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Abstract  

 

Like any real-world problem, the design of an imaging system always requires tradeoffs. 

For medical imaging modalities using ionization radiation, a major tradeoff is between diagnostic 

image quality (IQ) and risk to the patient from absorbed dose (AD). In nuclear medicine, reducing 

the AD requires reducing the administered activity (AA). Lower AA to the patient can reduce risk 

and adverse effects, but can also result in reduced diagnostic image quality. Thus, ultimately, it is 

desirable to use the lowest AA that gives sufficient image quality for accurate clinical diagnosis.   

In this dissertation, we proposed and developed tools for a general framework for 

optimizing RD with task-based assessment of IQ. Here, IQ is defined as an objective measure of 

the user performing the diagnostic task that the images were acquired to answer. To investigate IQ 

as a function of renal defect detectability, we have developed a projection image database 

modeling imaging of 99mTc-DMSA, a renal function agent. The database uses a highly-realistic 

population of pediatric phantoms with anatomical and body morphological variations. Using the 

developed projection image database, we have explored patient factors that affect IQ and are 

currently in the process of determining relationships between IQ and AA in terms of these found 

factors. Our data have shown that factors that are more local to the target organ may be more robust 

than weight for estimating the AA needed to provide a constant IQ across a population of patients. 

In the case of renal imaging, we have discovered that girth is more robust than weight (currently 

used in clinical practice) in predicting AA needed to provide a desired IQ. In addition to exploring 

the patient factors, we also did some work on improving the task simulating capability for 

anthropomorphic model observer. We proposed a deep learning-based anthropomorphic model 

observer to fully and efficiently (in terms of both training data and computational cost) model the 
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clinical 3D detection task using multi-slice, multi-orientation image sets. The proposed model 

observer is important and could be readily adapted to model human observer performance on 

detection tasks for other imaging modalities such as PET, CT or MRI. 
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Chapter 1 Introduction  

 

Introduction 
 

1.1 Significance 
 

Like any real-world problem, the design of an imaging system always requires optimizing 

tradeoffs for a given task. For medical imaging modalities using ionizing radiation, a major 

tradeoff is between diagnostic image quality (IQ) and the risk to the patient from absorbed 

radiation dose. In nuclear medicine imaging, reducing the radiation dose to the patient will always 

increase the Poisson noise in the image, which may result in decreased IQ, resulting in unreliable 

images and even diagnostic errors. However, reducing the radiation dose (RD) on the other hand 

will always decrease the risk of adverse effects to the patient. Thus, it is critically important to use 

the “just right” amount of RD for each individual patient that maximizes diagnostic benefits while 

maintaining minimum adverse effects to the patient. This need for children patients is more 

pressing as they are more vulnerable to radiation than adults. 

In nuclear medicine, reducing RD is achieved through the reduction of the administered 

activity (AA). In current clinical practice, AA for pediatric molecular imaging is often based on 

the North American consensus guidelines (U.S.) and the European pediatric dosage card (Europe). 

Both of these dosing guidelines involve scaling the adult AA by patient weight, which subject to 

upper and lower constraints on the AA. However, these guidelines were developed based on expert 

consensus or rough estimations of IQ (estimated count rates) rather than rigorous, objective 
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measures of performance on the diagnostic task. Accurate quantification of IQ plays an important 

role in the IQ-RD tradeoff analysis. However, acquiring an accurate measure of IQ is not easy as 

it is not only dependent on AA but also many other factors such as the imaging system, patient 

body morphometry, reconstruction and compensation methods and post-reconstruction processing, 

etc. The overall goal of this research is to pin down the most significant factors that affect IO in 

renal nuclear medicine imaging and to develop a rigorous and comprehensive IQ-RD tradeoff 

analysis framework applicable to all medical imaging modalities using ionizing radiation. The 

results of this study will provide information for standards bodies to improve current dosing 

guidelines for pediatric molecular imaging that result in more consistent IQ and absorbed dose 

 

1.2 Organization 
 

This dissertation is organized as follows.   

Chapter 1 states the significance and organization of this dissertation. 

Chapter 2 reviews the background of this work, previous researches in this area, and the 

technologies that underline it. First, this chapter describes the clinical imaging procedure, 

including the imaging modality and the chemical tracer used, that this study is aimed to optimize. 

Secondly, the method of task-based image quality assessment is discussed and existing model 

observers are reviewed. Finally, a brief description about convolutional neural network is provided 

at the end of the chapter.  
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Chapter 3 is a peer-reviewed journal publication which describes the initial work of 

developing a SPECT projection image database for a population of pediatric patients. The chapter 

outlines the methods for image simulation that were used throughout this research [1]. 

Chapter 4 is a peer-reviewed journal publication that describes our findings about a new 

external body parameter, which has better performance than weight (currently in clinical use) on 

predicting the AA needed to provide a desired IQ in renal nuclear medicine imaging [2]. Results 

show that factors that are more local to the target organ may be more robust than weight for 

estimating the AA needed to provide a constant IQ across a population of patients. We found that 

in the case of renal imaging, girth is more robust than weight in predicting AA needed to provide 

a desired IQ. 

Chapter 5 is a submitted manuscript that describes the design of a deep learning based 

anthropomorphic model observer (DeepAMO) that can be used for clinically realistic visual 

detection tasks performed on volume images. Results show that the proposed model observer has 

the potential to mimic human observer in performing defect detection task in a clinically realistic 

diagnostic setting. 

Chapter 6 summarizes the novel findings of this dissertation, highlights the significance and 

importance of this work to medical imaging system optimization and suggests potential avenues 

of future research. 
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Chapter 2 Background 

 

Background 
 

2.1 Nuclear medicine imaging 
 

2.1.1 Introduction to nuclear medicine imaging 

 
Nuclear medicine (NM) imaging is a branch of functional imaging that encompasses two 

main modalities – single-photon imaging, including planar scintigraphy and Single Photon 

Emission Computed Tomography (SPECT), and Positron Emission Tomography (PET) – which 

use small amounts of radioactive materials called radiotracers to provide in vivo imaging of 

functional and physiological processes of the human body [3]. It is distinguished from modalities 

such as X-ray planar radiography that principally depicts the body’s structure (anatomy). A 

radiotracer is a chemical compound where one or more of the atoms is a radionuclide. By nature 

of its biological and biochemical properties, the radiotracers can be used to explore the mechanism 

of physiological processes in vivo, such as glucose metabolism, by tracing the gamma photons 

emitted through the decay of the radioisotope. In single-photon imaging, a gamma camera is used 

to detect the gamma photons and produces a set of 2D projection data of the 3D radiotracer 

distribution within the patient body. In SPECT, projections are acquired at several views around 

the body, and the resulting set of projection data is reconstructed to provide 3D volume image of 

the activity distribution in the body. 
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2.1.2 Radiation dose and image quality tradeoff in pediatric nuclear 
medicine imaging 

 

For medical imaging with ionizing radiation, there is always a tradeoff between image 

quality (IQ) and risk to the patient from absorbed dose (AD). In the dose range relevant to most 

nuclear medicine studies (below 10 mSv), the patient risks are specifically referring to a low-

probability risk of inducing caner (from stochastic effects) in the patient later in life. Children are 

thought to be at a higher risk of certain adverse effects from radiation exposure than adults owing 

to the enhanced radiosensitvity of their tissues and the longer time-period over which stochastic 

radiation effects may manifest [4]. Thus, it is particularly important to expose pediatric patients to 

as low a radiation dose as is commensurate with providing sufficient diagnostic information [5].  

In nuclear medicine imaging, reducing the AD requires reducing the administered activity 

(AA). Lower AA results in increased Poisson noise (introduced in section 2.4.1) in the images or 

requires longer acquisition durations to maintain the noise level. Thus, finding the optimal AD, 

i.e., the one giving the lowest risk sufficient to provide acceptable diagnostic image quality, comes 

down to finding the lowest AA that gives sufficient IQ for clinical diagnosis or other relevant tasks.  

The fundamental differences that separate pediatric nuclear medicine from adult nuclear 

medicine are that children generally have smaller organs and lesions [3] and are thought to be at a 

higher risk for adverse effects from radiation exposure than adults [4]. Therefore, special 

considerations are needed for imaging children. First, higher resolution images are needed in 

pediatric nuclear medicine in order to detect these smaller organs or lesions [3], as detectability of 

a lesion is fundamentally limited by the lesion size with respect to the resolution of the imaging 

system. Second, sedation is often required for children of young age and, especially for longer 

acquisitions. Longer acquisition durations increase the chance of patient motion, which can 
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degrade image quality. Short acquisition durations are thus desirable. Lastly, AA for pediatric 

nuclear medicine needs to be carefully optimized due to the potentially higher radiation-induced 

cancer risk of children. A detailed discussion about dose sensitivity in children is given in section 

2.2.2. 

 

2.2 Radiopharmaceutical dosing in nuclear medicine 
imaging 

 

2.2.1 Relationship between administered activity and radiation dose 

 
In nuclear medicine imaging, the total AD to a patient is proportional to the amount of 

administered activity injected to the patient. Here, the absorbed dose is defined as the mean energy 

deposited to the target tissue (or region) per unit tissue mass. According to the Medical Internal 

Radiation Dose (MIRD) schema [6], the absorbed dose to a target region of interest is computed 

as follows: 

 𝐷(𝑟𝑇 , 𝑇𝐷) =  ∑ 𝐴̃(𝑟𝑠, 𝑇𝐷)𝑆(𝑟𝑇 ← 𝑟𝑠),𝑟𝑆  (2.1) 

 

where 𝐷(𝑟𝑇 , 𝑇𝐷) is the mean absorbed dose to a target region of interest 𝑟𝑇 over a dose integration 

period 𝑇𝐷; 𝐴̃(𝑟𝑠, 𝑇𝐷) is the time integral of activity in the source region 𝑟𝑠; and 𝑆(𝑟𝑇 ← 𝑟𝑠) is the so 

called “S-value” in the field of dosimetry, which represents the absorbed dose per unit time-

integrated activity. The S-value depends on the average energy and abundance of the particle or 

particles emitted during the decay, the fraction of the energy that is absorbed in the target region, 

and the mass of the target region.  
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2.2.2 Dose sensitivity in children 

 
Children are often thought to be more sensitive to adverse effects from radiation exposure 

than adults [7]. This is mainly because children have: (1) more tissues with high mitotic rates, 

which are more vulnerable than tissues with lower mitotic rates to radiation [8], and (2) longer 

post-exposure lifespans to manifest these stochastic radiation effects [5]. In infancy and early 

childhood, these considerations become even more pressing, as cells are growing (undergoing high 

rates of division) and differentiating into mature cells, and thus are more vulnerable to ionizing 

radiation [9]. Although the cells attempt to repair themselves when they are damaged (mostly in 

the form of DNA breaks), very rarely, however, mistakes do happen in the DNA repair process, 

resulting in genetic abnormalities (mutations) [10, 11]. Therefore, there has been significant 

interest in the nuclear medicine community in establishing universally accepted and optimized 

dosing guidelines for pediatric nuclear medicine studies. 

 

2.2.3 Current dosing guidelines for pediatric nuclear medicine 
imaging and limitations 

 
To address the dosing of pediatric patients, the European Association of Nuclear Medicine 

(EANM) and Society of Nuclear Medicine and Molecular Imaging (SNMMI) have published, 

respectively, the European pediatric dosage card and the North American consensus guidelines for 

pediatric administered activity (AA) [12, 13]. However, these guidelines were developed either 

based on a consensus of best practices or a simple estimation of image quality instead of a rigorous 

evaluation of diagnostic image quality relative to AA. A comprehensive introduction to the dosing 
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guidelines and their respective limitations is provided in Chapter 3 (terminology, such as count 

rate, effective dose, etc., is introduced in section 2.3).  

 

2.3 Renal functional imaging with 99mTc-DMSA SPECT 
 

2.3.1 Clinical problem 

 
99mTc-DMSA is the agent of choice for renal cortical imaging by planar, pinhole 

scintigraphy, or by SPECT [3]. The DMSA tracer is principally concentrated (1 hour or more after 

injection) in the proximal convoluted tubules of the kidneys, which is ideal for detecting cortical 

functional defects in pyelonephritis, infarction, scarring, duplication, and fetal lobations [3]. Fig. 

2.1 shows an example of SPECT image in pyelonephritis. The dim area, as indicated by the arrow, 

shows the non-functional regions of the cortex.  

 

 
Figure 2.1.  Example of a clinical SPECT image in pyelonephritis of a 16-year-old reconstructed using two 
iterations of eight subsets of the OS-EM reconstruction with detector response compensation followed by a Gaussian 
filter with a FWHM of 0.5 mm.  
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2.3.2 Use of DMSA in diagnosing acute pyelonephritis 

 

2.3.2.1 99mTc-DMSA Characteristics 

 
99mTc is one of the most commonly used medical radioisotopes in nuclear medicine 

imaging. It has a half-life of 6 hours [14] (93.7% of it decays in 24 hours) and emits pure gamma 

rays with a single photon energy of 140 keV. This energy is high enough that the photons leave 

the body, but low enough that the photons can be detected and collimated with relative ease.  99mTc 

labeled Dimercaptosuccinic acid (DMSA) was first developed by Lin et al. [15] as a renal imaging 

agent to replace the 197Hg-labeled chlormerodrin because of the poor imaging characteristics of 

197Hg, and the toxicity of mercury [16]. DMSA has a high absolute renal concentration, about 

twice that of the other 99mTc labeled compounds in humans, approaching the concentration of 

labeled chlormerodrin [17]. The physical characteristics of 99mTc and the mercurial-like kinetics 

of the chelator make this compound a unique agent for imaging the renal parenchyma in patients 

of all ages [18]. Moreover, DMSA has a high uptake in the renal cortex, with about 50% remaining 

there at 1 hour, resulting in a high gamma flux, and is thus ideal for imaging [19]. 99mTc-DMSA is 

the most commonly used agent for renal cortical imaging in planar scintigraphy and SPECT [20]. 

2.3.2.2 Biokinetic behavior of 99mTc-DMSA  

 
99mTc-DMSA is administered intravenously with a usual dose in adults of 0.05 mCi/kg 

(1.85 MBq/kg) [20]. After intravenous injection, this agent is 90 % bound to plasma proteins, and 

only a small amount (0-5%) is associated with red cells [19]. The clearance of 99mTc-DMSA in the 

blood follows a single exponential with a mean half-life of 56 minutes and with 6-9% of the 

administered dose present in the blood at 14 hours after injection [20]. The blood clearance of 
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99mTc-DMSA is very slow compared to other renal agents. The renal uptake of 99mTc-DMSA is 

approximately 40-50 % of the injected dose at 4 hours post-injection [19]. Most accumulated tracer 

is found in the proximal convoluted tubules, with small amounts elsewhere in the kidneys [21]. 

Although most 99mTc-DMSA is retained in the renal parenchyma, cumulative urinary excretion 

has been reported to be 6 % at 1 hour, 1-12 % at 2 hours, and 25 % at 14 hours [20]. 

According to the International Commission in Radiological Protection (ICRP) model [22], 

an intravenous injection of  99mTc-DMSA gives rise to an initial distribution in the extracellular 

fluid. About half of the material entering the extracellular fluid is deposited in the renal cortex and 

is retained there for a long time, and a further fraction is temporarily retained in the liver and spleen 

[22]. Excretion of 99mTc-DMSA is exclusively via the kidneys and could take up to 2 days [23]. 

 

2.3.3 Diagnostic task with DMSA SPECT 

 
Often, the associated diagnostic task for DMSA renal imaging is to detect renal 

parenchymal defects or cortical functional defects. Thus, we have modeled the clinical task as a 

defect detection task. As mentioned in section 2.4.3.3, there are some practical limitations of the 

current model observers. To overcome these limitations, we have developed a deep learning-based 

anthropomorphic model observer to fully simulate clinical detection task for DMSA renal SPECT 

imaging. The new model observer will be introduced in Chapter 5. The next section provides a 

general background about deep convolutional neural networks and their applications as model 

observers in task-based image quality evaluation. 
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2.4 Image quality in nuclear medicine imaging 
 

In nuclear medicine imaging, there are two fundamental methodologies for evaluating 

image quality [24]. The first is by means of physical characteristics that can be quantitatively 

measured for the image or imaging system. The second is by means of task-based image quality 

evaluation such as human observer studies (a detailed introduction is provided in section 2.4.3)  

2.4.1 Physical characteristics of image quality 

 
In order to understand the surrogate measures of image quality used in Chapter 3, it is 

essential to introduce the physical characteristics of image quality for nuclear medicine images.  

In principle and among other factors, the quality of nuclear medicine images is mainly 

characterized by three factors: (1) spatial resolution (sharpness), (2) noise (variations in the image 

due to random effects such as quantum noise), and (3) contrast (difference in image intensity 

between areas of the imaged object). Other factors such as artifacts, non-uniformity or distortions, 

and patient or organ motion can also affect image quality but will be largely neglected in the 

following discussion. Although resolution, noise, and contrast describe three different aspects of 

image quality, they cannot be treated as completely independent parameters: improvement in one 

is frequently obtained at the expense of deteriorating the others [24]. For example, in nuclear 

medicine, reduced image noise can be obtained by the use of a higher sensitivity collimator. 

However, there is an inverse relationship between sensitivity and resolution, thus reducing noise 

via the use of a high sensitivity collimator results in poorer spatial resolution. Poor spatial 

resolution will result in poorer contrast of small objects.  

Spatial resolution refers to the ability of an imaging system to separate fine details in the 

image [25]. There are two main components that contribute to the lack of details or sharpness in 
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nuclear medicine: geometric resolution and intrinsic resolution (detailed introduction is provided 

in section 2.4.3.1). In theory, the higher the spatial resolution of the imaging system the shaper the 

image it can produce. However, there is a tradeoff between spatial resolution and noise. For 

example, improved collimator resolution results in decreased collimator efficiency, and, hence, 

decreased counting rates and increased image statistical noise for the same acquisition duration 

and administered activity.  

In nuclear medicine, noise most often refers statistical fluctuations in the recorded counts 

that result from the random nature of radiation decay and photon counting statistics. These 

fluctuations can be described using the Poisson distribution: 

 

 𝑃(𝑁 = 𝑛|𝑚) =
𝑚𝑛𝑒−𝑚

𝑛!
, (2.2) 

 

where 𝑚 is the mean number of detected counts in a projection bin and 𝑛 is the number recorded 

counts for one particular acquisition. The fact that the recorded counts can be different from the 

mean is referred to as Poisson noise. In projection data, the noise is uncorrelated Poisson noise 

whose variance 𝑉𝑎𝑟[𝑁] equals its expectation 𝐸[𝑁]. In general, the only way to reduce the amount 

of Poisson noise is to increase the mean number of counts. This can be seen by considering the 

coefficient of variation (COV), defined as the standard deviation divided by the mean, which 

describes the relative level of noise in a projection bin and is given by 

 

 𝐶𝑂𝑉 =
√𝑚

𝑚
=

1

√𝑚
, (2.3) 

 

which shows that Poisson noise, while growing in absolute terms with the signal, is relatively 

smaller at higher count levels.  
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Reconstruction and other image processing can alter the magnitude of the noise 

fluctuations and change the noise texture (by introducing correlations) depending on the algorithm 

used. Noise is a very important aspect of nuclear medicine. When the size of an object is 

substantially larger than the limiting spatial resolution of the imaging system, noise can still impair 

detectability, especially when noise fluctuations are large compared to the contrast of the object of 

interest.  

Image contrast refers to the differences in counts or intensity in the object of interest 

compared to the background. In nuclear medicine, this difference is caused by the different levels 

of radioactive uptake in the patient [24]. For example, if 𝑅𝑏 is the number of counts recorded in a 

background area and 𝑅𝑠 is the number of counts recorded over a signal area (i.e., a lesion), the 

contrast of the signal is defined as [24] 

 

 𝐶𝑠 =
𝑅𝑠−𝑅𝑏

𝑅𝑏
. (2.4) 

   

There are several factors that affect the contrast including intrinsic object uptake, 

scattering, and septal penetration. Among these factors, intrinsic object uptake is the major 

component that affects image contrast, and is largely determined by the radiopharmaceutical and 

patient biokinetics. The other two factors affect the image contrast primarily by adding counts to 

the background. The degraded image contrast with the added background 𝑅0 can be expressed as 

 

   𝐶𝑠′ =
(𝑅𝑠 + 𝑅0) − (𝑅𝑏 + 𝑅0)

𝑅𝑏 + 𝑅0
 

 = 𝐶𝑠
1

1+
𝑅0
𝑅𝑏

. (2.5) 
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It can be seen in the above equation that the larger the additional factor  𝑅0/𝑅𝑏 the more 

decrease would be seen in the contrast. Also, contrast is related to noise through the contrast-to-

noise ratio (CNR), which is a critical parameter for detectability. The CNR is defined as the 

contrast divided by the noise. One way to characterize noise is the COV of the recorded counts in 

the same area where the contrast is measured. A high noise level will have a large denominator 

(COV) in the CNR and thus a smaller CNR, resulting in reduced detectability and less accurate 

diagnosis. In nuclear medicine, image contrast can be degraded by physical factors involved in 

image formation such as the effects of scattered photons from surrounding tissues, and septal 

penetration and scatter. A detailed introduction to the causes and effects of photon scatter and 

septal penetration is given in section 2.4.2.1and 2.4.2.2, respectively. 

