Let yi,x denote the number of occurrence of |x| in the i-th stream. We have yi,x ≤ n/t. By

standard concentration arguments, we have that with arbitrarily large constant probability,

|zi,x| = Õ(
√
yi,x) = Õ(

√
n/t). We can select an appropriate t = Õ(n/q2) for which this

66



CHAPTER 2. STREAMING FUNCTIONS OF ONE VARIABLE ON FREQUENCY
VECTORS

implies |zi,x| is at most |q|/4. Now the claim is that by reading the value Ci mod a, this

is enough to distinguish whether there is a frequency of absolute value “c” in the stream

or not. This follows since the sets of values of Ci mod a in the two cases are disjoint. To

see why, note that if z′bb = zbb+ c mod a, then we have (z′b − zb)− ra = c. However, since

|z′b − zb| < |q|, by the minimality of |q|, this is a contradiction.

ShortLinearCombination Problem for Multiple of Frequencies

Definition 2.6.18. Let u = (u1, u2, . . . ur) be a vector in Zr for an integer r. Let d > 0 be

an integer not in the vector u. A stream S with frequency vector v is given to an algorithm,

where v is promised to be from V0 = {u1, u2, . . . , ur, 0}n or V1 = {EMB(v, i, e) | v ∈ V0, i ∈

[n], e ∈ {−d, d}}. The (u, d)-DIST problem is to distinguish whether v ∈ V0 or v ∈ V1.

Theorem 2.6.19. Let u = (a1, a2, . . . , ar) be a set of integers and d > 0 be a positive

integer such that d = q1a1 + q2a2 + . . . qrar where q1, q2, . . . qr are integers. These integers

are choosen such that q =
∑

i |qi| is minimal. Then any randomized algorithm solving

(u, d)-DIST with probability at least 2/3 requires Ω(n/q2) bits of memory.

Proof. The proof of the lower bound is a straightforward extension of the previous argument

for three frequencies. Let a = max(a1, a2, . . . , ar). The number of combined terms is

m/(|q1|+ |q2|+ . . . |qr|). Therefore, the lower bound is Ω(n/q2). The upper bound is a also

a straightforward extension of the three frequency case.
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Chapter 3

Nearly Optimal Characterization

of Streaming Symmetric Norms

This chapter is based on BBCKY (STOC 2017).21

3.1 Background

The study of norms on data streams has a rich history, and in particular has driven

much of the fantastic development of streaming algorithms, see e.g.7,14–16 A data stream is

a sequence of additive ±1 updates that accumulate on the coordinates of an n-dimensional

vector v, and a streaming algorithm reads the sequence of updates and computes some

function of v. This is known as the turnstile model, and for simplicity we assume that

|vi| ≤ poly(n), for all i ∈ [n]. Despite plenty of work, it is still an open problem to design
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a generic streaming algorithm for approximating norms. Although very challenging, it

may not be too much to ask for. In fact, several existing methods, including the Indyk-

Woodruff sketch,15,74 yield so-called “universal sketches” that can be used to approximate

whole classes of streaming problems at once. So we ask, is there a generic method that can

approximate any desired norm of a stream with near-optimal space complexity? Second, is

there a universal sketch whose single evaluation on a vector (say on a stream) suffices to

approximate every norm in a wide class? While several powerful upper and lower bound

techniques have been developed, including embeddings, heavy-hitters, and reductions from

Communication Complexity, it is not apparent how they can be applied to an entirely new

norm, see also Open Problems 5 (Sketchable Distances) and 30 (Universal Sketching) in the

list.75

This is a real challenge for at least two reasons. First, we lack a generic framework for

embeddings. Even when it is possible to embed into an easy-to-handle space, a new embed-

ding must be constructed and applied to the input stream for each norm. Second, current

techniques, heavy-hitters included, have been confined to norms with additive structure.

Nearly all of the norms considered so far decompose, on some level, into a sum of inde-

pendent quantities, and this fact is heavily exploited in the design of algorithms and lower

bounds. Examples include lp norms (see references in Section 3.1.3), the entropy norm,76–78

and cascaded lp norms.79,80 Abandoning our reliance on additive decomposability has been

a major bottleneck en route to a broader characterization of norms.

We overcome this barrier in the setting of symmetric norms, see e.g. [81, Chapter IV].

A norm l : Rn → R is called symmetric if, for all x ∈ Rn and every n × n permutation
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matrix P , it satisfies l(Px) = l(x) and also l(|x|) = l(x), where |x| is the coordinate-wise

absolute value of x. It is a partial answer to the question above, as we design a generic

algorithm for symmetric norms and it is based on a universal sketch. Specifically, for every

s > 0, there is a single sketch of size s · poly(log(n)/ε), that yields a (1± ε)-approximation1

for every symmetric norm whose streaming space complexity is at most s. In fact, we show

that the streaming space complexity of a symmetric norm is determined by the norm’s

measure-concentration characteristics. To be precise, let X ∈ Rn be uniformly distributed

on Sn−1, the l2 unit sphere. The median of a symmetric norm l is the (unique!) value

Ml such that Pr[l(X) ≥ Ml] ≥ 1/2 and Pr[l(X) ≤ Ml] ≥ 1/2. Similarly, bl denotes the

maximum value of l(x) over x ∈ Sn−1. We call the ratio

mc(l) := bl /Ml

the modulus of concentration of the norm l. Our results show that this modulus of concen-

tration is crucial in determining the streaming space complexity of any symmetric norm.

This quantity governs many phenomena in high-dimensional spaces, for example, it appears

in large-deviation bounds and the critical dimension in Dvoretzky’s Theorem is n/mc(l)2,

see e.g.82,83

Symmetric norms clearly include the lp and entropy norms, and we present fresh exam-

ples with heretofore unknown streaming space complexity, like the top-k norm, Q norms,

1We state the approximation ratio in one of two standard ways. A D-approximation, D ≥ 1, to l(v)

is a value l̂ such that l(v) ≤ l̂ ≤ Dl(v). When D is very close to one, it is more convenient to consider a

(1 ± ε)-approximation, 0 ≤ ε < 1/2, which is defined as (1 − ε)l(v) ≤ l̂ ≤ (1 + ε)l(v) and corresponds to a
D-approximation for D = 1+ε

1−ε .

70



CHAPTER 3. NEARLY OPTIMAL CHARACTERIZATION OF STREAMING
SYMMETRIC NORMS

and Q′ norms, later on. Although matrix norms are generally not symmetric, our results

immediately imply lower bounds for unitarily invariant matrix norms, for example the Ky

Fan norms, by restricting attention to diagonal matrices.

One well-studied family of symmetric norms is that of lp norms on Rn, defined as

lp(x) := (
∑n

i=1 |xi|p)1/p. For 1 ≤ p ≤ 2, the maximum value of lp(x) over x ∈ Sn−1 is

blp = n1/p−1/2 and concentrates at Mlp = Θ(n1/p−1/2), so the modulus of concentration

is mc(lp) = O(1). For p > 2, the maximum is blp = 1 but again concentrates at Mlp =

Θ(n1/p−1/2), hence mc(lp) = Θ(n1/2−1/p). Recall that the streaming space complexity for

a (1 ± 1/10)-approximation of lp is Θ(log n), when p ≤ 2,84 and is Θ(n1−2/p log n) when

p > 268,71 (the constant 1/10 here is arbitrary). Thus for all values of p ≥ 1, the space

complexity of computing a (1 ± 1/10)-approximation to lp is Θ(mc(lp)
2 log n). Our main

result recovers this fact up to a polylogn factor.

But, the modulus of concentration cannot be the whole story for streaming algorithms.

It expresses an average behavior of the norm on Rn, and even if the norm is well-behaved

on average, like l1 for example, it is possible that a more difficult norm is concealed in

a lower-dimensional subspace. One example of this is l(x) := max{l∞(x), l1(x)/
√
n} on

Rn, which has mc(l) = O(1). However, when x has fewer than
√
n nonzero coordinates,

l(x) = l∞(x), which is just a lower-dimensional copy of l∞ and implies, by,14 an Ω(
√
n)

space lower bound for l. In order for the modulus of concentration to have any connection

with streaming space complexity, we have to close this gap.
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Notice that, for every k ≤ n, the norm l induces a norm l(k) on Rk by setting

l(k)((x1, x2, . . . , xk)) := l((x1, . . . , xk, 0, . . . , 0)).

Of course, because of the permutation symmetry we could have chosen any set of n − k

coordinates to be the zeros. As the examples above show, the modulus of concentration of

l(k) may vary with k. However, any streaming approximation algorithm for l is also trivially

a streaming approximation algorithm for l(k). We therefore define the maximum modulus

of concentration of the norm l as

mmc(l) := max
k≤n

mc(l(k)) = max
k≤n

bl(k)

Ml(k)

.

Our main result is that this quantity characterizes the streaming space complexity of every

symmetric norm l.

3.1.1 Our Results

Quite surprisingly, for every symmetric norm l on Rn, the optimal space complexity of

a streaming algorithm that gives a (1± ε)-approximation for l is mmc(l)2 · poly(log(n)/ε).

This characterization tells us in particular whether a given symmetric norm admits a poly-

logarithmic space approximation or requires polynomial space.

Theorem 3.1.1 (Main Theorem). Let l be a symmetric norm on Rn. For every ε > 0, there

is a one-pass streaming algorithm that on an input stream vector v ∈ Rn computes, with

probability at least 0.99, a (1± ε)-approximation to l(v), and uses mmc(l)2 · poly(log(n)/ε)
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bits of space.

Theorem 3.1.2 (Lower Bound). Let l be a symmetric norm on Rn. Any turnstile streaming

algorithm that outputs, with probability at least 0.99, a (1 ± 1/6)-approximation for l(·)

must use Ω(mmc(l)2) bits of space in the worst case.

For the coarser D-approximation, where D > 1.1 and can grow with n, in Theorem 3.1.3

we build upon the algorithm of Theorem 3.1.1 trading the larger approximation ratio for a

1/D2 multiplicative decrease in storage. It turns out that the quadratic dependence on D

is the best possible; we prove the matching lower bound in Theorem 3.1.4.

Theorem 3.1.3. Let l be a symmetric norm on Rn. For every 1.1 ≤ D ≤ mmc(l) there

is a one-pass streaming algorithm that on input stream vector v ∈ Rn computes, with

probability at least 0.99, a D-approximation to l(v) and uses (mmc(l)2/D2) · poly(log n)

bits of space.

Theorem 3.1.4. Let l be a symmetric norm on Rn. Any turnstile streaming algorithm that

outputs, with probability at least 0.99, a D-approximation for l(·) must use Ω(mmc(l)2/D2)

bits of space in the worst case.

We prove the upper bound theorems in Sections 3.3 and 3.5, respectively, with some

details in the full version of this paper.). The lower bounds both appear in Section 3.4. To

our knowledge, this is the first application of measure concentration to streaming algorithms

(Chernoff and Hoeffding bounds aside). The geometric and analytical properties of high-

dimensional normed spaces have become well understood over decades of research. We

hope that more tools from that field can be brought to bear on these intriguing streaming

problems, see Section 3.8 for promising directions for further work.
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Applications and Examples. Section 3.6 describes some applications of our results.

One application is to a class of norms called Q′ norms,81 which includes the lp norms for

1 ≤ p ≤ 2, among others. Q′ norms are just the dual norms to Q norms (shorthand for

quadratic), which in turn are norms of the form l(x) = Φ(x2)1/2, for some symmetric norm

Φ, where x2 denotes coordinate-wise squaring of x. We study these norms in Section 3.6.2.

The upshot is that every Q′ norm l′ has mmc(l′) = O(log n), and thus can be computed by

a streaming algorithm using polylogarithmic space. Several Q′ norms have been proposed

as regularizers for sparse recovery problems in Machine Learning. One such norm is the

k-support norm,85 which is more conveniently described via its unit ball Ck = conv{x ∈

Rn : |supp(x)| ≤ k and l2(x) ≤ 1}. It is not readily apparent how to design a specialized

streaming algorithm for this norm, but we obtain such an explicit algorithm, for every k, as a

special case of Q′ norms. Another example is the box-Θ norm,86 where given 0 < a < b ≤ c,

we let Θ := {θ ∈ [a, b]n : l1(θ) ≤ c}, and define the box-Θ norm as

lΘ(x) := min
θ∈Θ

( n∑

i=1

x2
i /θi

)1/2
, and its dual norm is l′Θ(x) := max

θ∈Θ

( n∑

i=1

θix
2
i

)1/2
.

It’s easy to see that every box-Θ norm is a Q′ norm, and therefore has polylogarithmic

streaming space complexity. To the best of our knowledge, there is no other technique that

can approximate these norms on a streaming vector.

Our results also apply to what we shall call the top-k norm. Denoted as Φk(x), it is

defined as the sum of the k largest coordinates of |x|.81 This norm is a special case of the

Ky Fan k-norm and is sometimes studied as a toy example to understand regularization
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of the Ky Fan norms.87 We show in Section 3.6.1 that mmc(Φk) = Θ̃(
√
n/k), so when k

is large, for example linear in n, the top-k norm of a stream vector can be approximated

in only polylogarithmic space. We are aware of no other streaming algorithms that can

approximate this norm, as ours does.

3.1.2 Overview of Techniques

Upper Bound. Our algorithm for Theorem 3.1.1 uses a linear sketch in the style of Indyk

and Woodruff’s sketch for large frequency moments,15 but the size of the sketch is calibrated

by mmc(l). The algorithm is presented in Section 3.3, with some details presented in the full

version. This is a surprising application of the Indyk-Woodruff sketching technique, as all

previous applications of this method are to computing functions with an additive structure

∑n
i=1 f(vi). In these settings, the Indyk-Woodruff algorithm can be viewed as performing

Importance Sampling of the summands of the target function
∑n

i=1 f(vi). However, a sym-

metric norm l need not have an explicit mathematical formula, let alone be decomposable

as a sum, and we thus need a different way to identify the “important” coordinates, which

informally means that zeroing these coordinates would introduce too much error to l(v).

At a high level, our analysis makes two major contributions. The first is to provide an

explicit criterion for importance, and the second is to reveal that inside this importance

criterion, the most crucial quantity is the maximum modulus of concentration mmc(l). A

more detailed outline of the analysis follows, omitting constants and dependence on ε.

First, we imagine rounding each coordinate of the streaming vector v to a power of

α = 1 + 1/polylog(n), which can be seen to have negligible effect using basic properties
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of symmetric norms. Moreover, since the norm is symmetric, it suffices to know only the

number of coordinates, bi, at each “level” αi. By our choice of α, there are only polylog(n)

levels, so we can represent the rounded vector succinctly. Recovering the rounded vector

exactly would require linear storage, so we use the Indyk-Woodruff sampling technique to

approximate the vector.

The Indyk-Woodruff procedure approximates each bi by sampling each coordinate i

of the vector v with probability polylog(n)/bi, and then in the sampled vector (which is

expected to have polylog(n) coordinates of level i whenever bi 6= 0), the algorithm identifies

l2-heavy-hitters. If the coordinates of level i are l2-heavy-hitters in the sampled vector (they

are in the same level and thus have about the same value), then we get a good estimate of

bi; it’s not as simple as counting them and scaling inversely to the sampling probability, but

that is the right idea. If the coordinates are not l2-heavy-hitters, then we get no estimate

for bi, and must assume it is 0. We show that if we parameterize the sketch according to

mmc(l)2, then we get approximations to all the “important” levels, which is sufficient to

accurately recover l(v).

Lower Bound. The lower bound of Theorem 3.1.2 is proved using a reduction from the

Communication Complexity of multiparty set-disjointness, and concentration of measure of

the norm l again plays a key role. In the disjointness setting, each of t players is given a

subset of [n], and their task is to determine whether the sets are mutually disjoint or are

“uniquely” intersecting. Instead of the standard reduction, where each player places in the

stream one update to vi for every element i ∈ [n] in the set he holds, in our reduction,
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each player j ∈ [t] adds to the stream a vector w(i,j) ∈ Rn whenever element i is in

his set. Each vector w(i,j) is random but the entire collection of vectors is designed so

that the resulting stream vector is, roughly, a uniformly random vector on a “disjoint”

instance, and a vector maximizing the norm on an “intersecting” instance. For these two

cases to be well-separated, we must choose the number of players t to be large enough.

By applying concentration of measure, we show that t = O(
√
n/mmc(l)) players suffice,

and, by known communication bounds for disjointness,17,70,71 this leads to an Ω(n/t2) =

Ω(mmc(l)2) storage lower bound for every algorithm approximating the norm l to within

1± 1/6 (the constant 1/6 is arbitrary). Extending the lower bound to a D-approximation,

for D bounded away from 1, can be accomplished with the same reduction using t =

O(D
√
n/mmc(l)) players instead, which yields Theorem 3.1.4. The proofs of both lower

bound theorems can be found in Section 3.4.

Optimal Tradeoff. For the D-approximation algorithm, Theorem 3.1.3, the idea is to

define, given a norm l, a new symmetric function l(D) : Rn → R≥0 such that l(x) ≤ l(D)(x) ≤

Dl(x). Even though l(D) is not a norm, we can still define mmc(l(D)), which is bounded

as Õ(mmc(l)/D). The approximation comes by using our main algorithm to get a 1.1-

approximation to l(D)(v), which translates into a 2D-approximation of l(v). The definition

of l(D) and its analysis are presented in Section 3.5.
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3.1.3 Related Work

There has been extensive work on computing norms, and related functions, in the

sketching and streaming models. Most recently, Andoni, Krauthgamer, and Razenshteyn60

have shown that a normed space (Rn, l) embeds linearly into l0.99 with distortion D > 1

if and only if this normed space admits distance estimation sketching with approximation

Θ(D) and sketch size O(1) bits. Thus, they characterize sketching of a general norm by

its embeddability. In comparison, our characterization applies only to symmetric norms,

but we consider streaming (not sketching) algorithms, which in Theorem 3.1.1 means a

stronger consequence, and in Theorem 3.1.2 means a stronger assumption. And perhaps

more importantly, our results achieve (1 + ε)-approximation, while their algorithm achieves

approximation proportional to D (though their lower bound shows a linear tradeoff with

sketch size).

Another important tool that may seem relevant is that every turnstile streaming algo-

rithm can be replaced by a linear sketch, as shown by Li, Nguyen, and Woodruff.61 However,

this transformation does not make it easy to determine the streaming complexity of a given

symmetric norm l, because it is not easy to design a linear sketch for l.

There are other generic streaming algorithms that provide approximation guarantees

for an entire class of functions of the form
∑n

i=1 f(vi), where f is some nonnegative func-

tion.18,66 If one has a so-called f -heavy-hitters algorithm that identifies every coordinate i

accounting for half of the total sum, i.e., f(vi) ≥
∑

j 6=i f(vj) and moreover approximates this

f(vi), then one can also approximate the sum
∑n

i=1 f(vi), incurring only an O(log n) factor

78



CHAPTER 3. NEARLY OPTIMAL CHARACTERIZATION OF STREAMING
SYMMETRIC NORMS

overhead on top of the f -heavy-hitters algorithm’s storage. For a large class of functions

f , including monotone functions, computing f -heavy-hitters can be reduced to computing

l2-heavy-hitters in several random sub-streams20,74 or even just random sampling.19 Uni-

versality falls out as a side-effect of the design of the algorithm — the only dependence on f

is through the number of sub-streams, which determines the sketch size, up to a polylog(n)

factor. Therefore, any two functions that lead to the same sketch size, in fact, use the exact

same sketch.

Finally, we should mention there is a very long line of results on estimating lp norms

(also called frequency moments) in a data stream, including designing small-space algo-

rithms14–16,66,84,88–93 and proving space lower bounds.17,68,70,71,94,95 This list omits im-

provements of the runtime of update and output procedures, and devising extensions like

lp sampling.

3.2 Preliminaries

An important unit vector for us is ξ(n′) := 1√
n′

(1, 1, 1, . . . 1, 0, . . . , 0) ∈ Rn, for any

n′ ≤ n, which has n′ nonzero coordinates. We abuse the notation to write ξ(n′) ∈ Rn′ by

removing zero coordinates, and vice-versa by appending zeros. Let us record some basic

facts about symmetric norms.

Lemma 3.2.1 (Monotonicity of Symmetric Norms, see e.g. Proposition IV.1.1 in81). If l(·)

is a symmetric norm and x, y ∈ Rn satisfy that for all i, |xi| ≤ |yi|, then l(x) ≤ l(y).

Without loss of generality, we assume that our norms are normalized on the standard
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basis, i.e., l(ei) = 1. Recall that the dual of a norm l : Rn → R is the norm l′ : Rn → R

given by l′(x) := sup{ |〈x,y〉|l(y) : y 6= 0}. For the following facts see, e.g., [82, Sections 3.1.2 and

4.5].

Fact 3.2.2. For all x ∈ Rn, l∞(x) ≤ l(x) ≤ l1(x).

Fact 3.2.3. Let a, b > 0 be such that, for all x ∈ Rn, a−1 l2(x) ≤ l(x) ≤ b l2(x). Then, for

all x ∈ Rn, b−1 l2(x) ≤ l′(x) ≤ a l2(x).

Fact 3.2.4. Ml Ml′ ≥ 1.

We restrict attention to vectors v whose coordinates are in the range {−m, . . . ,m}, for

m = poly(n), so logm = O(log n). Our results still apply when m is larger but one must

replace log n factors with logm factors.

Last, we must be precise about the model of computation, because we do not have a

mathematical formula for the norm. Our algorithm will rely on evaluating the norm on a

vector that is derived from a sketch of the stream. Every coordinate of this vector should be

easy to recover from the sketch, but the vector need not be written explicitly, to avoid Ω(n)

storage. To accomodate this, we make the assumption that our algorithm has access to

an oracle NORM that computes l(v) using queries to the coordinates of v, i.e., our algorithm

must provide query access to any coordinate vi.

3.3 An Algorithm for Symmetric Norms

In this section we prove Theorem 3.1.1, which shows that a symmetric norm can be

approximated in the turnstile streaming model using one pass and O(mmc(l)2poly(1/ε ·
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log n)) bits of memory. The Algorithm 3, uses a subroutine called Level1, whose full

description appears in the full version. The rest of this section considers a given symmetric

norm l on Rn and a desired accuracy parameter 0 < ε < 1. Let the two parameters α > 1

and 0 < β ≤ 1 be determined later, possibly depending on n, ε and mmc(l). We assume

mmc(l) ≤ γ√n, for some sufficiently small constant 0 < γ � 1/2, since otherwise the lower

bound given in Theorem 3.1.2 implies that linear memory is necessary to approximate this

norm with a streaming algorithm.

3.3.1 Level Vectors and Important Levels

Definition 3.3.1 (Important Levels). For v ∈ Rn, define level i as Bi := {j ∈ [n] : αi−1 ≤

|vj | < αi}, and denote its size by bi := |Bi|. We say that level i is β-important if

bi > β
∑

j>i

bj ; and biα
2i ≥ β

∑

j≤i
bjα

2j .

Recall from Section 3.2 that we restrict attention to vectors v whose coordinates are

in the range {−m, . . . ,m}, for m = poly(n). This assumption implies that the number of

non-zero bi’s is at most t = O(logα n). And if we normalize v to a unit vector in l2-norm,

then every non-zero coordinate has absolute value at least 1/poly(n).

We will rely on the next theorem, which shows a streaming algorithm recovers all the

important bi’s. Its proof appears in the full version.

Theorem 3.3.2. For every ε > 0, there is a one-pass streaming algorithm Level1 that

given an input stream and parameters α′ = 1 + γ > 1 and 0 < β ≤ 1, outputs {b̂i} for base
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α = 1 +O(γ), such that with probability 1−O(1/poly(n)), for all i,

• b̂i ≤ bi; and

• if level i is β-important, then b̂i ≥ (1− ε)bi.

This algorithm uses O(γ−5ε−2β−1 log12 n) bits of space.

To state and analyze our algorithm for approximating l(v), we introduce the following

notation. Later, we shall omit (v) from the notation, as it is clear from the context.

