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Abstract

In minimally invasive orthopedic procedures, the surgeon places wires, screws,

and surgical implants through the muscles and bony structures under image guidance.

These interventions require alignment of the pre- and intra-operative patient data, the

intra-operative scanner, surgical instruments, and the patient. Suboptimal interaction

with patient data and challenges in mastering 3D anatomy based on ill-posed 2D

interventional images are essential concerns in image-guided therapies.

State of the art approaches often support the surgeon by using external navigation

systems or ill-conditioned image-based registration methods that both have certain

drawbacks. Augmented reality (AR) has been introduced in the operating rooms in

the last decade; however, in image-guided interventions, it has often only been con-

sidered as a visualization device improving traditional workflows. Consequently, the

technology is gaining minimum maturity that it requires to redefine new procedures,

user interfaces, and interactions.

This dissertation investigates the applications of AR, artificial intelligence, and

robotics in interventional medicine. Our solutions were applied in a broad spectrum
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of problems for various tasks, namely improving imaging and acquisition, image com-

puting and analytics for registration and image understanding, and enhancing the

interventional visualization. The benefits of these approaches were also discovered in

robot-assisted interventions.

We revealed how exemplary workflows are redefined via AR by taking full advan-

tage of head-mounted displays when entirely co-registered with the imaging systems

and the environment at all times. The proposed AR landscape is enabled by co-

localizing the users and the imaging devices via the operating room environment and

exploiting all involved frustums to move spatial information between different bodies.

The system’s awareness of the geometric and physical characteristics of X-ray imaging

allows the exploration of different human-machine interfaces. We also leveraged the

principles governing image formation and combined it with deep learning and RGBD

sensing to fuse images and reconstruct interventional data.

We hope that our holistic approaches towards improving the interface of surgery

and enhancing the usability of interventional imaging, not only augments the sur-

geon’s capabilities but also augments the surgical team’s experience in carrying out

an effective intervention with reduced complications.
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9.2.3.3 Refinement of Point Correspondences . . . . . . . . . 229

9.2.3.4 Extrinsic Symmetry from Point Correspondences . . 230

9.2.4 Robust Estimators for Detecting Imperfect Symmetry . . . . . 231

9.2.5 Regularization based on Bone Distribution . . . . . . . . . . . 233

9.2.6 Interventional Image Registration and Augmentation . . . . . 236

9.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

9.3.1 On the Effect of Regularization . . . . . . . . . . . . . . . . . 239

xvii



CONTENTS

9.3.2 Sensitivity to Imperfect Symmetry . . . . . . . . . . . . . . . 241

9.3.3 Capture Range . . . . . . . . . . . . . . . . . . . . . . . . . . 241

9.3.4 Accuracy of Global Initialization . . . . . . . . . . . . . . . . 242

9.3.5 Estimation of Partial Symmetry on Data with Synthetic Fractures244

9.3.6 Estimation of Partial Symmetry on Patient Data with Trauma

Injuries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

9.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 248

9.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

IV Augmented Robotics: Transcending human limitations

in medical interventions 252

10 Reflective-AR Display: An Interaction Methodology for Virtual-to-

Real Alignment in Medical Robotics 254

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

10.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

10.2.1 Virtual-Real Active Alignment (ViRAAl) . . . . . . . . . . . . 260

10.2.2 Reflective-AR Display . . . . . . . . . . . . . . . . . . . . . . 262

10.2.3 Augmented Reality Assistance for Robot Set Up . . . . . . . . 264

10.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

10.3.1 System and Design . . . . . . . . . . . . . . . . . . . . . . . . 265

10.3.2 Alignment of Virtual-to-Real . . . . . . . . . . . . . . . . . . . 266

xviii



CONTENTS

10.3.3 Augmented Reality for Robot Set Up: Accuracy Analysis . . . 268

10.3.4 Augmented Reality for Robot Set Up: Time Analysis . . . . . 272

10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

10.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

11 Conclusion 280

11.1 Considerations for Clinical Deployment: . . . . . . . . . . . . . . . . 284

11.2 Outlook for Future Work: . . . . . . . . . . . . . . . . . . . . . . . . 285

Vita 334

xix



List of Tables

2.1 TAE measurements from 9 user experiments. . . . . . . . . . . . . . . 52

4.1 NCC similarity measures for the intensity-based 2D/3D registration are
presented at two stages: 1. after re-initialization 2. after registration.
The experiments are conducted using 13 arbitrary C-arm poses, and
the mean and standard deviation (SD) of the similarity measure are
presented in the table. Moreover, mTRE values are presented in mm
after the re-initialization step. We consider a registration with mTRE
< 2.5 mm as a successful attempt. The rate of success using each
method is presented in the last column. . . . . . . . . . . . . . . . . . 95

5.1 Errors are computed by measuring the average of the absolute dis-
tances between 8 radiolucent landmarks implanted into the femur head,
greater trochanter, patella, and the condyle. The residual distances are
measured between the opposite sides of the femur (hip to knee). Er-
rors in angular measurements for tibio femoral (TF) and lateral-distal
femoral (LDF) are reported in the last two columns. Each method is
tested twice on the animal cadaver. The C-arm translation was nearly
210mm to acquire each non-overlapping CBCT volume. The first four
rows present the results using vision-based methods suggested in this
chapter. We then present the errors of registration using external track-
ers as well as image-based stitching of overlapping CBCT volumes with
NCC similarity measure. Note that in this table the results of stitching
using 2D features (Sec. 5.3.2) are not presented as measurements on
a similar animal specimen were not reported in [119]. All errors are
measured by comparing the stitching measurements with the measure-
ments from a complete CT of the porcine specimen as ground-truth. . 119

xx



LIST OF TABLES

5.2 The errors on a long femur phantom are reported similar to the mea-
surements in Table 5.1. The length from the femur neck to the in-
tercondylar fossa of the dry phantom is approximately 369mm. To
measure the distance errors, a total of 12 landmarks are attached to
the femur (6 metal beads on each end). Stitching with each method
is repeated three times, and all errors are computed by comparing the
measurements to the ground-truth measurements in a CT scan of the
phantom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Comparing the performance of the network given different regulariza-
tion factors λcos for the cosine frequency loss in an ablation study . . 145

6.2 Comparing the performance of the network given different regulariza-
tion factors λrr for landmark detection . . . . . . . . . . . . . . . . . 145

6.3 Comparing the performance of the network given different regular-
ization factors λbce for landmark detection. N/A indicates that the
training diverged with the corresponding parameters. . . . . . . . . . 146

8.1 Outcome from the K-wire insertion using our immersive AR system.
Individual performances are listed in columns Pi. Corresponding mean
and SD values can be found in Table 8.4. The last row reports the error
that was measured between the inserted K-wire and the center of the
tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.2 Outcome from the placement of the acetabular implant using our im-
mersive AR system. Individual performances are listed in columns Pi.
Corresponding mean and SD values can be found in Table 8.5. . . . . 204

8.3 Results of the respective SOP presented in [94] and [238]. Columns cor-
respond to individual participants performance. Corresponding mean
and SD values can be found in Table 8.4 and Table 8.5. . . . . . . . . 204

8.4 Mean and SD values for K-wire insertion with the immersive AR, NI-
AR, and SOP. For each method two rows show the mean and SD
values, respectively. For immersive AR, the time is separated into first
planning and then execution. . . . . . . . . . . . . . . . . . . . . . . . 206

8.5 Mean and SD values for acetabular cup placement with the immersive
AR, NI-AR, and SOP. For each method two rows show the mean and
SD values, respectively. For immersive AR, the time is separated into
first planning and then execution time. In the #X-ray column of NI-
AR, only one X-ray is denoted, this references the CBCT that was
acquired before the experiment which is reconstructed of 100 digital
radiographs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

xxi



LIST OF TABLES

8.6 Results from two sample t-tests of our AR method compared to the
respective NI-AR method and the SOP. The upper half of the table
shows results of the statistical evaluation of K-wire insertion with the
AR and NI-AR version as well as AR and SOP. The lower half contains
the corresponding values for the acetabular cup placement. . . . . . . 208

9.1 Errors in detecting the bilateral symmetry plane are estimated given
the initialization parametrization. The last three columns represent the
total number of landmarks, inliers with agreement on the direction of
the vectors connecting the correspondence, and inliers with consensus
on the mid-points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

9.2 Distances between the four anatomical landmarks on the surface of the
pelvis with their counterparts on the mirrored template are presented
as mean ± SD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

10.1 Mean and standard deviation of misalignment errors in mm. . . . . . 271
10.2 Comparison of the error for re-positioning the robot joints in degree

units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
10.3 P-values for each individual joint, as well as for all joints combined. . 271
10.4 Time required for ViRAAl and re-positioning the robot joints in minute:second

units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

xxii



List of Figures

1.1 The heatmap shows the percentage of world population at each region
without access to safe and affordable surgical care [1]. . . . . . . . . . 2

1.2 (a) During a fracture reduction surgery, the surgeon may attempt and
fail frequently in accurately placing the wire within a safe zone inside
the bony anatomy. (b) The narrow area between the acetabulum and
the superior pubic ramus is shown as an example of a typical safe zone
for K-wire placement in a trauma procedure. . . . . . . . . . . . . . . 4

1.3 The interventional data are commonly shown off-axis and indirectly to
the surgeon. Consequently, the surgeons have to take their gaze away
from the patient site to visualize each image update. . . . . . . . . . 4

1.4 Common treatment for sacroiliac joint and superior pubic ramus frac-
tures is the placement of K-wires under fluoroscopic guidance. . . . . 6

1.5 Difficulties arise in addressing rotational alignment in long bone frac-
tures - The 3D preoperative CT scan of the right femur of a patient
with a ballistic fracture of the femoral shaft is shown in (a-b). As
seen in these images, due to the significant comminution, there are
few anatomical cues as to the correct rotational alignment of the bone.
(c) shows the postoperative CT of the same femur after reduction and
placement of a cephallomedullary nail. The varus/valgus alignment
appears to be restored (see Fig. 1.6); however, significant rotational
malalignment is present with excessive external rotation of the distal
aspect of the femur. Axial cuts from the postoperative CT scan are
shown in (d-f). As shown in (d), the hips are in relatively similar
position (right hip ∼ 10◦ externally rotated vs. the left). However, in
(e), the operative right knee is over 40◦ more externally rotated than
the healthy contralateral side in (f). Figures (g-i) show the anteropos-
terior (AP) view of the right hip, AP view of the right femur, and the
lateral postoperative radiographs after revision cephalomedullary nail-
ing with correction of the rotational deformity. The revision surgery
includes removal and correct replacement of the intramedullary nail. . 10

xxiii



LIST OF FIGURES

1.6 Contralateral images for guidance in rotational alignment - (a) and
(b) are intraoperative fluoroscopic images from the revision surgery;
AP view of the contralateral hip and lateral view of the contralateral
knee. These images were utilized to guide rotational alignment of the
fractured femur. By visualizing landmarks on these radiographs and
understanding the change in angulation of the C-arm, the surgeon can
estimate the rotational alignment of the healthy femur and attempt to
recreate this alignment on the operative side. . . . . . . . . . . . . . . 11

1.7 Surgical navigation systems provide guidance with respect to patient
and the imaging data. Image source: BrainLab . . . . . . . . . . . . 12

1.8 (a) HMD with camera, (b) the raw image captured by the camera,
and (c) AR view of the surgeon are shown, respectively. The software
created an augmented view and indicated the ideal insertion point
and needle trajectory. Image courtesy of the Journal of Neurosurgery
Spine, A novel 3D guidance system using augmented reality for percu-
taneous vertebroplasty: technical note, Yuichiro Abe, Shigenobu Sato,
Koji Kato et al., Copyright 2013. . . . . . . . . . . . . . . . . . . . . 18

1.9 The system components of MR-IOS is shown in (a). Using this sys-
tem, the surgeon can look through the semi-transparent mirror that
is augmented with the insertion path (b). Image courtesy of the In-
ternational Journal of Computer Assisted Radiology and Surgery, MR
image overlay guidance: system evaluation for preclinical use, Paweena
U-Thainual, Jan Fritz, Choladawan Moonjaita et al., Copyright 2012. 21

1.10 Visualization of perfect circles for distal locking . . . . . . . . . . . . 22
1.11 The thesis presents the applications of AR and artificial intelligence in

a broad spectrum of problems in interventional medicine, namely for
imaging and acquisition, image computing and registration, and data
visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Checkerboard is designed to be fully visible in RGB, depth, and X-ray
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 The chain of transformations involved in jointly localizing the aug-
mented surgeon and the imaging system in a unified coordinate frame.
Note that the transformations shown with solid arrows are acquired,
while the transformations with dashed arrows are derived. The trans-
formations TTW and STW are estimated using the RGB-based envi-
ronment tracking sensors integrated in the HMD. VTC is computed
by C-arm internal calibration, and TTC is computed using a hand-eye
calibration approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xxiv



LIST OF FIGURES

2.3 An infrared reflective marker is attached to the gantry and calibrated
to the X-ray source using a second marker that is imaged by the navi-
gation system and the C-arm simultaneously. This enables calibration
of the optical tracker to the C-arm source. a-c) shows the marker
used for calibration and the corresponding X-ray image with detected
centroids of the spheres. . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 The C-arm gantry, and therefore, the tracker and the optical marker
are moved and corresponding pose pairs in the respective frames of
reference are collected that are then used for hand–eye calibration. . . 48

2.5 Translational error in mm units with respect to number of pose pairs.
The shaded area represents standard deviation of the error. . . . . . . 50

2.6 Rotational error in degree units with respect to number of pose pairs.
The shaded area represents standard deviation of the error. . . . . . . 50

2.7 Illustration of point-to-line and point-to-point error measures. The
rays shown in magenta are estimated by casting rays from the HMD
to the 3D points selected by the user on the spatial map of the scene. 51

2.8 The multi-level hybrid phantom with X-ray visible landmarks along
e⃗x, e⃗y, and e⃗z is used to evaluate the augmentation error. . . . . . . . 52

2.9 TAE plot for U = 9 users, with red markers defining the median of the
measurements for each user. . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 The workflow of this technique includes an offline calibration of RGBD
surface and CBCT Volume (a). This calibration together with patient
RGBD and CBCT scans are used to mask and correct for rigid move-
ment in the reconstruction. System (b) comprises a mobile C-arm,
and an RGBD sensor near the detector. The transformation chain is
illustrated in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Reconstruction quality using an unconstrained MLEM-based recon-
struction highly depends on the number of projections (a-c), while
the RGBD-enhanced reconstruction performs better with fewer pro-
jections (d-f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xxv



LIST OF FIGURES

3.3 (a) Using simulated reconstructions of a Shepp-Logan phantom, it can
be shown that surface masking during reconstruction yields a better
quality when compared to the ground truth (all projections) using
SAD. The mask is separates the phantom from the background. The
enhanced reconstruction is less sensitive to a reduced number of projec-
tions. (b) Quality of reconstruction of bone model using MLEM with-
out (red) and with surface masking (blue), where SAD is computed for
each method between the best reconstruction using all projections and
using fewer projections. It is clear that the classic reconstruction is
more sensitive to fewer projections than the RGBD-enhanced method.
Note that in (a) logarithmic scale is used to compare the data with
different orders of magnitudes. . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Reconstruction of a bone model with guide wire yields strong artifacts
in and outside the structure (orange arrows in panel (a)) and a blurry,
wide guide wire. Incorporating RGBD data (mask in (b)), results in an
improved reconstruction quality (blue arrows in (c)) with clear guide
wire tip. The log-normalized X-ray projection (d) shows the guide
wire inside the bone. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Movement during the CBCT scan can be observed using the RGBD
sensor (a). Without correction, artifacts are clearly visible (orange
arrows in panel (b). The RGBD-enhanced reconstruction does not
exhibit such artifacts (blue arrows, panel (c). In (d) and (e), CBCT
reconstruction before and after motion correction are shown on a pig
femur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Workflow of a pose-aware C-arm system for intensity based 2D/3D
registration. Every C-arm image is globally aligned (initialization for
2D/3D registration) with pre-interventional CT based on vision-based
tracking. The main contribution of this work is shown in green. . . . 84

4.2 The relative displacement between camera poses RGBD’TRGBD is used
for estimation of the relative displacement of the X-ray source X’TX. . 85

4.3 The pose of the X-ray source is tracked at different C-arm positions.
Tracking based on (a) depth-only, and (b) an RGBD SLAM system is
shown in red, and the tracking outcome based on the external tracking
system is shown in blue. While drift (mistranslation) is observed in the
tracking of the X-ray source, misrotation compared to the ground-truth
is minimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xxvi



LIST OF FIGURES

4.4 Tracking errors of X-ray source pose estimation with respect to ground
truth are presented in Euclidean distance as well as rotational misalign-
ment. The plots indicate the results when using depth-only data, and
RGBD SLAM with RGB+depth information. (a)-(b) are the errors for
45◦ C-arm rotation in cranial/caudal direction, (c)-(d) correspond to
±10◦ C-arm swivel, and (e)-(f) are errors for ±30◦ of C-arm rotation
in oblique direction. Regarding the composition of errors, results show
a relatively small rotational and large translational component. Note
that here the C-arm extrinsics recovered from vision-based methods are
compared to tracking results using an external optical tracking system.
Therefore, any changes in the intrinsic parameters (due to mechanical
deformation of the C-arm) do not contribute to the errors. . . . . . . 94

4.5 DRR is overlaid with C-arm X-ray image (a) before re-initialization, (b)
after pose-aware re-initialization, and (c) after the 2D/3D registration.
The pelvic-femur phantom and the gelatin are shown in (d). During
the experiment the bone phantom is encased in gelatin and covered
with drape to simulate a realistic surgical condition. . . . . . . . . . . 96

5.1 The 3D misalignment of bones (red lines) may be difficult to quantify
using 2D images. CBCT contributes as a valuable tool for interven-
tions in which the 3D alignment is of importance, for instance in acute
fracture treatment or joint replacement. Background image courtesy
of BodyParts3D, Center for Life Science, Japan. . . . . . . . . . . . . 103

5.2 The relative displacement of CBCT volumes (CBCT’TCBCT) is estimated
from the tracking data computed using the camera mounted on the C-
arm. This requires the calibration of camera and X-ray source (XTRGB),
and the known relationship of X-ray source and CBCT volume (CBCTTX).
The pose of the marker is observed by the camera (RGBTM), while the
transformation from marker pose to CBCT volume (CBCTTM) is com-
puted once and assumed to remain constant. . . . . . . . . . . . . . . 116

5.3 An infrared tracking system is used for alignment and stitching of
CBCT volumes. This method serves as reference standard for the
evaluation of vision-based techniques. . . . . . . . . . . . . . . . . . . 117

5.4 The figure shows the overlay of two frames to illustrate the feature
correspondences to estimate the movement of the patient. From both
frames, the positioning-laser (red) and natural surface features are ex-
tracted. The tracking results of the matched features in frame k (+)
and frame k +1 (◦) are illustrated as yellow lines. . . . . . . . . . . . 118

5.5 Parallel projection through both CBCT volumes to create a DRR-like
visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xxvii



LIST OF FIGURES

5.6 Optimization of the NCC similarity cost for registering multiple over-
lapping CBCT volumes. Seven CBCT scans were acquired to image
the entire phantom. Every two consecutive CBCT scans were acquired
with 50.0mm to 60.0mm in-plane translation of the C-arm in between
to ensure nearly half volume overlap (CBCT volume size along each
dimension is 127mm). The optimization never reached the maximum
number of iteration threshold that was set to 500. Image-based reg-
istration was performed on the original volumes, with no filtering or
down-sampling of the images. The NCC similarity measure reached
higher values (0.6 ± 0.04) when registering CBCT volumes acquired
from the two ends of the bone which had more dominant structures,
and yielded lower similarity scores at the shaft of the phantom. . . . 122

5.7 (a-b), (c-d), and (e-f) are volume rendering and single CT slice of
the CT, stitched volume using image-based registration, and the non-
overlapping stitched volume, respectively. Image-based registration
shown in (c-d) uses seven overlapping CBCT volumes and results in
significantly shorter total length of the bone (results in Table 5.2).
This incorrect alignment is due to insufficient amount of information
in the overlapping region, especially for volumes acquired from the
shaft of the bone. Shaft of the bone is a homogeneous region where
the registration optimizer converges to local optima. . . . . . . . . . . 123

6.1 The image stitching pipeline includes orthographic 2D reconstruction
of multiple 2D acquisitions, followed by restoration of image semantics
using ConvNets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 The orthographic reconstruction pipeline leverages the Fourier slice
theorem to transform multiple 2D X-ray images acquired using cone-
beam geometry, to a single extended-view image in parallel-beam ge-
ometry. In this example, the backprojection is performed with d = 0.5,
hence in a volume between the detector plane and 50% of the focal length.133

6.3 The overall network architecture that was used for training is shown.
The input orthographic 2D reconstruction in the frequency domain
is generated using our proposed method from several X-ray images.
SSIM and adversarial losses are used to enforce the network to gen-
erate visually similar images compared to the ground-truth. Cosine
similarity loss is employed to emphasize more on the high-frequency
components of the predictions. RR and BCE loss are used to train a
landmark detection network and encourage the semantics restoration
to be functionally similar to the ground-truth reconstruction. . . . . . 141

6.4 a) Each training instance comprises three X-ray images. b) The train-
ing X-ray images are generated in the LAO/RAO and Cranial/Caudal
directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xxviii



LIST OF FIGURES

6.5 Stitching outcomes are shown on test data from the left leg. The
heatmaps corresponding to different landmarks are shown as red over-
lays. The ground-truth and predicted landmark locations are shown
as green and blue crosses, respectively. . . . . . . . . . . . . . . . . . 143

6.6 Stitching outcomes are shown on test data from the right leg. The
heatmaps corresponding to different landmarks are shown as red over-
lays. The ground-truth and predicted landmark locations are shown
as green and blue crosses, respectively. . . . . . . . . . . . . . . . . . 144

6.7 Landmark detection performances on the ground-truth orthographic
projections for two test patient data sets are shown as error heatmaps.
The vertical axes correspond to the LAO/RAO rotations, and the hori-
zontal axes correspond to cranial/caudal rotations around the anterior-
posterior view, respectively. . . . . . . . . . . . . . . . . . . . . . . . 147

6.8 Landmark detection performances are shown on the prediction images
of the test sets. The vertical axes correspond to the LAO/RAO rota-
tions, and the horizontal axes correspond to cranial/caudal rotations
around the anterior-posterior view, respectively. . . . . . . . . . . . . 148

7.1 After the femoral head is dislocated, the size of the acetabular implant
is identified based on the size of the reamer. Next, two C-arm X-ray
images are acquired from two different perspectives. While the C-arm
is repositioned to acquire a new image, the relative poses of the C-
arm are estimated using the RGBD camera on the C-arm and a visual
marker on the surgical bed. The surgeon then plans the cup position
intra-operatively based on these two stereo X-ray images simultane-
ously. Next, the pose of the planned cup and impactor are estimated
relative to the RGBD camera. This pose is used to place the cup in a
correct geometric relation with respect to the RGBD camera and visu-
alize it in an AR environment. Lastly, the surgeon observes real-time
optical information from the impactor, and aligns it with the planned
impactor using the AR visualization. The green boxes in this figure
highlight the contributions of this work. . . . . . . . . . . . . . . . . . 160

7.2 The Augmented Reality visualization provides surgeons with multiple
views of entire surgical site. The scene includes live representations of
the hand and surgical tools (e.g. K-wire) as artificially colored point
clouds, the colored surface scan of the patient, and dynamically ad-
justed DRR from the CBCT scan. This allows the surgeon to dynam-
ically change the view during the procedures. . . . . . . . . . . . . . 163

xxix



LIST OF FIGURES

7.3 In the transformation chain of the RGBD-C-arm system for THA (a),
the RGBD, X-ray, visual marker, and acetabular cup coordinate frames
are denoted as RGBD, X, M, and C, respectively. In an offline
calibration step, the extrinsic relation between the RGBD and X-ray
(XTRGBD) is estimated. Once this constant relation is known, the pose
of the X-ray source can be estimated for every C-arm re-positioning
(b) by identifying displacements in the RGBD camera coordinate frame.164

7.4 The acetabular component is forward projected from an initial 3D pose
onto the respective X-ray image plane (a-b). The surgeon moves the
cup until satisfied with the alignment in both views (c-d). The X-ray
images shown here are acquired from a dry pelvis phantom encased in
gelatin. A cubic visual marker is placed near the phantom but outside
the X-ray field of view to track the C-arm (e). . . . . . . . . . . . . . 166

7.5 Multiple virtual perspectives of the surgical site are shown to the sur-
geon (a-b) before the cup is aligned (c). The impactor is then moved
by the user until it completely overlaps with the virtual planned im-
pactor (d-f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.6 During the observed simulated K-wire placements, the improvements in
terms of time (−59.1%), number of X-ray images taken (−94.8%), ra-
diation dose (−63.9%) and reduction of task load (−59.6%) are statis-
tically significant (p < 0.05). No significant change can be observed for
change of accuracy (+10.1%) or System Usability Scale (SUS, +7%). 169

7.7 DRRs were generated from −45◦ to +45◦ around the AP view (a).
Participants were each time given two images, where one was always
AP, and the other one generated from a different view. The transla-
tional errors are shown for all four participants in (b). Note that 0◦

in the horizontal axis refers to where the user performed planning on
only the AP X-ray image. . . . . . . . . . . . . . . . . . . . . . . . . 173

7.8 The angle between the principal axis of the virtual impactor and the
cloud of points represent the orientation error in the AR environment. 174

8.1 Spatiotemporal-aware AR exploits the full imaging geometry. The aug-
mented user interacts with the X-ray images within their viewing frus-
tums (A-C). Corresponding AR views are shown in D-F. . . . . . . . 181

8.2 The transformation chain of the spatially-aware AR system is shown
for a C-arm fluoroscopy system. The transformations layout show the
closed-loop between the imaging device and the users at all time. The
same relations can be generalized to include multiple users. . . . . . . 184

xxx



LIST OF FIGURES

8.3 In K-wire placement for fracture reduction procedures, the surgeon can
plan the entry and exit points of the wire on two X-ray images. After
the planning, two triangular planes are constructed by connecting the
drilling trajectory defined on the detector plane (X-ray image) and the
C-arm source (X-ray origin). The intersection of these two planes is
a line that corresponds to the desired drilling trajectory in 3D. By
exploiting the imaging frustum, this line is augmented directly on the
patient anatomy. The surgeon can then align the physical drill with
its virtual counterpart, and advance the wire through the anatomy. . 190

8.4 The coordinate frame of the virtual drill is defined as shown in A,
where the Z-axis that is shown in blue points out of the drill along
with the K-wire. B shows the manipulation of the virtual drill with 4
DOF until the projection of the K-wire is aligned in the first frustum
(the yellow projection of the wire is contained within the tube in the
left frustum). These 4 DOFs are sufficient to align the tool appropri-
ately with the target anatomy in the first image. In the next step, we
change the transformation constraints, as shown in C; after the align-
ment of the drill with the anatomy is verified in the first frustum, the
drill maintains rotational freedom around its local X- and Z-axes, and
translational freedom along its Y - and Z-axes. These DOF constraints
allow the implant’s alignment in the second frustum while maintaining
the alignment between tool and anatomy in the first frustum. Finally,
D shows the virtual drill being restricted to only 2 DOF. Moving and
rotating along these two DOFs will not influence the alignment in ei-
ther of the two frustums. . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.5 In THA, abduction and anteversion angles of the acetabular implant
are defined with respect to the anterior pelvic plane (APP). The an-
terior pelvic plane is defined based on three points: the left and right
anterior superior iliac spine landmarks, and the pubic symphysis. Once
the surgeon annotates these landmarks, we identify the APP, and sub-
sequently, render the acetabular components at appropriate angles. We
also let the user annotate the center of the acetabulum in two or more
views, which is used to calculate the 3D position of this landmark on
the patient, hence allowing the center of the hemispheric component
to render inside the hip socket. In the execution phase, the user aligns
the real impactor and cup with their virtual counterparts. . . . . . . 192

xxxi



LIST OF FIGURES

8.6 The standard operative procedure in percutaneous orthopedic inter-
ventions makes extensive use of interventional imaging (A). Classic
navigation-based solutions use sophisticated tracking hardware and ex-
ternal markers to provide geometric registration between the content
in the image and the patient (B). On the other hand, in the AR-
enhanced OR that we suggest (C), the surgeon and crew interactively
use the data and pass the information around without explicit naviga-
tion. Based on the concepts introduced in Sec. 8.2.4, the planning on
X-ray images is directly visualized on the patient. The surgeon takes
action based on the information from planning, as well as the X-ray
images that are positioned within their respective frustums, both of
which are seen through the HMD (D). . . . . . . . . . . . . . . . . . 194

8.7 The augmented projections allow us to exploit the geometry in AR
and plan surgical tools in relation to patient anatomy. The misaligned
virtual drill in A is repositioned until it appears inside the desired
structure in all the frustums (B). . . . . . . . . . . . . . . . . . . . . 195

8.8 Each point in a frustum image corresponds to a ray passing through
the landmark in 3D, and connecting the source and detector of the
C-arm. Intersection of two rays recovers the 3D point and renders it
directly on the patient (A-B). Similarly, annotation of lines in each
frustum, corresponds to a plane in 3D. The intersection of these planes
restores the 3D planning trajectory, and renders it in AR such that it
travels through the corresponding anatomical structure (C-D). . . . . 195

8.9 All acquisitions can be documented and later reviewed with all their
corresponding spatial and temporal information. Spatiotemporal-aware
AR allows the trainees to watch the surgery’s progress and revisit the
actions taken based upon each image. . . . . . . . . . . . . . . . . . . 198

8.10 A-B are the X-ray images of the cubic phantom shown in C. In D-
E, the X-ray images of the same phantom are shown after a K-wire
was successfully inserted inside the tube. F is the CBCT scan of the
phantom which was acquired for verification. Due to metal artifacts,
the tube does not exhibit strong contrast. . . . . . . . . . . . . . . . 201

8.11 In A the setup of the C-arm, pelvic phantom, and the acetabular
cup are shown. B is a close-up view of the phantom with an empty
acetabular socket and a magnet for holding the implant in position.
Image C shows the impactor while it is placed by a surgeon during the
experiment, and D shows the successfully placed cup in the acetabulum.202

8.12 The plots present the execution time and total radiation dose during
K-wire insertion using the AR supported approach and SOP. On the
leftmost plot, the blue boxplot is the execution time with AR, whereas
the orange boxplot is the total time including the planning phase. The
green lines show the mean values for each of the groups. . . . . . . . 205

xxxii



LIST OF FIGURES

8.13 Anteversion and abduction angles are shown after acetabular cup place-
ment using AR support and SOP. The horizontal axis represents the
abduction angle, and the vertical axis represents the anteversion—the
center of the plot corresponds to the desired angles of 40◦ and 15◦. The
farther data points from the center signify higher errors committed by
the user. The AR method resulted in a stronger cluster near the center,
while SOP yielded higher errors and more outliers. . . . . . . . . . . 210

8.14 Visualization of a target frustum (A) allows the C-arm operator to
align the current C-arm frustum with the surgeon’s desired perspec-
tive (B) and eliminate the waste of time and radiation during fluoro
hunting. This concept is an example of the capabilities of interactive
frustums on moving information between different stake holders in the
OR, i.e. surgeon, patient, X-ray technician, staff, etc. . . . . . . . . . 212

8.15 Comparison of time and total radiation dose during cup placement
with AR and SOP approaches. The orange boxplot represents the
total time including the planning time. The red (+) denote outliers,
where in the leftmost plot the top sign belongs to the orange boxplot,
and the bottom (+) to the blue plot. . . . . . . . . . . . . . . . . . . 214

9.1 During an iterative strategy, the parameters associated to volumetric
symmetry are estimated. In (a-b) the plane is visualized given the
initial estimate, and in (c-d) it is visualized given the parameters at
the convergence. The color blue represents the reconstructed bone
model on the operative side of the patient. . . . . . . . . . . . . . . . 221

9.2 First step in computing the initial parametrization of extrinsic symme-
try on an object that exhibits imperfect symmetry involves transform-
ing the surface of the object to the Reimann sphere (uniformization)
and consequently to the extended complex plane (stereographic projec-
tion). These transformations are shown in parts (a-b). Anti-Möbius
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Chapter 1

Introduction

1.1 Motivation and Clinical Background

Surgical care is a fundamental part of the healthcare system that has emerged as

an essential concern in global health. Due to the cost and complexity of delivering

surgical care, yet a considerable population in the world do not have access to safe

and affordable surgery (Fig. 1.1). During the global COVID-19 pandemic and pub-

lic health crises, the challenges in delivering surgical procedures were even further

noticed, as expediting (elective) surgeries with fast recoveries such that the patients

spend the minimum time in the hospital environment became a paramount concern.

Long open surgeries with extreme collateral damage will worsen the backlog and put

an additional burden on the healthcare system.

In total hip arthroplasty (THA), also referred to as total hip replacement, the
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Figure 1.1: The heatmap shows the percentage of world population at each region
without access to safe and affordable surgical care [1].

damaged bone and cartilage are replaced with prosthetic components. The procedure

relives pain and disability with a high success rate. In 2010, there were approximately

330,000 THAs performed in the US. This is projected to increase to 570,000 THAs

by 2030 [2] as younger patients are considered for THA. Together with a prolonged

life expectancy, the consideration of younger, more active patients for THA suggests

that implant longevity is of increasing importance as it is associated with the time

to revision arthroplasty [2]. The time to repeat surgery is affected by the wear of the
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implants that is correlated with their physical properties as well as acetabular com-

ponent positioning. Sub-optimal surgical outcomes that demand revision procedures

would risk the patient safety and use additional resources of our healthcare system.

In image-guided orthopedic interventions, X-ray images are acquired to guide the

procedure. These surgeries usually yield high X-ray exposure for both patient and

clinical staff, and may increase fatigue and frustration due to the difficulty in contin-

uous re-positioning of the mobile X-ray machine (C-arm). To perform a complex 3D

procedure, the surgeon relies on these X-ray images which are 2D projective repre-

sentations of the anatomy. Therefore, guidance and visualization both become very

challenging for the surgeon.

Surgeries performed under image guidance heavily depend on surgeons’ mental

alignment and spatial mapping between patient and the medical data. For instance,

in a minimally invasive K-wire placement procedure (Fig. 1.2), the surgeon would

need to verify the K-wire 3D pose relative to patient for every small advancement

of the K-wire using several X-ray images acquired from various angles. This image-

guided procedure is considered to be delicate as small misplacement of the K-wire

could cause severe damage to the external iliac artery and vein, obturator nerve, or

to structures such as the inguinal canal and intra-articular hip joint.

A reliable solution for direct view into patient anatomy as well as an intuitive

visualization to observe the pre- and intra-interventional data within the surgical site

is not available yet (Fig. 1.3). In addition to visualization and perceptual challenges,
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b) Anteroposterior X-ray view of hip region in pelvic 
surgery. Small margin for placing the K-wire between the 
Acetabulum and the Superior Pubic Ramus requires 
delicate placement of the K-wire. Misplacements could 
cause severe damage to arteria and vena iliaca externa.

a) Lateral view of the hip in pelvic surgery – Skin incisions 
demonstrate the number of failed attempts to place the K-
wire. 

Multiple failed entry points 
for placing the K-wire (a)

Superior Pubic Ramus
K-wire

Acetabulum

Femur

(b)

Figure 1.2: (a) During a fracture reduction surgery, the surgeon may attempt and fail
frequently in accurately placing the wire within a safe zone inside the bony anatomy.
(b) The narrow area between the acetabulum and the superior pubic ramus is shown
as an example of a typical safe zone for K-wire placement in a trauma procedure.

registration and guidance may often be delivered using external trackers and inva-

sive fiducials which dramatically increase the setup complexity and require invasive

procedures for their implantation into the bone [3, 4].

Figure 1.3: The interventional data are commonly shown off-axis and indirectly to the
surgeon. Consequently, the surgeons have to take their gaze away from the patient
site to visualize each image update.

C-arm 2D fluoroscopy is the crucial imaging modality for several image-guided

interventions. During these procedures, the C-arm is frequently re-positioned to ac-

quire images from various perspectives of a target anatomy. Performing surgery solely
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under 2D fluoroscopy guidance is a challenging task as a single point of view lacks

the information required to navigate complex 3D structures, making the intervention

and procedure extremely difficult.

For orthopedic traumatologists, restoring the correct length, alignment, and ro-

tation of the affected extremity is the goal of any fracture management strategy

regardless of the fixation technique. This can be difficult with the use of conventional

fluoroscopy with limited field of view and lack of 3D cues. For instance, it is estimated

that malalignment (> 5◦ in the coronal or sagittal plane) is seen in approximately

10%, and malrotation (> 15◦) in up to approximately 30% of femoral nailing cases [5,

6].

Complex and frequent K-wire placements occur after ilio-sacaral joint and superior

pubic ramus fractures. As shown in Fig. 1.4, the common treatment for both injuries

is the placement of screws to stabilize the fracture. During the minimally invasive

approach, the surgeon places the K-wire through the muscles and all bone fragments

under image-guidance, requiring a good mental alignment of the intra-operative X-ray

imaging, the medical instrument, and the patient [7, 8]. Due to the 2D nature of the

X-ray images, this results in frequent re–positioning of the C–arm [9]. For instance, in

pelvic acetabulum fractures, the surgeon needs to find the correct trajectory of the K-

wire through the superior pubic ramus. The misplacement of the K-wire could cause

severe damage to the external iliac artery and vein, obturator nerve, or to structures

such as the inguinal canal and intra-articular hip joint [10]. It is not unusual that a
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single K-wire placement for one screw takes up to ten minutes [11].

Figure 1.4: Common treatment for sacroiliac joint and superior pubic ramus fractures
is the placement of K-wires under fluoroscopic guidance.

In fracture care surgery, it is of utmost importance to achieve proper alignment

between the ends of extremities and reduce discrepancies to the contralateral side.

It is commonly acknowledged that the verification mechanisms from 2D images are

mentally challenging and cumbersome. The unmet clinical needs for intra-operative

measurement of different biomechanical axes and bone lengths are also important

concerns in other fields of orthopedic surgery, including high tibial osteotomy and

total hip arthroplasty [12–14].

Ensuring adequate fracture reduction in pelvis and acetabulum surgery can be dif-

ficult. Surgeons rely on known radiographic densities and parameters to guide fracture

reduction. In acetabulum surgery, for example, surgeons acquire specific radiographic

views to visualize the ilioischial and/or iliopectineal lines to assess reduction of the

posterior and anterior pelvic columns respectively [15, 16]. This method can become

unreliable when the bone is comminuted and the anatomic area of interest is distorted.

Additionally, surgeons may obtain radiographic views of the healthy contralateral
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side for comparison when attempting to reconstruct the comminuted operative side.

Yet, this method has its own limitations. For instance, it is rare to obtain a radio-

graphic view that possesses clear and symmetric views of both sides of the pelvis at

one time. When the image intensifier is very close to the patient this may be achieved

for the anterior/posterior (AP), inlet, and outlet views; however, many more radio-

graphic views are typically used during a pelvis or acetabulum fracture case that

does not possess this property. Additionally, even when both sides are visualized,

the surgeon must imagine a mirrored version of the healthy side superimposed on

the operative side, which increases the level of mental task load during the surgery.

Studies have shown that these 2D fluoroscopic methods can be unreliable [17], which

has led surgeons to seek other methods for reduction assessment.

Compositions of X-ray images were investigated to assist with quantifying the

total length and angular measurements in pre- or post-operative settings for patients

that underwent osteotomy, endoprosthesis, or fracture reduction procedures [18, 19].

These works do not address the image stitching problem and instead focus on disam-

biguating relative poses between multiple 2D images by using radiopaque scales that

are placed approximately parallel to the extremity. Other approaches use bi-planar

X-ray scanners with orthogonal planes and recover 3D anatomical landmarks through

stereo 3D reconstruction [20].

In orthopedic sports-related and adult reconstruction procedures, high tibial and

distal femoral osteotomies are utilized to shift contact forces in the knee in patients
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with unilateral knee osteoarthritis. These osteotomies rely on precise correction of

the mechanical axis to achieve positive clinical results.

Acquiring Cone-Beam Computed Tomographic (CBCT) volumes which provides

3D information of the anatomy is a solution to this problem. However, CBCT ac-

quisition does not yield real-time feedback. A considerable number of scans would

need to be performed at every step of the procedure, requiring the surgical site to

be prepared for each scan. Pre-interventional 3D patient data can be fused to the

C-arm images and augment the intra-interventional flouroscopy images with 3D in-

formation. This multi-modal image fusion is used in several different interventions,

particularly in radiation therapy [21], cardiac and endovascular procedures [22], and

orthopedics and trauma interventions [23]. Additionally, other image-guided orthope-

dic procedures such as femoroplasty [24], (robot-assisted) bone augmentation, K-wire

and screw placement in pelvic fractures, cup placement for hips, and surgeries for pa-

tients with osteonecrosis can benefit from the registration of pre-interventional data

with real-time intra-interventional C-arm images.