Although these physical measures set the fundamental limits for image quality in nuclear 

medicine imaging, they may not directly reflect the performance of an observer on a clinical task 

performed with those images. Clinically relevant image quality should be assessed with respect to 

the task that is to be performed [26-32]. 

 

2.4.2 Image quality in SPECT 

 

2.4.2.1 SPECT image formation process 

 
SPECT images originate from measurements of gamma photons emitted from the 

radiotracers distributed within the patient body. These photons are recorded by a gamma camera 

that is rotated around the patient to form multiple 2D images (also called projections), from 

different projection views. Then these projections are reconstructed to form a 3D image (of the 

radiotracer distribution of the body) using a tomographic reconstruction algorithm.  
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The process of projection acquisition is represented mathematically as follows 

 𝐠 = 𝐇𝐟 + 𝒏, (2.6) 

where 𝐟 = [𝑓1, 𝑓2, … , 𝑓𝑁]𝑻 ∈ ℝN×1  is the voxelized object being imaged (the continuous 3D 

radiotracer distribution of the body), 𝐠 = [𝑔1, 𝑔2 , … , 𝑔𝑀]𝑻 ∈ ℝM×1 is the projection image, and 

𝐇 ∈ ℝM×N  is the imaging operator, which maps the activity distribution to the measured 

projections, and 𝐧 ∈ ℝM×1 is the Poisson noise (introduced in section 2.4.1) resulting from the 

random nature of radioactive decay and interactions of the emitted photons with the patient and 

detection system. Specifically, 𝐇 is a matrix characterizing all the image degrading factors in the 

image formation process which includes the attenuation and scatter in patient and the collimator-

detector blurring (introduced in section 2.4.3), with 𝐇𝑖𝑗 representing the probability of a photon 

emitted in the image voxel 𝑗 to be detected in the projection bin 𝑖. Pictorially, the image formation 

process is illustrated in Fig. 2.2.  

The relative noise in the projections increases as a result of attenuation in the body due to 

decreased count rate (discussed in section 2.4.1), at a fixed AA and acquisition time. Attenuation 

is caused by the interaction of photons within the body (e.g., the photoelectric effect and Compton 

scattering), and leads to a depth-dependent reduction in the number of primary (unscattered) 

photon counts detected in the projection image. The amount of attenuation is dependent on the 

composition (e.g., atomic number and density), the energy of the photons, and the thickness of the 

absorber.  

 In theory and among other factors, the spatial resolution in SPECT (both axial and in-plane) 

is determined largely by the collimator resolution (the most important  component of which is the 

geometric component introduced in section 2.4.2.2) and the intrinsic resolution of the gamma 

camera [24]. The further away the camera is from the patient, the worse the resolution. Thus, it is 
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desirable to use a body contour orbit that places the camera as close to the patient as possible at 

each projection view to acquire high-resolution image of the patient. 

 

 

Figure 2.2.  Illustration of the image formation process of SPECT 

 

2.4.2.2 Physical factors of image quality in SPECT 

 
In section 2.4.1, we discussed the physical measures that affect image quality in nuclear 

medicine imaging. In this section, we focus on discussing the factors that affect these physical 

measures in SPECT renal imaging in particular.  

In the projection domain, the PSF (introduced in section 2.4.1) that describes the spatial 

resolution of a source in air is simply the collimator detector response function (CDRF), which is 

the image generated from a point source of activity. In the presence of a medium (i.e., patient), the 

PSF is also affected by the attenuation and scatter in the medium in addition to the CDRF. Since 

the CDRF various with position, the PSF is spatially varying. In a patient, the PSF is affected by 

scatter and attenuation, and is thus patient-dependent. In the reconstruction domain, the camera 
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orbit and the reconstruction algorithm can also affect the PSF in addition to the CDRF. The CDRF 

includes the intrinsic, geometric, septal scatter, and septal penetration response components. Since 

the geometric component is distance-dependent, the CDRF is spatially varying. The intrinsic 

response is due to the uncertainty of position estimation in the camera’s detector system and the 

effects of scattering in the detector crystal. The geometric response accounts for all the photons 

from the point source that travels through the collimator holes without any interactions with the 

collimator septa and are detected in the acquisition energy window. The septal scatter and 

penetration components account for all the other photons that interact with or pass through the 

septa, respectively. For the 140 keV photons emitted by the agents used in renal imaging, septal 

penetration and scatter have relatively small effects on the CDRF.  

The relative noise level in SPECT, as measured by the COV (equation 2.3), is inversely 

related to the number of detected photons received by the gamma camera. The number of detected 

photons is largely determined by the activity in the target organ, which in turn depends on the 

following factors: (1) fraction of the AA taken up in the target organ; (2) the size of the organ; and 

(3) the amount of attenuating medium between the organ and collimator of the scanner. 

Attenuation refers to the loss of photons emitted from a source as they travel toward the detector 

due to interactions with the body. Attenuation results in a depth-dependent reduction in the number 

of detected primary photon counts as compared to the same source in the air. The amount of 

attenuation depends on the energy of the photons and the composition and thickness of the 

absorber. 

Scatter is another major effect that affects image quality (mostly contrast) during SPECT 

image formation. Scatter refers to scatter interactions (mostly Compton) in the patient. A scattered 

photon is a photon detected after it has undergone these scatter interactions. These scatter 
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interactions result in a change in the direction of the photons, and thus a loss in correlation between 

photon direction and the position of emission. These scattered photons can pass through the 

collimator and be detected, providing false position information and distortion of the estimated 

activity distribution. Scatter can cause the image to lose contrast by adding a low-frequency 

background of the image. To reduce the number of scattered photons counted in the projection 

image, energy discrimination is used to reject scattered photons. In this method, an acquisition 

energy is set around the energy window, centered on the energy of the gamma photon being 

imaged, and photons incident with energies outside this range are not counted. The scatter rejection 

from this method is imperfect due to the imperfect energy resolution of gamma cameras. 

 

2.4.2.3 Radiopharmaceutical 

 
The intrinsic contrast of a target object is determined by the activity uptake concentration 

of the target object relative to its surrounding tissue. The intrinsic contrast defines the upper limit 

of contrast that the imaging system can obtain for the target object, in a noise-free scenario with a 

perfect system PSF. When the target object is a defect, the intrinsic contrast of the defect affects 

the detectability of the defect, which would in turn affect image quality.   

 

2.4.2.4 Patient factors 

 
Besides system parameters, patient factors also have an important effect on image quality 

in SPECT. There are mainly three factors: (1) patient body morphometry local to the target organ; 

(2) patient target organ uptake; and (3) defect size versus imaging system resolution.  
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Patient body morphometry can have a direct impact on defect detectability. As an example, 

we found that patients with large girth at the location of the kidney can have lower image quality, 

as measured by defect detectability, than those with small girth [2]. The difference in image quality 

was due to a combination of three factors: the large girth patient resulted in fewer photons escaping 

the body, required a larger average camera orbit radius resulting in poorer spatial resolution, and 

produced a higher scatter-to-primary ratio, resulting in higher noise, poorer resolution, and poorer 

contrast, respectively, for the patient with a larger girth. 

In addition to patient body morphometry, the amount of tracer uptake specific to an 

individual patient can also affect defect detectability, as previously explained in section 2.3.3.3.  

Lastly, the defect size of the patient, which is unknown before imaging, can also affect 

defect detectability. To see details of a small defect with reasonable contrast, the spatial resolution 

must be better than the object size. Thus, it is generally preferred to use high-resolution collimators 

to image pediatric patients as children generally have smaller organs, and smaller defects are more 

clinically significant than adults.  

 

2.4.3 Task-based image quality 

 

2.4.3.1 Introduction to task-based image quality assessment 

 
As described above, the quality of a medical image can be measured in terms of physical 

characteristics of the image, such as image contrast, spatial resolution, and noise [33] using various 

physical metrics. Alternatively, fidelity-based measures such as root mean squared error (RMSE), 

peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), which evaluate image 

quality in terms of similarity of the image with respect to the imaged object, have also been widely 
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used in the medical imaging community. Fidelity-based measures are appealing because they are 

relatively easy to compute, have straightforward physical interpretations, and can provide 

objective quantitative measures of image quality. However, neither the physical nor fidelity-based 

measures are directly related to performance on the diagnostic task that will be performed with the 

images and thus may not be clinically relevant [31]. To be clinically relevant, image quality should 

be assessed with respect to a specific task that will be performed with the images [26-32], i.e., 

detect a tumor or estimate tumor volume. Assessing image quality objectively in terms of 

performance on a specific clinical task is called task-based image quality assessment.  

Typically, the task is performed by an observer, and the figure of merit for image quality 

is the performance of the observer on the task. In the vast majority of clinical tasks, the observers 

are humans, and thus the observers used in the assessment should be drawn from the population 

of people performing the task, i.e., for medical images, a radiologist or nuclear medicine physician.  

 

2.4.3.2 Human observers 

 
Humans serve as observers or expert readers in the vast majority of medical imaging 

applications in task-based image quality assessment studies [31]. Human observers are the most 

relevant in assessment of the images used by human observers to perform a task [31]. However, 

in practice, the use of human observers (and especially physicians) is practically extremely 

challenging and expensive, especially in large-scale developmental research studies. Furthermore, 

human observers exhibit a significant amount of intra-observer and inter-observer variability in 

performance [33]. Thus, models of human observers (anthropomorphic model observers) have 

been widely used as surrogates for human observers. A great deal of effort has gone into the 

development of anthropomorphic model observers that predict human observer performance [34-
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37]. 

In the context of a clinical defect detection task, the human observer is a radiologist or a 

nuclear medicine physician. However, the task to be performed in a human-observer study is 

slightly different from the routine clinical diagnostic task, i.e., classifying the patient as abnormal 

or diseased based on the image. For defect detection tasks, two-alternative forced-choice (2AFC) 

and continuous rating scale methods have been widely used in human-observer studies to allow 

measurement of a figure-of-merit for the observer’s performance [38, 39]. In the majority of the 

human-observer studies, the input to the human observer is either a single image (i.e., a short-axis 

slice), a stack of slices from a specific orientation, or a set of images from 3 orthogonal (e.g., 

transaxial, sagittal, and coronal) orientations. The output from the human observer is a rating value, 

which represents the confidence that the observer thinks that there is a defect present in the image. 

Fig. 2.3 shows an example of a human-observer study display window using a continuous rating 

scale for a defect detection task.  
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Figure 2.3. Example of a human-observer study display window. The image is displayed in the bottom lower corner; 

the instructions are in the top right corner; the continuous rating scale is in the bottom right corner. Cross-

hair indicates a possible center of a defect to the observer. The study was for detecting renal cortical 

damage with DMSA SPECT images. 
 

2.4.3.3 Model observers 

 
Of the existing anthropomorphic observer models, the channelized Hotelling observer 

(CHO) has been the most widely used as a substitute for human observers in signal-location-known 

tasks in nuclear medicine imaging research [40]. The essential component that distinguishes a 

CHO from a Hotelling observer is the introduction of the concept of frequency channels. The 

channels are introduced for dimensionality reduction or to make the HO better model human 

observers [31]. There is widely accepted psychophysical evidence that, when visually processing 

an image, humans are sensitive only to the total power in a series of frequency bands or channels 

rather than to individual frequencies (infinitesimally small frequency bands) [41]. Thus, the entire 

frequency content of an image within a given frequency band or channel can be reduced to a single 
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output channel value. This process is often called channelization, which involves multiplying (in 

frequency domain) or taking dot products (in spatial domain) of the input image with a series of 

channel template images (shown in Fig. 2.4). The resulting scalar can be considered as the energy 

contained in the frequency channel. A total of N frequency channels results in an N-dimensional 

vector, often referred to as a feature vector  [33]. For example,  

 
 𝒗𝑖 = 𝒖𝑖

𝑡𝒈, (2.7) 

 

where 𝒈 is the original input image,  𝒖𝑖 is the ith channel template image, and 𝒗𝑖 is the ith channel 

response. Stacking the channel responses together results in a feature vector 𝒗,  

 

 𝒗 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, … 𝑣𝐿), (2.8) 

 

 
Figure 2.4.  Images of 4 anthropomorphic difference-of-mesa [42] channels in the frequency-domain (top row) and 

their corresponding shifted spatial domain template images (bottom row). The cross-hair indicates the 

center of the template, which must be aligned with the center of the suspected defect location when 

taking the dot product.  

 

For a binary detection task, the CHO test statistic 𝜆 is computed by taking the dot product 

of the CHO template and the channelized data vector 𝒗 [43]: 
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 𝜆 = 𝒘𝑡𝒗, (2.9) 

 
where 𝒘 is the CHO template vector and the superscript 𝑡 denotes the transpose operation. The 

CHO template is generated using the 1st and 2nd order statistics of the channelized data vector and 

is given by [43]: 

 𝒘𝑡 = (〈𝒗1〉 − 〈𝒗2〉)
𝑡𝑲𝑔

−1, (2.10) 

 𝑲𝑔 = 𝑃1𝑪1 + 𝑃2𝑪2, (2.11) 

 

where 〈𝒗1〉 and 𝑪1 are the mean vector and covariance matrix of the channelized data vector 𝒗 

under the hypothesis 𝐻𝑖 (𝑖 = 1,2). 𝑃1 and 𝑃2 are the occurrence probabilities (prevalences) for the 

two classes.  

The CHO has been shown to correlate well with human observer performance on signal-

known-exactly/background-known-exactly (SKE/BKE) tasks [44, 45], SKE-background known 

statistically (BKS) (e.g., lumpy backgrounds) tasks [46], and SKE-realistic anatomical 

backgrounds tasks [38, 41, 47] for a variety of types of nuclear medicine imaging. However, in 

those tasks the observer is only asked to decide whether the defect is present or not at a specified 

location. A more clinically realistic detection task is the signal-known-statistically (SKS)/BKS 

task, where variability can be present in both the signal and background. Here, signal variability 

is present in the form of variations in signal/defect shape, size, orientation, or topology/texture or 

combinations of the above. Background variability can come from two sources: quantum noise 

and anatomical variability. Modeling the latter is important in order to model clinical task where 

patients can vary greatly in size, shape, uptake, etc. It is important to model these image features, 

especially in studies such as virtual clinical trials, in order to accurately model performance on 

images from patient populations. For these clinically more realistic SKE/BKS and SKS/BKS tasks, 

there is evidence that rankings or ranking trends of human observers and the CHO are correlated 
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for different noise levels [47, 48], reconstruction methods and phantom populations [49], imaging 

systems [50], compensation methods, and post-filter cutoff frequencies[51]. Scanning forms of the 

CHO can be applied for the clinically more realistic SKS/BKS tasks to analyze each location 

within a particular region of interest (ROI) as a potential defect site [52]. However, the location-

specific nature of the defect profile for the scanning CHOs will be a problem if there are extensive 

search areas and defect profile variability with respect to location is relatively high [53]. From an 

implementation perspective, for SKS tasks with a large search region and a high signal variability, 

the use of scanning CHO can be computationally demanding (even with the use of channels). 

Specifically, the scanning CHO requires computing covariance matrices numerically for every 

single pixel within the search region, which can be a problem for input image that has an 

extensively large search region such as multi-slice, multi-orientation image sets. Furthermore, 

scanning observers do not model the human’s process of confirming a defect in slices across 

multiple orientations. For these reasons, the previous attempts to use scanning observers on multi-

orientation, multi-slice images have focused on reducing the search region. The main techniques 

include using of a front-end search process [53] to obtain a subset of the original search location 

set (reduce the number of slices that analyzed by the scanning observer) and simplifying the defect 

confirmation process by simulating a simpler SKE/BKE detection task, etc. [54, 55] 

In addition to the above limitations, existing model observers often predict rankings but 

not the absolute performance of human observers [56-59]. For imaging system optimization or 

comparison studies, this can be sufficient, but for other applications, such as selecting imaging 

time, administered activity, or radiation dose, prediction of absolute performance measures is 

required [32]. Obtaining absolute agreement for these model observers typically is done with the 

addition of observer internal noise [56]. The calibration process is a parameter search exercise 
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where the goal is to find the value of an internal noise parameter that matches performance between 

the model and human observers. Note that the calibration process is often performed for one 

specific combination of signal (shape, size, and orientation) and noise level, and it is unclear the 

degree to which the calibration generalizes to other situations. 

In an attempt to resolve the limitations described above, we proposed a novel deep 

learning-based anthropomorphic model observer (DeepAMO) in Chapter 5. The proposed model 

observer can evaluate multi-orientation, multi-slice image sets to model the clinical diagnostic 

process of a radiologist or nuclear medicine physician in a clinically realistic 3D defect detection 

task. The DeepAMO was evaluated on an SKS/BKS tasks using a realistic anatomical background 

with variation in organ uptake and defect position (and thus orientation and shape). We also 

proposed a novel calibration method that ‘learns’ the underlying distribution of the human observer 

rating values (including the internal noise) using a Mixture Density Network. In the next section, 

we will introduce the fundamentals of convolutional neural networks (a deep learning algorithm) 

as well as review some of the current model observers that are based on convolutional neural 

networks. 

 

2.5 Review of the current model observer based on 

Convolutional neural network  

In this section, we will first give a brief introduction to convolutional neural networks 

(CNNs) from the perspective of object detection, which is a classic computer vision problem that 

is closely related to the defect detection problem of interest to this dissertation. There, we will 

introduce CNNs in the context of object detection, which includes the problem formulation, the 
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backpropagation algorithm, and the functionalities of some essential layers that have been widely 

used in object detection. Finally, we will review two recently published CNN-based model 

observer publications aimed at reproducing a human observer’s defect detection performance, 

summarize the limitations in them, and finally state the aims of the proposed model observer in 

Chapter 5.  

2.5.1 Introduction to convolutional neural network 

 
A CNN is a deep learning algorithm that has been widely used in compute vision for 

recognizing and classifying features in images  [60-63]. It is a multi-layer neural network originally 

designed to analyze visual inputs and perform tasks such as object detection, image recognition 

and classification. With successful experimental results and wide applications in computer vision, 

the use of CNN has become increasingly popular in the medical imaging community, particularly 

in medical image analysis, computer-aided diagnosis, radiotherapy, and task-based image quality 

evaluation.  

2.5.1.1 Object detection with convolutional neural network 

2.5.1.1.1 Loss function 
 

The loss function works as the steering wheel for a neural network by defining the objective 

function and boundary for the task of the network. The loss function provides a measure of the 

difference between the output of the neural network for a given input and the desired (true) output. 

Depending on the application of the neural network, the loss function can be very different. The 

object detection problem that is most relevant to this dissertation is a one-class object detection 

problem, of which the goal is to detect an object’s presence in an image. For this task, the binary 

cross-entropy loss (binary classification) has been widely used [64]:  
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where 𝑦𝑖 is the ground truth label or target value (-1 or +1) for the 𝑖th image and 𝑦̂𝑖 is the predicted 

label (a probability) for the 𝑖th image. N is the output size which is the number of images in the 

model output.  

During training, the parameters (weights) of a network are updated by the update terms, 

which are the negative derivatives of the loss with respect to the weights times a small change 𝛿, 

referred to as the learning rate. The algorithm used to calculate the gradient of a loss function with 

respect to the weights (local parameters) is called backpropagation, short for “backward 

propagation of errors”. The backpropagation algorithm is introduced formally in section 2.5.1.2.2. 

 

2.5.1.1.2 Architecture of a CNN 
 

The architecture of a network can be understood as a way to achieve the objective defined 

by the loss function. In this section, we will introduce the problem formulation of the one-class 

object detection problem. 

 

 
𝐿𝐵𝐶𝐸(𝑦̂𝑖 , 𝑦𝑖) =  −

1

𝑁
∑𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)

𝑁

𝑖=1

, 

 

(2.12) 
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Figure 2.5.  Illustration of the problem formulation for a one-class object detection problem 

For a 2D object detection problem, the input to the network is a 2D image data, and the 

output is a predicted label for the input image. Typically, there are two main parts to a CNN 

designed for performing such task: (1) a feature extractor that is based on convolution responsible 

for producing various features of the image for analysis, and (2) a fully connected layer that uses 

the output of the feature extractor to select the best label for the image. A pictorial illustration of 

the problem formulation is shown in Fig. 2.5.  

 In the next section, we will introduce the basics of the modern CNN for object detection 

and provide a high-level view of why these networks have been some of the most influential 

innovations in the field of compute vision and medical image analysis. 

2.5.1.2 Basics of the modern CNN for object detection 

 
To understand how a modern CNN learns to detect an object in an image, we first need to 

understand backpropagation, the most widely used algorithm for training a neural network. In the 

following section, we will introduce backpropagation in the context of multi-layer perceptron, the 

precursor of the modern CNN, the reasons for use of convolution in analyzing visual data, and the 

basic layers in a modern CNN. 

 

2.5.1.2.1 Multilayer perceptron 
 
 

The idea of a multilayer perceptron is to address the limitations of a single-layer perceptron, 

namely, it can only classify linearly separable data into binary classes (1,−1) [65]. A single-layer 

perceptron is a feed-forward network based on a threshold transfer function and has the structure 

as shown in Fig. 2.6. 



