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Abstract

This work considers the problem of planning and control of robots in an

environment with obstacles and external disturbances. The safety of robots

is harder to achieve when planning in such uncertain environments. We de-

scribe a robust control scheme that combines three key components: system

identification, uncertainty propagation and trajectory optimization. Using

this control scheme we tackle three problems. First, we develop a Nonlinear

Model Predictive Controller (NMPC) for articulated rigid bodies and apply it

to an aerial manipulation system to grasp an object mid-air. Next, we tackle

the problem of obstacle avoidance under unknown external disturbances. We

propose two approaches, the first approach using adaptive NMPC with open-

loop uncertainty propagation and the second approach using Tube NMPC.

After that, we introduce dynamic models which use Artificial Neural Net-

works (ANN) and combine them with NMPC to control a ground vehicle and

an aerial manipulation system. Finally we introduce a software framework

for integrating the above algorithms to perform complex tasks. The software

framework provides users the ability to design systems that are robust to con-

trol and hardware failures where preventive action is taken before-hand. The

framework also allows for safe testing of control and task logic in simulation
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before evaluating on the real robot. The software framework is applied to an

aerial manipulation system to perform a package sorting task, and extensive

experiments demonstrate the ability of the system to recover from failures.

In addition to robust control, we present two related control problems.

The first problem pertains to designing an obstacle avoidance controller for

an underactuated system that is Lyapunov stable. We extend a standard

gyroscopic obstacle avoidance controller to be applicable to an underactuated

system. The second problem addresses the navigation of a Unmanned Ground

Vehicle (UGV) on a unstructured terrain. We propose using NMPC combined

with a high fidelity physics engine to generate a reference trajectory that is

dynamically feasible and accounts for unsafe areas in the terrain.
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Chapter 1

Introduction

Consider a robot such as a ground vehicle shown in Figure 1.1 navigating

through a forest. To successfully navigate the forest, the robot needs an ac-

curate model of how it will move when a specific control has been applied

which is known as the robot dynamics. The robot dynamics is used to design

a controller that can guide the robot along the right path while avoiding trees

and unsafe areas. In practice, however, we only know the robot dynamics

approximately and we have to rely on feedback from sensors such as GPS to

correct the control applied to the robot to guide it back to the correct path.

One of the drawbacks of pure feedback control is that there is no guarantee

that the controller will be able to counter the disturbances such as external

forces and model inaccuracies. Robust controllers on the other hand, account

for the uncertainty in the robot dynamics and guarantee safety even under

disturbances under certain assumptions about the disturbances. Tradition-

ally, several robust control methods have been developed for linear systems

such as H∞ control [237], Linear Quadratic Gaussian (LQG) control [94], and

Robust Model Predictive Control(MPC) [120]. The robust control schemes
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were later extended to nonlinear systems through methods such as Lyapunov

redesign [229] and sliding mode control [211, 98]. The general drawback of

feedback controllers is that they are designed to perform simple tasks such

as achieving a goal state for the robot. Adding constraints on the robot and

satisfying secondary criteria are hard to incorporate into feedback control.

For example, we can design a controller to track a smooth trajectory for a

car-like robot [43], but ensuring that the controller is satisfying control bounds

such as maximum steering angle and minimizing lateral accelerations is hard,

since finding the new controllers requires searching for a Lyapunov candidate

that satisfies secondary criteria. Model Predictive Control (MPC) [29] has

been developed for linear systems to satisfy these requirements. MPC solves

the constrained optimization problem at every control step where the task

that the robot has to perform is encoded as a cost function and associated

constraints and the inputs to the optimization are the controls to be applied to

the robot. Previous work has shown that MPC has unique solutions when the

cost function is quadratic [230]. Thus given enough computational resources,

we can always find the optimal control to be applied to the robot at every step.

Similar to MPC, Nonlinear Model Predictive Control (NMPC) finds opti-

mal trajectories for nonlinear systems. NMPC solves a nonlinear optimization

problem at each step. Unlike MPC, we cannot always guarantee a unique

solution for NMPC [188]. There also exist additional variations of NMPC

which will be explained in Chapter 2.

This work tries to formulate a robust control strategy using Nonlinear

Model Predictive Control (NMPC) for general nonlinear systems such as the
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Figure 1.1: Example robotic systems for which current methods can be applied to

ones shown in Figure 1.1 and apply it to quadrotor systems and autonomous

ground vehicles. There are several challenges to developing and implement-

ing a robust NMPC system for nonlinear systems: real-time implementation,

designing an accurate model of robot dynamics and tackling noise due to

modeling and external disturbances. There are three main components in the

proposed robust control scheme: system identification, uncertainty propaga-

tion, and trajectory optimization as explained below

1.1 System Identification

The robot dynamics is usually defined using parameters that are based on

characteristics of the system. For example, the distance moved by a wheeled

robot is determined by the radius of its wheels. Similarly, the acceleration

of a rigid body is determined by the mass and the force applied to the body

(Newton’s second law). Thus, system parameters are necessary to define the

relation between the control inputs and the motion of the vehicle.

System identification is the process of finding the system parameters by

collecting measurements from sensors attached to the robot, and controls

applied to the robot. The result of system identification is a dynamic model

that can approximately describe how the robot would move based on the
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controls applied and the current robot state. General system identification

methods are explained below.

1.1.1 Online vs Offline

In an offline method, the measurements and controls from the robot are

collected first, and parameters are computed later. In contrast, online methods

consume one measurement at a time and update the system parameters.

Online methods can respond to changes in slow changing system parameters.

The recursive least squares [72] method is an example of an online system

identification method, and the least squares method is an example of an offline

method.

1.1.2 Parametric vs Non-Parametric

Parametric methods assume the dynamic model of a robot is represented by

a finite number of system parameters. On the other hand, non-parametric

methods determine the number of system parameters based on the data [206].

In principle, a non-parametric method can fit the data exactly by using an

infinite number of system parameters, but doing so will perform poorly on

unseen data. The non-parametric methods are usually regularized to limit the

number of parameters so that it generalizes well to unseen data.

Neural network models are by definition parametric since they have a fixed

number of weights that are learnt from data. But, unlike traditional parametric

methods, the structure of the model is not chosen based on apriori information

known about the robot. Instead, neural networks use a biologically inspired

4



model [63] which does not change across different systems. This allows the

same network to represent different dynamic models without changing its

internal structure. In this respect, the neural networks can be considered

non-parametric as long as we have large enough network to cover the space

of the dynamic models of interest.

1.2 Uncertainty Propagation

The dynamic model of a robot is not perfect and thus the robot motion cannot

be predicted exactly. In addition, there are external factors such as wind forces

on the robot which change with time and cannot be predicted before-hand.

Uncertainty propagation characterizes the distribution of the robot state based

on the current state and controls applied to the robot. For example, knowing

the mean and covariance of the robot state, we can move the robot in such

a way that it avoids obstacles with high probability. Similarly, if we know

the bounds on the external factors such as wind, we can design controllers to

converge to a desired trajectory.

Uncertainty propagation characterizes the error between the robot state

and desired state based on the bounds on external disturbances. The state

error is used in planning robot trajectories to avoid obstacles and other unsafe

areas. Uncertainty propagation can be based on assumptions that the external

forces are stochastic in nature (sampled from a distribution) or just simply

assumed to be bounded. In the former case, a stochastic ODE needs to be

solved to find the distribution of the state [77]. In the later case, disturbance

invariant sets [112] are computed. These methods will be detailed in later
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chapters.

1.3 Trajectory Optimization

Trajectory optimization uses an identified dynamic model to find a desired

trajectory that minimizes a user-defined cost function. The cost function is

based on a user’s goal such as avoiding obstacles and reaching a target location.

The uncertainty in the robot state is also accounted for when performing

trajectory optimization. Different trajectory optimization methods and ways

to solve them efficiently are explained later.

NMPC for Articulated Rigid Body Systems [3]

> Modeling articulated rigid bodies [3.2]

> Experiments [3.4]

Safe Obstacle Avoidance [4]

> Adaptive NMPC [4.1]

> Tube NMPC [4.2]

NMPC using RNN models [5]

> steering control of UGV [5.1]

> Aerial vehicle control [5.2]

Methods and Applications

Nonlinear Model Predictive Control [2.1]

> Direct shooting [2.1.2.1]

> Multiple shooting [2.1.2.2]

> Sweep methods [2.1.2.3]

Stochastic NMPC [2.2]

> Chance Constrained programming [2.2.1]

> Tube NMPC [2.2.2]

Background [2]

System Identification [2.3]

> Maximum Likelihood Estimation (MLE) [2.3.2]

> Neural networks [2.5]

Software Framework [6.2]

> State machine framework [6.2.1]

> Robot system [6.2.2]

> Graphical User Interface [6.2.3]

Application: Package transportation [6.6]

> Experiment setup [6.6.1]

> Results [6.6.2]

Autonomy Software Framework [6]

Control and Estimation [6.3, 6.4]

> Controllers [6.3.1,6.3.2]

> Estimation [6.4.1, 6.4.2]

Figure 1.2: Thesis layout
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1.4 Organization

Figure 1.2 shows a flowchart of the thesis organization. The rest of the chapters

are organized as follows. Chapter 2 provides the mathematical background in

trajectory optimization and system identification necessary for understanding

the rest of the chapters. Chapter 3 demonstrates the effectiveness of using

trajectory optimization for nonlinear systems. In particular, we find optimal

reference trajectories for articulated rigid bodies (aerial manipulator in our

case) and track them using a low-level controller. Continuing, Chapter 4 de-

velops NMPC techniques for safe obstacle avoidance under model uncertainty

and external disturbanes using adaptive NMPC and Tube NMPC. Chapter 5

overcomes the necessity to design dynamic models for nonlinear systems by

combining NMPC with Recurrent Neural Networks (RNN) to control general

nonlinear systems. Finally, a general software framework for task-level control

is described in 6 and is applied to a package transportation task. Concluding

remarks are presented in Chapter 8. Chapter 7 develops two related con-

trol techniques: gyroscopic obstacle avoidance controller for underactuated

systems and NMPC using physics based models.
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Chapter 2

Background

This chapter describes different trajectory optimization methods to control a

robot in stochastic and deterministic settings and explains basic methods to

estimate the robot dynamics and find the covariance of a nonlinear function.

These methods are applied to quadrotor systems and autonomous vehicles to

achieve robust control in later chapters.

2.1 Nonlinear Model Predictive Control (NMPC)

The goal of NMPC is to compute a dynamically feasible trajectory that mini-

mizes a user defined cost. The cost encodes the task level specification such as

moving the robot to a target pose. There are two main components of NMPC:

the dynamic model and trajectory optimization. The dynamic model of a

robot is given by an Ordinary Differential Equation (ODE) as

ẋ = f (t, x, u), (2.1)
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where the state of the system is given by x ∈ T, controls given by u ∈ R, and

time given by t ∈ R+. The dynamics can be discretized as

xi+1 = f (ti, xi, ui), (2.2)

where the subscript i indicates the time segment along the trajectory. It is also

assumed that the control ui is constant during the time interval [ti, ti+1]. The

discretized dynamics can be derived from the continous dynamics as

f (ti, xi, ui) = xi +
∫ ti+1

ti

f (t, x(t), ui)dt, (2.3)

where the ODE is integrated over a small time assuming constant control.

When the state is on a manifold (x ∈ T), the addition operator in (2.3) can be

thought of as moving on the manifold and not a simple addition. For a small

discretization step hi = ti+1 − ti, the discretized dynamics can be written as

f (ti, xi, ui) = xi + hi f (ti, xi, ui). The discretized dynamics is then integrated to

predict the state of system in the future, i.e., given the initial state x0 at time t0,

and the future times t1:N and controls applied u0:N−1, we can find the states

of the system x1:N along the trajectory. Using this predicted trajectory, we can

perform trajectory optimization to minimize the cost function. In this work,

we are only explaining the discrete NMPC formulation and not the continous

version using calculus of variations which can be found in Bertsekas [19].

2.1.1 Trajectory Optimization

The goal of trajectory optimization is to find a set of controls u1:N which

minimize a user-defined cost on the trajectory. The cost function encodes the
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task specification. For example, if we want to move the robot to a desired state

xd at time t f , the cost function can be specified as the distance between the

trajectory state at t f and the desired state:

J(x0:N, u0:N−1) = ϕ(x(t f ), xd)
TQ f ϕ(x(t f ), xd), (2.4)

where ϕ(·, ·) ∈ R is the displacement vector between xd, x(t f ) and Q f ∈ Rn×n

is the gain matrix. In general, the trajectory cost function for many problems

can be written as

J(x0:N, u0:N−1) = LN(xN, xd) +
N−1

∑
i=0

Li(xi, ui), (2.5)

where xi denotes the state at time ti. The cost LN denotes the terminal cost

that moves the end of the trajectory towards a goal state xd, and the stagewise

cost Li minimizes the control effort and velocities along the trajectory.

The discrete NMPC problem performs a nonlinear optimization at every

control step. The nonlinear optimization can be summarized as

min
u1:N

J(x0:N, u0:N−1), (2.6)

s.t xi+1 = f (ti, xi, ui). (2.7)

The result of the optimization is a sequence of controls which will ensure the

robot follows the optimal trajectory in open-loop under perfect conditions.

The first control u0 is applied to the robot and the optimization procedure is

repeated. In practice, if the optimization frequency is not fast enough, a few of

the control samples from the previous optimization are applied in open-loop

using a time based lookup before the procedure is repeated. The controls at the
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next step are initialized by cycling the controls from the previous optimization

to reduce the number of iterations until convergence. The NMPC procedure

is summarized in 1.

Algorithm 1 NMPC Procedure
Given xd
Converge← False
Initialize controls to steady state
while not Converge do

Initialize controls u∗ from past iterations
u∗1:N = min J
Lookup control based on time/state
Send control u∗j to robot

end while

2.1.2 Methods for Trajectory Optimization

The trajectory optimization shown in (2.7) is a nonlinear optimization which

can be solved using first order methods such as gradient descent or sec-

ond order methods such as the Gauss-Newton method. Directly solving

the optimization problem without using its internal structure results in an

optimization problem with very high dimension which cannot be solved in

real time. Below, we explain a few methods that can tackle the trajectory

optimization effectively. There also exist a few methods to solve optimization

using Euler-Lagrange methods that can be found in Bertsekas [19] and are not

discussed in this work.
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2.1.2.1 Direct Shooting

In direct shooting, the control trajectory is parametrized using a condensed

vector ξ ∈ RNξ i.e. the control at time ti is given by ui = ψ(ti, ξ). There are

several parametrizations possible for the control vector. For example, we

could use a spline parametrization such as u(ti) = ∑
Np
k=1 Bk(ti)ξk, where the

controls are parametrized using the knot vector ξ = [ξ1, ξ2, · · · , ξNp ]. The

control trajectory is converted to the state trajectory by integrating the dynam-

ics. Thus, the trajectory cost is now parametrized using fewer parameters

i.e. the knot vector. The optimization can then be solved using any of the

regular optimization methods such as Gradient Descent [197], Coordinate

Descent [66] with the inputs given by the control parameters ξi. The direct

shooting optimization can be formulated as

min
ξ

J(x0:N, u0:N−1), (2.8)

s.t ui = ψ(ti, ξ), (2.9)

xi+1 = f (ti, xi, ui). (2.10)

Cons: The trajectory optimization problem (2.7) is inherently sparse since

the controls at stage i only affect the states xi+1:N, and therefore the gradient

of any of the states xi with controls ui+1:N is zero. Direct shooting destroys

the sparsity by compressing the controls using a parametrization ξ. This

can sometimes lead to slower computational time. Further, by restricting

the controls to a specific parametric class, the optimality of the trajectory

optimization can be limited. To understand this better, let us consider a linear
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dynamics i.e. xi+1 = Aixi + Biui. Further, let us parametrize our controls to be

linear in time i.e. ui = ξi1ti + ξi2 (ξi1,i2 are slope and intercept). If we choose a

quadratic cost, the optimal controls are obtained by linear feedback controller

where the controls are linear in the state and not in time. Thus, trajectories

obtained by direct shooting is optimal only within the control parametrization

class selected. In practice, however, the parametrization is tweaked by the

user to have sufficient diversity to achieve optimal trajectories while also

minimizing the number of inputs to the optimization. Direct shooting works

only with small time horizons since a small change in model parameters leads

to a large change in the trajectory. Direct shooting is also a local optimization

method which is susceptible to local minima often. Finally, the algorithmic

complexity of direct shooting scales poorly with the length of parameter

vector.

2.1.2.2 Direct Multiple Shooting

In this method, the trajectory to be optimized is broken into k components.

The controls along each component are assumed to be parametrized using ξ j.

The controls given by ξ j propagate the state along jth segment. The continuity

of the state between successive components is added as a constraint to the

optimizer. The complete trajectory optimization is formulated as a nonlinear
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optimization:

min
ξ1:k,x1:k

k

∑
j=1

Jj, (2.11)

x′j+1 = ψ(xj, ξ j), (2.12)

xj+1 = x′j+1. (2.13)

The nonlinear optimization minimizes the sum of trajectory costs of all com-

ponents subject to the constraint that the components are connected together.

This type of optimization allows for sparsity to be enforced across components

when solving the optimization. Since the trajectory is composed of multiple

components, the controls in each parameter only affect that component and

the neighboring components.

Multiple shooting enforces connectivity between different components

as an equality constraint in optimization. This allows user to initialize the

states at the end of each components x̄′j based on initial guess from a higher

level planner. The optimizer then tries to find the controls to enforce the

connectivity. Multiple shooting is less susceptible to local minima by allowing

the user to guess the initial states closer to true state and thereby works with

longer horizon than direct shooting.

Cons: The size of the optimization problem is increased dramatically

since we have to optimize over the parametrization of all the components.

Incorporating state constraints into the optimization requires a large number

of components since constraints can only be enforced on the ends of each

components.
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2.1.2.3 Sweep Methods

Sweep methods are similar to direct shooting method but use the sparsity

encoded in the trajectory optimization problem. Here, we introduce Differen-

tial Dynamic Programming (DDP) which approximately solves the Bellman

equation:

Vi(xi) = min
ui

Qi(xi, ui) = min
ui

(Li(xi, ui) + Vi+1( f (xi, ui))) , (2.14)

where V(xi) is the value function which denotes the minimal cost that can be

achieved starting at xi and Qi(xi, ui) is Q value which is equal to the sum of

cost accrued at stage i given by Li(xi, ui) and the value function evaluated at

the next state xi+1 = f (xi, ui).

There are two main components in DDP: a backward pass and a forward

pass. In the backward pass, the direction in which to move the control is

obtained by solving a second order approximation of the Bellman equation at

each stage. The second order approximation of the Bellman equation can be

written as

∆Qi ≈
1
2

⎡⎣ 1
δxi
δui

⎤⎦T ⎡⎣ 0 ∇xQT
i ∇uQT

i
∇xQi ∇2

xQi ∇xuQi
∇uQi ∇uxQi ∇2

uQi

⎤⎦⎡⎣ 1
δxi
δui

⎤⎦ (2.15)

The optimal control perturbation δu∗i minimizing Qi can be obtained as

δu∗i = Kiδxi + αiki, (2.16)

where Ki = −∇2
uQ−1

i ∇uxQi and ki = −∇2
uQ−1

i ∇uQi. Assuming the dynam-

ics is linearized as δxi+1 = Aiδxi + Biδui, the backward pass algorithm is
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summarized as shown in Algorithm 2

Algorithm 2 DDP-Backward
Vx = ∇xLN
Vxx = ∇xxLN
for k = N − 1→ 0 do

Qx = ∇xLi + AT
i Vx

Qu = ∇uLi + BT
i Vx

Qxx = ∇xxLi + AT
i Vxx Ai

Quu = ∇uuLi + BT
i VxxBi

Qux = ∇uxLi + BT
i Vxx Ai

Vx = Qx + KT
i Qu

Vxx = Qxx + KT
i Qux

end for

Algorithm 3 DDP-Forward
δx0 = 0 V′0 = 0
while doV′N > VN or Termination

α = Armiho()
for dok = 0→ N − 1

u′i = ui + αki + Kiδxi
x′i+1 = fi(xi, u′i)
V′i+1 = V′i + Li(x′i, u′i)

end for
V′N = V′N−1 + LN(x′N)

end while

Once the direction for control perturbation is obtained, a line search is

applied during the forward pass to find a step size that minimizes the tra-

jectory cost. The pseudo code for the forward pass is shown in Algorithm 3.

Finally, the backward and forward pass are repeated until convergence. In

the backward pass, a regularization term is usually added to ensure that the

Hessian of Q value is positive definite.

Pros: The computational complexity of the method is linear in the number
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of trajectory steps as opposed to cubic for a naive usage of Gauss-Newton

method. DDP also converges faster than a gradient descent method since it

uses Hessian information from the Q value during the backward pass.

Cons: It is harder to incorporate state and control constraints into sweep

methods. Usually sweep methods work best when there are only box con-

straints on the controls and no state constraints. DDP is also a local optimiza-

tion method and is also susceptible to local minima.

2.2 Stochastic NMPC

Stochastic systems are robotic systems for which we cannot exactly predict

the state of the system based on the current state and controls. Instead, the

dynamics of the system evolves using a stochastic ODE where the state of the

system at each point is a random variable. For example, the discrete version

of the stochastic ODE can be written as

xi+1 = f (xi, ui, wi), (2.17)

where xi is the state random variable at stage i, ui is the control, and wi is the

perturbation or noise introduced at stage i. The noise can correspond to either

forces applied by unknown agents or our inability to model the dynamic

system accurately. Since we cannot predict the state of the system exactly,

we have to work with the distribution of the trajectories based on applied

controls.

The goal of stochastic NMPC is to minimize the expected cost of the

trajectory where the expectation is taken over the perturbations and the initial
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state distribution. Differential Dynamic Programmming (DDP) described

in section 2.1.2.3 can be extended to solve stochastic NMPC [219]. Adding

deterministic state constraints to stochastic NMPC is not possible since the

state at each stage along the trajectory is sampled from a distribution.

Pros: Stochastic NMPC handles uncertainty in the model by minimizing

the expected trajectory cost.

Cons: Finding an exact gradient of the expected cost is non-trivial for

general stochastic nonlinear systems. Usually Monte Carlo simulations are

used to find the gradient of the expected cost but they are computationally

inefficient and are not practical for higher dimensional systems.

2.2.1 Chance Constrained Programming

Chance constrained programming is a method that deals with solving stochas-

tic NMPC with constraints [34]. It replaces deterministic constraints with

probabilistic constraints as shown in (2.19).

min
u1:N

Ex0,w0:N−1 [J], (2.18)

P[ψ(xi) ≤ 0] ≥ 1− δ, (2.19)

where δ determines how unlikely that the constraint will be violated. Chance

constrained programming has been initially limited to linear systems [205].

Recently chance constrained programming has been extended to nonlinear

systems [54]. One of the major drawbacks of the existing methods is that they

are computationally expensive and cannot be run in real-time.
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2.2.2 Tube NMPC

Instead of dealing with stochastic systems, there are a set of methods that do

not assume the disturbances/perturbations are sampled from some distribu-

tion. Tube-NMPC belongs to this class of methods. Tube-NMPC assumes that

the disturbances are bounded by a user-defined constant and thereby does

not assume anything about the distribution of the disturbances. The goal of

Tube-NMPC is to satisfy constraints for the dynamic system such as ψ(x) ≤ 0

(x is the state of the system) even under the influence of the disturbances w

assuming disturbances are bounded ∥w∥ ≤ ϵ. The trajectory optimization for

Tube-NMPC can be formulated as

min
u1:N

J(x0:N, u0:N−1), (2.20)

s.t ψ(xi) ≤ 0, ∀∥wi∥ ≤ ϵi, (2.21)

xi+1 = f (xi, ui, wi). (2.22)

To solve such an optimization problem, we need to find the region in which

the state xi will lie in under the influence of disturbances. The constraints are

then satisfied for every point in the region. The disturbance invariant region

(or simply invariant region) at stage i + 1 is therefore defined as

Pi+1 = {xi+1 : xi+1 = f (xi, ui, wi), ∥wi∥ ≤ ϵi, xi ∈ Pi}, (2.23)

where the control ui is assumed to be either a controller (ui = g(xi)) or a

deterministic value in which case the size of the invariant region cannot be

regulated explicitly.
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To solve the optimization in (2.20-2.22), the constraints are modified to

be applied on the invariant region, i.e. ψ̄(Pi+1) ≤ 0. This allows the system

to navigate obstacles and satisfy actuator constraints even when subject to

bounded disturbances. One of the main tasks in a Tube NMPC is to find the

invariant regions for a general nonlinear system. Majumdar and Tedrake

[142] used Sum Of Squares (SOS) programming techniques to compute the

invariant region for polynomial systems offline. Recent methods extended the

invariant funnel computation to nonlinear systems with a known Lipschitz

constant [232]. In Chapter 4.2, we propose a novel method to find the invariant

region for general nonlinear systems and formulate the NMPC using the

invariant region dynamics.

Cons: Tube NMPC often produces trajectories that are overly conservative

since we only assume the disturbances are bounded unlike stochastic NMPC

where we assume the disturbances are obtained from a distribution. Tube

NMPC is also computationally expensive as compared to deterministic NMPC

methods which do not consider model uncertainty.

2.3 System Identification

The NMPC optimization methods described so far relies on our ability to

predict the state of a robot system at a future time given its current state and

the controls applied to it, i.e. we assume we know the dynamics equation

of the robot xi+1 = f (xi, ui). Usually this dynamic equation also consists of

parameters that are assumed to be constant and describe the robotic system.

For example, the dynamics of a simple pendulum consists of the length of
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the rope and the mass of the bob. The goal of this section is to identify the

parameters based on a given set of measurements from different sensors.

2.3.1 Least Squares Estimation

One of the fundamental methods to perform system identification is using

least squares estimation. Least squares estimation minimizes a least squares

cost on the error between predicted and observed measurements (η, η ∈ Rnη ).

In the case of a linear measurement model, the predictions are given by a

linear relationship: η = ξψ, where ξ ∈ Rnη×nψ represents the optimization

parameters and ψ ∈ Rnψ represents the inputs to the system. The least squares

optimization for n measurements η1:N and inputs ψ1:N can be stated as:

min
ξ

N

∑
i=1
∥ηi − ξψi∥2

2. (2.24)

Gauss-Markov theorem states that the least squares method finds an unbiased

estimate of the parameters ξ under certain conditions regarding the noise

added to the measurements [4]. The variance of the estimator can be improved

by knowing the distribution characteristics of the measurements.

If the measurement model is nonlinear for example η = f (ξ, ψ), then non-

linear least squares method can be employed to find the optimal parameters

ξ [71]. Unlike, least squares, we cannot guarantee a global miniminum for the

cost function. Least squares method is implemented in practice using a batch

method where the measurements η are collected in small quantities (batch)

and the optimal parameters ξ are propagated from batch to batch [196].
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2.3.2 Maximum Likelihood Estimation

The goal of maximum likelihood estimation (MLE) is to estimate the param-

eters of a density function of a random variable based on samples obtained

from it’s distribution. Let us assume that X = {X1, X2, · · · , Xn} be random

variables with a joint probability density function (p.d.f) f (x|θ). The param-

eter vector θ is unknown and lives in some open set θ ∈ Σ. The parameter

vector induces a family of joint distributions on the random vector X. The goal

of Maximum Likelihood estimation (MLE) is to find an estimate for the true

parameters θ∗, given a sample x = {x1, x2, · · · , xn} of the random vector X.

The p.d.f evaluated at a given sample is known as the likelihood function. The

principle of MLE is to choose the value of θ for which the likelihood function

is maximized:

θ̂(x) = arg max
θ∈Σ

f (x|θ) (2.25)

By choosing such a θ, the probability of obtaining the observed sample

given θ becomes high. MLE obtains the best estimate for θ which maximizes

the probability of obtaining the observed sample. If a prior distribution on

θ is known, then the MLE estimation should be modified to multiply the

conditional density with the prior density on θ.

MLE is a consistent estimator (under certain conditions on the f (x|θ))

i.e. the distribution of the estimate converges to θ∗ in probability [45]. The

estimate θ̂n of MLE is sampled from a function of the random vector X, i.e.

for every sample x of random vector X, MLE provides an estimate θ̂n(x)).
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The convergence in probability implies that limn→∞ P
[
∥θ̂n − θ∗∥ ≤ ϵ

]
= 1

for any ϵ > 0. Hence MLE estimator gets closer to the actual parameters as

the number of samples increase under certain conditions on the estimator

distribution. Note: Although MLE estimates gets arbitrarily closer to the

actual θ∗, they may not be unbiased (EX(θ̂n(x)) ̸= θ∗).

