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Abstract

Human language artifacts represent a plentiful source of rich, unstructured

information created by reporters, scientists, and analysts. In this thesis we provide

approaches for adding structure: extracting and linking entities, events, and relation-

ships from a collection of documents about a common topic. We pursue this linking

at two levels of abstraction. At the document level we propose models for aligning

the entities and events described in coherent and related discourses: these models are

useful for deduplicating repeated claims, finding implicit arguments to events, and

measuring semantic overlap between documents. Then at a higher level of abstrac-

tion, we construct knowledge graphs containing salient entities and relations linked

to supporting documents: these graphs can be augmented with facts and summaries

to give users a structured understanding of the information in a large collection.
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Chapter 1

Introduction

1.1 Motivation

For many professionals today, the ability to do their job is tied up in the ability to

store, organize, and retrieve information. This information can be used to make important

business decisions and find key people and organizations in a new area. Right now these

information-based tasks are done by people, knowledge workers, who are trained experts

and in demand. Methods for helping these people perform their jobs more efficiently and

at larger scale than is possible today is a key challenge for modern artificial intelligence

research.

Some have framed this problem as “information overload” (Maes, 1994). The

problem of knowledge workers being faced with a deluge of information (e.g. emails, reports,

tables) which they must spend their attention on understanding before getting to the job

of weighing evidence and making complex decisions. One way to view this problem is one

of filtering and recommendation: either the task of showing only relevant materials to a
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CHAPTER 1. INTRODUCTION

knowledge worker or the task of routing information to the knowledge worker who is most

apt to consume it. Another way to view the problem, which we pursue in this thesis, is

as search and exploration: how can knowledge workers most directly find the information

relevant to the decisions they have to make?

Search engines are one of the most popular tools for finding information today.

These technologies have been honed to work very well when there is an information need

which can be clearly expressed via a short query. Search engines today are very good at

matching single queries with single snippets of information, either in the form of a short

answer for factoid QA (Ferrucci et al., 2010), a snippet of text from a page (Callan, 1994),

or an entire webpage listed in the results. Search engines are even more powerful when

they can exploit supervision relating queries to satisfactory results (e.g. click throughs) and

when they have access to high quality content which actively adapts to the needs of users

(driven through competition in the attention economy (Davenport and Beck, 2001)).

All of this depends on a knowledge workers’ ability to formulate their information

need as a short query. This is not always possible in cases where there is a lot of new

information to take in and organize, when the relevant keywords and important questions

to ask have not been recognized yet. In cases like this, methods for exploring the data

are more beneficial than query-based search methods. Exploration requires some system of

organizing the information so that a user is not forced to simply explore by enumerating

documents, which may waste a lot of time. This thesis is concerned with creating better

schemes for organizing information in text.

Sensemaking (Russell et al., 1993), as studied in information retrieval and human-
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computer interaction, is the process of building representations of data for answering task-

specific questions. These representations often span a range of levels of abstraction and

finding good ones is often domain-specific and difficult to formalize (Pirolli and Card, 2005).

This work, understood as a step in sensemaking, provides a automatically and quickly

generated low level representation which cuts down on the cost of information foraging

(Pirolli and Card, 1999).

1.1.1 Knowledge Workers

Up to this point we have been not been specific about the types of knowledge

workers that we are interested in helping, and what their typical information needs are. For

this work, knowledge workers are defined as anyone who regularly uses textual information

to make decisions as a part of their job.1 Knowledge workers don’t have to be specialists

according to our definition, but they often are in practice. Some examples include:

1. financial analysts who study a particular area of business in order to make recom-

mendations on what investments or decisions should be made. They are interested in

statements made by companies and high level employees, announcements of mergers

and acquisitions, lawsuits, regulatory changes, and related news.

2. scientists who study the causal mechanisms governing a domain like the growth of

plants, the efficiency of an economy, or the regulation of proteins by genes. They read

papers which discuss experiments and observations which have implications for the

theorized relationships between entities in the domain.

1This is an ad-hoc definition. We are interested in those who use textual information as a means of
limiting scope rather than as an essential aspect of knowledge workers in general.
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3. lawyers who need to read documents explaining the contacts between, actions of, and

agreements between parties in a legal transaction. This material may be collected

from police reports, paralegal reports, financial reports, the news, or other sources.

Knowledge workers often have domain knowledge about what evidence constitutes

a pattern they’re looking for. This evidence can come in the form of types of events (e.g.

situations where someone is arrested), or roles entities played in a given event (e.g. one

company buying another), or simply the existence of any relationship between two entities

(e.g. the presence of a particular type of protein in a diseased organism).

Knowledge workers often have to de-duplicate or synthesize evidence from many

different sources. In order to find as much relevant information as possible, knowledge

workers will often have to read materials which discuss facts which are already known or

stated elsewhere. Finding the subset of claims which are novel or surprising is an important

task for knowledge workers (Pirolli and Card, 1999).

Finally, knowledge workers often produce reports as a product of their analysis.

These reports can explain a particular phenomenon or event within the domain (e.g. an

arrest report or a scientific paper) and may be used as a source for other knowledge workers

with related jobs. Organizations who employ knowledge workers may produce large collec-

tions of reports which hold and transmit information from one knowledge worker to another

and have great value to the organization.
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1.1.2 Reports

Reports are a written form meant to communicate information between knowledge

workers. Examples of reports include academic papers, crime/incident reports, financial

reports, and news articles. For this work, we focus on reports which are expressed with

natural language, though they may take other forms including tables and diagrams.

Reports discuss entities and events relevant to the author’s (knowledge worker’s)

domain of interest, and sometimes use specialized language to do so. For example, the

entities themselves may have names which are particular to a set of knowledge workers,

which are not known to the general population of host language speakers, and may be

opaque to outsiders (e.g. someone may have no idea what “Galactose-alpha-1,3-galactose”

is but be able to identify it as an entity and parse sentences containing it). The same is

true of how events are described in reports, which may use a specialized lexicon which is

not widely used. Together, we can refer to this language as jargon. In this work we are

concerned with creating automatic tools for processing reports which may contain jargon,

and an important assumption is that this jargon does not make the language indecipherable

to general purpose natural language tools like parsers, taggers, and segmenters.

1.2 Report Linking

The goal of this thesis is to develop methods for organizing information into struc-

tured graphs which we collectively refer to as report linking. The goal of report linking is

to link together relevant pieces of information in a collection of reports. This link structure

constitutes a set of abstract views based on various ways of automatically organizing in-
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formation in reports which can help knowledge workers explore and find novel information

quickly.

We refer to the structure induced by report linking tools collectively as a topic

knowledge base (TKB). A TKB is a graph where the nodes are either entities or reports and

the edges (or links) indicate some relationship between the two nodes connected. The TKB

offers a way for knowledge workers to explore the information contained in reports without

paying the high price of reading all of the reports’ text.

In this work entity nodes represent people, places, and organizations discussed in

the reports. We chose these entity types, and not others such as websites, phone numbers,

consumer products, or weapons because they are important to a wide variety of knowledge

workers and because relatively robust tools exist which we can build upon.

As we will discuss in greater detail in the rest of this thesis, we offer two views of

entity nodes in a TKB. The first view shows all of the sentences which mention an entity

which provides a high-recall method for finding entity-centric information across reports.

The second view is comprised of a short natural language summary of all of the information

in the source reports. This view is meant to be informative but brief, allowing a user to view

only the most important information reported about an entity without any duplication.

Reports, the other node type in TKBs, have a view which displays the text of the

report itself, but with entity and event mentions rendered at hypertext, linking either back

to an entity node or to other adjacent reports. This hypertext is used to link individual

entities and events discussed within a report to either other reports or entity nodes.

There are three types of edges in a TKB, entity-to-entity, entity-to-report, and
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report-to-report. Each of these edges may have various views which implement a form of

analysis which seeks to explain how the two endpoints are related. Knowledge workers use

these edge views to guide their exploration of the TKB graph.

1.3 Outline

The rest of this thesis goes into detail on the steps required for building a TKB,

which is comprised of many tasks. In Chapter 2 we discuss background material, covering

the most prominent methods and conceptions of how information should be extracted from

text and organized. This chapter covers four major themes in extracting information from

text and the rest of the thesis makes contributions in each category.

In Chapter 3 we discuss the first steps of construction of a topic knowledge base:

identifying the entities and the pairwise relationships between them. Our contributions

include new methods for efficient entity mention search, a new method for jointly disam-

biguating pairs of entities, and a method for inferring how related two entities are from text.

Our experiments verify that the proposed methods for the first step of constructing a TKB

are very high precision. Work in this chapter was also described in Wolfe et al. (2016a).

In Chapter 4 we address the problem of putting informative labels on the entity-

to-entity edges. The contributions in this category fall into two categories. The first is an

unsupervised method for inferring trigger words which characterize the relationship between

two entities (§4.2). This method does not depend on a relational schema or training data,

so it is appropriate for a wide variety of different entities and relationships. The second

category of contributions are on distant supervision for relation extraction, described in
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§4.3. This work proposes a novel objective for learning from distant supervision which

includes a measure of entity type diversity and makes weak mention-level assumptions.

Additionally this work proposes a novel syntactically-informed method for building high-

precision extractors. The work in §4.2 appeared in Wolfe et al. (2016a) and the work in

§4.3 in (Wolfe et al., 2017).

Chapter 5 focuses on event-centric methods for extracting information from text.

These events will be used in creating structured report-to-report edges/links. Our contri-

butions include a transition-based model with global features for frame semantic parsing

as well as a detailed analysis of methods for training greedy global models with imitation

learning. The work in this chapter were previously published in Wolfe et al. (2016b).

Given the answers of what to link provided in chapters 3 (entities) and chapter 5

(events), chapter 6 explains how to link these items in structured report-to-report links. The

contributions in that chapter include two models for linking, one is a feature based model

which makes use of a wide range of semantic resources (Wolfe et al., 2013) and another

which uses structured inference to jointly predict links events and their arguments (Wolfe

et al., 2015). Both models were state of the art at the linking task at the time, and the

second still is.

In Chapter 7 we introduce entity summarization: the task of producing informative

summaries of entities from their descriptions in a large corpus (similar to the first paragraph

of a Wikipedia page). Our contributions also include an entity summarization model which

can jointly perform relation extraction and summarization which outperforms a strong

baseline on this new task (Wolfe et al., 2017).
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In Chapter 8 we conclude this thesis with a discussion of the applicability of the

methods described in this thesis and of future work on report linking.
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Chapter 2

Extracting and Organizing

Information from Text

2.1 Introduction

In this thesis we are concerned with designing tools for knowledge workers which

can organize and provide access to a wide variety of information which can be inferred from

text. This is a very broad goal, and there likely won’t be one approach which will accomplish

all of our goals. In this section we survey some of the methods which accomplish related

goals in a variety of ways. Much of the work which we will discuss takes a narrow view of

their particular task, but in this section we aim to organize these efforts into a coherent

view of the topic.

Much of the way that these topics have been traditionally organized has to do

with the field of study from which an interest in a topic originally came. Over time, the in-
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terests of information retrieval, natural language processing, and linguistics have converged

towards rich methods for searching and representing knowledge gleaned from natural lan-

guage. We’ve chosen to organize the background material in this thesis into four categories.

They are not purely mutually exclusive nor purely orthogonal, but they are prominent

themes which provide a good basis for describing research in this area.

The four categories of work which we will discuss are event-centric, knowledge

base-centric, corpus-centric, and report-centric methods. These categories can be grouped

into two groups. The first, event-centric and KB-centric methods, are concerned with ab-

stractions over natural language. Both propose a latent, canonical, and often symbolic form

for representing information. Their power generally lies in their explicit use of disambigua-

tion to avoid confusion arising from shallow readings of natural language.

The second group, corpus-centric and report-centric methods, are concerned with

transformations of text. Both propose storing information in the form of natural language,

and propose a variety of ad-hoc text-to-text transformations to solve problems like index-

ing/search and comparison (e.g. coreference). These methods include search engines and

extractive summarization tools, and in general tend to be task-driven rather than theory-

driven. These approaches often use surface features and machine learning over theories of

parsing, inference, and latent forms in order to implement these text-to-text transforma-

tions.
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2.2 Event-centric

The first category of methods in this chapter are event-centric methods. These

methods focus on abstracting away from the text by inferring the events described in text.

Events are a natural concept (people talk about events without being told what one is) and

show up frequently in news articles, textbooks, and other repositories of human knowledge.

While it is not difficult to see hints of how language maps onto events through verbs (“John

bought a candy bar”), nouns (“Kennedy’s death saddened the nation), and other shallow

linguistic cues, coming up with a general theory which explains what events are, how to

recognize them from text, and how to reason about their antecedents and consequences is

a very different matter. Methods in this category all offer some definition of what an event

is and how to recognize them. The methods are laid out roughly chronologically and reflect

a changing focus from theory-driven to task-driven approaches to understanding events in

natural language.

2.2.1 Scripts and Frames

One of the first conceptions of how natural language understanding should work

is a branch of artificial intelligence called story understanding. This line of work included

Minsky (1974), Schank (1975), Fillmore (1976), Schank and Abelson (1977), Charniak

(1977), Wilensky (1978), and Norvig (1983).1 They used simple examples childrens’ stories

and descriptions of common situations like getting dinner at a restaurant as motivating

examples of their theories. They observed that there was a lot of meaning contained in

1See Ferraro and Van Durme (2016) for an explanation of the relationship between various conceptions
of frames.
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short stories which was not directly expressed in the text. They were concerned with any

form of meaning for which a human could confidently infer from reading the story, but

could not be linked to particular textual proposition. A lot of the meaning they observed

as missing from the text, but not the human understanding they were trying to mimic, had

to do with the intentions of agents in the story and events which implicitly occurred.

Artificial intelligence at the time often viewed problems through the framework of

search and planning, so initial attempts to recover this meaning involved logical inference

over basic propositions observed in the story (e.g. “Jane broke open her piggy bank”)

and postulates in a pre-programmed knowledge base (e.g. “piggy banks contain money”).

These postulates and inference were intended to allow the system to recover this missing

meaning, but it quickly became clear that this inference process was under-specified and

very computationally intensive (McDonald, 1978). The proposed solution to this were

abstractions which went by a variety of names including frames, scripts, and plans.

The common intuition amongst these approaches is a template which has many

slots which can be filled by entities observed in the story. The meaning of these slots are

relative to the template (frame or script) they belong to, but can represent things like the

Killer in a Murder template. The script or frame itself was a template in the sense that it

instantiated actual scenarios with slot values which were expressed in a story.

The benefits of frames and scripts fall into two categories: semantic and compu-

tational. The semantic benefits have to do with the ability to recognize that there are slots

with missing values. Some argued for default values for these slots (Minsky, 1974), while

others argued for more complex resolution schemes (Bobrow and Winograd, 1977; Brach-
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man and Schmolze, 1985) i.a., but either way frames and scripts pushed ambiguity from

the “unknown unknowns” to “known unknowns” category, which was conceptual progress.

There are computational benefits arising from frames and scripts in that an un-

derstanding algorithm can build up large propositions (the frames themselves and all slot

bindings) directly by instantiating a frame rather than having a set of general and highly

productive rules which reach the same propositions. Put another way, frames allow for a

degree of specificity and sparsity in the inference rules in the knowledge base which would

not be otherwise possible, and this has nice computational implications.

Though this work on frames, scripts, and plans was capable of describing a wide

range of story understanding phenomena, the work ignored a lot of the complexity in build-

ing robust systems for understanding stories. For one, it was common practice to publish

papers describing frame and script processing engines before the authors had implemented

them. When they did implement them, they had to make strict assumptions about their

input, like the fact that they only need to work on a small number of short stories. The im-

plementation details were not the focus of their published work, which left other researchers,

even those in the field, confused about how to re-implement their ideas (McDonald, 1978).

These authors systematically ignored some of the more language-related (less knowledge-

related) challenges in inference like identifying word senses, resolving syntactic ambiguity,

and handling open vocabulary entities like people and organizations. Partly this was con-

sciously ignored as an incremental strategy to make their systems work on the “hard stuff”

(knowledge and inference) first on “easy cases” (domains with very limited vocabularies),

leaving questions of text processing on “difficult cases” as an implementation detail to re-
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turn to later. This sort of text processing like part of speech tagging, syntactic parsing,

named entity recognition, and reference resolution later became the majority of the focus

of research on extracting knowledge from text.

A modern conception of these some of these ideas is FrameNet (Baker et al.,

1998). The knowledge base contains frames and slots (frame elements), but as the task

has come to be studied, there is no inference2 involved and no modeling of goals and

intentions (other than recognizing spans of text which explicitly refer to them such as “She

[broke]Cause to fragment the piggy bank [to get the coins out]Explanation.”) Annotations are

sentential, meaning that the original goal of understanding two sentences in the story “Jane

broke her piggy bank. She used the money to buy candy.” cannot link the “breaking [a]

piggy bank” to “money” or “to buy candy”, unless the author is careful to put all of these

phrases into one sentence. We discuss FrameNet in more depth in Chapter 5.

2.2.2 Narrative Chains

A more recent event-centric group of methods involve narrative chains (Chambers

and Jurafsky, 2008, 2009, 2011; Cheung et al., 2013; Balasubramanian et al., 2013; Frermann

et al., 2014; Rudinger et al., 2015; Alayrac et al., 2016). This work is inspired by the work on

frames and scripts, but the emphasis changed from “frames and scripts are needed for story

understanding” to “if we read a bunch of stories, then we should be able to statistically infer

frames and scripts.” This work primarily took the form of generative models of the text

describing stories or data mining techniques for finding patterns in stories. These patterns

2Inference in the senses of knowledge-based (e.g. “Socrates is a man; men are mortal; Socrates is mortal”)
and linguistic (e.g. reference resolution by checking number, gender, and animacy properties) inference rather
than statistical inference common in modern machine learning methods.
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or generative templates were meant to stand in place of the frames, scripts, and plans. They

would not be as richly typed and structured, but they would be learned from data, solving

the knowledge acquisition bottleneck problem (Olson and Rueter, 1987). In a sense this is

a bolder goal since statistical learning when the hypothesis class is as big as the space of

frames or scripts requires a lot of data and inductive bias.

We begin to lose some control over the abstractions or forms here. Before, we

had world knowledge which was expressed in the language that the AI programmer chose.

This move into the statistical era meant that this knowledge took the form of distributions

over observable features, which has a few problems. First, we can’t easily assign these

distributions names, which is essential in building up bigger pieces of knowledge. Second,

because we have to fit these distributions, the number of them we can work with is not that

large. In the symbolic era, you could create symbols for all sorts of things, and because

you didn’t need to do statistical estimation, the only cost you had to pay for adding more

symbols and rules was computational, which were reasonable in that time and trivial today.

2.2.3 Information Extraction for Events

A different set of event-centric methods treat recognizing events as an engineering

problem, which we call information extraction (IE) based methods. The notion of a general

theory of events was dropped in favor of IE methods which could recognize a restricted set

of event types such as terrorism, political conflicts, and natural disasters. With this type of

restriction, small event schemas could be manually created instead of learned. Additionally

these schemas did not attempt to be deep in the sense of some earlier work on scripts and

frames, their only role was to characterize a handful of slot types which had a reasonable
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correlation with lexical choice.

This shift towards IE over deeper frame-based methods for natural language under-

standing started with the Message Understanding Conferences (MUC) (Sundheim, 1996).

Midway through the MUC conferences, the organizers commented on the common wisdom

up to that time regarding natural language understanding:

These challenges have also resulted in a critical rethinking of assumptions con-
cerning the ideal system to submit for evaluation. Is it a “generic” natural
language system with in-depth analysis capabilities and a well defined inter-
nal representation language designed to accommodate the translation of various
kinds of textual input into various kinds of output? Or is it one that uses only
shallow processing techniques and does not presume to be suitable for language
processing tasks other than information extraction?

(Sundheim and Chinchor (1993))

In the final version of the MUC tasks, systems had to complete four tasks: Named

Entity (NE) Coreference (CO) Template Element (TE) Scenario Template (ST). The first

three have to do with recognizing entities and are not event-centric, but the final task of

scenario template extraction is about filling slots for three types of scenarios of interest:

“aircraft order”, “labor negotiations”, “management succession”. For ST, the organizers

manually constructed hierarchy of templates which were to be filled by IE systems. The

restriction of the ST task reflects both the motivation for IE-based event-centric methods

and their weakness: good results in recognizing events are possible when there is only a

small number of types of events to model (Grishman and Sundheim, 1996).

The Automatic Context Extraction (ACE) (Doddington et al., 2004) program was

the source of more IE-based work. They continued with the goals of MUC and greatly

expanded the annotation efforts to aide in both training of machine learning IE models as
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well as evaluation. ACE annotated entities,3 events,4 and relations,5 the latter two being

most relevant to this section. The types of events was broadened from 3 scenarios in MUC

to 33 event types (across 8 coarse grain event types). Further details on differences between

the MUC, ACE, and other IE-based event representations can be found in Aguilar et al.

(2014). The annotation was extensive, covering more than 300k words.

FrameNet (Baker et al., 1998) and Propbank (Kingsbury and Palmer, 2002; Palmer

et al., 2005) are two semantic role labeling (SRL) (Gildea and Jurafsky, 2002) annotation

projects which also fall into the category of IE-based event-centric work. These projects

focus on annotating a wide range of frames and their roles to train statistical models to

recognize them. The goals (richness of the frames and inference related to recognizing them)

of this work was more humble than the original work on frames, but what they lacked in

aspirations they made up for in annotations. These two datasets lead to an enormous

amount of work on statistical systems for recognizing events (Punyakanok et al., 2004;

Xue and Palmer, 2004; Carreras and Màrquez, 2005; Haghighi et al., 2005; Johansson and

Nugues, 2008b; Toutanova et al., 2008; Surdeanu et al., 2008; Hajič et al., 2009; Björkelund

et al., 2009; Das et al., 2010; Pradhan et al., 2013; Täckström et al., 2015). More information

on the resources can be found later in §5.2.

2.2.4 Connection to this Thesis

In this thesis we make contributions to the information-extraction body of work

on event-centric methods. In Chapter 5 we adopt the IE view of recognizing events and

3Included from inception in 2000
4Started in 2005
5Started in phase 2 in 2002
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propose statistical methods for identifying events and their participants based on FrameNet

(Baker et al., 1998) and Propbank (Palmer et al., 2005). In Chapter 6 we make IE-based

contributions on event coreference by jointly modeling linking of entities and events.

2.3 Knowledge Base centric

Another important line of work in storing information gleaned from text are cen-

tered around knowledge bases (KBs). In general, a knowledge base is a set of concepts

with relationships between them. In this work we focus on KBs which are similar to those

defined in NIST’s Text Analysis Conference’s Knowledge Base Population track (McNamee

and Dang, 2009). These concepts are typically take to be either classes (e.g. birds, animals,

living things) or entities (e.g. George Washington, Statue of Liberty). Knowledge bases

are often conceived of as graphs with concepts as nodes and relations as edges. Relations

can have multiple types like isa which encodes subset relationships between concepts (e.g. a

bird isa animal) or instance (e.g. George Washington instance living things). The contents

(concepts and relations) in KBs varies, but in general they are designed to be a symbolic

means of storing useful information. KBs typically do not contain events, at least of the

type described earlier,6 but they do contain knowledge for understanding events, such as

information about entities which can help in understanding an event. For example a KB

may contain a concept for George Washington and the Delaware river, so recognizing the

event described in “George Washington crossed the Delaware river” can be understood as

an event involving a person (George Washington instance person) and a place (the Delaware

6Some other notions of KBs which we do not study here contain historical events like the https://en.

wikipedia.org/wiki/American_Civil_War, but do not aim to store most events described in news or stories.
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river instance location). Basic inference can also result from applying facts in the KB. For

example the a KB might also contain a relation between the Delaware river and New Jersey

(near), which would let you understand more about the “crossing” event (that it happened

near New Jersey).

Some argue that one cannot understand language without some representation of

the knowledge that humans have when they understand language (Hobbs, 1987). KBs offer

a plausible model of storing and working with knowledge towards this goal. There are two

major problems related to knowledge bases for this work: populating them with concepts

and relations and recognizing references to their contents in language. We will discuss work

on these two problems next and then return to other applications of KBs in natural language

understanding.

2.3.1 Semantic Web and Public Knowledge Bases

Towards the first goal, of building knowledge bases which contain lots of useful

information, many have taken the position that we simply need to write down all the facts

and collect them into a knowledge base. This was initially motivated by AI programmers

who saw all of the value in having common sense knowledge about the world and thought it

would not take that long to formalize it all and put it in one place. After all, a human could

more or less do it in 18 years. Surely if you just payed lots of people to write down everything

they had learned you could create a knowledge base with an average human’s worth of

knowledge in a short period of time. Cyc (Lenat et al., 1986) was a knowledge base which

took this approach towards manually and richly encoding common sense information. The

project consumed a lot of resources and is not used by many today in light of its complexity.

20



CHAPTER 2. EXTRACTING AND ORGANIZING INFORMATION FROM TEXT

The project has been criticized as a costly and over-ambitious mistake (Domingos, 2015).

A more modern approach to knowledge engineering is based on two ideas: use

a simpler set of concepts and relations (eschewing inference altogether) and reliance on a

large number of interested parties to help with populating it. These ideas are implemented

in technologies which go by the name “semantic web” (Aberer et al., 2003; Halevy et al.,

2003; Kementsietsidis et al., 2003). They propose methods for linking together information

aggregated in many locations for many different purposes. The ability to link makes the

KB a distributed system which can scale up to handle as much information as necessary.

These methods also address issues of handling inconsistency and data provenance.

Another set of knowledge bases are derived from Wikipedia. These include Free-

base (Bollacker et al., 2008), yago (Suchanek et al., 2007), yago2 (Hoffart et al., 2013),

and DBpedia (Auer et al., 2007). These databases primarily draw on facts manually en-

tered by Wikipedia contributors into infoboxes. There is a large amount of work needed to

normalize, merge, and link information together to form these relatively clean KBs which

provide information in the form of triples7. These KBs sometimes offer additional features

like linking into specialize geographical databases for generalizing knowledge about places

or the addition of temporal modifiers which can track things like facts which have start and

end times (e.g. George W. Bush was president from January 20, 2001 to January 19, 2009).

WordNet (Miller, 1995) is a lexical knowledge base designed to store the rela-

tionships between words in English. They group words into synsets which all refer to a

common concept. Synset concepts are related to each other via relationships like hyper-

7A triple is a tuple of a subject entity, a “verb” or relation, and object. Objects may be entities or some
other type like a number (e.g. 1957) or string (e.g. “real estate agent”).
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nymy, meronymy, and anytonymy. Wordnet can also map lexical concepts between parts of

speech (e.g. “French” is the adjectival form of the nominal concept “France”).

2.3.2 Entity Linking

Given a knowledge base, an important task in understanding language is being

able to link mentions in text to concepts in the KB. If these concepts correspond to entities

(e.g. people, organizations, and locations), then this is called entity linking (Mihalcea and

Csomai, 2007; Cucerzan, 2007; Milne and Witten, 2008; Kulkarni et al., 2009; Ratinov et al.,

2011; Hoffart et al., 2011), i.a.

It has been argued by many that linking mentions of proper nouns to a knowledge

base can help in tasks like coreference resolution because knowing the type of an entity or

some facts about it can help understand what nominal phrases are licensed for referring to

it (Haghighi and Klein, 2009; Recasens et al., 2013; Durrett, 2016), addressing one of the

more difficult issues in coreference resolution.

There has been a lot of work on how to make entity linkers work well including

methods which use name matching heuristics (aka lists, acronyms, transliteration) (Mc-

Namee et al., 2011), context matching heuristics (entity language models) (Han and Sun,

2012) and joint disambiguation which consider the named entity types and links together

(Durrett, 2016), relations between the entities being linked (Cheng and Roth, 2013), and

consider more than one linking decision together (Han et al., 2011).

These methods tend to work well when a mention’s entity is in the knowledge base

(with accuracies as upwards of 86% (Han et al., 2011)), for a few of reasons. First, there

is a lot of training data to support discriminative models which can effectively use surface
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features rather than deeper inference (Cucerzan, 2007; Ellis et al., 2015). Second, there are

strong rich-get-richer effects when it comes to names: for any one name the baseline method

of linking to the most popular entity with that name works well. Lastly, leaving popularity

aside, the two biggest sources of signal, an entity’s name and the distribution of words used

to describe them, are largely independent, making the task easier when a lot of context is

available. See Hachey et al. (2013) and Cornolti et al. (2013) for more detailed comparison

of various entity linking techniques, variants of the task, and system performances.

Given how well these methods work when the KB contains the referent of a men-

tion, more recent work has focused on how to add to a knowledge base. The TAC Knowledge

Base Population (KBP) task has run since 2009 (McNamee and Dang, 2009). This task has

involved three problems: entity linking, slot filling, and cold start KBP (since 2012). Slot

filling is the first step in adding relations between entities in a KB. Systems are given an

entity (e.g. George Washington) and a slot (e.g. where was this person born?), and must

return a filler (e.g. Virginia) which may or may not appear in the KB itself. Cold start is

defined as building a full KB containing entities and relations from just text. See McNamee

et al. (2012) and Ellis et al. (2015) for more details on the cold start task.

2.3.3 Distant Supervision

Under certain circumstances, a knowledge base is a powerful source of supervision

about how to understand natural language. The information extraction (IE) paradigm

described in §2.2.3 is built on supervised machine learning methods which require labeled

sentences. Annotating sentences is costly, and to a degree depending on the classification

model used, the ability for an IE model to generalize the training data depends on the
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number of labeled sentences provided. Knowledge bases, plus the ability to recognize entities

by linking them to a knowledge base, offer a different way of providing supervision: at the

fact level rather than the sentence level.

Bunescu and Mooney (2007) observed that given a knowledge base containing facts

like almaMater(Christopher Walken, Hofstra University), one could reliably train a

relation extractor for almaMater by looking through a large corpus for all sentences con-

taining “Christopher Walken” and “Hofstra University” and assuming they were positive

instances for almaMater. Negatives could be created in a variety of ways, or most straight-

forwardly using the closed world assumption.

The term for this method of training relation extractors from knowledge bases came

to be known as “distant supervision” (Mintz et al., 2009). This method was good at finding

a large number of true positive training examples on account of entity linkers being relatively

high recall. But their weakness was the inclusion of false positives: sentences which match

up with a fact but don’t commit to that fact in situ (e.g. “Hofstra asked Walken to give their

commencement speech in 2006.” 6=⇒ almaMater(Christopher Walken, Hofstra University)).

Hoffmann et al. (2011) and Surdeanu et al. (2012) explicitly formulate mod-

els which do not assume that every sentence which matches a fact implies that fact is

true. These improvements lead to extractors which have much higher precision and recall.