 

 30 

 

 
Figure 2.6.  Illustration of a single-layer perceptron 

 
A multilayer perceptron (MLP) is built on top of single-layer perceptron. In an MLP, the 

outputs from one layer are used as inputs to the next layer. Therefore, many layers can be specified 

to model complex non-linear relations between the inputs and outputs. The capacity of the MLP 

is related to the number of hidden units within it. More hidden layers (any layers in between the 

output and input layer) mean more parameters and thus greater capacity of the MLP; however, 

more training data are also needed at the same time. A sample MLP is given in Fig. 2.7. 
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Figure 2.7.  Illustration of a multilayer perceptron 

The red nodes in the figure above represent the original part from the single layer 

perceptron that is shown in Fig. 2.5. The essential components that make an MLP differ from a 

single-layer perceptron are: (1) a soft thresholding function after each summation (linear 

combination of inputs), and (2) hidden layers. In theory, any complex non-linear relationship can 

be modeled by an MLP with enough hidden layers [66]. Thus, an MLP is often preferred over 

single-layer perceptron in modeling more sophisticated data, such as linear inseparable data, due 

to its ability to capture complex non-linearity. 

2.5.1.2.2 Backpropagation 
 

Backpropagation refers to application of the chain rule many times to calculate the gradient 

of a loss function with respect to the weights in a network. Fig. 2.8 shows a simple network 

containing only three inputs, two operations, and a single output. To understand backpropagation, 

we need to first answer the following question: how much change there is on the final result if the 

input is changed by an amount of 𝛿. That is, in the example shown in Figure 2.8, how would 

change in 𝑎 affect 𝑓, which is the final result of the network. To answer this question, we need to 

calculate the partial derivative with respect to that particular input, which is 𝜕𝑓/𝜕𝑎 =  5 in the 

example. This simply means that an increase in 𝑎 would increase 𝑓 by an amount equal to 5 𝛿 (𝛿 

here denotes the change in 𝑎 itself). In general, a positive gradient would positively influence the 

loss (the final result) and a negative gradient would negatively influence the loss, by the amount 

that is equal to the gradient multiplied by ∆. In a real neural network or a large computational 

circuit (imagine a very large number of operations and inputs), we can think 𝑎 as one of the weights 

𝜔 and 𝑏 as one of the inputs 𝑥 such as the ones shown in Figure 2.8. In the update equation, if we 

want to decrease the loss, we just need to update the weight by a tiny bit in the opposite direction 
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of its local partial gradient, i.e., decrease 𝜔 from -2 to -3. Doing so would give a smaller value of 

the loss function, 𝑓. 

 

 

Figure 2.8.  A pictorial illustration of backpropagation 

 

To train an MLP, we have to estimate the weights of the perceptron. First, we need to 

calculate the loss, which acts as an indication of the error between the output of the network and 

the true output value for a corresponding sent of inputs. 
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Figure 2.9.  A sample MLP for demonstration of backpropagation 

 
For the MLP in Fig. 2.9, the loss can be defined as 
 

 
 
 
 

As explained above, the update terms are the negative derivatives of the loss with respect to the 
local parameters (weights) times a small change 𝛿, referred to as the learning rate: 
 

 

which is computed by the chain rule, and  
 

 

which is computed directly as they are weights of the last layer. By defining 𝑧𝑚 = 𝜎(∑ 𝜔𝑚𝑛𝑥𝑛𝑛 ), 
we can write  
 

 
 
 
 

and, its derivative as: 
 

 
𝐸[𝜔, 𝜐] =  ∑(𝑦𝑖 −∑𝜐𝑖𝑚𝜎 (∑𝜔𝑚𝑛𝑥𝑛

𝑛

)
𝑚

)2.

𝑖

 
(2.13) 

 

 ∆𝜔𝑚𝑛 = −
𝜕𝐸

𝜕𝜔𝑚𝑛
× 𝛿, (2.14) 

 

 ∆𝜐𝑖𝑚 = −
𝜕𝐸

𝜕𝜐𝑖𝑚
× 𝛿, (2.15) 

 

 𝐸 =  ∑(𝑦𝑖 −∑𝜐𝑖𝑚𝑧𝑚
𝑚

)2

𝑖

, (2.16) 

 

 𝜕𝐸

𝜕𝜔𝑚𝑛
=
𝜕𝐸

𝜕𝑧𝑚

𝜕𝑧𝑚
𝜕𝜔𝑚𝑛

, (2.17) 
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Taking the derivative of 𝐸 with respect to 𝑧𝑚 gives 
 

 
 
 
 

If we assume 𝜎 is a sigmoid function whose derivative is 𝜎(𝑡)(1 − 𝜎(𝑡)), then we have  
 

 
 
 
 

And, finally, we have 
 

 

where ∑ (𝑦𝑖 − ∑ 𝜐𝑖𝑚𝑧𝑚𝑚 )𝑖  is the error calculated at the output layer. 
 

2.5.1.2.3 From MLP to modern CNN 
 

For an MLP, the inputs are always 1D vectors. However, an image is a 2D vector and the 

structural information among the neighboring pixels or voxels does represent a great deal of 

information provided by the image. Vectorizing the image to a large 1D vector results in an 

oversized matrix of input weights. Consider a 2D image of size 23 × 23 (shown in Fig. 2.10) for 

which we would have 529 input nodes. If the hidden layer has 200 nodes, the size of the matrix of 

input weights would be 529 × 200 = 105,800. This is just the first layer, and as we increase the 

number of layers, the matrix size increases even more rapidly. Furthermore, vectorization 

inevitably destroys the spatial structural information in the image.  

 

 𝜕𝐸

𝜕𝑧𝑚
= 2∑(𝑦𝑖 −∑𝜐𝑖𝑚𝑧𝑚

𝑚

)𝜐𝑖𝑚
𝑖

, (2.18) 

 

 𝜕𝑧𝑚
𝜕𝜔𝑚𝑛

= 𝑥𝑛𝜎 (∑𝜔𝑚𝑛𝑥𝑛
𝑛

) (1 − 𝜎 (∑𝜔𝑚𝑛𝑥𝑛
𝑛

)), 
(2.19) 

 

 𝜕𝐸

𝜕𝜔𝑚𝑛
=
𝜕𝐸

𝜕𝑧𝑚

𝜕𝑧𝑚
𝜕𝜔𝑚𝑛

 

=2∑ (𝑦𝑖 −∑ 𝜐𝑖𝑚𝑧𝑚𝑚 )𝜐𝑖𝑚𝑖 𝑥𝑛𝜎(∑ 𝜔𝑚𝑛𝑥𝑛𝑛 )(1 − 𝜎(∑ 𝜔𝑚𝑛𝑥𝑛𝑛 )), 
 

(2.20) 
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Figure 2.10.  Illustration of an MLP on 2D image data 

As early as 1987, researchers had started to explore the use of convolutional neural 

networks (CNN) to overcome both of these disadvantages. In 1998, the first work on modern 

CNNs was introduced by Yann LeCun for handwriting recognition [67]. In that paper, LeCun 

demonstrated that a CNN was able to aggregate simpler features into progressively more complex 

features, which could then be successfully used for handwritten digit recognition.  

The fundamental difference between a CNN and an MLP is the addition of 2D convolution. 

2D convolution has multiple unique advantages when it comes to processing 2D images. First, it 

can replace the computationally expensive matrix multiplications required by an MLP as learning 

a set of convolutional filters (each of 3x3) is much more tractable than learning a large matrix of 

millions of parameters [63]. Second, the 2D convolution filters can provide local connectivity  (on 

the order of the size of the filter used) and weight-sharing (the same filter applied across the image) 

[68]. Third, the 2D convolution can naturally account for 2D spatial structural information in the 
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image [68]. As a result of the combination of these advantages and the great leap computational 

performance provided by GPUs, the CNN has enjoyed a huge surge in use after the AlexNet 

achieved state-of-the-art performance labeling of pictures in the ImageNet challenge [60].  

 

2.5.1.2.4 Convolution layer 
 

The most fundamental operation in a CNN is convolution. The role of a convolution layer 

is to detect local features at different locations in the input image, producing feature maps [68]. A 

convolution layer is essentially a set of learnable kernels or filters. A feature map is an output 

obtained by applying a filter in the convolution layer to an image. The image can be the input 

image or another feature map resulting from a preceding convolution layer. To calculate a set of 

feature maps for a convolution layer 𝑙, we need the feature maps in the preceding layer 𝑙 − 1 and 

the filters in the current convolutional layer. Mathematically, the feature maps resulting from the 

convolution layer 𝑙 are given by [68]: 

 

where 𝑀(𝑙−1) is the number of feature maps in the layer 𝑙 − 1, ∗ denotes a convolution in the 

spatial domain, 𝑏𝑗
(𝑙) is a bias parameter, and 𝑓(∙) is a nonlinear activation function. The gradients 

or the derivative of a loss function with respect to the filter weights at a particular layer are 

computed by backpropagation as described in section 2.5.1.2.2. However, since the same filter 

kernel (i.e., set of weights) is applied multiple times at different locations in the image or feature 

map, the total derivative of the loss function with respect to the filter weights becomes a total 

gradient summed over the gradients computed at all these locations using that filter [68].  The 

 𝑨𝑗
(𝑙)
= 𝑓(∑ 𝑨𝑖

(𝑙−1)𝑀(𝑙−1)

𝑖=1 ∗ 𝑘𝑖𝑗
(𝑙) + 𝑏𝑗

(𝑙)), (2.21) 
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derivative of the loss with respect to the filter determines how much change in the filter weights 

will be needed in each iteration of training. In the following sections, we will introduce two other 

building blocks of CNN, namely, nonlinearity and pooling.  

 

2.5.1.2.5 Nonlinearity 
 

A CNN is usually composed of a series of convolutions intersected by nonlinearity 

operations. Nonlinearity operation in CNN is like the soft thresholding function in an MLP 

(introduced in section 2.5.1.1). It is essential as cascading a series of linear systems (like 

convolution) results in another linear system. By introducing the nonlinearities in between the 

layers, the model can be more expressive than a linear model [68]. Some of the most widely used 

nonlinearity functions include sigmod ( 𝜎(𝑥) = 1

1+𝑒−𝑥
), tanh ( 𝑡𝑎𝑛ℎ(𝑥) = 1

1+𝑒−𝑥
), and ReLU 

(𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)). 

 

2.5.1.2.6 Pooling layer 
 

A pooling layer is another building block of a CNN. The purpose of a pooling layer is two-

fold: (1) reduce the spatial dimensionality of the feature maps, and (2) provide a small degree of 

spatial invariance. One limitation about convolution layer is that they can only produce feature 

maps that record the precise position of the features in the input image. A small shift in the position 

of the features in the input image will thus result in a different feature map. A pooling layer solves 

this problem by providing a lower resolution of the feature map which still contains the important 

structural information in the feature map, but without the fine details that may not be useful to the 

task. At the meanwhile, the number of parameters and amount of computation need to be learned 
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in the later layers are drastically reduced. Among the different types of pooling operations, the 

most commonly used pooling is max-pooling. A max-pooling layer is essentially a 𝑛 × 𝑛 max 

filter, where each region the filter covers is replaced by its max value within the region [68]. A 

pictorial illustration of a max-pooling layer is in Fig. 2.11. 

 
Figure 2.11.  A pictorial illustration of a max-pooling layer with a filter size of 2x2 and stride of 2. 

2.5.1.2.7 Summary 
 
The basic layers and the backpropagation algorithm discussed above cover the most 

essential components in a modern CNN for object detection, which is the most relevant to our goal 

of modeling the defect detection task in a model observer (the surrogate of a human observer). In 

the next section, we will review two recently published works that use CNN to model human 

observer in performing defect detection tasks with CT images.  

 

2.5.2 Review of CNN-based model observer 

 
Recent developments in deep learning have opened up a door to new opportunities in the 

field of task-based image quality assessment. Several recent studies have explored the use of CNNs 
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as model observers. In [69] and [70], the authors demonstrated good agreement between CNN-

based model observers and human observers on single-slice 2D detection tasks in both simulated 

and clinical mammography but concluded that a large amount of training data is needed. In 

[71], CNN-based model observers achieved similar performance to human observers on a uniform 

background in CT phantom images. In a more recent work [72], a CNN was trained to approximate 

the ideal observer, using a computer-simulated uniform background with correlated noise.  

Although these above-mentioned studies demonstrated good agreement between CNN-

based model observers and human observers, those observers were not designed to reproduce 

human observer task performance. To model human observer task performance, a calibration 

process is often needed to model inter- and intra-variability of the human [56]. Intra-observer 

variability refers to the fact a human observer will produce, in general, in different rating values 

in different reading trials. Inter-observer variability refers the variation in rating values for the 

same image read by different human observers. Only recently have CNN model observers been 

proposed to model human observer performance on 2D defect detection tasks.  

In [71], an MLP and a CNN were proposed to predict the performance of a human observer 

on a liver lesion detection task using single-slice, single-orientation CT images and were compared 

to a CHO (with Gabor channels and internal channel noise). The MLP consisted of an input layer 

and an output layer with a nonlinear activation (SoftMax) function. A 2D image was vectorized 

and fed as input to the MLP and the SoftMax function normalized the output values of all units (𝑘 

= 1, …, 𝐾; human observer’s rating value ranging from 1 to 𝐾) of the output layer and returns the 

likelihood that the image is of class 𝑘.  The CNN was composed of two convolutional layers, each 

followed by a max-pooling layer and a flattening layer followed by two fully connected layers 

with the last one having an output size 1 × 𝐾. The human observer rating values were used to train 
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the MLP and CNN. The results of the work showed that the MLP and CNN correlated well (very 

close to the performance of the CHO with internal noise) with the results from a human observer 

for different x-ray exposure levels (multiple models were trained) and lesion sizes. However, the 

authors pointed out that they had a relatively large amount of training data for the MLP-based 

model observer and also their results were generated on a relatively simple task using CT phantom 

images with a uniform background. Thus, further evaluation on more challenging and realistic 

tasks is needed. 

More recently, a deep-learning-based model observer (DL-MO) was proposed to model 

human observer performance on a lung nodule detection and localization task on multi-slice, 

single-orientation 2D CT images [73]. The work was based on an underlying assumption that there 

exists similarity between the CNN and the human visual system. So, they proposed to use a pre-

trained CNN (trained using natural images) as a deep feature extractor as an initial stage applied 

to the input image. In order to reduce the dimension of the feature map, the extracted feature maps 

(from a pre-selected layer) were subsequently fed to a feature-engineering model to generate the 

test statistic for an input image. Specifically, their proposed framework included four major 

components: a pretrained CNN, a partial least square regression discriminant analysis (PLS-DA) 

model, an internal noise component, and a nodule searching process. A sliding window strategy 

was first used on the input image (single-orientation 2D slices) to extract local image patches that 

were used as the inputs to a pretrained CNN (ResNet50 [74]). The CNN was pretrained on a natural 

image dataset, and the output from an intermediate layer (pre-selected) of the CNN was used as 

input to the PLS-DA model to generate a test statistic, 𝜆0, for the input image patch. A spatial 

distribution of the test statistics (heat map) was obtained by scanning through all potential nodule 

locations. The nodule search process was then applied to identify the location of the voxel in the 
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original input image that coincided with the maximal value of the test statistic in the heat map, i.e., 

the most-likely location of lung nodules. Finally, an internal noise component was added to the 

maximal test statistic to model the variation of human reader performance, i.e., 𝜆 = 𝜆0 +

𝛼𝑁(0, 𝜆0,𝑏𝑘𝑔), where 𝜆 denotes the final test statistic and 𝛼 is the weighting factor that is to be 

found out in the calibration process. The work demonstrated strong correlation and agreement 

between the proposed DL-MO and human observers for a low-contrast liver lesion detection task 

in patient liver background. However, the author stated that one of the limitations of the work is 

that there are two free parameters (the CNN layer used for feature extraction and the number of 

PLS components) that need to be properly determined to achieve reasonable performance for this 

method. 

In summary, the CNN-based model observer seems to have a promising use in the 

optimization of medical imaging systems and acquisition methods. However, the biggest 

limitations for the current observer models, which include both the CNN-based models and the 

traditional models, is the inability to handle 3D data in a rigorous way, or more specifically, to 

model the human scanning-and-confirming process in a faithful way. Most of those model 

observers were designed for analyzing single-orientation 2D slices. By contrast, many clinical 

tasks require the interpretation of 3D datasets, which requires the reader to scan and confirm 

defect(s) using multiple slices in multiple orientations. Thus, it remains a challenge to fully model 

a clinically realistic 3D defect detection task, using multi-orientation, multi-slice image sets. 
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Chapter 3 A projection image database to investigate factors affecting 

image quality in weight-based dosing: application to 

pediatric renal SPECT 

A projection image database to investigate factors 

affecting image quality in weight-based dosing: 

application to pediatric renal SPECT 
 

3.1 Introduction 
 

In nuclear medicine imaging, the product of acquisition duration and administered activity 

(AA) determines the level of quantum noise present in the image. Quantum noise can have a direct 

impact on diagnostic image quality, and, for the purposes of maximizing image quality, reducing 

AA, or reducing acquisition duration, it is desirable to study the relationship between these factors.  

Over the past decade, there has been an increased interest in reducing patient radiation 

exposure in diagnostic imaging studies that use ionizing radiation. Therefore, there has been 

significant interest in the nuclear medicine community in establishing universally accepted and 

optimized dosing guidelines for pediatric nuclear medicine studies. The European Association of 

Nuclear Medicine (EANM) and Society of Nuclear Medicine and Molecular Imaging (SNMMI) 

have, respectively, published the European pediatric dosage card and the North American 

consensus guidelines for pediatric AA [12, 13]. The goal of these guidelines is to provide a balance 

between radiation risk and image quality. However, these guidelines were developed either based 

on a consensus of best practices or a simple estimate of image quality and not on a rigorous 

evaluation of diagnostic image quality relative to AA. 
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A second concern in pediatric imaging is the acquisition duration. Sedation is often 

required, especially for longer acquisitions. Longer acquisition durations increase the chance of 

patient motion, which can degrade image quality. Shorter acquisition durations are thus desirable. 

All else being equal, reducing the product of AA times acquisition duration will increase the 

Poisson noise in the image. However, the effect of changes in quantum image noise on diagnostic 

performance are complicated [47]. Similarly, decreasing quantum noise in the images requires 

increasing AA, acquisition duration, or both. Increasing the AA above that needed to provide 

acceptable image quality violates the principle of as low exposure as reasonably possible 

(ALARA). Consequently, appropriate guidelines for pediatric AAs are of significant interest [75]. 

Similarly, increasing the acquisition duration in pediatric patients to compensate for reduced AA 

may not be acceptable. Thus, understanding the tradeoff between image quality and the product of 

AA and acquisition duration is an important problem. 

In 2008, the Dosimetry and Pediatrics Committees of the EANM published the first version 

of the EANM pediatric dosage card to better standardize the AAs in pediatric nuclear medicine 

procedures. The dosage card was based on data from a publication by Jacobs et al. [76]. In that 

study, count rates and effective doses were computed as a function of body weight for 10 

radionuclides and 95 radiopharmaceuticals, respectively, using 7 hermaphrodite anthropomorphic 

computational phantoms [77]. Count rate was used as the only surrogate for image quality; a 

discussion of the details and limitations of that aspect of that work are provided in the discussion 

section. 

A second effort at standardization of pediatric dosages was the 2010 North America 

Consensus Pediatric Dosing Guidelines [78]. The AAs recommended in that report were slightly 

lower for infants and small children as compared to the EANM guidelines, compensating for the 
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higher radiation risk in early childhood. Those guidelines were based on a combination of 

experience and retrospective analysis of clinical data, taking into account the patient’s weight and 

count rate density per unit area or volume, and using these as the surrogates for radiation risk and 

count rates as the surrogate for image quality.  

In 2011, Sgouros et al. proposed a rigorous method to balance diagnostic image quality 

with cancer risk using 99mTc-DSMA as an example [5]. The study showed that weight alone may 

not be sufficient for optimally scaling AA in children. In that study, nonuniform rational B-spline 

(NURBS)-based anatomic phantoms, realistic organ uptakes and models of the image formation 

process, and task-based measures of image quality were used to objectively compare image quality 

of 99mTc-DMSA SPECT images. Two 10-year-old females of the same weight but different 

heights, respectively representing short-stout and tall-thin patients, were used in that study. Several 

different AAs (25%, 50%, 75%, 100%, 125%, and 150%), defect locations, and lesion severities 

with different target-to-background activity concentration ratios were simulated to represent 

clinical imaging. Channelized Hoteling observer methodology was used in a receiver-operating-

characteristic (ROC) analysis of lesion detectability to study the relationship between AA and the 

area under the ROC curve (AUC). The results of the study showed that the same AUC could be 

obtained for the tall-thin phantom with approximately half the AA as for the short-stout phantom. 

[5].  

In this present study, we have built upon the Sgouros et al. work by developing a realistic 

pediatric phantom population including variations in age, gender, kidney size, and height. We have 

also proposed a novel method that produces contrast-matched, clinically-relevant defects in all of 

the phantoms across different ages, gender, body morphometries, and kidney sizes. The 

combination of these methods allows application of task-based image quality methods to 
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rigorously assess current dosing guidelines in terms of their effectiveness for equalizing image 

quality across patients with different age and body morphometry.  

