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Abstract

To achieve satisfactory performance from automatic medical image analysis

algorithms such as registration or segmentation, medical imaging data with

the desired modality/contrast and high isotropic resolution are preferred, yet

they are not always available. We addressed this problem in this thesis using

1) image modality synthesis and 2) resolution enhancement.

The first contribution of this thesis is computed tomography (CT)-to-

magnetic resonance imaging (MRI) image synthesis method, which was de-

veloped to provide MRI when CT is the only modality that is acquired. The

main challenges are that CT has poor contrast as well as high noise in soft

tissues and that the CT-to-MR mapping is highly nonlinear. To overcome these

challenges, we developed a convolutional neural network (CNN) which is a

modified U-net. With this deep network for synthesis, we developed the first

segmentation method that provides detailed grey matter anatomical labels on

CT neuroimages using synthetic MRI.

The second contribution is a method for resolution enhancement for a

common type of acquisition in clinical and research practice, one in which

there is high resolution (HR) in the in-plane directions and low resolution (LR)

in the through-plane direction. The challenge of improving the through-plane
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resolution for such acquisitions is that the state-of-art convolutional neural

network (CNN)-based super-resolution methods are sometimes not applicable

due to lack of external LR/HR paired training data. To address this challenge,

we developed a self super-resolution algorithm called SMORE and its iterative

version called iSMORE, which are CNN-based yet do not require LR/HR

paired training data other than the subject image itself. SMORE/iSMORE

create training data from the HR in-plane slices of the subject image itself, then

train and apply CNNs to through-plane slices to improve spatial resolution

and remove aliasing. In this thesis, we perform SMORE/iSMORE on multiple

simulated and real datasets to demonstrate their accuracy and generalizability.

Also, SMORE as a preprocessing step is shown to improve segmentation

accuracy.

In summary, CT-to-MR synthesis, SMORE, and iSMORE were demon-

strated in this thesis to be effective preprocessing algorithms for visual quality

and other automatic medical image analysis such as registration or segmenta-

tion.

Primary Reader: Dr. Jerry L. Prince

Secondary Readers: Dr. John I. Goutsias and Dr. Trac D. Tran

iii



Acknowledgments

First, I would like to express my deep and sincere gratitude to my advisor

Dr. Prince for the continuous support of my Ph.D study and research. I had

very limited background in medical image processing before I met him and he

helped me to establish the knowledge background, methodology of research,

self-confidence, insights on research problems and, most importantly, the

passion to open black boxes and find the fundamental issues behind research

problems. He is my mentor in many respects, teaching with what he does, not

only what he says. I cannot feel luckier for having such a respectable scholar

as my advisor. I will remember his guidance throughout my life.

Apart from Dr. Prince, I would also express my sincere gratitude to Dr.

Tran, Dr. Goutsias, and Dr. Pham for giving the encouragement and sharing

insightful suggestions for my research proposal and dissertation. It would not

have been possible to conduct this research without their precious support.

Thanks also goes to Dr. Lee, Dr. Saria, Dr. Reiter, Dr. Khudanpur and Dr.

Naiman for helping me build knowledge foundation during qualifying and

GBO preparation. I am also pleased to say thank you to my previous advisors

Dr. Yu from Tsinghua University and Dr. Khurgin for introducing me to

research. It is very lucky for me that every advisor I met is so wonderful. They

iv



all really mean a lot to me.

I would always remember my fellow IACL labmates for the fun time

we spent together, the inspiring discussion we had, and the support from

them on research and life. Special thanks to Aaron Carass for all the help he

gave on my research. I would like to thank my friends from Johns Hopkins

University. Special thanks to Muhan Shao and Dan Zhu for being my beautiful

bridesmaids. Thanks also go to my doctors, nutritionists, and counselors from

Hopkins for helping me fight my eating disorder.

I also thank my family and my parents for their support, especially my

mom. Her experience of overcoming the barriers to girls’ education and being

a lifelong learner gives me endless power. Thanks also to my dog and cats for

their unconditional (or biscuit-motivated) support and love.

Finally, my deepest gratitude goes to my best friend, my greatest sup-

port, my sunshine, and my significant other: Bowen Li. This dissertation is

dedicated to you.

v



Table of Contents

Abstract ii

Acknowledgments iv

Table of Contents vi

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Introduction to image contrast, resolution, and noise . . . . . . 1

1.1.1 Image contrast . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Image resolution . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Image noise . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Introduction to image synthesis . . . . . . . . . . . . . . . . . . 6

1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Overview of four synthesis methods . . . . . . . . . . . 7

1.2.3 Example-based Synthesis . . . . . . . . . . . . . . . . . 12

vi



1.3 Introduction to super-resolution . . . . . . . . . . . . . . . . . 13

1.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Overview of three super-resolution methods . . . . . . 14

1.3.3 Self-supervised super-resolution . . . . . . . . . . . . . 16

1.4 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Background on Convolutional Neural Networks (CNNs) 20

2.1 Basics of Fully Connected Neural Network . . . . . . . . . . . 20

2.1.1 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Nonlinearity and Piecewise Linearity . . . . . . . . . . 24

2.2 Basics of Convolutional Neural Networks . . . . . . . . . . . . 27

2.3 CNNs used in this thesis: U-net and ResNet . . . . . . . . . . . 33

2.3.1 U-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 CT-to-MR synthesis and whole brain segmentation on CT images 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Methods and Data . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 48

vii



4 SMORE: Synthetic Multi-Orientation Resolution Enhancement 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Simplified SMORE(3D) . . . . . . . . . . . . . . . . . . 55

4.2.1.1 (Step 1) Preprocessing . . . . . . . . . . . . . . 56

4.2.1.2 (Step 2) Construct Training Data . . . . . . . . 56

4.2.1.3 (Step 3) Train a SSR network . . . . . . . . . . 57

4.2.1.4 (Step 4) Apply the SSR network . . . . . . . . 59

4.2.2 SMORE(3D) . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2.1 Rotation during training . . . . . . . . . . . . 60

4.2.2.2 Rotation during testing . . . . . . . . . . . . . 63

4.2.3 SMORE(2D) . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3.1 Training Data Extraction . . . . . . . . . . . . 64

4.2.3.2 SAA when unexpected aliasing exists . . . . . 66

4.2.4 Comparison with other SSR methods . . . . . . . . . . 67

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Simulation experiments using T2-weighted brain images 68

4.3.1.1 LR data downsampled following a 3D protocol 68

4.3.1.2 LR data downsampled following a 2D protocol 72

4.3.2 Robustness to noise . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Impact of SAA . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.4 Choice of M and computation time . . . . . . . . . . . 78

viii



4.3.4.1 Computation time . . . . . . . . . . . . . . . . 78

4.3.4.2 Choice of M . . . . . . . . . . . . . . . . . . . 79

4.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . 81

5 Application of SMORE on various MRI datasets 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Application 1: visual enhancement for MS lesions . . . . . . . 86

5.3 Application 2: visual enhancement of scarring in cardiac left

ventricular remodeling . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Application 3: multi-view reconstruction . . . . . . . . . . . . 93

5.5 Application 4: brain ventricle parcellation . . . . . . . . . . . . 97

5.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . 100

6 iSMORE: an iterative framework of SMORE 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 2D iSMORE . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 3D iSMORE and a new 3D network . . . . . . . . . . . 108

6.2.3 Modifications for MRI and Two-photon Fluorescence

Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.4 Comparison between SMORE and iSMORE . . . . . . 112

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1 2D iSMORE on MRI from 3D protocols . . . . . . . . . 113

ix



6.3.2 3D iSMORE on Two-photon Fluorescence Microscopy 115

6.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . 117

7 Discussion, Conclusions, and Future Work 120

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Image Modality Synthesis . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Key Points and Results . . . . . . . . . . . . . . . . . . . 121

7.2.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Image Resolution Enhancement Method SMORE and iSMORE 122

7.3.1 Key Points and Results . . . . . . . . . . . . . . . . . . . 122

7.3.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Concluding Thoughts . . . . . . . . . . . . . . . . . . . . . . . . 124

A A supervoxel-based random forest framework for bidirectional MR/CT

synthesis 126

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B Effects of spatial resolution on image registration 138

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.2 Theoretical prediction of the effect of spatial resolutions on

image registration . . . . . . . . . . . . . . . . . . . . . . . . . . 140

x



B.2.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . 140

B.2.2 Claims and Proofs . . . . . . . . . . . . . . . . . . . . . 143

B.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 146

B.3 An edge-based method to measure resolution . . . . . . . . . . 147

B.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.4.1 Effect of spatial resolution on image registration . . . . 148

B.4.2 Resolution measure . . . . . . . . . . . . . . . . . . . . 151

B.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 153

Vita 178

xi



List of Tables

1.1 Overview of four types of synthesis methods . . . . . . . . 8

3.1 Mean Dice coefficients for a few brain structures. . . . . . . 46

4.1 Comparison of several SSR methods . . . . . . . . . . . . . . 67

5.1 SSIM and PSNR of SMORE on Late gadolinium enhance-

ment (LGE) from an infarct swine subject. . . . . . . . . . . . 93

5.2 Application of SMORE on brain ventricle parcellation on 70

NPH subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Comparison of SMORE and iSMORE . . . . . . . . . . . . . . 113

6.2 Quantitative evaluations for iSMORE using 2D network on

MRI from 3D protocols . . . . . . . . . . . . . . . . . . . . . . 114

A.1 Registration results using synthetic images from supervoxel

based random forests CT/MR image synthesis algorithm . . 135

B.1 Mean and Variance of SSD for different resolution pairs . . 142

xii



B.2 Sensitivity index of SSD for images with correct alignment

and images with misalignment . . . . . . . . . . . . . . . . . . 142

B.3 Effects of spatial resolution on image registration . . . . . . 150

B.4 Effects of matching resolution on image registration . . . . . 152

xiii



List of Figures

1.1 Images obtained with different modalities or contrasts . . . 3

1.2 Images with different spatial or digital resolution . . . . . . 5

1.3 Body anatomy determines underlying physical parameters,

which determines the acquired image intensities, following

a certain physical rule . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Example of classification-based image synthesis method: Brain-

web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Example of registration-based image synthesis method from

Burgos et al. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 An example of subdivided input space for a three layer deep

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 FCN architecture . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 U-net architecture . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 ResNet unit and EDSR architecture . . . . . . . . . . . . . . . 36

2.5 Unraveled view of ResNet . . . . . . . . . . . . . . . . . . . . 36

xiv



3.1 Our modified U-net with four levels of contraction and ex-

pansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 An example of CT-to-MR synthetic and segmented subject

image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Dice coefficients of CT whole brain segmentation algorithms 46

4.1 Overview of SMORE . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Visualization of SMORE results from LR MRI downsampled

with a 3D protocol . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Evaluation of accuracy for SMORE results from LR MRI down-

sampled with a 3D protocol . . . . . . . . . . . . . . . . . . . . 70

4.4 Evaluation of sharpness for SMORE results from LR MRI

downsampled with a 3D protocol . . . . . . . . . . . . . . . . 71

4.5 Visualization of SMORE results from LR MRI downsampled

with a 2D protocol . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Evaluation of accuracy for SMORE results from LR MRI down-

sampled with a 2D protocol . . . . . . . . . . . . . . . . . . . 73

4.7 Evaluation of sharpness for SMORE results from LR MRI

downsampled with a 2D protocol . . . . . . . . . . . . . . . . 74

4.8 Visualization of SMORE results for noisy data . . . . . . . . 75

4.9 Quantitative results of SMORE for noisy data . . . . . . . . . 75

4.10 Impact of SAA in SMORE on simulated LR image . . . . . . 77

4.11 Impact of SAA in SMORE on acquired LR image . . . . . . . 77

xv



4.12 Choice of M for FBA in SMORE(3D) . . . . . . . . . . . . . . 80

4.13 Choice of M for FBA in SMORE(2D) . . . . . . . . . . . . . . 80

5.1 Application of SMORE on pathological LR MRI acquired

with a 2D protocol . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Evaluation of sharpness for SMORE results from real LR ac-

quired with a 2D protocol . . . . . . . . . . . . . . . . . . . . . 89

5.3 Application of SMORE on late gadolinium enhancement (LGE)

from an infarct swine subject . . . . . . . . . . . . . . . . . . . 91

5.4 Application of SMORE on T2w MRI from a tongue tumor

subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Comparison between SMORE(2D) and multi-view reconstruc-

tion for a tongue tumor subject . . . . . . . . . . . . . . . . . . 95

5.6 Application of SMORE on brain ventricle parcellation on an

NPH subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 The framework of iSMORE and Architecture of 3D EDSR . 108

6.2 Quantitative evaluations for iSMORE with different itera-

tion numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Visual results of 3D iSMORE on two-photon fluorescence

microscopy data . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Maximum intensity projection (MIP) results of 3D iSMORE

on two-photon fluorescence microscopy data . . . . . . . . . 118

xvi



A.1 Workflow of supervoxel based random forest CT/MR synthe-

sis algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2 Evaluation of synthesis results for supervoxel based random

forest CT/MR synthesis algorithm . . . . . . . . . . . . . . . . 135

A.3 Visualization of synthetic CT images from supervoxel based

random forest CT/MR synthesis algorithm . . . . . . . . . . . 136

A.4 Visualization of synthetic MR images from supervoxel based

random forest CT/MR synthesis algorithm . . . . . . . . . . . 136

B.1 Explanation of problem setting . . . . . . . . . . . . . . . . . 141

B.2 An example of edge and gradient profile . . . . . . . . . . . 147

B.3 Experiment results on SSD and MI distributions regard to

image pairs with different spatial resolution . . . . . . . . . . 149

xvii



Chapter 1

Introduction

In this chapter, we introduce the background knowledge of our two main

topics: image modality synthesis and super-resolution. We first introduce the

basic concepts of image modality/contrast, resolution, and noise. Then we

introduce some background of image modality synthesis and super-resolution.

Finally, the contributions and organization of this thesis are summarized.

1.1 Introduction to image contrast, resolution, and
noise

As machine learning, including deep learning techniques develop, automatic

medical image analysis based on these techniques has increasingly gained

interest in clinical and research applications. A big challenge in these applica-

tions is the diversity of three medical image properties: contrast, resolution,

and noise level.

In order to better understand this challenge, we define these properties

and describe their effects on automatic medical image analysis as below.

1



1.1.1 Image contrast

Image contrast describes the difference in the brightness of the object and

other objects within the same field of view. There are two types of contrast

that we discuss in medical imaging: intensity contrast and tissue contrast,

described as below.

• If an object has intensity I and the background has intensity Ib, then the

intensity contrast is I−Ib
Ib

.

• Tissue contrast describes the intensity difference between two types of

tissues rather than object and background.

In the rest of this thesis, when we mention contrast, we always mean tissue

contrast.

In medical imaging, image contrast is strongly related to image modality,

which is a scanning technique to visualize the human body for diagnostic and

treatment monitoring purposes. They are strongly related because the differ-

ences in scanning methods determine the acquired image contrast. However,

there is a small number of image modalities and various of possible contrasts.

Diversity in contrast during scanning is due to several reasons:

• First, images with different modalities have different contrasts since they

respond to different underlying physical parameters of the body tissues.

For example, computed tomography (CT) has a large contrast between

bones and soft tissues, while magnetic resonance imaging (MRI) has

better contrast between different types of soft tissues. Figure 1.1a shows

2



(a) CT (left) and MR (right) images

(b) MRI with different pulse sequences [2].

(c) T1-w SPGR MRI from different scanners [3].

Figure 1.1: Images with different modalities that have different contrasts

3



a pair of CT/MR images. They show the same brain, but they visually

look very different.

• Second, when images are from the same modality, their contrasts are

sometimes different since the scanning parameters may be different.

For example, CT images with different X-ray energy distributions can

have slightly different contrasts. Also, MR images with different pulse

sequences1 have different contrasts, as shown in Figure 1.1b [2]. Here, T2

Flair, T1-weighted (T1-w), PD-weighted (PD-w), and T2-weighted (T2-w)

MR images of the same brain look very different.

• Even when the pulse sequences are the same, the MR scanners can be dif-

ferent, which leads to different contrasts. Figure 1.1c [3] shows T1-w MR

images from different manufacturers and with different magnetic fields.

Although they are all T1-w MRI with spoiled gradient recalled (SPGR)

pulse sequence, their contrasts are different.