Definition 3.3.3 (Level Vectors and Buckets). Define the level vector for v ∈ Rn with

integer coordinates to be

V (v) := (α1, . . . , α1

︸ ︷︷ ︸
b1 times

, α2, . . . , α2

︸ ︷︷ ︸
b2 times

, . . . , αt, . . . , αt︸ ︷︷ ︸
bt times

, 0, . . . , 0) ∈ Rn;

and define the i-th bucket of V (v) to be

Vi(v) := ( 0, . . . , 0︸ ︷︷ ︸
b1+b2+...+bi−1 times

, αi, . . . , αi︸ ︷︷ ︸
bi times

, 0, . . . , 0︸ ︷︷ ︸
bi+1+bi+2...bt times

, 0, . . . , 0) ∈ Rn.

Let V̂ (v) and V̂i(v) be defined similarly for the approximated values {b̂i}. We denote

V (v)\Vi(v) as the vector with the i-th bucket replaced by 0; and denote V (v)\Vi(v)∪ V̂i(v)

as the vector by replacing the whole i-th bucket with V̂i(v), i.e.,

V (v)\Vi(v) ∪ V̂i(v) := (α1, . . . , α1

︸ ︷︷ ︸
b1 times

, . . . , αi, . . . , αi︸ ︷︷ ︸
b̂i times

, . . . , αt, . . . , αt︸ ︷︷ ︸
bt times

, 0, . . . , 0) ∈ Rn.
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3.3.2 Approximated Levels Provide a Good Approximation

We first show the level vector V can be used to approximate l(v), if we choose a base

α := 1 +O(ε).

Proposition 3.3.4. For all v ∈ Rn, l(V (v))/α ≤ l(v) ≤ l(V (v)).

Proof. Follows directly from the monotonicity of symmetric norms (Lemma 3.2.1).

The next key lemma shows that l(V̂ ) is a good approximation to l(V ).

Lemma 3.3.5 (Bucket Approximation). For every level i, if b̂i ≤ bi, then l(V \Vi ∪ V̂i) ≤

l(V ); and if b̂i ≥ (1− ε)bi, then l(V \Vi ∪ V̂i) ≥ (1−ε)l(V ).

Proof. The upper bound follows immediately from the monotonicity of norms. We will

prove the lower bound as follows. Let us take the vector

V̂i := ( 0, 0, . . . 0,︸ ︷︷ ︸
b1+b2+...+bi−1 times

αi, . . . αi︸ ︷︷ ︸
b̂i times

, 0, . . . , 0).

Let us also define W := V − Vi. Note that W + V̂i is a permutation of a vector V \Vi ∪ V̂i.

We will prove that, under assumptions of the lemma, l(W + V̂i) ≥ (̂bi/bi)l(V ).

For a vector v ∈ Rn and a permultation π ∈ Σn, we denote π(v) a vector in Rn such

that π(v)i := vπ(i). Since the norm l is symmetric, we have that l(v) = l(π(v)). Consider

a set of permultations S, consisting of all permutations that are cyclic shifts over the non-

zero coordinates of Vi, and do not move any other coordinates. That is, there is exactly bi

permultations in S, and for every π ∈ S, we have π(W ) = W . By the construction of the
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set S, we have,

∑

π∈S
π(V̂i) = b̂iVi

and therefore
∑

π∈S π(W + V̂i) = b̂iVi+biW . As vectors Vi and W have disjoint support, by

monotonicity of the norm l with respect to each coordinates we can deduce l(̂biVi + biW ) ≥

l(̂bi(Vi +W )). By plugging those together,

b̂il(Vi +W ) ≤ l(̂biVi + biW ) = l

(∑

π∈S
π(V̂i +W )

)

≤
∑

π∈S
l
(
π(V̂i +W )

)
= bil(V̂i +W ) (3.3.1)

where the last equality follows from the fact that l is symmetric and |S| = bi. Hence,

l(V̂i +W ) ≥ b̂i
bi
l(V ) ≥ (1− ε)l(V ), as desired.

3.3.3 Contributing Levels and Important Levels

Definition 3.3.6 (Contributing Levels). Level i is called β-contributing if l(Vi) ≥ β l(V ) .

Lemma 3.3.7. Let V ′ be the vector obtained from V by removing all levels that are not

β-contributing. Then (1−O(logα n) · β)l(V ) ≤ l(V ′) ≤ l(V ).

Proof. Let i1, . . . , ik be the levels that are not β-contributing. Then by the triangle inequal-

ity,

l(V ) ≥ l(V )− l(Vi1)− . . .− l(Vik) ≥ (1− kβ)l(V ).

The proof follows by bounding k by t = O(logα n), which is the total number of non-zero
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bi’s.

The following lemma and Lemma 3.3.15 show together that that every β-contributing

level is also β′-important for a suitable β′ that depends on mmc(l).

Lemma 3.3.8. If level i is β-contributing, then bi ≥ λβ2

mmc(l)2 log2 n
·∑j>i bj for some absolute

constant λ > 0.

We present the following concentration of measure results for the proof of this lemma,

Lemma 3.3.9. For every norm l on Rn, if x ∈ Sn−1 is drawn uniformly at random according

to Haar measure on the sphere, then

Pr(|l(x)−Ml | >
2 bl√
n

) <
1

3

Lemma 3.3.10. For every n > 0, there is a vector x ∈ Sn−1 satisfying

1. |l∞(x)−M
l
(n)
∞
| ≤ 2/

√
n,

2. |l(x)−Ml(n) | ≤ 2 bl(n) /
√
n, and

3. |{i : |xi| > 1
K
√
n
}| > n

2 for some universal constant K.

We prove these lemmas using Levy’s isoperimetric inequality, see e.g. [82, Section 2.3].

Theorem 3.3.11 (Levy’s Isoperimetric Inequality). For a continuous function f : Sn−1 →

R, let Mf be the median of f , i.e., µ({x : f(x) ≤ Mf}) ≥ 1/2 and µ({x : f(x) ≥ Mf}) ≥ 1/2,

where µ(·) is the Haar probability measure on the unit sphere Sn−1. Then µ({x : f(x) =

Mf}ε) ≥ 1 −
√
π/2e−ε

2n/2, where for a set A ⊂ Sn−1 we denote Aε := {x : l2(x,A) ≤ ε}

and l2(x,A) := infy∈A ||x− y||2.
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Proof of Lemma 3.3.9. By applying Theorem 3.3.11, for random x distributed according to

the Haar measure on the l2-sphere, with probability at least 1−
√
π/2e−2 > 2

3 there is some

y ∈ Sn−1, such that ‖x − y‖2 ≤ 2√
n

and l(y) = Ml. We know that norm l is bl-Lipschitz

with respect to ‖ · ‖2, and as such

|l(x)−Ml | = |l(x)− l(y)| ≤ l(x− y) ≤ bl ‖x− y‖ ≤
2 bl√
n

Proof of Lemma 3.3.10. Consider x drawn uniformly at random from a unit sphere. Ac-

cording to Lemma 3.3.9, we have Pr(|l∞(x) −M
l
(n)
∞
| > 2/

√
n) < 1

3 and Pr(|l(x) −Ml | >

2 bl /
√
n) < 1

3 .

Let us define τ(x, t) := |{i : |xi| < t}|. We need to show that for some universal constant

K, with probability larger than 2
3 over a choice of x, we have τ(x, 1

K
√
n

) < n
2 .

Indeed, consider random vector z ∈ Rn, such that all coordinates zi are independent

standard normal random variables. It is well known, that z
‖z‖2 is distributed uniformly

over a sphere, and therefore has the same distribution as x. There is a universal constant

K1 such that Pr(‖z‖2 > K1
√
n) < 1

6 , and similarly, there is a constant K2, such that

Pr(|zi| < 1
K2

) < 1
12 . Therefore, by Markov bound we have Pr(τ(z, 1

K2
) > n

2 ) < 1
6 . Using

union bound, with probability larger than 2
3 it holds simultanously that ‖z‖2 ≤ K1

√
n and

τ(z, 1
K2

) < n
2 , in which case τ(z/‖z‖2, 1

K1K2
√
n

) < n
2 .

Finally, by union bound, a random vector x satisfies all of the conditions in the state-

ment of the lemma with positive probability.
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We now prove that the norm l of the (normalized) all-ones vector ξ(n) is closely related

to the median of the norm. This all-ones vector is useful because it can be easily related to

a single level of V .

Lemma 3.3.12 (Flat Median Lemma). Let l : Rn → R be a symmetric norm. Then

λ1 Ml /
√

log n ≤ l(ξ(n)) ≤ λ2 Ml,

where λ1, λ2 > 0 are absolute constants.

Note that the first inequality is tight for l∞. To prove this lemma, we will need the

following well-known fact, see e.g.82

Fact 3.3.13. There are absolute constants 0 < γ1 ≤ γ2 such that for every integer n ≥ 1,

γ1

√
log(n)/n ≤ M

l
(n)
∞
≤ γ2

√
log(n)/n.

Proof of Lemma 3.3.12. Using Lemma 3.3.10, there is a constant λ > 0 and a vector x ∈

Sn−1 such that (i) |l∞(x)−Ml∞ | ≤ λ
√

1/n, (ii) |l(x)−Ml | ≤ λ bl /
√
n and (iii) |{i : |xi| >

1
K
√
n
}| > n

2 By Fact 3.3.13, Ml∞ = Θ(
√

log(n)/n). On the other hand, mmc(l) ≤ γ
√
n,

for sufficiently small γ, thus λ bl /
√
n < Ml. We can therefore get constants γ1, γ2 > 0

such that γ1 Ml ≤ l(x) ≤ γ2 Ml and γ1

√
log(n)/n ≤ l∞(x) ≤ γ2

√
log(n)/n. Therefore

|x| ≤ γ2
√

log nξ(n) coordinate-wise, and by monotonicity of symmetric norms,

γ1 Ml ≤ l(x) ≤ γ2

√
log n l(ξ(n)). (3.3.2)
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For the second part of the lemma, let J = {i : |xi| > 1
K
√
n
}. As |J | > n

2 , there is a

permutation π such that [n] − J ⊂ π(J). Let |x| be a vector obtained from x by taking

an absolute value of every coordinate, and let π(x) denote applying permutation π to

coordinates of vector x. We have |x| + π(|x|) > ξ(n)

K coordinate-wise, and therefore by

monotonicity of symmetric norms, we have

1

K
l(ξ(n)) ≤ l(|x|+ π(|x|)) ≤ l(|x|) + l(π(|x|)) = 2l(x) ≤ 2γ2 Ml .

Next, we show that the median is roughly monotone (in n), which is crucial for the

norm to be approximated.

Lemma 3.3.14 (Monotonicity of Median). Let l : Rn → R be a symmetric norm. For all

n′ ≤ n′′ ≤ n,

Ml(n
′) ≤ λmmc(l)

√
log n′Ml(n

′′) ,

where λ > 0 is an absolute constant.

Proof. By Lemma 3.3.12 and the fact that ξ(n′) is also a vector in Sn
′′−1,

λMl(n
′) /
√

log n′ ≤ l(ξ(n′)) ≤ bl(n′′) ≤ mmc(l) Ml(n
′′) .

We are now ready to prove the Lemma 3.3.8.

Proof of Lemma 3.3.8. Fix a β-contributing level i, and let U be the vector V after removing
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buckets j = 0, . . . , i. By Lemma 3.3.12, there is an absolute constant λ1 > 0 such that

l(Vi) = αi
√
bi l(ξ

(bi)) ≤ λ1α
i
√
bi Ml(bi) ,

and similarly

l(U) ≥ λ2α
i

√
log n

√∑

j>i

bj M
l
(
∑
j>i bj) .

We now relate these two inequalities as follows. First, l(Vi) ≥ β l(V ) ≥ β l(U). Second,

we may assume bi <
∑

j>i bj , as otherwise the lemma holds, and then by monotonicity of

the median (Lemma 3.3.14) Ml(bi) ≤ λ3 mmc(l)
√

log n M
l
∑
j>i bj , for some absolute constant

λ3 > 0. Putting these together, we get

β · λ2α
i

√
log n

√∑

j>i

bj ≤ λ1α
i
√
bi · λ3 mmc(l)

√
log n,

and the lemma follows.

Lemma 3.3.15. If level i is β-contributing, then there is an absolute constant λ > 0 such

that

biα
2i ≥ λβ2

mmc(l)2(logα n) log2 n

∑

j≤i
bjα

2j .

Proof of Lemma 3.3.15. Fix a β-contributing level i, and let h := argmaxj≤i
√
bjα

j . We
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proceed by separating into two cases. First, if bi ≥ bh then the lemma follows easily by

∑

j≤i
bjα

2j ≤ tbhα2h ≤ O(logα n)biα
2i.

The second case is when bi < bh. Using the definition of a contributing level and Lemma 3.3.12,

λ1α
i
√
bi Ml(bi) ≥ l(Vi) ≥ βl(V ) ≥ λ2βα

h
√
bh/ log nMl(bh) ,

for some absolute constants λ1, λ2 > 0. Plugging in Ml(bi) ≤ λ3 mmc(l)
√

log nMl(bh) , which

follows from monotonicity of the median (Lemma 3.3.14), for some absolute constant λ3 > 0,

we get

λ1α
i
√
bi Ml(bi) ≥

λ2β
√
bhα

h

√
log n

· Ml(bi)

λ3 mmc(l)
√

log n
,

√
biα

i ≥ λ2β
√
bhα

h

λ1λ3 mmc(l) log n
.

Squaring the above and observing that bhα
2h ≥ 1

O(logα n)

∑
j≤i bjα

2j , the proof is complete.

3.3.4 Putting It Together

Proof of Theorem 3.1.1. Recall from Section 3.2 that we assume our algorithm has access to

an oracle NORM that computes l(v) using queries to the coordinates of v, i.e., our algorithm

must provide query access to any coordinate vi. We assume without loss of generality that

ε ≥ 1/poly(n), because an exact algorithm using space O(n log n) is trivial.
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Our algorithm maintains a data structure that eventually produces a vector V̂ . We

will show that with high probability, l(V̂ ) approximates l(v) and we will also bound the

space required for the data structure. The algorithm is presented in Algorithm 3. The

idea is to run the Level1 algorithm with appropriate parameters. Specifically, to achieve

(1 ± ε)-approximation to l(v), we set the approximation guarantee of the buckets to be

ε′ := O
(

ε2

logn

)
and the importance guarantee to be β′ := O

(
ε5

mmc(l)2 log5 n

)
.

Algorithm 3 OnePassSymmetricNorm(S, n)

1: Input: stream S of from domain [n], and ε > 0
2: Output: X

3: (α, b̂1, b̂2, . . . , b̂t) ← Level1(S, n, α′ = 1 + O(ε), ε′ = O
(

ε2

logn

)
, β′ =

O
(

ε5

mmc(l)2 log5 n

)
, δ = 0.01ε

n );

4: Construct V̂ using α and b̂1, b̂2, . . . , b̂t;
5: Invoke NORM, answer each query for vi by V̂i;
6: X ← output of NORM.
7: Return X.

Let v be the streaming vector. It is approximated by its level vector V with base

α = 1 + O(ε), namely, (1 − O(ε))l(v) ≤ l(V ) ≤ l(v) by Proposition 3.3.4. Observe that

t = O(logα n) = O(log(n)/ε), and assume that algorithm Level1 succeeds, i.e., the high-

probability event in Theorem 3.3.2 indeed occured. Denote by V̂ the output of Level1,

and by V ′ the vector V after removing all buckets that are not β-contributing, and define

V̂ ′ similarly to V̂ , where we set β := ε/t = O(ε2/ log n). Every β-contributing level is

necessarily β′-important by Lemmas 3.3.8 and 3.3.15 and therefore satisfies b̂i ≥ (1− ε′)bi.

We bound the error from removing non-contributing levels by Lemma 3.3.7, namely,

(1−O(ε)) l(V ) ≤ (1−O(logα n) · β) l(V ) ≤ l(V ′) ≤ l(V ).
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By monotonicity (Lemma 3.2.1) and by Lemma 3.3.5,

l(V̂ ) ≥ l(V̂ ′) = l((V ′\Vi1 ∪ V̂i1) . . . \Vik ∪ V̂ik)

≥ (1− ε′)t l(V ′) ≥ (1−O(ε))l(V ′).

Altogether, (1−O(ε))l(v) ≤ l(V̂ ′) ≤ l(v), which bounds the error of l(V̂ ′) as required.

The space requirement of the algorithm is dominated by that of subroutine Level1,

namely, O
(

log12 n
β′ε′2ε5

)
= O

(
mmc(l)2 log19 n

ε14

)
bits. Storing the data structure, i.e., b̂i’s, requires

only

O(logα n) log n = O
(

log2 n
ε

)
bits.

3.4 Lower Bound

The overall plan is to use the multiparty disjointness communication complexity prob-

lem to prove an Ω(mmc(l)2) bits storage lower bound on any turnstile streaming algorithm

outputs a (1 ± 1/6)-approximation, or better, to the norm of the frequency vector. The

bound is otherwise independent of the norm or n.

Multiparty disjointness is a communication problem where there are t players who each

recieve a subset of [n], and their goal is to determine whether their sets are intersecting or

not. The problem was introducted by Alon, Matias, and Szegedy14 to prove storage lower

bounds for the frequency moments problem. After several improvements,17,70 the com-

munication complexity of multiparty disjointness was settled at an asymptotically optimal
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Ω(n/t) bits of communication by Gronemeier.71

3.4.1 John’s Theorem for Symmetric Norms

We will start by proving the following specialization of John’s Theorem96 to the case

of symmetric norms.

Theorem 3.4.1 (John’s Theorem for Symmetric Norms). If l(·) is a symmetric norm on Rn,

then there exist 0 < a ≤ b such that b/a ≤ √n and, for all x ∈ Rn, al2(x) ≤ l(x) ≤ bl2(x).

Proof. By John’s Theorem96 there exists a unique ellipsoid E of maximum volume contained

in B = {x ∈ Rn | l(x) ≤ 1} and, furthermore, B ⊆ √nE. E is permutation and sign

symmetric because B is, so it follows from Lemma 3.4.2 that E is a sphere. Therefore,

there exist 0 < a < b such that al2(x) ≤ l(x) ≤ bl2(x), for all x ∈ Rn, and, furthermore,

b/a ≤ √n.

Lemma 3.4.2. If an ellipsoid E is symmetric under every permutation or change of signs

to its coordinates then E is a sphere.

Proof. Let A be a positive semidefinite matrix such that E = {x ∈ Rn | xTAx = 1}. Since

A is a real positive semidefinite matrix, it can be decomposed as A = SDST , where S is

orthonormal and D is a diagonal matrix with D11 ≥ D22 ≥ · · ·Dnn ≥ 0. We will show that

all of the diagonal entries in D are the same, from which it follows that A = D and E is

a sphere. Let si, for i ∈ [n], be the columns of S. Let i 6= 1, choose a permutation P1 so

that P1s1 has its coordinates in decreasing order by magnitude, and choose a permutation

Pi so that Pisi has the same. Now choose a diagonal matrix D that has Djj = 1 if (P1s1)j
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has the same sign as (Pisi)j , and Djj = −1 if the signs are different, zeros may be treated

arbitrarily. Let P = P T1 DPi; since P is the product of permutation matrics and a sign

change matrix we have E = {x | xTPAP Tx ≤ 1} by the symmetry assumption.

We have D11 = sT1 As1, since s1 is a unit vector orthogonal to si, i > 1. Let λ = STP T s1.

By construction we have
∑

j λ
2
j = 1 and λi > 0. If we suppose that Dii < D11, then we

arrive at the following contradiction

D11 = s1As1 = s1PAP
T s1 =

n∑

j=1

λ2
jDjj < D11.

Therefore, D11 = Dii, for all i, and E is sphere.

3.4.2 Concentration of a Symmetric Norm

Let us begin by discussing a concentration inequality for symmetric norms. We will

need concentration of l(Z) around
√
nMl, where Z is distributed according to the canonical

Gaussian disribution on n dimensions. To get it, we will use the following two concentration

theorems for Lipschitz functions. The diffrence between them is the underlying distribution,

whether it is uniform on Sn−1 or multivariate Gaussian. Comparing l(Z) against its own

median is just a direct application of Theorem 3.4.4. There is a little bit more work to do

because we wish to compare l(Z) to the median of l(·) over Sn−1, which is also the median

of l(Z)/l2(Z). Note that the M in Theorem 3.4.3 is not the same as the M in Theorem 3.4.4

because the probability distributions are different.

Theorem 3.4.3 (82). Let f : Sn−1 → R be 1-Lipschitz, let Z ∈ Sn−1 be chosen uniformly
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at random, and let M be the median of f(Z). Then, for all t > 0, Pr(|f(Z) −M | ≥ t) ≤

2e−nt
2/2.

Theorem 3.4.4 (97). Let f : Rn → R be 1-Lipschitz, let Z1, Z2, . . . , Zn
iid∼N(0, 1), and let

M be the median of f(Z). Then, for all t > 0, Pr(|f(Z)−M | ≥ t) ≤ e−t2/2.

It will also be helpful to have the following fact about χ2 random variables.

Lemma 3.4.5. (98) Let X ∼ χ2
n. For all x ≥ 0,

Pr(X ≥ n+ 2
√
nx+ x) ≤ e−x and Pr(X ≤ n− 2

√
nx) ≤ e−x.

Lemma 3.4.6. Let n ≥ 2 and let Z ∈ Rn be a random vector with coordinates Z1, Z2, . . . , Zn
iid∼N(0, 1).

Let Ml be the median of l(·) on Sn−1, where l(·) is a symmetric norm on Rn. Then, for all

t ≥ 0,

Pr(|l(Z)−√nMl | ≥ t
√
nMl) ≤ 7e−t

2/200.

Proof. We first establish an inequality that does not have the correct dependence on t, it

is (3.4.2), and then use it to bound the median of l(Z) in terms of
√
nMl. That will allow

us to apply Theorem 3.4.4 and get the bound above.

By Theorem 3.4.1, there exist 0 < al ≤ bl such that bl/al ≤
√
n and, for all x ∈ Rn,

all2(x) ≤ l(x) ≤ bll2(x). This implies l(·) is bl-Lipschitz on Rn. By scaling the norm (and,

as a consequence, Ml), we may assume al = 1 without loss of generality.
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It is easy to see that

Pr(l(Z)−√nMl ≥ t
√
nMl)

= Pr
(
l(Z)− l2(Z) Ml +l2(Z) Ml−

√
nMl ≥ t

√
nMl

)

≤ Pr

(
l(Z)− l2(Z) Ml ≥

√
nMl

t

2

)
+ Pr

(
l2(Z)−√n ≥ √n t

2

)
. (3.4.1)

For the second term, notice that l2(Z)2 is a χ2
n random variable. Using Lemma 3.4.5, we

have

Pr

(
l2(Z)−√n ≥ √n t

2

)
= Pr

(
l2(Z)2 ≥ n(1 +

t

2
)2

)

= Pr

(
l2(Z)2 ≥ n+ 2

√
n(
√
n
t

2
) + (

√
n
t

2
)2

)
≤ e−nt2/4.

For the first term in (3.4.1), we have

Pr

(
|l(Z)− l2(Z) Ml| ≥

√
nMl

t

2

)

≤ Pr

(∣∣∣∣l(
Z

l2(Z)
)−Ml

∣∣∣∣ ≥ Ml
t

4

)
+ Pr(l2(Z) ≥ 2

√
n).

The scaled norm l(·)/ bl is 1-Lipschitz and Z/l2(Z) is distributed according to the Haar

distribution, so by Theorem 3.4.3 and our previous χ2 bound we have

Pr

(
l(Z)− l2(Z) Ml ≥

√
nMl

t

2

)
≤ 2 exp{−nM2

l t
2

32 b2
l

}+ e−n

≤ 2 exp{− t
2

32
}+ e−n
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where the final inequality follows because Ml / bl ≥ al/bl ≥ 1/
√
n.