Bunescu and Mooney (2007) originally proposed using the multiple instance learning (MIL)

framework (Maron and Lozano-Perez, 1998) which also makes weak assumptions, but the

algorithms for fitting models like this were too slow at the time (Andrews et al., 2003).

Another line of work, stemming from Riedel et al. (2013), is generative: it max-
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imizes the likelihood of observed facts and sentences under the assumption that there are

latent features for entities, relations, and features of sentences. These methods also work

well, but are not good at making predictions for entities which were not observed when the

model was trained. The likelihood of a relation holding in a new sentence is a function of

the latent features of the entities described in the sentence, which will be poorly fit if they

have not been observed much (or at all).

Work on distant supervision, a method for training textual relation extractors, is

related to but distinct from the task of of knowledge base completion (Sutskever et al.,

2009; Jenatton et al., 2012; Bordes et al., 2013b; Socher et al., 2013). These approaches

are distinct from the focus of this thesis because they are not interested in using text as

evidence for knowledge, but rather evidence from either logical inference ((man(x) =⇒

mortal(x) ∨ socrates(x) =⇒ man(x)) =⇒ (socrates(x) =⇒ mortal(x))) or statistical

regularities (most kings’ successor was born in the same country as them).

2.3.4 KB Applications

Previous work has shown that a significant fraction of factoid questions have an-

swers present in publicly available knowledge bases, and question answering systems which

explicitly model the relationship between questions and KB schemata can be very effective

(Yao, 2014; Yih et al., 2015; Yao, 2015).

Knowledge bases have also been shown to provide search engine users a view of

structured data which provides utility beyond what is provided by the document (e.g. web

page) and passage (snippet) retrieval (Dalton and Dietz, 2013; Dietz and Schuhmacher,

2015). Popular search engines today use this type of structured results fetched from a
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knowledge bases as a part of many web queries which can be unambiguously linked to a

node in their knowledge base, see Figure 2.1.

2.3.5 Connection to This Thesis

This thesis has three threads which are KB-centric. In Chapter 4 we present novel

work on distant supervision for learning high precision relation extractors from pre-existing

knowledge bases like DBpedia. The focus of this work is on learning domain-independent

extractors which work well in domains which have lots of text data but no knowledge bases

which can be used for inference or reasoning. Lack of a high-coverage knowledge base is

the norm for most domains in the long tail which aren’t concerned with celebrities, actors,

musicians, and athletes which public knowledge bases have good coverage over.

The second KB-centric line in this thesis is the work on generating query-specific

small-domain knowledge bases in Chapter 3 and 4. These so called “target KBs” differ

from KBs like Freebase and DBpedia in that they are concerned with mapping out the

connections between entities discussed in a domain-specific corpora (such as the Panama

Papers or the Enron corpus (Klimt and Yang, 2004)). These KBs are concerned with

explaining the connections between entities, and therefore use lexical relations rather than

relations coming from a small schema like DBpedia or TAC KBP’s (Ji et al., 2011) schemata.

The third KB-centric contribution of this thesis is the work on entity summariza-

tion described in Chapter 7. This work is motivated by the desire to be able to browse a

knowledge base of entities in a way which supports a natural language based entity view

for the fraction of knowledge workers who do not want to learn the semantics of a schema

and would prefer textual to structured representations of entities. There is work on “sum-
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marizing” a knowledge base nodes using structured outputs (sets of triples) (Cheng et al.,

2011; Gunaratna et al., 2015; Thalhammer et al., 2012), but our work differs in that the

output is a natural language description.

2.4 Corpus-centric

Corpus-centric methods organize a corpus as a graph of documents with edges

connecting related documents. This sort of graph is useful for performing local exploration

of a corpus rather than through search/retrieval involving a query. These edges are what

make these methods useful to knowledge workers looking for information. They provide a

semantically focused subset of the collection which may contain the information they need.

These methods are more suitable for machine creation as opposed to human cre-

ation (e.g. Wikipedia is corpus-centric, discussed later), owing to the scale of the problem

and the effectiveness of automatic methods which work off of surface features. On the other

hand, these methods may be more difficult for humans to use since they can require reading

a lot of text if the link structure alone does not complete the information need.

2.4.1 Conceptual Document Chains

Grouping documents in a large corpus by the concepts that they contain is a

significant motivation for topic models (Deerwester et al., 1990; Hofmann, 1999; Blei et al.,

2003) inter alia. These methods use word co-occurrence methods to infer topics, which are

distributions over words but can be thought of as abstract sets of ideas which dictate word

choice. Topic models are capable of finding very fine grain distinctions made by authors
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without anyone actually labeling what the authors’ intentions were (other than what they

wrote) (Blei, 2012). Topic models assign a distribution over topics to every document in a

corpus, and similarity in this distribution indicates a level of similarity in the information

contained therein. The inferred topics can be seen as a basis to view a large corpus of

documents. A knowledge worker with an abstract information need can look at a topic and

often determine how relevant the entire topic is to what they are looking for, providing a

way to ignore large numbers of documents (Zou and Hou, 2014). Within a topic of interest,

graphs connecting documents according to even finer grain similarity can be formed by

creating edges for documents whose topic distributions are close enough (Chuang et al.,

2013).

While topic models can be used to map out a large corpus of documents, the idea

of using actual maps of concepts has been proposed (Brner, 2010). These maps are a way

of organizing information (in a scientific field for example) in a way which a domain expert

would find efficient. In this category, there is work on building these maps over documents,

such as the work on “metro maps” in Shahaf et al. (2012, 2013).

2.4.2 Chains of Documents in Time

One means of organizing documents in a large collection is through temporal pat-

terns of document similarity. The clearest example of this is the tracking of a news story,

prototypically, Topic Detection and Tracking (Allan et al., 1998) project. They were in-

terested in grouping news stories into “topics” which was their term for a temporally and

semantically coherent group of articles. These topics, or sequences of news stories, were a

good way of discovering the complete set of information related to a developing story.
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Kleinberg (2002) developed a method for detecting bursts of activity in a stream

of documents. These bursts can be used to group documents in cliques or to identify

events, which is useful for users who want to explore collections which exhibit these bursts.

TimeMines (Swan and Jensen, 2000) proposes a similar method, but with the added ability

to consider content features of the document stream. Petrović et al. (2010) describes an

efficient and scalable algorithm for first story detection (Allan et al., 1998) which similarly

finds clusters of documents (tweets) which are a part of a temporally coherent news event.

Finally, Shahaf and Guestrin (2010) proposes an ILP-based model for detecting chains of

news stories which constitute a story based on document similarity and temporal coherence.

Organizing documents by time has also been hybridized with topic modeling ap-

proaches (Blei and Lafferty, 2006; Wang and Mccallum, 2006). These topics can be seen as

higher level abstractions than TDT topics. Topic models tend to have at most thousands

of topics used across a collection, whereas there may be 10 or 100 times as many more news

stories (TDT style topics). Graphs of documents are not viewed as the primary goal of

topic modeling work like this, but there are a variety of ways to construct them from the

inferred variables (e.g. document-topic distributions) such as putting an edge between any

two documents which have a topic loading in the top k in the collection.

2.4.3 Connection to This Thesis

The work in this thesis which concerns building target knowledge bases (TKBs) is

corpus-centric. TKBs are built from mentions of entities and situations and are therefore

implicitly graphs over documents (which contain these mentions). This document structure

is another way to explore a corpus, grouping documents by an entity, situation, or entity
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co-occurrence of interest. This view is orthogonal to the work described above which groups

documents by news stories or other domain-specific concepts (e.g. metro maps).

2.5 Report-centric

In the previous category, corpus-centric approaches, information stored in natu-

ral language is distributed across many different documents in a corpus. Report-centric

approaches index and store information in a single document called a report. These ap-

proaches are employed when information needs are relatively large and fall into a fairly small

number of buckets. Large information needs (e.g. “malaria treatment in the 3rd world”) call

for long form reports which are consumed largely as a whole, while small information needs

(e.g. “Tom Cruise’s first movie”) do not warrant report generation and can be satisfied

by extracting information from an arbitrarily-organized corpus. Report-centric methods’

primary concern is language synthesis used to generate reports.

Report-centric methods are not limited to automatic methods. In fact this category

is currently dominated by humans, often knowledge workers, who generate these reports.

We are interested in natural language reports, but conceptually they include any synthesized

information-dense formats used to communicate between knowledge workers such as slide

decks, technical reports, or tabular reports. Report generation sometimes correlates with

organizational decisions made by employers of knowledge workers. We have in mind cases

like assigning a reporter to a beat (e.g. “violent crime in the St. Louis metro area”) or an

analyst to a topic (e.g. “natural gas production in Russia”).

In the case of natural language reports, these methods have conceptual scala-
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bility. By this we mean that there is nothing about the form which limits expression

at various levels of granularity. This is a hallmark of natural language. You can use

it to describe minute details about the process by which a hole in an airplane must be

drilled (and enumerate the technical consequences of not doing so), or you can use it to

describe the sentiment of the populace leading up to the French revolution. The con-

cepts needed to express this information always have names that knowledge workers al-

ready use, and natural language can always accommodate these concepts. This is often

not true for other methods described earlier. For example, DBpedia contains the entity

http://dbpedia.org/resource/Boeing_747 and various facts about it, but has no details

on how it is manufactured. This is not simply because these details are private, it is because

the schema has no way to express the information contained in the thousands of technical

reports which have been written on this topic. The cost of the knowledge engineering re-

quired to capture these details in a formal representation is enormous. Methods which have

the ability to express a wide variety of information, including report-centric methods, have

conceptual scalability.

In the rest of this section we will lay out some important work which falls into

the category of report-centric approaches, and touch on their relevance to this thesis. We

will follow the order of work done by “most human, least machine” to “least human, most

machine”.

2.5.1 Wikipedia

Wikipedia is probably the most well known example of a report-centric method for

organizing and distributing information. It contains millions of reports on a range of topics
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from Taylor Swift to Hindustani grammar to childhood obesity in Australia. The reports

have non-trivial structure which varies across concepts or topics. For example reports

which describe people often use sections dedicated to “early life”, “education”, various time

periods related to what the subject is famous for (e.g. for bands, time periods between the

release of their albums), and “death” (when relevant). Reports on places often break up

the material by history and governance, demographics, geography, economy and industry,

transportation. This high level structure is ad-hoc and varies greatly, but provides a general

and useful index on the information contained in these reports. Research on automatic

methods for generating this type of structure is limited, but some efforts have been made

(Sauper and Barzilay, 2009).

2.5.2 Knowledge Base Acceleration

The TREC Knowledge Base Acceleration (KBA) track (Frank et al., 2013) ran

from 2012 through 2014 and focused on developing automatic methods for aiding, and in

limited cases, creating, reports from a large stream of news. KBA systems were expected

first and foremost to be able to classify news stories as being relevant to particular reports

on entities in Wikipedia and Twitter.8

TREC KBA is a stream filtering task focused on entity-level events in large
volumes of data. Many large knowledge bases, such as Wikipedia, are main-
tained by small workforces of humans who cannot manually monitor all relevant
content streams. As a result, most entity profiles lag far behind current events.
KBA aims to help these scarce human resources by driving research on auto-
matic systems for filtering streams of text for new information about entities.

(Frank et al. (2013))

8Twitter does not contain a report for its entities, but you could imagine creating one as is already present
in Wikipedia. Some entities appear on Twitter and already have reports in Wikipedia, but many do not.
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The first task that KBA systems must address is vital filtering where documents

in a news stream must be marked as vital to maintaining up-to-date information in a set of

pre-specified reports. Annotators judge a news stories relevance to a report as either vital

(contains information which would motivate changing text in a report), useful (contains

information relevant to the report which can be used for evidence/citation but is not novel),

neutral (contains information technically relevant to the report but not important in any

sense), or garbage (doesn’t refer to the report’s subject).

The second task is streaming slot filling where systems attempt to predict men-

tions which serve as fillers for a variety of fields. Slots for people: Names, PlaceOfBirth,

DateOfBirth, DateOfDeath, CauseOfDeath, AwardsWon, Titles, FounderOf, MemberOf, and

EmployeeOf. Slots for buildings and facilities: Names, DateOfConstruction, and Owner. Slots

for organizations: Names, DateOfFounding, FoundedBy, and Members. These fillers are not

required to be entities in a knowledge base, but are judged as correct or not as strings.

The point of this task is to determine when new fillers appear, cumulatively reporting all

possible values for these slots over time. These slots are useful pieces of information to

include in Wikipedia and other reports.

While KBA in general is motivated as a report-centric program designed to help

create reports, the streaming slot filling aspect of the program is KB-centric.

2.5.3 Text Summarization

A major thread of work on automatic report-centric methods is in text summa-

rization (Luhn, 1958; Nenkova and McKeown, 2012). There have been numerous different

approaches to text summarization but the task is essentially one of automatically synthe-
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sizing a short summary or report given some source material. This source material could

be a scientific paper (as was the goal of producing automatic abstracts in Luhn (1958)),

newspaper articles (for which, by journalistic practices, the first paragraph is often a good

summary), or in general a larger collection of reports or natural language which addresses

a coherent subject.

Text summarization is justified in at least two ways. First, summaries allow knowl-

edge workers to absorb the most important details first, which allows them to better spend

their time where their attention is warranted and ignore large collections of text discussing

things not relevant to their information needs. Second, text summarization methods ex-

plicitly address the issue of redundancy. When multiple documents are used as the source

material to summarize, there may be a lot of overlap in the events and facts described across

these documents. Text summarization systems recognize this redundancy and only present

one version of the relevant information.

Text summarization work is sometimes broken down into abstractive and extrac-

tive systems. The former works in a way akin to the non-document-centric categories in

this chapter and attempt to understand (build a latent representation which explains the

observed texts) the sources and then generate a text summary from this latent form. Ex-

tractive systems simply find which sentences or words to cut and paste from the source

materials into a summary. The distinction is often not clear in practice because most work

is neither purely abstractive or extractive, but some form of hybrid. A good example of a

hybrid model related to narrative chains (§2.2.2), is Barzilay and Elhadad (1997).

A lot of work in extractive summarization uses a basic framework of summary
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creation via source sentence selection, e.g. Gillick and Favre (2009). Within this, an

important observation is that sentences need not be selected as a whole, but pieces which

do not contain information relevant to a summary can be excluded. These approaches are

called deletion models (Knight and Marcu, 2002; Cohn and Lapata, 2009; Napoles et al.,

2011).

There has been a lot of work addressing the question of what makes a piece of text

salient, interesting, or useful to include in a report or summary. Solutions to this problem

have used machine learning (Mani and Bloedorn, 1998; Chuang and Yang, 2000), lexical

frequency (Gillick and Favre, 2009), and models of text or conceptual centrality (Erkan and

Radev, 2004).

For extractive methods which rank sentences to include in a summary by some

criterion, it is important to remove redundant text instead of just putting the most relevant

pieces of text into a summary. This observation has been put into practice using both

greedy (Carbonell and Goldstein, 1998) and exact methods (Gillick and Favre, 2009).

2.5.4 Connection to This Thesis

This thesis makes a contribution in this area in the entity summarization work

described in Chapter 7. This work addresses the problem of synthesizing reports which

cover the domain of an entity. The entity summarization work in this thesis also makes

connections to the KB-centric line of work through our summarization model which explic-

itly uses relation extractors trained with KB-level supervision (§4.3). Lastly, the predicate

argument linking work described in Chapter 6 offer a way to augment existing reports by

adding structure linking claims to evidence and related claims (Salton et al., 1991, 1997).
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2.6 Conclusion

There has been an enormous amount of work on how to extract, represent, retrieve,

and explore information collected from natural language. In this thesis we take the view that

there is no one solution which will work very well for more than a narrow set of information

needs. In light of this, the work in this thesis is towards the goal of methods which work

at as many levels of abstraction as possible: entities, events, and documents. Especially in

cases where information exploration is needed, what is most important is providing many

different views and ways of structuring information which is comprehensible to knowledge

workers.
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Chapter 3

Entity Detection and Linking

Report linking is about automatically linking claims to textual sources and finding

new information about a given topic. The ability to recognize and disambiguate entity

mentions plays a central role in report linking methods. For instance, finding out whether

someone was involved in a particular type of event, or searching for facts about a given

entity, or inferring the relationship between two entities all require the ability to spot

referring mentions in text.

This chapter is about taking a collection of source text containing information

relevant to some reports and finding entities discussed in both the reports and sources. We

assume that our methods have access to the output of a named entity recognition (NER)

system and are faced with the challenge of discovering which mentions refer to the same

entities.

As explained in Chapter 1, there has been extensive work on these problems under

the tasks of coreference resolution and entity linking. We draw on this work in this chapter,
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but we apply them in a slightly different way towards our goals in report linking. We are

primarily concerned with the ability to enumerate all mentions of a given entity, and this

chapter explains how this is done.

3.1 Problems To Tackle

We start by discussing some challenges in entity discovery and linking for report

linking, defining two important problems which we address in this chapter.

Dependence on a Knowledge Base of Entities Entity linkers can be fast and accu-

rate, but they only work if you have a knowledge base (KB) of entities to link against. This

assumption is problematic in report linking where the text sources can cover domain-specific

and/or long-tail entities which will not appear in public hand-crafted KBs like Wikipedia.1

Constructing KBs for these domains comes at a prohibitively high cost since it cannot be

shared across many interested parties and because in many professional settings there is

the option of falling back on simpler information retrieval tools and human effort.

In some cases there are good proxies for KBs. For example one could consider

every unique email address as an entity and then link mentions of “Bill” and “Mary” in

first person messages against this ad-hoc KB (Gao et al., 2017). Other times there are many

specialized KBs which might hold linkable entities (Gao and Cucerzan, 2017). In general

however, constructing KBs to support entity linkers is a costly process.

A key challenge for the methods in this chapter is the ability to work without a

knowledge base, from text input alone. The ability to create entities on the fly is a basic

170% of the query entities in the TAC 2013 Slot filling task did not appear in Wikipedia.(Surdeanu, 2013)
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skill that human readers posses and a largely unsolved research challenge.

Computational Efficiency When KBs are not available, the problem is often cast as

coreference resolution. There is a long line of research on mention-pair models of corefer-

ence resolution (Bagga and Baldwin, 1999; Soon et al., 2001) which work by considering

compatibility functions between pairs of mentions. These methods require O(n2) time to

compute the score function and finding an optimal coreference configuration is in general

an NP-complete problem (Bansal et al., 2002). These methods and their associated ap-

proximation algorithms tend to work well in practice when n is small, say the number of

mentions in news article. For larger corpora like Wikipedia, TDT-style topics (Allan et al.,

1998), or textbooks, these methods are prohibitively expensive.

Singh et al. (2011), Wick et al. (2012), and Wick et al. (2013) introduced methods

for scaling the coreference resolution problem up to millions of mentions. Their methods

work by storing mentions in a tree and having an edge-factorized scoring function which

requires linear time to compute. They propose MCMC sampling procedures for inference

and the worst case runtime is not well understood. These methods distribute inference over

many machines but at great communication cost between nodes.

Rao et al. (2010) introduced a streaming model for coreference resolution which

is appealing but has a couple drawbacks. For one it is greedy and cannot re-visit mistakes.

For another they do not explain how to distribute the computation to scale beyond cases

where all of the data can fit in the memory of one machine. It is not clear that a distributed

version of their algorithm is possible.

A key challenge for this work is to create methods which run in time linear in the
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amount of text and constant for each resolution or disambiguation query and which can be

distributed across many machines to scale up to large text collections.

3.2 Just-in-time Coreference Resolution

We describe a hybrid method which uses the advantages of both coreference res-

olution (no need for a KB) and entity linking (constant time) which we call just in time

coreference resolution, or JITCR. JITCR is a scalable entity disambiguation technique which

splits work up into two phases: ingest, during which a sketch/index of all the entity men-

tions to be disambiguated is created and search, where an entity is “named” by providing a

mention of it which is used to find others. Ingest is highly parallelizable and takes time and

space linear in the amount of text indexed. Search is roughly linear time in the size of the

desired set of mentions, which is often small. JITCR enables optimizations which improve

both speed and accuracy in information extraction tasks which depend on an entity (such as

TAC slot filling (McNamee and Dang, 2009) and sentiment analysis (Godbole et al., 2007))

by only retrieving mentions which may play some useful role in the IE task. In this chapter

we show the vanilla usage of JITCR for enumerating the mentions of an entity. Later in the

thesis we show other possible usages in inferring open-vocabulary labels for pairs of related

entities (Chapter 4), detecting event coreference via common arguments (Chapter 6), and

exploration and summarization (Chapter 7).

JITCR is not entity linking and does not reify entities. We use an information-

extraction-centric definition of entities: a set of mentions. Other attributes and facts about

an entity in this view are derivable from the mentions constituting the entity, and therefore
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not central to the definition. JITCR retrieves mentions of a given entity given some way of

“naming” the entity. In the context of report linking, the primary way of naming an entity

is by specifying a mention of an entity in a document. To a human who can understand the

document and reference, this is enough to pick out a particular entity, and therefore this

name contains just as much information as an entity id in a knowledge base.

JITCR is similar to streaming coreference resolution, but with lazy decision making

instead of greedy. Being lazy has a few advantages. First, if a mention is not a part of

any entity which is queried for, JITCR does not waste time inferring its referent, which can

lead to huge saving in a large corpus. Similar to batch methods, if a query is likely to be

issued multiple times, its result can be cached. Second, JITCR supports anytime inference,

meaning it can produce some predictions quickly, and if more time is available continue to

improve its predictions using more refined scoring functions. Streaming algorithms by their

definition cannot be anytime.

Finally, the decoupling of the ingest and search steps means that new mentions

can be added to the index without affecting most entities.

In this section we will explain how the JITCR can be applied to entity mention

search. In the next section we will show how the JITCR method can be extended to handle

queries on pairs of entities, and how these extensions can actually improve accuracy.

3.2.1 JITCR Ingest

We begin by describing the process of building a JITCR index, which can be used

for a variety of different queries. This step involves building an index of the text over

which we are expected to find coreferent mentions. A JITCR index is an inverted index of
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mentions (Manning et al., 2008). The keys in this index are called triage features. The

features we use are all case insensitive and capture word unigrams, bigrams, the headword

(if parses are available at ingest time), and an acronym. These features are a form of string

match which can backoff to fragments of a mention. For example the mention “Association

of Computational Linguistics” would be featurized as2

u:association u:of u:computational u:linguistics

b:BBBB\_association b:association\_of b:of\_computational

b:computational\_linguistics b:linguistics\_AAAA

h:association

a:acl

We build the inverted index on a distributed key-value store such as Accumulo,3

DynamoDB,4 or Bigtable.5 These databases can scale to text datasets which are large

enough that performing annotations like NER and parsing become the limiting factor. If

the corpus to be ingested is instead very small, an in-memory hashmap can provide the

same functionality even faster.

In the inverted index, a form of multi-map (a dictionary where a key can be

associated with many values), the keys are the triage features and the values are mention

ids. We require a special property of mention ids: that they encode the id of the sentence

that they appear in. This property is used later in §3.3 when searching for pairs of entities.

A simple way to implement this property is to make a sentence id the prefix for all mention

ids contained in that sentence.

The index only stores mention ids (and implicitly sentence ids). We store sentences

(along with any annotations of them like parses and NER taggings) in another table and

2BBBB is a dummy token for “before” used at the boundaries of a mention and AAAA is for “after”.
3https://en.wikipedia.org/wiki/Apache_Accumulo
4https://en.wikipedia.org/wiki/Amazon_DynamoDB
5https://en.wikipedia.org/wiki/Bigtable
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Dataset Num. Mentions Bytes for sentence id Index size

Roth and Frank (2012) 2.0× 103 2 17.6 KB
EECB (Lee et al., 2012) 8.0× 103 2 70.5 KB
Ontonotes 5 (Weischedel et al., 2011) 2.0× 105 3 1.7 MB
English Wikipedia (Ferraro et al., 2014) 5.1× 108 4 4.3 GB
English Gigaword 5 (Ferraro et al., 2014) 8.9× 108 4 7.5 GB
FACC1 (Gabrilovich et al., 2013) 5.1× 109 5 42.9 GB

Table 3.1: Size of compressed JITCR indices for various datasets.

only retrieve them as needed. We require a similar property of sentence ids as we did with

mention ids: sentence ids should encode the document id. This allows the document context

to be looked up regardless of what sort of id is held (mention, sentence, or document id).

To give some indication of the size needed, consider Table 3.1, which lists the size

of indices for various datasets. All of these indices can fit on a single machine, often within

memory.

3.2.2 JITCR Search

The first step of JITCR search is a triage step designed to find plausible mentions

which will be re-ranked. At retrieval time we are given a set of triage features and retrieve

mentions with similar triage features. We search for mentions with the highest tf-idf dot

product similarity with the query (Salton and McGill, 1986).6 In the tf-idf scheme, triage

features are weighted by the product of two terms, their term frequency (tf) and their

inverse document frequency (idf). Term frequency is how many times a particular (triage)

feature appears in a mention. Inverse document frequency of feature i is 1 + log D
d(i) , where

6Cosine similarity can be computed later when the mentions are retrieved. Only then can we compute the
full triage feature vector for them and normalize the dot product to compute cosine similarity. In practice
we found the dot product to perform well as a triage step without the need to store indexed mentions’ vector
norms separately.
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index when we have covered at least 75% of the query’s triage features (by L2 norm). For

example, if

t(m) = {a → 2.7, b → 3.3, c → 1.9}

We would query the inverted index in the order [b, a, c]. After the first step of finding all

mentions which contain b, we would have covered ||{3.3}||2
||{3.3,2.7,1.9}||2

= 0.7069 of the query

triage feature vector, so we’d continue to search for a, after which we’d stop because

||{3.3,2.7}||2
||{3.3,2.7,1.9}||2

= 0.9134 ≥ 0.75.

At the end of this triage process we have a set of mentions which likely belong

to the entity named by the query. The next step is to refine the ranking (score) of these

mentions by considering richer families of scoring functions.

The triage score is one factor which captures name similarity well, but it does not

account for the context the entity is mentioned in, and therefore will lump distinct entities

together. We continue in the vector space model (Bagga and Baldwin, 1998) and introduce

new features for splitting these instances.

We define context features as a word unigram tf-idf vector which characterizes

the language used near a given entity. We implement a compromise between Cucerzan

(2007) (used sentences before, after, and containing a mention) and Bagga and Baldwin

(1998) (used any sentence in a coreference chain). We do not assume we have coreference

chains for documents in the index, but we do want to aggregate information over mentions

within a document as if we did. Instead of running a coreference resolver, we use the

high-precision heuristic of linking mentions with the same headword and NER type. This

heuristic will fail to merge nominal and pronominal anaphors, but it has a precision of over
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90% measured on Ontonotes (Lee et al., 2013). Words in the context feature vector are

weighted as 2
1+d

where d is the distance in sentences to the nearest mention. The only word

normalization we perform for context features is mapping digits to 0.

To further refine our scoring model, we introduce a generalization of the features

defined in Mann and Yarowsky (2003) which we call attribute features. Mann and

Yarowsky (2003) train a few ad-hoc relation extractors like birth year and occupation

from seed facts.8 If the extracted values match for any two mentions in two clusters, this is

high-precision signal indicating the two clusters may be merged.

In the Mann and Yarowsky (2003) case, one might have two clusters of entity

mentions, one containing “[John] was born in Youngstown” and another containing “[John],

a Youngstown native, ...”. In both cases, these sentences match a birth place extractor

for “John” and extract the value “Youngstown”. In cases where the document context

for these two “John” mentions is not high, other evidence like knowing that both of these

“Johns” were born in “Youngstown” can be the marginal evidence needed to conclude that

they are the same person.

Our generalization is that this property holds for relations other than the handful

chosen by Mann and Yarowsky (2003) like birth year. Dependency path relations between

nearby proper nouns are also good evidence for merging entity mention clusters. In the pre-

vious example, it is enough to know that there is some relationship between “John” and

“Youngstown” (without knowing that it is a birth place relation). But with this general-

ization, we do not need to ensure that these two mentions match a pre-trained extractor,

8You can train extractors for relations like birth year by listing seed facts like (Wolfgang Mozart,
1756), (George Washington, 1732), (Donald Trump, 1946), etc, and then looking for precise context features
appearing with sentences which mention these values. For more discussion of these methods, see §4.3.
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they can cover much more general cases. For example from “[John] left Harvard to join the

Obama administration” we could extract R(“John”,“Harvard”) and R(“John”,“Obama”)

and match these relations to mention in other sentences like “Obama reached out to [John],

a Harvard economist, ...”. Inferring the relation is both difficult and of secondary impor-

tance in these cases. Knowing that this “John” has anything to do with “Harvard” is

informative, and most “John”s will not have this attribute.

We call values like “Harvard” attributes. We collect all attributes which are either

an NNP* or capitalized JJ* word within 4 edges of an entity mention. We union these

attributes across mentions found by the headword and NER type coreference heuristic to

build a fine-grain tf-idf vector. We use the same 2
1+d

tf re-weighting for attributes, except

where d is the distance in dependency edges to the nearest entity mention head. The

closest attributes are descriptors within a noun phrase like HEAD-nn-Dr.. We include the

NER type of the headword to distinguish between attributes like PERSON-nn-American and

ORGANIZATION-nn-American.

There are (at least) two caveats in using string equality to check for attribute

matches. First, only attributes which are functional relations, having exactly one output

for every input (entity), can be used as evidence of a mismatch. This holds for things like

birth year and mother but not for relations like occupation and daughter. The other

caveat is that what constitutes a mismatch is not clear, and string equality is not rich

enough. Someone’s birth year being “57” is not a mismatch with “1957”, and neither is

someone’s mother being “Mary Jackson” vs “Dr. Jackson”. Unifying these values requires

natural language understanding beyond the scope of this work.
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Even accounting for these caveats, we find that adding attribute features as another

similarity factor helps more than it hurts. During development we found that, when used

in conjunction with the name-match coreference heuristic, these attribute features allow for

inferring properties like first names when only a last is used in a mention, greatly improving

absolute recall.

Coreference Score Given the triage features t(m), context features c(m), and attribute

features a(m), we define the coreference similarity score for mentions m as:

coref(mquery,m) = (1 + αt cos θt)(1 + αc cos θc)(1 + αaθa) (3.1)

where cos θt is the cosine similarity between t(mquery) and t(m). We only consider the

subset of mentions that have cos θt > 0 which were found during the triage step. Any

mention with a score higher than τ is considered coreferent with the query.

In §3.4 we measure the accuracy of JITCR’s coreference predictions. In the next

section we explain how JITCR can be augmented to perform richer queries that return more

than just a list of entity mentions.