1.1.2 Image resolution

There are two kinds of resolution definitions commonly used in medical

imaging: digital resolution and spatial resolution. Digital resolution is the

voxel or pixel separation of the digital image. Spatial resolution, on the other

hand, describes the ability to "resolve", or separate, small details. Images with

high spatial resolution are desired as they provide more details. Figure 1.2

shows an example of (a) a brain MR image with low spatial and digital

1An MRI pulse sequence is a programmed set of changing magnetic field gradients and
radio frequency pulses. A more detailed introduction can be found in Bitar et al. [4]
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Figure 1.2: Images with different spatial or digital resolution: (a) a brain image
with low spatial and digital resolution; (b) an interpolated image with high digital
resolution but still low spatial resolution; (c) an ideal image with high spatial and
digital resolution

resolution, (b) an interpolated image with high digital resolution but still

low spatial resolution, and (c) an ideal image with high spatial and digital

resolution.

These two definitions are related. High digital resolution is a necessary

but not sufficient condition for images with high spatial resolution. To obtain

high digital resolution, image interpolation can be used. To obtain high spatial

resolution, however, one requires more advanced imaging devices, a trade-off

between resolution and noise, or carrying out the challenging post-processing

method called super-resolution, which is introduced in Section 1.3.

1.1.3 Image noise

The third property of importance in medical imaging is noise. Noise is a

fundamental characteristic that is present, to some extent, in all images. It

reduces the visibility of some structures and objects, especially those with rel-

atively low contrast. If the contrast and resolution remain the same, low noise

5



level images are always desired. Reducing noise during image acquisition,

however, involves a compromise with patient exposure for CT. For MRI, low

noise level and high spatial resolution are both desired while both involve

long acquisition times, which is not desired. Therefore, for MRI, there is a

trade-off among spatial resolution, noise level, and acquisition time.

1.2 Introduction to image synthesis

1.2.1 Motivation

Most automatic medical image analysis tools should be applied to images with

similar contrasts, since image contrast affects performance. Some examples

are described below.

• For machine learning or deep learning based segmentation/classification,

the segmentor or classifier is trained on the image features computed

from training images. To correctly apply the trained segmentor or clas-

sifier to test images, the contrasts of training and test images must be

similar. People have found that image synthesis helps to normalize

contrasts in MRI, and thus can improve segmentation accuracy [2].

• For mono-modal image registration2, the commonly-used loss function

cross-correlation (CC) assumes that moving and target images have the

same contrast after some linear scaling of intensities. Mean squared

error (MSE) and sum of squared distance (SSD), on the other hand,

2There are two types of intensity-based registration: mono-modal registration that deals
with images with similar contrasts, and multi-modal registration that deals with images with
different contrasts.
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assume that the contrasts are the same. These assumptions are not

always true in reality, especially for MRI data.

• The performance of multi-modal image registration is usually worse

than mono-modal registration. Researchers have found that image syn-

thesis can convert multi-modal registration into mono-modal registra-

tion, and thus improve performance [5].

Sometimes, acquired images do not have the desired contrasts. In this

case, image synthesis algorithms can help to fill the gap. Image synthesis,

also called image-to-image translation, is a process that creates a target image

that depicts the same anatomy but a different contrast with an acquired

source image. People have developed image synthesis methods for MR to

CT [6, 1, 7, 8, 9], for between MRI images with contrasts [2, 5, 10, 11], and for

other applications [12, 13, 14, 15].

1.2.2 Overview of four synthesis methods

To explore medical image synthesis, it is important to understand how images

are acquired. As shown in Figure 1.3, body anatomy determines the underly-

ing physical parameters. Different types of tissues have different x-ray atten-

uation coefficients, ultrasound reflection coefficients, proton densities (PD),

T1 relaxation times, T2 relaxation times, etc. These physical parameters de-

termine image intensity and contrast following different physical rules for

different image modalities and different acquisition parameters.

With this understanding of image acquisition, we start to explore medical

image synthesis. Suppose we have a source image with contrast A. The goal
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Figure 1.3: From body anatomy to image contrast

Table 1.1: Overview of four types of synthesis methods

of image synthesis is to produce an image that has the same anatomy as the

source image, but has contrast B. Intuitively, we can keep the anatomy of the

source image unchanged and try to convert contrast A into contrast B. Or we

can find an atlas image with contrast B but different anatomy and try to align

the anatomy of atlas image to the source image. Based on these two ideas,

there are four common types of image synthesis methods, summarized in

Table 1.1 and discussed below.

• Physical-based methods: Medical image synthesis can be done follow-

ing physical rules and be produced mathematically [16, 17]. One can

first estimate the underlying physical parameters from a source image,

and then use the estimated parameters to compute a synthesized image.

A fundamental defect of physical-based methods is that the mapping
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from image intensities to the physical parameters is sometimes not a one-

to-one mapping. Therefore, it can be difficult or inaccurate to estimate

physical parameters for each pixel/voxel.

• Classification-based methods: Estimating physical parameters for

each pixel/voxel can be difficult or inaccurate. Fortunately, the physical

parameters for pixels/voxels that belong to the same tissue class are

often very close. Taking advantage of this fact, classification-based

synthesis is a relaxed version of the physical-based methods [18, 19].

These methods first segment the source image to estimate the tissue class

for each pixel/voxel, shown in Figure 1.4a. Then for each class, they

synthesize the image intensities for pixels/voxels that belong to this

class and then combine them into the final image, shown in Figure 1.4b.

Considering the fact that sometimes a voxel contains more than one

type of tissue, soft segmentation3 can be used to make the results more

smooth. This is at the core of BrainWeb [18], an important MR neuroim-

age simulation package that has been used extensively in the evaluation

of neuroimage processing algorithms.

The accuracy of classification-based image synthesis strongly depends

on the quality of image segmentation. Also, the physical models that

estimate image intensities from the estimated physical parameters may

not be accurate. In fact, synthesized images from physical-based and

classification-based synthesis sometimes look unrealistic.

3Soft segmentation, also called membership function, estimates the percentage of several
tissue types for each pixel/voxel, rather than a single tissue type.
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(a) From Brainweb [18]: example of fuzzy tissue classes from the phantom: (L to
R)white matter, gray matter, CSF, MS lesions

(b) From Brainweb [18]: real (top) and simulated (bottom) MRI-s

Figure 1.4: Example of classification-based image synthesis method: Brain-
web [18].
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Figure 1.5: Example of registration-based image synthesis method from Burgos et
al. [1]: CT synthesis diagram for a given MRI image. All the MRIs in the atlas database
are registered to the target MRI (source image). The CTs in the atlas database are then
mapped using the same transformation to the target MRI. A local image similarity
measure (LIS) between the mapped and target MRIs is converted to weights(W) to
reconstruct the target CT.

• Registration-based methods: Another way of thinking about image

synthesis is to focus on changing the anatomy rather than the contrast [1,

20, 21, 22, 6, 23]. Registration-based methods require at least one atlas

image of contrast B or one pair of atlas image of contrast A and B. With

these atlas images, we can use deformable registration to align their

anatomies to the source image. Figure 1.5 shows an example of MR-

to-CT synthesis. The atlas is the ‘MRI-CT database’ on the left. The

source image is the ‘Target MRI’ in the middle. If an atlas image contain

the exactly the same anatomical parts with the same topology as the

source image, and the deformable registration is done perfectly, then

the warped atlas image will have contrast B and same anatomy as the

source image; thus, it will be a perfectly synthesized image.
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The advantage of this type of method is that the contrast is guaranteed

to be correct. However, it is impossible to perform a perfect deformable

registration with current technology. Therefore, the anatomy of the

synthesized image is often inaccurate. Also, the computation time can

be hours since deformable registration is time consuming.

• Example-based methods: Physical-based and classification-based syn-

thesis produce results with accurate anatomy, but inaccurate contrast.

Registration-based synthesis produce results with accurate contrast, but

inaccurate anatomy. The fourth type of method, example-based synthe-

sis, attempts to consider the accuracy of both anatomy and contrast. We

introduce this approach in the following section.

1.2.3 Example-based Synthesis

Example-based synthesis does not consider the underlying physical parame-

ters in medical images. Instead, it directly applies a mapping on the source

image, also called a regressor in machine learning, from contrast A to contrast

B [24, 10, 2, 9, 25, 26, 27]. To learn the mapping, a training set is required.

Usually, this training set contains pairs of images, where each pair has the

same anatomy, one with contrast A and the other with contrast B. An intuitive

idea is to compute the joint histogram of the two contrasts from training

images, and to model this mapping as voxel-wised intensity transformation.

However, the mapping between contrasts is rarely monotonic. Depending on

the underlying anatomy, the same intensity with contrast A could be mapped
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to multiple possible intensities with contrast B. Fortunately, context informa-

tion in medical imaging is strongly related to body anatomy. Therefore,taking

context information into consideration, can help improve the accuracy of the

trained regressor.

Traditional machine learning techniques involve designing hand-crafted

features to describe the context information and choosing a reasonable re-

gressor that can learn the mapping. This designed feature together with the

regressor should be able to distinguish the underlying anatomy and model the

mapping correctly. The most straightforward feature is an image patch, which

is found effective in practice. For example, the synthesis method MIMECS [24]

uses patches as features and sparse reconstruction as the regressor. Another

method REPLICA [10] also uses patches as features but uses a random forest

as regressor. Compared with sparse reconstruction, the random forest takes

much less time and provides a better result.

Recently, deep learning has become the state-of-art method for many

applications in image processing. The first contribution of this thesis, which

is introduced in Chapter 3, also uses deep learning as the synthesis method.

In particular, it uses convolutional neural network (CNN). We introduce the

basic conceptions of CNNs in Chapter 2.

1.3 Introduction to super-resolution

1.3.1 Motivation

Low spatial resolution degrades subsequent image analysis. For example:
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• researchers have found that low spatial resolution degrades the perfor-

mance of segmentation [28, 29];

• registration performs best when moving and target images are both of

high resolution (HR). This is discussed in Appendix B [30]).

To improve the spatial resolution, people have developed super-resolution (SR)

methods including single-image SR and multi-image SR techniques in com-

puter vision and medical imaging. The difference between the two is that, for

each subject, single-image SR tries to construct a high-resolution (HR) image

from a single low-resolution (LR) image, whereas multi-image SR tries to

constract a HR image from multiple LR images [31, 32, 33, 34]. In this thesis,

we only discuss single-image SR.

1.3.2 Overview of three super-resolution methods

There are three common types of single-image SR methods:

• Single-image deconvolution: Single-image deconvolution is resolution

enhancement from only one acquired image. A typical observation

model for this technique assumes that the acquired LR image g comes

from g = h ∗ f + η, where f is the HR image, h is the point spread

function (PSF) of the blur kernel, and η is an unknown additive noise.

The goal of single-image deconvolution is to estimate the HR image f

given the acquired LR image g and a known PSF h.4 This process does

not involve any other image besides the subject image g itself, which

4A more difficult case is when the PSF is unknown and must also be estimated. This
problem is known as blind deconvolution.
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is its main advantage. From the observation model g = h ∗ f + η, f

can be estimated by minimizing a loss function. For example, f can be

estimated using the L2 loss by

f̂ = arg min
f

||g − h ∗ f ||2. (1.1)

However, this approach is extremely ill-posed and therefore is highly

susceptible to increasing noise. Also, it is often difficult to precisely

know the PSF h, which can produce severe artifacts. To address these

problems, a regularization term R( f ) is often added to stabilize the

solution as follows,

f̂ = arg min
f

||g − h ∗ f ||2 +R( f ). (1.2)

R( f ) is usually designed from prior knowledge to balance the contri-

bution of smoothness and data fidelity terms [35]. Although there has

been much effort for single-image deconvolution, the performance is

generally worse than the state-of-art example-based SR algorithms.

• Example-based SR: State-of-the-art SR algorithms are example-based,

requiring LR/HR paired training data with contrasts and resolutions

that closely match the subject data. Such an algorithm learns a mapping

from an LR image to an HR image from paired training data and then

applies the learned mapping to the subject LR image. Many of these

approaches—especially those using CNNs—have reported good results

in computer vision [36, 37, 38].

• SSR: Example-based SR algorithms perform well in computer vision
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applications. Unfortunately, these apporoaches have a major disadvan-

tage that limit their use in medical imaging—paired LR/HR training

data are often unavailable in medical imaging. Such training data re-

quires subjects to remain stationary for two acquisitions to avoid motion

artifacts, and one acquisition must be HR, which can take a long time

and be uncomfortable. Also, collected training data is only useful where

their contrast is the same, since the accuracy of the trained SR algorithm

degrades for subject images with a different contrast, which is common

in MRI as we discussed in Section 1.1. In such cases, example-based

SR algorithms that do not require external training data are desirable.

In this dissertation, we refer to such example-based SR algorithms as

self-supervised super-resolution (SSR) algorithms, which are discussed

in the next section.

1.3.3 Self-supervised super-resolution

Without external paired training images, example-based SR methods must

find other sources to learn LR to HR mapping. There are three approaches in

literature:

• Self-similarrity: The self-similarity approach first degrades the subject

LR image g using the PSF h to obtain the further degraded LR image

q = h ∗ g. It then uses q and g as paired training data to learn the

mapping from q to g. Finally this mapping is applied to g to estimate

f [39]. The underlying assumption is that the mapping from q to g is

similar to the mapping from g to f . It may sound plausible at first glance;
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but g is LR and does not contain some of the HR features that we expect

in f . Thus, the mapping learned from q to g may not be able to restore

some HR features in f .

• Intermodality priors: The second approach, called brain hallucination,

targets a certain MRI acquisition protocol [40, 41] using intermodality

priors. In brain MRI acquisition, both an LR T2-weighted image and

an HR T1-weighted image are acquired. Brain hallucination takes HR

information from HR T1-w MRI to improve the resolution of LR T2-w

MR image. The underlying assumption is that the HR features in T1-w

MRI are similar to the features in T2-w MRI. To make this assumption

valid, the features must be carefully designed to be modality invariant,

and it may not be possible to verify this in every case.

• Elongated voxels: The third approach targets a common type of MRI

acquisition that has HR in the in-plane slices and LR in the through-

plane direction. The images that are degraded to create paired training

data in this approach are the HR in-plane slices. The learned mapping

is then applied to LR through-plane slices. In this way, the learned

mapping contains HR features, has the same contrast, and thus avoids

the concerns of the other two approaches. This is the approach that this

thesis develops in Chapter 4. Since such acquisitions are very common,

as long as the performance is good, this approach can have great utility

in medical imaging.

In this dissertation, our SSR algortihms are based on elongated voxels. In

the remainder of this dissertation, SSR always refers to SSR using elongated
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voxels.

1.4 Dissertation Overview

1.4.1 Contributions

There are two main contributions in this dissertation.

• CT-to-MRI synthesis The first contribution is a CNN-based CT-to-MRI

image synthesis method, which was developed to provide MRI when

CT is the only modality that is acquired.

• Self-supervised Super-resolution (SSR) The second contribution in-

cludes two SSR algorithms, SMORE and its iterative version iSMORE,

which improve the through-plane resolution with a common type of

MRI acquisition that has HR for in-plane slices and LR along the through-

plane direction. We applied SMORE on various of MRI datasets, and

applied iSMORE on both MRI and two-photon fluorescence microscopy,

which demonstrate their generalizability.

In addition, a super-voxel and random forest based CT-to-MRI image synthesis

method is presented in the Appendix A. We also performed a theoretical

analysis of the effects of resolution on image registration, which is presented

in the Appendix B.

1.4.2 Organization

• Chapter 2 introduces some basic concepts and insights about convolu-

tional neural networks (CNNs), as they are the main regressors used in
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this thesis.

• Chapter 3 discusses our CNN-based CT-to-MR image synthesis algo-

rithm using material from [42].

• Chapter 4 describes our SSR algorithm SMORE for MR images acquired

with 3D and 2D protocols using material from [43, 44].

• Chapter 5 demonstrates the application of SMORE on four different MRI

datasets to show its generalizability using material from [45].

• Chapter 6 describes the iterative framework iSMORE as well as its appli-

cation on two-photon fluorescence microscopy using material from [46].

• Chapter 7 includes a conclusion and discussion.

• Appendix A describes a random forest and classification-based image

synthesis algorithm for CT-to-MRI synthesis using material from [47].

• Appendix B includes our theoretical work about the effects of resolution

on image registration using material from [30].
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Chapter 2

Background on Convolutional
Neural Networks (CNNs)

In this chapter, we introduce some background on convolutional neural net-

works (CNNs), which is the machine learning method we use in this thesis.

We start with fully connected neural networks, and then introduce the layers

in CNNs. We will see that CNN is a sparse fully connected neural network.

Both of fully connected neural networks and CNNs are called deep networks.

Finally, the U-net and the ResNet are introduced as they are the two network

architectures we use in this dissertation.