Toward this end, we simulated realistic projections of the pediatric patient population in 

preparation for future detailed investigations of the tradeoffs between image quality, the product 

of AA and acquisition duration, patient weight and height, and reconstruction method for 99mTc-

DMSA renal imaging. Using this realistic phantom population and projection database, we 

investigated the effects of scatter, count density, and radius of rotation as a function of patient 

morphometry. These studies provide insight into the changes in these surrogate indices for factors 

affecting image quality and how they change with patient weight and body morphometry and the 

limitations of weight-based scaling of AA. We also performed a model observer study to 

investigate further the impact of patient weight on image quality to study the validity of weight-

based dose scaling for 99mTc- DMSA imaging. 

3.2 Methods 
 

3.2.1 Population of realistic digital phantoms 

 
The database of projection data for this study was generated using the Advanced 

Laboratory for Radiation Dosimetry Studies (ALRADS) UF NHANES-based phantom series [79]. 

The phantom population realistically models pediatric heights, weights, organ sizes and anatomies 

for both genders at five ages. The phantoms were adjusted to model variations in height and organ 

size prior to voxelization. The ages modeled were newborn, 1-, 5-, 10-, and 15-years old. For each 

age, we modeled the 50th percentile weight and 10th, 50th, and 90th percentile heights, simulating 

patients having the average weight at each age with varying body habitus. The 10th, 50th and 90th 
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height percentile phantoms are referred to as short-stout, reference, and tall-thin patients, 

respectively 

 

Figure 3.1.  Sample coronal slices of the body reminder, cortex, medulla, pelvis, liver and spleen (from left to right) 
of a newborn 50th height percentile male phantom. 
 

For each age and height percentile, we modeled three kidney masses: -15%, average, and 

+15%, where average is the International Commission on Radiological Protection (ICRP) standard 

mass for a patient with the corresponding age and the percentiles are the change relative to this 

standard mass. The variations in kidney mass model variations in patient kidney size; for newborn 

patients, the dosimetric impact of these sizes on risk has been previously studied [79].  

In addition to anatomic variability, we simulated variations in uptake in 6 tissues: cortex, 

medulla, pelvis, spleen, liver, and body reminder (the remaining soft tissues of the phantom). Fig. 

3.1 shows sample coronal slices of these different objects (organs and renal sub-structures) in a 

newborn phantom of average height (50th percentile height). Projections of each object were 

generated separately assuming a uniform activity distribution. The individual projections could 

then be scaled and summed to represent the count level that would be obtained in projections for 

an arbitrary AA, acquisition duration, or set of relative uptakes. By individually generating and 

scaling these projections, we were able to adjust the uptakes in each individual object to simulate 

uptake variability.   

Each phantom was digitized prior to simulation into 0.1 cm cubic voxels and truncated in 

the axial direction to exclude regions more than 5 cm below the bottom or above the top of the 

kidneys. This truncation was done in order to reduce simulation time and data storage 

requirements. 
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3.2.2 Organ uptake model 

 
Uptake in the kidneys was estimated using data from a single imaging time point, which 

varied slightly across patients, from datasets of 47 patients with ages ranging from 1 to 16 years 

acquired at the Boston Children’s Hospital (BCH). We did not attempt to develop an age-specific 

pharmacokinetics model from this data, and considered the data from all patients as a single mixed-

age population sample for estimating uptake of activities in the kidneys. CT scans of these patients 

were not available for attenuation compensation as they were not acquired as part of the patient’s 

clinical study. Instead, attenuation maps were estimated based on automated intensity thresholding 

of images reconstructed from scatter windows. The data were reconstructed using 5 iterations with 

8 subsets per iteration of an ordered-subsets expectation-maximization (OS-EM) reconstruction 

method that included attenuation, scatter and collimator-detector response compensation. 

Reconstructed images were converted to units of activity concentration using the measured camera 

sensitivity. The kidneys were segmented automatically using intensity thresholding, and the 

reasonability of the kidney VOIs and body contours were reviewed manually. The percent of the 

decay-corrected AA in the kidneys in these VOIs is referred to as the kidney uptake fraction. In 

addition, we used thresholding to segment the kidney cortex and pelvis/medulla regions. From 

these we computed the ratio of activity concentrations (sum of activity values divided by volume 

of the VOI) in the cortex to the medulla/pelvis. This ratio is referred to as the cortex-to-medulla 

plus pelvis activity concentration ratio. The results obtained from the above procedure are 

summarized in Table 3.1, and were used as estimates for percent tracer uptakes in the patient’s 

kidneys.  
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The fractional uptakes in the spleen and liver at the imaging time were obtained from Evans 

et al. [80]; the values used were  4.3% and 1.7%, respectively. We validated these percentages 

against the real patient data from BCH and found that the uptake variations for these organs were 

small across the patient datasets and small compared to the uptake in the kidneys. Therefore, we 

used constant uptake percentages for liver and spleen in the simulations. 

To model the differences in uptake of the fine structures inside the kidney (renal cortex, 

medulla, and pelvis), we quantified the relative uptakes inside these renal structures using the data 

from the aforementioned 47 patient images. The relative uptake values were estimated using the 

reconstructed images described above. We used threshold-based segmentation to separate the 

cortex from the medulla plus pelvis and created two separate VOIs for the two entities. These VOIs 

and the activity values inside them were used to estimate activity concentration of each entity.  The 

mean and standard deviation of the cortex-to-medulla plus pelvis activity concentration ratios were 

calculated and are summarized in Table 3.1. 

The resolution in the images was not sufficient to estimate accurately the activity 

concentration ratio between medulla and pelvis. Thus, we based the activity concentration ratio in 

these two structures on input from our clinical collaborators. Images were generated with a variety 

of concentration ratios; images having a medulla-to-pelvis concentration ratio of 1:1 were deemed 

most realistic, and that ratio was thus used in the study.  

 

3.2.3 Organ uptake variations 

 
We modeled random variations in the uptake of the kidneys as a whole and in the cortex 

relative to the medulla plus pelvis using truncated Normal distributions. The values of the 

minimum, maximum, mean and standard deviation of these distributions were obtained from the 
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47 patients described above, and are given in Table 1. For each phantom anatomy, we randomly 

sampled 384 values each of the fraction of injected activity in the entire kidney and the cortex-to-

medulla plus pelvis activity concentration ratio. From these data combinations, the weight-based 

AA, and the kidney volume, we calculated the activity concentrations in the cortex, medulla and 

pelvis for each of the 384 uptake realizations. 

3.2.4 Projection data simulation 

 
The projections were simulated using an analytic projection code that models attenuation, 

spatially varying detector-to-collimator response [81], and object-dependent scatter [82]. This 

code has been extensively validated for imaging of a variety of radionuclides by comparison to 

Monte Carlo simulations and experimental projection measurements. We modeled a low-energy, 

ultra high-resolution (LEUHR) collimator, a 360° body-contouring orbit, 120 projection views, a 

15% wide energy window centered at 140 keV, an energy resolution of 9% at 140 keV, and a 0.1 

cm projection bin size. After each simulation, the projections were collapsed isotropically by a 

factor of 2 to simulate a 0.2 cm projection bin size. Attenuation maps used in the projection 

operation were constructed by assigning the attenuation coefficient of the organ in the phantom 

containing the voxel center to the entire voxel.  The attenuation coefficients were evaluated at 140 

keV for the material composition of each organ based on ICRP organ composition data [83]. Fig. 

3.2 shows sample transaxial images of attenuation distributions that illustrate variations in body 

habitus of the population. 
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Figure 3.2.  Sample transaxial images of the attenuation distribution for the (left to right) 10th, 50th, and 90th 
height percentile versions of the male phantom for ages (top to bottom) 0 (newborn), 1, 5, 10, and 15 years showing 
variations in body habitus. 
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Figure 3.3.   Noise-free projection images of the kidney cortex, medulla, spleen, liver, pelvis, and body remainder 
for a male, reference-height, newborn phantom.  
 

Table 3.1. Summary of population parameters   

  
Kidney 
Uptake 

Fraction  

Cortex-to-
Medulla + 
Pelvis Act. 
Conc. Ratio 

Maximum 0.393 2.00 
Minimum 0.329 1.36 

Sample mean 0.361 1.68 

Sample standard deviation 0.025 0.25 

 

Projections were generated using the above methods individually for the kidney cortex, 

medulla, pelvis, liver, spleen, and the body reminder, by assigning unit intensity to the phantom 

voxels in each of these regions. The organ projections were then scaled by the randomly-sampled 

uptake scaling factors needed to obtain the desired activity concentrations. They were then 

summed and scaled by the camera sensitivity to obtain the raw projections per unit injected activity 

per acquisition duration. These raw projections were next scaled by the acquisition duration and 

desired AA to give the mean projections in units of counts. Using these as input to a Poisson 

random noise generator gave the noisy projections. 
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3.2.5 Simulated projection data with variation in injected activity 

 
Six count levels were simulated: 25%, 50%, 75%, 100%, 125%, and 150%. Here, a count-

level indicates the fraction of AA relative to the AA obtained from the 2010 North American 

Consensus Dosing Guidelines. Note that the suggested minimum and maximum AAs in these 

guidelines were only enforced for the clinical (100%) count level. Fig. 3.3 and 3.4 show a sample 

set of noise-free projections of the organs for the newborn and sample noisy projection images 

from the various count levels.  

 

 
Figure 3.4.   Sample noisy posterior projection images from the various count levels.  From top to bottom, 
shows kidneys for the 0, 1, 5, 10, and 15-year-old phantoms. From left to right, the simulated count levels 
were 25%, 50%, 75%, 100%, 125%, and 150% of those of the 2010 North American Consensus Dosing 
Guidelines.  

 

Table 3.2. Comparison of total counts in clinical and simulated projections 

Phantom 
age 

Corresponding 
patient age 

Total counts 
in patient 

image   

Counts in 
simulated 

image  

Percent 
difference 

1 1.2 328821 373482 -12.718 

5 5 543850 540371 0.642 

10 9 831381 711803 15.498 

15   16 1100752 1215463 -9.905 
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3.2.6 Validation of simulated projection image 

 
To validate simulation process, we chose patient images from each of the five ages. The 

patient and simulated projections were reconstructed using 2 iterations of 8 subsets of the OS-EM 

iterative reconstruction with detector-to-collimator response compensation only, followed by 

filtering with a 5-mm FWHM Gaussian filter. Sample reconstructed image slices are shown in Fig. 

3.5. Note that the kidney model in the phantom does not model the detailed structure of the medulla 

and pelvis. We computed the total of the reconstructed voxel values in volumes of images 

containing the kidneys. Table 3.2 shows a comparison of the counts in the simulated and patient 

images for the various ages.  

 

 
Figure 3.5.   From left to right, the top row shows patient images from 1.2, 5, 9, and 16-year-olds reconstructed 
using 2 iterations of 8 subsets of the OS-EM reconstruction with detector response compensation followed by a 
Gaussian filter with a FWHM of 0.5mm. The bottom row shows simulated images from 1, 5, 10, and 15-year-olds 
reconstructed using the same methods. 
 

 

3.2.7 Defect model 

 
Assessing image quality should be done with respect to the task that will be performed with 

the images. In the case of DMSA SPECT, the task is to detect functional defects in the renal cortex. 
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Thus, it is necessary to create defects in the simulated images. Since the ultimate goal of the project 

is to provide guidance data for selecting minimum AAs commensurate with detecting clinically 

relevant defects, we developed defects for each age that were challenging but clinically relevant 

[84]. Challenging defects will tend to be ones that are small, where partial volume effects produce 

low contrast defects in the reconstructed images. Since the distance from the collimator face to the 

kidney depends on patient size, resolution will tend to be worse for large patients compared to 

small ones. In addition, since the thickness of the cortex tends to be greater for larger patients, and 

partial volume effects depend on the uptake in tissues surrounding the defect that are within 

approximately two times the full width at half maximum (FWHM), the same physical defect size 

would be harder to visualize in a large patient than in a smaller patient. Also, when the kidney is 

larger, the same size defect would tend to be of less consequence in terms of total renal function. 

Thus, we chose to create defects with sizes that varied depending on the patient size. 

Based on input from an experienced pediatric nuclear medicine specialist (S.T. Treves), 

we selected a defect volume of 0.3 cm3 as the defect size that is clinically relevant and challenging 

for a newborn. To create a realistic defect, we used an ellipsoid with one major axis length equal 

to approximately the thickness of the cortex. The center of the ellipsoid was positioned along the 

line extending through the center-of-mass of the cortex at the point where it intersects the outer 

cortical surface. The half-length of the axis of the ellipsoid in this direction was equal to the cortical 

thickness along this line, meaning that the apex of the ellipse was at the inner surface of the cortex. 

The half-lengths of the other two axes were the same; for the newborn, the length of these 

remaining axes was set so that the intersection with the kidney cortex had a volume of 0.3 cm3. 

This was verified numerically by creating a voxelized version of the defect where the voxel values 

were set to unity using sub-voxel sampling by a factor of 2, taking the product of this ellipsoid 
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with the cortical VOI, and summing the values in the resulting product image. A trans-cortical 

defect with a realistic shape can be created by scaling the defect image by the desired contrast and 

subtracting this from the cortical VOI. Note that, due to the linearity of the projection operation, 

the subtraction can be performed in either the image or projection domain. The position along the 

cortex was defined by an angular coordinate in the coronal slice containing the defect center of 

mass. Gradual transitions of function can be modeled by blurring the ellipsoid with a Gaussian 

kernel prior to the multiplication described above. Sample images containing defects for phantoms 

representing various ages in Fig. 3.6. 

 

  
Figure 3.6.   Sample lower pole defects in noise-free reconstructed images for newborn, 1-, 5-, 10-, and 
15-year-old male phantoms with reference heights in coronal and sagittal views. The defect volumes for ages 
1, 5, 10 and 15 were determined by matching their contrasts to the newborn. 
 

 

 
Figure 3.7.   Sample reconstructed images from noisy projection data using FBP reconstruction followed 
by a post-reconstruction 3D Butterworth filter with an order of eight and cutoff frequency of 0.12 cycle/pixel. 
Negative values were mapped to zero in the display. From left to right, the bottom and top rows shows coronal 
images with and without, respectively, a (lower pole) defect for the newborn, 1-, 5-, 10-, and 15-year-old 
male phantoms at the 50th height percentile. The volumes of these defects were chosen to be near the limits 
of clinical relevance and to have the same defect contrast.  
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3.2.8 Reconstruction and post-reconstruction processing 

 
SPECT images were reconstructed from the simulated projections using filtered 

backprojection (FBP) reconstruction and a ramp filter with no apodization. The reconstructed 

images had cubic voxels with a side length of 0.2 cm. The reconstructed images were post-filtered 

with 3-D Butterworth filters of order 8 and cutoff frequency 0.12 cycles/pixel. Fig. 3.7 shows a 

sample set of reconstructed images for the five ages.  

 

3.2.9 Quantitative measures of image quality 

 
Defect detectability depends, in principle and among other factors, on the contrast of the 

defect and the amount of noise in the reconstructed image. The contrast of the defect depends on 

the intrinsic contrast of the defect relative to surrounding tissues and the size of the defect with 

respect to the resolution of the imaging system. In addition, contrast is degraded by the effects of 

scattered photons from surrounding tissues. In the following we present physical measures of 

image quality that quantify the noise, image resolution, and scatter, all of which together affect 

image quality.  

We measured the contribution of scattered photons in the kidney region by the scatter-to-

primary ratio obtained from projection images that only contain the kidneys. The images of the 

kidneys resulting from detected scattered photons were obtained by subtracting the kidney 

projection generated with attenuation, collimator-to-detector response, and scatter from the same 

projection generated with attenuation and collimator-to-detector response. The numbers of 

scattered and primary photons were obtained by summing the counts in the resulting images, 

respectively.  
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Lastly, we quantified the noise in the kidney region by the kidney count density, i.e., the 

number of detected primary photons emitted in the kidneys divided by the kidney volume. We 

used the primary-photon-only projection images of the kidneys, generated as described above, for 

this calculation. We performed this calculation for all 90 phantoms using the same mean kidney 

uptake fraction (0.361) and cortex-to-medulla plus pelvis activity concentration ratio (1.68) in all 

cases. The count density was averaged over the 3 kidney sizes for each phantom. 

In SPECT, the image resolution at the center of rotation is proportional to the radius of 

rotation. Thus, we quantified the system resolution by the distance from the collimator face to the 

center of rotation averaged over the (body contouring) camera orbit. Note that the phantoms were 

placed on a camera bed measured using a CT scan, so the camera orbit, especially for the small 

phantoms, was constrained in some views by the size of the bed.  

 

3.2.10 Model observer study 

 
The model observer study was performed using methods similar to those previously 

described in [5]. In summary, seven 2-dimensional frequency-domain bandpass difference-of-

mesa channels were used to approximately model the human visual system. The starting frequency 

and width of the first channel was 0.5 cycles per pixel, and subsequent channels had widths that 

doubled and abutted the previous channel. These channels were applied to the 3 orthogonal slices 

(transaxial, sagittal, and coronal) that contained the defect centroid.  The output of this procedure 

was a 21-element feature vector.  

In previous work, feature vectors were analyzed using a Hotelling Observer (HO) 

methodology, a combination often referred to as the channelized Hoteling observer (CHO). 

However, the projections in the database and resulting reconstructed images reflect variations in 
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anatomy and uptake. This resulted in features vectors that were often multi-modal thus not 

multivariate normally (MVN) distributed. We have previously demonstrated that this can result in 

difficulty for the HO [85]. Thus, instead of traditional CHO, we used a multi-template strategy 

proposed by Li and Jha [86] to handle the non-MVN data. In this strategy, the entire ensemble of 

input data vectors is decomposed into sub-ensembles that are approximately MVN. A linear 

discriminant trained using the data for that sub-ensemble is then used to analyze the set of feature 

vectors for that sub-ensemble. The set of test statistics from each sub-ensemble is then pooled and 

analyzed using ROC analysis. In this work, the channel output vectors were sorted into sub-

ensembles based on defect location, age, and height percentile. It was verified qualitatively that 

the resulting channel output data were not multi-modal and were nearly MVN distributed. We used 

a leave-one-out sampling methodology to generate the subsets for each sub-ensemble [87]. We 

pooled the test statistics for each defect location and height percentile and applied ROC analysis. 

The AUC was used as a figure-of-merit for task performance. 

 

3.3 Results 
 

3.3.1 Quantification of noise by renal count density 

 
Figure 3.8 shows plots of the average kidney count density as a function of patient age for 

the different height percentiles for male and female phantoms, respectively. Overall, the plots 

demonstrate that the weight-based AA produced nearly equal kidney count densities for all ages 

except for the newborn. The data also shows that gender did not affect count density in patients 

less than 10 years old. This indicates that there is not much difference in the overall attenuation in 

the kidney region between the male and female phantoms for these ages. Note that, in theory, we 
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expect to see rankings of the values of the count density in the order 90th > 50th > 10th height 

percentile: we would expect the short-stout phantoms to allow fewer photons to escape the body 

than for the reference or the tall-thin phantoms. However, this was not observed in all cases. For 

example, we see that, for the 10-year-olds, the largest difference was between the 10th and 50th 

height percentile. This difference in count density was approximately 30% in the male phantoms 

and 15% in the female phantoms. For the 15-year-olds, the differences were 25% for the male 

phantom and 15% for the female phantoms, respectively. There was essentially no difference in 

count density between 10th and 90th height percentile phantoms for both the 10 and 15-year-olds 

for both genders.  

Fig. 3.9 shows transaxial images of phantom slices at the mid-kidney level for the 10th, 

50th, and 90th height percentile from male phantoms with ages 0, 1, 5, 10, and 15. From these 

images, we can see that there was not a significant difference in body circumference (girth) among 

phantoms for different heights nor a strong correlation between girth and phantom height rankings. 

That is, the 10th height percentile (short-stout) phantom did not necessarily have a larger girth than 

the 90th height percentile (tall-thin) phantom or the reference phantom, at the mid-kidney level. 

These images provide a pictorial illustration of the reason that the observed count density did not 

vary as expected with patient height. 

 
Figure 3.8.  Average kidney count density obtained for three different height percentiles as a function of phantom age for male 
and female phantoms. 
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Figure 3.9.  Sample transaxial phantom images at mid-kidney level in 10th, 50th, and 90th height 
percentile (from left to right) from the male phantom of age 0, 1, 5, 10, and 15 (from top to bottom) 
showing variations in body habitus. 
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3.3.2 Quantification of scatter by scatter-to-primary ratio 

 
Fig. 3.10 shows plots of the average scatter-to-primary ratio for the three different height 

percentiles as a function of patient age for male and female phantoms, respectively. It is clear that 

dosing by weight did not equalize the effects of scatter. These data also demonstrate that the 

scatter-to-primary ratios depended to a varying degree on height. Just as for count density, the 

expected rankings were not consistently observed. For example, one would expect the tall-thin 

patient to have a smaller scatter-to-primary ratio than the short-stout phantom. However, this was 

not observed for the 15-year-old male, though the differences in the ratios for the different heights 

were generally small. In any event, these data suggest that weight and height alone may not 

sufficient for predicting the effects of scatter, and thus their degrading effects on image quality.  

 

 
Figure 3.10.  Average scatter-to-primary ratio obtained from three different height percentiles as a 
function of phantom age for male and female. 
 