2.3.2.1 Log Likelihood Function

In many cases, it is advantageous to work with the log of the likelihood

function. log is an increasing function and is concave. Thus log of a likelihood

function achieves the maximum at the same θ as likelihood function. In

addition log-likelihood functions separate the joint density function into a

sum of density functions for an i.i.d sequence of random variables fX(x) =

Πi fXi(xi|θ); log fX(x) = ∑i log fXi(xi|θ). In such a case, taking derivatives of

sums becomes easier and is usually numerically more stable than the original

exponential function.

2.3.2.2 Information Inequality

This inequality defines the minimum variance possible for an arbitrary estima-

tor of parameter θ∗ from i.i.d samples xi sampled from p.d.f f (xo|θ) [20]. In

particular it states that for an unbiased estimator, the variance of the estimate

is lower bounded: VarX(θ̂n(x)) ≥ 1
n I−1(θ). The matrix I(θ) is known as Fisher

information matrix and is defined as Iij(θ) = E[ ∂
∂θi

log( f (xo|θ) ∂
∂θj

log( f (xo|θ)].

An efficient estimator is one which achieves the minimum variance stated

above. This type of estimator not only produces estimates close to θ∗, but
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also the spread of the estimates about θ∗ will be smallest among all possi-

ble unbiased estimators. MLE is an efficient estimator under few regularity

conditions [45].

2.3.2.3 Asymptotic Distribution of MLE

Assuming a few regularity conditions on the density function f (x|θ) as ex-

plained in Hogg and Craig [78], the distribution of the scaled error between

estimated parameter and true parameter converges in distribution to a stan-

dard normal distribution: limn→∞
√

nI(θ)(θ̂n − θ∗)→ N(0, I)(matrix square

root). The distributional convergence is true even for biased MLE estimators

under certain conditions. For example, the MLE estimator for a standard

deviation(σ) of a normal distribution is biased but still satisfies the above

asymptotic normality.

2.3.3 Moving Horizon Estimator

The moving horizon estimator applies MLE to a series of sensor measurements

to find the mean and covariance of the parameters of the dynamic system [7].

Assuming we have a continous series of sensor measurements z1:N and the

initial state x0 and controls u0:N−1, we want find to the parameters p that

satisfy

xi+1 = f (xi, ui, p), (2.26)

zi = h(xi). (2.27)
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Usually, we assume that measurements are corrupted by gaussian noise with

zero mean and covariance Σz, and therefore we cannot find true parameters

that satisfy (2.27). Moving horizon estimation minimizes the log likelihood

cost for the parameters given a set of sensor measurements as

J =
1
2

[
N

∑
i=1

(zi − z̄i)
TΣ−1

z (zi − z̄i) + (p− p̄)TΣ−1
p (p− p̄)

]
, (2.28)

s.t z̄i = h(xi), (2.29)

xi+1 = f (xi, ui, p). (2.30)

where p̄ is a prior on the parameters and Σp is the covariance of the prior

and Σz is the covariance of the sensor measurements. The mean and co-

variance of the parameters are obtained by minimizing the cost function

p∗ = arg minp J(z̄1:N, p̄, x0). The covariance for the parameters is approxi-

mated based on the Fischer information matrix of the sensor measurements:

J∗p = ∂Jp
⏐⏐

p=p∗ , (2.31)

Σp ≈
(

J∗p J∗p
T
)−1

, (2.32)

where np is the dimension of the parameter vector p.

The prior on the parameters p̄ and the covariance Σp are updated based

on the optimized mean and covariance obtained from the optimization. The

moving horizon estimator is used in Chapter 4.1 to find the parameters of a

quadrotor model along with external disturbances such as body forces before

applying NMPC on the learned model.
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2.4 Unscented Transform

The unscented transform [228] is an approximate method to compute the

mean and covariance of a nonlinear transformation of a random variable. Let

us assume that we are given a random variable x with mean µx and covariance

Σx. Further, let us assume we obtained a random variable by transforming

x as y = g(x). The goal of unscented transform is to compute the mean and

covariance of the random variable y by selectively sampling points from x.

The unscented transform first selects 2n + 1 "sigma points" (n is the dimension

of the random variable x) which are points perturbed along the columns

of the square root of the covariance matrix. The sigma points ξ0:2n can be

mathematically written as

ξ0 = µx, (2.33)

ξi = µx +

(√
(n + λ)Σx

)
i
, i ∈ {1, · · · , n}, (2.34)

ξi = µx −
(√

(n + λ)Σx

)
i
, i ∈ {n + 1, · · · , 2n}. (2.35)
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Once the sigma points are defined, we define the mean and covariance of y as

the weighted sum of propagated sigma points:

µy =
2n

∑
i=0

Wig(ξi), (2.36)

Σy =
2n

∑
i=0

Ŵi
(

g(ξi)− µy
) (

g(ξi)− µy
)T , (2.37)

where,

W0 = λ/(n + λ), (2.38)

Ŵ0 = λ/(n + λ) + (1− α2 + β), (2.39)

Ŵi = Wi = 1/ [2(n + λ)] , i ∈ {1, · · · , 2n}. (2.40)

The parameters λ, α, β can be optimized further based on the type of distribu-

tion of x. In Chapter 4.1, the unscented transform is used to solve a chance

constrained program for a quadrotor to avoid obstacles with high probability.

2.5 Neural Networks

Neural networks are a type of function approximators which emulate roughly

the biological neurons [86]. The networks are made of a single building block

called the perceptron. Each perceptron consists of an affine function followed

by a nonlinear activation function as shown in Figure 2.1. Different types of

activation functions such as sigmoid, tanh and rectified linear units have been

used in literature. By chaining several perceptrons together, the output of the
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network can approximate more and more complex functions. A single layer

of a neural network can be mathematically stated as

y = ψ(Wx + b), (2.41)

where x ∈ Rn is the input to the layer, ψ(·) is the activation function, W ∈

Rm×n and b ∈ Rm are the weights and biases of the network and y ∈ Rm is

the output of the neural network layer.

Figure 2.1: Schematic of a perceptron [227] and Neural network with multiple per-
ceptrons connected together [111]

The basic network explained above is called a fully connected network.

This type of network does not use the full structure of the problem and thus has

a limited capacity to approximate complex functions. Neural networks that

use the symmetry in the problem such as Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN) have been developed for

specific applications such as object detection and time-series prediction where

exploiting the symmetry in the problem is necessary.

2.5.1 Training a fully connected network for supervised tasks

The goal of a supervised learning task is to find a network that can best

predict the samples {y1:N, x1:N}. Mathematically, assuming the network is
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represented as the function ȳ = f (x, p), the goal of the training is to find

the parameters of the network p∗ that minimize the error between predicted

output ȳ1:N and the measured output y1:N. The training problem can be

formulated as

p∗ = arg min
p

L( f (x1:N, p), y1:N), (2.42)

where the cost function L(·, ·) measures the error between predicted and

observed measurements. For a regression problem, where the outputs y ∈

Rm, the cost function is usually selected as a squared euclidean norm. This

optimization problem is usually solved using a variation of stochastic gradient

descent known as minibatch gradient descent [197]. In the simplest form

of the algorithm, a small batch of M samples is used to find the gradient

of the cost function. The parameters are then perturbed in the negative of

the gradient direction with a step size that is annealed with the number of

iterations. The gradient of the cost function with respect to the parameters can

be computed using a specialized automatic differentiation technique known

as back propagation since the cost function and structure of the network, i.e.

the activation function and the connections between the layers are known

beforehand.

2.5.2 Applications

Neural networks are used in a wide-variety of applications such as hand-

writing and face detection from images [173], teaching computers how to play

against human opponents in a game of Go [209], how to drive a car [21] and
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predicting stock markets [236]. A lot of research effort has also been devoted to

understanding why the networks are such good function approximators [207].

One of the limitations to the traditional neural networks are that it is hard

to know when the network fails. Recent research has also been focused

on generating explainable neural networks that can provide some form of

explanation for the output they are generating [67].

2.5.3 Recurrent Neural Networks (RNN)

Recurrent neural networks are used to predict time-series data. These net-

works share the same perceptron across different time steps as shown in

Figure 2.2. There are different types of recurrent networks such as LSTM and

GRU networks which have different types of prediction units shared across

time steps [204]. By sharing the same prediction unit across time steps, a small

network can learn complex time series functions by composing over time.

Figure 2.2: A schematic of recurrent neural network as shown in Hallstrom [70]. The
weights of a prediction unit are shared across the time-steps.

To learn the weights of a RNN, a variation of back-propgation known as

truncated back propagation is used to learn the gradient. Under this approach,

several segments of truncated time-series samples are collected and mini-batch

gradient descent is applied to the collection of samples. By truncating the
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time-series data, we ignore the gradients of the samples beyond the truncated

time on the weights.
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Chapter 3

Model Predictive Control for
Articulated Rigid Body Systems

3.1 Introduction

This chapter verifies the effect of using optimal reference trajectories on general

nonlinear systems. In particular, we focus on enabling agile pick-and-place

capabilities for aerial vehicles equipped with manipulators through trajectory

optimization. Aerial manipulation using vertical take-off and landing (VTOL)

vehicles is a relatively new research area with a potential for various novel

applications such as coordinated assembly, construction, and repair of struc-

tures at high altitudes, or operating in difficult-to-access, remote, or hazardous

locations to e.g. install sensors or obtain samples. Autonomous control of such

system is challenging primarily due to disturbances from interactions with the

environment, due to additional dynamics caused by a moving manipulator,

and due to difficulties associated with dexterous manipulation.

Initial work related to aerial manipulation included slung load transporta-

tion with helicopters [57, 148], grasping with novel adaptive end-effectors [180,
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178], construction using teams of quadcopters [131], or pole balancing tasks [73].

More recently, there has been a focus on autonomous construction and envi-

ronment interaction, with initial demonstrations in laboratory settings. The

Aerial Robotics Cooperative Assembly System (ARCAS) project [13, 91, 74],

Mobile Manipulating Unmanned Aerial Vehicle project [169, 117, 119] and

Airobots project [3, 223] have demonstrated complex manipulation and assem-

bly tasks using multiple degrees of freedom manipulators. Other important

developed capabilities include telemanipulation [152, 89] or avian-inspired

agile grasping [221]. In addition to control-related challenges, accurate pose

estimation of objects is of central importance and has been considered through

image-based visual servoing [220] and marker-based pose computation [13,

73]. Real-time recognition and aerial manipulation of arbitrary unengineered

objects in natural settings remains largely an open problem.

Control strategies for aerial manipulation can be divided into coupled which

consider the full multi-body system model [132, 105, 168], and decoupled based

on separate controllers for the base body and manipulator [198]. The key

difference is that the decoupled approach treats external forces from the arm

or environment as disturbances to be compensated by the vehicle.

In this chapter, we propose an optimal control algorithm for generating

reference trajectories to pick an object using aerial vehicle. Experimental

verification has been performed using a minimalist low-cost system based on

a two-degree of freedom manipulator with a simple gripper. The task is made

challenging by using a monocular camera to recognize and track the target

object. To facilitate recognition, objects are engineered with LED markers

33



g0
g1

gt

g01

g2

lift force

torques

joint torques

g0t

base

a)

b)

c)

Figure 3.1: a) a prototype quadrotor with manipulator, b) schematic model, c) a computed
optimal trajectory for a quadrotor platform with a manipulator attached.
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correspoding to known features. A detailed nonlinear model is employed

by the optimal control framework to capture the interaction between the

arm and quadcopter. Currently due to computational limitations, trajectory

optimization operates at 10Hz and is not used for real-time control. Hence

a high frequency nonlinear controller is coupled with the optimal control

framework to track the reference trajectories.

The chapter is organized as follows. The dynamical multi-body system

modeling and numerical optimal control approach are described in section

3.2 and section 3.3, respectively. Then we proceed to describe the experiments

conducted to validate the optimal controller in section 3.4. Finally we provide

the results of the experiments conducted and discuss future work in section

3.5.

3.2 System Modeling for articulated rigid bodies

The aerial robot is modeled as a free-flying multi-body system consisting of n+

1 interconnected rigid bodies arranged in a tree structure. The configuration

of body #i is denoted by gi ∈ SE(3) and defined as

gi =

(
Ri pi
0 1

)
, g−1

i =

(
RT

i −RT
i pi

0 1

)
.

where pi ∈ R3 denotes the position of its center of mass and and Ri ∈ SO(3)

denotes its orientation. Its body-fixed angular and linear velocities are denoted

by ωi ∈ R3 and νi ∈ R3. The pose inertia tensor of each body is denoted by
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the diagonal matrix Ii defined by

Ii =

(
Ji 0
0 mi I3,

)
where Ji is the rotational inertia tensor, mi is its mass, and In denotes the n-x-n

identity matrix. The system has n joints described by parameters r ∈ Rn.

Following standard notation [158], the relative transformation between the

base body#0 and body#i is denoted by g0i : Rn → SE(3), i.e.

gi = g0g0i(r).

The control inputs u ∈ U ⊂ Rm=n+4 denote the four rotor speeds squared

and the n joint torques. More specifically, ui = Ω2
i for i = 1, . . . , 4 where Ωi

is the rotor speed of the i-th rotor, and u4+i denotes the i-th joint torque, for

i = 1, . . . , n.

The configuration of the system is thus given by q ≜ (g, r) ∈ Q ≜ SE(3)×

Rn, where g ∈ SE(3) is a chosen reference frame moving with the robot. In

this work we take the base body as a moving reference, i.e. g ≡ g0. The

velocity of the system is given by v ≜ (V, ṙ) ∈ R6+n, where V ∈ R6 denotes

the body-fixed velocity of the moving frame g and ṙ ∈ Rn denotes the joint

angle velocities. The base velocity satisfies V̂ = g−1 ġ where the “hat” operator

V̂ for a given V = (ω, ν) is defined by

V̂ =

[
ω̂ ν

01×3 0

]
, ω̂ =

⎡⎣ 0 −w3 w2
w3 0 −w1
−w2 w1 0

⎤⎦ . (3.1)

With these definitions, the full state of the system is x ≜ (q, v) ∈ X ≜ Q×

R6+n.
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Continuous Equations of Motion The coordinates for our setting are q =

(g, r) where the pose g ∈ SE(3) and r represents joint parameters. For optimal

control purposes, it is necessary to avoid Euler angle singularities and, in

addition, it is advantageous to avoid unit quaternion constraints. To achieve

this, the dynamics is defined directly on state space X as:

ġ = gV̂ (3.2)

M(r)v̇ + b(q, v) = Bu, (3.3)

where the mass matrix M(r), bias term b(q, v), and constant control matrix

B are computed analogously to standard methods such as the articulated

composite body algorithm [55] or using spatial operator theory [87]. With our

coordinate-free approach the mass matrix in fact only depends on the shape

variables r rather than on q and for tree-structured systems can be computed

readily according to

M(r) =

⎡⎢⎣ I0 +
n

∑
i=1

AT
i Ii Ai ∑n

i=1 AT
i Ii Ji

∑n
i=1 JT

i Ii Ai ∑n
i=1 JT

i Ii Ji

⎤⎥⎦ (3.4)

using the adjoint notation Ai := Adg−1
0i (r), and jacobian given by

Ji :=
n

∑
j=1

[g−1
0i (r)∂rj g0i(r)]∨, (3.5)

where g0i(r) is the relative transformation from the base body to body #i and

Ii is the inertia tensor of body #i [158].

The bias term b(q, v) encodes all Coriolis, centripetal, gravity, and external

forces. Finally, for a quadrotor model the constant control matrix B has the
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form

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −lkt 0 lkt
−lkt 0 lkt 0
km −km km −km
0 0 0 0
0 0 0 0
kt kt kt kt

06×ℓ

0ℓ×6 Iℓ×ℓ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where l, kt, km correspond to the distance of the propellers from the center of

quadrotor, thrust gain and moment gain respectively and are known constants.

This can be easily extended to other multi-rotor configurations.

Discrete Dynamics For computational purposes we employ discrete-time

state trajectories x0:N ≜ {x0, . . . , xN} at equally spaced times t0, . . . , tN ≡ t f

with time step ∆t =
t f−t0

N . The discrete state at index k approximates the

continuous state at time tk = t0 + k∆t, i.e. xk ≈ x(tk) and is defined by

xk = (gk, rk, Vk, ∆rk), where ∆rk denotes the joint velocities at k-th stage. A

simple discrete-time version of the continuous dynamics (3.2)–(3.3) is then

employed:

gk+1 = gk cay (∆tVk+1) , (3.6)

rk+1 = rk + ∆t∆rk+1, (3.7)

M(rk)
vk+1 − vk

∆t
+ b(qk, vk) = Buk, (3.8)

38



where b(qk, vk) is the bias term evaluated at kth step. This is a first-order

semi-implicit method since one first updates the velocity vk+1 using the dy-

namics (3.8) and then updates the configuration using the kinematics (3.6)–

(3.7). The method requires small time-steps to ensure stability (∆t ≤ 100ms is

sufficient for the aerial systems considered), higher-order methods are also

possible [106, 104].

Note that the base pose update (3.6) is performed using the Cayley map

cay : R6 → SE(3) defined (see e.g. Kobilarov and Marsden [106]) by

cay(V) =

[
I3+

4
4+∥ω∥2

(
ω̂+ ω̂2

2

)
2

4+∥ω∥2 (2I3+ω̂) ν

0 1

]
, (3.9)

instead of the more standard exponential map on SE(3) [158, 27] since it is

an accurate and efficient approximation, i.e. cay(V) = exp(V) + O(∥V∥3),

it preserves the group structure, and has particularly simple to compute

derivatives. Its inverse is denoted by cay−1 : SE(3)→ R6 and is defined for a

given g = (R, p), with R ̸= −I, by

cay−1(g) =
[
[−2(I + R)−1(I − R)]∨

(I + R)−1p

]
.

3.3 Trajectory Optimization

To achieve agile pick-and-place motions we employ model-predictive control

to optimize future trajectories over the interval [t0, t f ] where t0 is the current

time and t f is a specified moving horizon. A typical horizon t f − t0 for the

considered aerial maneuvers is between 2 and 5 seconds. Two methods for

unconstrained optimal control are considered in view of their capacity for
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near real-time performance: a simple Gauss-Newton shooting method and a

Stagewise Newton sweep method.

3.3.1 Optimal Control Formulation

The optimal control problem can be generally formulated as the minimization

of:

J(x0:N, u0:N−1) ≜ LN(xN) +
N−1

∑
k=0

Lk(xk, uk), (3.10)

subject to: xk+1 = fk(xk, ui), uk ∈ U (3.11)

where fk encodes the integrator (3.6)–(3.8) and U defines the admissible con-

trol set. The stage-wise cost penalizes deviation from a desired nominal state

xd and controls ud and is given by

Lk(xk, uk) =
1
2
∥xk − xd∥2

Qk
+

1
2
∥uk − ud∥2

Rk
, (3.12)

while the terminal cost is defined by

LN(xN) =
1
2
∥xN − x f ∥2

Q f
, (3.13)

where Qk ≥ 0, Q f > 0, Rk > 0 are appropriately chosen diagonal matrices to

tune the vehicle behavior while reaching a desired final state x f . In the aerial

robot application the matrix Qk contains non-zero terms corresponding to a

desired velocity only.
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3.3.2 Overloading ±operator on the group SE(3)

Numerical optimal control is based on vector calculus which is not directly

applicable to states x = (g, r, v) containing matrix elements g ∈ SE(3). Hence,

we use vector operators with analogous “retract” and “lift” operators on

SE(3).

The lift operator on SE(3) is equivalent to operator minus (·)− (·) : SE(3)×

SE(3)→ R6

gb − ga = V ⇐⇒ cay−1(g−1
a gb) = V,

gb − ga ≜ cay−1(g−1
a gb) = V ∈ R6, (3.14)

or practically speaking the differences between two poses approximately

equals the constant body-fixed velocity V with which ga moves to align with

gb after one unit of time. The retract operator on SE(3) is equivalent to plus or

minus (·)± (·) : SE(3)×R6 → SE(3) according to

ga ±V ≜ gacay(±V) = gb ∈ SE(3), (3.15)

i.e. adding/subtracting a vector V to/from the matrix ga is interpreted as

shifting ga using a unit-time transformation with constant body-fixed velocity

V. With these definitions, the errors xi − xd and xN − x f appearing in the

costs (3.12),(3.13) are defined using the lift operator (3.14) so that, e.g. the

latter with x f = (g f , r f , v f ) should be understood as

xN − x f ≡

⎡⎢⎣ cay−1(g−1
f gN)

rN − r f
vN − v f

⎤⎥⎦ .
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3.3.3 Gauss-Newton shooting method

One of the simplest, often overlooked, but surprisingly effective methods

for solving the optimal control problem (3.10)–(3.11) is a shooting method

exploiting the least-squares nature of the costs (3.12)–(3.13). It is formulated

by parametrizing the discrete control trajectory u0:N−1 using a vector ξ ∈

Rℓ≤Nm, encoded through the functions uk = ϕk(ξ) for each k = 0, . . . , N − 1.

For instance, ξ could contain the knots of a B-spline from which each uk is

extracted. The simplest parametrization is to simply set ξ = u0:N−1. Using

the dynamics each state can be expressed as a function of ξ which is encoded

through the functions xk = ψk(ξ) for k = 0, . . . , N. The cost is then expressed

as J(ξ) = 1
2 h(ξ)Th(ξ), where h : Rℓ → RN(m+n+6) is given by

h(ξ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
R0 (ϕ0(ξ)− ud)√
Q1 (ψ1(ξ)− xd)√
R1 (ϕ1(ξ)− ud)

...√
QN−1 (ψN−1(ξ)− xd)√
RN−1 (ϕN−1(ξ)− ud)√

Q f
(
ψN(ξ)− x f

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since Ri > 0 the Jacobian ∂h(ξ) is guaranteed to be full rank and one can apply

a Gauss-Newton iterative method directly to update ξ → ξ + δξ where δξ =

−(∂gT∂g)−1∂gTg. In addition, the Jacobian has a lower-triangular structure

that can be exploited in the Cholesky GN solution. The complexity of this

method is still O(ℓ3) which is only acceptable for small ℓ, e.g. ℓ ≤ 100 in order

to achieve real-time performance. The key advantage of the GN approach

is its simplicity and robustness by employing standard regularization and
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line-search techniques [19].

A more efficient method with complexity O(N(n + m)) that exploits the

recursive optimal control problem structure is presented next.

3.3.4 Stagewise Newton and Differential Dynamic Program-
ming

The second optimal control method used in this work is based on a coordinate-

free recursive optimal control formulation [104, 106] for optimization on

state spaces with Lie group structure such as SE(3). The particular method

we employ is Stagewise Newton (SN) [19] which is also closely related to

Differential dynamic programming (DDP) [85].

Stagewise methods explicitly require the linearization of the cost and of

the dynamics. On non-Euclidean manifolds X such linearization is achieved

using trivialized variations and gradients [104]. In particular, for the class of

systems considered in this work, the linearized discrete dynamics takes the

form

dxk+1 = Akdxk + Bkδuk, (3.16)

with dxk ≜ (dgk, δrk, δvk) where dg ≜ (g−1δg)∨ ≡ ((RTδR)∨, RTδp) ∈ R6 is

the trivialized variation on SE(3). Similarly, the trivialized gradient dgL ∈ R6 of

a function L : SE(3)→ R is defined by

dgL ≜ ∇V

⏐⏐⏐
V=0

L(g cay(V)), (3.17)

for some V ∈ R6. With these definitions, any standard iterative optimization
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method such as SQP, SN, or DDP can be applied by replacing the standard

gradients ∇gL, ∇2
gL and variations δg, with the trivialized gradients dgL, d2

gL

and trivialized variations dg.

Finite-difference linearization of the dynamics. Since the resulting multi-

body dynamics (3.6)–(3.8) has a complex nonlinear form, we employ finite

differences for computing the Jacobians Ak and Bk. The default choice is

central differences:

Ai
k ≈

f (xk + ϵei, uk)− f (xk − ϵei, uk)

2ϵ
,

Bj
k ≈

f (xk, uk + ϵej)− f (xk, uk − ϵej)

2ϵ
,

for i = 1, . . . , n + 6, and j = 1, . . . , m, where each ei is a standard basis unit

vector with only one non-zero element at its i-th component. We again em-

phasize that the + and − signs above should be interpreted as the overloaded

operators (3.14),(3.15) whenever elements of SE(3) are involved.

Closed-form cost gradients. The trivialized gradient and Hessian of Li are

straightforward to compute and only require an extra term to account for the

Cayley map. They are given by:

dLk =

[
dcay−1(−∆k) 0

0 I

]T

Qk(xk − xd), (3.18)

d2Lk≈
[

dcay−1(−∆k) 0
0 I

]T

Qk

[
dcay−1(−∆k) 0

0 I

]
, (3.19)
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where ∆k = cay−1(g−1
d gk) for each k = 0, . . . , N − 1. Equivalent expressions

also hold for the gradients of LN, with gd replaced by g f , and Qk with Q f .

Note that for simplicity the Hessian was approximated by ignoring the second

derivative of cay. The trivialized Cayley derivative denoted by dcay(V) for

some V = (ω, ν) ∈ R6 is defined (see e.g. Kobilarov and Marsden [106]) as

dcay(V)=

[ 2
4+∥ω∥2 (2I3 + ω̂) 03

1
4+∥ω∥2 ν̂(2I3 + ω̂) I3+

1
4+∥ω∥2 (2ω̂+ω̂2)

]
, (3.20)

it is invertible and its inverse has the simple form

dcay−1(V) =

[
I3 − 1

2 ω̂ + 1
4 ωωT 03

−1
2

(
I3 − 1

2 ω̂
)

ν̂ I3 − 1
2 ω̂

]
. (3.21)

The linearized dynamics (3.16), cost gradients (3.18) and Hessians (3.19) can

now be used as the ingredients of a standard Stagewise Newton algorithm [19]

as detailed in Kobilarov [104].

3.4 Experiment Setup

In this section the hardware and software architecture required for running

the manipulation experiments is described. The goal of the experiments is to

pick a bottle of weight 100 grams from a modified desk that is approximately

1 meter away. The aerial manipulator achieves this task by either following a

kinematic reference trajectory or an optimal reference trajectory. A qualitative

comparision of the time taken to grasp the object and quality of tracked

trajectories are compared.
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Figure 3.2: a) Experimental arena showing the object to grab (black bottle) and led markers
b) Led markers as seen from onboard camera

3.4.1 Hardware

Our prototype platform is based on the 3DRobotics quadcopter capable of

lifting a payload of 1Kg, the Pixhawk autopilot board [150] for low-level

attitude and thrust control, and the Odroid XU+E bare board computer for

running various control algorithms. The NaturalPoint OptiTrack Motion

Capture System has been used for estimating the attitude and position of

the quadcopter in the world frame. A lightweight camera (PointGrey Firefly

model) is installed onboard for providing the relative position of the target

object in the reference frame of the quadcopter. A custom manufactured

lightweight arm along with a 3D printed gripper has been installed on the

quadcopter to grasp the object.
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3.4.2 Bridging Gap Between Trajectory Generation and Hard-
ware Inputs

The trajectory generation procedure described in section 3.3 used body torques

to control the quadrotor and joint torques to control the robotic arm. In prac-

tice, however, we use an autopilot to control the orientation of the quadrotor

and servos to control the joint angles. Thus, we use the states provided by

the trajectory optimization as a reference for a nonlinear controller. Using an

optimal reference trajectory is expected to improve the tracking performance

of the nonlinear controller as opposed to a kinematic reference trajectory.

Further, by delegating the low-level control to the autopilot, we can switch

between different configurations of multirotor platforms without modifying

the reference trajectory.

3.4.3 Experimental Scenario

The experimental scenario in Figure 3.2 shows the object of interest and LED

markers which are used by the onboard camera to detect and track the object.

The experiment requires the quadcopter to detect the marker, fly to a specified

location in front of it, and retrieve the object placed on a stand. This is a

challenging task, since the quadcopter has to extend the arm farther beyond

it’s enverlope to grab the target object.

3.4.4 Kinematic reference trajectory generation

According to kinematic trajectory generation approach, we have two stages

in the process of grabbing the object. In the first stage, we track the markers
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Figure 3.3: Optimal control trajectory followed by the quadcopter. The solid line
represents the desired trajectory and dashed line represents the actual trajectory
followed

and stabilize to 0.6m away from it. Once the quadcopter stabilizes to the goal

position, we begin the next stage in which the arm is opened at a constant

velocity until the object is grasped.

3.4.5 Optimal reference trajectory generation

Using trajectory optimization approach, we compute a reference trajectory

for the combined system of the quadcopter and arm using Stagewise Newton

method described in section 3.3.4. The optimal controller is used in open-

loop to compute a reference trajectory for the quadcopter and the arm. The

object position is assumed to be static once the quadcopter starts executing the

reference trajectory. The computed trajectory contains the full state (position,

orientation and body fixed velocities) of the quadcopter, full state of the

arm (joint positions and velocities) and the controls needed to achieve them.
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Figure 3.4: Series of pictures showing approach, grasping, and retrieval of the object
under optimal reference trajectory setting

The desired position and velocity of the quadcopter is fed into the feedback

linearization based controller and the desired joint angles and velocities for

the arm are achieved through the PID controller on the servo motors. The

quadcopter is able to track the trajectory closely as shown in Figure 3.3. The

optimal control approach allows for faster actuation of the arm without losing

accuracy. Since both the arm and the quadcopter execute their respective

trajectories simultaneously, the object is expected to be retrieved in a shorter

time interval as compared to kinematic reference generation.