2.1 Basics of Fully Connected Neural Network

In this section, we first introduce the layers in a fully connected neural network,

and then discuss how this structure forms a nonlinear mapping. In contrast

to many deep learning tutorials, we try to explain the non-linearity of fully

connected neural network and give a intuitive sense of some observations

such as overfitting and adversarial attacks.
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2.1.1 Layers

A layer can be considered as a function applied on an N × 1 input vector x,

denoted as f (x). Deep networks consist of multiple layers fi(x), i = 1, ..., N ,

which can be connected in several ways, some of them are described as below.

• Sequential: When two layers f1 and f2 are sequentially connected, the

output is f2( f1(x)).

• Concatenate: When two layers f1 and f2 are concatenated, the output is[︃
f1(x)
f2(x)

]︃
.

• Summation: When two layers f1 and f2 are added together, the output

is f1(x) + f2(x).

• Element-wise multiplication: This is when two layers f1 and f2 are

multiplied element-wise.

Let us introduce the basic single layers first. Basic layers used in fully

connected neural networks include fully connected layers, activation layers,

dropout layers, and batch normalization (BN) layers. The definitions, motiva-

tions, trainable parameters, and usage of these layers are introduced below.

x denotes the one-dimensional input feature vector. Each element x of x is

called a neuron.

• Fully connected layer: With the simple form f (x) = Wx + b, a fully

connected layer applies an affine transform to the input x, where the

weight matrix W and bias vector b are parameters learned from training

data. When the output f (x) used for classification is a scalar, this single
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fully connected layer works just as a linear classifier support vector

machine (SVM). When multiple fully connected layers are sequentially

connected and applied on input x, it is still a linear mapping.

• Activation layer: To perform a nonlinear mapping, a nonlinearity must

be introduced into the network; this is usually achieved by adding

an activation layer after the fully connected layer. A brief explana-

tion on how activation layers bring in the nonlinearity is introduced in

Section 2.1.2. Popular activation layers include the sigmoid function

f (x) = 1 + 1/(1 + ex) and the ReLU function f (x) = max(0, x) [48].

They are applied to the feature vector x element-wise. Most activation

layers, except for some more recent ones such as PReLU [49], do not

contain trainable parameters.

• Dropout layer: Dropout [50] is a form of regularization which can re-

duce over-fitting. Fully connected networks usually contain a large

number of neurons, which causes the problem of overfitting. Dropout

randomly zero-outs some proportion of the neurons during training; i.e.,

for input x, a mask vector with the same size as x is Bernoulli-sampled

and multiplied by x element-wise.

Dropout is applied in order to prevent the network from depending

on a sparse collection of powerful neurons, and therefore forces the

learned features to be more representative and robust. The disadvantage

is that it increases training time. Dropout should be turned off when

making predictions, unless it is used to estimate uncertainty. It does

not contain trainable parameters, but instead requires a manually-set
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dropout rate. The probability of retaining a unit is recommended to be

between 0.4–0.8 [50].

• Batch normalization (BN) layer: When training a network, the training

dataset is usually split into small mini-batches and an update of the

trainable parameters is performed for each batch. The number of training

samples in one batch is called the batch size. When the batch size is

larger than one, adding a BN layer [51] between a fully connected layer

and an activation layer helps the network to converge faster during

training. It computes the mean and variance of inputs x, and shifts and

scales x to zero-mean and unit variance over mini-batches. We denote

the resultant batch normalized inputs using the vector x̂. x̂ is then scaled

and shifted based on two trainable parameters γ and β. The output of a

learnt BN layer is y = γx̂ + β.

When using a BN layer, one thing we would like to note is that the

training and inference modes behave differently in deep learning tools

like Tensorflow and PyTorch. By default, during training the mean and

variance is computed based on each mini-batch, while during inference

they are computed using the tracked mean and variance computed on

the whole training dataset. In the inference mode, if specified by the user,

this default setting can be changed to computing on each mini-batch.

It has been proved that the success of BN has little to do with reducing

the so-called "internal covariate shift", though it was the original moti-

vation of BN [51]. Instead, BN "improves smoothness of optimization

landscape", which "induces a more predictive and stable behavior of
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the gradients", allowing for larger learning rates and faster training [52].

Specifically, it was demonstrated that the Lipschitz constants1 of both

the loss and gradients (also known as β-smoothness [53]) are reduced.

The original BN paper [51] claims that BN reduces the need for dropout,

yet many people still use dropout with BN. Some scholars proposed and

proved that dropout should be put after BN layers to avoid variance

shift [54].

2.1.2 Nonlinearity and Piecewise Linearity

Consider a trained network that only contains a fully connected layer with

trained weights W =

⎡⎢⎢⎢⎣
wT

1
wT

2
...

wT
N

⎤⎥⎥⎥⎦ and bias b =

⎡⎢⎢⎢⎣
b1
b2
...

bN

⎤⎥⎥⎥⎦ followed by a ReLU activa-

tion layer. A fully connected layer is linear and ReLU is piecewise linear, so

the composition of them is piecewise linear. To understand how the pieces are

divided, let us go into detail.

For an input feature vector x1 = [x1
1, x1

2, ..., x1
M]T, the output of fully con-

nected layer is y1 = [y1
1, y1

2, ..., y1
N]

T. The affine transform in a fully connected

layer can be written as:

y1 = Wx1 + b =

⎡⎢⎢⎢⎣
wT

1
wT

2
...

wT
N

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1
1

x1
2
...

x1
M

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
b1
b2
...

bN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
y1

1
y1

2
...

y1
N

⎤⎥⎥⎥⎦ . (2.1)

After the affine transform, the result y1 is sent to a ReLU layer. If the neuron

1Function f is β-Lipschitz if | f (x1) − f (x2)| ≤ β|x1 − x2|, for all x1 and x2. Lipschitz
constant of function f is the upper bound of β.
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y1
2 satisfies y1

2 < 0, then the combination of fully connected layer and ReLU

can be written as:

ReLU(Wx1 + b) = ReLU(

⎡⎢⎢⎢⎣
y1

1
y2

1
...

y1
N

⎤⎥⎥⎥⎦) =
⎡⎢⎢⎢⎣

y1
1

0
...

y1
N

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
wT

1
0
...

wT
N

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1
1

x1
2
...

x1
M

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
b1
0
...

bN

⎤⎥⎥⎥⎦ . (2.2)

Let W1 =

⎡⎢⎢⎢⎣
wT

1
0
...

wT
N

⎤⎥⎥⎥⎦ and b1 =

⎡⎢⎢⎢⎣
b1
0
...

bN

⎤⎥⎥⎥⎦. Then for x = x1,

ReLU(Wx + b) = W1x + b1. (2.3)

Since both ReLU and Wx + b are Lipschitz continuous, ReLU(Wx + b) is also

Lipschitz continuous. For x = x1, there exist a neighbor U1 where x1 ∈ U1,

such that ∀x ∈ U1, and Equation 2.3 holds true.

If we generalize this argument to x ∈ RM, we see that RM can be divided

into K convex polytopes {Uk|k = 1, 2, ..., K}, such that

∀x ∈ Uk, ReLU(Wx + b) = Wkx + bk, (2.4)

with Wk being W with some rows zeroed out, and bk being b with the same

rows zeroed out. For each k, Wkx + bk is an affine transform. Therefore, the

network ReLU(Wx + b) is piecewise linear.

More generally, fully connected networks with piecewise linear activa-

tions [55] subdivide the input space into convex polytopes. Each convex

polytope represents a different linear function [56, 57]. Figure 2.1 shows an

example of subdivided input space for a three-layer ReLU activated deep
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Figure 2.1: An example of subdivided input space for a three layer deep network.
Each polytope representing a different linear function. [57]

network.

The input x and the corresponding input space for deep network is usually

high-dimensional. When we train a deep network, we train both space sub-

division and the linear function within each convex polytope. This explains

some observations about deep networks. For example,

• Overfitting: Overfitting is a phenomenon in which the model performs

well on training data but much worse on new test data. When a network

is very deep, the input space is divided into very fine polytopes. This

makes the deep network behave more like nearest neighbor searching.

In this case, if the training data is not enough or not representative, the

network will suffer from overfitting.

• Adversarial attacks: Recent studies show that deep networks can be

vulnerable to subtle perturbations of the inputs [58], which are known

as adversarial attacks. Sometimes the perturbations of images can be

too small to be observable to human eyes, yet they can lead the trained
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model to predict incorrect outputs.

Considering high-dimensional input data, the high-dimensional spaces

are so large that most of the training data x are often concentrated in

a very small region known as the manifold. The perturbation for an

adversarial attack may be small, but such a perturbation could make

the adversarial data leave this manifold. In such cases, the accuracy of

prediction is not guaranteed.

• Data augmentation: Data augmentation adds random perturbations

into the training data. Using this approach, the training data defines a

broader manifold, and can make the network more robust to perturba-

tions in the data.

2.2 Basics of Convolutional Neural Networks

Fully connected neural networks require the input and output to be 1D vectors,

which do not scale well to 2D and 3D images. If the inputs and outputs are

256 × 256 images, fully connected neural networks will first flatten them into

65536 × 1 vectors. The trainable weight matrix W for a single layer that gives

an 65536 × 1 output will have 65536 × 65536 ≈ 4 billion trainable parameters.

A convolutional neural network (CNN) greatly reduces the size of trainable

parameters, taking advantage of the fact that the inputs are images rather than

vectors.

Basic layers used in CNNs include convolutional layers, activation layers,
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dropout layers, BN layers, pooling layers, and upsampling layers. The activa-

tion layer has the same definition as in fully connected neural networks. For

other layers, the definition, motivation, trainable parameters, and usage are

introduced below. Apart from basic dropout and BN layers, we also include

some more recent dropout and normalization layers. The input and output of

these layers are 2D or 3D images, or feature maps, which can have multiple

channels.

• Convolutional layer: A convolutional layer consists of a set of learnable

filters. The size K1 × K2 of each filter is small, usually 3 × 3 or 5 × 5.

These filters are used to filter the inputs and generate feature maps2.

Let us first consider the simple case when input images have the size

M × N with one channel and the output also has size M × N but with

Cout channels3. There are in total Cout trainable K1 × K2 filters. For

each output channel, the result is the input image filtered by a K1 × K2

filter plus a trainable bias. There are only (K1 × K2 + 1)× Cout trainable

parameters for this convolutional layer—many fewer parameters than a

fully connected layer which has (M × N + 1)× M × N × Cout trainable

parameters.

For a more general case when inputs have Cin channels and outputs have

Cout channels, there are in total Cin × Cout trainable K1 × K2 filters. In a
2Convolutional layer has the name ’convolution’, yet the outputs are correlation rather

than convolution results between input images and the filters. Correlation and convolution
are essentially the same if we flip the filters.

3The image size of inputs and outputs are the same, which indicates that some padding is
required. Like convolution in standard image processing, the correlation operation that is
used in a convolutional layer needs padding if we want the output and input images to have
the same size. The default padding for most deep network tools like Keras, Tensorflow, and
PyTorch is zero padding.
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CNN, this is usually referred to as Cout trainable K1 × K2 × Cin filters.

For each output channel, there are Cin K1 × K2 filters applied to Cin

M × N images and result in Cin M × N feature maps. These Cin feature

maps as well as a trainable bias are added together to form this output

channel. This summation operation produces higher level features as

the combination of lower level features. For example, summation of

edge maps from different orientations can give corner feature maps.

The summation of corner feature maps can give more complex shapes.

There are only (K1 × K2 × Cin + 1)× Cout trainable parameters for this

convolutional layer, many fewer than a fully connected layer, which has

(M × N × Cin + 1)× M × N × Cout trainable parameters.

A convolutional layer is a sparse form of fully connected layer. Suppose

the filter K is 2 × 2, and the 3 × 3 input image X can be flattened to be a

9 × 1 vector. The valid correlation of K and X is:

K ∗ X =

[︃
k11 k12
k21 k22

]︃
∗

⎡⎣x11 x12 x13
x21 x22 x23
x31 x32 x33

⎤⎦ = (2.5)

[︃
k11x11 + k12x12 + k21x21 + k22x22 k11x12 + k12x13 + k21x22 + k22x23
k11x21 + k12x22 + k21x31 + k22x32 k11x22 + k12x23 + k21x32 + k22x33

]︃
(2.6)
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Its flatten version is equivalent to:

⎡⎢⎢⎣
k11 k12 0 k21 k22 0 0 0 0
0 k11 k12 0 k21 k22 0 0 0
0 0 0 k11 k12 0 k21 k22 0
0 0 0 0 k11 k12 0 k21 k22

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11
x12
x13
x21
x22
x23
x31
x32
x33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.7)

which is a sparse fully connected layer with repeated weight coefficients.

• Dropout layer: In Srivastava et al. [50], exhaustive experimental results

show that dropout gives less improvement in CNNs as compared to

fully connected networks. However, "the additional gain in performance

obtained by adding dropout in the convolutional layers ((loss reduced

from) 3.02% to 2.55%) is worth noting." The detailed operation of dropout

in a CNN is spatial. For each input, a mask matrix with the same

size as input is Bernoulli-sampled and multiplied by the input pixel-

wise/voxel-wise. This dropout mechanism has the drawback that it

does not consider the fact that the pixels/voxels in feature maps are

spatially correlated. Therefore, although there is dropout, information

can still flow through convolutional networks [59]. More recent research

such as SpatialDropout [60] and DropBlock [59] design more structured

dropout mechanisms and claim improvment in performance compared

with traditional dropout.
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• Batch normalization (BN) layer and other normalization layers: Sup-

pose the size of the input image/feature map X of a Batch normaliza-

tion (BN) layer is B × M × N × Cin, with B being the batch size. BN in

CNNs computes the mean and variance for each channel resulting in Cin

mean and variance values, each computed over B × M × N values [51].

It then shifts and scales each channel of X to zero-mean and unit vari-

ance, resulting in normalized inputs X̂. Then a trainable affine transform

is applied on each channel of X̂. In total, there are Cin scale and Cin bias

parameters to train in a BN layer.

BN has been widely used in CNNs. However, as the network size and

data size increases, GPU memory requirements become too large. In

such cases, researchers have to reduce batch size B, and for some 3D

CNNs, batch size B can be as small as 1. When B is small, BN becomes

less effective. Recently, researchers have proposed other normalization

methods. For example, Layer normalization [61] computes the mean

and variance for each batch, resulting in B mean and variance values,

each computed over M × N × Cin values. Instance normalization [62]

computes the mean and variance for each channel and batch, resulting

in B×Cin mean and variance values, each computed over M × N values.

Group normalization [63] requires a manually-set group number G and

segments Cin channels into G groups. It computes the mean and variance

for each group, resulting in B × G mean and variance values, each

computed over M × N × Cin/G values. These normalization methods

can be used when B is small.
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• Pooling layer: A pooling layer is essentially a downsampling layer. It

reduces the spatial size of the feature maps to let the network learn

both higher resolution and lower resolution information. There are no

trainable parameters in pooling layers. Commonly used pooling layers

include max pooling and average pooling. For object detection, region

of interest (ROI) pooling [64] is used to extract a feature vector of fixed

size from a ROI of arbitrary size.

• Upsampling layer: As they are the opposite operation to that of pooling,

upsampling layers are also widely used. The very basic upsampling

layer uses nearest neighbor upsampling, which is the default setting for

deep learning tools such as Keras, Tensorflow, and PyTorch. Linear up-

sampling is also available for these tools. In additional to these two basic

upsampling methods, researchers have developed learnable upsampling

layers. For example, Shi et al. [65] developed subpixel upsampling, also

called pixel shuffling. In order to perform r1 × r2 2D upsampling on a

feature map with size M × N, they first used convolutional layers to

generate r1 × r2 feature maps with size M × N, and then rearranged

these feature maps into a single feature map with size r1M × r2N.

With these layers, researchers have designed numerous of CNN architec-

tures. In the next section, we introduce two types of CNN architectures that

are used in this dissertation: U-net and ResNet.
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2.3 CNNs used in this thesis: U-net and ResNet

2.3.1 U-net

U-nets [67] mimic the mechanism of image pyramids [68, 69], which are

multiresolution image representations. The construction of image pyramids

includes two inverse operations: downsampling and upsampling, usually

by a factor of 2. Using image pyramids, one can decompose images into

information at multiple resolution levels and extract features at multiple

resolution levels. The same basic ideas underlie jpeg encoding and many

other applications, including the U-net.

The U-net [67] has been one of the most popular CNN architectures in med-

ical imaging. It stems from the first fully convolutional network (FCN) [66].