So far, we have established, ∀ t ≥ 0,

Pr(l(Z)−√nMl ≥ t
√
nMl) ≤ 2e−t

2/32 + e−n + e−nt
2/4. (3.4.2)

It is almost the bound that we want, except for the e−n term. Substituting in t = 8 and

n ≥ 2 we find Pr(l(Z) ≥ 9
√
nMl) ≤ 1

2 . Therefore the median of l(Z) is at no larger than

9
√
nMl, so Theorem 3.4.4 implies, ∀ t ≥ 0 and n ≥ 2,

Pr(l(Z)− 9
√
nMl ≥ t

√
nMl) ≤ e−t

2nM2
l /2 b2

l ≤ e−t2/2. (3.4.3)

The last step is to combine these two bounds by using (3.4.2) to bound,

∀t ≤ 10 and n ≥ 2, Pr(l(Z) ≥ t√nMl) ≤ 3e−t
2/32 + e−n ≤ 7e−t

2/32

and using (3.4.3) to establish, ∀t ≥ 10 and n ≥ 2,

Pr(l(Z) ≥ t√nMl) = Pr(l(Z)− 9
√
nMl ≥ (t− 9)

√
nMl)

≤ Pr(l(Z)− 9
√
nMl ≥

t

10

√
nMl) ≤ e−t

2/200,

which proves the theorem.
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3.4.3 The Norm of a Randomized Vector

The multiparty disjointness reduction used to prove Theorem 3.1.2 uses a randomized

vector. Given a vector v ∈ Rn, we randomize it by replacing the coordinates by independent

Normally distributed random variables Vi ∼ N(0, v2
i ), for each i ∈ [n].

The next lemma allows us to compare the distribution of the norm of two different

randomized vectors. Recall that a random variable Y is said to stochastically dominate a

random variable X if Pr(Y ≥ t) ≥ Pr(X ≥ t) for all t ∈ R, or, equivalently, their cdf’s

satisfy FX ≥ FY .

Lemma 3.4.7. Let σ, τ ∈ Rn≥0 satisfy σ ≤ τ coordinate-wise. Let Xi ∼ N(0, σ2
i ), inde-

pendently for i = 1, . . . , n, and Yi ∼ N(0, τ2
i ), independently for i = 1, . . . , n. Then l(Y )

stochastically dominates l(X), in particular, for all t ∈ R,

Pr(l(X) ≥ t) ≤ Pr(l(Y ) ≥ t).

Proof. It is well known that, for any random variables Y ′ and X ′, Y ′ stochastically domi-

nates X ′ if and only if there is a coupling of X ′ and Y ′ so that X ′ ≤ Y ′. Since τi ≥ σi we

have that |Yi| stochastically dominates |Xi|, for all i. Therefore, there is a coupling of the

vectors |X| and |Y | so that |X| ≤ |Y | coordinate-wise at every sample point. This is also a

coupling of l(X) and l(Y ), and by applying Lemma 3.2.1 proves that l(X) ≤ l(Y ) at every

sample point. Thus, l(Y ) stochastically dominates l(X).

The main technical lemma we use to prove Theorem 3.1.2 is the following.
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Lemma 3.4.8. If v ∈ Sn−1 has l(v) = bl and V ∈ Rn is a random vector with coordinates

distributed Vi
iid∼N(0, v2

i ), then Pr(l(V ) ≥ bl /4) ≥ 1/10.

In order to prove Lemma 3.4.8 we will first need to bound E l(V ).

Lemma 3.4.9. If v ∈ Sn−1 has l(v) = bl and V is a random vector with coordinates

distributed Vi
iid∼N(0, v2

i ), then E l(V ) ≥ 0.49 bl.

Proof. If on every outcome it happened that |V | ≥ |v| coordinate-wise then Lemma 3.2.1

would imply the desired result. Of course, it is very likely that for some coordinates |Vi| <

|vi|. The idea of the proof is to “patch up” those coordinates with another vector that

has small norm and then apply the reverse triangle inequality. Let U = max{|v| − |V |, 0},

where the maximum is taken coordinate-wise. U was chosen so that |V |+U ≥ |v|, hence by

Lemma 3.2.1 l(|V |+U) ≥ l(v) = bl, and by the reverse triangle inequality l(V ) ≥ l(v)−l(U).

It remains to bound E l(U). We will begin by bounding E l2(U) and use this value to

bound E l(U). Let Z ∼ N(0, 1) and let 1A be the indicator function of the set A. Direct

calculation with the Normal c.d.f. shows that

E l2(U)2 =
n∑

i=1

2v2
i E
(
1[0,1)(Z) (1− Z)2

)
≤ 0.26

∑
v2
i = 0.26,

Therefore, E l2(U) ≤
(
E l2(U)2

)1/2 ≤ 0.51, where the first inequality is Jensen’s. Finally,

we can conclude E l(U) ≤ bl E l2(U) ≤ 0.51 bl and E l(V ) ≥ l(v)− E l(U) ≥ 0.49 bl.

Proof of Lemma 3.4.8. For a random variable X and event A, let E(X;A) = EX1A(X) =
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∫
AXdP . We begin with the trivial bound, for any 0 < α < β,

E l(V ) = E(l(V ); (0, α]) + E(l(V ); (α, β]) + E(l(V ); (β,∞))

≤ α+ β Pr(l(V ) ∈ (α, β]) + E(l(V ); (β,∞)). (3.4.4)

We shall use l2(V ) to bound the last term above. Observe that E l2(V )2 = 1 and, letting

Z1, . . . , Zn
iid∼N(0, 1),

Var(l2(V )2) = Var

(∑

i

v2
i Z

2
i

)

=
∑

i

v4
i Var(Z2

i ) = 2
∑

i

v4
i ≤ 2l2(v)2 = 2,

because v ∈ Sn−1 has unit length. For k > 0, we have by Chebyshev’s Inequality that

Pr(l2(V )2 ≥
√

2k + 1) ≤ 1

k2
,

and, by a change of variables,

Pr(l2(V ) ≥ x) ≤
(
x2 − 1√

2

)−2

=
2

(x2 − 1)2
≤ 4/x4, for x >

√
2,

and it extends trivially to all x > 0. This implies Pr(l(V ) ≥ bl x) ≤ 4/x4, hence Pr(l(V ) ≥

x) ≤ 4(bl /x)4. Thus,

E(l(V ); (β,∞)) ≤
∫ ∞

β

4 b4
l

x4
dx =

4 b4
l

3β3
.

Now we return to (3.4.4) and substitute α = 0.49 bl /4 and β = 2.44 bl. Together with
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Lemma 3.4.9 we get

0.49 bl ≤ E l(V ) ≤ 0.49 bl
4

+ 2.32 bl Pr(l(V ) ≥ bl /4) +
4 bl

3(2.44)3
.

Upon rearranging the inequality we find Pr(l(V ) ≥ bl /4) ≥ 1/10, as desired.

3.4.4 Multiparty Disjointness and the Norm on a Stream

We will show an Ω(mc(l)2) bits bound on the storage needed by a streaming algorithm

for the norm l.

Lemma 3.4.10. Let l(·) be a symmetric norm on Rn. A turnstile streaming algorithm

that outputs a (1± 1
6)-approximation for l(·), with probability at least 0.99, uses Ω(mc(l)2)

bits in the worst case.

Let recall that every symmetric norm l(·) on Rn induces the norm l(·)(k) on Rk, for

k < n, by setting any n− k coordinates to 0. The induced norm may have a different ratio

of bl /Ml. Since a streaming algorithm that approximates l(·) must also approximate l(·)(k),

Lemma 3.4.10 in fact implies Theorem 3.1.2.

Proof of Lemma 3.4.10. We begin with an instance of the multiparty disjointness promise

problem on domain [n] with t = d240
√
n ·Ml / ble players. By Lemma 3.4.1, t ≥ 240

√
nMl / bl ≥

240. The players are given sets P1, P2, . . . , Pt ⊆ [n] with the promise that either they are

pairwise disjoint or exactly one element is contained in every set but they are otherwise dis-

joint. The players are allowed, in any order, to communicate bits with each other by writing
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them to a shared blackboard, and they are given shared access to a string of random bits.

The players’ goal is for at least one among them to determine whether the sets P1, . . . , Pt

are disjoint or intersecting. If the players correctly determine the type of instance with

probability at least 0.55, then their communication scheme is called a “correct protocol”. It

is known that for any correct protocol, the players must write Ω(n/t) bits to the blackboard

in the worst case.70 In this reduction, each of the t players will transmit the memory of the

streaming algorithm once, which leads to an Ω(n/t2) = Ω(b2
l /M2

l ) bits lower bound on the

memory used by the algorithm.

Next, we describe the protocol under the assumption that the players can perform com-

putations with real numbers. After describing the protocol we explain that this assumption

can be removed by rounding the real values to a sufficiently high precision.

The players have shared access n2 i.i.d. N(0, 1) random variables Zi,j , for i, j ∈ [n], and

additional independent randomness for the approximation algorithm.

Let v ∈ argmaxx∈Sn−1 l(x), so that l(v) = bl. We define an n × n matrix V with

coordinates

Vi,j = Zi,jvi+j mod n.

Since v is fixed, all of the players can compute the matrix using the shared randomness. Let

Vj denote the jth column of V ; it is a vector with independent Normally distributed entries.

The vector of standard deviations of Vj is a copy of v that has been cyclically shifted down

by j entries, in particular the standard deviation of Vi,n is vi.

Here is the stream that the players create, they jointly run an approximation algorithm
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for the norm on this stream. For each player i and item j ∈ Pi the ith player adds a copy

of Vj to the stream. More precisely, for each j ∈ Pi player i adds 1 with frequency V1,j , 2

with frequency V2,j , etc. The players repeat this protocol 10 times independently.

Now we analyze the possible outcomes of one of the ten trials. Let N ⊆ ∪ti=1Pi be

the set of elements that appear in exactly one set Pi, and let X =
∑

j∈N Vj . If there is no

intersection between the Pi’s, then the stream’s frequency vector is X. If they all intersect

at j∗, then the frequency vector is Y = tVj∗ +X.

It remains to compare l(X) and l(Y ). The coordinates of X are independent and

normally distributed with zero mean and variance

EX2
i =

∑

j∈N
EV 2

i,j =
∑

j∈N
v2
i+j mod n ≤

n∑

j=1

v2
j = 1.

Let Z be a random vector with coordinates Zi
iid∼N(0, 1), for i = 1, . . . , n. By Lemma 3.4.7

Z stochastically dominates X, and using Lemma 3.4.6 we have Pr( 1√
n
l(X) ≥ 40 Ml) ≤

Pr( 1√
n
l(Z) ≥ 40 Ml) ≤ 0.005. On the other hand, Y stochastically dominates tVj∗ and

Lemma 3.4.8 additionally implies

Pr(l(tVj∗ +X) ≥ 60 Ml

√
n) ≥ Pr(tl(Vj∗) ≥ 60 Ml

√
n) ≥ Pr(l(Vj∗) ≥ bl /4) ≥ 1/10.

The final player checks whether the maximum approximation returned among the 10

trials is larger or smaller than 50 Ml
√
n and declares “intersecting” or “disjoint” accordingly.

The output of the protocol is correct on an intersecting instance if at least one of the 10
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stream vectors has norm larger than 60 Ml
√
n and the algorithm always returns a (1±1/6)-

approximation. It is correct on a disjoint instance if all of the stream vectors have norm

smaller than 40 Ml
√
n and the algorithm always returns a (1± 1/6)-approximation. If the

instance is an intersecting one, then with probability at least 0.1 the magnitude of l(tVj∗+X)

is large enough. At least one of the ten trials will have this property with probability at least

1− 0.910 ≥ 0.65, because the trials use independent random matrices. Since the algorithm

correctly approximates the norm with probability at least 0.99, it follows that the protocol

is correct for an intersecting instance with probability at least 0.65− 10 · 0.01 = 0.55.

On a disjoint instance, one trial of the protocol is successful with probability at least

0.992 ≥ 0.98 where one factor comes from the success of the approximation algorithm and

the other from our earlier application of the concentration bound. Thus, the output of the

protocol correctly identifies a disjoint instance with probability at least 1− 10 · 0.02 = 0.8,

by a union bound over the ten trials. Therefore, this protocol is a correct protocol.

It remains to describe the rounding of the real values. It suffices to represent each value

with a sufficiently high precision. We replace each variable as Zi,j with a discrete random

variable Zi,j = Ẑi,j+δi,j where Ẑi,j are distributed i.i.d. N(0, 1) and δi,j is difference between

Ẑi,j and its closest point in { j
n4 | j = −n5, . . . , n5 − 1, n5}. In particular, with very high

probability, |δi,j | ≤ 1/2n4 for all pairs i, j. We also replace v by a vector v = v̂ + δv where

v̂ ∈ argmaxx∈Sn−1 l(x), so that l(v̂) = bl, and where δv is a vector containing the difference

between each entry of v̂i and the nearest integer multiple of n−4 to it.

Each frequency in the stream is the sum of at most t variables. Performing these
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replacements changes each frequency in the stream by no more than 2tn−4. Let ∆ ∈ Rn

denote this change, then l(∆) ≤ bl l2(∆) ≤ 2 bl tn
−7/2 = O(Ml /n

3). Applying the triangle

and reverse triangle inequalities shows that the change negligible. Therefore, the discretized

protocol is correct also, which completes the proof.

Suppose there is an algorithm with the weaker, D-approximation guarantee. Namely,

D > 1 and with probability at least 0.99, the algorithm returns a value l̂ satisfying l(V ) ≤

l̂ ≤ Dl(V ), where V is the stream vector. The main lower bound, Theorem 3.1.2, can be

easily adapted this setting, where we get a lower bound of Ω(mmc(l)2/D2) bits instead,

with a small modification to the proof of Lemma 3.4.10.

Theorem 3.1.4 . Let l be a symmetric norm on Rn. Any turnstile streaming algo-

rithm that outputs, with probability at least 0.99, a D-approximation for l(·) must use

Ω(mmc(l)2/D2) bits of space in the worst case.

Indeed, the proof goes as above, except that the number of players should be increased

to t = d240D
√
nMl / ble. The disjoint instances do not change, but the norm is D times

larger on an intersecting instance. Thus, the D-approximation algorithm can distinguish

the two and we get the bound Ω(mc(l)2/D2), which is easily boosted to Ω(mmc(l)2/D2)

bits, as before. When l = l∞, this matches the trade-off proved by Saks and Sun.94

3.5 Optimal Space-Approximation Tradeoff

In this section we obtain a nearly tight space-approximation tradeoff for computing

any symmetric norm in the data-stream model. Specifically, we show below how our earlier
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streaming algorithm can be adapted to match the lower bound in Theorem 3.1.4, up to a

polylog(n) factor. The adapted algorithm achieves, for any D ≥ 1.1 and symmetric norm

l, a D-approximation within Õ(mmc(l)2/D2) bits of storage. The key part of the analysis

is to define, a new symmetric function l(D) on Rn such that l(x) ≤ l(D)(x) ≤ Dl(x), for

all x ∈ Rn, and such that our earlier algorithm can find a (1± 1/2)-approximation to l′(x)

using polylog(n) ·mmc(l)2/D2 bits of space.

We start in Section 3.5.1 with an algorithm for Q-norms (formaly defined in Sec-

tion 3.6.2), a special case that is easier to prove. We then leverage ideas from this simpler

case to design in Section 3.5.2 an algorithm for general symmetric norm.

3.5.1 D-Approximation for Q-norms

Theorem 3.5.1. Let l : RN → R be a Q-norm. Then for every 1.1 < D ≤ mmc(l) there is

a randomized streaming algorithm that D-approximates l and uses Õ(mmc(l)2/D2) bits of

space.

Proof. Fix a Q-norm l and 1 < D ≤ mmc(l). We first show that for all x ∈ RN ,

l(D)(x) := max

(
DMl l2(x)

log n
, l(x)

)

is an O(D)-approximation to l(x). Since l is a Q-norm, we have by Lemma 3.6.9 that ξ(n)

is roughly a minimizer of l(x) over SN−1, namely,

∀x ∈ RN−1, l(ξ(n)) l2(x) ≤ 6
√

log n l(x).
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Recalling from Lemma 3.3.12 that, for some absolute constants λ1, λ2 > 0, λ1 Ml /
√

log n ≤

l(ξ(n)) ≤ λ2 Ml, we have that λ1 Ml l2(x) ≤ 6(log n) · l(x). Altogether we obtain (assuming,

without loss of generality, that λ1 < 1)

∀x ∈ RN−1, l(x) ≤ l(D)(x) ≤ 6D

λ1
l(x). (3.5.1)

Our algorithm for l simply applies Theorem 3.1.1 to compute an O(1)-approximation

to l(D)(x), using mmc(l(D))
2 · polylog(n) bits of space. This is indeed possible because l(D)

is clearly a symmetric norm on Rn, and yields an O(D)-approximation for l, which implies

D-approximation by scaling D appropriately.

It remains to bound mmc(l(D)) and show it is smaller than mmc(l) by factor D roughly.

By Lemma 3.6.8, there is an absolute constant λ > 0 such that Ml(n
′) ≥ Ml(n) /(λ

√
log n) for

all n′ ≤ n. Let n∗ ≤ n be such that mmc(l) = bl(n∗) /Ml(n
∗) , thus mmc(l) ≤ λ√log nmc(l(n)).

Since D ≤ mmc(l), we have

DMl ≤ λ
√

log nmc(l(n)) Ml ≤ λ
√

log n · bl ⇒ b
l
(n′)
D

≤ max
(
λbl/

√
log n, bl

)
.

By definition of lD, M
l
(n′)
D

≥ max
(
DMl
logn ,

Ml

λ
√

logn

)
. Thus,

mmc(l(D)) ≤
λ log n

D
mc(l(n)) ≤ λ log n

D
mmc(l(n)).

We conclude that there exists a streaming algorithm computes an O(D)-approximation

for l using Õ(mmc(lD)2) = Õ(mmc(l)2/D2) bits of space.
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3.5.2 D-Approximation for General Symmetric Norms

Theorem 3.1.3 . Let l be a symmetric norm on Rn. For every 1.1 ≤ D ≤ mmc(l)

there is a one-pass streaming algorithm that on input stream vector v ∈ Rn computes, with

probability at least 0.99, a D-approximation to l(v) and uses (mmc(l)2/D2) · poly(log n)

bits of space.

Proof. Let α > 1 be a constant. Given a vector v ∈ Rn with integer coordinates, analogously

to Defintion 3.3.3, define V α = V α
1 + V α

2 + . . . + V α
t , where V α

i is the level i vector of v

with base α, and appropriate t = O(log n). For each i ∈ [t], we define similarly b
(α)
i

as the number of coordinates falling into level i. Define for each integer 1 ≤ n′ ≤ n,

h(ξ(n′)) := min{Dl(ξ(n′)), bl(n′)}, and

h(V α
i ) := h(ξ(b

(α)
i ))l2(V α

i ) = min{Dl(V α
i ), bl(b) l2(V α

i )}, and

h(α)(v) :=
∑

i∈[t]

h(V α
i ).

We will omit the superscript α if it is clear from the context. We first claim that h(v) is an

Õ(D)-approximation to l(v). Indeed

l(v) ≤ α
∑

i∈[t]

l(Vi) ≤ α
∑

i∈[t]

min{Dl(Vi), bl(bi) l2(Vi)} = αh(v), (3.5.2)

and by monotonicity and homogeneity of norm l

h(v) =
∑

i∈[t]

h(Vi) ≤
∑

i∈[t]

Dl(Vi) ≤ Dtmax
i∈[t]

l(Vi) ≤ (λD log n)l(v),
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where λ > 0 is a constant. Thus h(v) is an Õ(D)-approximation to l(v).

It remains to prove that h(v) can be O(1)-approximated using Õ(mmc(l)2/D2) bits of

space. Let β = O(1/ log n) and

β′ = O

(
D2β2

log2 nmmc(l)2

)
.

Let v ∈ Rn be the streaming vector. We run algorithm Level1 with importance parameter

β′, base parameter α and constant error parameter ε ∈ (0, 1/2). By Theorem 3.3.2, Level1 is

guaranteed to output a vector V̂ α′ with base α′ = Θ(1) and with the following guarantees.

Let t′ = O(log n/ logα′), then for every i ∈ [t′], b̂(α
′)

i ≤ b(α
′)

i and if V̂ α′
i is β′-important, then

also (1− ε)b(α
′)

i ≤ b̂(α
′)

i . Thus,

∑

i∈[t′]

h(V̂ α′
i ) =

∑

i∈[t′]

min{Dl(V̂ α′
i ), b

l(b̂i)
l2(V̂ α′

i )} ≤
∑

i∈[t′]

min{Dl(V α′
i ), b

l(bi)
l2(V α′

i )} = h(V α′).

We prove in Lemma 3.5.3 below that a β-contributing level of h(v) (defined as h(V α′
i ) ≥

βh(V α′)) is a β′-important level. Let U ⊂ [t′] be the set of contributing levels. Then,

h(V̂ α′) ≥
∑

i∈U
h(V̂ α′

i ) =
∑

i∈U
min{Dl(V̂ α′

i ), b
l(b̂i)

l2(V̂ α′
i )} ≥ (1− ε)

2

∑

i∈U
min{Dl(V α′

i ), b
l(bi)

l2(V α′
i )},

where the second inequality follows from Lemma 3.3.5 and that bl
b̂i
≥ blbi /2. Indeed, let

v∗ ∈ Rbi , then we cut v∗ into two pieces with roughly equal number of non-zeros v∗ = v∗1+v∗2,

then l(v∗) ≤ l(v∗1) + l(v∗2) ≤ 2 bl
b̂i

. On the other hand,
∑

i/∈U h(Vi) ≤ tβh(V ) ≤ λ1h(V ),

for some constant λ1 > 0 that can be chosen arbitrarily small. Thus h(V̂ α′) ≥ (1 −
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ε)(1 − λ1)h(α′)(v)/2 is a constant-factor approximation to h(V ). Last, by Theorem 3.3.2,

Level1 uses Õ(1/β′) = Õ(mmc(l)2/D2) bits of space.

Lemma 3.5.2. For every integers 0 < n1 ≤ n2 ≤ n,

h(ξ(n1)) ≤ λ
√

log nmmc(l)

D
h(ξ(n2)),

for some absoute constant λ > 0.

Proof. Since h(ξ(n1)) = min
(
Dl(ξ(n1)), bl(n1)

)
and h(ξ(n2)) = min

(
Dl(ξ(n2)), bl(n2)

)
, then

h(ξ(n1))/h(ξ(n2))

= max

(
min

(
Dl(ξ(n1)), bl(n1)

)

Dl(ξ(n2))
,
min

(
Dl(ξ(n1)), bl(n1)

)

bl(n2)

)

≤ max

(
λ
√

log nmin

(
mmc(l),

mmc(l)

D

)
,min

(
λDMl(n1)

bl(n2)

,
bl(n1)

bl(n2)

))

≤ λ
√

log nmmc(l)

D
, (3.5.3)

where the second inequality follows from Lemma 3.3.12 and Lemma 3.3.14. The last in-

equality uses bl(n1) ≤ bl(n2) and λ > 0 is an absolute constant.

Lemma 3.5.3. If a level i is β-contributing, i.e., h(Vi) ≥ βh(V ), then

1. bi ≥ λD2β2

log2 nmmc(l)2

∑
j>i bj ;

2. biα
2i ≥ λD2β2

log2 nmmc(l)2

∑
j≤i bjα

2j ,

for some constant λ > 0.
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Proof. The proof is similar to that of Lemma 3.3.8 and that of Lemma 3.3.15. Since level

i is β-contributing, we have

h(Vi) ≥ β
∑

j∈[t]

h(Vj).

Let j∗ = argmaxj>i bj . We can assume bi ≤ bj∗ since otherwise bi ≥
∑

j>i bi/t. Thus, by

Lemma 3.5.2

h(Vi) ≥ βh(Vj∗)⇒
√
bi ≥

Dβ√
λ′ log nmmc(l)

√
bj∗ ⇒ bi ≥

D2β2

λ′t log nmmc(l)2

∑

j>i

bj .

where λ′ > 0 is an absolute constant.

For the second inequality, let j′ := argmaxj≤i
√
bjα

j . We proceed by separating into

two cases. First, if bi ≥ bj′ then the lemma follows easily by

biα
2i ≥ bj′α2j′ ≥

∑
j≤i bjα

2j

t
.

The second case is when bi < bj′ ,

αi
√
bih(ξ(i)) = h(Vi) ≥ βh(V ) ≥ βh(Vj′) = βαj

′√
bj′h(ξ(j′)).

