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Abstract

In most science and engineering fields, numerical simulation models are of-

ten used to replicate physical systems. An attempt to imitate the true behavior

of complex systems results in computationally expensive simulation models.

The models are more often than not associated with a number of parameters

that may be uncertain or variable. Propagation of variability from the input

parameters in a simulation model to the output quantities is important for

better understanding the system behavior. Variability propagation of complex

systems requires repeated runs of costly simulation models with different in-

puts, which can be prohibitively expensive. Thus for efficient propagation, the

total number of model evaluations needs to be as few as possible. An efficient

way to account for the variations in the output of interest with respect to these

parameters in such situations is to develop black-box surrogates. It involves re-

placing the expensive high-fidelity simulation model by a much cheaper model

(surrogate) using a limited number of the high-fidelity simulations on a set of

points called the design of experiments (DoE).
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ABSTRACT

The obvious challenge in surrogate modeling is to efficiently deal with sim-

ulation models that are expensive and contains a large number of uncertain

parameters. Also, replication of different types of physical systems results in

simulation models that vary based on the type of output (discrete or continu-

ous models), extent of model output information (knowledge of output or out-

put gradients or both), and whether the model is stochastic or deterministic

in nature. All these variations in information from one model to the other de-

mand development of different surrogate modeling algorithms for maximum

efficiency.

In this dissertation, simulation models related to application problems in

the field of solid mechanics are considered that belong to each one of the above-

mentioned classes of models. Different surrogate modeling strategies are pro-

posed to deal with these models and their performance is demonstrated and

compared with existing surrogate modeling algorithms. The developed algo-

rithms, because of their non-intrusive nature, can be easily extended to simu-

lation models of similar classes, pertaining to any other field of application.
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Chapter 1

Introduction

1.1 Simulation models

In the field of solid mechanics, physical experiments help in observing, un-

derstanding and characterizing different important physical phenomena. In-

formation obtained from experiments can play an useful role in enhancing the

performance of materials by testing under varying conditions. For example,

performance of brittle materials such as ceramics, rock, and ice, under com-

pressive dynamic loads, can be improved by understanding how different con-

ditions and the observed mechanisms drive the failure processes, and then

proposing an improved design at the structural or the material level. The

variability in the conditions from one experiment to the other can arise from

different sources, for example, material micro-structure, material properties,
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boundary conditions, loading, etc. Assessment of performance under all these

variable conditions requires a substantial number of experiments to be per-

formed. However, conducting even a single experiment can sometimes be very

expensive, involving significant time and man power, and it is practically in-

feasible to execute more than a small number of experiments. In experiments,

it is also difficult to explicitly control some of the variabilities, for example,

the spatial variation of properties in a material specimen. Thus, repeating the

same experiment twice with all controllable parameters identical, can give rise

to two different outcomes, however small the difference may be. Usage of com-

putational models can serve as an useful complement to the experimental stud-

ies. An integrative computational model can be built by combining known in-

put properties and different physical laws governing the relevant mechanisms,

with a goal to replicate a complex system response based on experimental ob-

servations. A reliable simulation model can be used to better understand the

underlying physics of the phenomenon under study. By tweaking different in-

put parameters, valuable knowledge can be extracted about the system under

study in order to achieve optimal performance.
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1.2 Need for surrogates

Different physical systems can be represented by simulation models of vary-

ing complexity, ranging from simple analytical functions to complex partial

differential equations that rely on solvers such as finite element or finite differ-

ence methods. A continuous increase in computational power has allowed the

consideration of phenomena of increasing level of complexity, and also the abil-

ity to explore high-dimensional input parameter spaces for achieving optimal

performance of the system. However, the above two capabilities are counter-

acting in the sense that making the model more and more complex reduces

its capability to be used for exploratory analysis in the input parameter space.

A sophisticated but computationally expensive model, with a potentially large

number of parameters explaining the phenomenon of interest, limits the quan-

tification of the parameter influences on the simulator response. For instance,

in the automotive industry, expensive simulation models for modeling the be-

havior of cars during crash-tests exist that require many parameters to capture

the highly non-linear mechanical behavior of the system. Thus, it is a signif-

icant challenge to use these models for the design of car structures, which re-

quire numerous model runs to achieve optimal test performance. In reality,

simulation models are validated using finite experimental observations, and in

the process, some influence factors tend to be neglected in the model. Thus, the
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Figure 1.1: Variability propagation using a simulation model

model, however sophisticated and complex it may be, can approximate the real

behaviour of the physical system only up to a certain level of accuracy. Due to

uncertainties, such as, the inherently stochastic nature of some model param-

eters, boundary conditions or excitations, and a lack of understanding of the

true physics, predictions inevitably deviate from reality. Thus, when it comes

down to the choice of a simulation model, there needs to be a trade-off between

the accuracy of the model and its computational cost. The model should not be

too expensive to be able to run for a significant number of times at different

parameter combinations, nor too simple to produce incorrect behaviour leading

to erroneous interpretations of the system under study. Thus, the true purpose

of using a simulation model is to roughly understand the physical process and

also make some related decisions, which is not feasible experimentally.

For a given model with a number of variable input parameters, it may be of

interest to assess the corresponding variation in the model output or outputs

with a goal of estimating a quantity of interest as shown in figure 1.1. For

example, the input parameters can be considered uncertain with a certain dis-

tribution and the uncertainty can be propagated through the simulation model
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to characterize the corresponding output uncertainties. In this case, a rele-

vant quantity of interest can be the probability density function (PDF) of the

output. If the model can be solved cheaply and the number of input parame-

ters is small, the quantity of interest can be estimated by repeated runs of the

simulation model. However, if either the model is expensive to solve, or the

number of parameters are large, or both, then it becomes impractical to exten-

sively explore the parameter space by evaluating the model for a large number

of parameter samples. An efficient way to reduce the overall high computa-

tional cost is to use surrogate models, or metamodels. Surrogate models pro-

duce computationally cheap mathematical approximations of the input/output

relationship for expensive models, using only limited number of model evalua-

tions as shown in figure 1.2. Once a surrogate function is built, outputs can be

generated at a fractional cost compared to that obtained by running the actual

model, which enables an efficient estimation of the quantity of interest [1–4]. It

is, however, important to note that the usefulness of the information obtained

from surrogate functions is highly dependent on the accuracy of the simulation

model.
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Figure 1.2: Use of surrogates for propagation of variability

Figure 1.3: Classification of surrogates with examples
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1.3 Types of surrogates

Surrogates can be generally classified into 3 types (shown in figure 1.3): in-

trusive, non-intrusive and semi-intrusive. Intrusive surrogates require knowl-

edge of the governing equations of the simulation code for their implemen-

tation. On the other hand, non-intrusive surrogates, also known as “black

box” surrogates, are sampling based and depend only on the input and out-

put data of the simulation model with no utilization of information about the

inner workings of the model or the behaviour of the system. Semi-intrusive

surrogates involve both working with the governing equations of the simula-

tion model as well as generating input/output data by explicitly sampling the

model. A class of partially non-intrusive surrogates also exists where qualita-

tive trends about the system behaviour can be known from expert opinion [5].

For instance, if it is known in advance that the model output should have a

linear variation with the different input parameters, then use of linear surro-

gates can be very effective. A brief overview of the three categories of surrogate

modeling methodologies is given in the following subsections.

1.3.1 Intrusive surrogates

In an intrusive surrogate construction, the solution is represented as a spec-

tral expansion of a finite-dimensional basis function, which is a function of the
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random parameters describing the uncertainties. The basis function has as-

sociated deterministic coefficients which are unknown. Stochastic Galerkin

methods [6, 7] project the given differential equation (governing equation) of a

simulation model with random parameters in the continuous infinite-dimensional

space onto a finite-dimensional subspace defined in terms of the basis func-

tions. This results in a coupled system of deterministic equations which needs

to be solved to obtain the expansion coefficients. The idea behind a Galerkin

projection is to minimize the error of the truncated expansion.

Generalized polynomial chaos (gPC) expansion based stochastic galerkin

methods (gPC-Galerkin) [8–11] typically use global orthogonal polynomial ba-

sis (fixed a priori) to represent the solution. The goal is to find a solution in

the space of the orthogonal polynomials such that the residue of the govern-

ing equations is orthogonal to the space of polynomials. However, the basis

polynomials need not be globally smooth. When the solution is non-smooth,

wavelet basis [12] or piecewise-polynomial basis [13] are often used. Multi-

element [14, 15] approaches are also used with globally smooth polynomials

for non-smooth cases. In a generalized spectral decomposition based Galerkin

projection approach (gSD-Galerkin) [16], the solution is represented in a low-

dimensional basis space where the stochastic basis functions are not known a

priori, contrary to the gPC approach. The basis is determined along with the

unknown deterministic coefficients by solving an “extended” eigenvalue prob-
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Figure 1.4: General framework of black-box surrogate modeling

lem.

1.3.2 Non-intrusive surrogates

Non-intrusive surrogates are black-box surrogates which involve an empir-

ical approximation of the simulation model based on simulation runs at a set

of samples generated in the input parameter space through various sampling

techniques [17]. Figure 1.4 illustrates the general concept behind the con-

struction of a black-box surrogate modeling algorithm. Construction of such

a surrogate involves the following steps [18,19]: Design of Experiments (DOE),

numerical simulation run, surrogate construction, and surrogate quality vali-

dation. If there is adaptivity involved in the construction, a surrogate quality

check step is usually there which provides feedback from the current surro-

gate to the design of experiments. DOE involves strategies for sample selec-
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tion used for simulation runs [20]. The generation of input/output data is fol-

lowed by the surrogate construction step using surrogate models, which may be

parametric approximation methods, such as polynomial regression [21], non-

intrusive polynomial chaos expansion (PCE) [22], and Kriging [23–25]; or non-

parametric methods, such as projection-pursuit regression [26, 27], stochas-

tic collocation interpolation [22], radial basis functions (RBF) [28]. When the

physics of the problem under study is very complex to deal with, these surro-

gates are preferred because of their non-intrusive nature. When the cost of

running a simulation model is high and there is a large number of associated

parameters (dimensions), constructing these surrogates can be a challenge and

some dimensionality reduction technique should be adopted to reduce the num-

ber of parameters of the problem.

Black-box surrogates can be of two kinds based on the type of output pro-

duced from the simulation model. When the outputs are continuous, they are

called continuous surrogates, and if the outputs are discrete values, they are

called discrete surrogates. Discrete surrogates are used for classification pur-

poses, for example, support vector machines (SVM), k-nearest neighbors (k-

NN), logistic regression, artificial neural networks (ANN). Continuous surro-

gates can be either regression based or interpolation based. In regression sur-

rogates, the exact function values values are not necessarily reproduced at the

training data points, and are more suitable for dealing with noisy data; for ex-

10



CHAPTER 1. INTRODUCTION

ample, linear regression. On the other hand, in interpolation surrogates, the

surrogate function passes through the training data points exactly; for exam-

ple, Kriging. A class of gradient enhanced continuous surrogates also exists

where the simulation model produces output as well as gradients of the out-

put, for example, gradient enhanced kriging, gradient enhanced regression,

gradient enhanced RBF [29]. A rare class of gradient-only surrogates also ex-

ist where only the gradients of the outputs (and no output values) are available

from the simulation model [30] .

Black-box surrogates can also be categorized into local, multipoint, and

global models [19, 31] based on the usage of data points in the surrogate func-

tion construction. Local surrogates are built based on the information of a

single data point, and the approximation is only valid in the close proximity of

that particular point; for example, Taylor series approximation and interven-

ing variables. Global surrogates, on the other hand, use the entire data set

to produce surrogate functions valid over the entire input space of interest.

Some approximation methods that can build these surrogates include poly-

nomial regression [21], multivariate adaptive regression splines (MARS) [32],

support vector machine (SVM) [33], artificial neural network (ANN) [34], krig-

ing [23–25], and RBF [28]. Multipoint surrogates typically uses two or more

data points (but not the entire data set) for surrogate construction; for ex-

ample, two-point exponential approximation (TPEA) [35], two-point adaptive

11
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Figure 1.5: Classification of black-box surrogates

nonlinear approximation (TANA) [36], Inverse Distance Weighted (IDW) ap-

proach [37]. In fact, if subsets (multiple points) of the entire data set are used

to build multiple surrogate patches in the input space, based on any of the

above mentioned global approximation methods, like, Kriging or RBF, over the

entire input space, such a surrogate construction will fall into the multipoint

category.

The different categorizations of black box surrogates discussed above is il-

lustrated in figure 1.5.

1.3.3 Semi-intrusive surrogates

Most reduced-order models and hierarchical models belong to the class of

semi-intrusive surrogates. In this type of surrogate construction, changes are

made to the governing equations of the simulation model and input/output data

12
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is also generated from the model by treating it as a black box.

Reduced order surrogates use numerical methods to transform the origi-

nal simulation model to an approximate lower dimensional representation.

The solutions of the reduced surrogates are obtained by applying the same

Galerkin projection as in the intrusive approach but now in a subspace of

lower dimensionality [38, 39]. This reduced subspace is represented via a set

of basis vectors, computed using a number of different methods, including

Krylov-subspace methods [40–42], approximate balanced truncation [43–47],

and proper orthogonal decomposition (POD), also known as Karhunen-Loève

expansion in stochastic theory or principle component analysis in statistical

analysis [48–52]. This calculation of the reduced subspace usually needs run-

ning the original simulation model at different input parameter values, hence

the semi-intrusive nature.

Hierarchical surrogates are also known as multi-fidelity, variable-fidelity,

or variable-complexity surrogates [53,54], and they transform any given high-

fidelity physics based simulation model to a physics-based models of lower

accuracy and reduced computational cost. Different approaches are used for

deriving this low-fidelity model; for instance, using simpler models with sim-

plified physics assumptions [55, 56], using the same high-fidelity model but

with a coarser grid in a numerical solver like finite element method [57,58], or

using the same high-fidelity models but with a higher residual tolerance [27].

13
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The two models of different fidelity can then be suitably run at desirable set of

parameters to eventually obtain the hierarchical surrogate. Here, the deriva-

tion of the low-fidelity approach on one hand, and the model runs (of different

fidelity) at chosen parameter values on the other, gives the approach a semi-

intrusive nature.

1.4 Black-box surrogate formulation

A system is considered whose behaviour is represented by a computational

model M which maps the d-dimensional input space D to an s-dimensional

output space:

M : x ∈ D ⊂ Rd −→ y ∈ Rs

where x = {x1, . . . , xd}T is a d-dimensional vector of input variables, D is the

design space, and y = {y1, . . . , ys}T is a s-dimensional vector of output variables.

In other words, the input x and output y of the simulation model is related by

a function M :

y =M(x)

It is assumed that M is a black box, implying that the inner workings of the

computational model need not be known. This means, for each input vector

x(i), only the corresponding response y(i) = M(x(i)) is accessible. For example,

14
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when dealing with a complex finite element model (FEM), it might be of in-

terest to just extract outputs for given inputs by ignoring any specifics about

the FEM model. In the most general case, the computational model M can

be either stochastic or deterministic. In a deterministic model, repeated eval-

uations with the same input vector x(0) ∈ D lead to the same output vector

y(0) = M(x(0)), but in a stochastic model, repeated evaluations with the same

input vector x(0) ∈ D lead to different output vectors. The present study is re-

stricted to scalar output y and it may either span a continuous space or a set

of discrete values. In a black-box surrogate construction, the usually expensive

and unknown physics-based function M is replaced by a much simpler function

S. This is done by evaluating the output responses at N training points:

X = [x(1), . . . ,x(N)]

y = [y(1), . . . , y(N)]T = [M(x(1)), . . . ,M(x(N))]T

where X is called the design of experiments (DoE), and y is the observation

vector. A suitable approximation method is then applied to this training data

set to estimate the function S relating the inputs and outputs which allows

cheap prediction of the system response at any new input point x(q) such that

y =M(x(q)) ≈ S(x(q);X,y)
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Sometimes, the model provides the gradients of the output atN training points:

Y′ =

[
dy

dx

⏐⏐⏐⏐
x=x(1)

, . . . ,
dy

dx

⏐⏐⏐⏐
x=x(N)

]

=

[
dy

dx(1)
, . . . ,

dy

dx(N)

]

where

dy

dx(i)
=

[
dy

dx
(i)
1

, . . . ,
dy

dx
(i)
d

]T

, ∀i ∈ {1, . . . , N}

As discussed previously in section 1.3.2, there exists simulation models that

can provide both the output y and output gradients Y′ at N training points [29]

as well as simulation models that provide only the output gradients Y′ and no

information about the output y [30]. For both cases, the goal is to build a

surrogate of the output and estimate quantities of interest that are functions

of the output.

1.5 Sampling designs

An important step in the construction of a black-box surrogate and its sub-

sequent use for prediction, learning or optimization, is the choice of the set of

training points in the input sample space. It is worth noting here that the com-

bination of the sampling design and the surrogate construction (approxima-

tion) method can be crucial for an efficient surrogate construction. For exam-
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ple, let us consider two surrogate methods, non-intrusive PCE and stochastic

collocation (SC) interpolation [22]. In PCE, the output is expressed in terms

of known orthogonal polynomial basis functions. The unknown coefficients can

be computed using either least squares minimization approach or an multidi-

mensional integration approach. Thus both random and structured sampling

designs can be used with non-intrusive PCE. On the other hand, in a global set-

ting, SC interpolation expresses the output as a sum of multidimensional La-

grange interpolation polynomials, where the coefficients are essentially known

and the multidimensional interpolants need to be formed over structured data

sets (tensor or sparse grids) and random sampling designs may not be used in

this case.

Sample designs can be broadly divided into three families [59, 60]: classi-

cal and space-filling designs, model-oriented (or optimal) designs, and adaptive

designs.

1.5.1 Classical And Space-Filling Designs

Classical approaches [3, 61, 62] are based only on geometrical considera-

tions, independent of the choice of the function approximation method (surro-

gate model) to be used for the training data. In a full-factorial (FF) design,

the input samples are placed at the nodes of a regular grid, formed by finite

discretizations along each input variable and all possible combinations of the
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discrete variables. For example, two-level FF designs is one where each input

variable is discretized at the minimum and maximum values, and are typi-

cally used for global sensitivity analysis. A few drawbacks of this design in-

clude: exponential dependence of the sample number on the number of the

input parameters (an FF design with l discretizations in d dimensions results

in ld samples), inadequate space filling properties in high dimensions, and poor

subspace projection properties. Other variants of the factorial design include

central composite design (circumscribed, inscribed or face-centered type) and

fractional factorial design (subsets of FF design) [2]. Smolyak sparse grid de-

sign [63] is a hierarchical design whose samples are subsets of the FF design.

The most basic form of random sampling design is Monte Carlo (MC). A ma-

jor issue with MC samples is the lack of control of the distribution of points in

the domain which causes unwanted clustering and scattering of points. Thus

it has poor space-filling properties. Latin Hypercube sampling (LHS) [64] is a

random design that ensures by construction, good projective properties along

each input variable but does not provide good space-filling. Additional space

filling criteria can be used to augment the space filling properties of the LHS

design; for example, maximin design, maximum-entropy designs [65], etc. Strat-

ified sampling [64] is another random design which tries to achieve good space

filling by subdividing the input sample space into multiple strata and generat-

ing samples in each of them. However, it suffers from poor projective proper-
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ties.

Low discrepancy sequences, also called quasi-random sequences, form an-

other class of sampling design which are sequentially space filling by construc-

tion. Faure [66], Niederreiter [67], Halton [68] and Sobol [69] sequences are

some common low-discrepancy sequences. For intermediate dimensions, these

sequences produce samples with poor projective properties [70]. Various scram-

bling algorithms [71–73] have been applied to these sequences to improve the

uniformity of samples.

1.5.2 Model-Oriented Designs

Samples generated from model-oriented (also called quasi-adaptive) designs

are functions of the choice of the approximation method (surrogate model) used

to construct the surrogate. When the choice of the approximation method is

made a priori, it is possible to choose samples according to the chosen method

by optimizing a certain criterion. If, given an approximation method, ϕ is a

functional (criterion) which needs to be minimized and depends on the design

of experiments X, the design X∗ is called ϕ-optimal if:

X∗ = arg min[ϕ(X)] (1.1)
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A- and D-optimality [74] attempt to minimize the uncertainty in the param-

eters of the approximation method (for example, the coefficients of linear re-

gression) due to noisy observations. In linear regression, minimizing the un-

certainty in the regression coefficients also minimizes the uncertainty in the

prediction which makes these optimality criteria particularly relevant. How-

ever, simulation models are mostly deterministic, and hence these criteria are

rarely used because of absence of any noise in the data. In case of kriging, there

is no simple relation between the uncertainties in covariance parameters and

prediction. Instead, two different criteria are available: the integrated mean

square error (IMSE) and maximum mean square error (MMSE) [3,4], based on

the prediction variance associated with the kriging method. It is to be noted

that none of the above criteria used in the designs depend on the response val-

ues obtained at the sample points and all the samples of the design can be

chosen offline before running the simulation model at any of them.

1.5.3 Adaptive Designs

Adaptive designs have the capability of generating samples, not only us-

ing information from the chosen approximation method (surrogate model) but

also the output values at evaluated samples. Thus, the designs are built se-

quentially, by choosing new samples as a function of the other samples and

their corresponding output values. New points are typically selected based on
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some criterion; for example, sampling in the input space where the prediction

variance is maximum, or where the prediction error is beyond a user specified

threshold value [25,75–80]. Flexibility of these type of designs have led to their

use in different engineering applications [81,82].

1.6 Objective and outline of thesis

In this dissertation, efficient black-box surrogate modeling algorithms have

been developed for a range of different application problems in the field of solid

mechanics. The simulation black-box models that are used to represent differ-

ent physical systems in this study vary based on the type of output (discrete or

continuous models), extent of model output information (knowledge of output

or output gradients or both), and whether the model is stochastic or determin-

istic in nature. A priori qualitative knowledge about the nature of the output

variation with respect to the input parameters is also available in some cases.

All these variations in information from one problem to the other demand dif-

ferent surrogate modeling algorithms for maximum efficiency, involving differ-

ent choices about sampling designs and surrogate methods. Even though the

surrogate construction approaches implemented for each of the problems fol-

low roughly the black-box surrogate modeling framework shown in figure 1.4,

some components in the framework need to be modified to suit the problem at
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Figure 1.6: Framework of the E-ASGC algorithm in chapter 2

hand and eventually come up with the most efficient surrogate function.

Chapter 2 talks about a proposed surrogate modeling algorithm which is

able to track discontinuities. It is an adaptive sparse grid collocation interpo-

lation method based on piece-wise linear basis functions, which avoids unnec-

essary simulation model evaluations in smoother regions of the input parame-

ter space. This is achieved by using a finite difference based one-dimensional

derivative estimation technique along all the input parameters.

Chapter 3 deals with the development of an efficient surrogate modeling

algorithm to deal with simulation models with large number of parameters.

The algorithm is also designed to deal with discontinuous behavior of the sim-

ulation model output with respect to the parameters. It is a multi-element

non-intrusive polynomial chaos expansion (PCE) approach which also includes

a criterion for checking possible dimensionality reduction of the problem.
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Figure 1.7: Framework of the SCAMR algorithm in chapter 3

Figure 1.8: Surrogate algorithm framework in chapter 4

Chapter 4 considers a fiber-reinforced composite simulation model based

on an Interface-Enriched Generalized Finite Element method (IGFEM). The

simulation model can calculate, at any given combination of input parameter

values, both the output and the output sensitivities with respect to each pa-

rameter. In this study, a number of surrogates are built for the simulation

model using different choices of sequential space-filling designs and surrogate
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Figure 1.9: Surrogate algorithm framework in chapter 5

models, and their qualities are assessed. The goal here is to verify whether

the additional sensitivity information helps in constructing a computationally

cheaper but equally (or more) accurate surrogate than the one without any

sensitivity information.

Chapter 5 talks about an efficient surrogate modeling methodology for free

energy reconstruction. The simulation model considered here is a restrained

molecular dynamics (MD) simulation model of solvated alanine dipeptide (AD)

molecule. The goal is construct the free energy landscape of the molecule in a

efficient. The restrained MD simulation, however, only calculates mean force

which is the negative gradient of free energy. Thus, the challenge here is to

built a surrogate function (landscape) for the output (free energy) with infor-

mation of only the sensitivities (mean forces) from the simulation model.

Chapter 6 considers the simulation model of a continuum level plain weave

S-2 glass/SC-15 epoxy composite plate under ballistic impact. This study in-

volves construction of classification surrogates with the goal of generating two
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Figure 1.10: Surrogate algorithm framework in chapter 6

important quantities of interest, the probabilistic velocity response (PVR) curve

as a function of the impact velocity, and the ballistic limit velocity prediction

as a function of the model parameters.

Chapter 7 provides conclusions and possible future directions.
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Chapter 2

An efficient adaptive sparse grid

collocation method through

derivative estimation

For uncertainty propagation of highly complex and/or nonlinear problems,

one must resort to sample-based non-intrusive approaches [83]. In such cases,

minimizing the number of function evaluations required to evaluate the re-

sponse surface is of paramount importance. Sparse grid approaches have proven

effective in reducing the number of sample evaluations. For example, the dis-

crete projection collocation method has the notable feature of exhibiting fast

convergence rates when approximating smooth functions; however, it lacks the

ability to accurately and efficiently track response functions that exhibit fluctu-

26



CHAPTER 2. EFFICIENT ADAPTIVE SPARSE GRID COLLOCATION

ations, abrupt changes or discontinuities in very localized regions of the input

domain. On the other hand, the piecewise linear collocation interpolation ap-

proach can track these localized variations in the response surface efficiently,

but it converges slowly in the smooth regions. The proposed methodology,

building on an existing work on adaptive hierarchical sparse grid collocation

algorithm [84], is able to track localized behavior while also avoiding unneces-

sary function evaluations in smoother regions of the stochastic space by using a

finite difference based one-dimensional derivative evaluation technique in all

the dimensions. This derivative evaluation technique leads to faster conver-

gence in the smoother regions than what is achieved in the existing colloca-

tion interpolation approaches. Illustrative examples show that this method is

well suited to high-dimensional stochastic problems, and that stochastic elliptic

problems with stochastic dimension as high as 100 can be dealt with effectively.

This chapter is adapted from reference [85].

2.1 Introduction

Simulation models usually contain input parameters that are inherently

random. The uncertainty in the inputs naturally leads to an uncertainty in

the output. Thus a single solution for the system using a fixed set of input

parameters is not sufficient to describe the system completely. Hence, given
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the input uncertainties, it is important to understand how these uncertainties

propagate through the deterministic system model and result in uncertainties

in the output solution. The quantification of the output uncertainties is a much

more comprehensive descriptor of the system under study. In this work, the ob-

jective is to construct an efficient surrogate of the output.

A polynomial chaos (PC) expansion is a popular method for surrogate mod-

eling which represents the output of interest by the expansion of orthogonal

polynomials (with respect to positive weight measure) in the stochastic in-

put domain. It is based on the homogeneous chaos theory by Wiener [86]

where a Gaussian random process was essentially expressed by a set of global

Hermite polynomials. Ghanem and Spanos [8] have coupled this approach

with finite element methods to effectively model uncertainties and this has

been subsequently applied to various solid mechanics problems [87–91]. The

generalized polynomial chaos (gPC) [9] method makes use of different types

of orthogonal polynomials in the Askey scheme [92] as the bases to approxi-

mate random functions/processes, and has been applied to different problems

[10,11,93]. It is capable of reaching fast convergence for smooth functions when

the probability density function (PDF) of the random variables is identical to

the weighting function of the orthogonal polynomials from the Askey scheme.

This idea has been further extended to arbitrary random distributions [94,95].

In the presence of discontinuities or highly localized variations in the response
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surface, this method may fail to converge due to the well-known Gibbs phe-

nomenon. Remedies for this problem have been sought using multielement

gPC [15, 96, 97], wavelet basis [12], piecewise polynomial basis [13], and basis

enrichment of polynomial chaos expansions [98]. The gPC coefficients in the

above works are determined by using the Stochastic Galerkin method [83] and

performing Galerkin projection of the model equations onto the space of the

orthogonal polynomials. This involves solving a coupled system of determinis-

tic equations which may be non-trivial (difficult and time-consuming) to solve

when the original simulation model is very complex in itself. This is the draw-

back of the intrusive nature of the methods.

By contrast, non-intrusive methods use the deterministic simulation model

directly without requiring any modifications, which makes them more applica-

ble to complex systems. Stochastic collocation approaches, for example, solves

the simulation model at pre-selected points in the input parameter space, us-

ing either interpolation approaches or discrete projection approaches [6]. For

example, Xiu [99] proposed a gPC scheme based on the stochastic collocation

method, where the gPC coefficients are obtained using the discrete projection

approach. Babuska et al. [100] used Gauss quadrature points to sample low-

dimensional stochastic input domains and perform tensor product interpola-

tion using 1-D basis functions. Tensor grid approaches suffer from the so-called

‘curse of dimensionality’ [101] as there is an exponential rise in the required
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number of full model evaluations with the increase in dimensionality of the in-

put domain. Sparse grid [63,102] approaches alleviate this problem to some ex-

tent as they significantly reduce the number of points in high dimensions while

maintaining almost the same level of accuracy. Sparse grids are especially suit-

able for high dimensional problems involving numerical integration and inter-

polation. The interpolation approach approximates the stochastic space using

multi-dimensional interpolation with the existing data such that the surrogate

surface always passes through the pre-determined points. Sparse grid based

interpolations [103,104] have been performed with the global Lagrange polyno-

mial basis interpolants. However, these global approaches may not be suitable

for tracking local steepness or discontinuities in the output, and the approxi-

mation may fail to converge to the true value.

Approaches [12, 100, 105] based on local bases have also been proposed to

deal with non-smoothness in the output. Klimke and Wohlmuth [106–108]

developed a sparse grid collocation interpolation scheme based on piecewise

linear basis functions, which has the ability to resolve discontinuities in the

output but suffers from slow convergence rates because of global refinement of

the sparse grid. The approach is based on hierarchical sparse grid points where

points are added in successive depth levels. The error indicator is known as the

hierarchical surplus and acts as a stopping criterion for the algorithm. Ma and

Zabaras [84] used a similar approach called adaptive sparse grid collocation
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(ASGC) but also incorporated an adaptive strategy that enables a local sparse

grid refinement around the discontinuity region, which helps enhance the con-

vergence rate. The ASGC approach checks the hierarchical surplus values at

each point in the current depth level and creates new points in the next depth

level only in the neighborhood of points whose surplus error exceeds the tol-

erance value. The approach is restricted to uniform grid points because of the

adaptivity criterion. For the purpose of tracking discontinuities, ASGC uses

piecewise linear basis functions. This may lead to an unwanted slow conver-

gence for the regions where the approximating response function is smooth.

Other works that introduce adaptivity into the sparse grid collocation interpo-

lation approach include dimension-adaptive sparse grid methods [109,110] and

multi-element (domain-adaptive) sparse grid interpolation [111,112] methods.

A global approach based on Padé-Legendre approximation [113] has also been

used to track down strong non-linearities or discontinuities in the response

surface.

The algorithm presented in this chapter is based on the work done by Ma

and Zabaras [84] on adaptive sparse grid subset interpolation. Similar to

that work, the proposed approach uses linear basis functions for the adaptive

sparse grid interpolation to capture any localized variations in the response.

In addition, it aims to reduce the number of function evaluations by local 1-

dimensional cubic spline interpolations [114] in the smoother regions of the
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response domain. The smoothness is measured by successive derivative es-

timation along a straight line of points using finite differences of the output

values in any of the input dimensions. Small changes (within a tolerance) in

the derivative estimates will indicate sufficient smoothness for cubic spline in-

terpolation along the straight line. This helps to achieve the same accuracy

as in [84], but decreases the number of function evaluations, especially when

the response function is widely smooth. It is worth mentioning here that the

derivative information is extracted approximately from the output values with-

out any exact knowledge about the derivative of the output of interest.

The rest of the chapter is organized as follows: In section 2.2, the general

mathematical model for any physical system with uncertainties is described.

In section 2.3, the conventional stochastic collocation (CSC) method, the adap-

tive sparse grid collocation (ASGC) method and then the proposed efficient

adaptive sparse grid collocation (E-ASGC) method are discussed in details. Sec-

tion 2.4 deals with the various numerical examples to compare the performance

of the proposed method with a few existing methods. Finally, the concluding

remarks are given in section 2.5.

32



CHAPTER 2. EFFICIENT ADAPTIVE SPARSE GRID COLLOCATION

2.2 Problem Definition

Following notations in [84], we represent the complete probability space

by the triplet (Ω,F ,P) where Ω corresponds to the sample space of outcomes,

F ⊂ 2Ω is the sigma algebra of measurable events in Ω, and P : F → [0, 1] is the

probability measure. Let I(ω) = {I1, I2, I3, .., Id} be the multidimensional vector

of random input parameters in a problem of interest, where I : Ω →∈ Rd

Z(ω) = f(I(ω)), ∀ ω ∈ Ω (2.1)

The goal is then to find out how the vector valued output Z(ω) varies with

respect to each of the random vector components Ii(ω), i ∈ [1, 2,.., d]. For a

more general case where inputs are stochastic processes (in space or time), see

Appendix A.
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2.3 Stochastic Collocation Interpolation

Method

2.3.1 Conventional Sparse Grid Interpolation

For a function f : [a, b] → R, the one-dimensional interpolation formula is

given by:

Uk(f(x)) =
∑

xk∈Xk

axk(x)f(xk) =

mk∑
j=1

axk
j
(x)f(xkj ), (2.2)

where x ∈ [a, b], Xk = {xk|xk ∈ [a, b]}, axk
j
(x) ∈ [0, 1] ⊂ R1, axk

j
(xki ) = δij, {i, j} ∈

[1, 2, ...mk], and mk = number of points in the set Xk. For multi-dimensional

interpolation, the one-dimensional case can be upgraded to obtain a tensor

product formulae:

(Uk1 ⊗ ......⊗Ukd)(f(x)) =

m1∑
j1=1

....

md∑
jd=1

(a
x
k1
j1

(x)⊗ ......⊗ a
x
kd
jd

(x))f(xk1j1 , ...., x
kd
jd
) (2.3)

where d is the total number of dimensions and x = {x1, x2, ..., xd} ∈ Rd

The major drawback of this tensor product formula is that the total num-

ber of points required are (m1)(m2)(m3)......(md) which rises exponentially with

increase in dimensions, leading to the curse of dimensionality. The sparse grid

approach that is used in the current work mitigates this issue to quite an ex-

tent by sampling significantly fewer points which are subsets of the tensor
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grid structure. Though the accuracy of the algorithm is not totally dimension-

independent, it gets weakened down to a logarithmic dependence.

Using similar definitions as in [106], we define U0 = 0 and the incremental

interpolant by:

△k(f(x)) = Uk(f(x))− Uk−1(f(x)), ∀k ≥ 1 (2.4)

where,

Uk(f(x)) =
∑

xk∈Xk

axk(x)f(xk) (2.5)

and

Uk−1(f(x)) = Uk(Uk−1(f(x))) (2.6)

By using the above three equations, we thus get,

△k(f(x)) =
∑

xk∈Xk

axk(x)f(xk)−
∑

xk∈Xk

axk(x)g(xk)

=
∑

xk∈Xk

axk(x)(f(xk)− g(xk)) (2.7)

where g = Uk−1(f(x))

Now,

(f(xk)− g(xk)) = 0, ∀xk ∈ Xk−1 (2.8)
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Thus,

△k(f(x)) =
∑

xk∈Xk−1
△

axk(x)(f(xk)− g(xk)) (2.9)

where Xk
△ = Xk \ Xk−1 denotes the points in set Xk but not in Xk−1. Because

of the nested property of uniform grids, Xk−1 ⊂ Xk, the number of elements

(points) in Xk
△ = mk −mk−1 = mk

△

Rewriting Eq. (2.9), we get,

△k(f(x)) =

mk
△∑

j=1

axk
j
(x)(f(xkj )− g(xkj )) (2.10)

Using the property △k(f(x)) = Uk(f(x))− Uk−1(f(x)),we can write

Uk(f(x)) =
k∑

i=1

△i(f(x)) (2.11)

In the case of a tensor grid, the multivariate interpolant expression is a tensor

product extension of Eq. (2.11) and is given by,

(Uk1 ⊗ Uk2 ⊗ .......⊗ Ukd)(f(x)) =

k1∑
i1=1

.....

kd∑
id=1

(△i1 ⊗ .......⊗△id)(f(x)) (2.12)

On the other hand, Smolyak sparse grids [63] use a much smaller subset of the

tensor grid. The sparse grid interpolant only considers points satisfying |i| ≤ q
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and is defined by,

Aq,d =
∑
|i|≤q

(△i1 ⊗ ......⊗△id)(f(x)) = Aq−1,d(f(x)) +△Aq,d(f(x)) (2.13)

where |i| = i1 + i2 + .....id, for i = (i1, i2, ....id) ∈ Nd and q = k+ d− 1 for k1 = k2 =

· · · = kd = k ≥ 1.