3.5 Results and Discussion

The series of pictures in Figure 3.4 show the quadcopter flying to the marker

and retrieving the object. The upper half represents the approach to grasp

the object and the lower half shows the retrieval of the object. The average

time for retrieval using kinematic reference trajectories (Fig[3.5]) is around 15
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seconds. Using optimal reference trajectory tracking reduces the time taken

to grasp the object to 5 seconds. This suggests that using optimal reference

trajectories is superior to manual reference trajectories.

The tip positions for various starting positions converging to the target

location (red cuboid) have been plotted in Figure 3.5. The tip positions are

defined as the position of the end-effector of the manipulator attached to the

quadrotor. The tip position is obtained by combining motion capture pose

of the quadrotor and the forward kinematics of the manipulator. Since the

non-optimal kinematic reference trajectory does not account for the dynamics

of the arm, the tip positions are not smooth and take longer time to converge

to the grasping location. On the other hand, the tip position for the case using

optimal control (denoted by black dashed line) is smoother and converges

with the same accuracy in a shorter time period. Following the optimal control

based reference trajectory has enabled us to actuate both the quadcopter and

the arm simultaneously to grasp the object quickly.

There are many challenges faced during the manipulation tasks described

above. The quadcopter position can be estimated based on the pose of the

markers from the onboard camera. But this estimate turned out to be noisy and

is dependent on the distance between the camera and markers. Thus a motion

capture system is used to provide a reliable estimate of the quadcopter state.

Since we are using a feedback linearization based controller for the quadcopter,

we are not using optimal control to its full capacity of directly commanding

the quadcopter motors. This explains the slight discrepancies between the

actual and the desired quadcopter trajectories shown in Figure 3.3.
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Figure 3.5: Comparison of end-effector tip position trajectories for Kinematic and
MPC settings starting from from different initial positions marked with black dots.
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3.5.1 Future Directions

Future work should focus on two aspects: model identification, motor-level

control. Model identification should be performed online to identify the mass

of the object that’s being picked up and learn the inertial parameters of the

system. From the author’s experience getting noise free IMU measurements at

high frequency is critical for learning inertial parameters of the system. It was

observed that the IMU signal was drowned out by vibration from propellers to

figure out the moment of inertia of the system. Motor-level control will allow

the MPC controller to track reference trajectories more closely by countering

the torques applied by the arm and the picked up object. Without motor-level

control it is not possible to lift very heavy objects since the autopilot on the

quadrotor is not designed to handle abrupt change in external torques.
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Chapter 4

Safe Obstacle Avoidance

In this Chapter, we develop techniques to handle obstacles and other task

constraints safely under the influence of external disturbances and inaccurate

dynamic models. We introduce two techniques to perform obstacle avoidance.

The first technique introduced is called Adaptive NMPC which propagates

parametric uncertainty to find approximate high confidence ellipsoids along

the state trajectory. The trajectory optimization then avoids obstacles using

the high confidence ellipsoids as a buffer to ensure the robot does not collide

with obstacles. This method only propagates the uncertainty in open-loop and

a second method called Tube NMPC is introduced which takes into account

re-planning through a feedback controller. We also provide simulations and

experiments to prove the usefulness of these methods.
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4.1 Adaptive Nonlinear Model Predictive Control

4.1.1 Introduction

This section introduces a robust control scheme for multirotors to perform

obstacle avoidance. Robustness has been achieved by using an online esti-

mation scheme to learn the dynamics of a quadrotor and steering away from

obstacles with high probability by predictng the vehicle motion for a short

time horizon into the future.

Aerial robotic vehicles such as quadrotors are beginning to enable a range

of useful capabilities. Current and future applications of quadrotors operating

in natural environments include delivery of packages [184], inspection of a

building infrastructure and power lines [3], aerial photography, and traffic

surveillance [68]. With the increasing use of quadrotors, their safety and

reliability are becoming essential.

Several prior studies focused on generating reliable controllers for guar-

anteeing safety and stability of the quadrotor under external disturbances.

For instance, the quadrotor dynamics has been estimated online using the

autoregressive-moving-average with exogenous inputs (ARMAX) model [202,

199] and has been applied to model and control quadrotor platforms [201].

Model Reference Adaptive Control (MRAC) algorithms that estimate the sys-

tem parameters while stabilizing the quadrotor under actuator uncertainty

have been developed in [51, 161, 93]. These methods, however, do not account

for modeling uncertainty and actuator bounds. Robust control techniques, on

the other hand, can reject uncertainty in system dynamics [231] and account
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Figure 4.1: a) DJI Matrice quadrotor with Guidance sensor suite and an additional
short-range stereo used for experiments, b) Simulated safe obstacle avoidance tra-
jectory for the quadrotor. The blue region corresponds to propagated uncertainty
denoted by a 2σ standard deviation ellipsoids around the pose of the quadrotor, and
red regions show two cylindrical obstacles.
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for actuator limits [42]. A robust backstepping controller for quadrotors which

is globally asymptotically stable has been discussed in Kobilarov [107]. Ro-

bust controllers have been used in practice to track an aggressive figure eight

maneuver accurately [134].

Introducing obstacles into the quadrotor’s environment further compli-

cates the safe operation of quadrotors. Potential field methods have been used

in Budiyanto et al. [25] to generate an optimal obstacle free path that handles

both static and dynamic obstacles. This method uses only the kinematics

of the quadrotor model to generate the trajectory. On the contrary, a Linear

Quadratic Regulator (LQR) based feedback scheme, combined with a direct

collocation-based obstacle avoidance planner has been used to plan dynami-

cally feasible knife-edge maneuvers for fixed wing aircraft in Barry et al. [16].

The feedback system generates a time-varying locally stable feedback control

law using LQR optimization. Instead of offline generated feedback controllers,

real-time kinodynamic planning using sampling-based motion planning of

a quadrotor among dynamic obstacles has been demonstrated in Allen and

Pavone [6].

Obstacle avoidance in the presence of external disturbances is dealt with us-

ing recent extensions in Learning-Based Model Predictive Control (LBMPC) [24,

15]. This method allows for online learning of quadrotor dynamics and the

generation of optimal trajectories that guarantee convergence. LBMPC has

been used to learn ground effects on quadrotors and to predict the trajectory

of balls for the purpose of catching them. LBMPC has also been used in

controlling other systems with unknown dynamics such as a 3DOF robot
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arm [126] and the energy management of air conditioners in a building [14].

This method linearizes the dynamics and solves the MPC problem formulated

as a quadratic program in an efficient onboard implementation.

Robust motion planning for fixed wing aircraft and quadrotors under

the influence of parametric uncertainty and external disturbances has been

studied recently by Majumdar and Tedrake [141]. This work computes an

offline library of feedback funnels to provide a reliable system that will remain

inside the funnel when the feedback law is executed. The feedback funnels

are sequenced together in real time to avoid obstacles reactively based on their

positions. This method has the drawback that it does not account for online

changes in model parameters and deviations in the uncertainty of external

disturbances.

This section focuses on robust obstacle avoidance of multi-rotor platform in

an outdoor scenario with varying external disturbances. A nonlinear stochas-

tic quadrotor model incorporating external disturbances is learned online.

The learned model has been employed in a novel Nonlinear Model Predictive

Control (NMPC) optimization framework that plans quadrotor trajectories to

avoid obstacles by a required safety margin. The safety margin is computed

based on propagating the model parameter uncertainty and initial state uncer-

tainty as high-confidence ellipsoids in pose space and minimizing the ellipsoid

penetration into the obstacles while minimizing control effort, and achieving

a user-specified goal location. Figure 4.1 shows an optimal trajectory for a

quadrotor avoiding obstacles. This method propagates the uncertainty due to

initial state measurements, model parameters, and external disturbances to
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uncertainty in state trajectory. Sensor uncertainty is not accounted for in this

method.

The proposed method is applied towards reactive avoidance of virtual

obstacles in an outdoor scenario (a large field with external wind and no

motion capture system). Virtual obstacles are referred to as obstacles on a

virtual map that the quadrotor is assumed to be flying in. The obstacles

are detected online using a virtually-rendered image and a safe trajectory is

planned and executed reactively. Additionally, the ability of the learned model

to predict the quadrotor’s state is verified through multiple experimental trials.

The rest of the section is organized as follows. In section 4.1.2, a simplified

nonlinear model of quadrotor dynamics that is appropriate for system iden-

tification is proposed. Further, the parameters for the nonlinear model are

identified using an online setup of a maximum likelihood estimation frame-

work. In section 4.1.3, an NMPC based optimization scheme is discussed that

takes into account uncertainty in state space explicitly and plans trajectories

that avoid obstacles by a safety margin. Finally, in section 4.1.4, the results of

avoiding an obstacle using the current framework are demonstrated.

4.1.2 System Identification

The quadrotor is modeled as a rigid body attached with four axially aligned

rotors. The rotors apply a thrust force along a known body fixed axial direction

and torques along three mutually perpendicular body axes. The quadrotor is

usually equipped with an autopilot module that converts commanded Euler

angles into rotor velocities using a linear Proportional-Integral-Derivative
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(PID) controller [65]. The goal of this section is to propose a second-order

closed-loop model that models both the rigid body dynamics and the autopilot

control loop.

The state of the quadrotor system is given by the position p, rotation matrix

R, velocity ṗ measured with respect to an inertial frame and angular velocity

ω in body frame. The rotation matrix is decomposed into body Euler angles as

R(ξ) = eξ3 ê3eξ2 ê2eξ1 ê1 . The inputs for the second order closed-loop model are

the commanded rate of body Euler angles as ξ̇c and the commanded thrust ut.

A quadrotor model emulating a second order rotational dynamics has been

proposed in Eq (4.1). Similar simplified models have been used in system

identification of quadrotors [201, 24].

d
dt

⎡⎢⎢⎢⎢⎣
p
R
ṗ
ω

ξc

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣

ṗ
Rω̂

g + ae
−kp(ξ − ξc)− kdξ̇ + αe

0

⎤⎥⎥⎥⎥⎦
  

f(x,`)

+

⎡⎢⎢⎢⎢⎣
0 0
0 0

ktRe3 0
0 kd
0 1

⎤⎥⎥⎥⎥⎦
  

g(x,`)

[
ut
ξ̇c

]
. (4.1)

The hat operator ·̂ maps a vector in R3 to se(3) as shown in Eq (3.1).

The unknown parameters for the model are the proportional and deriva-

tive gains kp, kd, thrust gain kt, and external acceleration ae and torques αe

( θ = [kT
p , kT

d , kt, aT
e , αT

e ]
T). Using position and orientation measurements of

the quadrotor and assuming the parameters and the measurements are dis-

tributed according to a Gaussian distribution, standard MLE techniques can

be applied to find the unknown parameters under sufficient excitation [44].

For the quadrotor system, exciting the quadrotor in roll, pitch, and yaw direc-

tions with constant thrust is sufficient to estimate the parameters. Figure 4.2
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compares the predicted Euler angles and body angular velocities with mea-

surements from an Inertial Measurement Unit (IMU) during an experimental

flight path.
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Figure 4.2: The graphs show predicted and observed body Euler angles and body
angular rates for the quadrotor on a test data set. The predicted Euler angles are close
to the measured values using the second order closed-loop model.

4.1.3 Obstacle Avoidance using Nonlinear Model Predictive
Control

In this section, an optimization scheme is designed to produce NMPC tra-

jectories that avoid obstacles using the quadrotor model identified in (4.1).

Uncertainty in the model is taken into account by planning a trajectory that

stays away from obstacles by a safety margin based on the uncertainty propa-

gation from the estimated parameters to trajectory uncertainty.
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4.1.3.1 Discrete Dynamics

NMPC optimization requires a discrete version of the dynamics specified in

Eq (4.1). The control inputs to the second order closed-loop model (i.e. the

commanded thrust ut and commanded Euler angle rates ξ̇c) are assumed to

be constant during a time step of duration h. The discrete state consisting of

position pi, velocity vi, rotation matrix Ri, and body angular velocity ωi is

propagated as⎡⎢⎢⎢⎢⎣
pi+1
Ri+1
vi+1
ωi+1
ξci+1

⎤⎥⎥⎥⎥⎦
  

xi+1

=

⎡⎢⎢⎢⎢⎣
pi +

1
2(vi + vi+1)h

Ri exp(1
2(ωi + ωi+1)h)

vi + h(g + a0)
ωi + h(−kp(ξi − ξci+1)− kdξ̇i + αe)

ξci

⎤⎥⎥⎥⎥⎦
  

fi

+

⎡⎢⎢⎣
0 0
0 0

ktRie3 0
0 kd

⎤⎥⎥⎦
  

gi

[
uti

ξ̇ci

]
  

ui

The linear and angular velocities vi+1, ωi+1 are propagated first. The average

linear and angular velocities in turn are used in the position and orientation

updates using a semi-implicit scheme in the above equation.

4.1.3.2 Propagating Uncertainty

The uncertainty of parameters obtained from MLE is propagated to the uncer-

tainty in the states using the unscented transform as explained in Chapter 2.
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The uncertainty in states is then used to plan safe trajectories for avoiding

obstacles. The unmodeled dynamics are included in the uncertainty through

external accelerations and torques ae, τe. The uncertainty in detecting the

obstacles is not included in this propagation scheme.

The uncertainty propagation scheme finds the mean and covariance of the

states along the trajectory given the estimated mean and covariance of the

unknown parameters in dynamics. The mean and covariance of the estimated

parameters θ obtained using MLE estimation are denoted by

θ∗ = [k∗p, k∗d, k∗t , āe, ᾱe], Σθ∗ = [Σk∗p,k∗d,k∗t , Σāe , Σᾱe ]. (4.2)

The mean and covariance of the nominal states obtained through unscented

transform can be written as

(x̄0:N−1, Σx0:N−1) = UnscentedTransform(u0:N−1, θ∗, Σθ∗)

where the x̄0:N−1 is the mean state along the trajectory, Σx0:N−1 is the covariance

of the the state along the trajectory, and u0:N−1 is the control trajectory.

Figure 4.3 shows the plot of a predicted trajectory distribution obtained

using unscented transforms based on parameters estimated from real data. It

can be observed that the navigated trajectory in red falls within the predicted

2σ region in blue, indicating that the model is a good fit for the dynamics.

The uncertainty in the predicted trajectory is used to avoid obstacles using an

NMPC formulation explained next.
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Figure 4.3: The predicted mean position and 2σ region of the quadrotor obtained
using unscented transforms is shown in blue. The measured position of the quadrotor
is shown in red.

4.1.3.3 NMPC Formulation - Obstacle Avoidance

The NMPC formulation in Chapter 2 is augmented with an additional con-

straint to ensure obstacle avoidance. We define an inequality constraint for

every obstacle at every point along the trajectory to ensure the nominal trajec-

tory avoids the obstacle by buffer dependent on the covariance at stage i. The

standard deviation ellipsoid and the obstacle inequality are defined as

Pi = {p : (p− pi)
TΣ−1

pi
(p− pi) ≤ k2

σ}, (4.3)

di,j = Dist(Pi, oj) ≥ 0, (4.4)

where the ellipsoid Pi consists of all the points which are within kσ standard

deviations from the current position pi and the signed distance function Dist
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is designed such that it is negative when the ellipsoid is intersecting with the

boundary of the obstacle and is positive otherwise as shown in Figure 4.4.

Distance between Nominal trajectory and Obstacle

The obstacles in this work are assumed to be cylinders with center opj , radius

orj and axis oaj . To design the distance function, we first project the standard

deviation ellipsoid on to the plane perpendicular to the cylindrical axis as

explained in Pope [177]. Let us assume the projected ellipsoid is given by

Pi = {y : (y− yi)
TΣ−1

yi
(y− yi) ≤ k2

σ}, (4.5)

where yi is the vector pi projected on to the cylindrical plane and Σyi is the

projected covariance matrix. The distance function is then found by expanding

the projected ellipsoid by the obstacle cylinder radius orj and ensuring that

the projected center of the obstacle opj is outside the expanded ellipsoid:

Dist(Pi, oj) = k2
σ − (opj − yi)

T
(

Σyi + orjI
)−1

(opj − yi) ≥ 0 (4.6)

The distance function ensures that all the points which are within kσ standard

deviations from the nominal trajectory do not intersect with the cylinder.

Thus by solving the constrainted NMPC optimization, the quadrotor can

avoid obstacles with high probability. The size of the ellipsoid is regulated by

the inflation paramater kσ which denotes the confidence interval around the

nominal trajectory. In this work, we used kσ as 2 to make sure the probability

of collision is approximately 5%.

The Levenberg–Marquardt algorithm is used to find the optimal controls

64



1

0.8-0.2

0.6

-0.1

0

1

0.1

0.2

0.40.8
0.6 0.20.4

0.2 0
0

P
2

P
1

P
3Obstacle o

j

d
3,j

d
2,j
d

1,j

Figure 4.4: Plot of a sample trajectory with standard deviation ellipsoids Pi and the
distance to obstacle di. The ellipsoids Pi consist of points which are closer than kσ

standard deviations from the quadrotor position.

u∗ since the cost functions Li, LN 2.5 are chosen to be of least-squares form. To

reduce the dimension of the optimization, the control inputs ui are produced

using a uniform B-spline of second order with knots given by ψ.

The obstacle avoidance constraint is enforced as a soft penalty in the

residual function. The residual
√

koDi,j(ψ) minimizes the intersection between

the standard deviation ellipsoids Pi and the obstacle oj. The optimization

algorithm is iterated multiple times by increasing the obstacle gain ko after

every run. This procedure smoothly transitions from a trajectory with Pi

intersecting the obstacle to a trajectory with Pi slightly grazing the obstacle as

the gain ko becomes very large. The complete optimization procedure is listed

in algorithm 4

Figure 4.1 shows an example obstacle avoidance scenario, where the

quadrotor avoids two cylinders in front of it while flying at 5m/s. The goal
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Algorithm 4 Obstacle avoidance using Levernberg-Marquardt
Given θ∗, Σθ∗ , ko, ψ0, ϵ, komax , αko
iters← 0
for iters <max_iters do

Compute ellipsoids Σx1:N using UnscentedTransform
Project ellipsoids to position space Σp1:N

Evaluate change in knots δψi using Levenberg-Marquadt update
if ∥δψi∥ ≤ ϵ then

if ko > komax then
Exit optimization

end if
ko ← ko × αko

end if
Update the knots ψi+1 ← ψi + δψi
iters← iters + 1

end for

for the quadrotor is to reach 10 meters in positive body x axis direction while

avoiding obstacles. The optimization algorithm finds a trajectory for which

the standard deviation ellipsoids in blue do not intersect the obstacles in

red while achieving the final goal. Thus, following this open-loop trajectory

approximately guarantees that the quadrotor can navigate safely around the

obstacles.

4.1.4 Experiment Setup

The goal of the experiments is to demonstrate safe obstacle avoidance behav-

ior for a quadrotor by following an open-loop trajectory computed using the

NMPC optimization technique. The obstacle avoidance experiments are con-

ducted on a real quadrotor in an outdoor scenario, subject to unknown external

disturbances, and surrounded by virtual obstacles. The obstacle avoidance

behavior has been demonstrated in two ways. First, multiple executions of
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open-loop trajectories have been performed to verify that the quadrotor model

can predict the quadrotor pose well. Next, the quadrotor is set to avoid three

consecutive virtual obstacles reactively. The obstacle avoidance experiments

require several components such as an obstacle detection algorithm, a position

controller, and an online parameter estimation framework to work together as

discussed below.

4.1.4.1 Hardware

A research grade Matrice quadrotor made by DJI [50] is used in the experi-

ments. The quadrotor is equipped with a Guidance stereo camera sensor [49]

whose data is used to produce high-quality position and orientation measure-

ments at 100 Hz. The DJI autopilot is used to achieve desired body Euler

angles roll, pitch, yaw and desired thrust. Figure 4.1 shows the quadrotor

setup connected with Guidance and DJI autopilot.

4.1.4.2 Obstacle Detection

A virtual camera image is rendered on a georeferenced virtual map using the

Open Source 3D Graphics Engine library [165] to provide a depth map for

estimating the distance to obstacles. The virtual camera avoids the issue of

sensor uncertainty in detecting the obstacles and allows for safe experimental

testing of the quadrotor in an outdoor scenario. Figure 4.5 shows an example

virtual image rendered from the quadrotor’s position. The obstacle position

is determined from the rendered frame by segmenting the depth map into

foreground and background based on the global velocity direction of the

quadrotor. The pixels inside a tolerance cylinder of 0.5m radius around the

67



Figure 4.5: An onboard image rendered using a virtual camera. The green dot shows
the mean of the closest 20 percent points in the foreground which represents the
obstacle and the red dot shows the center of the image.

global velocity direction and within a maximum depth tolerance of 6m are

considered to be foreground. The closest obstacle position is then specified to

be the average of the closest 20 percent points in the foreground.

4.1.4.3 Online Parameter Estimation

The obstacle avoidance experiments are conducted in an outdoor environ-

ment with unknown external disturbances. Since the quadrotor battery keeps

depreciating over time, same commanded thrust provides lower thrust as

time progresses. These effects are compensated using MLE online parameter

estimation of both system parameters and external disturbances. The initial-

ization of MLE optimization requires a good prior on the system parameters.
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Therefore, a manually flown ten-second trajectory is utilized in an initial op-

timization to produce a tight prior for the system parameters. The system

parameters are further refined based on this prior using online optimization

running at a frequency of 0.5Hz using the position and orientation measure-

ments collected at 100 Hz. The covariance on the parameters is continuously

tracked by the program and is used for fault detection in the case of bad

parameter learning.

4.1.4.4 NMPC Trajectory Optimization

The NMPC optimization is performed when an obstacle is within a user

specified tolerance distance of 3 meters. The goal of the optimization is to

reach 3 meters behind the obstacle within the next two seconds while avoiding

the obstacle and achieving a terminal velocity that is equal to the initial velocity.

The two second trajectory is divided into 100 discrete segments (50 Hz) for

optimization. In this experiment, the obstacles are avoided one at a time.

Hence, a second order B-spline with four knots was sufficient to represent the

control trajectory.

The computational resources available onboard are limited and only allow

for a 10Hz frequency of the NMPC optimization loop. This restricts the

frequency at which the optimal trajectory can be updated. Thus, the quadrotor

is run open-loop using the roll, pitch, yaw and thrust inputs to autopilot until

the MPC horizon time is complete.
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4.1.4.5 Waypoint Tracker

A linear PID position controller is designed to track user-defined waypoints.

The external force parameters and thrust gain obtained from MLE optimiza-

tion are incorporated into the PID controller.

4.1.5 Results

4.1.5.1 Verification of quadrotor model

The ability of the quadrotor model to predict the quadrotor pose is demon-

strated by executing open-loop trajectories multiple times to show that the

quadrotor stays within the standard deviation funnel almost all the time. The

trials require the quadrotor to fly at a speed of 3m/s and execute an open-loop

NMPC trajectory to avoid a virtual obstacle assumed to be 3m in front of it.

The data samples from the trials are segregated into a bar graph in Figure 4.6

based on the distance to the ellipsoid surface. Around 89.89% of the 2000

sample data points are within the ellipsoid as observed from the distance

metric being negative in the bar graph. Under ideal conditions, if we com-

puted the 2σ confidence around the state trajectories and assuming the state

distribution is gaussian, the ellipsoids should contain 95% of the samples. The

discrepancy between the experimental and theoretical sample percentages

are probably because of the approximations induced by the simplified model

considered for the quadrotor dynamics and using unscented transform to

propagate the uncertainty. Despite the inaccuracies, the results suggest that by

following the NMPC trajectory, the quadrotor is likely to avoid the obstacle

with approximately high probability.
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Figure 4.6: The bar graph shows the number of data samples at different distances to
ellipsoid. Around 89.89% of the samples along the quadrotor trajectories are within
the standard deviation ellipsoids and thus are safe for obstacle avoidance

Figure 4.7 shows the predicted and measured open-loop Euler angles

and Figure 4.3 shows the predicted and measured position of the quadrotor

along an experimental trajectory for a single obstacle avoidance trial. It can

be observed that the predicted position stays within the standard deviation

funnel and predicted Euler angles matched well with the measured Euler

angles. These results indicate that the identified model approximates the

quadrotor well, and NMPC trajectories are safe for avoiding a real obstacle.

4.1.5.2 Consecutive Virtual Obstacle Avoidance

In this experiment, the quadrotor is tasked to avoid a series of three virtual

cylindrical obstacles 0.3 m in diameter and spaced 5m apart while following a

series of waypoints at 3m/s. The quadrotor determines a obstacle avoidance

trajectory when it sees a cylinder at 3 meters in front of it. The goal of the
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Figure 4.7: The graphs show the predicted, commanded and measured body Euler
angles for a quadrotor during a single obstacle avoidance run. It can be observed the
measured angles are very close to the predicted Euler angles.

NMPC optimization is to reach 3 meters beyond the obstacle within the

next two seconds while maintaining the current quadrotor velocity. The

combined subsystems of online parameter estimation, obstacle detection,

NMPC trajectory optimization, and waypoint tracking are tested through this

experiment. The upper half of Figure 4.8 shows the quadrotor positions in the

virtual map overlayed with detected obstacles in red and computed NMPC

trajectories with covariance ellipsoids in blue. The obstacles are inflated by

0.3m to include the envelope of the quadrotor. The series of pictures in the

lower half of the figure show the quadrotor flying through the virtual obstacle

course. The figures show that the quadrotor avoids the obstacles successfully

while staying in the predicted standard deviation funnel when executing the

NMPC trajectory.
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The following steps are performed during an obstacle avoidance experi-

ment:

1. Identify model parameters online by running MLE-based parameter

estimation at 0.5Hz

2. Follow a waypoint reference trajectory using PID position controller

3. When an obstacle is detected in the path within a user specified tolerance,

compute and execute NMPC trajectory

4. Resume following waypoint trajectory

5. A human operator takes over the controls if any of the above steps go

wrong

Figure 4.8: Pictures show a quadrotor moving at 3m/s evading three virtual cylinders
by following an open-loop NMPC trajectory. The quadrotor stays within the funnel
while avoiding the obstacles as shown in the figure in the top row. The figure in the
bottom row shows the physical quadrotor flying through the obstacle course.
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4.1.6 Conclusions

This section proposed an NMPC trajectory generation technique that com-

bined online parameter estimation with uncertainty propagation to generate

approximately safe obstacle avoidance trajectories. The ability of the nonlinear

stochastic quadrotor model to predict the quadrotor state has been demon-

strated through multiple open-loop trajectories. Further, the quadrotor is able

to reactively avoid consecutive virtual obstacles while staying in the standard

deviation funnel while following the NMPC trajectories.

4.1.7 Limitations

The current approach is limited in several ways. The adaptive NMPC ap-

proach combines a system identification module with a NMPC module to

control the robot. Although each of the modules are stable by themselves

the combined system might not be stable under certain circumstances since

for general nonlinear systems we cannot separate optimal estimation and

optimal control [95]. In our method, we try to get a good prior for system

parameters by performing a manual data collection before starting the online

system identification. We further monitor the stability of the online estimation

procedure based on the estimated covariance of the parameters and decide if

the combined system is stable or not.

The uncertainty propagation scheme employed in this chapter is approxi-

mate and is based on open-loop application of controls. In practice, we often

use feedback controllers to stay close to the reference trajectory. Although

unscented transform can be used to propagated closed-loop uncertainty it is
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still approximate. The following section will focus on finding a procedure to

propagate uncertainty using a feedback controller with tighter guarantees.