Figure 2.2: FCN architecture [66]. The main contribution of the FCN is that previous
CNN architectures use fully connected layer as the final layer to do segmentation.
The FCN replaces it with a convolution layer which can make per-pixel prediction
more efficient.
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In the early CNN architectures, the last layer before activation is fully con-

nected layer. An FCN is a normal CNN, where the last fully connected layer

is substituted by another convolution layer. The first FCN [66] consisted of N

pooling layers to extract global information and only one upsampling layer at

the end to restore high-resolution information. The architecture of this FCN is

shown in Figure 2.2.

The FCN outperforms previous networks for segmentation tasks. However,

only one upsampling layer at the end is not able to restore localized high-

resolution information precisely. The U-net instead consists of N pooling

layers in the encoder (the left part of Figure 2.3) but also N upsampling

layers in the decoder (the right part of Figure 2.3) to restore high-resolution

details gradually. Its architecture is shown in Figure 2.3. Each step in the

encoder contains two 3 × 3 convolutional layers, activated by a rectified linear

unit (ReLU), and a 2 × 2 max pooling operation for downsampling. In the

decoder, each step contains a 2 × 2 upsampling layer followed by a 3 × 3

convolutional layer and a 3 × 3 convolutional layer. The two convolutional

layers are activated by ReLU. And the final layer is a 1 × 1 convolutional

layer. Another main contribution of the U-net is that it adds N symmetric

skip connections from encoder to decoder. Skip connections copy the feature

maps in the encoder and concatenate them with the feature maps in the

decoder. Adding skip connections can provide more precise high-resolution

information to the decoder.

The U-net was originally developed for 2D medical image segmentation

in 2015 [67]. Its 3D versions were published in 2016 [70]. Also its ResNet
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Figure 2.3: U-net architecture [67]. Each blue box corresponds to a multi-channel
feature map. The number of channels is denoted on top of the box. The x-y-size is
provided at the lower left edge of the box. White boxes represent copied feature maps.
The arrows denote the different operations as described in the legend.

variant which replaced convolutional layers with ResNet units (described

below) has been widely used [71]. 2D and 3D U-nets have been used in many

applications such as segmentation, object detection, classification, registration,

image construction/enhancement, image synthesis, etc. [72, 73].

2.3.2 ResNet

The deep residual network (ResNet) was published by He et al. [74] in order

to solve the problem of vanishing/exploding gradients during training. It has

a simple form, as shown in Figure 2.4a. It adds a shortcut connection to the

output of the trainable layer.

It has been shown by Veil et al. [76] that the success of ResNet is because
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(a) ResNet unit [74]. (b) EDSR architecture [75]: The ResBlock is a
variant of ResNet unit, in which the green block
named ‘Mult’ means multiply by a fixed scale
factor 0.1. The Upsample block is subpixel up-
sampling [65].

Figure 2.4: ResNet unit and EDSR architecture which was developed using
ResNet unit

Figure 2.5: Unraveled view of ResNet [76]. Circular nodes represent additions. From
this view, it is apparent that residual networks have O(2n) implicit paths connecting
input and output and that adding a block doubles the number of paths.

it behaves like ensembles of relatively shallow networks. Their unraveled

view of ResNet is shown in Figure 2.5. Their experiments showed that a

ResNet “can be viewed as a collection of many paths, instead of a single ultra

deep network”. And the gradients during training mainly come from short

paths [76, 77]. According to their exploration, boosting is the underlying
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theoretical way that ResNet improves deep network performance.

2.3.3 Summary

U-net and ResNet have been very popular networks. But they are used in this

dissertation not only because they are popular. The reason of using these two

networks are described below.

In Chapter 3, the network architecture we used for CT-to-MR synthesis is

a modified U-net. As the mapping between two medical image modalities is

dependent on anatomical structures, it makes intuitive sense that any CNN

synthesis model designed for medical image modality synthesis should incor-

porate the ideas of segmentation. Therefore, we have selected the U-net [67] as

the basis of our synthesis network; it can achieve state-of-the-art performance

for segmentation and preserve high-resolution information by the symmetric

skip connections from downsampling blocks to upsampling blocks. Its multi-

resolution structure can provide both global and local context information,

which is especially helpful for image synthesis.

In Chapters 4–6, we describe our self-supervised super-resolution algo-

rithms, which use a network with the ResNet architecture. The boosting mech-

anism of ResNet makes it naturally suitable for super-resolution. Many suc-

cessful super-resolution CNN architectures are ResNets, including VDSR [78],

DRRN [79], SRResNet [80], EDSR [75], RCAN [81], and WDSR [82].

The network we used for self-supervised super-resolution in this work

is based on the widely used super-resolution network EDSR [75], shown in

Figure 2.4b. The EDSR architecture includes convolutional layers, several
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ResBlocks, and an Upsample block. The Upsample block is the subpixel

upsampling [65] introduced in Sec. 2.2. The ResBlock includes convolutional

layers and ReLU activation. The green block named ‘Mult’ means multiply by

a fixed scale factor 0.1.

In summary, this chapter introduced the background on CNNs that are

used in the following chapters. In the next chapter, we introduce the first

contribution of this dissertation: CT-to-MRI synthesis.
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Chapter 3

CT-to-MR synthesis and whole
brain segmentation on CT images

3.1 Introduction

In the past few years, the development of CNNs has improved the capability of

image synthesis (cf. [83]). Unlike medical image synthesis for other modalities,

CT-to-MR synthesis has not been explored much before the development of

CNNs, since the mapping is highly nonlinear. Cao et al. [23] claimed that

robust and accurate synthesis of MR from CT using a CNN is not feasible.

However, in this chapter, we explore the possibility of CT-to-MR synthesis

and demonstrate how it improves brain segmentation on CT images.

Gray matter (GM)/white matter (WM) segmentation and labeling on head

images is an important research topic in neuroimaging. This research topic has

been well studied and several excellent approaches exist, almost exclusively

for MR images (cf. [84, 85, 86, 87]). If MR images were always available, then

they could always be used for this purpose. Unfortunately, there are many sce-

narios in which only CT images are available, e.g., emergency situations, lack
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of an MR scanner, patient implants or claustrophobia, and cost of obtaining

an MR scan.

CT imaging of the head has many clinical and scientific uses including vi-

sualization and assessment of head injuries, intracranial bleeding, aneurysms,

tumors, headaches, and dizziness as well as for use in surgical planning. Yet

due to the poor soft tissue contrast in CT images, there has been very limited

work on GM/WM segmentation from CT [88, 89, 90, 91, 92].

CT is easier to obtain compared with MRI. Yet to perform GM/WM seg-

mentation, MRI has better soft tissue contrast and therefore has many existing

automatic algorithms developed for it. It is natural to wonder whether we can

combine the advantages of CT and MRI by synthesizing pseudo MR images

from acquired CT images, and applying an existing automatic segmentation

and labeling method on the pseudo MR images. Although Cao et al. [23] has a

pessimistic conclusion about CNN-based CT-to-MR synthesis, we believe that

because CNNs are resilient to intensity variations [93] and they can model

highly nonlinear mappings, they are ideal for CT-to-MR synthesis. In fact, we

demonstrate in this chapter that such synthesis is indeed possible and that

whole brain segmentation and labeling from these synthetic images is very

effective.

3.2 Methods and Data

Training and testing data. Twenty six patients had (T1-w) MR images ac-

quired using a Siemens Magnetom Espree 1.5 T scanner (Siemens Medical So-

lutions, Malvern, PA) with geometric distortions corrected within the Siemens
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Syngo console workstation. The MR images were processed with N4 [94] to

remove any bias field and subsequently had their intensity scales adjusted

to align their WM peaks. Contemporaneous CT images were obtained on a

Philips Brilliance Big Bore scanner (Philips Medical Systems, Netherlands)

under a routine clinical protocol for brain cancer patients treated with either

stereotactic-body radiation therapy (SBRT) or radiosurgery (SRS). The CT

images were resampled to have the same digital resolution as the MR images,

which is 0.7 × 0.7 × 1 mm. Then the MR images were rigidly registered to the

CT images.

We used ten patient image pairs as training data for our CNN (see below).

Each 3D MRI volume contains hundreds of 2D slices. Ten training image pairs

contains thousands of 2D training pairs. From the axial slices in the image

domain, 128 × 128 paired (CT and MR) image patches are randomly cropped

and extracted. These patch pairs were used to train a network based on a

modified U-net [67] to synthesize MR patches from CT patches. The synthetic

MR patches were then used to construct an axial slice of the synthetic MR

image. Our network, with 128 x 128 CT patches as input and 128 x 128

synthetic MR patches as output, is shown in Figure 3.1.

Modified U-net for CT-to-MR synthesis. We have selected the U-net [67] as

the basis of our synthesis network, and we made the following modifications

to it for the synthesis task.

Modification 1: The standard U-net decoder has two 3 × 3 layers, whereas

we use one with a 5 × 5 layer and a 3 × 3 layer. We do this because the

upsampling layer uses nearest neighbor sampling. Thus, a 3 × 3 layer in the
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Figure 3.1: Four differences from the standard U-net: (1) The U-net decoder has
two 3 × 3 layers, whereas we use one 5 × 5 layer and one 3 × 3 layer. (2) We exchange
the order of the first convolutional layer and the merging layer in the decoder so that
both are convolved twice. (3) When reconstructing a slice we use only the central
90 × 90 region of the image patches. (4) We merge the original CT patches before the
last convolutional layer. Also, the original U-net used softmax to activate the last
layer for segmentation while we use ReLU for regression.
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encoder can involve its eight connected neighbors, whereas a 3 × 3 layer after

an upsampling layer only includes three-connected neighbors. By replacing

this with a 5× 5 layer, we can still involve all eight connected neighbors. There

is a slight increase in the number of parameters to estimate, but the result has

better accuracy.

Modification 2: CNN vision tasks benefit from increasing model depth;

however, deeper models can have vanishing or exploding gradients [74]. In

the original U-net, the decoder contains an upsampling layer, a convolutional

layer, a layer merging it with high resolution representations, and another

two convolutional layers. Thus, the upsampled layer is convolved three

times while the high resolution representation is convolved only twice. The

upsampled layer is convolved one more time in the original U-net because

of the issue we discussed in the first modification. We exchange the order

of the first convolutional layer and the merging layer and let them both be

convolved twice. With this change, our network can still model nonlinearities

without introducing additional obstacles for back-propagation.

Modification 3: Every convolution loses border pixels; thus, the border of

the predicted patch may not be as reliable as the center. The standard U-net

crops each patch after each convolutional layer so that the predicted patch is

smaller than the input patch. Our network keeps the boundary pixels instead

of cropping them. However, when reconstructing a slice we use only the

central 90 × 90 region of the image patches (except at the boundaries of the

image, where we retain the side of the patch that touches the boundary).

Modification 4: CT numbers have a physical meaning. In order to include
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this information, we merge the original CT patches before the last convolu-

tional layer. Also, the standard U-net used a softmax operation to activate the

last layer for segmentation, we use ReLU activation to better enable regression.

Automatic Whole-brain Segmentation and Labeling We use MALP-EM [85]

to provide whole-brain segmentation and labeling from the synthetic MR

images. Since the synthetic MR images are naturally registered with the CT

images, the result is a segmentation and labeling of the CT images. MALP-EM

uses an atlas cohort of 30 subjects having both MR images and labels from

the OASIS database [95]. These atlases are deformably registered to the target

and the labels are combined using joint label fusion (JLF) [84]. Finally, these

labels are adjusted using an intensity based EM method to provide additional

robustness to pathology, especially traumatic brain injury. We used the MALP-

EM [85] code that has been made freely available by the original authors of

the method.

3.3 Experiments and Results

Image Synthesis. Our network was trained on 45,575 128 × 128 image patch

pairs derived from ten of the co-registered MR and CT images. It took two

days to train and 1 min to synthesize one MR image from the input CT on an

NVIDIA GPU GTX1070SC. Figs. 3.2(a)–(c) show an example input CT image,

the resulting synthetic T1-w, and the ground truth T1-w. Figure 3.2(d) shows

the dynamic range of Figure 3.2(a).

Experiment 1: MALP-EM segmentation We applied MALP-EM on both syn-

thetic and ground truth T1-w images. Figure 3.2(e) shows the segmentation
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: For one subject, we show the (a) input CT image, the (b) output synthetic
T1-w, and the (c) ground truth T1-w image. (d) is the dynamic range of (a). Shown in
(e) and (f) are the MALP-EM segmentations of the synthetic and ground truth T1-w
images, respectively.

result from the synthetic T1-w in Figure 3.2(b), while Figure 3.2(f) shows

the result from the ground truth T1-w in Figure 3.2(c). There are differences

between the two results, but this is the first result showing such a detailed

labeling of CT brain images.

We used Dice coefficients to evaluate segmentation quantitatively. Dice

coefficient is defined as DICE = 2|X ∩ Y|/(|X|+ |Y|), with X and Y being

two binary segmentation masks. We computed Dice coefficients between

segmentation results obtained using synthetic T1-w and those obtained using

the true T1-w. Table 3.1 shows mean Dice coefficients for a few small brain
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structures. After merging the labels, box plots of the Dice coefficients for

four labels: non-cortical GM, cortical GM, ventricles, and WM, are shown in

Figure 3.3 (yellow graphics).

Dice Hippocampus Precentral gyrus Postcentral gyrus Caudate
Right 0.62 0.52 0.51 0.70
Left 0.59 0.55 0.52 0.73

Table 3.1: Mean Dice coefficients for a few brain structures.

Figure 3.3: With MALP-EM processing of the ground truth T1-w as the reference, we
computed the Dice coefficient between multi-atlas segmentations using either the
subject CT images with MV label fusion (red), or synthetic T1-w with MV (green) or
JLF (blue), as the label fusion, and MALP-EM (yellow). Note that MALP-EM (yellow)
uses the OASIS atlas with manually delineated labels, while the other three use the
remaining 15 images with MALP-EM computed labels from the true T1-w images as
atlases.

Experiment 2: Comparison to direct multi-atlas segmentation. To demon-

strate the benefits of our approach, we carried out a set of algorithm compar-

isons. Ideally, we would like to evaluate how well our CT images could be

labeled directly from the OASIS atlases; but there are no CT data associated

with OASIS. Instead, we used 16 subjects (which do not overlap the 10 subjects

used to train our network) in a set of leave-one-out experiments and used the
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MALP-EM labels as being “ground truth”. For each of the 16 subjects, we used

the remaining 15 (having T1-w and MALP-EM labels) as atlases. To mimic the

desired experiment, we first carried out multi-modal registration from each of

the 15 T1-w atlases to the target CT using the mutual information (MI) as the

registration cost metric. Because this is a multi-modal registration task, JLF,

which uses intensity similarity to compute weights, is not suitable to combine

labels. So we used majority voting (MV) [96] instead. We next computed a

synthetic T1-w image from the target CT image and registered each atlas to

this target using the mean squared error (MSE) as the registration metric. To

provide a richer comparison, we combined these 15 labels using both MV and

JLF.

Given these three leave-one-out results, we computed Dice coefficients on

four labels: non-cortical GM, cortical GM, ventricles, and WM. The results are

shown in Figure 3.3 (using the red, green, and blue boxplots). We evaluated

the significance of the improvement using the p-value of two-sided paired

Sign Test on the 16 test subjects using the Matlab function signtest. The

null hypothesis is that the median of the differences of the paired samples is

zero. We found that there is a statistically significant differenec in median Dice

difference between paired samples when using the synthetic T1-w images than

the original CT images, and this was true using either MV or JLF (p < 0.001).

We also found that JLF resulted in a significantly higher median Dice difference

than MV in the case of cortical GM, ventricle, and WM (p < 0.01). The median

performance of MV was not found to be different with JLF for noncortical GM

with the synthetic T1-w (p > 0.01).
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3.4 Discussion and Conclusion

We have described a CNN-based CT-to-MR synthesis algorithm, and used

the synthetic MR images to improve the performance of whole brain segmen-

tation. The synthetic images that we achieved with the deep network are

quite good visually as demonstrated by the single (typical) example shown in

Figure 3.2(b), which is visually much better than those shown in Cao et al. [23]

(their Figure 7). This speaks very well to the potential of the network archi-

tecture for estimating synthetic cross-modality images. Besides whole-brain

segmentation and labeling, there are a host of other potential applications for

synthetic MR images.

A limitation of our evaluation is our lack of manual brain labels in a CT

dataset, as it would be interesting to compare our approach with a top multi-

atlas segmentation algorithm that would use only CT data. The fact that

our method appears to perform worse than the straight multi-atlas results

in Figure 3.3 is because the MALP-EM result is using manually delineated

OASIS labels to estimate automatically generated MALP-EM labels, whereas

the other two approaches are estimating MALP-EM labels from MALP-EM

atlases. In the future, a more thorough evaluation including a quantitative

comparison with Cao et al. [23] is warranted.