By Lemma 3.5.2, we get

αi
√
bi ≥ βαj

′√
bj′
h(ξ(j′))

h(ξi)
≥ Dβ

√
bj′α

j′

√
λ′′ log nmmc(l)

,
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where λ′′ > 0 is an absolute constant. Squaring the above and observing that

biα
2i ≥ D2β2

λ′′t log nmmc(l)2

∑

j≤i
bjα

2j ,

the proof is complete.

3.6 Applications & Examples

3.6.1 The Top-k Norm Φ(k)

The top-k norm on Rn is simply the sum of the k largest coordinates in absolute value,

formally, Φ(k)(x) :=
∑k

i=1 |x|[i], where |x|[1] ≥ . . . ≥ |x|[n] are the coordinates ordered by

non-increasing absolute value. It is known (see e.g. [81, Exer. IV.1.18]) that the dual

norm of Φ(k) is Φ′(k)(x) := max{l∞(x), l1(x)/k}. We can understand the streaming space

complexity of such a norm l by comparing the maximum and the median of such a norm

over Sn−1, which is an easy calculation, and then applying Theorems 3.1.1 and 3.1.2.

Theorem 3.6.1. There are absolute constants λ1, λ2 > 0 such that for all k = 1, . . . , n,

λ1

√
n

k log n
≤ mmc(Φ(k)) ≤ λ2

√
n

k
, and λ1

√
k

log(k) + 1
≤ mmc(Φ′(k)) ≤ λ2

√
k.

The above inequalities are existentially tight, by considering the cases k = 1 and k = n.

To prove this theorem, we will need the next two lemmas. They both assume 1 ≤ k ≤ n.

Lemma 3.6.2. For all x ∈ Rn,
√

k
n l2(x) ≤ Φ(k)(x) ≤

√
k l2(x).
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We remark that the second inequality above is tight for x = ξ(k).

Proof. Fix x ∈ Rn. We use Cauchy-Schwarz

k∑

i=1

|x|[i] ≤
√
k

(
k∑

i=1

|x|2[i]

)1/2

≤
√
k

(
n∑

i=1

x2
[i]

)1/2

.

For the second inequality, we use monotonicity of lp-norms

k∑

i=1

|x|[i] ≥
(

k∑

i=1

|x|2[i]

)1/2

≥
(
k

n

n∑

i=1

|x|2[i]

)1/2

.

Lemma 3.6.3. λ1k√
n
≤ MΦ(k)

≤ λ2k
√

logn√
n

for some absolute constants λ1, λ2 > 0.

Proof. For the first inequality, Φ(k)(x) ≥ k
n

∑n
i=1 |x|[i] = k

n l1(x). Therefore, MΦ(k)
≥

k
n Ml1 ≥ λ1k/

√
n for some absolute constant λ1 > 0. For the second inequality, Φ(k)(x) ≤

kl∞(x), and thus MΦ(k)
≤ kMl∞ ≤ λ2k

√
logn√
n

for some absolute constant λ2 > 0.

Proof of Theorem 3.6.1. To bound mmc(Φ(k)), consider first n′ ≥ k, then by a direct cal-

culation,
√
k

(λ2k
√

log n′/
√
n′)
≤

b
Φ

(n′)
(k)

M
Φ

(n′)
(k)

≤
√
k

(λ1k/
√
n′)

.

For n′ ≤ k, we have Φ(k)(x) = l1(x) for all x ∈ Rn′ , and we know that mmc(l1) is a constant.

The first part of the theorem follows.

To bound mmc(Φ′(k)), consider first the case n′ ≥ k. For all x ∈ Rn′ we have Φ′(k)(x) ≥

113



CHAPTER 3. NEARLY OPTIMAL CHARACTERIZATION OF STREAMING
SYMMETRIC NORMS

l1(x)/k, thus M
Φ′(n

′)
(k)

= Ω(
√
n′/k). In addition, b

Φ′(n
′)

(k)

≤ max{1,
√
n′/k}, and thus

b
Φ′(n

′)
(k)

/M
Φ′(n

′)
(k)

≤
√
k.

Consider now the case n′ ≤ k. For all x ∈ Rn′ , we have Φ′(k)(x) = l∞(x), and thus,

b
Φ′(n

′)
(k)

/M
Φ′(n

′)
(k)

= Θ(
√
n′/log n′). We conclude that mmc(Φ′(k)) = Ω(

√
k/(log k + 1)).

3.6.2 Q-Norms and Q′-Norms

A norm l : Rn → R is called a Q-norm if there exists a symmetric norm Φ : Rn → R

such that

∀x ∈ Rn, l(x) = Φ(x2)1/2,

where xp = (xp1, x
p
2, . . . , x

p
n) denotes coordinate-wise p-th power. A norm l′ : Rn → R is

called a Q′-norm if its dual norm, which is given by l(x) = sup{ 〈x,y〉l′(y) : y 6= 0}, is a Q-norm.

We can show that every Q′-norm can be approximated using polylogarithmic space, by

bounding bl′ /Ml′ and then applying Theorem 3.1.1, as follows.

Theorem 3.6.4. For every Q′-norm l′ : Rn → R, mmc(l′) = O(log n).

Corollary 3.6.5 (Streaming Complexity of Q′-Norms). Every Q′-norm l′ : Rn → R can be

(1 + ε)-approximated by a one-pass streaming algorithm that uses poly(log(n)/ε) space.

The proof of Theorem 3.6.4 will follow by establishing the four lemmas below. It builds

on the machinery developed in Section 3.3 to compare the median of l to l(ξ(n′)), where

ξ(n′) is the l2-normalized all-ones vector of dimension n′.
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Lemma 3.6.6. Let l : Rn → R be a Q-norm, and let 0 < n′ ≤ n. Then

l(ξ(n′)) ≥ l(ξ(n))/2.

Proof. Write n = qn′ + r, where r < n′ is the remainder. Then

ξ(n) =



√

n′
n (ξ(n′), . . . , ξ(n′)
︸ ︷︷ ︸

q times

),
√

r
nξ

(r)


 .

By monotonicity of symmetric norms and the triangle inequality,

l(ξ(n)) ≤ l



√

n′
n (ξ(n′), . . . , ξ(n′)
︸ ︷︷ ︸

q times

)


+ l

(√
r
nξ

(r)
)
≤ 2l



√

n′
n (ξ(n′), . . . , ξ(n′)
︸ ︷︷ ︸

q times

)


 .

We can write l(x) = Φ(x2)1/2 for some symmetric norm Φ. Thus, by the triangle inequality,

l



√

n′
n (ξ(n′), . . . , ξ(n′)
︸ ︷︷ ︸

q times

)


 =

√
n′
n Φ

(
(ξ(n′))2, . . . , (ξ(n′))2

)1/2

≤
√

n′
n

(
q Φ((ξ(n′))2)

)1/2
≤ l(ξ(n′)).

Lemma 3.6.7. Let l : Rn → R be a Q-norm, then for all x ∈ Rn, l(x) ≤ l2(x) .

Proof. Let l(x) = Φ(x2)1/2 for some symmetric norm Φ. By Lemma 3.2.2, Φ(x) ≤ l1(x)

and therefore l(x) = (Φ(x2))1/2 ≤ l1(x2)1/2 = l2(x).

The next lemma can be viewed as a complement of Lemma 3.3.14 (monotonicity of the
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median) for the special case of Q-norms.

Lemma 3.6.8. Let l : Rn → R be a Q-norm, and let 0 < n′ ≤ n be an integer. Then

Ml(n) ≤ λ
√

log nMl(n
′)

for some absolute constant λ > 0.

Proof. By Lemmas 3.3.12 and 3.6.6, we can find absolute constant λ1, λ2 > 0 such that

λ1 Ml(n) /
√

log n ≤ l(ξ(n)) ≤ 2l(ξ(n′)) ≤ 2λ2 Ml(n
′) .

Now we show that a Q-norm achieves roughly the minimum at ξ(n).

Lemma 3.6.9 (Flat Minimum). Let l : Rn → R be a Q-norm. Then

∀x ∈ Sn−1, l(ξn) ≤ 6
√

log n l(x).

Proof. Set α := 1/2 and fix a vector x ∈ Sn−1. We permute its coordinates and write

|x| = (V1;V2; . . . ;Vt;V
′), where Vi = {|xj | : αj < |xj | ≤ αj−1} for i = 1, . . . , t = log n, and

V ′ = {|xj | : |xj | ≤ 1/n}. Let bi = |Vi|. Since l2(x) = 1,

1 = l2(x)2 ≤
t∑

i=1

biα
2(i−1) + 1/n.

116



CHAPTER 3. NEARLY OPTIMAL CHARACTERIZATION OF STREAMING
SYMMETRIC NORMS

Thus, there exists i ≤ t for which |Vi|α2(i−1) ≥ 1
2t , and together with Lemma 3.6.6,

l(x) ≥ l(Vi) ≥
√
biα

i l(ξ(bi)) ≥
√

α2

2t l(ξ
(bi)) ≥

√
1
8t l(ξ

(n))/2.

Proof of Theorem 3.6.4. Let l be the Q-norm which is dual to l′. By Lemma 3.6.9, ∀x ∈ Rn,

l2(x) ≤ 6
√

log n/l(ξ(n)) · l(x), which implies, using Fact 3.2.3, that bl′ ≤ 6
√

log n/l(ξ(n)). By

Fact 3.2.4 and Lemma 3.3.12, we know that 1/Ml′ ≤ Ml ≤ l(ξ(n))
√

log n/λ1. The theorem

follows by putting the two bounds together.

3.7 The Level Algorithm

In this section we prove Theorem 3.3.2 by presenting the level algorithm and analyzing

its performance. The algorithm follows the ideas used by Indyk and Woodruff.15 for

approximating frequency moments. As their paper focuses on the specific problem of lp-

norms, its analysis is more specialized, with parameters chosen based on properties of

lp-norms, and it is not immediate to see how to generalize/modify it to approximate all

symmetric norms. For an easier statement of our upper bound, and also for completeness,

we modify their algorithm to output level vectors (instead of the value of lp norm) and

repeat the analysis accordingly.

To present the high level idea, we first present a two-pass algorithm, and then modify

it to be a one-pass algorithm. The two-pass algorithm is shown in Algorithm 5. Note that

we assume full randomness, i.e., the algorithm has unlimited access to random bits. We can
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reduce the number of bits needed to O(log n) by following Indyk’s method,16 which uses

Nisan’s pseudorandom generator,99 and this impacts the space complexity by an O(log n)

factor.

3.7.1 Two-Pass Algorithm

The purpose of this section is to prove the following theorem.

Theorem 3.7.1. There is a streaming two pass algorithm TwoPassLevelCounts, that given

input stream S with frequency vector v, level base α > 1, importance β > 0, precision ε > 0

and error probability δ, output a list (̂b1, b̂2, . . . , b̂t), where t = log n/ logα, such that,

• for all i ∈ [t], b̂i ≤ bi;

• if i is a β-important level, then b̂i ≥ (1− ε)bi,

with probability at least 1− δ, using space O
(

log6 n
βε4

log2(1/δ)
logα log n2

δ

)
.

The high level idea of the two pass algorithm is as follows. For each φ = 0, 1, . . . , O(log n),

we select a random subset of [n] where each item is included independently with probability

2−φ. This gives us O(log n) substreams, where each is defined by restricting the original

stream to only include updates from one of the random subsets. What we will prove is

that if level i is important, then a random sample of the items in level i will appear as

heavy hitters in one of the substreams. Hence, we can find them with a CountSketch.67

The entire sketch, that is the subsampling combined with CountSketch, is presented in Al-

gorithm 4, SampleLevel. Finding the largest φ such that some item from level i appears in

the substream gives us the estimate 2φ for the size of that level, but this estimate will not
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be accurate enough for our purposes.

To get an accurate estimate of the level sizes we repeat the above procedure to identify

heavy hitters R = O(ε−2 log2 n) times independently in parallel. Next, on the second

pass, we determine the exact frequency of each of the items identified during the first pass

and thus correctly identify its level. The final estimate for the size of level i is derived by

considering the largest φ such that at least a Ω(1/ log n) fraction among the repetitions with

sampling probability 2−φ contained an item in level i. The entire level vector approximation

procedure is Algorithm 5.

Algorithm 4 SampleLevel(S, n, β, ε, δ,Φ, R), sketch of the frequency vector by subsam-
pling and finding β heavy hitters

1: Input: stream S, β > 0, ε > 0, δ > 0, Φ > 0, R.
2: Output: Collection of maps {Dr

φ | φ ∈ [0,Φ], r ∈ [0, R]}.
3: For each r ∈ [0, R] and φ ∈ [0,Φ] generate a substream Srφ by sampling each i ∈ [n]

with probability pφ = 2−φ, independently, and including all updates to i
4: Let Dr

φ = CountSketch(Srφ, ε, β, δ).
5: Return {Dr

φ | φ ∈ [0,Φ], r ∈ [0, R]}.

Algorithm 5 TwoPassLevelCounts(S, n, α, β, ε, δ), a two-pass algorithm for approximating
the level vector

1: Input: stream S, α > 1, β > 0, ε > 0 and δ > 0
2: Output: (̂b0, b̂1, b̂2, b̂3 . . . b̂t)

3: Initialization: Let Φ← log n, R← Θ
(

log(1/δ) log2 n
ε2

)
, ε′ ← Θ(ε)

4: First Pass:
5: T̃ ← SampleLevel(S, n,O

(
β

t log(1/δ)

)
, ε′, δ/n,Φ, R)

6: Second Pass:
7: T ← the exact frequencies of all maps in T̃
8: Estimation Stage:
9: For each φ ∈ [Φ] and each i ∈ [t], let Aφ,i ← |{r | ∃i ∈ Dr

φ, α
i−1 < |Dr

φ[i]| ≤ αi}|
10: For each i ∈ [t], set qi ← maxφ∈[0,Φ]{φ | Aφ,i ≥

R log 1
δ

100 logn}
11: If qi does not exist then η̂i ← 0, else η̂i ← Aqi,i/(R(1 + ε′))

12: If η̂i = 0 then b̂i ← 0, else b̂i ← log(1−η̂i)
log(1−2−qi )
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Heavy hitter algorithm: For convenience, we define a map data structure, D, as a set

of pairs from [n]× Z with the property that for each i ∈ [n] there is at most one pair (i, ·)

in D. For any i ∈ [n], we say i ∈ D if there is a pair (i, z) in D and when i ∈ D we denote

D[i] = z as the value paired with i.

Define F≥k2 (S) :=
∑n

i=k+1 |v[i]|2, where |v[0]| ≥ |v[1]| . . . ≥ |v[n]| are the coordinates of

the frequency vector in decreasing order with ties broken arbitrarily.

Definition 3.7.2. We call a map D a (β, ε)-cover of the steam S, if

• if for some i ∈ [n] such that |vi|2 ≥ βF≥b1/βc2 (S) then i ∈ D;

• for every j ∈ D, |vj | ≤ D[j] ≤ (1 + ε)|vj |;

We omit S if it is clear from context.

The purpose of Algorithm 4 is to find a (β, ε)-cover for each of O(log n) substreams.

We call ε the precision parameter, β the heaviness parameter, and δ the error rate2.

Theorem 3.7.3 (67). There is a one pass streaming algorithm CountSketch(S, ε, β, δ) that,

for any input stream S of universe [n], with frequency vector v = (v1, v2, . . . , vn), outputs a

map D such that, with probability at least (1− δ),

• D is a (β, ε)-cover of S and

• |D| ≤ 2/β.

CountSketch uses O( 1
βε2

log n
δ log n) bits of space.

Consider the algorithm SampleLevel, we define Erφ as the event that the (φ, r) instance

2We asume δ < ε for the following analysis.
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of CountSketch outputs a (β, ε)-covers for the substream Srφ. By Theorem 4.3.5, we have

Pr[Erφ] ≥ 1− δ
n . Note that Erφ is independent of Srφ. To simplify analysis, we will assume that

the output of each CountSketch is correct. Our choice of the error rate δ will be such that

this happens with probability near 1. For the following analysis, we consider Algorithm

TwoPassLevelCounts and assume ε = 1/polylogn, δ = 1/poly(n), β = 1/polylogn.

Detectability of Levels:

Definition 3.7.4. A level i of stream S is β-detectable, if

α2i ≥ βF≥b1/βc2 (S).

We omit S if it is clear from the context.

If a level i is β-detectable then a CountSketch, with heaviness β, will include Bi in its

output. The following lemma is about the detectability of an important level.

Lemma 3.7.5. Suppose substream S ′ is obtained by subsampling the original stream with

probability p. Assume α ≤ 2. If i is a β-important level, then for any λ > t, with probability

at least 1 − t exp
[
−λpbi

tβ

]
, level i is β

λpbi
-detectable. In particular, if pbi = O(1), then with

probability at least 1− t exp
[
−Ω

(
λ
tβ

)]
, level i is β

λ -detectable.

Proof. Let V ′ be the new frequency vector the substream. Let (b′0, b
′
1, . . .) be the new level

sizes. Thus, for all j ∈ [t],

E(b′j) = pbj . (3.7.1)
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By the definition of important level

E[b′i] ≥ βE[
∑

j>i

b′j ]

and

E[b′iα
2i] ≥ βE[

∑

j≤i
b′jα

2j ].

To have level i detectable, it has to be among the top λpbi/β elements, thus
∑

j>i b
′
j ≤

λpbi/β. The probability this does not happen is, by Chernoff’s bound,

Pr[
∑

j>i

bj >
λpbi
β

] ≤ exp[−Ω(
λpbi
β

)].

On the otherhand, for level i to be detectable α2i ≥ β
λpbi

∑
j≤i b

′
jα

2j . Thus, the complement

occurs with probability,

Pr


 β

λpbi

∑

j≤i
b′jα

2j > α2i


 ≤ Pr

[
∃j, b′jα

2j ≥ λpbiα
2i

tβ

]

≤
∑

j

Pr[b′jα
2j ≥ λpbiα

2i

tβ
].

By Chernoff’s bound and because E(b′jα
2j) ≤ pbiα2i,

Pr


 β

λpbi

∑

j≤i
b′jα

2j > α2i


 ≤ t exp

[
−Ω

(
λpbiα

2i

α2jtβ

)]
≤ t exp

[
−Ω

(
λpbi
tβ

)]
.
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Subsample the important levels: Let us define ηi,φ := 1 − (1 − pφ)bi , which is the

probability that at least one element from Bi is sampled when the sampling probability

is pφ = 2−φ. Set λ = Θ(t log 1
δ ). Let η′i,φ be the probability that an element from Bi is

contained in D1
φ, which is the same as the probability that it is contained in Dr

φ for any

other r.

Lemma 3.7.6. For any level i we have η′i,φ < ηi,φ. Also, assume δ < ε, if level i is a

β-important level and pφbi = O(1), then η′i,φ ≥ (1−Θ(ε))ηi,φ.

Proof. For an element to be in Dr
φ it must first be sampled, thus η′i,φ ≤ ηi,φ. On the other

hand, with probability at least 1 − t exp
[
−Ω(λpbitβ )

]
= 1 − O(δ), level i is β

λpbi
-detectable.

Note that β
λpbi

= Θ( β
t log(1/δ)). Thus with probability at least ηi,φ(1−Θ(δ)) ≥ ηi,φ(1−O(ε)))

an element from Bi is sampled and the element is reported by CountSketch.

We now show that η̂i, at Line 11 of Algorithm 5, is a good estimator for η′i,qi .

Lemma 3.7.7. At Line 11, with probability at least 1 − δΩ(logn), for all i ∈ [t], if η̂i 6= 0

then (1 − O(ε))η′i,qi ≤ η̂i ≤ η′i,qi . The probability is taken over the probability space of all

the random bits chosen for the algorithm.

Proof. If η̂i 6= 0, then Aqi,i ≥ γ =
R log 1

δ
100 logn . For a particular i, since the sampling process is

independent for each r ∈ [R], the claim is that E(Aqi,i) = Rηi,qi = Ω(γ). This holds because

otherwise, by a Chernoff bound, Pr[Aqi,i ≥ γ] = o(δΩ(logn)). Therefore by a Chernoff bound,

Pr[|Aqi,i −Rη′i,qi | ≥ εRηi,qi ] ≤ exp(−Ω(ε2γ)) = δΩ(log(n)).
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Since t = polylog(n), by union bound, (1− ε′)ηi,qi ≤ Aqi,i/Ri ≤ (1 + ε′)ηi,qi happens for all

i ∈ [t] with probability at least 1− δΩ(log(n)). Thus the lemma is proved.

Lemma 3.7.8. At Line 11, if level i is important, then with probability at least 1−δΩ(logn),

the maximizer qi is well defined. The probability is taken over the probability space of all

the random bits chosen for the algorithm.

Proof. By Lemma 3.7.6 we know when pibi = O(1) level i is at least Ω( β
t log(1/δ))-detectable.

On the other hand, consider the case when pi = 2−φ0 = 1
bi

, we have ηi,φ0 = 1− (1− pi)bi ≥

1/e. Thus E(Aφ0,i) ≥ R/e, thus by Chernoff’s bound,

Pr[Aφ0,i ≤
R log 1/δ

100 log n
] ≤ exp

[
−Ω

(
R log 1/δ

log n

)]
≤ δΩ(logn).

Thus, there exists a qi ≥ φ0 with probability at least 1− δΩ(logn). Since there are at most

t = polylog(n) important levels, with probability at least 1 − δΩ(logn), the corresponding

value of qi is well defined for all important levels.

From probability estimation to size of the level: Now we show that the conversion

from η̂i to b̂i gives a good approximation to bi.

Lemma 3.7.9. At line 12 of Algorithm 5. Suppose qi ≥ 1, ε ≤ 1/2, and n is sufficiently

large. If η̂i ≤ ηi,qi then b̂i ≤ bi. If η̂i ≥ (1− ε)ηi,qi then b̂i ≥ (1−O(ε))bi.

Proof. Note that

bi =
log(1− ηi,qi)
log(1− 2−qi)

,
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is a increasing function of ηi,qi . Thus if η̂i ≤ ηi,qi , then b̂i ≤ bi. On the other hand, if

η̂i ≥ (1−O(ε))ηi,qi we have

b̂i ≥ bi +
ε′ηi,qi

(1− ηi,qi) log(1− 2−qi)
≥ bi −O(ε)bi.

Full Proof:

Proof of Theorem 3.7.1. Define the event E2 that for all important levels, qi is well defined.

Define event E3 that for all i ∈ [t], if η̂i > 0 then (1 − O(ε))η′qi,i ≤ η̂i ≤ η′qi,i. By Lemma

3.7.7 and 3.7.8, we have that Pr[E2 ∩E3] ≥ 1− δO(logn). When the output of every CountS-

ketch is correct, it follows from lemmas 3.7.6, 3.7.7, and 3.7.9 the algorithm outputs an

approximation to the level vector meeting the two criteria.

CountSketch is used a total of ΦR times, each with error probability at most δ/n. By

a union bound, the failure probability is at most (polylogn)δ/n = o(δ). Therefore, the total

failure probability of the algorithm is at most 1− o(δ).

The last step of the proof is to bound the space used by the algorithm. For each instance

of the CountSketch, the space used is O( 1
ε2
t log(1/δ)

β log n2

δ log n). There are ΦR instances.

Finally, we can reduce the number bits need to O(log n) by using Nisan’s pseudorandom

generator99 with Indky’s method,16 which impacts the storage by a O(log n) factor. To

store the level vector, it requires t counters. Therefore, the total space used is,

O

(
log6 n

βε4
log2(1/δ)

logα
log

n2

δ
+

log2 n

logα

)
(3.7.2)
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bits of memory.

3.7.2 One-Pass Algorithm

In this section, following Indyk-Woodruff ’s15 approach, we show that we can convert the

two-pass algorithm to a one pass algorithm by randomizing the boundary. The randomizing

scheme works by changing α = 1+γ to α′ = 1+xγ, where x is chosen uniformly at random

from [1/2, 1]. Note that in,15 they randomize the boundary by changing the level boundaries

to xαi, we will verify that their proof still works if choose our boundary randomization

scheme. Here we assume that the algorithm works for real numbers. The full approach in15

proves that the real number can be represented by first few bits of the real number x and

yeilds no precision loss.