4.2 Tube Nonlinear Model Predictive Control

4.2.1 Introduction

This section expands on the work from previous section 4.1 to consider propa-

gating uncertainty in closed-loop for general robotic systems. We consider the

problem of computing disturbance invariant sets for general nonlinear sys-

tems attached with arbitrary feedback controllers. To understand the problem,

let us consider an agile aerial vehicle navigating autonomously to a goal in

an obstacle-ridden environment subject to natural disturbances arising from

wind or propeller downwash. This type of task is challenging since one has to

account for the effect of disturbances on the system dynamics while planning

a trajectory to avoid obstacles. Moreover, the disturbances are sometimes

dependent on the state of the vehicle and, therefore, have a nonlinear effect

on the propagation of the dynamics. For example, disturbances due to wall

effects [164] scale based on the distance to wall. To account for the effects of

uncertainty, current methods plan for a trajectory around the obstacles such

that the obstacles do not intersect with the invariant set centered around the

trajectory. The invariant set is defined as the region in state space in which

the system is guaranteed to stay under the effect of disturbances for a given

controller [142]. These methods usually depend on the structure of the dy-

namics or the controller and are not applicable to general nonlinear systems

with nonlinear noise models. The goal of this work is, therefore, two-fold. We
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first propose a novel method to find approximate invariant sets for a general

nonlinear dynamic system that can handle nonlinear noise models and which

extends to higher dimensional systems. Next, we formulate a Nonlinear

Model Predictive Control (NMPC) optimization that computes a nominal

trajectory which avoids obstacles by relying on the computed invariant re-

gions. Combining both the steps, we aim to tackle the obstacle avoidance

problem for general nonlinear systems under external disturbances without

any assumptions about the structure of the controller or the dynamics. For

instance, one such obstacle avoiding trajectory generated for a simple wheeled

vehicle with a nonlinear noise model is shown in Figure 4.9.

Figure 4.9: Unicycle model subject to external disturbances avoiding obstacles. The
blue dots and lines are the nominal trajectory while the red dots and lines are sample
trajectories propagated using the computed control law.
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Related work

Disturbance-invariant sets provide one means of studying the effects of un-

certainty on dynamical systems. These are regions in the state-space of a

system that guarantee that if the system starts in the invariant set, then the

system will lie in the invariant set under bounded disturbances. Conservative

approximations for invariant sets have been computed for linear systems [191]

and for piece-wise affine systems [192].

Tube-based Model Predictive Control (MPC) techniques have been devel-

oped that compute the invariant sets online for linear dynamics [147] and

have also been extended to certain classes of nonlinear-discrete systems [193].

These techniques design controllers that provide “robust asymptotic stability”

to the control invariant region.

Semi-definite optimization techniques [181], such as sum-of-squares (SOS)

programming, search for polynomial functions that are positive and produced

from a sum of squared monomials.Tobenkin, Manchester, and Tedrake [222]

use SOS programming to compute funnels for nonlinear dynamics with a

LQR controller. These funnels are time-varying state space regions such that

if the system starts from the mouth of the funnel, it is guaranteed to stay in

the funnel for all future time and eventually end up at the goal. By combining

funnel computation with motion primitives, Majumdar and Tedrake [142]

were able to compute robust funnels for a few primitives and perform online

optimization on the order and duration of execution of each of the primitives to

avoid obstacles.Steinhardt and Tedrake [214] explored finite-time verification

for stochastic systems.
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SOS programming has also been used to compute funnels for general Lips-

chitz nonlinear systems [232]. This approach computes the funnel around a

nominal trajectory using invariant coordinates and optimizes only the nominal

trajectory online. Unlike the previous method, this approach does not require

recomputing funnels for every nominal trajectory since the funnel is specified

in invariant coordinates around the nominal trajectory, and transformations

to the nominal trajectory also transform the funnel around it. The main draw-

back with this approach is that the computation of the Lipschitz constant for

a system is non-trivial [210]. Gao et al. applied this work to autonomous

ground vehicles [59] and showed that tube MPC can avoid obstacles safely

while following a desired trajectory.

Manchester et al. introduced Control Contraction Metrics (CCMs) as an

alternative to Lyapunov functions to design globally stabilizing controllers for

general nonlinear systems [143, 144]. Singh et al. used CCMs to compute the

funnels for a nonlinear system [210]. In this approach, the funnel is computed

in invariant coordinates and only the nominal trajectory is optimized online to

perform obstacle avoidance. The success of this method relies on computing a

valid CCM for the nonlinear system using SOS programming.

A different class of methods uses game-theory to find the worst possible

noise for a given control [37, 215]. These methods usually contain a bi-level

optimization [40] scheme in which the outer optimization searches for the

controller that stabilizes the system while the inner-loop optimizes over the

constraints to satisfy the process noise. The usual drawback with these meth-

ods is that they do not extend well to higher dimensional systems [210]. The
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approach presented here falls into this class. The algorithm presented here

alleviates to some extent the curse of dimensionality by using a novel method

to find the funnel and avoids the usual inner-outer optimization with a se-

quential optimization scheme that is shown to work well in the experiments

conducted.

In addition to funnel methods, there are a class of techniques that treat

states as a distribution and plan in the space of the distributions known as

belief space [174, 182]. These can handle unbounded disturbances as long

as the expected trajectory cost which they minimize is finite. Work done

by Desaraju, Spitzer, and Michael [46] showed belief space planning for a

small quadrotor platform. Chance constrained programming [34] is a further

extension of these methods to handle probabilistic state constraints. In chance

constrained programming, the obstacle constraints and other state constraints

are respected only in probability. Although chance constrained programming

is usually restricted to linear systems due to the difficulty in propagating

multivariate distributions through nonlinear dynamics, there have been some

attempts to extend these techniques to nonlinear systems [129, 54].

The methods discussed so far provide either deterministic or probabilistic

guarantees for the stability of a controller under process noise. There also

exists a class of risk-sensitive controllers [39] that provide some robustness to

process noise without providing any guarantees on the performance of the

controllers. For example, Manchester et al. optimized controllers to minimize

their sensitivity to disturbances while not necessarily providing guarantees

in terms of state-space funnels [145]. This method scaled well to higher
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dimensional systems such as robot arms and quadrotor models.

Existing challenges

In general, the aim of the methods discussed above is to stabilize a general

nonlinear system to a goal state under bounded disturbances. They use state-

space funnels to describe the possible trajectories the uncertain system might

take for given a noise model. The funnel computation described in the meth-

ods discussed above are limited in several ways. Work done by Majumdar

and Tedrake [142] requires the computation of a Lyapunov candidate using

SOS programming and therefore is limited to polynomial dynamics. Similarly,

funnel computation for Lipschitz nonlinear systems has been shown by Yu

et al. [232], which requires computing the Lipschitz constant of the system.

The work done by Singh et al. [210] also relies on SOS for computing a Control

Contraction Metric to define the funnel. In addition, this method assumes an

additive noise model which can be restrictive in practice. In addition, most

methods discussed above presented results for systems with only a small

number of dimensions and assumed linear noise models. For example, Singh

et al. showed funnel computation for only a planar quadrotor, which is a six

dimensional system [210] with crosswind disturbances. Work done by Ma-

jumdar and Tedrake [142] is among the few examples of high-dimensional

funnel computation for a quadrotor, a 12-dimensional system.

Contributions

Our approach to finding the disturbance invariant set is to reduce the invariant

set computation to a set of finite dimensional optimizations which provide an
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approximation to the invariant set, and a sequential NMPC is formulated to

solve a boundary-value problem for avoiding obstacles using the approximate

invariant sets computed. The NMPC consists of two optimizations running

one after another. In the first optimization, the nominal trajectory is optimized

to ensure the approximate invariant set around it avoids the obstacles. In the

second optimization, the invariant set approximation is improved given the

dynamics, the nominal trajectory, and the controller.

The algorithm, although providing only approximate guarantees, based

on the experiments conducted, extends well for higher dimensional systems

and can handle nonlinear noise models. For example, the quadrotor example

shown in this work is a 14 dimensional system with a nonlinear backstepping

controller. The presented approach does not rely on the specific structure of the

dynamics, controller, or noise. Hence, it can be used to work with controllers

without explicit stability certificates. For example, this method allows learning

based controllers (e.g. Psaltis, Sideris, and Yamamura [185] and Garimella

et al. [60]) to be implemented in practice by providing approximate guarantees

using the invariant sets. Based on experiments performed on different systems,

we show that the proposed method is able to compute good approximations

of the invariant sets for high dimensional systems and effectively leverage

them for robust obstacle avoidance.
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4.2.2 Computing Invariant Funnels

4.2.2.1 Disturbance Invariant Sets

Consider a discrete nonlinear dynamic system with state x ∈ Rn, control

u ∈ Rm, and a disturbance w ∈ Rn. The dynamics can be written as

xi+1 = f (xi, ui, wi) (4.7)

where i denotes the discrete time index and the disturbance is assumed to be

bounded (i.e. ∥wi∥ ≤ ϵi). We assume a feedback controller ψ based on the

current state xi, a given goal state xi, and feed-forward controls ui to compute

the control ui:

ui = ψ(xi, xi, ui). (4.8)

The controller usually has additional parameters, such as feedback gains,

which are assumed to be fixed and known in the rest of the section.

Assuming the state at step i is in some enclosing region Pi (i.e. xi ∈ Pi), the

disturbance invariant set at stage i + 1 is defined as

Pi+1 = {xi+1 = f (xi, ψ(xi, xi, ui), wi) | xi ∈ Pi, ∥wi∥ ≤ ϵi}.

To author’s knowledge, finding the smallest disturbance invariant set (in

terms of volume) for a general nonlinear system with an arbitrary nonlinear

controller cannot be solved in finite time and finite memory. The difficulty

arises in searching for the boundary of the invariant set and representing the

shape in a finite memory.

One solution to this problem [215] is to use a conservative estimate of Pi
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denoted by Ci, i.e. Pi ⊆ Ci, and propagate Ci to Ci+1 subject to the closed

loop dynamics. Since the enclosing region Ci contains Pi, the enclosing region

Ci+1 also encloses Pi+1. Constraints, such as obstacles, can then be handled

in a robust fashion by ensuring no overlap with the enclosing regions Ci.

For the rest of the section, we choose the shape of Ci to be an ellipsoid with

the same dimension as the state xi. The choice of the family of enclosing

region (e.g. ellipsoid, cuboid, sphere) affects the dilation between Pi and Ci

and therefore how conservative the resulting obstacle avoidance trajectory

will be. Furthermore, the estimate Ci becomes more and more conservative

as the index i increases since the ellipsoid Ci+1 is propagated from ellipsoid

Ci instead of the actual region Pi. In spite of these drawbacks, propagating

and reasoning in terms of conservative regions permits robust NMPC-based

obstacle avoidance under disturbances.

To formulate the ellipsoid propagation problem, first we define the region

of dynamics obtained by propagating the ellipsoid Ci through the dynamics

as

Pi+1 = {x = f (xi, ψ(xi, xi, ui), wi) | xi ∈ Ci, ∥wi∥ ≤ ϵi}.

Unlike, the region Pi+1 which is propagated from Pi, the region Pi+1 is propa-

gated from the previous ellipsoid Ci (see Figure 4.10). Hence, the region Pi+1

contains the region Pi+1 (i.e. Pi+1 ⊆ Pi+1 ⊆ Ci+1).

Finding the least conservative enclosing ellipsoid can be mathematically

stated as

min
Ci+1

Vol(Ci+1) s.t Pi+1 ⊆ Ci+1, (4.9)
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where Vol(·) denotes the volume of the ellipsoid. We simplify the above

problem by constraining the centers of the ellipsoids to follow a nominal

trajectory without disturbances. Assuming the center of Ci to be µi and the

center of the Ci+1 to be µi+1, the nominal trajectory dynamics are written as

µi+1 = f (µi, ui, 0). The control ui used in the nominal trajectory dynamics is

provided by the controller with the goal being the same as the current state, i.e

ui = ψ(µi, µi, ui). The feed-forward terms in the controller move the nominal

state µi to the next nominal state µi+1. The control for any other point in the

invariant set is given by ui = ψ(xi, µi, ui).

P̄i

Ci

Points of Contact

Ci−1

µi−1

f
µi

Figure 4.10: The region Pi is propagated from the previous ellipsoid Ci−1 using the
closed-loop dynamics f . The algorithm for computing the enclosing ellipsoids finds
points in Ci−1 (shown in blue) that when propagated become the points of contact
between Pi and the enclosing ellipsoid Ci.

The ellipsoid optimization problem shown in eq (4.9) is intractable since the

constraint Pi+1 ⊆ Ci+1 should be satisfied for all the disturbances ∥wi∥ ≤ ϵi

and for all starting states xi ∈ Ci. One approach to solve this problem is

through SOS programming [181] under certain assumptions on the structure
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of the dynamics. In this work, we take a different approach and transform the

above optimization problem into a finite dimensional optimization to find a

feasible, but not necessarily the least conservative, ellipsoid.

4.2.2.2 Algorithm to Find Enclosing Ellipsoid

The algorithm has to find the radii ri+1 ∈ Rn
>0 and principal axes Ri+1 ∈ SO(n)

of the ellipsoid Ci+1 = {ri+1, Ri+1}which encloses the propagated region Pi+1

assuming the center of the ellipsoid is along some nominal trajectory. The

procedure to find the ellipsoid consists of n successive optimization problems.

Each optimization problem finds a principal axis and the ellipsoid radius along

that principal axis. The first optimization simply searches for the farthest point

from the center in the region Pi+1:

r2
i+1,1 = max

x∈Pi+1

(x− µi+1)
T(x− µi+1). (4.10)

The first radius and principal axis are chosen as ri+1,1 = ∥x1 − µi+1∥ and

ei+1,1 = (1/ri+1,1)(x1 − µi+1), respectively, where x1 minimizes (4.10). Con-

tinuing, at step j of the optimization, we find a point xj ∈ Pi+1 that maximizes

the radius along j-th principal axis assuming the point is on the boundary of

the ellipsoid. The j-th radius ri+1,j and the principal axis ei+1,j of the ellipsoid
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assuming the point is on the boundary of the ellipsoid are given by

ri+1,j =
|xjj|√1−

j−1

∑
k=1

( xjk

ri+1,k

)2
, (4.11)

ei+1,j = (xj − µ)−
j−1

∑
k=1

ei+1,kxjk, (4.12)

where xjk is the projection of the point xj along kth principal axis, i.e. xjk =

(xj − µi+1)
Tei+1,k. The vector ei+1,j is then normalized to ensure the jth prin-

cipal axis is a unit vector. The j-th optimization problem can be formulated

as

max
xj∈Pi+1

r2
i+1,j, s.t. xjj ̸= 0. (4.13)

The ellipsoid at Ci+1 is given by

Ci+1 = { ri+1 = (ri+1,1, · · · , ri+1,n),

Ri+1 = [ei+1,1 | ei+1,2 | · · · | ei+1,n] }. (4.14)

Next, we prove that the ellipsoid generated by the above algorithm com-

pletely encloses the region Pi+1 induced by the closed-loop dynamics, assum-

ing the optimization in (4.13) reaches a global maximum. First, we prove the

following lemma:

Lemma 4.2.1 (The cost function used in optimization (4.13) is bounded and

ri+1,j−1 ≥ ri+1,j ∀j ∈ {2, · · · , n}.).

Proof. For j = 1, ri+1,1 is given by (4.10). Assuming the optimization reaches
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global maximum, for any point x2 in the region Pi+1, using the definitions

x21 = (x2 − µi+1)
Te1, x22 = ∥x2 − x21e1∥,

we have x2
21 + x2

22 = ∥x2 − µi+1∥2 ≤ r2
i+1,1. Using the inequality, the cost

function for j = 2 can be upper bounded as

r2
i+1,2 =

x2
22

1−
(

x21
ri+1,1

)2 ≤
r2

i+1,1 − x2
11

1−
(

x21
ri+1,1

)2 = r2
i+1,1. (4.15)

Next, for any j > 1, we already have rj−1 obtained by maximizing the cost

function (4.13) at j− 1. Thus, for the point xj in the region Pi+1 which maxi-

mizes rj, the following inequality holds

x2
jj + x2

j,j−1

1−
j−2

∑
k=1

( xjk

ri+1,k

)2
≤ r2

i+1,j−1, (4.16)

where xjj is the residual left over after subtracting the components of (xj −

µi+1) along the principal axes {e1, e2, . . . , ej−1}. This inequality can be trans-

formed as
x2

jj

r2
i+1,j−1

≤ 1−
j−1

∑
k=1

( xjk

ri+1,k

)2

. (4.17)

The cost function for the optimization at stage j can then be bounded as

r2
i+1,j =

x2
jj

1−
j−1

∑
k=1

( xjk

ri+1,k

)2
≤ r2

i+1,j−1. (4.18)

Combining this inequality with the inequality for j = 1 given in (4.15), the

lemma holds.
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Note that, we assume xjj is not equal to zero while optimizing in (4.13).

According to the inequality (4.17), for xjj ̸= 0, the right hand side of the

inequality is greater than 0. Thus, the denominator of the ri+1,j is greater

than zero. When xjj is exactly zero, the cost function is undefined as both

numerator and denominator are zero. Therefore, we avoid those points while

minimizing the cost function.

Theorem 4.2.1 (The ellipsoid Ci+1 as defined in (4.14) encloses the region

Pi+1.).

Proof. Using the Lemma 4.2.1, we showed that the cost function is bounded.

Now, consider the n-th optimization problem above which globally maximizes

the last principal axis rn. Since we find the maximum possible radius along

the last principal axis, the radius computed using any other point xn ∈ Pi+1 is

going to be less than ri+1,n i.e.

xnn√
1−

n−1

∑
k=1

(
xnk

ri+1,k

)2
≤ ri+1,n (4.19)

⇒
n

∑
k=1

(
xnk

ri+1,k

)2

≤ 1 (4.20)

where xnk is the projection of the point xn along the principal axis ek (i.e.

xnk = (xn − µ)Tek). The inequality (4.20) then implies that C encloses the

region Pi+1.
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4.2.2.3 Simplification for cases near singularity

The cost function in (4.13) can become ill-defined when xjj → 0. Close to the

singularities, the maximization of the cost function produces ellipsoids that are

very conservative. Therefore, we develop an alternative optimization scheme

that maximizes over xjj instead of rj when such singularities are encountered.

The simplification improves the convergence of the optimization with the

drawback that it produces an ellipsoid which only approximately encloses

the propagated dynamics, i.e. the computed Ci may not completely enclose

Pi. The possible error between an ellipsoid computed by maximizing xjj

instead of rj for a two-dimensional system is illustrated in Figure 4.11. The

maximum error in the radius that can be encountered using this approximation

is ∥rj − rj+1∥ where rj is computed by maximizing (4.13) and rj+1 is obtained

using the proposed simplification.

The optimization scheme used in practice at stage j is given by

min
xj

(xjj − rmax)
2, s.t xj ∈ Pi+1, (4.21)

where the maximization in (4.13) is simplified and converted into a nonlinear

least squares minimization where rmax is chosen such that xjj < rmax. The

least squares minimization is a local optimization technique, and hence the

solutions obtained are not guaranteed to be global minima.

4.2.2.4 Summary

The ellipsoid computation scheme is summarized in algorithm 5. The com-

putation scheme relies on finding a global minimum for the optimization
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Figure 4.11: Error induced by simplification of the maximizing cost function. The
ellipsoid obtained by maximizing only the projection xjj shown in blue leads to a
smaller ellipsoid, although it leaves out some parts of the dynamics region shown in
red. The ellipsoid obtained by maximizing the minor axis rj is shown in black and
completely encloses the dynamics region.

in (4.21). In practice, we found that using a small time step for propagating

the dynamics ensured that we were able to find a minimum close to the global

minimum. The enclosing ellipsoid is completely defined by the starting points

p1:n, the noise terms w1:n and the center of the ellipsoid µi. Hence the ellipsoid

propagation can be written as

Ci+1 = g(p1:n, w1:n, µi), (4.22)

where the function g corresponds to the algorithm 5. The starting points

and noise terms are used to formulate an approximate ellipsoid propagation

scheme later.
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Algorithm 5 Ellipsoid computation scheme
Given C0, N
j← 0
for j < N do

µj+1 ← f (µj, µj, ūj)
i← 0
for i < n do

Find pi in Ci using eq (4.21)
i← i + 1

end for
Define Ci+1 in terms of pi, µj+1.
j← j + 1

end for

4.2.3 Robust obstacle avoidance

The robust obstacle avoidance problem can be stated as finding a nominal

trajectory {x̄1:N} and the enclosing ellipsoids centered around the nominal

trajectory C1:N such that the terminal state reaches some goal state xd and

the enclosing regions do not intersect with the obstacles o1:P. A system is

steered toward the nominal trajectory using a controller with feed-forward

control inputs i.e. ui = ψ(xi, x̄i, ūi). The obstacle avoidance problem can be

mathematically stated as

min
ū1:N

L f (x̄N, xd) +
N

∑
i=1

Li(x̄i, ūi)

x̄i+1 = f (x̄i, ui, 0),

Ci+1 = f+(Ci, ūi, x̄i),

dist(Ci+1, Oj) ≥ 0,

(4.23)
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where f+ propagates the disturbance invariant regions as described in sec-

tion 4.2.2 and the dist function denotes the closest distance between the dis-

turbance invariant region and the jth obstacle. The distance constraint should

be satisfied for all enclosing ellipsoids Ci and all the obstacles Oj. The cost

function L f minimizes the distance between the nominal terminal state x̄N

and the desired state xd. The trajectory cost Li minimizes the feed-forward

controller inputs and the nominal trajectory velocities. Thus, by minimizing

the cost function, we find a nominal trajectory that reaches the terminal state

while minimizing the control effort along the trajectory. The inputs to the

optimization problem are the feed-forward control inputs ūi to the controller

ψ.

The optimization problem described in (4.23) steers the nominal trajec-

tory to ensure the enclosing ellipsoids do not intersect the obstacles. This

optimization consists of a two-level inner and outer optimization. The inner

optimization propagates the enclosing ellipsoids given the nominal state and

feed-forward control inputs as described in section 4.2.2.2 while the outer

optimization ensures the nominal trajectory is such that it minimizes the

cost specified in (4.23) and the enclosing ellipsoids do not intersect with the

obstacles.

This optimization is not practical since propagating enclosing ellipsoids

for every single nominal state and control input is computationally expensive.

Based on simulations conducted, this algorithm works for systems with two

dimensional state but does not converge in a reasonable amount of time for

systems with higher dimensions such as a unicycle or a quadrotor model.
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4.2.3.1 Approximate Ellipsoid Propagation

The ellipsoid propagation described in section 4.2.2.2 performs n optimizations

to find the points p1:n and the noise terms w1:n that when propagated deter-

mine the ellipsoid radii and principal axes completely as specified in (4.22).

These points and noise terms are a function of the starting ellipsoid and the

feed-forward control inputs. In the approximate propagation algorithm, we

map the starting points from the input ellipsoid to a unit sphere as

ej = diag(1/ri)RT
i (pj − µi), for j ∈ {1, · · · , n} (4.24)

where e1:n are points inside a unit sphere and ri, µi, Ri are the radius, center and

principal axes of the input ellipsoid Ci. These mapped points are then assumed

to be fixed even if the input ellipsoid and controller change. Therefore, given

a new input ellipsoid C′i = {r′i, µ′i, R′i} and feed-forward control inputs ū′i, the

points on the unit sphere e1:n are projected back to the new input ellipsoid as

p′1:n = µ′i + R′i diag(r′i)(e1:n). (4.25)

The center of the ellipsoid at the next stage is found by propagating the center

of the current ellipsoid using the feed-forward control inputs as

µ′i+1 = f (µ′i, ū′i, 0). (4.26)

The radii and the principal axes of the ellipsoid are found by using the mapped

points along with noise terms and the center of the ellipsoid in the ellipsoid
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propagation function specified in (4.22) as

Ci+1 = g(p′1:n, w1:n, µi+1). (4.27)

4.2.3.2 Sequential NMPC

This approach consists of running two optimization steps repeatedly. The

first step optimizes the feed-forward control terms assuming the ellipsoid is

propagated using the approximate ellipsoid propagation algorithm. Given

points e1:n inside a unit sphere, the feed-forward control optimization can be

written as

min
ū1:N

L f (x̄N, xd) +
N

∑
i=1

Li(x̄i, ūi)

x̄i+1 = f (x̄i, ui, 0),

pi,j = x̄i,j + Ridiag(ri)ei,j

Ci+1 = g(pi,1:n, wi,1:n, x̄i+1),

dist(Ci+1, oj) ≥ 0.

(4.28)

To begin the optimization, the points e1:n are assumed to be columns of the

identity matrix i.e., In×n = [e1, e2, · · · , en]. The approximate ellipsoid propaga-

tion is used to propagate the ellipsoids along the nominal trajectory assuming

the input points used for propagation are fixed. This avoids a costly inner loop

optimization while incurring an error due to not updating the propagation

points. In practice, as the controller converges to the optimal value, there is no

change in the controller, and therefore, the error incurred due to not updating
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the propagation points is negligible.

In the second optimization step, the points p1:n used for ellipsoid prop-

agation are optimized using (4.21) for the updated controller and nominal

trajectory. This updates the worst possible propagated points and the noise at

those points for a given controller and nominal trajectory. The combined algo-

rithm therefore successively tries to steer the nominal trajectory and improve

the enclosing ellipsoid approximation. As both the optimization steps con-

verge, we obtain an optimal nominal trajectory with approximate disturbance

invariant sets surrounding the trajectory. The pseudo-code for the sequential

optimization scheme is summarized in algorithm 6

Algorithm 6 Sequential NMPC for Robust Obstacle avoidance
Given C0, x0, xd, Li, L f , max_iters
Start with an initial guess of e1:n on unit sphere as [e1, e2, · · · , en] = In×n
i← 0
iters← 0
for iters <max_iters do

minū1:N L f (x̄N, xd) + ∑N
i=1 Li(x̄i, ūi),

assuming approximate ellipsoid propagation to update C1:N.
for i in 1 to N do

for j in 1 to n do
Given ūi,
minpi,j,wi,j (xjj − rmax)2,
s.t xj = f (pi,j, ūi, wi,j),
pi,j ∈ Ci, ∥wi,j∥ ≤ ϵi.

end for
µi+1 ← f (µi, ūi, 0).
Use (4.11), (4.12) to find the enclosing ellipsoid Ci+1 = {ri, Ri}.
Project: ei,1:n = diag(1/ri)RT

i (pi,1:n − µi).
end for

end for

95



Computational Complexity

The computational complexity of the NMPC algorithm is evaluated in terms of

the number of calls to the closed loop dynamics of the system. The sequential

NMPC method contains two steps of optimization. The first step is a regular

NMPC step with the additional complexity of propagating the ellipsoids.

The ellipsoid propagation requires n calls to the dynamics to propagate the

input points from one ellipsoid to the next. Thus, to propagate ellipsoids

for an entire trajectory requires O(Nn) calls to the dynamics. The usual

NMPC approach without encoding sparsity takes O(N2m) calls for one step

of optimization, assuming the gradient (of dimension Nm) is computed using

a finite-difference approximation. Thus, the first optimization step of the

proposed sequential NMPC approach takes O(N2(m + mn)) = O(N2mn)

function calls to the dynamics to compute gradients and update the feed-

forward controls and the nominal trajectory. Ellipsoid propagation creates a

linear dependence on the state dimension.

The second step of the sequential NMPC performs n least squares mini-

mizations along each step of the trajectory. Each of those least squares mini-

mizations makes 2n function calls to update the corresponding input point

and the noise at that point. Therefore, the second step of the optimization takes

O(Nn2) calls to update the ellipsoids along the entire trajectory. Therefore, a

single step of the entire sequential NMPC optimization takes O(N2mn + Nn2)

function calls. The additional burden of using the sequential NMPC is a term

that is only linear in the number of trajectory steps and is quadratic in state

dimension.
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4.2.4 Computational Results

We evaluate the robust obstacle avoidance procedure described in section 4.2.3

on two dynamical systems. The goal of the simulations is to show that the

NMPC optimization can compute a feasible nominal trajectory that can avoid

obstacles even when the system is subject to external disturbances. In addition,

we show by sampling the disturbances and propagating several trajectories

that most of the samples lie within the computed ellipsoids.

The first system is a dynamic unicycle model where the inputs to the model

are the longitudinal acceleration a and the angular velocity ω of the vehicle.

This system has a four dimensional state consisting of x and y positions, ori-

entation θ and velocity v of the vehicle. To test the algorithm, we require the

vehicle to drive to a goal position (1m,−0.8m) with zero velocity and orienta-

tion. We added three obstacles located at (0.8m,−0.15m), (0.3m,−0.2m) and

(0.75m,−0.6m) with a radius of 0.1m. The optimization has been performed

using a quadratic cost with penalty on the control effort and terminal position.

Although the unicycle model lives on SE(2) manifold, for computing fun-

nels, we restrict our analysis to a single chart(restrict |θ| < π/2) where the

coordinates can be represented using a Euclidean manifold. The external

disturbances w ∈ R4 are added into the model nonlinearly under the assump-

tion that ∥w∥ ≤ 1. The first two components of the noise correspond to the

longitudinal and lateral noise respectively. The last two components of the

noise correspond to the noise in angular velocity and acceleration. These

components are scaled based on the velocity of the vehicle. The individual

components of w are further scaled based on error magnitude rw ∈ R4. The

97



unicycle dynamics can be written as

d
dt

⎡⎢⎢⎣
x
y
θ

v

⎤⎥⎥⎦ =

⎡⎢⎢⎣
v cos(θ)
v sin(θ)

ω

a

⎤⎥⎥⎦+

⎡⎢⎢⎣
cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 v 0
0 0 0 v

⎤⎥⎥⎦ diag(rw)w. (4.29)

A feedback linearizing controller is used to track the nominal trajectory. The

controller is designed only for the nominal dynamics assuming the distur-

bances are zero. Thus, the controller is not Lyapunov stable under the distur-

bances. The noise added to the dynamics is nonlinear in terms of the state,

which further complicates the ellipsoid computation.