3.3 JITCR2: Joint Searches and

One Sense per Entity Co-location

In this section we show another usage of a JITCR index: performing joint entity

disambiguation. In the previous section we used a mention in context to “name” an entity

for JITCR to enumerate mentions for. Here we show how to use JITCR to disambiguate
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an entity in the context of a query and related entity (a joint search). There are a couple

reasons for doing this.

First, as we will discuss at greater length in Chapter 4, one may need to list

mentions of a pair of entities discussed in the same context. For example, in the context

of a report, there may be an indication that two entities have some relation, but the exact

nature is not known.9 A search for both in context could find sentences which clarify the

relationship between these entities.

Another reason to do joint search is for disambiguation purposes. Similar to at-

tribute features from the last section, entities themselves can be seen as binary features for

disambiguating other entities. If we have to disambiguate a mention of “Michael Jordan”,

the features for Scottie Pippen and David Blei are very discriminative features. In the con-

text of reports, which often describe a small cluster of related entities, these related entities

can be used to disambiguate mentions when enumerating an entity.

This is related to the one sense per collocation assumption. Yarowsky (1993)

found that during word sense disambiguation, there were certain word co-locations which

were only observed with one word sense with high probability. Similarly, entity co-locations

tend to have one sense (pair of entities). For example, there may be some ambiguity over

a single referent (e.g. “Jordan” may refer to the shooting guard for the Chicago Bulls, the

ML researcher from U.C. Berkeley, or the country in the Middle East), but the entropy of

the referent distribution is basically zero (one sense) when you condition on some co-located

entities (e.g. Scottie Pippen).

9“Known” could mean understood with respect to the reading comprehension of either a human (e.g.
“John has something to do with ACME”) or a machine (which cannot infer a relation due to insufficient
model complexity or training data).
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This property has been used before in collective entity linking, (Han et al., 2011)

where graph properties of the knowledge base being linked against are used to find one-

sense entity pairs (and cliques). However, we do not need a knowledge base populated with

semantic relations to find these pairs: we can take them from reports being linked.

3.3.1 Inferring Related Entities

In principle any mention in a query’s discourse (i.e. report document) could be

considered a related entity, but this gives us only coarse/binary signal to their relatedness.

For this work we use a query-expansion method for inferring what entities are related to

a query, and thus which entities are suitable disambiguation features to use during joint

search.

We first perform a single JITCR query using the query. The top mentions retrieved

typically have very high precision, and we use the top 100 documents as the source of related

entities. The number of documents is chosen to be as small as possible (for speed) while

reliably finding at least one mention of the top related entities.

Our method computes the skeleton of a topic KB (TKB) comprised of all of the

entities mentioned in these top documents.10 We process each mention in these documents

and make a ternary decision to either link it to a mention in the TKB, promote this mention

to an entity to add to the TKB, or ignore the mention. We link to an existing mention if

its coreference score s (computed using Equation 3.1) is greater than τ . If not, we promote

the mention to an entity and add it to the TKB with probability 1 − s
τ
. Mentions with a

score near τ may be coreferent, so we prefer low scoring mentions to avoid over-splitting

10This skeleton does not include edge labels between entities which is discussed in Chapter 4.
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entities. Dropping mentions which are near τ is undesirable, but a small concern compared

to ensuring cluster purity (Manning et al., 2008) in the TKB.

Entities’ relatedness to the query is a function of how often entities are mentioned

together. We model it as the sum of the joint entity linking probabilities:

related(q, e) =
∑

D∈JITCR100(q)
m∈D

logit−1 coref(m, e)

τ
(3.2)

3.3.2 Joint Search Algorithm

The joint search algorithm is similar to the best first algorithm for single mention

search. The joint search method accepts triage features from a query and a related entity

and produces a set of sentences which contain a mention of both.11 Instead of retrieving a

single key (a triage feature for a mention), we retrieve pairs of keys (one triage feature from

each mention), and take the intersection of the sentences retrieved.

For joint searches, we measure the coreference score as the product of the corefer-

ence scores for the query and related entity pairs.

When retrieving from an inverted index requires an remote procedure call (RPC),12

we find that caching the result (list of sentence ids) is both feasible and helpful. Taking

the intersection of these lists is still time consuming, and best-first ordering can be used

to generate high-scoring results quickly. We consider pairs of keys in best first (highest

11For this work we required that both entities be mentioned together in a sentence, but this can be
generalized to appearing in the same document. Since document ids are a function of sentence ids, ensuring
this property is no more difficult for documents than sentences.

12An RPC may be used in cases where the inverted index (database) is stored on a machine other than
the machine performing search (application). This pattern of running the database and application on
separate machines and having them communicate via RPC is common when the resource requirements for
the database and application are different, as they are in this case.
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idf first) by the average of the idfs for the two triage features. Similarly to in the single

mention case, we populate a hashmap of sentences’ tf-idf vector dot products and stop it

from growing when it hits a limit, but this limit is less often hit due to the requirement

that sentences in this set contain some triage feature from both entities.

3.4 Experiments

In this section we validate the accuracy of our JITCR2 method. We want to show

two things: first that the coreference predictions made using the one sense per entity co-

location assumption are correct and that the entities we find most related (appear together

in the most joint search results) are judged to be related to the query.

We use the TAC 2013 Slot Filling (Surdeanu, 2013) query entities to evaluate our

methods; 50 person and 50 organization entities mentioned in a document (each) are used

as queries. 70 of the 100 query entities were NIL (26/60 PER and 44/50 ORG), meaning

that they do not appear in the TAC KB. We use annotated versions of Gigaword 5 (Parker

et al., 2011; Ferraro et al., 2014) and English Wikipedia (February 24, 2016 dump) as the

source material to index and retrieve from.13 We use Amazon Mechanical Turk workers as

annotators. We run JITCR with τ = 15, αt = 40, αc = 20, and αa = 10. These constants

were tuned by hand and are not sensitive to small changes. For each query we take the 15

most related entities and all entity mentions our system found which exceeded τ for judging.

We call these instances where each is a sentence with two labels: a mention of the query

mq and a mention of the a related entity mr.

13We do not use the coreference annotations provided by Annotated Gigaword
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For each instance, we asked the annotators: coref: Does the query mention refer

to the same entity as mq? related: Is the query entity meaningfully related to the referent

of mr? These annotations are not done by the same annotators to avoid confirmation bias.

Worried annotators might be lulled into thinking all coref instances were true, we made the

task ternary by adding an intruder entity (randomly drawn from SF13 queries). Annotators

were shown mq and could choose coreference with the query, the intruder, or neither.14 We

drop annotations from annotators who chose an intruder15 because we know these to be

incorrect, and compute accuracy as proportion of the remaining annotations which chose

the query.

related was posed as a binary task of whether mr is more related to the query or

the intruder (without highlighting mq). In positive cases, the annotator should observe that

sentence shown contains a mention of the query entity and explains why they are related.

Only mq and mr were highlighted for coref and related respectively. The results are in

Table 3.2.

Our system retrieves coreferent and related mentions with high accuracy. For

coreference, mistakes usually happen when there is significant lexical overlap but some

distinguishing feature that proves too subtle for our system to doubt the match, like Mid-

west High Speed Rail Association vs U.S. High Speed Rail Association or [English] Nationwide

Building Society vs Irish Nationwide Building Society.

For relatedness, the biggest source of errors are news organizations listed as related

entities because it is common to see sentences like “Mohammed Sobeih, Moussa’s deputy,

14The order of the intruder and the query were randomized.
15This affected 6.1% of coref annotations.
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PER ORG All

coref 94.6 91.5 93.1
related 90.7 88.2 89.5
coref and related 86.6 80.9 83.9

Table 3.2: Accuracy of the extracted TKBs for SF13 queries. Columns denote query type.

told The Associated Press on Monday that...”. We may be able to address this problem

by using normalized measures of relatedness like PMI or tf-idf rather than raw co-occurrence

counts.

Query Entity Related Entity

Marc Bolland PER Dalton Philips PER
Marc Bolland PER Stuart Rose PER
Marc Bolland PER Marks & Spencer ORG
Henry Olonga PER Givemore Makoni PER
Henry Olonga PER England LOC
Henry Olonga PER Harare LOC
Mohammad Oudeh PER Munich LOC
Mohammad Oudeh PER Fatah Revolutionary Council ORG
Mohammad Oudeh PER Gaza Strip LOC
A123 Systems LLC ORG Fisker ORG
A123 Systems LLC ORG Watertown, Massachusetts LOC
A123 Systems LLC ORG Obama PER
United Steelworkers of America ORG Curt Brown PER
United Steelworkers of America ORG Wayne Fraser PER
United Steelworkers of America ORG Jerry Fallos PER
BNSF ORG Santa Fe LOC
BNSF ORG Chapman ORG
BNSF ORG Robert Krebs PER

Table 3.3: Example entity queries and inferred related entities used during joint search.
Each entry in this table is backed by a positive coreference and relatedness judgment, but
we have not listed the provenance of these judgments. For example, A123 Systems LLC is
related to Obama because they were a battery maker which went out of business (following
the Solyndra bankruptcy) after being supported by Barack Obama and a Department of
Energy grant. In each case a snippet of the back-story is available, and was shown to
annotators, derived from the mentions used to support inclusion in the TKB.
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3.5 Related Work

Most of what we call entity linking today stems from the work of Bunescu and

Paşca (2006) and Cucerzan (2007). They posed entity resolution as a classification problem

over entities in a knowledge base like Wikipedia and trained fast and precise models. Our

JITCR models share some of the same features as these entity linkers, but work on pairs of

mentions instead of mentions and entities.

There are a variety of tasks which are called “entity search” in the information

retrieval community. One subset of this work focuses on retrieving semantic web entities (e.g

RDF triples) given keyword searches (Pound et al., 2010; Balog et al., 2010a; Blanco et al.,

2011; Neumayer et al., 2012). While this work is motivated by the desire to find entities, we

do not assume that structured representations for queried entities exist and building them

from text and information extraction techniques. Another type of “entity search” is the

work of Chang (2007); Cheng et al. (2007) which focuses on retrieving “entities” like phone

numbers, prices, and (book) cover images.

Perhaps most similar to this work, Blanco and Zaragoza (2010) study the informa-

tion retrieval problem of finding support sentences which explain the relationship between

a query and an entity, which is similar to joint mention search with JITCR. Our work

additionally addresses how to automatically find related entities, which are assumed given

in that work.

Chen and Van Durme (2017) describe a discriminative retrieval framework origi-

nally intended as a passage retrieval step for question answering systems. In that work they

did an experiment where they configured their system to retrieve entity mentions instead
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of passages and evaluated how well their system performed at cross document coreference

resolution. This is related to our JITCR system, but where feature weights are learned

rather than determined through distributional properties as they are in this work.

3.6 Summary

In this chapter we introduce scalable methods for searching for entity disambigua-

tion and mention search. These methods are distributable to many machines, dynamic

(do not require re-computation upon adding more mentions), and efficient (search requires

sublinear time). We also discuss one entity sense per co-location, a method of improv-

ing entity disambiguation by searching for pairs of related entities. This chapter provides

methods which will be useful later in inferring open-vocabulary labels for pairs of related

entities (Chapter 4), detecting event coreference via common arguments (Chapter 6), and

exploration and summarization (Chapter 7).
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Chapter 4

Relation Situation Detection

4.1 Introduction

In the previous chapter we discussed methods for finding mentions of entities

discussed in reports, and putting them in the topic knowledge base (TKB). In this chapter

our goal is to label the edges between entities in the TKB which explain the relationships

between them. In the last chapter we described how to enumerate sentences containing

related entities, and in this chapter we work on methods for extracting situations (events

and relations) from these sentences. These situations will serve as edge labels in the TKB

and allow knowledge workers to explore a domain discussed in a report at an abstract level

(the graph) as well at a concrete level (the mentions linked to the graph).

In §4.2 we discuss an unsupervised method which finds trigger words indicative

of the relationship between two entities. In §4.3 we describe how to put more fine grained

labels on the edges corresponding to relations like the ones in Wikipedia infoboxes. This

is done using distant supervision to train relation extractors for relations like birthPlace,
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director (of movie), and ceo (of company).

4.2 Unsupervised Trigger Word Extraction

4.2.1 Proposed Method

In this section we describe a method for choosing trigger words which explain

the relationship between two entities. We choose triggers from lemmas contained in the

sentences which mention two entities. We have a few prior beliefs about what makes for a

good trigger word, which we state here.

Predicate (triggers) and arguments are syntactically close together. We compute

the probability of two random walks in a dependency tree, one starting from each of the

related entities, ending up at the same node, which is presumably the trigger word. This

serves as a weak syntactically informed prior. This measure assigns some credit to any word

in a sentence mentioning two entities, but prefers ones which are close to both. Probability

is distributed uniformly across all of the dependency edges leaving a node, with a self-loop

to ensure ergodicity. We use the power method (Mises and Pollaczek-Geiringer, 1929) to

compute each random walk’s probability and take the product (walks are independent) to

compute a score for each node.

Information is conveyed via surprisal under a background distribution (codebook).

Very common words which are close to related entities do not convey much meaning, even if

they frequently appear near both entities. We compute a unigram distribution over words

which are likely under the syntactic prior we just described and condition this distribution

on the NER type of the two arguments. This distribution characterizes what trigger words
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sentence. Table 4.1 provides a slice of a few knowledge bases built with the methods in this

section.

4.2.2 Experiments

To evaluate our approach for finding trigger words, we construct TKBs for TAC

KBP 2013 slot filling queries (Surdeanu, 2013). In the slot filling task, queries are given

in the form of an entity (e.g. Marc Bolland) and a slot (e.g. per:country of birth), and

a system must return a filler (e.g. Holland). While our system does not address this task

directly because we do not model slots, we can build TKBs for the query entities and see

what related entities we find and if they tend to be fillers.

After building a TKB for each query entity, we present Amazon Mechanical Turk

annotators with a sentence with the query, a related entity, and two potential triggers

highlighted. One trigger is chosen according to the method proposed above and the other is

an intruder. We choose the intruder from all NN*|VB*|JJ*|RB* words in the sentence which

are in the smallest sub-tree which includes both entity mentions (excluding the mentions

themselves).1 In the Lincoln example, the potential triggers are born, log, cabin. The

annotator may choose either trigger as a good characterization of the situation involving

the query and the related entity, or label neither as sufficient. Note that this baseline is

strong: it shares the entity linking trigger sentence selection, and dependency parse tree as

our method. We report the results in Table 4.2.

Our method performs about twice as well as the baseline, though it does not find

a “sufficient” explanation about half of the time. These examples can be broken down into

1If node nodes match this, we walk up the tree until we find a matching node.
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a few categories.

Query entity Related entity Triggers

Marc Bolland PER Dalton Philips PER appointed, departure, following, move
Marc Bolland PER Stuart Rose PER replace, 50, Briton
Marc Bolland PER Marks & Spencer ORG departure, CEO, become, following
Henry Olonga PER Givemore Makoni PER club, president, done, played
Henry Olonga PER England LOC cricketer, asylum, hiding, quit
Henry Olonga PER Harare LOC hiding, armbands, wore
Mohammad Oudeh PER Munich LOC massacre, briefed, defended
Mohammad Oudeh PER Fatah Revolutionary Council ORG faction, belonged, return
Mohammad Oudeh PER Gaza Strip LOC allows, asked, host
A123 Systems LLC ORG Fisker ORG supplier, struck, recall, owns
A123 Systems LLC ORG Watertown, Massachusetts LOC produces, batteries, company
A123 Systems LLC ORG Obama PER plant, opening, Granholm
United Steelworkers of America ORG Curt Brown PER spokesman, rejected, contracts
United Steelworkers of America ORG Wayne Fraser PER negotiator, spokesman, union
United Steelworkers of America ORG Jerry Fallos PER boss, broke, shut, local
BNSF ORG Santa Fe LOC asked, vote
BNSF ORG Chapman ORG venture, help, transition, joint
BNSF ORG Robert Krebs PER Burlington, chairman

Table 4.1: Examples of slices of TKBs for the three most related entities for six queries
and the best triggers for each pair. Supporting sentences for related entities and trigger
words are not shown.

Related Entities vs Slot Fillers There is no fair way to evaluate systems without a

common schema, but we offer some extraction statistics. On SF13 queries our system gener-

ated 17.6 relevant entities/query,2 each having 4.6 trigger words/pair, 2.1 mentions/trigger

word, and 9.8 mentions/pair. In extractions from all systems in the SF13 evaluation (pool-

ing answers, filtering out incorrect), they filled 6.0 slots/query with 14.2 fillers/query and

38.3 mentions/query as provenance.

2This is given a cap of 20 relevant entities per query.

System Intruder Neither

Person 29.4 12.4 58.2
Organization 29.1 17.3 53.7
All 29.2 14.7 56.1

Table 4.2: Related entity trigger identification.
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Some slots have string-valued fillers, but many could be related entities in the

TKB sense. In these cases, we found 2.2 entities/query overlapping, 1.7 fillers not in their

corresponding TKB and 10.8 related entities which weren’t fillers.

4.2.3 Analysis

Here we discuss some cases which our trigger id model gets correct which are

difficult for the frame-based extraction methods (Chapter 5) to correctly extract. The

methods in this chapter are purely information theoretic and syntactic in nature, and do

not involve any training data or theories of frames or roles.

Mistakes The most common reason is that the trigger is a salient event, but either the

query or related entities are not a core semantic argument of it. In the following example,

Harare is not a core argument to hiding, though it is involved in the situation (the reason

for the hiding has to do with Harare):

[Olonga]q was hiding in a “safe house” after Zimbabwean secret police officers
traveled to East London, South Africa, to “escort” him to [Harare]r, where he
could face treason charges.

When the related entity is wrong, the triggers chosen tend to be poor too. For

example:

“Nasser Hussain is a bloody hero,” [Olonga]q told Thursday ’s [Daily Mail]r .

Discourse Often a trigger is found with the two related entities a single clause. When this

doesn’t happen, our method prefers triggers which lie on a chain of predicates in a discourse

relation. In the example below, the wearing event is causally related to the mourning event,

and the query is an argument of the former and related entity of the latter.
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Flower and [Olonga]q wore the armbands during the team’s World Cup victory
over Namibia on Monday and said they would continue to wear them to “mourn
the death of democracy” in [Zimbabwe]r.

One can debate which is the best trigger that could be chosen in this case (wore, mourn,

death, democracy, or even that no single trigger is appropriate), but this sentence is likely the

best way to support the relation between Olonga and Zimbabwe. The frame-based methods

from Chapter 5 do not model the discourse relations between the frames in a sentence, and

would therefore not lead to an analysis connecting Olonga and Zimbabwe.

Coreference Our method tends to choose many appropriate triggers which would or-

dinarily require accurate coreference resolution. The examples below require at least one

coreference decision to prove that the related entity is an argument of the trigger. Our

model does this implicitly: in both cases there was more than one sentence containing the

query, related entity, and this trigger word, supporting the idea that any coreference deci-

sions required to unify the related entity with the trigger are warranted since it would be

a coincidence to see the trigger co-occur multiple times without the related entity being an

argument.

In 1977, France arrested [Oudeh]q , then released him a few days later and
expelled him to [Algeria]r, angering Israel.

Mourners threw flowers at [Maria Kaczynska]q’s cortege after her body was
flown home following their deaths in an air crash in Russia on Saturday , with
officials saying they would be buried alongside kings in [Krakow]r castle .

Nominal Triggers Our syntactic prior favors nodes high up in the dependency tree since

they are more likely to lie on the shortest path between a query and related entity. These
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nodes are most often verbs, but when they are nouns, they tend to be high quality triggers.

For example:

[Gary Hubbard]r, a spokesman for the [United Steelworkers]q, confirmed
on Tuesday that the international had received an e-mail from Cirri.

Another suspect held along with him, [Arkaitz Aguirregabiria del Barrio]q,
is the group’s “number two” and would have been [Karrera Sarobe]r’s future
replacement had he not also been arrested , Alfredo Perez Rubalcaba said .

4.3 Distantly Supervised Relation Extraction

While unsupervised methods provide a general way of inferring an open class of

relations, they may fail to be informative or clear. Relation extraction methods which

describe a pre-defined set of relations make stronger gaurantees about the utility of the

relationships they find. In this section we turn to more supervised methods for training

relation extractors to use as labels on entity-entity relations in TKBs.

Knowledge bases like DBpedia (Auer et al., 2007), Freebase (Bollacker et al., 2008),

and Yago (Suchanek et al., 2007) offer a rich source of facts about the world. One of our

goals in report linking is to find textual sources for facts about entities of interest. Learning

mappings from text to facts in public knowledge bases offers an informative method for

labeling the edges in our KBs which can be used on task-specific text collections.

While this data is more volumous than any text-based relation extraction data

sets like ACE (Doddington et al., 2004), it is not as easy to train models because the data

is only partially annotated. Previous work on distant supervision (Bunescu and Mooney,

2007; Mintz et al., 2009; Riedel et al., 2013) has shown that it is possible to learn even when

the labeled data does not include links to text. In this section we make contributions on
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the problem of training relation extractors from KB (distant) supervision.

4.3.1 Goals

In this work we have specific goals and perspectives about how to train relation

extractors using distant supervision. We will begin by explaining our assumptions and goals

and what consequences they have on the methods we will eventually choose.

Explainability For the purposes of report linking, we want our model, or at least its

predictions, to be introspectable. If we predict that a fact is true, for use of explaining the

relationship between two entities, we want the ability to show a user why we believe this

fact is true by offering up a claim made in a report as justification. There are many latent

feature models (e.g. (Riedel et al., 2013)) which cannot offer this information, since their

conclusions are affected by all mentions of entities involved in a given fact. Methods that use

neural attention (Bahdanau et al., 2014; Verga et al., 2016) mostly satisfy this goal because

they can show which mentions were most influential in a prediction. But methods which

do not use textual evidence like Socher et al. (2013) are not of interest to us here because

they cannot “show their work”. There is currently interest in models which show their work

(Gunning, 2017) because they are more useful to consumers of predictions (Ribeiro et al.,

2016) and modeling rationales can improve model quality (Zaidan et al., 2007).

Linguistic Plausibility We are interested in linguistically plausible representations for

relation extractors. Many semanticists build their models atop a syntactic representation,

and we do the same, using the Universal Dependencies (UD) representation (Nivre et al.,

2016). Some NLP practitioners opt for models which do not incorporate syntax for practical
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concerns like computational requirements and availability of high accuracy parsers which

work in their particular language or domain. Computationally, modern parsers can operate

at anywhere from 600 to 15,000 tokens per second (at and near state-of-the art accuracy

respectively) (Honnibal, 2016). In terms of accuracy, in the CoNLL 2017 shared task on

dependency parsing, there were 10 languages which had a parser capable of achieving LAS

of 90% or higher, and 48 languages with LAS of 80% or higher (Hajič, 2017). While

dependency parsing is not a solved problem, high quality and fast parsers are available

in many cases. Worrying that a relation extraction system will not work well because it

depends on a parser which doesn’t work well is a negative way of viewing the issue. To the

extent that it is true, the following statement is true: the more progress is made on parsers,

the better that syntax-based relation extractors will get.

Previous work has used shortest paths connecting mentions of a subject and ob-

ject (Riedel et al., 2013), but this is too weak of a class of features. Consider the state-

ment “X received a degree from Y”.3 This implies almaMater(X,Y), but the shortest

path nsubj*(received,X)-prep(received,from)-pobj(from,Y) is insufficient in entail-

ing almaMater(X,Y), since it would match statements like “X receieved an ice cream cone

from Y”. It is clear that a family of features at least as rich as dependency sub-graphs is

needed, which would be able to additionally predicate on the edge dobj(received,degree)

appearing in this example. Extractors which match dependency sub-graphs, for both pres-

ence and absence of specific edges, can naturally handle phenomenon like negation, report-

ing/belief verbs, and modals. For example we might look for dependency sub-graphs which

3This is similar to the patterns in Fader et al. (2011), but their confidence estimates are only derived from
fully supervised sentences and therefore do not include lexicalized features, which are necessary to conclude
that “receive a degree from” is an acceptable extractor.
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contain nsubj*(received,X)-prep(received,from)-pobj(from,Y) and dobj(received,degree)

but not neg(received,n’t) to rule out statements like “X didn’t receive a degree from Y”.

High Precision There are multiple phenomenon which are relevant to statistical mod-

els of infering facts from text. You can imagine these phenomenon as lying on a con-

tinuum ordered by the precision, or conditional likelihood, of a fact being true given a

phenomenon as evidence. At one end of this continuum we have the strongest predictors,

things which we can strongly entail a fact being true. If we are concerned with facts of the

form birthPlace(X,Y), an example of this would be the direct statement “X was born in

Y”. There are however a variety of weaker indicators, like “X went to high school in Y”

or “X returned to Y”. Statistically, these patterns may lead to a correct inference, but a

listener cannot claim to know a fact given only them as evidence.

It is a reasonable goal to mine patterns which indicate some degree of correlation

between an expression and a fact being true, but this is not our goal. We are only interested

in addressing the problem of “when can we be sure that an author intended to express that

a particular fact of interest was true?”

Most work on evaluating relation extraction rewards both precision and recall,

though recall may be less important in practice. For example, mean average precision

(MAP) (Manning et al., 2008) gives credit for precision at all levels of recall, even if those

precision levels are unusably low.4 In most applications (e.g. any user-facing sort of question

answering), the utility of predictions which fall below effective certainty is very low. MAP

4If facts are to be used in a downstream application like question answering, there is a precision threshold
at which adding noisy facts is more likely to cause a wrong answer than a right one. Other than error
propagation, some systems would rather not use any prediction if they cannot be reasonably sure it is
correct, such as in Jeopardy or web search.
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is not the only metric which rewards precision levels which are of very low utility, MRR

also rewards any system which can boost the correct answer up in the rankings, even if

that answer has little or no chance of getting to the top of the list. These metrics reward

methods which are capable of detecting and storing a wide variety of phenomenon which

have precision well below certainty and are of questionable utility. Receiever opererating

characteristic (ROC) curves offer an alternative way to report performance at various levels

of precision. Fβ where β < 1 is another option for evaluation where precision is more

important that recall:

Fβ = (1 + β2)
precision · recall

β2 · precision + recall

4.3.2 Proposed Method

In light of the goals above, we propose a new model for distant supervision. Our

method is based around precision-ranked extractors. An extractor is a set of terms, all of

which must be satisfied. A term is a predicate requiring that a lexicalized dependency edge

be either present or absent in a sentence.5 Extractors have a relation r, and if they fire

on a sentence containing a mention of entity s in subject position and entity o in object

position, then we add the fact 〈s, r, o〉 to the output.

Because these extractors only need one observation to conclude a fact is true, they

need to make very few mistakes. To accomplish this, we collect only extractors which have

very high empirical precision with respect to our training data. This can be computed by

just running each extractor on every mention in a large corpus of mentions which are linked

5We only implement terms which prohibit the presence of neg dependency relations, as covering aux

edges in general is too computationally expensive.
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into a knowledge base containing facts (distant supervision). Given many extractors, each

of which may be very precise but seldom fire, they can be combined into a model which has

higher recall but comparable precision by taking the disjuction of many extractors. The

idea of ranking rules by precision to form an ensemble decision rule has been employed

successfully in coreference resolution (Baldwin, 1997; GuoDong and Jian, 2004; Haghighi

and Klein, 2009; Raghunathan et al., 2010; Lee et al., 2013), named entity recognition

(Chiticariu et al., 2010), and part of speech tagging (Brill, 1992). After sorting extractors

by precision, the number which should be included can be tuned on development data to

optimize a few objectives like Fβ or maximum recall under a minimum precision constraint.

For this work we report an ROC curve to show the performance at various levels of precision,

but we are most interested in models with high precision, at least 80%.

Where do we get the extractors? We build them from sentences which contain a

fact in the KB (positive instances). We acknowledged that shortest paths are not strong

enough to check if a relation is entailed by a sentence, but they are a good place to start. We

start by instantiating an extractor with terms for each edge in the shortest path connecting

a subject and object mention in a positive instance.

Then we perform a refinement step k times which grows new extractors with i+1

terms from existing ones with i terms. At the beginning of a refinement step, we collect the

top d extractors according to a heuristic score which we will discuss later. Each of these d

extractors is considered “active”. We make another pass over the positive instances, and if

an instance matches an active extractor, we instaniate all extractors which are a superset

of the current active extractor and contain one more term satisfied by the current positive
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instance. The process of growth whereby only d extractors are “active” per pass is needed

to ensure that only a tractable number of extractors are instantiated (this is helped by the

fact that we only instantiate extractors which satisfy positive instances). In our experiments

we used d = 216 and k = 3.

Extractors are naturally stored in a trie where the edges are terms. This makes

lookup of extractors which satisfy an example efficient. The number of operations needed

for lookup is upper bounded by the number of terms satisfied by the example, but in

practice much less since the first term checked is the shortest path between subject and

object mentions, which is O(depth(subject) + depth(object)).

Entity Types Entity types are important in relation extraction because relations have

selectional preferences. For example, the subject of an almaMater fact is always a person.

In general, these selectional preferences may be fine-grained: the relation director requires

the subject to be a movie, which is a type that is not offered by coarse-grain named entity

recognition (NER) models. Knowing the types of a relation’s subject and object rules out

many facts without needing to condition on further evidence. Further, some knowledge bases

like the ones we use in this work provide entity types for some entities. The question is: how

should types be incorporated into the objective when trying to learn relation extractors?

Conditioning on the entity types at test/prediction time is appealing in theory but

problematic in practice. There are two ways to get the subject and object entity types: by

performing entity linking into a knowledge base populated with types or by predicting the

types from one or more mentions of the subject or object. The former is only appropriate

when both a high performing entity linker and a high recall knowledge base are available,
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which is a very strict and often unreasonable assumption. The latter case requries a model

for assigning types to entities given a set of mentions and requires finding these mentions,

which is computationally costly.

Leaving aside these difficulties, conditioning on entity types also means storing

many more statistics introduced by features which involve entity types. To get an idea of

how costly this can be, imagine that every relation can have 10 different plausible typings for

the subject and object entities,6 each with their own features and statistics indicating the

probability of a fact being true given these features. A model with 10 types per relation will

be 10 times larger than one with no types. The subject and object types can be checked

independently, saving space and pooling statistics, but this is still a large price to pay.

Future work may address this problem with efficient methods for storing these statistics,

but for this work we do not model types in our extractors by conditioning on them.

However, we have the types available at training time, and we should be able to

utilize this information to find better extractors and models. Instead of conditioning on

types, We use them as another type of observation used to score extractors. Our model is

not generative, but this is related to the notion proposed in Andrews et al. (2017), where a

gazeteer is generated rather than conditioned on. We describe how types are used in scoring

in the next section after first discussing simpler scoring methods.