△Aq,d(f(x)) =
∑
|i|=q

(△i1 ⊗ ......⊗△id)(f(x)) (2.14)

Aq−1,d(f(x)) =
∑

|i|≤q−1

(△i1 ⊗ ......⊗△id)(f(x)) (2.15)

Here is {∀s = 1, 2, ....., d} is called the depth of interpolation in the s-th dimen-

sion whereas q denotes the global depth of interpolation and Ad−1,d = 0. Thus,

putting q = d, we get Ad,d(f) = △Ad,d(f(x)) and for q = d + 1, Ad+1,d(f(x)) =

Ad,d(f(x)) + △Ad+1,d(f(x)) and so on. Thus it is seen that there is a hierarchy

when it comes to the interpolant at different levels, and the interpolant at a

given level contributes to the estimation of the next higher level interpolant.
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From Eqs. (2.10) and (2.14), we get,

△Aq,d(f(x)) =
∑
|i|=q

(△i1 ⊗ ......⊗△id)(f(x))

=
∑
|i|=q

∑
j

(ai1j1(x)⊗ .......⊗ aidjd(x))(f(x
i1
j1
, ....., xidjd)

− g1(x
i1
j1
, ....., xidjd))

where j = {(j1, j2, ..., jd) : js = 1, ...,mis
△; s = 1, ..., d}, and g1 is defined as

g1 = (Uk1−1 ⊗ .......⊗ Ukd−1)(f(x))

=
∑

|i|≤q−1

(△i1 ⊗ ......⊗△id)(f(x))

= Aq−1,d(f(x))

Now,

△Aq,d(f(x)) =
∑
|i|=q

∑
j

(ai1j1(x)⊗ .......⊗ aidjd(x))(f(x
i1
j1
, ....., xidjd)

− g1(x
i1
j1
, ....., xidjd))

=
∑
|i|=q

∑
j

aij(x)w
i
j(y) (2.16)

where aij is the d-dimensional basis function, wi
j is the hierarchical surplus and

y = {xi1j1 , ....., x
id
jd
}.

38



CHAPTER 2. EFFICIENT ADAPTIVE SPARSE GRID COLLOCATION

Thus, once the surrogate model has been identified for any given level q, the

function value at any point can be calculated as:

u(x,y) =
∑
|i|≤q

∑
j

aij(x)w
i
j(y) (2.17)

The mean of the solution can be analytically estimated [84] as:

E[u(x,y)] = ū(y) =

∫
Γ

∑
|i|≤q

∑
j

wi
j(y)a

i
j(x)ρ(x)dx (2.18)

Since x is an uniform random space, the probability density function ρ(x) =

1 for the domain Γ = [0, 1]d. Substituting this value of ρ(x), rearranging the

integral and assuming the random variables are independent of each other,

ū(y) =
∑
|i|≤q

∑
j

wi
j(y)l

i
j (2.19)

where

lij =

∫
Γ

aij(x)dx =
d∏

k=1

∫ 1

0

aikjk(x)dx (2.20)

and

∫ 1

0

aikjk(x)dx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if ik = 1

1
4
, if ik = 2

21−ik , otherwise
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To get the variance, we proceed with the square of the function value in Eq.

(2.17) which can be approximated as:

u2(x,y) =
∑
|i|≤q

∑
j

aij(x)v
i
j(y) (2.21)

where vij is the hierarchical surplus corresponding to the square of the output.

Then the expectation of the square of the random solution can be estimated as:

E[u2(x,y)] = ū2(y) =
∑
|i|≤q

∑
j

vij(y)

∫
Γ

aij(x)dx (2.22)

Thus the variance of the solution is given by:

V ar[u(x,y)] = σ2
u(y) = ū2(y)− ū(y)2 (2.23)

2.3.2 Adaptive Sparse Grid Interpolation

In conventional sparse grid interpolation methods, the error check is such

that if any hierarchical surplus at the current level of interpolation exceeds the

tolerance, all points in the next higher level must be evaluated. The algorithm

ignores the fact that there may be smooth regions which do not require subse-

quent refinements. In adaptive sparse grid interpolation, unnecessary higher

level samples are avoided by performing selective refinements. This method
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makes use of the tree-like data structure of 1-D equidistant sparse grid points.

A schematic of the adaptive procedure using the tree-like structure of the grid

points is given in figure 2.1. With the exception of the point addition at level

2, two points are added in the neighborhood of each point at the previous level.

In [84], a point at the current level has been referred to as a ‘father’ while points

added around it at the next level are referred to as ‘sons’. For a d-dimensional

random domain, there will be 2d sons added for each father if it is not a level-1

point in any of the dimensions. Therefore, if there are m points at the cur-

rent level at which the hierarchical surplus exceeds the tolerance, then at most

2dm points are added at the next level. There may be duplication of next-level

points, requiring that a check be performed to avoid redundant sampling. This

approach leads to slow convergence in the presence of localized variations or

discontinuities, requiring computation up to a very high interpolation level. On

the other hand, regardless of the nature of the response surface, the mean and

variance converge quickly to a desired level of accuracy because of the sharp

drop in the integral weights with rise in interpolation level. So it is reasonable

to limit the algorithm to a maximum interpolation level which acts as another

termination criterion.

An example of the adaptive procedure in 1-D is given in figure 2.2. A 1-D C1

discontinuous function shown in figure 2.2a is used to demonstrate the adap-

tivity of the method. Figure 2.2b shows the conventional approach of adding
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Figure 2.1: Tree-like structure of 1-D grid points

the sparse grid points up to level 5. The absence of any adaptivity leads to

a total of 33 point evaluations. In contrast, the adaptive collocation strategy

shown in figure 2.2c allows for local refinement of points around the C1 discon-

tinuous region and results in only 17 function evaluations up to level 5. For

example, at level 3, out of the four points, only two of the points at x = 0.125

and x = 0.375 are ‘fathers’ to points in the next higher level. This implies that

the hierarchical surpluses at those two points are above the tolerance, while

the hierarchical surpluses at x = 0.625 and x = 0.875 are below the tolerance.

In a high dimensional case with highly localized variations along some di-

mensions, there may be a significant number of other dimensions along which

the response function is smooth without any sharp variations. Thus using a

piece-wise linear function leads to slow convergence of the surpluses in the

smooth regions. A significant number of full model evaluations can be avoided

by handling these smoother regions efficiently. The proposed efficient colloca-

tion method is based on this very idea which will be discussed next.
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(a) A 1-D function with C1 discontinuity

(b) Conventional 1-D sparse grid points

(c) Adaptivity on 1-D sparse grid points

Figure 2.2: Comparison between the addition of the conventional and the adap-
tive sparse grid points in 1-D
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2.3.3 Efficient adaptive sparse grid collocation

through derivative estimation

One aspect to improve in the adaptive sparse grid subset collocation algo-

rithm [84] is that in allocating more points along discontinuities and important

dimensions, there can be a significant number of points also added to smoother

regions in the domain. These points that are assigned to the smoother regions

unnecessarily increase the computational cost. Thus one way to improve effi-

ciency is to avoid brute force evaluations in the smoother regions as much as

possible. The proposed method aims at achieving this by approximating the

smoother regions with cubic splines [114]. Therefore when proceeding with

the adaptive algorithm [84], if a sparse grid node is generated within any 1-D

approximated smooth region, the function value at that point can be approx-

imated by cubic spline interpolation. Cubic splines, being third order poly-

nomials, can achieve sufficiently fast convergence and are robust because of

their piece-wise nature. Higher order polynomials were not used to avoid over-

fitting.

The mechanism works as follows: Let P be the total number of unique

sparse grid points andDi [i ∈ 1, 2, ....d] be a certain dimension in the d-dimensional

stochastic space. A projection is now taken on the plane orthogonal to the Di

dimension to form a Dd−1 dimensional non-unique data point set. This set is
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wj
i < ε,  ∀j

Ini$al	level	input	
data		

(no	valid	1-D	
approximated	
smooth	region)	

Full	model	evalua$on	of	new	points	outside	
valid	1-D	approximated	smooth	region	

Hierarchical	surplus	es$ma$on	at	
new	points	

Evaluate	new	points	in	valid	1-D	
approximated	smooth	region	

Iden$fy	valid	regions	for	1-D	
approxima$on	

Generate	new	higher	
level	points	

Surrogate	
genera$on	
complete	

end	

	
or	

								reached	

no	

yes	

imax

Figure 2.3: Flow chart for the efficient adaptive sparse grid collocation algo-
rithm
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non-unique because of the overlap of multiple points due to the projection. The

critical control parameter is the minimum number of points in a single straight

line along the Di dimension needed to approximate the linear region. The non-

unique set is used to evaluate the frequency of points along every straight line

in the Di dimension. Once the criterion is met, successive finite difference

based derivative calculation is done to crudely detect any discontinuity along

the line. If the change in the derivative varies gradually enough throughout,

the data along that path is stored. Otherwise the line can be split into 1-D

sub-intervals and data in those individual sub-intervals are stored. The data

storage include the input points, the function value at the points, the midpoint

of the linear interval and a parameter L quantifying the extent of the approxi-

mation along a straight line. L is defined as half of the total length of any 1-D

approximated smooth region. In future calculations, if we come across a point

lying in this 1-D region where the function value needs to be known, then in-

stead of performing an expensive brute force evaluation there, we retrieve the

associated data and simply approximate the function value by the cubic spline

interpolant.

The algorithm is outlined below:

Initialization

(1) Set the maximum interpolation level imax

(2) Set the tolerance parameter ϵ
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(3) Set the dimension d of the problem

(4) Initialize the level to i = 1

Conventional sparse grid iterations for initial few levels i1

While i ≤ i1,

(5) Perform full model evaluation at level i points

(6) Calculate also the hierarchical surpluses wi
j at each of the points

(7) Set i = i+ 1

(8) Form 2d points at (i+ 1)-th level

(9) Check for duplication of previous points

(10) Go to step (5)

Main adaptive loop based on derivative estimation

While i1 < i ≤ imax,

(11) Check if any of the points lie in the regions identified as smooth enough

for 1-D interpolation by searching the stored database.

(12) For each point lying in any of these regions, perform a cheap interpola-

tion to get the function value.

(13) For the remaining points, perform full model evaluations.

(14) Calculate the hierarchical surpluses wi
j at each of the points in steps

(12) and (13)

(15) Check if |wi
j| ≥ ϵ for each point. If no points satisfy this criterion, go to

step (22).
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(16) For each point satisfying criterion in step (15), form 2d points at the

(i+ 1)-th level

(17) Set i = i+ 1

(18) Check for duplicity of points

(19) For each dimension, project all points on the hyperplane normal to

the dimension, to get Mp number of (d − 1)-dimensional non-unique projected

points. Count the number of unique points N and the number of co-located

points at each of the unique points mi, such that
∑N

i mi =Mp, where mi ≥ 1

(20) For each point ∈Mp with mi greater than a minimum number Mmin,

a) Calculate successive derivative along that straight line using finite

differences of the output values.

b) If the change in the gradients are below a tolerance ϕ, the interval is

considered smooth, and it is stored in the database for future retrieval. The

database for an interval consists of the input data, the output data, the mid-

point value of the interval, and half the length of the interval, represented by

the quadruplet (I, O, Ī, L).

(21) Go to step (11)

(22) End generation of surrogate model.

The generated surrogate model can be used as the basis for generating mo-

ments (e.g., mean and variance) and/or distribution of the response. Also, the

output response at any arbitrary query point can be extracted. The flow chart
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for the entire algorithm is shown in figure 2.3.

Remark: It is very important to note here that poor choices of parameters

Mmin and ϕ may render the proposed method very inefficient in certain situa-

tions. If Mmin is not large enough, then the finite difference derivatives could be

inaccurate, which could lead to inaccurate use of the cubic spline interpolation,

particularly if the tolerance ϕ is too high. If the cubic spline interpolated value

at a sparse grid point is erroneous as a result of these poorly chosen parame-

ters, then one of two undesirable scenarios could occur. First, the hierarchical

surplus error at that point could appear to be larger than the tolerance when

in reality it is not, which would direct the algorithm to add new and unneces-

sary sampling points around that point. Second, the hierarchical surplus error

at the point could appear to be smaller than the tolerance when in reality it

is not. This would direct the algorithm to add sampling points further away

from this point, potentially missing local variations in the response function

near this point and reducing the accuracy of the results. If these scenarios

are encountered quite often in a particular surrogate modeling procedure, then

the performance of the proposed method will be worse than the ASGC method

both in terms of the error and the number of function evaluations at a particu-

lar sparse grid level.
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2.3.4 Convergence and accuracy of the proposed

efficient adaptive method

In the proposed adaptive method based on 1-D derivative estimation, the

accuracy depends heavily on the minimum number of points Mmin chosen for

the storage and retrieval of points for cubic spline interpolation.

∥uqasgc − uqe−asgc∥∞ ≤ ϵ1Na (2.24)

where ϵ1 ≤ 5
384

||uq(4)asgc||∞h4 is the interpolation error [115] which decreases with

increase in Mmin, h is the maximum knot spacing and Na are the points where

full model evaluations are performed in the ASGC [84] sparse grid but are

interpolated in the E-ASGC sparse grid. In the interpolation error expression,

(.)(4) denotes the fourth order derivative.

Now, the interpolation error [84] between the adaptive sparse grid and the

conventional sparse grid is given by:

∥uqcsc − uqasgc∥∞ ≤ ϵ2Nb (2.25)

where Nb are the points in the conventional sparse grid but missing in the

adaptive sparse grid subset due to the hierarchical surplus based adaptivity.
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The interpolation error of the conventional sparse grid [106] is given by:

∥u− uqcsc∥∞ = O(N−2
t |log2Nt|3(d−1)) (2.26)

where Nt= total number of interpolation points at interpolation depth q in d-

dimensional stochastic space.

Thus the approximate bound of the total error using the proposed method is:

∥u− uqe−asgc∥∞ = ∥u− uqcsc + uqcsc − uqasgc + uqasgc − uqe−asgc∥∞

≤ ∥u− uqcsc∥∞ + ∥uqcsc − uqasgc∥∞ + ∥uqasgc − uqe−asgc∥∞ (2.27)

It is worth mentioning that Mmin should be chosen such that ϵ1 < ϵ2.

2.4 Numerical Examples

In this section, results are shown for explicit functions as well as implicit

functional variations in different dimensions. All examples compare the adap-

tive sparse grid interpolation [84] and the proposed efficient adaptive sparse

grid collocation method (E-ASGC). The first two examples studies 2-dimensional

analytic functions to assess the effectiveness of the proposed method. The third

example considers a family of 5-dimensional analytic functions. In the next

example, a 1-dimensional Kraichnan-Orszag problem is considered to demon-
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strate the performance of the E-ASGC method. After that, a spatial one-

dimensional elliptic problem with high-dimensional stochasticity is used to

compare the performance of the different methods. The next example deals

with an indeterminate truss structure with variable cross-sectional areas of its

members. In the last example, a 2-D composite unit cell model with interface

damage is considered.

2.4.1 Function with C1 discontinuity

We consider the function in [0, 1]2 as mentioned in [84]

f(x, y) =
1

|0.3− x2 − y2|+ 0.1
(2.28)

The exact function is plotted in figure 2.4a and it is seen that there is a line

discontinuity which is not along any of the two dimensions. It is also observed

that away from the discontinuities, the function is quite smooth which is suited

for higher order interpolation. The proposed derivative based approach aims

to utilize this feature of the function. The approximate function obtained from

the E-ASGC algorithm at the interpolation depth 19 is shown in figure 2.4b.

The sampling points for the existing ASGC algorithm are shown in figure 2.4c

while those of the E-ASGC method are shown in figure 2.4d. It can seen from

the plots that the E-ASGC approach effectively approximates the smooth re-
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Figure 2.4: Performance comparison of 2-D ine singularity function f(x,y): (a)
Exact 2-D line singularity function; (b) Approximate function from E-ASGC;
(c) ASGC sampling points (16,659); (d) E-ASGC sampling points (7,149); (e)
Maximum Absolute error convergence plot comparing conventional stochastic
collocation (CSC), adaptive sparse grid subset collocation (ASGC) and efficient
adaptive sparse grid collocation (E-ASGC); (f) Root Mean Squared Error con-
vergence plot
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gions of the input domain, with significantly fewer full model evaluations in

those regions. Figures 2.4e and 2.4f shows the error convergence plots for the

conventional sparse grid collocation (CSC), ASGC and E-ASGC methods. It

is seen that the E-ASGC method clearly outperforms both the ASGC and the

CSC methods. As a comparison, for a maximum absolute error of 0.0334, the

E-ASGC method requires 7,149 function evaluations while the ASGC method

requires 16,659 function evaluations. Thus the E-ASGC method reduces sam-

pling by more than a factor of 2 relative to the ASGC method. The CSC method

has the worst performance with a total of 32,769 function evaluations required

for a maximum absolute error of 0.5824.

2.4.2 Function with C0 discontinuity

In this section, a 2-dimensional C0-discontinuous function is considered to

study the performance of the E-ASGC method with respect to the ASGC and

the CSC approach. We consider the function in [0, 1]2 as mentioned in [112]

f(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x ≥ 0.5 or y ≥ 0.5,

sin(πx) sin(πy), otherwise

(2.29)

The exact function is plotted in figure 2.5a and it is seen that there is a jump

discontinuity in both dimensions. It is also observed that away from the discon-
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Figure 2.5: Performance comparison of 2-D discontinuous function f(x,y): (a)
Exact 2-D discontinuous function; (b) Approximate function from E-ASGC; (c)
ASGC sampling points (1,531); (d) E-ASGC sampling points (463); (e) Maxi-
mum Absolute error convergence plot comparing conventional stochastic col-
location (CSC), adaptive sparse grid subset collocation (ASGC) and efficient
adaptive sparse grid collocation (E-ASGC); (f) Root Mean Squared Error con-
vergence plot
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tinuities, the function is smooth and in fact has a constant value of 0 in most

parts of the domain. The gradient based approach aims to capitalize on these

smooth features of the function.

The approximate function obtained from the E-ASGC algorithm at the in-

terpolation depth 16 is shown in figure 2.5b. The input domain for the existing

ASGC algorithm and the E-ASGC method are shown in figures 2.5c and 2.5d

respectively. From the input domain plots, it is observed that the total number

of full model evaluations is effectively reduced by using the E-ASGC method

compared to the ASGC method. This is clear from figures 2.5e and 2.5f which

shows the maximum absolute error and root mean squared error convergence

plots for the conventional sparse grid collocation (CSC), ASGC and E-ASGC

methods. The effectiveness of the E-ASGC method relative to the ASGC and

the CSC methods is evident. For an interpolation depth of 16, the maximum

absolute error from the E-ASGC method is 6.8499x10−4 with 463 function eval-

uations while the ASGC method requires 1,531 function evaluations for the

same level of accuracy. Thus the E-ASGC method reduces sampling by more

than a factor of 4 relative to the ASGC method. On the other hand, the CSC

method does not seem to converge at all with 13,317 function evaluations for a

maximum absolute error of 0.8432.
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2.4.3 5 dimensional functions

The 5-dimensional family of functions are taken from Genz [116]. They were

primarily used to assess the efficiency of numerical integration algorithms. The

functions defined on x ∈ [0, 1]5 are described [106] as follows:

Oscillatory function:

f1(x) = cos(2πw1 +
5∑

i=1

cixi) (2.30)

where w1 and ci : i = 1, 2, ....5 are constants.

Corner Peak Function:

f2(x) = (1 +
5∑

i=1

cixi)
−6 (2.31)

where ci : i = 1, 2, ....5 are constants.

Discontinuous function:

f3(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x1 ≥ w1 or x2 ≥ w2,

exp(
∑5

i=1 cixi), otherwise

where w1, w2 and ci : i = 1, 2, ....5 are constants.

Convergence plots of the maximum absolute error for the E-ASGC method

is compared with that of the conventional sparse grid method and the ASGC

method for all the three functions, shown in figure 2.6. These results show that

the E-ASGC and ASGC are at least as efficient as the CSC method in all the

cases and they perform significantly better for the corner peak and discontinu-
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Figure 2.6: Error estimation for different 5 dimensional analytic functions
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ous functions. E-ASGC reduces the required samples from ASGC somewhat in

all the three cases.

2.4.4 Kraichnan-Orszag problem

The Kraichnan-Orszag three mode problem [117, 118] is related to the tur-

bulence modeling of three interacting simple shear waves. It is defined by the

following coupled system of nonlinear ODEs:

dx1
dt

= x2x3

dx2
dt

= x1x3 (2.32)

dx3
dt

= −2x1x3

subjected to initial conditions:

x1(0) = X1(0;w), x2(0) = X2(0;w) and x3(0) = X3(0;w)

For fixed initial conditions, the deterministic solutions are generally periodic.

However, if the initial conditions are on and around the planes x1 = x2 and

x1 = −x2, the period goes to infinity giving rise to discontinuity in the response

surfaces. Thus the variations in the solutions are very sharp around these

planes and need to be tracked down.
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To simplify things, the following transformation is performed [15]:

y = Tx (2.33)

where

T =

⎡⎢⎢⎢⎢⎢⎢⎣
1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎢⎢⎣
y1

y2

y3

⎤⎥⎥⎥⎥⎥⎥⎦ and x =

⎡⎢⎢⎢⎢⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎦
Thus the deterministic solutions rotate by π

4
around the x3 axis in the x1 − x2

plane. The result of this transformation is that the planes defined by x1 = x2

and x1 = −x2 are now the y1 = 0 and y2 = 0 planes respectively. This leads to

the new system formulation:

dy1
dt

= y1y3

dy2
dt

= −y2y3 (2.34)

dy3
dt

= −y21 + y22

subjected to initial conditions

y1(0) = Y1(0;w), y2(0) = Y2(0;w) and y3(0) = Y3(0;w)

The goal is to assess the variation of the solutions y1, y2 and y3 with different

initial conditions and form the corresponding response surfaces. After trans-

formation, discontinuity now occurs around the planes y1 = 0 and y2 = 0. The
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(a) time t=1

(b) time t=10

(c) time t=20

(d) time t=30

Figure 2.7: Variation of y1, y2 and y3 with random variable Y at different times
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initial conditions are chosen to be uniformly random in the range [−1, 1]. The

coupled system of differential equations with a fixed set of initial conditions

was solved using the Matlab in-built differential equation solver ‘ode15s’ using

a time step of 0.01.

Table 2.1: Comparison of error values for the 1D K-O problem

Error ASGC E-ASGC Maximum error
tolerance Samples Samples of variance

10−2 425 393 2.34×10−4

10−3 1381 1066 2.08×10−5

2.4.4.1 One-dimensional randomness

For this case, the initial conditions are given as:

y1(0) = 1.0, y2(0) = 0.1Y (0;w) and y3(0) = 0

The development of variance of y1, y2 and y3 with time is the output we are

interested in. The time interval chosen was of the range [0, 30]. Quasi Monte

Carlo sampling using Sobol sequences were used to generate 106 points for Y

in [−1, 1]. The variance evolution obtained using these points are considered as

the ‘ground truth’ solution. Results using the adaptive sparse grid subset collo-

cation and the gradient based sparse grid collocation are compared against this

‘exact’ solution for error estimation. With progress in time, the discontinuity

around y2(0) = 0 will make the output (y1, y2, y3) variation more and more dras-
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tic with variations in y2(0) as shown in figure 2.7. So the error check at the end

of the time interval will ensure that the errors in previous time steps maintain

the desired accuracy. The evolution of the variance of the the outputs y1, y2 and

y3 within the time interval [0, 30] is shown in figure 2.8. The maximum error of

the variance of y1, y2 and y3 defined as maxi=1,2,3|Var(yi)−Var(yi,sobol)|, at t = 30

and for a certain error tolerance, is shown in table 2.1, where Var(yi) corre-

sponds to the variance obtained from either the ASGC or the E-ASGC method,

and Var(yi,sobol) is the variance calculated from the Sobol samples.

2.4.5 Spatial 1-D Poisson Equation

This problem deals with a random process, making it an infinite-dimensional

stochastic problem. The model problem is given by:

−▽(κ(x, ω)▽u(x, ω)) = f(x) (2.35)

u(0, ω) = u(1, ω) = 0 (2.36)

f(x) = 2x (2.37)
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Figure 2.8: Variance of y1, y2 and y3 for 1D K-O Problem
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The diffusion coefficient κ(x, ω) is represented by a random process [110] and

is approximated as a finite-dimensional random quantity by:

log(κ(x, ω)− 0.5) ≈ 1 + Y1(ω)(

√
πL

2
)1/2 +

N∑
i=2

ξnϕn(x)Yn(ω) (2.38)

where,

ξn = (
√
πL)1/2 exp(

−(⌊n
2
⌋πL)2

8
), if n > 1 (2.39)

and

ϕn(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin(

⌊n
2
⌋πx
Lp

), if n is even,

cos(
⌊n
2
⌋πx
Lp

), if n is odd

where Yn(ω) {n = 1, 2, 3......N} are independent random variables which are

uniformly distributed in [0, 1], Lp = max[1, 2Lc], L = Lc

Lp
, where Lc is the correla-

tion length of the random process.

A high value of correlation length implies that the eigenvalues decay fast

and the first few dimensions are of more importance than the rest of the dimen-

sions. To make this method self-sufficient for error estimation, the error for the

mean between consecutive levels is given by E(Aq,N(uN))−E(Aq,N+1(uN)) which

progressively converges to the target precision. Similarly the error in variance

is given by V ar(Aq,N(uN))−V ar(Aq,N+1(uN)). The convergence in the mean and

variance for this problem using the efficient adaptive sparse grid collocation
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Figure 2.9: Error in Mean and Variance for different dimensions in the spatial
1-D stochastic elliptic problem
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(E-ASGC) method is shown and compared with the ASGC method in figure

2.9. The results show that for relatively low accuracy, the ASGC and E-ASGC

have the same efficiency in all the four cases. With increase in the accuracy,

it is seen that the E-ASGC performs more efficiently than the ASGC approach

although the efficiency seems to decrease with increase in the dimensionality

of the problem from N = 10 to N = 100.

2.4.6 Truss problem

We consider the 2D truss structure shown in figure 2.10a. It is assumed

that all of the elements have the same modulus, E. The lengths of the vertical

elements, horizontal elements and the diagonal elements are
√
3L, L and 2L

respectively. The truss is statically indeterminate to the first degree and is an-

alyzed using the stiffness method. The uncertainty lies in the cross-sectional

area of the truss members. The variations in the cross-sectional area of the

members are such that for certain combinations of the areas, the force in mem-

ber 5 exceeds its critical buckling load. It is then considered to have failed and

carries no load. In that scenario, the truss effectively converts to that shown

in figure 2.10b. The output of interest of this problem is the force in member

4 under the given loads, as a function of the member cross-sectional areas. If

member 5 fails, it leads to a discontinuous increase in the force in member 4.

The indeterminate truss structure and the determinate structure without the
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Figure 2.10: Truss structures with and without member 5

diagonal cross-brace member 5 are shown in figure 2.10. Node C in the truss

structure is subjected to a vertical load
√
3P acting downwards and a horizontal

load P to the left.

2.4.6.1 2-dimensional random input

In this section, the diagonal members 2 and 5 are assumed to have random

cross-sectional areas, subject to the uniform distributions A2 ∼ U(3, 9) cm2 and

A5 ∼ U(3, 9) cm2. The input parameters given in table 2.2. The true variation in

the output of interest is shown in figure 2.11a. The surrogate response surface

generated by the E-ASGC approach is shown in figure 2.11b. The correspond-

ing contour plots are shown in figures 2.11c and 2.11d respectively. Figure

2.12a shows how the input domain is sampled using the E-ASGC method. The

E-ASGC method is compared with the ASGC method in the convergence plot
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Figure 2.11: 2 dimensional truss problem output

Table 2.2: Parameter values for the 2D truss problem

Members Young’s Modulus(E,GPa) Area (A,cm2) Length(m)

1 200 6 2
√
3

2 200 U(3,9) 4
3 200 6 2

4 200 6 2
√
3

5 200 U(3,9) 4
6 200 6 2
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Figure 2.12: Input Domain and Convergence plot for 2 dimensional truss prob-
lem

of the root mean square error shown in figure 2.12b. The E-ASGC method

clearly outperforms the ASGC method especially when the accuracy level is

higher. For a root mean square error of 0.0053, the E-ASGC method requires

6,135 function evaluations while the ASGC method requires 12,008 function

evaluations, thus reducing the sampling by almost a relative factor of 2.

2.4.6.2 3-dimensional random input

In this section, truss members 1, 3 and 5 are assumed to have random cross-

sectional areas. The cross-section of the diagonal elements 5 is subject to the

uniform distribution A5 ∼ U(3, 9) cm2 while the horizontal and vertical mem-

bers 1 and 3 have cross-sectional areas all subject to uniform distributions A1

∼ U(5.5,6.5) cm2 and A3 ∼ U(5.5,6.5) cm2 respectively. The input parameters are
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given in table 2.3.

Table 2.3: Parameter values for the 3D truss problem

Members Young’s Modulus(E,GPa) Area (A,cm2) Length(m)

1 200 U(5.5,6.5) 2
√
3

2 200 6 4
3 200 U(5.5,6.5) 2

4 200 6 2
√
3

5 200 U(3,9) 4
6 200 6 2
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Figure 2.13: Root Mean Squared Error convergence plot for 3 dimensional truss
problem

Here, the E-ASGC method is again compared with the ASGC method in the

convergence plot of the root mean square error shown in figure 2.13. It is seen

that with increase in accuracy, the efficiency of the E-ASGC method relative to

the ASGC method also increases. For a root mean square error of 0.0580, the

E-ASGC method requires 47, 364 function evaluations while the ASGC method

requires 154, 677 function evaluations, thus reducing the sampling by a relative
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factor of around 3.

2.4.7 Application to composite materials

After demonstrating the efficiency of the E-ASGC method in the previous

section, the method is now applied to a composite material model in this sec-

tion. A 2-D unidirectional fiber-reinforced composite model with quarter sym-

metry under bi-axial tension is considered as shown in figure 2.14a. The model

consists of a S-2 glass/Epoxy fiber-matrix system where the interface between

the fiber and the matrix is modeled using a bi-linear traction separation law.

Let the displacement loads in the x and y directions be denoted by δx and δy re-

spectively. The independent parameters of the interface damage model are the

displacement to failure df , the displacement to damage initiation di, and the

interface stiffness K. The cohesive strength is a dependent parameter given by

σmax = Kdi. The traction-separation curve is shown in figure 2.14b. The output

of interest here is the total expended energy under the given input displace-

ment load.

Table 2.4: Parameter values for the 2-parameter composite unit cell problem

Parameter Values

Fiber Modulus [GPa] 87
Matrix Modulus [GPa] 3.2
Fiber Poisson’s ratio 0.2

Matrix Poisson’s ratio 0.35
Volume Fraction 0.6

Parameter Values

K [N/mm2] [104, 106]
df [mm] [10−3, 10−2]
di/df 0.01

δx=δy [mm] 0.005
Edge length [mm] 2.288
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Figure 2.14: 2-D composite unit cell with interface damage

2.4.7.1 Stochastic problem with 2 random parameters

In this study, two of the interface damage law parameters, namely the in-

terface stiffness (K) and the displacement to failure(df ) are considered random

in nature. The aim is to then to capture the variation of the energy response

relative to these two parameters with as few full model evaluations as possible.

The commercial FEM software ABAQUS [119] is used to solve the model with

the in-built interface damage model. The parameters and their corresponding

values are listed in table 2.4. The input domain of points obtained from the

ASGC and the E-ASGC methods are shown in figures 2.15a and 2.15b respec-

tively. Figure 2.15c shows the maximum absolute error converge plots while

figure 2.15d shows the root mean squared error convergence plots. It is evident

from the convergence plots that the efficiency of the two methods are almost

equal in this case, although the E-ASGC method proves to be slightly more

efficient at higher accuracy levels. It is, however, worth mentioning that that
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even a small reduction in the number of expensive FE simulations can result

in a huge gain in the overall computational cost. The exact energy response

surface is shown in figure 2.16a, while the corresponding approximate energy

surface generated by the E-ASGC method with only 139 FEM model evalua-

tions is shown in figure 2.16b.

0 2 4 6 8 10
Interface Stiffness (N/mm2) ×105

1

2

3

4

5

6

7

8

9

10

D
is

pl
ac

em
en

t t
o 

fa
ilu

re
 (m

m
)

×10-3

(a) ASGC input domian (185
points)

0 2 4 6 8 10
Interface Stiffness (N/mm2) ×105

1

2

3

4

5

6

7

8

9

10

D
is

pl
ac

em
en

t t
o 

fa
ilu

re
 (m

m
)

×10-3

(b) E-ASGC input domain (139
points)

100 101 102

Number of full model evaluations

101

102

103

M
ax

im
um

 A
bs

ol
ut

e 
E

rr
or

E-ASGC

ASGC

(c) Maximum Absolute Error con-
vergence plot

100 101 102

Number of full model evaluations

100

101

102

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

E-ASGC

ASGC

(d) Root Mean Squared Error con-
vergence plot

Figure 2.15: Performance of E-ASGC method for the composite unit cell model
with interface damage
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Figure 2.16: Comparison of the exact energy function and the E-ASGC surro-
gate energy response surface with 139 points

2.5 Conclusions

An efficient adaptive sparse grid approach through derivative estimation is

developed which is based on the adaptive sparse grid subset collocation method

(ASGC) [84], which achieves faster convergence in the case of response func-

tions that exhibit highly localized variations (such as discontinuities) in some

regions and gradual variations in other regions of the stochastic input domain.

The approach is significantly more efficient than the conventional sparse grid

approaches. It is at least as efficient as the adaptive sparse grid subset collo-

cation approach (ASGC), with up to two-fold increase in efficiency, depending

on the nature of the response surface. If the response surface has many sharp

variations, then the 1-D cubic spline interpolation cannot be suitably imple-

mented and the efficiency reduces to that of the adaptive sparse grid subset
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approach. Also with increase in dimensions, the effectiveness relative to the

ASGC method may decrease as the polynomial interpolations cover less space

in the high-dimensional domain, given the control parameters remain the same

as in the lower dimensional case. However, it is worth mentioning that given a

complex deterministic model, any reduction in full model evaluations can be a

significant contribution towards reducing computational cost.
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Stochastic collocation approach

with adaptive mesh refinement

for parametric uncertainty

analysis

The E-ASGC method proposed in the previous chapter uses piece-wise lin-

ear basis functions and lacks a dimension reduction scheme. In this chapter,

in order to alleviate the shortcomings of the E-ASGC method, we propose a

stochastic collocation method with adaptive mesh refinement (SCAMR) to deal

with high dimensional stochastic systems with discontinuities. Specifically,

SCAMR is a multi-element non-intrusive second-order PCE method, which
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uses generalized polynomial chaos (gPC) expansion with Legendre polynomial

basis and solves for the gPC coefficients using the least squares method. It also

implements an adaptive mesh (element) refinement strategy which checks for

abrupt variations in the output based on a low-order gPC approximation error

to track discontinuities or non-smoothness. In addition, the proposed method

involves a criterion for checking possible dimensionality reduction and conse-

quently, the decomposition of the original high-dimensional problem to a num-

ber of lower-dimensional subproblems. Specifically, this criterion checks all

the existing interactions between input parameters of a specific problem based

on the high-dimensional model representation (HDMR) method, and therefore

automatically provides the subproblems which only involve interacting input

parameters. The efficiency of the approach is demonstrated using examples of

both smooth and non-smooth problems with number of input parameters up

to 500, and the approach is compared against other existing algorithms. It is

worth noting here that the ‘stochastic collocation’ term used in the SCAMR al-

gorithm refers to the general class of methods where any suitable surrogate

model (interpolation or regression based) is applied to points (structured or

unstructured) sampled in the input parameter space to generate a surrogate

function [6]. This is different from the usage of the term stochastic collocation

in some literature [22,120] where stochastic collocation specifically refers to an

interpolation approach on structured grids using Lagrange polynomials. This
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chapter is adapted from reference [121].