Intra-operative CBCT has the potential to provide a navigation system for os-

teotomies about the knee while integrating well with the conventional surgical work-

flow. Another promising use for intraoperative CBCT in orthopedics is for com-

minuted fractures of the mid femur. Intraoperative 3D CBCT has the potential to

verify length, alignment, and rotation and to reduce the need for revision surgery

due to malreduction [25]. In Fig. 1.5 the difficulty in addressing rotational alignment
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in mid-shaft comminuted femur fractures and the clinical impact of misalignment is

demonstrated. Fig. 1.6 demonstrates the anatomical landmarks used to estimate the

3D position of the bone. Traditionally, to ensure proper femoral rotation, the con-

tralateral leg is used as a reference: First, an AP radiograph of the contralateral hip

is acquired, and particular attention is paid to anatomical landmarks such as how

much of the lesser trochanter is visible along the medial side of the femur. Second,

the C-arm is translated distally to the knee and then rotated ∼90◦ to obtain a lateral

radiograph of the healthy knee with the posterior condyles overlapping. These two

images, the AP of the hip and lateral of the knee, determine the rotational alignment

of the healthy side. To ensure correct rotational alignment of the injured side, an

AP of the hip (on the injured side) is obtained, attempting to reproduce the AP

radiograph acquired of the contralateral side (a similar amount of lesser trochanter

visible along the medial side of the femur). This ensures that the position of both

hips is similar. The C-arm is then moved distally to the knee of the injured femur and

rotated ∼90◦ to a lateral view. This lateral image should match that of the healthy

side. If they do not match, rotational correction of the femur can be performed,

attempting to obtain a lateral radiograph of the knee on the injured side similar to

that of the contralateral side. This procedure motivates the need for intraoperative

3D imaging with large field of view, where leg length discrepancy and malrotation

can be quantified intraoperatively and compared with the geometric measurements

from the preoperative CT scan of the contralateral side.
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a) c) g) h) i)
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13.38°

66.00°

Pre-op data Post-op data after revision surgeryPost-op data after first surgery

b) d)

e) f)

Figure 1.5: Difficulties arise in addressing rotational alignment in long bone fractures
- The 3D preoperative CT scan of the right femur of a patient with a ballistic fracture
of the femoral shaft is shown in (a-b). As seen in these images, due to the significant
comminution, there are few anatomical cues as to the correct rotational alignment
of the bone. (c) shows the postoperative CT of the same femur after reduction
and placement of a cephallomedullary nail. The varus/valgus alignment appears to
be restored (see Fig. 1.6); however, significant rotational malalignment is present
with excessive external rotation of the distal aspect of the femur. Axial cuts from
the postoperative CT scan are shown in (d-f). As shown in (d), the hips are in
relatively similar position (right hip ∼ 10◦ externally rotated vs. the left). However,
in (e), the operative right knee is over 40◦ more externally rotated than the healthy
contralateral side in (f). Figures (g-i) show the anteroposterior (AP) view of the
right hip, AP view of the right femur, and the lateral postoperative radiographs after
revision cephalomedullary nailing with correction of the rotational deformity. The
revision surgery includes removal and correct replacement of the intramedullary nail.

We recognize the need for more intuitive and practical mechanisms to employ pre-

and intra-interventional data that can yield lower frustration for the surgical team,

improve patient treatment, and reduce the overall cost for care delivery.

1.2 Navigation and Robotic Assistance

Surgical navigation and robotic systems are developed to support surgery with lo-

calization and execution of well-defined tasks [26–29]. Though these systems increase
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a) b)

Lesser trochanter

Patella

Femur

Femur

Tibia

Figure 1.6: Contralateral images for guidance in rotational alignment - (a) and (b)
are intraoperative fluoroscopic images from the revision surgery; AP view of the
contralateral hip and lateral view of the contralateral knee. These images were utilized
to guide rotational alignment of the fractured femur. By visualizing landmarks on
these radiographs and understanding the change in angulation of the C-arm, the
surgeon can estimate the rotational alignment of the healthy femur and attempt to
recreate this alignment on the operative side.

the accuracy, their complex setup and explicit tracking nature may overburden the

surgical workflow and consequently impede their acceptance in clinical routines [30].

Image-based navigation alleviates the requirements for external tracking, though de-

pends strongly on pre-operative data which become outdated when the anatomy is

altered during the surgery [31, 32].

During computer-assisted interventions, surgical navigation systems are utilized

to support the mental alignment and guide the surgeon 1.7. Most current systems use

pre-operative X-ray Computed Tomography (CT) volumes, infrared optical tracking

systems, and tracking targets on tools and the patient, to provide a visualization of the

tool relative to the patient’s anatomy. Some systems include the use of a C-arm and

enable tracking of tools relative to intra-operatively acquired X-ray images [33]. After
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the guided procedure, the validation of the placement is performed using conventional

X-ray imaging.

Figure 1.7: Surgical navigation systems provide guidance with respect to patient and
the imaging data. Image source: BrainLab

While some publications indicate that surgical navigation systems reduce the ra-

diation dose [34] and increase accuracy [35, 36], a more recent study shows no clear

advantage of using navigation systems in some procedures [37]. After two decades

of navigation systems, we can see that these systems may have failed to provide the

promised advantages as they do not reduce the required time in the operating room,

show no systematic, significant influence on the patient outcome, and do not reduce
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the frustration of the surgeon and staff.

External navigation systems commonly use certain points on the anatomy of in-

terest, as decided by the surgeon, and conform to a ”map” of the known morphology

of the anatomy of interest. Despite the fact that THA frequently uses X-ray images

for navigation and pre-operative patient CT may not be available, several computer

assisted THA solutions suggest planning the desired pose of the acetabular compo-

nent pre-operatively on a CT scan of the patient [38, 39]. Pre-operative CT imaging

allows planning of the implants in 3D, automatically estimating the orientation of

the natural acetabular opening, and predicting the appropriate size of the cup im-

plant [40].

Navigation-based THA with external trackers are performed based on pre-operative

patient CT, or image-less computer assisted approaches. The planning outcome in a

CT-based navigation approach is used intra-operatively with external optical naviga-

tion systems to estimate the relative pose of the implant with respect to the patient

anatomy during the procedure. Tracking of the patient is commonly performed using

fiducials that are drilled into the patient’s bones. Registration of the pre-operative CT

data to the patient on the surgical bed is performed by manually touching anatomical

landmarks on the surface of the patient using a tracked tool [38]. In addition to the

paired-point transformation estimated by matching the few anatomical landmarks,

several points are sampled on the surface of the pelvis and matched to the segmen-

tation of the pelvis in the CT data [41]. CT-based navigation showed statistically
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significant improvement in orienting the acetabular component and eliminating mal-

positioning, while resulting in increased blood loss, cost, and time for surgery [42,

43]. Combined simultaneous navigation of the acetabulum and the femur was used in

10 clinical tests where the surgical outcome based on post-operative imaging showed

2.98mm and 4.25◦ error in cup position and orientation, respectively [44].

Image-less navigation systems do not require any pre-operatively acquired radi-

ology data. In this method, the pelvic plane is located in 3D by only identifying

anatomical landmarks on the surface of the patient using a tracked pointer reference

tool and optically visible markers attached to the patient [45]. This approach showed

improvement in terms of cup positioning [46]. However, few number of samples points

for registration as well as pelvis tilts resulted in unreliable registration [47].

Robotic systems are developed to provide additional confidence to the surgical

team, reduce human error, increase precision, and ensure reproducibility [48–53]. In

a robotic system, pins are implanted into the patient’s femur prior to acquiring a

pre-operative CT scan. After the surgeon has performed the planning on the CT

data, the robot is introduced into the operating room. To close the registration

loop between patient, robot, and CT volume, each pre-operatively implanted pin

is touched by the robot with manual support. To eliminate the need for fiducial

implantation, registration is either achieved by selecting several points on the surface

of the bone using a digitizer and using an iterative closest point algorithm to perform

registration to patient CT data [54], or by using intra-operative C-arm fluoroscopy
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and performing 2D/3D registration between the X-ray image and CT volume [55].

After registering the pre-operative CT data to patient, the robot assists the surgeon

in placing the femoral stem and the acetabular component according to the planning.

The outcome of 97 robot-assisted THA procedures indicates performance similar to

the conventional technique [52]; However, in some cases additional complications such

as nerve damage, post-operative knee effusion, incorrect orientation of the acetabular

component, and deep reaming resulting in leg length discrepancy were reported when

the robotic system was used. These studies and their respective outcomes all attest to

the need for computer-assisted solutions that satisfy both the requirements concerning

accuracy and ergonomics.

1.3 Augmented Reality in Orthopedic Surgery

Augmented Reality (AR) can support the surgeon by intuitive augmentation of

medical information. AR refers to the real world augmented with virtual information,

as opposed to Virtual Reality (VR), in which the user is confronted with a completely

virtual setting [56, 57]. The user’s view is augmented either via monitor-based dis-

play system, optical see-through system or video see-through system [58]. With recent

commercial products such as Google Glass (Google Inc., Mountain View, California,

USA) and Microsoft HoloLens (Microsoft, Redmond, WA), optical see-through sys-

tems have gained broad availability. Such head-mounted-displays (HMD) allow a high
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degree of flexibility by enabling the user to visualize virtual content that is directly

overlaid onto the present reality.

An important component of AR is the underlying tracking-system. Tracking is

essential when placing virtual objects into the real world in correct relations and

positions. Most systems are based on external markers, where a particular pattern in

the real world is tracked as a reference [59]. Visual markers are widely used for this

purpose, where unique and high contrast patterns are detected by optical cameras [60].

On the other hand, modern systems act independently from such predefined patterns

and are referred to as marker-less systems. The marker-less tracking technology is

enabled by using several Inertial Measurement Unit (IMU), Red-Green-Blue (RGB)

and Infrared sensors on the HMD which allow creating a spatial map of the room

and performing real-time inside-out tracking and localization with respect to the

environment. Therefore, they are capable of orienting themselves on already present

objects, without additional markers [61].

In interventional medicine, AR is already introduced in several specialties, namely,

neuro- [62] and visceral-surgeries [63, 64]. The growing interest for AR in orthope-

dics and trauma is not surprising, since the surgical procedures in orthopedic surgery

frequently use i) visual data such as medical images acquired both pre- and intra-

operatively and ii) often include mechanical steps such as screw or implant insertions,

osteotomies and correction of deformities that can be visualizing the rigid relations

in AR environments. Hence, such technical tasks seem predisposed to applications
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of AR. As AR-assistance in orthopedic surgery is a strong focus in this disserta-

tion, a comprehensive overview of the state-of-the-art for AR-supported systems in

orthopedic interventions is presented in this section.

1.3.1 Instrument and Implant Placement

The orthopedic surgeon often relies on his three-dimensional (3D) orientation to

place instruments or implants. Intra-operative fluoroscopy provides two-dimensional

(2D) information. Therefore, the surgeon has to perform the mental task of mapping

the 2D radiographs to the 3D anatomy. AR solutions can potentially reduce the

dependence of the outcome on the surgeon’s parameters by providing pre-operative

planning in the field of view of the surgeon, or even showing correct trajectories for

placing implants with overlays. Jing-Ren Wu et al. [65] used a camera-projector

AR system to project the spinal bony anatomy on the back of a patient with entry

points for vertebroplasty, based on pre-operative CT data. For registration, markers

were attached to the patient skin and were tracked by the camera. First trials were

with a dummy and animal-cadavers. Afterwards, the system was brought to the OR,

and vertebroplasty was performed conventionally but with the additional assistance

of AR. Time-saving for entry point identification by 70% was reported. One major

limitation was the unreliable registration, in case that the patients’ posture changed

between CT and surgery.

Abe et al. [66] simulated needle-insertion into vertebral bodies in a phantom-
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study. Point and angles of insertion were identified on patients’ pre-operative CT

scans. During the procedure, the surgeon wore a video see-through HMD (Moverio,

Epson) with a webcam. The visual information was observed by the webcam and

transmitted to a computer for processing. Registration between the patient and

the CT required several manual steps and involved using a few fluoroscopy images.

After estimating the spatial relations between the pre-operative planning and the

patient, the desired trajectories were streamed to the HMD and overlaid on the patient

(Fig. 1.8). Post-interventional CT was used to calculate deviation with respect to

the planned trajectory. Significantly higher precision was reported compared to the

conventional approach. Following the phantom-trials, they validated their system in

five clinical cases and reported successful assistance to the performing surgeon.

Figure 1.8: (a)HMDwith camera, (b) the raw image captured by the camera, and (c)
AR view of the surgeon are shown, respectively. The software created an augmented
view and indicated the ideal insertion point and needle trajectory. Image courtesy
of the Journal of Neurosurgery Spine, A novel 3D guidance system using augmented
reality for percutaneous vertebroplasty: technical note, Yuichiro Abe, Shigenobu Sato,
Koji Kato et al., Copyright 2013.

Navab et al. [67] focused on AR-supported vertebroplasty with a system consist-
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ing of a mobile C-arm and a video camera attached near the X-ray source, so-called

camera augmented mobile C-arm (CAMC). This system was designed using a double

mirror construction, allowing the origin of the optical and X-ray cameras to virtually

coincide. A major advantage of this design was that C-arm fluoroscopy images and

video camera frames from the surgical site were fused without the need to warp the

images. This system was self-contained and did not require any external navigation

system. One goal of their solution was to perform vertebroplasty with one initial X-ray

image, which was overlaid onto the video camera image. Five simulated vertebroplas-

ties in a spine model were reported. Maximum of three X-rays were required, which

is close to the goal of one. Three of these five procedures showed perfectly positioned

needles, and two showed a medial perforation. The main reason for these perfora-

tions was reported as the undetected motion of the spine. As a consequence, they

implemented markers to detect displacement automatically. In the same work, they

performed interlocking of intramedullary nails as well as pedicel screw placements

in cadavers. The two experiments were conducted successfully, and the procedure

required less radiation and time compared to the standard C-arm technique. For the

interlocking of intramedullary nails and pedicel screw placement, surgeons required

two and three X-rays images, respectively. In an earlier study, Heining S. M. et al. [68]

also investigated pedicle screw placement using the CAMC system. In two cadaver

studies, in different levels of the lumbar and thoracic spine, all needle insertions were

possible.
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Another study by Gibby J. T. et al. [69] also investigated pedicle screw place-

ment while using Microsoft HoloLens (Microsoft, Redmond, WA). In a lumbar saw

bone model, they placed 36 needles, representing the pedicle screws. Using pre-

interventional CT data, needle trajectory was estimated and superimposed into the

surgeon’s view, Post-interventional CT indicated that 97% of the needles were placed

within the pedicle. Calculation with pedicle screws of a diameter up to 7 mm still

demonstrated that 86% of screws were placed completely inside the pedicle.

U-Thainual P. et al. [70] suggested an AR-based technique for MRI-guided mus-

culoskeletal interventions. The proposed magnetic resonance image overlay system

(MR-IOS) provided an MRI vision for the operator and was used for needle inser-

tions on a spine phantom. Main hardware components included a transverse plane

laser, an MRI compatible monitor, and a semi-transparent mirror (Fig. 1.9). Onto

this mirror, the MR image and the desired insertion path were jointly projected.

This system was mounted in the mouth of an MRI scanner that provided 2D trans-

verse slices. The alignment between the virtual medical images in the mirror and the

patient was achieved by manually rotating and translating the virtual image plane

until the anatomical landmarks on the patient and image coincide. Another study

from Fischer G.S. et al. [71] also investigated the usefulness of MR-IOS in performing

arthrography in porcine and humans’ shoulder and hip joints. In their trial, every

needle insertion was successful in the first attempt. A similar construct was built and

evaluated by Fichtinger G. et al. [72], where instead of MRI, CT data was used as
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the baseline. They successfully performed spinal nerve blocks, facet joint injections,

shoulder and hip arthrographies, and needle insertions for musculoskeletal biopsy in

cadaver experiments. Limitations included complex calibration phase, interference of

the room light with the overlay, and the parallax effect.

Figure 1.9: The system components of MR-IOS is shown in (a). Using this system,
the surgeon can look through the semi-transparent mirror that is augmented with the
insertion path (b). Image courtesy of the International Journal of Computer Assisted
Radiology and Surgery, MR image overlay guidance: system evaluation for preclinical
use, Paweena U-Thainual, Jan Fritz, Choladawan Moonjaita et al., Copyright 2012.

Londei R. et al. [73] used the camera augmented C-arm proposed by Navab et

al. [67] and performed studies on distal locking of intramedullary (IM) nails, a pro-

cedure which requires a large number of C-arm fluoroscopic images. In this work,

down-the-beam view of the IM nail was achieved by first acquiring an X-ray image of

the nail. They registered the information of this image with the 3D CAD model of
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the IM nail to estimate the C-arm pose and subsequently predict a second view that

produces the ”perfect circle” view of the holes on the IM nail (Fig. 1.10). Therefore,

the authors were able to conduct IM nailing and distal locking with only two X-ray

images, on average. To track the drill, a cannula with chained cross-ratios was placed

on the surgical drill. The markers on this cannula were tracked by a video camera on

the C-arm, and the position of the drill tip was estimated with respect to the patient.

Figure 1.10: Visualization of perfect circles for distal locking

Wang et al. [74] performed AR-based navigation for percutaneous placement of

sacroiliac screws in six cadavers. Pre-operatively, the authors acquired CT scans of

each pelvis and segmented the bone and vessels from other tissue in the CT data.

Given the CT images, ideal entry points and trajectories of the percutaneous screws

were calculated. This system was materialized by registering the pre-operative data

and the planned trajectories to the cadaver and projecting the surgical plan as a cylin-

der onto an HMD display. Major limitations of this system were complex setup due
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to the use of external navigation system, out-side-in tracking of different components,

and the bulky and tethered setup.

Another study by Ogawa H. et al. [75] investigated cup placement in total hip

arthroplasty measured by an AR approach. In 56 total hip arthroplasties, the orien-

tation of the acetabular cup (anteversion and inclination) were measured either using

an AR smartphone or a goniometer. Three months post-operatively, cup anteversion

and inclination were measured in CT.

Liu H. et al. [76] performed a proof of concept study about AR-based navigation in

hip resurfacing. Using a robotic system [77] and the Microsoft HoloLens (Microsoft,

Albuquerque, New Mexico, USA) they suggested a system to support the drilling

of a hole along the axis of a femoral neck. Comparing the post-interventional drill

orientation with the pre-interventional plan in a phantom study yielded a mean error

of approximately 2mm and 2◦.

1.3.2 Osteotomies

In high tibial osteotomy, knowledge about the mechanical axis is essential. Based

on the work of Wang L. et al. [78], Fallavollita P. et al. [79] published a study on intra-

operative assessment of the mechanical axis of the lower limb using AR navigation.

Using the conventional fluoroscopy-based approach, a large number of X-ray images

were required. Using the RGB camera setup on the C-arm, with only three X-ray

images - one from the hip, one from the knee and one from the ankle - a parallax-
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free panoramic image of the lower limb was created. Their innovative parallax-free

solution required a joint rotation of the C-arm scanner around the origin of the X-ray

source as well as the translation of the surgical bed. These two motions were applied

such that the overall translation around the X-ray origin vanished, and therefore, the

parallax effect was eliminated. Using this intra-operatively acquired non-overlapping

panoramic image, the mechanical axis and the amount of misalignment that required

correction for high tibial osteotomy were measured. Procedures were carried out in

25 human cadaver legs. To evaluate the usefulness of the proposed AR solution, the

mechanical axis, and its respective deviation were also measured in the ground-truth

CT scan. The AR system proved to be an accurate and low radiation technique.

1.3.3 Tumor Surgery

Information about the 3D expansion of the tumor is crucial for a proper resection.

Cho H. S. et al. addressed this problem by incorporating AR support [80]. The

first study investigated tumor resection in pig femurs. Multiple visual markers were

attached to the subject which was tracked by the integrated camera on a tablet PC.

In this overlay, a cylindrical virtual template represented the tumor. The virtual

implant was then superimposed on the patient using the tablet PC.
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1.3.4 Trauma

Shen F. et al. [81] developed an AR implant design system for pre-operative cre-

ation of osteosynthesis plates in unilateral pelvic and acetabular fractures. The pro-

posed solution comprised two sub-systems: i) a virtual fracture reduction system in

which a repaired model of the fractured pelvis was constructed and an ideal curve

indicating the implant model was identified, and ii) an AR templating environment

to manipulate and bend the implant according to the planned trajectory. This AR

system consisted of an external monitor and an HD webcam. The suggested technol-

ogy enabled the surgeon to visualize the physical implant as well as the augmentation

of the virtual model simultaneously and use the AR environment to create the desired

implant model. The reduction was performed on six fractured pelves. Pre-operative

CT was acquired, and fracture reduction was performed on the computer. For each

case, virtual osteosynthesis plates were first drawn in ideal locations. This informa-

tion was used together with the aid of the AR system to bend the osteosynthesis

plates. This allowed pre-bent osteosynthesis plates for ideal fracture reduction. The

authors claimed that the intra-operative implant bending could be eliminated using

their approach; therefore surgical time and invasiveness could be minimized.

AR fluoroscopy simulation for guide-wire insertion in dynamic hip screws were

investigated in [82]. This system included cameras that were orthogonally viewing

the operative site and tracking the marked guide-wires. Post-interventionally, the

tip-apex distance (TAD) between the guide-wire and the femoral head was measured
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with a mean square error of 4.2mm.

Another study by Hiranaka T. et al. [83] also evaluated guide-wire insertion into

five artificial femoral heads by the use of AR navigation. They made use of the

PicoLinker wearable glasses (Westunits Co., Ltd., Osaka, Japan) that was connected

to the fluoroscopic monitor such that the surgeon was able to observe the fluoroscopic

stream through the PicoLinker glasses.

1.3.5 Surgical Training and Education

Yeo C. T. et al. [84] suggested the employment of AR for spine surgery training.

The AR simulation display was designed using a semi-reflective glass, where a slice of

the CT, as well as the trajectory of the needle, were augmented onto the trainee’s view.

An electromagnetic tracker was used to estimate needle pose in relation to CT. The

trajectory was then projected onto the AR display using a laser-guided system. This

study compared two groups: i) the first group received AR supported training, and

ii) the control group received training for conventional freehand facet joint injections.

Later, both groups performed injections in a phantom with the conventional freehand

technique. The AR-trained group achieved higher rates of successful placement of

injections with less tissue trauma compared to the control group.

AR-based surgical training systems were also considered for tele-guided shoulder

arthroplasties [85]. This system, so-called virtual interactive presence (VIP), allowed

a physically absent surgeon to be virtually present. One video camera in the OR and
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one at the remote station were first calibrated. Thereafter, both surgeons were able

to observe the surgical site concurrently with a common task field. By using Google

Glass (Google Inc., Mountain View, California, USA), the second surgeon that was

physically absent was able to join their collaborative virtual experience. The remote

surgeon could follow the entire procedure and provide real-time feedback. The authors

reported several technical issues they encountered, such as battery life of the HMD,

poor video quality, limited field of view, and video mismatch due to delay. In another

report, Ponce B. et al. [86] used the VIP technology for rotator cuff and shoulder

instability interventions. Six different resident surgeons performed the procedures,

and one attending surgeon that was physically located in an adjoining dictation room

proctored the procedures using the VIP technology. The attending surgeon was able

to see the arthroscopic image at any time and was able to guide the residents.

Condino S. et al. [87] performed a study on how to build a patient-specific hy-

brid simulator for orthopaedic open surgery. By using a Microsoft HoloLens HMD

and patient-specific 3D models, five subjects performed hip arthroplasty. Using their

simulator, they reported that the perceived positioning accuracy matched the require-

ments, and the overall workload was low.
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1.4 Problem Definition and Thesis Overview

We investigated several applications that AR, artificial intelligence, and robotics

create value in computer-assisted interventions by increasing accuracy and safety,

reducing collateral damage, and enhancing the surgeon’s and the patient’s experience.

Fig. 1.11 shows a schematics overview of this thesis with four main components:

i) enhancing the interventional image acquisition and reconstruction, ii) applying

medical image computing algorithms using computer vision and machine learning

techniques, iii) visualizing and interacting with intra-operative data using AR, and

iv) simplifying the robotic workflows in minimally-invasive procedures.

>
>
>
>

>

> >
>
>

Figure 1.11: The thesis presents the applications of AR and artificial intelligence in
a broad spectrum of problems in interventional medicine, namely for imaging and
acquisition, image computing and registration, and data visualization.

Chapters 2 and 3 of this dissertation present the methodology for combining optics
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and X-ray imaging, and explain its application in improving the quality of 3D intra-

operative imaging by combining RGBD and C-arm imaging. Chapter 2 presents the

design of the imaging systems that integrate optical sensing into a commonly used

mobile C-arm. The chapter presents two distinct calibration mechanisms with vision-

based tracking capabilities that impact different steps in the surgical workflow and

enable immersive and non-immersive visualization experiences. In chapter 3, different

imaging modalities are combined to enhance the intra-operative imaging. We discuss

RGBD-supported tomographic reconstruction and present the methodology to correct

for undesired rigid motion during CBCT acquisition.

Chapters 4 and 5 present novel approaches to use the optical information from

the operative field to address the challenges in 2D/3D and 3D/3D registration for

various medical image computing tasks. To bring image-based navigation to surgery,

chapter 4 offers automatic initialization of the standard 2D/3D registration between

C-arm X-ray images and the pre-operative CT by incorporating real-time inside-out

tracking of the C-arm scanner using vision-based tracking. Chapter 5 presents auto-

matic 3D/3D registration and stitching between non-overlapping CBCT acquisitions

using visual tracking information from the integrated RGBD sensor. In chapter 6,

the methodology for 2D/2D parallax-free stitching and alignment between the X-ray

images of the femur anatomy is presented.

In the remainder chapters of this dissertation, various AR systems are intro-

duced and validated for image-guided and minimally-invasive therapies. In chapter 7,
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display-based AR solutions are presented for various orthopedic tasks. These systems

are realized by fusing clouds of points observed and reconstructed from an integrated

RGBD camera and the X-ray/CBCT intra-operative data. Chapter 8 presents the full

design of interactive flying frustums for immersive AR visualization and reveals how

exemplary workflows are redefined by taking full advantage of HMD when entirely

co-registered with the imaging system at all times. The awareness of the system from

the geometric and physical characteristics of X-ray imaging allows the exploration

of different human-machine interfaces. Chapter 9 introduces a novel methodology

to detect imperfect bilateral symmetry in CT of human anatomy for patient-specific

augmentations and visualizations. In this chapter, the structurally symmetric nature

of the pelvic bone is explored and used to provide interventional image augmentation

for unilateral fractures in patients with traumatic injuries. This solution’s mathe-

matical basis is on the incorporation of attributes and characteristics that satisfy the

properties of intrinsic and extrinsic symmetry and are robust to outliers.

Chapter 10 investigates the intersection of AR and robotics, and presents unique

concepts to simplify robotic workflows. The staff equipped with HMD aligns the robot

with its planned virtual counterpart. In this user-centric setting, the main challenge is

the perspective ambiguities hindering such a collaborative robotic solution. To over-

come this challenge, we introduce a novel registration concept for intuitive alignment

of AR content to its physical counterpart by providing a multi-view AR experience

via reflective-AR displays that simultaneously show the augmentations from multiple
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viewpoints.

Chapter 11 provides a summary of contributions, considerations for clinical de-

ployments, outlook, and future works.
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Part I

Multi-Modal Imaging and

Acquisition
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This section of the dissertation presents the material and methods for merging

optics and X-ray imaging to achieve a multi-modal imaging platform that benefits

the joint use of information from the patient site as well as the knowledge from the

anatomy-level X-ray imaging.

We first present multiple approaches to calibrate the C-arm scanner to a rigidly

attached camera on the C-arm, or to a moving subject with an augmented reality

head-mounted display (chapter 2). Calibration of the RGBD and C-arm imaging

devices is performed in two steps: (i) calibration of the RGBD sensor and the X-ray

source using a multimodal checkerboard pattern, and (ii) calibration of the RGBD

surface reconstruction to the CBCT volume. The co-localization between a moving

augmented user and the imaging observer (C-arm scanner) is achieved via a joint

localization using the operating room environment.

In chapter 3 of this dissertation, this multi-modal imaging system is exploited to

improve interventional tomographic reconstruction. The patient surface is acquired

during the CBCT scan and then used as prior information for the reconstruction us-

ing Maximum-Likelihood Expectation-Maximization. An RGBD-based simultaneous

localization and mapping method is utilized to estimate the rigid patient movement

during scanning. We focus primarily on rigid and accidental movements, and not the

internal motion caused by respiration.

The contributions in this part have been primarily published in the following

manuscripts:
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Chapter 2

Imaging System and Calibration

2.1 Introduction

A significant challenge in C-arm imaging is the lack of direct association between

the patient images and the patient’s anatomy. To disambiguate this relation, and

visualize and process data more optimally, we investigated the benefits of combining

RGBD information and C-arm imaging. Before benefiting from a camera-augmented

scanner, the first step is to calibrate such a system with appropriate routines that are

practical and fit within the pre- and intra-operative workflows. The main technical

contributions that are presented in the following chapter are i) calibration between

the RGBD camera and the C-arm fluoroscopy system and ii) real-time co-localization

between augmented users and imaging observer systems such as the X-ray imaging

device. All the below approaches benefit from offline calibration steps that would not
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interfere with the surgical workflow.

2.2 Integration of RGBD Sensing into C-

arm Imaging

To include the visual information observed by the RGBD camera into CBCT

reconstruction (i) the RGBD sensor extrinsic parameters relative to the X-ray source

are estimated by tracking the rigid patient movement, and (ii) CBCT coordinate

system is calibrated with respect to the patient surface coordinate system to allow

the masked CBCT reconstruction.

2.2.1 RGBD-to-X-ray Calibration

Co-calibration of the C-arm X-ray source and the RGBD camera is a necessary

component for the movement correction during scans. This calibration allows to

update the pose of each projection relative to the patient. To this end, we designed

a custom-made radiopaque checkerboard pattern to perform stereo calibration of the

X-ray and the RGBD imaging devices [88, 89]. This calibration target comprises a

standard black-and-white pattern, where every black square is backed with a same

size thin metal sheet. Hence, the checkerboard pattern is visible both in the RGB,

Infra-Red (IR), and X-ray images. In Fig. 2.1 the checkerboard pattern is shown in

36



CHAPTER 2. IMAGING SYSTEM AND CALIBRATION

the RGB and X-ray images.

In a C-arm guided intervention, the X-ray source is commonly under the surgical

bed, and interventional X-ray images are acquired from bottom to top. In order to

simplify the mapping between the displayed X-ray image and the patient laying on

the bed, the images are represented in left-hand coordinate system which simulates

an image taken from top to bottom (surgeon’s view). Hence, the stereo calibration of

the X-ray and RGBD camera using checkerboard images requires an additional pre-

processing step to transform images to a right-hand coordinate system. The stereo

relation of the two imaging devices is then defined as:

RGBDTX =RGBD TCB · Tl−r ·CB TX, (2.1)

where X, RGBD, and CB are X-ray source, RGBD camera, and checkerboard coor-

dinate frames, respectively. Tl−r is the transformation from left-hand to right-hand

coordinate system.

2.2.2 Surface-to-CBCT Calibration

To use the reconstructed RGBD surface information as a prior during the CBCT

reconstruction, we directly obtain the relationship of the RGBD sensor and CBCT

reconstruction. This reduces the length of the chain of transformations compared to

using the RGBD-to-X-ray calibration for this purpose. To obtain the transformation
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b) X-ray Image a) Multi-modal Checkerboard 
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Figure 2.1: Checkerboard is designed to be fully visible in RGB, depth, and X-ray
images.

between RGBD and CBCT coordinate systems, we use a calibration phantom which

comprises of three hollow radiolucent cylinders of different sizes positioned at different

depth and orientation. During the CBCT scan the calibration phantom is placed near

the C-arm iso-center, and the surface is simultaneously acquired and reconstructed

using depth information from the RGBD camera [90]. Automatic registration of

the CBCT coordinate frame with the surface data is performed by first extracting

point clouds from each data set, and then initializing the spatial relation of the

point clouds using Fast Point Feature Histogram (FPFH) descriptors and SAmple

Consensus Initial Alignment (SAC-IA) [91]. The final transformation is obtained

after an Iterative Closest Point (ICP) refinement [92–94]. This step allows us to map

patient 3D surface to the CBCT reconstructed volume.

In clinical routine, the angular-dependent distortion correction needs to be per-

formed when setting up the C-arm or at predefined service intervals. This distortion
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correction may also trigger the need to update the RGBD sensor to C-arm calibration,

which could be automatically performed at the same time.

2.2.3 Results

Registration of patient surface and CBCT volume using FPFH and ICP has a

mean Target Registration Error (mTRE) of 2.58 mm [92]. The mTRE is measured as

the average of absolute Euclidean distances between eight landmarks visible in both

modalities. This error can improve with using more advanced RGBD sensors that

provide a more reliable cloud of points.

The calibration of the RGBD/X-ray system is achieved using a multi-modal

checkerboard (see Fig. 2.1), which is observed at multiple poses using the RGB cam-

era, depth sensor, and the X-ray system. We use a 5 × 6 checkerboard where each

square has a dimension of 12.655mm. The distance between the black-and-white and

the radiopaque metal pattern is negligible. Thus, for the purpose of stereo calibra-

tion we assume all three cameras (RGB, infrared, and X-ray cameras) observe the

same pattern. 72 image triplets (RGB, infrared, and X-ray images) were recorded

for the stereo calibration. Images with high reprojection errors or significant motion

blurring artifacts were discarded from this list for a more accurate stereo calibration.

The stereo calibration between the X-ray source and the RGB camera was eventually

performed using 42 image pairs with the overall mean error of 0.86 pixels. The RGB

and infrared cameras were calibrated using 59 image pairs, and an overall reprojection
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error of 0.17 pixels was achieved.

2.3 Co-calibrated and Co-localized Aug-

mented User and Imaging Observer

The goal of this offline calibration procedure is to establish a constant pose relation

between an inside-out visual tracker attached to and the X-ray source embedded in

the gantry of a C-arm machine. The rigid transformation associated with this pose

relation is shown as TTC in Fig. 2.2. In Fig. 2.2, TTW and STW show the relative poses

of the tracker and the augmented surgeon in the world coordinate frame, receptively.

Finally, VTC denotes the transformation between the C-arm source and the volume.

Other transformations shown with dashed lines are derived.

The visual tracking is intended to localize the C-arm source in the operating the-

atre, and share the information with an HMD-equipped surgeon (Sec. 2.3.1). There-

fore, the tracker was mounted on the gantry such that it observes the static structures

in the operating theatre such as walls, corners, ceiling, etc. As a consequence, the

fields of view of the tracker and the X-ray imaging system do not exhibit overlap,

preventing direct multi-sensor calibration via a common calibration phantom [95–97].

Since both sensors are rigidly connected by the C-arm gantry, the calibration prob-

lem can be formulated as a hand-eye system of equations. This system of equations

can be solved if simultaneous tracking data are acquired from both the X-ray source
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and the tracker.

TTC

VTC

VTS

TTW

STW

WTV

STC

STV

World Coordinate 
System

C-arm

Tracker on 
C-arm

Surgeon

Figure 2.2: The chain of transformations involved in jointly localizing the augmented
surgeon and the imaging system in a unified coordinate frame. Note that the transfor-
mations shown with solid arrows are acquired, while the transformations with dashed
arrows are derived. The transformations TTW and STW are estimated using the
RGB-based environment tracking sensors integrated in the HMD. VTC is computed
by C-arm internal calibration, and TTC is computed using a hand-eye calibration
approach.

We estimate the rigid transform TTC using a hand-eye formulation as:

A(ti)
TTC = TTCB(ti), (2.2)

where A(ti) and B(ti) are the relative poses of the visual-tracker and the X-ray source

with respect to their pose at time t0. By stacking multiple pose data along the rows
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of A and B, we can re-write Eq. 2.2 as:

AX = XB. (2.3)

where the objective is to estimate X := TTC =

⎡⎢⎢⎣Rx tx

0⊤ 1

⎤⎥⎥⎦.
The pose pairs VTC(ti) and WTT(ti) in Fig. 2.2 that are used to construct the

rows of A and B are estimated via an external infrared-based navigation system and

visual simultaneous localization and mapping (SLAM) system, respectively. SLAM

successively estimates the transformation WTT(ti) between the tracker T and the

world coordinate system W , thereby incrementally constructing a 3D representation

of the environment, i. e. the anchor [98]. This is achieved by solving the following

equation at every time point ti:

WTT(ti) = argmin
WT̂T

d
(︂
fW

(︂
PWT̂T(ti)xT(ti)

)︂
, fT(t)

)︂
, (2.4)

where fT(ti) are visual features detected at frame ti, xT(ti) are the 3D locations of

these feature estimates, P is the projection operator, and d(·, ·) is the feature similarity

distance to be optimized. In our prototype, we rely on a proprietary implementation

of the SLAM concept that is provided by the Microsoft HoloLens SDK.

In room scale surgical AR settings that are focused in this chapter, the distance

between different sensors are typically large. In such cases, the calibration errors prop-
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agate greatly and negatively impact the final pose estimation. Thus, this necessitates

an accurate calibration between the involved components. With this knowledge, to

compute the poses that construct B, instead of only using the projection transforma-

tions from the internal calibration of the C-arm, we acquired pose data from various

views that the C-arm underwent along all axis.

Finally, to solve the system of equations in Eq. 2.3, As detailed in [99], we first

estimate the rotation component via a unit quaternion representation as follows:

QaQx = QxQb. (2.5)

Since Qa and Qb are known, Eq. 2.5 can be linearized in the form of MQx = 0, and

solved using least-squares minimization. The rotation parameters Qx are converted

from a unit quaternion form to a rotation matrix form Rx, and are substituted in

Eq. 2.3 to estimate the translation parameters tx.

2.3.1 Inside-out Tracking and Localization

To close the calibration loop between the tracker on the C-arm and the aug-

mented surgeon, we introduce a world coordinate frame W as shown in Fig. 2.2. The

world frame is a 3D representation of the operating theatre (in the Microsoft Hololens

community often referred to as anchor) which is conveniently shared among multiple

AR-enabled devices as the common point of reference. When the anchor is synchro-
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nized, all master and slave devices keep track of its position and the coordinate system

attached to it.

It is important to ensure clear line-of-sight during the short time period that

reference anchors are exchanged, i. e. uploading anchor by the master system (imaging

system) and downloading by the slave system (augmented user). However, after

the co-registration to the environment is established, it is no longer essential for

the sensors to share the same view. If the view of the master or slave systems are

temporarily blocked and the co-localization is interrupted, the shared tracking can be

restored by simply re-observing the area in the OR where the anchors were initially

constructed from.

The final pose VTW of the virtual volume is estimated with respect to the world

anchor. This transformation is used to dynamically recover the relative pose of the

virtual 3D volume in relation to the augmented surgeon as:

STV(ti) =
S TW

(︁
TT−1

W (t0)
TTC(t0)

)︁
VT−1

C⏞ ⏟⏟ ⏞
WTV

, (2.6)

The final step in establishing a closed loop for an AR experience is to estimate

VTC, describing the transformation from 3D virtual pre-operative or intra-operative

patient volumes to an intra-operatively acquired X-ray image. This registration is

crucial as the offline system calibration only recovers the transformation between the

visual tracker and the X-ray source. Hence, the following step is required to find
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relation between the X-ray source and the origin of the 3D volume.

If a CBCT capable C-arm is available, VTC is defined as one of the pre-calibrated

C-arm poses on the source trajectory, e. g. for convenience the anterior-posterior pose.

On the other hand, to incorporate pre-operative 3D patient data, the transformation

VTC can be estimated by acquiring X-ray images from patient at the current C-arm

angle and registering them to the pre-operative CT data using an image-based 2D/3D

registration [95, 96, 100–102]. The registration pipeline typically involves creation of

many 2D digitally reconstructed radiographs (DRRs). DRRs are generated iteratively

from various view points onto the patient CT (ID(
VTC)) and are compared against a

C-arm X-ray image (IX). DRR generation continues until an intensity- or gradient-

based similarity function S(.) yields maximal agreement between the X-ray and DRR

generated from the current view point:

argmax
VTC

S
(︁
IX, ID(

VTC)
)︁

(2.7)

Once VTC is known, the volumetric images are registered to the operating theatre

via WTV = WTT(t0)
TTC

VT−1
C (t0), where t0 denotes the time of calibration.

2.3.2 System Setup

The CBCT scan is acquired from a motorized ARCADIS Orbic 3D C-arm (Siemens

Healthineers, Forchheim, Germany). This C-arm executes orbital rotations of 190◦
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for acquisition of 100 projection images to enable tomographic reconstruction.

The surgeon’s augmented view is enabled via commercially available Microsoft

Hololens optical see-through HMD (Microsoft, Redmond, WA). For the proof-of-

principle implementation of this system, we affixed another HoloLens HMD to the

C-arm as the visual tracker. This enabled us to leverage the SLAM-based inside-out

tracking technology of the HMD, and conveniently share joint anchors representing

the 3D visual content of the operating theatre between the HMD on the C-arm and

the augmented surgeon. The pose data between these HMDs were transmitted via

wireless network, that was made possible by HoloToolkit using Unity 3D game engine.

To estimate the C-arm poses during hand-eye calibration, we used a Polaris Spec-

tra (Northern Digital, Waterloo, ON), an external optical navigation system. This

external tracker provides large measurement volumes, and allows reliable estimation

of relative C-arm rotation and translation at different configurations. It is important

to note that the external tracker is only used during the offline calibration phase, and

is not used intra-operatively. The system setup is illustrated in Figs. 2.3 and 2.4.

2.3.3 Experiments and Results

In the following we first evaluate the co-calibration between the visual-tracker and

the C-arm source and analyze the calibration accuracy as the number of input pose

data increases. Next, the overall user-in-the-loop error is evaluated using a multi-level

hybrid phantom.
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Figure 2.3: An infrared reflective marker is attached to the gantry and calibrated to
the X-ray source using a second marker that is imaged by the navigation system and
the C-arm simultaneously. This enables calibration of the optical tracker to the C-
arm source. a-c) shows the marker used for calibration and the corresponding X-ray
image with detected centroids of the spheres.