The NMPC optimization formulated in (4.28) is applied to this model

where the nominal trajectory acceleration is optimized to steer around the ob-

stacles. Figure 4.9 shows a trajectory computed using the NMPC optimization.

The nominal trajectory goes around the obstacles and the enclosing ellipsoids

do not intersect with the obstacles. The noise entering the system is nonlinear

and is higher in the longitudinal direction than in the lateral direction. This

causes the ellipsoids to align with the trajectory heading as the system pro-

gresses. This example demonstrates that the algorithm can effectively handle

nonlinear noise models.

Figure 4.12 shows that the ellipsoid constraint (4.20) for sampled trajec-

tories evaluated on the ellipsoids projected onto the xy plane. The ellipsoid

constraint being less than zero implies that the trajectories lie within the

ellipsoids computed. Among 1000 sample trajectories evaluated only one

sample trajectory violated the ellipsoid constraint. This suggests that the
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computed ellipsoids are able to capture the effect of disturbances on the uni-

cycle dynamics. Thus, by following the nominal trajectory using the feedback

linearizing controller, the unicycle can avoid the obstacles even under external

disturbances.

Figure 4.12: Ellipsoid constraint for ellipsoids projected along the xy plane evaluated
for 1000 sample trajectories with uniformly randomly sampled disturbances and
initial state. The constraint is less than zero if the sampled trajectory is within the
invariant set.

The effect of the uncertainty on the planning process is explained in Fig-

ure 4.13. In this experiment, the process noise is increased in successive steps

keeping the obstacles and the controller gains the same. Further, the NMPC

optimization has been initialized using the same initial feed-forward controls

in all the cases. As the process noise increases, the NMPC chooses a trajectory

that is farther away from obstacles which increases the trajectory cost. It also

shows that the above NMPC optimization succeeds in finding a safe trajectory

even under increased process noise conditions.
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Figure 4.13: The effect of the process noise on the trajectory planning for a fixed
set of controller gains and obstacles. As the process noise increases, the NMPC still
succeeds in reaching the goal by taking a more conservative trajectory.

The second system considered is a quadrotor aerial vehicle whose dynam-

ics is described in Kobilarov [108]. An additive noise is added to the nominal

dynamics to test the disturbance invariance. The goal of the simulations is to

fly a quadrotor from origin to the goal at (0.8m, 0.8m, 0.8m) under disturbances

and two obstacles located at (0.5m, 0.5m, 0.5m) and (0.2m, 0.2m, 0.4m) with a

radius of 0.15m. To test the effect of disturbances, the quadrotor is assumed

to start from an initial ellipsoid of radii (0.2, 0.1, 0.15) and initial Euler angles

have an uncertainty of 0.05 radians and all other states have an uncertainty of

0.01 units. We also assume that the additive disturbances have a magnitude of

0.01 units during a time step of 0.1 seconds (for example the position noise will

be 0.01 m in 0.1 seconds). The optimization is performed on a quadratic cost

with a penalty on the terminal state and control effort during the trajectory.

Similar to the unicycle model, we restrict our analysis of the system to a
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single chart when computing the funnels around the quadrotor state(using

Euler angle representation for orientation and restricting roll, pitch, yaw to be

less than pi/2). A standard backstepping controller (such as the one described

in Kobilarov [108]) is used for the nominal dynamics and while asymptotically

stable in general, it loses strict stability guarantees under bounded additive

noise. After performing a required dynamic extension of the model by adding

the thrust and its time-derivative to the state, the state space becomes 14-

dimensional. Figure 4.14 shows a nominal trajectory along with enclosing

ellipsoids avoiding obstacles while reaching the goal. Figure 4.15 shows the

ellipsoid constraint for 1000 sampled trajectories, where only two samples

fall outside of the computed approximate invariant set. Figure 4.16 shows

the 14 states along with the error bars along each axis that the states are

expected to stay within. The error bars on the states converge to a small

value suggesting that the controller is converging to a small region around

the nominal trajectory. This example shows that the NMPC optimization can

readily extend to higher dimensional systems such as an agile aerial vehicle

in 3D.

4.2.5 Conclusion

This chapter developed an algorithm for computing approximate disturbance

invariant sets around a nominal trajectory for general nonlinear systems gov-

erned by nonlinear feedback controllers under external disturbances. We

applied the algorithm in simulations to demonstrate obstacle avoidance under
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model noise for two different dynamic systems: unicycle, quadrotor. Sim-

ulation results showed that the computed sets contain most of the samples

and, therefore, are a good enough approximation to avoid obstacles under

disturbances. This algorithm can be used to deploy experimental controllers

on practical robotic systems with approximate guarantees on the safety of

the closed loop system. In many robotic systems, the external disturbances

have a nonlinear relationship with the state of the system. We demonstrate

that the algorithm extends to nonlinear noise models in the case of a unicycle

model. Future work will focus on reducing the dilation between the true

region of the propagated dynamics and the approximate enclosing region by

evaluating different families of regions other than ellipsoids. Currently, the

external disturbances are assumed to be within a bounded sphere. Further

research is necessary to model the external disturbances using high confidence

bounds computed from sample trajectories and treat the obstacle avoidance

constraints as a probabilistic constraints.
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Figure 4.14: Quadrotor avoiding obstacles while reaching a goal. The nominal tra-
jectory is blue while sample trajectories under the influence of disturbances are red.
Obstacles are magenta, and the disturbance invariant sets are black ellipsoids sur-
rounding the nominal trajectory. Note that the sample trajectories all fall within the
computed approximate disturbance invariant sets.

Figure 4.15: Ellipsoid constraint evaluated for 1000 sample trajectories with uniformly
randomly sampled initial state and disturbances along the trajectory. The constraint
is less than zero if the sampled trajectory is within the ellipsoid.
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Figure 4.16: Quadrotor states along the nominal trajectory. Error bars denote the
extent of the disturbance invariant set about the nominal trajectory. The black dashed
line shows the desired state at the goal. The variables v, ω, r, u, and du are the velocity,
angular velocity, RPY rotation, thrust, and thrust time derivative, respectively.
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Chapter 5

NMPC using Recurrent Neural
Network (RNN) models

The algorithms presented in previous chapters 3, 4 relied on a domain expert

to design an accurate dynamic model of the robotic system. This chapter

attempts to eliminate the dependence on the domain expert for designing a

dynamic model for controlling a robot using NMPC. Using domain knowledge

is sometimes restricting in designing a good dynamic model for the robot. For

example, modeling the road wheel interactions for a passenger car requires

understanding several different forces such as friction, damping, inertia in

addition to the power train dynamics. We propose a RNN architecture that

can learn robot dynamics by utilizing minimal prior knowledge about the

robot. By using a data-driven model such as an RNN, we can design accurate

dynamic models when the required domain knowledge is not available or

is hard to obtain. We explore the effect of using limited prior knowledge

about the robotic system on the size of the network and generalization error.

We further combine the RNN with NMPC framework to control a general

robot with minimal domain knowledge. This algorithm can then be applied
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to general robotic systems where a dynamic model is designed by exploring

the system state space and combining the dynamic model with NMPC will

provide us a way to drive the system to a goal state or follow a reference

trajectory. We demonstrate the control algorithm on two robotic systems:

aerial manipulation and ground vehicle.

5.1 Neural Network Modeling for steering control
of an autonomous vehicle

5.1.1 Introduction

This section considers the dynamical modeling of steering systems in pas-

senger vehicles and the use of derived models for steering control, as a basic

building block for autonomous driving. We propose an architecture consist-

ing of a nominal physics-based model that is embedded as a block inside

a data-driven recurrent neural network (RNN). This RNN model serves as

a transition function for model-predictive-control (MPC) to achieve desired

steering behavior. The approach is suitable for systems with known electrome-

chanical specifications but also for black-box (e.g. third-party OEM) vehicle

systems with unknown characteristics. We show that this method achieves

marked improvement over traditional feed-forward techniques and study the

effects of different strategies for combining RNNs with a simple physics-based

model.

The steering system can nominally be modeled based on known physics

laws from first principles. The steering dynamics are usually modeled as a

second-order forced dynamical system [200] with torque inputs induced by
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the steering actuator and tire forces [154]. For modern steering systems, a

power steering motor is used as the steering actuator and is governed by a

steering controller. In this work, we assume that no exact knowledge of the

internal controller logic is available and the first-principles approach is thus a

very coarse approximation to the actual behavior.

Unlike the first principles models, neural network models do not depend

on strict physics-based assumptions and instead can be derived solely from

experimental input-output data [183]. Such models can better capture com-

plex actuator nonlinearities and delays and can thus provide higher predictive

accuracy. Neural network models also require less domain specific knowl-

edge [128]. A type of neural network model known as Recurrent Neural

Network (RNN) has been traditionally used to model temporal dynamics in

language models and handwriting recognition [88]. Early work showed the

ability of RNN models to approximate nonlinear dynamic systems [41, 233].

Psichogios and Ungar [186] further showed that combining a first principles

model with an RNN can approximate the nonlinear dynamics using a smaller

training sample size and can extrapolate better to unseen samples. Several

industrial control applications of RNN models have also been demonstrated

such as controlling a steel prickling process [102], yeast drying process [234],

and temperature control of a variable-frequency oil cooling machine [135]. Re-

cently, RNN models have been employed in Model Predictive Control (MPC)

framework to produce a controller for robot manipulation [83], using deep

layers [172] to model the robot dynamics and controls cutting task accurately.

A neural network approach can be used in conjunction with control policy
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learning [175]. Deep neural networks have been proposed to learn a control

policy based on experience. In a reinforcement learning setting, the control

policy tries to maximize a reward function by balancing exploration and ex-

ploitation of the dynamics of the system [156]. Guided Policy Search Methods

have been proposed to improve the convergence of the reinforcement learn-

ing methods [235]. While these techniques are very general and could work

directly with the physical system, our present work focuses on first learning

an accurate and robust dynamics model only, which can then be rigorously

validated and used for traditional model-based control.

RNN-based models have been employed for vehicle controls in many

simulation studies [52, 187, 69, 122]. Rivals et al. [195] experimentally demon-

strated neural network based lateral control of a four-wheel-drive car. Apart

from the model-based control schemes, vision based neural network control

policies have also been developed [176, 35]. The control policies provide

actuator commands to the vehicle based on the camera input obtained from

the dashboard. However, these control policies rely heavily on the trained

vision data and when presented with new examples, can perform unexpect-

edly. While the approach of mapping from sensory inputs to actions directly

holds promise, for safety considerations we consider a more traditional multi-

layered model-based approach consisting of high-level planner providing

reference trajectories that are tracked by a low-level controller. This decom-

position allows for individual verification of each layer on a wide range of

datasets.
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Contributions. In this work, a model based control strategy is developed

for the steering dynamics of an automotive vehicle. An RNN model has been

used to model the steering dynamics of the vehicle. The model is augmented

with known physics-based transition blocks to improve its predictive capacity.

The learned model is then employed in an MPC framework to produce the

feed-forward control torques for a low-level embedded steering PID controller.

Experiments on Toyota Highlander vehicles have been conducted to com-

pare the performance of the steering tracking behavior using feedforward

controls from different models. The limitations and advantages of several

configurations of the proposed architecture are examined.

5.1.2 Control Architecture

Controlling the steering system on a Toyota Highlander requires applying

torque on the steering wheel which is then amplified through a power steering

system and applied to the front wheels. We automate this system by applying

the input torques as a control signal to the power steering module. The goal

of the steering controller is to track a reference steering trajectory obtained

from a high-level planner as shown in Fig 5.1. The usage of a layered structure

separates the vehicle behavior from low-level trajectory tracking. Following

the control structure, the high-level planner produces a trajectory that is

consistent with obstacles and road rules. The MPC trajectory tracking then

produces a steering reference trajectory necessary to achieve the high-level

planner trajectory. Finally, the low-level steering PID controller computes the

actuator steering torque input required to track the steering trajectory.
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Figure 5.1: Control architecture showing how a desired trajectory is converted to
steering actuator commands. The focus of the paper is to develop a feedforward
steering torque to improve steering controller.

The focus of this work is to develop an appropriate feedforward steering

torque input to improve the steering PID controller. The steering PID controller

tracks a reference steering trajectory (δr, δ̇r), by commanding the steering

torque τcmd as

τcmd = −kp(δ− δr)− kd(δ̇− δ̇r)− ki

∫
(δ− δ̃)dt + τf f .

Figure 5.2 shows a sample trial of following a steering reference trajectory

using a tuned PID controller. The figure highlights the different component

outputs of the PID controller as compared to the net output of the PID con-

troller. It can be observed that the bulk of the control input during the tracking

is provided by the integrator alone which leads to poor tracking performance.

Tracking performance in theory could be improved by increasing PID gains,

but this can lead to unstable behavior, especially given time delays inherent in

the system. Using lower gains ensures stability but allows error to accumulate

over time, which is then compensated through the integrator. By using an

accurate feedforward steering torque τf f we expect to improve the system
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response and reduce tracking error without increasing PID gains. The models

necessary for generating the feedforward steering torque are investigated

next.
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Figure 5.2: Steering torque generated by a PID controller during a trajectory tracking
experiment. The majority of the torque output is provided by the integrator indicating
that the steering system is highly nonlinear.

5.1.3 Modeling Steering Dynamics

The steering model predicts the steering angle δ and the steering rate δ̇ based

on the applied steering torque τs. Steering dynamics are highly coupled

with the lateral dynamics of the vehicle, which is in turn depends on the
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longitudinal velocity vx, which we regard as a recorded input. The lateral

states, lateral velocity vy and yaw rate ϕ̇, are therefore included as a part of our

steering dynamics formulation. The complete state of the steering dynamics is

x = [δ, δ̇, ϕ̇, vy]T and controls by u = [τs, vx]T. The stacked states and controls

are represented by z = [xT, uT]T.

The discrete steering dynamics evolve according to the discrete-time model

xi+1 = f (zi) where i defines the time index along the trajectory. The discrete

steering dynamics predicts the next state xi+1 given the current state xi and

control ui. The state transition function f is an unknown nonlinear function

of the previous state and controls. It can be derived from a first principles

approach or using a neural network.

5.1.3.1 First principles model

The first principles model is a second order model that integrates the net steer-

ing torque to obtain the steering angle and its rate. The net steering torque is

given by a combination of the steering system dynamics, road wheel interac-

tions, and power steering torque. The steering system dynamics consists of

Coulomb friction from the steering rack, jacking torque due to camber angle,

and damping caused by rigid body dynamics [121]. The self-aligning torque

is produced due to tire deformation when the steering wheel moves against

the tire thread. At small slip angles, the self-aligning torque is proportional

to the lateral force Fy f applied to the front tire. The resulting first principles

112



model is

δ̈ = kpδ
jacking

+ kdδ̇
damping

+ kaFy f  
Aligning

+ kcsgn(δ̇)  
Coulomb

+ g(τs, vx)τs  
Power Steering

,

sgn(δ̇) =
{

1 if δ̇ > 0
−1 otherwise

.

A tire model specifies the lateral force applied to the front tire [154]. The

lateral velocity and the yaw rate of the car are propagated using the bicycle

model [200].

The power steering system applies an actuation torque based on the torque

sensor input τs and longitudinal velocity vx. The net torque from power

steering system is modeled as a nonlinear gain g(τs, vx) on the torque sensor

input.

g(τs, vx) = k1g1(τs)g2(v),

g1(τs) =

[
1− e−

(
τs−k2

k3

)2
]

,

g2(v) =
[
k4 + (1− k4)e−vx/k5

]
.

The power steering gain g(τs, vx) is decomposed into two multiplicative

gains. The first gain is dependent on driver input. It increases with the

driver input and saturates to a constant value k1 as driver input becomes

large. The second gain decreases with vehicle velocity until it saturates to a

constant value k4. The form of the gain function has been chosen based on

observed experimental data between driver input torque and assist torque.
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The power steering dynamics presented here is an approximation based on

the graphs shown in Aly et al. [10], since the true dynamics is unknown. The

unknown parameters in the first principles model are obtained using standard

least-squares regression based on the error between predicted and measured

steering angle and steering rate.

5.1.3.2 Neural Network Model

The neural network model approximates the nonlinear function xi+1 = f (zi)

to predict the discrete-time steering dynamics. The model consists of several

units of neural network blocks stacked in time. Each neural network block

is divided into a known physics function and a stack of fully connected

layers. Figure 5.3 shows a block diagram of a neural network block. The

current inputs and previous outputs are stacked together and fed into the

fully connected layers and the physics function. The output of these layers

is combined to predict the state at the next step. These predicted variables

together with new control inputs are fed back into the network to continue

prediction for the next step.

The overall discrete dynamics for a neural network model can be written

as f (z) = fph(z) + fnn(z), where fph denotes the physics function and fnn

represents the neural network layers. The physics function incorporates basic

domain knowledge by predicting the steering angle as an integral of the

steering rate and the yaw rate based on the no-slip condition for a kinematic
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Figure 5.3: The neural network architecture used for learning lateral dynamics of a
car model.

car model. The physics function can be mathematically stated as

fph(zi) =

⎡⎢⎢⎣
δi + k1δ̇i

0
vxi tan(k2δi)

0

⎤⎥⎥⎦ ,

where the unknown parameters are the time-constant for integration k1 and

the inverse of the wheelbase of the car k2. Similarly, the neural network layers

can be expressed as

fnn(zi) = gn (gn−1, (gn−2 (· · · g0 (zi)))) ,

gi(x) := σ(Wix + bi), i = 0, . . . , n− 1,

gn(x) := Wnx + bn.

The function gi(·) defines a single fully connected layer for the neural network

with the parameters Wi, bi. The function σ(·) denotes the activation function

used in the network. The activation function is chosen to be the hyperbolic
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tangent function. The last layer gn(·) is specified as a unit activation function

since the neural network is used in a regression problem.

The neural network layers predict the residual dynamics not modeled by

the physics function. The goal of the neural network layers, therefore, is to

capture the effects of road-tire interactions, power steering logic, and steering

system dynamics. The addition of physics function improves the gradient flow

of the network thereby providing better prediction performance as observed

from training performance results in Fig. 5.4. The increase in depth of the fully

connected layers increases the ability of the RNN to model higher nonlinear

models. At the same time, it is also harder to train deeper neural network

models due to the vanishing gradient problem [18]. In this work, the depth of

the neural network layers has been experimentally determined to capture the

unknown dynamics well.

Training

The neural network weights and the physics function parameters are opti-

mized using time series data collected from driving the vehicle along variable

curvature paths with different desired longitudinal velocities. The steering

dynamics are controlled using a preliminary Proportional Integral Derivative

(PID) controller during the data collection phase.

The collected time series data is divided into fixed time horizon segments

to train the neural network model. The loss function during neural network

training is set to minimize the difference between propagated states and

measured states for each of the fixed time horizon segments. The loss function
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also adds an L2 regularization with a user-selected gain cr to avoid overfitting

of the parameters. The goal of the training phase is to find the optimal

parameters θ∗ that minimize the training cost as

θ∗ = arg min
θ

m

∑
j=1

C(x̃0:N, u0:N−1, θ),

C(x̃0:N, u0:N−1, θ) =
n

∑
i=1

(x̃i − xi)
TP(x̃i − xi) + crθTθ,

s.t xi+1 = fph(zi, θ) + fnn(zi, θ),

zi = [xi, ui], x0 = x̃0,

θ = [W0, b0, W1, b1, · · · , Wn, bn, k1, k2],

where θ denotes the weights of the network along with the unknown physics

parameters.

The cost function C measures the deviation of the propagated states xi

from measured states x̃i for m sample trajectories. The state deviations are

weighed using a diagonal matrix P to enforce a uniform scale across the

deviations. The matrix P is usually chosen as the inverse covariance of the

sensor measurements.

The propagation of steering dynamics results in the propagated states

significantly diverging from the measured states for random initialization of

parameters. The optimization is thus performed in two stages: first by limiting

the propagation to a single step and initializing the parameters obtained from
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the previous stage and optimizing over the entire trajectory segment. This two-

stage optimization proposed by Lenz et al. [83] has been shown to perform

better than random initialization of parameters.

Implementation

The RNN is coded as a computational graph in TensorFlow [218] package.

The training data is provided by 20,000 trajectory segments with a 0.5-second

horizon which corresponds to approximately 150 hours of driving data. The

neural network has been trained with two fully connected layers. The opti-

mization has been performed using mini-batch gradient descent with a batch

size of 200 samples.

The optimal parameters are used to verify the performance of the model

on a test data set of 5,000 trajectory segments. The RNN model is used to

propagate the lateral dynamics using the initial state and controls along the

trajectory. Figure 5.4 shows the RMS error between the propagated and mea-

sured handwheel angle along the trajectory using different trained models.

The addition of a second layer to the RNN along with physics function im-

proves the performance of prediction significantly. Increasing the RNN layers

further does not result in an improvement of performance. Hence the depth

of neural network is limited to two layers.

5.1.4 Steering Control

The steering torque used to track a steering reference trajectory consists of

a PID component and a feedforward component. The steering reference
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trajectory comprises of a reference steering angle δr and steering rate δ̇r. The

feedforward steering torque estimates the necessary command to track the

desired reference and thereby improves tracking performance when compared

to applying the PID component alone. The procedure to compute feedforward

steering torque using different models is discussed next.

5.1.4.1 Inverting First Principles Model

Here, the feedforward steering torque for controlling the steering system is

computed by inverting the first principles model. Denoting the power steering

dynamics at a given longitudinal velocity by P(τs) := g(τs, vx)τs, the input

torque required to track a steering reference trajectory is computed as

τ∗s = P−1 (−kpδr − kdδ̇r − kaFy f
)

.

The desired steering angle, steering rate and forward velocity along the

trajectory are assumed to be known during inversion. The tire force Fy f is

computed based on reference trajectory as

Fy f = k f mvxϕ̇,

where the gain k f is the ratio of the distance between the center of mass to

front wheels to the wheelbase. The feedforward steering torque for trajectory

tracking is chosen to be equal to the computed input torque τf f = τ∗s , since

the computed input torque is only dependent on the reference trajectory.

The double derivative of the reference steering angle, the Coulomb friction

and the desired steering acceleration are not accounted for when computing
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the feedforward steering torque to avoid inducing high-frequency oscillations

into the steering control.

5.1.4.2 Lookup table

The feedforward steering torque can also be computed using a lookup table

under steady state assumptions. The lookup table provides the steering torque

required to achieve a steady state steering angle for a given velocity. The data

in the lookup table is filled based on experiments in which the steering torque

is adjusted to achieve the desired steering angle for a given forward velocity.

The feedforward steering torques for a given reference steering angle and

forward velocity are then computed by interpolating the data points from the

lookup table.

5.1.4.3 NMPC Steering Control

When using the neural network model, the feedforward steering torque is

computed by solving an NMPC optimization problem. The optimization

problem is set to track a reference steering trajectory given by s̃0:N using the

neural network model. The longitudinal velocity is fixed to be equal to the

reference velocity from high-level planner during the optimization process.

The optimization problem for computing the feedforward steering torque can
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be written as

τ∗0:N−1 = arg min
τ0:N−1

N

∑
i=1

(si − s̃i)
TPi(si − s̃i) + τT

i−1Riτi−1,

s.t xi+1 = fph(zi) + fnn(zi),

si = [δi, δ̇i]
T, s̃i = [δr, δ̇r]

T

Given {vx0:N−1, x̃0:N}.

The first component of the optimal steering torque from NMPC optimization is

sent to the PID controller as feedforward steering torque (τf f = τ∗0 ). If there are

delays in sending the torque command, the feedforward steering command

can correspond to the future stamped steering torque as in τf f = τ∗delay. The

NMPC optimization is performed using a Stage-wise Newton method as

explained in chapter 2.

5.1.5 Results

The MPC controller for steering dynamics has been tested on a passenger car

equipped with a high-precision GPS system, and an onboard compute stack.

The low-level automotive system is accessed through a CAN bus to send

engine throttle and steering torque commands. The onboard compute stack

consists of two computational modules: high-level computer and low-level

microcontroller. The high-level computer performs the high-level planning

and provides a steering reference trajectory as an output. It also produces

the feedforward steering torque necessary for tracking the steering reference

trajectory using NMPC optimization described in section 5.1.4. The low-level
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microcontroller runs a steering PID controller that outputs a torque command

based on the input steering reference and feedforward torque. Communication

between the high-level computer and the low-level microcontroller is handled

through a separate CAN bus.

Start

Goal

Figure 5.5: Test track used for autonomous driving experiments

The goal of the experiments is to closely track the desired steering reference

trajectory(denoted by a series of handwheel angles) in a small test track as

shown in Fig 5.5. The steering controller is tested at longitudinal velocities of

5mph and 10mph under a maximum lateral acceleration of 3.5m/ss. Large

lateral acceleration and low speeds are used to test the system, as these con-

ditions tended to cause worse steering tracking performance. The effect of

adding a feedforward steering torque using different models on the steering

tracking performance is shown in Table 5.1. Not including a feedforward

in the controller results in the largest RMS error, as expected. Adding the

lookup feedforward model improves the performance only slightly, probably
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because these are more dynamic rather than steady state maneuvers. Comput-

ing the feedforward steering torque using the first principles model, which

incorporates these dynamic effects, outperforms the lookup table model.

The neural network performs comparably to first principles model with

regards to the RMS error. It also performs better than the first principles

model at low velocities. The first principles model is not able to model the

road-wheel interactions correctly at low velocities. This is likely because at

lower velocities, the power steering system provides larger assist, and that

effect is difficult to model directly without knowing the underlying power

steering software algorithm. The neural network, however, benefits from its

own internal representation based simply on training data.

Controller/Longitudinal velocity 5mph 10mph
No Feedforward 18.63 18.61
Lookup table 16.43 14.88
First principles model 12.48 9.56
Neural network model 10.21 9.53

Table 5.1: Experimental RMS Handwheel error (degrees) for different models

The steering performances of different steering controllers are shown in

Figures 5.6, 5.7 for a single trial at 5mph and 10mph longitudinal velocities.

The initial steering angle differences are matched across different controllers

before computing the RMS error to remove the effect of various initial condi-

tions. The PID controller without feedforward steering torque has the highest

RMS steering error as seen in Table I, and as a result of the larger errors, the

integrator performs much of the tracking task. Adding a lookup table offers

marginal improvement, since the maneuvers are highly dynamic. The first
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principles model and the neural network model outperform the other methods

with regards to RMS error. The magnitude of the integrator is also small and

most of the tracking performed by the feedforward steering torque.

5mph Trials 10 mph Trials
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a) PID controller without feedforward steering torque
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b) Lookup feedforward steering torque

Figure 5.6: Comparison of steering performance using PID and Lookup steering
control methods

5.1.6 Conclusions

The use of Recurrent Neural Network model, for modeling and control of a ve-

hicle’s steering system has been presented. The creation of the neural network
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c) First principles feedforward steering torque
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Figure 5.7: Comparison of steering performance using Feedforward and Neural
network steering control methods

model did not require domain specific knowledge about the power steering

module and steering system dynamics. It used only minimal knowledge of

the nominal car dynamics to improve the prediction capability. The resulting

neural network model outperformed a first principles model in the long-term

prediction of steering dynamics and operated equally well in generating a

feedforward reference command for control. These results demonstrate that a

simple RNN, augmented with simple dynamics information but lacking do-

main specific knowledge, can be suitable for dynamical modeling and control
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of a vehicle steering system. The current system is limited to learning RNN

model offline and computing feedforward torque online. Future work will

include learning the neural network model online and testing the vehicle on

changing road conditions.

5.2 Neural Network Modeling for Controlling an
Aerial Vehcle

5.2.1 Introduction

This section considers the problem of designing a controller for accurate

trajectory following of an Unmanned Aerial Vehicle (UAV) equipped with

a multi degree-of-freedom (DOF) arm. We use a Recurrent Neural Network

(RNN) to model the dynamics of the system and perform NMPC optimization

on the learned model to track reference trajectories.

Aerial manipulation has potential application in package delivery [11],

bridges and furnace inspection [81, 92, 84], cooperative transportation [153],

stippling [58], pruning tree branches [157], and aerial sampling [167]. Such

applications often require precise control of the end-effector position. For

example, small errors in the end-effector position can result in failure to pick

up a package or retrieve a sample.