3.1 Introduction

One of the main aspects of uncertainty quantification (UQ) is uncertainty

propagation, also called forward UQ. It aims to quantify uncertainty in the

model outputs that results from uncertainty in the model inputs, which are

usually represented using random variables with an associated probability dis-

tribution. The goal is therefore to estimate the response function, probability

density function (PDF) or statistical moments for the model outputs efficiently.

Several efficient forward UQ methods exist in the current literature. Poly-

nomial chaos expansion (PCE) type approaches are one such class of meth-

ods. A brief overview about different intrusive and non-intrusive PCE meth-

ods has already been discussed in chapter 2 (section 2.1). In this section, we

mostly review existing PCE approaches which employ schemes to tackle high-

dimensional non-smooth problems and try to motivate the work presented in

this chapter.

To deal with non-smooth problems (functions), multi-element schemes have

been proposed for both intrusive and non-intrusive methods. Wan and Karni-

adakis [15] developed a multi-element generalized polynomial chaos (MEgPC)

scheme based on the stochastic Galerkin method to handle the issue of disconti-
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nuities in the output and long-term integration of stochastic differential equa-

tions. This approach adaptively splits the actual input domain into smaller

subdomains by calculating the relative error in variance along each parame-

ter and maintaining a relatively low polynomial order (less than 10) in critical

subdomains. However, as an intrusive approach, it requires modification of

the deterministic simulation code. Foo et al. [111] introduced the non-intrusive

multi-element probabilistic collocation method (MEPCM) with Lagrange poly-

nomial basis to efficiently treat problems (functions) characterized by strong

non-linearities or discontinuities and long-term integration. The criterion for

adaptively splitting the input domain is similar to that in the MEgPC scheme.

Both the Galerkin and collocation versions of the multi-element gPC scheme

are still dimension-dependent, since both the number of subdomains and the

number of terms in the gPC expansion increase rapidly with the increase in di-

mensionality of the stochastic input domain. To mitigate the issue of high com-

putational cost associated with the element decomposition in high-dimensional

problems (functions), Foo and Karniadakis [122] developed the MEPCM-A ap-

proach, which combines the MEPCM with the high dimensional model repre-

sentation (HDMR) [123]. The HDMR represents a high-dimensional function

as a hierarchical additive combination of lower-dimensional component func-

tions starting from one dimension to full dimension. A way to estimate the

component functions is to use the cut-HDMR approach [124]. In the MEPCM-A
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approach, a high-dimensional stochastic problem (function) is reduced to a se-

ries of lower-dimensional subproblems (subfunctions) by truncating the terms

in the HDMR up to a certain dimensionality, ν, followed by the application of

the MEPCM approach to each of these subproblems (subfunctions) with max-

imum dimensionality ν. Parameter ν is generally chosen to be small enough

compared to the high dimensionality of the original problem (function) such

that mesh (element) refinement is not computationally prohibitive. Another

important parameter in the MEPCM implementation is the number of points,

µ, in the interpolation rule. Parameters ν and µ are pre-fixed without regard to

the actual order of interaction among the input parameters. For problems with

high nominal dimensions but low effective dimensions (i.e. only a few input

parameters strongly influence the output), the method proves to be efficient.

However, the choice of a proper value for ν of the subproblems (subfunctions)

needs more exploration. In addition, once ν is prescribed, all the interaction

terms up to order ν in the HDMR are considered. Consequently, for complex

systems with strong interactions among input parameters, ν may be chosen to

be large for satisfactory error estimates and thus the number as well as the

dimensionality of the subproblems (subfunctions) could become prohibitively

large. Even with a small value of ν, the number of interaction terms can be-

come very large for very high-dimensional problems (functions). Moreover, the

model output may not be sensitive to some interaction terms with order upto ν,
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and thus a significant number of unnecessary subproblems (subfunctions) are

considered which increases the computational cost.

Other efficient multi-element methods have been developed based upon

edge detection. For example, Archibald et al. [125] have applied the polyno-

mial annihilation edge detection method to high dimensional functions with

discontinuities. Jakeman et al. [126] have combined high-order polynomial

annihilation and adaptive sparse grids to decompose the input domain into

smaller elements governed by the location of discontinuities. Gorodetsky and

Marzouk [127] have used polynomial annihilation to label different regions in

the input domain and implemented kernel support vector machines to repre-

sent the region separating surface which gets updated by active learning.

Approaches [12,100,105,106] based on local bases have also been proposed

to deal with non-smoothness in the output. Ma and Zabaras [84] developed the

adaptive sparse grid collocation (ASGC) method (for more details, see section

2.3.2) which incorporates an adaptive strategy enabling a local sparse grid re-

finement around the discontinuity region. To tackle high-dimensional stochas-

tic problems (functions), Ma and Zabaras [128] combined a dimension-adaptive

version of HDMR with ASGC (HDMR-ASGC). Initially, the importance of the

component functions in HDMR are estimated through a weight measure which

is expressed as the integral value of a component function of certain order with

respect to the sum of the integral values of all lower-order component func-
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tions. Component functions with weight measures higher than a predefined

error threshold are the ones considered important. ASGC is then applied to

each of the lower-dimensional subproblems (subfunctions) corresponding to the

important component functions. The error indicator used in HDMR-ASGC is a

function of the integral value of the basis function as well as the hierarchical

surplus. It is different from the original ASGC approach [84] which uses only

the surplus value as the error indicator.

In this chapter, we propose a method of stochastic collocation with adaptive

mesh refinement (SCAMR). Specifically, the proposed approach uses general-

ized polynomial chaos (gPC) expansion with Legendre polynomial basis and

solves for the gPC coefficients using the least squares method. It also imple-

ments an adaptive mesh (element) refinement strategy to track any disconti-

nuities or non-smoothness in the output. The adaptive criteria associated with

the mesh refinement strategy check for abrupt variations in the output based

on the observed error from a low-order gPC approximation. SCAMR further

introduces a criterion for possible dimensionality reduction, allowing for de-

composition of the original high-dimensional problem (function) to a number

of lower-dimensional subproblems (subfunctions). This criterion checks all the

existing interactions between input parameters of a specific problem (function)

based on HDMR, and consequently provides the subproblems (subfunctions)

which only involve interacting parameters.
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This chapter is organized as follows: section 3.2 presents the general frame-

work for a stochastic problem. In section 3.3, we discuss the proposed method

of stochastic collocation with adaptive mesh refinement in detail. In section

3.4, we demonstrate the effectiveness and efficiency of the proposed approach

using various numerical examples compared to the ASGC, the HDMR-ASGC

as well as the MEPCM-A approach. We finally conclude the chapter with a

discussion in section 3.5.

3.2 Problem definition

Let the triplet (Ω,F ,P) represent a complete probability space, where Ω

corresponds to the sample space of outcomes, F ⊂ 2Ω is the σ-algebra of mea-

surable events in Ω, and P : F → [0, 1] is the probability measure. Let ξ =⟨
ξ1(ω), ξ2(ω), . . . , ξn(ω)

⟩
: Ω → Ξ ∈ Rn be a vector of n independent random pa-

rameters, which characterize the uncertainty in the system. In the current

work, we assume that the random parameters ξi follow a uniform distribu-

tion with a constant PDF p(ξ) = ρξ; ξ ∈ [a1, b1] × [a2, b2] × .... × [an, bn]. Let

x ∈ D ⊂ Rd (d ∈ {1, 2, 3}) be the spatial variable, and t ∈ (0, T ] (T > 0) be the

temporal variable.
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Consider a general partial differential equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t, ξ) = L(u;x, t, ξ), D × (0, T ]× Ξ

B(u;x, t, ξ) = 0, ∂D × [0, T ]× Ξ,

u = u0, D̄ × {t = 0} × Ξ,

(3.1)

where B is the operator for the boundary conditions, L is the differential opera-

tor, D is the spatial domain, and u = u0 is the initial condition. The problem is

assumed to be well-posed in input domain Ξ. The model output u(x, t, ξ) is the

quantity of our interest. For the convenience of notation, we do not consider

the dependence of solution on the spatial and time variables x and t, and only

discuss the problem for any fixed x ∈ D and t ∈ (0, T ]. As mentioned in [129],

this is standard in the UQ literature. Our goal is to quantify the uncertainty in

the quantity of interest u(·, ξ) : Ξ → R, due to the uncertainty in the parameter

vector ξ. Without loss of generality, we consider scalar model output.

3.3 SCAMR approach

In this section, we propose a stochastic collocation method with adaptive

mesh refinement (SCAMR). Specifically, SCAMR adopts a mesh refinement

scheme with a proposed criteria that checks for discontinuities or abrupt vari-

ations in the response function, as well as interactions between different input
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parameters. Details are provided in the following subsections.

3.3.1 Non-intrusive gPC based Stochastic Collo-

cation

Let u(ξ) ∈ L2(Ξ) be a square-integrable function of the n-dimensional ran-

dom vector ξ which can be represented using the generalized polynomial chaos

expansion as

u(ξ(ω)) =
∞∑
i=0

ûiΦi(ξ(ω)), (3.2)

where ûi are the gPC coefficients and Φi are the Legendre polynomials for uni-

form ξ [9].

For numerical calculations, the series is truncated to N +1 terms to approx-

imate the exact output u(ξ(ω)) with polynomial order p and is given by

up(ξ(ω)) =
N∑
i=0

ûiΦi(ξ(ω)), N + 1 =
(n+ p)!

n!p!
, (3.3)

where

ûi =
1

E[Φ2
i ]

∫
Ξ

u(ξ)Φi(ξ)ρ(ξ)dξ. (3.4)

With collocation methods, the gPC coefficients ûi can be obtained using discrete
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projection as

ûi =
1

E[Φ2
i ]

M∑
j=1

u(ξj)Φi(ξ
j)αj, i = 0, 1, . . . , N, (3.5)

where {ξj, αj}Mj=1 are sets of quadrature points and their corresponding weights.

Another collocation method for estimating the gPC coefficients utilizes in-

terpolation on the pairs {ξj, u(ξj)}N+1
j=1 . The gPC coefficient vector û =

⟨
û0, . . . , ûN

⟩
is estimated by solving the following linear system:

N∑
i=0

ûiΦi(ξ
j) = u(ξj),∀j = 1, 2, . . . , N + 1.

The interpolation method may not produce a proper approximation if u(ξj) is

corrupted by observational or measurement errors. The projection method, on

the other hand, produces the best approximation in the weighted L2 norm [6].

However, the quadrature nodes used in the discrete projection method have

restrictions, such as the structure of the nodes and the number of the nodes.

To allow more flexibility, in terms of the location and the number of nodes,

we estimate the vector of gPC coefficients by solving the following least squares

problem using a set of M ( > N + 1) points:

û = argmin
ũ

∥
N∑
i=0

ũiΦi(ξ)− u(ξ)∥2 (3.6)
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where ũ =
⟨
ũ0, ũ1, . . . , ũN

⟩
is an arbitrary gPC coefficient vector which con-

verges to the desired vector û =
⟨
û0, û1, . . . , ûN

⟩
through the minimization in

Eq. (3.6). Consequently, the approximated output up is estimated using Eq.

(3.3). It is to be noted here that the set of M points may have an unstructured

arrangement in the input domain.

3.3.2 Decomposition of input domain

In this section, we introduce the standard decomposition method for a stochas-

tic input domain, where the L2 error of the global approximation has been

proven to be bounded by the local L2 error approximations in the elements [15].

We assume a hypercube input domain in our present work. Without the loss

of generality, we consider the original stochastic input domain as Ξ = [−1, 1]n.

It is then decomposed into ne non-overlapping and space-filling elements Ξk:

∪ne
k=1Ξk = Ξ, Ξm ∩ Ξk = ∅ for m ̸= k and m, k ∈ {1, 2, . . . , ne}. If aki and bki de-

note the minimum and maximum bounds of element Ξk along i-th parameter

(1 ≤ i ≤ n), Ξk is the tensor product given by

Ξk = [ak1, b
k
1)× [ak2, b

k
2)× ..........× [akn, b

k
n). (3.7)

Let the local input parameter vector in each element be defined as ξk =⟨
ξk1 , ξ

k
2 , . . . , ξ

k
n

⟩
. For the purpose of applying the gPC formulation on each ele-
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ment locally, the local parameter vector can be transformed to a new parameter

vector η ∈ [−1, 1]n such that η = Fk(ξ
k) =

⟨
η1, η2, . . . , ηn

⟩
. The transformation

is a simple scaling relationship between the [−1, 1]n domain and the particular

Ξk domain:

Fk : ηi = −1 +
2

bki − aki
(ξki − aki ), ∀i = 1, 2, ..., n (3.8)

3.3.3 Adaptive criteria

The SCAMR algorithm uses adaptive approaches for two purposes: detec-

tion of abrupt variations in the response function for non-smoothness and re-

duction of the high-dimensional input domain to a group of lower-dimensional

input domains. Each of these are described in the following subsections.

3.3.3.1 Criterion for detecting abrupt variation

in 1-dimension

In the current work, we propose to use low-order Legendre polynomials to

efficiently approximate any general response function with local abruptness or

discontinuities. In any domain where the function deviates significantly from

the polynomial approximation, we decompose the domain further. Specifically,

we consider the output variation along the centerline (straight line passing

through the center of the domain) along each parameter one at a time with the
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rest of the parameters fixed at their midpoints. For example, let Γ be a given

n-dimensional domain (element) such that Γ = [a1, b1) × [a2, b2) × ..... × [an, bn).

For the i-th parameter, let z =
⟨
z1, . . . , zm

⟩
be a vector of m Chebyshev points of

depth level l in the range [ai, bi) such that m = 2l + 1. In this study, depth level

l = 2 is taken and hence m = 5. Then the array of input points along the center-

line in the i-th parameter is ξ(i) =
⟨
ξ
(i)
1 , ξ

(i)
2 , . . . , ξ

(i)
m

⟩
, where each n-dimensional

point is ξ
(i)
j =

⟨
a1+b1

2
, . . . , ai−1+bi−1

2
, zj,

ai+1+bi+1

2
, . . . , an+bn

2

⟩
, ∀j ∈ {1, 2, . . . ,m}. Let

u(i) =
⟨
u
(i)
1 , u

(i)
2 , . . . , u

(i)
m

⟩
be the corresponding vector of m exact outputs and

u
(i)
p =

⟨
u
(i)
p,1, u

(i)
p,2, . . . , u

(i)
p,m

⟩
be the corresponding 1-D gPC approximation along

the i-th parameter for the current domain. The model output can then be rea-

sonably approximated as a p-th order polynomial if

∥u(i)
p − u(i)∥∞ < ϵ1, (3.9)

where ϵ1 is an error tolerance parameter. Criterion (3.9) is checked in succes-

sion with polynomial order p varying from 1 to pmax (pmax = 2 for non-smooth

functions and 3 for smooth functions in our present work) and if it is not satis-

fied for any order, the i-th parameter is considered critical. All the critical pa-

rameters are then stored in descending order of the error magnitude obtained

from criterion (3.9) and the domain is further decomposed along the center of

the two most critical parameters. The domain subdivision is repeated for every
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newly formed element until the stopping criteria are satisfied.

3.3.3.2 Criterion for dimensionality reduction

The second criterion helps in achieving dimensionality reduction. It decom-

poses the original high-dimensional problem (functions) to a number of lower-

dimensional subproblems (subfunctions) by identifying the absence of inter-

actions between input parameters with respect to the output of interest. It

is worth mentioning that non-interaction between any two input parameter

sets means that the parameter sets influence the output independent of each

other, i.e., they are additive. This criterion is checked at two levels and takes

advantage of the significant gains in computational efficiency by dealing with

lower-dimensional subfunctions.

First level criterion. At the first level, i-th parameter is assumed non-

interacting with others if

||u(i) − uc||∞ < ϵ1, (3.10)

where u(i) is the centerline output vector along the i-th parameter (introduced

earlier) and uc is the exact output value at the center point of the input domain

Ξ. By implementing this first level criterion, the n-dimensional problem (func-

tion) will be decomposed to one r-dimensional and n−r (r ≤ n) one-dimensional

problems, where the one-dimensional problems depend on the input parame-
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ters which do not interact with others.

Second level criterion. At the second level, we further decompose the r-

dimensional problem to a number of lower dimensional subproblems (subfunc-

tions) by verifying
(
r
2

)
pairwise parameter interactions in the r-dimensional do-

main. All higher order interactions between the input parameters are derived

from the pairwise interaction results. This second level criterion is derived

from the HDMR representation [124, 130] and the details are provided in the

following.

HDMR representation. Let f(Y ) = f(Y1, Y2, ...., Yn) be an n-dimensional

function. Following the notation in [128], the general expression of the High

Dimensional Model Representation (HDMR) for the function is given by

f(Y ) = f0 +
n∑

i=1

fi(Yi) +
∑

1≤i1<i2≤n

fi1i2(Yi1 , Yi2) + . . .

+
∑

1≤i1<..is≤n

fi1....is(Yi1 , ..., Yis) + ......+ f12...n(Y1, Y2, ...Yn) (3.11)

where f0 is a constant zeroth order function, fi() denotes a one-dimensional

function, fi1i2() is a two-dimensional function and so on.

As seen from Eq. (3.11), the HDMR breaks down the function f(Y ) into

individual contributions from all possible orders of interactions among the pa-

rameters. For example, fi(Yi) represents how input Yi influences f(Y ) keeping

the other input parameters fixed. The third term fi1i2(Yi1 , Yi2) represents the
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combined contribution of inputs Yi1 and Yi2 towards f(Y ) after their individual

contributions have been accounted for through fi(Yi). All parameters except

Yi1 and Yi2 are kept fixed in this case. Similarly, f12...n(Y1, Y2, ...Yn) denotes the

contribution of all input parameters taken together towards f(Y ) after having

accounted for all lower-dimensional subfunction contributions.

Cut-HDMR [131,132] is an efficient technique for estimating the component

functions in f(Y ) which involves evaluating f(Y ) on lines, planes and hyper-

planes (or cuts) passing through a cut center c which is a point in the input

domain. The choice of c is important as it influences the convergence of the

HDMR expansion. It has been shown [133] that a suitable choice of c can be

the mean vector of the input parameter ranges.

The component functions [134] are given by:

f0 = f(c) (3.12)

fi(Yi) = f(Yi, c
{i})− f0 ∀i ∈ {1, 2, . . . , n} (3.13)

fi1i2(Yi1 , Yi2) = f(Yi1 , Yi2 , c
{i1,i2})− fi1(Yi1)− fi2(Yi2)− f0, (3.14)
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∀i1, i2 ∈ {1, 2, . . . , n}, such that i1 < i2

fi1i2i3(Yi1 , Yi2 , Yi3) = f(Yi1 , Yi2 , Yi3 , c
{i1,i2,i3})− fi1i2(Yi1 , Yi2)− fi1i3(Yi1 , Yi3)

− fi2i3(Yi2 , Yi3)− fi1(Yi1)− fi2(Yi2)− fi3(Yi3)− f0, (3.15)

∀i1, i2, i3 ∈ {1, 2, . . . , n}, such that i1 < i2 < i3

...

f12...n(Y1, Y2, . . . , Yn) = f(Y )− f0 −
n∑

i=1

fi(Yi1)−
∑

1≤i1<i2≤n

fi1i2(Yi1 , Yi2)

− . . .−
∑

1≤i1<..in−1≤n

fi1...in−1(Yi1 , . . . , Yin−1) (3.16)

where c{i} = c\{Yi}, c{i1,i2} = c\{Yi1 , Yi2}, c{i1,i2,i3} = c\{Yi1 , Yi2 , Yi3}. For sets A

and B, A\B denotes a set with only those elements in A that are not included

in B.

Pairwise non-interaction criterion derivation. Using the HDMR represen-

tation, we will now derive the non-interaction criterion for dimensionality re-

duction. In the proposed method, we consider only pairwise interactions of

the input parameters. We thus concentrate on the 2-dimensional component

function given by Eq. (3.14). Combining Eq. (3.13) with Eq. (3.14), we can
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write,

fi1i2(Yi1 , Yi2) = f(Yi1 , Yi2 , c
{i1i2})− f(Yi1 , c

{i1})− f(Yi2 , c
{i2}) + f0 (3.17)

For a given error tolerance ϵ2, parameters with indices i1 and i2 can be con-

sidered non-interacting if the 2-dimensional component function fi1i2(Yi1 , Yi2) is

considered negligible, i.e., fi1i2(Yi1 , Yi2) ≤ ϵ2. This implies,

f(Yi1 , Yi2 , c
{i1,i2})− f(Yi1 , c

{i1})− f(Yi2 , c
{i2}) + f0 ≤ ϵ2. (3.18)

Eq. (3.18) is the pairwise non-interaction criterion.

Let us take a two-dimensional input domain as an example (see figure 3.1),

i1-th parameter

i 2
-t
h
p
a
ra
m
et
er

〈ai1 , ai2 , c{i1 ,i2}〉

〈ai1 , c{i1}〉

A gAi1i2

A
1 gAi1g0O

〈0, 0, 0, .., 0〉

A
2 gAi2

〈ai2 , c{i2}〉

Figure 3.1: Square points denote new points introduced for the interaction
check between parameters
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where the input domain is projected from a higher n-dimensional domain with

all the parameters fixed at the mean of their respective ranges except those two

parameters (indexed i1 and i2). The cut center is given by c =
⟨
0, 0, . . . , 0

⟩
and

is denoted by point O in figure 3.1. All the square points in figure 3.1 are used

to test for interaction between the two parameters. The exact values at all the

square points are calculated by full model evaluations and compared with the

values at those points obtained assuming both parameters are non-interacting.

For example, assume the exact value at point A is gAi1i2 and the approximated

value at A assuming non-interaction is given by gapprox,Ai1i2
= gAi1 + gAi2 − g0. The

output values gAi1 and gAi2 correspond to input points at A1 and A2 which are or-

thogonal projections of A on axes i1 and i2 respectively passing through point

O and g0 is the corresponding output value. Let g true
i1i2

be the true output vector

corresponding to the square points and g approx
i1i2

be the corresponding approxi-

mate output vector obtained from the outputs at the circular points such that

g approx
i1i2

= gi1
+ gi2

− g0. Then, Eq. (3.18) is considered satisfactory if

∥gtrue
i1i2

− gapprox
i1i2

∥∞ ≤ ϵ2 (3.19)

As mentioned earlier, using the knowledge about each of the pairwise (2-

dimensional) parameter interactions, we derive all possible higher-dimensional

parameter interactions. For example, we consider a 5-dimensional response
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function where {Y1, Y2, . . . , Y5} are the input parameters. If only pairs {Y1, Y2},

{Y2, Y3} and {Y3, Y1} out of total
(
5
2

)
= 10 pairs are interacting based on the

criterion Eq. (3.18), we decompose the five-dimensional problem (function) into

one three-dimensional subproblem (subfunction) in the {Y1, Y2, Y3} domain and

two one-dimensional subproblems in the Y4 and Y5 domains, respectively.

Subproblem representation. As mentioned in the beginning of this sec-

tion, criteria (3.10) and (3.18) can potentially reduce a high dimensional prob-

lem (response function) to a set of lower dimensional subproblems (subfunc-

tions). Next, we discuss, through an example, the effects of applying the two

criteria in successive steps and how to generally represent the original re-

sponse function in terms of a number of lower dimensional subfunctions. As

an example, an 8-dimensional (eight input parameters) function is considered

and is given by f(Y ) = Y1Y2Y3 + Y1Y4 + Y5 + δ(Y6 + Y7 + Y8) in the input domain

[0, 1]8. If δ < 2ϵ1, criterion (3.10) will identify the three input parameters Y6,

Y7 and Y8 to be non-interacting with each of the other seven parameters. We

thus have the following set of non-interacting groups of parameters given by

R = {R1, R2, R3, R4} = {{1, 2, 3, 4, 5}, {6}, {7}, {8}} (with NR = 4) and the func-
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tion can now be described by:

f(Y ) = f(Y1, Y2, . . . , Y8)

= g0(YR1 , c
R1) + h1(YR2 , c

R2) + h2(YR3 , c
R3)

+ h3(YR4 , c
R4)− (NR − 1)f0

= g0(Y1, Y2, . . . , Y5, c
{1,2,...,5}) + h1(Y6, c

{6})

+ h2(Y7, c
{7}) + h3(Y8, c

{8})− 3f0. (3.20)

Eq. (3.20) thus shows that the 8-dimensional function has been reduced to a

maximum dimensionality of r = 5 using the first level check.

When criterion (3.18) is now checked with the 5-dimensional subfunction g0(),

a set I = {{1, 2}, {1, 3}, {2, 3}, {1, 4}} is obtained whose elements consist of pairs

of parameters which are interacting. Using information from the set I, R1 =

{1, 2, 3, 4, 5} is reduced to the following set Q:

Q = {Q1, Q2, Q3} = {{1, 2, 3}, {1, 4}, {5}}

where elements Qj consists of indices for input parameters such that the pa-

rameter sets with indices Qj and Qk (∀j, k ∈ {1, 2, 3} and j ̸= k) are additive.

We note that the presence of the 3-dimensional interaction {1, 2, 3} have been

derived from the interacting pairs {1, 2}, {1, 3} and {2, 3}. This is how higher

98



CHAPTER 3. SCAMR

level interactions are derived from pairwise interaction results. Putting it all

together, a set S is formed and is given by

S = {S1, S2, S3, S4, S5, S6}

= {{6}, {7}, {8}, {1, 2, 3}, {1, 4}, {5}}

where the number of elements NS = 6, and elements Si consists of indices for

input parameters such that the parameter sets with indices Si and Sj (∀i, j ∈

{1, 2, . . . , 6} and i ̸= j) are additive. Here, the set T involving the overlapping

parameters in S (i.e., T = {Si ∩ Sl} \Ø, ∀i < l ∈ {1, ...., NS}) is given by T =

{T1} = {{1}} with NT = 1. The function g0() will now be given by:

g0(Y1, Y2, ....Y5) = h4(YS4 , c
S4) + h5(YS5 , c

S5)

+ h6(YS6 , c
S6)− U1p1(YT1 , c

T1)− f0

= h4(Y1, Y2, Y3, c
{1,2,3}) + h5(Y1, Y4, c

{1,4})

+ h6(Y5, c
{5})− p1(Y1, c

{1})− f0 (3.21)

where the coefficient Uj (∀j = 1, 2, ..., NT ) associated with each set Tj equals

the difference between frequency of its occurrence in S and the frequency of its

occurrence in T . In this example, j = 1. Note that the frequency of occurrence

of an index set in S or T is the number of times an index set features in S or T
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by itself or as a subset in a larger index set. If the elements in T are subsets of

each other, the factors need to be adjusted accordingly. Thus, the function f(Y )

is given by:

f(Y ) = h4(YS4 , c
S4) + h5(YS5 , c

S5) + h6(YS6 , c
S6)− p1(YT1 , c

T1)− f0

+ h1(Y6, c
{6}) + h2(Y7, c

{7}) + h3(Y8, c
{8})− 3f0

= h1(YS1 , c
S1) + h2(YS2 , c

S2) + h3(YS3 , c
S3) + h4(YS4 , c

S4)

+ h5(YS5 , c
S5) + h6(YS6 , c

S6)− p1(YT1 , c
T1)− 4f0

=
6∑

i=1

hi(YSi
, cSi)−

1∑
j=1

pj(YTj
, cTj)− 4f0. (3.22)

The example can be easily generalized to any arbitrary function of n input

parameters using the following two equations corresponding to Eqs. (3.20) and

(3.22) respectively, given by,

f(Y ) = g0(YR1 , c
R1) +

NR−1∑
i=1

hi(YRi+1
, cRi+1)− (NR − 1)f0 (3.23)

and the HDMR-like representation

f(Y1, Y2, ....Yn) =

NS∑
i=1

hi(YSi
, cSi)−

NT∑
j=1

Ujpj(YTj
, cTj)− V f0, (3.24)

where hi() is an |Si|-dimensional function, pj() is a |Tj|-dimensional function,

and V = NS −
∑NT

j=1 Uj − 1 is an integer constant. In case of no overlapping of
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elements in S, i.e., ∩NS
i=1Si = Ø, then T = {Ø} and NT = 0.

3.3.3.3 gPC approximation error

Let us consider a d-dimensional input domain where 1 ≤ d ≤ n. Let ξa =⟨
ξa,1, ξa,2, . . . , ξa,m

⟩
be a d-dimensional array of m Clenshaw-Curtis sparse grid

points of depth level 2. There may also exist an additional array of q unstruc-

tured points ξb =
⟨
ξb,1, ξb,2, . . . , ξb,q

⟩
which have been previously evaluated.

They correspond to sparse grid points in all “predecessor” elements that are

contained in the current domain. Let up be the low-order gPC approximation

for the current domain corresponding to input points ξ where the gPC coef-

ficients are calculated by solving a least squares problem given by Eq. (3.6)

such that ξ =
⟨
ξa, ξb

⟩
and q +m = M . Assuming u is the corresponding exact

solution vector, the domain can be suitably approximated by a low-order gPC

approximation if

∥up − u∥∞ < ϵ1 (3.25)

Criterion (3.25) is checked in succession with polynomial order p varying from 1

to 3 (depending on the number of points in that domain) and if it is not satisfied

for any order, the domain is further subdivided into smaller elements along the

center of its most critical parameter.
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3.3.4 Numerical implementation

The proposed algorithm is discussed below:

Initialization and stopping criteria. The dimension n of the problem is

first determined by the number of input random parameters considered in the

model problem. Niter is the maximum number of iterations in the adaptive

mesh refinement algorithm. Vmin is a minimum hyper-volume fraction of the

non-converged elements below which the subdivision into smaller elements is

stopped. When Niter is reached or the total hyper-volume fraction of the non-

converged elements is less than Vmin, the remaining non-converged elements

are approximated by a first order gPC expansion and the algorithm terminates.

Error tolerance parameters ϵ1 and ϵ2 are related to criteria (3.9), (3.10), (3.18)

and (3.25). With decrease in the values of the chosen tolerance parameters, the

approximation error also has a decreasing trend but with an increase in the

computational cost because of more number of full model evaluations.

Checking global smoothness and possible dimensionality reduction. This

step initiates with the implementation of a first order gPC approximation in

the original n-dimensional input domain. The gPC coefficients are evaluated

using the discrete projection method given by Eq. (3.5) using Clenshaw-Curtis

sparse grid points of depth level 1. The accuracy of the approximation is tested

using criterion (3.25). If the criterion is not satisfied, we go to the step of per-

forming a one-dimensional (1-D) abrupt variation check. Otherwise, the first

102



CHAPTER 3. SCAMR

order gPC approximation is considered satisfactory and the algorithm skips to

the surrogate value extraction step.

The 1-D abrupt variation check is now performed on the input domain to iden-

tify the influence of each parameter towards the output of interest. Criterion

(3.9) is used to identify the critical parameters while criterion (3.10) helps to

reduce the n-dimensional problem to a number of subproblems with a maxi-

mum dimensionality of r where r < n. The interaction check is performed next,

on the r-dimensional input domain using criterion (3.18) to further reduce the

maximum dimensionality to w(< r) where w = max(|Si|), ∀Si ∈ S.

If any of the parameters are found to be critical based on the criterion of global

abrupt variation, we directly go to the step of adaptive mesh refinement. Oth-

erwise, a second-order gPC approximation is now performed in the original n-

dimensional input domain using the discrete projection method. The function

at the Clenshaw-Curtis sparse grid points of depth level 2 used for this ap-

proximation has already been evaluated in previous step of interaction check.

Therefore, there is no extra computational cost involved for function evalua-

tions in this step. The accuracy of the approximation is tested using criterion

(3.25). If the criterion is satisfied, the second-order gPC approximation is con-

sidered satisfactory and the algorithm skips to the surrogate value generation

step. Otherwise, we go to the next step.

Adaptive mesh refinement. This part of the algorithm in general deals with
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Algorithm 1 : Summarized steps
Initialization
Set n, Niter, Vmin, ϵ1, and ϵ2.
Global checks and dimensionality reduction
perform first-order gPC on the original input domain using Eq. (3.5)
if ||up − u||∞ < ϵ1 (see Eq. (3.25)) then

go to the Surrogate value extraction step
else

perform abrupt variation check using criterion (3.9)
perform dimensionality reduction using criteria (3.10) and (3.18) to reduce
the original problem into a number of lower dimensional subproblems.
if ||u(i)

p − u(i)||∞ < ϵ1 (see Eq. (3.9)) for all parameters then
perform second-order gPC on the original input domain using Eq. (3.5)
if ||up − u||∞ < ϵ1 (see Eq. (3.25)) then

go to the Surrogate value extraction step
else

go to the Adaptive mesh refinement step
end if

else
go to the Adaptive mesh refinement step

end if
end if
Adaptive mesh refinement
for all lower-dimensional subproblems do

check abrupt variations using criterion (3.9)
if criterion (3.9) is satisfied then

check gPC approximation using criterion (3.25)
if criterion (3.25) is not satisfied then

subdivide the element along the center of its most critical parameter
end if

else
subdivide the element along the center of its two most critical parame-
ters

end if
end for
Surrogate value extraction
extract output values corresponding to query inputs from the approximate
model obtained.
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(NS +NT ) low dimensional subproblems as mentioned in section 3.3.3.2. For a

subproblem Pi (1 ≤ i ≤ NS+NT )}), the algorithm initiates with the subdivision

of the subproblem domain into elements along its two most critical parameters.

The iteration count Iter starts here. For each of the EPi
elements formed in Pi

in a certain iteration, an abrupt variation check is performed as was done on

the original n-dimensional domain. If the low-order approximation criterion

(3.9) is not met, the element Ej
Pi

(j ∈ {1, 2, ..., EPi
}) is again subdivided into

smaller elements along its two most critical parameters. Satisfaction of crite-

rion (3.9) implies there are no abrupt variations in the current element. This

leads to checking criterion (3.25) for low-order gPC approximation in the whole

element. If that criterion is met, the element Ej
Pi

is said to have converged for

the given tolerance ϵ1 and can be suitably approximated by the gPC approxima-

tion. The polynomial order, the coefficient vector and the range of the converged

element is then stored for future surrogate retrieval. If criterion (3.25) is not

satisfied, then the element is also subdivided into smaller elements. This pro-

cedure is performed for all EPi
elements and all the new subelements formed

undergo similar operations at the next iteration Iter = Iter + 1. At the end of

each iteration, the hyper volume V of the subelements created and the num-

ber of iterations Iter are compared with the corresponding critical values Vmin

and Niter respectively to check if either of the two stopping criteria is met. If

the stopping condition gets satisified, then all the remaining subelements are
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approximated by a first order gPC approximation. After meeting the stopping

criteria, the next subproblem is taken up and we repeat the process of charac-

terizing it.