To optimally estimate and evaluate the hand-eye calibration between the X-ray

source and the tracker on the C-arm, we obtained 120 pose pair data from both

the external tracking of the C-arm as well as the inside-out SLAM-based tracking of

the visual tracker. The calibration accuracy was evaluated for rotation eR(N) and

translation ep(N) with respect to the number of pose data N . Alg. 1 demonstrates
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Figure 2.4: The C-arm gantry, and therefore, the tracker and the optical marker are
moved and corresponding pose pairs in the respective frames of reference are collected
that are then used for hand–eye calibration.

the procedure for calculating the average errors eR(N) and ep(N) [99]. The mean and

standard deviation for ep(N) and eR(N) errors are shown in Figs. 2.5 and 2.6. Results

in these two plots indicate that the improvement in accuracy when using more than

50 pose pairs are minimal, suggesting convergence.

Here we present the end-to-end error assessment of the proposed system consid-

ering augmented users in the loop. In the previous work, we reported a point-to-line

averaged error of 11.46 mm for this system [103]. In this work, we evaluate a more

geometrically relevant point-to-point distance. Fig. 2.7 illustrates these two error

measures.

To calculate the Target Augmentation Error (TAE), we designed a phantom

(Fig. 2.8) with L = 4 X-ray opaque landmarks at different (x, y, z) positions, such that

all landmarks could be localized in a single CBCT scan. In a pre-clinical user study,
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Algorithm 1 Assessment of hand-eye calibration

1: p(.): translation component of a homogeneous rigid transformation
2: tr(.): matrix trace
3: (.): expected value
4:

5: procedure Hand-eye Accuracy Assessment (M pairs)
6: for N = 4 to M do ▷ M = 120
7: for i = 1 to T do ▷ T = 800
8: Randomly select N pairs from M

9: Estimate hand-eye calibration CTT with the N pairs

10: for j = 1 to N do
11: IRTW(j) = IRTC(j)

CTT
TTW(j)

12: end for
13:

14: Estimate mean transformation: IRTW

15: Randomly select M pairs from M

16: for k = 1 to M do
17: CTWa(k) =

CTIR(k)
IRTW

18: CTWb(k) =
CTT

TTW(k)
19: R =C RWa(k)

CR−1
Wb(k)

20: eR(N, i, k) = cos−1( tr(R)−1
2

)
21: ep(N, i, k) =

⃦⃦
p(CTWa(k)−C TWb(k))

⃦⃦
2

22: end for
23:

24: eR(N, i) =
1
M

∑︁M
k=1 eR(N, i, k)

25: ep(N, i) =
1
M

∑︁M
k=1 ep(N, i, k)

26: end for
27:

28: eR(N) = 1
T

∑︁T
i=1 eR(N, i)

29: ep(N) = 1
T

∑︁T
i=1 ep(N, i)

30: end for
31:

32: end procedure
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Figure 2.5: Translational error in mm units with respect to number of pose pairs.
The shaded area represents standard deviation of the error.

Hand-Eye Error in Rotation
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Figure 2.6: Rotational error in degree units with respect to number of pose pairs.
The shaded area represents standard deviation of the error.
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Point-to-line error Point-to-point error
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Figure 2.7: Illustration of point-to-line and point-to-point error measures. The rays
shown in magenta are estimated by casting rays from the HMD to the 3D points
selected by the user on the spatial map of the scene.

U = 9 participants were asked to select the landmarks at the surface of the phantom

by confirming that the gaze cursor was on the target landmark. Confirmation was

communicated either via interactive air-tap hand gesture or using voice commands.

Per selection, a single ray was cast connecting the the HMD and the targeted point

on the phantom. To localize the 3D position of the landmarks along the ray, users

targeted the same point 4 times from various views around the phantom.

Each ray is defined via two elements: 1) the 3D position of HMD pi, and 2) ui as

the unit direction vector normal to HMD. After all rays were identified, we estimated

the closest point x∗l to all the rays corresponding to each landmark l via a least-squares

minimization strategy as follows:

x∗l = argmin
x∈R3

N∑︂
i=1

∥(I − uiu
⊤
i )x− ti∥2 , where

ti = (I − uiu
⊤
i )pi .

(2.8)
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Figure 2.8: The multi-level hybrid phantom with X-ray visible landmarks along e⃗x,
e⃗y, and e⃗z is used to evaluate the augmentation error.

Table 2.1: TAE measurements from 9 user experiments.

Target Augmentation
Error (TAE)

Mean Standard Deviation Median RMS
10.8mm 3.45mm 11.2mm 11.3mm

Finally, the average TAE error was calculated as the average distance between the

corresponding landmarks selected by the user, and the landmarks identified in the

CBCT scan as follows:

TAE =
1

L× U

l=L×U∑︂
l=1

⃦⃦
x∗l −S TC

VT−1
C xVl

⃦⃦
2
, (2.9)

where xVl corresponds to the l-th landmark in the CBCT volume coordinate frame.

TAE measurements are presented in Table 2.1 and Fig. 2.9.
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TAE Measurements from 9 User Experiments

Figure 2.9: TAE plot for U = 9 users, with red markers defining the median of the
measurements for each user.

2.4 Discussion and Conclusion

In this chapter we introduced several multi-modal systems relevant to different

fields of image-guided surgery. These flexible solutions provide means to intra-

operatively fuse 3D patient data for surgical AR and beyond. The methodologies

suggested in this chapter are all fiducial-free alternatives to complex calibration and

registration setups that were traditionally employed for image-to-patient registra-

tion. The applications of these systems may extend to different realms of surgery,

e.g. fracture management surgeries in orthopedic trauma and neuro-spinal surgery.

These systems are not intended to be surgical trackers, instead, are spatially-aware

platforms that assist surgeons to better understand the geometric relations by using

spatially registered data.
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While vision-based tracking does not yet provide accuracy en a par with fiducial-

based approaches, we envision that our systems for in situ visualization will benefit

residents in training that observe surgery to fully understand the actions of the lead

surgeon with respect to the deep-seated anatomical targets. These applications in

addition to simple tasks such as optimal positioning of C-arm systems, do not require

the accuracy needed for surgical navigation and, therefore, could be the first target for

OST-HMD visualization in surgery. These proposed systems are low-cost compared

to surgical navigation systems both in terms of hardware as well as the cost due to

additional OR time that is required for pre-calibration of the navigational setup.

The accuracy for co-calibrating the tracker on the C-arm and the X-ray source were

5.7mm and 0.26◦ in translation and rotation, respectively. Considering lower angular

errors and high translational errors, this solution may become suited for surgical

procedures during which orientational alignment is the key measure of success. One

such procedure in orthopedic surgery is acetabular component placement in total hip

arthroplasty using the direct anterior approach, where translation alignment of the

implant is easily achieved by pivoting the cup inside the hip joints relying on tactile

feedback, while achieving proper rotation requires multiple X-ray images.

The localization and tracking between the visual tracker on the C-arm and the

surgeon’s HMD was performed in a master-slave configuration. To construct the

pose-aware system, the inside-out tracker on the C-arm generates an anchor of the

operating theatre, which serves as a common spatial reference for all AR devices
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within the operating room environment. The anchor is uploaded via a shared service

and downloaded by other devices. Thus, all AR devices are co-localized with respect

to a shared coordinate system. As a consequence, the number of transformations

involved in the transformation chain is fewer compared to an outside-in navigation

system with optical markers, and error propagation is minimized.

Marker-free tracking is enabled via visual SLAM that is computed in real-time

based on the spatial map of the room. The spatial map is a triangulated mesh that

is constructed from the visual structures present in the operating theatre. Therefore,

the performance of the SLAM-based inside-out navigation depends on the richness of

the structures within the field of view of the tracking systems.

Naturally, this paradigm can extend to any other robotic imaging device entering

the operating theatre, that will require each of the involved viewers to have a calibra-

tion between the real world and their views of the world. In HMDs, these calibrations

are performed by algorithms such as SPAAM [104]. In the case of X-ray viewer, this

is done by the proposed hand-eye strategy. Finally, using the same SLAM-based

reconstruction and tracking environment, the surgeon, surgical crew, and the X-ray

viewer become the natural parts of an augmented surgical team.

55



CHAPTER 2. IMAGING SYSTEM AND CALIBRATION

2.5 Acknowledgments

I want to thank Mr. Sing Chun Lee for assisting with the surface to CBCT

calibration and designing the appropriate calibration phantoms, and Mr. Jonas Hajek

and Mr. Tianyu Song for their help in calibrating the HMD with the C-arm scanner

and acquiring multiple data sets for the hand-eye calibration. Sincere thanks to Drs.

Mathias Unberath and Bernhard Fuerst for their collaboration during the design

and implementation of these systems. I also thank Drs. Nassir Navab and Mehran

Armand for their supervision towards the realization of each system.

56



Chapter 3

Multi-Modal Acquisition and

Reconstruction

3.1 Motivation and Problem Statement

Modern C-arms are motorized to enable intra-operative Cone-Beam Computed

Tomography (CBCT). However, they suffer from poor tomographic reconstruction

quality due to object truncation, undesired movement during scanning, incomplete

projections, limited view angles, and higher influence of scattering due to the lack of

collimation. For many years, Filtered Back Projection (FBP) has been the traditional

reconstruction technique, which weights all projections equally, mostly ignores beam

hardening and the physical model of the reconstruction volume. Therefore, artifacts

are encountered in the tomographic reconstruction.
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Alternatively, Algebraic Reconstruction Techniques (ART) have more artifact re-

duction effects compared to FBP when the projections are irregularly spaced (not

uniformly distributed around the object) [105, 106]. More reliable reconstruction

can be generated when the field of view is limited, or some views are missing [107].

Hence, ART has become an interesting field of research in the recent years, includ-

ing attempts to reduce the radiation dose or compensate for known implants [108].

ART is mainly based on iterative optimization algorithms, and is computationally

more expensive. However, by using larger computational capacities, mainly modern

parallel hardware, computational effort has become less of an issue [109].

Classic ART assumes an empty space as the initial estimate of the reconstruction

where the weights are uniformly distributed inside. The shape and dimensions of

this space are defined based on the characteristics of the imaging machine. In order

to initialize the reconstruction with a more accurate estimate, a FBP of the volume

is computed before the iterative reconstruction, and the contours of the surface of

the scanned object are extracted and used as the imaging volume for the algebraic

reconstruction, which may reduce artifacts near the metal objects [110]. The metal-

trace is then located in the projections and compensated in the reconstruction using

appropriate confidence parameters. Pre-operative CT data can be used as a priori

information under the assumption that the C-arm projections are registered with

CT scans [111]. This method is used to avoid the artifacts, and to improve the

reconstruction from truncated projections. However, it will not be applicable to
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situations with no prior CT scan.

Undesired movement of the object during scanning is a major source of arti-

facts. A typical application is perioperative imaging when the patient is not fully

anesthetized, such as the procedures in interventional radiology [112], catheter place-

ments [113], and CBCT guided biopsies [114]. Unintended movements also occur

during dental CBCT for children and elderly, or imaging of extremities (hand, knee,

etc.). Avoiding these artifacts is also crucial for veterinary imaging where anesthesia

causes severe complications [115], and keeping the animal static is a challenge. These

movements result in shifted and displaced projections, which in return will cause the

reconstruction to be blurred, and exhibit shadows or duplicates.

A possible solution was presented in [116], where 2D/3D registration in combi-

nation with an iterative reconstruction to correct projection data inconsistencies due

to motion and positional error is proposed. The rigid transformation of the projec-

tions are computed by estimating the 3D pose of the C-arm source, and minimizing

the distance of the acquired projections and the digitally reconstructed radiographs.

However, when several major rigid movements occur during the scanning process, the

reconstruction of the reference volume for 2D/3D registration becomes problematic.

Therefore, an alternative method for the correction of the pose of each projection

may be desired.

Artifacts caused by respiration have been addressed by using different patient prior

models for motion compensation [117]. However, we attempt to solve a different type
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of motion artifact caused by accidental and mostly rigid movements, and investigate

the effect of these movements on tomographic reconstruction.

An irregular orbit of the C-arm is another source for motion artifacts, duplicates

and shadows in a reconstructed volume. Different methods suggest to attach beads

to the patients and use the projection information from the beads, or place various

calibration patters under the surgical bed and recover the correct C-arm pose using

projections [118]. These only consider an irregular orbit, and do not address sudden,

rigid patient movements. External tracking systems have also been utilized to track

the C-arm and the patient using multiple fiducials [4]. These systems are imprac-

tical in an operating room setting due to high complexity, disruption of workflow,

introduction of hardware, and line of sight issues.

In this chapter, we propose a novel tomographic reconstruction using real-time

patient surface information. A Red-Green-Blue-Depth (RGBD) sensor is mounted

on the image intensifier of a CBCT-enabled C-arm. In contrast to time-of-flight

cameras, this structured-light RGBD camera is less dependent on temperature, light-

ing, or materials, and provides color information. During CBCT scan the surface

of the patient is acquired using the RGBD sensor, which is used as a priori infor-

mation to mask the CBCT reconstruction using Maximum-Likelihood Expectation-

Maximization (MLEM). Consequently, this method uses the patient’s surface as the

initial estimate of the reconstruction volume. Previous approaches to jointly use

an RGBD camera and C-arm were limited to stitching several CBCT volumes after
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individual reconstructions [119]. To the best of our knowledge, this is the first tomo-

graphic reconstruction techniques using surface information from a single, integrated

RGBD sensor. This method improves the reconstruction quality inside the patient,

and has a low sensitivity to missing projections.

Rigid patient movements during scanning can be observed in real-time using the

RGBD camera. During the reconstruction process these rigid movements can be

compensated by correcting the pose of the projections. The estimated and irregular

path of the X-ray machine relative to the patient motivates the use of ART. Our

movement correction applies to only accidental rigid movements during CBCT scans,

which can take up to one minute using a motorized C-arm.

The improved reconstruction can benefit several interventions, particularly when

the patient is not fully anesthetized. In cases the surgical scene is very homogeneous,

or there are large gaps between the patient’s body and the covering drape the system

may not be applicable. However, in typical interventional radiology scenario, the

patient is draped around the point of entry, not the actual area of interest (e.g. head

or extremities). In an orthopedic or trauma scenario, the surgical site is usually

exposed, and the surrounding drapes stuck to the patient.
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Preoperative 
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Figure 3.1: The workflow of this technique includes an offline calibration of RGBD
surface and CBCT Volume (a). This calibration together with patient RGBD and
CBCT scans are used to mask and correct for rigid movement in the reconstruction.
System (b) comprises a mobile C-arm, and an RGBD sensor near the detector. The
transformation chain is illustrated in (b).

3.2 Workflow and System Design

CBCT reconstruction using patient surface requires an offline pre-interventional

calibration of RGBD surface and CBCT volumes (Fig. 3.1a). Next, simultaneous

RGBD and CBCT scans are acquired from the patient. The RGBD camera mounted

near the detector plane (Fig. 3.1b) observes the scene during reconstruction, and

provides C-arm poses relative to the patient. This information is used to correct

the reconstruction if undesired rigid movement occurs by the patient. Lastly, patient

surface is converted to masks and used as the reconstruction space.
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3.3 Rigid Movement Correction using RGBD-

based Simultaneous Localization and

Mapping System

The rigid movement of the object scanned is observed using the RGBD sensor.

The transformation is estimated using RGBD-based Simultaneous Localization and

Mapping (RGBD SLAM), which allows tracking of objects independent of the back-

ground RGBD data. The relative transformations of RGBD sensor origin and X-ray

source are equal when no movement occurs. Under this assumption, the pose of the

X-ray origin for each projection is corrected [120].

RGBD devices comprise multiple cameras and at least one projector, and allow

the fusion of color images and depth information. Consequently, these devices allow

us to recover the scale for visual features extracted in a color image. In this work, we

aim at utilizing the co-calibrated RGB and depth channels concurrently to track the

displacement of patient relative to a C-arm during CBCT scanning.

RGBD SLAM is used to track the C-arm relative to the patient, which performs

simultaneous estimation of the pose of perceived landmarks, and updating the position

of a sensing device [121]. RGBD-based SLAM uses the similar concept and augments

the 2D extracted color features with co-calibrated depth information [98]. These 3D

features are used to estimate the transformation between frames. The transformations
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are then used to initialize the iterative closest point algorithm to further refine the

mapping. Finally, a pose graph solver is used that optimizes the trajectory using a

non-linear energy function.

After scanning, the recorded trajectory is matched with the CBCT geometry

parameters and trajectory [120], using the previously described RGBD-to-X-ray cal-

ibration based on the multi-modal radiopaque checkerboard (see Sec. 2.2). In the

presence of dissimilarities in the two trajectories, the RGBD SLAM trajectory is uti-

lized to correct for patient movement during the reconstruction. The RGBD SLAM

computes a dense feature space, so-called feature (patient) coordinate frame F, using

the initial frame, and performs tracking with respect to this frame. The extrinsics of

the C-arm trajectory is then defined as:

CBCTTX = {CBCTT
(i)
X | CBCTTF ·F T

(i)
RGBD ·RGBD TX}ni=1, (3.1)

where n is the number of projection images, and CBCT, F, RGBD, and X are CBCT,

feature, RGBD, and X-ray source coordinate frames, respectively. Note that the

acquisition of color and depth information is subject to the line of sight. However,

we do not anticipate any objects or surgeons to be between the detector and the

patient during the scan. In most surgical scenarios, drapes are stuck to the patient’s

surface or - in case of interventional radiology or veterinarian - may not be present at

all. In these cases the depth data does provide sufficient information to estimate the

surface and relative movement. Furthermore, our system is not limited to a movement
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occurring between two consecutive frames, but for each projection the displacement

is estimated relative to the feature (patient) coordinate frame.

3.4 RGBD-Enhanced Tomographic Recon-

struction

In this section, we will present the basics of iterative reconstruction for CBCT,

followed by the introduction of the incorporation of real-time surface data to enhance

the reconstruction quality. The underlying problem to be solved can be expressed

through a system of linear equations: p = Af+noise, where p is the set of j projections

pj, the entries of f represent the unknown attenuation coefficients of the discretized

volume, and A is the system characterization operator (also described as system

matrix). A is comprised of individual entries aji expressing the relation between the

observed attenuation along a ray and voxels this ray passes through:

arj =
illuminated area of pixel r by ray j

total area of pixel j
. (3.2)

The system matrix A is sparse and large, and ART algorithm performs well un-

der this condition by iteratively projecting N -dimensional image estimates onto N -

dimensional projection hyperplanes, where N is the number of voxels to be recon-

structed. Due to inherent property of the X-ray attenuation, the noise in the projec-
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tions could be modeled as a Poisson distribution. Using this model, MLEM has been

shown to outperform the classic ART reconstruction [122].

RGBD camera is used to scan and reconstruct the patient surface concurrently

with the CBCT scan [123]. To use the patient’s surface as prior information, we

propose to create 3D closed mask λ from the surface, where each element λr in the

mask is zero for voxel elements outside of the patient’s body, and non-zero for voxel

elements inside the body. The masks are generated in real-time using the RGBD data

acquired during the scanning procedures. First, the surface data is automatically

pre-processed (morphological operations as well as smoothing), and then converted

to meshes. In the presence of large holes, manual interaction by the user is needed to

create a closed surface. Finally, the mesh is converted to the volumetric mask. The

mask is then used as a relaxation factor λ:

f (i+1)
r = λrf

(i)
r

1∑︁
j arj

∑︂
j

arj(
pj∑︁

k akjf
(i)
k

), (3.3)

where r is the voxel element, j is the projection element (ray), k is the set of vox-

els that intersect with projection j, and i is the iteration number. Deriving λ from

RGBD data and integrating it into MLEM is an important contribution of this work.

λ enforces zero constraints in the reconstruction for air voxels, and using the correct

attenuation coefficient of air, it allows a more precise reconstruction inside patient’s

body. Reconstruction is constrained outside patient surface and voxel intensities will
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remain zero, and inside patient surface no constraints are applied, therefore it is equiv-

alent to unmodified MLEM. This is equivalent to uniformly distributing the weights

of the system matrix A inside the body rather than the entire imaging volume. Note

that at each step, f
(n+1)
i is computed using all the voxel intensities from the previ-

ous estimation. Therefore, correct values of air voxels contribute to a more precise

reconstruction inside the patient’s body. The implementation steps are described in

Alg. 2.

Algorithm 2 MLEM reconstruction from projections using surface masks

1: f : reconstruction volume, p: projections, A: system matrix
2: λ: masked surface, i: iterations
3: nv: number of voxels, np: number of projections
4: fp: forward-proj., bp: backward-proj., rt: ratio of estimate to measurement
5:

6: for (i = 1 : runs) do
7: for r = 1 : nv do
8: rt = 0
9: for j = 1 : np do
10: fp =

∑︁
(Aj ∗ f + ϵ)

11: measurement = Ajr ∗ pj
12: rt += measurement/fp
13: end for
14: bpr = fr ∗ λr ∗ rt/(

∑︁
(Ar + ϵ))

15: end for
16: end for

3.5 Experimental Validation and Results

The RGBD-enhanced CBCT reconstruction is evaluated with simulated and real

data, where our method is compared to unmodified MLEM-based CBCT reconstruc-
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tions. Our reconstruction supports total variation regularization to achieve higher

quality at lower dose (statistical reconstruction) [124]. First we present the recon-

struction quality, followed by the results of correction of rigid movement.

3.5.1 Experimental Setup

All projections are acquired using a motorized C-arm. The Arcadis Orbic 3D,

Siemens Healthineers, can execute orbital rotations of 190◦ for acquisition of 100

projection images. The close-range coded-light Intel RealSense SR300 RGBD camera,

Intel Corporation, is rigidly attached to the image intensifier. SR300 comprises a small

3D depth camera with 640 × 480 resolution and an HD color camera. The effective

depth range from the camera origin is between 20 to 150 cm. The RGBD-SLAM

tracking is performed at 30 fps.

Real-time tracking of the patient to C-arm, generating and pre-processing masks,

and the tomographic reconstruction are all performed on the same PC. Reconstruction

of a CBCT volume of dimensions 512 × 512 × 512 with spacing of 0.2475 mm from

100 2D projection images, each of dimension 1024× 1024, 16 bit data, takes < 3 sec.

The reconstruction algorithms are implemented in the ImFusion software1 utilizing a

GeForce GTX TITAN.

1http://imfusion.de/products/imfusion-suite
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a) 20 proj. w/o mask b) 40 proj. w/o mask c) 60 proj. w/o mask 

d) 20 proj. with mask e) 40 proj. with mask 

h) ground truth 

f) 60 proj. with mask 

Figure 3.2: Reconstruction quality using an unconstrained MLEM-based reconstruc-
tion highly depends on the number of projections (a-c), while the RGBD-enhanced
reconstruction performs better with fewer projections (d-f).

3.5.2 Reconstruction Quality and Number of Pro-

jections

The reconstruction quality is analyzed using simulated projections of a Shepp-

Logan phantom. This enables the direct comparison of MLEM reconstruction without

masking (Fig. 3.2a-c) and with masking (Fig. 3.2d-f) with respect to the ground

truth (Fig. 3.2h). The impact of a reduction of the number of projections is of

great interest. Fig. 3.2 clearly illustrates that a lower number of projections reduces

the reconstruction quality when performed using MLEM, while our method is less

sensitive to a reduced number of projections. This is quantified by comparing several

reconstructions with lower number of projections with the ground truth by computing

the Sum of Absolute Differences (SAD) of the voxel intensities in the CBCT scans.

The differences are illustrated in Fig. 3.3a.
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Figure 3.3: (a) Using simulated reconstructions of a Shepp-Logan phantom, it can
be shown that surface masking during reconstruction yields a better quality when
compared to the ground truth (all projections) using SAD. The mask is separates
the phantom from the background. The enhanced reconstruction is less sensitive
to a reduced number of projections. (b) Quality of reconstruction of bone model
using MLEM without (red) and with surface masking (blue), where SAD is computed
for each method between the best reconstruction using all projections and using
fewer projections. It is clear that the classic reconstruction is more sensitive to fewer
projections than the RGBD-enhanced method. Note that in (a) logarithmic scale is
used to compare the data with different orders of magnitudes.

To validate the reconstruction quality in a more realistic setup, RGBD data and

projection images are acquired from a bone phantom in which a guide wire has been

inserted. The reconstruction using MLEM is shown in Fig. 3.4a. It exhibits artifacts

inside and around the phantom, and the guide wire is seen as blurry and wide area.

To consider the uncertainties due to poor depth resolution of the RGBD camera the

volumetric mask is smoothed using a Gaussian transition function in the neighbor-

hood of the object surface (2 mm). Using the mask extracted from the RGBD data

(see in Fig. 3.4b), the reconstruction quality in terms of clarity of the wire tip and

metal artifacts (Fig. 3.4c) is improved.
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Figure 3.4: Reconstruction of a bone model with guide wire yields strong artifacts
in and outside the structure (orange arrows in panel (a)) and a blurry, wide guide
wire. Incorporating RGBD data (mask in (b)), results in an improved reconstruction
quality (blue arrows in (c)) with clear guide wire tip. The log-normalized X-ray
projection (d) shows the guide wire inside the bone.

When comparing the reconstruction with all projections against reconstructions

with fewer projections, it is clear that the classic approach is highly sensitive to the

reduction of projections, while the RGBD-enhanced reconstruction is relatively stable.

Fig. 3.3b shows this sensitivity by comparing each method with its best performance

using all projections.

3.5.3 Correction of Rigid Movement during CBCT

Scan

In this section we use the RGBD SLAM system for C-arm to patient track-

ing [95], and will evaluate the effect of rigid movement correction in CBCT recon-

struction. In this experiment, the bone phantom was moved 1.27 cm and rotated

(< 2◦) planar to the surgical bed (arbitrary rigid movement in the C-arm coordinate

frame), between the 50th and 51st projection. The observed point clouds are shown in
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Fig. 3.5a. The reconstruction using 100 projections without incorporation of RGBD

data yields clear motion artifacts. Duplicates and shadows marked with orange arrows

in Fig. 3.5b. This rigid movement is corrected in the RGBD-enhanced reconstruction

(see Fig. 3.5c), which significantly reduces motion artifacts. The average thickness

of the observable guide wire in Fig. 3.5b is 3.31 mm. The movement artifacts cause

duplicates to appear in a neighborhood of 5.53 mm. After correction of movement,

duplicates no longer appear, but the thickness of the reconstructed wire is 4.61 mm

(Fig. 3.5c). The thickness of the wire from physical measurement is 2.5 mm.

We further evaluate the system performance using a pig specimen. The animal

cadaver is covered with self-adhering drape to simulate a realistic surgical scenario,

and placed near the ico-center of the C-arm using the guidance laser attached to the

C-arm. Next, we acquire four CBCT scans. During each scan an arbitrary rigid

transformation is applied to the bone with the norm of the translation component

between 2 to 5 cm, and rotational component < 5◦. Each scan takes 60 sec, and

the movements take 2 to 4 sec at arbitrary intervals during the acquisitions. An

intensity-based mask is applied to the projection images to crop padding created by

the detector. Next, the MLEM ART method is used to reconstruct the volumet-

ric data using all 100 projections. Normalized CBCT volumes are compared to a

ground-truth reconstruction with no rigid movement using SAD. Without movement

correction the SAD is (21.1 ± 1.1) × 106, and improves to (2.97 ± 0.97) × 106 after
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Figure 3.5: Movement during the CBCT scan can be observed using the RGBD sensor
(a). Without correction, artifacts are clearly visible (orange arrows in panel (b). The
RGBD-enhanced reconstruction does not exhibit such artifacts (blue arrows, panel
(c). In (d) and (e), CBCT reconstruction before and after motion correction are
shown on a pig femur.

correcting for the rigid movement2. The average SAD per voxel for normalized CBCT

volumes reduces from 0.157 without correction, to 0.022 with correction.

We finally evaluate the influence of reducing the number of projections. Recon-

struction a ground truth volume and the four volumes using 50 projections yielded

an SAD of (16.8 ± 0.7) × 106 before correction, and (2.33 ± 0.84) × 106 after move-

ment correction. This is equivalent to reduction of average SAD per voxel from 0.125

to 0.017. Results indicate improved reconstruction quality after correcting the bone

rigid movement with both 100 and 50 projections.

3.6 Discussion and Conclusion

We propose a CBCT reconstruction algorithm incorporating the patient’s surface

from an RGBD sensor and use MLEM algorithm. The first major contribution of

2values reported as mean ± standard deviation
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this work is the computation of the relaxation factors for each voxel from the real-

time depth information provided by the RGBD sensor. Due to the rigid system

construction, the calibration only needs to be performed once. Our method improves

the reconstruction quality, and the streak artifacts near metal are reduced. The

second contribution is the automatic correction of rigid patient movements using

both RGB and depth information. The image inconsistencies in terms of motion

artifacts, caused by accidental rigid movements of the patient during scanning and

slow C-arm movement, are observed by the RGBD camera, and are then corrected

during the reconstruction. Results indicate that using the surface information results

in lower sensitivity to fewer projections.

Due to the rigid movements during scanning, the assumption of an orbital trajec-

tory of C-arm is no longer valid. This newly observed, highly irregular path of the

X-ray source relative to the target may cause FBP to fail. In this work we use the

iterative reconstruction which is not affected by the dynamically changing scanner

motion or the parallax effect caused by the translation component of the movement.

To compute the relative pose of a C-arm with respect to a moving patient, we use

RGBD SLAM and perform vision-based tracking. When the patient is partially cov-

ered with drapes (clinically realistic scenario) fewer color features are identified in the

background and the tracking quality increases [95].

Calibration between C-arm and RGBD sensor is performed using a multi-modal

checkerboard calibration target. This calibration is used to correct the projection
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poses relative to the patient. When incorporating the surface information into the

CBCT reconstruction as prior information, we avoid using the information from the

checkerboard pattern, as this produces a long calibration chain (intrinsic calibration

of the C-arm as well as the transformation from the RGBD origin to the surface

reconstruction coordinate frame become necessary), and will increase the error. Al-

ternatively, we perform direct 3D to 3D calibration using ICP.

Mask quality is dependent on the depth resolution of the RGBD camera. This

also results in RGBD/CBCT calibration error of nearly 2 mm. Moreover, holes in

the meshes currently require manual pre-processing and morphological operations.

This pre-processing also includes smoothing to compensate for uncertainties near the

boundary. Similar approaches of extracting a mask from reconstructed volume and

subsequently performing a reconstruction have been performed in [110, 111]. Our

approach of integrating RGBD camera into the CBCT device, and simultaneously

recording data has a far larger range of possible applications. One of which is demon-

strated by correcting for the unwanted rigid movement during the scan. This correc-

tion would not be possible using the two-stage approach as the automatic extraction

of a mask from a motion blurred image is difficult. Note that we only compensate for

rigid movement during scans, which can be observed using a camera. The assumption

of rigid motion is valid for imaging the extremities and dental applications where the

movements are mainly rigid with minimal deformations. Respiratory motion is a com-

plex process which involves internal movements, deformations and sliding motion of
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lungs along the pleura. None of these motions can be observed directly using a cam-

era, but our system may provide a sufficient surrogate signal to drive biomechanical

models [125].

The advantages of using cameras with C-arm for radiation and patient safety,

augmented reality, mosaicing, etc. is emphasized repeatedly in the literature. The

fully integrated opto-X-ray imaging system represents the future of C-arm imaging.

We believe that incorporating real-time RGBD data leads to a dramatic improvement

of CBCT reconstruction quality. Considering that radiation dose for high quality

imaging is a major clinical concern, we believe this technique can contribute as a

radiation dose reduction measure enabling reconstruction with fewer projections, and

avoid repeated scans by correcting accidental patient movements.
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Part II

Imaging Analytics and Registration
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In part II of this dissertation, using computer vision and artificial intelligence

tools, we perform analytics and processing for various medical image registration

tasks using the data that were acquired and reconstructed in part I.

Chapter 4 addresses some of the challenges regarding 2D/3D registration between

X-ray and CT, where accurate initialization is one of the important aspects that

determines a successful registration. Chapter 5 investigates 3D/3D registration for

automatic stitching of non-overlapping cone-beam CT acquisitions. This stitching

problem is particularly important because the limited field-of-view of CBCT pro-

hibits us from taking important measurements, such as the bone’s total length, or

verifying malrotations intra-operatively, using a single acquisition. Hence, we ex-

plored different vision-based stitching approaches that stitch and combine CBCT

volumes independent of their overlap. Finally, chapter 6 presents the novel method-

ology for 2D/2D stitching between intra-operative X-ray images that, because of their

projective nature and parallax constraints, require special considerations.

This chapter’s work is based on the following manuscripts:

1. Fotouhi, Javad, Bernhard Fuerst, Alex Johnson, Sing Chun Lee, Russell Tay-

lor, Greg Osgood, Nassir Navab, and Mehran Armand. ”Pose-aware C-arm for

automatic re-initialization of interventional 2D/3D image registration.” Inter-

national journal of computer-assisted radiology and surgery 12, no. 7 (2017):

1221-1230.

2. Fotouhi, Javad, Bernhard Fuerst, Mathias Unberath, Stefan Reichenstein, Sing
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Chun Lee, Alex A. Johnson, Greg M. Osgood, Mehran Armand, and Nassir

Navab. ”Automatic intraoperative stitching of nonoverlapping cone-beam CT

acquisitions.” Medical Physics 45, no. 6 (2018): 2463-2475.

3. Fotouhi, Javad, Xingtong Liu, Mehran Armand, Nassir Navab, and Mathias

Unberath. ”From Perspective X-ray Imaging to Parallax-Robust Orthographic

Stitching.” arXiv preprint arXiv:2003.02959 (2020).
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Chapter 4

2D/3D: Pose-Aware C-Arm for

Automatic Re-Initialization of the

Image Registration

4.1 Introduction and Background

Intensity-based image registration is one group of image-based registration tech-

niques, and of special interest in this chapter. Registration is typically performed by

simulating 2D radiographs, so-called Digitally Reconstructed Radiographs (DRRs),

from pre-interventional patient data, and matching them with the intra-interventional

C-arm image [126–128]. Intensity-based registration becomes challenging where bony

structures in the pre- and intra-interventional data differ due to deformations caused
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by the surgery. C-arm image registration is in particular a complex problem due to

the limited views of the C-arm images. Atlases of the target anatomy and deformable

shape statistics are suggested to support the registration in such cases of image trun-

cation [129]. In spite of promising results from using shape models, in several trauma

and orthopedic cases where the bony anatomy is severely damaged and deformed, the

registration is yet prone to failure. Last but not least, intensity-based registration

is very sensitive to initialization due to the limited capture range of the intensity-

based similarity cost. These are the challenges that prohibit the 2D/3D registration

to become a part of standard surgical routine.

Reliable registration is often performed using external navigation systems [3]. In

navigation-guided fluoroscopy, it is a common practice to drill the fiducials into the

bone to maintain the registration in the presence of patient movement [4]. Generally,

these fiducials are implanted before the 3D pre-interventional data is collected, and

will remain inside the anatomy until after the intervention. Fiducial implantation re-

quires a separate invasive surgery, and increases the risk of fracture in the osteoporotic

bones.

Fiducial-based C-arm tracking was used for intensity-based image registration

in [4]. This method achieves sub-millimeter accuracy, however requires the implan-

tation of a custom-made in-image fiducial. The mean Target Registration Error

(mTRE) is 0.34 mm for the plastic bone phantom with 90◦ rotation, and 0.99 mm

for the cadaveric specimen with images 58.5◦ apart. In [130], anatomical features or
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beads on patient surface are located in the C-arm images and used for C-arm pose

estimation. This work tackles the problem of intra-interventional calibration and re-

construction, and does not address registration to pre-interventional data. Despite

the high registration accuracy of navigation-guided systems near the fiducial markers,

the registration error and uncertainty increase in distant areas. Furthermore, these

systems have a complex setup, occupy additional space, and change the surgical work-

flow. Last but not least, the line of sight issues limit the free space in the surgical

site.

In order to initialize the 2D/3D registration for several number of C-arm images,

Uneri et al. [131] proposed to use each successful registration of a C-arm image to

3D data as the initialization for the latterly C-arm image. This work avoids the use

of any external trackers by solely relying on image-based registration. But on the

other hand, in order to robustly initialize the registration, the allowed displacement

between consecutive C-arm images was limited to only 10mm in translation.

The initial alignment and outcome verification are introduced as two main bot-

tlenecks of the registration problem [132]. In order to address the problem associated

with initialization of a 2D/3D registration task, [133] suggested an interactive initial-

ization technique where the user performs the alignment by utilizing a gesture-based

interface or an augmented reality environment together with a navigation system. The

tedious initialization procedure makes the system impractical in a surgical setting.

Generalized Hough Transform is used in [134] to learn large number of 2D tem-
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plates over a variety of 3D poses. During intervention this information is used to

estimate the 3D pose from the 2D C-arm images and initialize the 2D data with

respect to 3D pre-interventional CT. Projection-slice theorem and phase correlation

are also used to estimate the initialization of the 2D/3D registration problem [135].

We investigate the use of vision information from an RGB-Depth (RGBD) camera

mounted near the detector of a mobile C-arm to estimate the pose of the C-arm

relative to the patient. We refer to this C-arm as pose-aware. The proposed C-arm

tracking will result in estimating the projection geometry of the C-arm relative to

the surgical scene at arbitrary poses of the C-arm. The tracking information will be

used to transform the 2D C-arm images globally near their correct alignment with

respect to the pre-interventional data. Next, intensity-based registration is utilized

to align images locally. Our methodology aims at improving the automation during

C-arm guided interventions. This technique is more effective when the registration

has to be repeated for multiple C-arm poses. The workflow (Fig. 4.1) initiates by

performing an initial registration of the C-arm to the pre-interventional data. The

registration loop is then closed by using this pose as the reference for the tracking of

different C-arm arrangements. This system is self-contained, requires a single factory

calibration, and the surgical workflow remains intact.
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Figure 4.1: Workflow of a pose-aware C-arm system for intensity based 2D/3D regis-
tration. Every C-arm image is globally aligned (initialization for 2D/3D registration)
with pre-interventional CT based on vision-based tracking. The main contribution of
this work is shown in green.

4.2 Estimation of C-arm Trajectory Us-

ing Visual Tracking

The tracking of C-arm source during C-arm re-positioning is performed by first

observing the surgical site (patient) using the RGBD camera. These relationships,

denoted as PTRGBD and PTRGBD’, are shown in Fig. 4.2. The relative transformation

between the RGBD camera poses is then derived as:

RGBD’TRGBD =P T−1
RGBD’ ·

P TRGBD (4.1)

Since the RGBD camera is rigidly mounted on the C-arm, the multi-view relation
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Figure 4.2: The relative displacement between camera poses RGBD’TRGBD is used for
estimation of the relative displacement of the X-ray source X’TX.

between the RGBD origin and X-ray source remains fixed (XTRGBD =X’ TRGBD’). We

can then obtain the relative displacement of the X-ray source as:

X’TX =X’ TRGBD’ ·RGBD’ TRGBD ·X T−1
RGBD (4.2)

In the following we discuss two distinct vision-based methods for tracking the

surgical site with depth-only and RGB+depth data.
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4.2.1 Tracking and Surface Reconstruction Using

Depth Data

We deploy an algorithm to automatically estimate the depth sensor trajectory,

and create a smooth dense 3D surface model of the objects in the scene [123]. The

relative camera poses are acquired by iteratively registering the current depth frame

to a global model. This iterative stage is performed using multi-scale Iterative Closest

Point (ICP), where depth features among frames and the global model are matched

using projective data association [136].

4.2.2 RGBD-based Simultaneous Localization and

Mapping

Modern RGBD cameras are small devices which provide color information as well

as depth data. Therefore, greater amount of information is extracted and processed

compared to a single RGB or infrared camera. We aim at using depth and color

information concurrently, and acquire 3D color information from the surgical site.

Ultimately, we use this knowledge to track the C-arm relative to the patient. For this

purpose we use an RGBD SLAM system introduced in [98]. The underlying track-

ing method uses visual features (e.g. SURF [137]) extracted from the color images,

and constructs feature descriptors. The feature descriptors are matched among the
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consecutive frames to form a feature correspondence list. The initial transformation

is then computed using the correspondence list and a RANdom SAmple Consensus

(RANSAC) method [138] for transformation estimation. The outcome is later used

to initialize ICP to further refine the mapping between consecutive frames.

4.3 Pose-aware C-arm for Intensity-based

2D/3D Image Registration

Intensity-based 2D/3D image registration is an iterative method which 6 DOF

parameters are estimated for a rigid body transformation that brings the input 2D

and 3D data to a common coordinate frame. The key component of this process

is the creation of many 2D artificial radiographs, so-called Digitally Reconstructed

Radiographs (DRRs), from the CT data and comparing them against the C-arm X-

ray image. This process continues until the similarity cost between the DRR and

X-ray images is maximized using an iterative optimization.

CT image is a collection of voxels representing X-ray attenuation. In order to

generate a DRR from a given CT data, 6 DOF rotation and translation parameters

are used together with the intrinsics of the C-arm to position a virtual source and a

DRR image plane near the CT volume [139]. The intrinsic calibration of the C-arm,

allows us to estimate the source to detector arrangement, and use this information

to generate DRR images [140]. Next, by means of raycasting [141], the accumulation
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of intensities along each ray (that originates from the virtual source and intersects

with the image plane) is computed. The accumulated values then form a DRR image.

In this work, we first perform a single image-based C-arm image to CT registration

using manual initialization. Thereafter, we track the C-arm new pose relative to

the surgical site. The tracking results of the C-arm are later used as the 6 DOF

initialization parameters of the new coming C-arm images.

Next, the C-arm X-ray images are converted to linear accumulation of X-ray

attenuation by means of log-normalization. Hence, the DRRs and detector images

become linearly proportional. Furthermore, we apply a circular mask on the detector

images to discard the saturated areas near the detector boundaries and only include

relevant information in the similarity cost.