3.3.3 Quantification of resolution by camera radius of rotation 

 
Fig. 3.11 shows plots of the average camera radius of rotation for the three different height 

percentiles as a function of patient age for male and female phantoms, respectively. Again, the 
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expected trend, larger height percentiles having smaller average radii of rotations, was not always 

observed. The cause is likely for the same reason that differences in count density did not vary as 

expected with height: the maximum girth of the patient, which determines the distance from the 

camera to the body for a body contouring orbit, did not vary directly with height percentile. This 

indicates that height and weight are not sufficient to predict resolution effects. This is especially 

true for the small phantoms as the radius of rotation was limited by the size of the imaging bed in 

the lateral direction. 

 
Figure 3.11.  Average camera radius of rotation obtained from three different height percentiles as a function of 
phantom age for male and female.              
 

 
Figure 3.12.  Image quality result on a defect detection task for the 1- and 5-year-old phantoms. A 20% defect 
contrast was modeled for these patients.  
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3.3.4 Model observer study results 

 
Fig. 3.12 shows plot of AUC as function of the product of percent AA and acquisition 

duration for the 1- and 15-year-old on a defect detection task. Image quality was studied as a 

function of count level using the developed database with a fixed acquisition duration of 960 

seconds. The saturation of the AUC values indicates that there is a decreasing benefit of increasing 

the AA, indicating that detection is limited by background variation. These results show that there 

was a monotonic but modestly saturating increase in AUC with AA. The fact that there was modest 

saturation indicates that image quality was limited by quantum noise and the effects of object 

variability were modest [88]. More importantly, the results show that the AUCs for an AA of 100% 

of the weight-based, consensus dosing guideline were not equal, indicating that the ability to detect 

a defect with the same contrast, was not the same for the AA recommended by the North American 

Consensus Guidelines. This, combined with the results of the other image quality surrogates 

reflecting noise, scatter, and resolution effects, suggest that weight-based scaling is not sufficient 

to equalize image quality.  

 

3.4 Discussion 
 

This paper describes the design and simulation of a realistic projection database for use in 

pediatric renal SPECT research. The population included variability in age (and thus weight), 

gender, kidney size, and height. The specific dataset generated here was focused on matching the 

defect detectability across the population for a challenging and relevant defect detection task. We 

thus designed a set of defects, one for each phantom and kidney size, that is clinically relevant but 

at the limits of what is likely to be detectable. Thus, the curve describing the tradeoff between 
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image quality and AA is for a difficult case; larger defects are likely to be easier to detect and thus 

not as affected by reductions in AA.  

Using the established projection database, we investigated the AAs based on the current 

North American consensus weight-based dosing guidelines in terms of impact on surrogates for 

factors that affect image quality (image noise, resolution, and contrast). As compared to the 

approach by Jacobs et al. [76], the present study provides a more rigorous evaluation on image 

quality by adopting a more realistic phantom database, imaging simulations, pharmacokinetic 

model, and task-based image quality evaluation method. In the Jacob et al. study, 7 phantoms were 

used, representing newborns and children (male only) of 1, 5, 10, and 15 years, adult females and 

adult males, corresponding to their reference weights. Though these phantoms included 7 organs, 

the radionuclide was assumed uniformly distributed in the phantom (no inter-organ uptake 

variability) for the purposes of estimating count rates. The fraction of energy absorbed by the target 

organs at the emitted photon energy was computed using Monte Carlo simulations. The count rates 

that would be obtained with gamma camera imaging were assumed to be proportional to the 

average number of photons (at energies useful for imaging) that exited the body. These count rates 

were considered to have potentially contributed to the image. The fraction of exiting photons was 

computed as a weighted sum of the non-absorbed fractions (one minus the absorbed fraction) at 

the energy of each emitted photon. The average number of photons emitted per disintegration for 

each emitted photon energy was used to weight the absorbed fractions, and only emitted photon 

with abundances greater than or equal to 10% and energies suitable for imaging were included in 

the calculation. Normalization factors for the count rates were obtained by dividing corresponding 

count rates by that for an adult male of 70 kg (normalization factor = 1.0).  
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Using the count rates estimated by this method as the sole surrogate for image quality has 

several limitations. First, it ignores the effects of other factors, such as scatter and resolution, which 

can vary with body size. Related to this, energy exiting the body is an incomplete surrogate for 

primary photon counts. It equates, for example, two or more scattered photons with total energy 

equal to the primary photon energy to a primary photon. In other words, the use of total energy as 

a surrogate for primary photon counts is valid if the scatter-to-primary photon fraction is a constant 

across the entire patient population. However, this is not the case as was demonstrated above. 

Second, the method assumed uniform radionuclide distribution in the body. This is less than ideal, 

especially for agents such as DMSA that concentrates in a small number of tissues. Third, there 

was no variation in organ size or patient height for a given weight. Finally, the suggested minimum 

AAs were purely based on effective dose and not image quality. The authors did point out in the 

discussion that the suggested AAs calculated using this method could possibly lead to impractical 

scanning times or unusable images. 

 

3.5 Conclusion 
 

A realistic projection database has been generated for investigation of relationship between 
image quality and patient morphometry in 99mTc-DMSA renal SPECT. A total of 207,360 

projection images was generated, encompassing 6 different administrated activities for 90 phantom 

anatomies. This projection database can be used to study the relationship between the product of 

AA and acquisition duration and image quality in a way that is impossible with either real patients 

or via experimental phantoms. The database generated in this work is immediately applicable to 

other pharmaceuticals labeled with 99mTc used in pediatric imaging such as 99mTc-MAG3 or 99mTc-

MDP; only scaling and summing of the organ projections with appropriately scaling factors 
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reflecting agent biokinetics. Further, the methods used in this study are applicable to studying these 

tradeoffs for other diagnostic and/or therapeutic radiopharmaceuticals in both pediatric and adult 

patients.  

Using this projection database, we conducted a quantitative analysis of three factors that 

affect image quality: noise, as measured by kidney count density; scatter, as measured by the 

scatter-to-primary ratio for photons emitted from the kidneys; and resolution, as measured by the 

average radius of rotation. The results of this study showed that weight-based dosing was partially 

able to offset losses in count density due to variations in patient weight. However, it suggested that 

the kidney count density for newborns was higher than for other ages using weight-based dosing. 

The results also demonstrated variations in scatter and resolution that depend on body 

morphometry, but were not well correlated with phantom height. We also performed a task-based 

image quality study using an anthropomorphic model observer that demonstrated that the weight-

based scaling of the AA did not equalize image quality as measured by the AUC. This, combined 

with the image quality surrogate data on noise, scatter, and resolution, suggests that weight-based 

scaling is not sufficient, suggesting that a dosing procedure beyond simple weight-based scaling 

of AA is required to equalize image quality in pediatric renal SPECT. Further, the results also 

suggest the need for more detailed task-based studies of image quality, and that variables beyond 

height and weight are needed in order to prescribe AAs that optimize image quality in order to 

achieve as low as reasonably possible dosing. 
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Chapter 4  Current pediatric dosing guidelines for 99mTc-DMSA SPECT 

based on patient weight do not provide the same task-

based image quality 

Current pediatric dosing guidelines for 99mTc-DMSA 

SPECT based on patient weight do not provide the 

same task-based image quality 
 

4.1 Introduction 
 

In nuclear medicine imaging, the product of acquisition duration and administered activity 

(AA) determines the level of quantum noise present in the image. Quantum noise can have a direct 

impact on diagnostic image quality, and, for the purposes of maximizing image quality, reducing 

AA, or reducing acquisition duration, it is desirable to study the relationship between these factors.  

Over the past decade, there has been an increased interest in reducing patient radiation 

exposure in diagnostic imaging studies that use ionizing radiation. Therefore, there has been 

significant interest in the nuclear medicine community in establishing universally accepted and 

optimized dosing guidelines for pediatric nuclear medicine studies. The European Association of 

Nuclear Medicine (EANM) and Society of Nuclear Medicine and Molecular Imaging (SNMMI) 

have, respectively, published the European pediatric dosage card and the North American 

consensus guidelines for pediatric AA [12, 13]. The goal of these guidelines is to provide a balance 

between radiation risk and image quality. However, these guidelines were developed either based 

on a consensus of best practices or a simple estimate of image quality and not on a rigorous 

evaluation of diagnostic image quality relative to AA. 
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A second concern in pediatric imaging is the acquisition duration. Sedation is often 

required, especially for longer acquisitions. Longer acquisition durations increase the chance of 

patient motion, which can degrade image quality. Shorter acquisition durations are thus desirable. 

All else being equal, reducing the product of AA times acquisition duration will increase 

the Poisson noise in the image. However, the effect of changes in quantum image noise on 

diagnostic performance are complicated [47]. Similarly, decreasing quantum noise in the images 

requires increasing AA, acquisition duration, or both. Increasing the AA above that needed to 

provide acceptable image quality violates the principle of as low exposure as reasonably possible 

(ALARA). Consequently, appropriate guidelines for pediatric AAs are of significant interest [75]. 

Similarly, increasing the acquisition duration in pediatric patients to compensate for reduced AA 

may not be acceptable. Thus, understanding the tradeoff between image quality and the product of 

AA and acquisition duration is an important problem. 

In 2008, the Dosimetry and Pediatrics Committees of the EANM published the first version 

of the EANM pediatric dosage card to better standardize the AAs in pediatric nuclear medicine 

procedures. The dosage card was based on data from a publication by Jacobs et al. [76]. In that 

study, count rates and effective doses were computed as a function of body weight for 10 

radionuclides and 95 radiopharmaceuticals, respectively, using 7 hermaphrodite anthropomorphic 

computational phantoms [77]. Count rate was used as the only surrogate for image quality; a 

discussion of the details and limitations of that aspect of that work are provided in the discussion 

section. 

A second effort at standardization of pediatric dosages was the 2010 North America 

Consensus Pediatric Dosing Guidelines [78]. The AAs recommended in that report were slightly 
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lower for infants and small children as compared to the EANM guidelines, compensating for the 

higher radiation risk in early childhood. Those guidelines were based on a combination of 

experience and retrospective analysis of clinical data, taking into account the patient’s weight and 

count rate density per unit area or volume, and using these as the surrogates for radiation risk and 

count rates as the surrogate for image quality.  

In 2011, Sgouros et al. proposed a rigorous method to balance diagnostic image quality 

with cancer risk using 99mTc-DSMA as an example [5]. The study showed that weight alone may 

not be sufficient for optimally scaling AA in children. In that study, nonuniform rational B-spline 

(NURBS)-based anatomic phantoms, realistic organ uptakes and models of the image formation 

process, and task-based measures of image quality were used to objectively compare image quality 

of 99mTc-DMSA SPECT images. Two 10-year-old females of the same weight but different 

heights, respectively representing short-stout and tall-thin patients, were used in that study. Several 

different AAs (25%, 50%, 75%, 100%, 125%, and 150%), defect locations, and lesion severities 

with different target-to-background activity concentration ratios were simulated to represent 

clinical imaging. Channelized Hoteling observer methodology was used in a receiver-operating-

characteristic (ROC) analysis of lesion detectability to study the relationship between AA and the 

area under the ROC curve (AUC). The results of the study showed that the same AUC could be 

obtained for the tall-thin phantom with approximately half the AA as for the short-stout phantom. 

[5].  

In this present study, we have built upon the Sgouros et al. work by developing a realistic 

pediatric phantom population including variations in age, gender, kidney size, and height. We have 

also proposed a novel method that produces contrast-matched, clinically-relevant defects in all of 

the phantoms across different ages, gender, body morphometries, and kidney sizes. The 
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combination of these methods allows application of task-based image quality methods to 

rigorously assess current dosing guidelines in terms of their effectiveness for equalizing image 

quality across patients with different age and body morphometry.  

        Toward this end, we simulated realistic projections of the pediatric patient population in 

preparation for future detailed investigations of the tradeoffs between image quality, the product 

of AA and acquisition duration, patient weight and height, and reconstruction method for 99mTc-

DMSA renal imaging. Using this realistic phantom population and projection database, we 

investigated the effects of scatter, count density, and radius of rotation as a function of patient 

morphometry. These studies provide insight into the changes in these surrogate indices for factors 

affecting image quality and how they change with patient weight and body morphometry and the 

limitations of weight-based scaling of AA. We also performed a model observer study to 

investigate further the impact of patient weight on image quality to study the validity of weight-

based dose scaling for 99mTc- DMSA imaging. 

 

4.2 Methods and materials 
 

4.2.1 Series of realistic digital phantoms 

 
The series of pediatric phantoms used was developed at the University of Florida and was 

based on demographic data from the CDC’s National Health and Nutrition Examination Survey 

(NHANES) data [79]. It consisted of 90 phantoms that included variations in age, gender, height, 

and kidney mass. For each gender, five groups were modeled: 0, 1, 5, 10, and 15 years of age. All 

phantoms at a given age had a weight equal to the 50th percentile weight and one of three height 
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percentiles: 10th (short), 50th (reference) and 90th (tall). The phantoms for each height percentile 

and age group are shown in Fig. 4.1. The targeted weights for each age are provided in Table 4.1. 

For each height percentile, we modeled 3 kidney sizes: -15%, average, and +15%. The variation 

in kidney size was used to model the effects of anatomical variation [79] that would not be 

externally observable. The phantoms were digitized using 0.1 cm cubic voxels. 

 

 

 
Figure 4.1.  Renderings of 10th, 50th, and 90th percentile height at constant 50th percentile weight newborn, 
1-yr-old, 5-yr-old, 10-yr-old, and 15-yr-old hybrid phantoms. 
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Table 4.3. Summary of phantom masses 
Age (yr) Male Female 
Newborn 3.5 kg  3.4 kg 

1y 10.4 kg 9.5 kg 
5y 20 kg 20 kg 
10y 30 kg  35 kg 
15y 55 kg 50 kg 

 

4.2.2 Pharmacokinetics model 

 
A new pharmacokinetic (PK) model for 99mTc-DMSA was used in this study to model 

kidney uptake [89]. The PK model is based on literature data and was validated using 47 patient 

datasets acquired at the Boston Children’s Hospital (BCH). Tracer uptake in individual organs, i.e., 

the kidneys, spleen, liver, and body remainder, at 3 hours post injection was computed using the 

PK model. Variations in tracer uptake based on those seen in the 47 patient datasets were modeled 

using the coefficient of variation (percent standard deviation) from those data and assuming a 

truncated normal distribution. 

 

4.2.3 Defect model 

 
We used a defect model described in [84]. In the model, a defect volume of 0.3 cm3 for a 

newborn patient with the reference kidney size and 50th height percentile was deemed, by an 

experienced pediatric nuclear medicine specialist, clinically relevant and at the limits of clinical 

detectability in the newborn phantom. Defect volumes for other ages were determined so that the 

defect contrast for each age at the 50th height percentile was the same as for that phantom [84]. 

Using this model, focal renal lesions consisting of areas of reduced uptake were created to simulate 

focal acute pyelonephritis in three locations (lower pole, upper pole and lateral aspect of the kidney) 
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along the cortical wall.  

 

4.2.4 Projection data simulation 

 
For each phantom in the population, we simulated noise-free projection data for the renal 

cortex, medulla, pelvis, liver, spleen, and background (including all other organs), modeling the 

physics and acquisition parameters appropriate for 99mTc renal SPECT. The projections were 

generated using an analytic projection code that modeled attenuation, spatially varying collimator-

to-detector response [81], and object-dependent scatter [82]. The code has been previously 

validated by comparison to Monte Carlo and experimental projection data for imaging of a variety 

of radionuclides [90-98]. The projections were simulated for a low-energy, ultra-high-resolution 

collimator at 120 projection views over a 360° body-contouring orbit and a 0.2-cm projection bin 

size. Prior to simulation, the phantom was placed on a patient bed obtained from a CT scan of the 

bed on a Siemens Symbia SPECT/CT system. This bed constrained the orbit, especially for small 

phantoms.  

The renal activity and relative activity concentrations for structures inside the kidney (the 

renal cortex, medulla, and pelvis) were randomly sampled from truncated Gaussian distributions 

with the means and standard deviations derived from the PK model and 47 sets of patient data 

acquired at the Boston Children’s hospital. These parameters are summarized in Table 3.1. Each 

individual organ projection was scaled by its relative uptake value and the product of AA, 

acquisition duration, and scanner sensitivity. 

A projection of the entire phantom was generated by summing these individual sets of 

scaled organ projections. Simulated projections were scaled to represent AA-levels (AA relative 

to the standard weight-based AA) varying from 25% to 150% in increments of 25%. Poisson noise 
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was then simulated using a Poisson distributed random number generator. A total of 207,360 sets 

of projection images were thus generated: 64 uptake realizations × 6 count levels × 5 ages × 3 

height percentiles × 2 genders × 3 kidney sizes × 3 defect locations × 2 defect statuses (present or 

absent). 

 

4.2.5 Image reconstruction and post-reconstruction processing 

 
Images were reconstructed using filtered backprojection (FBP) and post-filtered with 3D 

Butterworth filters with an order of 8. We determined the optimal cutoff frequency for a 3D post-

reconstruction Butterworth filter based on the AA giving the highest AUC at each count level. The 

optimal cutoff frequency was 0.6 cycles per cm for all the count levels investigated. This cutoff 

frequency was used for all the AUC values presented below. The reconstructed images had cubic 

voxels with a side of length of 0.2 cm. Images centered on the defect with a size of 128x128 pixels 

were extracted from the coronal, transaxial, and sagittal slices containing the defect centroid and 

used in the image quality evaluation. Samples of these images are shown in Fig. 4.2.  
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Figure 4.2.  From top to bottom the images show upper, lateral, and lower pole (from left to right) defects for 
the 50th height percentile for the 1- and 5-year-old female and 10- and 15-year-old male phantoms.  

 

4.2.6 Model observer 

 
The channelized Hotelling observer (CHO), first proposed by Myers and Barrett [45] has 

been shown to provide good predictions of human performance on detection tasks for a variety of 

nuclear medicine imaging applications[38, 44, 46, 47]. The CHO uses a set of frequency channels 

applied to input images that model the human visual system combined with the Hotelling Observer, 

which approximates the Ideal Observer in cases where the input data are multi-variate normally 

(MVN) distributed with equal covariance matrices. 

As noted, the Hotelling Observer is strictly optimal only when the input data (i.e., the 

vectors of channel outputs) are MVN distributed; conversely, it performs poorly when the input 
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data are multimodally distributed [86, 99]. The data used in this study, as discussed below, 

included both background and signal variations and were non-MVN. Thus, instead of the 

traditional CHO, we used a multi-template strategy proposed by Li et al. to handle the non-MVN 

data. This strategy involves partitioning the data into sub-ensembles that are approximately MVN 

and applying the optimal linear discriminant to each sub-ensemble[86]. We used a leave-one-out 

training-testing strategy. In this strategy, one feature vector was left-out (i.e., not used in the 

training), and the remaining vectors were used to train the observer. The observer was then applied 

to the left-out vector to produce a test statistic. This process was repeated with each vector in the 

ensemble being left-out once. This process was applied to each sub-ensemble and produced a 

number of test statistics equal to the size of the sub-ensemble. The resulting test statistics produced 

by this strategy were pooled and analyzed, using ROC analysis to estimate the AUC, which served 

as a FOM for task performance.  

 
Figure 4.3.  Images of the seven anthropomorphic DOM channels used in this work. The top and bottom rows 
show respectively the frequency channels and the spatial domain templates. From left to right the start frequencies 
and widths of the channels were 0.5, 1, 2, 4, 8, 16, and 32 cycles/pixel. The spatial templates are analytic inverse 
Fourier Transform of the frequency channels sampled at the image pixel size.  

 

4.2.7 Evaluation of the multivariate normality assumption of the 
channel outputs 
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In the multi-template channelized linear discriminant observer (MTCLDO) strategy, 

channel output vectors were sorted into sub-ensembles from one defect location, age, and height 

percentile. We verified visually that the resulting distributions of the channel output vectors in 

each sub-ensemble were not multi-modal and were nearly MVN distributed, as illustrated in 

Fig.4.4 below.  

 

4.2.8 ROC and statistical analysis 

 

We applied the MTCLDO to feature vectors in the sub-ensembles described above. 

Because younger ages have minimal anatomical differences between genders, we combined the 

sub-ensembles for the two genders. Thus, for newborn and 1-, 3-, and 5-year old phantoms, each 

sub-ensemble was comprised of 768 channel output vectors (64 realizations × 2 genders × 3 kidney 

sizes × 2 defect statuses). The sub-ensembles for the 10- and 15-year old phantoms were half as 

large as separate sub-ensembles used for each gender. The test statistics for all the sub-ensembles 

for all the height percentiles, genders and defect locations for a given age were pooled, ROC 

analysis was performed using the LABROC4 code [100], and the AUC calculated. This produced 

a total 5 AUC values, one for each age and for each of the 6 count levels. Bootstrapping and 

nonparametric analysis were used to compute 95% confidence intervals for each of these AUC 

values. 
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Figure 4.4.  Sub-ensemble histograms of the test statistic distributions for the no-defect (green) and with-defect 
(blue) cases for each of the seven channels. These data are for an upper pole defect in the 50th height percentile 1-
year-old phantom (including both male and female). This illustrates the near-MVN distribution of the feature 
vectors.  
 