Surrogate value extraction. After having characterized the n-dimensional

problem through the various steps mentioned, the final step is to generate out-

put values corresponding to arbitrary query input points in the n-dimensional

domain and also output statistics, such as, mean. Output value estimation cor-

responding to a query input involves locating the element in which the query

point lies in each subproblem. The stored information for that element is then

retrieved to generate the local surrogate output values in each subproblem,

which are then combined together to get the global output value. Mean value

estimation is performed by evaluating the integration in each of the elements

in each subproblem. For each subproblem, the global mean is calculated by the

weighted average of local means corresponding to each element, and the weight

is based on the ratio of the hyper-volume of the elements and the hyper-volume

of the whole domain.

A summary of the all the above steps is given in algorithm 1.

3.3.5 Comparison with other algorithms

In this section, we discuss the difference between our approach and the

MEPCM-A, ASGC and HDMR-ASGC methods.
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The main difference between MEPCM-A and SCAMR lies in the value of the

parameter ν, the number of terms given ν, and the method of calculating the

gPC coefficients. First, the parameter ν in MEPCM-A is prefixed at the start of

the algorithm and is independent of the original problem. On the other hand,

SCAMR approach learns from the given problem all the interactions among

the input parameters and then decomposes the problem into subproblems of

appropriate dimensions. For example, consider an eight-dimensional function.

If there exists interaction among five input parameters and the other three

parameters are each non-interacting with the rest, SCAMR will check criteria

(3.10) and (3.19) and will be able to figure out (for an appropriate tolerance

value) that the maximum dimensionality of the subproblems is 5. There will

be convergence in the approximation error with increase in number of samples.

On the other hand, MEPCM-A will usually prefix ν to be 2 or 3 and thus may

incur an error even with the increase of number of samples because of neglect-

ing higher-dimensional interactions. Secondly, all interaction terms up to order

ν in the HDMR are considered in MEPCM-A while SCAMR only considers the

parameter sets that are actually interacting with each other. For example, con-

sidering the same eight-dimensional function mentioned above, if ν = 3 for

MEPCM-A, all
(
8
3

)
+
(
8
2

)
+
(
8
1

)
terms are considered. This means 56 3-dimensional

functions, 28 2-dimensional functions and 8 1-dimensional functions need to

be approximated. But in SCAMR, only one 5-dimensional function and three
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1-dimensional functions need to be approximated. However, it is noted that

samples in all 28 2-dimensional functions need to be considered to perform

the interaction checks. Thirdly, MEPCM-A uses interpolation to calculate gPC

coefficients while SCAMR adopts the least squares method. In addition, the

criterion for mesh refinement in MEPCM-A is based on the relative error in

variance along each parameter, while SCAMR performs the centerline abrupt

variation and the gPC approximation error checks.

SCMAR differs from ASGC in the following aspects. ASGC is based on

adaptive sampling in the original domain and does not involve any domain

decomposition. It calculates error hierarchically and adds samples in the crit-

ical regions. SCAMR involves a domain decomposition technique. It uses one-

dimensional gPC approximation technique to detect critical dimensions in a

certain domain. In addition, ASGC performs linear interpolation to build the

surrogate while SCAMR performs low order gPC approximations on the indi-

vidual domains using least squares minimization.

HDMR-ASGC combines HDMR and ASGC where the component functions

(subproblems) of certain order in HDMR are identified as important based on

a weight measure involving lower order component functions. In SCAMR, im-

portant component functions of all order are chosen based on an interaction

criterion using only 2-dimensional component functions.
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3.4 Numerical results

In this section, SCAMR is applied to a variety of functions with smoothness

as well as discontinuities and number of input parameters as high as 500.

Through these examples, its performance is tested against existing efficient

algorithms, like, ASGC [84], HDMR-ASGC [128] and MEPCM-A [122]. For

each of the following examples, a simulation of the SCAMR algorithm was run

with fixed tolerance ϵ1 = ϵ2 = ϵ. The value of ϵ is varied over a range and for

each value of ϵ, the overall error and the number of function evaluations are

estimated. It is worth mentioning that the range of value chosen for ϵ may

be different for different examples since the error calculation is done using

absolute values of the output. For all the examples in this chapter, Vmin = 10−6

and Niter = 25.

3.4.1 Demonstration of SCAMR performance

We first demonstrate the effectiveness and efficiency of the proposed SCAMR

method using simple smooth functions with stochastic input domains of vary-

ing dimensions. Then, we will focus on functions with non-smoothness or dis-

continuities in the stochastic input domain, as well as a high-dimensional

stochastic elliptic problem. Our results are compared to those from ASGC

method since both approaches use low-order polynomials as a basis and both
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use adaptivity to track discontinuities. Specifically, we compare the root mean

squared error calculated using N = 105 randomly generated samples, given by

ϵ =

√ 1

N

N∑
i=1

(f(xi)− f̃(xi))2, (3.26)

where f is the exact function and f̃ is the numerical approximation using

ASGC or SCAMR.

3.4.1.1 Performance of SCAMR on smooth functions

We first implement the proposed method on a few simple smooth functions

of varying dimensions. The two-dimensional test functions are quadratic and

sine functions defined as follows.

f1(x1, x2) = x21 + x22, (3.27)

f2(x1, x2) = sin(4x1) sin(4x2), (3.28)

where xi are i.i.d. uniform random variables in [0, 1] (i = 1, 2). The tolerance

vector ϵ is given by [1, 3e-1, 1e-1, 3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 1e-4]. The exact func-

tions are provided in figures 3.2a and 3.2b for f1 and f2 respectively. Clearly,

the product of sine functions f2 exhibits more abrupt variations than the sum-

mation of quadratic functions f1 in the [0, 1]2 domain; therefore, one would ex-

pect slower convergence of the numerical approximation for f2. The numerical
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errors of SCAMR method are provided in figures 3.2c and 3.2d, and compared

to those from ASGC method. From the results, one can observe that i) both

SCAMR and ASGC methods have slower convergence for f2 compared to f1

as we expected, and ii) our proposed SCAMR approach converges faster than

ASGC for both the functions.

We extend two-dimensional quadratic and sine functions to four and ten

dimensions as follows.

f3(x1, x2, x3, x4) =
4∑

i=1

x2i , (3.29)

f4(x1, x2, x3, x4) =
4∑

i=1

sin(4xi), (3.30)

f5(x1, x2, x3, x4) = sin(4x1) sin(4x2) + sin(4x3) sin(4x4), (3.31)

f6(x1, x2, . . . , x10) =
10∑
i=1

sin(4xi), (3.32)

where xi are i.i.d. uniform random variables in [0, 1] (i = 1, 2, . . . , 10). The toler-

ance vector ϵ for the 4D functions is given by [2, 1, 3e-1, 1e-1, 3e-2, 1e-2, 3e-3,

1e-3, 3e-4, 1e-4] and for the 10D function is given by [5, 1, 3e-1, 1e-1, 3e-2, 1e-2,

3e-3, 1e-3, 3e-4, 1e-4]. The functions f3, f4 and f6 are independent of the inter-

action terms between the inputs, while f5 depends on some interaction terms

between the inputs. The numerical errors of both the SCAMR and the ASGC

methods are provided in figure 3.3 with respect to number of function evalu-

ations. The numerical approximation from both methods converges slower as
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Figure 3.2: Results for 2D smooth functions: (a) surface plot of function f1; (b)
surface plot of function f2; (c) error of estimated f1 using SCAMR and the ASGC
method; and (d) error of estimated f2 using SCAMR and the ASGC method.
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Figure 3.3: Error analysis of SCAMR and ASGC methods for 4D and 10D
smooth functions: (a) 4D f3, (b) 4D f4, (c) 4D f5, and (d) 10D f6.

the complexity of the function increases, such as, from a polynomial function to

a sine function, from an additive function to a multiplicative function or from

a lower dimensional (4-D) function to a higher dimensional (10-D) function.

Figure 3.3 shows that SCAMR converges faster than ASGC for all four smooth

functions.

Having tested the SCAMR approach on smooth functions with random

inputs in different dimensions, we will next discuss its performance on non-
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Figure 3.4: Surface plot of function f7(x1, x2).

smooth functions.

3.4.1.2 Performance of SCAMR on functions with line sin-

gularity

Here we adopt the same 2-D function with line singularity as in [84].

f7(x1, x2) =
1

|0.3− x21 − x22|+ 0.1
. (3.33)

The function is plotted in figure 3.4. Clearly, the function has a C1 discontinuity

going across both x1 and x2 directions. The 4-D and 10-D extensions of the above
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function are defined as

f8(x1, x2, x3, x4) =
1

|0.3− x21 − x22|+ 0.1
+

4∑
i=3

xi, (3.34)

f9(x1, x2, . . . , x10) =
1

|0.3− x21 − x22|+ 0.1
+

10∑
i=3

xi (3.35)

where xi are i.i.d. uniform random variables in [0, 1] (i = 1, 2, . . . , 10). The

tolerance vector ϵ is given by [1, 3e-1, 1e-1, 3e-2, 1e-2, 3e-3]. Notice that the

added dimensions in f8 and f9 are not interactive with x1 and x2. Therefore one

would expect that the computational cost will not increase dramatically as the

number of parameters increases.

The proposed SCAMR approach is implemented for the above 2-D, 4-D and

10-D functions. The locations of function evaluations for the 2-D function f7 are

plotted in figure 3.5a. The plot shows that the line singularity is well captured

by the approach and more function evaluations are required in the area of line

singularity as expected. The error analysis of the numerical approximations

are provided in figures 3.5b, 3.5c and 3.5d for functions f7, f8 and f9, respec-

tively. From the figure, one can observe that the convergence rates of SCAMR

are similar for the three functions with different dimensions as expected. The

SCAMR approach converges faster than ASGC for all three functions.
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Figure 3.5: Input domain and error analysis for functions with line singularity:
(a) input domain for function f7, (b) numerical error as a function of the number
of samples for 2D f7, (c) numerical error as a function of the number of samples
for 4D f8, and (d) numerical error as a function of the number of samples for
10D f9.

116



CHAPTER 3. SCAMR

Figure 3.6: Surface plot of function f10(x1, x2).

3.4.1.3 Performance of SCAMR on functions with C0 dis-

continuity

SCAMR is tested on another 2-D function, this one with a C0 discontinuity

as in [112]:

f10(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x1 > 0.5 or x2 > 0.5,

sin(πx1) sin(πx2), otherwise

The function is plotted in figure 3.6.

Similarly, we extend it to 4-D and 10-D functions with discontinuity as

f11(x1, x2, x3, x4) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑4

i=3 xi, if x1 > 0.5 or x2 > 0.5,

sin(πx1) sin(πx2) +
∑4

i=3 xi, otherwise
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and

f12(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑10

i=3 xi, if x1 > 0.5 or x2 > 0.5,

sin(πx1) sin(πx2) +
∑10

i=3 xi, otherwise

where x = {x1, x2, . . . , x10}.

The proposed SCAMR approach is implemented for these 2-D, 4-D and 10-

D functions. The tolerance vector ϵ is given by [1, 3e-1, 1e-1, 3e-2, 1e-2, 3e-3,

1e-3, 3e-4, 1e-4]. The function evaluation locations for 2-D function f10 are

plotted in figure 3.7a, and the error analysis of the numerical approximation

from SCAMR for f10, f11 and f12 are provided in figures 3.7b, 3.7c and 3.7d. The

numerical approximations are compared to those from ASGC method. From

the results, similar conclusions to the previous example can be drawn.

3.4.1.4 SCAMR in a stochastic elliptic problem

Finally, we apply the SCAMR approach to a stochastic elliptic problem as

in [84,104]. The model problem is given as

−▽(an(ω, x)▽u(ω, x, y)) = f(x, y), in D × Γ

u(ω, x, y) = 0, on ∂D × Γ (3.36)

where spatial variable (x, y) ∈ D = [0, 1]2, random variable ω ∈ Γ, f(x, y) =

cos(x) sin(y).
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Figure 3.7: Input domain and error analysis for functions with discontinuty:
(a) input domain for function f10, (b) numerical error for 2D f10, (c) numerical
error for 4D f11, and (d) numerical error for 10D f12.
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The diffusion coefficient an(ω, x) is assumed to be a random field that can be

approximated in a finite n-dimensional stochastic domain as:

log(an(ω, x)− 0.5) = 1 + Y1(ω)(

√
πL

2
)1/2 +

n∑
i=2

ξiϕi(x)Yi(ω), (3.37)

where Yi(ω) [i = 1, 2, . . . , n] are independent random parameters which are uni-

formly distributed in [−
√
3,
√
3], and

ξi = (
√
πL)1/2 exp(

−(⌊ i
2
⌋πL)2

8
), if i > 1 (3.38)

and

ϕi(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin(

⌊ i
2
⌋πx
Lp

), if i is even,

cos(
⌊ i
2
⌋πx
Lp

), if i is odd

where Lp = max{1, 2Lc}, and L = Lc

Lp
where Lc = 0.5 is the correlation length.

Without loss of generality, we consider the uncertainty in the output at a

fixed point in space x = y = 0.5, which is the center of the spatial domain. Fig-

ure 3.8 displays two realizations of the output contour in the spatial domain

for n = 50 using the deterministic code of the elliptic problem. The proposed

SCAMR approach is implemented for the elliptic problem with varying dimen-

sions n in the stochastic input domain. The error analysis of the numerical
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Figure 3.8: Two realizations of the output u for n = 50 and correlation length
Lc = 0.5.

approximations are provided in figures 3.9(a-f) for n = 2, 11, 25, 50, 75, 100 re-

spectively. The tolerance vector ϵ for n = 2 is given by [3e-3, 1e-3, 3e-4, 1e-4,

3e-5, 1e-5, 3e-6] while for the rest, it is given by [3e-3, 1e-3, 3e-4, 1e-4, 3e-

5]. The numerical approximations from SCAMR are compared to those from

the ASGC method. From the figure, one can observe that the numerical ap-

proximation from SCAMR converges faster for very low dimensions such as

n = 2, achieves similar convergence for n = 11, and for large dimensions such

as n = 25, 50, 75, 100, its efficiency increases with increase in dimensionality.

The reason is that the tail terms of Eq. (3.37) for n > 25 could be negligible due

to the fast decay of the eigenvalues ξi. As with the previous examples, SCAMR

converges faster or at a similar rate as ASGC for this problem.
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Figure 3.9: Error analysis of the stochastic elliptic problem with (a) n = 2, (b)
n = 11, (c) n = 25, (d) n = 50, (e) n = 75, (f) n = 100 dimensions for correlation
length Lc = 0.5.
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3.4.2 Comparison to HDMR-guided algorithms

for high dimensional problems

To further illustrate the efficiency of SCAMR regarding the model reduc-

tion criterion, we implement our proposed approach for more high-dimensional

problems and compare the results to those from HDMR-ASGC and MEPCM-A

methods.

A 10-dimensional function is considered to compare the efficiency of SCAMR

and HDMR-ASGC [128]. The error estimate used here is the normalized L2

interpolation error given by

ϵ =

√∑N
i=1(f(xi)− f̃(xi))2√∑N

i=1 f(xi)2
, (3.39)

where f is the exact function, f̃ is the numerical approximation using HDMR-

ASGC or SCAMR and N = 106 randomly generated samples.

A high dimensional integration problem is then used as an example to com-

pare the SCAMR and the MEPCM-A methods. The error estimate used here is

the mean relative error [122] given by

ϵ =
|Iexact − Iapprox|

Iexact
(3.40)

where Iexact is the true mean of the problem and Iapprox is the numerical approx-
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imation of the mean using either MEPCM-A or SCAMR.

3.4.2.1 Comparison to HDMR-ASGC

We consider a 10-D function [128] given by

f13(x) = 1
1+

∑10
i=1 αixi

(3.41)

where αi = 0.1/2i−1, random input xi = σyi and yi are i.i.d. uniform random

parameters in
[
−

√
3,
√
3
]
, i ∈ {1, 2, . . . , 10}. σ is related to the standard

deviation of the input and for this example, σ = 2. The weights drop dras-

tically with increase in dimensions and hence the number of effective dimen-

sions is low compared to 10 nominal dimensions. Table 5.1 shows a comparison

of the normalized L2 interpolation error and the number of points needed for

the HDMR-ASGC and the SCAMR approach. It can be seen from the results

that SCAMR proves to be more efficient than HDMR-ASGC in approximating

f13. The HDMR-ASGC results are read directly from figure 8 (right) in [128].

Identification of the low effective dimensions using the interaction check in the

SCAMR approach is achieved at a lower computational cost compared to the

corresponding check in HDMR-ASGC [128]. The subsequent surrogate con-

struction of the lower-dimensional subproblems also requires lesser number of

samples when using the low-order gPC approximation in SCAMR compared to
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the linear basis interpolation in the HDMR-ASGC approach. For example, the

number of points needed for an L2 error of approximately 6 × 10−5 is around

1575 points in the case of HDMR-ASGC while the number of points needed for

an L2 error of 2.4038× 10−5 using SCAMR is 293.

Table 3.1: HDMR-ASGC and SCAMR error and cost comparison for function
f13

HDMR-ASGC SCAMR
L2 error Points ϵ L2 Error Points

≈ 9× 10−3 ≈ 200 3× 10−2 1.2081× 10−3 85
≈ 1× 10−3 ≈ 700 3× 10−3 3.6996× 10−4 133
≈ 1× 10−4 ≈ 1144 1× 10−4 8.9142× 10−5 149
≈ 6× 10−5 ≈ 1575 3× 10−5 2.4038× 10−5 293

3.4.2.2 Comparison to MEPCM-A

We consider a discontinuous Genz function given by:

f14(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x1 ≥ 0.5 or x2 ≥ 0.5,

exp(
∑n

i=1 cixi), otherwise

where ci = e−35i/(n−1). Using SCAMR, we evaluate the high dimensional inte-

gration Iapprox =
∫
f̃14(x)dx where f̃14 is the numerical approximation to f14. The

relative mean error is then calculated and compared with MEPCM-A results in

table 6 given in [122] with different dimensions n = 100, 200, 300, 400, and 500.

It can be seen from the form of function f14 that the importance of the param-
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Table 3.2: MEPCM-A and SCAMR error and cost comparison for function f14

MEPCM-A SCAMR
n (ν, µ) Error Points ϵ Error Points

100 (1,1) O(1) 103 5 2.1308 201
(2,2) 0.0197 20, 801 0.2 2.7× 10−3 2645
(3,3) 0.0098 4, 677, 148 0.1 1.1× 10−3 3111

200 (1,1) O(1) 203 8 2.3705 401
(2,2) 0.067 81, 601 2 0.0742 3459
(3,3) 0.047 36, 714, 298 0.3 1.3× 10−4 9911

300 (1,1) O(1) 303 25 2.5435 601
(2,2) 0.12 182, 401 10 0.1209 4905
(3,3) 0.09 123, 111, 448 5 0.0180 8623

400 (1,1) O(1) 403 120 2.6806 801
(2,2) 0.22 323, 201 45 0.1716 6173
(3,3) 0.07 290, 868, 598 30 0.0509 9681

500 (1,1) O(1) 503 500 2.7891 1001
(2,2) 0.43 504, 001 200 0.1887 8391
(3,3) 0.21 566, 985, 748 150 0.0940 10, 713

eters decrease exponentially with increase in dimensions. Thus this is an ex-

ample where the function has a high nominal dimensionality but low effective

dimensionality depending on the error tolerance. Table 3.2 shows a comparison

of the mean relative error and the number of points needed for the MEPCM-A

approach and the SCAMR approach. For the SCAMR approach, mean value

extraction is performed by generating weighted Clenshaw-Curtis sparse grid

points in each of the elements in each subproblem. Then local means are cal-

culated for each subproblem by assigning weights to each element according

to their hypervolume. Local means are finally combined together to get the

global mean. It can be seen from the results that SCAMR proves to be very
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efficient in identifying the low effective dimensions. In MEPCM-A, the effec-

tive dimensions depend on the parameter ν. Even though ν is chosen to be

small (ν = 2 or 3), the number of terms in HDMR becomes very large for high

nominal dimensions. SCAMR thus achieves much better precision with less

number of points compared to the MEPCM-A approach. For example, for the

300-dimensional case, the number of points needed for a relative error of 0.09 is

around 123 million points in the case of MEPCM-A while the number of points

needed in SCAMR for a relative mean error of 0.018 is only 8623.

3.5 Conclusions

In this chapter, an efficient stochastic collocation method with adaptive

mesh refinement has been proposed. Specifically, this approach utilizes gen-

eralized polynomial chaos as the basis and solves the gPC coefficient using the

least squares method, which provides more flexibility on the number and lo-

cations of function evaluations. It also implements adaptive mesh refinement

to track the discontinuities, and the adaptive criteria of the mesh refinement

to check for abrupt variations in the output based on error measured from a

low-order gPC. In addition, this approach uses a criterion to check possible di-

mensionality reduction and decomposes the original high-dimensional problem

to a number of lower-dimensional subproblems, based on the HDMR method.
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Therefore, for a specific problem, the highest dimensionality of subproblems

which involve interacting parameters, can be obtained. The effectiveness of

this method has been shown using different low and high dimensional, smooth

and non-smooth examples. It is noticeable that this approach is particularly

efficient for high nominal dimensional problems, like the stochastic elliptic

problem with a large number of terms for the diffusivity coefficient, where a

significant number of parameters can be less important (low effective dimen-

sions) and thus non-interacting with other more important parameters. How-

ever, if the parameters are all coupled in their contribution towards the out-

put of interest, then the efficiency of this method decreases with the increase

in the dimensionality of the problem, especially when the response function

is highly non-linear. This is because of the generation of a large number of

high dimensional subdomains (subelements), where new input points are to

be generated according to the sparse grid quadrature. When there is signif-

icant non-linearity, the subdomains (subelements) generally do not converge

with the low-order gPC approximation and hence split up into further smaller

domains.
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Chapter 4

On the usefulness of gradient

information in surrogate

modeling: Application to

uncertainty propagation in

composite material models

In this chapter, the performance of non-gradient as well as gradient-enhanced

versions of two different classes of surrogate modeling methods, polynomial

least squares regression and kernel based radial basis function interpolation,

are compared in the context of a composite mechanics problem. Sequential
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space filling random designs are used for selecting the training points. The pri-

mary goal is to investigate whether additional gradient information obtained

from the simulation model at a relatively small cost helps in generating surro-

gates of better quality compared to those obtained without any gradient in-

formation. It is found from the study that if the output and/or the output

gradients are noisy, then the quality of the surrogate construction is similar

for both the gradient enhanced and the non-gradient based surrogate models.

However, if the output and the output gradients are accurate, the gradient-

enhanced surrogate models consistently perform better than the non-gradient

based surrogate models, indicating that the gradient information enhances the

quality of the surrogates. Low dimensional analytical test functions are used

to demonstrate this behavior. As an application problem, we consider a multi-

fiber reinforced matrix composite simulation model with a different interfacial

damage parameter assigned to each fiber/matrix interface. The focus here is to

build a surrogate which efficiently describes the variation of the homogenized

stress at a given input strain as a function of the interface damage parameters.

The Interface-Enriched Generalized Finite Element Method (IGFEM) is used

in this case to solve for the stress as well as the gradients of the stress with

respect to the damage parameters. Thus the goal of this study is two-fold: 1) to

compare the error convergence properties in surrogate modeling using differ-

ent sequential random space-filled designs, with and without gradient informa-
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tion; 2) to identify the circumstances in which additional gradient information

is beneficial for surrogate modeling.

4.1 Introduction

Standard surrogate models make use of output values evaluated at a set

of sampling points in the parameter space. For example, there are surrogate

models which use structured sampling designs [85, 100, 112, 121] while others

use unstructured designs [135–137]. The current work focuses on surrogate

modeling for simulation models that provide both the outputs as well as the

output sensitivities (gradients) with respect to the input parameters. Gradi-

ent information, when available at a relatively low cost, can help in making

surrogate modeling very efficient [138], [139].

The first step in developing a surrogate function is the design of sampling

points in the parameter space, at which the output and the output gradients

are calculated. Some popular designs used in the literature are simple random

samples [140], Latin Hypercube Sampling (LHS) [29] and Improved Hypercube

Sampling (IHS) [141]. It is typically desirable to have a good space filling de-

sign, such that the samples cover most of the input space. For example, in a

kernel-based surrogate modeling method like radial basis function interpola-

tion, a good sampling design may help alleviate the ill-conditioning issue of the
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kernel matrix that can result from highly irregular spacing (local scattering

and clustering) of sampling points. Sobol quasi random sequences [142], [69],

[143], Halton quasi random sequences [68], and Latin Hypercube Sampling

(LHS) [64, 144] are a few examples of such designs. The current work focuses

on sequential space filling designs, which are natural candidates for system-

atic surrogate modeling error convergence studies. These include Hierarchi-

cal Latin Hypercube Sampling (HLHS) [145,146], Refined Latinized Stratified

Sampling (RLSS) [147] and Scrambled Sobol (ScSo) [148] sequences.

There are a few gradient-informed surrogate methods based on unstruc-

tured sampling points, namely gradient-enhanced kriging [149], gradient-assisted

radial basis function [29, 140], and gradient-enhanced radial basis function

[150] among others, which have been used for efficient optimization in com-

putational fluid dynamics (CFD) applications. An overview of the different

existing surrogate models that use output gradients in addition to output val-

ues can be found in [141]. Very little, if any, work is available extending these

approaches to solid mechanics applications.

In this chapter, an Interface-Enriched Generalized Finite Element Method

(IGFEM) based fiber-reinforced composite model is considered in which me-

chanical responses and their gradients with respect to the input parameters

are calculated efficiently [151,152]. It is of interest to see how this gradient in-

formation affects the accuracy and efficiency of surrogate modeling. The study
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considers three different space-filling designs (HLHS, RLSS and ScSo) and four

surrogate modeling methods: least squares (LS) regression, gradient-enhanced

least squares (GLS) regression, radial basis function (RBF) interpolation and

gradient-enhanced radial basis function (GRBF) interpolation. In LS regres-

sion and RBF interpolation, only output values are used to build the surrogate.

In GLS regression and GRBF interpolation, both output and output gradients

are used for surrogate construction. The chapter is divided into the following

sections. The HLHS, RLSS and ScSo designs are described briefly in section

4.2. Section 4.3 discusses the surrogate modeling approaches. In section 4.4, 1-

dimensional and 2-dimensional analytical test functions are considered and the

relative performance of the different sampling designs and surrogate methods

are compared in order to draw some general conclusions. In section 4.5, dam-

age models of fiber reinforced composites with variation in spatial arrangement

as well as the number of fibers are considered for a similar performance com-

parison as in section 4.4. Section 4.6 concludes with a summary of the overall

observations and related discussion.

4.2 Sequential space filled designs

Optimal sequential sampling designs should maintain space-filling and non-

collapsible characteristics as each individual sampling point is added to the
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population. Space-filling suggests that the parameter space is covered in a rel-

atively even fashion, and non-collapsibility indicates that lower dimensional

projections of the samples do not show duplication. Three classes of sampling

designs are considered here: latin hypercube sampling (LHS), stratified sam-

pling (SS), and Sobol sequences.

Latin Hypercube Sampling (LHS) [64] is a popular design used for sample

generation in various application because of its ease of implementation. LHS

ensures that the samples do not collapse on each other when projected to lower

dimensions; however it does not guarantee good space filling properties. Sub-

sequently, a lot of work has been done on the addition of secondary criterion to

the LHS design in order to improve its space filling properties [153–156]. Im-

proved Latin Hypercube Sampling (IHS) design [157] improves upon the LHS

design by choosing a more optimal uniform spacing of points using a duplica-

tion factor.

Stratified sampling (SS) design, on the other hand, has good space filling

properties but can generate collapsive samples [64]. In SS design, equisized

strata are formed all at once and samples are added randomly in each of them.

Latinized stratified sampling (LSS) [158] design attempts to combine the ad-

vantages of the LHS and SS designs in order to achieve good non-collapsive

as well as space filling properties. In LSS, dimension-wise stratifications (as

in LHS design) as well as full-dimensional stratifications (as in SS design) are
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performed simultaneously.

It is noted that the traditional LHS and SS algorithms are not designed

for addition of new sample points to an existing set of sampled points, already

generated from the design algorithms. Therefore, a very attractive property

of some designs is to be sequentially space filling, where the designs try to

maintain space-filling with each new addition of a single sampling point to the

population.

Hierarchical Latin Hypercube Sampling (HLHS) design [145, 146] is a se-

quential version of LHS design, in which new samples are added by gradual

refinements of the dimension-wise stratifications. HLHS is not a purely se-

quential design and at least doubles the current sample size at each extension

because the minimum refinement that can be performed is subdividing each

dimension-wise stratum into two sub-strata. The Refined stratified sampling

(RSS) design [159] enables sequential sampling in the SS design, by select-

ing a stratum for each new sample one at a time. The sample size extension

version of LSS design, Hierarchical Latinized Stratified Sampling (HLSS) de-

sign [147], involves dimension-wise stratification refinements, as in HLHS, as

well as subdivision of the SS-type strata in an existing LSS design and then

sampling in the permissible regions. In Refined Latinized Stratified Sampling

(RLSS) [147], a sequential version of HLSS, strata subdivision is performed

one at a time and a new sample is added in the permissible region.
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Sobol sequences are deterministic sequences with low discrepancy mea-

sures. A Sobol sequence generation is dependent on the choice of a set of

pre-determined initialization numbers. For intermediate dimensions, Sobol se-

quences produce wide gaps in some of the dimensions resulting in poor projec-

tive properties [70]. Scrambled Sobol (ScSo) design algorithms alleviate this

issue to some extent by using scrambling algorithms, like Owens method [71],

thus improving uniformity of samples. The scrambling procedure makes the

scrambled Sobol sequences random in nature.

Considering the benefits and drawbacks of each approach, this chapter fo-

cuses on 3 sequential space-filling designs: HLHS, RLSS, and ScSo.

4.3 Surrogate modeling methods

Given a set of samples based on the sampling designs discussed in the pre-

vious section, there are a number of methods for building continuous surro-

gates. For the randomly spaced sample points considered here, two of the most

common methods are radial basis function interpolation and least squares re-

gression. Both methods are capable of building a surrogate based on only the

outputs calculated at the sampling points, or based on the outputs as well as

the output gradients calculated at the sampling points. The two methods are

discussed in more details in this section.
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4.3.1 Radial basis function interpolation

Radial basis function (RBF) interpolation [160, 161] is a kernel-based ap-

proximation technique for scattered data and takes the form:

f̂(z) =
N∑
i=1

ciϕ(||z − zi||) (4.1)

where ϕ(||z−zi||) is a radial basis function, the norm ||.|| is Euclidean, N is the

number of training points, zi [i = 1, . . . , N ] are the training points and ci are

the set of coefficients. Enforcing the following interpolation conditions,

f̂(zi) = f(zi), i = 1, 2, ...., N (4.2)

produces the system of linear equations:

Kc = f (4.3)

where K is a N × N kernel matrix, c is a N × 1 coefficient vector and f is a

N × 1 vector containing the output values at the N training points.

The gradient-enhanced radial basis function (GRBF) interpolation [29] takes

the form:

f̂(z) =
N∑
i=1

βiϕ(||z − zi||) +
N∑
i=1

d∑
j=1

β̃ij
∂ϕ

∂zj
(||z − zi||) (4.4)
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where ϕ(||z − zi||) is a radial basis function, d is the number of input variables

and βi and β̃ij are a set of coefficients to be determined. Using the function val-

ues and the derivative values at the training samples, the following conditions

are imposed to calculate the coefficients:

f̂(zi) = f(zi), i = 1, 2, ...., N (4.5)

∇f̂(zi) = ∇f(zi), i = 1, 2, ...., N (4.6)

To use Eq. (4.6), Eq. (4.4) is differentiated with respect to zk to obtain

∂f̂(z)

∂zk
=

N∑
i=1

βi
∂

∂zk
ϕ(||z − zi||)

+
N∑
i=1

d∑
j=1

β̃ij
∂

∂zk

∂ϕ

∂zj
(||z − zi||) (4.7)

Using Eq. (4.5) and Eq. (4.6), the following linear system is obtained:

Aβ = y (4.8)

where A is a N(d + 1) × N(d + 1) kernel matrix, β is the N(d + 1) × 1 coef-

ficient vector and y is the N(d + 1) × 1 vector containing the function values

and the gradient values at the training points. It is noted that the radial basis
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function ϕ should be at least twice differentiable for the above formulation to

work. Unlike the RBF interpolation, the number of linear equations depends

on the number of training points N as well as the number of input parameters

d. Thus the size of the gradient informed kernel matrix can become very large

and hence computationally expensive to invert with a large d and even with a

moderate N . This study uses isotropic Gaussian radial basis functions (moti-

vated by the study in appendix B) which are infinitely differentiable and given

by:

ϕ(||zk − zj||) = exp(−||zk − zj||22
2σ2

) (4.9)

where ||.||2 is the Euclidean norm and σ is a hyperparameter to be estimated.

In RBF interpolation, the hyperparameter σ of the chosen kernel is an un-

known internal parameter, which is estimated by minimizing the leave one out

cross validation (LOOCV) error [162,163] over the training samples, given by:

LOOCV (σ) =
1

N

N∑
i=1

(f̂−i(z
i)− f̂(zi))2 (4.10)

where f̂−i(z
i) is the RBF approximation at point zi using responses at N − 1

training points and not considering the response at that sample point zi. The

criterion used for GRBF hyperparameter estimation is an extended version of

139



CHAPTER 4. USEFULNESS OF GRADIENTS IN SURROGATES

the above criterion [164] and is given by:

LOOCVg(σ) =
1

N(d+ 1)

N∑
i=1

[
(f̂−i(z

i)− f̂(zi))2

+
d∑

j=1

(∂f̂−i,j(z
i)

∂zk
− ∂f(zi)

∂zk

)2
]

(4.11)

where ∂f̂−i,j(z
i)

∂zk
is the GRBF approximation of the gradient along the k-th di-

mension at point zi provided by the metamodel built without considering the

true k-th component of the gradient at point zi. A particle swarm optimization

(PSO) algorithm [165] was used for the hyperparameter estimation.

4.3.2 Polynomial regression metamodels

Least Squares (LS) regression is a popular function approximation method

where a linear relationship is assumed between the output and the unknown

regression coefficients:

Fβ = y (4.12)

where y is the vector of the output, β is the vector of regression coefficients

and the matrix F is a function of the input variables and essentially defines

the relationship (linear/non-linear) between the output and the input variables

which depends on the polynomial order p. F is a N × Nt matrix, β is a Nt × 1

vector and y is a N × 1 vector containing the output values, where Nt =
(
p+d
p

)
,
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d is the number of input variables, p is the polynomial order and N is the

number of training samples. The unknown coefficient vector β is estimated

using the ordinary least squares (OLS) approach by minimizing the following

mean squared error function:

MSE(β) = ||(Fβ − y)||22 (4.13)

which gives,

β̂ = (F TF )−1F Ty (4.14)

In the gradient-enhanced version of least squares (GLS) regression, the over-

all model is also assumed to be linear between the output and the regression

coefficients:

Fgβg = yg (4.15)

where Fg is a N(d+ 1)×Nt matrix, βg is a Nt × 1 vector and yg is a N(d+ 1)× 1

vector containing the output and the gradient values. The above model now

contains additional gradient information which increases the size of the vectors

and matrix depending on the number of input variables d. Similar to the non-

gradient version, the regression coefficient vector βg is estimated as:

β̂g = (F T
g Fg)

−1F T
g yg (4.16)
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In LS regression, to avoid ill conditioning of matrix F TF in Eq. (4.14), N ≥ Nt.

Thus for sufficiently small number of samples, the polynomial degree should

be low enough to get a stable solution. On the other hand, in GLS regression,

ill conditioning of matrix F T
g Fg in Eq. (4.16) can be avoided if N(d + 1) ≥ Nt.

Thus the additional gradient information, especially with higher number of

input variables d, can help in achieving stable solutions with higher polyno-

mial order and smaller number of samples compared to the non-gradient LS

regression. For example, in a 2-dimensional example (d = 2), for sample size

N = 5 with polynomial order p = 2 (Nt = 6), the LS method becomes unsta-

ble due to lack of samples because N < Nt. On the other hand, the additional

gradient information in the GLS regression makes the solution stable because

N(d+ 1) > Nt.