After estimating the re-initialization transformation T0 obtained as results of the

composition of transformations X’TX estimated by the pose aware system, and that

of the first pose of the C-arm, the DRR image is generated and compared against

the C-arm X-ray image IX using a similarity cost S. In this work we utilize the

Normalized Cross-Correlation (NCC) as the similarity cost defined as:

NCC := S ((R, t)|T0, IX, ID) =

|ΩX,D|∑︂ IX · I((R,t)|T0)
D

σXσD
(4.3)

where IX and ID are the mean-normalized X-ray and DRR images, (R, t) are the

rotation and translation parameters used to form the DRR image, ΩX,D is the common
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spatial domain of the two images, and σX and σD are the standard deviations of the

X-ray and DRR image intensities in ΩX,D.

The final parameters (R̂, t)̂ are estimated by an iterative optimization:

[R̂, t̂] = argmax
R,t

S ((R, t)|T0, IX, ID) (4.4)

The optimization is performed using Bound Constrained By Quadratic Approxima-

tion (BOBYQA) algorithm [142].

4.4 Experimental Validation and Results

4.4.1 Experimental Setup

X-ray images are acquired using an Arcadis Orbic 3D mobile C-arm from Siemens

Healthineers with the detector size of 230 mm × 230 mm. In order to remove low-

noise, the X-ray images are captured as Digital Radiographs (DRs) where a weighted

average filter is applied to the images. The DR images are acquired using 0.2 to 23

ma and 40 to 110 kV. For safety purposes the maximum power for taking a DR image

is set to 1000 W. The CT scan data is acquired using a Toshiba Aquilion One CT

scanner, where the slice spacing and thickness are 0.5 mm, and the volume elements

are created using 16 bits. An Intel RealSense SR300 camera from Intel Corporation is

rigidly mounted on the image intensifier using a custom-made 3D printed mount. The
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SR300 has a small form factor (X= 110.0±0.2mm, Y= 12.6±0.1mm, Z= 3.8−4.1mm),

and integrates a full-HD RGB camera, an infrared projector, and an infrared camera.

To ensure a wide visibility range of the patient surface, the RGBD camera is positioned

with a particular tilt angle that the center of the image is nearly aligned with the C-

arm iso-center. The C-arm imaging device is connected via Ethernet, and the RGBD

camera is connected via powered USB 3.0 to the development PC which runs the

tracking and the registration software. The tracking is performed in real-time, and

the 2D/3D registration module is fully parallelized using Graphical Processing Unit

acceleration.

4.4.2 Results

In the following we evaluate the pose-aware C-arm system by presenting the cal-

ibration accuracy, tracking results, and 2D/3D registration performance with and

without the automatic re-initialization.

4.4.3 Calibration Outcome

A 5 × 6 checkerboard calibration target is employed to calibrate the X-ray, RGB,

and infrared (depth channel of the RGBD camera) imaging devices. The length of

each side of a single checkerboard square is 12.66 mm, and the total dimensions of the

checkerboard are 63.26 mm and 75.93 mm. The checkerboard size is carefully selected

according to the field of view of the C-arm and the RGBD camera images to ensure
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full visibility among a variety of checkerboard poses. Next, 72 X-ray/RGB/IR images

were simultaneously recorded to perform the calibration. A subset of images that

produced high reprojection error were discarded as outliers. Ultimately, we used 42

image pairs and performed stereo calibration between RGB camera and X-ray source

where the stereo mean reprojection error was 0.86 pixels. The stereo calibration in

this work does not refer to the calibration of a single moving camera, instead it refers

to estimation of the extrinsic parameters of two stationary cameras (RGB and X-ray

imaging devices). RGB and X-ray images had individual mean reprojection errors

of 0.75 and 0.97 pixels, respectively. RGB and IR cameras were calibrated using 59

images and the mean stereo reprojection error was 0.17 pixels, with individual mean

reprojection errors of 0.18 and 0.16 pixels for each camera respectively.

4.4.4 Tracking Accuracy

The accuracy of the vision-based tracking methods is evaluated by rotating the

C-arm around different axis, computing the pose of the X-ray source, and comparing

the outcome to the ground truth provided by an external optical tracking system. an

exemplary rotation is shown in Fig. 4.3, where the C-arm orbits around the surgical

bed.

The optical position sensor tracks a single-faced passive rigid body fiducial mounted

on the C-arm which is pre-calibrated to the X-ray source. The tracker is a Polaris

Vicra System from Northern Digital Inc., where the measurement area for the mini-
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mum distance (557 mm away from the tracker) is 491 mm × 392 mm, and 938 mm

× 887 mm for the maximum distance (1336 mm) from the tracker.

The C-arm is rotated along three main axis and the tracking results from the

depth-only algorithm and RGBD SLAM are recorded and compared to an optical

tracking system. First, C-arm is orbited 45◦ around the cranial/caudal axis. The

tracking errors are shown in Fig. 4.4 (a)-(b) in the form of Euclidean distance, as

well as the rotational error. The rotational error are computed as the norm of mal-

rotation angle along the three axis with respect to the ground truth. Next, the C-arm

is swiveled by ±10◦, and the tracking errors are plotted in Fig. 4.4 (c)-(d). Lastly,

the C-arm is rotated to anterior-posterior oblique view with ±30◦. The results of this

experiment are shown in Fig. 4.4 (e)-(f).

Note that the C-arm rotation does not only result in the rotation of the X-ray

source, but also by construction of the device a significant translation is applied to

the X-ray source. In an exemplary case, considering the C-arm source to iso-center

distance (approximately 600 mm), a 45◦ orbit of the C-arm results in approximately

430 mm displacement of the X-ray source. Therefore, the aforementioned experiments

all involve rotation as well as translation of the X-ray source.

The ranges selected for these experiments were solely defined by the limited cap-

ture volume or line of sight constraints of the tracking system, or the range of C-arm

motion (e.g. swivel is only possible up to 10◦ for this C-arm).
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a) b)

Figure 4.3: The pose of the X-ray source is tracked at different C-arm positions.
Tracking based on (a) depth-only, and (b) an RGBD SLAM system is shown in
red, and the tracking outcome based on the external tracking system is shown in
blue. While drift (mistranslation) is observed in the tracking of the X-ray source,
misrotation compared to the ground-truth is minimal.

4.4.5 2D/3D Registration with Automatic Re-initialization

To evaluate the effect of re-initialization on intensity-based 2D/3D image regis-

tration, we attempt to register CT and C-arm images of a dry femur-pelvis phantom

with the automatic re-initialization. In addition to re-initialization, the optimizer

search space is limited according to the aforementioned tracking errors, i.e. the op-

timizer bounds are 10 mm and 20 mm for < 15◦ and > 15◦ rotation of the C-arm,

respectively. For speedup, the registration software is fully parallelized using GPU

acceleration.

A CT scan is acquired from the femur-pelvis phantom that is encased in gelatin,

and partially covered with drapes (to simulate realistic surgical scenario). Next, the
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a) b)

c) d)

e) f)

Figure 4.4: Tracking errors of X-ray source pose estimation with respect to ground
truth are presented in Euclidean distance as well as rotational misalignment. The
plots indicate the results when using depth-only data, and RGBD SLAM with
RGB+depth information. (a)-(b) are the errors for 45◦ C-arm rotation in cra-
nial/caudal direction, (c)-(d) correspond to ±10◦ C-arm swivel, and (e)-(f) are errors
for ±30◦ of C-arm rotation in oblique direction. Regarding the composition of errors,
results show a relatively small rotational and large translational component. Note
that here the C-arm extrinsics recovered from vision-based methods are compared to
tracking results using an external optical tracking system. Therefore, any changes
in the intrinsic parameters (due to mechanical deformation of the C-arm) do not
contribute to the errors.
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Table 4.1: NCC similarity measures for the intensity-based 2D/3D registration are
presented at two stages: 1. after re-initialization 2. after registration. The exper-
iments are conducted using 13 arbitrary C-arm poses, and the mean and standard
deviation (SD) of the similarity measure are presented in the table. Moreover, mTRE
values are presented in mm after the re-initialization step. We consider a registration
with mTRE < 2.5 mm as a successful attempt. The rate of success using each method
is presented in the last column.

Tracking Method
After Re-initialization After Registration

NCC SD(NCC) mTRE NCC SD(NCC) Success Rate
depth-only 0.243 0.18 13.23 0.721 0.04 69%
RGBD SLAM 0.310 0.24 11.81 0.749 0.06 75%

phantom is placed on the surgical bed using laser guidance where the femur head is

near the iso-center of the C-arm orbit. A C-arm X-ray image is then acquired and reg-

istered to the CT data using manual initialization. Thereafter, we rotate the C-arm

within a range of 30◦, and collect multiple C-arm images while tracking the C-arm

using vision-based methods in Sec. 4.2. For each C-arm image, the tracking outcome

is used for re-initialization of the intensity-based 2D/3D registration. In Table 4.1

the registration outcome is presented for all successful registration attempts. We

consider a registration attempt successful only if the mTRE error after registration

is < 2.5 mm. mTRE is computed as the mean of the absolute Euclidean distances

between radiolucent landmarks on the phantom in the CT coordinate frame. Reg-

istration using random initialization yielded a 23% success rate, where vision-based

re-initialization yielded a 75% success rate. All registrations were performed using

the ImFusion software1 with NCC similarity measure. An example demonstrating

the registration steps is presented in Fig. 4.5.

1http://imfusion.de/products/imfusion-suite
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d) Dry phantom and gelatin

Figure 4.5: DRR is overlaid with C-arm X-ray image (a) before re-initialization, (b)
after pose-aware re-initialization, and (c) after the 2D/3D registration. The pelvic-
femur phantom and the gelatin are shown in (d). During the experiment the bone
phantom is encased in gelatin and covered with drape to simulate a realistic surgical
condition.

4.5 Discussion and Conclusion

The marker-free pose-aware C-arm system proposed in this work is an RGBD en-

hanced C-arm system that uses vision-based techniques to track the relative displace-

ment of the C-arm with respect to the surgical site. Before the vision-based tracking

takes place, C-arm is registered to pre-interventional CT data using a single 2D/3D

registration with manual interaction. Thereafter, the relative C-arm poses are esti-

mated with respect to the initial C-arm pose and consequently to pre-interventional

3D data. An error in the initial registration of the C-arm to CT data will directly

affect the accuracy of the vision-based tracking system. The fusion of 3D pre- and

2D intra-interventional data allows the surgeon to understand the relationship be-

tween the current state of surgery, the complex 3D structures, and the pre-operative

planning. This increases the surgeon’s confidence, reduces the mental task load, and

lowers the probability of a revision surgery.
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Classically tracking the C-arm/patient using external optical trackers may provide

better accuracy, but involves longer and more complex preparation, line of sight issues,

and the invasive implantation of pins into bone; hampering surgical navigation from

being widely adopted in orthopedics. In contrast to these systems, the pose-aware

C-arm is non-invasive, requires no interaction time for manual re-initialization, and

the workflow remains intact (manual initialization for authors as expert users takes

between 30 to 60 sec). The registration step after a re-initialization takes < 10 sec.

The tracking accuracy is evaluated at various C-arm poses. The results in Fig. 4.4

indicate that an RGB+depth tracking method slightly outperforms a depth-only

tracking system. The translation error for a wide range of displacement is 10-18

mm, and the rotation error is below 2◦. The reported mTRE values are only for the

re-initialization step. The range of acceptable mTRE for clinical application depends

on the registration method and its capture range. Surgical navigation can only be

performed after the 2D/3D registration takes place.

Registration using the re-initialization has 75% success rate, where random ini-

tialization only yielded 23% success rate. Our method increases the likelihood of a

successful registration, which therefore improves the practical applicability and use-

fulness of surgical navigation. A similar fiducial-less initialization method in [135]

yielded only 68.8% success rate, where in 95% of the cases the initialization error

was below 19.5 mm. Spine imaging is the focus of the 2D/3D registration proposed

in [134], where DRRs are generated from each vertebra and used to generate Hough
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space parametrization of the imaging data. The success rate of the registration us-

ing Generalized Hough Transform is 95.73%. The interactive initialization method

in [133] with average interaction time 132.1± 66.4 s has an error of 7.4± 5.0 mm.

RGBD camera is mounted on the image intensifier that allows the X-ray source

to remain under the surgical bed, hence the workflow is not disrupted. Despite the

benefits of mounting the camera near the detector, large distance between RGBD

camera and the X-ray source (approximately 1000 mm) may result in significant

propagation of error. In other words, minute tracking error in the RGBD coordinate

frame, may produce large errors in the X-ray source coordinate frame.

The depth-only algorithm performs a global tracking and utilizes points from

foreground as well as the background. Therefore, patient movement in a static back-

ground is not tracked. Moreover, this method requires a complex scene with dominant

structures. Lastly, the tracking is only maintained when the C-arm is re-arranged

slowly. On the other hand, RGBD SLAM uses color features and assigns a dense

feature area in the image (e.g. surgical site) as the foreground, and discards the

background. Therefore, RGBD SLAM accounts for patient rigid movement.

The errors from the vision-based tracking shows that the translational components

are subject to larger errors than the rotational components. The errors depend on

the choice of the color features and the accuracy of depth data. The error in tracking

the X-ray source using the RGBD-SLAM is the result of unreliable color features,

drift from the frame-to-frame tracking, large translations of the RGBD camera in
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the world coordinate frame, and the propagation of error due to the large distance

between the X-ray and the RGBD imaging devices. Fast C-arm movement, as well as

the presence of reflective and dark objects in the surgical scene that reflect and absorb

IR are factors that result in poor tracking. Tracking accuracy can be further improved

by incorporating application specific details such as drape color and using model-

based tracking methods based on the known representations of the surgical tools.

Additionally, the drift caused by frame-to-frame tracking can be reduced using bundle

adjustment. Other improvements can take place by using stereo RGBD cameras

on the C-arm, or using a combined tracking algorithm with both RGBD SLAM

and depth-only. Alternative feature detectors that provide better representations

can be used to extract relevant information from the surgical scene. Redundancy

tests may also be necessary to reject color features where the depth information is

sparse or unreliable. Lastly, high-end RGBD imaging devices with more reliable depth

information can significantly improve the tracking quality.

The tracking accuracy of the vision-based methods presented in this chapter are

within the capture range of an intensity-based image registration, and provide reliable

registration. We believe that an RGBD enhanced C-arm system can contribute to

automated fusion of pre- and intra-interventional data.
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Chapter 5

3D/3D: Automatic Intra-Operative

Stitching of Non-Overlapping

Cone-Beam CT Acquisitions

5.1 Motivation and Problem Statement

Intra-operative 3D X-ray Cone-Beam Computed Tomography (CBCT) during or-

thopedic and trauma surgeries has the potential to reduce the need of revision surg-

eries [25] and improve patient safety. Several works have emphasized the advan-

tages that C-arm CBCT offers for guidance in orthopedic procedures for head and

neck surgery [143, 144], spine surgery [145], and (Kirschner wire) K-wire placement

in pelvic fractures [93, 94]. Other medical specialties, such as angiography [146],
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dentistry [147] or radiation therapy[148], have reported similar benefits when using

CBCT. However, commonly used CBCT devices exhibit a limited field of view of the

projection images, and are constrained in their scanning motion. The limited view

results in reduced effectiveness of the imaging modality in orthopedic interventions,

particularly in imaging long bones, due to the small volume reconstructed.

To produce larger volumes, panoramic CBCT is proposed in [148] by stitching

overlapping X-ray images acquired from the anatomy. Reconstruction quality is en-

sured by requiring sufficient overlap of the projection images, which in return increases

the X-ray dose. Moreover, the reconstructed volume is vulnerable to artifacts intro-

duced by image stitching. An automatic 3D image stitching technique is proposed

in [149]. Under the assumption that the orientational misalignment is negligible, and

sub-volumes are only translated, the stitching is performed using phase correlation

as a global similarity measure, and Normalized Cross Correlation (NCC) as the lo-

cal cost. Since NCC depends only on information in the overlapping area of the 3D

volumes, sufficient overlap between 3D volumes is imperative. To reduce the X-ray

exposure, Lamecker et al.[150] incorporated prior knowledge from statistical shape

models to perform 3D reconstruction. To optimally support the surgical interven-

tion, our focus are CBCT alignment techniques that do not require the change of

workflow or additional devices in the operating theater. To avoid excessive radiation,

we assume that no overlap between CBCT volumes exists (Fig. 5.1). Therefore, this

chapter presents the first work that stitches fractured bones, recovers the necessary
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Figure 5.1: The 3D misalignment of bones (red lines) may be difficult to quantify
using 2D images. CBCT contributes as a valuable tool for interventions in which
the 3D alignment is of importance, for instance in acute fracture treatment or joint
replacement. Background image courtesy of BodyParts3D, Center for Life Science,
Japan.

information regarding their total length, and verifies mal-rotations independent of

the acquisitions overlaps. We also highlight that recovery of such critical information

is accomplished without imaging the mid-shaft of the fractured bone.

To avoid the introduction of additional devices, such as computer or camera carts,

we co-register the X-ray source to a color and depth camera, and track the C-arm

relative to the patient based on the RGBD observations [67, 92, 151, 152]. This allows

the mobile C-arm to remain self-contained, and independent of additional devices or

the operating theater. Additionally, the image quality of each individual CBCT

volume remains intact, and the radiation dose is linearly proportional to the size and

number of individual CBCT volumes.

103



CHAPTER 5. 3D/3D: AUTOMATIC INTRA-OPERATIVE STITCHING OF
NON-OVERLAPPING CONE-BEAM CT ACQUISITIONS

5.2 Vision-Based Stitching Techniques for

Non-Overlapping CBCT Volumes

After calibration of the cameras and X-ray source, the intrinsics and extrinsics of

each imaging device are known. The calibration allows to track the patient using the

RGB camera or depth sensor and apply this transformation to the CBCT volumes.

In Sections 5.2.1- 5.2.3 we introduce stitching using visual markers, 3D color features,

and surface depth information.

5.2.1 Vision-based Marker Tracking Techniques

This tracking technique relies on flat markers with a high contrast pattern that

are easily detected in an image. The pose can be retrieved as the true marker size is

known [153]. In the following we investigate two approaches: first, a cubical marker

is placed near the patient and the detector is above the bed. Second, an array of

markers is attached under the bed and the detector is below the bed while the C-arm

is re-positioned.

Visual Marker Tracking of Patient: To enable visual marker tracking, we deploy

a multi-marker strategy and arrange markers on all sides of a cube, resulting in an

increased robustness and pose-estimation accuracy. The marker cube is then rigidly

attached to the anatomy of interest and tracked using the RGB stream of the camera.

After performing the orbital rotation and acquiring the projection images for the
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reconstruction of the first CBCT volume, the C-arm is rotated to a pose R for which

the projection matrix PR is known. Ideally, this pose is chosen to provide an optimal

view of relative displacement of the marker cube, as the markers are tracked based

on the color camera view. The center of the first CBCT volume is defined to be the

world origin, and the marker cube M is represented in this coordinate frame based on

camera to X-ray source calibration:

CBCTTM =
CBCT TX ·X TRGB ·RGB TM. (5.1)

The transformations are depicted in Fig. 5.2. The surgical table or the C-arm

is re-positioned to acquire the second CBCT volume. During this movement, the

scene and the marker cube are observed using the color camera, allowing for the

computation of the new pose of the marker cube RGBTM’. Under the assumption that

the relationship between CBCT volume and marker (Eq. 5.1) did not change as the

marker remained fixed to the patient for the duration between two CBCT scans, the

relative displacement of the CBCT volumes is expressed as:

CBCT’TX =
CBCT TM ·RGB T−1

M’ ·X T−1
RGB,

CBCT’TCBCT =
CBCT’ TX ·CBCT T−1

X .

(5.2)

Visual Marker Tracking of Surgical Table: In many orthopedic interventions, the

C-arm is used to validate the reduction of complex fractures. This is mostly done

by moving the C-arm rather than the injured patient. Consequently, we hypothesize
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that the patient remains on the surgical table and only the relationship between table

and C-arm is of interest, which has also been assumed in previous work [78].

A pre-defined array of markers is mounted on the bottom of the surgical table,

which allows the estimation of the pose of the C-arm relative to the table. While

re-arranging the C-arm to acquire multiple CBCT scans, the C-arm detector is posi-

tioned under the bed where the RGBD camera observes the array of markers. Again,

this allows for the estimation of RGBTM’ and, thus, stitching.

5.2.2 RGBD Simultaneous Localization and Map-

ping for Tracking

RGBD devices allow for fusion of color and depth information and enable scale

recovery of visual features. We aim at using RGB and depth channels concurrently

to track the displacement of patient relative to a C-arm during multiple CBCT ac-

quisitions.

Simultaneous Localization and Mapping (SLAM) has been used in the past few

decades to recover the pose of a sensor in an unknown environment. The underlying

method in SLAM is the simultaneous estimation of the pose of perceived landmarks,

and updating the position of a sensing device [121]. An RGBD SLAM was introduced

in [98] where the visual features are extracted from 2D frames, and later the depth

associated with those features are computed from the depth sensor in the RGBD
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camera. These 3D features are then used to initialize a RANdom SAmple Consensus

(RANSAC) method to estimate the relative poses of the sensor by fitting a 6 DOF

rigid transformation [138].

RGBD SLAM enables the recovery of the camera trajectory in an arbitrary envi-

ronment without prior models; rather, SLAM incrementally creates a global 3D map

of the scene in real-time. We assume that the global 3D map is rigidly connected to

the CBCT volume, which allows for the computation of the relative volume displace-

ment using Eq. 5.3, where fRGB and fRGB’ are sets of features in RGB and RGB’ frames,

π is the projection operator, d is the dense depth map, and x is the set of 2D feature

points.

RGB’TRGB
ˆ = argmin

RGB’TRGB∈SE(3)

⃓⃓
fRGB (x)− fRGB’

(︁
πRGB’TRGB (dx)

)︁⃓⃓
,

CBCT’TCBCT =
CBCT’ TRGB’ ·RGB’ TRGB

ˆ ·CBCT T−1
RGB.

(5.3)

5.2.3 Surface Reconstruction and Tracking Using

Depth Information

Surface information obtained from the depth sensor in an RGBD camera can be

used to reconstruct the patient’s surface, which simultaneously enables the estimation

of the sensor trajectory. KinectFusion provides a dense surface reconstruction of a

complex environment and estimates the pose of the sensor in real-time [123]. Our

goal is to use the depth camera view and observe the displacement, track the scene,
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and consequently compute the relative movement between the acquisition of CBCT

volumes. This tracking method involves no markers, and the surgical site is used as

reference (real-surgery condition).

KinectFusion relies on a multi-scale Iterative Closest Point (ICP) with a point-to-

plane distance function and registers the current measurement of the depth sensor to

a globally fused model. The ICP incorporates points from both the foreground as well

as the background and estimates rigid transformations between frames. Therefore, a

moving object with a static background causes unreliable tracking. Thus, multiple

non-overlapping CBCT volumes are only acquired by re-positioning the C-arm instead

of the surgical table.

Similar transformations shown in Fig. 5.2 are used to compute the relative CBCT

displacement CBCT’TCBCT, where D defines the depth coordinate frame, D’TD
ˆ is the

relative camera pose computed using KinectFusion, VD and VD’ are vertex maps at

frames D and D’, and ND is the normal map at frame D:

D’TD
ˆ = argmin

D’TD∈SE(3)

⃦⃦
(D’T−1

D VD’ −VD)
⊤ND

⃦⃦
2
,

CBCT’TCBCT =
CBCT’ TD’ ·D’ TD

ˆ ·CBCT T−1
D .

(5.4)

5.3 Reference Techniques

To provide a reasonable reference to our vision-based tracking techniques, we

briefly introduce an infrared tracking system to perform CBCT volume stitching
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(Sec. 5.3.1). This chapter concludes with a brief overview of our previously pub-

lished vision-based stitching technique [119] (Sec. 5.3.2) put in context of our chain

of transformations.

5.3.1 Infrared Tracking System

In the following we first discuss the calibration of the C-arm to the CBCT coordi-

nate frame, and subsequently the C-arm to patient tracking using this calibration.

Calibration: This step includes attaching passive markers to the C-arm and cali-

brating them to the CBCT coordinate frame. This calibration later allows us to close

the patient, CBCT, and C-arm transformation loop and estimate relative displace-

ments. The spatial relation of the markers on the C-arm with respect to the CBCT

coordinate frame is illustrated in Fig. 5.3 and is defined as:

CBCTTCarm =
CBCT TIR ·Carm T−1

IR . (5.5)

The first step in solving Eq. (5.5) is to compute CBCTTIR. This estimation requires

at least three marker positions in both CBCT and IR coordinate frames. Thus, a

CBCT scan of another set of markers (M in Fig. 5.3) is acquired and the spherical

markers are located in the CBCT volume. Here, we attempt to directly localize the

spherical markers in the CBCT image instead of X-ray projections [154]. To this

end, a bilateral filter is applied to the CBCT image to remove noise while preserving

109



CHAPTER 5. 3D/3D: AUTOMATIC INTRA-OPERATIVE STITCHING OF
NON-OVERLAPPING CONE-BEAM CT ACQUISITIONS

edges. Next, weak edges are removed by thresholding the gradient of the CBCT, while

strong edges corresponding to the surface points on the spheres are preserved. The

resulting points are clustered into three partitions (one cluster per sphere), and the

centroid of each cluster is computed. Then an exhaustive search is performed in the

neighborhood around the centroid with the radius of ±(r + δ), where r is the sphere

radius (6.00mm) and δ is the uncertainty range (2.00mm). The sphere center is

localized by a least-square minimization using its parametric model. Since the sphere

size is provided by the manufacturer, we avoid using classic RANSAC or Hough-like

methods as they also optimize over the sphere radius. We then use the non-iterative

least-squares method suggested in [155] and solve for CBCTTIR based on singular value

decomposition. Consequently, we can close the calibration loop and solve Eq. 5.5

using CBCTTIR, and
CarmTIR which is directly measured from the IR tracker.

Tracking: The tracking stream provided for each marker configuration allows for

computing the motion of the patient. After the first CBCT volume is acquired, the

relative patient displacement is estimated before the next CBCT scan is performed.

Considering the case where the C-arm is re-positioned (from Carm to Carm’ co-

ordinate frame) to acquire CBCT volumes (CBCT and CBCT’ coordinate frames), and

the patient is fixed on the surgical table, the relative transformation from IR tracker
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to CBCT volumes are defined as follows:

CBCTTIR =
CBCT TCarm ·Carm TIR,

CBCT’TIR =
CBCT’ TCarm’ ·Carm’ TIR.

(5.6)

The relation between the C-arm and the CBCT is fixed, hence CBCTTCarm
def
= CBCT’TCarm’.

We can then define the relative transformation from CBCT to CBCT’ as:

CBCT’TCBCT =
CBCT’ TIR ·CBCT T−1

IR . (5.7)

To consider patient movement, markers (coordinate frame M in Fig. 5.3) may also

be attached to the patient (e. g. screwed into the bone), and tracked in the IR tracker

coordinate frame. CBCTTM is then defined as:

CBCTTM =
CBCT TCarm ·Carm TIR ·M T−1

IR . (5.8)

Assuming that the transformation between CBCT and marker is fixed during the

intervention (CBCT’TM’
def
= CBCTTM) and combining Eq. 5.6 and Eq. 5.8, volume poses in

the tracker coordinate frame are defined as:

CBCTTIR =
CBCT TM ·M TIR,

CBCT’TIR =
CBCT’ TM’ ·M’ TIR.

(5.9)

solving Eq. 5.9 leads to recovery of CBCT displacement using Eq. 5.7.
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5.3.2 Two-dimensional Feature Tracking

We use the camera attached to the mobile C-arm, and the positioning laser in

the base of the C-arm to recover the 3D depth scales, and consequently stitch the

sub-volumes as presented in [119]. The positioning-laser in the base of the C-arm

spans a plane which intersects with the unknown patient surface. The laser line can

be observed as a curve in the camera image, and used to approximate the scale of

features nearby.

Calibration: To determine the relationship between camera and laser plane, we

perform a calibration using multiple checkerboard poses. At each of the n poses the

laser intersects the origin of the checkerboard, which allows us to recover points on

the laser plane in the camera coordinate frame. By performing RANSAC-based plane

fitting, the plane coefficients are computed.

Tracking: Following [119], the tracking algorithm comprises the following steps:

(i) Automatic detection of Speeded Up Robust Features (SURF) in every frame; (ii)

Matching features between frames, and rejecting outliers by estimating the Funda-

mental Matrix; (iii) Automatically detecting the laser line and computing the 3D

shape based on the known laser plane; (iv) Recovering the scale of the features using

the scale of the nearby laser line; (v) Estimating the 3D transformation for the sets

of 3D features; and (vi) Validating transformation estimation by applying it to 3D

laser line. Fig. 5.4 illustrates the feature relations across multiple frames. Finally,

the frame-by-frame transformations are accumulated to estimate CBCT’TCBCT.
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5.4 Experiments and Results

In this section, we report the results of our vision-based methods to stitch multiple

CBCT volumes as presented in Sec. 5.2. The same experiments are preformed using

the methods outlined in Sec. 5.3, namely using a commercially available infrared

tracking system, and our previously published technique [119]. Finally, we compare

the results of the aforementioned approaches to image-based stitching of overlapping

CBCT volumes.

To acquire a CBCT volume, the patient is positioned under guidance of the lasers.

Then, the motorized C-arm orbits 190◦ around the center visualized by the laser lines,

and automatically acquires a total of 100 2D X-ray images. Reconstruction is per-

formed using a maximum-likelihood expectation-maximization iterative reconstruc-

tion method [110], resulting in a cubic volume with 512 voxels along each axis and

an isotropic voxel size of 0.2475mm. For the purpose of reconstruction, we use the

following geometrical parameters provided by the manufacturer: source-to-detector

distance: 980.00mm, source-iso-center distance: 600.00mm, angle range: 190◦, de-

tector size: 230.00mm × 230.00mm.

5.4.1 Stitching Results

Our vision-based tracking methods are all tested and evaluated on an animal

cadaver (pig femur). For these experiments, we performed the stitching of CBCT
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volumes with each method individually under realistic surgery conditions. The C-arm

was translated for the acquisition of multiple CBCT volumes when the detector was

located at AP orientation. The geometric relation of the AP view to the C-arm was

estimated using an intensity-based 2D/3D registration with a target registration error

of 0.29mm. Subsequently, we measured the absolute distance between the implanted

landmarks inside the animal cadaver and compared the results to a ground-truth

acquired from a CT scan. The outcome of these experiments were compared to an

infrared-based tracking approach (baseline method), as well as image-based stitching

approach. Stitching errors for all proposed methods are reported in Table 5.1.

The lowest tracking error of 0.33 ± 0.30mm is achieved by tracking the cubical

visual marker attached to the patient. Marker-less stitching using RGBD-SLAM

exhibits sub-millimeter error (0.91mm), while tracking only using depth cues results

in a higher error of 1.72mm. The alignment of CBCT volumes using an infrared

tracker also has errors larger than a millimeter. The stitching of overlapping CBCT

volumes yielded a substantially higher error (9.27 mm) compared to every other

method in Sec. 5.2 and 5.3. Fig 5.6 shows the convergence of the registration cost

when stitching using image information. In Table 5.1, we also report the angles

between the mechanical and the anatomical axes of the femur (Tibio Femoral Angle),

as well as the angle between the mechanical axis and the knee joint line (Lateral-distal

Femoral Angle) using the vision-based stitching methods. The results indicate minute

variations among different methods. In Fig. 5.5, the non-overlapping stitching of the
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CBCT volumes of the pig femur are shown.

These methods are also evaluated on a long radiopaque femur phantom. The

stitched volumes are shown in Fig. 5.7, and the stitching errors for each method are

reported in Table. 5.2.
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PC 

PCBCT 

CBCT 

RGB camera  
on detector 

CTCBCT 

X-ray  
source 

CBCT 

M 

CBCTTM 

CBCT’ 

M’ 

CBCT’TM’ 

RGBTM’ RGBTM 

XTRGB 

CBCT’TX 

CBCTTX 

X-ray source 

CBCT’TCBCT 

Figure 5.2: The relative displacement of CBCT volumes (CBCT’TCBCT) is estimated from
the tracking data computed using the camera mounted on the C-arm. This requires
the calibration of camera and X-ray source (XTRGB), and the known relationship of
X-ray source and CBCT volume (CBCTTX). The pose of the marker is observed by the
camera (RGBTM), while the transformation from marker pose to CBCT volume (CBCTTM)
is computed once and assumed to remain constant.
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CTCBCT 

X-ray  
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CARMTIR 
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MTIR 

CBCTTIR 
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IR 

Figure 5.3: An infrared tracking system is used for alignment and stitching of CBCT
volumes. This method serves as reference standard for the evaluation of vision-based
techniques.
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Figure 5.4: The figure shows the overlay of two frames to illustrate the feature
correspondences to estimate the movement of the patient. From both frames, the
positioning-laser (red) and natural surface features are extracted. The tracking re-
sults of the matched features in frame k (+) and frame k +1 (◦) are illustrated as
yellow lines.
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Implanted 
Landmarks

Implanted 
Landmarks

Figure 5.5: Parallel projection through both CBCT volumes to create a DRR-like
visualization.

5.5 Discussion and Conclusion

The stitching solutions we suggested allowed for tracking of the patient or C-arm

movement with minimal increase of workflow complexity and without introduction

of external tracking systems. We attached an RGB and depth camera to a mobile

C-arm, and deployed computer vision techniques to track changes in C-arm pose

and, consequently, stitch the sub-volumes. The proposed methods employ visual

marker tracking, RGBD-based SLAM, and surface tracking by fusing depth data to

a single global surface model. These approaches estimate the relative CBCT volume

displacement based on only RGB, a combination of RGB and depth, or only depth

information. As a result, stitching is performed with lower dose, linearly proportional

to the size of non-overlapping sub-volumes. We anticipate our methods to be partic-

ularly appropriate for intraoperative planning and validation for long bone fractures

or joint replacement interventions, where multi-axis alignment and absolute distances
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Figure 5.6: Optimization of the NCC similarity cost for registering multiple overlap-
ping CBCT volumes. Seven CBCT scans were acquired to image the entire phantom.
Every two consecutive CBCT scans were acquired with 50.0mm to 60.0mm in-plane
translation of the C-arm in between to ensure nearly half volume overlap (CBCT
volume size along each dimension is 127mm). The optimization never reached the
maximum number of iteration threshold that was set to 500. Image-based registra-
tion was performed on the original volumes, with no filtering or down-sampling of
the images. The NCC similarity measure reached higher values (0.6 ± 0.04) when
registering CBCT volumes acquired from the two ends of the bone which had more
dominant structures, and yielded lower similarity scores at the shaft of the phantom.
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a) b)

c) d)

e) f)

Figure 5.7: (a-b), (c-d), and (e-f) are volume rendering and single CT slice of the
CT, stitched volume using image-based registration, and the non-overlapping stitched
volume, respectively. Image-based registration shown in (c-d) uses seven overlapping
CBCT volumes and results in significantly shorter total length of the bone (results
in Table 5.2). This incorrect alignment is due to insufficient amount of information
in the overlapping region, especially for volumes acquired from the shaft of the bone.
Shaft of the bone is a homogeneous region where the registration optimizer converges
to local optima.

are difficult to visualize and measure from the 2D X-ray views.

During the re-arrangement of the C-arm and the patient for the next CBCT

acquisition, the vision-based tracking results are recorded. For this re-arrangement

we consider the clinically realistic scenario of a moving C-arm and a static patient.

However, as extensively discussed in Sec. 5.2, for marker-based methods the relative

movement of the patient to C-arm is recorded, hence there are no limitations on

allowed motions.

We performed the validation experiments on an animal cadaver, and compared

the non-overlapping stitching outcome to an infrared tracking system and image-
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based registration using overlapping CBCT volumes. In these experiments we used

a CT scan of the animal cadaver as the ground truth data. The visual marker-based

tracking achieved the lowest tracking error (0.33mm) among all methods. The high

accuracy is due to utilizing a multi-marker strategy which avoids tracking in shallow

angles. The RGBD camera has a larger field of view compared to the X-ray imaging

device. Therefore, the marker can be placed in the overlapping camera views. For

example, in the case of imaging the femoral head and the condyle, the visual marker

can be placed near the femoral shaft. The marker only needs to remain fixed with

respect to the patient for the duration which the C-arm is re-positioned and need not

be present for the CBCT acquisitions. Therefore, certain clinical limitations, such as

changes to the scene, draping, patient movement, or presence of surgical tools in the

scene are not limiting factors.

Stitching based on the tracking with RGB and depth information together has

0.91 mm error, and tracking solely based on depth information has 1.72 mm error.

In a clinically realistic scenario, the surgical site comprises drapes, blood, exposed

anatomy, and surgical tools which allows the extraction of large number of useful

color features in a color image. The authors believe that a marker-less RGBD-SLAM

stitching system can use the aforementioned color information, as well as the depth

information from the co-calibrated depth camera, and provide reliable CBCT image

stitching for orthopedic interventions.

The use of external infrared tracking systems to observe the displacement of pa-
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tients are widely accepted in clinical practice, and are usually not deployed to auto-

matically align and stitch multiple CBCT volumes. A major disadvantage of external

tracking systems is the introduction of additional hardware to the operating room,

and the accumulation of tracking errors when tracking both the patient and C-arm.

The stitching errors of the vision-based methods are also compared to image-based

stitching of overlapping CBCT volumes in Tables 5.1 and 5.2. Image-based approach

yielded high errors for both the animal cadaver (9.27 mm) as well as the dry bone

phantom (68.6 mm) because of insufficient and homogeneous information in the over-

lapping region. The errors are reported lower when registering the porcine specimen

due to shorter length of the bone and presence of soft tissue in the overlapping region.

We also avoided stitching of projection images due to the potential parallax effect

which causes incorrect stitching and the length and angles between the anatomical

landmarks will not be preserved in the stitched volume.

The benefits of using cameras with a C-arm for radiation and patients safety,

scene observation, and augmented reality has been emphasized in the past. This

work presents a 3D/3D intraoperative image stitching technique using a similar opto-

X-ray system. Our approach does not limit the working space, nor does it require

any additional hardware besides one RGBD camera near the image intensifier. The

C-arm remains mobile, self-contained, and independent of the operating room.
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Chapter 6

2D/2D: From Perspective X-ray

Imaging to Parallax-Robust

Orthographic Stitching

6.1 Introduction and Problem Definition

Any two images of a planar scene are related by a homography H ∈ R3×3, an

invertible mapping. Since the homography expresses the warping of the planar image

content, these images can easily be stitched. In the special case where the camera

motion is limited to rotation about its origin, homography can also describe the

relative mapping as if the scene was at infinity. In all other cases, however, if H

is used in an attempt to stitch images, it creates ghosting effects, also known as
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Figure 6.1: The image stitching pipeline includes orthographic 2D reconstruction of
multiple 2D acquisitions, followed by restoration of image semantics using ConvNets.

parallax. This has practical implications for every application where multiple images

are acquired to capture an extended view of an arbitrary scene. In this case, the

motion of the camera would typically comprise of both rotational and translational

components. Unfortunately, and as the result of camera translation, parallax occurs

for objects at different depths. The parallax effect appears stronger for points closer

to the camera, and weaker for points farther from the camera. Due to parallax and

inconsistencies between views, no universal mapping exists for the stitching of 2D

images.

The problem of stitching has been long investigated in computer vision for vari-

ous applications, including scene rendering and video frame stitching [156, 157]. In

its general form, since the mapping between images cannot be explained by a global

homography, multiple early works addressed stitching by using local alignment strate-

gies. In cases of minor translations with weak motion parallax, these works were able

to deliver seamless mosaics by employing deghosting models based on local align-
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ment within small patches in the overlapping region [158–160]. Blurry areas within

the mosaics were reduced by limiting the sampling to the content of a single image

per region, selected based on geometric information from prior segmentation [161].

To construct visually appealing renderings, smooth transitions of features were sug-

gested based on different depth cues [162]. Later works introduced hybrid stitching

schemes by combining global homography and content-preserving local warping to

render natural-looking mosaics [163, 164]. Considering that all the aforementioned

works failed to address the stitching problem in the presence of large motion parallax,

an iterative stitching method was proposed to identify reliable local alignments and

address depth mismatch with larger parallax [165]. Despite improving the warping

between images, this work still suffered from poor stitching when parallax took place

near the periphery of common regions.

In a clinical context, a common approach to stitching fluoroscopic images is to em-

ploy radiopaque planar markers that are placed parallel to the patient, approximately

at the same depth from the camera as the anatomy [166–168]. For instance, Yaniv

et al. stitched X-ray images using a radiopaque ruler. They considered a simplified

motion for the X-ray camera, restricted to fronto-parallel acquisitions, such that the

planar mapping between images was parameterized using only two in-plane transla-

tion and one in-plane rotation parameters, hence ignoring all out-of-plane variables.

Their stitching pipeline was followed by a parallax correction step that estimated

parallax errors via approximating reconstruction planes for each individual pixel. In
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a different work, Wang et al. proposed a parallax-free X-ray image stitching method-

ology by restricting the X-ray camera to only undergo pure rotation [78, 169]. To

compensate for translation between the C-arm camera and the scene, the patient

bed was translated with the same translational parameters as the X-ray source. The

movement of patient bed in the surgery room is not practical in most surgical environ-

ments. Instead, this solution can be delivered by a robotic C-arm platform that uses

kinematics to enforce the rotational motion. Since robotic platforms typically cost an

order of magnitude more than non-robotic scanners, from an economic standpoint,

their availability for standard operative procedures will remain a concern.

With the availability of 3D intra-operative imaging, instead of 2D X-ray image

stitching, recent works suggested stitching of tomographic volumes reconstructed from

X-ray images acquired on a circular trajectory [119, 170]. While volumetric data do

not suffer from the effects of parallax and can, therefore, be stitched easily, circular

shortscans required for 3D tomographic reconstruction expose the patient to much

higher radiation doses compared to simple X-ray acquisitions, suggesting that these

methods are best employed only once, e.g., for verification.