Past research using contrast-enhanced 4D CT brain segmentation achieves

slightly higher mean Dice than ours, with 0.81 and 0.79 for WM and GM [88],

compared to our result as 0.77 and 0.76, respectively. However, because their

data was 4D CT, their combined 3D image probably has lower noise than

ours and also enables them to use temporal features, which we do not have.
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Furthermore, theirs was a contrast CT study while ours is a non-contrast

study.

In this chapter, we have used a modified U-net to synthesize T1-w images

from CT, and then directly segmented the synthetic T1-w using either MALP-

EM or a multi-atlas label fusion scheme. Our results show that using synthetic

MR can significantly improve the segmentation over using the CT image

directly. This is the first work to provide GM anatomical labels on a CT

neuroimage. Also, despite previous assertions that CT-to-MR synthesis is

impossible from CNNs, we show that it is not only possible but it can be done

with sufficient quality to open up new clinical and scientific opportunities in

neuroimaging.
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Chapter 4

SMORE: Synthetic
Multi-Orientation Resolution
Enhancement

4.1 Introduction

Exploring modality synthesis is one contribution of this thesis. Another

important area that we explore is image spatial resolution. In this chapter,

we discuss how to improve through-plane resolution for a common type of

MR acquisition that has high in-plane resolution and lower through-plane

resolution.

Before we provide background about resolution enhancement in MR im-

ages, we answer the question: why is this type of MR acquisition common?

Although hardware and software improvements have led to significant im-

provements in MRI resolution over the years [97], further efforts to improve

resolution inevitably involve tradeoffs with signal-to-noise ratio (SNR) and

acquisition time. Generally, to achieve very high resolution (HR) MRI with

adequate SNR, the acquisition time must be very long, which costs money,
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lowers patient throughput, and can lead to both patient discomfort and mo-

tion artifacts. As a consequence of this tradeoff, it is quite common in both

clinical and research practice to acquire MR images with high in-plane resolu-

tion and lower through-plane resolution. The resulting elongated voxels have

sufficient tissue volume to yield adequate SNR while providing one HR view

with acceptable diagnostic quality.

To improve spatial resolution, many learning-based SR algorithms have

been reported for MRI, including sparse coding [98], random forests [99], and

convolutional neural networks (CNNs) [100, 101]. However, self-supervised

super-resolution (SSR) is more desirable since it avoids the requirement of

external training data. Here, we focus on MR acquisitions that have elongated

voxels, which makes an important class of SSR algorithms possible. In 2016,

Jog et al. [102] developed an SSR framework (which we call JogSSR) that

extracts training patches from the LR MRI and blurred LR2 images, trains an

anchored neighborhood regression [103], and then applies the trained regres-

sor to LR2 images in different directions. The resultant images are LR, but have

low resolution in different directions. Thus, each of them contributes high

frequency information to a different region of Fourier space. This framework

is then analogous to the multi-image SR methods [31, 32, 33, 34] but does not

require actual acquisition of the additional LR images or registration. Finally,

these images are combined through Fourier burst accumulation (FBA) [104] to

obtain an HR image. Taking the basic idea of JogSSR which extracts training

patches from the LR MRI itself, the more recent CNNs further improve the

SSR results [105, 43, 44, 45, 46].
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To apply SSR on this type of MR image, the mechanism of blurring which

creates LR images from HR in-plane slices should agree with the actual acqui-

sition model in the through-plane direction. This requires us to understand

the acquisition model for MRI. MRI acquisition protocols can be divided into

two broad categories that are both commonly used in clinical and research

scanning:

• 3D protocols acquire MR data in 3D k-space, i.e. the image signals

are acquired in 3D Fourier domain. The three spatial resolutions are

proportional to the inverses of the frequencies covered in 3D k-space as

determined by two phase encoding directions and one read-out direction.

We refer such MRI as 3D MRI.

• 2D protocols acquire MR data in 2D k-space after slice selection, and

then form 3D volumes by stacking the 2D images in their through-plane

direction. The in-plane resolutions are proportional to the inverses of

the phase encode and read-out frequency ranges while the through-

plane resolution is given by the full-width-half-max (FWHM) of the slice

profile—i.e., the slice thickness. We refer such MRI as 2D MRI.

There is a visual difference between MR images from these two type of acqui-

sitions, described as below.

• In 2D MRI, with inadequate slice separation (also called slice increment),

which is equivalent to undersampling in through-plane axis of image

domain, there is nearly always spatial aliasing. Spatial aliasing appears

as moiré patterns in image domain and overlapped high-frequency
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contents in k-space.

• In 3D MRI, there is no such spatial aliasing, since there is no overlap-

ping of high-frequency contents in k-space. 3D MRI may suffer from

another type of aliasing, which results from undersampling in k-space

and appears as wrap-around artifacts in the image domain, but we do

not consider this type of aliasing in this chapter.

With this understanding of MRI acquisition protocols, in this chapter

we describe an SSR method SMORE, which is the first SSR method that

distinguishes MRI 2D and 3D protocols and performs anti-aliasing on 2D

MRI.

4.2 Method

We refer to our basic algorithm as Synthetic Multi-Orientation Resolution

Enhancement (SMORE). The basic idea of SMORE is to train a super-resolution

network on HR x-y plane patches, and then to apply it to LR x-z and y-z plane

slices. In order to make it work,

• we carefully prepare training data to mimic the way in which through-

plane resolution is degraded in actual MRI, which is very different for

2D and 3D protocols;

• we use a ResNet-based network using a small patch size in order to

focus on local structures rather than global structures in the x-y plane.

Because MRI acquired in 2D and 3D protocols are different, the details of
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SMORE(3D) SMORE(2D)

Figure 4.1: Overview of SMORE. A simplified workflow of SMORE for MRI acquired
with 3D protocols and 2D protocols, referred as SMORE(3D) and SMORE(2D).

SMORE are different, and therefore we refer to them as SMORE(2D) and

SMORE(3D), respectively.

Consider an anisotropic input image with spatial resolution (full-width-

half-max or FWHM) of a × a × c where c > a. We denote the resolution ratio

as r = c/a > 1, which needs not be an integer. We model this image as a low

resolution (LR) version of a high resolution (HR) image f (x, y, z), which has

spatial resolution of a × a × a and therefore resolution ratio r = 1. Here x, y,

and z are spatial coordinates and the through-plane direction is defined to be

along the z-axis. Note that the images are digitized, yet we use continuous

notation for simplicity. Fourier space (also known as k-space) has coordinates

u, v, and w corresponding to the x, y, and z spatial coordinates respectively.

The goal of this work is to restore the HR image f (x, y, z) from the acquired

LR anisotropic image without using any external training data.

Fig. 4.1 shows the overview of SMORE for MRI acquired with 3D and 2D

protocols assuming that axial slices are in-plane slices. Next we explain them
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in detail.

4.2.1 Simplified SMORE(3D)

In this section, we describe simplified SMORE(3D), which is provided for

reference as a pseudocode in Algorithm 1. In an anisotropic subject image

with resolution of a × a × c, only the z-axis is LR, while the x-y plane slices are

a × a HR. In SMORE(3D), we first learn a LR to HR mapping using 2D HR x-y

plane slices as training data, then apply the mapping to 2D LR y-z plane or

x-z plane slices and restore HR information. While this description captures

the essence of SMORE(3D), the following text provides the details.

Algorithm 1: SIMPLIFIED SMORE(3D)
Data: LR image with voxel size and spatial resolution of a × a × c,

r = c/a > 1
Result: Estimate f (x, y, z) with target spatial resolution a × a × a

(Step 1) Preprocessing:
In k-space, zero-fill the LR image to make it isotropic with voxel size of

a × a × a. Then apply N4 correction on the image if necessary. This yields
g(x, y, z).

(Step 2) Construct Training Data:
Blur the image in the x-axis: b(x, y, z) := h(x; r) ∗ g(x, y, z);

(Step 3) Train a SSR network:
Randomly extract 2D paired patches from x-y plane slices of
{b(x, y, z), g(x, y, z)};

Feed the patches into a CNN model to train a self-supervised
super-resolution network (SSR).

(Step 4) Apply the SSR network:
Apply trained SSR on the x-z plane: s(z, x) := SSR ◦ g(z, x);
Stack slices s(z, x) to reconstruct s(x, y, z);
f̂ (x, y, z) := s(x, y, z)
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4.2.1.1 (Step 1) Preprocessing

For 3D MRI, the original LR image does not acquire high frequency signals in

the z direction of k-space. We use the traditional way of interpolation for 3D

MR images. We first zero-pad the acquired image in k-space so that its voxels

have digital resolution (voxel size) equal to a × a × a, which is also called sinc

interpolation. If the scan has non-uniform intensities (generally true in MRI)

we apply N4 inhomogeneity correction [94]. The resultant image, which has

a voxel size equal to a × a × a and a physical resolution equal to a × a × c, is

denoted by g(x, y, z) and is used as input in the following steps.

4.2.1.2 (Step 2) Construct Training Data

The idea behind SMORE(3D), like in [102], is that 2D axial slices gz(x, y) of

g(x, y, z) can be thought of as a × a HR slices, which are used to construct

paired LR/HR training data.

The way we construct paired LR data from 2D HR axial slices gz(x, y) is

using an impulse response h(x). We use h(x) to obtain the through-plane

resolution c in the x-direction, i.e., bz(x, y) = h(x) ∗ gz(x, y). Then correspond-

ing image patches from bz and gz can be used to train a regression that will

restore—i.e., super-resolve—gz from bz.

Let us analyze what kind of filter h(x) should be. In 3D MRI, G(u, v, w),

the k-space of the LR image g(x, y, z), has the high frequency region in k-

space filled with zeros. F(u, v, w), the k-space of HR image f (x, y, z), has

high frequency signals acquired. Comparing G(u, v, w) and F(u, v, w), we

can find that G(u, v, w) is simply the multiplication of F(u, v, w) by the rect
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function. Thus, ideally the Fourier transform H(u; r) of h(x) should be a

rect function, i.e., H(u; r) = rect(ru). In practice, however, the acquired

Fourier data is typically multiplied by an anti-ringing window such as a Fermi

filter [106]. Since the parameter of the Fermi filter is usually unknown, we use

a conservative setting (to avoid excessive filtering) as in Bernstein et al. [106],

given by Equation (4.1), where L is the image size in the x direction and r is

the ratio between through-plane and in-plane resolution,

Fermi(u; r) =
1

1 + exp
(︂
|u|−1/2r

10/L

)︂ . (4.1)

Accordingly, we model G(u, v, w) (in the w direction) as the product of a rect,

a Fermi filter, and F(u, v, w). The combination of the rect filter and the Fermi

filter is

H(u; r) = rect(ru)Fermi(u; r) , (4.2)

so the blurred image can be expressed as

b(x, y, z) = h(x; r) ∗ g(x, y, z) , (4.3)

where h(x; r) is the inverse Fourier transform of H(u; r).

4.2.1.3 (Step 3) Train a SSR network

We now train a patch-based SSR regression from paired patches selected from

the x-y plane (and any z slice) in the images b(x, y, z) (input) and g(x, y, z)

(output). Note that we are not focused on designing a deep network architec-

ture in this chapter; instead have chosen to use EDSR [75] (Enhanced Deep

Residual Networks for Single Image Super-Resolution), which was evaluated
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as the most accurate method in the NTIRE CVPR 2017 [36] and PIRM ECCV

2018 super-resolution challenges [107]. EDSR is a ResNet-based network that

removes batch normalization and includes residual scaling to improve perfor-

mance. The EDSR architecture does not contain any pooling blocks, which

makes it focus more on local features rather than global features as in the

U-net. This is beneficial as we require the network to enhance edges without

structural specificity and to better preserve pathology. We use mean absolute

error as the loss function. According to [36, 75, 108], optimizing with L1 loss

works better than L2 for super-resolution even when evaluating with L2 loss

like PSNR.

The original EDSR takes a downsampled image as input, and outputs

an upsampled image. We removed the upsampling layer in EDSR since it

only supports an integer ratio r, and made the network output be an image

with the same size as the input image. Another benefit of removing the

upsampling layer (from the original EDSR) is that the trained network can

be used as a pre-trained network for an image from a new dataset. Other

than this change, EDSR is used without change; we note that a different

super-resolution network could be used instead if desired.

There is no external training data needed for training. However, we found

that starting from a pre-trained network can accelerate training even when it

was trained with images derived from a different dataset. In addition, each

time we experiment with SMORE on a new dataset, a pre-trained network can

be used as the initial network and then trained with the new data to improve

its performance. In these evaluations, we trained the network from scratch on
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the first subject image from Experiment 4.3.1 and then used this network as

the pre-trained network for all subsequent experiments.

Since the anatomies of in-plane slices and through-plane slices are different,

there is a concern that the features learned from the in-plane slices might not

be appropriate for the through-plane slices. To solve this issue, we train the

network with relatively small patches (32 × 32), which forces the network to

learn to enhance edges without seeing the corresponding anatomies. Thus, the

learnt features are not related to large anatomical features. It is our observation

that such small patches restrict the effective receptive field [109], enhance

edges without structural specificity, and better preserve pathology. The largest

resolution ratio r that we studied in these experiments is 6.6667; for a larger

ratio r, larger patches might be necessary.

As for other hyper-parameters, the batch size depends on the GPU and

a larger batch size is almost always better. The optimizer we used is Adam

with a learning rate of 10−4. The way we chose these hyper-parameters is

explained in Sec. 4.2.2.1.

4.2.1.4 (Step 4) Apply the SSR network

The trained EDSR network is applied to g(z, x), the x-z planes of g, which

yields a super-resolved estimate ŝ(z, x). After stacking ŝ(z, x) in the y direction,

we have a super-resolved result f̂ (x, y, z) = s(x, y, z).
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4.2.2 SMORE(3D)

There are two issues to consider with simplified SMORE(3D): there is no vali-

dation data during training to avoid overfitting and there is no self-ensemble

during testing as suggested in [75, 36]. Therefore, we add rotation during

training and testing to simplified SMORE(3D), yielding SMORE(3D), which

for reference is provided as pseudocode in Algorithm 2. Note that the rotation

angle during training and testing are unrelated.

4.2.2.1 Rotation during training

This is a common data augmentation technique in deep learning. CNNs are

not invariant to rotation. Thus, rotating training images effectively enlarges

our training data and provides validation data.

We rotate the image g(x, y, z) about the z-axis by θ and repeat this process

to yield gθ(x, y, z) and a corresponding set of blurred images bθ(x, y, z). In

this evaluation we use seven rotations where θ = nπ/12 for n = 0, . . . , 6,

but this generalizes for any number and arrangement of rotations. The ex-

tracted paired training patches are then randomly flipped as additional data

augmentation.

Part of the training data is used separately as validation data. In particular,

we use training samples obtained from one rotation angle as validation data

and the other six rotation angles as training data. During training, we save

the model with the best validation loss. With this validation data, one can

choose hyper-parameters (such as the learning rate) based on a validation

loss rather than using HR ground truth data, which is not available in a real
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scenario. Note that for self-supervised super-resolution, even with pre-trained

weights, each subject requires extra fine-tuning. The optimal learning rate

may vary from data to data. But it is not practical to choose hyper-parameters

separately for every single image. In the presented experiments, we chose

hyper-parameters including batch size, patch size, and learning rate, based on

one subject—the first subject in Experiment 4.3.1—and then used them for all

subsequent experiments. Empirically the same parameter settings provided

good performance for the datasets in this chapter.

In SMORE, training patches are not extracted using a sliding window.

Instead, for each training batch, we randomly select a rotated training sample

and then randomly crop training patches from it. This gives a larger ran-

domness than cropping training patches from a sliding window. With this

training strategy, the total number of training batches is the main parameter

that controls the training time rather than the number of rotations from data

augmentation. We did not explicitly explore the impact on performance of

this data augmentation strategy, but this is certainly an aspect that could be

explored in future optimization efforts.
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Algorithm 2: SMORE(3D) PSEUDOCODE

Data: LR image with voxel size and spatial resolution of a × a × c,
r = c/a > 1

Result: Estimate f (x, y, z) with target spatial resolution a × a × a

(Step 1) Preprocessing:
In k-space, zero-fill the LR image to make it isotropic with voxel size of

a × a × a. Then apply N4 correction on the image if necessary. This yields
g(x, y, z).

(Step 2) Construct Training Data:
for n = 0, . . . , N; θ := nπ

2N do
Rotate image about the z-axis: gθ(x, y, z) := Rz(θ) ◦ g(x, y, z);
Blur the image in the x-axis: bθ(x, y, z) := h(x; r) ∗ gθ(x, y, z);

end

(Step 3) Train a SSR network:
Randomly extract 2D paired patches from x-y plane slices of
{bθ(x, y, z), gθ(x, y, z)};

Randomly flip the extracted paired patches;
Feed the patches into a CNN model to train a self-supervised

super-resolution network (SSR).