Extractor Scoring To begin, we propose a baseline method for computing precision,

which we will use in ordering the extractors in our ensemble. A sensible estimator, given

6Entity types nest and fine grain types may be necessary to properly type a relation. For example the
relation currentClub may be “applicable” to athelete subjects and organization objects, finer grain types
like subjects who are footballer can only be paired with objects of type footballTeam. When we talk about
the “types” for a relation, we may be talking about any fine grain combinations which do (e.g. (footballer,
footballTeam)) or do not (e.g. (footballer, baseballTeam)) type check.
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that our extractors propose facts which hold at the fact type (two entities and a relation)

rather than token level (two entity mentions), is the following:

p̂e(f) =
n+
e (f) + αp̂e(b(f))

ne(f) + α
(4.1)

where

• f is an extractor

• p̂e(f) is an estimate of the precision of f with respect to its entity statistics (hence

the subscript)

• ne(f) is the number of entities (subject and object arguments) contained in f ’s relation

r

• n+
e (f) is the number of entities contained in f ’s relation r which were mentioned in

at least one sentence matched by f

• b(f) is the backoff extractor of f , its parent in the trie, an extractor with one fewer

term than e7

• p̂e(root) = 0

• α is a smoothing parameter for how conservative we want our p̂(e) estimates to be.

Because we are sorting extractors by precision on a finite sample, our precision es-

timates of the top extractors is going to be biased high, and α shrinks the estimate

back towards 0.
7In future work, we may address more linguistically plausible forms of structured backoff, for example by

pooling statistics over extractors which contain lexical entries which are synonyms.
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This estimate is already a little more sophisticated than naive distant supervision

methods which project the fact/entity level labels (i.e. knowing that a fact is true because

it is in the KB) to the mention level (i.e. assuming that every mention of a subject and

object which appear in a fact in the KB with a relation express that relation). This would

correspond to a related precision estimate which we denote:

p̂m(f) =
n+
m(f) + αp̂m(b(f))

nm(f) + α
(4.2)

Where the counts nm(f) and n+
m(f) now count positive sentences rather than

entities (subject and object arguments). It should be noted that the implemenation of

p̂m(f) requires signficantly less memory than p̂e(f) since it can be implemented by counting

mentions in a stream rather than maintaining the cardinality of the sets ne(f) and n+
e (f).

Returning to the issue of using entity types as supervision, we can ask: is there any

difference between an extractor which finds facts which have many types versus extractors

which only fire on a small number of types? Extractors which only work on a small number

of types (relative to the number of types which are possible according to the relation in

question and the types provided by the KB) are suspect. First, this could be a sign that an

extractor is rare, and perhaps has high precision (on a small number of facts) by chance,

and will fail to generalize to new data. Extractors which fire on many types are less likely

to have high precision by chance.

It could also mean that the semantics of this extractor are not general, and only

work in special cases dictated by the types of entities which its firing is correlated with.

For example, suppose we are scoring extractors for the relation currentClub. The extractor
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nsubj*(bowls,SOURCE)-prep(bowls,for)-pobj(for,TARGET) will have fairly high preci-

sion and work very well on (cricketPlayer, team) facts, but it will fail to generalize to

(baseballPlayer, team) facts. Holding p̂e(f) constant, extractors which find more types

of facts are more likely to have more general semantics. For example we should prefer

nsubj*(plays,SOURCE)-prep(plays,for)-pobj(for,TARGET) over “bowls for” if it has

the same precision. The reason to use number of distinct types rather than the number of

distinct entities (arguments) as a measure of generality is that the number of types is more

robust in cases where a KB has a distribution over facts which differs from the distribution

of mentions of it’s facts. In the previous example, if there are 100 times as many currentClub

facts in the KB concerning cricketPlayers than baseballPlayers, then the precision on

(cricketPlayer, team) extractions will matter much more to p̂e(f) than extractions of

(baseballPlayer, team) facts.

Returning back to how to integrate this insight into our objective function, our

“generality-regularized precision” score should be monotonically increasing in the number

of types of facts the extractor covers (on positive facts), n+
t (f). But this introduces the

question, shouldn’t we also favor extractors which fire on many positive types and no other

types? As long as the closed world assumption is reasonable at the type level, then it is good

to reward extractors for being general and precise at the type level.

After all of this discussion, we come to a simple notion: we want precision at both

the entity and the type level. Just like we can project entity labels down to mentions by

giving all mentions which map to a fact a positive label, we can project entity labels up to

types by giving any types which map to a fact a positive label. We can therefore define a
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third measure of precision:

p̂t(f) =
n+
t (f) + αp̂t(b(f))

nt(f) + α
(4.3)

To integrate all of our precision estimates into a single estimate, we simply take a

weighted average.

p̂(f) =
wtp̂t(f) + wep̂e(f) + wmp̂m(f)

wt + we + wm
(4.4)

Active Heuristic We can apply the same “generality” insight to the heuristic which se-

lects extractors to extend. In this case however, precision does not make for a good heuristic

because it does not reward extractors which fire a lot. Given that we are enumerating re-

finements, we do not want to refine extractors which rarely fire. It is not even clear that

a modified precision estimate, such as n+
e (f)√
ne(f)

, which rewards selecting common extractors

to be active is desirable. We therefore choose extractors which have a high PMI (Church

and Hanks, 1990) with the relation (positive facts), which is analogous to performing a

statistical independence test (Minka, 2003).

PMI(X,Y ) = log
p(X = 1, Y = 1)

p(X = 1) · p(Y = 1)

where X and Y are both random variables defined over pairs of entities, X = 1 indicating

that an extractor fires and Y = 1 indicating that a relation holds. PMI selects extractors

which fire on the relation more than we would expect by chance. The extractors are diverse

in terms of frequency n+
e (f). Selecting by PMI is equivalent to selecting by precision divided

by the likelihood of the extractor firing.8 We use the equation 4.4 for precision and estimate

8The other term in PMI is the probability of the relation, which is constant with respect to the extractors.
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the marginal probability using the same backoff scheme.

4.3.3 Experiments

Data We validate our methods on the FACC1 corpus (Gabrilovich et al., 2013) which

contains entity links from mentions in the ClueWeb09 and ClueWeb12 datasets (Callan

et al., 2009). This data has over 340m documents and 5.1b entity mentions.

We use Wikipedia infobox facts as our knowledge base, provided by DBpedia (Auer

et al., 2007). The Freebase MIDs in FACC1 can be mapped to DBpedia entities and aligned

with infobox facts. There are 18M infobox facts which have an entity as the subject and

object that we considered in this work. We consider the subset of these facts (17.6M) which

appear in one of the 902 relations which have at least 1000 facts. This threshold was used

to remove relations which did not have enough training data, though the threshold value

itself was chosen arbitrarily. Figure 4.2 plots how many facts are observed for each relation

in the KB.

This setup has about the same number of facts as the largest collection of this kind,

Bordes et al. (2013a), but about 100 times more mentions due to the large text collection

provideded by FACC1 and ClueWeb with additional pre-processing by Yao and Van Durme

(2014). This is important for collecting statistics on our text-based extractors.

Evaluation To evaluate we slice the KB facts into train, dev, and test sets. For each

relation, arguments (a pair of a subject and object entity ids) whose hash modulo 20 are 0

constitute the test set, 1 the dev set, and the rest are for training.9

9We use murmur3 32 (Appleby, 2017) on the subject and object entity ids separated by a dash. We strip
off the /m/ prefix from Freebase MIDs.
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In the following we will refer to models which optimize “mention”, “entity” and

“entity-type” objectives. These correspond to assignments of {wm, we, wt} as described

above. Mention models set wm = 1 and we = wt = 0, so they optimize for mention

level precision when ranking extractors and mention level PMI when expanding the set

of extractors. Entity models set we = 1 and wm = wt = 0 and enitity-type models set

we = wt = 1 and wm = 0. Fβ is always computed at the entity level, where the two sets

being compared are entities predicted by the ensemble vs entities in the held-out slice of

the KB. All models are ensembles of up to 220 precision-ranked extractors.

Precision Ranking Our first experiment compares different methods of computing pre-

cision. In Figure 4.3 we plot the difference in Fβ performance for held out facts between the

baseline method which optimizes according to entity measures like p̂e(f) (this is similar to

the objective used by Hoffmann et al. (2011) and Riedel et al. (2013)) and other measures

of precision. Each point on the graph is a relation and we have jittered the points in the

x-axis to make the values easier to see. The red dots are the results of training the model to

optimize mention-level precision, similar to methods which naively project fact level labels

down to mentions like Mintz et al. (2009). These dots are usually below 0, indicating that

they performed worse than the baseline method of using entity measures. The blue dots

are the differences in performance achieved by entity-type models. These dots are usually

above 0, indicating that optimizing for type-level measures of precision and PMI are helpful

in finding extractors which generalize better. In the first case, it could be that the training

objective (mention-level) not matching the evaluation measure (entity-level) is what caused

performance to worsen. However this cannot be true in the second case: adding the “gen-
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Figure 4.3: Red dots are Fβ gains for relations over the entity baseline achieved by mention
models. Blue dots are gains achieved by an entity-type model.

erality” regularizer described earlier improves held-out performance measured at the entity

level. Note that both of these effects tend to grow as β gets smaller (to the right), indicating

that this phenomenon is most noticeable at the high-precision end of the ROC curve.

In Figure 4.4 we plot the ROC curve for a subset of the KB relations where the

colors indicate a measure of how much training data is available. In the first plot we use color

to indicate how many facts are available for training, assigning one color to each quintile,

which in order of most facts to least is: red, orange, green, blue, purple. In looking at the

first plot, there is no clear relationship between the number of facts and the area under the

ROC curve. There seems to be a slight trend of more facts resulting in better performance
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Figure 4.4: ROC curves for various relations with color indicating a measure of amount
of training data. Above: number of facts in the KB for each relation. Below: number of
mentions in FACC1 matching a fact in the KB. In both cases colors indicate the quantile
of amount of training data. In decreasing order of amount: red, orange, green, blue, purple
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Relation Rank by mentions Number of mentions Rank by facts Num. facts F 1

2

starring 9 1971336 7 338051 66.96
awards 37 59919 37 53311 48.64
title 8 1689870 8 309358 29.09
language 41 89876 28 78200 10.17

Table 4.3: Sample relations and some statistics about their training data.

at the extremes (best and worst relations), but there are many counter-examples of the

trend. The second plot indicates the number of sentences which mention a fact, and here

we see a much more clear trend. The top four relations are all in the top two quintiles

and the bottom six relations are all in the bottom two quintiles. There are some third

quintile relations which perform well and some which perform poorly, but there are few

counter-examples to the trend near the extremes. This indicates that good performance

using distant supervision may be contingent on the frequency of which people talk about

facts in that relation. Large collections like FACC1 may make training models easier, but

smaller corpora which have a bias towards discussing the facts of interest, such as newswire

may do just as well.

Next we plot four relations which exhibit a range of performances which we single

out for qualitatitive description. We chose two relations which obey the trend we observed

(more mentions correlates with better performance) and two which do not for further inves-

tigation. The relations and training statistics are listed in Table 4.3 and their ROC curves

are listed in Figure 4.5.

In Figure 4.5 we can see a few points which need to be explained:

• awards works very well even though there are not that many training examples
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Figure 4.5: ROC cuves for select relations: green is starring, purple is awards, orange is
title, and red is language.

• title works poorly even though it has almost as much training data as starring

• language just doesn’t work at all, despite having a reasonable amount of training data.

In Figure 4.4 we list a sample of the facts used as supervision for the four re-

lation extractors, and in Figure 4.5 we list the top extractors learned for each relation.

The extractors for starring and awards are very sensible, occur frequently in the training

data, and have high precision in held out data, all as we would expect. title seems to be
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an oddly defined relation which has a few usages. It seems to be a mix of song and TV

titles and official titles (for a person). It is no wonder that our method cannot learn how

to predict this relation, since it’s facts were clearly pulled from either a mixed source or

corrupted in some other way. The extractors confirm there is at least two senses with ex-

amples like nsubj*(gained,SOURCE)-dobj(gained,title)-prep(title,of)-pobj(of,TARGET)

and appos*(album,SOURCE)-pobj*(from,album)-prep*(single,from)-nsubj(single,TARGET)

. It is at least reassuring that even on these poorly defined relations, our method can still

pick out extractors which are apprpriate for a subset of the facts which match a particular

sense of the relation. Future work might analyze the bipartite graph connecting extractors

and facts to find clusters of facts which belong to different senses, towards the goal of fixing

the training data.

Finally, we return to language, which did not work well at all, despite having a

reasonably large amount of training data. It illustrates another difficulty in this type of

knowledge extraction: there are things which people never bother to talk about or write

down (Gordon and Van Durme, 2013). In the case of language, it is a very well defined

concept (the language a particular piece of art is rendered in), but it is rarely attested to. It

has an average of 1.15 mentions per fact, compared to 5.83 for starring. From looking at the

extractors, it seems that it is never directly attested to, but only through presuppositions

involved in noun phrases and appositions like “Samooham, a Malaysian drama film, ...”.

The top extractors, while not keying off of verbal predications, appear to be high precision

though, perhaps higher than our closed-world assumption evaluation lets on. Because the

KB is incomplete, our extractors are likely over-penalized for proposing true facts which are
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Subject Relation Object

Solo (TV series) starring Stephen Moore (actor)
The Lawrence Welk Show starring Ralna English
The Stranger (1946 film) starring Edward G. Robinson
Boat (2007 film) starring Emily Stofle
Tobacco Road (film) starring Gene Tierney
Kit Carson (1928 film) starring Nora Lane
Hollywood’s Magical Island: Catalina starring Peggy Moran
Paromitar Ek Din starring Aparna Sen
Taking Lives (film) starring Gena Rowlands
The Forbidden Dance starring Barbra Brighton

John C. Pappy Herbst awards Purple Heart
Sarath Munasinghe awards Uttama Seva Padakkama
Otto Heidkämper awards Knight’s Cross of the Iron Cross
Orson Leon Crandall awards Medal of Honor
Friedrich Beckh awards Knight’s Cross of the Iron Cross
George Raymond Dallas Moor awards Military Cross
Alfred William Robin awards Mentioned in dispatches
Ralph Francis Stearley awards Commendation Medal
Dilwar Khan awards Ekushey Padak
Cyril Martin (GC) awards Military Cross

Francis Janssens title Roman Catholic Archdiocese of New Orleans
The Happening (song) title List of Billboard number-one singles
Jago Eliot title Earl of St Germans
Don’t Go Now title List of number-one singles in Australia during the 1990s
John Leake title Rear-Admiral of the United Kingdom
Load (album) title Until It Sleeps
Frederick VI, Count of Zollern title House of Hohenzollern
Grzegorz Schetyna title Ministry of Interior and Administration (Poland)
Raimondo Del Balzo Orsini title Principality of Taranto
List of Real Time with Bill Maher episodes (2010) rtitle Reihan Salam

Dipu Number Two (film) language Bengali language
Women of Twilight language English language
The Great American Snuff Film language English language
Children of the Open Road language German language
Samooham language Malayalam
Street Knight language English language
White Fungus (magazine) language English language
Stephen Leacock Collegiate Institute language English language
Dreams of Speaking language English language
Virato Social News language German language

Table 4.4: Facts in the KB used for distant supervision on select relations.
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Relation Train Freq. Held-out Prec. Extractor

starring 3820 0.94 pobj*(in,SOURCE)-prep*(portray,in)-nsubj(portray,TARGET)

starring 1589 0.92 pobj*(in,SOURCE)-prep*(starred,in)-nsubj(starred,TARGET)

starring 6195 0.89 partmod(SOURCE,starring)-dobj(starring,TARGET)

starring 1207 0.90 rcmod(SOURCE,starred)-dobj(starred,TARGET)

starring 741 0.92 pobj*(in,SOURCE)-prep*(starred,in)-prep(starred,with)-pobj(with,TARGET)

starring 885 0.90 rcmod(SOURCE,stars)-dobj(stars,TARGET)

starring 1102 0.90 dep*(film,SOURCE)-partmod(film,starring)-dobj(starring,TARGET)

starring 1138 0.89 dep*(movie,SOURCE)-partmod(movie,starring)-dobj(starring,TARGET)

starring 633 0.92 pobj*(in,SOURCE)-prep*(starred,in)-rcmod*(TARGET,starred)

starring 1701 0.88 nsubj*(starring,SOURCE)-dobj(starring,TARGET)

awards 1033 0.71 nsubjpass*(awarded,SOURCE)-dobj(awarded,TARGET)

awards 149 0.70 rcmod(SOURCE,awarded)-dobj(awarded,TARGET)

awards 609 0.62 nsubj*(received,SOURCE)-dobj(received,TARGET)

awards 128 0.63 nsubj*(recipient,SOURCE)-prep(recipient,of)-pobj(of,TARGET)

awards 98 0.73 appos(SOURCE,recipient)-prep(recipient,of)-pobj(of,TARGET)

awards 106 0.54 pobj*(to,SOURCE)-prep*(awarded,to)-nsubjpass(awarded,TARGET)

awards 100 0.58 rcmod(SOURCE,received)-dobj(received,TARGET)

awards 54 0.83 nn(SOURCE,recipient)-nn(recipient,TARGET)

awards 95 0.62 nsubj*(awarded,SOURCE)-dobj(awarded,TARGET)

awards 42 0.71 iobj*(awarded,SOURCE)-dobj(awarded,TARGET)

title 169 0.95 nsubj*(gained,SOURCE)-dobj(gained,title)-prep(title,of)-pobj(of,TARGET)

title 61 0.87 pobj*(from,SOURCE)-prep*(single,from)-nsubj(single,TARGET)

title 146 0.79 nsubjpass*(created,SOURCE)-dobj(created,TARGET)

title 51 0.96 appos*(album,SOURCE)-pobj*(from,album)-prep*(single,from)-nsubj(single,TARGET)

title 42 0.95 dep*(album,SOURCE)-pobj*(from,album)-prep*(single,from)-nsubj(single,TARGET)

title 61 0.78 pobj*(from,SOURCE)-prep*(song,from)-dep(song,TARGET)

title 139 0.68 pobj*(by,SOURCE)-prep*(conducted,by)-partmod*(TARGET,conducted)

title 200 0.60 nn(SOURCE,champ)-nn(champ,TARGET)

title 69 0.74 pobj*(against,SOURCE)-prep*(title,against)-nn(title,TARGET)

title 160 0.60 nsubjpass*(crowned,SOURCE)-xcomp(crowned,TARGET)

language 45 0.36 nsubj*(newspaper,SOURCE)-nn(newspaper,TARGET)

language 23 0.36 nsubj*(channel,SOURCE)-nn(channel,TARGET)

language 17 0.18 appos*(channel,SOURCE)-nn(channel,TARGET)

language 6 0.67 appos(SOURCE,network)-nn(network,language)-amod(language,TARGET)

language 7 0.58 nsubj(SOURCE,newspapers)-nn(newspapers,TARGET)

language 8 0.40 appos(SOURCE,daily)-nn(daily,TARGET)

language 23 0.25 pobj*(daily,SOURCE)-prep*(TARGET,daily)

language 16 0.17 nn(SOURCE,channel)-nn(channel,TARGET)

language 10 0.19 nn(SOURCE,language)-amod(language,TARGET)

language 12 0.19 dep(SOURCE,channel)-nn(channel,TARGET)

Table 4.5: Top extractors in a shortest-path ensemble, sorted by PMI.
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not in the KB. Future work could correct for this by paying human annotators, but perhaps

after correcting for other irregularities in the data, such as mixed relations like title.

Dependency Relations We argued that syntax was a natural and precise way to capture

the semantics entailed in a sentence. Our representation is based on Universal Dependencies

(Nivre et al., 2016). While there is no easy way to compare our syntax-based approach to

a related syntax-free model,10 we can make a slight modification to see how important the

syntactic structure is. In parsing it is common to report labeled and unlabeled attachment

scores, and in other work on data mining with depenency syntax it is common to use paths

without edge labels. To see how much information these edge labels provide, we train pairs

of models, one without edge labels and one with. We report the differences in scores in

Figure 4.6. Most of the time, the model which has access to edge labels performs better

than the model without (dots above the horizontal line at 0). The gap in performance is

fairly large too, starting at an average of about 2 F1 points and going up as β decreases

(favoring precision). This result indicates that even lexicalized dependency paths (which

include direction) can be improved upon by conditioning on the type of syntactic edge being

crossed.

Dependency Subgraphs vs Shortest Paths Finally we return to examine the effec-

tiveness of our expansion method for refining extractors which only look at a shortest path

into extractors which can check an entire dependency subgraph. We use shortest path ex-

10The author tried many different model variants which were purely lexical and based on surface features
like linear distance, all with very little success. Models like this have to deal with problems of enormous
vocabularies (there are more than 1M words which appear within 3 words of a subject or object for more
than half of the relations tried) and sparse statistics. Syntax nicely solves this problem by limiting the set
of features/extractors down to a plausible set.
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Figure 4.6: Gain for using dependency relations over untyped (but directed) paths. Each
dot is a relation. Dots above the horizontal line are relations where a model which uses
dependency relations outperforms one which doesn’t. The left measures F1 (precision and
recall weighed equally) and the right measures F 1

5

which emphasizes precision more than

recall.
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tractors as the baseline and perform two rounds of refinement. In Figure 4.7 we plot the

gain in performance for ensembles which have undergone one round of refinement (in black)

and two rounds (in green). In general the refinement does improve over shortest paths

resulting in an average improvement of about 1.5 F1 points, with the benefit growing larger

as β gets smaller (favoring precision). Adding two dependency edges to a shortest path

extractor doesn’t seem to improve much over adding just one edge. This could be because

of sparsity issues involved in estimating the precision of these very selective extractors or

it could be that these extractors do not improve much at the given size constraint for our

models.

The most common types of additional edges that refined extractors check are:

• ROOT(ROOT,<verb>) edges which check that a main verb at the crest of a shortest

path between subject and object is not in an embedded clause.

• auxpass(<verb>,was) which is the most common type of verbal modifier in cases

which involve nsubjpass edges.

• dobj(<verb>,<noun>) is used to qualify cases where one of the arguments is not in

object position such as the “receieved a degree from” example given earlier.

• det(TARGET,the) is an indirect way to type objects as proper nouns.

• dobj(<verb>,who) can be used to match questions which presuppose a relation such

as “Who did X play in Y?” entailing starring(X,Y).
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Figure 4.7: Gain for using dependency sub-graph extractors with one additional edge
(black) and two (green) over shortest path extractors. While both one edge and two edge
extractors perform better than the baseline (shortest path), there is little gain from adding
the second edge.
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4.4 Related Work

Slot Filling This chapter has largely been about populating KBs with facts extracted

from text. We discussed both unsupervised §4.2 and distantly supervised §4.3 methods

for labeling the edges in a KB. The most relevant line of work to this chapter is the TAC

Knowledge Base Population track (McNamee and Dang, 2009) which has run since 2009.

The track has included tasks for entity linking, slot filling, and cold start KBP, the last two

being very related to this chapter. Slot filling (SF) is the task of finding core facts about

a query entity like where a person works or who are the leaders of a company. Cold start

(CS) is like SF but where no KB of entities is given at the start, so systems must induce

their own entities (similar to Chapter 3).

Distant Supervision Slot filling is related to the distant supervision methods in §4.3

because most slot filling systems use some form of distant supervision to train extractors.

One way to do this is to directly train slot extractors from the limited training data given

(Surdeanu et al., 2010; Garrido et al., 2011; Sun et al., 2011). This has advantages which

come with simplicity, in terms of ease of implementation and the avoidance of cascading

errors which come with more complex pipelines.

Another way to use distant supervision for slot filling is learn extractors for another

set of relations Rz and then map the facts found in Rz to the slot filling schema. Rz is

usually taken to be Open IE patterns (Banko et al., 2007), which can have either rule-

based/unsupervised extractors (Banko et al., 2007; Fader et al., 2011; Angeli et al., 2015)

or supervised (Mausam et al., 2012) extractors. Mapping from Open IE patterns to the
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slot filling schema can be done either manually (Soderland et al., 2013; Finin et al., 2015)

or automatically (Angeli et al., 2015; Singh et al., 2013).

This relation extraction aspect of this work is similar to wrapper induction (Kush-

merick, 1997), who created extractors for factual information like what time movies are

playing from tabular or tree-structured data on the web. The facts that they extract are

different from the facts which appear in infoboxes, but they search over a hypothesis class

of extractors for a high-precision and low-complexity element is the same.

Snow et al. (2005) proposed a distant supervision method similar to our work

in §4.3 but for hypernym detection. They did not use precision-ranked extractors, but

rather logistic regression trained on instances generated from the naive distant supervision

assumption (all instances express the given relation). However, their extractors were similar

in their use of syntax, although they did not consider arbitrary edges in the dependency

graph.

Downey et al. (2010) studied the problem of estimating the probability that a fact

is true conditioned on how many times it was mentioned in a large corpus. This is related

to the work in §4.3 where we estimate the probability that an extractor produces a true

fact. In §4.3 we found that a fact’s mention frequency was not a good way to estimate an

extractor’s precision (both entity pair and entity and type pair methods produced better

extractor ensembles). However, the work of Downey et al. (2010) did not involve ranking

a mix of good and bad extractors, they only looked at the facts extracted by high-quality

extractors produced in previous work (Etzioni et al., 2005). Our work does not speak to

this restricted setting. Finally, the model of Downey et al. (2010) requires joint inference
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over all training instances which limits it application to batch settings. In the batch setting,

this information can be used in conjunction with the work in §4.3 to refine the confidence

estimates from the extractor to the fact level.

Hasegawa et al. (2004) described a method for doing relation label propagation

using a method similar to our distant supervision method. They build context vectors for

pairs named entities based on the words observed between them and then cluster named

entity pairs. Relation labels on seed named entity pairs can be propagated to all unlabeled

pairs in the cluster. Both our methods use set similarity measures and use named entity pairs

(arguments). Their method has the limitation of only supporting one relation type between

two argument types (e.g. a person and a university can only be labeled as almaMater or

professorAt).

Trigger Extraction Blanco and Zaragoza (2010) study the information retrieval problem

of finding support sentences which explain the relationship between a query and an entity,

which is similar to this work. Our work addresses two new aspects of this problem: 1) how

to automatically find related entities, which are assumed given in that work and 2) how to

find the salient parts of support sentences (trigger words) by aggregating evidence across

sentences.

Raghavan et al. (2004) investigated open vocabulary characterization of entities.

They found intersecting entity language models for a pair of related entities yields common

descriptors. Their notion of similarity (e.g. Ronald Reagan and Richard Nixon are both

presidents) is different from our notion of relatedness (e.g. Alexander Haig and Princeton,

NJ are related via Meredith – Haig’s sister).
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KBs for Information Retrieval Our work is concerned with building KBs for a query

from raw text. There is related work on finding a relevant subset of an existing KB which

is related to a query such as Dalton and Dietz (2013) and Dietz and Schuhmacher (2015).

They create “knowledge sketches”: distributions over documents, entities, and relations

related to a query. They use Freebase for relations and Wikipedia for anchor text and links.

Additionally their queries are richer than in this work (entity mentions), such as “scope and

scale of child labor in Turkey”, rather than queries of specific entities.

4.5 Conclusion

In this chapter we discussed methods for inferring relations between entities in text.

Our goal was to come up with meaningful labels for the edges connecting related entities

in a topic knowledge base (TKB) using textual claims made in reports. In Section 4.2 we

discussed an unsupervised method which, given a set of related entities, can infer trigger

words which meaningfully characterize the relationship between two entities. These methods

worked twice as well as a syntactically informed baseline and are very flexible due to their

open vocabulary. In Section 4.3 we discussed distantly supervised methods for inferring

entity relations. These methods have the advantage of tying into a well know schema like

DBpedia (Wikipedia infobox facts) without requiring costly direct supervision via annotated

mentions. Specifically we showed how to find high-precision extractors which are most likely

to be useful to professional analysts. All of the methods in this chapter “show their work”,

and can trace back claims about a TKB to claims in a report.

94



Chapter 5

Frame-based Situation Detection

5.1 Introduction

In this chapter we discuss new models for identifying events or situations described

in text, and the relationship the participants play. “Situation” is the term we will use in

this chapter to describe a wide range of events, states, and facts which may be discussed

in a report. The most common case of situations we would like to identify and reason

about are verbs which describe events, such as “John stole $10 from Mary” or “ACME fired

their CEO, Alex Sanchez”. This chapter will describe a few different conceptions of what

situations are before going on to describe general methods for identifying them in text.

What is common to all of these conceptions are frames and roles. Frames characterize the

type of situation which is occurring (e.g. Theft or Employment end) and roles characterize

the relationship between the participants and the event (e.g. “John” is the Perpetrator and

“Mary” is the Victim). What differs are the names, definitions, and granularities of the

frames and roles which are part of a situational schema, as we will see in the next section.
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One reason frames and roles are important to report linking is because they offer

a way of searching for situations. Frames specify a type of situation such as a company

buying another company (of interest to a financial analyst) or a suspect traveling to a certain

location (of interest to a law enforcement officer). Roles specify a relationship between a

participant and a situation and are sometimes said to correspond to the wh- questions of

“who”, “what”, “when”, “where”, and “why”. If a biologist wanted to understand the

consequences of a gene mutation, they might search for situations describing that gene

regulating another gene (role of Agent) rather than that gene being regulated by another

gene (role of Patient), since only the former are relevant to the mutation.

All of the methods described in this section are based on the theory of linking

textual descriptions to a human-designed schema of situations and roles. This is not nec-

essary in principle and there is unsupervised work on event schema induction (Chambers,

2013) frame induction (Modi et al., 2012; Cheung et al., 2013), and role induction (Titov

and Klementiev, 2012; Titov and Khoddam, 2015), as well as the work in Chapter 4.

These unsupervised methods are often also referred to as distributional approaches

and characterize the meaning of words, frames, or roles (or any linguistic concept) through

a distribution over lexico-syntactic observations. Commonly, but more specifically, these

methods treat meanings (distributions) as latent variables which can be learned by opti-

mizing the likelihood of observed (but unlabeled) data. Would these approaches lead to

frame and role representations which are “just as good” as supervised approaches?1 Leaving

the question in general aside, for semantic roles it does not seem like this is currently the

1Supervised approaches treat the mapping from lexico-syntactic observations to semantic representations
as a a thing to be learned from a target (e.g. a linguist or native speaker).
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case. One of the best unsupervised methods for semantic role labeling, Titov and Khoddam

(2015), achieves an F1 score of 82.8, while supervised methods perform considerably better

under more difficult test setups: 85.93 (Johansson and Nugues, 2008a) and 87.9 (Roth and

Lapata, 2016).2 Given that inter-annotator agreement is near perfect, 99% (Palmer et al.,

2005), this performance gap can be taken as evidence that there are significant divergences

between distributional representations and the representations which annotators (and by

extension practitioners) seek to infer.