We suggest an end-to-end solution that combines information from 2D X-ray ac-

quisitions in parallax-free domains, i.e., in 3D spatial and 3D Fourier spaces, and

provides stitching of X-ray images with no constraints on the motion of the X-ray

camera. Our mapping for stitching is no longer a homography; instead, it directly

uses the projection matrices. The global structure of the orthographically stitched
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image is recovered by leveraging the Fourier slice theorem and principles governing

image formation. The details in the stitched image are restored via a convolutional

neural network (ConvNet) with regularization losses on frequency, as well as sparse

and dense spatial features.

As the result of employing a data-driven approach for learning the stitching

parametrization and performing image-based rendering, the model we present is

anatomy-specific, therefore, not directly comparable to the previous work that was

invariant to the content of the image but was constrained by the motion of the cam-

era [78]. To this end, we only focused on images of healthy human femurs in this

work.

Our object is to deliver a methodology that i) is invariant to parallax, ii) provides

orthographic reconstruction which enables direct metric measurements on the image

without using any priors, iii) is robust to minor gaps between input images such

that missing information is recovered based on structure continuity, and iv) does

not require explicit blending of content between multiple sources in their overlapping

regions.

6.2 Methodology

Our solution to transmission image stitching shown in Fig. 6.1 is designed based on

two fundamental steps. First, we leverage the close relationship between the Fourier
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slice theorem and the Radon transform to provide a stitched image in an orthographic

geometry from back-projected rays (Sec. 6.2.1). Second, to restore the missing and

blurred content, we use a series of ConvNets with adversarial losses and regularizes

for structural, intensity, contrast, frequency, and sparse feature similarities between

input and ground-truth orthographic images (Sec. 6.2.2).

We simultaneously train an anatomical landmark detector network, which serves

two purposes: i) it automatically detects anatomical landmarks that are critical to

metric and angular measurements from the bone on the stitched image, and ii) it inte-

grates into the stitching pipeline and enforces the network to predict images closer to

the ground-truth domain such that the landmark detection with an identical network

performs well on both the ground-truth and prediction domains.

6.2.1 Orthographic Reconstruction

The back-projection of each pixel element (xm, yn) in a 2D X-ray image g(xm, yn)

is defined as:

V (µ(d, i,m, n)) = P+
i g(xm, yn) , where (6.1)

µ(d, i,m, n) is the ray characterized by the projection matrix Pi and pixel coordinates

(xm, yn) in the i-th image, and V (.) is the volume constructed by smearing out µ into

the 3D space. The parameter d ∈ [0, 1] is used identically for all projections. It defines

the depth of the backprojected volume, where 1 refers to backprojection within the
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Figure 6.2: The orthographic reconstruction pipeline leverages the Fourier slice the-
orem to transform multiple 2D X-ray images acquired using cone-beam geometry, to
a single extended-view image in parallel-beam geometry. In this example, the back-
projection is performed with d = 0.5, hence in a volume between the detector plane
and 50% of the focal length.

entire imaging cone, and 0.5 denotes backprojection between the detector plane and

the depth equivalent of 50% of the focal length. The (.)+ denotes the pseudo-inverse

operation. Since all projection images are acquired from an identical static scene, the

back-projected rays from all acquisitions can be compounded into a single volume as:

Ω =
∑︂
i,m,n

V (µ(d, i,m, n)). (6.2)

In the remainder of this section, we treat the stitching of multiple input images,

as a reconstruction problem that aims to reconstruct an orthographic 2D view given

the incomplete 3D data Ω. As shown in Fig. 6.2, within the orthographic image, the

global structure of the scene is reconstructed with insufficient details due to i) loss

of information in Ω as it is only constructed from sparse and single-view set of data,

and ii) different binning and sampling of frequencies, particularly in the overlapping

region, which can be explained by the Fourier-slice theorem [171].
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Based on the Fourier slice theorem, also known as the projection slice theorem,

the Fourier transform of an orthographic projection of a 3D function f(x, y, z) in 2D

represented as G(Θ), is equivalent to the 2D slice in the 3D Fourier of the function

f(x, y, z) that passes through the origin and is parallel to the projection plane Θ.

Given the Fourier transform F = F(Ω), we represent the central slice that passes

through the origin and is parallel to the projection plane Θ0 as G(Θ0) = F (θ = Θ0).

Based on the Fourier slice theorem, the stitched image I in Fig. 6.2 is then computed

as I = F−1(G(Θ0)).

6.2.2 Restoration of Stitching Semantics

In CT reconstruction, if X-ray images are acquired on a circular trajectory, over-

sampling occurs at the center of the Fourier domain. For the stitching problem in

hand, since there is no analytical approach to identifying the appropriate filter for re-

sampling and re-binning, as well as the loss of information from orthographic render-

ing of a perspective image, we suggest a learning strategy to jointly learn corrections

in the spatial and frequency domains.

The learning framework, as shown in Fig. 6.3, consists of three modules that are

trained in an end-to-end fashion. The first module, also known as the generator,

restores image semantics from the 2D reconstructions introduced in Sec. 6.2.1. To

better represent the underlying structural information of the anatomy, the semantics

are produced as continuous values instead of discrete categories. The second module
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is the discriminator that attempts to distinguish between the predicted images and

the ground-truth 2D orthographic projections. This encourages the generator module

to predict visually similar images compared with the ground-truth domain. The last

module detects anatomical landmarks from the orthographic 2D reconstructions. This

module not only facilitates automatic landmark detection but also encourages the

predicted images to offer more details near the important structures of the anatomy.

Structural similarity (SSIM) loss [172] and an adversarial loss on the spatial do-

main as well as a cosine similarity loss on the frequency domain are used to optimize

the overall visual similarity between the predicted images and the ground-truth or-

thographic projections. The SSIM index comprises a weighted multiplication between

three distance measurements, namely luminance l, contrast c, and structure s, be-

tween the prediction X and ground-truth projection Y . The loss between X and Y

is defined as:

Lssim = 1− 1

|Ω|
∑︂

(i,j)∈Ω

lαi,jc
β
i,js

γ
i,j , where (6.3)

i, j iterate over the entire image domain. The three terms in SSIM are computed

as li,j =
2µx

i,jµ
y
i,j+b1

µx
i,j

2+µy
i,j

2
+b1

, ci,j =
2σx

i,jσ
y
i,j+b2

σx
i,j

2+σy
i,j

2
+b2

, and si,j =
σxy
i,j+b3

σx
i,jσ

y
i,j+b3

, such that µx
i,j and σx

i,j

are the local window average and standard deviation of X centered at location (i, j),

respectively. σxy
i,j is the local window covariance of X and Y centered at location (i, j).

The adversarial loss follows the basic idea of relativistic GAN [173]. The adver-
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sarial losses in the discriminator and generator cycles are:

LD =
(︁
1− Cy + Cx

)︁2
+
(︁
1− Cy + Cx

)︁2
LG =

(︁
1− Cx + Cy

)︁2
+
(︁
1− Cx + Cy

)︁2
, where

(6.4)

Cx is the confidence of the discriminator regarding whether the prediction X is real

and Cx is the average confidence over a mini-batch. The architecture of the discrim-

inator is DenseNet [174] with linear activation as the final layer.

In the frequency domain, the proposed cosine similarity loss is defined as:

Lcos = 1− ⟨ fx − fi
∥fx − fi∥2

,
fy − fi

∥fy − fi∥2
⟩ , where (6.5)

fx is the frequency representation of the restored semantics X that is flattened to

a 1D vector, and fi is the frequency representation of the input orthographic re-

construction. Since the low-frequency components in images are much larger than

the high-frequency ones, we only use the residual frequency for both the prediction

and the ground-truth reconstruction w.r.t. the input reconstruction. This could en-

courage the network to focus more on the high-frequency texture information in the

ground-truth.

To adequately convey task-related information to the generator network (semantic

restoration network), we propose to jointly optimize the generator network as well as

an anatomical landmark detection network with a specialized training scheme. The
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landmark detector model takes either ground-truth reconstruction or the predictions

of the generator as input and predicts heatmaps corresponding to distinct anatomical

landmarks. The ground-truth landmark locations and heatmaps are generated and

annotated from the CT volume and used for supervision. Each ground-truth heatmap

is a 2D Gaussian distribution with a corresponding landmark location as the mean

and a manually selected standard deviation σ. Binary Cross Entropy (BCE) and

Relative Response (RR) losses [175] are used for the landmark detection learning.

The BCE loss is defined as follows:

Lbce =
1

|Ω|
∑︂

(i,j)∈Ω

mgt
i,j logmi,j +

(︁
1−mgt

i,j

)︁
log (1−mi,j) , where (6.6)

mi,j and m
gt
i,j are the values of the predicted and ground-truth heatmaps, respectively,

at the location (i, j). RR loss is defined as:

Lrr = − log

(︄
eσmu,v∑︁

(i,j)∈Ω eσmi,j

)︄
, where (6.7)

(u, v) is the ground-truth landmark location and σ is a scale factor.

In a single iteration of training, there are several cycles involved, where only

one of all modules are updated. In the cycle of discriminator training, only LD is

involved. In the cycle of landmark detector training, the overall loss is Llandmark =

λrrLrr + λbceLbce, where the input to the landmark detector is the ground-truth 2D

orthographic projections. In the cycle of semantics restoration training, the overall
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loss is Lrestore = λssimLssim+λGLG+λcosLcos+λrrLrr+λbceLbce, where the input to the

detector is the predicted stitching images. The landmark detector is only updated

when the ground-truth reconstruction is fed to ensure that it only learns features

that appear in the ground-truth reconstruction. When the stitching predictions are

used as input to the landmark model, only the generator network gets updated,

which implicitly forces the stitching generator network to learn spatial features in the

ground-truth domain that contribute to the task of landmark detection.

6.3 Experiments and Results

6.3.1 Data Set

The training data comprises of eight CT volumes from the left and right legs of four

cadaveric specimens. We generated the training data by simulating realistic digitally-

reconstructed radiographs (DRRs) using the physics-based DeepDRR pipeline [176,

177]. Rather than relying on full Monte Carlo simulation of image formation, Deep-

DRR analytically generates forward projections from CT volumes by accounting for

the physical interactions that occur during image formation and then estimates the

contributions of scattering and noise. Compared to naive DRRs, this mechanism has

demonstrated improved generalizability [178, 179].

The intrinsic parameters of the X-ray camera are selected based on the nomi-

nal parameters of a commercially available flat panel C-arm, Cios Fusion (Siemens
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Healthineers, Forchheim, Germany). We generated a total of 45, 000 X-ray images,

where each 3 were stitched together, resulting in 15, 000 training instances, as shown

in Fig. 6.4-a. The translation components of the X-ray camera were adjusted such

that the first image is acquired from the region of the femoral head, the second im-

age from the shaft, and the third from the knee. We also added a random value in

the range of [−20, 20]mm to each translation component in the x, y, z axes, which

resulted in gaps or overlaps between simulated acquisition.

For each specimen’s leg, we generated DeepDRR images from −21◦ to +21◦, and

−6◦ to +6◦ in LAO/RAO and Cranial/Caudal directions, respectively, around the

anterior-posterior view of the bone. These directions which correspond to out-of-

plane rotations, are shown in Fig. 6.4-b. We also added an offset up to [−6◦, 6◦]

to each out-of-plane rotation element of the X-ray camera. This rotation offset is

intended to prevent all three images from being exactly parallel to each other, and

enforce the training to become robust to unintended out-of-plane rotations. In the

backprojection step, all projection images were smeared out with d = 0.5, which

realistically assumes the imaged object is at most 500mm away from the detector.

A validation set is constructed from 1875 DeepDRR images from a separate ca-

daveric CT. Finally, for testing, we generated a total of 3750 images from the left and

right CT scans of two other patients.

In our supervised training scheme, the ground-truth images were obtained by

generating forward projections of the original CT volumes in an orthographic model
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(parallel-beam geometry). Given the rotation matrix R associated with the ray di-

rection, the orthographic projection is defined as [180]:

⎡⎢⎢⎢⎢⎢⎢⎣
x

y

γ

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣R 0

0⊤ 1

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
r⊤1 0

r⊤2 0

0⊤ 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where (6.8)

r⊤i is the i-th row in R, and (x
γ
, y
γ
)⊤ are the 2D projections of the 3D voxels that are

denoted by the homogeneous coordinates (X, Y, Z, 1)⊤.

6.3.2 Stitching Performance

The stitching results on two test data sets are shown in Figs. 6.5 and 6.6. It should

be noted that in all cases that out-of-plane rotations were present between the three

input data, the orthographic reconstruction plane was selected to be parallel to the

first input image. In Figs. 6.5 and 6.6, we also demonstrate the detection of four bony

landmarks, namely the femoral head, greater trochanter, patellar groove (knee), and

tibia. These landmarks are particularly important as they are used in defining the

length and the biomechanical axes of the bone.
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Figure 6.3: The overall network architecture that was used for training is shown. The
input orthographic 2D reconstruction in the frequency domain is generated using our
proposed method from several X-ray images. SSIM and adversarial losses are used
to enforce the network to generate visually similar images compared to the ground-
truth. Cosine similarity loss is employed to emphasize more on the high-frequency
components of the predictions. RR and BCE loss are used to train a landmark
detection network and encourage the semantics restoration to be functionally similar
to the ground-truth reconstruction.
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Figure 6.4: a) Each training instance comprises three X-ray images. b) The training
X-ray images are generated in the LAO/RAO and Cranial/Caudal directions.
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Table 6.1: Comparing the performance of the network given different regularization
factors λcos for the cosine frequency loss in an ablation study

λcos = 0.0 λcos = 1.0 λcos = 2.0 λcos = 3.0 λcos = 4.0 λcos = 5.0
SSIM (%) 92.56 94.66 95.81 95.87 95.27 94.23
PSNR (db) 24.85 26.80 26.83 25.58 24.94 24.83
BCE 0.0045 0.0047 0.0047 0.0046 0.0046 0.0049
RR 11.14 10.75 10.53 10.60 10.79 11.27

Table 6.2: Comparing the performance of the network given different regularization
factors λrr for landmark detection

λrr = 0.0 λrr = 0.03 λrr = 0.06 λrr = 0.09 λrr = 0.12 λrr = 0.15
SSIM (%) 95.31 95.93 95.59 94.72 94.77 94.47
PSNR (db) 24.81 26.16 25.97 25.13 25.06 24.87
BCE 0.0082 0.0040 0.0042 0.0047 0.0060 0.0071
RR 26.23 11.00 10.57 10.56 10.41 10.74

We trained for 58 epochs on the data with 1mm pixel spacing, and with the input

and output image sizes of 640 × 640 pixels. Using this model, we achieved an SSIM

similarity score of 95.7% and a PSNR of 25.70 (db). The BCE and RR landmark

losses were 0.0044 and 13.53, respectively.

6.3.3 Ablation Study

To identify the optimal learning parameters and understand the effects of each

component, we performed ablation studies. To keep all experiments tractable, we

completed the ablation tests on 15, 000 downsampled training data with 2mm pixel

spacing, with 10 epochs, and a batch size of 2. We kept the regularization factor for

the GAN losses fixed and evaluated against all other regularization parameters.

In Tables 6.1, 6.2, and 6.3 we report the best losses by selecting the lowest valida-

tion loss. The tables report SSIM and peak signal-to-noise ratio (PSNR) similarity
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Table 6.3: Comparing the performance of the network given different regularization
factors λbce for landmark detection. N/A indicates that the training diverged with
the corresponding parameters.

λbce = 0 λbce = 100 λbce = 200 λbce = 300 λbce = 400 λbce = 500
SSIM (%) N/A 95.17 95.38 95.54 95.84 95.42
PSNR (db) N/A 25.19 26.65 23.63 27.05 26.02
BCE N/A 0.0045 0.0038 0.0038 0.0036 0.0039
RR N/A 11.01 10.86 10.93 10.69 11.01

scores, as well as BCE and RR losses. The best results in each experiment are repre-

sented with bold digits.

6.3.4 Landmark Detection

We evaluated the accuracy of landmark detection on 3500 test ground-truth and

prediction images. The corresponding results are presented in Figs. 6.7 and 6.8. The

rightmost columns in these figures contain the automatic measurements of total bone

length directly from 2D orthographic ground-truth or prediction images.

6.4 Discussion

The outcome of orthographic stitching presented in Figs. 6.5 and 6.6 suggest that

the ConvNet can effectively close small gaps between input images, and substantially

reduce more significant gaps. The automatic landmark detection in Figs. 6.7 and 6.8

indicate that the mean landmark detection errors are 5.06 and 6.07 pixels on the

ground-truth projections and the prediction images, respectively. It is important to

note that, despite the errors in automatic measurement of the bone length based on
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Figure 6.7: Landmark detection performances on the ground-truth orthographic pro-
jections for two test patient data sets are shown as error heatmaps. The vertical
axes correspond to the LAO/RAO rotations, and the horizontal axes correspond to
cranial/caudal rotations around the anterior-posterior view, respectively.

anatomical landmarks, the manual measurements from the prediction images were

highly consistent with the measurements from the ground-truth orthographic projec-

tions. This suggests that the strict modeling of the geometry of stitching based on the

projection matrices and the central slice theorem, and using the ConvNet to recover

details, yielded true orthographic predictions.

We observed that object magnification that happens when the imaged object

is closer to the origin of the X-ray camera has an adverse effect on orthographic
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Figure 6.8: Landmark detection performances are shown on the prediction images
of the test sets. The vertical axes correspond to the LAO/RAO rotations, and the
horizontal axes correspond to cranial/caudal rotations around the anterior-posterior
view, respectively.

reconstruction. When the object is closer to the origin, the rays from the source to

the image plane that hit the anatomy are more diverged compared to the parallel

rays that are used for reconstruction. For the reconstruction, we assumed the patient

is within a 500mm distance from the image detector, which is a clinically realistic

assumption.

Lastly, in our ablation studies, we demonstrated that all regularization losses

contribute to stronger image similarities for image reconstruction.
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6.5 Conclusion

We presented the first work that provides orthographic image stitching by lever-

aging the principles of image formation and geometric models from computer vision

and combining them with ConvNets to recover semantics. In contrast to the state-

of-the-art systems, our solution naturally allows for both translation and rotations

of the X-ray camera and does not impose any constraints regarding the motion. A

direction for future research is to extend the training to complex scenarios where

stitching becomes robust to fractures and arbitrary tools in the scene using robust

estimators [181–183].

The orthographic representations of images i) do not carry perspective proper-

ties, hence enable metric measurements directly on 2D images, and ii) are described

with 5 degree-of-freedom (DOF) as opposed to 6 DOF rigid body parameters. As a

consequence of this drop of DOF, registration of orthographic images will not require

scale disambiguation along their depth.

In reflective images used in standard computer vision applications, the Fourier slice

theorem does not hold. Nevertheless, other contributions of our work, such as back-

projection, data compounding in parallax-free domains, and the recovery of details

using ConvNets, can be directly employed to tackle image stitching or image-based

rendering problems in other domains of computer vision applications.
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Advanced Visualization in

Augmented Surgical Environments
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The following section of this dissertation suggests various techniques and systems

to bring augmented reality into the workflow of image-guided therapies. These solu-

tions provide spatial and/or temporal awareness and allow efficient visualization of

surgical information. The main problems that are aimed to address in this section are

i) lack of geometric correspondence between data and patient, which makes image-

based navigation a mentally challenging task, ii) inconvenient and off-axis display of

data, and iii) poor interaction between the surgical crew with each other and with

data.

Chapter 7, suggests a display-based, non-immersive augmented reality system

using cone-beam CT data. Chapter 8 presents flying frustums that fully exploit all

imaging geometries and provide immersive augmented reality experiences for all the

surgical crew to visualize data with all their spatial and temporal information. Lastly,

chapter 9 introduces patient-specific image augmentations for patients with unilateral

pelvic fractures by exploring the partial symmetry that is present in the anatomy.

The contributions in the following three chapters are based on the these publica-

tions:

1. Fotouhi, Javad, Bernhard Fuerst, Sing Chun Lee, Matthias Keicher, Marius

Fischer, S. Weidert, E. Euler, N. Navab, and G. Osgood. ”Interventional 3d

augmented reality for orthopedic and trauma surgery.” In 16th annual meeting

of the international society for computer-assisted orthopedic surgery (CAOS).

2016.
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2. Fotouhi, Javad, Clayton P. Alexander, Mathias Unberath, Giacomo Taylor,

Sing Chun Lee, Bernhard Fuerst, Alex Johnson et al. ”Plan in 2-D, execute in

3-D: an augmented reality solution for cup placement in total hip arthroplasty.”

Journal of Medical Imaging 5, no. 2 (2018): 021205.

3. Fotouhi, Javad, Mathias Unberath, Tianyu Song, Wenhao Gu, Alex Johnson,

Greg Osgood, Mehran Armand, and Nassir Navab. ”Interactive flying frustums

(IFFs): spatially aware surgical data visualization.” International journal of

computer-assisted radiology and surgery 14, no. 6 (2019): 913-922.

4. Fotouhi, Javad, Arian Mehrfard, Tianyu Song, Alex Johnson, Greg Osgood,

Mathias Unberath, Mehran Armand, and Nassir Navab. ”Spatiotemporal-

Aware Augmented Reality: Redefining HCI in Image-Guided Therapy.” arXiv

preprint arXiv:2003.02260 (2020).

5. Fotouhi, Javad, Mathias Unberath, Giacomo Taylor, Arash Ghaani Farashahi,

Bastian Bier, Russell H. Taylor, Greg M. Osgood, Mehran Armand, and Nas-

sir Navab. ”Exploiting Partial Structural Symmetry for Patient-Specific Im-

age Augmentation in Trauma Interventions.” In International Conference on

Medical Image Computing and Computer-Assisted Intervention, pp. 107-115.

Springer, Cham, 2018.

6. Fotouhi, Javad, Giacomo Taylor, Mathias Unberath, Alex Johnson, Sing Chun

Lee, Greg Osgood, Mehran Armand, and Nassir Navab. ”Exploring Partial In-
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(2020).
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Chapter 7

Display-based Augmented Reality

for Orthopedic Surgeries

7.1 Clinical Motivation and Background

Complex and frequent K-wire placements occur after ilio-sacaral joint and superior

pubic ramus fractures. The common treatment for both injuries is the placement of

screws to stabilize the fracture. During the minimally invasive approach, the surgeon

places the K-wire through the muscles and all bone fragments under image-guidance,

requiring a good mental alignment of the intra-operative X-ray imaging, the medical

instrument, and the patient [7, 8]. Due to the 2D nature of the X-ray images, this

results in frequent re–positioning of the C–arm [9]. For instance, in pelvic acetabulum

fractures, the surgeon needs to find the correct trajectory of the K-wire through the
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superior pubic ramus. The misplacement of the K-wire could cause severe damage

to the external iliac artery and vein, obturator nerve, or to structures such as the

inguinal canal and intra-articular hip joint [10]. It is not unusual that a single K-wire

placement for one screw takes up to ten minutes [11].

In total hip replacement (THA), Poor placement leads to increased impingement

and dislocation that promotes accelerated wear. Conversely, proper implant place-

ment that restores the hip anatomy and biomechanics decreases the risk for disloca-

tion, impingement, loosening, and limb length discrepancy, and thus implant wear

and revision rate [184–188]. Steps to ensure accuracy and repeatability of acetabu-

lar component positioning are therefore essential. Due to the large volume of THA

procedures, small but favorable changes to the risk-benefit profile of this procedure

enabled by improved implant positioning will have a significant impact on a large

scale.

Unfortunately, optimal placement of the acetabular component is challenging due

to two main reasons. First, the ideal position of the implant with respect to the

anatomy is unknown; yet, a general guideline exists [189] and is widely accepted in

clinical practice. This guideline suggests abduction and anteversion angles of the

hip joint measured with respect to bony landmarks defining the so-called safe zone,

that is indicative for an acceptable outcome. The safe zones for the anteversion and

abduction angles are 15◦ ± 10◦ and 40◦ ± 10◦, respectively. Recent studies suggest

that an even narrower safe zone may be necessary to minimize the risk of hip disloca-
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tion [190, 191]. Defining the ideal implant position is not as straight-forward as the

definition of a range of abduction and anteversion angles when considering a large

population [192]. A static definition of the safe zone seems even more prone to error

when considering that the position of the pelvis varies dramatically from supine to

sitting to standing posture among individuals [193, 194].

Second, even if a clinically acceptable safe zone is known it is questionable whether

surgeons are, in fact, able to accomplish acetabular component placement within the

suggested margin [191]. In light of previous studies that report mal-positioning of up

to 30% to 75% [195–197] when free-hand techniques are used, addressing this challenge

seems to be imperative. Most computer-assisted methods consider the direct anterior

approach (DAA) to the hip for THA, as it allows for convenient integration of intra-

operative fluoroscopy to guide the placement of the acetabular component [198]. The

guidance methods reviewed below proved effective in reducing outliers and variability

in component placement, which equates to more accurate implant positioning [199–

202].

The state of the art approaches that provide guidance using image-less or image-

based methods have certain drawbacks. Image-less methods require complex naviga-

tion and may provide unreliable registration [47]. Image-based solutions rely on pre-

operative CT scans or intra-operative fluoroscopy and often use external navigations

systems for tracking [203, 204]. Systems based on external navigation are expensive

and increase the operative time due to the added complexity. Use of pre-operative CT
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scans increases the radiation exposure and cost to the patient. Moreover, many of the

methods used for registering CT to patient seek to solve ill-posed problems that re-

quire manual interaction either for initialization or landmark identification and, thus,

disrupt the surgical workflow. Manual annotations can take between 3 to 5 minutes

during the intervention for each image registration [38]. Although proven benefi-

cial for the surgical outcome, neither of these costly and labor-intensive navigation

techniques were widely adopted in clinical practice.

Partly due to above drawbacks, surgeons who use the DAA often rely solely on

fluoroscopic image guidance [198, 205]. These images, however, are a 2D represen-

tation of 3D reality and have inherent flaws that complicate the assessment. The

challenges include finding the true anterior pelvic plane as well as eyeballing acetab-

ular component position by eye on the image. Therefore, a technique that provides a

quantitative and reliable representation of the pelvis and acetabular component intra-

operatively without increasing neither radiation dose or cost while largely preserving

the procedural workflow is highly desirable.

7.2 Proposed Solution

We suggest a display-based augmented reality (AR) system for two different or-

thopedic procedures: i) fracture reduction and stabilization using K-wires, and ii)

implant placement in THA. Our system extends the camera-augmented C-arm sys-
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tem by Navab et al. [67] and exploits 3D imaging capabilities.

For K-wire placement, we present an interventional 3D AR system, which utilizes

a CBCT-enabled C-arm, and a color and depth (RGBD) camera to enable an intu-

itive 3D visualization that overlays both physical and anatomical information from

arbitrary views. We present a pre-clinical usability study that evaluates the potential

benefit based on simulated K-wire placements in the superior pubic ramus. Similarly,

we propose a similar AR solution for intra-operative guidance of THA using DAA

where the C-arm is kept in place until the correct alignment of the acetabular cup is

confirmed [206, 207]. With the proposed solution, the surgeon first plans the position

of the acetabular cup intra-operatively based on two fluoroscopy images that are ac-

quired after the dislocation of the femoral head and the reaming of the acetabulum

are completed. The orientation of the cup in the X-ray images could be either auto-

matically preset based on desired angles relative to the APP plane (or other known

pelvic coordinate frames), or be adjusted by the surgeon. Once the desired pose of the

acetabular cup is estimated relative to the C-arm, we use optical information from

the co-calibrated RGBD camera that is mounted on the C-arm to provide an AR

overlay [92–94] that enables placement of the cup according to the planning. As the

cup is not visible in RGBD, we exploit the fact that the acetabular cup is placed using

an impactor that is rigidly attached to the cup and is well perceived by the RGBD

camera. For accurate cup placement, the surgeon aligns the optical information of

the impactor (a cloud of points provided by the RGBD camera) with the planned
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Prosthetic hip replacement

Impactor alignment
Aligning the cloud of points from 

the impactor with the planned 3D 

impactor

Reaming the acetabulum and 

removing the articular cartilage

Identifying the size of the 

acetabular cup
Dislocation of the femoral head

Placing the acetabular component

Image acquisition
Acquiring two X-ray images from 

different perspectives (e.g. 

anterior-posterior and 15° oblique)

Intra-operative planning
Placing the acetabular cup 

simultaneously on two stereo X-ray 

images

AR visualization
Overlay of the planned cup and 

impactor and real-time cloud of 

points observed by the camera

Figure 7.1: After the femoral head is dislocated, the size of the acetabular implant
is identified based on the size of the reamer. Next, two C-arm X-ray images are
acquired from two different perspectives. While the C-arm is repositioned to acquire
a new image, the relative poses of the C-arm are estimated using the RGBD camera
on the C-arm and a visual marker on the surgical bed. The surgeon then plans the
cup position intra-operatively based on these two stereo X-ray images simultaneously.
Next, the pose of the planned cup and impactor are estimated relative to the RGBD
camera. This pose is used to place the cup in a correct geometric relation with
respect to the RGBD camera and visualize it in an AR environment. Lastly, the
surgeon observes real-time optical information from the impactor, and aligns it with
the planned impactor using the AR visualization. The green boxes in this figure
highlight the contributions of this work.

virtual impactor-cup, that are visualized simultaneously in our AR environment. A

schematic of the proposed clinical workflow is shown in Fig. 7.1.

7.3 Augmented Reality for K-wire place-

ment

The 3D interventional Augmented Reality visualization requires the fusion of 3D

optical views and 3D CBCT data. The acquisition of the 3D optical views requires
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tracking of the position and orientation of the camera, and allows the 3D reconstruc-

tion of the surgical site. The conventional technique to perform this is using stereo

vision with multiple cameras, or moving a single camera. Stereo vision requires ac-

curate feature detection and tracking in multiple frames, and the scale can only be

recovered by using markers or objects with a known size in the scene.

Alternatively, an RGBD camera provides depth information by emitting and au-

tomatically detecting an infrared pattern on the surface of the object. This results in

the simultaneous acquisition of color and depth information, and can be processed as

colored 3D surface point clouds. To achieve an Augmented Reality image-guidance

system, we need to mount the RGBD camera rigidly to the C-arm, obtain the CBCT-

to-RGBD calibration, and perform a joint visualization by blending the multi-modal

data.

The camera is mounted rigidly near the detector plane of the CBCT-enabled C-

arm. The calibration can be performed using any arbitrary phantom with an unique

shape (rotationally variant), homogeneous radiopacity, and a matte surface. Other

properties of the phantom are optimal size (within the CBCT volume) and round

surfaces to avoid sharp edges and corners. After introducing a calibration phantom,

the surface information and CBCT are acquired simultaneously, followed by an offline

one-time calibration of the C-arm and the RGBD camera.

The multi-modal registration of RGBD surface data and CBCT data requires

additional pre-processing to limit the registration to common structures of interest,
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and discard the noisy background. Additionally, RGBD camera and C-arm have

different fields of view, thus additional structures observed by one of the devices may

cause the registration to converge to a local minimum. The pre-processing step results

in two data sets (RGBD and CBCT) representing the same calibration phantom.

Next, the calibration algorithm performs an automatic registration, for which

Fast Point Feature Histograms (FPFH) are used for initialization [208]. The final

calibration transformation is obtained after the refinement by using an Iterative-

Closest-Point (ICP) registration [92]. The calibration remains valid as long as the

RGBD camera is fixed on the C-arm. If the camera is moved or displaced on the

C-arm, a re-calibration becomes necessary.

After the offline calibration, the patient’s CBCT and body surface scans are ac-

quired. The transformation obtained from the calibration algorithm is used to overlay

both modalities in a common coordinate system. An example is shown in Fig. 7.2.

The intra-operative 3D Augmented Reality visualization is then provided in form of

overlaid an Digitally Reconstructed Radiograph (DRR) computed from the CBCT

augmented onto the scanned patient’s surface. Additionally, the surgical tools and

surgeon’s hands are dynamically visualized. This system allows the visualization of

the scene from arbitrary views, which are not possible to acquire using a standard

C-arm in a conventional OR setup.
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Live K-wire

Live hand

(artificial color)

Bone Phantom 

(gray, DRR from CBCT)

AP VIEW
LATERAL VIEW

Surface scan

(color and depth)

Figure 7.2: The Augmented Reality visualization provides surgeons with multiple
views of entire surgical site. The scene includes live representations of the hand and
surgical tools (e.g. K-wire) as artificially colored point clouds, the colored surface scan
of the patient, and dynamically adjusted DRR from the CBCT scan. This allows the
surgeon to dynamically change the view during the procedures.

7.4 Augmented Reality for Total Hip Arthro-

plasty

The stereo relation between C-arm X-ray images acquired at different poses are

estimated by first tracking visual markers in the RGBD camera coordinate frame,

and then transforming the tracking outcome to the X-ray coordinate frame:

X′
TX =RGBD′

T−1
X′

MT−1
RGBD′

MTRGBD
RGBDTX , (7.1)
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XTRGBD

X’TX

RGBD’TRGBD

X-RAY 
SOURCE

RGBD CAMERA ON 
THE DETECTOR

MTRGBD’

MTRGBD

X
X’

RGBD
RGBD’

CTX’ CTX

CTRGBD

CTRGBD’

C

X-RAY SOURCE

RGBD CAMERA

a) b)

Figure 7.3: In the transformation chain of the RGBD-C-arm system for THA (a),
the RGBD, X-ray, visual marker, and acetabular cup coordinate frames are denoted
as RGBD, X, M, and C, respectively. In an offline calibration step, the extrinsic
relation between the RGBD and X-ray (XTRGBD) is estimated. Once this constant
relation is known, the pose of the X-ray source can be estimated for every C-arm re-
positioning (b) by identifying displacements in the RGBD camera coordinate frame.

where RGBD′
TX′ =RGBD TX due to the rigid construction of the RGBD camera on

the C-arm gantry. In Fig. 7.3-b the rigid movement of X-ray source with the RGBD

camera origin are shown for an arbitrary C-arm orbit. Fig. 7.3-a illustrates the spatial

relation between the RGBD camera and the X-ray source.

Planning of the acetabular component is performed in a user interface where the

cup could be rotated and translated by the surgeon in 3D with six degrees of freedom

(DOF) rigid parameters, and is forward projected (pcv and p′cv) onto the planes of
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the two X-ray images acquired from different perspectives:

pcv = K P CT−1
X

CvTW ,

p′cv = K′ P CT−1
X′

CvTW , (7.2)

where K and K′ are the intrinsic perspective projection parameters for each C-arm

image, P is a projection operator, and CvTW is the position of vertex v of the cup in

the world coordinate frame. Relying on two X-ray views not only provides the ability

to plan the orientation of the acetabular component such that it is aligned in two

images but, more importantly, also allows adjusting the depth of the cup correctly,

which is not possible when a single X-ray image is used. It is worth mentioning, that

the size of the acetabular cup does not require adjustment but is known at this stage

of the procedure as it is selected to match the size of the reamer.

In addition, if the desired orientation of the cup is known relative to an anatomical

coordinate frame (e.g. APP plane), and an X-ray image is acquired from a known

perspective in relation to that anatomical frame (e.g. AP view), then the orientation

of the cup could be automatically adjusted for the user (equivalent to presetting the

orientation in CTX). It is worth emphasizing that in several image-guided orthopedic

procedures, X-ray images are frequently acquired from the AP view.

The transparency of the cup is adjusted by the surgeon in the user interface such
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a) b) c) d) e)

Figure 7.4: The acetabular component is forward projected from an initial 3D pose
onto the respective X-ray image plane (a-b). The surgeon moves the cup until
satisfied with the alignment in both views (c-d). The X-ray images shown here are
acquired from a dry pelvis phantom encased in gelatin. A cubic visual marker is
placed near the phantom but outside the X-ray field of view to track the C-arm (e).

that the ambiguity between the front and the back of the cup is optimally resolved.

Lastly, the contours around the edge of the cup are estimated and visualized by

thresholding the dot product of the unit surface normal nv and the intersecting ray

rv:

| rv . nv | < τ . (7.3)

The planning of an acetabular cup based on two X-ray images is shown in Fig. 7.4.

Once the desired cup position is known, guidance of the cup placement using an

impactor with an AR visualization is needed to ensure a positioning in agreement

with the planning. To construct the AR environment, we first estimate the pose of

the RGBD sensor relative to the planned cup as

CTRGBD =C TX
XTRGBD . (7.4)
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Within the AR environment, we then render a 3D mesh of the cup and impactor

superimposed with the real-time cloud of points observed by the camera, all in the

RGBD coordinate frame. In the interventional scenario, the acetabular cup is hidden

under the skin, and only the impactor is visible. Therefore, the surgeon will only

align the cloud of points from the impactor, a cylindrical object, with the 3D virtual

representation of the planned impactor.

Ambiguities in the AR environment, among others occlusions or the rendering of

a 3D scene in a 2D display, are eliminated by showing different perspectives of the

scene simultaneously. Thus, it is ensured that the surgeon’s execution fully matches

the planning once alignment of the current cloud of points of the impactor and the

planned model is achieved in all perspectives. We provide an intuitive illustration of

these relations in Fig. 7.5.

7.5 Results

7.5.1 Pre-clinical Analysis for K-wire Placement

We observed 7 trained surgeons performing minimally invasive K-wire placements

in superior pubic ramus phantoms. Each surgeon performed the same intervention

using the standard C-arm and the 3D Augmented Reality visualization in random

order. The time in seconds, number of acquired X-ray images, cumulative area dose

product (dose) in cGycm2, surgical task load index, error relative to the ideal path in
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a) b) c)

d) e) f)

3D representation of the cup and 
impactor estimated from planning

Cloud of points from the impactor 
and cup held by the surgeon Impactor Cup

Figure 7.5: Multiple virtual perspectives of the surgical site are shown to the sur-
geon (a-b) before the cup is aligned (c). The impactor is then moved by the user
until it completely overlaps with the virtual planned impactor (d-f).

mm (accuracy), and System Usability Scale (SUS) were recorded. Note that the task

load is a accumulative scale, for which the score of 5 and 100 represents the lowest

and highest possible load, respectively. A lower value is desirable. On the other hand,

the SUS is a Likert scale, which gives insight in the subjective assessment of usability.

It scales from 0 to 100, where a higher value indicates a better usability.

On average, a procedure lasted 9.9min and 4.1min using the standard C-arm

and the 3D AR visualization, respectively. This represents a statistically significant

improvement (p < 0.05). Furthermore, the reduction of the number of acquired X-ray

images (40.9 to 2.1), dose (4.43 to 1.60 cGycm2), and surgical task load (43.5 to 17.6)

are all significant (p < 0.05). The change accuracy (4.6 to 5.1mm) is not significant,

as it is already in an acceptable range. The relative changes of the observed measures
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Figure 7.6: During the observed simulated K-wire placements, the improvements in
terms of time (−59.1%), number of X-ray images taken (−94.8%), radiation dose
(−63.9%) and reduction of task load (−59.6%) are statistically significant (p < 0.05).
No significant change can be observed for change of accuracy (+10.1%) or System
Usability Scale (SUS, +7%).

are illustrated in Fig. 7.6.

The subjective assessment of the usability was evaluated using the SUS. In general,

all experts liked the system and the scale indicates a overall good usability (71.43),

which is considered to be above average. In comparison, the usability of the standard

C-arm was rated with an average score of 66.41.
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7.5.2 Error Analysis for Total Hip Arthroplasty

Tracking accuracy is computed by acquiring X-ray images from a phantom with

several radiopaque landmarks and measuring the stereo error between the correspond-

ing landmark points in different images.

The phantom is constructed by attaching 9 radiopaque mammography skin mark-

ers (bbs) with diameters of 1.5mm, inside and near the acetabulum on a pelvis model.

Next, we acquired 11 X-ray images from −50◦ to +50◦ along C-arm oblique rotation,

and 9 X-ray images from −40◦ to +40◦ on the cranial/caudal direction, with intervals

of 10◦. In the planning software, we placed a virtual sphere with the same diameter

as the bbs on each of the bb landmarks, and measured the distance of the bb in the

second image to the epipolar line from the center of the corresponding virtual sphere

in the first image. The error distance is measured as 7.58± 3.02 pixels1 in an X-ray

image with pixel size of 1024 × 1024 and pixel spacing of 0.22 mm
pixel

. In addition, we

acquired a cone beam CT (CBCT) scan of the phantom and measured a root mean

square error of 1.37mm between the bbs in the CT and those reconstructed using

two X-ray images.

In order to measure 3D errors and ensure precise placement of the cup in two

X-ray images during planning, we construct a dry phantom where an implant cup is

screwed into the acetabulum. Therefore, the desired implant cup placement is well

visible in the X-ray images and serves as a reference. We perform experiments where

1values reported as mean ± standard deviation
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a virtual cup with the same size of the implant must be aligned precisely with the

cup implanted a priori that is visible in the X-ray images. To evaluate the 3D error,

we acquire a CBCT scan of the phantom and measure the error between the planning

outcome and the ground-truth pose. This yields a mean translation error of 1.71mm,

and anteversion and abduction errors of 0.21◦ and 0.88◦, respectively.

In image-guided DAA hip arthroplasty, the proper alignment of the acetabular

component is frequently inferred from AP X-ray images [209]. Thus, the accuracy in

estimating the 3D pose based on a single 2D image heavily depends on the surgeon’s

experience. We conduct another experiment and seek to demonstrate the clinical

feasibility of our solution that is based on stereo X-ray imaging, and compare the

outcome to image-guided DAA solutions that only use AP X-ray images for guidance.

We refer to the latter as ”classic DAA”. Although the use of a single AP radiograph

and the anterior pelvic plane coordinate system have certain drawbacks, it is the frame

of reference that is most commonly used in computer-assisted THA solutions [210].

While there may be alternatives (e.g. coronal plane), the use of anterior pelvic plane

as the frame of reference will enable direct comparison with the current literature.