In this study, the open source matlab/octave GRENAT Toolbox [166] was

used to implement the surrogate modeling methods.

4.4 Numerical results

In this section, 1-dimensional and 2-dimensional analytical test functions

are used to demonstrate the performance of surrogate modeling using different

combinations of the training design and the surrogate modeling method. The

performance of each case was measured using the Root Mean Squared error

142



CHAPTER 4. USEFULNESS OF GRADIENTS IN SURROGATES

(RMSE) given by:

RMSE =

√ 1

nt

nt∑
i=1

(
y
(i)
true − y

(i)
predicted

)2

(4.17)

where nt is the total number of test samples, ytrue = [y
(1)
true, . . . , y

(nt)
true] is the vector

of the true function values at the nt points and ypredicted = [y
(1)
predicted, . . . , y

(nt)
predicted]

is the vector of predicted values from the surrogate construction at the same nt

points.

4.4.1 1-dimensional results

In this section, we consider a 1-dimensional smooth sine function as shown

in figure 4.1a given by:

z = sin(5x/2) (4.18)

and its gradient (shown in figure 4.1b) is:

dz

dx
=

5

2
cos(5x/2) (4.19)

Plots of the RMSE as a function of sample size (figures 4.1c and 4.1d) show that

incorporating gradient information helps to achieve faster convergence when

there is no noise in either the output or the gradient values. These plots also

indicate that for this particular function the RBF approaches converge faster
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Figure 4.1: 1-dimensional smooth sine function (a) and gradient (b). The cor-
responding RMSE as a function of sample size for LS/GLS surrogates (c) and
for RBF/GRBF surrogates (d) show improved convergence when incorporating
gradient information.
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Figure 4.2: 1-dimensional smooth sine function (a) with noisy gradient (b). The
corresponding RMSE as a function of sample size for LS/GLS surrogates (c)
and for RBF/GRBF surrogates (d) show worse convergence when incorporating
inaccurate gradient information.
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Figure 4.3: 1-dimensional noisy sine function (a) with associated noisy gra-
dient (b). The corresponding RMSE as a function of sample size for LS/GLS
surrogates (c) and for RBF/GRBF surrogates (d) show poorer convergence in
all surrogates than the cases without noise. Incorporating gradients based on
inaccurate function/gradient calculations usually worsens the convergence.
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than the LS approaches. Note that all results were generated using the LHS

sampling design. Comparison to other sampling designs will be performed in

subsequent examples.

The effect of random noise on these results is addressed by considering two

cases: the output values are smooth but the output gradients are noisy as

shown in figure 4.2(a,b) and in the other case, the output is noisy, leading to a

noisy gradient, as shown in figure 4.3(a,b). Figure 4.2(c,d) shows RMSE as a

function of sample size for the case in which there is noise in the gradient only.

When the gradient is noisy, the gradient based surrogate degrades in quality

and performs much worse than the non-gradient surrogate as seen in figure

4.2c. Figure 4.3(c,d) shows RMSE vs. sample size for the case in which there is

noise in both the output and the gradient. When both the output and the gra-

dient are noisy, the gradient-based approaches still exhibit worse performance

than the non gradient-based approaches.

4.4.2 2-dimensional results

In this section, two 2-dimensional test functions, the quadratic function and

the Michalewicz function [167], are considered and the performance of the de-

signs and the surrogate models on these functions are compared. The quadratic

function is given by:

z = x2 + y2, 0 ≤ x, y ≤ 1 (4.20)
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and the Michalewicz function is given by:

z = −sin(x)
[
sin

(x2
π

)]20
− sin(y)

[
sin

(2y2
π

)]20
,

1.5 ≤ x ≤ 2.5, 1 ≤ y ≤ 2 (4.21)

where x and y are the input variables. The function was evaluated at the

sample points generated by the HLHS, RLSS and ScSo designs and then the

four surrogate modeling methods (LS, GLS, RBF and GRBF) were applied to

the data set to predict the function values at 60 × 60 (= 3600) test grid points

in the problem domain. Thus, for this case, nt = 3600 in calculating the RMSE

from Equation (4.17). For each of the 3 sampling designs, 20 independent sets

of samples are generated, in order to account for statistical variations from one

sample set to another. For each set, the metamodeling procedure is conducted

and the RMSE value is calculated. The estimated median RMSE values from

the set of 20 values are reported here.

Figure 4.4a shows the quadratic function and figures 4.4b and 4.4c show

the gradient surfaces w.r.t x and y respectively. Figure 4.4d shows the RMSE

convergence plot comparison between the LS and GLS regression models using

the three different designs. A polynomial of order 2 is used and although the

GLS methods in general seem to perform slightly better than the LS methods

especially in the smaller sample size regime, the RMSE values for all the cases
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(a) True output surface

(b) True gradient (w.r.t x) surface (c) True gradient (w.r.t y) surface
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(e) RBF/GRBF error plot

Figure 4.4: (a) 2-dimensional smooth quadratic function; (b) function gradient
w.r.t x; (c) function gradient w.r.t y; RMSE plots as a function of sample size
for (d) LS/GLS and (e) RBF/GRBF surrogate constructions; Incorporation of
gradient information improves convergence in both cases.
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(a) True output surface

5 10 20 30 40

10-2

10-1 LS-HLHS

LS-RLSS

LS-ScSo

GLS-HLHS

GLS-RLSS

GLS-ScSo

(b) LS/GLS error plot

5 10 20 30 40

10-2

10-1

RBF-HLHS

RBF-RLSS

RBF-ScSo

GRBF-HLHS

GRBF-RLSS

GRBF-ScSo
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Figure 4.5: (a) 2-dimensional Michalewicz function, with RMSE as a function
of sample size for (b) LS/GLS and (c) RBF/GRBF surrogate constructions. In-
corporation of gradient information improves convergence in both cases.
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are very close to the machine double precision value of 1e− 16 (on a 32-bit com-

puter) which is expected, given that we are using a quadratic fit to a quadratic

function. Figure 4.4e shows the RMSE convergence plot comparison between

the RBF and GRBF methods using the three different designs. The advantage

of having gradient information is clear from the faster convergence in RMSE

of the GRBF method with increase in number of training samples. In this par-

ticular case, the regression methods produce much more accurate results than

the RBF methods.

Figure 4.5a shows the Michalewicz function while figure 4.5b shows the

RMSE convergence plot comparison between the LS and GLS methods using

the three different sampling designs. Figure 4.5c shows the RMSE convergence

plot comparison between the RBF and GRBF methods. From figures 4.5b and

4.5c, it is seen that the gradient-enhanced methods are found to converge faster

than the corresponding non-gradient approaches for each of the three designs.

Also, the RBF methods converge faster than the LS regression methods.

Comparing results from the two different functions, the improvement in

RMSE convergence provided by the gradients for the Michalewicz function is

more significant. This might be attributed to the fact that the quadratic func-

tion is much smoother than the Michalewicz function, so that there is little

advantage to knowing gradients at multiple points in the parameter space.

Two more variants of the quadratic function are also considered. In one
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(a) True output surface

(b) True gradient (w.r.t x) surface (c) True gradient (w.r.t y) surface
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Figure 4.6: (a) 2-dimensional smooth quadratic function; (b) noisy function
gradient w.r.t x; (c) noisy function gradient w.r.t y; RMSE plots as a function of
sample size for (d) LS/GLS and (e) RBF/GRBF surrogate constructions; Incor-
poration of gradient information degrades convergence in both cases.
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(a) True output surface

(b) True gradient (w.r.t x) surface (c) True gradient (w.r.t y) surface
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Figure 4.7: (a) 2-dimensional noisy quadratic function; (b) noisy function gra-
dient w.r.t x; (c) noisy function gradient w.r.t y; RMSE plots as a function of
sample size for (d) LS/GLS and (e) RBF/GRBF surrogate constructions.
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case, the function is smooth but the gradient is noisy as shown in figure 4.6

and in the other case, the function is itself noisy as shown in figure 4.7. Fig-

ures 4.6d and 4.6e shows the RMSE convergence plot comparison between the

LS/GLS methods and RBF/GRBF methods respectively for the noisy gradient

case while figures 4.7d and 4.7e shows the RMSE convergence plot compari-

son between the LS/GLS methods and RBF/GRBF methods respectively for

the noisy output case. It is found that when the function is smooth but the

gradient information is noisy, the gradient based surrogates in both cases de-

grade in quality and performs much worse than the non-gradient surrogates as

seen in Figs. 4.6d and 4.6e. It is seen from Figs. 4.7d and 4.7e where the func-

tion is itself noisy, the gradient and the non-gradient versions both perform

poorly. However, the regression models seems to better handle the noise in the

function and produce smaller RMSE values compared to the kernel based RBF

methods. From the above results (ignoring the noisy cases), it is also found

that the RLSS and ScSo designs when used with any of the surrogate methods

(LS/GLS/RBF/GRBF) lead to similar or slightly more accurate results than

using HLHS design. Thus for all future examples (except 1-dimensional cases),

only the RLSS and ScSo designs are considered.
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4.5 Composite model application

The application considered here is a Representative Volume Element (RVE)

simulation model of a transverse section of a fiber-reinforced composite with

varying numbers of fibers. The carbon fibers (E = 19.5 GPa, ν = 0.45) are em-

bedded in an epoxy matrix (E = 2.38 GPa, ν = 0.43) and all bulk material is as-

sumed to be linear elastic. Along each fiber/matrix interface, debonding is cap-

tured using an exponential cohesive zone model (CZM) [168] where the max-

imum cohesive traction σc and the characteristic opening displacement δc are

the associated model parameters. Linear unloading toward the origin is added

to the cohesive model to avoid unrealistic healing of the interfaces. The RVE

is subjected to a prescribed uniaxial transverse strain of 2% in the x-direction

by applying Dirichlet boundary conditions fixing the x-displacement of the left

and right sides as shown in Figure 4.8a. The simulation model output is the

homogenized Cauchy stress σ̄xx over the entire RVE at the end of the strain

loading.

An Interface-Enriched Generalized Finite Element Method (IGFEM) [151,

152] is used to solve the structural RVE problem and obtain the homogenized

transverse stress. Instead of using meshes that conform to the fiber/matrix

interfaces as in conventional FEM [169], IGFEM uses a nonconformal mesh

and captures the discontinuities of the solution field at these interfaces using
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C−1 continuous enrichment functions in the finite elements that span them.

An analytic material sensitivity analysis developed in [170] is used to obtain

the sensitivities of the output with respect to the cohesive model parameters

of each interface, concurrently with the nonlinear simulation and at very little

extra computational cost.

The goal is to efficiently build a response surface of the average stress at

the final applied strain with respect to the interfacial strength parameters σci

of each of the fibers. Evaluation of the simulation model for a certain com-

bination of the input parameters involves a complex nonlinear finite element

solution of an RVE. Thus an efficient production of the response surface with as

few model evaluations as possible would be highly advantageous. In this study,

RVE models with 1, 2, 5, 9, 20 and 50 fibers are considered. For each of these

models, the fiber/matrix interfaces have characteristic opening displacements

of δci = 100 nm. In all models, a 2% strain is applied in the horizontal direction

and the average stress corresponding at the 2% strain level is the model output

in our study.

4.5.1 1-fiber model

An RVE with a single fiber at the center is considered as shown in Figure

4.8a which details the loading and dimensions of the RVE. The RVE has a vol-

ume fraction of 0.55. The maximum cohesive traction σc at the fiber/matrix in-
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(a) 1-fiber composite model RVE
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Figure 4.8: (a) 1-fiber composite RVE model with applied boundary conditions,
with RMSE as a function of sample size for (b) LS/GLS and (c) RBF/GRBF
surrogate constructions. In most cases, incorporating the gradient information
speeds convergence.
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terface is varied between 10 and 60 MPa and δc = 100 nm. Figures 4.8b and 4.8c

shows the RMSE plot comparisons between LS/GLS methods and RBF/GRBF

methods respectively. The LHS sampling design is used for training the surro-

gate models by gradually increasing the number of σc samples from 4 to 20 in

steps of 4. The RMSE values of the surrogate models for these 5 sample sets

are estimated using a test data set of 1001 equispaced samples in the range

[10MPa, 60MPa]. For the LS/GLS case, it is seen that GLS error convergence

is faster than the LS error convergence showing the usefulness of gradient in-

formation. For the RBF/GRBF case, the RMSE values are very similar to each

other indicating that the gradient information is not very useful in this case. It

is also observed that the LS regression methods produce more accurate results

than the RBF methods.

4.5.2 2-fiber model

An RVE with 2 fibers of equal radii with a volume fraction of 0.34 is consid-

ered. As shown in figure 4.9a, σc1 is the maximum cohesive traction parameter

for the fiber/matrix interface corresponding to the fiber on the left with diam-

eter D1 and σc2 corresponds to the fiber on the right with diameter D2. Both

σc1 and σc2 vary independently between 10 and 60 MPa. Figure 4.9b shows

the non-conformed RVE mesh used for all the simulation cases. Figure 4.9c

shows the stress-strain response curves for two cases run at a particular case
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(a) 2-fiber composite model RVE (b) RVE nonconformal mesh

(c) Stress-strain curves

Figure 4.9: (a) 2-fiber microstructure RVE geometries, boundary conditions, (b)
mesh, and (c) computed effective stress vs. strain for two different character-
istic crack opening displacements, δc = 25 nm and δc = 100 nm, assuming both
fibers have the same maximum cohesive tractions σc1 = σc2 = 60 MPa.
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(a) True output surface

5 10 20 30 40

10-2

10-1

100
LS-ScSo

GLS-ScSo

LS-RLSS

GLS-RLSS

(b) LS/GLS error plot

5 10 20 30 40

10-2

10-1

100 RBF-ScSo

GRBF-ScSo

RBF-RLSS

GRBF-RLSS

(c) RBF/GRBF error plot

Figure 4.10: (a) True output surface from a 2-fiber composite model with char-
acteristic crack opening displacement δc = 100 nm, with the RMSE error as a
function of sample size using (b) LS/GLS) and (c) RBF/GRBF surrogate con-
structions. Gradient information leads to faster convergence of the results.
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of σc1 = σc2 = 60 MPa but two different δc values of 25 nm and 100 nm. It

is again noted that the stress corresponding to the final applied strain is the

model output in this study. For each case, ScSo and RLSS samples are used for

training the surrogate models by gradually increasing the number of σc sam-

ples from 5 to 40 in steps of 5 samples. The RMSE values of the surrogate

models are estimated using a set of 60×60(= 3600) test grid points in the range

[10, 60]MPa.

Figure 4.10a shows the smooth nature of the true response surface of the

average stress with respect to the cohesive traction parameters for the 2-fiber

composite model at a characteristic opening displacement of δc = 100 nm. Fig-

ures 4.10b and 4.10c show that the RMSE converges faster when the gradient-

based approaches (GLS and GRBF) are used, for both sampling designs (ScSo

and RLSS).

4.5.3 5-fiber model

In this section, two RVEs with 5 fibers are considered where one has a struc-

tured arrangement of the fibers as shown in figure 4.11a while the other has

a more random and clustered arrangement as shown in figure 4.11b. For each

of the 5 fibers, the cohesive traction parameters σci (i = 1, 2, . . . , 5) are assumed

to vary between 10 MPa and 60 MPa, and δc = 100nm. 500 ScSo and 500 RLSS

design samples are generated for training and testing of the surrogate mod-
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(a) Structured 5-fiber model (b) Clustered 5-fiber model

Figure 4.11: 5-fiber composite RVE models with (a) structured and (b) clustered
arrangement of fibers
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Figure 4.12: RMSE as a function of sample size for the structured 5-fiber com-
posite model with characteristic crack opening displacement δc = 100nm, for (a)
LS/GLS surrogate construction and (b) RBF/GRBF surrogate construction.
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Figure 4.13: RMSE as a function of sample size for the clustered 5-fiber com-
posite model with characteristic crack opening displacement δc = 100nm, for (a)
LS/GLS surrogate construction and (b) RBF/GRBF surrogate construction.

els. For each design, the first 200 samples are used for training by gradually

increasing the number of σc samples from 40 to 200 in steps of 40 samples. Af-

ter training the surrogate models with either design, RMSE calculations for

measuring surrogate quality are performed on a common 600 sample test set

using the remaining 300 samples from both designs. Figure 4.12 shows the

error comparison for the structured 5-fiber models using the LS/GLS methods

and the RBF/GRBF methods while Figure 4.13 shows the error comparison for

the clustered 5-fiber models using the LS/GLS methods and the RBF/GRBF

methods. It is seen from figures 4.12a and 4.13a that the GLS method per-

forms better than the LS method especially for small samples sizes and their

performance curve seems to converge with increase in sample sizes. From fig-

ures 4.12b and 4.13b, it is observed that the difference in performance of the
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(a) Structured 9-fiber model (b) Clustered 9-fiber model

Figure 4.14: 9-fiber composite RVE models with (a) structured and (b) clustered
arrangement of fibers

RBF and the GRBF methods with either of the designs tend to be the same

over the range of sample sizes considered. While there are some differences in

the RMSE between the structured and clustered arrangements, this does not

appear to be a significant trend.

4.5.4 9-fiber model

This section considers two 9-fiber RVEs where one has a structured ar-

rangement of the fibers as shown in figure 4.14a while the other has a clustered

arrangement as shown in figure 4.14b. Similar to studies in the previous sec-

tion, for each of the 9 fibers, the cohesive traction parameters σci (i = 1, 2, . . . , 9)

are assumed to vary between 10 MPa and 60 MPa, and δc = 100 nm. 1000 ScSo

and 1000 RLSS design samples are generated for training and testing of the
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Figure 4.15: RMSE as a function of sample size for the structured 9-fiber com-
posite model with characteristic crack opening displacement δc = 100nm, for (a)
LS/GLS surrogate construction and (b) RBF/GRBF surrogate construction.
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Figure 4.16: RMSE as a function of sample size for the clustered 9-fiber com-
posite model with characteristic crack opening displacement δc = 100nm, for (a)
LS/GLS surrogate construction and (b) RBF/GRBF surrogate construction.
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surrogate models. For each design, the first 600 samples are used for training

by gradually increasing the number of σc samples from 100 to 600 in steps of

100 samples. After training the surrogate models with either design, RMSE

calculations for measuring surrogate quality are performed on a common 800

sample test set using the remaining 400 samples from both designs. Figure

4.15 shows the error comparison plots for the structured 9-fiber models us-

ing the LS/GLS and RBF/GRBF methods while figure 4.16 shows similar error

comparison plots for the clustered 9-fiber models. It is again observed that

the gradient-based surrogate methods perform better than the corresponding

non-gradient surrogate methods with both the sampling designs. Similar to

the 5-fiber case, the fiber arrangement does not seem to have an influence on

the quality of the surrogate approximation in the sense that the correspond-

ing RMSE values are similar in order for both the clustered and structured

arrangements. Therefore, in subsequent models, only a random arrangement

of fibers is considered.

4.5.5 20-fiber model

This section considers a 20-fiber RVE with a random arrangement of the

fibers as shown in figure 4.17a. The cohesive traction parameters σci (i =

1, 2, . . . , 20) corresponding to each of the 20 fiber/matrix interfaces are assumed

to vary between 10 MPa and 60 MPa, and δc = 100 nm. 1000 ScSo and 1000
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(a) Random 20-fiber model
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(b) LS/GLS error plot
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(c) RBF/GRBF error plot

Figure 4.17: (a) 20-fiber composite model with a random arrangement of fibers.
RMSE as a function of sample size for (b) LS/GLS and (c) RBF/GRBF construc-
tion show that gradients improve convergence.
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(a) Random 50-fiber model
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Figure 4.18: (a) 50-fiber composite model with a random arrangement of fibers;
(b) RMSE as a function of sample size for LS/GLS construction shows that
gradients improve convergence. RBF/GRBF results not included as these con-
structions do not converge well in high dimensions, as observed in the 20-fiber
case.

RLSS design samples are generated for training and testing of the surrogate

models. For each design, the first 800 samples are used for training by gradu-

ally increasing the number of σc samples from 100 to 800 in steps of 100 sam-

ples. After training the surrogate models with either design, RMSE calcula-

tions for measuring surrogate quality are performed on a common 400 sample

test set using the remaining 200 samples from both designs. Figures 4.17b and

4.17c show the error comparison plots for the random 20-fiber model using the

LS/GLS and RBF/GRBF methods respectively. It is again observed that the

gradient-based GLS surrogate method performs better than the corresponding

non-gradient LS surrogate methods with both the sampling designs. The RBF

and GRBF methods tend to produce noisy RMSE plots and the RMSE values

are similar to one another. The LS/GLS results seem to be more consistently
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accurate in this case than the RBF/GRBF results. This can be attributed to the

use of isotropic Gaussian kernels which might not be an ideal choice for higher

dimensional RBF interpolation.

4.5.6 50-fiber model

This section considers a 50-fiber RVE with a random arrangement of the

fibers as shown in figure 4.18a. The cohesive traction parameters σci (i =

1, 2, . . . , 50) corresponding to each of the 50 matrix/fiber interfaces are assumed

to vary between 10 MPa and 60 MPa, and δc = 100 nm. 1500 ScSo and 1500 RLSS

design samples are generated for training and testing of the surrogate models.

For each design, the first 1000 samples are used for training by gradually in-

creasing the number of σc samples from 100 to 1000 in steps of 100 samples.

After training the surrogate models with either design, RMSE calculations for

measuring surrogate quality are performed on a common 1000 sample test set

using the remaining 500 samples from both designs. Figure 4.18b shows the er-

ror comparison plots for the random 50-fiber model using the LS/GLS methods.

It is again observed that the additional gradient information helps in achieving

faster error convergence for the GLS method compared to the LS methods with

both the sampling designs. Similar to the 20-fiber model, the RBF and GRBF

methods perform inconsistently for the 50-fiber case with increase in number

of samples and the results are not shown here.
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Table 4.1: Time for calculating the sensitivities expressed as percentage of the
simulation time of solving the IGFEM model without calculating the sensitivi-
ties for the different IGFEM multi-fiber models

IGFEM model Sensitivity calculation
time (in %)

2-fiber 13.6
5-fiber 22.5
9-fiber 25.2
20-fiber 44
50-fiber 70

4.5.7 Analysis of total computational cost

The gradient based surrogates were consistently found to be more efficient

than the corresponding non-gradient based surrogates for the same number of

IGFEM model simulations, but the additional cost of calculating the gradients

were not taken into account. In this section, the total computational cost of

the gradient and the non-gradient based surrogates are taken into account to

generate a fair comparison between the two cases. For example, for the 2-fiber

model, the simulation takes 13.6% longer when calculating the model output

and its sensitivities as compared to only calculating the model output. If the

simulation time for solving the 2-fiber IGFEM model without calculating the

sensitivities is given by T2, the total simulation time for solving the model with

sensitivities is 1.136T2. The calculation times for the sensitivities of the differ-

ent multi-fiber models is given in Table 5.1 which shows that the total time

for calculating the sensitivities increases with increase in the number of fibers
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Figure 4.19: Computational cost comparison for different multi-fiber composite
RVE models where Ti is the total time taken to complete a simulation without
the sensitivity calculation for an i-fiber model
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in the model. It is noted that the total simulation time without the sensitiv-

ity calculations is different for different multi-fiber models and increases with

increase in number of fibers in the model. Figure 4.19 shows the variation of

RMSE with increase in total simulation time for the 2-fiber, structured 5-fiber,

structured 9-fiber, 20-fiber and 50-fiber models when LS/GLS methods are used

as the surrogate methods. From the figures, it can be concluded that the en-

hancement in the accuracy of the surrogate approximation using the sensitivity

information clearly outweighs the computational cost of obtaining the sensitiv-

ities. Similar trends (data not shown) are observed for the clustered 5-fiber and

9-fiber models, and also in most cases where RBF/GRBF methods are used.

4.5.8 2-fiber model with δc = 25nm

In this section, a 2-fiber RVE model is again considered with the same range

of interface strengths but with a different characteristic opening displacement

of δc = 25 nm. Figure 4.9c shows the non-linear stress-strain response curve

run at σc1 = σc2 = 60 MPa and δc = 25 nm. Similar to the 100 nm case, ScSo and

RLSS samples are used for training the surrogate models by gradually increas-

ing the number of σc samples from 5 to 40 in steps of 5 samples. The RMSE

values of the surrogate models are estimated using a set of 60 × 60(= 3600)

test grid points in the range [10, 60] MPa. Figure 4.20a shows the discontin-

uous true response surface of the average stress with respect to the cohesive
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(a) True output surface
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Figure 4.20: (a) True output surface plot for 2-fiber composite model with char-
acteristic crack opening displacement δc = 25 nm, with RMSE as a function of
sample size for (b) LS/GLS and (c) RBF/GRBF construction. The discontinu-
ity in the response surface leads to poor convergence of the global surrogate
models.
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traction parameters for the 2-fiber composite model at a characteristic opening

displacement of δc = 25 nm while figures 4.20b and 4.20c shows the RMSE con-

vergence plot comparison of the output test values using the LS/GLS methods

and RBF/GRBF methods using the two different designs. The error plots show

that all the surrogate methods perform equally poorly in predicting the output

values although the LS/GLS regression methods tend to perform slightly bet-

ter and the error convergence is smoother than the RBF/GRBF interpolation

methods.

4.5.9 Observation and hypothesis

From the RMSE convergence plots of all the multi-fiber composite models

for δc = 100 nm, it is seen that the gradient-based GLS and GRBF methods

consistently perform better than the non-gradient LS and RBF methods, in-

dicating that the gradient information helped in achieving better quality sur-

rogates. The only exception is for the 20-fiber and 50-fiber model cases where

the RBF and GRBF methods show inconsistencies in the error measures and

the advantage of using gradients is not clear. On the other hand, in a 2-fiber

model with δc = 25 nm, all the surrogate methods perform equally poorly and

the behavior is found to be similar to that of the 1-dimensional noisy sine func-

tion shown in figure 4.3. The discontinuity in the output surface has a similar

effect as noise for these global surrogate methods. The additional gradient in-
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Figure 4.21: 2-fiber composite model stresses and stress sensitivities for crack
opening displacement (a) δc = 100 nm and (b) δc = 25 nm with respect to fiber 1
cohesive strength, and the cohesive strengths of all other fibers in the models
fixed at σc = 35 MPa. Discontinuities make it difficult to construct surrogates
using the global methods presented here.

formation in this case provides no apparent advantage in building surrogates.

A rough idea about the nature of the output surfaces for δc = 25 nm

for models with higher numbers of fibers can be obtained by checking the 1-

dimensional sensitivities of the stress output with respect to the cohesive trac-

tion parameters σci (i = 1, . . . , nf ) of each fiber/matrix interface in a nf -fiber

model where nf denotes the number of fibers in the model. Figures 4.21a and

4.21b show the variation as well as the local gradients of the average stress

(output) with respect to the cohesive traction parameter σc1 of the fiber/matrix

interface corresponding to the fiber with diameter D1 in a 2-fiber model [see

figure 4.9a] for δc = 100 nm and δc = 25 nm respectively. The cohesive traction

parameter value of the fiber/matrix interface corresponding to the other fiber
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Figure 4.22: Structured 5-fiber composite model stresses and stress sensitivi-
ties for crack opening displacements (a) δc = 100 nm and (b) δc = 25 nm with
respect to fiber 1 cohesive strength, and the cohesive strengths of all other
fibers in the models fixed at σc = 35 MPa; Clustered 5-fiber composite model
stresses and stress sensitivities for crack opening displacements (c) δc = 100 nm
and (d) δc = 25 nm.
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Figure 4.23: Structured 9-fiber composite model stresses and stress sensitivi-
ties for crack opening displacements (a) δc = 100 nm and (b) δc = 25 nm with re-
spect to fiber 1 cohesive strength, and the cohesive strengths of all other fibers
in the models fixed at σc = 35 MPa; Clustered 9-fiber composite model stresses
and stress sensitivities for crack opening displacements (c) δc = 100 nm and (d)
δc = 25 nm.
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is kept fixed at a value of 35 MPa. For δc = 100 nm, the variation is found to

be smooth with conforming local gradients while for δc = 25 nm, the variation

itself was found to be quite noisy. This noisy behavior seems to be the reason

for the poor approximation quality of the surrogates as seen in figures 4.20b

and 4.20c which is also obvious from figure 4.20a for the δc = 25 nm case. Fig-

ures 4.22a and 4.22b shows the variation as well as the local gradients of the

average stress (output) with respect to the cohesive traction parameter σc1 of

the fiber/matrix interface corresponding to fiber 1 in a structured 5-fiber model

[see figure 4.11a], for characteristic crack opening displacements of δc = 100 nm

and δc = 25 nm respectively while figures 4.22c and 4.22d report the same for

a randomly arranged clustered 5-fiber model [see figure 4.11b] for δc = 100 nm

and δc = 25 nm respectively. The cohesive traction parameter value of the

fiber/matrix interfaces corresponding to the 4 other fibers is kept fixed at a

value of 35 MPa. For δc = 100 nm, the variation is found to be smooth with

conforming local gradients while for δc = 25 nm, the variation itself was found

to be quite noisy. Figures 4.23a and 4.23b show the variation as well as the

local gradients of the average stress (output) with respect to the cohesive trac-

tion parameter σc1 of the fiber/matrix interface corresponding to fiber 1 in a

structured 9-fiber model [see figure 4.14a] for δc = 100 nm and δc = 25 nm re-

spectively while figures 4.23c and 4.23d report the same for a clustered 9-fiber

model [see figure 4.14b] for δc = 100 nm and δc = 25 nm respectively. The
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cohesive traction parameter value of the fiber/matrix interfaces correspond-

ing to the 8 other fibers is kept fixed at a value of 35 MPa. For δc = 100 nm,

the variation is found to be smooth with conforming local gradients while for

δc = 25 nm, the variation itself was found to be quite noisy. Thus, at δc = 25 nm,

all multi-fiber models are expected to produce a noisy output surface and the

surrogate quality will be poor with or without the gradient-enhanced global

surrogate models used in this study. To deal with such discontinuities, local

surrogate methods should be implemented to get better error estimates. Such

gradient-enhanced local surrogates are left to future work.

4.6 Conclusions

In this study, the usefulness of additional gradient information in build-

ing surrogates of low to intermediate dimensions is assessed. Using 3 dif-

ferent sampling point designs, both least squares (LS) and radial basis func-

tion approaches (RBF) are used in the gradient-enhanced and non-gradient-

enhanced surrogate construction. The different sampling designs and sur-

rogate models were first tested for simple 1-dimensional and 2-dimensional

functions, which showed that the gradient-enhanced approaches produce more

accurate results than the corresponding non-gradient-enhanced approaches if

the gradients do not contain any noise. However, if the gradients are noisy,
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the gradient-enhanced methods degrade in performance and the non-gradient-

enhanced methods produce much more accurate results. There is relatively lit-

tle distinction between the performance of the three sampling designs, though

the RLSS and ScSo designs perform slightly better than the HLHS design for

these examples. The RBF surrogate constructions lead to faster convergance

than the LS surrogate constructions in the cases of a fluctuating function. The

exception is that the LS approaches converged more rapidly when building a

surrogate for a quadratic function.

As an application problem, fiber-reinforced matrix composite models with

fiber/matrix interface damage are considered in this study. RVE models with

1, 2, 5, 9, 20 and 50 fibers are used. The homogenized stress (model output for

this application problem) surrogates were generated as a function of the inter-

facial strengths of the fiber/matrix interfaces corresponding to each fiber in the

RVE model. When a value of 100 nm is used for the characteristic opening dis-

placement in this particular example, the variation of the homogeneous stress

is smooth and the gradient information used in GLS regression method results

in better quality surrogates than the LS regression method. Similar trends

were observed for the GRBF and the RBF methods except for the 20-fiber and

50-fiber model cases, in which cases the two techniques show similar results.

When the value of the characteristic opening displacement is set at 25 nm, the

variation of the output is found to be discontinuous (with small noise) for all
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multi-fiber models and the quality of these global surrogate models is poor.

Local surrogate methods might be an alternative for tackling discontinuous

surfaces.

In summary, this study shows that the gradient-enhanced techniques pre-

sented here can lead to more efficient construction of surrogates, if the gradi-

ents are highly accurate, if calculating them does not lead to significant ad-

ditional computational cost for each sampling point, and if the function to be

approximated does not exhibit significant discontinuities or other localizations.
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Chapter 5

Free energy calculation using

space filled design and weighted

reconstruction: A modified single

sweep approach

A modified single sweep approach is proposed for generating free energy

landscapes. The approach replaces the use of temperature-accelerated molecu-

lar dynamics (TAMD) [171] to generate centers in collective variable (CV) space

at which mean forces are computed using restrained molecular dynamics (MD)

simulations with a sequential space-filling design. This approach also modifies

the radial basis function reconstruction step of the traditional single sweep
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approach [30] and proposes a weighted reconstruction of the free energy sur-

face using the previously generated mean forces. The weighted reconstruction

strategy attempts to improve the approximation of the free energy landscape

in the lower energy regions in the CV space and has been found to produce de-

sired results for the free energy reconstruction of the analytical Müller poten-

tial [172]. The modified approach is compared to the traditional single sweep

(SS) approach [30] on the (ϕ,ψ) dihedral free-energy map of solvated alanine

dipeptide (AD). It is found that the new approach results in a more accurate

reconstructed free energy than does the traditional approach when compared

to the directly-computed reference free energy landscape. It is shown that the

increased accuracy of the overall map stems from the improved 1-dimensional

space filling (projective) property of the proposed design compared to that of

the TAMD generated centers. A further enhancement in the accuracy of the

crucial lower energy regions is enabled by the introduction of weights in the

reconstruction step that give more importance to lower energy-valued regions.

The increase in accuracy, observed even with a small number of centers, sug-

gests that the new approach might be advantageous in computing free-energy

landscapes in higher-dimensional CV spaces where it is not affordable to run

restrained MD simulations at more than a certain number of centers.
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5.1 Introduction

On molecular timescales, many biomolecular interactions and functions rely

on relatively rare transitions between metastable states. All-atom molecu-

lar dynamics (MD) simulations offer the potential to view such events with

atomic precision, provided one can overcome its computational timescale limi-

tations. A standard way to do this is to invoke some meaningful coarse-grained

or collective variables and statistically characterize their equilibrium distribu-

tions; because of the one-to-one correspondence between coarse-grained equi-

librium distributions and free energy, methods to characterize such variables

are termed free-energy methods. Many such methods focus on reconstructing a

free-energy landscape via enhanced sampling, such as the weighted histogram

analysis method (WHAM) [173] and metadynamics [174, 175], and the single-

sweep approach [30].

Here, we revisit the single-sweep approach. In its original formulation,

single-sweep first uses trajectories from temperature-accelerated MD (TAMD)

[171] to obtain as broad as possible a sampling of the CV-space. Restrained sim-

ulations at each sample are then performed to compute mean forces, which in

turn are used in a gradient-based reconstruction of the free energy. The single-

sweep method has been used to study various processes including ion recruit-

ment by proteins [176], gas diffusion in myoglobin and MSOX [177,178], ligand
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binding [179] and other biologically relevant rare events [180, 181]. Though

TAMD performs an enhanced sampling of CV space, the probability distri-

bution it samples retains the structure of the physical surface, and thus it

has relatively lower probabilities of visiting high-energy saddles as opposed to

minima. Here we hypothesize that an efficient non-collapsive space-filling al-

gorithm for assigning points in CV space at which gradients are computed via

expensive MD simulations may lead to improved accuracy in the free-energy

landscape relative to TAMD-based single-sweep.

Efficient space filling algorithms are heavily studied in the realm of re-

sponse surface modeling/surrogate modeling. Standard surrogate models make

use of model output values evaluated at a set of sampling points (structured

sampling [85, 100, 112, 121] or unstructured sampling [135–137]) in the pa-

rameter space to build a response surface of the output. From the surrogate

modeling framework, the current work focuses on building a response surface

of the free energy (output) from MD simulation models that provide only the

mean forces (output gradients) with respect to the collective variables (input

parameters) at certain locations in the collective variable space.