It is possible that the annotators are seeking the wrong representations, but we

will not entertain this idea in this work. For this chapter we adopt supervised methods for

inferring frame and role representations. A secondary benefit of the supervised paradigm

is that it allows research to proceed along two paths, one on theory and methods related

to annotating frames and roles and the other concerned with general purpose methods for

training statistical models to predict them. This work is on the second path.

It is perhaps worth pointing out that in this chapter we pursue models which

use a centralized set of frames and roles, whereas in the previous chapter we used de-

centralized set of entities. Centralization, as we are using it here, is whether there is a

single source of labels and label definitions. Labels for situations are frames and roles which

can be centralized in schemas like Propbank and FrameNet or decentralized as clusters over

mentions in an arbitrary set of text. Labels for (entity) mentions are entities, which can be

centralized (a knowledge base of known entities) or decentralized (coreference annotations

2This comparison under-estimates the size of the gap between the approaches. The unsupervised eval-
uation of Titov and Khoddam (2015) uses purity and collocation rather than precision and recall. The
former measures are related to the latter under the assumption of the best-possible mapping between cluster
labels and true labels, so these numbers can be interpretted as maximally generous to the distributional
representations. Additionally, Titov and Khoddam (2015) uses gold syntax and gold argument identification
which must be predicted in the supervised case.
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which reference clusters not entities). This difference is driven by the fact that entities are

known to be domain specific, heavy-tailed, and effectively an open class (Jin et al., 2014).

It is not clear whether frames and roles are a “closed class”, which would make the choice

of a centralized schema appealing. This chapter assumes that this is true and in Chapter 4

we describe other approaches which do not rely on this assumption.

5.2 Resources

We now turn to resources which define frames and roles and examples of them used

in text. We use these resources to train models for identifying situations which we believe

will be useful for report linking. Each of these resources has slightly different notions of

frames and roles which we discuss below.

5.2.1 FrameNet

FrameNet (Baker et al., 1998) is a semantic resource based on frame semantics

(Fillmore, 1982). Fillmore’s frame semantics is built on the idea that words are used to

evoke events or situations in the real world (or peoples’ perceptions thereof) called frames,

and that there is meaning tied to frames rather than just the words themselves. For example,

there is a frame for Purchasing, and this frame may be evoked by many words like “buy”,

“sell”, “sale”, “shop”, or “receipt”. The frame which is common to all of these words has

some common categories of participants, like the buyer, the seller, and the charge. These

categories are called frame elements in Fillmore’s work. Frames, Fillmore argued, are related

to how people perceive and describe the world, and are thus a key aspect of meaning that
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we should attempt to extract from language.

A difficulty in putting frame semantics into practice is that there is a large di-

vergence between frames, frame elements, and syntax. Frame semantics, unlike θ-roles

(Chomsky, 1981; Carnie, 2006), is not a part of a generative theory of language, and has

no theory relating it to syntax.3 This break with many more syntactic theories of semantic

roles leaves frame semantics free to model the semantics of non-verbal predicates like nouns

and adjectives4, but it also means that inferring frame labels from language is a difficult

problem which inevitably draws on world knowledge.

FrameNet uses the term “frame element” instead of “role” to avoid confusion with

any syntactic theories which use the term “role” (Baker et al., 1998), but we will revert

to “role” in accordance with the now popular NLP task of Semantic Role Labeling (SRL),

popularized by Gildea and Jurafsky (2002).5 FrameNet has core roles, which are central to

the meaning of a frame (e.g. the Speaker in the Communication frame) and peripheral roles

which are more commonly used for roles like time, place, and manner. Core roles are often

specific to a frame (do not appear as roles for many frames). Killer and Victim are core roles

for the frame Killing. Killer appears as a role for no other frames but Victim appears with

15 other frames including Attack, Robbery, and Arson.

In FrameNet terminology a frame is “triggered” (evoked) by a lexical unit (LU),

which is a lemma (or multi-word expression) with a part of speech tag. LUs are written

3Fillmore (1967) is an early generative theory which unified frames and syntax and had an influence on
construction grammar (Goldberg, 1995).

4Efforts like NomBank (Meyers et al., 2004) and AMR (Banarescu et al., 2012) cover non-verbal predicates
as well.

5Gildea and Jurafsky (2002) coined the term Semantic Role Labeling as such even though they based their
work on FrameNet which didn’t use that term; as early or before other resources like Propbank (Kingsbury
and Palmer, 2002) started using the term “role” instead of “frame element”.
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as kill.V. LUs are intended as a coarse filter for determining what frames are possibly

being described before statistical analysis can be used to disambiguate the senses (e.g.

determining if run.V refers to Leadership as in “run a company” or Self motion as in “run

a race”).

As a part of the FrameNet lexicon, there are 1019 frames in FrameNet 1.5, used

in this work, covering situations like Killing (e.g. genocide.N, behead.V, slaughter.V,

infanticide.N, etc), to Change of quantity of possession (e.g. lose.V) to Fall asleep (e.g.

fainting.N and faint.V). There are 1167 frame elements, which are supposed to be frame

independent (Ruppenhofer et al., 2006), though most work on FrameNet parsing has shown

that these frame elements are better treated as frame-specific (Das et al., 2010) (their

distributional properties are not invariant across frames) in which case there are 9633 frame

elements.

FrameNet also includes annotated sentences which evoke frames and frame ele-

ments which come in two varieties. The first type are called lexical examples which are a

list of sentences for every frame which are intended to show as many variations on frame

element realization as possible. The other variety is the full text annotations which are

meant to be complete annotations of short documents (3044 sentences for training total),

which are suitable for training statistical parsers. Das et al. (2010) has pointed out, and

was confirmed during the experiments which lead to this work, the lexical examples can

actually hurt the performance of statistical models when evaluated on data like the full text

data. The lexical examples lead to a very poorly estimated base rate for most frames. Rare

frames have about as much representation as common frames in the lexical data, but not
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in full text data, leading to poorly calibrated predictions.

5.2.2 Propbank

Propbank (Kingsbury and Palmer, 2002; Palmer et al., 2005) is another SRL re-

source based on extending the syntactic annotations of the Penn Treebank (Marcus et al.,

1993). Propbank is concerned with annotating syntactic frames rather than Fillmore-style

frames. Propbank annotates verb frames only, and is interested in teasing apart different

usages like transitive vs intransitive (“we ate fish and chips” vs “we ate at noon”) and

causative vs inchoative (“he chilled the soup” vs “the soup chilled”). The goal was that

if these syntactic frames could be identified, verb classes such as those identified by Levin

(1993) could be used to determine paraphrases (e.g. “A will [meet/visit/debate/consult]

(with) B” all mean roughly the same thing) which would be useful in a variety of settings

like machine translation and information extraction (Kingsbury and Palmer, 2002).

The Propbank lexicon includes 9,209 different verb senses covering 6,902 differ-

ent surface forms. For computational purposes, verb senses are roughly comparable to

FrameNet’s LUs, since they map surface forms to frames, and Propbank has fewer of these

mappings (9,209 vs 13,064).

Propbank defines 30 different roles,6 (considerably less than FrameNet’s 1167) each

of which has frame-specific meaning, meaning there are as many as 207,060 possible roles,

even though only 31,123 are observed in the annotated data (this is considerably more than

FrameNet’s 9,633 possible and 2,947 observed frame elements). If you consider only core

6ARG0, ARG1, ARG2, ARG3, ARG4, ARG5, ARGA, ARGM-ADJ, ARGM-ADV, ARGM-CAU,
ARGM-COM, ARGM-DIR, ARGM-DIS, ARGM-DSP, ARGM-EXT, ARGM-GOL, ARGM-LOC, ARGM-
LVB, ARGM-MNR, ARGM-MOD, ARGM-NEG, ARGM-PNC, ARGM-PRD, ARGM-PRP, ARGM-PRR,
ARGM-PRX, ARGM-REC, ARGM-TMP, LINK-PCR, LINK-SLC
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Figure 5.1: Statistics about the FrameNet (left) and Propbank (right) datasets. The
first row plots the number of training instances (y-axis) available for each frames’ roles (x-
axis). The second row is similar but aggregating over roles to show the number of training
instances for each frame. The third row is concerned with only the schema rather than
training instances, plotting number of roles (y-axis) per frame (x-axis).
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Figure 5.2: The relationship between LUs and frames in FrameNet (left) and Propbank
(right). The top row plots how ambiguous LUs are, y-axis being the number of frames which
correspond to an LU. The bottom row plots how many ways there are express a given frame,
which is defined to be exactly one in Propbank. In the top row we see that most LUs are
unambiguous (FrameNet 8691/10457 = 83.1%, Propbank 5686/6916 = 82.2%) and only a
few have many senses (3 or more: FrameNet 496/10457 = 4.7%, Propbank 438/6916 =
6.3%).
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roles, there are 9,956 roles.

Propbank also has a notion of continuation and reference roles. A continuation

role is used when a role’s filler does not form a contiguous span in a sentence. For example,

in the following sentence, the Arg1 role is filled by a split constituent, and the second one

is assigned a continuation role (Arg1− C).

[Arg1 By addressing those problems], [Arg0 Mr. Maxwell] said, [Arg1−C the new
funds have become “extremely attractive to Japanese and other investors outside
the U.S.”] (wsj 0029)

Reference roles are explained in Täckström et al. (2015) and are used in cases

where a pronoun refers to an overt argument. For example, “who” in the sentence below is

not Arg0, but a reference to the true Arg0:

[Arg0 The spy ] [Arg0−C who ] knew [Arg1 me ]

5.2.3 Other Resources

There are a variety of somewhat related resources which target both different

phenomena and representations such as Abstract Meaning Representation (Banarescu et al.,

2012), Entities, Relations, and Events (Song et al., 2015), Automatic Content Extraction

(Doddington et al., 2004), and the Message Understanding Conferences (Grishman and

Sundheim, 1996). For a paper comparing many of these approaches, see Aguilar et al.

(2014) or Abend and Rappoport (2017)

Palmer (2009) describes Semlink, a project designed to link the resources of FrameNet,

Propbank, and VerbNet. This project has improved type coverage on some corpora, but no

systems with competitive performance use this type of resource due to the inexactness of

some of the mappings (leading to noisy features).
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Another conception of semantic role labeling is the CoNLL 2008-2009 joint task

on dependency-based syntax and semantics (Surdeanu et al., 2008). The dependency rep-

resentation used there differs from the span (FrameNet) and constituent (PropBank) based

representations used in this work. The task derives its labels from the constituency labels of

Propbank with head rules applied to convert to a dependency tree.7 The challenge focused

on joint methods for parsing syntax and semantics.

Finally there is the semantic proto-roles work of Reisinger et al. (2015) and White

et al. (2016) which is based on Dowty (1991). The idea is to factorize roles into properties

corresponding to questions about the role such as “did this entity intend for this situation to

happen?”. From a modeling point of view, using a variety of binary questions to describe a

role rather than a discrete set of categories can lead to richer and more statistically efficient

models.

5.3 Transition-based Semantic Role Labeling

In this section we will introduce some statistical models for making SRL predictions

for frames and roles given by either FrameNet or Propbank. The core contribution of this

chapter is the implementation of and experiments on transition based models for SRL.

The transition based models explored in this chapter are related to pipeline models, but

generalize them in a) the ability to add non-deterministic inference through the use of either

look-ahead or a beam and b) the inclusion of global factors which consider joint variable

assignments (whereas pipeline models are locally scored).

7Aspects of the dependency-based work have extended to span-based work as well. For example
(Täckström et al., 2015) used a span pruning heuristic derived from dependency syntax in a fashion in-
spired by a dependency SRL model.
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In order to train these transition-based models we turn to imitation learning

(Schaal, 1999). Imitation learning is related to reinforcement learning (Sutton and Barto,

1998), but where the learner does not have to solve either the exploitation vs exploration

problem or the credit attribution problem. Put another way, imitation learning is appro-

priate when there is no delayed reward (every step incurs a cost or gain) and there exists

an oracle or teacher which can give supervision for what action is most profitable to take

in every state. When these conditions are met, imitation learning is more statistically and

computationally efficient to train (Schaal, 1999).

5.3.1 Problem Formulation

We begin by describing the problem formulation which is a sentence-level struc-

tured prediction problem. Let x refer to a sentence and its POS tags and dependency parse.

We are given x and a set of triggers which are spans in x which evoke a frame. We are

concerned with predicting a binary tensor Y (t, f, s, k) called an assignment. t ∈ T is the

given set of triggers, f ∈ F is the set of frames given by the schema, s ∈ S(t) is a set of

spans which can be role fillers, and k ∈ K(f) is the set of roles for a given frame given

by the schema. S(t) is a subset of all spans in the sentence derived using the heuristics

described in Xue and Palmer (2004) which has a special value ∅ denoting a role is not filled

(or null-instantiated in FrameNet terminology). Frame predictions are defined with special

dummy indices for s and k called †. For example, in the sentence “0 John 1 bought 2 veg-

etables 3 for 4 dinner 5”, Y
(

[1, 2),Commerce buy, †, †
)

means the frame Commerce buy is

evoked at the trigger located at [1, 2) (saying nothing about its roles).

There are constraints on the values in Y (t, f, s, k).
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1. If w is the LU appearing at t and w has not been observed with f in the training set,

then Y (t, f, †, †) = 0.

2. Frame assignments must come before the corresponding role assignments.

That is ∀s, k Y (t, f, †, †) = 0 =⇒ Y (t, f, s, k) = 0.

3. Argument spans do not cross or overlap for the same trigger.

That is ∀t, f, k1, k2 Y (t, f, s1, k1) = 1 ∧ overlap(s1, s2) =⇒ Y (t, f, s2, k2) = 0.

4. Some roles are either mutually exclusive or require each other.

In the first case:

∀t, f, s1, s2 E(f, k1, k2) ∧ Y (t, f, s1, k1) = 1 =⇒ Y (t, f, s2, k2) = 0

and the second case:

∀t, f, s1, s2 R(f, k1, k2) ∧ Y (t, f, s1, k1) = 0 =⇒ Y (t, f, s2, k2) = 0

The relations E and R are provided by the schema.

Enforcing these constraints while maintaining the flexibility to vary transitions

systems like we will in this work is non-trivial. Our approach, which we describe in §5.3.3,

is to enforce these constraints through a few global features which have efficient implemen-

tations. Our models learn weights which softly enforce these constraints.

Transition Systems A Y ∈ Y specifies which variables are true or false. Let A be a

space of the same size and dimensions as Y, but with different semantics: for an A ∈ A,

A(t, f, s, k) = 1 means that assigning that index (t, f, s, k) may be considered as an action

at the current state. An A tensor specifies the set of indices, or actions which are allowed.

A transition system T is a function Y → A. Elements of the domain are states (a
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partial assignments) and elements of the co-domain (range) are a sets of actions out of the

current state.

A modelM chooses an action in a state and has type Y×A → Y. We are concerned

with deterministic models which have the form:

(s, a) ∈ Y× A 7→ s � argmax
a∈T (s)

θ · f(s, a) (5.1)

where � : Y× A → Y the the action application function which takes a state and a chosen

action and returns the state resulting in taking that action (in this case this is a pointwise

addition of the state and action tensors).

A transition system and a model composed together have the type M ◦T : Y → Y.

Inference is the process of computing the fixed point of M ◦T (finding a final state) starting

from the initial state Y (t, f, s, k) = 0 ∀t, f, s, k.

In this formulation we have factorized the transition function (mapping states to

states) into M ◦ T . The purpose of this is twofold. First, the number of actions possible

at every step is one factor in inference runtime. Conservative transition systems might

consider many actions at every state, giving the model the chance to choose from as many

possible actions which are consistent with the gold label. More aggressive transition systems

consider fewer actions per state, forcing assignments to be completed quickly. The second

reason is explained further in §5.3.4 but is related to the relationship between the order that

actions are taken and the global features which fire. These differences can lead to models

which instantiate more or less global features and have access to more reliable predictions

earlier.
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Probabilities This transition framework is deterministic, not probabilistic like related

frameworks like (PO)MDPs. Probabilistic variations have some nice properties like a

smooth objective function. Deterministic models have piece-wise constant objectives be-

cause of the max at each state. Small changes in parameter settings therefore cannot lead

to small probability masses moving from lossy states to less lossy states, making gradient

based optimization impossible. However, there are a couple advantages of deterministic

transition systems. First, their objective functions are closer the objective function we ac-

tually care about. Most of the time one would use an MDP to train a structured prediction

model the desired output is a one-best prediction (which we would like to be right) rather

than a probability distribution over labels (the objective in MDP settings).

The second reason to prefer a deterministic framework like this is compatibility

with beam search. When the model of computation for inference involves a beam, the notion

of “probability of being in a state” is not well defined and not similar to how inference is

conducted. As will be discussed in §5.3.5, it is possible to promote a deterministic transition

system to one with a beam, and define related objective functions which are beam-aware.

With probabilistic models, adding beam decoding to a locally trained model can actually

hurt performance (Vaswani and Sagae, 2016).

5.3.2 Experimental Design

Before proceeding to methods, we describe how we evaluate. We measure perfor-

mance on two data sets, the Propbank annotations (Kingsbury and Palmer, 2002) available

in the Ontonotes 5.0 corpus (Pradhan et al., 2012) and FrameNet 1.5 (Baker et al., 1998).

For all learning methods we average the weights across all iterations of training
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(Freund and Schapire, 1999). This is explicitly called for as a part of LOLS (c.f. §5.3.6)

(Chang et al., 2015) and is also a standard trick used with the structured perceptron (Collins

and Roark, 2004).

We use the local features described in Hermann et al. (2014) for argument and

frame identification, but we did not use their feature embedding method since it performed

about as well as the sparse feature method and was slower. We use the best refinements

using the process described in §5.3.3.

We are studying the fully greedy case of inference in this work (i.e. a beam size of

1). As far as we know, efficient beam search and easy first inference are mutually exclusive

goals, and we focus on the latter. Our implementation uses a heap to store actions in a

manner similar to Goldberg and Elhadad (2010). This way actions can be generated once,

instead of once per transition, and global features perform sparse updates to the actions

on the heap. For beam search, states cannot share a heap (since their histories, and thus

global features, would be different), so actions generation, global features, and action sorting

would have to occur at every transition.

All performance values shown here are measured for the task of frame semantic

parsing (FSP), meaning that we measure precision, recall, and F-measure where every index

in f and k are considered predictions. Predictions in k are not correct unless the frame that

they correspond to are also correct. We show two scenarios: gold f refers to the case where

the frame labels are given and auto f refers to when they are predicted by the model. All

figures and plots are on dev set performance.
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5.3.3 Global Features

In this work we explore the use of global features for our SRL models. A global

feature is one which can inspect the value of more than one assignment/action. Put another

way, global features condition on the state and the action rather than just the action

(variable assignment out of context). Global features are important for a couple reasons.

First, a variety of insights and statistical regularities from previous work (Punyakanok et al.,

2004; Toutanova et al., 2008; Täckström et al., 2015) can be described using global features

on states and actions. Our definitions will not be fully equivalent to the formulation in

previous work, but will draw on the same set of information. Second, global features are by

their nature very expressive, and may help our models avoid myopic variable assignments.

Next we will list our global features and their motivations.

numArgs is a global feature template which counts how many arguments a given

predicate has realized in a sentence. This is perhaps the simplest type of information which

is expressable in a global model but not a local one. This is useful because it serves as a

dynamic or contingent intercept. Normally an argument is predicted if its score exceeds 0

(or the score of the action corresponding ∅), but with this global feature that threshold

also depends on how many arguments have already been labeled.

The remaining global features are pairwise features, meaning they can be expressed

as templates of the form h(ai, at) where ai is any action in the history st and at is the current

action to be scored.

roleCooc is a feature template which expresses which roles co-occur with each

other in a predicate argument structure. There are some hard role co-occurrence constraints
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in the annotation guidelines for both Propbank and FrameNet which this feature aims to

learn. For Propbank, continuation and reference roles may not appear without their base

counterpart. FrameNet does not have this distinction between base, continuation, and

reference roles, but instead has some mutual exclusion relationships between frame elements

(roles) such as the Entities, Entity 1, and Entity 2 roles for the Similarity frame. Entity 1 and

Entity 2 require each other’s realization and both are mutually exclusive with the Entities

role. These roles exist so that there is a sensible way to annotate sentences like “[The

two painters]Entities were [alike]Similarity” as well as “[Our economy]Entity 1 is [like]Similarity [a

healthy plant]Entity 2”

If R(at) is a function which returns the role of an action at (assuming at assigns a

value in k), then the pairwise definition of this feature is h(ai, at) = (R(ai), R(at)).

argLoc is a feature template which describes the linear relationship between argu-

ment spans. This relationship pos(s1, s2) is the all-pairs relationship between the starts and

end indices of the two spans, where two indices are said to be either “left”, “left and bor-

dering”, “equal”, “right and bordering”, or “right”. If E(at) is a function which returns the

span of an action at (assuming at assigns a value in k), then h(ai, at) = pos(E(ai), E(at))

This can encode overlap, nesting, or boundary relationships between argument spans.

roleCoocArgLoc is the pointwise product of roleCooc and argLoc. This feature

can capture regularities like “a continuation role is to the non-bordering left of the base

role” which depend on information from both argLoc and roleCooc.

Finally full refers to all templates together.
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Refinements We designed the features in a way as to be overly general. For example,

consider numArgs and its effects for various frames. A value like 4 may be very unlikely

for a frame like see-v-3 which was instantiated with exactly one argument in each of the 24

times it appeared in Propbank. But, a value of 4 is below average for a frame like afford-v-1

which was observed 43 times with an average of 4.2 realized arguments.

While numArgs seems like it should depend on the frame, there are other cases

like the FrameNet role exclusion and requires relationships which should hold regardless of

frame. For example, the frames Amalgamation, Becoming separated, Cause to amalgamate,

and Separating all have the same pattern concerning the Parts, Part 1, and Part 2 roles.

These frames were seen only 2, 2, 9, and 12 times in training data respectively, so general-

izing this rule by pooling training data is crucial.

To choose the right granularity for the global feature templates, we consider mul-

tiple refinements. A refinement of a template is the result of taking the pointwise product

of the template with one or two label features templates. The label feature templates we

consider are constant (a backoff feature), frame, role, and frame-role. For each global fea-

ture template, we try each refinement and use the one with the best dev set F-measure

when trained with LOLS (c.f. §5.3.6).

5.3.4 Action Ordering

An important factor in the effectiveness of global features is the order in which

frames and roles are assigned.
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Easy First The first motivation is related to easy first inference (Shen et al., 2007; Raghu-

nathan et al., 2010) inter alia. The idea is that the “easiest” decisions should be made first

because there is less risk that they are wrong and may be more safely conditioned on in

making future decisions than any other action. To implement this heuristic, we define two

variants of the easyfirst meta action ordering. easyfirst-dynamic chooses the variable

index corresponding to the highest scoring action. easyfirst-static chooses variable indices

sorted by the dev set F-measure of the local model (most accurate visited first).8

Baselines The freq ordering sorts actions by how frequently their role appears in the

training set, most frequent first. This be seen as a very naive version of easyfirst, but with

the nice property that it is independent of the local model.

From a model (estimator) bias and variance point of view, we should expect dy-

namic orderings to have higher variance (whether they have lower bias is a somewhat related

but empirical question). In our case, we could track this variance by proxy and look at the

number of nonzero global features, as is common in the sparsity-inducing regularization

literature. Consider training a model with the roleCooc global feature on single example,

a frame with K roles. With easyfirst-dynamic, there are K2 possible roleCooc nonzero

features, whereas with easyfirst-static and freq the maximum is K(K−1)
2 since the order

is fixed at training time.

To see if increased variance is responsible for potential differences in the easyfirst

variants, we construct a parallel situation with random orderings: rand-static and rand-

dynamic. The first chooses a random ordering over roles which is used throughout training

8F-measure is computed from MAP estimates of precision and recall under a β(1, 5

4
) prior, slightly

rewarding frequency.
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and testing, and the second chooses a random ordering every time inference is run.

Results In Figure 5.3 we have plotted models trained with each global feature type and

each action ordering. The first thing to notice is the variance across different action orderings

is generally larger than the variance across different global features (for the best action

ordering). This indicates that action ordering is important, perhaps more so than the

global features used. This is an important result considering that most previous work on

transition based inference has not addressed automatic ordering.

Next, there is little consistency between Propbank and FrameNet. We believe

the major reason for this is the amount of training data (Propbank has 20.7 times more

instances and 1.58 more instances per type), causing overall accuracy to be higher and

easyfirst inference to work better.

Looking at the number of non-zero global features, we see virtually no correlation

between that measure of capacity and performance, on either data set. While this metric

is often used in static (local) models to describe capacity, we believe this metric is less

meaningful with global features.

Note that rand-dynamic works well on FrameNet, only losing to a non-random

ordering once (easyfirst-static on argLoc). Given the overall worse performance of our

model on FrameNet, and the dearth of training data, we hypothesize that rand-dynamic is

actually providing a regularizing effect similar to dropout (Hinton et al., 2012). Since both

rand-static and rand-dynamic are random, they offer no real signal they could differ

on (bias is the same), and using the standard bias-variance argument we should expect

rand-static to do no worse since rand-dynamic introduces additional variance into the
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Figure 5.3: Model performance (y) by log number of non-zero global features (x). Prop-
bank (left) and FrameNet (right). Global feature type by color: numArgs, roleCooc, argLoc,
argLocRoleCooc, and full. easyfirst is triangle, freq is square, rand is circle. Filled in
means dynamic, hollow is static.

model estimate. Our only explanation for the results is that rand-static is overfitting in a

way which rand-dynamic isn’t capable of.

Consistent with overfitting, we see that on both data sets easyfirst-static usually

does as well or better than easyfirst-dynamic. In the opposite fashion of the random

orderings, here the dynamic version is more expressive and likely to overfit.

5.3.5 Violation Fixing Perceptron (VFP)

At this point we have specified a transition system and features (both global and

local), and all that is left is to choose a method for training the weights. Violation Fixing

Perceptron (VFP) (Huang et al., 2012) is a family of perceptron updates which are intended

to train machines which operate using beam search (greedy search being the trivial case of

a beam with size one). The beam holds states, and at every step an action is appended to

each state to reach a successor state which is put on the next beam.

In VFP, the core concept is a violation. A tuple (x, y, z), where x is a sentence as
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defined earlier and y is a string of correct actions (having zero cost/loss), and z is a string

of predicted actions, is a violation if θ · f(x, z) > θ · f(x, y) and z is “incorrect”. There

are multiple ways of defining incorrect which yield different algorithms in the VFP family.

In all variants y and z must be the same length and if there is more than one incorrect

(x, y, z), the one with the largest difference in score is chosen. In the early update variant,

first described by Collins and Roark (2004), z is incorrect if it differs from y only in the

last position. In max violation z is incorrect if it differs any position. In latest update z

is incorrect if it differs in the last position (but can include other differences, unlike early

update).

VFP Results In Figure 5.4 we plot the difference in performance between a model which

includes a particular global feature type and the baseline model which only uses local fea-

tures. Almost across the board the values are negative, indicating that the global model

performs worse, even though the local model is nested within the global model (i.e. there

exists a parameter setting in the global model such that it is equivalent to the local model).

This result is at odds with previous results which have successfully used max violation

perceptron to train models with non-local features. We hypothesize that the reason per-

formance goes down is due to the expressivity of our global features and the inconsistency

problem described in Chang et al. (2015).

Briefly, the inconsistency comes from the fact that the weights derived from VFP

training simultaneously, and ambiguously, reflect what to do conditioned on being in a state

arrived at by the oracle or the predictor. These two distributions over states are different

if the predictor cannot perfectly mimic the oracle (the beam separability assumption). At
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Gold f Auto f

Global Feature PB ∆` FN ∆` PB ∆` FN ∆`

numArgs -0.4 -0.1 -1.3 +0.3
roleCooc -0.4 -0.3 -0.1 +0.6
argLoc -1.2 -0.4 -1.9 +0.2
roleCoocArgLoc -2.0 -0.2 0.0 +0.2
full -1.5 -0.7 -2.0 +0.2

Figure 5.4: Global model advantage using max violation VFP and freq.

Gold f Auto f

Global Feature PB ∆` FN ∆` PB ∆` FN ∆`

numArgs 0.0 0.0 +0.2 +0.7
roleCooc -0.6 -0.3 -0.1 +0.5
argLoc -0.4 +0.1 -0.1 -0.4
roleCoocArgLoc +0.4 +0.4 +0.1 -0.1
full +0.6 +0.4 -0.1 +0.3

Figure 5.5: Global model advantage using LOLS and freq.

test time, all of the states will be reached from the predictor’s actions, so the contribution of

what to do by possibly incorrectly assuming the state/history was created by the oracle is

misleading. This can be very bad when the global features are expressive and the predictor

makes a significant number of mistakes.

VFP Inconsistency To validate that inconsistency is responsible for this poor perfor-

mance, we setup another experiment where we artificially make the task easier. If the model

is more accurate, then the predictor will necessarily be closer to the oracle, meaning that

the inconsistency will shrink towards 0. To make the task easier, we added a binary feature

to the local features which was either 1 or -1 based on whether the action has cost 0. We

flip the sign of this feature with probability 1− α. A model with α = 1 should get perfect

accuracy and α = 1
2 offers no extra information.
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Figure 5.6: Benefit of roleCooc global features as a function of inconsistency in the model.

Figure 5.6 shows the difference between a global model using roleCooc and a local

model (both receiving the “cheating” feature) for various values of α. This experiment used

FrameNet data and max violation VFP. The local model does better than the global model

(below the red line) where the inconsistency is high (α < 0.75) and worse where it is low.

Though the plot is noisy, when α = 1 the two models have the same performance.

This result explains why max violation training has been shown to be successful

in tasks like POS tagging and shift-reduce parsing, where the accuracy of the model is

> 90%. VFP with global features improves over local models on these tasks because the

inconsistency is small, and the benefit from global features is great. In §5.3.7 we will return

to this problem.
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5.3.6 Locally Optimal Learning to Search (LOLS)

Learning to search (L2S) is a family of imitation learning algorithms including

early update perceptron (Collins and Roark, 2004), LaSO (Daumé III and Marcu, 2005),

SEARN (Daumé III et al., 2009), DAgger (Ross et al., 2011), and LOLS (Chang et al.,

2015). The unifying feature of these algorithms is that they all are a reduction of training

transition based models to a cost-sensitive classification problem over (st, at) pairs.

L2S methods are generally online algorithms which proceed by “rolling-in” to a

state by running model which assigns scores to (st, at) pairs. For each state visited, a cost of

taking each action is computed by “rolling-out”, running another model to completion and

observing the loss incurred by taking each action. The cost for every (st, at) pair is added

to a running set of examples and the next iterate of the model is optimized to minimize the

cost residuals.