We refer our algorithm as Level1. The idea is to remove the second pass in Algo-

rithm TwoPass- LevelCounts, and just use the approximated values D[j]s. Note that in

TwoPassLevelCounts, we require the second pass to measure the exact frequencies, so

that we can accurately decide which level the sampled frequency belongs to. The task

of deciding levels is to test whether |vj | ≥ αi. However, for each returned map D, since

|vj | ≤ D[j] ≤ (1 + ε)|vj |, if the boundary αi ∈ [|vj |, (1 + ε)|vj |], then D[j] ≥ αi may not

imply |vj | ≥ αi.

Following,15 after the running of SampleLevel, for a returned map D, for each j ∈ D,

we claim level w = dlogD[j]/ logα′e is detected. Thus whether a level w is detected, is

determined by the first j ∈ [m] that D[j] falls in interval (α′w−1, α′w]. Denote v = |vj | as
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the actual frequency. We test whether the event Ew : α′w−1 ≥ D[j]/(1+ ε) happens. If true,

we discard the returned map D. If this is not the case, we know that |v| ∈ (α′w−1, α′w], and

therefore w is the correct classification of |v|.

First note that if α < 2, then the case w = 1 is always a good case since D[j] ∈ (1, α′]⇒

v ∈ (1/(1+ε), α′], which is only possible when |v| = 1. Then we can combine the case w = 1

and w = 0. When w > 1, assuming the precision parameter of CountSketch is ε′, we bound

the probability of the bad cases, which imply,

(1−ε′)|v| ≤ (1 + xγ)w−1 ≤ (1 + ε′)|v|

⇒ log(1− ε′) + log |v| ≤ (w − 1) log(1 + xγ) ≤ log |v|+ log(1 + ε′)

⇒ log |v|
γ
− ε′

γ
≤ (w − 1)x ≤ log |v|

γ
+
ε′

γ

⇒ log |v|
(w − 1)γ

− ε′

(w − 1)γ
≤ x ≤ log |v|

(w − 1)γ
+

ε′

(w − 1)γ
(3.7.3)

Since w > 1. Thus Pr[Ew] ≤ 4ε′
(w−1)γ ≤ 4ε′

γ . We can choose the precision parameter as,

ε′ = γ2

8 logn . And there are at most t′ = log n/ logα′ = O(log n/γ) detected levels. Ew

happens for any of the detected levels w ∈ [t′] with probability at most,

log n

logα′
ε′

γ
≤ ε′ log n

γ2
=

1

2
.

Thus, by parallel repeating the SampleLevel algorithm log n2

δ times, with probability at

list 1 − O(δ/n2), there is a good map D in every log n2

δ many returned maps. Thus, with

probability at least 1 − O(δ/n) we can still find as many as good maps as in the two-
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pass algorithm. The remaining analysis of the algorithm follows exactly as in the two pass

algorithm. The memory used in the one-pass modification can be obtained by replacing one

of the 1/ε2 factor in Equation (3.7.2) with 1/ε′2 and multiply with log n2

δ ,

O

(
log8 n

βε2
log2(1/δ)

log5 α
log2 n

2

δ

)

bits. Thus we yield,

Theorem 3.7.10. There is a streaming one pass algorithm Level1, that given input stream

S with frequency vector v, level base α = 1 + γ, importance β > 0, precision ε > 0 and

error probability δ, output a list (α′ = 1 + Θ(γ), b̂1, b̂2, . . . , b̂t), where t = log n/ logα′, such

that,

• for all i ∈ [t], b̂i ≤ bi;

• if i is a β-important level, then b̂i ≥ (1− ε)bi,

with probability at least 1− δ, using space O
(

log8 n
βε2

log2(1/δ)

log5 α
log2 n2

δ

)
bits.

3.8 Concluding Remarks of Chapter 3

There is obviously a poly(1
ε log n) gap between our upper and lower bounds. For the lp

norms, p > 2, our lower bound is Ω(n1−2/p), matching the true space complexity to within

a Θ(log n) factor.68,71 Despite the gap, we do partially answer Open Problem 30 (Universal

Sketching) in,75 by showing that the class of symmetric norms admits universal sketches, and

also Open Problem 5 (Sketchable Distances) in,75 by showing that every symmetric norm l
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admits streaming algorithms and is thus sketchable with space mmc(l)2 · poly(1
ε log n).

Both our algorithm and our lower bound rely on the symmetry of the norm. It would

be very interesting to see whether the modulus of concentration is a key factor in the space

complexity also for general norms. Our results do extend a little towards more general

norms. Notice that, given any symmetric norm l on Rn and invertible linear transformation

A : Rn → Rn, our results also apply to the streaming complexity of lA := l(A(·)), which is

always a norm but is generally not symmetric. For example, l2(A(·)) is the norm induced by

the inner product 〈x, y〉A := yTATAx, and it is not symmetric unless all singular values of A

are the same. To compute lA(v) one applies A to the incoming stream vector v and then runs

an algorithm for l (we do not count the storage for A). Therefore, the space complexity of lA

is no worse than that of l, and, as the same argument applies to l = lA(A−1(·)), the two must

have the same streaming complexity (we assume that O(log n) bits suffice to represent any

entry of A or A−1 to sufficient precision). More generally, norms that can be related to each

other by composition with an invertible linear transformation, as above, must have the same

space complexity. On the other hand, this operation does not preserve mc(l) or mmc(l).

Perhaps a norm should be put into a “canonical form” that is more amenable to determining

its space complexity. For example, the distorted Euclidean norm l(v) = (vTATAv)1/2,

mentioned above, may have mmc(l) on the order of min{√n, σ1(A)/σn(A)}, but it can be

seen immediately to have space complexity poly(1
ε log n) ·mmc(l2)2 bits (in fact O( 1

ε2
log n)

bits), from the AMS algorithm14 and by recognizing l(v) = l2(Av) (again assuming O(log n)

bits represents any entry of A to sufficient precision). Can we use mmc(·) to determine the

space complexity of every norm?
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It would be very interesting also to design a small sketch that is oblivious to the linear

transformation. For instance, letM be a family of linear transformations where lA 6= lB for

all A,B ∈ M. Is there a linear sketch that approximates the norm lA(v) for any streamed

vector v ∈ Rn and linear transformation A ∈ M? Observe that no small sketch can be

oblivious to all linear transformations, since that would allow recovery of every coordinate

of v.

Our Theorem 3.1.3 shows a quadratic space-approximation tradeoff for every symmetric

norm. Previously, this was only known for the l∞ norm due to Saks and Sun.94 Investigating

space-approxmation tradeoff is an interesting direction because such tradeoffs appear in the

sketching lower bounds of,60 however no matching algorithms are known for other specific

norms of interests, such as the Earth Mover Distance and the trace norm (of matrices).
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Chapter 4

k-median Clustering in Dynamic

Streams

This chapter is based on BFHSY (2017).100

4.1 Background

The analysis of very large data sets is still a big challenge. Particularly, when we would

like to obtain information from data sets that occur in the form of a data stream like, for

example, streams of updates to a data base system, internet traffic and measurements of

scientific experiments in astro- or particle physics (e.g.8). In such scenarios it is difficult and

sometimes even impossible to store the data. Therefore, we need algorithms that process

the data sequentially and maintain a summary of the data using space much smaller than
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the size of the stream. Such algorithms are often called streaming algorithms (for more

introduction on streaming algorithms, please refer to7).

One fundamental technique in data analysis is clustering. The idea is to group data

into clusters such that data inside the same cluster is similar and data in different clusters is

different. Center based clustering algorithms also provide for each cluster a cluster center,

which may act as a representative of the cluster. Often data is represented as vectors in Rd

and similarity between data points is often measured by the Euclidean distance. Clustering

has many applications ranging from data compression to unsupervised learning.

In this paper we are interested in clustering problems over dynamic data streams, i.e.

data streams that consist of updates, for example, to a database. Our stream consists

of insert and delete operations of points from {1, . . . ,∆}d. We assume that the stream is

consistent, i.e. there are no deletions of points that are not in the point set and no insertions

of points that are already in the point set. We consider the k-median clustering problem,

which for a given a set of points P ⊆ Rd asks to compute a set C of k points that minimizes

the sum of distances of the input points to their nearest points in C.

4.1.1 Our Results

We develop the first (1 + ε)-approximation algorithm for the k-median clustering prob-

lem in dynamic data streams that uses space polynomial in the dimension of the data. To

our best knowledge, all previous algorithms required space exponentially in the dimension.

Formally, our main theorem states,
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Theorem 4.1.1 (Main Theorem). Fix ε ∈ (0, 1/2), positive integers k and ∆, Algorithm 6

makes a single pass over the dynamic streaming point set P ⊂ [∆]d, outputs a weighted set S,

such that with probability at least 0.99, S is an ε-coreset for k-median of size O
(
kd4L4/ε2

)
,

where L = log ∆. The algorithm uses Õ
(
kd7L7/ε2

)
bits in the worst case, processes each

update in time Õ(dL2) and outputs the coreset in time poly(d, k, L, 1/ε) after one pass of

the stream.

The theorem is restated in Theorem 4.3.6 and the proof is presented in Section 4.3.3.

The coreset we constructed may contain negatively weighted points. Thus näıve offline

algorithms do not apply directly to finding k-clustering solutions on the coreset. We also

provide an alternative approach that output only non-negatively weighted coreset. The new

algorithm is slightly more complicated. The space complexity and coreset size is slightly

worse than the one with negative weights but still polynomial in d, 1/ε and log ∆ and

optimal in k up to polylogk factor.

Theorem 4.1.2 (Alternative Results). Fix ε ∈ (0, 1/2), positive integers k and ∆, Algo-

rithm 11 makes a single pass over the streaming point set P ⊂ [∆]d, outputs a weighted

set S with non-negative weights for each point, such that with probability at least 0.99, S

is an ε-coreset for k-median of size Õ
(
kd4L4/ε2

)
. The algorithm uses Õ

(
kd8L8/ε2

)
bits in

the worst case. For each update of the input, the algorithm needs poly(d, 1/ε, L, log k) time

to process and outputs the coreset in time poly(d, k, L, 1/ε) after one pass of the stream.

The theorem is restated in Theorem 4.4.3 in Section 4.4 and the proof is presented

therein. Both approaches can be easily extended to maintain a coreset for a general metric

space.
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4.1.2 Our Techniques

From a high level, both algorithms can be viewed as a combination of the ideas intro-

duced by Frahling and Sohler50 with the coreset construction by Chen.101

To explain our high-level idea, we first summarize the idea of Chen.101 In their con-

struction, they first obtain a (α, β)-bi-criterion solution. Namely find a set of at most αk

centers such that the k-median cost to these αk centers is at most βOPT, where OPT is the

optimal cost for a k-median solution. Around each of the αk points, they build logarithmi-

cally many concentric ring regions and sample points from these rings. Inside each ring, the

distance from a point to its center is upper and lower bounded. Thus the contribution to

the optimal cost from the points of this ring is lower bounded by the number of points times

the inner diameter of the ring. To be more precise, their construction requires a partition

of Õ(αk) sets of the original data points satisfying the following property: for the partition

P1, P2, . . . , Pk′ ,
∑

i |Pi|diam(Pi) . βOPT. They then sample a set of points from each part

to estimate the cost of an arbitrary k-set from [∆]d up to O(ε|Pi|diam(Pi)/β) additive error.

Combining the samples of the k′ parts, this gives an additive error of at most εOPT and

therefore an ε-coreset.

The first difficulty in generalizing the construction of Chen to dynamic streams is that

it depends on first computing approximate centers, which seems at first glance to require

two passes. Surprisingly (since we would like to be polynomial in d), we can resolve this

difficulty using a grid-based construction. The grid structure can be viewed as a (2d)-ary

tree of cells. The root level of the tree is a single cell containing the entire set of points.
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Going down a level through the tree, each parent cell is split evenly into 2d subcells. Thus

in total there are log2 ∆ grid levels. Each cell of the finest level contains at most a single

point.

Without using any information of a pre-computed (α, β)-bi-criterion solution to the

k-median problem, as it does in,101 our first idea (similar to the idea used in49) is to use a

randomly shifted grid (i.e. shift each coordinate of the cell of the root level by a random

value r, where r is uniformly chosen from {1, 2, . . .∆}, and redefine the tree by splitting cells

into 2d subcells recursively). We show that with high probability, in each level, at most Õ(k)

cells are close to (or containing) a center of an optimal solution to the k-median. For the

remaining cells, we show that each of them cannot contain too many points, since otherwise

they would contribute too much to the cost of the optimal solution (since each point in these

cells is far away from each of the optimal centers). We call the cells containing too many

points in a level heavy cells. The immediate non-heavy children of the heavy cells form a

partition of the entire point sets (i.e. the cells that are not heavy, but have heavy parents).

Let C1, C2, . . . , Ck′ be these cells, and we can immediately show that
∑

i |Ci|diam(Ci) ≤ βOPT

for some β = O(d3/2). If we can identify the heavy cells (e.g. use heavy hitter algorithms),

and sample points from their immediate non-heavy children in a dynamic stream, we will

obtain a construction similar to Chen.101

Our second idea allows us to significantly reduce space requirements and also allows us

to do the sampling more easily. For each point p, the cells containing it form a path on the

grid tree. We write each point as a telescope sum as the cell centers on the path of the point

( recall that the grids of each level are nested and the c0 is the root of the tree). For example,
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let c0, c1, . . . , cL be the cell centers of the path, where cL = p, and define 0 to be the zero

vector. Then p = cL− cL−1 + cL−1− cL−2 . . .+ c0−0 + 0. In this way, we can represent the

distance from a point to a set of points as the distance of cell centers to that set of points.

For example, let Z ⊂ [∆]d be a set of points, and d(p, Z) be the distance from p to the closest

point in Z. Then d(p, Z) = d(cL, Z)− d(cL−1, Z) + d(cL−1, Z)− d(cL−2, Z) + . . .+ d(0, Z).

Thus we can decompose the cost a set Z into L + 2 levels: the cost in level l ∈ [0, L] is

∑
p d(clp, Z)−d(cl−1

p , Z), where cpl is the center of the cell containing p in level l and the cost

in the (−1)-st level is |P |d(0, Z), where P is the entire points set. Since |d(clp, Z)−d(cl−1
p , Z)|

is bounded by the cell diameter of the level, we can sample points from the non-heavy cells

of the entire level, and guarantee that the cost of that level is well-approximated. Notice

that (a) we do not need to sample Õ(k) points from every part of the partition, thus we

save a k factor on the space and (b) we do not need to sample the actual points, but only

an estimation of the number of points in each cell, thus the sampling becomes much easier

(there is no need to store the sampled points).

In the above construction, we are able to obtain a coreset, but the weights can be

negative due the the telescope sum. It is not easy find an offline k-median algorithm to

output the solutions from a negatively-weighted coreset. To remove the negative weights,

we need to adjust the weights of cells. But the cells with a small number of points

(compared to the heavy cells) are problematic – the sampling-based empirical estimations

of the number of points in them has too much error to be adjusted.

In our second construction, we are able to remove all the negative weights. The major

difference is that we introduce a cut-off on the telescope sum. For example, d(p, Z) =
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d(cLp , Z)−d(c
l(p)
p , Z) +d(c

l(p)
p )−d(c

l(p)−1
p ) + . . .+d(0, Z) where l(p) is a cutoff level of point

p such that the cell containing p in level l(p) is heavy but no longer heavy in level l(p) + 1.

We then sample point p with some probability defined according to l(p). In other words,

we only sample points from heavy cells and not from non-heavy ones. Since a heavy cell

contains enough points, the sampling-based estimation of the number of points is accurate

enough and thus allows us to adjust them to be all positive.

Finally, to handle the insertion and deletions, we use a F2-heavy hitter algorithm to

identify the heavy cells. We use pseudo-random hash functions (e.g. Nisan’s construc-

tion16,99 or k-wise independent hash functions) to do the sampling and use a K-Set data

structure102 to store the sampled points in the dynamic stream.

4.1.3 Related Work

There is a rich history in studies of geometric problems in streaming model. Among

these problems some excellent examples are: approximating the diameter of a point set,103,104

approximately maitain the convex hull,105,106 the min-volume bounding box,107,108 main-

tain ε-nets and ε-approximations of a data stream.109 Clustering problem is another in-

teresting and popular geometric problem studied in streaming model. There has been a

lot of works on clustering data streams for the k-median and k-means problem based on

coresets.28,29,101,110–112 Additionally24,113,114 studied the problem in the more general met-

ric space. The currently best known algorithm for k-median problem in this setting is an

O(1)-approximation using O(kpolylogn) space.105 However, all of the above methods do

not work for dynamic streams.
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The most relevant works to ours are those by Indyk,49 Indyk & Price115 and Frahling &

Sohler.50 Indyk49 introduced the model for dynamic geometric data streamings. He studied

algorithms for (the weight of) minimum weighted matching, minimum bichromatic matching

and minimum spanning tree and k-median clustering. He gave a exhaustive search (1 + ε)

approximation algorithm for k-median and a (α, β)-bi-criterion approximation algorithm.

Indyk & Price115 studied the problem of sparse recovery under Earth Mover Distance.

They show a novel connection between EMD/EMD sparse recovery problem to k-median

clustering problem on a two dimensional grid. The most related work to current one is

Frahling & Sohler,50 who develop a streaming (1+ε)-approximation algorithms for k-median

as well as other problems over dynamic geometric data streams. All previous constructions

for higher dimensional grid require space exponential in the dimension d.

4.2 Preliminaries

For integer a ≤ b, we denote [a] := {1, 2, . . . , a} and [a, b] := {a, a+ 1, . . . , b} for integer

intervals. We will consider a point set P from the Euclidean space {1, . . . ,∆}d. Without

loss of generality, we always assume ∆ is of the form 2L for some integer L, since otherwise

we can always pad ∆ without loss of a factor more than 2. Our streaming algorithm will

process insertions and deletions of points from this space. We study the k-median problem,

which is to minimize cost(P,Z) =
∑

p∈P d(p, Z) among all sets Z of k centers from Rd and

where d(p, q) denotes the Euclidean distance between p and q and d(p, Z) for a set of points

Z denotes the distance of p to the closest point in Z. The following definition is from.28
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Definition 4.2.1. Let P ⊆ [∆]d be a point set. A small weighted set S is called an ε-coreset

for the k-median problem, if for every set of k centers Z ⊂ [∆]d we have 1

(1− ε) · cost(P,Z) ≤ cost(S,Z) ≤ (1 + ε) · cost(P,Z),

where cost(S,Z) :=
∑

s∈S wt(s)d(s, Z) and wt(s) is the weight of point s ∈ S.

Through out the paper, we assume parameters ε, ρ, δ,∈ (0, 1
2) unless otherwise specified.

For our algorithms and constructions we define a nested grid with L levels, in the following

manner.

Definition of grids Let v = (v1, . . . , vd) be a vector chosen uniformly at random from

[0,∆ − 1]d. Partition the space {1, . . . ,∆}d into a regular Cartesian grid G0 with side-

length ∆ and translated so that a vertex of this grid falls on v. Each cell of this grid can

be expressed as [v1 + n1∆, v1 + (n1 + 1)∆) × . . . × [vd + nd∆, vd + (nd + 1)∆) for some

(n1, . . . , nd) ∈ Zd. For i ≥ 1, define the regular grid Gi as the grid with side-length ∆/2i

aligned such that each cell of Gi−1 contains 2d cells of Gi. The finest grid is GL where

L = dlog2 ∆e; the cells of this grid therefore have side-length at most 1 and thus contain at

most a single input point. Each grid forms a partition of the point-set S. There is a d-ary

tree such that each vertex at depth i corresponds to a cell in Gi, and this vertex has 2d

children which are the cells of Gi+1 that it contains. For convenience, we define G−1 as the

entire dataset and it contains a single cell C−1. For each cell C, we also treat it as a subset

of the input points (i.e. C ∩ P ) if there is no confusion.

1For simplicity of the presentation, we define the coreset for all sets of k centers Z ⊂ [∆]d, but it can be
generalized to all sets of k centers Z ⊂ Rd with an additional polylog(1/ε) factor in the space. We discuss
this point further in Section 4.9.
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We denote Z∗ ⊂ [∆]d as the optimal solution for k-median and OPT as the optimal cost

for Z∗. The proof of the following lemma is delayed to Section 4.5.

Lemma 4.2.2. Fix a set Z ⊂ [∆]d, then with probability at least 1 − ρ, for every level

i ∈ [0, L], the number of cells that satisfy d(C, Z) ≤ ∆/(2i+1d) is at most e|Z|(L+ 1)/ρ.

4.2.1 Outline

In Section 4.3, we introduce the coreset with negative weights. In Section 4.4, we

introduce a modified construction with all positive weights. Section 4.9 comes with the

final remarks.

4.3 Generally Weighted Coreset

In this section, we present our generally weighted coreset construction. In Section 4.3.1,

we introduce the telescope sum representation of a point p and the coreset framework. In

Section 4.3.2, we illustrate our coreset framework with an offline construction. In Sec-

tion 4.3.3 we present an one pass streaming algorithm that implements our coreset frame-

work.

4.3.1 The Telescope Sum and Coreset Framework

Our first technical idea is to write each point as a telescope sum. We may interpret this

sum as replacing a single point by a set of points in the following way. Each term (p− q) of
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the sum can be viewed as a pair of points p and q, where p has weight 1 and q has weight

−1. The purpose of this construction is that the contribution of each term (p− q) (or the

corresponding two points) is bounded. This can be later exploited when we introduce and

analyze our sampling procedure.

We now start to define the telescope sum, which will relate to our nested grids. For

each C ∈ Gi, denote c(C) (or simply c) as its center. For each point p ∈ P , define C(p, i) as

the cell that contains p in Gi, and cip is the center of C(p, i). Then we can write

p = c−1
p +

L∑

i=0

cip − ci−1
p .

where we set c−1
p = 0 (we also call this the cell center of the (−1)-st level for convenience).

The purpose of this can be seen when we consider the distance of p to an arbitrary k-centers

Z ⊂ [∆]d, we can write the cost of a single point p, as

d(p, Z) = d(c−1
p , Z) +

L∑

i=0

d(cip, Z)− d(ci−1
p , Z).

Note that cLp = p since the cells of GL contain a single point. Thus the cost of the entire set

cost(P,Z) can be written as,

L∑

i=0

∑

p∈P
d(cip, Z)− d(ci−1

p , Z) +
∑

p∈P
d(c−1

p , Z). (4.3.1)

As one can see, we transform the cost defined using the original set of points to the “cost”

defined using cell centers. To estimate the cost, it remains to estimate each of the terms,
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∑
p∈P d(cip, Z)−d(ci−1

p , Z) for i ∈ [0, L] and
∑

p∈P d(c−1
p , Z). In other words, assign weights

to each of the centers of the grid cells. For i ∈ [0, L], and a cell C ∈ Gi, denote CP as the

parent cell of C in grid Gi−1. Thus we can rewrite the cost term as follows,

cost(Gi, Z) :=
∑

p∈P
d(cip, Z)− d(ci−1

p , Z)

=
∑

C∈Gi

∑

p∈C
d(c(C), Z)− d(c(CP ), Z)

=
∑

C∈Gi
|C|
[
d(c(C), Z)− d(c(CP ), Z)

]

=
∑

C∈Gi
|C|d(c(C), Z)−

∑

C′∈Gi−1

∑

C∈Gi:C⊂C′
|C|d(c(C′), Z). (4.3.2)

For i = −1, we denote cost(G−1, Z) = |P |d(c−1
p , Z). Then this leads to our following coreset

construction framework.

Generally Weighted Construction The coreset S in the construction is composed by a

weighted subset of centers of grid cells. The procedure of the construction is to assign some

(integer) value to each cell center. For instance, maintain a integer valued function |̂ · | on

cells (using small amount of space). |̂C| is called the value of the cell C. Let c be the center

of C, then the weight for c is

wt(c) = |̂C| −
∑

C′:C′∈Gi+1,C′⊂C
|̂C′|. (4.3.3)

And for the L-th grid GL, the weight for each cell C is just |̂C|. Note that there might be

negative weights for some cells.
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As a näıve example, we set |̂C| := |C| as the exact number of points of a cell C. Then

we would expect the cells in every level except those in GL have weight 0. In other words,

we stored the entire point set as the coreset. As we will show, if we allow |̂C| as an

approximation of |C| up to additive error, we can compress the number of non-zero weighted

centers to be a smaller number.