The control of an aerial manipulator is complicated primarily due to the

interactions between the multi-DOF arm and the UAV platform. Several

control techniques have been developed in the past for controlling the aerial

manipulator [109, 90, 75]. These controllers usually consider the inputs to the

system as the body torques and the body thrust applied by the UAV platform
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and the joint torques applied by the arm. In practice, off-the-shelf UAVs are

controlled using an on-board autopilot such as DJI A3 [47] which controls

the orientation of the UAV and a scaled thrust along the body z-axis of the

UAV. Similarly, the arm is controlled using a servo motor that regulates the

joint angles or joint velocities. The control logic of the autopilot and the servo

motors is usually not known to the user for modeling purposes. Even if

the logic is known, the exact forces and torques applied to the system are

unknown since the controllers only use an approximate actuator model [53].

We employ a Recurrent Neural Network (RNN) to model the complete

coupled aerial manipulator dynamics. Using an RNN allows for modeling the

unknown control logic and the actuator dynamics based on sensor measure-

ments. The RNN model is trained by piloting the aerial manipulator manually

and collecting sensor data along the piloted trajectories. The RNN model

is augmented with a feedforward model that accounts for the well-known

rigid body kinematics and a simplified second order PD control model. The

augmented RNN model is able to predict the aerial manipulator position

accurately with an RMS error of 5 centimeters for an open-loop prediction

horizon of 1 second based on a typical test dataset. The trained RNN model

is then used in a Nonlinear Model Predictive Control (NMPC) framework to

control the aerial manipulator. We experimentally compare the performance

of the RNN model against a standard feedforward model in tracking a spiral

reference trajectory for the UAV and sinusoidal reference trajectory for the

arm.
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Related Work

Aerial manipulator systems have been studied extensively in the past. Orsag,

Korpela, and Oh [170] showed design and control of a UAV attached with a

multi-DOF manipulator. Kondak et al. [113] showed the control of an indus-

trial 7-DOF arm attached to a helicopter system. Cooperative transportation

of aerial system has also been addressed in [56]. Kondak et al. [116] further

showed cable transportation of load using three helicopters simultaneously.

Nguyen et al. [160] simplified the cooperative transportation problem by de-

coupling the rotational dynamics of individual quadrotors using a ball joint

attached at it’s base. Most methods based on traditional non-adaptive control

require careful tuning and in general lack robustness to large changes in the

dynamics, for instance due to wind gusts, propeller down-wash, or contacts.

NMPC optimization is a control approach that solves an optimization

problem at every step by propagating the system dynamics and minimizing

a user defined cost function along the trajectory. It accounts for system con-

straints and could handle changing system dynamics. NMPC optimization for

a higher dimensional system such as an aerial manipulator is computationally

expensive and has been initially limited to simulations. More recently, Nikou

et al. [163] showed cooperative transportation of a load using multiple quadro-

tors while avoiding collisions and singularities using simulated dynamics.

Neunert et al. [159] and Lunni et al. [136] showed NMPC optimization on-

board a multirotor vehicle. The effectiveness of the NMPC methods depend

on the accuracy of the model used. There is a non-trivial effort involved in

identifying the model required for the NMPC optimization and updating the
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system parameters as the aerial manipulator interacts with the environment.

We consider constructing such complex models using a RNN to predict the

system motion.

The application of neural networks to aerial robots has generally been lim-

ited to vision-based recognition and path planning applications (e.g. Carrio

et al. [30], Maciel-Pearson and Breckon [138], and Heylen et al. [76]). Recently,

end-to-end learning models have been used to control robot systems based on

raw sensor data ( Kelchtermans and Tuytelaars [97]). These methods are diffi-

cult to generalize to additional sensing modalities and to handling changes in

the system dynamics. In this work, we use a RNN model to learn the dynam-

ics of the aerial manipulator and use NMPC optimization for controlling the

robot based on the predicted dynamics. This two-stage approach allows us to

reliably verify the predictive capability of the RNN before using the controller

thereby reducing the chance for potentially unsafe robot behavior.

Deep NMPC which combines a deep RNN with NMPC optimization has

been proposed by Lenz, Knepper, and Saxena [127] for a robot cutting task.

Unlike the RNN proposed in that work, we employ a much simpler model

using a 9-DOF IMU, joint angles obtained from a potentionmeter, commands

applied to the robot, and also combining the unknown learned dynamics with

a known feedforward model for which we also learn the gains. Further, this

model uses a known dynamic state which can be estimated using traditional

estimators. It also allows for substitution of sensors without the need to retrain

the network.
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Other related work includes the use of an RNN model in an NMPC ap-

proach to control the steering dynamics of a passenger vehicle in [60]. The

proposed RNN model predicts the error between predicted feedforward state

and the measured state. In contrast, the RNN architecture used here produces

accelerations as output which is integrated through a separate integration ap-

proach. This makes the output trajectories smoother and thereby the controls

produced are also smoother.

Contributions

We propose a novel RNN architecture that computes the acceleration of a

robotic system and integrates the accelerations to find the robot state at the next

time instant. The integration of the accelerations is performed in a separate

integration stage that takes as inputs the robot state, control and time-step of

integration. We use a semi-implicit integration approach to maximize accuracy

in prediction. The RNN architecture is augmented with a feedforward model

to increase the predictive capacity of the model considerably with only a small

increase in the number of parameters. A smaller-size model is also critical for

fast real-time control optimization.

The resulting RNN is employed as a predictive model in an NMPC frame-

work to track reference trajectories. A second-order stage-wise Newton [19]

trajectory optimization method is employed which has a O(N) complexity

where N is the number of trajectory time-steps. The resulting algorithm can

operate at 100 Hz using a 2 layer RNN model with 16 and 8 nodes running

on an embedded i5 computer onboard the UAV platform. We then perform
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empirical evaluation of the controller on a UAV platform tracking spiral ref-

erence trajectories. The NMPC approach achieved an approximate position

accuracy of 0.1 meters and joint angle accuracy of 0.1 radians when tracking

spiral reference trajectories for the UAV and sinusoidal trajectories for the

joint arm simultaneously.

5.2.2 Modeling dynamics

We employ a quadrotor UAV platform equipped with 2-DOF manipulator

arm as shown in Fig. 5.9. The quadrotor platform is an underactuated system

consisting four co-axially aligned propellers. These propellers can control

independently the three body torques around the principal axes of the body

and thrust along the body z-axis. We assume that the quadrotor’s orientation

given by Euler angles (ξ ∈ R3) and the thrust fz ∈ R are controlled using an

autopilot module and the joint angles of the arm (r ∈ R2) are controlled using

servo motors attached to the two joints.

Autopilot

Servo Motor

Robot State:  

u

ξd

ad

rd

r˙d

ξ˙d
( , )τb fz

τr

x

z

Integrator

Figure 5.8: Schematic of the aerial manipulation system with inputs u, outputs z, and
robot state x.

We assume the autopilot dynamics is a second order system i.e. the autopi-

lot applies body torques (τb ∈ R3) based on the commanded Euler angle rates

(ξd ∈ R3) and the desired Euler angle rates (ξ̇d ∈ R3). It is also assumed that

132



the thrust fz applied by the autopilot is directly related to commanded thrust

ad ∈ R. Hence, we assume the inputs to the autopilot system are (ξ̇d, ad)

and treat ξd as part of the state. Similarly, assuming the servo model is a

second order system applying joint torques τr ∈ R3, the inputs are chosen to

be desired joint angle rates ṙd ∈ R2 and the desired joint angles rd ∈ R3 are

assumed to be part of the state.

The quadrotor platform is attached with motion capture markers that are

tracked using motion capture cameras which provide the position p ∈ R3 and

the orientation ξ in an inertial frame. The servo motors provide feedback in

terms of joint angles r ∈ R2. The schematic of the aerial manipulator shown in

Fig. 5.9 shows the inputs and outputs associated with the aerial manipulation

model. The combined sensor measurements z ∈ R8 and the controls u ∈ R6

are shown in (5.1).

z = [p, ξ, r]T, u = [ad, ξ̇d, ṙd]
T (5.1)

5.2.2.1 Network Architecture

The goal of the RNN is to predict the outputs at the next step zi+1 (i.e. the

sensor measurements) given the control at the current step ui and the state

xi where i denotes the sequence index which in our context denotes the time

elapsed. We want to use as much prior information about the model as

possible to minimize the amount of training data required and reduce the

size of networks. Smaller networks enable lower computational effort during

NMPC optimization. To use prior information known about the model, the

state x is chosen manually to denote all possible feature that are expected to
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provide zi+1. For the aerial manipulation system, the state x is selected to

denote the full dynamical state of the system, i.e. the position of the quadrotor

p, the velocity of the platform v ∈ R3, the Euler angles ξ, the rate of Euler

angles ξ̇, the commanded Euler angles ξd, the joint angle r, the joint velocities

ṙ, commanded joint angles rd and a scaling coefficient on the commanded

thrust denoted as kt ∈ R. The scaling coefficient is a part of the feedforward

model that predicts the body z-axis acceleration given the commanded thrust

as shown in (5.3). The overall state is given as

x = [p, ξ, v, ξ̇, ξd, r, ṙ, rd, kt] (5.2)

The mapping between the state and the sensor measurements is denoted

by g(·) and simply selects the correct sensor channels from the state, i.e.

z = g(x) = [p, ξ, r]. Since the state is manually selected, its propagation

is non-trivial and cannot be accomplished using a small number of fully

connected layers. We can rely on prior information to propagate the state and

rely on fully connected layers to only learn the residual dynamics. The prior

information is encoded into the architecture in two phases: “Force prediction”

and “Integration” as shown in Fig. 5.8. In the first phase, the state and the

control are used to generate the resulting accelerations produced on the system.

These accelerations are corrected using fully connected layers to account for

unmodeled dynamics. The corrected accelerations are then integrated using a

semi-implicit integration approach. The integration phase of the model only

depends on the time step of integration and usually does not have parameters

that need to be trained.
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Using the network to predict the perturbations in forces and torques makes

the system trajectories smooth up to second order which is necessary for

smoother control input to the system. Further, using integration which is

decoupled from the acceleration prediction allows the same trained network

to be used with different time steps during integration. In addition, the

integration phase of the model can also incorporate limits on accelerations

and velocities that are known before hand. For example, the joint velocities of

the arm are bounded by 0.7 radians per second by the servo controller. This

can be easily incorporated into the integration phase and does not require

learning the same.

Figure 5.9: Schematic of the neural network architecture

5.2.2.2 Force prediction model

The prior information about the quadrotor system and servo control is used

to formulate a model that predicts inertia normalized forces, i.e. accelerations,

that are required to propagate current state and control. For producing the

angular accelerations on the quadrotor and joint accelerations on the arm,

a second order PD control loop is applied between both the commanded

and observed Euler angles ξ and the commanded and observed joint angles
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r. The acceleration on the quadrotor platform is obtained by scaling the

commanded thrust and compensating for gravity (g = [0, 0, 9.81]T). The

overall feedforward dynamics can be written as

a = ktadz̄− g, (5.3)

ξ̈ = −kpξ
(ξ − ξd)− kdξ

(ξ̇ − ξ̇d), (5.4)

r̈ = −kpr(r− rd)− kdr(ṙ− ṙd), (5.5)

where z̄ denotes the body z axis of the quadrotor in inertial frame which

is obtained from the Euler angle ξ. The concatenated acceleration vector is

denoted as τ = [a, ξ̈, r̈] ∈ R6. The unknown parameters in the model are the

proportional and derivative gains for Euler angles (kpξ
∈ R3, kdξ

∈ R3) and

joint angles (kpr ∈ R2, kdr ∈ R2). These parameters are optimized along with

the fully connected layer weights and biases. The force prediction model does

not include the interactions between the arm and UAV since such a model

depends on moment of inertia of the platform which is not observable without

having access to the joint torques and body torques applied.

5.2.2.3 Residual dynamics

The accelerations produced by the feedforward model are not accurate since

it incorporates only a simplified model of the actual dynamics and neglects

the interactions between the quadrotor and the arm. The accuracy of the

feedforward model can be improved by adding fully connected layers that

predict the difference between the actual accelerations and the accelerations
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generated by the feedforward model, denoted by δτ ∈ R6. The input to the

network is given by the feedforward accelerations τ, the current state x, and

controls u as shown in Fig. 5.8. It is necessary for us to scale the inputs before

passing them into the fully connected layers to avoid saturating the neural

network activation functions. We use batch normalization to automatically

figure out the scale of the inputs. It is also safe to assume that the horizontal

position of the quadrotor does not affect the acceleration of the quadrotor.

Hence the horizontal position is neglected before passing the state into the fully

connected layers. We use dropout layers on the intermediate fully connected

layers and the residual correction δτ to ensure the feedforward dynamics is

also trained even if the network produces noisy corrections.

5.2.2.4 Integration

The integration block integrates the corrected accelerations τ̄ = τ + δτ for

a specified time step to obtain the state of the robot at next step. We used a

semi-implicit integration approach for integrating the accelerations. Under

this approach, the velocities at the next step are found by integrating the

accelerations, and the averages of the current and predicted velocities are used

to integrate the positions forward. A similar approach is used for integrating

joint angles as shown below:

ṙi+1 = ṙi + δti r̈i, (5.6)

ṙi+1 = min(ṙi+1, ṙmax), (5.7)

ri+1 = ri + δti
1
2
(ṙi+1 + ṙi) , (5.8)
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where δti denotes the time step of integration and ṙmax ∈ R2 denotes the max-

imum joint velocity. The position pi+1 and orientation ξi+1 of the quadrotor

are integrated in a similar manner. Note that the Euler angles ξ wrap around

2π radians which is incorporated into the integration approach, as well.

The thrust scaling gain kt is assumed to be constant during integration, i.e.

kti+1 = kti. The thrust gain usually changes with the mass of the vehicle and

the battery voltage of the vehicle. These effects are not observable from the

predicted measurements alone. Learning to predict the change in thrust gain

did not provide any improvement in the results during training.

5.2.2.5 Estimating System State

So far in the network architecture, we predicted the measurements at the next

time step given the controls ui and the state xi at the current step. Thus, in

order to predict sensor measurements for a sequence of time steps t0:N, we

require the controls along the time steps u0:N−1 and the state of the system at

the first step x0.

Since we manually selected the dynamic state of the system, we can use

traditional estimation methods to find the state given the sensor measure-

ments. The position, orientation and joint angles of the state are obtained from

the sensor measurements directly. The velocities, Euler angle rates, and joint

velocities are obtained by filtering the finite difference differentiated sensor

measurements. The commanded Euler angles and joint angles are obtained

by integrating the commanded rates and assuming the system starts with

commanded angles equal to the measured angles. Finally, the thrust gain
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kt is obtained by filtering individual measurements of thrust gain. A single

measurement of thrust gain is obtained by inverting (5.3) i.e kt = z̄T(a+ g)/ad.

The accelerations in the equation are obtained by finite differentiating mea-

sured velocities and smoothing them with an exponential filter.

5.2.2.6 Training

During the training phase, both the feedforward model parameters θ =

[kpξ
, kdξ

, kpr , kdr ] and the weights associated with the fully connected layers

are learned together. Since both the fully connected layers and the feedfor-

ward model are trying to generate the same quantity, i.e. accelerations for

the dynamic system, there will be multiple solutions to the parameters which

can produce the same accelerations. Thus, we incorporate a prior on the

feedforward model parameters to ensure the model is generalizable. This

prior has been obtained by training the model using only the feedforward

dynamics without adding the residual dynamics. A dropout layer has also

been incorporated on the output of the fully connected layers to ensure the

feedforward model is applying the right accelerations even when the residual

network output is noisy.

The training data consists of several sequences of human piloted quadrotor

data along with sinusoidally oscillated arm data with a variety of frequencies,

phases, and offsets. The data has been verified to cover as much of the state

space as possible keeping in mind the safety of the vehicle. These sequences

are further split into several smaller segments with a fixed horizon length

of 1 second with a back propagation length of N segments (In our case we
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used N = 50 segments since the motion capture data is sampled at 50 Hz).

The state of the system is estimated along the entire sequence of collected

trajectories and the starting estimated state for each sequence has been stored

for training purposes. Finally, stochastic gradient descent has been applied

on the cost function shown in (5.9) where the predicted sensor measurements

are obtained by unrolling the neural network using the applied controls and

initial sensor measurement for the sequence. The cost function consists of the

error between predicted sensor measurements z1:N and the observed sensor

measurements z̄1:N in addition to regularization costs for the feedforward

parameters θ.

L =
Nb

∑
i=0

1
N

N

∑
j=q

(
zj − z̄j

)T Σ−1
z
(
zj − z̄j

)
+

1
2
(θ − θp)

TΣ−1
θ (θ − θp), (5.9)

where Σz is the covariance in sensor measurements, θp is the prior on the

feedforward model parameters, Σθ is the covariance associated with the prior.

5.2.2.7 Prediction Results

The model obtained from training has been verified on a test data set. Fig. 5.10

shows the position RMS errors against the length of the trajectory (arc length).

The feedforward model predicts smaller length trajectories better and its

performance degrades with the length of the trajectory. This behavior is also

exhibited by neural networks without including the feedforward network.

The performance of the RNN augmented by feedforward model does not

degrade with arc length and is almost constant.

The RMS error along each of the sensor channels is shown in Fig. 5.10. It
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Figure 5.10: RMS errors along with 95 percent confidence interval on test dataset. (a)
Position RMS error against length of the trajectory. Trajectories that have larger arc
length are harder to model. (b) RMS Error for each sensor channel. (c) Position RMS
error against time (d) Orientation RMS error against time (e) Joint angle RMS Error
against time

can be observed that without a feedforward model, the smaller RNN network

shown in green has a large Euler angle error compared to a pure feedfor-

ward model. Using a larger RNN network overcomes this issue but requires

more computational effort which increases the optimization time during

NMPC. The RNN model augmented with feedforward dynamics improves

only slightly when the number of nodes in the network are doubled. This

suggests that using the smaller RNN network combined with a feedforward

model is sufficient for NMPC control.

The RMS errors of the sensor channels against the time horizon are shown

in Fig. 5.10. The position errors increase nonlinearly with time since the
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position of the UAV is predicted based on accurate prediction of other states

such as velocities and accelerations. The Euler angle prediction error increases

linearly for most of the RNN and feedforward models. The joint angles on the

other hand saturate to an RMS value that decreases with an increase in RNN

prediction capacity. The RMS errors for all the sensor channels start out with

a very small value and degrade gradually. This is a necessary property for the

model to be useful in an NMPC approach.

5.2.3 Experiment Results

We employed a Stage-wise Newton method [19] to solve the trajectory opti-

mization problem.

The NMPC optimization has been tested on a DJI Matrice UAV equipped

with a 2-DOF arm to track spiral reference trajectories for the UAV and sinu-

soidal reference trajectories for the arm.The spiral reference has been chosen to

have a radius of 0.2 meters in x and y directions and has a pitch of 1.0 meters

and a frequency of 0.2 Hz. The sinusoidal joint angle reference trajectories are

chosen to have an amplitude of 0.2 radians with a frequency of 0.2 Hz and an

offset of -1 radians and 0.3 radians for the two joints respectively. The NMPC

optimization runs at a frequency of 50 Hz onboard a core-i5 NUC mini-PC.

The UAV pose is obtained from motion capture cameras and joint angles are

obtained from servo feedback.

Figure 5.11 shows the position tracking error for a sample trajectory using

MPC with the feedforward model and RNN model. Figure 5.12 shows the

joint angle tracking error for the same sample trajectory. The mean absolute
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Figure 5.11: Top row shows tracking error for MPC using feedforward model and
bottom row shows the error using RNN model

errors for each position axis are shown in Fig. 5.13. As can be observed,

the RNN and feedforward model perform equally well in tracking the UAV

trajectory. The RNN model slightly underperforms in tracking joint angles.

A possible reason for the underperformance is that the feedforward model is

very good at predicting the joint angle trajectories, and the addition of a neural

network is adding noise to the model optimization. Another possible concern

is that the controls being optimized over are not constrained to be from the

same distribution as the training data sets. Hence the NMPC optimization

can find controls that minimize the cost function but the controls might not be

physically meaningful. In-spite of these issues, the RNN model performed

well in tracking spiral reference trajectories with an approximate position

accuracy of 0.1 meters as shown in Fig. 5.11 and joint angle accuracy of 0.1

radians as shown in Fig. 5.12.
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Figure 5.12: Top row shows the joint angle errors for MPC using feedforward model
and bottom row shows the error using RNN model
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Figure 5.13: Bar plot shows the absolute error along different axes along with 95%
confidence intervals. The picture shows the spiral trajectory taken by the quadrotor
overlayed on the quadrotor path
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5.2.4 Conclusions

In conclusion, we demonstrated the use of an RNN model to predict the cou-

pled dynamics of an aerial manipulator. Combining the RNN model with a

feedforward model encoding the known dynamics of the system improved

the prediction performance with a small increase in the number of parameters.

We employed the RNN model and the feedforward model in an NMPC frame-

work to track reference trajectories for the arm and the UAV. The RNN model

performed comparable to the feedforward model and did not provide any

notable improvements in tracking performance. Future work should learn to

model physical interactions with the environment and applying the NMPC

framework to handle external disturbances safely.
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Chapter 6

Autonomy Software Framework

6.1 Introduction

In this chapter, we introduce a software framework for combining different

low-level controllers such as the robust NMPC controllers developed so far

to perform complex tasks in a safe way. We focus on applying the software

framework to demonstrate package sorting using aerial vehicles. Vertical

take-off and landing (VTOL) vehicles such as quadrotors have gained a lot

of attention recently due to their agility and ability to navigated in remote

and cluttered environments. Current research suggests that VTOL vehicles

attached with manipulators, known as aerial manipulators, are attractive

for numerous applications, including package transportation [11], collabo-

rative load transportation [153], collaborative construction, and structural

maintenance applications [2, 1]. Many of these applications require interac-

tions between multiple software components and hardware subsystems while

navigating cluttered environments to achieve a desired goal. There are also

performance constraints on tasks which would require navigating through
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the environments quickly. In such a scenario, the safety and reliability of the

overall system under software and hardware failures is critical. In particular,

the task of aerial manipulation is non-trivial since it involves underactuated

quadrotor systems combined with multi-degree of freedom manipulators

interacting with the environment. We propose a two-fold approach: on the

software side, a fault tolerant state machine framework that implements sev-

eral controllers for aerial manipulation and on the hardware side, a novel

magnetic gripper that tolerates end-effector error up to 2 cm while grasping.

The result is a reliable aerial manipulation system with a high probability of

picking objects (90%) and tolerance to a wide variety of errors.

6.1.1 Related Work

Past research has focused on developing control algorithms and manipulators

specifically for aerial manipulation (e.g. Bellicoso et al. [17], Suarez, Heredia,

and Ollero [216], and Pounds, Bersak, and Dollar [179]). While results have

been reported separately for various aspects of aerial manipulation such as

control algorithms (e.g. Mebarki and Lippiello [149], Mellinger et al. [151],

Kondak et al. [115], Korpela et al. [118], and Kim, Choi, and Kim [101]),

motion planning, and visual servoing (e.g. Kondak et al. [114], Lippiello

et al. [133], and Huang et al. [80]), very few fully-integrated systems that

allow the combination of these basic behaviors into complex tasks with fault-

recovery have been reported. Current commercially available aerial autonomy

suites [48, 150] are limited to basic navigation and observation tasks and not

directly applicable to aerial manipulation.
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Figure 6.1: Proposed aerial manipulation system picking (top) and placing (bottom)
a package.

A few fully integrated applications for aerial manipulation have been

introduced in recent years. An aerial manipulation system for moving metallic

discs and sheets is proposed by Gawel et al. [61] and Nieuwenhuisen et al.

[162]. The system developed by Gawel et al. [61] used an electro-permanent

gripper that can turn on and off the magnetic effect by reversing an electric

current. In contrast, our work proposes a permanent magnetic gripper solution

that can turn on and off by changing the polarity of the magnets using a
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mechanical servo. This type of gripper does not use energy to hold the object

and only requires momentary energy to release objects. Lee et al. proposed

a collaborative framework for moving an unknown object in an unknown

obstacle ridden environment [124].Kim and Oh [100] developed an aerial

manipulation system for lab automation using a parallel manipulator. Orsag

et al. suggested a benchmark for different aerial grasping applications [171].

Our work performs two similar benchmark applications: grasping objects

from a table and placing them in slots on a shelf.

This chapter proposes a reliable aerial manipulation system, at the core of

which lies an autonomy software framework that is robust to controller and

hardware failures. We apply the state machine framework to a package sorting

application that combines an off-the-shelf quadrotor with a custom built light-

weight 2-DOF arm and a magnetic gripper that is tolerant to position error. We

implement and compare two different control strategies for picking objects:

a PID controller that assumes tight inner-loop attitude control and a Model

Predictive Controller (MPC). A novel magnetic gripper is developed that can

grasp objects with a tolerance of 2 cm in end-effector position. We tested the

entire system through a set of 101 experiments and documented different

failure modes that can occur. The software framework is robust enough to

complete 85 out of the 101 pick-place trials conducted. Finally, we provide the

state machine framework and aerial manipulation controllers as open-source

software [212].
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6.2 Software Framework

At the core of this system lies a software framework that allows users to

easily create autonomy applications by combining modular state behaviors,

controllers, and hardware capabilities into domain-specific state machines.

The software framework has been designed to:

• combine modular behaviors, such as waypoint navigation and visual

servoing, into complex state machines to perform complicated tasks, like

object pick-and-place;

• enable robustness to sensor, controller, and hardware failure, through

introspection and fail-safe actions;

• provide control methods that adapt to environment changes;

• provide automated tests for controllers and logic systems, independent

of their hardware implementation;

• serve as an open-source system for developing complex aerial autonomy

applications.

It tightly integrates high-level control strategies for both quadrotors and ma-

nipulators with an existing finite state machine library to provide robustness

to controller and hardware failures during the task. The software framework

consists of two major components– the state machine and the robot system,

which are described next.
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6.2.1 From behaviors to automatically generated state machine

The state machine and its set of behaviors form the core of our software

framework. The state machine logic is specified through a state transition

table which consists of a list of tuples that specify the start state, transition

event, ending state, transition action, and transition guard.

The states in a state machine denote the different stages during the execu-

tion of a task. In the context of aerial manipulation, the states denote different

stages of the pick and place task. For example, the “Reaching Goal" state refers

to when the quadrotor is navigating to a goal location. Similarly, the “Taking

Off" state denotes the quadrotor in the process of taking off from the ground.

State transitions are triggered by an event. For example, a transition from

the “Landed" state to the “Taking Off" state is triggered by a "Take-off" event.

Events are typically generated by the state machine itself or by users through

a graphical interface.

When a state transition is triggered, a guard function first verifies the

feasibility of a transition between two states. That is, a state transition occurs

only when the guard allows it. If the guard blocks a state transition, the

current state will remain unchanged. As an example, in our pick-and-place

task, a guard function checks that the output of the object tracking module

is valid before transitioning into a “Visual Servoing" state, which attempts to

align the quadrotor with an object using visual features.

When the guard allows a state transition to occur, an associated transition

action executes. Typically, these actions switch the active controllers, send

direct commands to the hardware driver, or configure some aspect of the
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robot for the new state. The transition actions can be triggered by the user

or through state machine logic. These actions can be chained to create more

complicated actions and thereby reduce code duplication.

While in a particular state, the system repeatedly executes an internal

behavior associated with that state. These behaviors, called “internal actions",

trigger specific events on the state machine based on the current robot state.

These actions typically perform health checks on the hardware and controllers

and check for convergence of active controllers. In the case of the “Reaching

Goal" state referred to in transition table 6.1, the internal action checks for the

battery status of the quadrotor and triggers an “Abort" event if the battery is

low and checks if the quadrotor has converged to the goal location, triggering

a “Completed" event if it has converged. Similar to transition actions, the

internal actions can also be chained together. Encoding the state machine logic

in the internal actions allows for decentralization of state machine logic and

reduces code duplication among different state machines.

The state machine has been implemented using the Boost meta state ma-

chine library in C++ [22]. The states, actions, and guards in the table are C++

classes that can be reused in different transition tables to form diverse state

machine behaviors without code duplication.

A simple example

As an illustration, consider the simple transition table shown in Tables 6.1 and

6.2. A graphical illustration of state transition table is presented in Fig. 6.2.

The transition table enables the quadrotor to takeoff, land, and navigate to
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different waypoints. The user can trigger different events to move the robot

around. The transition table safe-guards the robot from erratic behavior. For

example, if the robot is on the ground (“Landed"), the user cannot send a

waypoint (trigger a “Position Goal" event). Similarly, if the robot battery is

low, the “Take-off" event will not transition from the “Landed" state to the

“Taking Off" state. The state machine logic is executed through internal actions.

These actions trigger different events based on the robot state. For example, if

the battery is low enough while hovering, the internal action triggers a "Land"

event. Similarly, if the robot has reached the goal position, a "Completed"

event is triggered, transitioning the state machine back to the “Hovering"

state.