Chang et al. (2015) showed that when the reference (oracle) policy is optimal,

which we can guarantee in our case,9 the oracle can be used during roll-outs to estimate

costs, which can be computed in constant time. Given reference cost estimates, the only

way to distinguish within this family is with respect to the roll-in distribution. The LOLS

algorithm prescribes using the current policy for rolling-in, which does not always work

well, which we will return to in §5.3.7.

LOLS Results In Figure 5.5 we plot global model advantage LOLS training. There are

mixed results; some global features are actually improving over the local model (something

which was not achieved by VFP training). We will return to why this is in §5.3.7, but first
9Every action fills in a label and we can say whether it is right or wrong, thus the reference policy is the

one which always fills in a correct label.
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we will analyze an orthogonal aspect of the model.

5.3.7 Error Analysis

Neither VFP nor LOLS worked for our transition transition systems out of the

box. Here we discuss problems encountered with each algorithm and offer some solutions

for fixing them. We do not claim these solutions are general, but hopefully offer insight into

potential difficulties in training models like this.

VFP

The max violation version of VFP dictates that the violation to be corrected is

the solution to

argmin
(x,y,z)∈C,z∈

⋃
i{Bi[0]}

wt ·∆Φ(x, y, z) (5.2)

Where Bi is the beam holding actions at step ith and C is the beam confusion set as

defined in (Huang et al., 2012). With only local features, Φ and ∆Φ decompose into a sum

over actions and and the argmin can be pushed inside that sum. This is equivalent to an

(unstructured) perceptron update for every step in the trajectory. When global features

are added, the update to the local features ceases to match the unstructured perceptron

update and both global and local features are only updated with respect to a prefix of the

oracle and predicted trajectory.

This prefix update may mean that mistakes at the end of the trajectory will not

be corrected until the mistakes at the beginning are fixed.10 Skipping training data puts

10This is the intended behavior under the beam separability assumption, but this may lead to very poor
performance in general.
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global models at a disadvantage over local ones, and we attribute the poor performance of

the global models to this issue.

This problem was one of the motivations of max violation over the early update

strategy introduced by Collins and Roark (2004). Huang et al. (2012) described an update

called “latest update” which chooses the longest prefix which was still a violator, presumably

to address the problem of skipping training data. While this may help, it is still possible

to construct examples where a classification update would be made but a “latest update”

would not.

For example, let s(yi) = w · φ(x, yi) and s(y[1:i]) = w · φ(x, y[1:i]), such that

w · ∆Φ(x, y[1:i], z[1:i]) = s(y[1:i]) − s(z[1:i]). Assume local scores s(yi) are derived from

one-hot vectors indexed by (i, yi). Assume a global model with the form: s(y[1:i]) =

∑

k<j w · f(yk, yj) +
∑

j s(yj) Take a sequence of binary decisions over the alphabet {a, b}

with mistakes at indices i and j such that i < j. Assume greedy search.

yi = a, yj = b, zi = b, zj = a

w · f(b, a) = −3, w · f(x, y) = 0 ∀(x, y) 6= (b, a)

s(yi) = 0, s(yj) = 0

s(y[1:i]) = 0, s(y[1:j]) = 0

s(zi) = 1, s(zj) = 1

s(z[1:i]) = 1, s(z[1:j]) = 1 + 1 +−3 = −1

s(y[1:j]) > s(z[1:j]) ⇔ ∆Φ(x, y[1:i], z[1:i]) < 0

(x, y[1:j], z[1:j]) is in the confusion set, but is not a violator, even though yj 6= zj , and the

classification update would change s(yj) and s(zj).
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Gold f Auto f

Training PB ∆` FN ∆` PB ∆` FN ∆`

max violation -3.5 -0.9 -1.3 -0.4
latest update -1.4 -0.7 -1.4 -0.3
max violation +class -3.0 +1.8 -2.2 +2.4
latest update +class -2.4 +1.2 -2.4 +2.4

Figure 5.7: Global model advantage using roleCooc and easyfirst-dynamic across VFP
variations and +class.

Both max violation and latest update would choose to update on (x, y[1:i], z[1:i]) in

hopes of fixing it before moving on to the mistake at j. This happens consistently in our

experiments (on the FrameNet data with roleCooc, by the end of training more than 10%

of violators contain a mistake in the suffix not chosen by max violation).

Results In Figure 5.7 we show the performance of max violation and latest update vari-

ants of VFP along with an augmentation (+class) intended to fix the issue of missing suffix

mistakes. Global models were trained with the roleCooc feature template and easyfirst-

dynamic action ordering. +class adds an unstructured perceptron update for every index

in the trajectory. This modification always helps on FrameNet, leading to global models

which outperform local models, but consistently hurts on Propbank. Remember that all

of these deltas are measured against a local only model, which is a pure class update, so

you can think of the +class variants as a linear interpolation between a global and local

objective.

LOLS

LOLS performs a roll-in with the current policy. This causes many updates which

are derived from mistakes during frame identification. Once the wrong frame is predicted,
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in argument identification the model’s cost incentives flip towards trying to predict ∅ for

all roles so as not to incur false positives. The roles in FrameNet are defined based on

the frame11 and in Propbank they are not consistent across frames.12 This is arguably a

pathological property of a transition system: action costs strongly depend on state.

Using LOLS (model roll-in), there is a strong bias towards choosing ∅ for all roles,

leading to high precision, low recall, and overall sub-optimal models. We found that when

training the argument identification parameters of the model it was better to perform a

hybrid model/oracle roll-in whereby the frame identification actions were chosen by the

oracle. This may not be the fault of LOLS, but the of Hamming loss for action costs, which

is a bad surrogate for F-measure.

Another important component of LOLs is the choice of cost in the cost-sensitive

classification reduction. We found that defining costs based on the Hamming loss of an

action performed very poorly. We found much better results with the multiclass hinge

encoding described in Lee et al. (2004). In Figure 5.8 we show performance with various

choices of roll-in and cost definitions. The best LOLS global models consistently improve

over local models.

Absolute Performance

Throughout this work we have listed relative performance. Our absolute perfor-

mance is 73.0 for Propbank (dev) and 55.3 for FrameNet (dev). This falls significantly short

of the work of Zhou and Xu (2015) at 81.1 (PB dev), FitzGerald et al. (2015) at 79.2 (PB

11If you label a span as the Cognizer role for the frame Opinion and that span was the Cognizer role for
the Judgment frame, then the label is wrong.

12with the exception of ARG0 and ARG1 which typically correspond to proto-Agent and proto-Patient roles.
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Gold f Auto f

Roll-in Cost PB ∆` FN ∆` PB ∆` FN ∆`

model Hamming -24.5 -15.5 -10.1 -4.9
model Hinge -1.7 -1.1 -0.4 +0.2
hybrid Hamming -22.1 -12.9 -8.9 -1.0
hybrid Hinge +0.8 +1.0 +0.9 +1.1

Figure 5.8: Global model advantage using roleCooc and easyfirst-dynamic across LOLS
variations: roll-in and cost function.

dev), and 72.0 (FN). Those works used non-linear neural models with multi-task distributed

representations, which are not comparable to our results. However, the models of Pradhan

et al. (2013) at 77.5 (PB test) and Das et al. (2012) at 64.6 (FN test) are roughly com-

parable, and the performance gap is still significant. While our efforts do not advance the

state of the art in SRL, we hope that they are enlightening with respect to the application

of various imitation learning methods.

5.4 Related Work

Berant and Liang (2015) used imitation learning for learning a semantic parser.

Their prediction problem was parsing rather than SRL tagging, which they exploit with a

manually designed grammar which greatly limited the space of trajectories. Their model also

was not greedy, they used a chart-shaped beam instead of a linear beam or greedy inference.

Their algorithm is probabilistic, similar to policy gradient (Sutton et al., 1999), compared

to the methods used in this work which were discriminative (VFP) and cost-based (LOLS).

While their methods are similar to LOLS, they did not explicitly describe the incentive-

flipping behavior related to mistakes during model roll-in which we described in §5.3.7. It is

possible that some of their tricks used during updates (i.e. history compression) minimized
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this as a problem. They may also have not had issues because their method is largely

bottom up and uses a large beam in each cell which makes pruning mistakes significantly

less likely.

Choi and Palmer (2011) explored transition based SRL and proposed some global

features (e.g. copy ARG0 from controlling predicates) but did not consider action re-ordering

or imitation learning.

Wiseman and Rush (2016) derive a learning to search framework which is related

to LaSO (Daumé III and Marcu, 2005). Similar to our hybrid roll-in, they “reset” the beam

as soon as the oracle prefix falls off. This has the effect of preventing the z trajectory from

deviating from the oracle too much, which may address the consistency with VFP. Their

objective function includes a term for every index in the trajectory, similar to LOLS and

distinct from VFP (which updates with respect to a prefix). Their work does not address

(re-)ordering but does address beam search.

5.5 Conclusion

We started this chapter with a motivation for frame-based situation detection as

a way of recognizing and understanding events, which plays a crucial role in report linking.

We described some frame-based semantic theories and their associated resources for training

statistical parsers. We then turned to the design and implementation of fast and efficient

SRL parsers which we train with imitation learning methods. The parsers in this work

don’t do any backtracking and have to learn how much to trust the information captured

in their history through global features. Other higher-order structured prediction methods

126



CHAPTER 5. FRAME-BASED SITUATION DETECTION

have to either use a dynamic program (limiting the expressivity of their global features) or

a large beam (slowing down inference) to search their way to better labelings. In this work

we score our way to better labelings. Our contributions are a new method for doing hybrid

roll-ins (related to pipeline training) which helps models with tight coupling between pairs

of states learn more effectively (§5.3.7). We also show the conditions under which previous

structured perceptron based methods will succeed and fail (§5.3.5 and §5.3.7). In §5.3.4 we

describe a variety of action ordering techniques including frequency-based, random, left-

to-right, and easy-first. We describe static and dynamic implementations of the last three

and find that dynamic methods work better when you have more data and static versions

otherwise. This Chapter therefore contributes a solution to identifying those predicates and

arguments – situations, as defined initially – that may form the basic elements in a model

for linking, which we turn to in the next chapter.
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Chapter 6

Predicate Argument Alignment

6.1 Introduction

In the previous chapter we were concerned with identifying frames and roles in

text which serve as a disambiguated latent form for natural language understanding. In

this chapter we are interested in building models which can link mentions of equivalent

latent forms in related documents. We call this task predicate argument linking (PAL)

following Roth and Frank (2012). PAL is not about linking predicates to arguments (akin

to semantic role labeling, see Chapter 5), but rather linking equivalent predicates and

equivalent arguments mentioned in different discourses. The argument-linking half of PAL

is related to, but more general than, cross document coreference resolution since arguments

are not limited to restricted classes like entities (Bagga and Baldwin, 1998) or noun phrases

(Soon et al., 2001), and can include pronouns, nominal phrases, or even situations (“[Playing

fetch for hours]arg [tired out]pred [Fido]arg”). The predicate-linking half of PAL is close to

event coreference (Bagga and Baldwin, 1999)
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Predicate argument linking is a central part of report linking because it allows

users to take a claim in a report and find other mentions of it. This can be useful for

verification (e.g. finding an equivalent claim stated by a more trustworthy source that

is currently available (Dong et al., 2015)), finding new information (e.g. finding a source

which discusses a claim and related details more extensively), or deduplication (e.g. hiding

all claims which have already been read by the user (Dang and Owczarzak, 2008)).

We study predicate argument linking over a small collection of documents. We have

discussed entity-based (Chapter 3) and relation-based (Chapter 4) methods for building

these triage sets of related documents. In this chapter we use small document collections

which were collected by using simple document clustering techniques, but this departure

is useful in that it allows us to measure performance of the linking stages against other

research and irrespective of the triage quality.

We treat the problem of predicate argument linking as decomposing over pairs of

documents, similar to Roth and Frank (2012). Analyzing more than a pair of documents

requires both more computation and nuanced representation theories for concepts. The

pairwise framing of the problem allows models which are fast and discriminatively trained,

allowing immediate progress on a task with immediate applications.

In this chapter we discuss two models for PAL. The first §6.3 poses linking as a

classification problem and discusses what sorts of features are useful in a discriminatively

trained linking model. The second §6.4 is a generalization of the first model which includes

global factors which enforce coherence in the linking decisions made. In Figure 6.1 we give

an illustration of the predicate argument linking task which can be used as a reference.
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RF

• Australian [police]1 have [arrested]2 a man in the western city of Perth over an alleged
[plot]3 to bomb Israeli diplomatic buildings in the country , police and the suspect ’s
[lawyer]4 [said]5
• Federal [police]1 have [arrested]2 a man over an [alleged]6 [plan]3 to [bomb]7 Israeli
diplomatic [posts]8 in Australia , the suspect ’s [attorney]4 [said]5 Tuesday .

MTC

• As I [walked]1 to the [veranda]2 side , I [saw]2 that a [tent]3 is being decorated for
[Mahfil-e-Naat]4 -LRB- A [get-together]5 in which the poetic lines in praise of Prophet
Mohammad are recited -RRB-
• I [came]1 towards the [balcony]2 , and while walking over there I [saw]2 that a [camp]3
was set up outside for the [Naatia]4 [meeting]5 .

EECB

• [Gaetano Lo Presti]15, one of [99 alleged Sicilian Mafia members]17 [seized3 on [Tuesday]27,
has apparently [hanged]1 [himself]15 with his [belt]39 in [prison]13.
• [A suspected Mafia leader]15 committed [suicide]1 overnight after being [arrested]3 in [a
major police sweep]5, [police]16 in [Palermo, Sicily]21, [said]4 on [Wednesday]26.

Figure 6.2: Example pairs of sentences in aligned documents in the RF, MTC, and EECB
corpora.

6.2.1 Extended Event Coreference Bank

The Extended Event Coreference Bank (EECB) which is based on the Event Coref-

erence Bank of Bejan and Harabagiu (2010), with argument coreference annotations added

by Lee et al. (2012). EECB structures the data into document clusters of articles from

Google News, and only within these clusters can predicates and arguments corefer. Lee

et al. (2012) considered clustering all mentions within a document cluster, but our meth-

ods work with pairs of documents, so we construct pairs by taking the first document in a

cluster and creating a pair for every remaining document in the cluster. This yielded 340

document pairs. Since there is no train/test split, we evaluate on this data using 5-fold

cross validation, and the scores reported are averages across these folds.
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6.2.2 Roth and Frank

Roth and Frank (2012) (RF) annotated documents from the English Gigaword

Fifth Edition corpus (Parker et al., 2011) for predicate argument alignments. Their goal

was to align predicates in order to find null-instantiated arguments by projecting across

alignments. Like EECB, they also used a document clustering technique based on headlines,

which yields pairs of documents which are very similar. See Figure 6.2 for examples of

how similar aligned sentences can be. The corpus is small with only 60 document pairs

comprising the test set and 10 document pairs available for development or tuning.

6.2.3 Multiple Translation Corpora

We constructed a new predicate argument alignment dataset based on the LDC

Multiple Translation Corpora (MTC),1 which consist of multiple English translations for

foreign news articles. Since the English translations should only differ in the words and

phrases used while remaining true to the meaning in the source language, they provide a

good resource for aligned predicate argument pairs in the target language. Other corpora

like RF contain many aligned documents which are very lexically similar to each other,

possibly stemming from a common news service article. We created the MTC corpus to

test whether systems can recognize alignments in the face of lexical diversity, so we selected

document pairs from the multiple translations that minimize the lexical overlap in English.

The sentences in the MTC data are already aligned, and we use GIZA++ to determine

token-level alignments within each sentence. We take all aligned nouns as arguments and all

1LDC2010T10 LDC2010T11 LDC2010T12 LDC2010T14 LDC2010T17 LDC2010T23 LDC2002T01
LDC2003T18 LDC2005T05
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aligned verbs (excluding be-verbs, light verbs, and reporting verbs) as predicates. We then

add negative examples by randomly substituting half of the sentences in one document with

unrelated sentences from another corpus, introducing negative alignments. The amount of

substitutions we perform can vary the “relatedness” of the two documents in terms of the

predicates and arguments that they talk about. This reflects our expectation of real world

data, where we do not expect perfect overlap in predicates and arguments between a source

and target document, as you would in translation data.

Lastly, we prune any document pairs that have more than 80 predicates or argu-

ments or have a Jaccard index of lemmas greater than 0.5, to give us a dataset of similar

size to the EECB: 328 pairs.

6.3 Feature-rich Models of Alignment

Our first investigation is into whether discriminative classifier-based method are

sufficient for predicate argument linking. And to the extent that they are, what features

are predictive? We consider pairs of documents from the three corpora described in the

last section and report on the accuracy based on a rich feature set drawing on a variety of

semantic resources.

6.3.1 PARMA

parma (Predicate ARguMent Aligner) is the name of the classifier-based aligner

in this section. It considers predicates as singletons within a document but arguments are

represented as coreference chains inferred using the Stanford coreference resolver (Lee et al.,
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2011). For argument features which require a single mention, we select a canonical mention

from coreference chains which has the highest score: the number of NNP words minus the

number of mentions preceding it in the document, with ties going to the earlier mention.

Notation We refer to a predicate or an argument as an “item” with type predicate or

argument. An alignment between two documents is a subset of all pairs of “items” in

either documents with the same type2. We call the two documents being aligned the source

document S and the target document T . Items are referred to by their index, and zij

is a binary variable representing an alignment between item i in S and item j in T . A

full alignment is an assignment z ∈ {0, 1}|S|×|T |. zij is a binary variable that is 1 for an

alignment between item i in S and item j in T and 0 otherwise.

We train a logistic regression model for p(z | x) and maximize the likelihood of a

document alignment under the assumption that the item alignments are independent.

p(z | x) =
∏

ij

p(zij | x) (6.1)

=
∏

ij

1

1 + exp(−w · f(zij , x))
(6.2)

The set of training data is a set of aligned documents (z, x) ∈ D. We optimize the log-

likelihood of the alignments with an L1 regularization term:

J(w) = E(z,x)∈D log p(z | x) + λ||w||1 (6.3)

After learning model parameters w we optimize F1 by introducing a threshold τ on the

2Note that type is not the same thing as part of speech: we allow nominal predicates like “death”.
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probability for alignments. This two-step process lets us tune for either precision or recall

and usually leads to a higher F1 than by simply using the 50% probability threshold typically

used in logistic regression.

6.3.2 Features

The focus of parma is the integration of a diverse range of features based on

existing lexical semantic resources. We built parma on a supervised framework to take

advantage of this wide variety of quality features since they can describe many different

correlated aspects of generation. Our features cover the spectrum from high-precision (e.g.

TED alignments) to high-recall (e.g. PPDB lexical rules). Each feature has access to the

proposed argument or predicate spans to be linked and the containing sentences as context.

While we use supervised learning, some of the existing datasets for this task are very small.

For extra training data, we pool material from different datasets and use the multi-domain

split feature space approach to learn dataset specific behaviors (Daumé, 2007).

Features in general are defined over mention spans, but we take the product of

these features with the part of speech tag of the head word, which often corresponds to

separate feature-spaces for predicates and arguments.

PPDB We use lexical features from the Paraphrase Database (PPDB) (Ganitkevitch

et al., 2013). PPDB is a large set of paraphrases extracted from bilingual corpora using

pivoting techniques. We make use of the English lexical portion which contains over 7

million rules for rewriting terms like “planet” and “earth”. PPDB offers a variety of con-

ditional probabilities for each (synchronous context free grammar) rule, which we treat as
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independent experts. For each of these rule probabilities (experts), we find all rules that

match the head tokens of a given alignment and have a feature for the max and harmonic

mean of the log probabilities of the resulting rule set.

FrameNet FrameNet is a lexical database based on Charles Fillmore’s Frame Semantics

(Fillmore, 1982; Baker et al., 1998). The resource is organized around semantic frames that

can be thought of as descriptions of events (see §5.2.1 for more details). Frames crucially

include specification of the participants, or frame elements, in the event. The Destroy frame

for instance includes frame elements Destroyer or Cause (which differ in sentience) and Un-

dergoer. Frames are related to other frames through inheritance and perspectivization. For

instance the frames Commerce buy and Commerce sell (with respective lexical realizations

“buy” and “sell”) are both perspectives of Commerce goods-transfer (no lexical realizations)

which inherits from Transfer (with lexical realization “transfer”).

We compute a shortest path between headwords given edges (hypernym, hyponym,

perspectivized parent and child) in FrameNet and bucket by distance to get features. We

also have a binary feature for whether two tokens evoke the same frame.

TED Alignments Given two predicates or arguments in two sentences, we attempt to

align the two sentences using a Tree Edit Distance (TED) model that aligns two dependency

trees. We represent a node in a dependency tree with three fields: lemma, POS tag and

the type of dependency relation to the node’s parent. The TED model aligns one tree

with the other using the dynamic programming algorithm of Zhang and Shasha (1989) with

three predefined edits: deletion, insertion and substitution, seeking a solution yielding the
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minimum edit cost. Once we have built a tree alignment, we extract features for 1) whether

the heads of the two phrases are aligned and 2) the count of how many tokens are aligned

in both trees. This type of feature has been shown to be very useful for tasks like question

answering (Yao et al., 2013).

WordNet WordNet (Miller, 1995) is a database of information (synonyms, hypernyms,

etc.) pertaining to words and short phrases. For each entry, WordNet provides a set

of synonyms, hypernyms, etc. Given two spans, we use WordNet to determine semantic

similarity by measuring how many synonym (or other) edges are needed to link two terms.

Similar words will have a short distance. For features, we find the shortest path linking the

head words of two mentions using synonym, hypernym, hyponym, meronym, and holonym

edges and bucket the length.

String Transducer To represent similarity between arguments that are names, we use a

stochastic edit distance model. This stochastic string-to-string transducer has latent “edit”

and “no edit” regions where the latent regions allow the model to assign high probability

to contiguous regions of edits (or no edits), which are typical between variations of person

names. In an edit region, parameters govern the relative probability of insertion, deletion,

substitution, and copy operations. We use the transducer model of Andrews et al. (2012).

Since in-domain name pairs were not available, we instead applied the unsupervised model

of Andrews et al. to a corpus of 5,000 Wikipedia redirects to estimate the transducer

parameters. For a pair of mention spans, we compute the edit cost and bucket to get

features. We duplicate these features with copies that only fire if both mentions are tagged
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F1 Precision Recall
EECB lemma 63.5 84.8 50.8

parma 74.3 80.5 69.0
RF lemma 48.3 40.3 60.3

Roth and Frank (2012) 54.8 59.7 50.7
parma 57.6 52.4 64.0
Roth (2013) 58.2 71.8 48.9

MTC lemma 42.1 51.3 35.7
parma 59.2 73.4 49.6

Table 6.1: Results on each of the datasets.

as PER, ORG or LOC.

6.3.3 Experiments

Metric We use precision, recall and F1. For RF, we follow Roth and Frank (2012) and

Cohn et al. (2008) and evaluate on a version of F1 that considers sure and possible links,

which are available in the RF data (but not EECB or MTC, where we treat all alignments

as sure). Given an alignment to be scored A and a reference alignment B which contains

sure and possible links, Bs ⊆ Bp respectively, precision and recall are:

P =
|A ∩Bp|

|A| R =
|A ∩Bs|
|Bs|

(6.4)

and F1 as the harmonic mean of the two. Results for EECB and MTC reflect 5-fold cross

validation, and RF uses the given dev/test split.

Lemma baseline We include a lemma baseline, in which two predicates or arguments

align if they have the same lemma3.

3We could not reproduce lemma from Roth and Frank (2012) (shown in Table 6.1) due to a difference in
lemmatizers. We obtained 55.4; better than their system but worse than parma.
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For the Roth and Frankdataset, we train parmawith 150 random examples from

each of EECB and MTC, and the entire dev set from Roth and Frankusing multi-domain

feature splitting. We also tune the threshold τ on the dev set, but choose the regularizer λ

on the EECB experiments.

Results On every dataset parma significantly improves over the lemma baselines (Table

6.1). Our model performs better than Roth and Frank (2012) but worse than Roth (2013),

who added a few more features to the model of Roth and Frank (2012). We also note that

compared to Roth and Frank (2012) and Roth (2013) we obtain higher recall but lower

precision, which reflects their goals of finding high precision/clean links for downstream

tasks, versus our approach which optimizes for F1.
4

We observe that MTC was more challenging than the other datasets, at least

as measured by the lemma baseline. Figure 6.3 shows the correlation between document

similarity and alignment F1 score for the lemma baseline on the RF and MTC data sets. For

the RF dataset the more similar the document pairs were the more likely lemma matching

was going to work well. This correlation means that by selecting document pairs with high

lexical overlap is akin to choosing the easiest documents to link predicates and arguments

on, where naive assumptions like lemma matching are likely to work. Our constructed

MTC corpus does not exhibit this behavior. There are document pairs which are similar

and some which are diverse (note, much more diverse than the RF documents, which all

have a similarity of around 0.55 or higher), but the fact that they are similar does not mean

4In Chapter 4 we said that F1 gave too much credit for recall and that precision was more important.
This statement was made with respect to distant supervision, where perfect recall is a false goal (likely
unattainable by any system given that some facts will not be attested to). In the case of this information
extraction problem, perfect recall is an attainable goal, and should be rewarded.
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6.4.1 Model

The classification framework used in the previous section has advantages: it’s

fast since individual decisions can be made independently, but it comes at the cost of

potential incoherence in the linking decisions. The result may be links that conflict in their

interpretation of the document. Figure 6.1 shows that there is a significant amount of

latent structure (everything except the red links) involved in predicate argument linking,

and independent models may predict alignments which are not consistent with this latent

structure. In §6.4.2 we will discuss some of the inconsistencies which can occur and how to

parameterize our scoring function to avoid them.

We can make a crude analogy between predicate argument alignment and word

alignment for machine translation (MT). MT alignment models like IBM model 2 (Brown

et al., 1993) decompose the probability of an alignment into two terms, a translation proba-

bility (e.g. p(ei = “cat” | fj = “chat”) ) and a distortion probability of where in a sentence

a given word is generated from conditioned on the previous generation. The analogy carries

over for the translation term where we model the probability that a predicate or argument

is paraphrased in a particular way (this score is described in §6.3). But the distortion prob-

ability differs between MT and predicate argument alignment in that we don’t expect any

sort of monotonicity or other word ordering effects in our predicate or argument alignments.

Lacoste-Julien et al. (2006) introduced a discriminative alignment model which

models the pairwise interactions between two alignments decisions zab and zxy. When

the alignment model is stated generally like this we can re-interpret the meaning of the

quadratic factors and parameterize them however we like, which we will get into in the
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next section. Inference in this type of quadratic model is an instance of the Quadratic

Assignment Problem (QAP), which is NP-hard in general, but very fast to solve for the size

of problems we are concerned with.

We first introduce some notation for our model and then define the quadratic

factors (or joint factors) which encourage predicate argument alignments which have global

coherence. Following the description of factors we will describe inference and learning §6.4.3

followed by experiments §6.4.4.

Notation We say that a source document S and target document T together form an

instance x, for which we would like to produce an alignment matrix (rows index items in

the source and columns in the target) z ∈ {0, 1}|S|×|T |. zij = 1 indicates that item i in the

source and item j in the target are aligned and in some cases we will explicitly indicate

whether the items are predicates (zpij) or argument (zaij).

For each pair of items we use local feature functions f(zij , x) and corresponding

parameters w, which capture the similarity between two items without the context of other

alignments. These are the same local features as described in §6.3.

glocal(z) =
∑

ij

sij = w · f(zij , x) (6.5)

where sij is the score of linking items i and j.

Using only local features, our system would greedily select alignments. To capture

global aspects we add joint factors that capture effects between alignment variables. Each

joint factor φ is comprised of a constrained binary variable zφ associated with features f(φ)

142



CHAPTER 6. PREDICATE ARGUMENT ALIGNMENT

that indicates when the factor is active. Together with parameters w these form additional

scores sφ for the objective:

sφ = w · f(φ) (6.6)

The full linear scoring function on alignments sums over both local similarity and

joint factors:

gglobal(z) =
∑

ij

sijzij +
∑

φ∈Φ

sφzφ. (6.7)

6.4.2 Joint Factors

Our goal is to develop joint factors that improve over the feature rich local factors

baseline by considering global information.

Fertility A common mistake when making independent classification decisions is to align

many source items to a single target item. While each link looks promising on its own, they

clearly cannot all be right. Empirically, the training set reveals that many to one alignments

are uncommon; thus many to one predictions are likely errors. We add a fertility factor

for predicates and arguments, where fertility is defined as the number of links to an item.

Higher fertilities are undesired and are thus penalized. Formally, for matrix z, the fertility

of a row i or column j is the sum of that row or column.

We include two types of fertility factors. The first factor distinguishes between

rows with at least one link from those with none. For every row and column we add an

auxiliary variable z
fert1
i , which indicates if the fertility of a given row is at least 1, and a

global factor φfert1
i . For the auxiliary variable, we add constraints relating it to the primary
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alignment variables:

z
fert1
i = max

j
zij (6.8)

The factor is parameterized by weights and some simple features: an indicator for the type

of alignment (predicate or argument), and log-sized bucketed features for the length of the

row or column.

The second fertility factory considers items with a fertility greater than one, pe-

nalizing items for having too many links. These φfert2
i factors have the same type of param-

eterization (different weights, same features), but the auxiliary variables have a different

set of constraints:

z
fert2
i ≥ zij · zik ∀j < k (6.9)

z
fert2
i ≤ zij ∀j (6.10)

This factor penalizes rows and columns that have fertility of at least two, but does not

distinguish beyond that. An alternative would be to introduce a factor for every pair of

variables in a row, each with one constraint. This would heavily penalize fertilities greater

than two. We found that the resulting quadratic program took longer to solve and gave

worse results.

Since documents have been processed to identify in-document coreference chains,

we do not expect multiple arguments from a source document to align to a single target

item. For this reason, we expect φfert2 for arguments to have a large negative weight. In

contrast, since predicates do not form chains, we may have multiple source predicates for
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one target.

We note an important difference between our fertility factor compared with Lacoste-

Julien et al. (2006). We parameterize fertility for only two cases (1 and 2) whereas they

consider fertility factors from 2 to k. We do not parameterize fertilities higher than two

because they are not common in our dataset and come at a high computational cost.