Definition 4.3.1. Given a grid structure, and a real valued function |̂ · | on the set of cells.

We define a function ĉost : [∆]d × G → R as follows, for i ∈ [0, L] and Z ⊂ [∆]d,

ĉost(Gi, Z) :=
∑

C∈Gi
|̂C|d(c(C), Z)−

∑

C′∈Gi−1

∑

C∈Gi:C⊂C′
|̂C| · d(c(C′), Z), (4.3.4)

and ĉost(G−1, Z) = |̂C−1|d(0, Z), where C−1 is the cell in G−1 containing the entire set of

points.

Lemma 4.3.2. Fix an integer valued function |̂ · | on the set of cells and parameter 0 <

ε < 1
2 . Let S be the set of all cell centers with weights assigned by Equation (4.3.3).

If |̂C−1| = |P | (recall that C−1 is the first cell containing the entire dataset) and for any

Z ⊂ [∆]d with |Z| ≤ k and i ∈ [0, L]

∣∣∣cost(Gi, Z)− ĉost(Gi, Z)
∣∣∣ ≤ εOPT

L+ 1
,

then S is an ε-coreset for k-median.
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Proof. Given an arbitrary set of centers Z ⊂ [∆]d,

cost(S,Z) =
∑

s∈S
wt(s)d(s, Z)

=
∑

i∈[0,L]

∑

C∈Gi
d(c(C), Z)

(
|̂C| −

∑

C′:C′∈Gi+1

C′⊂C

|̂C′|
)

+ |P |d(0, Z)

=
∑

i∈[0,L]

[ ∑

C∈Gi
|̂C|d(c(C), Z)−

∑

C′∈Gi−1

C∈Gi:C⊂C′

|̂C|d(c(C′), Z)
]

+ |P |d(0, Z)

=
∑

i∈[0,L]

ĉost(Gi, Z).

It follows that |cost(S,Z)− cost(P,Z)| ≤ εOPT.

4.3.2 An Offline Construction

In this section, we assume we have (10, 10)-bi-criterion approximation to k-median. Let

Z ′ = {z′1, z′2, . . . , z′10k} be the centers and o is the cost satisfying OPT ≤ o ≤ 10OPT. This

can be done using.16 We will show how we construct the coreset base on the framework

described in the last section.

An Offline Construction For each point in level G−1, we sample it with probability

π−1 = 1 (i.e. count the number of points exactly) and set |̂C−1| := |P |. For each level

i ∈ [0, L], we pick the set of all cells C satisfying d(C, Z ′) ≤ W/(2d), where W is the side

length of C. Denote the set of these cells as CZ′ . We count the number of points in each of

these cells exactly, and set |̂C| := |C|. For the points in the rest of cells, for each i ∈ [0, L],
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we sample the points with probability

πi = min

(
200(L+ 1)2∆d2

2iε2o
ln

2(L+ 1)∆kd

ρ
, 1

)
(4.3.5)

uniformly and independently. Denote Si as the set of sampled points at level i. For each

C 6∈ CZ′ , set

|̂C| := |Si ∩ C|/πi.

Then, from the bottom level to the top level, we assign the weight to the cell centers of each

of the cells and their parent cells with non-zero |̂C| using (4.3.3). Denote S as the coreset,

which contains the set of cell centers of non-zero weight.

Theorem 4.3.3. Fix ε, ρ ∈ (0, 1/2), then with probability at least 1 − 8ρ, the offline

construction S is an ε-coreset for k-median and that

|S| = O

(
d4kL4

ε2
log

1

ρ
+
kL2

ρ

)
.

Proof of Theorem 4.3.3. By definition |̂C−1| = |P |, it is suffice to show that with probability

at least 1− 4ρ, for every i ∈ [0, L] and every k-set Z ⊂ [∆]d,

∣∣∣ĉost(Gi, Z)− cost(Gi, Z)
∣∣∣ ≤ εOPT/(L+ 1).

It follows from Lemma 4.3.2 that, S is an ε-coreset.

Let Si be the sampled points of level i. Fix a k-set Z ⊂ [∆]d, for each i ∈ [0, L],

by equation (4.3.2), we have that, ĉost(Gi, Z) =
∑
C∈CZ′ |̂C|

(
d(c(C), Z)− d(c(CP ), Z)

)
+
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∑
p∈Si(d(cip, Z) − d(ci−1

p , Z)))/πi. Note that E(ĉost(Gi, Z)) = cost(Gi, Z). The first term

contributes 0 to the difference ĉost(Gi, Z) − cost(Gi, Z) since each |̂C| is exact. It remains

to bound the error contribution from the second part. Denote A2 =
∑

p∈Si(d(cip, Z) −

d(ci−1
p , Z)))/πi. Recall that Z ′ is the centers of the bi-criterion solution and CZ′ is the set

of cells with distance less than W/(2d) to Z ′, where W is the side-length of a cell. Let A be

event that |CZ′ | ≤ e|Z ′|(L + 1)2/ρ = O(kL2/ρ). By Lemma 4.2.2, A happens with proba-

bility at least 1−ρ. Conditioning on A happening, for each point p ∈ C /∈ CZ′ , we have that

d(p, Z ′) ≥ diam(C)/(2d3/2). Therefore,
∑

p∈C /∈CZ diam(C) ≤ (2d3/2)
∑

p∈C /∈CZ d(p, Z ′) ≤

20d3/2OPT. By Lemma 4.3.4, with probability at least 1− ρ
(L+1)∆kd , |A2 −E(A2)| ≤ εOPT

L+1 .

Since there are at most ∆kd many different k-sets from [∆]d, thus, for a fixed i ∈ [0, L]

with probability at least 1 − ρ
L+1 , for all k-sets Z ⊂ [∆]d,

∣∣∣ĉost(Gi, Z)− cost(Gi, Z)
∣∣∣ ≤

εOPT/(L+1). By the union bound, with probability at least 1−4ρ, S is the desired coreset.

It remains to bound the size of S. Conditioning on A happening, then |CZ′ | =

O(kL2/ρ). For each level i, since each point from cells C 6∈ CZ′ contributes at least ∆/(2i+1d)

to the bi-criterion solution, there are at most O(2iOPTd/∆) points in cells not in CZ′ . By a

Chernoff bound, with probability at least 1−ρ/(L+ 1), the number of points sampled from

cells C 6∈ CZ′ of level i is upper bounded by O(d4kL3 log 1
ρ/ε

2). Thus for all levels, with prob-

ability at least 1−ρ, the number of points sampled is upper bounded by O(d4kL4 log 1
ρ/ε

2),

which is also an upper bound of the number of cells occupied by sampled points. Now we

bound the number of non-zero weighted centers. In the coreset construction, if a cell center

has non-zero weight, then either itself or one of its children cells has non-zero assigned value

|̂C|. Thus the number of non-zero weigted centers is upper bound by 2 times the number of
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non-zero valued cells. Thus |S| = O(d4kL4 log 1
ρ/ε

2 + kL2

ρ ).

Lemma 4.3.4. Fix ε, ρ ∈ (0, 1/2), if a set of cells C from grid Gi satisfies
∑
C∈C |C|diam(C) ≤

βOPT for some β ≥ 2ε/(3(L+ 1)), let S be a set of independent samples from the point set

∪{C ∈ C} with probability

πi ≥ min
(

3a(L+1)2∆
√
dβ

2iε2o
ln 2∆kd(L+1)

ρ , 1
)

where 0 < o ≤ aOPT for some a > 0, then for a fixed set Z ⊂ [∆]d, with probability at least

1− ρ/((L+ 1)∆kd),

∣∣∑

p∈S
(d(cip, Z)− d(ci−1

p , Z))/πi −
∑

p∈∪{C∈C}
(d(cip, Z)− d(ci−1

p , Z))
∣∣ ≤ εOPT

L+ 1
.

The proof is a straightforward application of Bernstein inequality. It is presented in

Section 4.5.

4.3.3 The Streaming Algorithm

For the streaming algorithm, the first challenge is that we do not know the actual value

of OPT, neither do we have an (α, β)-bi-criterion solution. To handle this, we will show that

we do not need an actual set of centers of an approximate solution, and that a conceptual

optimal solution suffices. We will guess logarithmically many values for OPT to do the

sampling. We re-run the algorithm in parallel for each guess of OPT.

The second challenge is that we cannot guarantee the sum
∑
C∈Gi diam(C) to be upper
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bounded by βOPT as required in Lemma 4.3.4. We will show that we can split the set of

cells into two parts. The first part satisfies the property that
∑
C |C|diam(C) ≤ βOPT for

some parameter β. The second part satisfies that |C|diam(C) ≥ aOPT/k for some constant

a.

For the first part, we use a similar sampling procedure as we did in the offline case.

The challenge here is that there might be too many points sampled when the algorithm

is midway through the stream, and these points may be deleted later in the stream. To

handle this case, we use a data structure called K-Set structure with parameter k.102 We

will insert (with deletions) a multiset of points M ⊂ [N ] into the K-Set. The data structure

processes each stream operation in O(log(k/δ)) time. At each point of time, it supports an

operation RETRSET, that with probability at least 1− δ either returns the set of items of M

or returns Fail. Further, if the number of distinct items |M | is at most k, then RETRSET

returns M with probability at least 1 − δ. The space used by the K-Set data structure is

O(k(log |M | + logN) log(k/δ). The K-Set construction also returns the frequency of each

stored points upon the RETRSET operation.

For the second part, we call these cells heavy. We first upper bound the number of

heavy cells by αk for some α > 1. We use a heavy hitter algorithm HEAVY-HITTER to

retrieve an approximation to the number of points in these cells. The guarantee is given

in the following theorem. In an insertion-deletion stream, it may that although the stream

has arbitrary large length, at any moment a much smaller number of elements are active

(that is, inserted and not yet deleted). We define the size of a stream to be the maximum

number of active elements at any point of the stream.
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Theorem 4.3.5 (116 Theorem 2). Fix ε, δ ∈ (0, 1/2). Given a stream (of insertions

and deletions) of size m consisting of items from universe [n], there exists an algorithm

HEAVY-HITTER(n, k, ε, δ) that makes a single pass over the stream and outputs a set of pairs

H. With probability at least 1− δ, the following holds,

(1) for each (i, f̂i) ∈ H, f2
i ≥

∑n
j=1 f

2
j /k − ε2

∑n
j=k+1 f

2
j ;

(2) if for any i ∈ [n] and f2
i ≥

∑n
j=1 f

2
j /k + ε2

∑n
j=k+1 f

2
j , then (i, f̂i) ∈ H;

(3) for each (i, f̂i) ∈ H, |f̂i − fi| ≤ ε
√∑n

j=k+1 f
2
j .

The algorithm uses O
(
(k + 1

ε2
) log n

δ logm
)

bits of space, O(log n) update time and O(k +

1/ε2)polylog(n) query time.

Thus, using HEAVY-HITTER, we are guaranteed that the error of the number of points

in heavy cells is upper bounded by ε times the number of points in the non-heavy cells.

The first heavy hitter algorithm that achieves an l2 guarantee is by,67 who has the same

space and update time as that of the above algorithm. However the update time is slow,

i.e. O(n log n) time to output the set of heavy hitters.

Lastly, we will use fully independent random hash function to sample the points. We will

use Nissan’s pseudorandom generator to de-randomize the hash functions by the method

of.16 Our main theorem for this section is as follows. The formal proof of this theorem is

postponed to Section 4.6.

Theorem 4.3.6 (Main Theorem). Fix ε, ρ ∈ (0, 1/2), positive integers k and ∆, Algo-

rithm 6 makes a single pass over the streaming point set P ⊂ [∆]d, outputs a weighted

set S, such that with probability at least 1 − ρ, S is an ε-coreset for k-median of size
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O
(
d4L4k
ε2

+ L2k
ρ

)
, where L = log ∆. The algorithm uses

O

[
k

((
d7L7

ε2
+
d3L5

ρ

)
log

dkL

ρε
+
d5L6

ε2ρ

)]

bits in the worst case, processes each update in time O
(
dL2 log dkL

ρε

)
and outputs the

coreset in time poly(d, k, L, 1/ε) after one pass of the stream.

4.4 Positively Weighted Coreset

In this section, we will introduce a modification to our previous coreset construction,

which leads to a coreset with all positively weighted points. The full algorithm and proofs

are postponed to Section 4.7. We present the main steps in this section.

The high level idea is as follows. When considering the estimate of the number of

points in a cell, the estimate is only accurate when it truly contains a large number of

points. However, in the construction of the previous section, we sample from each cell of

each level, even though some of the cells contain a single point. For those cells, we cannot

adjust their weights from negative to positive, since doing so would introduce large error.

In this section, we introduce an ending level to each point. In other words, the number of

points of a cell is estimated by sampling only if it contains many points. Thus, the estimates

will be accurate enough and allow us to rectify the weights to be all positive.
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4.4.1 Reformulation of the Telescope Sum

Definition 4.4.1. A heavy cell identification scheme H is a map H : G → {heavy, non-

heavy} such that, h(C−1) =heavy and for cell C ∈ Gi for i ∈ [0, L]

1. if |C| ≥ 2iρdOPT
k(L+1)∆ then H(C) = heavy;

2. If H(C) = non-heavy, then H(C′) = non-heavy for every subsell C′ of C.

3. For every cell C in level L, H(C) = non-heavy.

4. For each i ∈ [0, L], |{C ∈ Gi : H(C) = heavy}| ≤ λ1kL
ρ , where λ1 ≤ 10 is a positive

universal constant.

The output for a cell not specified by the above conditions can be arbitrary. We call a cell

heavy if it is identified heavy by H. Note that a heavy cell does not necessarily contain a

large number of points, but the total number of these cells is always bounded.

In the sequel, heavy cells are defined by an arbitrary fixed identification scheme unless

otherwise specified.

Definition 4.4.2. Fix a heavy cell identification scheme H. For level i ∈ [−1, L], let

C(p, i) ∈ Gi be the cell in Gi containing p. The ending level l(p) of a point p ∈ P is the

largest level i such that H(C(p, i)) =heavy, and H(C(p, i+ 1)) =non-heavy.

Note that the ending level is uniquely defined if a heavy cell identification scheme is

fixed. We now rewrite the telescope sum for p as follows,

p =

l(p)∑

i=0

(
cip − ci−1

p

)
+ cLp − cl(p)p ,

where c−1
p = 0 and cLp = p. For arbitrary k-centers Z ⊂ [∆]d, we write, d(p, Z) =
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∑l(p)
i=0

(
d(cip, Z)− d(ci−1

p , Z)
)

+ d(cLp , Z)− d(c
l(p)
p , Z) + d(0, Z) .

4.4.2 The New Construction (with arbitrary weights)

For these heavy cells, we use HEAVY-HITTER algorithms to obtain accurate estimates of

the number of points in these cells, thus providing a heavy cell identification scheme. For

the non-heavy cells, we only need to sample points from the bottom level, GL, but with a

different probability for points with different ending levels.

We now describe the new construction. This essentially has the same gaurantee as the

simpler construction from the previous section, however the benefit here is that (as shown

in the next subsection) it can be modified to output only positive weights. In the following

paragraph, the estimations |̂C| are given as a blackbox. In proposition 4.7.9 we specify the

conditions these estimations must satisfy.

Non-Negatively Weighted Construction Fix an arbitrary heavy cell identification

scheme H. Let Pl be all the points with ending level l(p) = l. For each heavy cell C,

let |̂C| be an estimation of number of points of |C|, we also call |̂C| the value of cell C. For

each non-heavy cell C′, let |̂C′| = 0. Let S be a set samples of P constructed as follows:

S = S−1 ∪ S0 ∪ S1,∪ . . . ∪ SL, where Sl is a set of i.i.d samples from Pl with probability πl.

Here πl for l ∈ [−1, L] is redefined as πl =

min
(
λ3d

2∆L2

2lε2o
log
(

2L∆dk

ρ

)
+ λ4d

2kL3∆
2iε2ρo log 30kL2

ρ2 , 1
)

where λ3 > 0 and λ4 > 0 are universal constants. Our coreset S is composed by all the

sampled points in S and the cell centers of heavy cells, with each point p assigned a weight
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1/πl(p) and for each cell center c of a heavy cell C ∈ Gi, the weight is,

wt(c) = |̂C| −
∑

C′:C′∈Gi+1,C′⊂C,
C′ is heavy

|̂C′| − |Si ∩ C|
πi

. (4.4.1)

For each non-heavy cell C except for those in the bottom level, wt(c(C)) = 0. The weight

of each point from S is the value of the corresponding cell in the bottom level.

4.4.3 Ensuring Non-Negative Weights

We now provide a procedure to rectify all the weights for the coreset constructed in the

last sub-section. The idea is similar to the method used in.115 The procedure is shown in

Algorithm 8. After this procedure, there will be no negative weights in the coreset outputs.

Theorem 4.4.3. Fix ε, ρ ∈ (0, 1/2), positive integers k and ∆, Algorithm 11 makes a single

pass over the streaming point set P ⊂ [∆]d, outputs a weighted set S with non-negative

weights for each point, such that with probability at least 0.99, S is an ε-coreset for k-median

of size

O
[
d3L4k
ε2

(
d+ 1

ρ log kL
ρ

)]

where L = log ∆. The algorithm uses

O
[
d7L7k
ε2

(
ρdL+ L

ρ log2 dkL
ρε

)
log2 dkL

ρε

]

bits in the worst case. For each update of the input, the algorithm needs poly (d, 1/ε, L, log k)

time to process and outputs the coreset in time poly(d, k, L, 1/ε, 1/ρ, log k) after one pass
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of the stream.

4.5 Proofs of Section 4.3

Proof of Lemma 4.2.2. Fix an i and consider a grid Gi. For each center zj , denote Xj,α the

indicator random variable for the event that the distance to the boundary in dimension α of

grid Gi is at most ∆/(2i+1d). Since in each dimension, if the center is close to a boundary, it

contributes a factor at most 2 to the total number of close cells. It follows that the number

of cells that have distance at most ∆/(2i+1d) to zj is at most,

N = 2
∑d
α=1 Xj,α .

Defining Yj,α = 2Xj,α , we obtain,

E[N ] = E

[
d∏

α=1

Yj,α

]
=

d∏

α=1

E[Yj,α].

We have that Pr[Xj,α = 1] ≤ 1/d and so we get,

E[Yj,α] ≤ E [1 +Xj,α] = 1 + E[Xj,α] ≤ 1 + 1/d.

Thus E(N) =
∏d
α=1E[Yj,α] ≤ (1 + 1/d)d ≤ e. Thus the expected number of center cells is

at most (1 + 1/d)d|Z| ≤ e|Z|. By Markov’s inequality, the probability that we have more

than e|Z|(L + 1)/ρ center cells in each grid is at most ρ/(L + 1). By a union bound, the

probability that in any grid we have more than e|Z|(L+ 1)/ρ center cells is at most ρ.
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Proof of Lemma 4.3.4. Let L′ = L + 1. Note that for each point p ∈ P , |d(cip, Z) −

d(ci−1
p , Z)| ≤ ∆

√
d/2i. Denote Â =

∑
p∈S(d(cip, Z)−d(ci+1

p , Z))/πi andA =
∑

p∈∪{C∈C}(d(cip, Z)−

d(ci+1
p , Z)). We have that E(Â) = A. Let

Xp := Ip∈S(d(cip, Z)− d(ci+1
p , Z))/πi,

where Ip∈S is the indicator function that p ∈ S. Then we have that V ar(Xp) ≤ ∆2d/(4iπi)

and b := maxp |Xp| ≤ ∆
√
d/(2iπi). By Bernstein’s inequality,

Pr
[
|Â−A| > t

]
≤ 2e

− t2

2|P |∆2d/(4iπi)+2bt/3

≤ 2e
− 3×2i−1t2πi

(βOPT+ t
3)∆

√
d . (4.5.1)

By setting t = εOPT/L′, we have that

Pr
[
|Â−A| > εOPT

L′

]
≤ 2e

− ln 2L′∆dk
ρ ≤ ρ

L′∆dk
. (4.5.2)

Thus with probability 1 − ρ/(L′∆dk), Â is an εOPT/L′ additive approximation to the sum

∑
p∈P d(cip, Z)− d(ci+1

p , Z).

4.6 Proof of Theorem 4.3.6

Before we prove this theorem, we first present Lemma 4.6.1 and Lemma 4.6.2. In

Algorithm 6, for each level i ∈ [0, L], let Hi be the set of cells in Gi whose frequencies are
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returned by HEAVY-HITTER in the RetrieveFrequency procedure. For each C ∈ Hi, let |̂C|

be the returned frequency of C. Let H ′i be the set of cells in Gi whose frequencies are returned

by a K-set in the RetrieveFrequency procedure. Then Hi and H ′i are complements in Gi.

Lemma 4.6.1. Let L′ = L + 1. Fix ε, ρ ∈ (0, 1/2). Let Z∗ ⊂ [∆]d be a set of optimal k-

centers for the k-median problem of the input point set. For each i ∈ [0, L], if at most ekL′/ρ

cells C in Gi satisfy d(C, Z∗) ≤ ∆/(2i+1d), then with probability 1− ρ/L′, the following two

statements hold:

1.
∣∣∣
∑
C∈Hi(|̂C| − |C|)

(
d(c(C), Z)− d(c(CP ), Z)

)∣∣∣ ≤ εOPT
2L′ for every Z ⊂ [∆]d.

2.
∑
C∈H′i |C|diam(C) ≤ βOPT for β = 3d3/2

Proof of Lemma 4.6.1. Let L′ = L + 1. Fix a value i ∈ [0, L] and then W = ∆/2i is the

width of a cell in Gi. Since at most ekL′/ρ cells in Gi satisfy d(C, Z∗) ≤W/(2d), then of the

remaining cells, at most 2kL′/ρ cells can contain more than ρdOPT/(WkL′) points. This

is because each such cells contribute at least ρdOPT
WkL′

W
2d = ρOPT

2kL′ to the cost which sums to

OPT. Therefore, at most (e+ 2)L′k/ρ cells contain more than ρdOPT/(WkL′) points.

The number of cells in grid Gi is at most N = (1 + 2i)d (and perhaps as few as 2id,

depending on the random vector v), so HEAVY-HITTER receives cells of at most N types.

Enumerating all cells C ∈ Gi such that |Cj | ≥ |Cj+1|, define fj = |Cj |. Algorithm 1 sets

k′ = (e+ 2)L′k/ρ, and the additive error of the estimator of fi of HEAVY-HITTER is given by

ε′
√∑N

j=k′+1 f
2
j . We know that for all j > k′ the value fj ≤ ρdOPT/(WkL′). Moreover, the

sum
∑N

j=k′+1 fj ≤ 2dOPT/W because each point is at distance at least W/(2d) to a point of

Z∗. Under these two restraints, the grouping of maximal error is with fj = ρdOPT/(WkL′)
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for k′ < j ≤ k′ + 2kL′/ρ and fj = 0 for j > k′ + 2kL′/ρ. Then the additive error becomes

ε′
√

2ρ/(kL′)dOPT/W .

The error from a single cell Cj is at most |fj − f̂j |
√
dW , and HEAVY-HITTER gaurantees

with probability 1−δ that |fj− f̂j | ≤ ε′
√

2ρ/(kL′)dOPT/W for every j. Therefore to ensure

total error over all k′ cells is bounded by εOPT/(2L′), we set ε′ ≤ ε
√

ρ
8(2+e)2kd3L′3 . Setting

δ = ρ/L′, the above bound holds with probability at least 1− ρ/L′.