We conduct a pre-clinical user study where medical experts use the planning

software to place acetabular cups on simulated stereo X-ray images. These results

are then compared to conventional AP-based method considering orientational error

in abduction and anteversion. For the purpose of the user study, simulated X-ray

images or so-called digitally reconstructed radiographs (DRR) are produced from a
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cadaver CT data. We generate 21 DRRs from the hip area, starting at −45◦ and

ending at +45◦ with increments of +4.5◦ on the orbital oblique axis of the C-arm,

where 0◦ refers to an AP image. Each time the users are given a randomly selected

DRR together with the DRR corresponding to the AP plane, and are expected to

place the acetabular cup such that it is properly aligned in both views.

As the spatial configuration of the DRRs are known relative to the APP plane, we

are able to compute the correct rotation of the acetabular component, and preset this

orientation for the cup in the planning software. This can occur when an AP image

is acquired during the intervention and the desired orientation of the component is

known relative to the anterior pelvic plane which allows locking the DOF for rotational

parameters. When the orientation is preset, the user only has to adjust a translational

component, substantially reducing the task load. Presetting the orientation of the

cup is evidently only possible if the X-ray pose is known relative to the APP or the

AP image.

Four orthopedic surgery residents from the Johns Hopkins Hospital participate in

the user study. The translation error in placing the cup are shown in Fig. 7.7. The

abduction and anteversion errors are measured as zero as a result of presetting the

desired angles. The abduction and anteversion adjusted by the user solely using AP

image (classic DAA) are 6.52◦ ± 5.97◦ and 1.82◦ ± 1.89◦, respectively. Ground-truth

for these statistics includes the 5DOF pose of the cup in CT data (as the cup is a

symmetric hemisphere, 1DOF, i. e. rotation around the symmetry axis, is redundant),
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a) b)

Figure 7.7: DRRs were generated from −45◦ to +45◦ around the AP view (a). Par-
ticipants were each time given two images, where one was always AP, and the other
one generated from a different view. The translational errors are shown for all four
participants in (b). Note that 0◦ in the horizontal axis refers to where the user
performed planning on only the AP X-ray image.

where abduction and anteversion angles are 40◦ and 25◦, respectively.

To evaluate the agreement between surgeons’ actions in the AR environment with

their intra-operative planning, we measure the orientational error of the impactor after

placement with respect to its planning. The axis-angle error between the principal

axis of the true and planned impactor in the AR environment are measured as shown

in Fig. 7.8. We repeat this experiment for 10 different poses, and each time use four

virtual perspectives of the surgical site. The orientational error is 0.74◦ ± 0.41◦.

After the cup is placed in the acetabulum using AR guidance, we acquire a CBCT

scan of the cup and measure the translation, abduction, and anteversion errors com-

pared to a ground-truth CBCT as 1.98mm, 1.10◦, and 0.53◦, respectively.
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Principle axis of the planned impactor vs. the 

principle axis of the clouds of points

View of the surgical site

Planned impactor  in the 

mixed reality environment

Real-time cloud of points from the 

impactor in the mixed reality environment

Cloud of points from the 

patient surface

α

Figure 7.8: The angle between the principal axis of the virtual impactor and the cloud
of points represent the orientation error in the AR environment.

7.6 Discussion and Conclusion

The K-wire usability study shows clear indications that an intuitive AR system

has the potential to contribute as cost saving measure by significantly reducing OR

time (−59.1%), while simultaneously reducing number of acquired X-ray images and

accumulated area dose. Additionally, the study shows a reduced surgical task load

(−59.6%), which may lead to an overall improved performance by reducing the mental

demand of K-wire placements during surgeries.

This technique provides a perceptual fusion of optical and simulated X-ray images

without the use of fluoroscopic navigation. In future, this system can complement
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fluoroscopic navigation systems by offering a direct view into patient anatomy and

allowing real-time visual feedback. This provides the surgeons with a unique and in-

tuitive view of their hands and tools, the patient’s anatomy and their relative position

to each other in real-time, which allows for an easy, intuitive and accurate alignment

of surgical material.

Regarding the method we proposed for THA, the experimental results indicate

that the anteversion and abduction errors are minimized substantially compared to

the classic DAA approach. The translational error is below 3mm provided that the

lateral opening between two images is larger than 18◦. All surgeons participating

in the user study believed that presetting the cup orientation is useful and valid, as

having access to AP images in the OR is a well-founded assumption. Nonetheless, the

authors believe that a pose-aware RGBD augmented C-arm [151] can, in future, assist

the surgeon in acquiring and confirming true AP images considering pelvis supine tilts

in different planes.

The translational and orientational error of the proposed AR solution is 1.98mm

and 1.22◦ respectively which shows reduced error compared to navigation-based sys-

tem proposed by Sato et.al. with translation error of 2.98mm and orientation error

of 4.25◦ [44]. These results show the clear necessity to continue research and per-

form user studies on cadaveric specimens and quantify the changes in operating time,

number of required X-ray images, dose, accuracy, and surgical task load compared to

classic image-guided approaches.
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In classic DAA hip arthroplasty, correct translation of the cup is achieved by

naturally placing the acetabular component inside the acetabulum, and then moving

the impactor around the pivot point of the acetabulum until the cup is at proper

orientation. However, in order for our proposed solution to provide reliable guidance,

both the translational and orientational alignments need to be planned.

The visual marker is only introduced into the surgical scene for a short interval

between acquiring two X-ray images. These external visual markers could be avoided

if incorporating RGBD-based simultaneous localization and mapping to track the

surgical site [151]. Alternatively, the impactor which is a cylindric object could be

used as a fiducial for vision-based inside-out tracking. It is important to note that

surgical tools with shiny surfaces reflect IR beam. Tracking the surgical impactor is

only done reliably if the surface has a matte finish, or it is covered with a non-reflective

adhesive material.

Projection of the 3D hemispheric virtual cup onto the plane of X-ray images are

done by utilizing the intrinsics parameters of the X-ray camera. These parameters

are estimated while performing the checkerboard calibration. However, at different

C-arm arrangements the focal length and principal point could slightly change due to

gravity and flex in the C-arm machine. We quantified the drift in the principal point

for ±10◦, ±20◦, and ±30◦ of C-arm lateral opening and the average shift was 5.17,

7.3, and 17 pixels on a 1024×1024 X-ray image. Considering the pixel spacing of the

detector, these values are equivalent to 1.16mm, 1.64mm, and 3.82mm drift on the
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detector plane coordinate frame. To overcome the limitations of change of intrinsics

in future, a look-up table could be constructed from pre-calibration of the C-arm at

different angulations. The correct intrinsic parameters could then be retrieved from

the table by matching the corresponding extrinsics from the inside-out tracking of the

C-arm. To avoid small inaccuracies due to image distortion of the image intensifier,

we placed the acetabulum near the image center where image distortion is minimal.

Further research is needed to confirm the applicability of the technology to the

real surgical scenario, compensate for potential movements during interventions, and

validate the observed benefits during larger pre-clinical and clinical studies.
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Chapter 8

Spatiotemporal-Aware Augmented

Reality Using Head-Mounted

Displays

8.1 Introduction

Interventional image guidance is widely adopted across multiple disciplines of

minimally-invasive and percutaneous therapies [211–214]. Despite its importance in

providing anatomy-level updates, visualization of images and interaction with the

intra-operative data are inefficient, thus requiring extensive experience to properly

associate the content of the image with the patient anatomy. These challenges be-

come evident in interventions that require the surgeon to navigate wires and catheters
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through critical structures under excessive radiation, such as in fracture or endovas-

cular repairs.

As the surgical expectancy increases, the communication between the surgeon,

crew, and the information becomes an important concern. Ineffective communica-

tion leads to increase of surgery time, radiation, and frustration to a point where

in fluoroscopy-guided procedures, instead of the X-ray technician, the surgeons may

reposition the scanners to ensure the task-defined views are optimal [8, 215].

To bridge the inefficiency gaps in surgical workflows, researchers have investigated

the importance of human factor considerations in improving the usability of surgical

data [216, 217]. Recent works focused on facilitating the unmet interaction needs by

introducing touch-less mechanisms such as gaze, foot, or voice commands [218–220].

We believe the high stakes of surgery necessitates efficient interaction between all ac-

tors in the operating room i.e. surgeon, anesthesiologist and staff to communicate and

access information. This demands user-centric designs that can also accommodate

fluid movement of information and surgical inference across the entire team.

Augmented reality (AR) solutions have gained popularity in computer-integrated

surgeries, as they can provide intuitive visualizations of medical data directly at

patients’ site. Early works on surgical AR focused largely on multi-modal fusion of

information and provided display-based overlays [221–223]. Subsequently, AR enabled

the utilization of pre- and intra-interventional 3D data during therapies [93, 94, 224,

225].
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The emergence of commercially available optical-see through head-mounted dis-

play (HMD) systems has led to development of AR solutions for various image-guided

surgical disciplines, including percutaneous vertebroplasty, kyphoplasty, lumbar facet

joint injection, orthopedic fracture management, bone cancer treatment, total hip

arthroplasty (THA), interlocking nailing, cardiovascular surgeries, and surgical edu-

cation [69, 75, 80, 82, 217, 226–229].

AR has served as image viewer that directly displays the data at the operative

site using virtual fluoroscopy monitors, hence eliminating the conventional off-axis

visualization through static monitors [230, 231]. Moreover, AR is used to provide

navigational information during interventions [232–234]. These systems often rely on

tracking of external markers, which require line-of-sight and invasive implantation

into patients tissue that can hinder their usability. Andress et al. suggested a flexible

marker-based surgical AR methodology which only required the marker to appear

in the X-ray beam during the image acquisition, and was removed immediately af-

ter [235]. Recent inside-out localization strategies in AR have greatly favored the

fluid workflow over explicit navigation, and have proved effective in eliminating the

need for external markers [103, 236, 237].

This chapter introduces the methodology and usability of a novel spatially-aware

concept that enables immediate interaction with the medical data and promotes team

approach where all stake-holders share a unified AR experience and communicate ef-

fectively. Our methodology exploits the viewing frustum of the imaging devices and
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A B C

D E F

Figure 8.1: Spatiotemporal-aware AR exploits the full imaging geometry. The aug-
mented user interacts with the X-ray images within their viewing frustums (A-C).
Corresponding AR views are shown in D-F.

human observers in the operating room (Fig. 8.1), and provides an engaging and

immersive experience for the surgical team. We built upon the concept of image frus-

tums [237], and designed the complete methodology that integrates spatiotemporal-

aware AR in the entire workflow. Our contributions are particularly centered around

intra-operative planning, integration of the planning into the surgical workflow, and

pre-clinical analysis. We showcase this solution in two high volume orthopedic proce-

dures, i.e. K-wire placement in fracture care surgery, and acetabular cup placement

in THA.
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8.2 Methodology

Our main contributions are the collaborative AR concepts using spatiotemporal-

aware flying frustums [237] that enable intra-operative planning, define new work-

flows, support surgical crew, enhance the communication between surgeon and data,

and enable intuitive documentation of the surgery for training purposes. We present

the methodology for the realization of these concepts in the remainder of this section.

8.2.1 Spatial-Awareness for AR

Visual data from cameras contain a wealth of information that can be used for

simultaneous localization and mapping (SLAM). Visual SLAM is an important ingre-

dient in our AR-based interaction recipe that enables co-localization of augmented

users and the imaging device, which we will refer to as imaging observer, in a shared

operating room environment. Marker-free co-localization will enable the 3D informa-

tion to easily propagate through different bodies and be spatially-registered for all

HMD users.

In the first step, each AR user is localized within the environment. The relative

pose between two frames α and β using the environment map M can be estimated
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by minimizing the following reprojection function:

αTβ = argmin
αTβ
ˆ

D(αTβ
ˆ ,M)

= argmin
αTβ
ˆ

∑︂
f
(α)
i ∈Iα

|f (α)
i − P (M(f

(α)
i ))|2

+
∑︂

f
(β)
i ∈Iβ

|f (β)
i − P αTβ

ˆ (M(f
(β)
i ))|2,

(8.1)

where f
(α)
i and f

(β)
i are corresponding features in images Iα and Iβ, and P is the

projection operator. In direct SLAM, the features include all pixels, and in indirect

SLAM, the features are a sparse set of keypoints in the image. In Eq. 8.1, we optimize

for the 6 parameters of a rigid transformation that best explains the pose between

α and β using only the features present in the images. This step, also known as

environment tracking, has become an standard part of most AR applications.

In a similar fashion, all users can be localized with respect to the first user, or

with respect to a common spatial anchor in the operating room. The first member

joining the shared experience will establish the anchor, i.e. OR coordinate system,

and every other member of the AR session will share their pose in a master-slave

configuration with respect to this OR frame [103]. This relation is shown as ORTS in

Fig. 8.2.
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Operating RoomPose-Aware 
Visual Sensor

C-arm 
X-ray Source

Patient

Augmented
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ORTS

ORTH

XTH

Figure 8.2: The transformation chain of the spatially-aware AR system is shown for a
C-arm fluoroscopy system. The transformations layout show the closed-loop between
the imaging device and the users at all time. The same relations can be generalized
to include multiple users.

8.2.2 Imaging Observer

C-arm scanners offer fluorscopic imaging capabilities for a wide range of less-

invasive therapeutic areas. To seamlessly integrate this imaging device into our inter-

active AR paradigm, we augment the scanner with a rigidly attached visual tracker,

that observes the structures in the OR environment, and communicates spatial infor-

mation to all users. The materialization of this imaging observer system requires a co-

calibration between the visual tracker on the scanner, and the X-ray source [236]. The

184



CHAPTER 8. SPATIOTEMPORAL-AWARE AUGMENTED REALITY USING
HEAD-MOUNTED DISPLAYS

constant transformation that explains the calibration is denoted as XTH in Fig. 8.2.

To estimate XTH, we formulate an over-determined system of equations as follows:

IRTOR =IR TX(ti)
XTH

ORT−1
H (ti)

=IR TX(ti+1)
XTH

ORT−1
H (ti+1).

(8.2)

IR denotes the frame of an external tracker that is used to track the motion of the C-

arm source as it undergoes different motion at times ti and ti+1. To construct Eq. 8.2,

the scanner is oriented in different poses, at each of which IRTX and ORTH, which

are the poses of the X-ray source in the external tracker frame and the SLAM-based

localization of the HMD in the OR coordinate system, respectively, are recorded. It

is important to note that the IR tracker is only used for this one-time and offline co-

calibration, and it is not used intra-operatively. By re-arranging Eq. 8.2, we formulate

the problem in the form of AX = XB as presented in Eq. 8.3, such that X :=X TH,

and A and B represent the relative motion of the X-ray source and the SLAM capable

visual sensor on the gantry, respectively.

IRT−1
X (ti+1)

IRTX(ti)
XTH =X TH

ORT−1
H (ti−1)

IRT−1
X (ti). (8.3)

Rotation and translation components of the hand-eye problem are disentangled and
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computed separately as:

RARX = RXRB

RAtX + tA = RXtB + tX.

(8.4)

We estimate the rotation parameters using unit quaternion representation as qA qX =

qX qB. Given that a unit quaternion qi is formed by a vector vi and a scalar si such

that qX = vX+sX, we re-write the rotation component in Eq. 8.4 using the quaternion

product rule as:

(.)⃗ : sAvX + sXvA + vA × vX = sXvB + sBvX + vX × vB

(.) : sAsX − vA.vX = sXsB − vX.vB.

(8.5)

Re-arranging the above formulation yields:

⎡⎢⎢⎣ sA − sB (vA − vB)
⊺

(vA − vB) (sA − sB)I3 + [vA + vB]×

⎤⎥⎥⎦
⎡⎢⎢⎣sX
vX

⎤⎥⎥⎦ =

⎡⎢⎢⎣ 0

03

⎤⎥⎥⎦ , (8.6)

which is then solved in a constrained optimization fashion as:

min ||Mq||22 s.t. ||q||22 = 1, (8.7)

where q = [sX ,vx⃗]
⊺. After the rotation parameters are computed, the translation

vector is estimated in a least-squares setting: (RA − I3)tX = RXtB − tA.
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At the end of this phase, we have achieved RX and tX that express the calibration

between the X-ray source and the integrated visual tracker; hence, we directly access

the pose of the X-ray camera from the pose information acquired from the visual

tracker on the scanner.

8.2.3 Geometry-Awareness for AR

In this section, we describe the underlying geometry that allows us to combine the

content of 2D X-ray images, directly with the 3D spatial information we computed

in Sec. 8.2.1 and 8.2.2. To this end, we explicitly model the viewable region of the

X-ray camera, known as the flying frustum [237], and allow interaction with images

within their geometries. It is important to note that, the flying frustum refers to the

full pyramid of vision (Fig. 8.2), and is different than the truncated pyramids used

in the computer graphics community. Despite the similarities in formulation, the

conventional frustum model in graphics only applies to reflective images, and cannot

accommodate the transmission model used in fluoroscopy. Therefore, we extend the

perspective pinhole camera model that is commonly used in the computer vision

community [180].

In our paradigm, users can move the images within their frustums on a virtual

plane known as the near plane, between X-ray source and detector (referred to as

the far plane), while they remain a valid image of the same anatomy. This inter-

action enables the users to intersect the images with corresponding anatomies, and

187



CHAPTER 8. SPATIOTEMPORAL-AWARE AUGMENTED REALITY USING
HEAD-MOUNTED DISPLAYS

intuitively observe 2D-image-to-3D-anatomy associations. Additionally, the imaging

technologists which operate the scanner, can align the scanner with a desired frustum

that is decided by the surgeon.

A flying frustum is defined using the following model:

Pf =

⎡⎢⎢⎢⎢⎢⎢⎣
n
f

0 0

0 n
f

0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ K P

⎡⎢⎢⎣ORRX
ORtX

0⊤ 1

⎤⎥⎥⎦ , (8.8)

where n refers to the distance to the near plane, f is the focal length, K is the matrix

of intrinsic parameters, and 0 ≤ n ≤ f . The parameter n is controlled by the user,

such that when n = f , the X-ray image is directly displayed at the detector scale. It

is worth mentioning that, with conventional frustum models, the near plane can only

take values smaller than the far plane, which is not the case in our representation.

For each 2D point xi ∈ I, where I is the domain of all acquired images, the

corresponding point xf in the frustum domain F is scaled by a factor s as xf =

sxi = (n
f
)xi , such that 0 ≤ n ≤ f . Finally, the 3D pose of the interactive image in
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the frustum is defined as:

ORTI =

⎡⎢⎢⎣ORRX
ORtX

0⊤ 1

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I3

0

0

n

0⊤ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ORRX

r13 n

r23 n

r33 n

+OR tX

0⊤ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(8.9)

where R = {ri,j}i,j:1, 2, 3.

8.2.4 Planning Using Flying Frustums

Flying frustums discussed in Sec. 8.2.1-8.2.3 embed sufficient 3D and 2D informa-

tion that enable interventional planning for the placement of surgical tools (Fig. 8.3).

In this section we introduce two distinct approaches for intra-operative planning. In

the first planning approach, we forward-project the 3D virtual surgical implants onto

the X-ray images within each frustum using the respective X-ray projective geometry.

Hence, the user can observe the implant’s projection in the same X-ray image and

verify the implant’s appearance before placing the real implant. This approach is

generic and allows the planning of implants with any arbitrary shape. In the second
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Real k-wire Virtual k-wire 
with drill

Exit point

Entry point

Figure 8.3: In K-wire placement for fracture reduction procedures, the surgeon can
plan the entry and exit points of the wire on two X-ray images. After the planning, two
triangular planes are constructed by connecting the drilling trajectory defined on the
detector plane (X-ray image) and the C-arm source (X-ray origin). The intersection
of these two planes is a line that corresponds to the desired drilling trajectory in 3D.
By exploiting the imaging frustum, this line is augmented directly on the patient
anatomy. The surgeon can then align the physical drill with its virtual counterpart,
and advance the wire through the anatomy.

approach, we use multi-view geometry to reconstruct landmark targets or trajecto-

ries in 3D. In both methods, after the respective planning on the flying frustums,

the resulting 3D information, already registered to the anatomy, is visualized on the

patient. In the following, we describe each of the two approaches.

In the first method, virtual tools are manipulated in 3D by the user, and simulta-

neously projected onto the X-ray images of all valid frustums. A point Xt ∈ T , where

T is the domain of all 3D points on a virtual tool, is projected onto the ith frustum

as xti = PfiXt. The virtual tool is manipulated with complete 6 degrees-of-freedom

(DOF) by the user to plan on all the frustums simultaneously. However, it may
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A B C D

Figure 8.4: The coordinate frame of the virtual drill is defined as shown in A, where
the Z-axis that is shown in blue points out of the drill along with the K-wire. B
shows the manipulation of the virtual drill with 4 DOF until the projection of the
K-wire is aligned in the first frustum (the yellow projection of the wire is contained
within the tube in the left frustum). These 4 DOFs are sufficient to align the tool
appropriately with the target anatomy in the first image. In the next step, we change
the transformation constraints, as shown in C; after the alignment of the drill with
the anatomy is verified in the first frustum, the drill maintains rotational freedom
around its local X- and Z-axes, and translational freedom along its Y - and Z-axes.
These DOF constraints allow the implant’s alignment in the second frustum while
maintaining the alignment between tool and anatomy in the first frustum. Finally,
D shows the virtual drill being restricted to only 2 DOF. Moving and rotating along
these two DOFs will not influence the alignment in either of the two frustums.

appear challenging to align concurrently in both views. Alternatively, we can apply

rotational and translational constraints to the virtual tool, such that the tool can be

aligned first in one frustum, and then in the second frustum, while the alignment in

the first one is preserved. As shown in Fig. 8.4, in the first stage, the Y -axis of the

virtual tool is rotated to hold the same direction as the Z-axis of the first frustum.

The 4 DOF transformation model of the virtual tool is defined as:
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Trans-ischial Line

Anterior Superior 
Iliac Spine

Anterior Superior 
Iliac Spine

Anterior 
Pelvic Plane

Abduction

Impactor and 
the Acetabular 

Component

Pubic 
Symphysis

Figure 8.5: In THA, abduction and anteversion angles of the acetabular implant are
defined with respect to the anterior pelvic plane (APP). The anterior pelvic plane is
defined based on three points: the left and right anterior superior iliac spine land-
marks, and the pubic symphysis. Once the surgeon annotates these landmarks, we
identify the APP, and subsequently, render the acetabular components at appropri-
ate angles. We also let the user annotate the center of the acetabulum in two or
more views, which is used to calculate the 3D position of this landmark on the pa-
tient, hence allowing the center of the hemispheric component to render inside the
hip socket. In the execution phase, the user aligns the real impactor and cup with
their virtual counterparts.

Tf1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ 0 sin θ tx

0 1 0 ty

− sin θ 0 cos θ tz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.10)

where θ is the rotation angle around the local Y -axis and tx, ty and tz are trans-
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lations along X, Y and Z-axes, respectively. In the second stage, the virtual tool

is locked to only allow rotation around the X and Z-axes, and translation in Y and

Z-axes using the transformation model as:

Tf2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosψ − sinψ cosϕ − sinψ sinϕ 0

sinψ cosψ cosϕ − cosψ sinϕ ty

0 sinϕ cosϕ tz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.11)

where ϕ and ψ are the rotation angles around their X and Z-axes, respectively.

As shown in Fig. 8.4, Tf2 does not influence the alignment of the tool and target in

the image of the first frustum. Finally, after alignment in both frustums is achieved,

the virtual tool then will only be constrained to have 2 DOF which is defined as:

T tool =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosψ − sinψ 0 0

sinψ cosψ 0 0

0 0 1 tz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.12)

In an exemplary case shown in Fig. 8.7, the virtual drill is rotated and translated

until it passes through a desired structure (e.g. through a bone canal) in all frustums.

An alignment consensus in all frustums is the equivalent of the alignment of the virtual

3D tool with the imaged anatomy in 3D.

193



CHAPTER 8. SPATIOTEMPORAL-AWARE AUGMENTED REALITY USING
HEAD-MOUNTED DISPLAYS

A

B

C

D

Figure 8.6: The standard operative procedure in percutaneous orthopedic interven-
tions makes extensive use of interventional imaging (A). Classic navigation-based
solutions use sophisticated tracking hardware and external markers to provide geo-
metric registration between the content in the image and the patient (B). On the
other hand, in the AR-enhanced OR that we suggest (C), the surgeon and crew in-
teractively use the data and pass the information around without explicit navigation.
Based on the concepts introduced in Sec. 8.2.4, the planning on X-ray images is di-
rectly visualized on the patient. The surgeon takes action based on the information
from planning, as well as the X-ray images that are positioned within their respective
frustums, both of which are seen through the HMD (D).

The second planning approach requires 2D interaction on the frustum X-ray im-

ages. In this setting, for each selected landmark on a frustum image, a 3D ray

connecting the C-arm source and the target landmark will be rendered into the AR

scene. As illustrated in Fig. 8.8, the intersection of two rays from a corresponding
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A B

Figure 8.7: The augmented projections allow us to exploit the geometry in AR and
plan surgical tools in relation to patient anatomy. The misaligned virtual drill in A
is repositioned until it appears inside the desired structure in all the frustums (B).

A B C D

Figure 8.8: Each point in a frustum image corresponds to a ray passing through the
landmark in 3D, and connecting the source and detector of the C-arm. Intersection of
two rays recovers the 3D point and renders it directly on the patient (A-B). Similarly,
annotation of lines in each frustum, corresponds to a plane in 3D. The intersection
of these planes restores the 3D planning trajectory, and renders it in AR such that it
travels through the corresponding anatomical structure (C-D).

landmark in two images reconstruct the 3D landmark. Each ray is defined via two el-

ements: i) the position of the C-arm X-ray source ci, and ii) the unit direction vector

ui from the source to the annotated landmark in the frustum. We estimate the clos-
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est point x∗
l to the N = 2 rays corresponding to each landmark l via a least-squares

minimization strategy as follows:

x∗
l = argmin

x∈R3

N∑︂
i=1

∥(I3 − uiu
⊤
i )x− ti∥2,

where ti = (I3 − uiu
⊤
i )ci .

(8.13)

Similarly, two points on a frustum i defining the entry and the exit points of a

drilling trajectory, associate to two rays u1i and u2i in 3D. These two rays span a plane

in 3D as shown in Fig. 8.8. The intersection of the planes corresponding to the same

entry and exit points on frustums i and j form a 3D line d12 = (u1i×u2i)×(u1j×u2j)

that passes through the desired entry and exit points on the patient anatomy.

Our first approach requires a more complex interaction with the augmented surgi-

cal implant using the 6 degrees-of-freedom, however generalizes to arbitrary structures

beyond linear annotations, such as the curved plates used for internal fixations.

8.2.5 Surgical Workflow Integration

Intra-operative planning and execution with the flying frustums support can be

used in various fluoroscopy-guided procedures. In THA, the critical points defin-

ing the anterior pelvic plane (APP) can be each identified on X-ray images. These

anatomical landmarks include the left and right anterior superior iliac spine points on

the pelvic wing and the pubic symphysis. Given APP, a virtual acetabular implant
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and a rigidly attached impactor are rendered in AR with their desired orientation

that is calculated with respect to APP. Likewise, the translational component of the

cup implant is identified by defining the center of the patient acetabulum on cor-

responding fluoroscopic images. These relations are shown in Fig. 8.5. Once these

intra-operative planning steps are completed by the surgeon, virtual representations

of the cup and impactor are augmented over the patient’s acetabulum with the appro-

priate abduction and anteversion angles. The surgeon could then align the impactor

with its virtual counterpart reducing the amount of required X-rays. It is important

to note that achieving the desired angles for the hip implant is a crucial step that

is mentally challenging to verify from single view X-ray images, as it is commonly

practiced in the direct anterior approach.

Another exemplary image-guided procedure is the placement of screws and K-

wires during fracture management. As shown in Fig. 8.6, AR provides support for

placement of K-wires using the trajectory planning on the corresponding frustums.

Fig. 8.6 also depicts the use of our AR solution in the OR, and compares the proposed

environment with the current OR.

Our proposed AR landscape is enabled by exploiting all involved frustums to move

spatial information between different bodies, hence allowing multiple users to connect

simultaneously. In Fig. 8.6, we show hypothetical procedures and further demonstrate

that the scanner, crew and the technician can all share this common AR experience

through HMDs, thus jointly benefiting from the augmented procedure. As highlighted
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Figure 8.9: All acquisitions can be documented and later reviewed with all their
corresponding spatial and temporal information. Spatiotemporal-aware AR allows
the trainees to watch the surgery’s progress and revisit the actions taken based upon
each image.

in the figure, our system relies on 2D C-arm fluoroscopy, thus the standard workflow

is only minimally altered. The surgeon can always alternate between fluoroscopy-

based guidance and the AR view to ensure safe drilling. The figure also signifies the

advantage that the surgeon does not need to take his/her gaze away from the patient

site during implant placement. As shown in Fig. 8.9, all the spatial and temporal

information can be documented for post-operative review and training.
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8.3 Experimental results

8.3.1 System Setup

Our system comprises an ARCADIS Orbic 3D C-arm (Siemens Healthineers,

Forchheim, Germany) as an intra-operative X-ray device that automatically com-

putes the cumulative area dose for each session. The immersive AR solution was

built using the Unity cross-platform game engine (Unity Technologies, San Francisco,

CA, US) and was deployed to an optical-see-through HMD, the Microsoft HoloLens

(Microsoft, Redmond, WA). To jointly co-localize the augmented surgeon and the

C-arm scanner, a second HoloLens device with inside-out SLAM capabilities was at-

tached near the X-ray detector. The two HMDs shared their spatial anchor, a rich

feature reference region in the common environment, over a wireless local network,

allowing them to remain synchronized and establish spatial awareness. This connec-

tion was enabled through a TCP-based sharing service running on an Alienware (Dell,

Round Rock, TX, US) laptop server with an Intel i7-7700HQ CPU, NVIDIA GTX

1070 graphics card, 16 GB RAM, and Windows 10 operating system. The 16 bit

1024× 1024 single channel X-ray images from C-arm were transmitted to the server

computer over a direct Ethernet connection, and then converted to 8 bit grayscale

while keeping the original resolution in order to display them properly on the HMD

as well as to reduce the data size before uploading them to the HMD. The frame per

second update for the HMD device was 60, and the display resolution was 720 p.
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To minimize the chance of tracking failure, we mounted the tracking HMD on the

C-arm such that the integrated vision cameras on the HMD observe the static struc-

tures such as walls and ceiling. Consequently, the chances of blocking the tracking

cameras on the HMD during the procedure are diminished.

8.3.2 Experiments

Eight orthopedic surgeons and residents from Johns Hopkins Hospital participated

in pre-clinical user studies and performed two surgically relevant tasks while utiliz-

ing interactive flying frustums in an immersive AR environment. The surgeons are

referenced as Pi. P6 is an attending surgeon. At the time of the study, P7 and P4

were in their final year of residency, P5 in their fourth year, P3 in their third year,

P2 in their second year, and P1 and P8 were first-year residents. All participants

were familiar with the surgical tasks involved in this study, however, the more senior

participants had naturally more experience in performing such tasks clinically.

In the first procedure, we focused on the correct placement of a K-wire to repair

complex fractures. To emulate the K-wire placement through the superior pubic

ramus (acetabulum arc), we used radiopaque cubic phantoms, as seen in Fig. 8.10-C.

For direct comparison, we used the same setup that was used by Fischer et al. [94].

Each cube consisted of a stiff, lightweight, and non radiopaque methylene bisphenyl

diisocyanate (MDI) foam. Since the superior pubic ramus is a tubular bone with a

diameter of approximately 10 mm, we used a thin aluminium mesh filled with MDI
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Figure 8.10: A-B are the X-ray images of the cubic phantom shown in C. In D-E,
the X-ray images of the same phantom are shown after a K-wire was successfully
inserted inside the tube. F is the CBCT scan of the phantom which was acquired for
verification. Due to metal artifacts, the tube does not exhibit strong contrast.

that was placed inside each cube and served as the bone phantom. The two ends

of the tubular structures were complemented with a rubber radiopaque ring. Each

subject was asked to place a K-wire with a diameter of 2.8 mm through the tubular

phantom using a surgical drill (Stryker Corporation, Kalamazoo, MI, US).

For the second procedure, we constructed a total hip arthroplasty mock setup

by using a radiopaque pelvis phantom with a magnetic acetabulum to fixate the

acetabular cup (Fig. 8.11). For direct comparison, we adopted the same experimental

setup that was suggested by Alexander et al. [238]. The cup was attached to a straight

cylindrical acetabular trialing impactor (Smith & Nephew, London, UK) allowing the

operator to guide the cup. Since the ideal orientation of the implant is unknown, we

use abduction and anteversion angles that lie in a safe zone defined by landmarks on
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the pelvis as described in [189].

C-arm setup

Magnet to hold implantImpactor

Acetabular 
component 

A B

C

D

Figure 8.11: In A the setup of the C-arm, pelvic phantom, and the acetabular cup
are shown. B is a close-up view of the phantom with an empty acetabular socket and
a magnet for holding the implant in position. Image C shows the impactor while it
is placed by a surgeon during the experiment, and D shows the successfully placed
cup in the acetabulum.

Initially, each surgeon received a brief introduction to the Microsoft Hololens,

preparing them to properly mount and use the HMD. To further instruct them on

our AR application, pre-recorded training X-ray images were loaded onto their HMD,

allowing them to become familiar with the task, the desired outcome, interface, plan-

ning procedure, and the interaction mechanism using hand gestures.

After the required planning images were acquired by the proctors, each surgeon

planned their respective procedure in AR and performed the drilling task into the
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Table 8.1: Outcome from the K-wire insertion using our immersive AR system. In-
dividual performances are listed in columns Pi. Corresponding mean and SD values
can be found in Table 8.4. The last row reports the error that was measured between
the inserted K-wire and the center of the tube.

K-wire P1 P2 P3 P4 P5 P6 P7 P8
Planning Time (sec) 125 40 39 58 79 22 67 44
Execution Time (sec) 83 74 58 46 66 67 63 79
# X-ray images 2 2 2 2 2 2 2 2
Dose (cGY(cm2)) 0.28 0.21 0.19 0.27 0.26 0.28 0.27 0.28
Error (mm) 8.23 5.71 9.02 3.26 6.94 1.13 1.59 2.23

cube or placed the acetabular component into the pelvis. During the procedure, they

were explicitly allowed to order as many X-ray shots from any perspective that they

considered necessary.

We recorded the planing time, the time it took them to execute the procedure,

number of fluoroscopic acquisitions, and the cumulative radiation dose as it was mea-

sured by the scanner. Finally, for the verification and accuracy measurement, we

acquired a 3D cone-beam CT (CBCT) scan of the phantoms with their respective

implants. It is important to note that distance is not defined for two non-parallel

lines. The distance we computed from the drilled path to the desired path, i.e., the

average distance from the wire to the center-line of the target structure, is consistent

with the past literature [94], and provides an intuition regarding the range of error.

8.3.3 Results

Tables 8.1 and 8.2 comprise the performance of every participant in the experi-

ments. Table 8.1 contains the measurements for the K-wire insertion, and Table 8.2
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Table 8.2: Outcome from the placement of the acetabular implant using our immersive
AR system. Individual performances are listed in columns Pi. Corresponding mean
and SD values can be found in Table 8.5.

THA P1 P2 P3 P4 P5 P6 P7 P8
Planning Time (sec) 162 70 117 88 64 37 71 110
Execution Time (sec) 87 39 13 19 17 35 26 24
# X-ray images 8 8 8 8 8 8 8 8
Dose (cGY(cm2)) 1.27 1.3 1.23 1.26 1.18 1.25 1.18 1.29
Abduction error (◦) 2.1 1 1.1 1.3 2.9 0.1 0.4 3.7
Anteversion error (◦) 1.1 0.6 2.7 1.4 2.1 0.4 0.3 3.1

Table 8.3: Results of the respective SOP presented in [94] and [238]. Columns cor-
respond to individual participants performance. Corresponding mean and SD values
can be found in Table 8.4 and Table 8.5.

K-wire SOP
Q1 Q2 Q3 Q4 Q5 Q6 Q7

Time (sec) 937 686 617 464 636 388 432
# X-ray images 80 47 44 33 32 21 29
Dose (cGY(cm2)) 7.68 1.73 3.54 4.38 5.62 2.69 5.38
Error (mm) 3.08 7.88 11.43 3.01 1.87 2.27 2.72

THA SOP
R1 R2 R3 R4 R5 R6 R7 R8

Time (sec) 210 350 195 375 225 150 95 280
# X-ray images 13 15 15 16 13 13 6 19
Dose (cGY(cm2)) 1.93 2 2.09 2.11 1.83 1.88 1.09 2.73
Abduction error (◦) 7.9 5.9 5.1 6.5 5.6 2.3 1.5 3.3
Anteversion error (◦) 4.9 1.3 9.9 5.1 1.4 6 1.8 7.8

presents the procedural outcome for the acetabular cup placement. We separate the

interventional time measurements into i) planning time, the time it took each surgeon

to plan their procedure in AR, and ii) execution time, determining the duration of

the insertion/placement of the instruments. Furthermore, we recorded the number of

X-ray acquisitions and the respective dose for each user. Finally, to assess the overall

performances, we computed the average distance of the K-wire from the center of the
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tube at the entry and the exit surface of the tubular structure, and the abduction

and anteversion angles of the acetabular implant, based on standard guidelines.

Figure 8.12: The plots present the execution time and total radiation dose during
K-wire insertion using the AR supported approach and SOP. On the leftmost plot,
the blue boxplot is the execution time with AR, whereas the orange boxplot is the
total time including the planning phase. The green lines show the mean values for
each of the groups.

Table 8.4 provides a comparison of the mean and standard deviation (SD) values

of the K-wire insertion errors using our immersive AR system with a previous non-

immersive AR system [94] as well as the standard operating procedure (SOP) using

conventional fluoroscopic guidance. Combining the planning and execution times, the

AR procedure took on average 111.25 sec versus the 594.3 sec during SOP. Fig. 8.12

depicts this comparison. On average, each surgeon made one trail and used 2 fluo-
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Table 8.4: Mean and SD values for K-wire insertion with the immersive AR, NI-AR,
and SOP. For each method two rows show the mean and SD values, respectively. For
immersive AR, the time is separated into first planning and then execution.

Method Time # X-ray Dose Error
(sec) images (cGY(cm2)) (mm)

X AR 59.25+ 52 2 0.255 4.76
σ (32.02,24.23) (0) (0.04) (3.11)

X NI-AR[94] 243.7 2.14 1.6 5.13
σ (84.00) (0.69) (0.17) (2.72)

X SOP 594.3 40.86 4.43 4.61
σ (188.0) (19.38) (2.00) (3.62)

roscopic shots with a combined dose of 0.255 cGY(cm2) per user and committed an

insertion error of 4.76mm. Given the eight samples, the population mean for the

drilling error, based on the 95% confidence intervals, is between [2.60− 6.92]mm.
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Table 8.5: Mean and SD values for acetabular cup placement with the immersive
AR, NI-AR, and SOP. For each method two rows show the mean and SD values,
respectively. For immersive AR, the time is separated into first planning and then
execution time. In the #X-ray column of NI-AR, only one X-ray is denoted, this
references the CBCT that was acquired before the experiment which is reconstructed
of 100 digital radiographs.

Method Time # X-ray Dose Abd. Ant.
(sec) images (cGY(cm2)) (◦) (◦)

X AR 89.88+ 32.5 8 1.25 1.57 1.46
σ (38.85, 23.71) (0) (1.25) (1.24) (1.07)

X NI-AR [238] 110.6 1 1.83 1.78 1.43
σ (15) (0) (0.06) (1.37) (0.66)

X SOP 235 13.75 1.96 4.76 4.78
σ (96) (3.73) (0.45) (2.2) (3.15)
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Correspondingly, we present the outcome for the acetabular cup placement pro-

cedure with the immersive AR system in Table 8.5, comparing it to a previous non-

immersive AR application [238] and SOP. Using SOP, it took surgeons on average

235 sec to place the cup and under AR a combined time of 122.38 sec was achieved.

For the AR setup, we acquired 8 X-ray images with an average dose of 1.25 cGY(cm2)

per surgeon, whereas 14 fluoroscopic images with a dose of 1.96 cGY(cm2) were ac-

quired during SOP. With the AR system, the average errors were 1.57◦ and 1.46◦

for the abduction and anteversion angles, respectively. Based on the 95% confidence

interval, the mean error for abduction and anteversion are between [0.72◦−2.44◦] and

[0.72◦ − 2.20◦], respectively. Under SOP the respective angles were 4.76◦ and 4.78◦.

Figs. 8.15 and 8.13 present the outcome with respect to time, radiation dose, and

individual rotational measures for the acetabular cup placement experiments using

AR and SOP. The immersive AR results show an SD of respectively 89.88 sec and

32.5 sec for planning and execution time, 0 for the number of X-ray images, 1.25 for

the dose, 1.24 for the abduction error and 1.07 in the anteversion error. Comparable

to Tables 8.1 and 8.2, Table 8.3 displays the individual participants performance dur-

ing each of the two SOP. To statistically evaluate our findings, a two sample t-test

was performed and the results are reported in Table 8.6. We tested the the results

of our immersive AR system against the results from the NI-AR system and SOP for

both the K-wire insertion procedure and the acetabular cup placement. We did not

test the number of acquired X-rays, since in these experiments they turned out to be
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a constant value for each procedure.

Cup position (degrees)

Augmented Reality
SOP

0

5

10

15

20

25

30

30 32 34 36 38 40 42 44 46 48 50

Figure 8.13: Anteversion and abduction angles are shown after acetabular cup place-
ment using AR support and SOP. The horizontal axis represents the abduction angle,
and the vertical axis represents the anteversion—the center of the plot corresponds
to the desired angles of 40◦ and 15◦. The farther data points from the center signify
higher errors committed by the user. The AR method resulted in a stronger cluster
near the center, while SOP yielded higher errors and more outliers.