Predicate Argument Structure The predicate argument structure (PAS), i.e. which

arguments bind to which predicates in either document, provides a structured way to view

the linking decisions made by our model. We infer predicate argument structure by check-

ing whether there is a short (no more than 3 edges) syntactic dependency path between

a predicate and argument. This is similar to using a semantic role labeler like the one

described in Chapter 5, but where the system is constrained by provided argument spans

and where the roles are dropped.5

Predicate-centric We start with the predicate-centric factor φpsa
ij , which is instantiated

once for every predicate alignment variable z
p
ij . Ideally, two predicates can only align when

they share the same arguments (e.g. “John [ate]i pizza” doesn’t align to “John [ate]j

guacamole”). However, in practice we may incorrectly resolve argument links, or there

may be implicit arguments that do not appear as syntactic dependencies of the predicate

trigger. Therefore, we settle for a weaker condition, that there should be some overlap in

the arguments of two coreferent predicates.

For every predicate alignment z
p
ij , we add a factor φ

psa
ij whose score s

psa
ij the re-

5The factors we list here do not depend on roles so as to make as little assumptions as possible and be
robust to role classification errors.
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ward for having some argument overlap; predicates share arguments (PSA). We introduce

auxiliary variables z
psa
ij and z

arg
ij which track whether the PAS for z

p
ij satisfies the at least

one shared argument condition:

zarg(ij) = max
k∈args(i)
l∈args(j)

zakl (6.11)

z
psa
ij ≥ z

p
ij · zarg(ij) (6.12)

z
psa
ij ≤ z

p
ij (6.13)

z
psa
ij ≤ zarg(ij) (6.14)

where args(i) finds the indices of all arguments governed by the predicate i. The fea-

tures for this factor f(φpsa
ij , x) have an intercept, an indicators for minp∈{i,j} |args(p)| and

maxp∈{i,j} |args(p)|.

Entity-centric We expect a similar type of behavior from arguments, or at least the

subset which tend to be aligned which are usually named entities. If an entity appears in

two documents, it is likely that this entity will be mentioned in the context of a common

predicate, i.e. arguments share predicates (ASP). For a given argument alignment zaij we

add a factor φ
asp
ij and the auxiliary variables z

asp
ij and zpred(ij) needed to encode the ASP
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semantics:

zpred(ij) = max
k∈preds(i)
l∈preds(j)

zakl (6.15)

z
asp
ij ≥ zaij · zpred(ij) (6.16)

z
asp
ij ≤ zaij (6.17)

z
asp
ij ≤ zpred(ij) (6.18)

where preds(i) returns all predicates which bind some mention of argument i in a corefer-

ence chain. The features f(φasp
ij ) are the same as f(φpsa

ij ) but with |args(p)| replaced with

|preds(p)|.

Temporal Information In two documents which discuss a common set of events, as long

as the authors have the same perception of what occurred, the order of events in time that

they report should be the same. Any alignments which violate the common order of shared

events should be penalized. Determining the temporal order of events described in text was

the subject of a SemEval 2013 task (UzZaman et al., 2013). Many systems produce partial

relations of events in a document based on lexical aspect and tense, as well as discourse

connectives like “during” or “after”. We obtain temporal relations with CAEVO, a state-

of-the-art sieve-based system (Chambers et al., 2014), and use these orderings to place soft

constraints on some of our predicate alignments which correspond to events.

TimeML (Pustejovsky et al., 2003), the format for specifying temporal relations,

defines relations between events (e.g. immediately before and simultaneous), each with an
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inverse (e.g. immediately after and simultaneous respectively). We will refer to a temporal

relation as R and its inverse as R−1. Suppose we had two event predicates pa and pb in the

source, and two other event predicates px and py in the target. If we observed paR1pb and

pxR2py, the following alignments conflict with the in-doc relations:6

zax zby zay zbx In-Doc Relations

* * 1 1 R1 = R2

1 1 * * R1 = R−1
2

where 1 means there is a link and * means there is a link or no link (wildcard). The simplest

example that fits this pattern is: ‘a before b’, ‘x before y’, ‘a corefers with y’, and ‘b corefers

with x’ implies a conflict.

We introduce a factor that penalizes these conflicting configurations. For every

temporal ordering conflict we observe which matches that pattern in the table above, we

6We exclude simultaneous from this list of conflicts because it does not lead to the type of temporal
ordering conflicts as the other relations.
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instantiate an auxiliary variable z
temp
abxy with the following constraints:

z
temp
abxy ≥ zay · zbx

z
temp
abxy ≤ zay

z
temp
abxy ≤ zbx

if paR1pb, pxR2py, R1 = R2

z
temp
abxy ≥ zax · zby

z
temp
abxy ≤ zax

z
temp
abxy ≤ zby

if paR1pb, pxR2py, R1 = R−1
2

(6.19)

Thus s
φ
temp

abxy
is the cost of disagreeing with the in-doc temporal relations.

Since CAEVO gives each relation prediction a probability, we incorporate this

into the feature by indicating the probability of a conflict not arising:

f(φtemp) = log
(

1− p(R1)p(R2) + ε
)

(6.20)

ε avoids large negative values since CAEVO probabilities are not perfectly calibrated. We

use ε = 0.1, allowing feature values of at most −2.3.

Summary The objective is a linear function over binary variables. There is a local similar-

ity score coefficient on every alignment variable, and a joint factor similarity score on every

quadratic variable. These quadratic variables are constrained by products of the original
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def train(alignments):

w = init_weights()

working_set = set()

while True:

xi = solve_ILP(w, working_set)

c = most_violated_constraint(w, alignments)

working_set.add(c)

if hinge(c, w) < xi:

break

def most_violated_constraint(w, alignments):

delta_features = vector()

loss = 0

for z in alignments:

z_mv = make_ILP(z)

for phi in factors:

costs = dot(w, phi.features)

z_mv.add_terms(costs, phi.vars)

z_mv.add_constraints(phi.constraints)

solve_ILP(z_mv)

mu = (z.size + k) / (avg_z_size + k)

delta_features += mu * (f(z) - f(z_mv))

loss += mu * Delta(z, z_mv)

return Constraint(delta_features, loss)

def hinge(c, w):

return max(0, c.loss - dot(w, c.delta_features))

Figure 6.4: Learning algorithm (caching and ILP solver not shown). The sum in each constraint
is performed once when finding the constraint, and implicitly thereafter.

alignment variables. Decoding an alignment requires solving this quadratically constrained

integer program; in practice is can be solved quickly without relations.

6.4.3 Inference

Learning We use the supervised structured SVM formulation of Joachims et al. (2009).

As is common in structure prediction we use margin rescaling and 1 slack variable, with the
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structural SVM objective:

min
w

||w||22 + Cξ

s.t. ξ ≥ 0

ξ +
N
∑

i=1

w · f(zi) ≥
N
∑

i=1

w · f(ẑi) + ∆(zi, ẑi)

∀ẑi ∈ Zi

(6.21)

where Zi is the set of all possible alignments that have the same shape as zi.

The score function for an alignment uses three types of terms: weights, features,

and alignment variables. When we decode, we take the product of the weights and the

features to get the costs for the ILP (e.g. sφ = w · f(φ)). When we optimize our SVM

objective, we take the product of the alignment variables and the features to get modified

features for the SVM:

f(z) =
∑

ij

zijf(zij) +
∑

φ∈Φ

zφf(φ) (6.22)

Since we cannot iterate over the exponentially many margin constraints, we solve

for this optimization using the cutting-plane learning algorithm. This algorithm repeat-

edly asks the “separation oracle” for the most violated SVM constraint, which finds this

constraint by solving:

arg max
ẑ1...ẑN

∑

i

w · f(ẑi) + ∆(zi, ẑi) (6.23)

subject to the constraints defined by the joint factors. When the separation oracle returns

a constraint that is not violated or is already in the working set, then we have a guarantee

that we solved the original SVM problem with exponentially many constraints. This is the
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most time-consuming aspect of learning, but since the problem decomposes over document

alignments, we cache solutions on a per document alignment basis. With caching, we only

call the separation oracle around 100-300 times.

We implement the separation oracle using an ILP solver, CPLEX,7 due to com-

plexity of the discrete optimization problem: there are 2m
n

possible alignments for and

m× n alignment grid. In practice this is solved very efficiently, taking less than a third of

a second per document alignment on average. We would like ∆ to be F1, but we need a

decomposable loss to include it in a linear objective (Taskar et al., 2003). Instead, we use

Hamming loss as a surrogate, as in Lacoste-Julien et al. (2006).

Our training data is heavily biased towards negative examples, performing poorly

on F1 since precision and recall are unbalanced. We use an asymmetric version of Hamming

loss that incurs cFP cost for predicting an alignment for two unaligned items and cFN for

predicting no alignment for two aligned items. We fixed cFP = 1 and tuned cFN ∈ {1, 2, 3, 4}

on dev data. Additionally we found it useful to tune the scale of the loss function across

{1
2 , 1, 2, 4}. Previous work, such as Joachims et al. (2009), use a hand-chosen constant for

the scale of the Hamming loss, but we observe some sensitivity in this parameter and choose

to optimize it.

Decoding We tune the threshold for classification τ on dev data to maximize F1 (via

linesearch). For SVMs τ is typically fixed at 0: this is not necessarily good practice when

your training loss differs from test loss (Hamming vs F1). In our case this extra parameter

is worth allocating a portion of training data to enable tuning. Tuning τ addresses the same

7http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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problem as using an asymmetric Hamming loss, but we found that doing both led to better

results.8 Since we are using a global scoring function rather than a set of classifications, τ

is implemented as a test-time unary factor on every alignment.

6.4.4 Experiments

Due to the small data size, we use k-fold cross validation for both datasets. We

choose k = 10 for RF due to its very small size (more folds give more training examples)

and k = 5 on EECB to save computation time (amount of training data in EECB is less

of a concern). Hyperparameters were chosen by hand using using cross validation on the

EECB dataset using F1 as the criteria (rather than Hamming). Figures report averages

across these folds.

Due to the lack of annotated arguments on the Roth and Frankdataset, we can

only report predicate linking performance and the PSA and ASP factors do not apply.

Systems Following Roth and Frank (2012) we include a Lemma baseline for identifying

alignments which will align any two predicates or arguments that have the same lemmatized

head word.9 The Local baseline uses the same features as Wolfe et al., but none of our joint

factors. In addition to running our joint model with all factors, we measure the efficacy of

each individual factor by evaluating each with the local features.

For evaluation we use a generous version of F1 that is defined for alignment labels

8Only tuning τ performed almost as well as tuning τ and the Hamming loss, but not tuning τ performed
much worse than only tuning the Hamming loss at train time.

9The lemma baseline is obviously sensitive to the lemmatizer used. We used the Stanford CoreNLP
lemmatizer (Manning et al., 2014) and found it yielded slightly better results than previously reported as
the lemma baseline (Roth and Frank, 2012), so we used it for all systems to ensure fairness and that the
baseline is as strong as it could be.
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composed of sure, Gs, and possible links, Gp and the system’s proposed links H (following

Cohn et al. (2008) and Roth and Frank (2012)).

P =
|H ∩Gp|

|H| R =
|H ∩Gs|

|Gs|
F =

2PR

P +R

Note that the EECB data does not have a sure and possible distinction, so Gs = Gp,

resulting in standard F1. In addition to F1, we separately measure predicate and argument

F1 to demonstrate where our model makes the largest improvements.

We performed a one-sided paired-bootstrap test where the null hypothesis was

that the joint model was no better than the Local baseline (described in Koehn (2004)).

Cases where p < 0.05 are bolded.

F1 P R Arg F1 Arg P Arg R Pred F1 Pred P Pred R

Lemma 68.1 79.3 * 59.6 61.7 79.1 * 50.6 75.0 87.3 * 65.7
Local 73.0 75.8 70.5 67.7 76.3 60.8 78.7 81.4 76.2

+Fertility 77.1 * 83.9 * 71.3 66.6 80.9 * 56.6 82.8 * 87.4 * 78.7 *
+Predicate-centric 74.1 * 80.7 * 68.6 67.4 81.6 * 57.3 79.7 * 85.0 * 75.1
+Argument-centric 73.7 81.2 * 67.5 66.8 83.0 * 55.9 79.3 85.1 * 74.3
+Temporal 73.7 78.2 * 69.7 67.9 80.6 * 58.7 79.0 82.1 76.1

+All Factors 77.5 * 86.3 * 70.3 65.8 83.1 * 54.5 83.7 * 89.7 * 78.4 *

Table 6.2: 5-fold cross validation performance on EECB (Lee et al., 2012). Statistically
significant (p < 0.05 using a one-sided paired-bootstrap test) improvements from Local are
bolded.

Results Results for EECB and RF are reported in Table 6.3. As previously reported,

using just local factors (features on pairs) improves over lemma baselines. The joint factors

make statistically significant gains over local factors in almost all experiments. Fertility

factors provide the largest improvements from any single constraint. A fertility penalty

actually allows the pairwise weights to be more optimistic in that they can predict more
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Pred F1 Pred P Pred R

Lemma 52.4 47.6 58.2 *
Local 58.1 63.5 53.6
Roth and Frank (2012) 54.8 59.7 50.7
Roth (2013) 58.2 71.8 48.9

+Fertility 60.0 57.4 62.4 *
+Predicate-centric NA NA NA
+Argument-centric NA NA NA
+Temporal 59.0 57.4 60.6 *

+All factors 59.4 56.9 62.2 *

Table 6.3: Cross validation results for RF (Roth and Frank, 2012). Statistically significant
improvements from Local marked * (p < 0.05 using a one-sided paired-bootstrap test) and
best results are bolded.

alignments for reasonable pairs, allowing the fertility penalty to ensure only the best is

chosen. This penalty also prevents the “garbage collecting” effect that arises for instances

that have rare features (Brown et al., 1993).

Temporal constraints are relatively sparse, appearing just 2.8 times on average.

Nevertheless, it was very helpful across all experiments, though only statistically signifi-

cantly on the RF dataset. This is one of the first results to demonstrate benefits of tempo-

ral relations affecting an downstream task. Perhaps surprisingly, these improvements result

from a a temporal relation system that has relatively poor absolute performance. Despite

this, improvements are possibly due to the orthogonal nature of temporal information; no

other feature captures this signal. This suggests that future work on temporal relation

prediction may yield further improvements and deserves more attention as a useful feature

for semantic tasks in NLP.

The predicate-centric factors improved performance significantly on both datasets.

For the predicate-centric factor, when a predicate was aligned there is a 72.3% chance that
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there was at least one argument aligned as well, compared to only 14.1% of case of non-

aligned predicates. As mentioned before, the reason the former number isn’t 100% is primar-

ily due to implicit arguments and errors in argument identification. The argument-centric

features helped almost as much as the predicate-centric version, but the improvements were

not significant on the EECB dataset. Running the same diagnostic as the predicate-centric

feature reveals similar support: in 57.1% of the cases where an argument was aligned, at

least one predicate it partook in was aligned too, compared to 7.6% of cases for non-aligned

arguments. Both the predicate- and argument-centric improve similarly across both predi-

cates and arguments on EECB.

While each of the joint factors all improve over the baselines on RF, the full model

with all the joint factors does not perform as well as with some factors excluded. Specifically,

the fertility model performs the best. We attribute this small gap to lack of training data

(RF only contains 64 training document pairs in our experiments), as this is not a problem

on the larger EECB dataset.

Additionally, the joint models seem to trade precision for recall on the RF dataset

compared to the Local baseline. Note that both models are tuned to maximize F1, so this

tells you more about the shape of the ROC curve as opposed to either models’ ability to

achieve either high precision or recall. Since we don’t see this behavior on the EECB corpus,

it is more likely that this is a property of the data than the model.

6.5 Related Work

Bejan and Harabagiu (2010) studied unsupervised cross-document event corefer-
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ence through the use of non-parametric Bayesian models. They include lexical features of

event mentions as well as features which expose the headwords of arguments chosen by a

semantic role labeler which are similar to our φpsa factors. They found that lexical features

were too fine grain which lead their model to over-split events. They also comment that a

large part of their errors are caused by a lack of part-whole coreference labels such as “Israeli

forces” are a part of “Israel”. In the terminology used here, these inferences are needed to

avoid spurious penalties incurred by the φpsa factors, e.g. in inferring z
p
ij for “Israeli forces

[retreated]i” and “Israel [retreated]j”, if these part-whole coreference decisions cannot be

made φpsa will penalize an otherwise easy linking decision.

Lee et al. (2012) considered a similar problem but sought to produce clusters

of entities and events rather than an alignment between two documents with the goal of

improving coreference resolution. They used features which consider previous event and

entity coreference decisions to make future coreference decisions in a greedy manner. This

differs from our model which is built on non-greedy joint inference, but much of the signal

indicating when two mentions corefer or are aligned is similar.

The task of predicate argument linking was introduced by Roth and Frank (2012),

who used a graph parameterized by a small number of semantic features to express simi-

larities between predicates and used min-cuts to produce an alignment. Their model was

updated in Roth (2013) to include SRL-based features which check the semantic similar-

ity of arguments with a common role, discourse similarity features which measure how far

through a document a predicate is mentioned, and a predicate type context similarity which

looks at a window of neighboring predicates. These improvements beat our local method
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but perform worse than our global model, even when we don’t reason about arguments.

In the context of in-document coreference resolution, Recasens et al. (2013) sought

to overcome the problem of opaque mentions, nominal references to entities which require

word knowledge to justify (such as “chipmaker” referring to AMD), by finding high-precision

paraphrases of entities by pivoting off verbs mentioned in similar documents. We address the

issue of opaque mentions not by building a paraphrase table, but by jointly reasoning about

entities that participate in coreferent events (c.f. §6.4.2); the approaches are complementary.

6.6 Conclusion

In this chapter we study methods for predicate argument alignment. We describe

two new linking models, one of which is based on a rich set of features based on semantic

resources, and another augmented with a joint quadratic inference model which enforces a

set of coherence conditions for a predicate argument alignment.

Predicate argument linking is useful for report linking by enabling users to do a

variety of tasks which require being able to tell when two mentions are referring to the same

entity or event. This includes the ability to find new mentions of a claim make in a report,

finding documents which contain descriptions of events in a report, or finding sentences

which describe things which are already covered in a report so that a user can skip over

redundant text.

Predicate argument linking is appropriate when a user would like to link a report

against a small set of documents. This small set could be generated by the related entity

mention finding work described in Chapter 3. The predicates and arguments which are
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the input to a linker can be inferred using the frame and role identification methods in

Chapter 5.
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Chapter 7

Entity Summarization

7.1 Introduction

The work described so far in this thesis is towards the goal of building a graph

(links are edges) of entities and situations related to the contents of a report. This graph

in part serves as a representation for machine understanding, but it is also intended to be

a tool for helping users explore large text collections quickly and efficiently. Towards this

second goal, we have assumed up to this point that users are happy to explore the link

structure in the same way a machine does: with cues from features on nodes and edges

and with pointers to mentions from which those features are computed. This may not be

ideal for some users, who will not understand how such a report linking system works, or

what the features mean. It may be preferable to have a more human-friendly representation

for nodes in our knowledge graph, and creating these representations is the subject of this

chapter.

Entity summarization is the task of producing short textual summaries describing
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information about a given entity. For report linking, entity summarization offers a human-

friendly way to view entity nodes in a knowledge graph which supports exploration.

What is the relationship between entity summarization and other forms of text

summarization like multi-document summarization? Entity summarization can be thought

of as a faceted version of multi-document summarization where the facets are entities.

Multi-document summarization is well suited for the case where the source documents talk

about a relatively narrow topic for which a few tens or hundreds of words might suffice

for covering the majority of users’ information needs. This setup works well when there

is a mechanism for linking a user’s information needs to a small collection of documents

covering this topic, most often realized through information retrieval techniques based on

an informed query. Entity summarization is meant to aids in non-query-driven exploration

of non-trivial sized text collections, often when a query is difficult to formulate given a

large or under-specified information need. In these cases a few hundred word summary is

not likely to cover the information need, so exploration is preferable. By organizing the

summary into facets (entities), exploration can be efficient (skipping over irrelevant facets)

and complete (once a summary has some structure, it does not get unwieldy when its length

exceeds a few hundred words).

Topic models a commonly suggested method for exploring large text corpora, but

they offer little in terms of structure which can be used to intelligently explore text.1 Knowl-

edge base population techniques offer a lot of structure and can cover information distributed

over a large text collection, but require a user to be familiar with its relational schema and

1By “intelligently explore” we mean in a manner which takes less time than brute force, as in reading ev-
erything. Intelligent exploration can be done when a user knows what they want and can use the information
structure provided in order to find it faster than through enumeration.
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pass along mistakes made during information extraction to unsuspecting users. Entity sum-

maries offer significant structure to aid exploration and present information as the author

of the source material wrote it, mitigating issues around noisy extraction.

To create entity summaries, we require a model of what information is worth

describing about entities. This is another area where entity summarization can improve

upon multi-document summarization. Using an entity as the subject of a summary may lend

itself to more plausible models of information utility than can be used in the general case,

unstructured heterogeneous collections of text. This helps us better address the question of

what information to include in a summary, beyond the question of organizing information

(by entity) discussed earlier.

Previous work in text summarization has mostly modeled information at the lexical

level. We propose two new units of information about entities: the presence of related

entities and of facts about an entity. In the former case we find that existing lexical methods

are highly correlated with the related entities model, but are subject to ambiguity issues

which entity disambiguation methods explicitly address. In the latter, we find that modeling

facts about an entity produces better summaries than lexical models of information content.

In order to create fact-filled summaries, we use Wikipedia infoboxes as signal

for what facts are most useful to users at a glance as well as for training high precision

extractors. We incorporate the distant supervision methods described in Chapter 4 in

order to train high-precision fact extractors which can be used as input for our entity

summarization. We evaluate the generated summaries using human judgments and find

that they are significantly more informative than previous work.
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summarized. The summarization model will choose what subset of the source sentences

should be included in the entity summary.

Our baseline method will be to treat each sentence as a document and use a state of

the art multi-document extractive summarization system to populate the entity summary.

We are focused on extractive summarization in this work to more simply investigate the

effect of models of information content, and leave compressive and other summarization

models to future work. We will discuss the model abstractly in terms of concepts, or

pieces of information mentioned in the source sentences. Later in §7.3 we will describe

implementations for these concepts.

The model described in Gillick and Favre (2009) provides an extensible framework

for extractive summarization based on the appearance of concepts, each of which has a

utility to the reader and a list of locations it was mentioned. Their model is declarative: it

describes an objective to be maximized rather than an heuristic algorithm for finding good

solutions such as (Carbonell and Goldstein, 1998). Modern black box solvers can perform

inference quickly, making this model very scalable. The model finds a summary of maximal
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utility which respects a length constraint. It is an integer linear program (ILP) of the form:

max
s,c

∑

i

wici (7.1)

s.t.
∑

j

ljsj ≤ L (7.2)

sjOccij ≤ ci (7.3)

∑

j

sjOccij ≥ ci (7.4)

ci ∈ {0, 1} ∀i (7.5)

sj ∈ {0, 1} ∀j (7.6)

where:

• wi is a weight, or utility, for including the ith concept in the summary

• ci is a binary variable indicating whether the ith concept is included in the summary

• Occij is a binary value indicating that sentence j contains concept i

• sj is a binary variable indicating that the summary contains sentence j

Later in §7.3 we will discuss the identification of concepts through relation ex-

traction, which is a noisy prediction task. This entails uncertainty over the Occij values,

which is a problem for the model above where these values were observed (Gillick and Favre,

2009). In that work, concepts were implemented as word bigrams, which can be observed

in the source sentence without any prediction.2

2This is true in English. In character-based languages such as Chinese extracting bigrams is a non-trivial
segmentation problem.
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To handle this uncertainty, our summarization model incorporates MAP inference

over classifier predictions. This is done by introducing eij variables in place of Occij values,

and a cost pij . Our model only assumes pij is non-negative but for probabilistic classifiers

it is natural to set it to log 1
p(Occij=1) .

max
s,e,c

∑

i

wici −
∑

ij

pijeij (7.7)

s.t.
∑

j

sjlj ≤ L (7.8)

∑

j

eij ≥ ci ∀i, j (7.9)

eij ≤ ci ∀i, j (7.10)

sj ≥ eij ∀i, j (7.11)

∑

j

sjeij ≥ ci ∀i (7.12)

sj ∈ {0, 1}, ci ∈ {0, 1}, eij ∈ {0, 1} (7.13)

This model has many more variables than the model above (Gillick and Favre,

2009), but it is able to handle uncertainty about what concepts are described in text.

Lexical models of information content have the advantage of lacking this uncertainty, but

they cannot quantify information content in terms of facts which which are inferred through

natural language understanding.
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Pruning and Regularization ILPs for entity summarization can become fairly large3

and may require pruning depending on the quality of the solver used and the time budget

available. In development we tried a few methods of pruning and found that taking the

top k sentences according to an upper bound on their utility (under no length penalty)

consistently produced quickly-solved ILPs without sacrificing solution quality (according to

the original problem). We keep a priority queue of sentences ordered by U(j) =
∑

i:pij<τ wi,

an upper bound on the utility which could be extracted from a sentence. This method is

sparse (many sentences can be eliminated outright) and requires time linear in the number

of sentences, making it a scalable triage step. In practice we find that k does not need to

grow very quickly in the summary length n, and set it to k = 128 log n and τ = 2.

In §7.3 we will describe three concept definitions which may be used together. We

found that that using more than one type of concept in the same model made it difficult to

balance the influence of each concept type using linear coefficients per concept type. There

is significant variation across queries of what the utility scale is for one type of concepts

versus another. We found that we could make our model attendant to each type of concept

for most queries by normalizing each concept to have unit weight. More precisely, if a

concept type is a set of indices T , we ensure that
∑

i∈T wi = 1 ∀T .

Additionally we found that in some cases the costs outweighed the utility of the

concepts. In other cases this might be worth knowing (i.e. “we can’t infer much about this

entity given their mentions”), but in our case we would like the best summary possible. If

our system produces an empty summary, we halve the pij values and re-run optimization.

3The size of the problem is linear in the number of source sentences, which can be very large if the entity
being summarized is popular and a large corpus is used.
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7.3 Concept Definitions

7.3.1 Lexical Baseline

Our baseline closely resembles the work of Gillick and Favre (2009) and uses word

bigrams as concepts. The utility for a bigram wi is computed in the same fashion as

computing a tf-idf vector for bigrams. Gillick and Favre (2009) report that they didn’t

need to use idf weighting, but idf weighting helped in our experiments (c.f. §7.6). One

reason could be that we are summarizing a great deal more material than in the TAC

summarization task. There they summarized 10 articles, whereas we are summarizing all

mentions of an entity in ClueWeb09, which can be over 1 million tokens for common entities.

With so many choices, the ILP solver is good at finding silly sentences with abnormal

amounts of frequent bigrams, to the exclusion of sentences with oft-repeated content words,

which leads to bad summaries. When we do not use idf weighting, all of the top concepts

are frequent bigrams like “of the” and “He said”, which have very little to no actual utility.

When the set of source sentences is significantly smaller and comprised of high quality

newswire text, the model has a harder time gaming the objective.

7.3.2 Wikipedia Infobox Distant Supervision

A natural way to model the informativeness of an entity summary is to count the

number of facts contained in the summary. This intuition is even the impetus for some post-

ROUGE based summarization evaluation metrics (Nenkova et al., 2007). Some facts matter

more than others, e.g. where a person was born is more important than whether a university

has an even or odd number of students. To determine which facts are informative we turn
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to Wikipedia infoboxes, which contain structured facts about an entity. These facts cover a

wide range of types of entities and express things like which countries were affected by an

earthquake, what company manufactures a drug, or where a person was born. Because they

consume two finite resources, the time required by a person to write them down and the

space at the top of a Wikipedia article, it is safe to conclude that these facts have utility.

The difficulty in using facts as concepts in our summarization model (§7.2) is

that our systems can’t observe facts directly, they must be extracted from text, requiring

relation extractors for the relations in infobox facts. Therefore, we perform textual relation

extraction to discover concepts that are worth including in our summaries. We build relation

extractors using the distant supervision methods described in §4.3. As relation extraction

relates to the utility and costs described in §7.2, we assume each mention of a relation

(infobox facts) has unit utility4 and the extraction cost is the extractor’s confidence (MAP

estimate of precision).

Using factual rather than lexical concepts explicitly addresses the sparsity and

ambiguity problems with words. For example we could say “Lincoln was born in Hod-

genville”, “Lincoln is from Hodgenville”, or “Lincoln hails from Hodgenville”. Bigrams like

“born in” and “is from” will correlate with mentions of Lincoln’s birth place, but their

utility will be computed independently, and thus underestimated. Lexical concepts are also

subject to word sense errors, like “Palantir is from Tolkien’s legendarium” vs “Lincoln is

from Kentucky”.

4Facts which have a relation type taken from a infobox has unit utility, and all other relations receive
no utility. This method is coarse, but still injects a lot of signal into what should and shouldn’t go into a
summary.
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7.3.3 Related Entities

Finally, we have our Goldilocks implementation: related entities as concepts. We

started with lexical concepts, which are trivial to extract and have many ambiguity and

sparsity issues, and then moved to factual concepts, which are difficult to extract but closely

track information content. The purpose of related entities is to be a compromise. Entity

disambiguation methods are more reliable than relation extraction methods and offer some

of the information that factual concepts capture.

Take the example of summarizing a company. Their most related entities will likely

be companies they do business with, high-level employees, products they make, people who

review their products, and relevant regulatory bodies. Even if the summarization model

does not know what the relation between the query and these related entities is, it can still

assign them high utility on account of their association. At least in some circumstances we

would expect that a sentence containing both the entity being summarized and one of its

related entities: that sentence may sufficiently reflect the underlying relationship between

those two entities, when presented to a human reader.

Related entities are also useful for disambiguation. For example, if there were two

“Michael Jordan” entities, a very quick way to tell them apart is to produce two summaries;

one with “Michael Jordan” and “Scottie Pippen” mentioned together in a sentence and

another with “Michael Jordan” and “David Blei”.

In general, there are many functions from an entity’s associates to properties of

entities which are helpful during exploration. For example you can predict someone’s na-

tionality fairly well if you know the nationality of most of their associates. The same goes
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for the language someone speaks, the company they work at, and sometimes more sub-

tle things like their political affiliations (Volkova et al., 2014) or whether someone smokes

(Ennett and Bauman, 1993).

This leads to the question of how to infer what entities are related to a query

from text. In cases where the text is a part of communications like emails which have a

senders and receivers, a graph of associated entities is fairly easy to create. We are primarily

interested in sources which do not have senders and receivers, but we have found that the

presence of two entities in the same sentences is a good source of evidence of association.

Frequency alone can be misleading though. For example news agencies often report on

many entities, and are thus mentioned frequently but are not essentially associated with

the entities they report about. We found that the same idf(i) correction applied to lexical

concepts works well for related entity concepts too.

An additional factor in computing the utility of a related entity is whether the

entity is known to the user who issued the query. Exploration may be driven by the need to

connect an unknown entity to what a knowledge worker is already aware of, and displaying

a related entity which is unknown to the user may not make for an effective summary.