For the second claim, we must bound
∑
C∈H′i |C|. Hi consists of the top k′ cells

when ordered by value of f̂j . This may differ from the top k′ cells when ordered by

value of fj , but if j and j′ change orders between these two orderings then |fj − fj′ | ≤

2ε′
√

2ρ/(kL′)dOPT/W . Since the sum may swap up to k′ indices, the difference is bounded

by 2k′ε′
√

2ρ/(kL′)dOPT/W . By setting ε′ ≤
√

ρ
8(2+e)2dkL′ , we can ensure that the difference

is at most dOPT/W . We know that
∑N

j=k′+1 fj ≤ 2dOPT/W , and so
∑
C∈H′i |C| ≤ 3dOPT/W .

For all cells C ∈ Gi, diam(C) =
√
dW . Therefore

∑
C∈H′i |C|diam(C) ≤ 3d3/2OPT.

Lemma 4.6.2. Let L′ = L+ 1. In Algorithm 6, fixing ε, ρ ∈ (0, 1/2), o ∈ O and i ∈ [0, L],

if OPT/2 ≤ o ≤ OPT, then with probability 1 − ρ/(L′∆kd), at most (2+e)L′k
ρ + 24d4L′3k

ε2
ln 1

ρ

cells of Gi contain a point of Si,o.

Proof. Similar to the proof of Lemma 4.6.1, there are at most k′ = (2 + e)L′k/ρ cells C in

Gi that satisfy |C| ≥ ρdOPT/(Wk) and/or d(C, Z∗) ≤ W/(2d). Considering the other cells,

together they contain at most 2dOPT/W points. So by a Chernoff bound, with probability

1 − ρ/(L′∆kd) at most O(2dπi,oOPT/(Wρ)) ≤ 24d4L′3k ln 1
ρ/ε

2 points are sampled. The
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claim follows since each non-empty cell must contain at least one point.

Proof of Theorem 4.3.6. Let L′ = L + 1. W.l.o.g. we assume ρ ≥ ∆−d, since otherwise

we store the entire set of points and the theorem is proved. By Lemma 4.2.2, with

probability at least 1 − ρ, for every level i ∈ [0, L], at most ekL′/ρ cells C in Gi satisfy

d(C,Z∗) ≤ ∆/(2i+1d). Conditioning on this event, we will show 1) in the query phase, if

o∗ ≤ OPT, then with probability at least 1 − 4ρ, S is the desired coreset; 2) there exists

o ≤ OPT in the guesses O = {1, 2, 4, . . . ,∆d+1} such that with probability 1 − 4ρ, none of

the K-set structures return Nil. 1) and 2) guarantee the correctness of the algorithm. Note

that one can always rescale ρ to ρ/9 to achieve the correct probability bound. Finally, we

will bound the space, update time and query time of the algorithm.

To show 1), we first note that the coreset size is at most O(KL) as desired. Then by

Lemma 4.3.2, we only need to show that with probability at least 1 − 4ρ, for any k-set

Z ⊂ [∆]d and any level i ∈ [−1, L],

|cost(Gi, Z)− ĉost(Gi, Z)| ≤ εOPT

L′
,

where the value of each |̂C| is returned by RetrieveFrequency. For each level i, we

denote Ci as the set of cells that gets frequency from a HEAVY-HITTER instances in the

RetrieveFrequency procedure, and Si = {p ∈ C : C 6∈ Ci, ho∗,i(p) = 1} be the set of points

sampled in the rest of cells. Since KSo∗,i does not return Fail, then for each C ∈ Gi\Ci,
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|̂C| = |Si ∩ C|/πi(o∗). Fix a k-set Z ⊂ [∆]d, we rewrite the cost as,

ĉost(Gi, Z) =
∑

C∈Ci
|̂C|
(
d(c(C), Z)− d(c(CP ), Z)

)
+
∑

p∈Si
(d(cip, Z)− d(ci−1

p , Z)))/πi(o
∗),

where CP is the parent cell of C in grid Gi−1. By Lemma 4.6.1 we have that, with probability

at least 1− ρ/L′, for every Z ⊂ [∆]d,

∣∣∣∣∣∣
∑

C∈Ci
|̂C|
(
d(c(C), Z)− d(c(CP ), Z)

)
−
∑

C∈Ci
|C|
(
d(c(C), Z)− d(c(CP ), Z)

)
∣∣∣∣∣∣
≤ εOPT

2L′
,

and that,
∑
C∈Gi\Ci |C|diam(C) ≤ 3d3/2OPT. Conditioning on this event, by Lemma 4.3.4,

with probability at least 1− ρ/(L′∆kd),

∣∣∣∣∣∣
∑

p∈Si
(d(cip, Z)− d(ci−1

p , Z)))/πi −
∑

C∈Gi\Ci
|C|
(
d(c(C), Z)− d(c(CP ), Z)

)
∣∣∣∣∣∣
≤ εOPT

2L′
.

By a union bound, we show with probability at least 1 − 4ρ, for any k-set Z ⊂ [∆]d and

any level i ∈ [−1, L],

|cost(Gi, Z)− ĉost(Gi, Z)| ≤ εOPT

L′
,

as desired.

To show 2), we will consider some OPT/2 ≤ o ≤ OPT. By Lemma 4.6.2 with probablity

at least 1−ρ/∆kd, the total number of cells occupied by sample points in each level is upper

bounded by K = (2+e)L′k
ρ + 24d4L′3k

ε2
ln 1

ρ . Thus by the guarantee of the K-Set structure,

with probability at least 1− ρ, none of the KSo,0, KSo,1 . . . , KSo,L will return Fail.
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The memory requirement of the algorithm is determined by the L instances of HEAVY-HITTER and

the dL2 instances of K-set. By Theorem 4.3.5, each instance of HEAVY-HITTER requires

O
(
(k′ + 1

ε′2 ) log N
δ logm

)
bits of space. Here N ≤ (1 + ∆/W )d ≤ ∆d and m is the max-

imum number of elements active in the stream. Since we require that at most one point

exists at each location at the same time, we have that m ≤ N . The parameters are set to

k′ = (2 + e)Lk/ρ, ε′ =
(
ε
√

ρ
8(2+e)2kd3L3

)
, and δ = ρ/L. This translates to a space bound of

O
(
dL+ log 1

ρ

)
d4L5k
ρε2

bits. For each K-Set data structure, it requires

O(KdL log(KL/ρ)) = O

(
d5L4k

ε2
+
dkL2

ρ

)
log

dkL

ερ

bits of space. In total, there are O(dL2) K-Set instances and thus all K-Set instances cost

O
(
d6L6k
ε2

+ d2kL4

ρ

)
log dkL

ερ bits of space. By the same argument as in the offline case, the last

paragraph of the proof of Theorem 4.3.3, the size of the coreset is at most O((k′ +K)L) =

O(d4kL4ε−2 + kL2/ρ) points. Finally, to derandomize the fully random functions, we use

Nissan’s pseudorandom generator99 in a similar way used in16. But our pseudo-random

bits only need to fool the sampling part of the algorithm rather than whole algorithm. We

consider an augmented streaming algorithm A that does exactly the same as in CoreSet but

with all the HEAVY-HITTER operations removed. Thus all K-set instances will have identical

distribution with the ones in algorithm CoreSet. A uses O(KdL log(KL/ρ)) bits of space.

To fool this algorithm, using Nissan’s pseudo-random generator, the length of random

seed to generate the hash functions we need is of size O(KdL log(KL/ρ) log(|O|∆d)) =

O
((

d7kL7

ε2
+ d3kL5

ρ

)
log dkL

ρε

)
. This random seed is thus sufficient to be used in Algorithm

CoreSet. Thus the total space used in the algorithm is O
((

d7kL7

ε2
+ d3kL5

ρ

)
log dkL

ρε + d5kL6

ε2ρ

)
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bits.

Regarding the update time, for the HEAVY-HITTER operations, it requires O(L logN) =

O(dL2) time. For the K-set operations, it requires |O|LO(log(KL/ρ)) = dL2 log(dkL/(ρε))

time. The de-randomized hash operation takes O(dL) more time per update. The final

query time is dominated by the HEAVY-HITTER data structure, which requires poly(d, k, L, 1/ε)

time.

4.7 Full Construction of Positively Weighted Coreset

In this section, we will introduce a modification to our previous coreset construction,

which leads to a coreset with all positively weighted points. The high level idea is as

follows. When considering the estimate of the number of points in a cell, the estimate is

only accurate when it truly contains a large number of points. However, in the construction

of the previous section, we sample from each cell of each level, even though some of the

cells contain a single point. For those cells, we cannot adjust their weights from negative to

positive, since doing so would introduce large error. In this section, we introduce an ending

level to each point. In other words, the number of points of a cell is estimated by sampling

only if it contains many points. Thus, the estimates will be accurate enough and allow us

to rectify the weights to be all positive.

This section is organized as follows. We reformulate the telescope sum in Subsection

4.1, provide a different construction (still with negative weights) in Subsection 4.2, modify

our different construction to output non-negative weights in Subsection 4.3, and move this
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construction into to the streaming setting in Subsection 4.4. For simplicity of presentation,

we will use λ1, λ2, . . . to denote some fixed positive universal constants.

4.7.1 Reformulation of the Telescope Sum

Definition 4.7.1. A heavy cell identification scheme H is a map H : G → {heavy, non-

heavy} such that, h(C−1) =heavy and for cell C ∈ Gi for i ∈ [0, L]

1. if |C| ≥ 2iρdOPT
k(L+1)∆ then H(C) = heavy;

2. If H(C) = non-heavy, then H(C′) = non-heavy for every subsell C′ of C.

3. For every cell C in level L, H(C) = non-heavy.

4. For each i ∈ [0, L], |{C ∈ Gi : H(C) = heavy}| ≤ λ1kL
ρ , where λ1 ≤ 10 is a positive

universal constant.

The output for a cell not specified by the above conditions can be arbitrary. We call a cell

heavy if it is identified heavy by H. Note that a heavy cell does not necessarily contain a

large number of points, but the total number of these cells is always bounded.

In the sequel, heavy cells are defined by an arbitrary fixed identification scheme unless

otherwise specified.

Definition 4.7.2. Fix a heavy cell identification scheme H. For level i ∈ [−1, L], let

C(p, i) ∈ Gi be the cell in Gi containing p. The ending level l(p) of a point p ∈ P is the

largest level i such that H(C(p, i)) =heavy, and H(C(p, i+ 1)) =non-heavy.

Note that the ending level is uniquely defined if a heavy cell identification scheme is
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fixed. We now rewrite the telescope sum for p as follows,

p =

l(p)∑

i=0

(
cip − ci−1

p

)
+ cLp − cl(p)p ,

where c−1
p = 0 and cLp = p. For arbitrary k-centers Z ⊂ [∆]d, we write,

d(p, Z) =
∑l(p)

i=0

(
d(cip, Z)− d(ci−1

p , Z)
)

+ d(cLp , Z)− d(c
l(p)
p , Z) + d(0, Z)

Let Pl be all the points with ending level l(p) = l. We now present the following

lemmas.

Lemma 4.7.3. Let Pi be the set of points with ending level i. Let Z∗ ⊂ [∆]d be a set of

optimal k-centers for the k-median problem of the input point set. Assume that for each

i ∈ [−1, L], at most ek(L+ 1)/ρ cells C in Gi satisfy d(C, Z∗) ≤ ∆/(2i+1d). Then

|Pi| ·
∆
√
d

2i
≤ λ2d

3/2OPT,

where λ2 > 0 is a universal constant.

Before we prove this lemma, we first introduce the following lemmas to bound the cells

with a large number of points.

Lemma 4.7.4. Assume that for each i ∈ [0, L], at most ek(L + 1)/ρ cells C in Gi satisfy

d(C, Z∗) ≤ ∆/(2i+1d). Then for any r > 0 there are at most (e+2r)k(L+1)
ρ cells that satisfy

|C| ≥ 2iρdOPT
rk(L+1)∆ .

Proof of Lemma 4.7.4. Let L′ = L + 1. Fix a value i ∈ [0, L] and then W = ∆/2i is the

width of a cell in Gi. Since at most ekL/ρ cells in Gi satisfy d(C, Z∗) ≤W/(2d), then of the
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remaining cells, each contribute at least ρdOPT
rWkL′

W
2d = ρOPT

2rkL′ to the cost, and the cost of these

cells is at most OPT. Therefore there can be at most 2rL′k/ρ cells such that d(C, Z∗) >

W/(2d). Along with the at most ekL′/ρ cells (by the assumption) such that d(C, Z∗) ≤

W/(2d), there are at most (e+ 2r)L′k/ρ cells that contain at least ρdOPT/(rWkL′) points.

Lemma 4.7.5. Assume that for each i ∈ [0, L], at most ek(L + 1)/ρ cells C in Gi satisfy

d(C, Z∗) ≤ ∆/(2i+1d). Then for i ∈ [−1, L], the points of Pi can be partitioned to at most

k′ = 2(e+6)k(L+1)
ρ groups, G1, G2, . . . , Gk′ , such that for each j ∈ [k′], there exists a C ∈ Gi,

such that Gj ∈ C, |Gj | < 52i−1ρdOPT
k(L+1)∆ .

Proof of Lemma 4.7.5. Let L′ = L + 1. For each heavy cell in Gi, if the number of points

falling into its non-heavy subcells (in Gi+1) is less than 2i−1ρdOPT
kL′∆ , we group all these subcells

into a single group. Let the groups formed this way be called type I, and by Property 4 of

Definition 4.4.1 there are at most (e+ 4)kL′/ρ type I groups.

For each of the remaining heavy cells in Gi, we group its subcells into groups such that

each group contains a number of points in the interval
[

2i−1ρdOPT
kL′∆ , 52i−1ρdOPT

kL′∆

)
. This can

be done since each non-heavy subcell contains less than 2i+1ρdOPT
kL′∆ = 42i−1ρdOPT

kL′∆ points,

and the total number of points contained in them is at least 2i−1ρdOPT
kL′∆ (otherwise we would

have formed a type I group). Let the groups formed this way be called type II. By the

assumption of of Lemma 4.7.3, at most ekL′
ρ of these non-heavy subcells are within distance

∆
2i+2d

from an optimal center of Z∗. Since each type II group contains at least 2i−1ρdOPT
kL′∆

points, by the same argument as in Lemma 4.7.4, the number of type II groups further than
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distance ∆
2i+2d

from an optimal center is at most 8kL′
ρ . We conclude that,

k′ ≤ (e+ 4)kL′

ρ
+

(e+ 8)kL′

ρ
.

Proof of Lemma 4.7.3. Let L′ = L + 1. Fix a value i ∈ [−1, L] and then W = ∆/2i is the

upper bound of the width of a cell in Gi. Let G1, G2, . . . Gk′ be group of points satisfying

Lemma 4.7.5. Thus,
∑

p∈Pl
∆
√
d

2i
≤ ∑

j∈[k′]
2i+1ρdOPT

kL′∆ · ∆
√
d

2i
≤ λ′kL′

ρ · 2i+1ρdOPT
kL′∆

∆
√
d

2i
≤

λ2d
3/2OPT for some universal constants λ′ and λ2.

Proof of Proposition 4.7.10. First notice that the weighted set satisfies the about condition

is an ε-coreset. If we replace each |̂Ci| by the exact number of points in |Ci|, then the new

weighted set is an (ε/2)-coreset. For each C ∈ G, let bC be the new value returned by the

algorithm, and bq is the new value of a point q ∈ S. The error of the cost introduced is at

most,

A =

L∑

i=0


 ∑

C∈Gi: heavy

||̂C| − bC |+
∑

p∈Si−1

∣∣∣∣
(

1

πi−1
− bp

)∣∣∣∣


 ∆
√
d

2i
.

By the procedure, the new value of a cell is always smaller than its original value, thus

A =

L∑

i=0


 ∑

C∈Gi: heavy

|̂C| − bC +
∑

p∈Si−1

(
1

πi−1
− bp

)
 ∆
√
d

2i
=

L∑

i=0

gi,

where

gi =


 ∑

C∈Gi:heavy

|̂C| − bC +
∑

p∈Si−1

1

πi−1
− bp


 ∆
√
d

2i
.
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Let

fi =


 ∑

C∈Gi:heavy

∣∣∣|C| − |̂C|
∣∣∣+

∑

C′∈Gi−1:heavy

∣∣∣∣
|Si−1 ∩ C′|
πi−1

− |Pi−1 ∩ C′|
∣∣∣∣


 ∆
√
d

2i
.

Thus fi ≤ εOPT/L by choosing appropriate λ6. Now consider heavy cell C ∈ Gi, let sC =

∣∣∣bC −
∑
C∈Gi+1:heavy |̂C| −

|Si∩C|
πi

∣∣∣. Then,

sC =

∣∣∣∣∣∣
bC − |̂C|+ |̂C| − |C| −

∑

C′∈Gi+1:heavy

(|̂C′| − |C′|)−
( |Si ∩ C|

πi
− |Pi ∩ C|

)∣∣∣∣∣∣

≤
∣∣∣bC − |̂C|

∣∣∣+
∣∣∣|̂C| − |C|

∣∣∣+
∑

C′∈Gi+1:heavy

∣∣∣|̂C′| − |C′|
∣∣∣+

∣∣∣∣
|Si ∩ C|
πi

− |Pi ∩ C|
∣∣∣∣ . (4.7.1)

Then

gi =
∑

C∈Gi−1

sC
∆
√
d

2i
+


 ∑

p∈Si−1

1

πi−1
− bp


 ∆
√
d

2i
≤ 1

2
gi−1 +

1

2
fi−1 + fi. (4.7.2)

Since g−1 = f−1 = 0, thus

gi ≤ fi + 3
i−1∑

j=0

2j−ifj , and
L∑

i=0

gi ≤
L∑

i=0

fi(1 +
i∑

j=1

3

2j
) ≤ 4

L∑

i=1

fi ≤ 4εOPT.

Remark 4.7.6. The multiset of centers of heavy cells with each assigned a weight of the

number of points in the cell is a O(d3/2)-coreset. This can be easily seen by removing

the term of d(cLp , Z) − d(c
l(p)
p , Z) from Equation (4.7.1) together with Lemma 4.7.3, which

bounds the error introduced by this operation.
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4.7.2 The New Construction (with arbitrary weights)

For these heavy cells, we use HEAVY-HITTER algorithms to obtain accurate estimates of

the number of points in these cells, thus providing a heavy cell identification scheme. For

the non-heavy cells, we only need to sample points from the bottom level, GL, but with a

different probability for points with different ending levels. We present the following lemma

that governs the correctness of sampling from the last level.

Lemma 4.7.7. If a set of points Pi ⊂ P satisfies |Pi|∆
√
d/(2i) ≤ βOPT for some β ≥

2ε/(3(L+ 1)), let Si be an independent sample from Pi such that p ∈ Si with probability

πi ≥ min

(
3a(L+ 1)2∆

√
dβ

2iε2o
ln

2∆kd(L+ 1)

ρ
, 1

)

where 0 < o ≤ aOPT for some a > 0. Then for a fixed set Z ⊂ [∆]d, with probability at least

1− ρ/((L+ 1)Deltakd), |∑p∈Si(d(cip, Z)− d(p, Z))/πi−
∑

p∈Pi(d(cip, Z)− d(p, Z))| ≤ εOPT
L+1 .

Proof. The proof is identical to that of Lemma 4.3.4.

Lemma 4.7.8. Consider a set of sets {Pi}Li=0 which satisfies |Pi|∆
√
d/(2i) ≤ βρ

k(L+1)OPT

for some β ≥ ε/(3(L + 1)). For each i ∈ [0, L], let Si be an independent sample from Pi

with sampling probability

πi ≥ min

(
4aβk(L+ 1)3∆

√
d

2iε2ρo
log

2

δ
, 1

)
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where 0 < o ≤ aOPT for some a > 0, then with probability at least 1− δ,

∣∣∣∣
|Si ∩ Pi|

πi
− |Pi|

∣∣∣∣
∆
√
d

2i
≤ ερOPT

k(L+ 1)2
.

Proof of Lemma 4.7.8. The proof is simply by Bernstein inequality. Let t = 2iερOPT√
dk(L+1)2∆

,

Xp := Ip∈Si/πi, then we have that V ar(Xp) ≤ 1/πi and b := maxp |Xp| ≤ 1/πi. By

Bernstein’s inequality, for any j ∈ [k′],

Pr

[∣∣∣∣
|Pj ∩ Si|

πi
− |Pj |

∣∣∣∣ > t

]
≤ 2e

− t2

2|C|/πi+2bt/3 ≤ δ.

We now describe the new construction. This essentially has the same gaurantee as the

simpler construction from the previous section, however the benefit here is that (as shown

in the next subsection) it can be modified to output only positive weights. In the following

paragraph, the estimations |̂C| are given as a blackbox. In proposition 4.7.9 we specify the

conditions these estimations must satisfy.

Non-Negatively Weighted Construction Fix an arbitrary heavy cell identification

scheme H. Let Pl be all the points with ending level l(p) = l. For each heavy cell C,

let |̂C| be an estimation of number of points of |C|, we also call |̂C| the value of cell C. For

each non-heavy cell C′, let |̂C′| = 0. Let S be a set samples of P constructed as follows:

S = S−1∪S0∪S1,∪ . . .∪SL, where Sl is a set of i.i.d samples from Pl with probability πl. Here

πl for l ∈ [−1, L] is redefined as,πl = min
(
λ3d2∆L2

2lε2o
log
(

2L∆dk

ρ

)
+ λ4d2kL3∆

2iε2ρo
log 30kL2

ρ2 , 1
)

where λ3 > 0 and λ4 > 0 are universal constants. Our coreset S is composed by all the
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sampled points in S and the cell centers of heavy cells, with each point p assigned a weight

1/πl(p) and for each cell center c of a heavy cell C ∈ Gi, the weight is,

wt(c) = |̂C| −
∑

C′:C′∈Gi+1,C′⊂C,
C′ is heavy

|̂C′| − |Si ∩ C|
πi

. (4.7.3)

For each non-heavy cell C except for those in the bottom level, wt(c(C)) = 0. The weight

of each point from S is the value of the corresponding cell in the bottom level.

We now state the following proposition for a coreset construction, which immediately

serves as an offline coreset construction.

Proposition 4.7.9. Let H be an arbitrary heavy cell identification scheme. Fix Ω(∆−d) ≤

ρ < 1 and for each heavy C ∈ Gi in level i, |̂C| is an estimation of number of points in C with

additive error at most ε
λ5Ld3/2 · 2iρdOPT

kL∆ , where λ5 > 0 is a universal constant. Let Sl be the

set of i.i.d. samples of Pl with probability πl(o). If 0 < o ≤ OPT, then with probability at

least 1− 4ρ, for every k-set Z ⊂ [∆]d,

∣∣∣∣∣∣
∑

q∈S
wt(q)d(q, Z)−

∑

p∈P
d(p, Z)

∣∣∣∣∣∣
≤ εOPT.

And the coreset size |S| is

O

[
d3L4k

ε2

(
d+

1

ρ
log

kL

ρ

)
OPT

o

]
.
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Proof of Proposition 4.7.9. Fix a k-set Z ⊂ [∆]d. First notice that,

ĉost(Z) =
∑

q∈S
wt(q)d(q, Z)

=

L−1∑

i=−1




∑

C∈Gi:C heavy


|̂C| −

∑

C′:C′∈Gi+1,C′⊂C,
C′ is heavy

|̂C′| − |Si ∩ C|
πi


 d(c(C), Z) +

∑

p∈Si

d(p, Z)

πi




=
L−1∑

i=−1


 ∑

C∈Gi:C heavy

|̂C|(d(c(C), Z)− d(c(CP ), Z)) +
∑

p∈Si

d(p, Z)− d(cip, Z)

πi


 ,

(4.7.4)

where we denote d(c(CP−1), Z) = 0 for convenience. Let cost(Z) =
∑

p∈P d(p, Z). Note that

we can also write the true cost of Z as

cost(Z) =

L−1∑

i=−1


 ∑

C∈Gi:C heavy

|C|(d(c(C), Z)− d(c(CP , Z))) +
∑

p∈Pi
d(p, Z)− d(cip, Z)


 .

We have that,

ĉost(Z)− cost(Z) = A1 +A2,

where

A1 =

L−1∑

i=−1


 ∑

C∈Gi:C heavy

(|̂C| − |C|)(d(c(C), Z)− d(c(CP , Z)))




and

A2 =

L−1∑

i=−1


∑

p∈Si

d(p, Z)− d(cip, Z)

πi
−
∑

p∈Pi
d(p, Z)− d(cip, Z)


 .