(Step 4) Apply the SSR network:

for m = 0, . . . , M − 1; α :=

{︄
0 if M = 1

mπ
2(M−1) otherwise do

Rotate image about the z-axis: gα(x, y, z) := Rz(α) ◦ g(x, y, z);
Apply trained SSR on the x-z plane: sα(z, x) := SSR ◦ gα(z, x);
Stack slices sα(z, x) to reconstruct sα(x, y, z);
Rotate it back: f̂ α(x, y, z) := Rz(−α) ◦ sα(x, y, z).

end

(Step 4) FBA:
f̂ (x, y, z) := FBA({α : f̂ α(x, y, z)})
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4.2.2.2 Rotation during testing

In the simplified SMORE(3D), the trained SSR network is applied only to LR

x-z plane slices. It is natural to ask why not apply it to LR y-z plane slices.

In fact, the trained SSR network can be applied to any collection of patches

that are orthogonal to the x-y plane. To implement this idea, we apply it to

the x-z planes of rotated versions gα of g that have been rotated about the

z-axis by α. The x-z planes of gα are the x-z planes of g when α = 0 and

are the y-z planes of g when α = π
2 . Each rotated image gα yields a super-

resolved estimate ŝα(x, y, z), which is then rotated back to yield the estimate

f̂ α(x, y, z). We do this for M different values of α, obtaining M estimated HR

volumes, which are combined using Fourier burst accumulation (FBA) [104].

FBA is a self-ensemble technique, which has been described in previous SSR

literature [110, 44, 43]. We explore the effect of this self-ensemble technique in

Section 4.3.4. In our previous work [44, 43], we used M = 2, which implies

that we applied the trained network to only coronal and sagittal slices. In

order to show whether applying the network in multi-orientations improves

the result, we show a comparison between M = 1, 2, and 7 in Sec. 4.3.4. All

other experiments in this chapter and the next chapter use M = 1, which is

much faster to compute and adequate for most applications.

4.2.3 SMORE(2D)

In this section, we describe the difference between SMORE(2D) and SMORE(3D);

pseudocode for SMORE(2D) is shown in Algorithm 3.

To make an LR image have isotropic voxel spacing, the interpolation
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methods for 3D MRI and 2D MRI are different. 3D MRI yields LR images by

cutting off frequencies in the Fourier domain, thus we use sinc interpolation

in SMORE(3D). 2D MRI yields through-plane LR due to large slice separation

in the image domain, thus the interpolation should be implemented in the

image domain. In SMORE(2D), we use B-spline (BSP) interpolation to make

isotropic voxel spacing.

Theoretically, aliasing will still exist in the z direction after BSP if the

slice separation is large. This is because BSP, as a linear operator, does not

remove the overlapped high frequency content in the k-space of an aliased

image. BSP is performed only to yield the desired digital resolution; it does

not change the effect of aliasing. Given this starting point, the basic idea of

SMORE(2D) is the same as SMORE(3D) except for two differences. First, since

the image acquisition models are different, the training data extraction step

which mimics image acquisition must be changed. Second, when aliasing is

too severe, an extra self-supervised anti-aliasing (SAA) step is applied.

4.2.3.1 Training Data Extraction

For 2D MRI, we must model the slice selection process. In order to create

training data from the observed data with LR in the x direction, we use a

1D Gaussian filter h(x; r) as the MRI slice selection profile with a full-width

at half-maximum (FWHM) equal to r. The filtered image b(x, y, z) has the

desired LR components but does not have aliasing.

Aliasing comes from large slice separation, which means low sampling rate.

To introduce aliasing when the slice separation is rs times the slice thickness,
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Algorithm 3: SMORE(2D) PSEUDOCODE

Data: LR image with voxel size and spatial resolution of a × a × c,
r = c/a > 1

Result: estimate Î(x, y, z) with target spatial resolution a × a × a

(Step 1) Preprocessing:
BSP interpolate the LR image to make it isotropic with voxel size of a × a × a;

and apply N4 correction on the image if necessary, results in g(x, y, z).

(Step 2) Construct Training Data:
for n = 0, . . . , N; θ := nπ

2N do
Rotate image about the z-axis: gθ(x, y, z) := Rz(θ) ◦ g(x, y, z);
Blur the image in the x-axis: bθ(x, y, z) := h(x; r) ∗ gθ(x, y, z);
Introduce aliasing in the x-axis: b̃θ(x, y, z) := ↑r

x (↓r
x (bθ(x, y, z))).

end
if SAABool then

Randomly extract 2D paired patches from x-y plane slices of
{b̃θ(x, y, z), bθ(x, y, z)}, randomly flip them, and train a self-supervised
anti-aliasing network (SAA).

Randomly extract 2D paired patches from the x-y plane slices of
{b̃θ(x, y, z), gθ(x, y, z)}, randomly flip them, and train a self-supervised
super-resolution network (SSR).

(Step 3) SAA+SSR:

for m = 0, . . . , M − 1; α :=

{︄
0 if M = 1

mπ
2(M−1) otherwise do

Rotate image about the z-axis: gα(x, y, z) := Rz(α) ◦ g(x, y, z);
if SAABool then

Apply trained SAA on y-z plane: ĝα(z, y) := SAA ◦ gα(z, y);
Stack slices ĝα(z, y) to reconstruct ĝα(x, y, z);

else
ĝα(x, y, z) = gα(x, y, z)

end
Apply trained SSR on x-z plane: sα(z, x) := SSR ◦ ĝα(z, x);
Stack slices sα(z, x) to reconstruct sα(x, y, z);
Rotate it back: f̂ α(x, y, z) := Rz(−α) ◦ sα(x, y, z).

end

(Step 4) FBA:
f̂ (x, y, z) := FBA({α : f̂ α(x, y, z)})
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the image is downsampled by a factor of rs · r using linear interpolation.

In most MR images, rs = 1. Occasionally, rs = 0.5 and aliasing is less in

such acquisition. In this chapter, all image data have rs = 1. We denote the

downsampled image as ↓r
x (b(x, y, z)). To complete the process we upsample

this image by a factor rs · r using BSP interpolation, yielding b̃(x, y, z) =↑r
x

(↓r
x (b(x, y, z))). The image b̃(x, y, z) contains aliasing artifacts just like the

acquired image in the through-plane direction. The training data extraction

process is summarized as below:

g ∗h−→ b
↓↑−→ b̃

As in SMORE(3D), we rotate this image in the x-y plane with angle θ to

increase the amount of training data.

4.2.3.2 SAA when unexpected aliasing exists

In SMORE(2D), we train an SSR network from aliased LR images b̃ and HR

images g. The resulting network should therefore both remove aliasing and

improve resolution. However, we found experimentally that some residual

aliasing artifacts may remain, as shown in Sec. 4.3.3. We found that, in such

cases, adding an additional self-supervised anti-aliasing (SAA) network can

remove them.

SAA uses an EDSR network as does SSR, but it is trained independently.

We extract 32 × 32 patch pairs randomly from axial slices in b̃(x, y, z) and

b(x, y, z) (i.e., aliased LR slices and LR slices, respectively) to train the SAA

network that removes aliasing. During testing, we apply the trained SAA
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network to sagittal slices first and then apply the trained SSR network to this

result on coronal slices. This removes aliasing in both the coronal and sagittal

planes.

Whether to train and apply SAA is controlled with a boolean variable

SAABool. As there is less observable aliasing for LR images with a small ratio,

rs · r, we empirically pick a threshold of 3 and set SAABool = False when

rs · r ≤ 3 in these experiments. This saves computation time and yields nearly

identical results.

4.2.4 Comparison with other SSR methods

Compared with JogSSR [102], SMORE uses the state-of-the-art SR deep net-

work EDSR [75]. Compared with Weigert et al. [105], a CNN-based SSR

method developed for 3D fluorescence microscopy images, SMORE distin-

guishes and addresses the different requirements—and also provides different

algorithms—for 2D versus 3D MRI, and adds an anti-aliasing network that

preceeds the SSR network for 2D MRI acquisitions. The comparison is sum-

marized in Table 4.1.

Table 4.1: Comparison of several SSR methods. ANR is Anchored Neighborhood
Regression [103], which is based on sparse coding.

Modality Subject image acquisition protocol Model Anti-aliasing
JogSSR [102] MRI not distinguished 3D ANR No
Weigert et al. [105] Microscopy acquired as 2D, stack to 3D 2D U-net No
SMORE(3D) MRI acquired in 3D k-space 2D EDSR No
SMORE(2D) MRI acquired as 2D, stack to 3D 2D EDSR Yes
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4.3 Experiments

4.3.1 Simulation experiments using T2-weighted brain images

In these experiments, we used 14 T2-weighted images of multiple sclerosis

subjects; acquired on a 3T Philips Achieva scanner using a 3D imaging protocol

with 1 × 1 × 1 mm resolution. These images serve as our ground truth HR

images from which we simulate LR MRI using both 3D and 2D MRI acquisition

protocols. The resulting LR MR images were used as input data to compare

various SSR methods.

4.3.1.1 LR data downsampled following a 3D protocol

To simulate LR 3D MRI, we applied an ideal low-pass filter to the isotropic

T2-weighted images followed by an anti-ringing Fermi filter, both in the z

direction (which defines the through-plane direction). These images simulate

3D MR acquisitions having both digital and spatial resolutions equal to 1 ×

1 × r where r = {2, . . . , 6} with no aliasing. The first step in super-resolution

processing is to upsample these images to 1 × 1 × 1 mm digital resolution

using zero-padding in Fourier space, i.e. sinc interpolation, referred to as

sincInterp.

We applied the following methods to the simulated LR MR images: 1) the

total variation method LRTV [35], which has publically available code; 2) the

SSR method of Jog et al. [102], referred to as JogSSR; and 3) and our SMORE(3D)

algorithm. Note that the original code of LRTV [35] can only carry out super-

resolution for isotropic ratios r × r × r, with r restricted to integers. In order

to apply the code for anisotropic ratios 1 × 1 × r, we modified a few lines of
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Figure 4.2: Results from MRI downsampled with a 3D protocol: Coronal views of
the 1 × 1 × r mm 3D LR input image restored using sinc interpolation, LRTV [35],
JogSSR [102], our method SMORE(3D), and the HR truth image. The zoomed patches
show a lesion that is near ventricle.

code in its upsample and downsample functions merely to change upsam-

ple/downsample axis from all the three axes to just the z-axis1. Despite this,

we did not change the code thereby preserving the original LRTV code as

much as possible2.

Example results from this simulation experiment are shown in Fig. 4.2

for r = 4 and 6. We zoom in the area around a lesion which is near ventricle

to show the details. Visually, SMORE results are significantly better than

1 Original LRTV: https://bitbucket.org/fengshi421/superresolutiontoolkit/
modified LRTV: https://github.com/volcanofly/LRTV_revision

2We note that the upsampling method used in the original code of LRTV is nearest-
neighbor interpolation, which we believe will cause artifacts if the resolution ratio r is large.
However, we did not change it.
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Figure 4.3: Evaluation of accuracy for super-resolution results from LR MRI
downsampled with a 3D protocol: (a) SSIM values and (b) PSNR comparing to
ground truth for the restored images using k-space zero-padding interpolation (blue),
LRTV [35] (orange), JogSSR [102] (red), and SMORE(3D) (green). Higher value indi-
cates better accuracy.

other methods, and the lesions near the ventricle are well preserved while the

LRTV and JogSSR methods retain artifacts from the elongated voxels. Note

that the original experiments in LRTV only dealt with r = 2 and JogSSR

only dealt with r = 2 and r = 3, and these artifacts are not obvious in their

papers. However, for data with larger values of r, these algorithms do not

perform well while our SMORE(3D) shows visually improved resolution and

few visible artifacts.

With the 1× 1× 1 mm ground truth as the reference, we compute structural
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Figure 4.4: Evaluation of sharpness for super-resolution results from LR MRI
downsampled with a 3D protocol: S3 sharpness values in (a) x-z plane (LR) and (b)
x-y plane (HR) for the restored images using sinc interpolation (blue), LRTV [35] (or-
ange), JogSSR [102] (red), SMORE(3D) (green), and HR truth (grey). Higher value
indicates sharper edges.

similarity (SSIM)[111] index and the peak signal-to-noise ratio (PSNR)3 within

a mask of non background voxels, shown in Fig. 4.3.

No-reference measures of algorithm performance can also be computed

from these results. We computed S3 [112], a 2D spectral and spatial measure

of local perceived sharpness based on the slope of the magnitude spectrum

and the total spatial variation4. We computed S3 for the coronal slices (x-z)

which are LR before applying SSR methods, and the axial slices (x-y) which

are HR before applying SSR methods. These results are shown in Fig. 4.4.

Results from LRTV [35] have the highest sharpness, sometimes even higher

than the HR ground truth. But in this case, higher computed sharpness does

3SSIM and PSNR code: https://github.com/volcanofly/ssim_and_psnr_3d.
4S3 code: http://vision.eng.shizuoka.ac.jp/s3.
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Figure 4.5: Results from MRI downsampled with a 2D protocol: Coronal views of
the 1 × 1 × r mm 2D LR input image interpolated with cubic b-spline, restored using
methods from LRTV [35], JogSSR [102], SMORE(2D), and the HR ground truth image.
The zoomed patches show a lesion that is near ventricle.

not indicate a better result. Instead, as we can see from the visualizations in

Fig. 4.2, LRTV [35], and to a lesser extent JogSSR, tends to emphasize sampling

artifacts rather than true edges within the image. It shows that the sharpness

measure sometimes gives an opposite quality score to that of SSIM/PSNR. In

PIRM ECCV 2018 super-resolution challenge [107], participants also found

that perceptual quality measures sometimes disagree with SSIM/PSNR. Nev-

ertheless, SMORE(3D) produces results with the highest SSIM/PSNR scores

and also higher sharpness than interpolation.

4.3.1.2 LR data downsampled following a 2D protocol
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Figure 4.6: Evaluation of accuracy for super-resolution results from LR MRI down-
sampled with a 2D protocol: (a) SSIM values and (b) PSNR comparing to ground
truth for the restored images using cubic b-spline interpolation (blue), LRTV [35] (or-
ange), JogSSR [102] (red), and SMORE(2D) (green). Higher value indicates better
accuracy.

To simulate LR 2D MRI, we Gaussian blurred and downsampled the 1 × 1 ×

1 mm HR images by factors of r = {2, . . . , 6} in the z-axis to simulate thick-slice

MR images. We then restored these images to an isotropic digital resolution of

1× 1× 1 mm using cubic B-spline interpolation (BSP), LRTV [35], JogSSR [102],

and SMORE(2D). A visual comparison is shown in Fig. 4.5 for r = 4 and

r = 6. Evaluation of these results using SSIM and PSNR is shown in Fig. 4.6

and evaluation using S3 is shown in Fig. 4.7. We observe that SMORE(2D)

outperforms all other methods visually and also quantitatively with both SSIM

and PSNR. Sharpness yields a similar result wherein LRTV [35] has the highest
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Figure 4.7: Evaluation of sharpness for super-resolution results from LR MRI
downsampled with a 2D protocol: S3 sharpness values in (a) x-z plane (LR) and
(b) x-y plane (HR) for the restored images using cubic b-spline interpolation (blue),
LRTV [35] (orange), JogSSR [102] (red), SMORE(2D) (green), and HR ground
truth (grey). Higher value indicates sharper edges.

sharpness while both JogSSR [102] and SMORE(2D) yield higher sharpness

in comparison to BSP. As in the 3D simulation, the method of LRTV [35] is

clearly emphasizing artifacts rather than true edges (see Fig. 4.5). We also see

from Fig. 4.5 that both the SSIM and PSNR measures for SMORE(2D) at r = 3

are comparable to the BSP result at r = 2. This implies that it may be possible

to acquire thicker slices (r = 3), apply SMORE(2D), and get comparable SSIM

and PSNR as interpolated thinner slices (r = 2), which could lead to faster

scan times.

To evaluate the effect of SAA, we also perform the experiment with

SAABool = False, which we show in Sec. 4.3.3.

4.3.2 Robustness to noise
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Figure 4.8: Results from MRI downsampled with a 2D protocol and Rician noise
added: Zoomed coronal views of the 1 × 1 × 6 mm 2D noisy LR input image inter-
polated with a cubic b-spline, restored using methods from LRTV [35], JogSSR [102],
and SMORE(2D), and the HR ground truth image.