4.2.9 Relationship of AUC to AA 

 
The goal of the following is to derive an approximate empirical relationship between the 

AUC and AA that can be used to fit the data from the model observer studies. When the test 

statistics are normally distributed under both hypotheses, the AUC under the ROC for the CHOs 

is related to the Hotelling SNR by [31] 
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Rearranging the formula to express SNR as a function of AUC, we have 

 

In a binary classification task where the two classes have the same covariance matrices, the 

SNR of the Hotelling Observer test statistics can be expressed as 

 

where Δ𝒗̅ is the difference in the ensemble mean difference of the two classes. Then, we can re-

write the above formula using formalism introduced by Barrett [28] to replace the total covariance 

as a sum of the object covariance matrix and quantum noise covariance matrix:  

 

where 〈Ka〉f represents the object variability, which includes the effects of anatomical, uptake and 

count level variability from patient to patient. Here, count level is proportional to the product of 

AA and acquisition duration for a given patient and imaging system. In (4), 〈Kn|f〉f denotes the 

contribution of quantum noise to the ensemble covariance matrix of the reconstructed images. The 

subscript 𝑓 denotes averaging over all objects in the sub-ensemble.   

Suppose we now change the noise level by scaling the AA by 𝑛, such that 𝒗 = 𝑛𝒗. Then, 

 
𝐴𝑈𝐶 =

1

2
+
1

2
erf (

𝑆𝑁𝑅

2
). (4.1) 

 

 

 𝑆𝑁𝑅 = 2𝑒𝑟𝑓−1(2𝐴𝑈𝐶 − 1). (4.2) 

 

 

 𝑆𝑁𝑅2 = Δ𝒗̅𝐾𝑣̂
−1(Δ𝒗̅)𝑇 , (4.3) 

 

 

 𝑆𝑁𝑅2 = Δ𝒗̅(〈𝐾𝑎〉𝑓 + 〈𝐾𝑛|𝑓〉𝑓)
−1(Δ𝒗̅)𝑇 , (4.4) 
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the SNR can be estimated as follows: [47] 

 

We now replace n with the AA and assume that the vector Δ𝒗̅ can be replaced with a scalar 

𝐾1, representing the mean signal difference, Δ𝒗̅, and the proportionality constant relating n and 

AA. Similarly, we assume that the two covariance matrices can be replaced by the scalars 𝐾2, 

representing the object variability noise, 〈𝐾𝑎〉𝑓 and 𝐾3, representing the quantum noise, 〈𝐾𝐸|𝑓〉𝑓. 

This gives  

Rearranging the formula to express SNR in terms of a function of AUC yields 

 

Combining 6 and 7 gives a relation between the detectability index (𝑆𝑁𝑅2) and AA: 

 

Equations 8 and 1 can be combined to give AUC as a function of AA: 

 

 𝑆𝑁𝑅2 = 𝑛Δ𝒗̅(𝑛2〈𝐾𝑎〉𝑓 + 𝑛〈𝐾𝐸|𝑓〉𝑓)
−1𝑛(Δ𝒗̅)𝑇. (4.5) 

 

 

 
𝑆𝑁𝑅2 =

𝐴𝐴 × 𝐾1
𝐴𝐴 × 𝐾2 +𝐾3

. (4.6) 
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𝑆𝑁𝑅2 × 𝐾3
𝐾1 − 𝑆𝑁𝑅2 × 𝐾2

. 
(4.7) 

 

 

 
𝑆𝑁𝑅2 =

𝐴𝐴 × 𝐾1
𝐴𝐴 × 𝐾2 +𝐾3

. (4.8)  
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Inverting the above formula to express AA in terms of AUC yields: 

 

Note that the relative size of the constants 𝐾2 and 𝐾3  indicates the degree that the SNR is 

limited by quantum noise rather than anatomical variability. It should also be noted that (4.10) is 

not a rigorous relationship in the sense that it ignores the vector and matrix matures of the defect 

and covariance matrices. However, as will be shown below, it is suitable for fitting AUC values 

as a function of the AA, and thus is practically useful.   

 

4.3 Results 
 

The results from the IQ studies are summarized in Fig. 4.5, which shows the AUC for each 

phantom plotted as a function of the percentage of the AA obtained from the consensus guidelines 

[13]. Note that the guidelines do not result in the same IQ (as measured by the AUC) for the 100% 

count level. In this sense, they are sub-optimal.  The ultimate goal of this work was to provide a 

user with the AA needed to give the desired objectively-measured task-based image quality, as 

specified by the AUC, before imaging. The data in Fig. 4.5 provides a way to do this. The analytic 

expression relating AUC to AA derived above and given by Equation (4.10) was fit to the data in 

Fig. 4.5. The results of this fit are shown in Fig. 4.6 for all the patient ages. Note that the fits are 

visually quite good, and the correlation coefficients are better than 0.99.  
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Figure 4.5.  The area under the ROC curve (AUC) vs. percent AA plot for all the patient ages. The error bars are 
the 95% confidence intervals estimated using bootstrapping. 
 

 
Figure 4.6.  AUC vs. AA curves and their fitted functions. The AUC was fitted to the theoretical relationship, as 
specified in equation 4.9, relating AUC to the mean signal difference (K1), object variability noise (K2) and quantum 
noise (K3), and AA. 
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There was a monotonic and modestly saturating increase in AUC with AA, indicating that 

defect detectability was limited by quantum noise and the effects of object variability were modest 

over the range of count levels studied. The AA for a given value of the AUC increased with age. 

The curves in Figure 4.5 indicate that, for the current guidelines, the newborn and 10-year and 15-

year phantoms had similar image quality for the same fraction of the AA suggested by the North 

American expert consensus guidelines, but the 5-year and 1-year phantoms had lower image 

quality. The fitted functions provide an analytical relationship between AUC and AA, and could 

potentially be used to determine the AA required to give a desired AUC for a given patient weight. 

In previous work [8], we have shown that there were variations in image quality among 

phantoms with different weights but the same height. In [9], we showed data that suggested that 

height was not sufficient to explain variations in image quality for phantoms with the same weight 

over a range of anatomical variations. However, girth (circumference) at the level of the kidneys 

provides a more consistent correlation. To demonstrate the correlation between girth and the AUC 

values, we measured the patient girth of each of the phantoms and averaged them over height 

percentiles within one age. In clinical practice, patient girth could be estimated prior to imaging 

using a tape measure or from a previous CT image, if available. Fig. 4.7 shows a comparison of 

AA vs. girth and AA vs. weight at a fixed AUC for all the patient ages. The colored lines connect 

the nearest phantoms in age. These data indicate that the relationship between girth and AA is 

more robust than it is between weight and AA. The Pearson product-moment correlation 

coefficients between AA and weight and girth were 0.941 and 0.985, respectively. This again 

demonstrates that girth may be more robust for estimating the AA needed to provide a constant 

image quality. 
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Figure 4.7.  AA vs. patient girth (top) and weight (bottom) at a fixed AUC of 0.84. 
 

4.4 Conclusion 
 

This study demonstrated that the current consensus guidelines, which scale activities based 

on patient weight subject to minimum and maximum activity constraints, do not give the same 

image quality for patients with different weights. Further, this study provided a relationship 
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between diagnostic image quality, as measured by AUC, and AA for 99mTc-DMSA pediatric 

SPECT for a set of phantoms having different weights. These fitted functions could potentially be 

used to determine the appropriate AA for desired level of image quality for a given patient weight. 

However, the data suggest that patient girth at the level of the kidney may ultimately be a better 

factor to use than weight when selecting AA for this imaging task.   
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Chapter 5 multi-slice, multi-view anthropomorphic model observer for 

visual detection tasks performed on volume images 

DeepAMO: a multi-slice, multi-view anthropomorphic 

model observer for visual detection tasks performed on 

volume images 
 

5.1 Introduction 
 

Often, the quality of a medical image is measured in terms of the physical properties of the 

image, such as image contrast, spatial resolution, and noise level [33]. Fidelity-based measures, 

such as root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), and structural 

similarity index (SSIM), have also been widely used in the medical imaging community. These 

measures are appealing because they are relatively easy to compute, have straightforward physical 

interpretations, and can provide objective quantitative measures of image quality. However, they 

are not directly related to the diagnostic task that is performed with the images, and thus may not 

be clinically relevant. Clinically relevant image quality assessment should be with respect to the 

task that is to be performed [26-32]. Ideally, the observers would be drawn from the population of 

people performing the task, i.e., for medical images, a radiologist or nuclear medicine physician. 

However, in practice, especially in large-scale developmental research studies, the use of human 

observers (and especially physicians) is too time-consuming, inconvenient, and expensive. Thus, 

a great deal of work has gone into the development of anthropomorphic model observers that 

predict human observer performance [34-37]. 
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Task-based measures of image quality based on model observers has been advocated by 

several investigators over the years, starting from Harris [101], and including Hanson and Myers 

[102], Wager et al. [103], Judy et al. [104], and Myers et al. [34, 105]. However, existing model 

observers are often not directly applicable to diagnostic tasks [106]. For example, as described 

below, commonly-used model observers are strictly valid only for signal-location-known (exactly 

and statistically) tasks. In addition, while these observers predict rankings of human observer 

performance, they often require the use of concepts such as internal noise to match the absolute 

performance of human observers. 

Of the existing anthropomorphic observer models, the channelized Hotelling observer 

(CHO) has been the most widely used as a substitute for human observers in signal-location-known 

tasks in nuclear medicine imaging research [40]. Please refer to section 2.4.3.3 for a detailed 

introduction to the CHO as well as discussions of its limitations.  

Another gap between current anthropomorphic observers and the real clinical task is that 

current model observers have been primarily designed for analyzing 2D images. By contrast, many 

clinical tasks require the interpretation of 3D datasets. This often involves reviewing sequences of 

2D slices in 3 orthogonal orientations (coronal, sagittal, and transaxial). Existing multi-slice [107, 

108] or 3D model observers [109-113] are either for SKE tasks only or single-orientation SKS 

tasks [107]. 

In this paper, we propose a novel deep learning-based anthropomorphic model observer 

(DeepAMO) that evaluates multi-orientation, multi-slice image sets to model the clinical 

diagnostic process of a radiologist or nuclear medicine physician in a clinically realistic 3D defect 

detection task. The DeepAMO was evaluated on an SKS/BKS tasks using a realistic anatomical 

background with variation in organ uptake and defect position (and thus orientation and shape). 
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We also propose a novel calibration method that ‘learns’ the underlying distribution of the human 

observer rating values (including the internal noise) using a Mixture Density Network. Note that 

in this context a rating value is the raw data from human observer study and is a numeric value 

expressing the observer’s level of confidence that a defect is present or absent in a given image. 

The entire network is trained using human observer rating values so that the output, when applied 

to an input image volume, is a rating value designed to reproduce the performance of human 

observers.  

A human observer study was conducted using the volumetric display format routinely used 

at Boston Children’s Hospital (BCH) for clinical interpretation. Quantitative comparisons of the 

performance between the DeepAMO and human observer are provided in the results section.  

 

5.2 Materials and methods 
 

Image quality in this work was measured in terms of performance on the task of detecting 

renal functional defects in 99mTc-DMSA SPECT. The images used were simulated based on an 

anthropomorphic digital phantom of 5-year-old (a typical age in DMSA imaging). The phantom 

and simulation methods are described in [1]. The simulation modeled administered activities (and 

thus noise levels) based on the North America Consensus Guidelines[114]. Task performance was 

evaluated using both human observers and the proposed DeepAMO. Both of these observers 

produced a set of rating values for images where the true defect status was known. These rating 

values were analyzed using receiver operating characteristic (ROC) analysis methods [115]. The 

area under the ROC curve (AUC) served as a figure of merit for task performance. 
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5.2.1 Materials and methods 

 
The projection data for this study were generated using the Advanced Laboratory for 

Radiation Dosimetry Studies (ALRADS) UF NHANES-based phantom [116]. The pediatric 

phantom used was developed at the University of Florida based on demographic data from the 

CDC’s National Health and Nutrition Examination Survey (NHANES) data [79]. For this study, 

we used a 5-year-old male phantom with average girth and kidney size. The phantom was digitized 

using 0.1 cm cubic voxels. Activity uptake in the kidneys was modeled using data from a single 

imaging time point (3 hours post-injection). A dataset of 47 patients acquired at the BCH was used 

to estimate the means and standard deviations of kidney uptake in units of activity.  

The model previously described in [2, 117] was used to simulate defects in the cortical wall 

of the right kidney consisting of volumes of reduced uptake consistent with focal, acute 

pyelonephritis. The defects were created at random locations (excluding the area close to the renal 

pelvis) along the cortical wall. Based on input from an experienced pediatric nuclear medicine 

specialist, we selected a defect volume of 0.5 cm3 as a defect size that is clinically relevant for the 

5-year-old. 

Using this model, we created four randomly located focal transmural renal defects at each 

of the following macro locations on the right kidney cortex: upper pole, lower pole, and lateral. 

There was a total of 12 random locations for the defects generated in this study, modeling an SKS 

task. We simulated noise-free projection data for the renal cortex, medulla, pelvis, liver, spleen, 

and background (including all other organs), modeling the physics and acquisition parameters 

appropriate for 99mTc renal SPECT. The renal activity and relative activity concentrations for 

structures inside the kidney (the renal cortex, medulla, and pelvis) were randomly sampled from 

truncated Gaussian distributions with the means, standard deviations, minima, and maxima derived 
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from 47 sets of patient data acquired at BCH. Parameters for the distributions can be found in [2]. 

Each single-organ projection was scaled by the product of administered activity (AA), acquisition 

duration, and scanner sensitivity. The projections were generated using an analytic projection code 

that modeled attenuation, the spatially varying collimator-to-detector response [81], and object-

dependent scatter [82]. The code has been previously validated by comparison to Monte Carlo and 

experimental projection data for imaging of a variety of radionuclides [90-98]. 

In this study, the projections were simulated to model a Siemens low-energy, ultra-high-

resolution (LEUHR) collimator used routinely at BCH for pediatric DMSA studies.  Each single-

organ projection dataset was generated at 120 projection views over a 360° body-contouring orbit 

with a 0.1-cm projection bin size and then collapsed to a bin size of 0.2 cm. A model of the patient 

bed obtained from a CT scan of the bed of a Siemens Symbia SPECT/CT system was added to the 

attenuation map of each computational phantom.  Noise-free projection images of the entire 

phantom were obtained by summing the individual sets of scaled organ projections. Noisy 

projections were created by simulating Poisson noise using a Poisson pseudo-random generator. 

  A total of 384 projection images were thus generated, comprised of 16 uptake realizations 

× 12 defect locations × 2 defect statuses (present or absent). The mean (noise-free) activity 

distribution was statistically independent for each of these 384 projection images since the kidney 

uptake and the activity concentration ratio of the cortex to the medulla plus pelvis activity were 

randomly sampled. 

  We followed the clinical reconstruction protocol routinely used at BCH. Projection images 

were reconstructed using the OS-EM iterative reconstruction algorithm with compensation for the 

geometric collimator-detector response and post-filtered with a Gaussian filter with an FWHM of 

5 mm. The reconstructed images were then interpolated and formatted to match the volumetric 
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image display used at the BCH. In this display, 10 coronal, 20 sagittal, and 18 transaxial images 

with sizes of 96  96 pixels were generated. These composite images were used for training and 

testing of the proposed model observer and the human observers. Windowing was used to map the 

image pixel values to a range of 0 to 255. A sample of BCH’s volumetric image display is shown 

in Fig.  5.1. 

 
 

Figure 5.1.  A sample 48-slice image shown in the volumetric display format routinely used in clinical practice at 
the Boston Children’s Hospital. 

5.2.2 Proposed model observer: overview 

 
The DeepAMO is designed based on a hypothetical model of the image interpretation 

process of a human observer. One alternative of this approach would be to let the neural network 

‘learn’ how humans interpret 3D image volumes from the data. For example, the most direct 

approach would be to input the 3D image volume data into a fully connected network, and then to 

train that network directly with human observer rating values. Such a network would have a large 
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number of parameters. Since each trial (reading of a set of images by a human observer) provides 

a single scalar rating value, it provides relatively little information for training the network. A very 

large number of input rating values would thus be required. Since the rating value data is very 

expensive to obtain, we have divided the network into stages that are designed to require less 

human-observer training data. The division of the model is based on how humans interpret the 

images, as will be described below. The first two stages do not require human observer training 

data, and the third one maps a low-dimensional feature vector to a scalar rating value.  

We hypothesize that a human observer interpreting an image first scans over the orthogonal 

slices to identify suspicious abnormalities in single slices. If a defect is suspected to be present in 

one slice (of a particular orientation), the observer confirms that on adjacent slices. The observer 

would confirm that a defect in one orientation is seen in the other two orthogonal orientations. We 

suppose that the observer would have more confidence in the presence of a defect if it is found in 

at least one other orientation.  

Thus, we propose to implement this decision-making process in 3 sequential stages. In 

stage 1, we use a segmentation network to identify defects in three orthogonal slice views. The 

segmentation is performed using groups of 3 adjacent slices. In stage 2, we use deterministic 

algorithm that confirms the presence of defects in the 3 orthogonal views and generates a low-

dimensional feature vector. In stage 3, we use a Mixture Density Network to learn the mapping of 

feature vector to rating value, thus calibrating the DeepAMO to reproduce human observer 

performance. 
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Figure 5.2.  A schematic of the proposed model observer: DeepAMO. 𝐼 is the multi-slice, multi-view input image, 
𝑇𝑘
𝑗 is the triad where 𝑘 ∈ (𝑐, 𝑠, 𝑡) represents the slicing direction and 𝑗 ∈ [1, 𝑁 − 1], where N is the number of slices 

in each orientation. 𝑆𝑀𝑘
𝑗 is the output segmentation mask for each triad 𝑇𝑘

𝑗
. 𝑇𝑉𝐷𝑘 is the total volume of the defect 

seen in each slicing direction computed by summing the corresponding 𝑆𝑆𝑀𝑘 .  𝑆𝑆𝑀𝑘is the summed segmentation 
mask along each slicing direction 𝑘. 𝐻𝑃𝑘 and 𝑉𝑃𝑘 are horizontal and vertical projection of the corresponding 𝑆𝑆𝑀𝑘. 

𝐷𝐶𝑐𝑠, 𝐷𝐶𝑐𝑡, and 𝐷𝐶𝑠𝑡 are the three defect confirmation scalars from the defect confirmation network. 
 

5.2.3 Proposed model observer: architecture 

 
A schematic of the proposed DeepAMO is shown in Fig. 5.2. The input to the segmentation 

network was the same set of slices used in the previously described volume display used in clinical 
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practice, which consists of multiple slices in each of the three orientations: coronal, sagittal, and 

transaxial. Mathematically, the slice, 𝑆𝑘𝑖 (𝑚, 𝑛), and input composite image, 𝐼(𝑚, 𝑛, 𝑞), are related 

as follows 

In (1), 𝑞𝑘𝑖  is the index number for the 𝑖th slice in the slicing direction 𝑘 ∈ (𝑐, 𝑠, 𝑡), and 𝑚, 𝑛, and 

𝑞 are pixel indices for the x-, y-, and z-axis, respectively.  

 For each orientation, 𝑁 − 2 (N + 1 slices in each orientation) triads are generated: the first 

and last slices cannot act as the central slice for a triad. The 𝑗th triad in the slicing direction 𝑘 is: 

The output segmentation mask (SM) of each triad is a 2D binary mask of pixels thought to 

be in the defect. The SMs along each orientation are summed to form a summed segmentation 

mask (SSM) in order to enhance the defect signal(s) that is (are) present in that orientation. That 

is: 

 𝑆𝑀𝑘
𝑗(𝑚, 𝑛) = 𝑓 (𝑇𝑘

𝑗(𝑚, 𝑛, 𝑞)),  and (5.3) 

 𝑆𝑆𝑀𝑘(𝑚, 𝑛) = ∑ 𝑆𝑀𝑘
𝑗(𝑚, 𝑛),

𝑛𝑘
𝑗=1  (5.4) 

with 𝑗  the triad number and 𝑘  the slicing direction. 𝑇𝑘
𝑗
(𝑚, 𝑛, 𝑞)and 𝑛𝑘  represent the 𝑗 th triad 

and the number of triads in slicing direction 𝑘, respectively. Here, 𝑓(∙) denotes the segmentation 

network. 

We propose to implement the process of confirming defect presence in other slicing 

directions, by projecting and comparing defect information from different slicing directions, 

through a defect confirmation network. Specifically, this is implemented by projecting (i.e., 

   𝐼(𝑚, 𝑛, 𝑞𝑘
𝑖 ) = 𝑆𝑘

𝑖 (𝑚, 𝑛). (5.1)  

 𝑇𝑘
𝑗(𝑚, 𝑛, 𝑞) = {𝑆𝑘

𝑖−1(𝑚, 𝑛), 𝑆𝑘
𝑖 (𝑚, 𝑛), 𝑆𝑘

𝑖+1(𝑚, 𝑛)}  

 𝑖 ∈ [0,𝑁], 𝑗 ∈ [1,𝑁 − 1]. 

(5.2)  
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summing) each 𝑆𝑆𝑀𝑘  vertically and horizontally and calculating the dot products between the 

resulting horizontal projections (HP) and vertical projections (VP) from different slicing directions. 

The HPs and VPs are derived as follows: 

 𝐻𝑃𝑘(𝑛) = ∑ 𝑆𝑆𝑀𝑘(𝑚, 𝑛)
𝑀−1
𝑚=0 , and (5.5) 

 𝑉𝑃𝑘(𝑚) = ∑ 𝑆𝑆𝑀𝑘(𝑚, 𝑛),
𝑁−1
𝑛=0  (5.6) 

with M and N being the number of pixels in the x- and y-axis directions, respectively.  