In this work, we propose a sequential maximin space filling design for cen-

ter selection where new candidate samples are placed at midpoints of existing

samples along each dimension and selected by an L1-distance maximization.

The space-filling algorithm will effectively cover the landscape space in evenly
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placed points minimizing error associated with biased distribution. The pro-

cess will be further refined through a secondary step of weighted radial basis

function reconstruction in an attempt to improve the quality of approximation

in the crucial lower energy regions.

This chapter is organized as follows: section 5.2 discusses the single sweep

method in brief. In section 5.3, the modified single sweep method is discussed

in details. Section 5.4 includes two examples, the Müller potential and alanine

dipeptide in aqueous solution with dihedral collective variables. Section 5.5

discusses the results in more details. Section 5.6 provides conclusions.

5.2 Single-sweep method

In the single-sweep method, the centers are at first identified in the CV

space where the mean forces are calculated from restrained MD simulations.

They are selected by quickly sweeping through low to moderately high energy

regions in the free energy landscape using TAMD. Once the mean forces have

been calculated at the chosen centers, the free energy is expressed as a lin-

ear combination of radial basis functions at the centers and the landscape is

obtained by a global reconstruction from the evaluated mean forces. Thus the

approach essentially consists of two sequential steps - 1) mean force evaluation

at centers identified using TAMD sweeping, and 2) free energy reconstruction
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using the mean forces. Each of the steps are described in brief below.

5.2.1 Generation of centers using TAMD

TAMD is a CV-based method to allow more extensive access to the free en-

ergy surface in a particular CV space. The method as used in this work has

been fully described previously [171] and will only be briefly reiterated. A 3n-

dimensional molecular system configuration
˜
x of n atoms is considered. A set of

d collective variables (CVs) which are functions of the configuration
˜
x is chosen

and is denoted by
˜
θ(
˜
x) = (θ1(

˜
x), θ2(

˜
x), . . . , θd(

˜
x)) such that d ≪ 3n. In TAMD,

normal molecular dynamics are extended to include restraints to CVs which

are slowing evolving diffusively along the free energy landscape. In practice,

evolution of the fundamental variables,
˜
x(t), will occur as standard, all-atom

MD simulations with a thermostat at the physical temperature, β−1. The dy-

namics are extended to include forces which restrain each CV θj(
˜
x) to a partic-

ular value zj. Assuming Langevin dynamics, the dynamics of the fundamental

variables
˜
x in this system are:

M ¨
˜
x = −∇xV (

˜
x)− κ

d∑
j=1

(θj(
˜
x)− zj)∇xθj(

˜
x)− γM ˙

˜
x+

˜
η(t; β) (5.1)

In this equation, M is the mass matrix, V (
˜
x) is the interatomic potential,

κ is the restrain spring constant, γ is the Langevin friction coefficient, and
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˜
η is random fluctuation as described by the fluctuation-dissipation theory at

physical temperature β−1:

⟨ηi(t; β)ηj(t′; β)⟩ = β−1γµiδijδ(t− t′). (5.2)

In TAMD, CVs are not fixed but rather evolve as a slow moving variables

according to their own equations of motion: in this case diffusive motion, over

the free energy surface as:

γ̄µ̄j żj = κ[θj(
˜
x)− zj] + ζj(t; β̄) (5.3)

Here, γ̄ is the friction acting on the fictitious particle and µ̄j is the mass of zj.

On the right hand side, the first term represents the instantaneous force on zj

and the second term is the thermal noise at fictitious temperature β̄−1 > β−1:

⟨ζi(t; β̄)ζj(t′; β̄)⟩ = β̄−1γ̄µjδijδ(t− t′). (5.4)

If we choose γ̄ such that the movement of the CV is indeed slow in comparison

to the fundamental variables and κ such that
˜
z(
˜
x(t)) ≈

˜
θ(t), then the dynamics

of
˜
θ(t) become:

γ̄µ̄j żj = −∂F (˜
z)

∂zj
+ ζ(t; β̄) (5.5)

and the force acting on
˜
z becomes approximately equal and opposite to the
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gradient of the free energy. Under these conditions, the slow variable exhibits

dynamics at an increased fictitious temperature β̄−1 while moving according to

the free energy as evaluated at the physical temperature β−1. The enhanced

sampling enabled by β̄−1 allows one to visit higher energy states in CV space

without altering the actual free energy landscape.

To find suitable centers for free energy reconstruction, TAMD is used to

sweep the free energy landscape and center placement is determined as de-

scribed in [30]. We use the resulting TAMD trajectory
˜
z(t) to generate the

relevant centers
˜
z1, . . . ,

˜
zN . A cutoff distance, smin, is specified as the minimum

distance in CV space between centers and each trajectory snapshot is probed

to determine the distance from all other chosen centers. In practice,
˜
z(0) =

˜
z1

for each distance, and a new center is determined at each snapshot when
˜
z(t)

is more than smin away from all other predetermined centers. The distance smin

indirectly determines the number of centers where a larger smin will result in

less centers over the space and a smaller smin will result in closer centers and

thus a greater quantity of centers.

This method of center placement results in a random and robust set of cen-

ters which should be adequately evenly placed. The method gives no preference

towards the free energy of any given region and assumes the given TAMD tra-

jectory visits all relevant phase transitions. The center generation procedure

is followed by restrained MD simulations at each center to obtain mean forces.
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5.2.2 Radial basis function reconstruction

Once the mean forces have been obtained from restrained MD simulations

at the centers, a 2-dimensional thermodynamic integration approach can then

be used to recover the free energy which is discussed in this section. Free

energy P (
˜
z) in the CV space can be expressed as

P (
˜
z) = −kBT ln

∫
d
˜
x ρ(

˜
x) δ[

˜
θ(
˜
x)−

˜
z]

= −kBT ln

∫
d
˜
x δ[

˜
θ(
˜
x)−

˜
z] e

−V (
˜
x)

kBT∫
d
˜
x e

−V (
˜
x)

kBT

= −kBT ln⟨δ[
˜
θ(
˜
x)−

˜
z]⟩ (5.6)

where V (
˜
x) is the interatomic potential energy, kB is Boltzmann’s constant, T

is temperature and ⟨.⟩ is the ensemble average of its argument over the equi-

librium probability distribution ρ(
˜
x). However, this definition of free energy

necessitates visiting all possible conformations in space which would require

infinite MD simulation time and therefore is not a realistic approach especially

in real systems which must overcome large free energy barriers to transition

between metastable states. As such, alternative methods have been studied

which allow for computation of the free energy profile. Thermodynamic in-

tegration is an alternative way to efficiently compute the free energies. This

method requires computation of mean forces
˜
f
z
, the negative gradient of free
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energy
[
˜
f
z
= −▽

˜
zP (

˜
z)
]
, locally at centers

˜
z, and the goal is to mathematically

reconstruct the free energy landscape from the mean force values. A radial-

basis function representation [182] for the free energy Pz is given by

P̃ (
˜
z) =

N∑
j=1

ajϕσ(|
˜
z −

˜
zj|) + C (5.7)

and the gradient is given by

▽
˜
zP̃ (

˜
z) =

N∑
j=1

aj▽
˜
zϕσ(|

˜
z −

˜
zj|) (5.8)

where C is a global constant used to change the origin of P̃ (
˜
z), |.| denotes the

euclidean norm in Rd, N denotes the number of centers, ϕσ(.) is a radial ba-

sis function with adjustable shape parameter σ, and
˜
a = [a1, . . . , aN ] is the un-

known coefficient vector. The radial basis function ϕ(.) is chosen to be Gaussian

and is given by:

ϕσ(|
˜
z −

˜
zj|) = e−|

˜
z−

˜
z
j
|2/2σ2

(5.9)

Free energy calculation involves the estimation of the coefficient vector
˜
a and

parameter σ. This is done by fixing σ and minimizing a residual function to

obtain the coefficient vector
˜
a. Then σ is varied to get the combination of (

˜
a, σ)

which achieves the lowest value of the residual function over all possible com-

binations. The residual function measures the error between the negative of
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the free energy gradient in Eq. (5.8) and the mean forces calculated at the

centers and is given by:

R(
˜
a, σ) =

N∑
i=1

⏐⏐⏐⏐⏐
N∑
j=1

aj∇
˜
zϕσ(|

˜
zi −

˜
zj|) +

˜
f
i

⏐⏐⏐⏐⏐
2

(5.10)

where
˜
f
i

is the mean force vector at center i. Minimizing Eq. (5.10) leads to

the following linear system of equation which is solved to obtain the coefficient

vector
˜
a:

˜̃
G
˜
a =

˜
F (5.11)

which can also be expressed component-wise as

N∑
j=1

Gk,j(σ)aj(σ) = Fk(σ) (5.12)

where Gk,j and Fk(σ) are given by

Gk,j(σ) =
N∑
i=1

∇
˜
zϕσ(|

˜
zi −

˜
zk|).∇

˜
zϕσ(|

˜
zi −

˜
zj|) (5.13)

Fk(σ) = −
N∑
i=1

∇
˜
zϕσ(|

˜
zi −

˜
zk|).

˜
f
i

(5.14)

Derivation of the linear system of equations. In this section, it is shown how

the standard minimization procedure of the residual function expression leads
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to the linear system of equations. The residual function R in Eq. (5.10) can be

expanded in terms of the collective variables as follows:

R(
˜
a, σ) =

N∑
i=1

d∑
m=1

[
N∑
j=1

aj∇z(m)ϕσ(|
˜
zi −

˜
zj|) + f

(m)
i

]2

(5.15)

Taking the derivative with respect to the coefficient vector components leads

to:

∂R(
˜
a, σ)

∂ak
=

N∑
i=1

d∑
m=1

2∇z(m)ϕσ(|
˜
zi −

˜
zk|)

[
N∑
j=1

aj∇z(m)ϕσ(|
˜
zi −

˜
zj|) + f

(m)
i

]
(5.16)

In order to minimize R, the derivative is set to zero such that,

∂R(
˜
a, σ)

∂ak
= 0 (5.17)

⇒
N∑
i=1

N∑
j=1

d∑
m=1

[
∇z(m)ϕσ(|

˜
zi −

˜
zk|)

][
∇z(m)ϕσ(|

˜
zi −

˜
zj|)

]
aj

= −
N∑
i=1

d∑
m=1

∇z(m)ϕσ(|
˜
zi −

˜
zk|)f

(m)
i (5.18)

⇒
N∑
i=1

N∑
j=1

[
∇

˜
zϕσ(|

˜
zi −

˜
zk|).∇

˜
zϕσ(|

˜
zi −

˜
zj|)

]
aj

= −
N∑
i=1

∇
˜
zϕσ(|

˜
zi −

˜
zk|).

˜
f
i

(5.19)
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⇒
˜̃
G
˜
a =

˜
F (5.20)

Eq. (5.20) can also be written component-wise as:

N∑
j=1

Gk,j(σ)aj(σ) = Fk(σ) (5.21)

where

Gk,j(σ) =
N∑
i=1

∇
˜
zϕσ(|

˜
zi −

˜
zk|).∇

˜
zϕσ(|

˜
zi −

˜
zj|) (5.22)

Fk(σ) = −
N∑
i=1

∇
˜
zϕσ(|

˜
zi −

˜
zk|).

˜
f
i

(5.23)

It is noted that the following property:

∇
˜
zϕσ(|

˜
z −

˜
zk|) = ∇

˜
zϕσ(|

˜
zk −

˜
z|) (5.24)

has been used to obtain Eq. (5.20).
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5.3 Proposed modified single sweep ap-

proach

The single-sweep method proposed in [30] uses TAMD to sweep through

the free energy landscape in the CV space and implements a distance threshold

based approach to choose centers on the TAMD trajectory path. The free energy

values are then generated by a radial basis function reconstruction approach

using the mean forces values at the centers. In this study, a modified single

sweep approach is proposed where a sequential space filled design has been

proposed to choose the centers instead of the TAMD generated centers. In

addition, a weighted reconstruction scheme is also proposed to improve the

quality of the free energy landscape in the low energy regions. Each of the

modified steps is described next.

5.3.1 Space filled design for choosing centers

A good space filling design ensures that for any given number of points

sampled, the input sample space is covered in a relatively even fashion. A brief

overview of three classes of sampling designs, latin hypercube sampling (LHS),

stratified sampling (SS) and low discrepancy sequences, has already been given

in chapter 4 (section 4.2) and to some extent in chapter 1 (section 1.5.1).
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In this study, a hierarchical space filled design has been adopted to select

centers in the CV space. This method ensures that the centers are not too close

to each other which is crucial for an efficient reconstruction using radial basis

functions. It is expected that the free energy landscape can potentially have

many local minima, local maxima and saddle points. Since the radial basis

function reconstruction is global, it is intuitive to choose centers that try to

cover the entire CV space.

The proposed design is a sequential maximin distance design where de-

sign points are added one at a time. Let d be the number of input parame-

ters/collective variables/input dimensions. The lower bound, centroid, and up-

per bound of the domain along each dimension act as anchor coordinates. The

candidate coordinates along any dimension are generated by successive bisec-

tion of ordered anchor coordinates along each dimension. Once sampled, the

coordinates of that center also play the role of anchor coordinates along respec-

tive dimensions for generating future candidates. If N centers have been gen-

erated, the number of candidate coordinates is (N − 1). Thus, the total number

of candidate centers for dimension d is (N−1)d. The candidate center which has

the maximum nearest neighbour distance from the existing centers is chosen

as the new center and obtained by the following optimization problem:

max
∀
˜
xc∈C

min
∀
˜
xs∈S

D(
˜
xc,

˜
xs) (5.25)
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where D(
˜
a,
˜
b) =

(∑d
i=1 |ai − bi|p

)1/p

, S is the set of all existing centers and C

is the set of all candidate centers. When d or N is large, the number of candi-

date centers (N − 1)d can get quite large. For that reason, a feasible number of

1-dimensional candidate coordinates are randomly sampled with replacement

along each dimension and combined to get the candidate centers. Thus the

design is random in nature. A simple 2-dimensional demonstration of sample

addition in an aperiodic domain using the proposed design is shown in figure

5.1.

Algorithm steps. The sequential maximin design algorithm needs the follow-

ing inputs for sample generation: number of collective variables (input dimen-

sions) d, coordinates of initial centers
˜
xold, multiplicative factor associated with

candidate sample generation f and number of samples to be added Nnew.

Let the input domain be an unit hypercube H = [0, 1]d and let Nold be the to-

tal number of already existing (initial) centers in the domain. The algorithm

proceeds as follows:

1. Consider the extreme and the centroidal coordinates along each dimen-

sion. The initial set of anchor coordinates (shown as black-bordered grey

squares in figure 5.1) are thus given by the vector: [0, 1, 0.5].

2. Set N = Nold. If Nold = 0, go to step 3. Otherwise, go to step 5.

3. If the construction is periodic, coordinates (0, 0, . . . , 0) and (0.5, 0.5, . . . , 0.5)
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5. Sample candidate 
coordinates with 
replacement along 
each dimension 

1. 3 initial centers 

2. Sample candidate 
coordinates with 
replacement along  
each dimension 

4. New center 
addition by L1-
norm distance  
optimization 

3. Combine the dimension-wise 
coordinates to form candidate  
samples in the 2-d domain 

6. New center 
addition by L1-
norm distance  
optimization 

7. Sample candidate 
coordinates with 
replacement along  
each dimension 

8. New center 
addition by L1-
norm distance  
optimization 

Dimension 1 

D
im

en
si

on
 2

 

Candidate coordinates 

Sampled centers 
Anchor coordinates 

Candidate centers 
All possible locations of 
candidate centers 
Bisection lines between 
successive anchor 
coordinates  

Figure 5.1: Sequential sampling procedure using the proposed space filling
design for an aperiodic 2-dimensional domain, starting with 3 initial samples
and adding 3 new samples in succession. (note: multiplicative factor f = 1
assumed here for demonstrative purposes)
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are chosen as the 2 initial d-dimensional centers. Set N = 2. If the con-

struction is aperiodic, coordinates (0, . . . , 0), (0.5, . . . , 0.5) and (1, . . . , 1) are

chosen as the 3 initial sampled centers (shown as black-bordered white

squares in figure 5.1). Set N = 3. Store them in the centers matrix X.

4. If N < Nnew +Nold, go to step 5. Otherwise, terminate the loop.

5. Incorporate the coordinates of all the centers sampled thus far into the

set of anchor coordinates and sort them along each dimension. Remove

any duplication of coordinates. New candidate coordinates (N for periodic

and N − 1 for aperiodic) are selected at the midpoints between successive

anchor coordinates along each dimension (shown as blue circles in figure

5.1).

6. Randomly generate samples (Nf for periodic and (N − 1)f for aperiodic)

from the candidate coordinates with replacement for each dimension. In

this study, f = 100. It is noted that there will be duplication of the gener-

ated samples because of the ‘sampling with replacement’ procedure.

7. Combine the 1-dimensional samples to getNf periodic ((N−1)f aperiodic)

d-dimensional candidate centers (shown as black triangles in figure 5.1).

Remove any duplication of these candidates, and the one that satisfies

(5.25) is chosen. Store the center in X. Set N = N + 1.

8. If N < Nnew +Nold, go to step 5. Otherwise, terminate the loop.
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(c) 180 periodic centers
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(d) 100 aperiodic centers
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(f) 180 aperiodic centers

Figure 5.2: Sequential addition of the space filled design centers: (a-c) addition
of periodic centers from 100 to 180 in steps of 40; (d-f) addition of aperiodic
centers from 100 to 180 in steps of 40

It is clear from the description above that the design is sequential and tries to

maintain its space filling nature with the addition of each new center. Thus, for

a reconstruction procedure, the number of centers generated from this design

can be increased in steps to progressively increase the accuracy of the free

energy landscape. Figure 5.2(a-c) shows the sequential addition of centers from

100 to 180 in steps of 40 in case of a periodic construction while figure 5.2(d-f)

shows the same for an aperiodic construction.

Mean nearest neighbor is the distance metric considered here to assess the

space filling properties of the different sampling designs. The nearest neighbor
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Figure 5.3: Performance comparison of space filling design for (a) aperiodic
centers in 2 dimensions; (b) aperiodic centers projected along dimension 1; (c)
periodic centers in 2 dimensions; (d) periodic centers projected along dimension
1
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(NN) distances are obtained by calculating the Euclidean distances between

each sample and its nearest neighbor and the mean NN distance is calculated

by taking the mean of all the NN distances. From the above definition, it is

clear that for a certain sample size N , the higher the values of the mean NN

distance, the more the separation between the samples, which implies that the

samples are more space filling. 20 sample sets are generated for each design.

Figure 5.3a shows the mean NN distance comparison between the proposed

design and the three common sequential space filled designs, HLHS, RLSS

and Scrambled Sobol (ScSo), for the 2-dimensional samples when the domain is

aperiodic. Figure 5.3c shows a similar comparison when the domain is periodic.

Figures 5.3b and 5.3d show the mean NN distance comparison between the

sampling designs for the 1-dimensional projections of the samples along the 1st

dimension, when the domain is aperiodic and periodic, respectively. A similar

trend as in figures 5.3(b,d) is observed when samples are projected along the

2nd dimension. It is thus seen that the proposed design produces samples with

better space filling properties in both 1 and 2 dimensions. This improved space

filling property in the lower dimensions suggests that the proposed design will

have better projective properties. Also, the variation of the distance metric is

smallest for the proposed design in 2 dimensions, suggesting that the approach

is less sensitive to random sampling error.
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5.3.2 Weighted free energy reconstruction

The important regions in the free energy landscape correspond to regions

around local minima which are essentially low free energy regions. A weighted

reconstruction scheme is hence proposed here to improve the quality of the free

energy landscape in the low energy regions. This is achieved by introducing

weights in the residual function from Eq. (5.10) and the modified expression is

given by:

Rw(
˜
a, σ) =

N∑
i=1

wi

⏐⏐⏐⏐⏐
N∑
j=1

aj∇
˜
zϕσ(|

˜
zi −

˜
zj|) +

˜
f
i

⏐⏐⏐⏐⏐
2

(5.26)

where wi{i = 1, 2, . . . , N} are weight coefficients corresponding to each center

zi{i = 1, 2, . . . , N}.

Let’s say Pi are the approximate free energy values at the centers zi calculated

from a previous reconstruction. Then the weights are calculated at the centers

as follows:

wi = e−(Pi−min{
˜
P})2/2

˜
P̄

2

(5.27)

where
˜
P̄ is the mean of free energy values estimated by minimizing the un-

weighted residual function given in Eq. (5.10). Minimizing the weighted resid-

ual function in Eq. (5.26) similar to the unweighted case leads to the following

linear system of equations:

˜̃
Gw

˜
aw =

˜
Fw (5.28)
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where,

Fw
k (σ) = −

N∑
i=1

wi∇
˜
zϕσ(|

˜
zi −

˜
zk|).

˜
f
i

(5.29)

Gw
k,j =

N∑
i=1

wi∇
˜
zϕσ(|

˜
zi −

˜
zk|).∇

˜
zϕσ(|

˜
zi −

˜
zj|) (5.30)

5.3.3 Numerical implementation

The algorithm consists of the following main steps:

Initialization. The number of collective variables is denoted by d. Ntotal is the

total number of centers where the mean forces would be calculated along each

collective variable. Nstep is the number of centers to be added at the start of

each iteration for mean force evaluations. When all of the Ntotal centers have

been used for mean force evaluation, the algorithm is terminated.

Choice of centers. The centers are selected from the space filled sequential

design in a d-dimensional CV space described in section 5.3.1. Bounds of the CV

space need to be known to implement such a design. In case of an unbounded

CV space, the TAMD trajectory can be used only to get a rough estimate of the

bounds of the relevant CV space and then the space filled design can be used

to generate centers within those bounds.

Mean force evaluations. In this step, the mean forces are evaluated along

each collective variable using restrained molecular dynamics (MD) simulations
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Algorithm 2 : Summarized steps

1) Initialization. Set d, Ntotal, Nstep, n = Ninitial and iter = 1.
2) Generate Ntotal centers and select the first n out of Ntotal centers.
3) Compute mean forces at the n centers.
4) Using the mean force values, the reconstruction step is executed using
radial basis functions.
if reconstruction is unweighted, then

estimate
˜
a and σ from Eq. (5.11) and generate free energy values from Eq.

(5.7)
end if
if reconstruction is weighted, then

if iter = 1, then
estimate

˜
a and σ from Eq. (5.11) and generate free energy values from

Eq. (5.7)
Generate the weight vector

˜
w from the energy values using Eq. (5.27)

and then estimate
˜
a and σ from Eq. (5.28)

else
estimate

˜
a and σ from Eq. (5.28) using

˜
w generated from the previous

iteration.
end if

end if
5) Construct the free energy landscape from the reconstruction parameters
using Eq. (5.7).
if Ntotal centers have been used up, then

terminate the algorithm
else

consider Nstep new centers as candidates for further mean force calcula-
tions.
if reconstruction is weighted, then

estimate free energy values at the (n+Nstep) centers and estimate
˜
w

end if
set n = (n+Nstep) and go to step 3.

end if
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at each center.

Reconstruction. All the mean force data obtained thus far from restrained

MD simulations in the CV space are used to estimate the free energy landscape

globally using a radial basis function reconstruction approach. The reconstruc-

tion can be either weighted as proposed in this study, or unweighted [30]. The

unweighted case [30] corresponds to solving Eq. (5.11) for the reconstruction

parameters
˜
a and σ while the weighted case involves solving Eq. (5.28) for the

reconstruction parameters. It is worth stating here that the initial weights for

the weighted reconstruction are obtained from an unweighted reconstruction

in the first step.

A summary of the all the above steps is given in Algorithm 2.

5.4 Numerical Results

In this section, the two proposed concepts of selecting the centers using the

maximin design as well as the weighted reconstruction is tested with two popu-

lar benchmark systems used in the literature for free energy calculations. One

is a model potential, the Müller potential which has closed form expressions

of the mean forces as well as the free energy. The other system is a solvated

alanine dipeptide (AD) molecule with its configuration expressed in terms of

two torsion angles at 300 K.

206



CHAPTER 5. MODIFIED SINGLE SWEEP APPROACH
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Figure 5.4: Müller potential contour with colored non-grey regions correspond-
ing to values below (a) 100-th percentile, (b) 50-th percentile and (c) 10-th
percentile of the test data set; (d) RMSE comparison plot between weighted
(dashed line) and unweighted (solid line) reconstruction with the proposed
space filled design using 10-th percentile (cross marker), 50-th percentile (circle
marker) and 100th percentile (square marker) test data.
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5.4.1 Müller Potential

The Müller Potential is a 2-dimensional model potential whose surface has

3 minima and 2 saddle points, and is given by [172]:

P =
4∑

i=1

Di e
[ai(x−x0

i )
2+bi(x−x0

i )(y−y0i )+ci(y−y0i )
2],

− 1.5 ≤ x ≤ 1.2, −0.25 ≤ y ≤ 2 (5.31)

where
˜
D = [−200,−100,−170, 15],

˜
a = [−1,−1,−6.5, 0.7],

˜
b = [0, 0, 11, 0.6],

˜
c =

[−10,−10,−6.5, 0.7],
˜
x0 = [1, 0,−0.5,−1],

˜
y0 = [0, 0.5, 1.5, 1]. The gradients can

be obtained analytically at any location in the x− y space by differentiating P

in Eq. (5.31). Figure 5.4a shows the contour plot of the Müller potential with

contours ranging from 0 to 180. True Müller potential values are estimated at

a meshgrid of 100 × 100 (= 10000) test points in the x-y space. 3 test data sets

are used to assess the quality of the free energy construction. The first test

data set is the 100-percentile data set, which constitutes all of the true data

set and corresponds to the entire input x-y space as shown in figure 5.4a. The

second test data set is the 50-percentile test data set, which constitutes all free

energy values below the 50-th percentile and corresponds to the colored region

(non-grey) in the input x-y space as shown in figure 5.4b. The third test data

set is the 10-percentile test data set, which constitutes all free energy values

below the 10-th percentile and corresponds to the colored region (non-grey) in
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the input x-y space as shown in figure 5.4c. Test data in the regions marked in

grey in the x-y space are ignored. Samples from the proposed design are used

as centers for the reconstruction by increasing the number of samples from 100

to 260 in steps of 40 samples and the approximation quality of the potential sur-

face is assessed for each of the 3 sample set cases described above. Since the

input domain is aperiodic, the sampling design uses the aperiodic construction

algorithm to generate the centers. It is noted that since the sampling design is

sequential by construction, when moving from one sample set with M samples

to the next sample set with M +m centers, the M centers are common for both

the sets. Figure 5.4d shows the root mean squared error (RMSE) convergence

plot of the reconstructed Müller potential values for each of the 3 test data sets

using the unweighted and the proposed weighted reconstruction scheme. As

expected, there is a vertically downward shift in the error curve corresponding

to the 10-percentile and 50-percentile test data set when the weighted recon-

struction was used as opposed to the unweighted reconstruction. This implies

that the weighted reconstruction helps improve the quality of approximation

of the potential values in the lower energy regions. On the other hand, it is

seen that the RMSE values for the 100-percentile test data set is worsened by

the weighted reconstruction. This is expected because less weight is given to

centers with approximate high potential values in the reconstruction leading

to poorer approximation in those regions.
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5.4.2 Alanine Dipeptide in solution

In this section, the benchmark example of the equilibrated solvated AD

molecular system in two torsion angles at 300 K is considered. Though this sys-

tem is not particularly interesting from a physical perspective, the extensive

work into understanding and obtaining the 2-dimensional free energy profile

proves useful in determining the efficacy of new methods. The goal here is to

compare the performance of the single sweep (SS) method [30] with the pro-

posed modified single sweep method used for the reconstruction of the free en-

ergy of the AD molecule. It is noted that the single sweep method uses TAMD

sweeping simulations to obtain centers by a distance threshold criterion and

then reconstruct the free energy by an unweighted reconstruction scheme.

On the other hand, the proposed modified single sweep method uses a sequen-

tial space filling design to obtain centers for mean force calculations and then

uses a weighted reconstruction scheme to obtain the free energy values. In

the present work, TAMD sweeping simulations employed a time step of 1 fs.

Temperature was controlled through Langevin dynamics [183] with a temper-

ature of 300K and damping constant of 5 ps−1. Long-range electrostatics are

employed through particle-mesh Ewald summation with grid spacing of 1 .

A cutoff distance of 9 was employed for nonbonded interactions. CHARMM

force field [184, 185] was used with TIP3P waters [186]. In the solvated form,

the simulation included 488 waters in a 26.4 × 22.8 × 24.1 simulation box. To
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(a)

(b) (c)

(d)

100 150 200 250
0.2

0.4

0.6

0.8

1

1.2

(e)

Figure 5.5: (a) Free energy contour of AD molecule from DMDS; Free energy
contour with colored non-grey regions corresponding to values below (b) 100-th
percentile, (c) 50-th percentile and (d) 10-th percentile of the test data set; (e)
RMS error plot for 100 ps restrained MD simulations using 10-th percentile
(cross marker), 50-th percentile (circle marker) and 100th percentile (square
marker) test data 211
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Figure 5.6: RMSE comparison between single sweep (SS) (solid lines) and par-
tially modified single sweep (SF-UnW) (dashed lines) for (a) 10 ps, (c) 50 ps, (e)
100 ps MD simulations (on the left); RMSE comparison between partially mod-
ified single sweep (SF-UnW) (solid lines) and modified single-sweep (Modified
SS) (dashed lines) for (b) 10 ps, (d) 50 ps, (f) 100 ps MD simulations (on the
right)
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maintain a straight peptide, the omega dihedrals were restrained to 180 using

NAMD’s Colvars package [187] with a force constant of 0.003 kcal/mol/deg2. All

MD simulations were performed with NAMD v2.12 [188] and visualized with

VMD [189].

Figure 5.5a shows the contour plot of the solvated Alanine Dipeptide free

energy landscape obtained by the inverse histogram method after running di-

rect MD simulation for 1 µs. The blank region in white correspond to high

energy configurations of the AD molecule which is never visited during the MD

simulation. A meshgrid of 360 × 360 (= 129600) input test points are gener-

ated in the ϕ-ψ CV space. Out of these generated points, free energy values

at 90806 locations could only be obtained because of missing data in the high

energy region which forms the true data set. 3 test data sets are derived from

the true data set. The first test data set is the 100-percentile test data set

which constitutes all of the true data set and corresponds to the colored region

(non-grey) in the CV space as shown in figure 5.5b. The second test data set

is the 50-percentile test data set which constitutes true values below the 50-th

percentile and corresponds to the colored region (non-grey) in the CV space as

shown in figure 5.5c. The third test data set is the 10-percentile test data set

which constitutes true values below the 10-th percentile and corresponds to the

colored region (non-grey) in the CV space as shown in figure 5.5d. Test data

in the regions marked in grey in the CV space are ignored. TAMD generated
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centers are used for the single sweep (SS) approach and reconstruction is per-

formed on sample (center) sets of varying sizes obtained by varying the cutoff

distance smin. For the modified approaches, samples from the proposed design

are used as centers for the reconstruction by increasing the number of samples

from 100 to 260 in steps of 40 samples and the approximation quality of the

potential surface is assessed for each of the sample set cases. Keeping in mind

the stochasticity of the mean force values obtained from the MD simulations at

each center, the entire procedure is repeated 5 times and the median root mean

square errors (RMSE) at each sample set case over these 5 runs are reported

here. Since the input CV domain [−π, π]2 is periodic in this case with period-

icity of 2π along each CV, the sampling design uses the periodic construction

algorithm to generate the centers. It is again noted here that since the sam-

pling design is sequential by construction, when moving from one sample set

with M samples to the next sample set with M +m centers, the M centers are

common for both the sets. Conversely, with TAMD generated centers, overlap

between point sets with varying numbers of centers may exist but is not guar-

anteed. Figure 5.5e shows the root mean squared error (RMSE) convergence

plot of the reconstructed Alanine Dipeptide free energy values for each of the 3

test data sets using the unweighted and the proposed weighted reconstruction

scheme when restrained MD simulations of duration 100 ps are performed at

each center to get the mean force values.
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Figure 5.6 shows the RMSE comparison between the single sweep (SS)

method and the partially modified proposed method (SF-UnW) as well as the

RMSE comparison between the partially modified proposed method (SF-UnW)

and the proposed modified single sweep method. In SF-UnW, the space filled

design is used instead of TAMD sweeping for center selection but the recon-

struction is unweighted. In modified SS method, the space filled design is used

along with a weighted reconstruction approach. Restrained MD simulations of

duration 10 ps, 50 ps and 100 ps were performed at each center to obtain the

mean forces. Figure 5.6a shows that the partially modified proposed method

(SF-UnW) results are more accurate than the corresponding single sweep (SS)

method results for all the 3 test data sets when the MD simulation duration is

10 ps. Similar trends are observed in figures 5.6c and 5.6e when the MD simu-

lation durations are 50 ps and 100 ps respectively. Figure 5.6b shows that the

RMSE values for the modified single sweep method are lower than the corre-

sponding RMSE values for the partially modified proposed method (SF-UnW)

results for all the 3 test data sets when the MD simulation duration is 10 ps.

Similar trends are observed in figures 5.6d and 5.6f when the MD simulation

durations are 50 ps and 100 ps respectively. Thus, from the figures, it can be

concluded that the usage of space filled centers instead of TAMD swept centers

improves the quality of the reconstructed free energy surface. In addition to

that, if a weighted reconstruction is used, the results improve further for all
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the 3 test data sets. Intuitively, it is expected (similar to the Müller poten-

tial example) that the results with the 100-th percentile test data set would be

worse for the modified SS method compared to the SF-UnW method while the

results improve for the 10-th and 50-th percentile test data sets. This is not the

case with the AD example as we are basing the error off the true free energy

values from a direct MD simulation which only samples relatively low energy

regions. Thus the 100-th percentile data set is comprised of data which belong

to relatively low energy regions, due to the absence of true values in the high

energy regions from the direct MD simulation. Therefore, the weighted recon-

struction produces more accurate results even with the 100-th percentile test

data set in this case.

5.5 Discussion

In computing any free energy landscape, the major considerations are ac-

curacy and computational cost. In the context of single-sweep reconstruction,

this work proposes a secondary weighting reconstruction scheme which favors

lower energy regions. These regions are typically the areas of interest where

accuracy would be most important. In addition, due to the nature of high

energy states, it is difficult to accurately measure the mean forces and error

increases in these regions. The Müller potential example has showed that the
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Figure 5.7: Space filling metric comparison of the proposed design and the
TAMD centers in (a) the 2-dimensional domain and (b) the projected 1-
dimensional domain along dimension 1

accuracy of the crucial low energy regions in the reconstructed free energy map

increases if a weighted reconstruction is used instead of an unweighted recon-

struction [30]. Centers are selected from the proposed space filling algorithm

for the study and the comparison is essentially made between the partially

modified single sweep (SF-UnW) approach and the fully modified single sweep

(SS) approach. This is done to test the performance of the proposed weighted

reconstruction approach.

In the solvated alanine dipeptide example, the quality of free energy re-

construction using TAMD swept centers is checked and compared with that

using space-filled centers. In using the space-filling algorithm for point selec-

tion, the accuracy of the reconstructed free energy profile may be increased,
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most notably at higher center counts. When 250 centers are used, the accu-

racy of the partially modified single-sweep with space-filling centers (SF-UnW)

is much greater than TAMD single-sweep. In point selection through TAMD

sweep, points are selected only from the frames in the trajectory. Thus, even

though there is space filling in the 2-dimensional space, there is no control over

the 1-dimensional space filling of the centers. This is evident from figure 5.7a

where it is seen that the 2-dimensional space filling metric is slightly better

for the TAMD center set. However, figure 5.7b reveals that the projected 1-

dimensional space filling metric is much worse for the TAMD centers. The

kernel matrix G [Eq. (5.13)] or Gw [Eq. (5.30)] is a function of the absolute

difference between dimension-wise coordinates of the samples and the condi-

tion number of the matrix (for a fixed shape parameter) would be lower for a

sample set with better projective properties leading to more stable solutions.