We do not model this factor in this work due to the difficulty of eliciting this sort of user

knowledge and of evaluation when utility is conditional on what the user knows.

Given the utility of related entity concepts, we set the extraction cost for each

mention of a related entity equal to the number of words between the query and related

entity mentions divided by 10. We are not concerned with direct supervision, but future

work might discriminatively model the extraction cost based on features of the co-occurrence
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Cost Sentence

32.31 Bundoran : Kevin McManus , Barry McGowan , Shane O’Donnell , Peter McGonigle -LRB- 0-1 -RRB- , Diarmuid McCaughey , James Keaney -LRB- 0-1 ... and 53 more words
29.42 Red House Painters -LRB- 1 -RRB- ; Red My Lips -LRB- 11 -RRB- ; Regina Spektor -LRB- 1 -RRB- ; Sam Sparro -LRB- 2 -RRB- ; Santogold -LRB- 1 ... and 35 more words
29.16 Bundoran : Kevin McManus , Ryan Walsh , Niall Gillespie , Gavin Croghan , Adam Dunmore , Rossa McKiernan , Ciaran Gunne , Shane McGowan ... and 44 more words
28.51 Bundoran : Johnny Keenan , Barry McGowan , Shane O’Donnell , Diarmuid McCaughey , Rossa McKiernan -LRB- 0-1 -RRB- , James Keaney , Peter ... and 45 more words
27.07 -RRB- Ambiance verzekerd , als ze materiaal van ondermeer Joe Jackson , Tammy Wynette , Van Morrison -LRB- het tot aegejasomgedoopte eal ... and 54 more words
26.17 Shane MacGowan guests with Sharon Shannon in Castlebar , Donegal , Cork , Galway , Killarney , Wexford , Ennis and Kilkenny .
25.36 Leader Dan McGee is the new great American songwriter-on-the-dole , whose multi-purposed voice sings of two things : girls and women , and ... and 58 more words
25.33 John Lydon , The Beatles , Morrissey , Billy Connelly , Tom Waits , Dropkick Murphys , Shane MacGowan , Robert DeNiro , Woody Guthrie , ... and 21 more words
25.12 This concert film finds Shane MacGowan cnn grace headline nancy news video and The Popes performing live at the Montreux Jazz Festival that ... and 56 more words
25.11 Merle Haggard in Nashville , TN ; Steve Earle in Chicago , IL ; Johnny Cash / Mark Lanegan in Portland , OR ; Shane MacGowan in Minneapolis ... and 4 more words

2.19 And speaking of the Pogues , this interview with Shane MacGowan has an interesting discussion of Lapsed Catholicism .
2.76 The legendary SHANE MacGOWAN ’s genius is evident from his many hits with The Pogues .
2.84 The Pogues have always lived this contradiction : on one hand playing with amazing speed and precision , yet at dead-center is MacGowan ’s ... and 16 more words
2.09 Wee Willie Harris was not manufactured because you could n’t invent him and Shane McGowan was n’t because , frankly my dear , you would n’t ... and 4 more words
3.32 A good article on Shane MacGowan of Pogues fame in Fluctuat.net .
2.81 ’ And suddenly the spirits of Ewan McColl and Shane MacGowan are with us .
2.48 Shane McGowan was born on Christmas Day in 1957 when his parents were visiting relatives in Kent , and was brought up in a farmhouse in ... and 4 more words
2.68 Of course , if Strummer – who had guested alongside MacGowan on a 1987 Pogues tour – had asserted himself more , he might have risked ... and 9 more words
2.77 Shane played bass , Jem guitar and Ollie Watts from The Millwall Chainsaws was the drummer .
2.98 Touring has it ’s pressures but Shane finds it a welcome relief from living in London all the time .

Figure 7.2: Examples of common extraction costs (§7.4) for input sentences for Shane
McGowan. Above: most costly and irregular sentences, which are often lists, titles, or
ungrammatical utterances which do not make for a fluent summary. Below: random sample
of sentences with below median cost which our model can select sentences from.

like the words between the two related entities. Intervening phrases like “according to” are

a good way to handle the problem of news agencies and may also provide a more general

method of eliciting evidence of interesting entity relationships.

7.4 Common Extraction Costs

In the last section we introduced concept definitions for identifying information

content but another important and orthogonal issue for our extractive model is grammati-

cality of the source sentences (and thus the summary in the case of our extractive model).

Web text is full of “sentences” which are not like prototypical high quality newswire sen-

tences and make poor additions to a summary. Some “sentences” are titles (can be noun

phrases, ungrammatical, or less often, proper sentences), some are lists of entities, and

some contain sentence-splitting mistakes. See the top half of Figure 7.2 for some examples

of undesirable sentences.

One particularly pernicious example are over-split sentences: as long as the con-
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cept mentions (e.g. named entities) are not affected, an extractive summarization system

will prefer a sentence with a few words lopped off (ungrammatical) to a full sentence (gram-

matical) due to the length budget.

However most of the sentences are fairly high quality (in grammatically and infor-

mation content). We leverage this fact to come up with an outlier score, which is used as a

cost for using a sentence in a summary. We define a few coarse features reflecting linguistic

structure, and use the rank order of a given sentence to quantify whether it is an outlier.

For example, if a given sentence is ranked 3 out of 1M sentences for the number of commas,

chances are it is an abnormal and ungrammatical sentence.

This rank transformation gives an intuitive scale and obviates the need for para-

metric assumptions about the outlier features. Given a sentence j and features f ∈ F , we

rank its “outlier-ness” according to:

cost(j) =
∑

f∈F

A(f)B(j, f) (7.14)

A(f) =
Nf

Nf + α
(7.15)

B(j, f) =
Nf

min(L(f(j), f), G(f(j), f)) + βNf

(7.16)

L(x, f) =
∑

i

I(f(xi) < x) (7.17)

G(x, f) =
∑

i

I(f(xi) > x) (7.18)

Where Nf is the number of times feature f was observed.

A feature f which is near the max or min (having L(x, f) or G(x, f) near 0) may

indicate a sentence is an outlier, as reflected in the denominator of Equation 7.16. The
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A(f) term is used to quantify how significant an extreme value is. We sum this cost across

features, so sentence which are outliers with respect to many features are more costly to

use in a summary. The features are counts of POS tags, the number of “nuisance” tokens,5

the number of content words, the number of named entities, and the length of the sentence.

All features except the last are conjoined with the sentence length to ensure that extracted

values are comparable (e.g. a sentence with 4 named entities is a common for a sentence

with 35 words, but rare for one with 6 words). We present some examples of good and bad

sentences in Figure 7.2.

We add a −∑

j cost(j)sj term to our objective in Equation 7.7 to penalize the

inclusion of outlier sentences in our summaries. We found that leaving this penalty off lead

to a huge detriment in all models. The difference was so obvious that we decided not to

pay to annotate examples without this cost.

7.5 Alternative Sentence Costs

7.5.1 Topicality

We hypothesize that sentences where the query entity is in subject or topic position

(Prince, 1998) make for summaries which are easier to read, more directly pertain to the

query, and are judged as more informative. The topic of a sentence is a constituent which

has been moved to the front for emphasis. We model this by computing a de-topicalization

cost for each source sentence equal to the number of words preceding the first mention of

the query plus the depth of the entity in a dependency tree. For example, if the query

5Punctuation, symbols, list items, foreign words, interjections, and parentheticals
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was George Bush, this cost would prefer the sentence “George Bush was president and

commander in chief at the time of 9/11.” over “During 9/11, the president and commander

in chief was George Bush.” Or if the query was ACME, the cost would prefer “ACME

is planning to acquire SoftCorp in 2017” over “Jane Smith, the CTO of ACME, lives in

Washington DC.” This score will serve as a tie-breaker in cases where the model can choose

between two differently phrased but comparably informative sentences.

7.5.2 1st and 2nd Person Pronouns

We hypothesize that first and second person pronouns make for bad summaries.

Third person pronouns can also be problematic for extractive summarization systems be-

cause their referents may or may not be contained within the sentence or summary, leading

to disfluencies (Durrett, 2016). Leaving aside cases which involve narration and quotation

(which are not germane to fact-based summarization), first person pronouns are effectively

guaranteed to have missing referents because we do not preserve the author of the sentences

we include in the summary. Second person pronouns presumably refer to the reader, but it

is not clear whether the same author-reader relationship holds now that the reader is the

person viewing the summary rather than the reader of the source text.

Additionally first and second person pronouns are common in web text and ex-

clusively used for interpersonal and subjective language, we believe is not informative in

the way that our concepts measure. For example, sentimental: “The Kinks are great, but

I don’t like Village Green Preservation Society” vs objective: “Village Green Preservation

Society is the sixth studio album by the Kinks”. Other work on summarization has focused

on sentiment for summarization, but it is incongruous with our definitions of concepts and
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utility.

7.6 Experiments

To evaluate our entity summarization methods, we construct a dataset of entities

taken from the ClueWeb09 dataset (Callan et al., 2009) with the entity linking annotations

provided by FACC1 (Gabrilovich et al., 2013). This data has over 340M documents and 5.1B

entity mentions which are resolved to Freebase MIDs (which can be mapped to DBpedia

entities and aligned with infobox facts). There are 18M infobox facts which have an entity

as the subject and object that we considered in this work. This covers 4165 relation types

which occur at least 30 times and 2580 which occur at least 100 (see Figure 4.2 for more

details).

We select train, dev, and test sets of entities for our summaries. The set of all

entities in FACC1 is partitioned into buckets by log frequency. We opt for a stratified test

set so that we can measure the effectiveness of summarization methods at various levels of

entity “popularity”, see Table 7.1. For each bucket we selected 3800 train, 100 dev, and

100 test entities. The three most popular buckets (rare0, rare1, and rare2 in Table 7.1) did

not provide enough entities to constitute full sized train and test set, and we exclude these

from our experiments.

Depending on the use case and the amount of information available about an entity,

one may want to produce summaries of various lengths. We generate summaries of length

L ∈ {20, 40, 80, 160} words for each entity and average our results over all performance at

every length.
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Bucket min f(e) max f(e) # Entities

rare0 27,938,100 ∞ 1
rare1 2,940,784 27,938,099 39
rare2 309,549 2,940,783 614
rare3 32,583 309,548 6,533
rare4 3,430 32,582 49,792
rare5 361 3,429 241,994
rare6 39 360 777,152
rare7 4 38 1,465,706

Table 7.1: Frequency of entities mentioned in FACC1.

7.6.1 Metrics

One category of summarization evaluation methods is based on expert annotation,

either through the production of reference summaries or through annotation of a pool of

summaries identifying their information content. The canonical example of the former is

ROUGE (Lin, 2004) which is widely used, and examples of the latter include the pyramid

method (Nenkova et al., 2007), and Basic Elements (Tratz and Hovy, 2008). These methods

are problematic for this work because we are not aware of any existing references for entity-

centric summaries and because creating them, or annotating a pool of summaries, is costly

and requires expert annotators.

Another line of evaluation coming from information retrieval (Blanco and Zaragoza,

2010; Chhabra, 2014) grades summaries by giving them an ordinal quality label (e.g. a 4

level scheme like non-relevant, fairly relevant, relevant, and very relevant). While this gets

around the need for costly expert annotations, it has some drawbacks. First, the number of

categories, and thus the precision by which annotators can describe summary quality, must

be kept small for practical reasons (ease of task and consistency of labels). Second, in order

to get a single score to compare systems, this requires converting ordinal to scalar values,
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which is not optimal.

We adopt methods from machine translation evaluation (Sakaguchi et al., 2014)

which are based on pairwise comparisons of summary quality. For each entity in our eval-

uation set, each summary length, and each pair of systems which produce a summary, we

present Amazon Mechanical Turk annotators with a choice of which summary is more infor-

mative. We do not present examples where differing systems produced the same summary.

In cases where the summaries contain a common sentence, we put these sentences elsewhere

on the page so that annotators can see the entirety of both summaries, but focus primarily

on what differs between them.

We force annotators to choose a summary even if they believe they are equally

informative. If the summaries are actually equally informative then the annotators’ choices

will be random with respect to the system being evaluated; which corresponds to the null

hypothesis in our statistical tests.

There are two types of evaluation we consider. In the first we have a group of

system types and we would like to know the relative ranking of each of them. For this

we use the TrueSkill algorithm (Herbrich et al., 2006) to infer the skill, a parameter which

determines the likelihood that any one system will produce a more informative summary

than another system, which we use to rank systems. In the second case, we only need to

know if a baseline system or an alternative system produces better summaries. TrueSkill

could infer this, but it is more statistically efficient to perform an exact binomial test when

n-way rankings are not needed. In measuring statistical significance, in the first case we

report the standard error inferred by TrueSkill and in the second case we report p-values
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determined by a two-sided test on the null hypothesis that both systems have an equal

chance of being labeled more informative.

One final advantage of binary comparison-based evaluation is that it has lower

variance than methods comparing means of un-paired examples. This is accomplished by

removing the variance associated with the average informativeness of a system over a set

of queries – pairwise tests cancel out this variance by using the same sets of queries. This

makes for a more powerful test which requires less annotation, and is therefore cheaper.

7.6.2 Systems

We define a system as some combination of the concept definitions. We denote the

baseline method of word bigrams as w, the infobox relation method as s (§7.3.2), and the

related entities method as e (§7.3.3). Systems with two types of concepts are denoted with

concatenation, e.g. s + e = se. In total there are 7 systems: [e, s, w, es, sw, ew, esw]

For the alternative sentence costs defined in §7.5, we sample pairs of summaries

with and without the additional cost and elicit a pairwise preference. We denote topicality

costs with +t and first and second person pronoun costs with +p.

7.6.3 Results

In Figure 7.3 we plotted the skill for every system. Defining concepts as infobox

facts produces the most informative summaries. This is the only statistically significant

result using w as the baseline.

Using related entities (e) produces summaries with comparable quality to word

ngrams (w). This is consistent with properties we saw during development: when using
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Figure 7.3: System (concept definition) skill (summary quality). Means and standard
errors are inferred by TrueSkill.
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w concepts, the highest utility concepts, i.e. ngrams with high tf-idf weight, tend to be

named entities. This indicates that most of the information that the e and w models are

trying to preserve is the same. This may explain the fact that models which have both e

and w components perform the worst: in these cases the model is redundantly rewarded for

including the same information, thus not spending its word budget in the most informative

way.

We can decompose the set of concepts which w is trying to preserve into entity

concepts and non-entity concepts. While e is a fairly natural replacement for the entity

concepts in w (with associated benefits described in §7.3.3), its unclear how useful the non-

entity concepts are. To quantify this, we defined a new set of concepts v which are the

ngram concepts which do not overlap with any entity mention. We treat them the same as

w concepts and weight them with tf-idf weighting. In principle these concepts could pick

up on the information which s discovers by highly weighting lexical predicates and open

information extraction patterns like “born in”, “founded a”, “headquartered in”, “is a”

which do not overlap with entities. These concepts can also refer to noun phrase concepts

like “gay rights”, “hazardous waste”, and “pituitary gland” which are not entities and thus

not linked to the knowledge base in these experiments. Further, this information should be

orthogonal to entities, indicating that perhaps ev might have fewer duplication problems

compared to ew.

In Table 7.2 we performed a head-to-head evaluation between systems which use

w concepts and the corresponding system with v instead. We produced a summary for

both concept definitions and asked annotators which they preferred when the summaries
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h0 h1 c(h0wins) c(h1wins) p(x | µ0 = µ1)

w v 135 116 0.256
ew ev 112 83 0.00780
esw esv 134 93 0.00779
*w *v 381 292 0.000682

e e+t 70 67 0.864
s s+t 51 61 0.395
w w+t 92 65 0.0376
es es+t 73 65 0.551
ew ew+t 78 68 0.456
esw esw+t 87 86 1.00
* *+t 451 412 0.196

e e+p 28 24 0.678
s s+p 26 25 1.00
w w+p 35 29 0.532
es es+p 33 35 0.904
ew ew+p 41 42 1.00
esw esw+p 50 30 0.0330
* *+p 213 185 0.176

Table 7.2: Head-to-head matchups for differing summaries. The third and fourth columns
are counts of the number of summary pairs where either the baseline system (h0, first
column) or the alternative (h1, second column) is judged as a better summary. The final
column is a significance test, likelihood of observing these counts if the two systems had
the same quality. The first block addresses the effect of removing entity names from ngram
concepts. The second block addresses whether topicality costs (+t) improve summary
quality. The third block addresses whether penalizing 1st and 2nd person pronouns (+p)
improves summary quality.

were different. We see that in every case the v model performs worse, most frequently by

statistically significant amount. This is further evidence that ngrams are not a sufficient

method for modeling information beyond what named entities already capture. This high-

lights the effectiveness of the s concept definitions: s uses only non-entity information and

performs significantly better than the strong entity baseline.

Topicality Costs In §7.5 we hypothesized that topicality affected the quality of a sum-

mary by rewarding the model for choosing sentences where the entity being summarized is
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Pronoun c(h0 wins) c(h1 wins) p(µa = µb)

i 66 55 0.363
we 45 50 0.682
you 54 37 0.093
us 29 19 0.193
our 25 16 0.211
your 21 18 0.749
my 11 10 1.000
me 3 10 0.092
u 7 0 0.016
mine 2 3 1.000
myself 1 1 1.000
yourself 1 0 1.000
yours 0 1 1.000

Table 7.3: Baseline vs +p annotations for various penalized pronouns.

the subject or topic of the sentence. We tested this in the same fashion as w vs v and the

results are listed in the second block of Table 7.2. Overall adding the topicality cost did

not produce statistically significantly higher or lower quality results (two-sided test),6 but

in our sample annotators more often preferred the summary with no topicality cost added.

We are not aware of other work which addresses the role of topicality at the level of syntax

in summary quality. Our work indicates that annotators do not care about topicality of the

summary subject as we have defined it in §7.5.

Pronoun Costs Similarly in §7.5 we described a cost which was a softened version of

eliminating first and second person pronouns. We perform the same type of head-to-head

evaluation and give the results in the third section of Table 7.2. The results were not

statistically significant, but it seemed as if annotators might have preferred the summaries

6Note, this is not a statement about how similar the summaries themselves are, which is a function of
hyperparameters concerning how heavily topicality should be rewarded, but rather the assessed quality of
the summaries when they differed.
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without the cost on pronouns. To investigate further we looked at each matchup where the

baseline model produced a summary which contained a first or second person pronoun. In

Table 7.3 we pool the annotations across systems, showing weak evidence that annotators

prefer the baseline system.

Example Infobox Fact Extractions To offer some qualitative explanation for how the

infobox method works, we have selected some sentences which were included in a summary

because they were predicted as including an infobox fact for the subject of the summary,

listed in Table 7.4. There are a wide range of infobox relations which show up in summaries.

7.7 Related Work

There is a related line of work on entity summarization where the output is a set of

facts or triples in a knowledge base (Cheng et al., 2011; Gunaratna et al., 2015; Thalhammer

et al., 2012). These methods compute the importance of facts connected to a knowledge

base entity using graph-based methods. This work focuses on producing textual summaries

rather than triples and uses repetition in text or presence in an infobox as an orthogonal

signal for a concept or fact’s utility. Additionally this work is concerned with extracting

facts rather than ranking them.

The TREC Entity track (2009-2011) (Balog et al., 2010b) addressed the task of

finding related entities to a query entity, which was treated as its own information retrieval

task. Our work shows that related entities are an effective means of producing summaries.

Gong et al. (2010) performed TAC topic-based summarization (not entity-based)

using links into Wikipedia to determine how popular or salient an entity is, and thus how
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Relation Summary Sentence

japanActor
(Hugo Weaving) will voice [Megatron] , leader of the
Decepticons , in the live-action Transformers movie .

yeshiva
livingPlace

[Shlomo Amar] , (Israel) ’s chief rabbi , has
welcomed the Falash Mura back to the fold .

associatedActs
(Elvis) ’ original drummer , [DJ Fontana] ,
is also scheduled to appear .

nflDraftedTeam
nhlTeams

[Pablo Sandoval] had two of the (Giants) four hits .

birthPlace
[Paul Morrison] was born in (Liverpool) in he
studied at Hugh Baird College Liverpool .

licensingAuthority
[ChexSystems] is governed by the (Fair Credit
Reporting Act) -LRB- FCRA -RRB- and other laws .

watercourse
landmark

The (Igua Falls) are waterfalls located on the border
of Brazilian state of Parana -LRB- in the Southern
Region -RRB- and the Argentinian Province of [Misiones] .

brightestStarName
nearestStarName

(Alphard) is the brightest star in the constellation [Hydra] .

nearestStarName
(NGC 3314) is about 140 million light-years away
in the southern constellation of [Hydra] .

subtribus
(Amaryllis) -LRB- amaryllis -RRB- still belongs
to the Amaryllidaceae , but also includes many
genera that were once included in the [Liliaceae] .

Table 7.4: Sentences which were included in a summary produced by the infobox relation
method. The [subject] of the summary is shown in square brackets and the (object) of
the fact which justified this sentence’s inclusion in the summary are rendered in parens.
The fact’s relation is listed on the left. In some cases the model predicts that multiple
relations hold. Not all of the predicted facts are correct, but the sentences tend to be
informative nonetheless. Since source material is drawn from the web, it can contain typos
and ungrammaticalities in some cases.
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much utility should be assigned to including it in a summary. This method of estimating

utility is directly applicable to our summarization model and is similar our definition of

related entities, but we do not assume that one has access to Wikipedia logs to determine

popularity.

Meng et al. (2012) created entity-centric summaries for companies on Twitter,

where the goal was highlight positive and negative sentiment. They used hashtags as con-

cepts. Similarly, Mason et al. (2016) jointly performs sentiment analysis and summarization

jointly to create “micro reviews” on services like Yelp.

Liu et al. (2015) perform abstractive summarization using AMR as a semantic

representation. Our work is not abstractive, but is perhaps a hybrid in that it uses extracted

relations as concepts, which are a very weak meaning representation. They transform the

text summarization problem into one of graph summarization and lift the textual training

data to graph training data using an AMR parser. Our summarization model, being related

to Gillick and Favre (2009), maintains the textual provenance of concepts which is used to

produce a summary. They do not address the text generation from AMR problem and

instead produce unigram summaries (which can be evaluated with ROUGE-1).

7.8 Conclusion

In this work we investigated the task of entity summarization. We described how

existing extractive summarization methods can be adapted to produce entity summaries

and compared the effectiveness of these methods to novel entity-centric concept definitions.

To enable summarization in the presence of noisy extractors, we describe a new extrac-
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tive summarization ILP model which jointly performs MAP inference over extractions and

summarization choices. Our new model and concept definitions significantly outperform

existing summarization methods. We find that using distant supervision of infobox facts

from Wikipedia lets us train extractors which find useful information to incorporate in our

summaries, outperforming all other methods. Our experiments indicate that entity co-

occurrences explain most of the signal that previous methods had exploited. By modeling

entities explicitly through linking, we can better weigh the importance of entities and avoid

concept duplication issues introduced by only using words. For non-entity signal, we show

that our distant supervision model greatly outperforms previous methods. This work also

includes new applications of evaluation techniques from machine translation which make

evaluating summarization techniques cheaper and more statistically powerful.
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Conclusion

8.1 Report Linking

First, we reflect on the goals of this thesis and how we went about accomplishing

them. Report linking is a broad task of building semantic link structures atop reports used

by knowledge workers to communicate information about a subject. The goal of report

linking is to make the organization and exploration of information in large volumes of

reports easier and more efficient for knowledge workers. This is clearly a broad topic to

address in a single work, and we do not claim to have uttered the last word on methods

for accomplishing the goals of report linking. We have however clearly defined a framework

and related tools which deliver on the goals of report linking. A guiding principle in our

definition of report linking is the need to ground out our analysis in the reports themselves

which knowledge workers of today use. This is important because research on report linking

can only be improved through empirical verification of the utility of the tools it provides.

The more abstractions that report linking tools make which knowledge workers do not, the
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more difficult it is to proceed with empirical research which must at some point consume

the time and attention its subjects: knowledge workers. The contribution of this thesis, in

total, are a set of working tools which accomplish the goals of report linking and can help

knowledge workers today.

The contribution of this thesis in composite however is advances in many natural

language processing techniques which make report linking possible. This thesis is organized

around the contributions made to these sub-goals and we conclude by summarizing them

and their relationship to report linking here.

The first step in our conception of report linking is the construction of the topic

knowledge base (TKB) from a set of reports. In this work we assumed that these reports

were given and that there were between tens and tens of millions of them. In Chapter 3 we

begin by discussing how to construct entity nodes in the TKB from entity mentions found

in reports. We propose a simple unsupervised method for enumerating recognizing distinct

entities and enumerating all the mentions within a specified entity. Our experiments show

that our method can recognize entity mentions with precision above 90%, as good or better

than comparable previous work without requiring training data. In that chapter we also

address the question of determining whether two entities are related or not, and whether

there should be an edge connecting them in the TKB. Our experiments showed that simple

methods which only require co-occurrence statistics like pointwise mutual information are

capable of finding related entities with greater than 80% accuracy. This chapter lays out

how one can construct an unlabeled TKB from a large collection of reports.

Next in Chapter 4 we turn to the problem of labeling the edges connecting two
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entities in a TKB. The goal of such a label is to explain to a knowledge worker the nature

of the relationship between two related entities, using the text provided their reports. We

demonstrate two approaches for choosing these labels, one which is high recall and unsu-

pervised and the other is high precision and leverages supervision from knowledge resources

like Wikipedia to identify facts and relations which are informative. The first approach is a

novel way of picking trigger words which explain entity co-occurrences. These trigger words

are selected based on syntactic and information-theoretic criteria for what makes a good

explanation. Our experiments showed that these trigger words were informative twice as

often as those chosen by a syntactically informed baseline. The next approach uses rela-

tion extractors trained using distant supervision to search through reports to find common

and informative types of facts like where a person was born and whether a person is an

executive of a company. This method leverages the Wikipedia infoboxes to determine what

facts are most interesting and to train models to recognize these facts. Our contributions in

this area are a new syntactic approach for finding high precision extractors. We also define

and validate a new objective which rewards type-based diversity which is better at separat-

ing extractors which correlate with the meaning of a relation with those which express the

meaning of the relation. A final contribution in this chapter was the release of an annotated

dataset for training relation extractors which is an order of magnitude larger than used in

other work.

In the next two chapters we returned to the problem of building the TKB structure

which connects reports to other reports. In chapters 3 and 4 we built up methods for linking

reports to the entity nodes and for linking entity nodes to other entity nodes respectively.
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To connect reports to other reports, we develop deeper methods of linking which go beyond

lexical or entity-centric linking methods.

In Chapter 5 we develop the basic tools for identifying events and situations de-

scribed in reports. We develop tools which use semantic frames as the abstraction over

events in reports which we will later link. A frame-level analysis provides a disambiguated

view of the events in a report and explain what roles the entities in the TKB play in these

events. Towards this goal, we develop new models for frame semantic parsing which lever-

age global features and greedy inference. The contributions in this chapter are a careful

analysis of how existing methods for training these types of models can go wrong as well

as new methods for training pipeline-based models which use global features. The methods

in this chapter outperform comparable models with no global features without the need

for asymptotically more complex inference. This improves report linking by making more

accurate frame analyses of reports in less time.

In Chapter 6 we build upon the work in the previous chapter and develop methods

to create structured links between reports in the TKB called predicate argument alignment.

Each link is an alignment between the entities and events in two reports. This type of link

can be used to tell knowledge workers what is novel vs what is known if they have only read

one report in the alignment. The contributions in this chapter are two models for predicate

argument alignment, one of which is state of the art on two datasets. The first model

is a classification-based model which uses a rich set of semantic features based on lexical

resources. The second is a 2nd order structured model which scores pairs of alignments

which appear in predicate argument structures in each report. This model is much more
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expressive and can ensure that the predicted links are consistent with relations like temporal

ordering of events described in both reports.

Having explained how to build a topic knowledge base and annotate the edges with

entity relationships and predicate argument alignments, in Chapter 7 we add one more view

to our TKBs, a textual summary of every entity in the graph, generated from the source

reports. These summaries are intended to distill all the reporting on a given entity down to

the most important facts. In addition to the entity relation explanations, these summaries

offer an efficient means for a knowledge worker to bone up on the salient entities discussed

in a set of reports. The primary contribution of this chapter is an extractive summarization

model for generating entity summaries which models facts and other related entities as first

class concepts. Compared to a strong lexical summarization baseline, the fact-based entity

summarization model performs significantly better as judged by annotators. The summa-

rization model presented in this chapter is also extensible, and can naturally incorporate

other concepts which are important to be summarized, and even noisy predictors of these

concepts.

8.2 Future Work

Evaluation in this thesis has been primarily on metrics which have to do with the

quality or veracity of the predictions made. For example, we might predict that a mention

refers to an entity, and this can be correct or incorrect, so we measure the accuracy. This

was done as a necessary measure to ensure that the building blocks of a report linking

system worked as intended, but it does not speak to the overall utility of such as system,

192



CHAPTER 8. CONCLUSION

except in limited cases such as our evaluation of the utility of entity summaries. Future

work on human computer interaction, as it relates to report linking, might answer questions

like which types of links are most useful to which users during which tasks.

Another related avenue of study in improving report linking is in incorporating

human-in-the-loop methods for learning and tuning the models involved in report linking.

The work we have done is based on either unsupervised methods (when possible) or super-

vised methods with labeling schemes which purport to be domain robust (independent is

too strong). We have not tested the generalization of these models to new domains and it

seems likely that some domains will force systematic errors in a full report linking system.

Methods for collecting annotations and amending predictions by knowledge workers would

make the tools more useful as well as better performing. The three areas which might

benefit from online learning are entity, event, and relation detection. Methods which make

it easy to elicit either examples, lexicons, or prototypes to aid in extraction of types which

were not seen frequently during initial training could make for more precise and useful tools.

Work on event representations can also yield improvements in predicate argu-

ment alignment. The structured alignment model described in Chapter 6 does leverage the

predicate argument structure to a degree, but does not provide a full account of the role

assignments on either end of an event link. Partially this is done because the alignment

models which we train and evaluate in this work need to work on a variety of different

datasets, each of which have their own annotation scheme which makes assumptions which

may go beyond or fall short of more detailed theories of event and role linking. But partially

this limitation in model complexity is done because richer joint inference is both computa-
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tionally costly and may lead to overfitting (the corpora available for training these models

is relatively small). Future work on modeling event coreference and linking may be able to

avoid some of the problems of variations in annotation schemata by proposing generative

models which do not need to use idiosyncratic annotations. Future work on joint inference

might benefit from exploring de-lexicalized, or embeddings-based models, which have less

ability to overfit.
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Hal Daumé. 2007. Frustratingly easy domain adaptation. In Annual meeting-association

for computational linguistics . volume 45, page 256.
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