The projection is constructed so that the projections from the different slicing directions 

are along the same direction in space. To understand this, consider that any two views always share 

a common axis, and, by projecting the two views onto this common axis, we can confirm 

information about defect location that is compatible. For example, consider an L-shape object in a 

3D space (Fig. 5.3). By projecting the sagittal and transaxial views vertically, we get two 1D 

vectors that both contain information about the object’s maximum length along the horizontal axis. 

If the dot product between the two 1D vectors is large, then the object is present at the same 

location in that direction for both slicing directions. Likewise, we can confirm the object’s location 

along the other two directions via the same projection and dot product operations. This process 

yields 3 scalar values, representing the defect agreement along the x, y, z-axis, respectively. We 

named these 3 scalar values the defect confirmation (DC) scalars. They are derived from the HPs 

and VPs from different slicing directions as follows 

 𝐷𝐶𝑐𝑠 = 𝐻𝑃𝑐(𝑛) ∙ 𝑉𝑃𝑠(𝑚), (5.7) 

 𝐷𝐶𝑐𝑡 = 𝐻𝑃𝑡(𝑛) ∙ 𝑉𝑃𝑐(𝑚), and (5.8) 

 𝐷𝐶𝑠𝑡 = 𝑉𝑃𝑡(𝑚) ∙ 𝑉𝑃𝑠(𝑚). (5.9) 
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The DC scalars are concatenated with the total volume of the defect (TVD) seen in each 

slicing direction to form a single feature vector. The TVD from each slicing direction is computed 

as follows: 

 

The resulting 6-element concatenated feature vector is then sent to a Mixture Density 

Network (MDN) [118] to generate the rating (test statistic) value. The dense layers in the MDN 

are meant to model the process of a human making the final decision using combined information 

from the different directions. The output of the MDN is the set of parameters of a statistical 

distribution, in this case a Gaussian Mixture Model, as described below. 

 

 
Figure 5.3.  An illustration of the process of confirming the defect from different views using projection and 
dot product in 3D space. 

 

 
𝑇𝑉𝐷𝑘 = ∑ ∑ 𝑆𝑆𝑀𝑘(𝑚, 𝑛).

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 
(5.10)  
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5.2.4 Calibration to human observer data via a mixture density 
network 

 
For defect detection tasks, the observer performance is usually measured by the AUC, 

which ultimately depends on the underlying distribution of the rating values given by the observer. 

Thus, for the purposes of replicating an observer’s AUC, we propose to directly learn the mapping 

of feature vectors to the distribution of the rating values. We hypothesize that more training and 

testing samples would help better capture the underlying rating value’s distribution. However, 

demonstrating the equivalence of the distributions is a task requiring a large number of rating 

values. In addition, it is unclear what level of agreement between the true and modeled distribution 

is required. Thus, we are focusing in this work on verifying that the model observer can replicate 

the AUC values obtained from the set of rating values resulting from an observer study.  

A mixture density network (MDN) was chosen for the task of mapping the input feature 

vector into a rating value in order to model the fact that a human observer will give a different 

rating value for the same input image. The MDN provides parameters of a distribution that can 

then be sampled to provide multiple, continuously valued ratings from a single set of input feature 

vectors. This can be useful during testing of the DeepAMO to reduce sampling error. 

Typically, an MDN learns an entire probability distribution for the output by modeling the 

conditional probability distribution of the target data conditioned on the input data. In our case, 

the desired conditional probability distribution is  𝑃(𝑟|𝑿), where is 𝑿 = [𝑥1…𝑥6] a 6-element 

feature vector and 𝑟 is a (continuous) human observer rating value for a given input feature vector. 

For the purpose of modeling any arbitrary probability distribution, the MDN uses a Gaussian 

mixture model as the conditional probability density function, which can be represented as a linear 

combination of kernel functions in the form  
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where 𝑚 is the number of components in the mixture and {𝜋𝑖(𝑿)} is the set of mixture coefficients 

for the kernel functions, which sum to 1. The set {𝜋𝑖(𝑿)} is derived from the output of the MDN 

and is converted to a set of probabilities as follows:  

 

with 𝜋𝑖  the output from the last dense layer, as shown in Fig. 5.3. The kernel functions, {𝜙𝑖(𝑟|𝑿)}, 

are in the form of Gaussian distributions 

 

where 𝜎𝑖(𝑿) and 𝜇𝑖(𝑿) are the estimated standard deviation and mean for the input feature vector, 

𝑿, and they come from the output of the last dense layer. Note that {𝜋𝑖(𝑿)}is a function of 𝑿. So, 

{𝜋𝑖(𝑿)} can also be regarded as a set of prior probabilities of the target data. 

In training, the loss is computed using the human observer rating value,  𝑟𝑡𝑟𝑢𝑒 , and the 

predicted mixture distribution 𝑃(𝑟|𝑿) from the MDN as follows 

 
In testing, a rating value is predicted by first randomly sampling the mixing coefficients 

and then sampling from the Gaussian distribution corresponding to that sampled mixing coefficient 

with its corresponding mean and standard deviation. Multiple sample rating values can be 

generated to improve the uncertainty in AUC values calculated from the testing data. 

 
𝑃(𝑟|𝑿) =∑𝜋𝑖(𝑿)

𝑚

𝑖=1

𝜙𝑖(𝑟|𝑿), 
(5.11)  

 𝜋𝑖(𝑿) =
𝜋𝑖

∑ 𝜋𝑖
𝑚
𝑖=1

, (5.12)  

 
𝜙𝑖(𝑟|𝑿) =

1

𝜎𝑖(𝑿)√2𝜋
exp(−

(𝑟 − 𝜇𝑖(𝑿))
2

2𝜎𝑖(𝑿)
2 ), 

(5.13)  

 𝐿 =  −𝑙𝑜𝑔𝑃(𝑟𝑡𝑟𝑢𝑒|𝑿). (5.14)  
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Figure 5.4.  Segmentation network architecture used in this study 

 

5.2.5 DeepAMO performance on unseen images 

 
To estimate the number of images needed to train the DeepAMO, we used simulated 

feature vectors and rating values to train and test the MDN. The criterion for judging the number 

of images to be sufficient is the statistical confidence level needed in comparing AUC values 

between the proposed model and human observer. We assumed the elements of the feature vectors 

and the rating values follow a (unimodal or multi-modal) Gaussian distribution. 
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The feature vectors were simulated by first generating values for the 𝑇𝑉𝐷𝑘, one for each 

orientation. Each 𝑇𝑉𝐷𝑘was assumed to be mutually independent and was generated by sampling 

from independent Gaussian distributions. The sampled 𝑇𝑉𝐷𝑘 values were then used to calculate 

the means and standard deviations of the DC scalars, which were also assumed to follow a 

Gaussian distribution. 

 𝜇𝑐𝑠 = 𝑇𝑉𝐷𝑐 × 𝑇𝑉𝐷𝑠, (5.15) 

 𝜎𝑐𝑠 =  
𝜇𝑐𝑠

3
, (5.16) 

 𝜇𝑐𝑡 = 𝑇𝑉𝐷𝑐 × 𝑇𝑉𝐷𝑡, (5.17) 

 𝜎𝑐𝑠 =  
𝜇𝑐𝑠

3
, (5.18) 

 𝜇𝑠𝑡 =  𝑇𝑉𝐷𝑠 × 𝑇𝑉𝐷𝑡 , and (5.19) 

 𝜎𝑠𝑡 =  
𝜇𝑠𝑡

3
.     (5.20) 

The rating values of each feature vector were sampled from multi- or uni-modal Gaussian 

distributions. The distribution parameters for these simulated rating values were derived 

qualitatively from distributions of rating values from human observer studies and are shown in 

Table 5.1. For each feature vector, we then sampled N rating values from the assumed distribution 

to simulate the appropriate level of inter- or intra-observer variability in the data. Specifically, in 

this work, we sampled 2 rating values for each feature vector. So, there were 15,000 (2,500 × 3 

feature vector types × 2 repeated samples) feature vector and rating value pairs in total for the case 

that had 2,500 samples/feature vector type, and 30,000 in total for both the defect-present and 

defect-absent cases. 

In the simulation experiment, we generated 3 types of feature vectors for each class (defect-

present and defect-absent): definitely-present, equivocal, and definitely-absent, reflecting different 

levels of user confidence in making the decision. For example, the feature vectors that belong to 
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the definitely-present type in the defect-present class were generated by sampling 3 large values 

for the 3 𝑇𝑉𝐷𝑘s, modeling a high level of success of the segmentation network in detecting the 

defect in slices from all 3 orientations.  The other two types (equivocal and definitely-absent, 

respectively) contained 2 and 1 large values (assigned randomly to any of the three orientations) 

in the 𝑇𝑉𝐷𝑘 s to simulate different degrees of success in detecting the defect in the three 

orientations.  

Table 5.4. Summary of distribution parameters for the simulated rating 
values 

Defect-present feature 
vector type 

Definitely-yes Not-sure Definitely-no 

Rating value means 7 10 2 4 -3 
Standard deviation 1.2 0.2 1.2 1.2 0.2 
Component weight 0.5 0.5 0.5 0.5 1 

       
Defect-absent feature 

vector type 
Definitely-yes Not-sure Definitely-no 

Rating value means -10 -8 -2 -4 2 5 
Standard deviation 0.2 1.2 0.7 1.2 0.5 0.8 
Component weight 0.5 0.5 0.5 0.5 0.5 0.5 

 

5.2.6 Training and testing of DeepAMO 

 
The proposed model observer was trained in two stages. First, the segmentation network 

was trained given the ground-truth defect segmentation masks. Next, the MDN was trained using 

the output from the trained segmentation network and the human observer rating values.  

The segmentation network was trained with triad images and their corresponding binary 

defect segmentation labels. Since each defect only contained about 0.5% of the kidney cortex 

volume, the number of defect-present triads was much smaller than the defect-absent ones, making 

this a highly imbalanced dataset. Thus, we adopted data augmentation of the defect-present triads 

to balance the training data. We enriched the data by forming an additional seven sets of raw 
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images and their labels by rotating each original defect-present triad image by 90, 180, and 270 

degrees and flipping them and the original dataset upside down. The exponential logarithmic loss 

in [119] was adopted to emphasize segmentation of small structures with the best-performing 

weights (𝜔𝑐𝑟𝑜𝑠𝑠 = 0.2 and 𝜔𝐷𝑖𝑐𝑒 = 0.8).  

For the segmentation network, we adopted a shallow version of the U-Net [120]. We used 

a shallow (in depth) network due to the relatively small amount of training data available in this 

study; a deeper network might be needed for a larger number of signal and anatomical variations. 

The architecture of the segmentation network used in this study is shown in Fig. 5.4.   Gaussian 

noise with a standard deviation of 1.0 was added to the renormalized input image (ranges 0-255) 

to prevent overfitting. We searched for the optimal network capacity (depth) for the segmentation 

network. There was a tradeoff between producing the highest Dice score and using the smallest 

number of parameters. However, it was observed that there was a relatively small increase in Dice 

score with increased number of parameters in the tested network architectures, and the Dice scores 

were all reasonably high. So, we adopted the network architecture that had the smallest number of 

parameters and yet gave a reasonably high Dice score (0.97). The train and test datasets had 12,288 

and 3,072 triads, respectively. Data augmentation was done on-the-fly. We used an Adam [121] 

optimizer with a learning rate of 0.001 and a batch size of 200.  The training took about 2 hours 

(~100 epochs) to converge on a single Tesla K40 GPU.  

For the MDN, the number of mixtures was chosen by visually inspecting the distribution 

of the target human observer’s rating values. The number of mixtures was selected to be equal or 

greater than the number of modes observed in the distribution of the observer’s rating values. For 

this study, we used a MDN with three fully connected dense blocks each with 128 dense units and 

a dropout rate of 0.5. Each dense block contained a dense layer with the above mentioned dense 
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units and a batch normalization layer, followed by a ReLU activation and dropout layer. The 

outputs from the last dense block were then connected to three dense layers which, repsectively, 

output the mixing coefficients 𝜋𝑖(𝑿) , means 𝜇𝑖(𝑿) , and sigmas 𝜎𝑖(𝑿)  for the estimated 

distribution. The number of mixing coefficient was set to 5 since we obseverd about 5 modes in 

the distribution of huamn observers’ rating vlaues.  

 
Figure 5.5.  A sample image of the GUI used in the human observer study for DeepAMO 

 

5.2.7 Human observer study 

 

  The same image display format shown in Fig. 5.1 was used in the human and model 

observer studies. A sample display of the human observer GUI is shown in Fig. 5.5. In the study, 

the observer was asked to rate their confidence that a defect was present on a continuous scale 

ranging between 1 to 5 (later mapped to -10 to 10), with the highest number representing the 

greatest confidence that a defect was present. To familiarize themselves with the display program 

and the nature of the clinical defect detection task, all observers participated in an initial training 

session comprised of 24 images. In the training session, phantom images of the kidney cortex were 
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provided as ground truth to the observers once their rating value was recorded. Additional training 

was done as described below. Rating values from the training study were not used in training the 

network. 

 Two senior medical imaging physics Ph.D. students participated in the human observer 

study. A total of 384 of the composite images described in section 5.2.1 were used. To simulate an 

SKS detection task, the train and test datasets were created without requiring a balance of defect 

locations. Thus, the test dataset could contain defect locations that were not present in the initial 

training dataset. The images were divided into an initial training set and three test blocks. The 

block layout for each observer is shown in Table 5.5. In each test block, a refresher set of 24 images 

was provided to refresh the observer’s memory about the task. A total of 288 rating values was 

collected from each observer. 

Table 5.5. Summary of human observer study block 
partition 

Sessio
n  

Initial 
trainin

g 
images 

Blocks Image/block 
Total 

images 

  24 1 24 training 24 

1 0 1 
24 training/96 

test 
120 

2 0 1 
24 training/96 

test 
120 

3 0 1 
24 training/96 

test 
384 
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Figure 5.6.  A pictorial illustration of the rejectable and unrejectable case in equivalence hypothesis testing. 

 

5.2.8 Equivalence hypothesis testing 

 

An equivalence statistical hypothesis test [122] was conducted to test whether the 

performance (as measured by the AUC) of the human observer and the proposed model observer 

was statistically equivalent on a defect detection task. The null hypothesis and alternative 

hypothesis are expressed as follows: 

 

where 𝐴𝑈𝐶𝐻𝑂 and 𝐴𝑈𝐶𝑀𝑂 , respectively, are the AUC values for the human and proposed model 

observer; 𝛿 is a threshold for an important difference (margin of difference) between 𝐴𝑈𝐶𝐻𝑂 and 

𝐴𝑈𝐶𝑀𝑂 . The difference parameter was used as it is very difficult, if not impossible, to show 

statistically that two quantities are exactly equal. In addition, small differences are not practically 

important. The difference parameter was prespecified and is a determinant of sample size: in order 

to prove better equivalence (smaller 𝛿), a larger sample size is required. In order to reject the null 

hypothesis, the confidence intervals of the difference of the AUCs must lie within the interval 

 𝐻0: |𝐴𝑈𝐶𝐻𝑂 − 𝐴𝑈𝐶𝑀𝑂| = 𝛿 and 
 

𝐻1: |𝐴𝑈𝐶𝐻𝑂 − 𝐴𝑈𝐶𝑀𝑂| < 𝛿, 

 

(5.21)  
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defined by the margin of difference parameter, as described in [122] and illustrated in Fig. 5.6. For 

this study, we set 𝛿 to 0.043. That is, as long as the confidence intervals of ∆AUC were found to 

be smaller than 0.043, the null hypothesis can be rejected and equivalence of the human and model 

observer can be claimed. 

In order to calculate the confidence intervals for the differences in the AUCs (∆AUCs), we 

conducted a 5  2-fold cross-validation experiment using data generated by the two human 

observers. A total of 576 rating values (288 images  2 observers) was used in training and testing 

of the proposed model observer. The data were partitioned randomly for each of the five trials, and 

a 50-50 train-to-test fraction was adopted. Within each trial, the train and test data were switched 

between the 1st and 2nd fold. We used a 50-50 split strategy to divide the data, as we assumed that 

the number of images in the test dataset should not be too small otherwise the distribution of rating 

values produced would be too coarse to represent the observer’s true performance, thus resulting 

in unfair AUC comparisons. However, we have not investigated whether the 50-50 splitting is 

optimal.  

5.2.9 Comparison of DeepAMO to a scanning-linear observer 

 
A scanning linear discriminant observer (SLDO) study was conducted using the same 

reconstructed images as described in section 5.2.1. However, since the scanning observers cannot 

operate at the location on which they were trained, we had to limit the SLDO input image to only 

slices that could actually contain a defect. Here, it is worth noting that this input format has 

significantly reduced the difficulty of the clinical defect detection task by filtering out the defect-

absent slices. This eliminates the chance of making a mistake, e.g., due to the presence of a noise 

artifact in these slices, as described in section 5.2.2.  
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In the SLDO study, we used a 3-slice composite image as the input. The composite image 

was formed by extracting the coronal, transaxial, and sagittal slices containing the defect centroid 

from the 3D reconstructed image. All slices had a size of 128 × 128 pixels and their defect centroid 

shifted to the center of the image. Samples of the defect-present and defect-absent composite image 

are shown in Fig 5.7. We used seven non-overlapping rotationally symmetric difference-of-mesa 

channels. The starting frequency and the width of the first channel was 0.5 cycles per pixel, and 

subsequent channels had widths that doubled and abutted the previous channel. The frequency 

domain channels and corresponding spatial templates are shown in Fig. 5.8.  

 

 
Figure 5.7.  Top and bottom row shows the defect-present and defect-absent composite image at two different 
randomly sampled defect locations, respectively. The red arrows mark the exact location of the defect inside each 
slice.  
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Figure 5.8.  Images of the seven anthropomorphic DOM channels used in this work. The top and bottom rows 
show, respectively, the frequency channels and the spatial domain templates. From left to right, the start 
frequencies and widths of the channels were 0.5, 1, 2, 4, 8, 16, and 32 cycles/pixel. The spatial templates are the 
analytic inverse Fourier Transforms of the frequency channels sampled at the image pixel size.  
 
 

Each of the seven spatial domain templates was applied to each of the 3 images (transaxial, 

sagittal, and coronal) to give a 21-element feature vector. Each element in the resulting feature 

vector was obtained by taking the dot product of a spatial domain template with an input composite 

image. These feature vectors served as inputs to train and test the SLDO as described below. 

To apply the SLDO on a test image, we first generated N (N = number of signal variations) 

feature vectors of each test image, corresponding to features taken at the N different defect 

locations. Then, we trained a different SLDO on the feature vectors at each of the 12 potential 

defect locations. Then, for each test image, we applied each of the 12 SLDOs to the feature vectors 

from each of the potential defect locations, producing a set of 12 test statistics. We then applied 

the argmax operator to select the largest such test statistic, and this served as the test statistic for 

this test image. We used a leave-one-out training-testing strategy. In this strategy, one feature 

vector was left-out (i.e., not used in the training), and the remaining vectors were used to train the 

observer. In our case, the feature vector corresponding to the ground-truth defect location of the 

test image was left out in training the SLDO for that defect location. The trained SLDO was then 

applied to the left-out vector to produce a test statistic for that defect location. ROC analysis was 
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performed on the test statistics using the LABROC4 code [100], and the AUC calculated. 

Bootstrapping and nonparametric analysis were used to compute 95% confidence intervals for the 

AUC value. 

A separate human observer study was conducted using the same input format (3-slice 

composite image) as was used in the SLDO study. Again, two senior medical imaging physics 

Ph.D. students participated in the human observer study. A total of 384 of the composite images 

as described above were used.  The same block layout as in the human observer study for 

DeepAMO was used in the human observer study. A sample display of the human observer GUI 

is shown in Fig. 5.9. A total of 288 rating values was collected from each observer. 

 

 
Figure 5.9.  . A sample image of the GUI used in the human observer study for SLDO 

 
 

5.3 Results 
 

5.3.1 DeepAMO on simulated data 

 
 

The results (Fig. 5.10) show the degree of similarity between the histograms (distributions) 

of the simulated test data (simulated unseen data); the degree of similarity increased as the total 

number of samples increased, indicating that the MDN was capable of handling complex 



 

 110 

distributions of observer’s rating values. This result agrees with the hypothesis that the MDN 

requires a modest amount of training data in order to learn the underlying behavior of the observer 

on unseen data. Here, we assumed that the underlying behavior of the observer was encoded in the 

distribution of that observer’s rating values (training data).  

The results also demonstrated that there is a tradeoff between ∆AUC and the total number 

of samples in the dataset. Bootstrapping was used to calculate the non-parametric confidence 

intervals on the ∆AUC. The ∆AUCs and 95% confidence intervals on the ∆AUCs are summarized 

in Table 5.6. The results show that the 100, 500, and 2,500 samples/feature vector type cases had 

decreasing widths of the confidence intervals of ∆AUC, indicating that, as expected, more samples 

are needed to demonstrate greater equivalence (smaller 𝛿) between the human and proposed model 

observer. The data also suggest that training set size is an important parameter in determining the 

bounds of the 95% confidence interval on the ∆AUCs. 