Let Z∗ ⊂ [∆]d be a set of optimal k-centers for the k-median problem of the input

point set. By Lemma 4.2.2, with probability at most 1 − ρ, for each i ∈ [0, L], if at most
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ek(L+ 1)/ρ cells C in Gi satisfy d(C, Z∗) ≤ ∆/(2i+1d). Conditioning on this event, we have

that, by Lemma 4.7.4 there are at most k′ = O
(
kL
ρ

)
heavy cells per level. Since for each

C ∈ Gi,
∣∣∣|̂C| − |C|

∣∣∣ ≤ ε
λ5Ld3/2 · 2iρdOPT

kL∆ , by choosing appropriate constant λ5 > 0 we have

|A1| ≤
L−1∑

i=−1

∣∣∣∣∣∣
∑

C∈Gi:C heavy

(|̂C| − |C|)(d(c(C), Z)− d(c(CP , Z)))

∣∣∣∣∣∣

≤ L · k′ · ε

λ5Ld3/2
· 2iρdOPT

kL∆
· ∆
√
d

2i
≤ εOPT

2
. (4.7.5)

For A2, let

A2i =


∑

p∈Si

d(p, Z)− d(cip, Z)

πi
−
∑

p∈Pi
d(p, Z)− d(cip, Z)


 .

By Lemma 4.7.3, for each i ∈ [−1, L−1], |Pi|∆
√
d/(2i) = λ2(d3/2OPT). Thus by Lemma 4.7.7,

and choosing appropriate constants, with probability at least 1 − ρ/(L+ 1)∆dk, |A2i| ≤

εOPT
2(L+1) . By the union bound, with probability at least 1−ρ, for every level i, and every k-set

Z ⊂ [∆]d, |A2i| ≤ εOPT
2(L+1) . Thus |A2| ≤ εOPT/2. In total, with probability at least 1 − 3ρ,

|A1 +A2| ≤ εOPT for any k-set Z ⊂ [∆]d.

The coreset size is the number of heavy cells plus the number of sampled points. The

number of heavy cells is O(kL2/ρ). The expected number of sampled points per level is at

most,

|Si| = O

(
d4L3k

ε2
+
d3L2k

ε2ρ
log

(
kL

ρ

))
OPT

o
.

By a Chernoff bound, with probability at least 1 − ρ/∆dk, for every level i ∈ [0, L], the
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number of sampled points is,

|Si| ≤ O
(
d4L3k

ε2
+
d3L3k

ρε2
log

(
kL

ρ

))
OPT

o
.

Thus the size of the coreset S is,

|S| ≤ O
[
d3L4k

ε2

(
d+

1

ρ
log

kL

ρ

)
OPT

o

]
.

4.7.3 Ensuring Non-Negative Weights

In this section, we will provide a procedure to rectify all the weights for the coreset

constructed in the last sub-section. The idea is similar to the method used in.115 The

procedure is shown in Algorithm 8.

Proposition 4.7.10. Let S be a weighted set constructed using the Non-Negatively Weighted

Construction, i.e. each heavy cell C has value |̂C| and the set of sampled points S =

S−1 ∪ S0 . . . ∪ SL with each point in Sl has weight 1/πl. If for each heavy cell C ∈ Gi,

||̂C| − |C|| ≤ ε
λ6Ld3/2 · 2iρdOPT

kL∆ for some universal constant λ6 > 0 and for each i ∈ [−1, L]

and any k-set Z ⊂ [∆]d,

∣∣∣∣∣∣
∑

p∈S
wt(p)(d(cip, Z)− d(p, Z))−

∑

p∈Pi
(d(cip, Z)− d(p, Z))

∣∣∣∣∣∣

≤ εOPT

2L
,
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and

∑

C∈Gi: heavy

∣∣∣∣
|Si ∩ C|
πi

− |Pi ∩ C|
∣∣∣∣

∆
√
d

2i
≤ εOPT

L
.

Then on input |̂C1|, |̂C2|, . . . , |̂Ck′ | and S, where k′ is the number of heavy cells, the coreset

output by Algorithm 8 is a (4ε)-coreset.

4.7.4 The Streaming Algorithm

Sampling From Sparse Cells

For the streaming algorithm, we can still use HEAVY-HITTER algorithms to find the

heavy cells. The major challenge is to do the sampling for each point from its ending level.

We do this using a combination of hash functions and K-Set. In Algorithm 9, we provide

a procedure that recovers the set of points from cells with a small number of points and

ignore all the heavy cells. The guarantee is,

Theorem 4.7.11. Given as input a set of dynamically updating streaming points P ⊂ [N ],

a set of mutually disjoint cells C ⊂ [M ], whose union covers the region of P . Algorithm 9

outputs all the points in cells with less than β points or output Fail. If with the promise that

at most α cells from C contain a point of P , then the algorithm outputs Fail with probabil-

ity at most δ. The algorithm uses O(αβ(log(Mβ) + logN) logN log(logNαβ/δ) log(αβ/δ))

bits in the worst case.

The high level idea of this algorithm is to hash the original set of points to a universe of

smaller size. For cells with less points, the collision rate is much smaller than cells with more
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points. To recover one bit of a point, we update that bit and the cell ID and also its hash

tag to the K-Set-data structure. If there are no other points with hash values colliding with

this point, the count of that point is simply 1. If this is the case, we immediately recover

the bit. By repeating the above procedure once for each bit, we can successfully recover

the set of points with no colliding hash tags. For those points with colliding hash tags, we

simply ignore them. Each point has a constant probability to collide with another point,

thus not be in the output. By running the whole procedure O(log(αβ/ε)) times in parallel,

we reduce the probability to roughly ε for each point in cells with less than β points. To

formally prove Theorem 4.7.11, we first prove the following lemma, which is the guarantee

of Algorithm 10.

Lemma 4.7.12. Given input a set of dynamically updating streaming points P ⊂ [N ], a

set of mutually disjoint cells C ⊂ [M ], whose union covers the region of P . Algorithm 9

outputs a set of points in cells with less than β points or output Fail. If with the promise

that at most α cells from C contain a point of P , then the algorithm outputs Fail with

probability at most δ. Conditioning on the event that the algorithm does not output Fail,

each point p from cell with less than β points is in the output with marginal probability

at least 0.9. The algorithm uses O(αβ(log(Mβ) + logN) logN log(logNαβ/δ)) bits in the

worst case.

Proof. We prove this lemma by showing that (a) if a point p ∈ P contained in cell C, with

|C ∩ P | ≤ β, then with probability at least 0.99, there are no other points p′ ∈ C ∩ P with

H(p) = H(p′), (b) conditioning on the event that the algorithm does not output Fail, then

for any cell C ∈ C, if a point p ∈ C such that no other points in C ∩ P has the same hash
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value H(p), then p is in the output and (c) the algorithm outputs Fail with probability at

most δ. The correctness of the algorithm follows by (a), (b) and (c).

To show (a), consider any cell C ∈ C with |C| ≤ β, let p ∈ C with hash value H(p).

Since H is 2-wise independent, the expected number of other points hashed to the same

hash value H(p) is at most β/U = 1/100. By Markov’s inequality, with probability at least

0.99, no other point in C is hashed to H(p).

To show (b), notice that if the algorithm does not output Fail, then for a given cell C,

let c be its ID, and pj be the j-th bit of point p. Then (c, h, pj) has 1 count and (c, h, 1−pj)

has 0 count for each j ∈ [t], where t = dlogNe. Thus we can uniquely recover each bit of

point p, hence the point p.

For (c), since there are at most α cells, there are at most 2αU = O(αβ) many different

updates for each KS structure. Therefore, with probability at most δ
t , a single KS instance

outputs Fail. By the union bound, with probability at least 1− δ, no KS instance outputs

Fail.

Finally, the space usage is dominated by the KS data structures. Since the input data

to KS is from universe [M ] × [U ] × {0, 1}, each KS structure uses space O(αβ(log(Mβ) +

logN) log(tαβ/δ)) bits of memory, the total space isO(αβ(log(Mβ)+logN) logN log(tαβ/δ)).

Proof of Theorem 4.7.11. Each instance of SparseCellsSingle fails with probability at

most δ/(4A), where A is the number independent SparseCellsSingle instances. By the
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union bound, with probability at least 1− δ/4, none of them output Fail. Conditioning on

this event, the random bits of the hash functions of each SparseCellsSingle instance are

independent, thus by Lemma 4.7.12 a fixed point p ∈ C with |C| ≤ β is in the output with

probability at least 10− log 4αβ
δ ≤ δ/(4αβ). Since there are at most αβ points in cells with

less than β points, by the union bound we conclude that with probability at least 1− δ/4,

every point in cells with less than β points is in the output set S. In sum, with probability

at least 1− δ/2, S contains all the desired points.

The other KS instance outputs Fail with probability at most δ/2. Thus if T is not

Fail, then T contains the exact number of points of each cell. If any desired point is not

in S, then |C| > |C ∩ S|, we output Fail. This happens with probability at most δ under

the gaurantee of the KSstructure.

Since each SparseCellsSingle instance usesO(αβ(log(Mβ)+logN) logN log(tAαβ/δ))

bits of space, the final space of the algorithm is

O(αβ(log(Mβ) + logN) logN log(tαβ/δ) log(αβ/δ))

.

The Algorithm

With the construction of algorithm SparseCells, we now have all the tools for the

streaming coreset construction. The streaming algorithm is composed by O(L) levels
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of HEAVY-HITTER instances, which serve as a heavy cell identifier and by O(L) levels of

SparseCells instances, which sample the points from their ending levels. The full algo-

rithm is stated in Algorithm 11. The guarantee of the algorithm is stated in the following

theorem.

Theorem 4.7.13. Fix ε, ρ ∈ (0, 1/2), positive integers k and ∆, Algorithm 11 makes a

single pass over the streaming point set P ⊂ [∆]d, outputs a weighted set S with non-

negative weights for each point, such that with probability at least 0.99, S is an ε-coreset

for k-median of size O
[
d3L4k
ε2

(
d+ 1

ρ log kL
ρ

)]
, where L = log ∆. The algorithm uses

O

[
d7L7k

ε2

(
ρdL+

1

ρ
log2 dkL

ρε
(log log

dkL

ρε
+ L)

)
log2 dkL

ρε

]

bits in the worst case. For each update of the input, the algorithm needs poly (d, 1/ε, L, log k)

time to process and outputs the coreset in time poly(d, k, L, 1/ε, 1/ρ, log k) after one pass

of the stream.

Proof. W.l.o.g. assume ρ ≥ ∆−d, since otherwise we can store the entire set of points. In

the sequel, we will prove the theorem with parameter O(ρ) and O(ε). It translates to ρ and

ε directly by scaling and with losing at most a constant factor in space and time bounds.

By Lemma 4.2.2, with probability at least 1 − ρ, for every level i ∈ [0, L], at most ekL/ρ

cells C in Gi satisfy d(C,Z∗) ≤ ∆/(2i+1d). We condition on this event for the following

proof.

We first show that the HEAVY-HITTER instances faithfully implement a heavy cell identi-

fication scheme. First note that with probability at least 1− ρ, all HEAVY-HITTER instances
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succeed. Conditioning on this event for the following proof. As shown in the proof of

Lemma 4.6.1, by setting ε′ = ε
√

ρ
λ7kd3L3 and k′ = λ8kL/ρ, for appropriate positive uni-

versal constants λ7, λ8, then the additive error to each cell is at most ε
λ9d3/2L

· 2idOPT
kL∆ for

some universal constant λ9, which matches the requirement of Proposition 4.7.10. For each

cell C with at least 2iρdOPT/(k(L + 1)∆) points, by Lemma 4.7.4 it must be in the top

(e+2)k(L+1)/ρ cells. For each cell C′ with at least 2i−1ρdOPT/(k(L+1)∆) points, it must

be in the top (e + 4)k(L + 1)/ρ cells. Since the additive error is ε
λ7d3/2(L+1)

· 2idOPT
k(L+1)∆ �

1
2

2idOPT
k(L+1)∆ . Thus C is in the output of the HEAVY-HITTER instances, since otherwise |̂C| ≤

1
2

2idOPT
k(L+1)∆ + ε

λ7d3/2(L+1)
· 2idOPT
k(L+1)∆ contradicts the error bound (by choosing sufficiently large

λ7). Thus the algorithm faithfully implements a heavy cell identification scheme.

Now we show that if there exists an o ≤ OPT such that no instance of SparseCells out-

puts Fail, then the result is a desired O(ε)-coreset. This follows by Proposition 4.7.9 and

Proposition 4.7.10. Then we note that the coreset size is upper bounded by

O

[
d3L4k

ε2

(
d+

1

ρ
log

kL

ρ

)]

as desired.

Next we show that there exists an OPT/2 ≤ o∗ ≤ OPT that with probability at least

1 − ρ, no SparseCells instance SCo∗,i outputs Fail. By Chernoff bound, with probabil-

ity at least 1 − O(ρ), as also shown in the proof of Proposition 4.7.9, per level at most
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O
[
d3L4k
ε2

(
d+ 1

ρ log kL
ρ

)
OPT
o

]
cells is occupied by a point. And at most

O

[
d3L2

ε2

(
ρd+ log

kL

ρ
+

ρ

kL
log

L

ρ

)]

points is sampled per light cell. Conditioned on this fact and that each SC instances fails

with probability at most O(ρ/(dL)), with probability at least 1 − O(ρ), no nstance SCo∗,i

fails.

Lastly, we bound the space usage and update/query time. For the HEAVY-HITTER in-

stances, the total space used is O
(
dL+ log 1

ρ

)
d4L5k
ρε2

bits, analogous to the proof of The-

orem 4.3.6. Each SparseCells instance uses space O
[
d5L4r2k

ε2

(
ρdL+ r2(log r+L)

ρ

)]
, where

r = log dkL
ρε . The total space bound is O

[
d6L6r2k

ε2

(
ρdL+ r2(log r+L)

ρ

)]
bits. As a same

argument in the proof of Theorem 4.3.6, the cost of de-randomization introduce an addi-

tional dL factor. Thus, the final space bound is O
[
d7L7r2k

ε2

(
ρdL+ r2(log r+L)

ρ

)]
bits. The

query time and update time is similar to that of Theorem 4.3.6 thus poly
(
d, L, 1

ε ,
1
ρ , k
)

and

poly
(
d, L, 1

ε , log k
)
.

4.8 Experiments

We illustrate our construction using an offline construction on Gaussian mixture data

in R2. As shown in Figure 4.1 in Section 4.8, we randomly generated 65536 points from R2,

then rounded the points to a grid of size ∆ = 512. Our coreset uses log2 ∆ + 2 = 11 levels
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Figure 4.1: 65536 points are drawn from a Gaussian Mixture distribution. The contours
illustrate the PDF function.

of grids. The storage in each level is very sparse. As shown in Figure 4.2(a), only 90 points

are stored in total. We compared the 1-median costs estimated using the coreset and the

dataset, the resulting difference is very small, as illustrated in Figure 4.2(b).

4.9 Concluding Remark

We develop algorithms that make a single pass over the dynamic stream and output,

with high probability, a coreset for the original k-median problem. Both the space complex-

ity and the size of the coreset are polynomially dependent on d, whereas the only previous

known bounds are exponential in d. We constructed our coreset for the possible solutions in
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(a) (b)

Figure 4.2: (a) The layer structure of the coreset. Cells with more weight are shaded
darker. (b) The relative error of a 1-median cost function. Using only 90 points, the global
maximum error was under 10%.

discrete space [∆]d, but it is easy to modify the coreset to be a coreset in continuous space

[0,∆]d (note that we still require the input dataset to be from a discrete space). The way

to do this is by modifying the sampling probability πi in the algorithm, i.e. replacing the

factor of ln(Ω(∆kdL/ρ)) to ln(Ω((∆/ε)kdL/ρ)). Then any k-set from [0,∆]d can be rounded

to the closest k-set in [∆/ε]d and the cost only differs by a (1 ± ε) factor while the space

bound changes only by a polylog(1/ε) factor. Lastly, we remark that the coreset scheme

can be easily modified to other metric spaces, e.g. the lp metric. The space bound depends

on the doubling dimension of the metric.

As shown in our experiments, a 2D implementation using our framework is very efficient.

We believe that a high-dimensional implementation will be efficient as well. We leave the

full implementation as a future project.
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Algorithm 6 CoreSet(S, k, ρ, ε): construct a ε-coreset for dynamic stream S.

Initization:
Initialize a grid structure;
O ← {1, 2, 4, . . . ,

√
d∆d+1};

L← dlog ∆e;
πi(o)← min

(
3(L+1)2∆d2

2iε2o
ln 2∆kd(L+1)

ρ , 1
)

;

K ← (2+e)(L+1)k
ρ + 24d4(L+1)3k

ε2
ln 1

ρ ,

ε′ ←
(
ε
√

ρ
8(2+e)2kd3(L+1)3

)
; m← 0;

For each o ∈ O and i ∈ [0, L], construct fully independent hash function ho,i : [∆]d →
{0, 1} with Prho,i(ho,i[q] = 1) = πi(o);
Initialize K-Set instances KSo,i with error probability ρ/(L+ 1), size parameter K;
Initialize HEAVY-HITTER(∆d, (e+2)(L+1)k/ρ, ε′, ρ/(L+1)) instances, HH0, HH1, . . . , HHL,
one for a level;
Update (S):
for each update (op, q) ∈ S:

/*op ∈ {Insert, Delete}*/
m← m± 1; /*Insert: +1, Delete:−1*/
for each i ∈ [0, L]:

ciq ← the center of the cell contains q at level i;
HHi.update(op, ciq);

for each o ∈ [O]:
if ho,i(q) == 1:

KSo,i.update(op, ciq);
Query:
Let o∗ be the smallest o such that no instance of KSo,0, KSo,1, . . . , KSo,L returns Fail;
R← {};
for i = −1 to L:

for each cell center c in level i:
Let C be the cell containing c;
if i = -1 :

f ← m;
else:

f ← GetFreq(c, HHi, KSo∗,i, πi(o
∗));

if i < L:
g ← ∑

C′⊂C:C′∈Gi+1

GetFreq (c(C′), HHi+1, KSo∗i+1, πi(o
∗));

Assign weight f − g to c;
if f − g 6= 0:

R← R ∪ {c};
else:

Assign weight f to c;
if f 6= 0:

R← R ∪ {c};
return R.
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Algorithm 7 GetFreq(e, HH, KS, πi): retrieve the correct freuquency of cell center e, given
the instance of HEAVY-HITTER and K-set.
fS(e)← the frequency of e returned by HH;
fK(e)← the frequency of e returned by KS;
k′ ← (e+ 2)(L+ 1)k/ρ;
F ← the set of top-k′ heavy hitters returned by HEAVY-HITTER;
if e ∈ F :

return fS(e);
else:

return fK(e)/πi.

Algorithm 8 RectifyWeights
(
|̂C1|, |̂C2| . . . , |̂Ck′ |, S

)
: input the estimates of number of

points in each cell and the weighted sampled points, output a weighted coreset with non-
negative weights.

for i = −1 to L:
for each heavy cell C center in Gi:

if wt(C) < 0:
Decrease the value of the children heavy cells in level Gi+1 and sampled points Si
arbitrarily by total |wt(C)| amount, such that for each children cell C′ ∈ Gi+1, |̂C′|
is non-negative, and for each sampled point p ∈ Si, the weight is non-negative.

return Rectified Coreset

Algorithm 9 SparseCells(N,M,α, β, δ): input the point sets P ⊂ [N ] and set of cells
C ⊂ [M ] such that at most α cells containing a point, output the set of points in cells with
less than β points.

Let A← log 4αβ
δ ;

Let R1, R2, . . . , RA be the results of independent instances of
SparseCellsSingle(N,M,α, β, δ/(4A)) running in parallel;
Let T be the results of another parallel KS structure with space parameter α and error δ/2
and with input as the cell IDs of points in P ; /*T returns the exact counts of each cell*/
if any of the data structures returns Fail :

return Fail ;
Let S ← R1 ∪R2 ∪ . . . RA;
if ∃ set C ∈ T with |C| ≤ β and |C| 6= |C ∩ S|:

return Fail ;
return S ;
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Algorithm 10 SparseCellsSingle(N,M,α, β, δ): input the point sets P ⊂ [N ] and set
of cells C ⊂ [M ] such that at most α cells containing a point, output the set of points in
cells with less than β points.

Initization:
U ← 100β .
t← dlogNe;
H : [N ]→ [U ], 2-wise independent;
K-Set structures KS1, KS2, . . . KSt with space parameter 2αU and probability δ

t ;
Update(p, op): /*op ∈ {Insert, Delete}*/
c← cell ID of p;
for i ∈ [t]:

/*A point p is represented as (p1, p2, . . . , pt)*/;
pi ← the i-th bit of point p;
KSi.update((c,H(p), pi), op);

Query:
if for any i ∈ [t], KSi returns Fail:

return Fail ;

S ← ∅;
for each (c, h, p1) in the output of KS1:

if (c, h, pj) /∈ KSj for some j ∈ [t]:
/*A checking step, may not happen at all*/;

return Fail ;

Let s(c, h, pj) be the counts of (c, h, pj) in KSj ;
if s(c, h, pj) = 1 and s(c, h, 1− pj) = 0 for each j ∈ [t]:

p← (p1, p2, . . . , pt);
S ← S ∪ {p};

return S
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Algorithm 11 PositiveCoreSet(S, k, ρ, ε): construct a ε-coreset for dynamic stream S.

Initization:
Initialize a grid structure;
O ← {1, 2, 4, . . . ,

√
d∆d+1}; L← dlog ∆e;

πi(o)← min
(
λ3d2∆L2

2lε2o
log
(

2L∆dk

ρ

)
+ λ4d2kL3∆

2iε2ρo
log 30kL2

ρ2 , 1
)

;

α← O
[
d3L4k
ε2

(
d+ 1

ρ log kL
ρ

)]
, β ← O

[
d3L2

ε2

(
ρd+ log kL

ρ + ρ
kL log L

ρ

)]
;

ε′ ← ε
√

ρ
λ7kd3L3 ; m← 0;

For each o ∈ O and i ∈ [0, L], construct fully independent hash function ho,i : [∆]d → {0, 1}
with Prho,i(ho,i[q] = 1) = πi(o); initialize SparseCells(∆d, (1 + 2i)d, α, β,O(ρ/(dL))) in-
stances SCo,i;
Initialize HEAVY-HITTER(∆d, 10Lk/ρ, ε′, ρ/L) instances, HH0, HH1, . . . , HHL−1, one for a level;

Update (S):
for each update (op, q) ∈ S:

/*op ∈ {Insert, Delete}*/
m← m± 1; /*Insert: +1, Delete:−1*/
for each i ∈ [0, L]:

ciq ← the center of the cell contains q at level i;
HHi.update(op, ciq);

for each o ∈ [O]:
if ho,i(q) == 1:

SCo,i.update(op, ciq);
Query:
Let o∗ be the smallest o such that no instance of SCo,0, SCo,1, . . . , SCo,L returns Fail;
S ← {};
C−1 ← the cell of the entire space [∆]d; |̂C−1| ← m;
for i ∈ [0, L− 1]:

Ci ← HHi.query().top((e+ 4)(L+ 1)k/ρ);
Remove cells C from Ci if CP (C) 6∈ Ci−1, where CP (C) is the parent cell of C in level
i− 1;
Bi ← SCo∗,i.query();
Si ← {p ∈ Bi : C(p, i− 1) ∈ Ci−1 AND C(p, i) 6∈ Ci};
Each point in Si receives weight 1/πi(o

∗);
S ← S ∪ Si;

k′ ←∑
i∈[0,L] |Ci|;

Let {C1, C2, . . . Ck′} = ∪i∈[0,L]Ci ∪ {C−1} be the set of heavy cells;

Let
{
|̂C1|, |̂C2|, . . . |̂Ck′ |

}
be the estimated frequency of each cell;

R← RectifyWeights(|̂C1|, |̂C2|, . . . |̂Ck′ |, S);
return R.
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