The improvement in the reconstruction quality with the space filling design

can thus be attributed to this enhanced projective property compared to the

TAMD centers. In the calculated errors between TAMD single-sweep and par-

tially modified single-sweep seen in figures 5.6a, 5.6c, and 5.6f, the accuracy

of TAMD single-sweep increases disproportionately in the energy wells (lowest

10% of the free energy map) when 150 or more centers are probed. Error as-

sociated with partially modified single-sweep more proportionately scales with

number of centers in the lower energy regions and this might be a byproduct
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Figure 5.8: Sample point (black dots) sets with different values of (a) δ = 0, (b)
δ = 0.025, (c) δ = 0.05, (d) δ = 0.075, and (e) δ = 0.1; X and Y projections of the
samples for each case are on the right and top (white dots with black edges) of
each figure respectively.

of the sequential nature of the design. With higher numbers of centers, we can

ensure higher accuracy with the space-filling center algorithm as compared to

TAMD trajectory sweep.

Table 5.1: Point coordinates as a function of δ

X: 0.17 0.17-δ 0.17+δ 0.5 0.5+δ 0.5-δ 0.83 0.83+δ 0.83-δ
Y: 0.17 0.5 0.83 0.17+δ 0.5+δ 0.83+δ 0.17-δ 0.5-δ 0.83-δ

The importance of good collapsive properties in a sampling design can be

justified using the following example. Let us consider a set of 9 sample points

in [0, 1]2. The coordinates of the points are assumed to be a function of a scalar

variable δ and is shown in Table 5.1. δ is varied between 0 and 0.1 in steps of

0.005 and for each case, a sampling arrangement is obtained. When δ = 0, a

3× 3 mesh grid of samples is obtained and corresponds to the sample set with

the best space filling in 2-dimensions compared to sets obtained from any other

δ value. However, it has the worst projective property.

Figure 5.8 shows sample sets for 5 different values of δ (0, 0.025, 0.05, 0.075, 1)

along with the 1-dimensional projections of each set on the the top (along di-
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Figure 5.9: (a) Variation of the mean NN distance measure of the 2-dimensional
sample sets with δ; (b) Variation of the mean NN distance measure of the 1-
dimensional projections sample sets with δ; (c) Variation of the condition num-
ber of the kernel matrix with δ when the shape parameter σ = 1

mension 1 and right (along dimension 2) of the [0, 1]2 domain. Increasing δ

from 0 to 0.1 leads to consistent degradation in the mean NN distance in the

2-dimensional domain but consistent improvement in the mean NN distance in

the projected 1-dimensional space which is seen in figures 5.9a and 5.9b respec-

tively. Figure 5.9c shows that the condition number of G matrix [Eq. (5.13)] (for

shape parameter equal to 1) decreases in the beginning and then starts to in-

crease with increase in δ. Thus an ideal design should be one which has decent

space filling property in the full domain as well as decent projective property in

the lower dimensions. The proposed design seems to match that criteria better

than the TAMD swept centers.

The RMSE comparison plots between partially modified single-sweep and

modified single-sweep seen in figures 5.6b, 5.6d, and 5.6f, show how the space

filled centers and the weighted reconstruction combine together to produce

highly accurate lower energy spaces. The modified single sweep algorithm
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shows increased performance most notably with fewer centers. Accurate re-

sults with as few as 100 centers can be obtained using the weighted recon-

struction. The ability to use significantly less centers is desirable as it leads to

higher computational efficiency.

It is important to ensure computational efficiency in these algorithms. TAMD

single-sweep requires no a priori information about the system as it obtains in-

formation regarding CV restraints from the initial TAMD sweep. When using

the space-filling algorithm, CV bounds must be selected prior to point selection.

In order to obtain this information, the TAMD sweep may still be necessary to

find the appropriate CV space if these bounds are not known, especially for

non-periodic domains. The weighted reconstruction requires a priori informa-

tion about the free energy landscape in order to obtain weighting factors. This

algorithm would necessitate performing the reconstruction twice, once to ob-

tain initial weights from the unweighted free energy landscape and the second

to perform the weighting procedure. The computationally costly mean force

calculations would not need to be rerun but the reconstruction phase would

require extra computation. The weighted reconstruction can obtain similar ac-

curacy as the unweighted reconstruction with significantly lesser number of

centers, thus offsetting the cost associated with performing the reconstruction

twice.
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5.6 Conclusions

In this work, a more accurate version of the single sweep method for free

energy reconstruction has been proposed. Modifications are proposed in both

steps of the single sweep method. The use of a proposed sequential space filled

design for center selection instead of the TAMD swept centers has led to an

increase in accuracy of the free energy landscape. In addition to that, the im-

plementation of a weighted reconstruction approach as an alternative to the

unweighted reconstruction increase the accuracy of the free energy values in

the crucial lower energy regions. The performance of the weighted reconstruc-

tion was tested using the Müller potential as an example and it was found

that the accuracy of the crucial lower energy regions can be improved by such

a scheme at the expense of the quality of the highest energy regions. The

proposed space filled design is used for generating centers in the comparison

above. The performance of the proposed concepts are then assessed during re-

construction of the free energy of alanine dipeptide (AD) in solution in two of

its dihedral angles. Space filled centers generated from the proposed sampling

design when combined with unweighted reconstruction (SF-UnW) is found to

produce a more accurate reconstruction compared to the single sweep method.

In addition to that, a weighted reconstruction combined with the space filled

samples (modified SS) further improves the quality of the reconstruction in the
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crucial lower energy regions, compared to the SF-UnW method. The increased

efficiency observed in 2-dimensional CV space with relatively small number of

centers shows promise for usage in higher dimensional CV spaces.
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Chapter 6

A probabilistic modeling

framework for composite plate

models under projectile impact

This chapter considers an application of surrogate construction in the field

of armor design and modeling, and deals with the development of a compu-

tational framework for generation of probabilistic penetration response of S-

2 glass/SC-15 epoxy composite plates under ballistic impact. This involves

the computationally feasible generation of the probabilistic velocity response

(PVR) curve or the V0 − V100 curve as a function of the impact velocity, and

the ballistic limit velocity prediction as a function of the model parameters.

The PVR curve incorporates the variability of all the model parameters and
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describes the probability of penetration of the plate as a function of impact ve-

locity. The simulation model system considered here is that of a continuum

single-layer plain weave S2/SC15 composite plate impacted by a 0.22 inch di-

ameter steel right circular cylinder (RCC) projectile. The key goal here is to

locate the surface of separation between rebound and penetration in an input

space of many parameters. An adaptive domain-based decomposition and clas-

sification method, combined with sparse grid sampling is used to locate the

critical region of separation. An assumption of monotonic behaviour of the out-

put with respect to the model parameters, based on the physics of the problem,

helps in reducing the number of model evaluations and makes the algorithm

more efficient. The longitudinal tensile strength (LTS) and the punch shear

strength (PSS) are considered as variable strength parameters to the model

and the proposed methodology is found to efficiently capture the variability of

the ballistic limit velocity with respect to the two strengths and also generate

the PVR curve.

6.1 Introduction

In the field of armors design, performance evaluation of composite plates

under ballistic impact in the presence of various sources of statistical variabil-

ity is an ongoing topic of research. There is a need to explore high-dimensional
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conceptual design space comprising material properties and weave architec-

ture but the cost of prototyping such designs and experimentally characteriz-

ing the ballistic impact response is prohibitively high. Thus the alternative

way is virtual armor design and testing which requires efficient computational

frameworks capable of predicting the impact performance. The probabilistic

velocity response (PVR) curve or V0 − V100 curve is of particular interest in this

regard. VX is defined by the velocity at which the probability of penetration

is X%. In simulations as well as experiments, the current state-of-the-art ap-

proach to generate the PVR curve is to use the Neyer D-Optimal sensitivity test

method [190, 191]. In this method, the PVR curve is assumed to be the cumu-

lative density function (cdf) of a normal distribution with mean and variance

of the V50 impact velocity. The method requires as input, initial guesses for V50

variance and bounds of the V50 mean. The method is then used to guide the

selection of the projectile impact velocities, such that the outcome of the previ-

ous impact velocity test (penetration or rebound) is used to determine the next

impact velocity. Once all the impact velocities are obtained, maximum likeli-

hood estimation (MLE) method is used to obtain the V50 mean and variance

estimates, which finally generates the PVR curve. In essence, the whole curve

is generated based on V50 mean and variance estimates, which might not be

realistic. A lot of work has been done previously in generating the virtual PVR

curve by mapping in different intrinsic (for example, yarn tensile strength)
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and extrinsic (for example, projectile impact location) sources of experimen-

tally characterized variability into fabric finite element (FE) models [192–196].

In some of these studies [195, 196], the numerical PVR curves have been ex-

perimentally validated and are shown to be in good agreement with the exper-

imental PVR curve. It is, however, noted that the number of simulations or

experiments performed to generate the PVR curves were only around 40. From

the experimental perspective, considering the huge cost of performing each bal-

listic experiment, such an approach is understandable. But it might not be the

true experimental PVR curve and we might see a change in the PVR curve

if more experiments are performed. As far as the numerical PVR curves are

concerned, in [196], the yarn tensile strength and yarn tensile modulus were

sampled from a 274-dimensional sampling domain as there were 137 warp and

137 fill yarns. This might have worked in this special case, but the method

might not be the ideal choice in general.

The current work proposes a more systematic approach for generating nu-

merical PVR curve given a composite plate model. It tries to account for the

statistical variability of the material properties by explicitly sampling in the

design space of the variable parameters. It uses an adaptive domain-based

decomposition and classification approach to converge on the surface of sepa-

ration of the penetration and rebound impact behaviour and simultaneously

running the impact model simulations in regions of the input parameter space
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dictated by the algorithm. An upper and lower bound of the PVR curve is esti-

mated analytically using the output label information of samples in the decom-

posed elements. A similar approach is also adopted for ballistic limit velocity

predictions. With increase in each level of domain decomposition, it is found

that the upper and lower bounds of the PVR curve as well as the ballistic limit

estimates converge in increments.

This chapter is organized as follows: section 6.2 discusses the proposed

methodology in details. In section 6.3, the method is applied to a single layer

continuum plain weave S-2 glass/SC-15 epoxy composite plate model under

ballistic impact by a steel projectile. Section 6.4 provides conclusions.

6.2 Methodology

The proposed methodology is a domain decomposition based adaptive clas-

sification approach. It involves sparse grid [63] sampling to generate samples

in an element where the simulation model is run to obtain the corresponding

outputs. A classification based criterion is then used to decide if the element

needs to be further decomposed and if so, choose dimensions along which it

should decompose.
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6.2.1 Domain decomposition

Let us consider a d-dimensional hypercube input domain, assuming the sim-

ulation model is valid everywhere in that domain. If Ai and Bi denote the min-

imum and maximum bounds of the domain along dimension i [i ∈ {1, 2, . . . , d}],

the domain can be denoted by Ξ = [A1, B1] × [A2, B2] × · · · × [Ad, Bd]. We fur-

ther assume the decomposition of the domain takes place orthogonally along

the dimensions. In a general orthogonal decomposition, if the domain Ξ is di-

vided along the first d′ (1 ≤ d′ ≤ d) dimensions and there are nj divisions

along dimension j [j ∈ {1, 2, . . . , d′}], then N non-overlapping and space-filling

elements are formed where, N = (n1)(n2) . . . (nd′) and each element is denoted

by Ξk: ∪N
k=1Ξk = Ξ, Ξm ∩ Ξk = ∅ for m ̸= k and m, k ∈ [1, 2, . . . , N ]. If aki and

bki denote the minimum and maximum bounds of element Ξk along dimension

i [i ∈ {1, 2, . . . , d}], Ξk is the tensor product given by

Ξk = [ak1, b
k
1)× [ak2, b

k
2)× · · · × [akd, b

k
d). (6.1)

For example, if a 3-dimensional hypercube is decomposed along dimensions 1

and 2 with 3 divisions for each dimensions, then (3)(3) = 9 elements are formed.

In this study, an element is divided into 2 sub-elements along only one of the

dimensions. If subdivisions are performed along all dimensions, the number of

sub-elements formed from each subdivision increases exponentially with in-
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crease in dimensionality of the problem and the situation becomes intractable.

This is called the ‘curse of dimensionality’ [197, 198]. A tessellation based ap-

proach of subdividing the domain is also not used here because of the same

reason. The criterion to choose the dimension along which the element is sub-

divided, is discussed in section 6.2.3. A similar domain decomposition proce-

dure has also been implemented in chapter 3 for the purpose of element level

gPC approximation.

6.2.2 Domain-based classification

Classification is a supervised learning method for predicting labels for un-

seen new samples, based on the class labels of the training samples. Most of

the popular classification methods, like, k-nearest neighbors (k-NN), support

vector machines (SVM), artificial neural networks (ANN), etc., are designed

to work with preassigned training data. In this study, data is generated by a

sampling design of choice in the input parameter space and running the sim-

ulation model at those parameter values. The domain-based classification ap-

proach tries to take advantage of the structured sparse grid sample data in

each element in order to classify the entire element space with the same label.

Sparse grid samples are designed to be biased towards the edges of a domain.

This, somewhat, helps in the ‘same label’ assumption for an entire element in

the case where the existing sparse grid samples all have the same label. It is
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precisely the combination of the sparse grid sampling and the domain decom-

position which enables this type of classification. The domain-based classifica-

tion is only used to classify regions with same type of label and is not capable

of generating decision surfaces. It is used to basically converge to the region

containing the decision surface.

6.2.3 Adaptive procedure

The core objective of the proposed methodology is to direct the sampling

towards the region of the boundary of separation between penetration and re-

bound of the projectile. Sparse grid samples of level 1 are used for all the

examples in this study. Before explaining the adaptive procedure, few termi-

nologies are mentioned first. An element also implies the original domain. A

sampled element refers to an element where sparse grid samples have been ex-

plicitly generated to obtain output labels from model evaluations, in addition

to having evaluated samples present in that element from previous iterations.

If a sampled element contains samples with only one type of output label (only

rebound or only penetration), the entire element is classified with that label.

This is the domain-based classification step and thus it is assumed that the

surface of separation of the penetration and rebound will not pass through that

element. On the other hand, when a sampled element contains samples with

both types of output label (rebound and penetration), the surface of separation
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of the penetration and rebound passes through that element and thus it needs

to be resolved further. The unresolved element is split up equally into two sub-

elements along a dimension which corresponds to the maximum edge length

of the element. This is done to avoid biasing the samples along particularly

sensitive dimensions. If the element edge length is found to be same along all

dimensions, then the subdivision is done along a dimension such that one of

the sub-elements have samples with least number (ideally none) of dissimilar

output labels.

6.2.4 PVR curve estimation and ballistic limit

predictions

For computing the PVR curve, the impact velocity is fixed at a particular

value and the goal is to find out the fraction of penetration at that velocity.

This is equivalent to calculating the fraction of penetration in the projected

(d− 1)-dimensional parameter space fixed at the velocity. An approach to gen-

erate the PVR curve is to estimate, at first, the surface of separation using a

suitable classification algorithm with the binary training data. Then, (d − 1)-

dimensional uniformly distributed test samples can be generated at each im-

pact velocity, and the fraction of the ‘penetration’ labels predicted over the total

sample set denote the probability of penetration at that velocity. The process

232



CHAPTER 6. COMPOSITE PLATES UNDER PROJECTILE IMPACT

can be repeated for all values in the impact velocity range to obtain the PVR

curve. However, there is classification error as well as sampling error involved

in this approach for estimating the PVR curve. An alternative approach uses

domain-based classification method to analytically compute lower and upper

bounds of the probability penetration values for each impact velocity of inter-

est. It requires the decomposition of each unresolved element (element with

dissimilar output labels) along all its dimensions. This leads to a possibility

of generating sub-elements with same output labels (new resolved elements)

such that the domain-based classification method can be applied there. Next,

for each impact velocity value, all the d-dimensional elements that include the

value are selected. Let us assume that the total hypervolume of the selected

elements in the projected (d − 1)-dimensional space (fixed at an impact veloc-

ity value) be denoted by Vtotal. Then, the total hypervolume (say, V1) of the

projected (d − 1)-dimensional resolved elements with ‘penetration’ labels are

calculated. In case of the unresolved elements, the entire element is given a

‘rebound’ label to estimate the lower bound and a ‘penetration’ label to estimate

the upper bound. If the total hypervolume of the projected (d− 1)-dimensional

unresolved elements is denoted by V2, then the probability of penetration at

that impact velocity has a lower bound value of V1/Vtotal and a upper bound

value of (V1 + V2)/Vtotal. This approach thus avoids the error in sampling in a

potentially high-dimensional parameter space. However, an uncertain region
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exists between the upper and lower PVR curves whose area reduces with fur-

ther refinement of the parameter space.

A similar approach is used to obtain lower and upper bound estimates of the

ballistic limit velocity predictions as a function of the material parameters. For

each (d− 1)-dimensional input parameter value, the d-dimensional unresolved

elements that include the value is selected. The minimum lower bound value

of the impact velocity among all the unresolved elements corresponds to the

lower bound of the ballistic limit velocity and the maximum upper bound value

of the impact velocity among those elements corresponds to the upper bound

of the ballistic limit velocity. Thus, the uncertainty of the actual ballistic limit

value is bounded by the minimum lower bound and maximum upper bound of

the impact velocity values corresponding to the candidate unresolved elements.

6.2.5 Monotonicity constraints of parameters

The advantage of dealing with physics-based simulation models is that it

is sometimes possible to obtain some initial knowledege about the behavior of

the system under study. For the models used in this work, the likelihood of a

‘penetration’ outcome can be assumed to have a monotonicity constraint with

respect to some parameters of the model. For example, with increase in im-

pact velocity of the projectile, keeping all other input parameters constant, the

likelihood of ‘penetration’ outcome increases. This is a case of monotonicity

234



CHAPTER 6. COMPOSITE PLATES UNDER PROJECTILE IMPACT

constraint of increasing type.

Monotonic constraint knowledge is expressed in terms of dominance rela-

tion between ordered samples in the input space [199]. A sample is said to

dominate another when each coordinate of the former is equal or greater than

the corresponding coordinate of the latter. The class labels are also assumed

to be ordered. For example, a student in an exam can get a grade of ‘A’, ‘B’ or

‘C’. In a binary label output case, either of the label can be considered of lower

value and the other of higher value. Thus, binary label outputs are ordinal

by nature. Monotonicity constraints can be either increasing type or decreas-

ing type. In the case of an increasing monotonicity constraint, the class label

assigned to input samples should be equal or higher than the class labels as-

signed to the samples it dominates. In the case of a decreasing monotonicity

constraint, the class label assigned to input samples should be the same or

lower than the class labels assigned to the samples it dominates. As an ex-

ample, consider a monotonicity constraint relating one input attribute and the

target class. Keeping other attributes of the sample fixed, if the constraint is of

increasing type, a sample with a higher value of the input attribute (dominant

sample) should not be associated to a lower class value, and if the constraint

is of decreasing type, a dominant sample should not be associated to a higher

class value.

Following notations and definitions similar to [199], we consider d input
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parameters with N ordered samples x(i) ⊆ Rd and an associated class la-

bel y(i) [i = 1, . . . , N ]. C ordered labels are considered here such that y(i) ∈

{1, . . . , C}. The data set is denoted by D = {(x(1), y(1)), . . . , (x(N), y(N))}. A domi-

nance relation, ⪰, is defined as follows:

x ⪰ x′ ⇐⇒ xj ≥ x
′

j, ∀j ∈ {1, . . . , d}, (6.2)

where xj and x′
j are the j-th coordinates of samples x and x′, respectively. This

means, x dominates x′, if each coordinate of x is not smaller than the corre-

sponding coordinate of x′. Since the samples as well as the corresponding class

labels are ordered, the elements in data set D are comparable among each

other. Two examples z and z′ are identical if zj = z′j,∀j ∈ {1, ..., d}, and they

are non-identical if ∃j, such that zj ̸= z
′
j. A pair of elements in D, (x, y) and

(x′, y′) is said to have a monotonic relation of increasing type if,

x ⪰ x′ ∧ x ̸= x′ ∧ y ≥ y′

or

x = x′ ∧ y = y′. (6.3)
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and a monotonic relation of decreasing type if,

x ⪰ x′ ∧ x ̸= x′ ∧ y ≤ y′

or

x = x′ ∧ y = y′. (6.4)

If all possible pairs of elements in D are either monotone (increasing or de-

creasing) or incomparable, then data set D is also considered to be monotone.

In a general case, a data set can be monotonic of increasing type for a subset

of the input parameters, monotonic of decreasing type for another subset of

parameters, and non-monotonic in the rest of the parameters. Let there are

d1 monotonically increasing parameters, d2 monotonically decreasing parame-

ters, and d3 non-monotonic parameters, such that d = d1 + d2 + d3. Then for

a pair of non-identical elements in D, (x, y) and (x′, y′), condition for a general

monotonic relation is given by,

x(d1) ⪰ x
′

(d1)
∧ x(d1) ̸= x

′

(d1)
∧ y ≥ y′

∧

x(d2) ⪰ x
′

(d2)
∧ x(d2) ̸= x

′

(d2)
∧ y ≤ y′

∧

x(d3) = x
′

(d3)
(6.5)

237



CHAPTER 6. COMPOSITE PLATES UNDER PROJECTILE IMPACT

where, x(d1) is the d1-dimensional subspace containing the increasing mono-

tone parameters, x(d2) is the d2-dimensional subspace containing the decreas-

ing monotone parameters, and x(d3) is the d3-dimensional subspace containing

the non-monotone parameters.

In the examples considered in this study, the class labels are binary and

hence ordered. The ‘rebound’ label is assumed to be the lower class label and

‘penetration’ label is considered to be the higher class label. There is assump-

tion of monotonicity constraint of increasing type for the impact velocity pa-

rameter and monotonicity constraint of decreasing type for the strength pa-

rameters (longitudinal tensile strength and punch shear strength). Thus, given

all other parameters are fixed, a sample with a higher value of impact velocity

should not have a ‘rebound’ label, if the sample which it dominates has a ‘pen-

etration’ label. Similarly, given all other parameters are fixed, a sample with

a lower value of longitudinal tensile strength (or punch shear strength) should

not have a ‘penetration’ label, if the sample which dominates it has a ‘rebound’

label. When samples are generated in new elements using the adaptive algo-

rithm, the monotonicity criterion in Eq. (6.5) is implemented to save expensive

simulations by cheaper approximation.

6.2.6 Numerical implementation

The algorithm has the following steps:
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1. Select the number of variable parameters or input dimensions d and their

corresponding ranges of interest.

2. Set the total number of iterations Niter, and the minimum hyper-volume

fraction of the non-converged elements Vmin below which the subdivision

into smaller elements is stopped.

3. Initialize iter = 1. Use sparse grid samples of level 1 to generate samples

in the original input domain (element). Run simulations at the samples

and note their output. The output considered here is binary: rebound or

penetration of the projectile. If the final residual impact velocity is in the

same direction as the impact velocity, the output is penetration. If they

are in opposite directions, the output is rebound. If all the simulations

have same output labels (all ‘rebound’ or all ‘penetration’), the element is

assumed to be resolved, and go to step 6. Otherwise, if the output label

outcomes are dissimilar (‘rebound’ and ‘penetration’), the element is said

to be unresolved.

4. Subdivide each unresolved element into two sub-elements along the di-

mension which corresponds to the maximum element edge length. If the

element edge lengths are same along all dimensions, then the subdivision

is done along a dimension such that one of the sub-elements have samples

with minimum number of dissimilar output labels.
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5. Generate new samples in each of the new elements using sparse grid sam-

pling of level 1. Remove duplicity of samples. Check if any of these new

samples can be assigned a label based on the monotonicity constraint in

Eq. (6.5). Run simulations with the parameter values corresponding to

the newly created unlabeled samples. If an element now contains samples

with the same type of output labels, it is assumed to have been resolved

(domain-based classification).

6. At iteration ‘iter’, generate upper and lower bounds of PVR curve as a

function of the impact velocity as well as the ballistic limit velocity pre-

diction as a function of the strength parameters as described in section

6.2.4.

7. Set iter = iter + 1. Calculate the cumulative hyper-volume V of all the

unresolved sub-elements created and the number of iterations iter. Com-

pare with the corresponding critical values Vmin and Niter respectively to

check if either of the two stopping criteria is met. If met, terminate the

algorithm. If either of the criteria is not met, go to step 4.

The flow chart for the entire algorithm is shown in figure 6.1. It is noted here

that an optional monotonicity enforcement step can be implemented at the

end of the algorithm before estimating the quantities of interest. The need

of this implementation may arise because the simulation model behavior may
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Figure 6.1: Flow chart of the algorithm steps for generating the PVR curve
as a function of the impact velocity and predicting ballistic limit velocities as
functions of the mode parameters.

’

become noisy near the decision boundary (surface of separation) separating the

rebound and the penetration region. This means, if the model is run at input

parameter combinations which correspond to regions in input parameter space

close to the surface of separation, the outcome of the model may be such that it

violates the general monotonic behavior and has the wrong label. A way to en-

force monotonicity is to check the label of each sample and see if it violates the

general monotonic behavior with respect to the other sample labels. If there is

violation, the label is changed. This procedure may be repeated for multiple it-

erations over the entire sample set to resolve the monotonicity violation issue.
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6.3 Results

In this section, the proposed framework is applied to a single layer plain

weave S-2 glass/SC-15 epoxy continuum composite model impacted by a steel

projectile. Impact velocity of the projectile is the extrinsic source of variability

and the longitudinal tensile strength and punch shear strength of the plate

are the two intrinsic sources of variability considered in this study. The first

example is a 1-dimensional case which considers only the variation in the im-

pact velocity of the projectile is considered and the strength parameters are

fixed at their baseline values. The next example is a 2-dimensional problem

which considers the additional variation of the longitudinal tensile strength.

Finally a 3-dimensional example is also shown where the impact velocity, the

longitudinal tensile strength, and the punch shear strength are all variable

parameters for the simulation model. Two types of input distributions for the

strength parameters in this study: uniform and normal.

6.3.1 Simulation Model description

The simulation model used in this study is a single layer, continuum plain

weave composite plate target as shown in figure 6.2. It is modeled in LS-

DYNA [200] using hexahedral elements. The plate dimensions are 101.6 mm ×

101.6 mm × 0.887 mm and it is subjected to clamped boundary conditions. The
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plate model is impacted at the center by a rigid, right-circular, cylindrical elas-

tic steel projectile having a diameter of 5.6 mm and height 6.1 mm. A slight fillet

(r ≈ 0.15 mm) is applied to projectile edges to reduce stress concentration. The

damage in the plate is governed by the MAT-162 material model [201, 202]. It

is a continuum damage model that models progressive failure in unidirectional

and plain weave composite materials subjected to large strain rates and pres-

sures (i.e., impact). The model uses a generalized Hashin failure criteria [203]

and the damage progression is characterized by damage evolution laws pro-

posed by Matzenmiller et al. [204]. The failure model simulates fiber failure,

matrix damage, and delamination under modes I, II, and III loading. The dam-

age model simulates material softening (degradation of stiffness matrix) fol-

lowing damage initiation (governed by failure model) when loaded beyond the

failure strength parameters such as longitudinal tensile strength and punch-

shear strength. Thus, varying these strength parameters controls initiation of

material softening as well as the total energy dissipation prior to failure under

impact loading conditions.

6.3.2 1-dimensional example

This section considers the impact velocity variation over the range [80, 200]

m/s, with the effective longitudinal tensile strength (LTS) and the punch shear

strength (PSS) of the continuum level composite plate set at baseline strengths
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(a) (b)

(c)

Figure 6.2: (a) Isometric view of the 4′′×4′′ composite plate model under impact
by a RCC projectile, (b) RCC steel projectile, (c) Magnified front view of the
continuum plate model
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Figure 6.3: (a-d) Ballistic limit prediction with adaptive sampling of impact
velocities: samples with ‘rebound’ outcomes are denoted by ‘circle’ markers,
samples with ‘penetration’ outcomes are denoted by ‘square’ markers, ballistic
limit mean estimate is denoted by ‘cross’ markers; (e) Reduction in the fraction
of the unresolved space with increase in the number of LS-DYNA simulations.
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of 1100 MPa and 300 MPa respectively. Since there is no variability in the

strength parameters, it is not possible to generate a PVR curve in this case.

The only relevant quantity of interest that can be extracted from this scenario

is the ballistic limit velocity at the baseline strengths. This case is more like a

demonstration of the domain-based decomposition and classification method in

1-dimensions to obtain the ballistic limit velocity at the given strengths. Fig-

ures 6.3(a-d) show the evolution of the mean ballistic limit velocity estimate

with increase in iterations of the algorithm. After starting with 3 initial sam-

ples as seen in figure 6.3a, 1 sample is added at each subsequent iteration of

the algorithm as seen in 6.3(b-d). In this 1-dimensional case, the domain de-

composition is very similar to the bisection method. The unresolved domain is

the region in the 1-d impact velocity space bounded by samples with dissimilar

labels (‘rebound’ label on one side and ‘penetration’ label on the other), and the

ballistic limit is considered to lie within the unresolved domain. With each new

simulation, the fraction of unresolved 1-d domain gets reduced by 50% as seen

in figure 6.3e. For example, in 6.3a, the unresolved 1-d space is between the

impact velocity values of 80 and 140 m/s, which is a half of the entire impact

velocity domain. With addition of the 1 more sample with ‘rebound’ label at

110 m/s, the unresolved space shifts to values of 110 and 140 m/s, which is a

quarter of the entire impact velocity domain. It is to be noted here that the

any value of the impact velocity in the unresolved 1-dimensional space could
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be a potential candidate for the ballistic limit estimation for a given number of

samples. For this particular case, candidate of choice is the mean.

6.3.3 2-dimensional example

In this section, the effective longitudinal tensile strength (LTS) of the con-

tinuum level composite plate is considered as a variable parameter over the

range [600, 1600] MPa. The impact velocity variation is again considered over

the range [80, 200] m/s. From the methodology perspective, this is now a 2-

dimensional problem with impact velocity and the longitudinal tensile strength

as the two parameters. It is of interest to generate the PVR curve by taking

into account the variability of the tensile strength parameter, and assess the

variation of the ballistic limit with respect to the strength parameter variation.

Figures 6.4a, 6.4c and 6.4e show the evolution of sample in the input space us-

ing the domain decomposition method with increase in the number of iterations

of the algorithm. The input domain can be roughly divided into three regions:

rebound region, penetration region, and transition region separating the pen-

etration and rebound region. It is of primary interest to resolve the different

regions in the entire input domain in an efficient manner in order to estimate

the relevant quantities of interest. The key to resolving the entire domain is

to accurately locate the transition region. It is seen that the adaptive algo-

rithm biases sampling towards the transition region. Figures 6.4b, 6.4d and
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Figure 6.4: (a, c, e): Adaptive sampling and domain decomposition in the 2-
dimensional input domain of impact velocity and longitudinal tensile strength
with increase in the number of LS-DYNA simulations from (a) 16 to (c) 19 to (e)
27; (b, d, f): Evolution in the lower, upper and mean PVR curves using (b) 16, (d)
19 and (f) 27 LS-DYNA simulations; longitudinal tensile strength is assumed
follow a uniform distribution.

248



CHAPTER 6. COMPOSITE PLATES UNDER PROJECTILE IMPACT

80 110 140 170 200
600

850

1100

1350

1600

(a)

600 850 1100 1350 1600
80

110

140

170

(b)

80 110 140 170 200
600

850

1100

1350

1600

(c)

600 850 1100 1350 1600
80

110

140

170

(d)

80 110 140 170 200
600

850

1100

1350

1600

(e)

600 850 1100 1350 1600
80

110

140

170

(f)

Figure 6.5: (a, c, e): Adaptive sampling and domain decomposition in the 2-
dimensional input domain of impact velocity and longitudinal tensile strength
with increase in the number of LS-DYNA simulations from (a) 16 to (c) 19 to
(e) 27; (b, d, f): Evolution in the lower, upper and mean ballistic limit velocity
curves using (b) 16, (d) 19 and (f) 27 LS-DYNA simulations; longitudinal tensile
strength is assumed follow a uniform distribution.
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Figure 6.6: (a, c, e): Adaptive sampling and domain decomposition in the 2-
dimensional input domain of impact velocity and normally distributed longi-
tudinal tensile strength with increase in the number of LS-DYNA simulations
from (a) 16 to (c) 19 to (e) 27; longitudinal tensile strength is assumed to follow
a normal distribution with µ = 1100 MPa and σ = 110 MPa; (b, d, f): Transfor-
mation of samples and elements to an uniform domain involving (b) 16, (d) 19
and (f) 27 LS-DYNA simulations.
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Figure 6.7: (a, c, e): Adaptive samples and elements in a transformed uniform
2-dimensional domain involving (b) 16, (d) 19 and (f) 27 LS-DYNA simulations,
where longitudinal tensile strength is normally distributed; (b, d, f): Evolution
in the lower, upper and mean PVR curves using (b) 16, (d) 19 and (f) 27 LS-
DYNA simulations where longitudinal tensile strength is normally distributed.
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Figure 6.8: Evolution of the fraction of unresolved domain for the 2-
dimensional problem where the impact velocity of the projectile and the lon-
gitudinal tensile strength of the plate are the variable parameters

6.4f show the corresponding lower bound, upper bound and mean PVR curves

assuming that the longitudinal tensile strength parameter follows a uniform

distribution. It is observed that the area between the lower bound and upper

bound PVR curves decreases with increase in the number of sample evalua-

tions from 16 in figure 6.4b to 27 in figure 6.4f. The space between the upper

bound and lower bound PVR curve gives a measure of the overall uncertainty

of the PVR curve estimate and it is a function of the unresolved space in the

input domain. Addition of more samples using the adaptive algorithm helps in

resolving more space in the input domain which helps in closing down the gap

between the two PVR curves and reducing the overall uncertainty.

Figures 6.5a, 6.5c and 6.5e, same as in figures 6.4a, 6.4c and 6.4e, show the

evolution of sample in the input space using the domain decomposition method

with increase in the number of iterations of the algorithm. Figures 6.5b, 6.5d

and 6.5f show the corresponding lower bound, upper bound and mean ballistic
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limit velocity curves. It is observed that the area between the lower bound and

upper bound ballistic limit curves decreases with increase in the number of

sample evaluations from 16 in figure 6.5b to 27 in figure 6.5f. As observed with

the PVR curves, addition of more samples using the adaptive algorithm helps

in resolving more space in the input domain which helps in closing down the

gap between the two ballistic limit curves.

Figures 6.6a, 6.6c and 6.6e, same as in figures 6.5a, 6.5c and 6.5e, show the

evolution of sample in the input space using the domain decomposition method

with increase in the number of iterations of the algorithm, but in this case, the

longitudinal tensile strength parameter is assumed to be normally distributed

with mean µ = 1100 MPa and standard deviation σ = 110 MPa. Figures 6.6b,

6.6d and 6.6f show the corresponding samples and elements after transforma-

tion of the tensile strength coordinates from the gaussian (normal) domain to

the uniform domain. The transformation is performed using the ‘normcdf()’

matlab [205] function which transforms the original sample coordinates in the

gaussian space to [0, 1]-probability space using the mean and standard devia-

tion values, and it is then linearly transformed back to the original range.

Figures 6.7a, 6.7c and 6.7e, same as in figures 6.6b, 6.6d and 6.6f, show the

samples and elements in a transformed uniform domain when the longitudinal

tensile strength is normally distributed. Figures 6.7b, 6.7d and 6.7f show the

corresponding lower bound, upper bound and mean PVR curves assuming that
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the longitudinal tensile strength parameter follows a gaussian (normal) distri-

bution. As observed in the uniform distribution case, addition of more samples

using the adaptive algorithm helps in resolving more space in the input domain

which helps in closing down the gap between the two PVR curves.