 

 

 

Table 5.6. Summary of simulation results 

Number of 
samples per 

feature 
vector type 

AUC of 
DeepAMO 

on simulated 
test data 

AUC of 
simulated 
test data 
(ground 
truth) 

∆AUC 
95% C.I. on 

∆AUC 
C.I. 

width 

100 0.773 0.769 0.004 
[-0.0502, 
0.0477] 

0.0979 

500 0.760 0.776 -0.015 
[ -0.0352, 
0.0261] 

0.0613 

2500 0.768 0.767 0.001 
[ -0.0074, 
0.0089] 

0.0163 
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Figure 5.10.  A Plots of histograms of the rating values of the simulated feature vectors (test data only) and 
predicted rating values on these data given by the DeepAMO.  The plots show the class 0 and 1(defect present 

and absent, respectively) as well as the calculated AUC value. 

5.3.2 DeepAMO test results 

 
For stage I, the highest dice score achieved on the validation data for the best segmentation 

network was 0.975. The validation was done on a balanced dataset with 50% of the triads 

containing a defect. 

The AUC values for the human observers and the corresponding DeepAMOs for the 5  

2-fold cross-validation experiment are summarized in Table 5.7. The mean and standard deviation 
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of the ∆AUC were 0.03 and 0.0204, respectively. The 95% confidence interval for the ∆AUC was 

[-0.0174, 0.0426], under the assumption that ∆AUC was normally distributed. The results of the 

study show that the null hypothesis with a margin of difference (𝛿) greater than 0.0426 can be 

rejected at a confidence level of 95%, with this training set comprised of 288 samples. The 

histograms of the rating values from the human observers and the DeepAMOs for the 5  2-fold 

cross-validation experiment are shown in Fig. 5.11. The AUC value is given at the top of each plot 

in that figure. The distributions of the rating values for the human and model observer are 

qualitatively similar. 

 

Table 5.7. Summary of stage II training results 

 
1st fold 2nd fold 

   

Trial# 
AUC 
HO 

AUC 
DeepA

MO 

AUC 
HO 

AUC 
DeepA

MO 

∆AUC 
1st fold 

∆AUC 
2nd fold 

Mean 
∆AUC per 

trial 

1 0.829 0.79 0.797 0.75 0.039 0.05 0.045 

2 0.814 0.77 0.816 0.78 0.044 0.036 0.04 

3 0.814 0.82 0.815 0.77 -0.01 0.045 0.018 

4 0.82 0.77 0.809 0.8 0.046 0.007 0.027 

5 0.826 0.82 0.806 0.77 0.008 0.035 0.022 
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Figure 5.11.  Histograms of predicted rating values given by DeepAMO on unseen human observer data from 
the 3rd trial of the 5 x 2-fold cross validation experiment (other trials have similar patterns). Note that multiple 
predicted rating values were generated for each test image during testing of the DeepAMO to reduce sampling 

error. The histograms of the other half of human observer data used for training the DeepAMO are not shown in 
the plot. 
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5.3.3 Scanning-linear Observer Test Results and its Human Observer 
Results 

The mean AUC for the scanning-linear discriminant observer and its 95% confidence 

interval were 0.992 and [1.00, 0.986], respectively. The mean AUC for the human observer study 

(3-slice composite image as input) was 0.912 with a 95% confidence interval of [0.868, 0.954], 

which is statistically significantly different from the mean AUC (0.815, 95% C.I. = [0.851, 0.780]) 

from the human observer study (48-slice composite image as input). The results indicate that the 

SLDO overestimated human observer performance. 

 

5.4 Discussion 
 

One limitation of this paper is that the simulated dataset has limited background 

(anatomical) and signal (shape and size) variation. However, we believe that this limitation does 

not detract from the paper’s demonstration that the proposed network architecture can model 

human observer performance. A dataset with greater anatomical and signal variations might 

require a different architecture for the segmentation network. However, as long as the 

segmentation network produced results that distinguish between the defect-present and absent 

cases at least as well as a human observer, the subsequent stages could still match that performance 

to human observer performance.   

Another limitation of this paper is the use of non-physician observers. Non-physicians were 

used because of the difficulty of recruiting physician observers to perform a study of this nature. 

While the lack of physician observers would clearly affect the clinical diagnostic task, the task that 

the observers performed in this study was limited to identifying defects in images. We believe that 

well-trained non-physicians, with sufficient training, can perform well on this more limited task. 
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In addition and more importantly, the purpose of this paper was to validate the ability of the 

proposed model observer to reproduce human observer defect detection performance, and not to 

generate data on performance that impacts a clinical task. So, even if the human observers used 

performed poorly compared to physicians, the data demonstrate that the model can reproduce their 

performance. The limitations of the human visual system that degrade performance on defect 

detection are present even for the non-physician observers, and this work demonstrates the ability 

of the proposed observer to model these limitations. Therefore, we believe that the data from the 

observers used in this study demonstrate the utility of the proposed method. 

A potential concern for the DeepAMO could be the relatively long training time (~ 2 hours) 

required by the segmentation network. On the contrary, the CHO or scanning forms of the CHO 

can provide an estimate of relative image quality, e.g., relative rankings of the methods being 

evaluated. However, the image quality results may not be valid for use in cases where the absolute 

task performance of the human observer is needed, i.e., selecting administered activity or 

acquisition duration in clinical practice, as they are assessed using simplified clinical tasks. 

 

5.5 Conclusions 
 

We have proposed a general framework for using deep convolution neural networks as an 

anthropomorphic model observer for the task of interpreting 3D image volumes and reproducing 

human observer performance. We applied this framework in the context of a renal functional defect 

detection task in nuclear medicine imaging using realistic simulated images. The results show that 

the performances of the proposed model and human observers on unseen images were equivalent 

with respect to a margin of difference in the AUC (∆AUC) of 0.0426 at 𝑝 < 0.05, for a training 
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set of 288 samples. The proposed framework could be readily adapted to model human observer 

performance on detection tasks for other imaging modalities such as PET, CT or MRI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 117 

Chapter 6 Conclusions 

  
 

Conclusions 
 
 

6.1 Summary 
 

Balancing dose reduction and image quality is an unmet need and important goal that has 

immediate clinical and societal benefits for pediatric patients. Lower radiation exposure to the 

patient can reduce risk and adverse effects, but can also result in reduced diagnostic image quality. 

Ultimately, it is desirable to use the lowest dose that gives sufficient image quality for accurate 

clinical diagnosis.  

This dissertation proposed and developed tools for a general framework for optimizing 

radiation dose with task-based assessment of image quality. In this dissertation, we investigated 

the tradeoff between image quality and renal defect detectability as a function of administered 

activity, acquisition duration, and measures of body habitus for pediatric patients undergoing renal 

molecular imaging procedures.  

In Chapter 3, we developed a projection image database modeling imaging of 99mTc-

DMSA, a renal function agent. The database uses a highly-realistic population of pediatric 

phantoms with anatomical and body morphometry variations in height and weight. Using the 

developed projection image database, we have explored patient factors that affect image quality. 

Image quality was measured by three surrogate indices of image quality that quantify the noise 

(renal count density), image resolution (average radius of rotation), and scatter (scatter-to-primary 

ratio). The results showed that the current weight-based guidelines, based on scaling the 
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administered activity by patient weight, are not optimal in the sense that they do not give the same 

image quality for patients with the same weight. After demonstrating that height and weight did 

not robustly predict image quality, we explored other externally-measurable factors that could 

better predict image quality.  

In Chapter 4, we have found that factors that are more local to the target organ may be 

more robust than weight for estimating the administered activity needed to provide a constant 

image quality across a population of patients. In the case of renal imaging, we discovered that girth 

at the level of the kidneys is more robust than weight in predicting administered activity needed to 

provide consistent image quality. In this work, analytical relationships between image quality and 

administered activity were derived, which could be used to determine the AA required to give a 

desired image quality for a given patient weight. However, one limitation of this work is that the 

image quality, as measured by the defect detection performance (quantified using the AUC) of an 

anthropomorphic model observer, was not verified by humans. To translate the image quality 

measures to clinical use, it is more meaningful to provide an AUC value that would be obtained 

for a human observer or ensemble of human observers. Due to the limitations (details are discussed 

in section 2.5.2) of the current model observers in modeling the clinical task involved in this work, 

the third part of this dissertation focused on developing a new model observer that can fully model 

a clinical 3D detection task. 

     In Chapter 5, we proposed a deep learning-based anthropomorphic model observer to fully 

and efficiently (in terms of both training data and computational cost) model the clinical 3D 

detection task using multi-slice, multi-orientation images sets. The proposed model observer is 

comprised of a segmentation network followed by a regression network. A human observer study 

using a total of 288 images was conducted, with medical imaging physics graduate students serving 
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as observers. A 5  2-fold cross validation experiment was conducted to test the statistical 

equivalence in defect detection performance between the proposed model observer and the human 

observer. The results show that the proposed model observer has the potential to mimic human 

observer defect detection task performance in a clinically realistic diagnostic task.  

The results and tool developed in this dissertation will help provide the data needed by 

standards bodies to develop improved dosing guidelines for pediatric molecular imaging that result 

in more consistent image quality and absorbed dose. 

 

6.1.1 A projection database of pediatric renal SPECT 

 

    The first aim of this dissertation was to build upon the Sgouros et al. work to investigate 

more completely the tradeoff between administered activity and image quality as a function of 

patient height and weight over a wide range of patient heights and weights.  

As described in Chapter 3, we generated a realistic projection database modeling pediatric 

renal 99mTc-DMSA SPECT imaging from a digital phantom population developed by our 

collaborator at the University of Florida [79]. The phantom population is comprised of 90 

phantoms with realistic variations in height, weight, and organ size. The phantoms model both 

genders at five ages (newborn, and 1-, 5-, 10-, and 15-years old). The phantoms have median (50th 

percentile) weight for their age and include variations having 10th, 50th, and 90th height 

percentiles, simulating patients having the median weight at each age with varying body habitus. 

The 10th, 50th, and 90th phantoms are referred to as short and stout, average, and tall and thin, 

respectively. In addition, three kidney masses (-15%, average, and +15%) are modeled for each 

age and height percentile.  
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We simulated variations in radiotracer uptake in 6 tissues: cortex, medulla, pelvis, spleen, 

liver, and body reminder (the remaining soft tissues of the phantom). Projections of each of these 

tissues were generated separately assuming a uniform activity distribution. The individual 

projections were then scaled by the relative organ uptakes, which were based on an uptake model 

obtained from patients. We randomly sampled scale factors to model the variation in organ uptake 

seen in patient populations. For each phantom, 384 uptake realizations, modeling random 

variations in the uptakes of organs of interest, were generated, producing 34,560 noise-free 

projection datasets (384 uptake realizations times 90 phantoms). The resulting images model the 

projection data for that patient and uptake realization per unit administered activity at a standard 

acquisition duration. We fixed the acquisition duration and investigated six count levels 

corresponding to 25%, 50%, 75%, 100%, 125%, and 150% of the original weight-based 

administered activity as computed using the North American Guidelines [78]. Scaling the 

projections by the corresponding administered activity gave the mean projections for that count 

level. Noisy projection images were created by applying a Poisson-distributed pseudorandom 

number generator.  

The results of this work showed that weight-based dosing was partially able to offset losses 

in count density due to variations in patient weight. However, it suggested that the kidney count 

density for newborns was higher than for other phantoms, suggesting that current values of 

minimum administered activity in dosing guidelines may result in over-dosing. The results also 

demonstrated variations in scatter and resolution that depend on body morphometry, and is not 

correlate completely with phantom height. The results suggested the need for more detailed task-

based studies of image quality, and that variables beyond height and weight are needed in order to 
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prescribe administered activities that equalize image quality and thus achieve as little as reasonably 

possible dosing. 

In addition to the above results, the work also provided a comprehensive method for 

efficiently simulating data from a population of realistic phantoms in the context for renal SPECT 

imaging. The set of digital phantoms, the simulation methods themselves, and the set of simulated 

DMSA projections provided tools and methods needed to expand the applications of realistic 

simulation in the optimization and evaluation of nuclear medicine and SPECT imaging.  

 

6.1.2 An investigation of the externally-measurable factors that could 
better predict image quality 

 
 

After demonstrating that height and weight did not robustly predict image quality, we 

considered other externally-measurable factors that could better predict image quality. Our general 

hypothesis is that patient body factors that closely describe morphometry in the region of the target 

organ would be most closely related to image quality. The hypothesis is based on the fact that local 

body morphometry would affect attenuation, system resolution, and scatter, and that morphometry 

away from the kidney would have little effect to image quality. For example, in the case of renal 

imaging, patients having large girth in the renal region would have more attenuating medium 

between the kidneys and the gamma camera than patients with small girth. This should result in 1) 

fewer photons escaping the body (higher noise), 2) larger camera radius of rotation (poorer 

resolution), and 3) higher scatter (poorer contrast). On the other hand, large head size would not 

affect renal image quality. Thus, in the second aim of this dissertation, we investigated whether 
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patient waist circumference (girth), kidney size and kidney depth would strongly affect image 

quality in DMSA SPECT. 

In Chapter 4, we applied task-based image quality assessment method on the simulated 

projection database as described in Chapter 3. Using this realistic phantom population and 

projection database, we conducted two experiments in order to test the hypothesis that weight and 

height are not as important factors as girth to IQ. First, we used the existing projection database 

and treated the height variations as part of the population’s anatomical variation by pooling the 

test statistics from different height percentiles together. Then, we calculated the detectability index 

(𝑆𝑁𝑅2) from the resulting AUC and fitted the following theoretical relationship relating DI to AA 

(full derivation of the theoretical relationship is not shown in the summary and is available in [2]). 

𝑆𝑁𝑅2 =
𝐴𝐴 × 𝐾1

𝐴𝐴 × 𝐾2 +𝐾3
, (6.1) 

where 𝐾1 is the mean signal difference; 𝐾2 is the object variability noise; and 𝐾3 is the quantum 

noise. Figure 6.1 shows the area under the ROC curve (AUC) vs. percent AA plot for all the patient 

ages and the Detectability Index (SNR2) vs. percent AA curves and their fitted functions, 

respectively. Note that the Detectability Indices did not cross at the 100% count level, suggesting 

that the current weight-based guidelines are not optimal. That is, they do not provide the same IQ 

for all patients. From the plot of DI vs. AA (Fig. 6.1, right), it is evident that the curves have 

different shapes. Thus, scaling of the AA by a constant factor for each age could not equalize the 

IQ (by providing the same DI).  
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Figure 6.1.   The area under the ROC curve (AUC) vs. percent AA plot for all the patient ages and DI (SNR2) vs. AA 
curves and their fitted functions. The detectability index (DI) was fitted to the following theoretical relationship 
relating DI to the mean signal difference (K1), object variability noise (K2) and quantum noise (K3), and AA. 

 
 

Figure 6.2.  . AA vs. patient girth and weight at a fixed DI of 2.0. 

 
Fig. 6.2 shows a comparison plot of AA vs. girth and AA vs. weight at a fixed DI of 2.0 

for all the patient ages. The colored lines connect the nearest phantoms in age. These data indicate 

that the relationship between girth and AA is simpler and more robust than it is between weight 

and AA. The Pearson product-moment correlation coefficients between AA and weight and girth 

are 0.941 and 0.985, respectively. This again demonstrates that girth may be more robust for 

estimating the AA needed to provide a constant image quality. 
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This study demonstrated that the current consensus guidelines, which scale activities based 

on patient weight subject to minimum and maximum activity constraints, do not give the same 

image quality for patients with different weights. Further, this study provided a relationship 

between diagnostic image quality, as measured by AUC, and administered activity for 99mTc-

DMSA pediatric SPECT for a set of phantoms having different weights. These fitted functions 

could potentially be used to determine the appropriate administered activity for the desired level 

of image quality for a given patient weight. However, more importantly, the data suggested that 

patient girth at the level of the kidney may ultimately be a better factor to use than weight when 

selecting administered activity for this imaging task.   

 

6.1.3 DeepAMO: A multi-slice, multi-view anthropomorphic model 
observer for visual detection tasks performed on volume images 

 

Due to the limitations (details are available in section 2.5.2) of the current model observers, 

the third aim of this dissertation focused on developing a model observer that can efficiently (both 

training data and training computational cost) simulate a realistic clinical realistic 3D detection 

task using multi-slice, multi-orientation image sets.  

In Chapter 5, we developed a deep learning-based anthropomorphic model observer 

(DeepAMO) for image quality evaluation of multi-orientation, multi-slice image sets with respect 

to a clinically realistic 3D defect detection task. The input to the DeepAMO is a composite image, 

typical of that used to view 3D volumes in clinical practice. The output is a rating value designed 

to mimic human observer’s defect detection performance. The main contributions of this work are 

threefold. First, we proposed a hypothetical model of the decision process of a reader performing 

a detection task using a 3D volume. Second, we proposed a projection-based defect confirmation 
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network architecture to confirm defect present in two different slicing orientations. Third, we 

proposed a novel calibration method that ‘learns’ the underlying distribution of observer ratings 

from the human observer rating data (thus modeling inter- or intra- observer variability) using a 

Mixture Density Network. We implemented and evaluated the DeepAMO in the context of 99mTc-

DMSA SPECT imaging. A human observer study was conducted, with two medical imaging 

physics graduate students serving as observers. A 5 ×  2-fold cross-validation experiment was 

conducted to test the statistical equivalence in defect detection performance between the 

DeepAMO and the human observer. The results show that the DeepAMO’s and human observer’s 

performances on unseen images were statistically equivalent with a margin of difference (∆AUC) 

of 0.0426 at 𝑝 < 0.05,  using 288 training images. The results show that the DeepAMO has the 

potential to mimic human observer defect detection task performance in a clinically realistic 

diagnostic task.  

 

6.2 Contributions 
 

Through the course of this work, we have made several major contributions to the 

development of an improved dosing guidelines for pediatric molecular imaging that result in more 

consistent image quality and absorbed dose. 

First, we developed a realistic projection database for investigation of relationship between 

image quality and patient morphometry in 99mTc-DMSA renal SPECT. The database generated in 

this work is immediately applicable to other pharmaceuticals labeled with 99mTc used in pediatric 

imaging such as 99mTc- MAG3 or 99mTc-MDP; only scaling and summing of the organ projections 

with appropriate scaling factors reflecting agent biokinetics. Further, the methods used in this study 
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are applicable to studying these tradeoffs for other diagnostic and/or therapeutic 

radiopharmaceuticals in both pediatric and adult patients.  

Second, we demonstrated that the current consensus guidelines, which scale activities 

based on patient weight subject to minimum and maximum activity constraints, do not give the 

same IQ for patients with different weights. Furthermore, this study provides a relationship 

between diagnostic IQ, as measured by AUC, and AA for 99mTc- DMSA pediatric SPECT for a 

set of phantoms having different weights. These fitted functions could potentially be used to 

determine the appropriate AA for desired level of IQ for a given patient weight. However, the data 

suggest that patient girth at the level of the kidney may be a better factor to use than weight when 

selecting AA for this imaging task. 

Third, we proposed a general framework for using deep convolution neural networks as an 

anthropomorphic model observer for the task of interpreting 3D image volumes and reproducing 

human observer performance, and good results were obtained. The results showed that the 

DeepAMO has the potential to reproduce the performance of human observers on a clinically-

realistic defect detection task; absolute performance was not reproduced by a scanning model 

observer based on the optimal linear discriminant. The proposed framework could be readily 

adapted to model human observer performance on detection tasks for other imaging modalities 

such as PET, CT or MRI 

While this work provided several important steps towards the development of an improved 

dosing guidelines for pediatric molecular imaging, there is still work that remains to be done for 

establishing the data needed by standards bodies to develop improved dosing guidelines for 

pediatric molecular imaging that result in more consistent image quality and absorbed dose. 
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6.3 Future works 
 

The findings in this dissertation suggest two areas of future work.  

First, the findings in Chapter 4 suggest a new direction to investigate the IQ-RD tradeoff 

relationships as functions of patient girth.  

Second, the major work in this dissertation was done using model observer. Image quality 

data only showed rankings as functions of AA but not absolute performance representing human 

performance. To translate the image quality measures to clinical use, it is more meaningful to 

provide an AUC value that would be obtained for a human observer. Thus, a human observer study 

is desired to calibrate the model observer to be used to calculate the absolute IQ-RD tradeoff 

relationships.  

 

6.4 Conclusions 
 

This dissertation has provided useful direction and tool for a general framework for 

optimizing radiation dose with task-based assessment of image quality.  First, we demonstrated 

that the weight-based dose scaling does not equalize image quality, as measured by defect 

detectability, for patients with different weights. Second, we have found that patient body factors 

that are more local to the target organ may be more robust than weight for estimating the 

administered activity needed to provide a constant image quality across a population of patients. 

In the case of renal imaging, we have discovered that girth is more robust than weight in predicting 

administered activity needed to provide a desired image quality. Third, we have proposed a novel 
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deep learning-based anthropomorphic model observer that can efficiently simulate a realistic 

clinical realistic 3D detection task using multi-slice, multi-orientation image sets. 

The results of this dissertation provide a general framework, a new investigative direction 

(patient body factors local to the target organ), as well as tools (database, DeepAMO) for 

optimizing radiation dose with task-based assessment of image quality for nuclear medicine 

imaging. These results and methods from this dissertation will help provide the data needed by 

standards bodies to develop improved dosing guidelines for pediatric molecular imaging that result 

in more consistent image quality and low absorbed dose. 
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