8.4 Discussion

We evaluated our spatially-aware AR system in two clinically relevant procedures,

i) the placement of K-wires through tubular structures for fracture repair tasks, and

ii) placement of acetabular components into the hip socket for total hip arthroplasty.
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We selected these two high volume procedures among the many other applications

which can be enabled by our interactive AR system, as they each represent a class

of common orientational alignment and localization tasks that are prevalent across

different fields of image-guided surgery.

For the K-wire insertion procedure, the immersive AR system performed sig-

nificantly faster than the conventional SOP, yielding less than a fifth of the time

(Fig. 8.12). Table 8.4 demonstrates a detailed comparison of our system, not only

with the SOP as an established baseline, but also with a previously presented non-

immersive mixed reality method based on RGBD sensing and intra-operative CBCT

imaging [94].

With the AR system every surgeon used exactly 2 X-ray images, which were the

2 images required for procedure planning. Despite explicitly allowing them to take as

many radiographs as they desire, no one of the surgeons requested additional X-ray

images. As mentioned above, during SOP, surgeons inserted the K-wires with an av-

erage number of 40.86 fluoroscopic images and with an average dose of 4.43 cGY(cm2),

compared to the (statistically) significantly lower dose of 0.255 cGY(cm2), which was

emitted during the AR procedures. The RGBD-CBCT system in [93, 94] yielded

on average 2.14 X-rays, although it required a pre-procedural CBCT scan of the

phantom, inducing the higher radiation dose of 1.6 cGY(cm2).

Finally, evaluating the outcome of the procedure with regard to the drilling error,

AR (4.76mm) outperforms RGBD-CBCT (5.13mm), both being marginally worse
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A B

Current frustum Target frustum

C-arm 
operator

C-arm 
operator

Current frustum Target frustum=

Figure 8.14: Visualization of a target frustum (A) allows the C-arm operator to align
the current C-arm frustum with the surgeon’s desired perspective (B) and eliminate
the waste of time and radiation during fluoro hunting. This concept is an example
of the capabilities of interactive frustums on moving information between different
stake holders in the OR, i.e. surgeon, patient, X-ray technician, staff, etc.

than SOP (4.61mm). Considering that we only instructed the surgeons to drill

through the tube and not precisely through the center of the tube, we regard these

difference as negligible. It is important to note that, our AR system performed sim-

ilar to the conventional X-ray method in terms of accuracy, while reducing time by

a factor of 5, number of fluoroscopic acquisitions by a factor of 20, and the radiation

dose by a factor of 17.

We observed that, in addition to the planning information, the surgeons took

multiple other considerations into account while deciding on the insertion path. One

of which was direct visualization of the X-ray images that they acquired for planning.

Observing the C-arm pose with respect to the patient, and the visualization of the

images within their viewing frustum, assisted them in better localizing the target

structure. In our setup, tactile feedback did not play a significant role; however,
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in reducing real fractures, haptic feedback further assists the surgeon in identifying

whether the wire is inserted in specific anatomy or not.

The SLAM-based error for HMD is dominantly along the principal axis of the

viewer, i.e., direction pointing away from the user to the scene. When the users are

presented with a trajectory to follow, we observed that they naturally place their

heads in the direction of the target trajectory for optimal visualization and ease of

alignment (Fig. 8.3). This configuration is advantageous since the maximum tracking

uncertainty is in the direction of the drilling trajectory, which is the direction that

is not relevant to the drilling task. This is because the amount of penetration of the

drill is easily identified from X-ray images. This uncertainty behavior in AR has been

previously investigated by Hoff et al. [239] and Mischke et al. [240].

A similar trend to the K-wire experiment is observed with the measurements for

the placement of the acetabular cup, demonstrating the effectiveness of our AR sys-

tem, we compare it against SOP and a NI-AR system as presented in [238]. As shown

in Fig. 8.15, the execution time is considerably lower using AR; even when combining

planning and execution time, it took the surgeons 122.38 sec, which is nearly half of

the 235 sec that they needed under SOP and comparable to the 110.6 sec with NI-AR.

Both differences are statistically significant. Furthermore, the number of fluoroscopic

images were reduced; every surgeon used exactly 8 images, which are again merely

the images required for planning. This resulted in an average dose of 1.25 cGY(cm2),

which is significantly lower than with SOP, where the surgeons used an average of

213



CHAPTER 8. SPATIOTEMPORAL-AWARE AUGMENTED REALITY USING
HEAD-MOUNTED DISPLAYS

Figure 8.15: Comparison of time and total radiation dose during cup placement with
AR and SOP approaches. The orange boxplot represents the total time including the
planning time. The red (+) denote outliers, where in the leftmost plot the top sign
belongs to the orange boxplot, and the bottom (+) to the blue plot.

13.75 radiographs with an average dose of 1.96 cGY(cm2), and lower than with NI-AR

where one pre-procedure CBCT lead to a dose of 1.83 cGY(cm2). The objective of

this procedure was to achieve abduction and anteversion angles of 40◦ and 15◦, re-

spectively, which lie in the clinical safe-zone [189]. The respective errors are shown in

Table 8.5 and Fig. 8.13. The outcome distinctly displays a more accurate cup place-

ment using the spatially-aware immersive AR system (1.57◦ & 1.46◦) compared to the

SOP (4.76◦ & 4.78◦), compared to the NI-AR system (1.78◦ & 1.43◦) the abduction

error is slightly less, whereas the anteversion error is marginally higher (0.03◦). The
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differences in the abduction and anteversion errors between the immersive AR system

and SOP are both statistically significant.

Concerning the planning and execution time, some participants such as P2, P6,

and P8, who had previous experience with AR HMDs and were familiar with our

system performed faster than other users, especially compared to P1 and P7, who

had no prior exposure to HMDs. In order to reduce the disparity in acquaintance

with the technology, each participant completed a short training in which they were

familiarized with the headset and interaction techniques used in our software. Despite

the same training session, the differences mentioned above still seem related to expe-

rience with AR. We expect the performances to level after users gain more experience

with the system. These outcomes are not surprising as any new technology requires

time and experience to exploit its full potential.

For both procedures the deployment of our AR system lead to a comparable or

higher accuracy, fewer X-ray images with a consequently lower radiation dose. For the

total time, it has to be noted that our planning time does not include the recording

of the X-ray images that were necessary to plan the procedure. This step however,

as shown in [241], can be fully automated, resulting in an immediate availability of

the fluoroscopic images.
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8.5 Conclusion

This chapter presented the embodiment of a novel interaction concept based on

spatiotemporal-aware AR. In our work, we aimed to provide meaningful registration

and visualization without the need for tracking patients or tools with outside-in nav-

igation hardware. Instead, we brought intuition to visualization by connecting the

viewing frustums of the scanner with the surgical team. For the two orthopedic use

cases presented in this chapter, our immersive AR system demonstrated improve-

ments in time, number of X-ray acquisitions, radiation dose, and outcome during cup

placement.

The most significant source of error is from the localization of the AR HMD using

SLAM. This error is present both during calibration and application. If additional

sensors such as IMUs and depth cameras would constraint the tracking algorithm in

the future, we can expect improved tracking and smaller drifts.

The spatiotemporal awareness inherent in AR overhauls the ill-posed communi-

cation between the surgeon, staff, and information; e.g. Fig. 8.14 shows the potential

role of flying frustums and AR in effectively communicating desired X-ray views to

the technician, eliminating unfavorable views and reducing the staff burnout. Though

assessment of this concept requires an additional approved study, we believe its in-

troduction to the community paves the way in opening new paths for research in this

area and expedites the translation of AR-based solutions into future ORs.
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Chapter 9

Patient-Specific Image

Augmentation using Partial

Structural Symmetry

9.1 Introduction

Symmetry is an integral property of nature and is ubiquitous in human anatomy

and living organisms. For instance, there is considerable amount of structural corre-

lation across the sagittal plane of the human pelvis. Quantitative analysis of healthy

pelvis data indicate that 78.9% of the distinguishable anatomical landmarks on the

pelvis are symmetric [242], and the asymmetry in the remaining landmarks are still

tolerated for orthopedic surgeries [81].
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In the remainder of this section we highlight previous works that aimed at detect-

ing symmetry in shapes and images (Sec. 9.1.1), present the importance of symmetry

in surgical practice (Sec. 9.1.2), and propose a novel methodology for exploiting partial

symmetry in human pelvis with an end-to-end solution to incorporate the knowledge

from symmetry and augment surgeon’s information during fracture care procedures

(Sec. 9.1.3).

9.1.1 Related Work

There is a great body of work in the computer vision community that investi-

gated symmetries in 2D images. The knowledge from symmetry has found several

applications, namely in depth estimation [243], detecting camera projections [244],

single-view scene reconstruction [245], and image segmentation [246]. In this chapter,

we present the state of relevant art in the computer vision and the computational

geometry community. It is important to note that most of these works are either

applied to 2D images or 3D meshes. Hence, they can find applications in exploring

symmetries in 2D medical images or 3D segmentation of the anatomies. The sym-

metry on 3D voxelized medical data, which is the center of focus in this chapter, has

not been extensively investigated in the past.

Symmetry recognition has leveraged the success of feature detection methods in

computer vision, and used image-based key-points to identify local and global symme-
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tries. The approach by Loy and Eklundh [247] detects symmetric pair of points and

forms local constellations of symmetries that collectively describe a global symme-

try. This method searches for symmetries on multiple scales, and all orientations and

locations. Bilateral symmetry can also be identified in 2D images under affine and

perspective transformations by investigating vanishing points that link quadruplets

of feature points in an image [248, 249]. To increase invariance to local illumina-

tion and improve robustness, affine invariant edge-based features were suggested as

replacement of intensity-based features to locate planar symmetry, where each edge

correspondence casts a vote to find the dominant reflection axis [250]. The work by

Lee and Liu [251] studied glide-reflection, a combination of translation and reflec-

tion. Recent works have primarily focused on using convolutional neural networks to

predict symmetries [252, 253].

Despite the advancements in symmetry detection in 2D images, the immediate

translation of such techniques to medical imagery data is yet unclear due to different

properties and use-cases. For instance, X-ray transmission imaging, in contrast to

reflective imaging, is based on different X-ray attenuation from different tissue. A

single pixel in an X-ray image relates to all 3D points along the ray. As a result of

attenuation-based physics governing the image formation, depending on the viewing

direction, anatomical landmarks may vanish or change appearance. Hence, classic

feature detection methods fail to identify key-points [178], and symmetry detection

based on feature points can become unreliable. Additionally, symmetry recognition
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d)

b)a)

c)

Figure 9.1: During an iterative strategy, the parameters associated to volumetric
symmetry are estimated. In (a-b) the plane is visualized given the initial estimate,
and in (c-d) it is visualized given the parameters at the convergence. The color blue
represents the reconstructed bone model on the operative side of the patient.

is particularly useful for medical and interventional imaging where the knowledge of

symmetry can transfer to 3D, and enable an understanding of the geometry of the

contralateral side. This requires a more complex parameterization beyond detecting

an in-plane axis of symmetry [254].

Determining symmetry in 3D shapes has been a topic of interest in the field of

computational geometry [255, 256]. Kazhdan et. al. proposed a Fourier-based de-

scriptor to score reflective symmetries associated with planes passing through the

center of the mass of the objects [257, 258]. Podolak et. al. introduced an approach

to recognize all symmetry planes, not limited to the ones passing through the cen-

ter [259]. Symmetries were also detected in the form of intrinsic symmetries which
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includes all self-isometric deformations [260, 261]. Lastly, bilateral reflective symme-

tries were estimated within point clouds from the real environments using methods

inspired from the iterative closes point strategy [262–264].

9.1.2 Clinical Motivation

Ensuring quality of fracture reduction in pelvis and acetabulum surgery is paramount.

Studies have consistently shown that anatomic fracture reduction and stable fixation

leads to improved outcomes in patients with these complex injuries [265–270]. For

example, in a study of 31 patients who underwent open reduction internal fixation

of an isolated pelvic fracture, Pastor et. al. demonstrated that clinical outcomes

correlate with pelvis symmetry at a six-months time point [265]. Furthermore, stud-

ies demonstrate that anatomic articular surface reduction is critical in preventing

post-traumatic arthritis in the acetabulum [271].

Surgeons have sought to take advantage of osseous symmetry for performance and

assessment of fracture reduction. For example, Zhang et. al. 3D printed a mirrored

model of the healthy side for comparison in lower limb long bone fractures [272]. Sym-

metry has also been shown to be useful in the distal radius and facial fractures [273,

274]. However, neither viewing a 3D printed mirrored version of the healthy contralat-

eral side, nor a mirrored radiographic image of the healthy side allow the surgeon to

visualize the live comminuted operative side and the mirrored healthy side simultane-

ously and in the same position and orientation on the surgeon’s display. The ability
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to do so, could be substantially beneficial for intra-operative fracture reduction and

assessment in pelvis and acetabulum fracture surgery. Similar concept can apply

to other fields of surgery including brain and crainiofacial procedures [275–279], or

breast reconstruction procedures [280–282].

9.1.3 Proposed Solution

In this work, we outline an end-to-end methodology to detect partial symmetry in

human anatomy and exploit this knowledge intra-operatively as a reference to restore

structural symmetry of fractured pelvic bone. Our fully automatic solution uses a

structure-based cost, an intensity-based robust estimator, and a probabilistic-based

loss to identify the plane of symmetry. After identifying the partial symmetry, healthy

side of the patient anatomy is mirrored across the bilateral symmetry plane, which

then allows simulating the ideal bone fragment configurations. This information

is provided by overlaying the fluoroscopic image with a forward-projection of the

mirrored anatomy obtained from the CT data. Our contributions enable the surgeon

to use patient CT scans intra-operatively, without explicitly viewing the 3D data,

but instead using 2D patient-specific image augmentation on commonly used X-ray

images. In contrast to surgical navigation systems that provide update in relation to

pre-operative data, our solution provides interventional feedback with respect to the

desired outcome.
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9.2 Materials and Method

9.2.1 Theory

Bilateral reflective symmetry is defined as the group of involutive isometric maps

Mg ∈ Ē(3), where Ē(3) consists of self-isometries such that Ē(3) = {h ∈ E(3),o ⊆

P3 | h(o) = o}, where o is defined in the 3D projective space P3. The group E(3)

denotes all isometries of R3. Transformation Mg mirrors the object o across a sym-

metry plane such that o− = Mg(o
+), where o−,o+ ⊆ P3 are sub-volumes of object o

on the opposite sides of the symmetry plane.

Assuming the plane of symmetry is the Y-Z plane, the extrinsic symmetry is

expressed via Mg := g mx g
−1, where g is a member of the Special Euclidean group

SE(3), and mx reflects the space about the X-axis:

mx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.1)

Transformation Mg maps the points p,q ∈ P3 to p̄ = g mx g
−1 p and q̄ =

g mx g
−1 q, respectively. The distance between p̄ and q̄ is then computed as:

∥p̄− q̄∥2 =
⃦⃦
g mx g

−1 (p− q)
⃦⃦
2
. (9.2)
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Since, det(g mx g
−1) = det(g)(−1)(det(g))−1 = −1, then i) ∥p̄− q̄∥2 = ∥p− q∥2,

hence Mg is an isometry, and ii) due to the negative determinant, Mg is orientation

reversing, therefore is an anti-conformal map.

9.2.2 Problem Formulation

We propose to estimate extrinsic symmetry parametrization by minimizing the

following cost:

argmin
g

D(Mg|g0) := dI(o,Mg(o)) + λ dD(o,Mg(o)). (9.3)

In Sec. 9.2.3 the prior parametrization g0 is automatically estimated based on

surface correspondences detected from the anatomy. In Sec. 9.2.4 we present a ro-

bust estimator term that will be used to minimize an intensity-based distance dI(.),

followed by a distribution-based regularization term dD(.) which will be discussed in

Sec. 9.2.5. Fig. 9.1 demonstrates the iterative step that yields the optimal plane of

bilateral symmetry by minimizing the total loss D(.). Finally, surgical image aug-

mentation using interventional image registration is discussed in Sec. 9.2.6.
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9.2.3 Automatic Initialization of Extrinsic Sym-

metry via Global Intrinsic Symmetry

To compute an initial estimate g0 for the plane of partial symmetry, we first esti-

mate a set of point correspondences on the contralateral sides of the anatomy which

satisfy the properties of intrinsic symmetry. Intrinsic symmetry Mi(.) is associated

with all volumetric deformations that preserve pairwise geodesic distances on a sym-

metric surface. All correspondences are detected automatically and globally [261], and

are used to compute an initial estimate of the partial symmetry plane. An overview

of this step is demonstrated in Fig 9.2.

9.2.3.1 Symmetry Invariant Candidates

The candidate symmetry invariant correspondences p are selected such that they

share a common intrinsic symmetry, i.e. Mi(p) = p. Selecting symmetry invariant

point candidates are particularly crucial in the pelvic trauma application due to the

imperfect and incomplete symmetry which are caused by fractures and dislocations.

The critical points p of a symmetry invariant function Φ = {Φ(.) : o → R,

Φ(Mi(p)) = Φ(p)}, are invariant to symmetry on the surface of the object o. To

verify this, from chain rule, we drive:

∇Φ(Mi(p)) M
′
i(p) = ∇Φ(p). (9.4)
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For the critical point pc, it can be shown that∇Φ(Mi(pc)) = 0 if-and-only-if ∇Φ(pc) =

0 , implying that Mi(pc) = pc, hence pc satisfying symmetry invariance condition.

The Average Geodesic Distance function is used as the symmetry invariant func-

tion to generate candidate points and is defined as below [261]:

Φ(p) =

∫︂
q∈o

d(p, q) dq. (9.5)

9.2.3.2 Optimal Intrinsic Symmetry via Möbius Transform

Every genus zero surface can be mapped to a unit sphere S, also known as the

Riemann sphere [283]. The group of Möbius transformations models all the angle

preserving isometries between the Riemann sphere to itself. Via stereographic pro-

jection, Riemann sphere can then be mapped to the extended complex plane. There-

fore, Möbius transformation is represented as the mapping between extended complex

planes. Möbius transformation is formulated on the extended plane via the fractional

linear function, also known as homographies:

h(z) =
az + b

cz + d
, a, b, c, d ∈ C. (9.6)

Möbius group that models all isometries is characterized using only 6 real parameters,

hence 3 point correspondences on the complex plane are sufficient to uniquely compute

a Möbius transformation in a closed form. This property allows the intrinsic symmetry
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on a mesh to appear as extrinsic symmetry on the extended complex plane. Using

only 6 parameters has the advantage of computing the parametrization for intrinsic

symmetry both globally and efficiently.

The search for the parametrization of symmetry takes place on the anti-Möbius

group, which includes the Möbius group augmented with reflections [261]. The anti-

Möbius transforms cover the set of orientation reversing isometries which are instances

of the anti-conformal maps.

To use the Möbius parameterization, we first construct a binarized volume by

segmenting bone from tissue and air using histogram thresholding. Next, a genus

zero surface is constructed from the object using Reeb graphs [284]. The pseudo-code

for this step is presented in Alg. 3.

Algorithm 3 Construction of the genus zero mesh

1: initialize empty graph G = (V = {}, E = {})
2: initialize empty vertex set Vprevious = {}

3: for each transverse slice s = 0, 1, 2, . . . do
4: initialize empty vertex set Vcurrent = {}
5: for each connected component c = 0, 1, 2, . . . do
6: add vertex with tag (s, c) into V and Vcurrent
7: for each element (sp, cp) in Vprevious do
8: if (s, c) is connected to (sp, cp) then
9: add edge (s, c)− (sp, cp) to E
10: end if
11: end for
12: Vprevious = Vcurrent
13: end for
14: end for

15: close all cycles in the Reeb graph G by adding the convex hull of the connected
components
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On the genus zero surface, a set of feature points (triplets and quadruplets of point

correspondences) are selected iteratively, and each time the parameters of a unique

Möbius transformation is estimated. Followed by each step, all surface elements on the

complex plane are warped given the current Möbius estimate, and pair-wise geodesics

are measured. The mapping that yields the most number of mutually closest points

(most inliers) is selected to parametrize the intrinsic symmetry on the surface [285].

9.2.3.3 Refinement of Point Correspondences

To incorporate the most reliable candidates for estimating the parameters of ex-

trinsic symmetry from the set of point correspondences, we employ a two-stage RAN-

dom SAmple Consensus (RANSAC) strategy [138]. After the completion of this step,

the outlier correspondences that are not with agreement with the global symmetry

properties are eliminated from the list.

The vector connecting a point p on the surface to its reflection p′ = gmxg
−1p

is given by (gmxg
−1 − I)p. For any arbitrary point p, it can be shown that this

vector is parallel to g1, where g =

[︃
g1 g2 g3 g4

]︃
. This equality can be intuitively

explained given the convention that the plane normal is parallel to the X-axis of the

local frame. Therefore, bilateral reflections across the symmetry plane occur in the

direction of the local X-axis. The local X-axis of the plane is parallel to g1 which

expresses the image of the world X-axis: g1 = g

[︃
1 0 0 0

]︃⊤
. Hence, the vectors

of all correspondences that satisfy extrinsic symmetry are jointly parallel to g1. We
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leverage these relations in a RANSAC setting and eliminate all correspondences with

non-agreeing connecting vectors.

During a second RANSAC, we seek consensus among the midpoints of the corre-

spondences. The midpoint p̄ lies on the symmetry plane and is invariant to reflection:

Mg p̄ = gmxg
−1(

p+ p′

2
) = gmxg

−1(
p+ gmxg

−1p

2
)

= gmxg
−1(

I+ gmxg
−1

2
p) =

gmxg
−1 + I
2

p = p̄.

(9.7)

We employ the second RANSAC to remove outliers from the set of correspondences

where there are no strong agreements on the midpoints. At the end of this stage, we

identify the key points that only satisfy extrinsic symmetry, selected from a subset of

the correspondences that satisfied intrinsic symmetry on the surface.

9.2.3.4 Extrinsic Symmetry from Point Correspondences

The parametrization g0 of the partial symmetry plane in 3D is defined via a

point n0 and a plane normal n⃗. To obtain these parameters which describe extrinsic

symmetry, we compute the mean-normalized matrix P̄ of all N midpoints. Singular

value decomposition of this matrix yields:

P̄ n×3 = Un×nΣn×3V
T
3×3. (9.8)
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In this formulation, U contains the left singular vectors of P̄ n×3, Σ is a diagonal

matrix with singular values of P̄ n×3 as the diagonal elements, and V contains the

right singular vectors of P̄ n×3. The last column vector v3 of V =

[︃
v1 v2 v3

]︃
defines

the least principle component of the data, i.e. axis with minimum variance. This

vector defines the normal to a plane that has the closest distance to all midpoints.

Lastly, the point n0 is computed as the mean of all midpoints: E[p̄].

9.2.4 Robust Estimators for Detecting Imperfect

Symmetry

After an initial parametrization g0 of the plane is obtained, the intensities are

compared iteratively between the voxel elements across the plane of partial symmetry,

until the parameters Mg that minimize the intensity loss dI(o,Mg(o)) are estimated.

A major challenge associated with using an intensity-based approach is the pres-

ence of severe outlier regions which may result in incorrect symmetry parametrization

given an intensity-based criteria. The symmetry outliers are the results of i) unilat-

eral dislocations and fractures, and ii) imperfect symmetry in the original anatomy.

Normalized Cross-Correlation (NCC) is a commonly used intensity-based measure

which is greatly sensitive to noise and outliers [286]. Therefore, it is crucial to employ

a symmetry detection mechanism that is robust to the outlier regions. We suggest

using Tukey biweight robust estimator which automatically downweights or supresses
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the regions that exhibit consistently high errors, and prohibits those elements from

contributing to the total loss [287]. Inspired by Tukey robust regression we suggest

the following loss:

dI(o,Mg(o)) =

|Ωs|∑︂
i=1

|ρ(ei(Mg))|
|Ωs|

, (9.9)

where Ωs is the spatial domain of the volumetric data. The element-wise error

ρ(ei(Mg)) is computed as follows:

ρ(ei(Mg)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ei(Mg)

[︃
1−

(︂
ei(Mg)

c

)︂2]︃2
; |ei(Mg)| ⩽ c,

0 ; otherwise.

(9.10)

Parameter c sets a threshold that is used for classifying the voxel elements as outliers.

The element-wise weighted residuals are computed as:

ei(Mg) =
ri(Mg)

S
, such that ri(Mg) = I(oi)− I(Mg(oi)). (9.11)

In Eq. 9.11, the term I(.) denotes voxel intensity.

It is suggested in the literature that c = 4.685 provides around 95% asymptotic

efficiency of linear regression for normal distributions [287]. This value is computed

assuming the residuals ei are drawn from a unit variance distribution. To relax this

constraint, the factor S is used as a scaling parameter and is computed based on
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median absolute deviation:

S =
MD

0.6745
, MD = median(rj)

j∈Ωs

. (9.12)

As demonstrated in Fig. 9.3, in contrast to L2 and L1 norms, Tukey biweight

disparity term completely suppresses the residuals beyond a threshold, regarding the

elements yielding excessive errors as outliers. This behaviour is desired for traumatic

cases, since the outlier regions, i.e. dislocated bone, should be completely excluded

during symmetry identification, allowing the plane parameter estimation to solely

rely on the partial symmetry present in the anatomy.

9.2.5 Regularization based on Bone Distribution

To further support the identification of partial symmetry, we exploit a biological

fact that, even if injured, dislocated bone fragments remain within the body. On this

basis, a regularization term is introduced to maximizes the similarity between the

distribution of bone densities across the symmetry plane. This concept is visualized

in Fig. 9.4.

To materialize this notion, probability distribution functions are computed in the

form of image histograms from voxel intensities. A regularizer based on Normalized

Mutual Information (NMI) is used to acquire a similarity score between the density
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Riemann Sphere

Extended 
Complex Plane

World 
Frame

Plane 
Frame

a) b)

c) d) e)

Figure 9.2: First step in computing the initial parametrization of extrinsic symmetry
on an object that exhibits imperfect symmetry involves transforming the surface of
the object to the Reimann sphere (uniformization) and consequently to the extended
complex plane (stereographic projection). These transformations are shown in parts
(a-b). Anti-Möbius group is then used to model the intrinsic symmetry on the
complex plane and assign self-symmetry correspondences to vertices on the surface of
the pelvis. During a two-step RANSAC scheme, the correspondences are pruned and
narrowed down to only inliers which satisfy the extrinsic symmetry properties (c-
d). As the result of the first and second RANSAC, correspondeces shown in dashed
lines are removed due to dissimilar directions and midpoints, respectively. Extrinsic
symmetry is subsequently computed using least squares minimization (e).
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Figure 9.3: Comparison of the Tukey bi-weight with L2 and L1 norms. The horizontal
axis represents the residual error, and the vertical axis shows the corresponding loss.
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a) b)

c) d)

Figure 9.4: Distribution of the bone HU values across the symmetry plane before and
after the estimation of symmetry plane. Comparing the histograms in (b) and (d)
suggests high similarity when the plane dissect the volume bilaterally in the center.

distributions on the contralateral sides:

dD(o,Mg(o)) = −
H
(︂
I(o)

)︂
+H

(︂
I(Mg(o))

)︂
H
(︂
I(o), I(Mg(o))

)︂ . (9.13)

In the formulation presented in Eq. 9.13, H(.) is the entropy of voxels’ intensities.

The regularizer term dD(.) is globally non-convex and yields local minimas for

various plane parametrizations. An example case is shown in Fig. 9.5, where the NMI-

based score is nearly equal for two cases, while the robust estimator cost measured

based on Tukey biweight disparity is substantially (99.1%) lower at the configuration
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a) b)

Figure 9.5: Two different plane estimates with near identical distribution score, and
substantially different Tukey-based score.

in Fig. 9.5-b. Therefore, the density-based cost cannot replace the Tukey-based term,

and is merely used as a regularizer to ensure similar bone distributions contralaterally.

9.2.6 Interventional Image Registration and Aug-

mentation

The plane of partial symmetry with the parametrization Mg dissects the volume

bilaterally, yielding sub-volumes oi and oh, denoting the injured and healthy regions,

respectively (o = [oi,oh]). Using this parametrization, the non-fractured portion of

the data can be mirrored across the plane as ōh = Mg(oh), resulting in a non-fractured

model of the patient: ō = [ōh,oh]. This patient-specific reconstructed model is then

used as a template of patient anatomy, representing the anatomical structures ”as if

they were repaired”. It is important to stress that, although the human pelvic skeleton

is not entirely symmetric, it is common for an orthopedic trauma surgeon to consider
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Figure 9.6: Interventional X-ray images are augmented with the contours of the bone
extracted from the mirrored CT volume. The green contours serve as road-map,
demonstrating desired configurations for bone fragments in the perspective of each
X-ray image such that bilateral symmetry is restored.

it symmetric, and use the contralateral side as reference.

To exploit the patient-specific template ō intra-operatively, each interventional

C-arm fluoroscopy image is augmented with the contours of the reconstructed bone

in the mirrored CT volume as demonstrated in Fig. 9.6. Enabling such augmentation

requires two steps. In the first step, the transformation that describes the projective

relation between the pre-operative CT image and the intra-operative X-ray image is

computed via 2D/3D image registration by maximizing NCC score defined below:

argmax
R,t,k

NCC (R, t, k|IX , ID) =

|ΩX,D|∑︂ IX · ID(R, t, k
⃓⃓
o)

σXσD
. (9.14)

This formulation optimizes over the parameters of the rotation R, translation t, and

intrinsic geometry k. The parameters IX and ID are the mean-normalized X-ray and

Digitally Reconstructed Radiographs (DRRs) generated from the fractured patient

data given the parameters (R, t, k). Finally, ΩX,D is the common spatial domain

of the two images, and σX and σD are the standard deviations of the X-ray and
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DRR images within ΩX,D. In the second step, augmented image IA is constructed

by overlaying the X-ray image and the 2D DRR that is computed from the mirrored

volume, i.e. IA := IX ∪ ID(R, t, k, ō).

9.3 Experimental Results

In this section we evaluate the proposed methodology for detecting and exploiting

symmetry under a variety of different conditions. We present both quantitative and

qualitative outcome on data with synthetic fractures, as well as patient data with

complex unilateral fractures. To generate ground-truth for the evaluations in sec-

tions 9.3.1-9.3.4, we synthetically construct symmetric pelvis data using patient cases

from the NIH Cancer Imaging Archive. In Sec. 9.3.5, the distance between anatomical

landmarks on pelvic cases with simulated unilateral fractures were compared before

and after applying the symmetry transform. Finally in Sec. 9.3.6, the symmetry de-

tection and surgical image augmentation is demonstrated on three patient data with

unilateral pelvic fractures.

Bound constrained by quadratic approximation method was used for the optimiza-

tion of the non-linear cost in Eq. 9.3. For all experiments presented in this section,

the maximum number of iterations was set to 100. The rotation errors are measured

as the angle between the normal r̂ of the estimated symmetry plane and the ground-

truth normal r1. Since the plane normal is in the direction of the X-axis of the local
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frame, hence the normal vectors are defined via the first column vector of the rotation

matrix associated to the plane pose. The rotation error is formulated as:

θe = cos−1(r̂⊤1 r1). (9.15)

Since Euclidean distance is not explicitly defined for non-parallel planes, we define

a translation measure as the projection of the translation difference (t− t̂) onto the

plane normal:

te =
⃓⃓
(t− t̂)⊤r1

⃓⃓
. (9.16)

9.3.1 On the Effect of Regularization

We evaluated the performance of the suggested symmetry detection cost in Eq. 9.3

at different regularization levels, where λ was varied between 0.0 and 1.0. In Fig. 9.7

results are presented for data without fractures as well as data with different fracture

patterns. Each case is evaluated 4 times, each with a random initialization in a

neighborhood around the ground-truth within the ranges of ±15mm and ±15◦ for

translation and rotation along each axis, respectively. As shown in the results, all

regularizers improve the convergence compared to the case where no regularization is

used, however no significant differences is observed between different regularization

parameters.
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Figure 9.7: Translation and rotation errors given different regularization factor λ ∈
[0, 1]
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9.3.2 Sensitivity to Imperfect Symmetry

The performance of the symmetry costD(.) presented in Eq. 9.3 was tested against

different levels of noise and bone dislocations. In all experiments, the regularization

factor λ was set to 0.5, allowing the dI(.) to be the dominant term driving the total

cost, and dd(.) serving as a fidelity term. The amount of dislocation (outlier) was

varied between 0% to 30% of the entire volume, and the Gaussian noise between 0%

and 40% of the highest intensity in the volume. For each given outlier and noise

level, the symmetry detection was repeated 20 times, each time randomly sampling

an initialization parameter within the maximum range of ±15mm and ±15◦ around

the ground-truth. Results are presented in Fig. 9.8. The left column are heatmaps

from the average error in translation and rotation, and the right column illustrates the

corresponding heatmap for their standard deviations. Results indicate smaller errors

in the top left quadrant in each sub-plot, which correspond to dislocations between

0% and 15% of the entire volume, and the Gaussian noise between 0% and 20%.

9.3.3 Capture Range

We characterize the dependence of the regularized Tukey cost on the initialization

parameters. In Fig. 9.9, the mean rotation and translation errors are presented for

varying initialization parameters. The elements on the horizontal axis represent the

level of misalignment at the initial configuration, where at each step the ranges for the
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Figure 9.8: Error in detection of partial symmetry plane evaluated against different
amounts of noise and bone dislocation

initialization misalignment are increased by 5mm and 5◦ along each axis of translation

and rotation, respectively. For instance, the first and second elements on the horizon-

tal axis in Fig. 9.9 which have yielded lower errors show initialization samples for each

axis between the ranges of [(0mm, 5mm)− (0◦, 5◦)] and [(5mm, 10mm)− (5◦, 10◦)],

respectively. Given each range, the sampling is repeated 10 times.

9.3.4 Accuracy of Global Initialization

The initialization strategy that leverages the combined properties of intrinsic and

extrinsic symmetry (Sec. 9.2.3) was investigated to assess whether global initialization
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Figure 9.9: Dependence of the regularized Tukey cost on initialization. The horizontal
axis corresponds to the extent of misalignment at the intialization step, and the
vertical axis represents the translation and rotational errors after convergence.

parameters yield outcome within the capture range. To this end, fractures on the iliac

wing bone were applied to three pelvic data. The errors in plane detection, as well

as the details on the two RANSAC steps are presented in Table 9.1.

Table 9.1: Errors in detecting the bilateral symmetry plane are estimated given the
initialization parametrization. The last three columns represent the total number
of landmarks, inliers with agreement on the direction of the vectors connecting the
correspondence, and inliers with consensus on the mid-points.

Volume
Rotation Translation # Landmarks
Error Error initial RANSAC 1 inliers RANSAC 2 inliers

1 5.04 3.44 101 31 24
2 8.17 7.57 99 15 6
3 10.23 1.27 92 22 14
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Table 9.2: Distances between the four anatomical landmarks on the surface of the
pelvis with their counterparts on the mirrored template are presented as mean ± SD.

Fracture L1 L2 L3 L4
Iliac wing 3.49 + 2.41 2.83 + 2.55 3.44 + 1.52 2.58 + 1.28
Pelvic ring 2.24 + 1.13 3.96 + 2.62 1.78 + 0.79 1.84 + 0.86
Vertical shear 4.96 + 1.94 3.35 + 2.18 4.07 + 2.17 4.52 + 2.81

9.3.5 Estimation of Partial Symmetry on Data with

Synthetic Fractures

Three prevalent unilateral pelvic fractures, namely, iliac wing fracture, pelvic ring

fracture, and vertical shear fracture were applied to four patient data. Given each

case, the plane of partial symmetry were detected, and symmetric patient templates

were constructed. In Table 9.2 we report the distance from the anatomical landmark

on the original volume before applying the fractures to their reconstructed correspon-

dence on the mirrored model. For the measurements, we considered four separate

landmarks that were distributed on the surface of the bone, including, L1: anterior

superior iliac spine, L2: posterior superior iliac spine, L3: ischial spine, and L4:

ischial ramus. Fig. 9.10 shows three simulated radiographs from each fracture model

that are augmented with the edge-map extracted from gradient-weighted DRRs of

the mirrored template. These contours represent the bone at desired configuration

”if the bilateral symmetry was completely restored”. This figure also highlights the

abnormal area on the bone that was automatically detected using the Tukey-based

cost as the symmetry violator region.
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9.3.6 Estimation of Partial Symmetry on Patient

Data with Trauma Injuries

Qualitative outcomes are visualized in Fig. 9.11 for three patient cases with severe

unilateral traumatic injuries. For each case, two fluoroscopic images were separately

registered to the patient CT. As the result of 2D/3D registration, the relative projec-

tive transformations describing the spatial relation between the X-ray and CT were

computed. Next, for all three models, symmetry was detected and patient-specific

templates were reconstructed by mirroring the healthy side of the bone across the

extrinsic symmetry plane. Finally, DRRs were generated from the patient templates

using the projective transformations associate with each X-ray image, and were aug-

mented onto their corresponding fluorscopic images.
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a)

d)

g)

b)

e)

h)

c)

i)

f)

Figure 9.10: Ilic wing fracture (a-c), pelvic ring fracture (d-f), and vertical shear
fracture (g-i) are shown on a pelvis data. The orange arrows in the first two columns
represent the area with the fracture. The green contours that are computed from
the symmetrically reconstructed model suggest road-maps in each image perspective
that can result in fracture reduction and symmetry restoration. The region colored in
red in the last column represents the area that was considered as symmetry violator
(outlier) by the Tukey-based term dI(.).
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9.4 Discussion and Conclusion

In this work we present an end-to-end methodology for automatic identification of

global symmetry in pelvis data with severe unilateral fractures, and exploit the knowl-

edge from symmetry to provide interventional image augmentation. Three measures

are combined to identify partial symmetry: i) the structural geometry is used in the

Möbius space to determine intrinsic and extrinsic symmetry on the surface, ii) voxels

are used with Tukey robust estimator to score the similarities between the inten-

sities, and iii) normalized mutual information is used to match the distribution of

bone across the sagittal plane of the patient. Regularization is important when the

amount of bone dislocation is large, and Tukey’s cost cannot solely drive the symme-

try plane to the optimal pose. Each of these three novel steps are designed with the

consideration of being insensitive to outlier regions that are caused by the injury.

The clinical relevance of this solution is manifested by considering common prac-

tices in surgical routine where orthopedic traumatologists aim at bringing displaced

bone fragments into alignment with their natural biological configurations. This is

achieved by replicating the contralateral side, hence restoring symmetry in the inter-

nal structures. It should be noted that this solution is merely admissible for unilateral

fractures, that according to pelvis fracture classification [288], involves a considerable

number of cases. Consequently, direct comparison of bony structures across the sagit-

tal plane becomes possible for such cases.

A preeminent criteria in determining symmetry is the Tukey-based robust esti-

248



CHAPTER 9. PATIENT-SPECIFIC IMAGE AUGMENTATION USING
PARTIAL STRUCTURAL SYMMETRY

mation which automatically suppresses voxel elements that consistently produce high

errors. To improve the estimation of the symmetry plane, a novel regularization term

based on bone density distribution is added to the overall loss function. In Sec. 9.3.1

we evaluated the accuracy of symmetry estimation with respect to different regulation

factors. Results in Fig. 9.3 indicate substantial improvement when using regulariza-

tion. However, the results do not vary significantly when different λ factors are used.

For consistency, we used λ = 0.5 for all other experiments in Sec. 9.3.

From the results in Fig. 9.9 we conclude that the first three initialization ranges

yielded average translation error of < 2mm and rotation error of < 0.2◦. These are

associated with initialization parameters within the ranges of (0mm,±15mm) trans-

lation and (0◦,±15◦) rotation near the ground-truth. A comparison between these

results and the errors of the proposed automatic initialization approach presented in

Table 9.1, proves that our suggested initialization yields outcome within the capture

range of the cost in Eq. 9.3. As also appears in Table 9.1, the correspondence-based

initialization demonstrates higher performance in predicting the translation parame-

ters compared to rotation.

We simulated severe and unstable unilateral dislocations, and reconstructed a

fully symmetric patient template. Comparing the relevant anatomical landmarks on

the original and reconstructed pelvis yielded a mean discrepancy of 3.26mm between

different bony features. Finally, we also presented view-specific road-maps to guide

towards an optimal repair of pelvic fractures on patient data with trauma injuries.
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An essential characteristic of our solution is the automatic outlier detection that is

highlighted in the last column of Fig. 9.10. Our approach towards outlier identification

can enable several other applications in different disciplines of radiology and surgery

where regions that violate symmetry can be classified, and consequently be used to

improve pre-operative planning as well as provide real-time feedback to surgeons on

whether biological symmetry is properly restored. Learning-based solutions can also

substantially benefit from such outlier detection mechanisms by automatically shifting

the focus of the artificial agent to relevant regions with structural anomaly.

In conclusion, we presented a solution that exploits partial symmetry in human

anatomy and provides intuitive image augmentation for fracture care procedures. It

should be noted that, this solution enables patient-specific data augmentation and

guidance, that is unattainable by using statistical shape models [289]. Constructing

atlases for such procedures require a large population of patient pelvis data for dif-

ferent age, sex, race, disease, fractures, etc. which are not available. We hope that

our theoretical findings and methodology can lead to safer and more reliable surgical

care.

9.5 Acknowledgments

I want to thank Mr. Giacomo Taylor for his help during the design of the sym-

metry detection pipeline. Giacomo also contributed significantly by running ablation

250



CHAPTER 9. PATIENT-SPECIFIC IMAGE AUGMENTATION USING
PARTIAL STRUCTURAL SYMMETRY

experiments and creating demonstration videos. I also appreciate the support of Drs.

Nassir Navab, Mehran Armand, Mathias Unberath, Russell Taylor, Greg Osgood,

and Alex Johnson at every step of the way during the design and validation of this

work.

251



Part IV

Augmented Robotics:

Transcending human limitations in

medical interventions

252



Robot-assisted minimally invasive surgery has shown to improve patient outcomes,

as well as reduce complications and recovery time for several clinical applications.