Comparing the PVR curves in the uniformly distributed tensile strength

case (uniform PVR curves) and the normally distributed tensile strength case

(normal PVR curves), it is seen that the normal distribution has a stretching

effect on the curves. It looks as if the probability of penetration (PoP) values

greater than 0.5 get magnified to values close to 1, while PoP values less than

0.5 get reduced to values close to 0, when the underlying distribution of the

strength changes from uniform to gaussian. This happens because the strength

coordinates of the samples as well as the elements under a transformation from

the gaussian domain to the uniform domain are biased towards the upper and

lower bounds. Figure 6.8 shows the reduction in the fraction of the unresolved

domain with increase in the number of LS-DYNA simulations. The fraction of

the unresolved domain is measured by the total hypervolume of the unresolved

(unclassified) elements of the finest resolution obtained after subdivision of the

larger unresolved elements (remaining at the end of each iteration) along all

dimensions.

254



CHAPTER 6. COMPOSITE PLATES UNDER PROJECTILE IMPACT

(a)

(b) (c)

80 110 140 170 200
0

0.25

0.5

0.75

1

(d)

Figure 6.9: Schematic demonstration of lower bound and upper bound PVR
curve generation; (a) shows the pure rebound region in blue, the pure penetra-
tion region in red and the mixed region in grey; (b) shows the mixed region as
part of the penetration region which leads to the red lower bound PVR curve
in (d); (c) shows the mixed region as part of the rebound region which leads to
the blue upper bound PVR curve in (d).
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6.3.4 Illustration of procedure for PVR curve es-

timation and ballistic limit prediction

Figures 6.9(a-d) illustrates the procedure for generation of the lower bound

and upper bound PVR curve for the 2-dimensional case. Figure 6.9a shows the

classification of the 2-dimensional input parameter space into 3 regions: pure

rebound region, the pure penetration region and the mixed region. This clas-

sification is obtained by the adaptive domain-based decomposition and classi-

fication capability of the proposed algorithm. Based on the results from 19 LS-

DYNA simulations, the true surface (curve) of separation between the rebound

and penetration phenomenon lies somewhere in the grey mixed region. The

bounds of the mixed region correspond to edges of decomposed elements and

hence known. The mixed region bounds can thus be used to estimate the lower

and upper bounds of the PVR curve which will then bound the true PVR curve.

Figure 6.9b explains the procedure to generate the lower bound PVR curve. In

this case, the entire mixed region is approximated as the penetration region.

Thus, all the unresolved elements is resolved by assigning a ‘penetration’ label

to the existing samples in the elements and using domain-based classification

to classify all the elements into the penetrating region. Once that is done, the

exact boundary between the rebound and penetration region is now exactly

known and the lower bound PVR curve (shown as a red line in figure 6.9d) can
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Figure 6.10: Schematic description of the ballistic limit velocity prediction as
a function of the tensile strength parameter; (a) shows the pure rebound re-
gion in blue, the pure penetration region in red and the mixed region in grey;
(b) shows the lower bound (on the left) and upper bound (on the right) of the
mixed region in solid green lines; (c) shows the lower bound prediction of the
ballistic limit as a function of the strength parameter (in red solid lines), the
upper bound prediction of the ballistic limit (in blue solid lines), and the mean
prediction (in black dotted lines).
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be analytically calculated as explained in section 6.2.4. Figure 6.9c explains

the procedure to generate the upper bound PVR curve. In this case, the entire

mixed region is approximated as part of the rebound region. The unresolved

elements are thus resolved by assigning a ‘rebound’ label to the existing sam-

ples in the elements and classified into the rebound region. Then, the exact

boundary between the rebound and penetration region is again exactly known

and the upper bound PVR curve (shown as a blue line in figure 6.9d) can be an-

alytically calculated as explained in section 6.2.4. The mean PVR curve shown

as a black dotted line in figure 6.9d is obtained by implementing the k-nearest

neighbor classification using Chebychev distance, assuming that the red PVR

curve and blue PVR curve are data with two different class labels. The mean

curve is basically the k-NN decision surface.

Figure 6.10 explains schematically the generation of the lower bound and

upper values of the ballistic limit velocity for the 2-dimensional case. Figure

6.10a shows the 3 classified regions: pure rebound region, the pure penetration

region and the mixed region, in the 2-dimensional input parameter space. Bal-

listic limit velocity is the velocity at or around which the outcome of the impact

changes from ‘rebound’ to ‘penetration’, or ‘penetration’ to ‘rebound’, for a fixed

value of other material parameters. As can be seen from figure 6.10a, the tran-

sition regions spans at atleast one element for any particular strength value.

Thus, it is intuitive to calculate the lower and upper bounds of the ballistic
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limit velocity. Figure 6.10b shows the upper and lower bounds of the mixed

region (in solid green lines). These bounds can be easily located as they coin-

cide with the decomposed elements in the domain obtained from the algorithm.

After obtaining the mixed region bounds, a value of the strength parameter is

chosen and the impact velocity values at which it intersects the mixed region

bounds, correspond to the ballistic limit lower and upper bounds. 6.10c shows

the corresponding curve obtained for the entire range of strength parameter

values. The mean ballistic limit curve is obtained by taking the average of the

lower and upper bound curve.

6.3.5 3-dimensional example

In this section, in addition to the effective longitudinal tensile strength

(LTS), the effective punch shear strength (PSS) of the continuum level com-

posite plate is also considered as a variable parameter over the range [100, 500]

MPa. The effective longitudinal tensile strength (LTS) is again assumed to

vary over the range [600, 1600] MPa, and the impact velocity over the range

[80, 200] m/s. This is now a 3-dimensional problem with impact velocity, the

longitudinal tensile strength and the punch shear strength as the three vari-

able parameters. The objective here is to generate the PVR curve by taking

into account the variability of the tensile strength parameter as well as the

punch shear strength, and assess the variation of the ballistic limit with re-

259



CHAPTER 6. COMPOSITE PLATES UNDER PROJECTILE IMPACT

80 110 140 170 200
0

0.25

0.5

0.75

1

(a)

80 110 140 170 200
0

0.25

0.5

0.75

1

(b)

80 110 140 170 200
0

0.25

0.5

0.75

1

(c)

80 110 140 170 200
0

0.25

0.5

0.75

1

(d)

80 110 140 170 200
0

0.25

0.5

0.75

1

(e)

80 110 140 170 200
0

0.25

0.5

0.75

1

(f)

Figure 6.11: Generation of PVR curves as a function of the impact velocity of
the projectile using (a) 20, (b) 27, (c) 43, (d) 56, (e) 67 and (f) 104 LS-DYNA
simulations; the longitudinal tensile strength and the punch shear strength
parameters are assumed to follow an uniform distribution in their respective
ranges.
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Figure 6.12: Generation of PVR curves as a function of the impact velocity of
the projectile using (a) 20, (b) 27, (c) 43, (d) 56, (e) 67 and (f) 104 LS-DYNA
simulations; the longitudinal tensile strength and the punch shear strength
parameters are assumed to follow independent normal distributions with µ =
1100 MPa, σ = 110 MPa and µ = 300 MPa, σ = 30 MPa respectively.
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(a) (b)
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Figure 6.13: Evolution of the lower bound contour of the ballistic limit velocity
as a function of the longitudinal tensile strength and punch shear strength
using (a) 20, (b) 27, (c) 43, (d) 56, (e) 67 and (f) 104 LS-DYNA simulations.
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Figure 6.14: Evolution of the upper bound contour of the ballistic limit velocity
as a function of the longitudinal tensile strength and punch shear strength
using (a) 20, (b) 27, (c) 43, (d) 56, (e) 67 and (f) 104 LS-DYNA simulations.
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Figure 6.15: Evolution of the mean contour of the ballistic limit velocity as a
function of the longitudinal tensile strength and punch shear strength using
(a) 20, (b) 27, (c) 43, (d) 56, (e) 67 and (f) 104 LS-DYNA simulations.
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Figure 6.16: Evolution of the fraction of unresolved domain for the 3-
dimensional problem where the impact velocity of the projectile, and the longi-
tudinal tensile strength and punch shear strength of the plate are the variable
parameters

spect to the variation in the strength parameters. Figure 6.11 shows the evolu-

tion of the PVR curves with increase in the number of LS-DYNA simulations.

As observed in the 2-dimensional case, addition of more samples using the

adaptive algorithm helps in reducing the width between the lower bound and

upper bound PVR curves. In this case, the longitudinal tensile strength and

the punch shear strength parameters are assumed to follow an uniform dis-

tribution in [600, 1100] MPa and [300, 500] MPa respectively. Figure 6.12 shows

the corresponding evolution of the PVR curves when the longitudinal tensile

strength and the punch shear strength parameters are now assumed to follow

independent normal distributions with mean µ = 1100 MPa and standard de-

viation σ = 110 MPa for the longitudinal tensile strength and mean µ = 300

MPa and standard deviation σ = 30 MPa for the punch shear strength. Next,

results describing the variation of the ballistic limit velocity with respect to
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changes in both the strength parameters, the longitudinal tensile strength and

the punch shear strength, are shown. Figure 6.13(a-f) shows the evolution of

the lower bound (LB) contour plot of the ballistic limit velocity with increase in

the number of LS-DYNA simulations and figure 6.14(a-f) shows the evolution of

the upper bound (UB) contour plot of the ballistic limit velocity with increase

in the number of LS-DYNA simulations. The evolution of the mean ballistic

limit contour is shown in figure 6.15(a-f) for increasing number of LS-DYNA

simulations. As seen in all the three figures, more and more finer details about

the ballistic limit variation get captured with increase in the number of simu-

lations. It is also seen that the ballistic limit values (in the mean, LB or UB

contours) has an increasing trend with respect to both the strength parameters.

A closer look at the ballistic limit values of the lower and upper bound contours

reveals that the two contours converge closer to each other with increase in the

number of LS-DYNA simulations, which signifies reduction in the uncertainty

in the ballistic limit estimates. It is noted here that the new simulations should

essentially be run at sample (parameter) values which correspond to important

regions in the parameter space. This will help in extracting maximum infor-

mation out of a new simulation.
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6.4 Conclusions

The state-of-the-art method for estimating the PVR curve works in the 1-

dimensional impact velocity space and all the different sources variability are

implicitly included in it. The proposed methodology, on the other hand, ex-

plicitly accounts for the different variability and works in a high-dimensional

space which includes parameters associated with different sources of variabil-

ity. Although this involves more computational cost, it is much more robust

approach with the capability of extracting much more reliable and useful infor-

mation from a computational impact model, for example, ballistic limit veloc-

ity bound predictions at different model parameter values. The computational

framework in this study efficiently characterizes the probabilistic response of

a continuum plain weave composite plate with different sources of variability

under projectile impact. As seen from the results, the methodology allows for

an efficient determination of the lower and upper bounds of the PVR curve. It

also captures the variation of the ballistic limit velocity bounds as a function

of each of the different sources of variability which also helps in assessing the

sensitivity of the ballistic limit towards these parameters. The current state-of-

the-art method, on the other hand, estimates the PVR curve based on V50 mean

and variance estimates by assuming a Gaussian distribution. The methodol-

ogy is also shown to efficiently handle non-uniform marginal distributions of
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strength parameters, like, gaussian, without any sampling based approach.
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Chapter 7

Conclusions and future work

7.1 Summary

The work presented here proposes different surrogate modeling strategies

to deal with a range of black box simulation models related to applications in

the fields of mechanics, along with the demonstration of the algorithm perfor-

mances. The developed algorithms, because of their non-intrusive nature, can

be easily extended to simulation models pertaining to other fields of applica-

tion. For example, if a certain simulation model is stochastic/deterministic in

nature providing only the output gradients and the goal is to build a surrogate

function of the output, then the modified single sweep approach presented in

chapter 5 can be the surrogate modeling algorithm of choice.

The two adaptive surrogate modeling algorithms developed in chapters 2
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and 3 are applicable to problems where the simulation models provide only

the information about the output corresponding to inputs (and no information

about output gradients) and the outputs are continuous (or real valued). In

chapter 2, an efficient algorithm E-ASGC is developed which improves upon

the existing adaptive sparse grid collocation (ASGC) interpolation method in

tracking down discontinuities. It uses cubic spline based approximations of in-

put samples in smoother regions to reduce the number of model evaluations

and has been successfully applied to a stochastic elliptic problem, truss prob-

lem, composite model with interface damage, etc. The E-ASGC method, be-

ing an interpolation approach, is applied to deterministic black-box models.

Chapter 3 presents a multi-element non-intrusive second-order PCE method,

SCAMR, which is basically a regression approach. An efficient criterion for

checking higher dimensional interactions has been proposed which can help in

achieving dimensionality reduction. Problems with dimensionality as high as

500 has been successfully tackled using this approach. The SCAMR, being a

regression approach, can be applied to both deterministic and stochastic black-

box models.

Chapter 4 then considers the surrogate modeling of a type of simulation

model which provides both output as well output sensitivity information. The

simulation model is an IGFEM-based fiber-reinforced matrix composite model

under uniaxial strain loading. This work is a performance study of surrogates
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built using different combinations of existing sampling designs and surrogate

methods. It is found that the efficiency of the surrogate construction using the

sensitivity information outperforms the additional cost of extracting the sensi-

tivity infromation from the model.

Chapter 5 considers a scenario where the simulation model provides only

the output sensitivity information and no output information at all, and the

goal is to estimate the quantity of interest, which is a function of the output.

The simulation model considered here is stochastic in nature. It is a restrained

MD simulation model of solvated alanine dipeptide molecule which provides

the mean forces (negative gradient of free energy) in the collective variable (in-

put) space. The objective is to efficiently construct the free energy landscape.

The surrogate algorithm developed is a modified single sweep approach using

a weighted reconstruction scheme and a sequential space filling design with

improved space filling properties.

Finally, in chapter 6, a composite model under ballistic impact is considered

where a classification surrogate is built for an efficient calculation of important

probabilistic quantities like the probabilistic velocity response (PVR) curve and

ballistic limit velocities. This is a case where the simulation model is determin-

istic and provides outputs that are discrete.
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7.2 Future work

The work presented here provides several potential opportunities for future

research in each of the topics discussed.

In chapter 2, the input parameters are assumed to follow uniform distri-

bution as evident from the mean and variance analytical expressions in Eqs.

(2.18) and (2.23). The way to tackle non-uniform input distribution in the

current state is to construct the surrogate assuming a uniform distribution

of the parameters, then sample the input parameter space according to the

non-uniform distributions they follow and finally extract the corresponding ap-

proximate surrogate outputs. The outputs can then be used to estimate the

relevant quantity of interest. A future work can consider the analytical esti-

mation of the mean and variance for non-uniform distributions with correlation

information. It has also been shown [206,207] that selection of input points by

considering the probability structure of the input domain can lead to efficient

sampling. Similar efforts can be made to further increase the efficiency of the

E-ASGC method by incorporating the non-uniform distribution information of

the parameters in its formulation.

In chapter 3, the input parameters were assumed to be uniform. An ex-

tension can be made to incorporate arbitrary distributions for the input pa-

rameters and thus generalize the approach. Also, in the subdivision step of
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the algorithm, an element is split into two equal parts along each critical di-

mension. An increase in the convergence of the algorithm can be potentially

achieved by coming up with a criterion that enables the subdivision at an ar-

bitrary location along a critical dimension and not necessarily at the midpoint.

The interaction check step is performed at the beginning of the algorithm on

the original domain to reduce the dimensionality of the problem. It would be

interesting to study the performance of the SCAMR algorithm when the inter-

action check is applied to the new elements formed by the decomposition with

a goal to achieve further dimension reduction in them.

The work in chapter 4 can also be extended to a large scale problem with a

large (of the order of 1000) number of fibers if an efficient dimension reduction

scheme (like an active subspace) can be introduced. It may also be of interest

to consider the use of local surrogate models to tackle the discontinuous be-

haviour of the response surface for δc = 25 nm.

The restrained MD simulation models considered in chapter 5, when run for

different simulation durations, provide solutions of different fidelity (longer it

runs for, higher the fidelity of the solution). A potential extension of this work

can be to implement a multi-fidelity approach with a optimal combination of

high-fidelity and low-fidelity models to generate free energy landscapes with

similar accuracy but of much lower computational cost.

A direct extension of the current work with the continuum level composite
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plate model in chapter 6 is to implement the algorithm by introducing more

number of variable input parameters in the study. Another future goal is to

replace the continuum plate model with a meso-scale plate model with explicit

woven architecture of the fiber and the matrix. The meso-scale model is more

realistic but more expensive to solve which can a potential challenge for effi-

cient surrogate construction.
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Chapter 2 appendix

For a valid probability space represented by (Ω,F ,P), following three ax-

ioms should always be satisfied:

1. 0 ≤ P(E) ≤ 1,∀E ∈ F implying any event E in the probability space has

non-negative probability of occurrence not exceeding 1.

2. P(Ω) = 1, means that any elementary event occurring will always lie in the

sample space Ω and never outside it.

3. For a countable number of events E1, E2, E3, ..... ∈ F and Ei ∩ Ej = ϕ, ∀i ̸= j,

P(∪∞
i=1Ei) =

∑∞
i=1P(Ei)

We can represent any physical system in the form of differential equation as:

L(u;x, ω) = f(x, ω),∀x ∈ D and ∀ω ∈ Ω (A.1)
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Theoretically, Ω is infinitely dimensional. Thus the first step in numerically

solving such stochastic differential equations is to make the stochastic space

finite dimensional. This is done by representing the inherent randomness in

the input parameters by a finite number of random variables. For example, if

a certain random input is a stochastic process in space or time, then the in-

dex domain (spatial or temporal) needs to be discretized into a finite number

of independent random variables. This obviously is an approximation but to

make the stochastic system feasible for numerical computation, it is necessary.

If the random process is Gaussian, K-L expansion can be suitably used to rep-

resent the process by a set of uncorrelated Gaussian random variables. This

scenario works fine because of the property that uncorrelated Gaussian ran-

dom variables are also independent. This is not usually the situation while

dealing with a non-Gaussian process where lack of correlation does not neces-

sarily imply independence. Representation of non-Gaussian processes is thus

a challenging issue and details on the ongoing research work in that field can

be found in [208–210]. A more favorable scenario is when the random inputs

are system parameters where the inputs are already parameterized.

Let ψ denote the finite dimensional stochastic space Ψ. Thus the original equa-

tion reduces to:

L(u;x, ψ) = f(x, ψ),∀x ∈ D and ∀ψ ∈ Ψ (A.2)

276



APPENDIX A. CHAPTER 2 APPENDIX

A.1 Representation of stochastic

processes

Let µY (t) be the mean of the input process and let C(x1, x2) be its covariance

function. The Karhunen-Loeve expansion of the process denoted by f(x, ω) is

given by:

f(x, ω) = µY (t) +
∞∑
i=1

√
λiϕi(x)Yi(ω) (A.3)

where ϕi are the orthogonal eigenvectors and λi are the corresponding eigenval-

ues of C(x1, x2) which is by definition bounded, symmetric and positive definite.

The deterministic eigenvectors ϕi(t) are obtained by solving the following ho-

mogeneous Fredholm integral equation of the second kind,

∫
D

C(x1, x2)ϕi(x2)dx2 = λiϕi(x1), x1 ∈ D (A.4)

It is to be noted that the eigenfunctions form a complete orthogonal set satis-

fying, ∫
D

ϕi(x)ϕj(x)dx = δij (A.5)
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Yi(ω) are mutually uncorrelated random variables satisfying

E[Yi(ω)] = 0, E[Yi(ω)Yj(ω)] = δij (A.6)

and defined by,

Yi(ω) =
1√
λi

∫
D

(f(x, ω)− µY (x))ϕ(t)dx, ∀i (A.7)

For practical purposes, the K-L infinite series is truncated to a finite series

expansion with N terms,

f(x, ω) ≈ µY (t) +
N∑
i=1

√
λiϕi(x)Yi(ω). (A.8)

The number of terms to be considered depends on the rate of decay of the eigen-

values which is related to the correlation length parameter of the covariance

function.
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Chapter 4 appendix: Surrogate

modeling and model selection in

irreducible high dimensions with

small sample size

In this study, the performance of three hierarchical space filled designs,

namely Refined Latinized Stratified Sampling (RLSS), Hierarchical Latin Hy-

percube Sampling (HLHS) and Sobol quasi-random sequence, are compared

using the Rosenbrock function in different dimensions. An IGFEM based fiber-

reinforced matrix composite model is also considered as an application prob-

lem. Ordinary kriging interpolation is chosen as the surrogate modeling method
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with different choices of correlation functions. The AIC criterion is used for

model selection and the accuracy of selection is cross-verified using the root

mean squared (RMS) error values.

B.1 Kriging interpolation

Kriging [211, 212], also known as Gaussian process modeling, is an inter-

polation algorithm which tries to build a metamodel ŷ(x) corresponding to an

unknown true function y(x) by assuming it to be a realization of a Gaussian

process Y (x). Y (x) is given by:

Y (x) = βTf(x) + σ2Z(x, ω) (B.1)

where term βTf(x) represents the mean value of the Gaussian process and β is

the regression vector and f(x) is the basis function vector. The term σ2Z(x, ω)

represent the local variations of the function about the mean βTf(x) where σ2

is the process variance and Z(x, ω) is a stationary Gaussian process with zero

mean [E(Z(x)) = 0] and a correlation function given by:

Cov[Z(x), Z(x′)] = K(x,x′;θ) (B.2)
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where K = K(x,x′;θ) is a measure of the similarity between two samples of

the input space, e.g. x and x′ and depends on the hyperparameters θ. We

consider ordinary kriging in our study where f(x) = 1 and βTf(x) = β0. Then

the expression of the mean estimate of the kriging predictor is given by:

µŶ (x) = β̂0 + r(x)TR−1(y − 1β̂0) (B.3)

and the prediction variance estimate is given by:

s2
Ŷ
(x) = σ̂2(1− rT (x)R−1r(x)) (B.4)

where,

β̂0 = (1TR−11)−11TR−1y

σ̂2 =
1

n
(y − 1β̂0)

TR−1(y − 1β̂0) (B.5)

In kriging prediction, the choice of covariance function K is important. In this

study, four families of ellipsoidal type covariance functions are used: Gaus-

sian, Exponential, Matérn 3/2 and Matérn 5/2, whose expressions are given in

table B.1. The Kriging module in UQlab [213,214] was used to perform Kriging

surrogate modeling.

281



APPENDIX B. CHAPTER 4 APPENDIX

Table B.1: Stationary covariance functions

Covariance Expression
functions

Gaussian exp
(
−

d∑
i=1

θip
2
i

)
Exponential exp

(
−

d∑
i=1

θipi
)

Matérn 3/2 (1 +
√
3

d∑
i=1

θipi)exp
(
−

d∑
i=1

θipi
)

Matérn 5/2 (1 +
√
5

d∑
i=1

θipi + ...

5
3

d∑
i=1

θ2i p
2
i )exp

(
−

d∑
i=1

θipi
)

Note: pi = |xi − x
′
i|; for isotropic case, θi = θ

B.2 Numerical results

In this section, a commonly used benchmark function for high-dimensional

applications, the Rosenbrock function, is used as an example problem given by:

f(x) =
d−1∑
i=1

100(x2i − xi+1)
2 + (xi − 1)2 (B.6)

where x is a d-dimensional vector. 4 Rosenbrock functions of dimensions 2, 5, 10

and 20 are considered. Sample points are generated according to three designs:

Sobol, HLHS and RLSS. For a given dimension case and a given design, the

function was evaluated at the generated sample points and kriging was applied

to the data set to predict the function values at 106 Monte Carlo (MC) test

samples in the problem domain. The performance of each case was measured
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using Root Mean Squared Error (RMSE) given by:

RMSE =

√ 1

Nt

Nt∑
i=1

(
y
(i)
true − y

(i)
predicted

)2

(B.7)

where Nt is the total number of test samples, ytrue is the vector of true values

of the function at the Nt points and ypredicted is the vector of kriging-predicted

values at the same Nt points. Here, Nt = 106. The results from the differ-

ent designs are combined together to compare their performance with different

choice of kriging covariance functions. The covariance functions are consid-

ered to be isotropic. Maximum Likelihood (ML) was chosen as the estimation

method [135] and an interior point gradient-based optimization method with

L-BFGS Hessian approximation [215, 216] was used to obtain the optimized

parameter θ̂. The Akaike information criterion (AIC) [217, 218] was used for

model selection from candidate covariance functions and the best models from

each design were compared with each other. AIC for small datasets [219] is

given by:

AICc = −2log(L(θ̂|D,M)) + 2n+
2n(n+ 1)

N − n− 1
(B.8)

where L is the likelihood function, θ̂ is the maximum likelihood estimate, D is

the data, M is the model, n denotes the number of model parameters and N
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denotes the sample size. The model selection probability is then given by:

pi = p(Mi|D) =
exp(−△(i)

A

2
)∑K

i=1 exp(−
△(i)

A

2
)

(B.9)

where, △(i)
A = AIC

(i)
c − AIC min

c . In this study, n = 1 since isotropic covariance

functions are considered as candidate models, and the model performance is

compared at a fixed N . Thus, essentially, from the AIC criterion, the most

suitable model is the one with the highest maximum likehood function value.

For HLHS and RLSS designs, 30 independent set of samples are generated.

For each set, the metamodeling procedure is conducted and the RMSE value

is calculated. From these values, an errorbar plot is generated using the mini-

mum, maximum and median RMSE values. On the other hand, Sobol sequence

is deterministic and generation of only a single set of samples is sufficient for

performance comparisons.

Figure B.1a shows the RMS error convergence plot comparison between

different types of covariance function models with Sobol design points for 2-

dimensional Rosenbrock function, and the surrogate model with the Gaussian

covariance function is found to be most accurate for all the sample cases. Fig-

ure B.1b shows the probabilities of model selection with Sobol design. Except

the 20-sample case, the AIC criterion chooses the Gaussian model as the most

appropriate model which matches with the true RMSE error estimates in fig-
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Figure B.1: 2-dimensional Rosenbrock function
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Figure B.2: 2-dimensional Rosenbrock function

ure B.1a. For the 20-sample case, the Matern-5/2 model is the most probable

model but it has a higher RMS error than the Gaussian model, although the

Gaussian model also has a finite probability of being selected. Figures B.1c

and B.1e show the RMS error convergence plot comparisons between different

types of covariance function models with HLHS design points and RLSS design

points, respectively, where the Gaussian model again has the minimum error.

As shown in figures B.1d and B.1f, the AIC criterion selects the Gaussian model

as the most suitable model which is in agreement with the RMS error values.

Figure B.2 shows the RMS error values of the most probable models selected

from the AIC criterion using each of the 3 different designs for 2-dimensional

Rosenbrock function.

Figures B.3a, B.3c and B.3e shows the RMS error convergence plot compar-

ison between different types of covariance function models with Sobol, HLHS

and RLSS design points respectively for 5-dimensional Rosenbrock function.
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Figure B.3: 5-dimensional Rosenbrock function
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Figure B.4: 5-dimensional Rosenbrock function

The corresponding model selection probability plots in figures B.3b, B.3d and

B.3f behave similarly in the sense that the selected (most probable) models

are the ones with the minimum RMS error among the candidates. The only

exception is the 200-sample case where the Matern-5/2 model is the selected

model for all the 3 designs even though the RMS error is lowest for the Gaus-

sian model for each design case. Figure B.4 shows the RMS error convergence

plot comparison between the best models from the AIC criterion using the 3

different designs for 5-dimensional Rosenbrock function.

Figures B.5a, B.5c and B.5e shows the RMS error convergence plot compar-

ison between different types of covariance function models with the 3 designs

for 10-dimensional Rosenbrock function. In figures B.5b, B.5d and B.5f, it is

seen that there is some discrepancy in the model selection and the correspond-

ing RMS error for 100 and 300 sample cases, but the difference in error be-

tween the selected model and the most accurate (minimum RMS error) model

288



APPENDIX B. CHAPTER 4 APPENDIX

100 300 600 900 1500

600

800

1000

1200

1400

1600

Matern-5/2

Matern-3/2

Exponential

Gaussian

(a) Error convergence plot with
Sobol design

0 500 1000 1500
0

0.5

1

Matern-5/2

Matern-3/2

Exponential

Gaussian

(b) Model selection probability plot
with Sobol design

100 300 600 900 1500

600

800

1000

1200

1400

1600

Matern-5/2

Matern-3/2

Exponential

Gaussian

(c) Error convergence plot with
HLHS design

0 500 1000 1500
0

0.5

1

Matern-5/2

Matern-3/2

Exponential

Gaussian

(d) Model selection probability plot
with HLHS design

100 300 600 900 1500

500

1000

1500

Matern-5/2

Matern-3/2

Exponential

Gaussian

(e) Error convergence plot with
RLSS design

0 500 1000 1500
0

0.5

1

Matern-5/2

Matern-3/2

Exponential

Gaussian

(f) Model selection probability plot
with RLSS design

Figure B.5: 10-dimensional Rosenbrock function
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Figure B.6: 10-dimensional Rosenbrock function

is very small. However, there is good agreement between the maximum likeli-

hood function value and the RMS error for the higher sample cases. Figure B.6

shows the RMS error convergence plot comparison between the best models

from the AIC criterion using the 3 different designs for 10-dimensional Rosen-

brock function.

Figure B.7 shows the RMS error convergence plot comparison between dif-

ferent types of covariance function models with the 3 designs and the corre-

sponding model selection probabilities for 20-dimensional Rosenbrock function.

Apart from the 100-sample case with the Sobol design, there is a general agree-

ment between the maximum likelihood function value and the RMS error and

in cases of disagreement, the difference in the RMS error is fairly small. Fig-

ure B.8 shows the RMS error convergence plot comparison between the best

models from the AIC criterion using the 3 different designs for 20-dimensional

Rosenbrock function.

290



APPENDIX B. CHAPTER 4 APPENDIX

100 400 800 1200 2000
1200

1400

1600

1800

2000

2200

Matern-5/2

Matern-3/2

Exponential

Gaussian

(a) Error convergence plot with
Sobol design

0 500 1000 1500 2000
0

0.5

1

Matern-5/2

Matern-3/2

Exponential

Gaussian

(b) Model selection probability plot
with Sobol design

100 400 800 1200 2000

1400

1600

1800

2000

2200

2400

2600

Matern-5/2

Matern-3/2

Exponential

Gaussian

(c) Error convergence plot with
HLHS design

0 500 1000 1500 2000
0

0.5

1

Matern-5/2

Matern-3/2

Exponential

Gaussian

(d) Model selection probability plot
with HLHS design

100 400 800 1200 2000

1400

1600

1800

2000

2200

2400

2600

Matern-5/2

Matern-3/2

Exponential

Gaussian

(e) Error convergence plot with
RLSS design

0 500 1000 1500 2000
0

0.5

1

Matern-5/2

Matern-3/2

Exponential

Gaussian

(f) Model selection probability plot
with RLSS design

Figure B.7: 20-dimensional Rosenbrock function
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Figure B.8: 20-dimensional Rosenbrock function

B.3 Application to composite models

In this section, an IGFEM-based RVE simulation model of a transverse sec-

tion of a fiber-reinforced composite with varying numbers of fibers is considered

similar to the one in section 4.5. The only difference in the models is that in

this section, the IGFEM model only provides the homogenized stresses (out-

puts) with no sensitivity information (output gradients) with respect to the

damage parameters, whereas in section 4.5, both the outputs and the output

sensitivities are provided by the IGFEM model. The goal of this study is to

assess the performance of the different combinations of sampling designs and

kriging methods (different kernel) in the surrogate construction of this non-

gradient IGFEM model. Models with 2, 5, 9, 20 and 50 fibers are considered for

the study, the details of which can be found in section 4.5.

Figures B.9a and B.9c shows the RMS error convergence plot comparison
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Figure B.9: 2-fiber model
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between different types of covariance function models with Scrambled Sobol

(ScSo) and RLSS design points respectively for the 2-fiber model. The corre-

sponding model selection probability plots are shown in figures B.9b and B.9d.

Figure B.9e shows the RMS error convergence plot comparison between the

best models from the AIC criterion using the 2 different designs for 2-fiber

model.

Figures B.10a and B.10c shows the RMS error convergence plot compari-

son between different types of covariance function models with ScSo and RLSS

design points respectively for the clustered 5-fiber model. The corresponding

model selection probability plots are shown in figures B.10b and B.10d. Fig-

ure B.10e shows the RMS error convergence plot comparison between the best

models from the AIC criterion using the 2 different designs for the clustered

5-fiber model.

Figures B.11a and B.11c shows the RMS error convergence plot compari-

son between different types of covariance function models with ScSo and RLSS

design points respectively for the structured 5-fiber model. The corresponding

model selection probability plots are shown in figures B.11b and B.11d. Fig-

ure B.11e shows the RMS error convergence plot comparison between the best

models from the AIC criterion using the 2 different designs for the structured

5-fiber model.

Figures B.12a and B.12c shows the RMS error convergence plot compari-
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Figure B.11: Structured 5-fiber model
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son between different types of covariance function models with ScSo and RLSS

design points respectively for the clustered 9-fiber model. The corresponding

model selection probability plots are shown in figures B.12b and B.12d. Fig-

ure B.12e shows the RMS error convergence plot comparison between the best

models from the AIC criterion using the 2 different designs for the clustered

9-fiber model.

Figures B.13a and B.13c shows the RMS error convergence plot compari-

son between different types of covariance function models with ScSo and RLSS

design points respectively for the structured 9-fiber model. The corresponding

model selection probability plots are shown in figures B.13b and B.13d. Fig-

ure B.13e shows the RMS error convergence plot comparison between the best

models from the AIC criterion using the 2 different designs for the structured

9-fiber model.

Figures B.14a and B.14c shows the RMS error convergence plot compari-

son between different types of covariance function models with ScSo and RLSS

design points respectively for the randomly arranged 20-fiber model. The cor-

responding model selection probability plots are shown in figures B.14b and

B.14d. Figure B.14e shows the RMS error convergence plot comparison be-

tween the best models from the AIC criterion using the 2 different designs for

the 20-fiber model.

Figures B.15a and B.15c shows the RMS error convergence plot compari-
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son between different types of covariance function models with ScSo and RLSS

design points respectively for the randomly arranged 50-fiber model. The cor-

responding model selection probability plots are shown in figures B.15b and

B.15d. Figure B.15e shows the RMS error convergence plot comparison be-

tween the best models from the AIC criterion using the 2 different designs for

the 50-fiber model.

B.4 Conclusions

From the Rosenbrock function results, we can conclude that the perfor-

mance of all three designs, Sobol, HLHS and RLSS, in most of the cases are

very close to each other and none of them have a distinct advantage over the

other. The only notable difference in performance is in the small sample 20-

dimensional case where the selected model for the Sobol design has a signifi-

cantly higher RMS error than the selected models with the other two designs.

In general, for the 2 and 5-dimensional case, the Gaussian models seems to per-

form the best but its performance degrades with increase in dimensions while

Matérn-5/2 and Matérn-3/2 models shows better performance in higher dimen-

sions. These results motivate the use of isotropic Gaussian kernels for the RBF

interpolation (gradient based and non-gradient) applied to the 2-dimensional
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analytical functions in chapter 4. It is noted here that when isotropic kernels

are used, kriging mean predictions and RBF predictions become identical.

For the non-gradient IGFEM model, the performance of the Scrambled

Sobol and RLSS designs in most of the cases are again found to be similar to

one other. As far as the choice of kernels in kriging interpolation is concerned,

the Gaussian kernels seemed to perform the best for the 2-fiber model. For

the 5-fiber, 9-fiber and 20-fiber cases, the Matérn kernels seem to slightly out-

perform the Gaussian kernels in performance in some situations. But for the

50-fiber case, the Gaussian kernel based kriging outperforms the rest. Thus,

given the IGFEM model, the Gaussian kernel seems to perform satisfactorily

across the range of different RVE models. This leads to the use of isotropic

Gaussian kernels for the RBF interpolation (gradient based and non-gradient)

applied to the IGFEM model in chapter 4.

It is to be noted that these observations are specific to the Rosenbrock func-

tion and the IGFEM composite model problem and might change for any other

arbitrary function/problem.
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