Figure 4.9: Robustness to noise: (a) SSIM and (b) PSNR for super-resolution results
from noisy 1 × 1 × 6 mm MRI compared to ground truth, with the restored images
using cubic b-spline interpolation (blue), LRTV [35] (orange), JogSSR [102] (red), and
SMORE(2D) (green).

The architecture of EDSR mimics a high-pass filter, which suggests that

SMORE might not be robust to noise. Although LR MR images generally

have low noise (because they have large voxels), we evaluated the impact of
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noise on SMORE, potentially for applications to faster imaging scenarios such

as dynamic MRI. We experimented on simulated r = 6 2D input images and

added Rician noise with standard deviation σ of 10%, 30%, 50% of the mean

intensity. The noisy image Iσ are simulated from clean image I using Rician

noise model Iσ =
√︂
(I + η1)2 + η2

2 , with η1, η2 ∼ N (0, σ2). Example results

are shown in Fig. 4.8 and the performance measures SSIM and PSNR are

shown in Fig. 4.9. It is observed that SMORE(2D) is robust to noise levels of

10% and 30% but fails at a noise level of 50%. For 50% noise, BSP gives better

results. This is because interpolation can have a smoothing effect as it does

not recover high frequency information, and thus it reduces noise. On the

other hand, super-resolution tends to sharpen edges, which increases noise.

However, a large level of noise like 30% or 50% is uncommon in structural

MRI except for ultra-fast acquisitions. The results for 10% noise demonstrates

the robustness of SMORE for a normal level of noise encountered in structural

MRI.

4.3.3 Impact of SAA

There is a boolean variable SAABool in Algorithm 3 that controls whether to

train and apply SAA for SMORE(2D). In order to show the effect of the SAA

network, we performed a comparison on simulated 1× 1× 6 mm 2D MRI data

from Sec. 4.3.1. We ran SMORE(2D) twice, first with SAA enabled, and then

with it disabled. An example of the sagittal slices is shown in Fig. 4.10. We can

see that there is aliasing in Fig. 4.10(b) (red arrow) while Fig. 4.10(c) removes

the aliasing. Given the HR ground truth for this simulation, we computed the
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(a) (b) (c) (d)

Figure 4.10: Impact of SAA on simulated LR image: Sagittal views of the 1 × 1 ×
6 mm MR T2-w image (simulated with a 2D protocol) restored with (a) BSP, (b)
SMORE(2D) with SAABool = False and (c) SAABool = True, and (d) HR ground truth.
The red arrow points to aliasing in (b).

Original BSP SAABool = False SAABool = True

Figure 4.11: Impact of SAA on acquired LR image: x-z plane slice of the 0.15 ×
0.15 × 1 mm original marmoset MR PD image (acquired with 2D protocol), restored
images using BSP, SMORE without (SAABool = False) and with SAA (SAABool =
True).

SSIM, PSNR, and mean squared error (MSE) for these 14 subjects. The PSNR

and MSE of SMORE(2D) with SAABool = True and False are not significantly

different. However, for SSIM, SMORE(2D) with SAABool = True gives 1.332%
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worse mean SSIM even though the results look cleaner with anti-aliasing.

Since the computation of SSIM involves prefiltering, subtle aliasing artifacts

may not be captured with the SSIM measure. Considering the visual quality,

we believe that setting SAABool = True is a reasonable choice when aliasing

artifacts are obvious.

We also performed an experiment on a marmoset PD MR image with

acquired resolution of 0.15 × 0.15 × 1 mm. The results are shown in Fig. 4.11.

It shows that without SAA (SAABool = False), the results still have sharp

edges, yet they appear to suffer from remaining aliasing artifacts.

4.3.4 Choice of M and computation time

4.3.4.1 Computation time

The computation time of SMORE consists of training time and testing time.

The training time does not increase with the data augmentation angles N. The

testing time is proportional to the self-ensemble angles M.

In practice, training the model for one subject based on pre-trained models

from an arbitrary data set takes less than 10 minutes for a Nvidia Tesla K80

GPU, while training from scratch takes about 40 minutes. The computation

time for applying the network is proportional to the size of resultant image

and M. For an image g of size 180 × 240 × 240 and M = 1, the testing time for

applying a network is approximately 5 minutes. Therefore, the total time to

train and apply the SMORE(3D) network is approximately 15 minutes with

M = 1 and 45 minutes with M = 7.

For SMORE(2D), the computation time with SAABool = False is the same
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as SMORE(3D);when SAABool = True, the computation time is nearly twice

that of SMORE(3D) due to the additional SAA network.

4.3.4.2 Choice of M

In our conference papers [43, 44], both SAA and SSR are done with M = 2.

Assuming that the z-axis is the LR axis, SAA is first performed on the y-z

plane (only for MRI with 2D protocols) and SSR on the x-z plane, denoted

as f̂
0
. Next, SAA is performed on the x-z plane (only for MRI with 2D

protocols) and SSR on the y-z plane, denoted as f̂
π/2

. The two resulting

3D volumes are combined using FBA [104]. However, we found that the

results of M = 1 are also visually good. In fact, all experiments reported

in this chapter up to this point presented f̂
0
. In order to demonstrate the

effect of M, we computed f̂
0

and f̂
π/2

as well as the FBA result (FBA2) which

combines them. We also computed SMORE on an additional five directions

to get { f̂
0
, f̂

π/12
, f̂

π/6
, f̂

π/4
, f̂

π/3
, f̂

5π/12
, f̂

π/2} and computed the FBA result

(FBA7) which combines these seven results.

We carried out a comparison using the simulated dataset from Sec. 4.3.1

with r = 6 and applied both 3D and 2D protocols. For both protocols, it is

difficult to find visual differences for different choices of M. Nevertheless, we

computed both SSIM and PSNR and show them in Figs. 4.12 and 4.13.

From Fig. 4.12, we found that in the 3D MRI experiment, the results of

FBA2 have the best mean value of SSIM, while the results of FBA7 have

the best mean value of PSNR. However, the differences between these four

methods are small. In order to study the significance, we performed sign test
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Figure 4.12: Choice of M for FBA (3D): Box plots showing (a) SSIM values and
(b) PSNR values compared to the ground truth for the restored images using
SMORE(3D) that does SSR on the x-z plane, denoted f̂

0
(green); SMORE(3D) per-

formed on orthogonal direction, denoted f̂
π/2

(ocean); the FBA result, FBA2, which

combines the results from f̂
0

and f̂
π/2

(purple); and the FBA result, FBA7, which
combines the results from seven directions (wine).

Figure 4.13: Choice of M for FBA (2D): Box plots showing (a) SSIM values and (b)
PSNR values compared to ground truth for the restored images using SMORE(2D),
denoted f̂

0
(green); SMORE(2D) performed on the orthogonal direction, denoted as

f̂
π/2

(ocean); the FBA result, FBA2, which combines the results from f̂
0

and f̂
π/2

(pur-
ple); and the FBA result, FBA7, which combines results from seven directions (wine).

and judged significance at p < 0.01 between each pair of these methods. The

null hypothesis is that the median of the differences of the paired samples

is zero. We found that: 1) for f̂
0

and f̂
π/2

, the median values of SSIM and

PSNR were not significantly different. 2) for FBA2 and FBA7, the median

values of PSNR were not significantly different, but FBA2 has significantly

better median SSIM; 3) for FBA7 and f̂
0
/ f̂

π/2
, the median values of SSIM and

PSNR were not significantly different; 4) for FBA2 and f̂
0
/ f̂

π/2
: the median

values of SSIM were not significantly different, but FBA2 has significantly

better median PSNR. Therefore, for 3D MRI, the use of M = 2 and FBA2 is
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recommended if PSNR is of primary concern; M = 1 is a reasonable choice if

computation time is of primary concern.

From Fig. 4.13, we found that in the 2D MRI experiment, the results of

FBA2 have the best mean value of SSIM and PSNR. We performed the same

significance test as in 2D MRI experiment and found that neither SSIM nor

PSNR of FBA2 has statistically better median than f̂
0

and f̂
π/2

. Therefore, use

of M = 1 is recommended for SMORE(2D) since this will save computation

time.

4.4 Conclusion and Discussion

This chapter described a deep learning-based self-supervised anti-aliasing (SAA)

and self-supervised super-resolution (SSR) algorithm SMORE. In contrast to

most other deep learning-based super-resolution (SR) methods for MRI [101],

SMORE does not need external training data, which makes it more applicable

to a wide variety of acquired MRI pulse sequences. Compared with inter-

polation and other SSR methods [35, 102], SMORE demonstrates significant

improvements in SR accuracy and shows robustness under low levels of Rician

noise. The experiments were performed on both simulated and real acquired

LR data including T2-w and PD MRI, without any modification on SMORE.

In our experiments, the largest SR ratio, r, is 6.6667 (see Fig. 4.10), while other

SSR methods [35, 102] for MRI only demonstrated their applications on data

with small r, usually no greater than 3.

General SR problems with well-established training datasets in computer

vision have been discussed quite a bit in the literature, e.g., in NTIRE CVPR
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SR challenges [36]. An important distinction between the computer vision

application and the MRI application is that external training data is much more

difficult to obtain in MRI than in natural images. Considering this distinction,

the biggest advantage of SMORE is the fact that SMORE does not need external

training data. In addition to that, SMORE needs no preprocessing step other

than N4 inhomogeneity correction [94]. When the acquisition protocol and

acquisition parameters like slice thickness and slice separation are known,

SMORE only needs two parameters—SAABool and M—for which we provide

suggested values in Sec. 4.3.3 and Sec. 4.3.4. Also, we used the same deep

network hyper-parameter settings for all experiments in this chapter. All these

properties are desirable for easy application to new MRI datasets.

Some additional evaluations of SMORE are performed in the next chapter,

including SMORE on real acquired T2 FLAIR brain images and T2-w tongue

images with tumors, SMORE on real acquired LR/HR paired cardiac data,

and the effect of SMORE on image segmentation. Other additional evaluation

of SMORE could be performed in the future. First, SMORE uses EDSR as the

network architecture since it was evaluated as the state-of-art SR network by

extensive comparisons in other literature [36, 107]. These evaluations were

performed on natural images, however, not on MRI, and it is possible that

there might be better SR network architectures for MRI data. Fortunately,

EDSR can be easily replaced under the framework of SMORE if a better SR

network becomes available. The second limitation concerns the non-reference

metric used in this evaluation. Here, we computed S3 [112], which is a

sharpness metric that might not reflect the actual perceived image quality.
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We are aware of other open source no-reference perceptual quality metrics

such as NIQE [113] and BRISQUE [114], which are designed to correspond to

human perception. However, these models were trained on natural images,

and not suitable for MRI data. Future work should include more experiments

to address these noted limitations.

In conclusion, the SMORE method was described and shown to perform

well in comparison to other methods. It produces results that are more accu-

rate than interpolation, and does not need any external training data. This

makes it a potentially useful preprocessing step for many MR image analysis

tasks. More applications of SMORE as well as a task-specific evaluation (seg-

mentation) are discussed in Chapter 5, which also includes discussion about

the limitations of SMORE.
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Chapter 5

Application of SMORE on various
MRI datasets

5.1 Introduction

In the previous chapter, we introduced the Synthetic Multi-

Orientation Resolution Enhancement (SMORE) [44, 43] algorithm. SMORE

does not use external training data, there are no parameters to tune besides

those hypeparameters used for deep learning training, and the only pre-

processing that is required is N4 intensity inhomogeneity correction [94]. In

this chapter, we use four applications to demonstrate the potential of SMORE

in both research and clinical scenarios. The first application is on T2 FLAIR

MR brain images acquired from multiple sclerosis (MS) patients. MS is an

auto-immune disease in which myelin, the protective coating of nerves, is

damaged and can be visualized as hyperintense lesions in FLAIR images.

We show that visualization of MS lesions using SMORE is better than that

obtained using cubic b-spline interpolation and JogSSR.
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The second application is on cardiac MRI where we explore the visual-

ization of myocardial scarring from cardiac left ventricular remodeling after

myocardial infarction. Characterizing such scarring is important factor in

assessing the long-term clinical outcome after myocardial infarction [115]

and it is challenging due to the competing requirements of high-resolution

imaging and rapid scanning due to cardiac motion and breathing. We show

improved visualization of such scars when using SMORE.

The third application of SMORE is on multi-orientation MR images of the

tongue in tongue tumor patients. Because of the involuntary requirement to

swallow during lengthy MR scans, acquisition times are very limited—less

than 3 minutes—in tongue imaging. A previous approach to obtaining super-

resolution in the tongue used a computational combination of axial, sagittal,

and coronal image stacks, each obtained in a separate stationary phase and

registered together [31]. We demonstrate how the use of SMORE on a single

acquisition is comparable to the result of combining three acquisitions.

The fourth application of SMORE is on brain ventricle labeling in subjects

with normal pressure hydrocephalus (NPH). NPH is a brain disorder usually

caused by disruption of the cerebrospinal fluid (CSF) flow, leading to ventricle

expansion and brain distortion. Having accurate parcellation of the ventricular

system into its sub-compartments could potentially help in diagnosis and

surgical planning in NPH patients [116]. Both visual and selected quantitative

metrics of resolution enhancement are demonstrated.

In this chapter, we make two important contributions about the imple-

mentation and utility of SMORE. In order to show the versatility of SMORE,
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we present results on four MRI datasets from different pulse sequences and

different organs, with three of them being real acquired low resolution MR

datasets. Then we demonstrate that the proposed SR algorithm yields im-

provements not only in apparent image quality but, in the fourth experiment,

show quantitative improvements when SMORE is applied as a preprocessing

step for a segmentation task.

5.2 Application 1: visual enhancement for MS le-
sions

In this experiment, we test whether super-resolved T2 FLAIR MR images can

give better visualization of white matter lesions in the brain than the acquired

images. The 33 T2 Flair MR images were acquired from multiple sclerosis

(MS) subjects using a Philips Achieva 3T scanner with a 2D protocol and the

following parameters: 0.828 × 0.828 × 4.4 mm, TE = 68 ms, TR = 11 s, TI =

2.8 s, flip angle = 90◦, turbo factor = 17, acquisition time = 176 s. We performed

cubic b-spline interpolation, JogSSR [102], and SMORE(2D) on the data using

a 0.828 × 0.828 × 0.828 mm digital grid.

We first show a visual comparison on the regions of white matter lesions

in axial, sagittal, and coronal slices for the three methods. Fig. 5.1 shows an

example of T2 FLAIR images reconstructed from the acquired resolution of

0.828 × 0.828 × 4.4 mm input image onto a 0.828 × 0.828 × 0.828 mm digital

grid using the three methods. On these images, MS lesions appear as bright re-

gions in the brain’s white matter. We can see that both JogSSR and SMORE(2D)

give sharper edges than interpolation and the SMORE(2D) result looks more
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Figure 5.1: T2 Flair MRI from an MS subject: Axial, sagittal, and coronal views
of the acquired 0.828 × 0.828 × 4.4 mm image, and the reconstructed volumes with
0.828 × 0.828 × 0.828 mm digital grid through cubic b-spline interpolation, JogSSR,
and SMORE(2D). In each view, we pick a path across lesions, shown as colored arrows
in the images, and plot the line profiles of the three methods in the same plot on the
bottom of each view.
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realistic than JogSSR. This is in part because JogSSR does not carry out anti-

aliasing, which allows aliasing artifacts, which are seen in the original and

interpolated images, to remain. We note that in Fig. 5.1, SMORE also enhances

resolution in the axial slice slightly, which is originally 0.828 × 0.828 mm.

Although we apply super-resolution in the through-plane, structures like

edges that pass through-plane slices obliquely also gets enhanced, permitting

in-plane edges to also be enhanced.

Aside from the visual impression of performance differences gleaned from

looking at the images directly, we also plot 1D intensity profiles of the three

methods across selected paths through different lesions. Each reconstructed

image in Fig. 5.1 contains a small colored arrow. These arrows depict the

line segment and direction over which intensity profiles shown in the bottom

row of the figure are extracted. For example, the three colored arrows in

the axial images of the first column yield the profiles on the bottom right

graph. These axial profiles show that other than some differences in overall

intensity, the resolutions of the methods appear to be very similar. This

is to be expected since the axial image already has good resolution. The

profiles through the ventricle and lesion in the sagittal orientation are different.

Both super-resolution approaches show a steeper edge than the interpolated

image (although the JogSSR result is inexplicably shifted relative to the true

position of the edge). The profiles from the lesion in the coronal images

show a similar property—steeper edges from the super-resolution approaches.

Overall, the selected intensity profiles suggest resolution enhancement from

both SMORE(2D) and JogSSR.
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Figure 5.2: Evaluation of sharpness for super-resolution results from LR acquired
with a 2D protocol: S3 sharpness values in (a) the y-z plane (LR), (b) the x-z plane (LR)
and (c) the x-y plane (HR) for the restored images using cubic b-spline interpola-
tion (blue), JogSSR [102] (red), and SMORE(2D) (green).