Take­off

Landed

Taking Off

Land

Set waypoint 
target 

Hovering

Completed

Landing

Completed

Abort

Reaching­
Goal

Figure 6.2: Simple state machine state transition diagram
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Event Source State Target State Action Guard
Take-off Landed Taking Off Take-off Check bat-

tery level
Completed Taking Off Hovering None Check alti-

tude
Position
Goal

Hovering Reaching-
Goal

Set position
goal

Check bat-
tery and
valid goal

Completed Reaching-
Goal

Hovering None None

Abort Reaching-
Goal

Hovering Abort con-
troller

None

Land Hovering Landing Abort active
controller and
Land

None

Table 6.1: Simple state machine transition table

State Internal Action
Landed None
Taking Off Trigger Completed event when above

a certain height
Hovering Check battery status
Reaching Goal If battery or controller status is critical,

trigger Abort
If controller converged, trigger Com-
pleted event

Table 6.2: Internal action table associated with a simplified state machine
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6.2.2 Robot system

The robot system provides a set of modular capabilities that the state machine

executes to drive the robot to a desired state. For example, the pick-and-

place task requires several capabilities, such as visual servoing, waypoint

following, and manipulator control. Each capability is encoded through

software components which interact between each other and with the state

machine as illustrated in Figure 6.3. The software components are explained

below:

Controllers: The controllers are functions that take in the sensor data and

provide controls necessary to drive a system to a desired goal. The controller

logic is agnostic of the specific hardware drivers used, allowing for easy testing

using simulated dynamics.

Hardware Drivers: At the lowest level, the system relies on a generic inter-

face to hardware drivers. It expects that a particular type of hardware has

a general set of capabilities. For example, it expects that all quadrotors can

accept roll-pitch-yaw-thrust controls or waypoint commands. The framework

then interacts with the hardware without knowledge of the implementation of

the underlying driver. This allows users to plug their hardware into existing

autonomy applications and controllers by simply conforming their driver to

the expected interface. For instance, the software supports a driver for DJI

drones (like Matrice and the A3 flight controller) and a generic ROS driver for

manipulators.
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Figure 6.3: Illustration of the interaction between the various software components
of the developed framework. The Graphical User Interface (GUI) displays feedback
from the individual components, but those connections are left out of the diagram for
readability.

Controller-Hardware Connectors: The connector components provide the

necessary inputs to the controllers and send the output of the controllers

to the hardware drivers. In some cases, the connectors simply apply frame

transformations and convert sensor data directly obtained from the hardware

to the type expected by the controller. For other cases, such as visual servoing,

the connectors obtain the inputs to controllers from other components such

as object trackers or state estimators. The connectors then send the controller
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output to the hardware driver interface. Finally, the connectors also provide a

health status that can be consumed by the state machine to trigger different

transitions.

Trackers: Trackers process image data from sensors such as cameras or

depth sensors and provide poses of objects that can be used as feedback for

controllers, e.g. for visual servoing. Some examples of trackers include model-

based object trackers (e.g. [38]) and marker-based trackers like Alvar [9]. The

software framework relies on a common interface for the trackers where the

output of the tracker is a list of tracking vectors and tracking identification

numbers of the objects being tracked. The tracker is also expected to provide

a health check on the validity of the tracker output which is used by the state

machine logic.

6.2.3 Graphical User Interface

We have also developed a Graphical User Interface (GUI) from which users

can trigger events and monitor the robot system and state machine health.

The GUI communicates with the state machine through the Robot Operating

System (ROS) middleware [189] (Figure 6.4).

6.3 Aerial Manipulator Control

We now describe in detail two of the trajectory tracking controllers imple-

mented on our aerial manipulation system: an acceleration-based controller

that relies on roll-pitch-yaw-thrust commands and an MPC controller.
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Figure 6.4: User interface for sending commands and viewing state machine and
robot system feedback. The left panel is the portion provided by the framework
showing the state machine status. The right panel shows a view from the onboard
camera with objects to pick.

6.3.1 Acceleration-based Control

Many off-the-shelf quadrotors come equipped with built-in flight control

hardware, where the control interface is limited to higher level commands

such as roll-pitch-yaw-thrust or angular rate commands instead of direct

motor commands. Here, we describe a controller that can be employed on

such systems.

Define the state of the quadrotor as x = (p, R, v, ω), where p ∈ R3 is the

position, R ∈ SO(3) is the attitude, v ∈ R3 is the velocity, and ω ∈ R3 is

the angular velocity. The autopilot takes as input the desired roll ϕd, desired

pitch θd, desired yaw rate ψ̇d and a thrust command ut ∈ R. It internally

runs a feedback loop that controls the rotor velocities to achieve these high-

level commands. The aim of the controller is to accurately track a desired
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reference trajectory in terms of position, velocity, and yaw, where the reference

is specified as a smooth trajectory in quadrotor position pr ∈ R3 and quadrotor

yaw ψr. To achieve this task, we design a controller that computes the desired

acceleration ad ∈ R3 based on the error in position ep = pr − p and error in

velocity ev = ṗr − v as

ad = Kpep + Kded + ar, (6.1)

where Kp, Kd ∈ R3×3 are positive diagonal matrices that act as proportional

and derivative gains and ar = p̈r is the feedforward acceleration based on

the reference trajectory. The proportional and derivative gains for the x and y

axes are selected separately from that of the z-axis gain since the quadrotor

dynamics are significantly different along the z-axis.

Next, we compute the roll, pitch, and thrust commands that achieve the

desired acceleration ad. The rotors on the quadrotor are aligned with the body

z-axis, which implies the quadrotor can only apply acceleration along this

axis. The net acceleration produced by the quadrotor is given by

a = RZ(ψ)RY(θ)RX(ϕ)e3ut − g, (6.2)

where ψ, θ, ϕ represent a ZYX Euler parametrization of R, R(·) represents

rotation about z, y, and x-axes, g = [0, 0,−9.81] is the gravity vector and

e3 = [0, 0, 1]T is the body z-axis. Mass does not enter the equation since ut

is a commanded body z-axis acceleration rather than a true thrust force. We

solve for the autopilot inputs ϕ, θ, and ut by setting a as ad. The desired thrust

159



command is given by

ut = ∥ad + g∥. (6.3)

To find the desired roll and pitch, we define the normalized acceleration vector

as ād = (ad + g)/ut. The desired roll and pitch are then given by

ϕd = arcsin(ā⊤d e1 sin ψ− ā⊤d e2 cos ψ), (6.4)

θd = arctan

(
cos ϕ(ā⊤d e1 cos ψ + ā⊤d e2 sin ψ)

cos ϕ ā⊤d e3

)
. (6.5)

The above conversion has a singularity as 90◦ degrees roll, which is not

encountered in our application.

The commanded yaw rate is proportional to the error between the current

yaw and desired yaw obtained from the reference trajectory as

ψ̇d = kψ(ψ− ψr) + ψ̇r. (6.6)

Previous work proves stability for a similar class of trajectory tracking

controllers that use PID to compute a desired force and an inner-loop attitude

controller to achieve the desired force direction [125].

6.3.2 Model Predictive Controller

The model predictive controller computes the thrust and desired attitude for

the quadrotor by solving a trajectory optimization problem. The model predic-

tive controller closely follows the one explained in section 4.1.3.3. We employ

the Casadi automatic differentiation library [12] to find the gradients of the
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dynamics required for the Stagewise Newton method. The MPC optimization

for the quadrotor dynamics is able to run at a frequency of 100 Hz on an

onboard Intel NUC i5 computer.

6.3.3 Reference Trajectory Generation

The trajectory tracking controllers described above need a reference trajectory

that is feasible for the quadrotor to track. When navigating to a waypoint or

approaching an object to pick it up, we use a polynomial reference trajectory

of degree 9 along each individual axis to ensure the reference derivatives are

smooth up to fourth order. The coefficients of the polynomial are found by

solving a linear system defined by the boundary conditions of the trajectory,

where the initial position and yaw are given by sensors and final position and

yaw are given by the user. The rest of the derivatives of the position at the

boundaries are set to zero so that the trajectory starts and ends at rest.

6.3.4 Grasping Strategy

Close to the object in the final stage of the picking procedure, we track a

trajectory that is constant in the plane parallel to the object, but sinusoidal

perpendicular to the object. This results in a periodic “poking” motion. This

behavior is desirable since it pushes the end-effector towards the object with

the intent of making contact during the first half cycle of the motion, but pulls

the end-effector back away from the object if it is misaligned while poking. By

pulling away, the robot has the opportunity to correct its attitude and relative

position without colliding with the object before the next poking cycle begins.
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6.4 Parameter Estimation

6.4.1 Thrust Gain Estimation

The acceleration-based controller relies on the autopilot to achieve the de-

sired thrust, roll, pitch, and yaw rate. The autopilot usually takes as input a

normalized thrust command between 0 and 100, where a non-constant scale

factor can transform the normalized value to a metric unit of thrust force. The

scale factor, called the thrust gain, is constantly changing since it depends

on the battery voltage and mass of the quadrotor. To compensate for these

effects, a thrust gain estimator computes the mapping between the thrust

command and the actual thrust force based on the commanded thrust, the

body acceleration vector, and the orientation obtained from the quadrotor. We

combine the mass into the thrust gain to directly map the normalized input to

gravity compensated acceleration of the quadrotor. The commanded thrust

u ∈ R maps to a corresponding global acceleration a ∈ R3 of the quadrotor as

a = ktRe3u + g (6.7)

where kt ∈ R is the thrust gain, the orientation of the body is denoted by the

rotation matrix R, and the thrust vector is assumed to be pointed towards the

body-z direction, i.e. e3 = [0, 0, 1].

The thrust gain can be obtained from the measured body acceleration

ab ∈ R3 and gravity vector as

kt =
1
u

eT
3 (ab − R⊤g) (6.8)
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These measurements can be obtained from the Inertial Measurement Unit

(IMU) on the quadrotor. The noise in the IMU measurements is accounted for

by using an exponential filter

k̄ti+1 = (1− λ)k̄ti + λkti , (6.9)

where k̄ti is the filtered thrust gain estimate at time index i. By choosing a scale

λ between 0 and 1, the thrust gain can be adjusted to change more aggressively,

which leads to the quadrotor changing thrust aggressively to compensate for

a change in mass.

The estimator is tested on a matrice quadrotor with a 2DOF arm by run-

ning the estimator while piloting the drone around and picking objects and

dropping them in designated locations. Figure 6.5 qualitatively shows the

thrust gain estimated for the quadrotor during one such trial. The positive

jumps in the gain denote a package being dropped and a negative jump de-

notes a package being picked. The thrust gain exhibits an overall downward

trend as the battery voltage drops over time.

6.4.2 Euler Angle Bias Estimation

We also found a small difference of approximately 0.5 degrees between the

roll and pitch Euler angles reported by the IMU and the angles obtained by

inverting the fused body acceleration reported by the IMU aacc as shown in

Figure 6.6. The roll and pitch angles corresponding to fused body acceleration

are obtained using (6.5) where desired ad is replaced by the rotated body
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Figure 6.5: Estimate of thrust gain kt computed from IMU data and expected acceler-
ation.

acceleration reported by the IMU, that is

aglobal = RY(θ)RX(ϕ)aacc, (6.10)

where āglobal = (aglobal + g)/∥aglobal + g∥. To track the reference trajectory,

we need to track Euler angles that are consistent with the body acceleration.

Hence, we add the difference between the angles δϕ, δθ to the commanded roll

and pitch before sending them to the autopilot, where

δϕ = ϕ− ϕacc, δθ = θ − θacc. (6.11)
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Figure 6.6: Bias in roll and pitch estimated from difference in expected and actual
accelerations.

6.5 Hardware

6.5.1 Commercial Off-the-Shelf quadrotor

The aerial manipulation system contains a modified DJI Matrice quadrotor as

the base. The quadrotor is equipped with a PointGrey Flea3 camera and an

Intel NUCi5 computer, which communicates with the Matrice flight controller

over a UART connection.

6.5.2 Motion capture system

Motion capture system is used for position and velocity estimation for the

control algorithms. The DJI Guidance sensor suite consisting of 5 stereo cam-

eras is used as a fail-safe in case we lose motion capture during experiments.

Although using a motion capture system is restricting the applicability of the

system, it provides a good ground truth for comparing our system with other

future applications.
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6.5.3 Manipulator

6.5.3.1 Custom 2-DOF Arm

Several previous works, like Ghadiok, Goldin, and Ren [64] and Bellicoso et al.

[17], develop arms specifically for aerial manipulation, but they typically only

grasp objects directly below the robot and cannot reach outside the envelope

of the quadrotor. In this work, a light-weight 2-DOF manipulator is used

for picking objects outside the envelope of the quadrotor. Dynamixel servos

control the manipulator joints which are connected by carbon fiber tubes. The

manipulator end-effector is steered using a Cartesian position controller which

commands joint velocities to achieve a desired end-effector position. Since the

arm is underactuated, the pose of the end effector can only be specified using

two translational coordinates.

6.5.3.2 Magnetic Gripper

The arm uses a custom gripper to pick and place objects. Since the position

accuracy of the quadrotor is limited to around 2 centimeters, the gripper

should be able to pick the object without requiring a high degree of precision.

The gripper also needs to be able to pick objects of different sizes and shapes.

Existing open-source grippers, such as the Yale OpenHand [137], are too heavy

and do not fit the requirements specified above. Our custom gripper shown in

Figure 6.7 is composed of four magnets with alternating polarity embedded

into a wheel attached to a servo. The magnets are attracted to a mating joint

(shown in Figure 6.7) that is attached to any object the user wishes to pick.

The mating joint has a pattern of magnets to give the gripper more than one

166



place to attach, thereby increasing the amount of position error it can tolerate

while picking. It can tolerate a position error of about 3cm parallel to the

surface of the plate and 2cm perpendicular to the plate. Once an object is

attached to the gripper, it can be released by rotating the magnet wheel 90◦

which flips the polarity of the magnets and repels the object. The gripper

uses a momentary switch to detect whether it has attached to a mating joint,

allowing the onboard computer to know when it has successfully picked up

an object. An onboard Teensy microcontroller runs software which sends

commands to the servo and receives feedback from the switch. The gripper

communication channel connects to a single servo communication bus that

runs up the length of the manipulator to the computer.

Figure 6.7: The magnetic gripper (left) and a sample package (right) used in our
aerial manipulation experiments. The package is instrumented with an AR marker to
facilitate tracking and a magnetic mating joint so it can attach to the gripper.
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Figure 6.8: Time-lapse of the aerial manipulator picking the object highlighted in
yellow from the packaging area (top-left) and placing it on a storage shelf (top-right)
in the same trial. The bottom picture shows an overhead view of the pick-and-place
procedure.

6.6 Industrial Pick-and-Place Application

The software framework developed in section 6.2 is used to develop an indus-

trial pick-and-place application leveraging the aerial manipulation platform

described in section 6.5.

6.6.1 Experiment setup

The goal of the application is to sort packages from a packaging area (table)

and transport them to corresponding storage area (shelf). The package trans-

portation capability can be useful, for instance, in package fulfillment centers

or for remote object transport in radioactive environments.

The packages are tagged with AR markers [9] and have an attached mating

joint that connects to the gripper described in section 6.5.3.2. Each package

has a corresponding destination marker ID where the object is placed. Figure

6.8 shows a timeline of the quadrotor picking and transporting packages to
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their corresponding storage spaces. The packages have masses between 120g

and 170g. The mass of the package is limited by the arm capacity (200g) and

the quadrotor payload capacity (500g).

State Machine

Figure 6.9 shows a simplified illustration of the finite state machine for the pick

and place application. There are two different logical loops in the diagram.

The first is the regular logic loop starting from "Waiting to Pick" state.

During this cycle, the quadrotor automatically detects the closest available

package in the workspace, picks up the package, determines the storage

location based on the marker ID of the object picked up, uses visual servoing

using on-board camera to navigate to a marked shelf, places the package

on the shelf, and returns to a start position with the packages in view. This

process is repeated indefinitely assuming new packages appear continuously

in the packaging area.

Various system components could fail throughout the pick-and-place pro-

cess, but the implemented state machine accounts for such failures through a

second loop known as the fault-recovery loop. For example, during picking,

the arm could block the marker from the camera, resulting in a tracking loss.

Instead of just aborting and waiting for human input, the system instead

back-tracks to its prior position and re-attempts the picking process. Other

failure modes include failing to pick the object within a specified timeout.

Recovery state transitions are shown in red in Figure 6.9.

In addition to automatic recovery, sometimes during the experiment, a user

169



intervention is necessary. A list of such failures encountered during operations

is listed in Table 6.4. The state machine ensures the system is safe under these

failure modes by switching to hovering and relying on internal controller to

stably hover in place until the user is ready to intervene. Furthermore, the

state machine accepts manual override from a safety pilot to abort any action

safely. The state machine recognizes the intervention and aborts any active

controllers running on the machine. Therefore, the user can resume picking

operation after rectifying the error and disabling the override sent.

Figure 6.9: Part of the state machine for picking and placing a package. The recovery
actions are red and user actions are green. The user can also abort from any other
state back to hovering if manual intervention is desired.

6.6.2 Results

Figure 6.8 shows a timeline of the pick-and-place task, where the quadrotor

picks up a package from the table and places it in a shelf. The media attach-

ments associated with this work demonstrate the complete pick-and-place
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Figure 6.10: Mean absolute errors along x, y, z (meters), and yaw ψ axes (radians) and
translational velocities (meters/second) for MPC and acceleration-based controller.
The black lines show the 95% confidence interval obtained using bootstrapping.

task where the quadrotor sorts multiple packages into the top and bottom

shelves without any manual interruptions.

We quantified the ability of the quadrotor to perform a successful pick

operation over 101 trials of picking and placing. The acceleration-based

controller is used for these trials since it was easier to tune and performed

slightly better than MPC at the picking task. Figure 6.10 compares the mean

absolute errors along translational positions, velocities, and yaw angle for

each controller. Both the MPC controller and acceleration-based controller

were able to track reference trajectories within 5 centimeters RMS error, but

the acceleration-based controller with more extensive gain tuning reduced the
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RMS errors by two centimeters.

Table 6.3 shows the mean trajectory tracking errors and pick times during

the trials. The aerial manipulator was able to pick the object successfully

80% of the time without the ability to detect system faults. The system’s pick

success rate increased to 85% when it is was able to automatically recognize

failure to pick an object and could retry and re-pick the object in a future

attempt. We also achieved a mean absolute error of less than 3 centimeters in

all translational axis and less than 2 centimeters/second in velocity. Figure 6.11

shows a histogram of pickup times and total time for pick and place of an

object over different trials. The majority of pickup times vary from 6 seconds

to 16 seconds, while the total pick-and-place time for one box varies from 30

seconds to 40 seconds in most cases.
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Figure 6.11: Histogram of pickup and total time for placing one box using the pick
place state machine
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Pick Success Rate 91/101
Overall Success Rate 85/101

Min Pick Time 6.5 seconds
Mean Pick Time 11.5 seconds
Max Pick Time 25 seconds

Mean Absolute Error x 2.1cm
Mean Absolute Error y 2.5cm
Mean Absolute Error z 1 cm
Mean Absolute Error ψ 0.03 rad

Table 6.3: Pick success rate, pick time statistics, and error in quadrotor position and
yaw for picking an object

Failure Mode Number of Failures
Object misplaced in shelf while placing 1
Gripper failed to hold onto object 1
Lost motion capture while gripping 1
Controller failed after multiple retries 3
Proximity sensor failed to detect object 3
Object went out of workspace 3
Camera stops responding due to driver errors 3

Table 6.4: Failure modes during pick-and-place trials
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6.7 Conclusion

This chapter developed an aerial manipulation system using a commercial

quadrotor, a custom arm and end-effector, and a new software framework

for aerial autonomy capable of fault-tolerant industrial pick-and-place tasks.

While failure detection and system health monitoring increased the robustness

of the system, more robust hardware and environment-adaptive manipulation

are necessary to further reduce the failure modes shown in Table 6.4 and drive

the system toward 100% reliability. Future work will integrate advanced adap-

tive models for the quadrotor and the arm that explicitly take into account

their coupled dynamics in order to reduce position control error in MPC meth-

ods. New grippers that do not require custom attachments on the package

will also be designed to make the system more widely applicable. Finally,

while we were able to demonstrate reliable and relatively efficient operation,

the overall speed and agility of the robot can be further improved. Achieving

extreme agility without sacrificing reliability remains a central challenge yet

to be solved.
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Chapter 7

Other Related Work

This chapter introduces two related methods for controlling underactuated

and non-holonomic robotic systems. First approach extends a standard gyro-

scopic obstacle avoidance controller for an underactuated system and prove

it’s Lyapunov stability. Simulations show that the gyroscopic controller is

able to stabilize two underactuated systems i.e a quadrotor and a satellite to

a goal state in the presence of multiple obstacles blocking the robot. Second

approach proposes applying NMPC optimization to a high fidelity physics

engine based dynamic model of the robot. We show that using such near

global optimization methods such as Cross-Entropy search method [103], we

can find optimal paths that avoid obstacles.
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7.1 A Stabilizing Gyroscopic Obstacle Avoidance
Controller for Underactuated Systems

7.1.1 Introduction

In this chapter, we tackle the problem of navigating a cluttered environment

using a underactuated dynamic robotic system. One of the key challenges is

dealing with the inability of the system to instantaneously produce a force

in any desired direction. These types of systems are common in robotics

and include quadrotors, satellites, and underwater vehicles. For instance,

quadrotors are becoming important for a variety of applications which require

robust navigation, such as search and rescue [68], mapping [208], and package

delivery [184]. Small satellites, such as cubesats [203], are enabling low-cost

testbeds for applications like formation flying [28] and other autonomous

operations [110]. We develop a gyroscopic obstacle avoidance controller

for this particular class of underactuated systems, namely rigid bodies with

controls given by body torques and a thrust force along some body-fixed axis.

A number of control techniques have been developed for such types of

vehicles. These include deterministic feedback linearizing controllers for

quadrotors [8, 5, 123, 226] as well as Lyapunov-stable controllers in the pres-

ence of bounded external disturbances [108, 140, 23, 190].

In addition to standard point stabilization, requiring provably stable obsta-

cle avoidance significantly complicates the control design. While a backstep-

ping obstacle avoidance controller has been proposed in Geng, Shuai, and Hu

[62], it focused on two schemes, namely a mass point model and a safety ball
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model to generate waypoints away from an obstacle. The proposed controller,

therefore, does not explicitly include obstacle constraints, and no proof of

obstacle-aware convergence is available. Traditionally, obstacle avoidance for

fully actuated systems has been considered through gyroscopic avoidance [31]

and gradient vector field [194] approaches. The gradient vector field approach

generates an vector field obtained as the gradient of a navigation function

with a global minimum at the goal and maxima at the obstacles, but the design

of such a navigation function is nontrivial. The navigation field approach

has been used for obstacle avoidance of quadrotors [33, 25]. Unlike the glob-

ally stable potential field methods, the dynamic window approach [166] is a

local method that merges a Model Predictive Control (MPC) approach and

potential field methods to find a control trajectory in the accessible space that

maximizes a utility function.

In contrast to requiring a potentially complex nonlinear potential function,

the gyroscopic avoidance approach handles obstacles by applying a steering

force to the robot without increasing the Lyapunov energy of the system [31].

The obstacle-avoiding force, therefore, does not affect the Lyapunov stability

of the controller and ensures the method is semi-globally convergent to the

goal state in the presence of unknown convex obstacles. Gyroscopic avoidance

has been successfully applied to create flocking behaviour in a multi-agent

system [32] and to control an Unmanned Ground Vehicle (UGV) [225]. A

gyroscopic force added to a potential field approach was applied to quadrotor

swarm formation in Min, Sun, and Niu [155], but only a simplified kinematic

model for the quadrotor was considered.
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We extend the gyroscopic avoidance approach [31](originally developed

for setpoint control of fully actuated systems) to underactuated dynamical

systems in 3D workspaces through a backstepping technique. To ensure

convergence in the presence of multiple obstacles, a novel obstacle-avoiding

steering function has been designed to enable smooth transitions between

colliding and non-colliding directions of motions. Furthermore, to ensure

stability even when the system has a finite obstacle detection radius, a smooth

obstacle control gain is employed. Two types of 3D obstacles are considered:

cylinders and spheres. Many real world obstacles can be modeled using a

combination of these primitives.

We demonstrate the ability of the method to perform setpoint control while

avoiding obstacles in two challenging simulated scenarios. The controller

is first employed on a quadrotor and shown to converge to a goal position

while avoiding a forest of trees modeled as cylinders with spherical canopies.

A similar example involving a nanosatellite is shown to converge to a goal

position while avoiding space debris modeled as spheres. To the best of the

authors’ knowledge, this is the first controller providing convergence for these

types of underactuated systems in complex scenarios.

The rest of the chapter is organized as follows. In section 7.1.2 we specify

the dynamics of the class of underactuated systems considered. In section

7.1.3, a desired gyroscopic controller is designed for the translational dynam-

ics. This controller is extended to the class of underactuated systems through

backstepping in section 7.1.4. Next, the design of gyroscopic obstacle avoid-

ance gains specific to cylindrical and spherical obstacles is specified in section
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7.1.5. Finally, simulations of a quadrotor and nanosatellite in non-trivial sce-

narios are shown in section 7.1.6. The proof for stable collision avoidance is

derived in Appendix 7.1.8.

7.1.2 Dynamics of Underactuated systems

We consider underactuated systems modeled as rigid bodies with position

p ∈ R3 and velocity ṗ in a fixed inertial frame, orientation matrix R ∈ SO(3)

and body-frame angular velocity ω ∈ R3. The control inputs for the system

are the body torques τ ∈ R3 and thrust force u ∈ R in some known body-fixed

direction e ∈ R3. The system is subject to known external forces given by

f ∈ R3 and no external torques. The dynamics is

mp̈ = Reu + f , (7.1)

Ṙ = Rω̂, (7.2)

Jω̇ = Jω×ω + τ, (7.3)

where m is the mass and J is the rotational inertia.

Our goal is to design a Lyapunov-stable controller achieving a given de-

sired goal position pd with zero velocity ṗd = 0 while avoiding obstacles. To

accomplish this, we first design a gyroscopic obstacle avoidance controller

for the translational dynamics of the underactuated system. The resulting

“desired” control forces for this controller cannot be directly achieved due

to underactuation. Therefore, we perform a backstepping procedure which

closes the loop in stages and ultimately achieves stability. We next describe
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the translational and gyroscopic parts of the controller derivation.

7.1.3 Gyroscopic Avoidance

We first design a gyroscopic avoidance controller for the position coordi-

nates. Let g ∈ R3 denote the translational input force. For clarity, let the

system’s translational state combining position and velocity be denoted by

x = [pT, ṗT]T. The translational dynamics is then given by

ẋ = Ax + B(g + f ), (7.4)

A =

[
0 I3×3
0 0

]
, B =

[
0

1
m I3×3

]
. (7.5)

The underactuated dynamics considered in (7.1-7.3) is an extension of this

subsystem, where the control force is given as the thrust vector g = Reu and

the thrust direction Re is controlled by the rotational dynamics of the system.

The design of the controller starts with defining the error z0 ∈ R6 between

the state x and the desired state xd = [pT
d , 0T]T, given by

z0 = x− xd.

For a standard linear system considered in (7.4-7.5), a Lyapunov stable feed-

back control law can be achieved using a desired force gd ∈ R3 given by

gd = −Kzo − f , (7.6)

K = [Kp, Kv], (7.7)
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where Kp, Kv ∈ R3×3 are positive definite matrices corresponding to propor-

tional and derivative gains, respectively.

Gyroscopic avoidance control is equivalent to adding force terms which

steer the system around the obstacles. This is accomplished by adding a

desired force perpendicular to both the current velocity and the steering axis

of the obstacle. The desired force is then augmented according to

gd = −Kz0 − f − G(x) ṗ, (7.8)

where the matrix G(x) ∈ R3×3 is skew-symmetric, i.e. it instantaneously

rotates the velocity. Equivalently, the steering force G(x) ṗ can be regarded as

being perpendicular to the velocity of the robot.

For stability analysis it will be useful to define the storage function

V0 =
1
2

zT
0 Pz0, (7.9)

where

P =

[
Kp 0
0 mI3×3

]
. (7.10)

We then have

V̇0 =
1
2

zT
0 P(Ax + B(g + f )) +

1
2
(Ax + B(g + f ))TPz0.

If the system is fully actuated, the input force g can be set to the desired

control force gd, and it would be possible to show asymptotic stability. Yet,

the input force for an underactuated system is restricted only along the single

body direction Re and cannot be set to the desired force gd. Hence, the above
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controller is extended to the full underactuated system dynamics using a

backstepping procedure as described next.