While increasingly configurable robotic arms can maximize reach and avoid collisions

in cluttered environments, positioning them appropriately during surgery is compli-

cated because safety regulations prevent automatic driving. This final chapter of

the dissertation proposes a head-mounted display (HMD) based augmented reality

(AR) system designed to guide optimal surgical arm set up. The staff equipped with

HMD aligns the robot with its planned virtual counterpart. In this user-centric set-

ting, the main challenge is the perspective ambiguities hindering such collaborative

robotic solution. To overcome this challenge, a novel registration concept is intro-

duced for intuitive alignment of AR content to its physical counterpart by providing

a multi-view AR experience via reflective-AR displays that simultaneously show the

augmentations from multiple viewpoints. Using this system, users can visualize dif-

ferent perspectives while actively adjusting the pose to determine the registration

transformation that most closely superimposes the virtual onto the real. The work

in this chapter is based on the below manuscript:

1. Fotouhi, Javad, Tianyu Song, Arian Mehrfard, Giacomo Taylor, Qiaochu Wang,

Fengfan Xian, Alejandro Martin-Gomez et al. ”Reflective-AR display: An in-

teraction methodology for Virtual-to-Real alignment in medical robotics.” IEEE

Robotics and Automation Letters 5, no. 2 (2020): 2722-2729.
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Chapter 10

Reflective-AR Display: An

Interaction Methodology for

Virtual-to-Real Alignment in

Medical Robotics

10.1 Introduction

Robotic-assisted minimally invasive surgery is becoming increasingly common due

to its associated benefits that include higher accuracy, and tremor and fatigue reduc-

tion. Robotic systems can augment the surgeon’s abilities with stereo endoscopic

imaging and intuitive control which help the surgeon’s hand-eye coordination and
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Figure 10.1: AR-assisted robot arm positioning

reduce physical workload during surgery [290]. Furthermore, robotic surgery has

benefits over traditional laparoscopic techniques with patients experiencing reduced

blood loss and shorter post-operative hospital stays [291].

Quick and accurate set up of robotic systems leading up to surgery remains a

major challenge in the endeavor of making robotic surgery the standard of care.

After a patient has been positioned, anesthetized, and trocars inserted, the robotic

arms must be positioned and docked before operation can begin. This procedure

is a crucial step of workflow and grows more complex the more joints the robotic

arms have. While many different configurations of the robot’s joints may allow the
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robotic arm to dock, sub-optimal positioning increases the likelihood of collisions and

inadequate reach during teleoperation. Any repositioning or undocking necessary to

adjust the robot significantly decreases operating room efficiency [292]. For many

procedures including minimally invasive gastrectomy, ”junk time”, the time taken to

set up or reposition robotic arms, is often the sole reason for increased procedure time

in robotic procedures over purely laparoscopic approach [293].

Optimal set up of robotic arms, consequently, is critical to increasing the efficiency

of robotic surgery and foster acceptance. Due to safety and regulatory concerns,

having a robot automatically drive itself to a pre-operative position is infeasible. In

modern surgical robotic systems, the set up of the arms can be supported by lasers,

as shown in Fig. 10.2. Though lasers assist the staff in aligning the robot, it can still

exhibit challenges in a complex system with joint redundancies, as it does not directly

show the desired configuration of all joints. As most manual methods are error prone

and induce a steep learning curve to operating room staff unfamiliar with a system,

we investigate an augmented reality (AR) solution for guidance during robotic set

up. Using an optical see-through head-mounted display (OST-HMD), setup staff can

be interactively guided through joint-by-joint steps to optimally position the robot

in an efficient manner.

The works by Qian et al. are similar to our solution in the spirit of using AR

for robotic surgery [294–296]; however, the focus of their works were on optimal

instrument insertion and manipulation by showing the extension of the arms inside
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the abdomen using AR. Our methodology addresses the alignment of robot arms

for optimal reach and minimum collision. Other early applications of AR in robot-

assisted surgery focused on multi-modal registration of medical imaging data with

the endoscopic view [297, 298].

Several studies have discussed the challenges of aligning virtual and real objects,

and have emphasized the importance of this step for various room-scale and spatially-

aware AR solutions [299–302]. Nuernberger et al. suggested a semi-automatic align-

ment strategy to register virtual and real spaces [303]. Their work relied on scene

content and environment constraints such as edges and surfaces for snapping the

virtual content to real. In a different study, various rendering and visualization tech-

niques were compared for alignment of different virtual models in fully immersive

environments [304]. Results indicated that static visualization techniques which ex-

hibited lower occlusion in a single view yielded better alignment.

In order to properly augment virtual assistance on a physical robot, we require an

intuitive and fast approach to align the AR environment provided by a OST-HMD

to the robot. This registration must be robust to perceptual ambiguities that arise

during AR alignment [305, 306]. To this end, we propose virtual-real active alignment

(ViRAAl) to register a virtual model of the robot to its real counterpart. Our method

enables the user to create and view multiple AR mirrors which show the current 3D

scene (including real and virtual robot) from different viewpoints. By providing this

overlay from multiple perspectives simultaneously, users can actively adjust the 6
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Figure 10.2: Da Vinci Xi surgical robot uses multiple lasers to assist the positioning
and docking of the robotic arms.

degree-of-freedom (DOF) transformation parameters that best align the virtual and

real objects in all views.

We summarize the contributions of this chapter as 1) reflective-AR displays as

the multi-view and marker-free paradigm for co-registration between the virtual and

real spaces, hence enabling spatially-aware AR, and 2) using AR for assistance during

robot set up (Fig. 10.1).
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Origin of the 
virtual world

Origin of the 
real world

RTV

Figure 10.3: ViRAAl strategy estimates the virtuality to reality transformation RTV.

10.2 Methodology

An important step in many AR scenarios is to bring the virtual content that lives

in a controlled environment into alignment with the physical reality that is present

in the unmodeled environment [305]. In this work, to enable seamless interaction of

a surgical robot manipulator and its virtual representation during an AR experience,

we introduce reflective-AR displays that enable multi-view visualization and inter-

active alignment of virtual and real objects. In Sec. 10.2.1, we present the problem

formulation for registering virtual-to-real. A key contribution of this work, which is

the AR reflectors, is presented in Sec. 10.2.2. Finally, in Sec. 10.2.3, we suggest AR

guidance to facilitate robot set up during surgical interventions. It is important to

note that in Sec. 10.2.1 and 10.2.2 we discuss the problem of ”virtual-to-real” align-

ment to enable spatially-aware AR, and in Sec. 10.2.3 we discuss ”real-to-virtual”
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AR 
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AR 
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RTV
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Virtual
Robot

Real
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M1TOR
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VTOR

Figure 10.4: Reflective-AR displays enable simultaneous alignment from multiple
views.

alignment to provide spatially-aware AR guidance.

10.2.1 Virtual-Real Active Alignment (ViRAAl)

To estimate the virtual-to-real 6 DOF alignment shown in Fig. 10.3, we estimate

the transformation RTV = (R̄, t̄) via interactively registering a robot with its virtual

model at N pre-defined joint configurations. Each time a rigid-body transformation

{(Ri, ti)}Ni=1 is obtained, where (Ri, ti) ∈ SE(3), and SE is the Special Euclidean

group.

We hypothesize that the average transformation computed from these N esti-

mates, can yield a closer approximation of the true virtual-to-real alignment com-

pared to each individual N transformations. Hence, from these N estimates, we
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Rx(π)

Axis 
flip

D

Figure 10.5: Imaging geometries of the observed and reversed frustums in relation to
the robotic manipulator

seek to compute the mean rotation and translation. The mean rotation matrix R̄ is

computed on the Special Orthogonal group SO(3) by minimizing:

argmin
R̄∈SO(3)

N∑︂
i=1

d(Ri, R̄)
2, (10.1)

where d(.) denotes a distance function on the Riemannian manifold. To establish

d(.), the rotation matrix is expressed in the Lie algebra (tangent space) of the Lie

group as R = eŵ. The tangent space w is then obtained as log(R) = ŵ, such that

ŵ is the skew-symmetric matrix constructed from the vector w. Consequently, the

mean rotation is estimated as [307]:

argmin
R̄∈SO(3)

N∑︂
i=1

⃦⃦
log(R⊤

i R̄)
⃦⃦2
F
, (10.2)

261



CHAPTER 10. REFLECTIVE-AR DISPLAY: AN INTERACTION
METHODOLOGY FOR VIRTUAL-TO-REAL ALIGNMENT IN MEDICAL
ROBOTICS

where ∥.∥2F is the Frobenius norm. The mean translation t̄ is computed in Euclidean

space as:

t̄ =
1

N

N∑︂
i=1

ti. (10.3)

10.2.2 Reflective-AR Display

Due to the projective property of human visual system and the differences in

perceptual cues in virtuality and reality, the scale and depth between real and virtual

objects are easily misjudged [306]. To overcome depth ambiguities and enhance 3D

perception during an AR experience, we introduce reflective-AR displays that allow

simultaneous visualization of the scene from various viewpoints. The reflective-AR

displays shown in Fig. 10.4 are constructed by displaying images from the integrated

camera sensor of the OST-HMD as if the user observed the real scene from different

viewpoints simultaneously, and are augmented with the projections of the 3D virtual

objects. To compute a geometrically relevant pose for displaying these images, we

compute the associated observer poses to the coordinate frame of the AR scene in the

operating room (OROR,
O tOR) via simultaneous-localization and mapping (SLAM).

The observer imaging geometry in Fig. 10.5 is formulated as:

Po = Ko P

⎡⎢⎢⎣OROR
OtOR

0⊤ 1

⎤⎥⎥⎦ , (10.4)

whereKo is the matrix of intrinsic parameters and P is the projection operator. Next,
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to simulate a mirror-like view, we construct a reversed frustum as (Fig. 10.5):

Pm = Km P

⎡⎢⎢⎣OROR
OtOR

0⊤ 1

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Rx(π)

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

D

⎤⎥⎥⎥⎥⎥⎥⎦
0⊤ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Km =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 −1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦Ko.

(10.5)

In Eq. 10.5, the optical center of the observer frustum is rotated by the amount

π around the x axis, and translated by the amount D along the principle ray of the

frustum. Distance D is approximated as the Euclidean distance between the camera

center, and an arbitrary point on the surface of the robot that is acquired by colliding

the gaze cursor with the spatial map of the AR scene. The distance is merely used

as a reference to position the optical center of the reversed frustum, and does not

affect the rendering content in the reflective-AR display. To compute the reversed

frustum’s intrinsic matrix Km, the y-axis of the image plane is flipped according to

Eq. 10.5. Lastly, to give rise to a mirror-like AR display, the 3D virtual structures are

projected into the image plane with the imaging geometry Pm, thus, enabling joint

visualization of real and virtual in the reflective display.

Since the reflective AR displays are constructed based on the imaging geometry
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of the observer frustum, we adopted the same axis convention used in the computer

vision community. We set the z-axis in the direction pointing away from the camera,

along the principal ray, connecting the origin to the principal point on the image

plane.

10.2.3 Augmented Reality Assistance for Robot

Set Up

After the registration transformation is established between real and virtual worlds,

a collision-free and safe virtual robot configuration can be presented to the medical as-

sistant. The desired configuration can either be estimated via the inverse kinematics

of the robot, or can be adjusted interactively using the virtual robot and the patient

position on the surgical bed. The robot set up is then performed in joint-by-joint

steps, following the virtual planning.

10.3 Experimental results

We first evaluate the ViRAAl strategy using a virtual and real robotic manipu-

lator. Next, in a simulated surgical setup, we assess the errors in moving the robot

joints to achieve a desired joint configuration using AR guidance where a trocar must

be inserted at a mannequin’s umbilicus (Fig. 10.6). The umbilicus is commonly cho-
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a) b)

c) d) e)

Reflective AR Displays from Two Views

Figure 10.6: During the surgical AR experience, the virtual model of the robot is
first visualized at a known configuration (a). The alignment between the real and
virtual is established in multiple views via reflective-AR displays (b). Once the 6
DOF rigid-body transformation is identified between the real and virtual content, a
virtual robot is rendered into the scene at a safe surgical configuration (c). The robot
assistant can then align the robot with the virtual counterpart (d), and dock it to
the trocar (e).

sen as a robotic port and remote center of motion (RCM) for abdominal surgery.

Training for port and trocar placement in umbilicus and optimal docking of the robot

has a steep learning curve [308, 309].

10.3.1 System and Design

For the experiments we used a 7 DOF KUKA LBR Intelligent Industrial Work

Assistant (iiwa) 7 R800 redundant robot manipulator (KUKA AG, Augsburg, Ger-

265



CHAPTER 10. REFLECTIVE-AR DISPLAY: AN INTERACTION
METHODOLOGY FOR VIRTUAL-TO-REAL ALIGNMENT IN MEDICAL
ROBOTICS

many). The joint configuration and end-effector pose of the robot was obtained

through a ROS interface [310]. It is important to note that our solution is designed

to address challenges in surgical settings, and the KUKA arm was merely used as

an exemplary robot that was available for this research. The AR environment was

delivered by a first-generation Microsoft HoloLens OST-HMD (Microsoft, Redmond,

WA).

10.3.2 Alignment of Virtual-to-Real

The ViRAAl strategy is evaluated by aligning the virtual and real robots with

and without a reflective-AR display. Each experiment is repeated 10 times for 4

users. The error measurements are presented in Table 10.1. We did not incorporate

an external marker-based tracking approach as the base-line since marker tracking

exhibits high errors due to propagation, and does not include the user in the loop, i.e.

it only determines the registration error and not the augmentation error in the user’s

view. Instead, to quantify the amount of misalignment, for each iteration we located

three pairs of distinct 3D landmarks on the surfaces of both real and virtual robots.

These points were identified interactively by intersecting rays from the OST-HMD to

the landmark using a gaze cursor.

We define each ray i using the position of the user’s head hi, and the unit di-

rection vector ui from the head to the annotated landmark on the spatial map of

the environment. The landmark x∗
i is estimated in a least-squares fashion from the
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Figure 10.7: Interactive fixed display demonstrating two different target joint
configurations

intersection of two rays as:

x∗
i = argmin

x∈R3

2∑︂
i=1

∥(I3 − uiu
⊤
i )(x− hi)∥2. (10.6)

To quantify the error of our ground-truth measurement mechanism using 3D land-

marks, we computed the Euclidean distance between different sets of targets on an

optical table for a total of 12 times. We selected four combinations of landmarks

which were 5 cm, 10 cm, 15 cm, and 20 cm apart. The average error for measuring

distances using AR annotations was 3.6mm.

For virtual-to-real object alignment, the results in Table 10.1 indicate a total

error of 16.5 ± 11.0mm when using the reflective-AR display, and 30.2 ± 23.9mm

when using AR without the additional mirror view. To demonstrate the change in

alignment error when averaging multiple alignment transformations on the SE(3)

manifold as presented in Sec. 10.2.1, we computed the average transformation given
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Eq. 10.2 and Eq. 10.3 when using the AR reflective display. This experiment yielded

a total error of 11.3± 1.01mm, which is lower than each individual alignment trial.

10.3.3 Augmented Reality for Robot Set Up: Ac-

curacy Analysis

During a simulated robot-assisted trocar placement, U = 8 users moved the robot

joints to achieve different target joint configurations. Each user performed this task

with the guidance from 1) AR, 2) AR with reflective display, and 3) interactive

fixed display, all in randomized orders. The fixed external monitor was used as a

non-immersive baseline, displaying the desired robot configurations to the user at all

time during the execution, and allowing the users to interact with the visualization

by rotating or scaling (Fig. 10.7). The users performed each test three times, and

each time with a different target joint. To set up AR we used the average Euclidean

transformation over N = 3 trials as described in Eq. 10.2 and Eq. 10.3. Errors in

joint angles are demonstrated in Fig. 10.8. The total errors are shown in Fig. 10.9.

The violin plots show the distribution of error within each guidance method.

The statistics for the overall error in joint positioning using each guidance tech-

niques is compared in Table 10.2. Statistical significance measures are shown in

Table 10.3. In Fig. 10.10 we present a comparison between the errors from each joint,

and highlight the errors for twisting and revolving joints. A joint is characterized as
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Figure 10.8: Distribution of errors evaluated for each joint separately when guided by
1) non-immersive fixed display, 2) AR calibrated without reflective-AR display, and
3) AR calibrated with reflective-AR display.
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Figure 10.9: Total error distribution for all joints using guidance by 1) non-immersive
fixed display, 2) AR calibrated without reflective-AR display, and 3) AR calibrated
with reflective-AR display.

twisting if the axis of rotation is parallel to the robot link, and revolving if the axis

of rotation is orthogonal to the robot link.

270



CHAPTER 10. REFLECTIVE-AR DISPLAY: AN INTERACTION
METHODOLOGY FOR VIRTUAL-TO-REAL ALIGNMENT IN MEDICAL
ROBOTICS

T
ab

le
10
.1
:
M
ea
n
an

d
st
an

d
ar
d
d
ev
ia
ti
on

of
m
is
al
ig
n
m
en
t
er
ro
rs

in
m
m
.

A
li
g
n
m
e
n
t
M

e
th

o
d

(t
x
,σ

t x
)

(t
y
,σ

t y
)

(t
z
,σ

t z
)

(⃦⃦ t⃦⃦ 2
,∥
σ
t∥

2
)

V
iR

A
A
l

(1
7.
4,
16
.1
)

(1
1.
9,
6.
24
)

(2
1.
6,
16
.5
)

(3
0.
2,
23
.9
)

V
iR

A
A
l
+

R
e
fl
e
ct
iv
e
-A

R
(9
.0
0,
5.
64
)

(1
0.
3,
7.
45
)

(9
.1
8,
5.
77
)

(1
6.
5,
11
.0
)

T
ab

le
10
.2
:
C
om

p
ar
is
on

of
th
e
er
ro
r
fo
r
re
-p
os
it
io
n
in
g
th
e
ro
b
ot

jo
in
ts

in
d
eg
re
e
u
n
it
s

J
o
in
t
E
rr
o
r

M
ea
n

M
ed
ia
n

M
in

M
ax

S
td

R
e
fl
e
ct
iv
e
A
R

23
.7

4.
93

0.
02

18
8

41
.1

A
R

26
.8

5.
88

0.
00

19
7

42
.4

F
ix
e
d

D
is
p
la
y

71
.4

50
.6

0.
64

24
9

61
.8

T
ab

le
10
.3
:
P
-v
al
u
es

fo
r
ea
ch

in
d
iv
id
u
al

jo
in
t,
as

w
el
l
as

fo
r
al
l
jo
in
ts

co
m
b
in
ed
.

P
-v
a
lu
e

J
o
in
t
1

J
o
in
t
2

J
o
in
t
3

J
o
in
t
4

J
o
in
t
5

J
o
in
t
6

T
o
ta

l

R
e
fl
e
c
ti
v
e
A
R

/
A
R

0
.6
1

0
.5
0

0.
23

0
.7
1

0.
59

0
.2
7

0
.5
4

R
e
fl
e
c
ti
v
e
A
R

/
F
ix
e
d

D
is
p
la
y

0
.1
2e
−
6

0
.1
5e
−
1

0.
24

e−
6

0
.7
7

0.
22

e−
6

0
.7
6
e−

4
0
.1
2
e−

1
5

A
R

/
F
ix
e
d

D
is
p
la
y

0
.1
6e
−
6

0
.3
9e
−
1

0.
62

e−
4

0
.8
7

0.
12

e−
6

0
.5
8
e−

7
0
.2
0
e−

1
7

T
ab

le
10
.4
:
T
im

e
re
q
u
ir
ed

fo
r
V
iR
A
A
l
an

d
re
-p
os
it
io
n
in
g
th
e
ro
b
ot

jo
in
ts

in
m
in
u
te
:s
ec
on

d
u
n
it
s

E
x
e
c
u
ti
o
n

T
im

e
A
li
g
n
m
e
n
t
T
im

e
M
ea
n

M
ed

ia
n

M
in

M
ax

S
td

M
ea
n

M
ed

ia
n

M
in

M
a
x

S
td

R
e
fl
e
c
ti
v
e
A
R

2
:
0
0

1
:
50

0
:
39

3
:
47

0
:
50

4
:
32

4
:
42

2
:
06

6
:
5
9

1
:
4
1

A
R

1
:
3
1

1
:
23

0
:
22

5
:
06

0
:
59

2
:
29

1
:
52

1
:
11

4
:
2
6

1
:
1
2

F
ix
e
d

D
is
p
la
y

1
:
3
4

1
:
35

0
:
27

3
:
20

0
:
48

-
-

-
-

-

271



CHAPTER 10. REFLECTIVE-AR DISPLAY: AN INTERACTION
METHODOLOGY FOR VIRTUAL-TO-REAL ALIGNMENT IN MEDICAL
ROBOTICS

10.3.4 Augmented Reality for Robot Set Up: Time

Analysis

Table 10.4 presents the observed time for all eight users. Guidance using AR

and AR reflector both required registration between the virtual and real content.

Therefore, each time the users were given a unique joint configuration target, prior

to moving the real robot, the user aligned the virtual model of the robot with its

real counterpart three times
{︁
RTV(i)

}︁3
i=1

. Using the ViRAAl approach presented in

Sec. 10.2.1, the transformation RTV which expressed the geometric mean in SE(3)

was computed. The average transformation was applied to the AR scene to register

the origins of the real and virtual environments, and enable AR guidance. Table 10.4

also presents the time required for ViRAAl with and without AR reflectors for all

users.

10.4 Discussion

The experimental results indicated an improved alignment when using a reflective-

AR display. The L2-norm average misalignment error in this case was 16.5±11.0mm,

and showed improvement compared to 30.2±23.9mm error when no reflective displays

were used. Averaging the transformations on SE(3) manifold yielded an even lower

error of 11.3 ± 1.01mm. This alignment error does not seem sufficient for tasks
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Joint 1:
Twisting

Joint 2:
Revolving

Joint 3:
Twisting

Joint 4:
Revolving

Joint 5: 
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Joint 6: 
Revolving
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Twisting

Figure 10.10: The plot demonstrates an abstract comparison between the errors con-
tributed by each joint. Since AR-based approaches yielded substantially smaller er-
rors, we used Logarithmic scale for optimal visualization and comparison of errors
with different orders of magnitude. Revolving joints with even indexes are shown in
blue, and twisting joints with odd indexes are shown in red.

that require high accuracy such as defining biopsy targets in AR, however seems

acceptable for providing intuition during robotic arm set up. Using more than one

reflective-AR display did not improve the alignment due to two main reasons. First,

the limited field of view of Microsoft Hololens prohibited optimal view of multiple

mirrors in their frustums simultaneously when standing in close proximity to the

robot. Second, the poor quality of SLAM-based tracking and the unreliable spatial

map of the HMD resulted in drifts, hence achieving alignment consensus in all views

became challenging. Larger field of view, reliable head tracking, enhanced form factor,

enhanced gesture input, and eye tracking capabilities can greatly improve the current
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limitations.

We evaluated the results in Table 10.1 based on a novel user-in-the-loop concept.

Alternatively, these errors can be evaluated by using an external navigation system

and fiducials. However, the latter will exclude the user and will only evaluate the

registration error, instead of the augmentation error. Considering the large improve-

ment (> 45%) reported across multiple trials in Table 10.1, we expect the conclusion

will not change when using optical navigation.

For modern surgical platforms, the first assistants are trained to set up, dock,

tear down, and re-configure the robot using extensive pre-operative E-learning or

instructor-led training. In addition to the training that they receive by the manu-

facturer, general guidelines, and demonstrations in the form of text or visualizations

are available in the operating room. In our experiments, to exclude the bias of train-

ing, we substituted the conventional training-based approach by recruiting users with

no background in setting up surgical robots and focused on demonstrating the ef-

fectiveness of intra-operative AR guidance. Comparison with base-line training is a

subject of future work, which requires randomized studies in clinical settings with

larger populations.

The alignment between the real and virtual, which establishes the registration, is

an entirely user-dependent step as the registration chain implicitly takes into account

the internal relations between the user’s eyes, AR camera on the headset, and the

AR displays. Since human visual systems are different, these relations differ, and
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consequently cannot be done in a user-out-the-loop setting. Therefore, automatic

approaches will not generalize.

Fig. 10.9 presented the misalignment errors for bringing the real robot to a desired

configuration. The expected accuracy for the robotic set up depends on the design,

number of arms, and number of joints of the particular surgical system. These param-

eters all vary depending on the surgical use case. The higher the number of joints and

arms, the higher the chance for collision; therefore, higher accuracy is demanded for a

more complex system. This step during the AR-assisted workflow, which involves the

alignment of a real object to virtual, can in future leverage from multi-view strategies

by using collaborative AR devices or external cameras.

Several AR publications have shown that time-saving of AR cannot be quantified

immediately with dedicated user studies [311], partly because of the unfamiliar in-

terface and exposure to additional information. Time-saving only manifests after the

user is proficient with the system. We hypothesize that while there is overhead in

setting up AR, the rate of failure/collision would drop leading to a net reduction of

overall junk-time. The Riemannian averaging in Eq. 10.2 and Eq. 10.3 can increase

this set up time, but is a one-time process which takes place before intervention and

can result in a more accurate fusion of information and improved AR experience. We

hope AR assistance minimizes the training time and allows operators to verify and

inspect the proper alignment of robot arms, both quantitatively and visually.

HMD-based AR is challenged by recurrent estimation of transformations and cor-
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rections such as user-to-display and drift, respectively. There is a great wealth of

literature directed towards addressing these issues [312], which our solution benefits

from as new hardware becomes available. It should be noted that drift will be quite

limited because the working volume near the patient bed and the robot is restricted.

Our proposed approach enables the co-registration between the real and virtual

spaces and delivers spatially-aware AR. We also demonstrated the application of

ViRAAl for AR guidance during minimally-invasive robotic surgery. The estimation

of the overall registration greatly benefits from the averaging strategy presented in

Eqs. 10.1-10.3, which are suggested to compute the mean transformation that satisfies

the properties of SE(3) manifold. This average estimate is a rigid transformation that

has the shortest distance to all other estimates around the true pose.

The range of errors exhibited by all intra-operative guidance methods, particularly

by the non-immersive fixed display, prove the complexity and importance of this

problem for robot manipulation. We computed p-values and compared all pairs of

methods in Table 10.3 to identify the most effective assistive approach. Statistical

significance was considered if p < 0.05. Results suggested that guidance using AR

with and without reflective display yielded significantly lower errors compared to

non-immersive fixed display. The AR guidance approach using reflective displays

outperformed the AR system with no mirrors, however in this comparison statistical

significance was not achieved.

In Fig. 10.10, we compared the error contributed by revolving and twisting joints
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separately. Results indicated that re-positioning of revolving joints in all three guid-

ance methods are consistently more accurate than the twisting joints. We hypothesize

that the higher error is the result of the inherent symmetry in twisting motion that

may lead to ambiguities.

10.5 Conclusion

In this chapter we presented a novel multi-view strategy to align virtual and real

content, and demonstrated an application of it for improving surgical robotic work-

flows. The reflective-AR displays were introduced to eliminate the 3D scale ambigui-

ties and improve the AR scene realism. We have demonstrated an AR interface that

accommodates multiple reflective displays, and allows the users to scale the images

within their viewing frustum [237].

The virtual-to-real registration approach, ViRAAl, is an interactive and user-

specific method that calibrates the real and virtual worlds directly to the user’s dis-

play. No external camera or tracking system, other than the HMD itself, is used

in order to keep maximum flexibility and transferability of the system into different

surgical environments.

Seamless overlays of virtual content onto the reflective AR displays are achieved by

placing virtual cameras at the optical centers where the images were acquired, hence

allowing to render virtual and real from an identical imaging geometry. The reflective
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displays require a static scene, therefore, are suited for aligning virtual-to-real, and

not vice-versa.

The focus of this work is beyond the KUKA robot and its redundant design; it

is instead on complex surgical platforms with multiple arms and various joints. The

task of alignment is expected to be more difficult for redundant manipulators with

more joints. Nonetheless, we expect AR to provide an effective guidance mechanism

to reconfigure complex redundant arms at the bedside.

Surgical robots are only certified to be controlled by the surgeon in its active mode,

and due to safety reasons, their set up by the surgical staff are performed entirely

manually. Our solution is designed around this concept of full manual interaction. It

should be noted that our contribution is not on computing joint configurations that

minimize collision, but instead we show that if such configuration exists, then with

the support of AR it can be manually achieved by the first assistant.

A user interface such as the AR reflectors, can accelerate interaction during

surgery. By measuring the exact time of the staff this could be validated in future

work. We believe that the proposed alignment strategy can extend to other realms

of computer-assisted surgery, namely for surgical training and AR guidance during

image-guided therapies.
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Conclusion

In this dissertation, we proposed and evaluated a broad spectrum of solutions

for image-guided and robot-assisted interventions. These span image computing

and vision-based approaches for reconstruction, registration, tracking, planning, and

stitching of the interventional imaging data. We also investigated the benefits of

augmented reality (AR) using immersive and non-immersive technologies for image

guidance and staff support during surgical robotic interventions.

It is crucial to consider the tradeoff between workflow flexibility and system ac-

curacy for the design and integration of computer-integrated surgical systems. Ex-

ternal tracking hardware delivers high accuracy; however, it compromises flexibility

and results in slow adoption of the technology. On the other end of the spectrum,

marker-less methods, such as the inside-out tracking accompanied by most AR sys-

tems, do not limit the user’s movement and do not need other external devices other
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than the head-mounted displays, but deliver poor tracking errors. The technologies

designed for the surgery rooms of the future should carefully investigate the surgery

requirements, and design appropriate solutions by accounting for the ergonomics and

needs for each particular intervention.

AR has been traditionally considered as an alternative to fixed displays that en-

able in-line visuailzation. We extended this concept, and suggested solutions with

temporal and spatial awareness gained from the environment and the characteristics

of imaging. Based on this concept, we suggested new surgical workflows, and used AR

for use-cases beyond visualization, namely for improving interaction, communication,

and promoting team approach in the surgical theater.

Our display-based AR environment is built upon an RGBD enhanced C-arm, that

enables visualization of 3D optical information from the surgical site superimposed

with the planning target. This solution uses a self-contained C-arm which only needs

a one-time offline calibration, requires no external trackers, and does not depend

on out-dated pre-operative patient data. We believe that this system, by enabling

quick planning and visualization, can contribute to reduction of radiation, time, and

frustration and increase the efficiency and accuracy for placing surgical implants.

Ultimately, this approach may aid in reducing the risk of revision surgery.

A significant advantage of our immersive AR system deliver by head-mounted

display is that it is based on 2D C-arm fluoroscopy –– and therefore does not diverge

from the standard workflow. The standard C-arm is always present in the OR to take
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confirmatory images. Consequently, the surgeons are not required to solely rely on

the AR system during a procedure. Rather, its value lies in guiding the surgeon to a

narrow area of interest and more importantly, to align them with the right trajectory.

The surgeon can then seamlessly switch between standard fluoroscopic images and

the AR view to guarantee accurate drilling. We believe this is useful, translatable,

safe, and novel.

In a training environment, such as in most academic centers with residents and

fellows -— this ability for all users to wear the HMD and view the same annotations

and AR guidance would be helpful. The more experienced user could ensure that the

anatomy had been annotated appropriately and that the AR guidance trajectories

are at the correct location.

Direct visualization of X-ray images within their corresponding viewing frustums

delivers intuition that effectively unites the content of the 2D image with the 3D

imaged anatomy. In this setting, images from various perspectives can be grouped

within their frustums to form multi- or extended-view representations of the anatomy.

The interlocked frustums shown in Fig. 11.1 are examples for such visualization con-

cept, that can particularly benefit interventions where leg-length discrepancies or

malrotations in tibio- and lateral/distal-femoral angles are major concerns. Though

assessment of each of these concepts requires an additional approved study, we believe

their introduction to the community paves the way in opening new paths for research

in this area and expedites the translation of AR-based solutions into future ORs.
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Figure 11.1: The interlocking of multiple X-ray frustums enables visualization of
large anatomical structures. In this figure, multiple images are acquired on a co-
linear trajectory and are locked to each other to form a quasi-panoramic view of the
bone.

Despite that the above solutions deliver spatial awareness, they should not be

regarded as replacements for surgical navigation systems. This is because marker-

less tracking, currently, cannot deliver the level of accuracy achieved by marker-

based surgical navigation or robotic systems. Our solutions are merely advanced

visualization platforms that enhance the interaction across the surgical ecosystem

and promote effective collaboration.

In designing data-driven models, we exploited the well-established principles and

characteristics governing the formation of visual data. This especially manifested

in the direct use of Fourier-slice theorem and projection geometry when learning

the proper parameterization for the orthographic reconstruction of perspective X-ray
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images.

All of the proposed solutions demand the entire crew to get trained appropriately

and be able to interact with the systems comfortably. Therefore, time, money, and

effort need to be spent to prepare the surgical team for such a digital transformation.

11.1 Considerations for Clinical Deploy-

ment:

The success of translation for each of the proposed registration, tracking, and vi-

sualization approaches depend on the requirements of the surgery. For instance, for

stitching of Cone-Beam CT volumes, while the visual marker-based approach yielded

very low stitching errors, it increased the setup complexity by requiring external

markers to be fixed to the patient during C-arm re-arrangement. Conversely, RGBD-

SLAM tracking allows for increased flexibility as no external markers are required.

However, this flexibility came at the cost of slightly higher stitching errors. Since

the stitching errors for both marker-based and marker-less methods were well below

1.00 cm, which is considered ”well tolerated” for leg length discrepancy in the ortho-

pedic literature [313], the deployment of marker-less approaches with higher flexibility

may be of greater benefit despite their lower positional accuracy.
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11.2 Outlook for Future Work:

The future’s surgery rooms are expected to take full advantage of the enhanced and

immersive visualization delivered by AR, the autonomy and dexterity realized by the

robotic systems, and the data-driven nature and pattern understanding capabilities

achieved by machine learning.

To use machine learning in interventional medicine, a significant challenge is ac-

cess to annotated patient data. Patient privacy and lack of documentation are among

the concerns that prevent access to large-scale data. As a result of this scarcity, simu-

lation data have been extensively used as substitutes for real patient data. However,

the difference in distributions between simulation and real domains often results in

domain gaps that hinder the generalization and transferability of data-driven solu-

tions. Moreover, in real patient data, symptoms and injuries exhibit with diverse

patterns, which may be unfeasible to comprehensively include during simulation. For

instance, in trauma interventions, fracture patterns are very diverse, and interven-

tional data often contain different surgical tools that could be absent in the simulation

data. These challenges highlight the need to understand domain shifts and facilitate

data access and documentation in clinics.

Another important area for future research is reinforcement learning to accom-

plish highly ill-posed and under-constrained tasks for medical image computing. For

instance, 2D/3D registration has been traditionally solved using optimization-based

strategies by minimizing a loss function. However, these loss terms are highly non-

285



CHAPTER 11. CONCLUSION

convex, and as a consequence, the optimizer often converges to local minima. Alter-

natively, reinforcement learning optimizes the discounted future reward at the cost of

taking immediate steps that may deteriorate the short-term similarity scores.

It is also worthwhile to incorporate rich knowledge from imaging characteristics

and computer vision principals when using imagery data. Examples include the direct

use of epipolar constraints when using multiple views, epipolar consistency conditions

when using multiple X-ray images, or forward- and backward-projection principals

when dealing with 2D and 3D domains concurrently. The integration of such knowl-

edge can simplify the training and enhance the generalization.

To bring AR to operating rooms, there is a need for further research to identify

interactions that promote a human-centric design, such that the interface and the

interaction with the interface both appear intuitive for the surgeon.

Alignment between real and virtual content has emerged as a foundational step in

many AR applications. For instance, in a clinical setting, the planning data are shown

at their corresponding spatial pose, and the surgeon is expected to align the real tools

with their virtual counterparts. In another example, to register the AR environment

with the patient, specific manual steps may be required to close the registration

loop. Unfortunately, due to different perceptions that humans have between real

and virtual and the vergence-accommodation conflict, the alignment could be highly

inaccurate. Therefore, we ought to better understand the perceptual limitations

involving alignment and address those concerns in the future.
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AR applications may also extend to outside-OR settings. One of such applications

is ”surgical replay”, where the residents can review the surgery, accompanied with its

temporal and spatial information including all the X-ray acquisitions and optical

point-clouds from the patient site. This enables the medical trainees to identify

distinct actions that were taken by the experienced surgeon based upon each image.

Access to such 3D post-operative analysis has the potential to dramatically improve

the quality of surgical education.

Figure 11.2: Spatial and temporal information from the surgery can be recorded and
reviewed after surgery. On the left side an interface is shown allowing the surgeon to
select images, which he can then observe geometrically accurate in space, as shown
on the right side.

Finally, development of AI strategies can i) create semantic understanding from

the surgical environment and augment surgeon’s intelligence, and ii) enhance the

spatial mapping and co-localization, thus improving the stability of marker-less AR

systems.
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for global intrinsic symmetry analysis in Computer Graphics Forum 29 (2010),

1689–1700.

262. Combès, B., Hennessy, R., Waddington, J., Roberts, N. & Prima, S. Automatic

symmetry plane estimation of bilateral objects in point clouds in 2008 IEEE

Conference on Computer Vision and Pattern Recognition (2008), 1–8.

263. Ecins, A., Fermuller, C. & Aloimonos, Y. Detecting reflectional symmetries in

3d data through symmetrical fitting in Proceedings of the IEEE International

Conference on Computer Vision (2017), 1779–1783.

264. Nagar, R. & Raman, S. Detecting approximate reflection symmetry in a point

set using optimization on manifold. IEEE Transactions on Signal Processing

67, 1582–1595 (2019).

265. Pastor, T., Tiziani, S., Kasper, C. D., Pape, H.-C. & Osterhoff, G. Quality

of reduction correlates with clinical outcome in pelvic ring fractures. Injury

(2019).

266. Verbeek, D. O., van der List, J. P., Villa, J. C., Wellman, D. S. & Helfet, D. L.

Postoperative CT is superior for acetabular fracture reduction assessment and

reliably predicts hip survivorship. JBJS 99, 1745–1752 (2017).

326



BIBLIOGRAPHY

267. Pascarella, R. et al. Surgical results and factors influencing outcome in patients

with posterior wall acetabular fracture. Injury 48, 1819–1824 (2017).

268. Shi, H.-f., Xiong, J., Chen, Y.-x., Wang, J.-f. & Wang, Y.-h. Radiographic

analysis of the restoration of hip joint center following open reduction and

internal fixation of acetabular fractures: a retrospective cohort study. BMC

musculoskeletal disorders 15, 277 (2014).

269. Tornetta, P. & Matta, J. M. Outcome of operatively treated unstable posterior

pelvic ring disruptions. Clinical Orthopaedics and Related Research® 329, 186–

193 (1996).

270. Schenker, M. L., Mauck, R. L., Ahn, J. & Mehta, S. Pathogenesis and preven-

tion of posttraumatic osteoarthritis after intra-articular fracture. The Journal

of the American Academy of Orthopaedic Surgeons 22, 20 (2014).

271. Giannoudis, P., Tzioupis, C., Papathanassopoulos, A., Obakponovwe, O. &

Roberts, C. Articular step-off and risk of post-traumatic osteoarthritis. Evi-

dence today. Injury 41, 986–995 (2010).

272. Zhang, W., Ji, Y., Wang, X., Liu, J. & Li, D. Can the recovery of lower limb

fractures be achieved by use of 3D printing mirror model? Injury 48, 2485–

2495 (2017).

327



BIBLIOGRAPHY

273. Gray, R. J. et al. Image-Based Comparison Between the Bilateral Symmetry of

the Distal Radii Through Established Measures. The Journal of hand surgery

(2019).

274. Bao, T. et al. Quantitative assessment of symmetry recovery in navigation-

assisted surgical reduction of zygomaticomaxillary complex fractures. Journal

of Cranio-Maxillofacial Surgery 47, 311–319 (2019).

275. Vannier, M. W., Marsh, J. L. & Warren, J. O. Three dimensional CT recon-

struction images for craniofacial surgical planning and evaluation. Radiology

150, 179–184 (1984).

276. Raina, K., Yahorau, U. & Schmah, T. Exploiting bilateral symmetry in brain

lesion segmentation. arXiv preprint arXiv:1907.08196 (2019).

277. Yu, C.-C., Bergeron, L., Lin, C.-H., Chu, Y.-M. & Chen, Y.-R. Single-splint

technique in orthognathic surgery: intraoperative checkpoints to control facial

symmetry. Plastic and reconstructive surgery 124, 879–886 (2009).

278. Van der Meulen, J. The pursuit of symmetry in cranio-facial surgery. British

journal of plastic surgery 29, 85–91 (1976).

279. Preuhs, A. et al. Symmetry prior for epipolar consistency. International journal

of computer assisted radiology and surgery, 1–11 (2019).

328



BIBLIOGRAPHY

280. Edsander-Nord, A., Brandberg, Y. & Wickman, M. Quality of life, patients’

satisfaction, and aesthetic outcome after pedicled or free TRAM flap breast

surgery. Plastic and reconstructive surgery 107, 1142–53 (2001).

281. Nahabedian, M. Y. Symmetrical breast reconstruction: analysis of secondary

procedures after reconstruction with implants and autologous tissue. Plastic

and reconstructive surgery 115, 257–260 (2005).

282. Teo, I. et al. Body image dissatisfaction in patients undergoing breast recon-

struction: Examining the roles of breast symmetry and appearance investment.

Psycho-oncology 27, 857–863 (2018).

283. Pinkall, U. & Polthier, K. Computing discrete minimal surfaces and their con-

jugates. Experimental mathematics 2, 15–36 (1993).

284. Dey, T. K. & Wang, Y. Reeb graphs: Approximation and persistence. Discrete

& Computational Geometry 49, 46–73 (2013).
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