7.1.4 Backstepping Procedure

We next close the loop in stages using backstepping. The controller designed

in (7.6) requires the control force on the system g to be equal to a desired

control force gd that stabilizes the system. This desired force gd cannot be

achieved directly for underactuated systems, since the control force can only

be applied along some known body direction Re. Instead, the difference

between the applied force g and desired force gd is considered as an error

z1 ∈ R3 defined by

z1 = g− gd

to be further suppressed in the backstepping procedure. With this definition

we have

V̇0 = −1
2

z0Qz0 + (BTPz0)
T(g− gd),

where

Q = 2
[

0 0
0 −Kv

]
. (7.11)

Next, a new Lyapunov candidate is defined which includes z1 as

V1 = V0 +
1
2

zT
1 z1.
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with time-derivative given by

V̇1 = −1
2

z0Qz0 + zT
1 (ġ− ġd + BTPz0),

which can be expressed as

V̇1 = −1
2

z0Qz0 − kz1zT
1 z1 + zT

1 z2,

where z2 = ġ− ad and ad = ġd − BTPz0 − kz1z1. The variable ad is a desired

value for ġ which cannot be instantaneously achieved by the underactuated

system. Thus, continuing the backstepping procedure, a new Lyapunov

candidate which includes the error between the desired and actual values of ġ

is given as

V2 = V1 +
1
2

zT
2 z2,

with derivative

V̇2 = −1
2

z0Qz0 − kz1zT
1 z1 + zT

2 (g̈− ȧd + z1).

The desired value of g̈ which ensures V̇2 is negative definite is denoted as bd,

and is computed as

bd = ȧd − z1 − kz2z2

= g̈d − BTPż0 − kz1 ż1 − z1 − kz2z2,

where

g̈d = −[0 G̈(x)]z0 − 2[0 Ġ(x)]ż0 − Kz̈0

183



and

z̈0 = A2x + AB( f + g) + Bġ.

For the underactuated system, the derivative g̈ can be expanded as

g̈ = R[eü + ˆ̇ωeu + 2ω̂eu̇ + ω̂2eu].

Finally, the control inputs τ, ü can be chosen to satisfy the desired bd by setting

τ = J[e× (RTbd − ω̂2eu− 2ω̂u̇)/u]− Jω×ω (7.12)

ü = eT(RTbd −ω2eu− 2ω̂u̇). (7.13)

Note that this controller does not directly control the thrust force u, but instead

controls ü. The state of quadrotor system is extended by u, u̇ to account for

this. The controller for torque τ shown in (7.12) has a singularity when the

thrust force goes to zero. This is not a problem in practice since the vehicle

always produces a positive force u while navigating.
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Proof of Stability:

Let the error state for the system be given by z = (z0, z1, z2). Using the control

law described in (7.12), the derivative of Lyapunov function V2 is evaluated as

V2 =
1
2
(zT

0 Pz0 + zT
1 z1 + zT

2 z2) (7.14)

V̇2 = −1
2

zT
0 Qz0 − kz1zT

1 z1 − kz2zT
2 z2 =

1
2

zTKz (7.15)

with K =

⎡⎣Q 0 0
0 −2kz1 0
0 0 −2kz2

⎤⎦ , (7.16)

where the matrix K is negative semidefinite. Based on Lasalle’s invariance we

know we will end up in the largest invariant set corresponding to V̇2 = 0.

Let us find the largest invariant set [99] with respect to the quadrotor

dynamics. When V̇2 = 0, the scaled error zT
0 Qz0 = 0. Based on the form of Q

from equation (7.11), the scaled error goes to zero only if velocity is zero for

all time ṗ = 0, ∀t > t0, where t0 is the time the system enters the invariant set.

This implies that the resulting acceleration is zero during the time the robot

is in the invariant set (p̈ = 0). The acceleration of the system goes to zero

only when the translational force g compensates the external force (g = − f )

according to equations 7.4 and 7.5. Since we are in the set V̇2 = 0, z1 = 0 and

therefore g = gd. This implies that the desired translational force is equal to

the negative of external force gd = − f . Equation (7.8) implies that Kz0 = 0.

Since K is full rank, z0 = 0. To stay in the set V̇2 = 0, the system should satisfy

z0 = 0 which implies that it should reach the goal position. Therefore the

largest invariant set inside V̇2 = 0 is given by [z0, z1, z2] = 0.
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Assuming V2 is a C1 smooth function and assuming the initial error state

z(t = 0), controls τ(t), u(t), and states x(t) are bounded, the system will

asymptotically converge to z = 0 according to Lasalle’s invariance principle.

The boundedness of the states and controls is ensured only if the robot does

not collide with an obstacle. The proof for collision avoidance is provided

in section 7.1.8 which guarantees boundedness of the control inputs. The

smoothness of V̇2 is ensured by a smooth control law, which implies the

steering forces must be C2 smooth. The design of proper steering forces is

discussed in the following section.

7.1.5 Obstacle Avoidance Coefficients

In the backstepping controller shown in (7.12), the specific form of gyroscopic

avoidance matrix G(x) is required to be C2 smooth.

The obstacle avoidance matrix G(x) is composed of a sum of obstacle

avoidance matrices Gi(x) corresponding to individual obstacles. Each individ-

ual obstacle avoidance matrix is further decomposed into two components:

an angular obstacle avoidance gain k1(θi) and a radial obstacle avoidance gain

k2(di). The obstacle avoidance matrix is also designed to induce a rotation

around the obstacle steering axis ei(x). In summary, we have

G(x) = ∑ Gi(x), Gi(x) = k1(θi)k2(di)êi(x). (7.17)

where the hat operator ·̂ maps the steering axis in R3 to a skew symmetric
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matrix in R3x3 as

ê =

⎡⎣ 0 −e3 e2
e3 0 −e1
−e2 e1 0

⎤⎦ .

The angular obstacle avoidance gain reduces the magnitude of steering

force as the robot heads away from the obstacle and the radial obstacle avoid-

ance gain forces the magnitude of steering force to be inversely proportional

to the distance between the robot and obstacle. In addition, the gain should

be negligible beyond a finite detection radius from the obstacle. Since the

second order derivatives of G are used in the backstepping control law (7.12),

the obstacle avoidance gains and steering axis direction should be C2 smooth

functions.

The obstacles considered in this work are either cylinders or spheres. The

choice of obstacle avoidance gain and steering axis for the two obstacles are

discussed next.

Cylinders

A cylinder is specified by its major axis direction unit vector a, radius r, and a

point on the major axis op. The cylinder obstacles are assumed to have infinite

length. The steering axis e(x) for a cylindrical obstacle is chosen along the

major axis direction a. This applies a steering correction around the major

axis of the cylinder. There is an ambiguity in the sign of the major axis of the

cylinder, which corresponds to steering to the right or left of the cylinder. The

sign of the steering axis is determined according to (7.18-7.21). According to

this approach, the robot avoids the cylinder by steering right if it is heading to
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the right of cylinder, and the opposite when heading to the left of the cylinder.

v = ṗ− (aT ṗ)a (7.18)

∆p = op − p (7.19)

d = ∆p− (aT∆p)a (7.20)

e(x) = sign(aT(d× v))a (7.21)

The velocity v is the projected robot velocity onto the plane perpendicular to

the major axis of the cylinder a⊥. Similarly, the displacement vector d is the

projection of the vector connecting the robot center to the point on the major

axis of the cylinder onto the plane a⊥.

The sign function is not differentiable, hence it is not suitable for a backstep-

ping control law. A scaled sigmoid function which is a smooth approximation

of the sign function is chosen instead. The smooth steering axis is given by:

e(x) = [2S(aT(d× v))− 1]a,

where S(t) =
1

1 + e−kt .

The angular obstacle avoidance gain is given by

k1(θ) = ekatt(θ−1), (7.22)

where θ =
dTv

∥d∥∥v + λa∥ . (7.23)

The variable θ is the cosine of the angle between the projected velocity v and
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the projected displacement vector d, and katt ∈ R+ adjusts the sensitivity

of the steering force to the robot’s heading. When the magnitude of the

projected velocity approaches zero, the angle between d and v is undefined.

Therefore, a velocity vector in the null space of projected velocity is added

to the projected velocity in (7.23) to avoid this singularity. This regularizing

term also ensures that the derivatives of k1(θ) remain bounded. Note that

the standard regularization of θ by adding a constant to denominator as in

∥d∥∥v∥+ λ does not regularize the derivatives.

The specific form of the radial obstacle avoidance gain is given as:

k2(d) = kobs
S(rd + r− ∥d∥ − ϵ)

∥d∥ − r
. (7.24)

A sigmoid function is used as an smooth approximation of the step function

to suppress the radial gain beyond the finite detection radius rd. Note that the

sigmoid function is used for convenience, and a spline function with smooth

derivatives until second order can also be used. The value of ϵ is adjusted such

that the radial obstacle avoidance gain at the detection radius is negligible.

The gain kobs scales the steering effort. An appropriate value for kobs can

guarantee obstacle avoidance as discussed in appendix 7.1.5.

The complete obstacle avoidance matrix for a cylindrical obstacle is written

as

G(x) =

kobs
ekatt(θ−1)

∥d∥ − r
S(rd + r− ∥d∥ − ϵ)S(aT(v× d))â
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Spheres

A sphere is specified by it’s center op and radius r. Unlike a cylinder, the

steering axis for a sphere is not constant, and is chosen based on the robot

velocity and displacement vector from the robot to the center of the sphere.

The form of steering axis chosen is given by

e(x) =
d× v
∥d× v∥ (7.25)

where v = ṗ, (7.26)

d = op − p. (7.27)

When the robot is heading towards the obstacle, the cross product of d× v

goes to zero. This creates unbounded derivatives of the steering axis. To avoid

this issue, a regularized value of norm of the cross product is used. The norm

of the cross product can be written as

∥d× v∥ =
√
∥d∥2∥v∥2 − (dTv)2.

The regularized value can then be formulated as

∥d× v∥reg =
√
∥d∥2∥v∥2(1 + kreg)− (dTv)2,

where the gain kreg ensures that the norm ∥d× v∥reg is non-zero even when

the robot is heading towards the obstacle.

The radial obstacle avoidance gain k2(d) is the same as that of cylinder
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obstacle. The steering gain chosen for a spherical obstacle is given by

k1(θ) = ekatt(θ−1),

where θ =
dTv
∥d∥∥v∥ .

The steering obstacle avoidance gain and the steering axis are not defined

when the robot velocity is zero. This singularity is avoided by setting G to zero

when the velocity of the robot is below a threshold δ. The complete obstacle

avoidance matrix G for a sphere is written as

if ∥v∥ > δ

G(x) = kobs
ekatt(θ−1)

∥d∥ − r
S(rd + r− ∥d∥ − ϵ)

∥d× v∥reg
d̂× v

else

G(x) = 0.

7.1.6 Numerical Simulations

The backstepping controller designed in section 7.1.4 is tested on a quadrotor

and a nanosatellite to perform setpoint tracking in simulation. The underactu-

ated dynamics in (7.1) has been discretized using a semi-implicit scheme [104]

and integrated using Euler integration.

A finite detection radius of 3 meters is applied to the obstacles. The

backstepping parameters have been chosen to ensure the controls are bounded
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and the system converges smoothly to the goal. The position gains have also

been selected carefully based on the distance to the set point goal to ensure

optimal performance.

7.1.6.1 Quadrotor in a Dense Forest

A standard quadrotor model is used, with the thrust aligned with the body-

fixed z-axis of the system and with gravity as the only external force, i.e

f = (0, 0,−9.81m). The mass and moment of inertia of the quadrotor are

chosen as 0.5 Kg a diagonal matrix J = diag([.003, .003, .005]) respectively. The

obstacle scene used for testing is that of a forest with tree obstacles as shown in

Fig. 7.1. Each tree obstacle is constructed of a cylindrical trunk and a spherical

canopy. A total of 23 trees are generated on a grid spanning a 20m×20m

region. The trees are perturbed randomly from the grid centers. The goal of

the controller is to reach a desired position shown in Fig. 7.1 starting from the

opposite side of the grid.

One can observe that the quadrotor smoothly reaches the goal while avoid-

ing obstacles as illustrated in Fig. 7.1. The state, control, and Lyapunov

energy history of the quadrotor trajectory are shown in Fig. 7.2. Note that the

Lyapunov energy function asymptotically approaches zero with no disconti-

nuities, even though the obstacle detection radius of the system is finite.

7.1.6.2 Satellite among Space Debris

For the second example, consider a nanosatellite equipped with an attitude

control system and a single thruster. The satellite is placed in an environment

of space debris modeled as spheres, and no external forces are included in the
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b)

c)

Figure 7.1: The figures (a) and (b) show a quadrotor navigating through a dense
cluster of trees using the proposed controller with a finite obstacle detection radius.
Figure (a) shows the top view of the quadrotor, where the obstructing obstacles have
been removed for a clear view of the trajectory. Figure (b) shows a side view of the
same trajectory swooping under the canopies to reach the goal. A satellite navigating
through space debris using the proposed controller is illustrated in (c). The thrust
vector of the satellite is shown by a pointed cone at the bottom of the satellite.

simulation. The satellite is required to navigate to a desired position while

avoiding the obstacles. A total of 48 obstacles are generated using a cuboid

grid in a cubic space of 9m×9m×9m. The obstacles are randomly perturbed

around the grid centers. The goal of the cubesat is to reach a goal position

shown in 7.1 starting from an initial position using the proposed controller.

Similarly to the quadrotor scenario, the satellite is able to stabilize to the

goal while avoiding obstacles as demonstrated in Fig. 7.1. A detailed state,

control, and Lyapunov energy history of the satellite is shown in Fig. 7.3.

The Lyapunov energy function asymptotically approaches zero even as new

obstacles enter or leave the detection radius of the system.

193



0 10 20

time(s)

-20

-10

0

m

x

xd 0 10 20

time(s)

-20

-10

0

y

yd 0 10 20

time(s)

0

5

10

z

zd

0 10 20

time(s)

0

2

4

m
/s

ẋ

ẋd

0 10 20

time(s)

0

2

4 ẏ
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Figure 7.2: History of the quadrotor position, velocity, controls, and Lyapunov func-
tion V for the quadrotor simulation
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Figure 7.3: History of the nanosatellite position, velocity, controls, and Lyapunov
function V for satellite simulation
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7.1.7 Conclusions

A backstepping Lyapunov stable controller using gyroscopic obstacle avoid-

ance has been designed for underactuated systems. The ability of the con-

troller to handle finite detection radius and the underactuated dynamics in

the presence of obstacles has been shown in theory, and simulations verified

the capability of the controller to avoid obstacles and converge to a goal in

complex scenarios. Furthermore, the obstacle coefficient design approach em-

ployed in this work can be extended to include new primitives such as finite

length cylinders, finite planes, and ellipsoids. The backstepping procedure

can also be extended to stabilize the system under bounded external distur-

bances as explained in [108]. Future work will concentrate on implementing

the gyroscopic obstacle avoidance controller on a real system and showing

that the convergence guarantees hold.

7.1.8 Appendix

Proof for Obstacle Avoidance

In this section, the appropriate choice of scaling gain on the distance obstacle

avoidance kobs shown in (7.24) required to guarantee obstacle avoidance of

the system is presented. Several assumptions are required for finding the gain.

To start with, it is assumed that there is a single obstacle in the environment.

Further, the gain matrices Kp and Kv used in the desired force gd in (7.8) are

assumed to be constant matrices as in kp I3×3, kv I3×3, and we set m = 1 for

simplicity. If the robot is not moving (ṗ = 0), it is assumed that the robot will

not collide with an obstacle. The proof for obstacle avoidance is explained
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through the principle of contradiction similar to the proof shown in Chang

and Marsden [31].

Let the system collide with the obstacle at tc with non-zero velocity ṗ(tc) ̸=

0. The dynamics before the collision during the interval I = [tc − ∆t, t−c ] is

considered. The closed loop translational dynamics of the underactuated

system can be written as

p̈ = g + f = −kp(p− pd)− (kv I3×3 + G) ṗ + z1 (7.28)

Integrating the dynamics for the interval I gives ṗ(t−c ) as

ṗ(t−c ) = e−kv∆tRG(t−c , t−c − ∆t) ṗ(tc − ∆t) + e(∆t) (7.29)

where e(∆t) =
∫ t−c

t−c −∆t
e−kv(t−c −τ)RG(t−c , τ)(−kp∆p + z1)dτ, (7.30)

and RG(t, τ) is given by solving d
dt RG(t, τ) = −G(x)RG(t, τ) with RG(τ, τ) =

I [36]. The obstacle avoidance matrix G(x) has the form shown in (7.17).

The steering axis ei(x) is assumed to be constant during the small time ∆t.

For a cylindrical obstacle, the steering axis is chosen to be the major axis

of the cylinder, hence it is constant during ∆t. For a sphere, this is a valid

approximation assuming the displacement vector does not change during

the interval I. Under this assumption, the rotation matrix RG(t, τ) can be
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simplified as

d
dt

RG(t, τ) = −k1(θ)k2(d)êRG(t, τ)

RG(t, τ) = e−
[∫ t

τ k1(θ)k2(d)dt
]
ê
= Re(−ψ(t, τ)),

where ψ(t, τ) =
∫ t

τ
k1(θ)k2(d)dt.

The form of Re(ψ(t, τ)) implies that the obstacle avoidance matrix induces a

rotation about the steering axis e, where e is assumed to be constant during ∆t

and the amount of rotation is given by the angle ψ(t, τ).

Let the initial value of the Lyapunov function (7.14) be Vmax ≜ V2(t = 0).

It has been shown in (7.15) that the Lyapunov energy is non-increasing over

time. The error vector e(∆t) from (7.30) is shown to be O(∆t) (i.e the norm of

the vector is O(∆t)) as follows

∥e(∆t)∥ ≤
∫ t−c

tc−∆t
∥(−kp∆p + z1)∥dτ

≤
∫ t−c

tc−∆t
kp∥∆p∥+ ∥z1∥dτ

≤
√

Vmax(
√

2kp + 1)∆t (using (7.10,7.14))

Using this result, the velocity at t−c from (7.29) can be written as

ṗ(t−c ) = e−kv∆tRe(−ψ(t−c , t−c − ∆t)) ṗ(tc − ∆t) + O(∆t) (7.31)

Since the Lyapunov energy is non-increasing over time and 1
2 m∥ ṗ∥2 < V(t) ≤

Vmax according to (7.14,7.10), the norm of the velocity of the system is upper
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bounded as ∥ ṗ(t)∥ <
√

2Vmax. This implies the projected velocity v(t) shown

in (7.26, 7.18) should also have the same property, i.e. ∥v(t)∥ ≤
√

2Vmax.

The derivative of the projected distance vector d(t) shown in (7.20,7.27) is

evaluated to be the negative of the projected velocity ḋ(t) = −v(t). The

projected distance at the time of collision is equal to the radius of the obstacle

∥d(tc)∥ = r. The projected distance at tc − ∆t can be bounded as

∥d(tc − ∆t)∥ ≤
√

2Vmax∆t + r (7.32)

The projected distance is assumed to be continuously getting closer to the

obstacle as in

∥d(t)∥ ≤ ∥d(tc − ∆t), ∥ ∀t ∈ I (7.33)

Since the robot is heading towards the obstacle, the absolute value of the

heading of the robot from the obstacle will be less than π/2. Hence, the

angular avoidance gain during the interval I can be bounded as k1(θ(t)) ≥

e−katt . The robot is also assumed to be within the detection radius. Hence, the

obstacle avoidance gain is simplified as k2(d(p(t))) = kobs/(∥d(p(t))∥ − r). A

lower bound on the rotation ψ(t−c , t−c − ∆t) is found using above results as

ψ(t−c , t−c − ∆t) =
∫ t−c

tc−∆t
k1(θ(t))k2(d(t))dt

≥
∫ t−c

tc−∆t
e−katt

kobs
∥d(t)∥ − r

dt

≥ e−katt
kobs√
2Vmax

,
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using (7.32-7.33). If kobs is chosen as kobs ≥ πekatt
√

2Vmax, the lower bound on

the rotation induced by the obstacle avoidance matrix is given by ψ(t−c , t−c −

∆t) ≥ π. This bound is not dependent on time left to collision ∆t. Using (7.31),

the velocity at time of collision is rotated around the obstacle axis by more

than 180 degrees from the time tc − ∆t when the robot is expected to be

heading towards the obstacle. This implies that the robot is not heading

towards the obstacle at the time of collision which is a contradiction to our

initial assumption that the robot collided with the obstacle at nonzero velocity

for which the heading angle needs to be towards the obstacle. Even with a

small time to collision, the robot can completely avoid the obstacle with the

appropriate gain selection of kobs. In practice, this a very conservative gain

and smaller values than this have achieved satisfactory results in terms of

collision avoidance.

7.2 Navigation of Unmanned Ground Vehicle (UGV)
on 3D Unstructured Terrain using Physics En-
gine Models

7.2.1 Introduction

This section considers autonomous navigation of unmanned ground vehi-

cles (UGVs) on rough unstructured terrains. We specifically focus on high-

frequency physics-based motion generation and control, i.e. computing agile

forward motions for the next 0-10 seconds, as opposed to longer-horizon

planning. High-fidelity 3D simulation of fast wheeled vehicles on rough ter-

rains has, until recently, been considered too computationally expensive for
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real-time model predictive control. Rough-terrain mobility is a well-studied

topic [82], traditionally addressed by compressing the sensed terrain into a

planar traversability map as opposed to a high-fidelity 3D deformable mesh

capable of simulating tire-soil interaction. The traversability approach enables

efficient planning through simplified vehicle models [79, 213] even at high

speeds [224]. Typically this approach is integrated with global long-horizon

2D map planning [130]. Recent advances in efficient physics- based simulation

could now enable real-time 3d simulation-based control [96] for safely travers-

ing as opposed to simply avoiding unstructured terrain. While high-resolution

particulate terrain models [217, 139] might still not be fast enough for real-time

optimal control, deformable mesh models with adjustable stiffness, damping,

and slip parameters are available and support faster than real-time simulation.

Current simulation tools such as the Bullet physics engine [26] offer such func-

tionalities and, coupled with parameter identification and predictive control,

could provide significant advances over the planar surface assumption to

enable safe off-road traversal and collision avoidance.

7.2.2 UGV Model

The model used in this work is based on a ray-cast model using Bullet physics

engine [26].This model has been shown [133, 149] to replicate the actual car

model closely when initialized with appropriate model parameters. The

physics can generate trajectories efficiently for example a trajectory 10 seconds

long running at 100 Hz can be produced in 10 milliseconds.
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Figure 7.4: a) The JHU 1/5-scale model Unmanned Ground Vehicle (UGV) b) an
optimized path to a goal location using receding horizon control (RHC) based on
Bullet physics simulation using a terrain from dense visual 3D reconstruction.
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7.2.3 Optimal Control Formulation

The goal of the optimization problem is to plan an optimal trajectory for UGV

model to reach a desired target state while avoiding obstacles and minimizing

control effort in the process. This is a challenging problem, since we do not

have an analytical model for the rccar and the terrain is unstructured. The

RHC optimization problem is stated as the minimization

min
ξ0:n−1

ln(xn) +
n−1

∑
i=0

li(xi, ξi), subject to:

ξi ∈ ξ, ui = ψ(ξi, xi), xi+1 = sim(xi, ui),

(7.34)

where ξ ⊂ R2 denotes the admissible control set, xi are the discrete states

along the trajectory, ui are the physics engine control inputs, and sim is the

physics engine step function. We employ a linear quadratic cost that takes

into account control cost, state cost and terminal cost to drive the trajectory

towards the desired goal x f while penalizing control effort. the proposed

formulation can handle both following reference trajectories {xr0, xr1, . . . }

with associated controls {ξr0, ξr1, . . . } as well as reaching a single desired

goal state x f : When the UGV collides with obstacles, it automatically fails

to reach the goal state. Hence, a simple cost formulation that minimizes the

distance to the goal state already accounts for obstacle avoidance, slip, and

roll-over assuming the dynamic model is accurate. This control formulation is

still prone to local minima around untraversable obstacles such as walls, as

well as highly irregular terrain. We address this challenge using a stochastic

sampling-based optimization methods such as Cross Entropy (CE) [103] based

sampling and Sampling based Differential Dynamic Programming (SDDP) [64,
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Figure 7.5: Tile of Pictures showing optimal trajectory for different optimization
algorithms at N = 15 iterations. These figures show that CE outperforms SDDP and
Gauss Newton (GN) in finding nearly globally optimal trajectory.

146].

7.2.4 Results

The Figure 7.5 shows the result of applying the three different trajectory

optimization algorithms to the UGV model on a model terrain. The goal of

the optimization is to navigate the car on the terrain to a goal location while

avoiding the tree and wall in the path. The NMPC optimization is able to

achieve the desired goal even without an explicit obstacle cost encoded into

the trajectory optimization. Further, we notice that sampling based methods

such as CE and SDDP outperform a pure gradient descent method.
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7.2.5 Simulation Results and Empirical Analysis

In this section, the results of applying two stochastic sampling methods to the

optimization problem described in section 7.2.3 are shown. One of the limita-

tions of the local optimization methods is that, the cost of the final optimal

trajectory depends on availability of a good initial guess. Figure 7.6 shows the

average optimal trajectory cost and its variance with respect to the random

initializations(random ξ0:n−1) for different optimization algorithms. It has

been observed that the sampling based methods obtain a much lower average

and variance optimal cost compared to Gauss Newton (GN) optimization

method which is a local optimization method. The results of applying the

Figure 7.6: Plots showing mean and Variance of the trajectory cost for various initial
control guesses for the same optimization problem

optimization algorithms to an example scenario is shown in Figure 7.5. It can

be seen that both the stochastic sampling methods find feasible trajectories

whereas GN method fails to find a feasible trajectory to the target state.
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Figure 7.7: Trajectory cost for different algorithms as a function of number of samples.
GN method gets stuck in local minimum whereas SDDP and CE are able to find
nearly optimal trajectories.

7.2.6 Conclusions

In this section, an optimal control formulation for Receding Horizon Control

of UGV on unstructured terrains has been presented. The superiority of

stochastic sampling methods to local optimization methods has been shown

through simulations.
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Chapter 8

Conclusion

In summary, we described different components of a robust control scheme

namely: system identification, trajectory optimization, and uncertainty propa-

gation. We first showed that using NMPC we can treat the aerial manipulation

system as a single dynamic system. By planning desired trajectories using

NMPC, we minimized the time taken to grasp an object as compared to plan-

ning using a kinematic trajectory. Next, we introduced adaptive NMPC, where

we learned the dynamics of the robot online and performed obstacle avoidance

using the learned model. We used the unscented transform to propagate the

parametric uncertainty in the model to the state space and use this as a buffer

for avoiding obstacles with high probability. We showed through experiments

that the quadrotor is indeed able to avoid obstacles at speeds up to 4 m/s.

After that, we used recurrent neural networks to model the dynamics of an

aerial manipulator and a passenger vehicle. We modified a vanilla RNN to

accept prior information about the model in the form of feedforward input.

We showed that using the feedforward input reduced the size of network with

a slight increase in the number of model parameters. We further combined
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the learned model with NMPC to control the robot. We showed that using the

learned model performed comparably to first-principles models but without

the necessity of extensive knowledge about the system dynamics.

Later on, we introduced a numerical method to compute invariant sets for

propagating model uncertainty for a general nonlinear system paired with

a nonlinear controller. We showed that combining the numerical method

with MPC can be used to compute approximately safe trajectories for obstacle

avoidance. Unlike the adaptive NMPC introduced before, this approach

propagates the uncertainty in closed loop and thus the ellipsoids shrink to

some constant value over time when using a stable controller.

Finally, we also described a state-machine framework that combines all

the designed controllers in a safe manner to achieve high-level tasks. We

showed that the state-machine framework can perform recovery actions based

on controller/hardware failures.

8.1 Future Work

Future work should expand on the three components of the robust control

scheme:

System Identification: Current work described using MLE to identify

parametric models for dynamic systems online. These models are limited by

our knowledge of the robotic system. We introduced neural network models

to overcome this limitation, but currently, we could only learn neural network

models offline. Future work should learn the neural network models online

to account for any time-varying components. Using neural networks to detect
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failures/outliers in sensors will also make system identification robust.

Uncertainty Propagation: We described propagating uncertainty from

model parameters to state space using an unscented transform. Later on, we

propagated uncertainty in closed-loop by computing the disturbance invariant

set. The invariant set computation requires the knowledge of the bound on

external disturbances. In the future, the disturbance bound can be learned

from samples collected online allowing us to update invariant funnels based

on learning dynamics online. Computing the invariant funnels in real-time

for high dimensional systems is another area of future research.

Trajectory optimization: Currently, we used local trajectory optimization

methods to solve boundary value problems such as reaching a terminal state

and trajectory following tasks while avoiding obstacles. These methods should

be combined in the future with global planning methods to perform long

distance missions. Reasoning about uncertainty when performing global

planning is another avenue to be researched.

Future work should also focus on applying robust control to other complete

applications in aerial manipulation such package transportation and delivery,

picking produce in agriculture, and high-altitude servicing.
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