Furthermore, we show the S3 sharpness feature for these results in Fig. 5.2

where it is observed that SMORE is better than the other methods. The im-

proved sharpness in the in-plane (x-y plane) is an important feature of super-

resolution which should not be considered anomalous. We see in Fig. 5.2(c)

that this is true for the comparison with BSP and JogSSR results. Also from

Fig. 5.3, we can see partial volume artifacts in the original and BSP images,

but much less in the SMORE result. We compared the in-plane (x-y plane) S3

values of the original images and the SMORE results1. The mean x-y plane S3

for the original images is 0.5361, while the mean value for the SMORE result

is 0.5482 2. The reason for the improved sharpness in in-plane slices is that

features such as edges that pass through the image plane in oblique orienta-

tions do experience blurring from the through-plane impulse response during

image acquisition, and effective super-resolution will reduce the blurriness of

1For through-plane slices, the original images have different digital resolution from BSP
images and SR results. Thus, comparing their S3 values for through-plane slices is meaning-
less.

2Although a Wilcoxon signed-rank test was performed and reported in [117], we later
realized that the this statistic should not be used since we cannot prove the difference of paired
samples are distributed symmetrically, which is the assumption of Wilcoxon signed-rank test.
The correct test is a sign test, but we cannot carry this out as the original data have been lost
as of this writing.
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those features. This explains why S3 should be larger even in the x-y plane.

5.3 Application 2: visual enhancement of scarring
in cardiac left ventricular remodeling

In this experiment, we test whether super-resolved images can give better

visualization of the scarring caused by left ventricular remodeling after my-

ocardial infarction than the acquired images. We acquired two T1-weighted

MR images from an infarcted pig, each with a different through-plane resolu-

tion. One image, which serves as the HR reference image, was acquired with

resolution equal to 1.1× 1.1× 2.2 mm, and then it was sinc interpolated on the

scanner (by zero padding in k-space) to 1.1 × 1.1 × 1.1 mm. The other image

was acquired with resolution equal to 1.1 × 1.1 × 5 mm. Both of these images

were acquired with a 3D protocol, inversion time = 300 ms, flip angle = 25◦,

TR = 5.4 ms, TE = 2.5 ms, and GRAPPA acceleration factor R = 2. The HR

reference image has a segmented centric phase-encoding order with 12 k-space

segments per imaging window (heart beat), while the LR subject image has 16

k-space segments.

In our experiment, we performed sinc interpolation, JogSSR [102], and

SMORE(3D) on the 1.1 × 1.1 × 5.0 mm data using a 1.1 × 1.1 × 1.1 mm digital

grid. These images were then rigidly registered to the reference image for

comparison, shown in Fig. 5.3. We are interested in the regions of thinning

layer of midwall scar between the endocardial and epicardial layers of normal

myocardium and the thin layer of normal myocardium between the scar

and epicardial fat. These two regions of interest are cropped and zoomed to
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Figure 5.3: Late gadolinium enhancement (LGE) from an infarct swine subject:
Short-axis (SAX) and long-axis (LAX) views arranged in columns using 1.1 × 1.1 ×
1.1 mm digital grid: output of 1) sinc-interpolation, 2) JogSSR and 3) SMORE(3D) for
the subject LR image acquired at 1.1 × 1.1 × 5 mm; 4) sinc-interpolated HR reference
image for comparison acquired at 1.1 × 1.1 × 2.2 mm. SAX(1) and LAX(1) boxes
contain a thinning layer of enhanced midwall scar between endo- and epi layers of
normal myocardium (hypo-intense). SAX(2) boxes contain a thin layer of normal
myocardium (hypo-intense) between scar and epicardial fat (both hyper-intense). In
each box, we pick a path across the region of interest, shown as colored arrows, and
plot the profiles in the last row.
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show the details. Specifically, a thin layer of the midwall scar between the

endocardium and epicardium of normal myocardium appears as bright strip

in the magenta boxes, and a thin layer of normal myocardium between scar

and epicardial fat appears as dark strip in the cyan boxes. They are zoomed in

to show the details below the short-axis (SAX) slices with acquired resolution

of 1.1 × 1.1 mm and long-axis (LAX) slices with originally acquired resolution

of 1.1 × 5 mm for the first three columns, or 1.1 × 2.2 mm for the column of

"HR ref". Each zoomed box contains a colored arrow which depicts a line

segment. The corresponding line profiles are shown on the bottom.

As seen in the long-axis (LAX) images and zoomed regions, the bor-

ders between normal myocardium, enhanced scar and blood are clearer in

SMORE(3D) compared with JogSSR and interpolation. The intensity profile of

SMORE(3D), the green line shown in the magenta box marked "LAX (1)", very

closely matches that of the HR reference image. For the short-axis (SAX(1)

and SAX(2)), the resolution was already high and there is less to be gained.

Nevertheless, it is apparent that the image clarity is slightly improved by

SMORE(3D) while faithfully representing the patterns from the input images.

We computed the SSIM and PSNR between each method and HR reference

image. The result is shown in Table 5.1. SMORE gives the best SSIM yet worse

PSNR than sinc interpolation. Note that the registration cannot be perfect

among different sets of cardiac images, due to motion or changing physio-

logical state. When computing SSIM, images are prefiltered. Therefore, SSIM

is less sensitive to image distortion. On the other hand, PSNR is a measure

of noise level and SMORE does not explicitly consider noise reduction. This
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might be why the SMORE result has better SSIM but worse PSNR. Also this

evaluation was done on only one pair of LR/HR data, and is not statistically

informative.

sincInterp JogSSR SMORE
SSIM 0.5070 0.4770 0.5146
PSNR 25.8816 24.4142 25.3002

Table 5.1: SSIM and PSNR of sinc interpolation, JogSSR [102], and SMORE(3D) on
LGE from an infarct swine subject.

5.4 Application 3: multi-view reconstruction

In this experiment, we test whether a super-resolved image from a single

acquisition can give a comparable result to a multi-view super-resolution

image reconstructed from three acquisitions. MR images of the tongue were

acquired from normal speakers and subjects who had tongue cancer surgically

resected (glossectomy). Scans were performed on a Siemens 3.0 T Tim Treo

system using an eight-channel head and neck coil. A T2-weighted Turbo Spin

Echo sequence with an echo train length of 12, TE = 62 ms, and TR = 2500 ms

was used. The field-of-view (FOV) was 240 × 240 mm with an image size of

256 × 256. Each dataset contained a sagittal, coronal, and axial stack of images

containing the tongue and surrounding structures. The image size for the

high-resolution MRI was 256 × 256 × z, where z ranges from 10 to 24, with

0.9375× 0.9375 mm in-plane resolution and 3 mm slice thickness. The datasets

were acquired at a rest position and the subjects were required to remain still

for 1.5–3 min for each orientation. For each subject, the three axial, sagittal,

and coronal acquisitions were interpolated onto a 0.9375× 0.9375× 0.9375 mm
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Figure 5.4: T2w MRI from a tongue tumor subject: Axial, sagittal, and coronal views
of the three acquisitions in axial, sagittal, and coronal planes (not registered). We show
the through-plane views of the resolved volumes with isotropic digital resolution
that result from cubic b-spline interpolation (blue boxes), JogSSR (red boxes), and our
SMORE(2D) (green boxes). The in-plane views are only shown with interpolation
results since they are already HR slices.
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Figure 5.5: Comparison between SMORE(2D) and multi-view reconstruction for
a tongue tumor subject: Axial, Sagittal, and Coronal views of the tongue region in
cubic b-spline interpolation and SMORE(2D) results for a single coronal acquisition,
and multi-view reconstructed image [31] using three acquisitions. The arrows point
out the bright looking scar tissue from a removed tumor.

digital grid and N4 corrected [94].

We applied both JogSSR and SMORE(3D) on single acquisitions to com-

pare to the multi-view super-resolution reconstruction. The multi-view recon-

struction algorithm we used for comparison is an improved version of the

algorithm described in Woo et al. [31]. This approach takes three interpolated

image volumes, aligns them using ANTs affine registration [118] and SyN
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deformable registration [119], and then uses a Markov random field image

restoration algorithm (with edge enhancement) to reconstruct a single HR

volume.

Tongue data with 0.9375 × 0.9375 mm in-plane resolution and 3 mm

through-plane resolution were acquired with in-plane view of axial, sagittal,

and coronal. They are shown in Fig. 5.4 on a 0.9375 × 0.9375 × 0.9375 mm

digital grid after both cubic b-spline interpolation (blue boxes) interpolation,

JogSSR (red boxes), and SMORE(2D) (green boxes). The in-plane views are

only shown for interpolation since they are already HR slices. In through-

plane views, SMORE(2D) always gives visually better results than both in-

terpolation and JogSSR. In particular, we can see the edges are sharper in

SMORE(2D) and no artificial structures are created.

A comparison of interpolation and SMORE(2D) (where each used only

the coronal image) and the multi-view reconstruction (which used all three

images) is shown in Fig 5.5. The arrows point out at the bright pathology

region—i.e., scar tissue formed after removing a tumor. We can see that

SMORE has visually better resolution than the interpolated image, but several

places within the multi-view reconstruction have visually better detail. On

the other hand, the pathology region in the multi-view reconstruction appears

to be somewhat degraded in appearance over both the SMORE(2D) and

interpolation result. We believe that this loss of features may be caused by

regional mis-registration between the three acquisitions.
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5.5 Application 4: brain ventricle parcellation

This experiment demonstrates the effect of super-resolution on brain ventricle

parcellation and labeling using the Ventricle Parcellation Network (VParNet)

described in Shao et al. [120]. In particular, we test whether super-resolved

images can give better VParNet results than images from either interpola-

tion or JogSSR. The data for this experiment are from an NPH data set con-

taining 95 T1-w MPRAGE MRIs (age range: 26–90 years with mean age of

44.54 years). They were acquired on a 3T Siemens scanner with scanner pa-

rameters: TR = 2110 ms, TE = 3.24 ms, FA = 8◦, TI = 1100 ms, and voxel size

of 0.859 × 0.859 × 0.9 mm. There are also 15 healthy controls from the Open

Access Series on Imaging Studies (OASIS) dataset involved in this experiment.

All the MRIs were interpolated to a 0.8 × 0.8 × 0.8 mm digital grid, and then

pre-processed using N4-bias correction [94], rigid registration to MNI 152 atlas

space [121], and skull-stripping [122].

VParNet was trained to parcellate the ventricular system of the human

brain into its four cavities: the left and right lateral ventricles (LLV and RLV),

and the third and the fourth ventricles. It was trained on 25 NPH subjects

and 15 healthy controls (not involved in the evaluations). In the original

experiment of Shao et al. [120], the remaining 70 NPH subjects were used for

testing. In this experiment, we downsampled the 70 NPH subject images first

so that we could study the impact of super-resolution. In order to remove

the impact of pre-processing, we downsampled the 70 pre-processed test

datasets instead of the raw datasets. In particular, we downsampled the data

to a resolution of 0.8 × 0.8 × 0.8r mm following a 2D acquisition protocol,
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where r is the through-plane to in-plane resolution ratio. The number of slices

in the HR images happens to be a prime number. Since the downsampled

images must have an integer number of slices, the downsample ratio r, which

is also the ratio between the numbers of slices in HR images and downsam-

pled images, must be a non-integer. In the experiment, we chose r to be

1.50625, 2.41, 3.765625, 4.82, and 6.025. The downsampled images have voxel

length (0.8r mm) in the z-axis of 1.205 mm, 1.928 mm, 3.0125 mm, 3.856 mm,

and 4.82 mm. To apply VParNet, which was trained on 0.8 × 0.8 × 0.8 mm

images, to these downsampled images, we used cubic b-spline interpolation,

JogSSR, and SMORE(2D) to produce images on a 0.8 × 0.8 × 0.8 mm digital

grid. These images were then used in the same trained VParNet to yield

ventricular parcellation results.

The HR NPH images have physical resolution in the z direction of 0.9 mm.

We used them as ground truth and evaluated the accuracy of super-resolved

images using the SSIM [111] and the PSNR within brain masks. As for the

ventricle parcellation performance, we evaluated the automated parcellation

results using manual delineations. We computed Dice coefficients [123] to

evaluate the parcellation accuracy of the same network on different super-

resolved and interpolated images. By comparing the parcellation accuracy,

we can evaluate how much improvement we get from SMORE(2D) compared

with interpolation.

Example images from an NPH subject, all reconstructed on a 0.8 × 0.8 ×

0.8 mm digital grid, are shown in Fig. 5.6. The LR image depicted using

cubic-bspline interpolation has resolution 0.8 × 0.8 × 3.856 mm LR while
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Figure 5.6: Coronal views of brain ventricle parcellation on an NPH subject: The
volumes with digital resolution of 0.8 × 0.8 × 0.8 mm that resolved from 0.8 × 0.8 ×
3.856 mm LR image using cubic-bspline interpolation, JogSSR, SMORE(2D), and the
interpolated 0.8 × 0.8 × 0.9 mm HR image. The patches in blue boxes are zoomed
in the second row to show details of the 4th ventricle. The last row shows the
VParNet [120] parcellation results and the manual labeling for the 4th ventricle.

the ground truth image has resolution 0.859 × 0.859 × 0.9 mm. The JogSSR

and SMORE(2D) results are also shown. To reveal more detail, the second

row shows zoomed images of the 4th ventricle, where the zoomed region is

shown using blue boxes in the first row. The VParNet [120] parcellations as

well as the manually delineated label of the 4th ventricle are shown using

purple voxels on the third row. Visually, of all the results derived from the LR

data, SMORE(2D) gives the best super-resolution and parcellation results. In

particular, the VParNet parcellation on the SMORE(2D) result is very close to

the VParNet on the HR image.

We also evaluated these results quantitatively. The mean values of SSIM
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and PSNR are shown in Table 5.2 3. We can see that the SR results from

SMORE(2D) always have better mean SSIM and PSNR than interpolation and

JogSSR. The Dice coefficient of the parcellation results of the four cavities (RLV,

LLV, 3rd, 4th) and the whole ventricular system are also shown in Table 5.2.

From the table, we can find that for example, VParNet on SMORE(2D) results

of thickness 4.82 mm is better than interpolation results of 3.856 mm, while the

later needs 56.25% longer scanning time. It shows the potential of reducing

scanning time by using SMORE. It also shows that acquiring HR images with

adequate SNR gives better parcellation results than LR images, even with

SMORE(2D) applied to improve spatial resolution. However, if the acquired

data are already limited to be anisotropic LR, which is common in clinical and

research, SMORE(2D) can give better parcellation than interpolation.

It also shows that acquiring HR images with adequate SNR gives better

parcellation results than LR images, even with SMORE(2D) applied to improve

spatial resolution. However, if the acquired data are already limited to be

anisotropic LR, which is common in clinical and research, SMORE(2D) can

give better parcellation than interpolation.

5.6 Discussion and Conclusions

In this chapter, we provided results of the self-supervised super-resolution (SSR)

algorithm, SMORE, applied to four different MRI datasets, and showed the

3Although a Wilcoxon signed-rank test was performed and reported in [45], we later
realized that the this statistic should not be used since we cannot prove the difference of
paired samples are distributed symmetrically, which is the assumption of Wilcoxon signed-
rank test. The correct test is a sign test, but we cannot carry this out as the original data have
been lost as of this writing.
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Table 5.2: Evaluation of brain ventricle parcellation on 70 NPH subjects.

Metrics Thickness Interp. JogSSR SMORE HR(0.9 mm)

SSIM

1.205 mm 0.9494 0.9507 0.9726 1
1.928 mm 0.9013 0.9106 0.9389
3.0125 mm 0.8290 0.8400 0.8893
3.856 mm 0.7677 0.7812 0.8387
4.82 mm 0.7003 0.7170 0.7817

PSNR

1.205 mm 35.0407 34.0472 39.5053

–
1.928 mm 31.9321 30.6444 35.7429
3.0125 mm 29.2785 27.4384 31.9878
3.856 mm 27.7562 25.7118 29.6050
4.82 mm 26.4127 24.2377 28.1593

Dice(RLV)

1.205 mm 0.9704 0.9705 0.9712 0.9715
1.928 mm 0.9678 0.9690 0.9706
3.0125 mm 0.9610 0.9635 0.9693
3.856 mm 0.9527 0.9578 0.9648
4.82 mm 0.9405 0.9498 0.9629

Dice(LLV)

1.205 mm 0.9710 0.9709 0.9715 0.9717
1.928 mm 0.9690 0.9693 0.9710
3.0125 mm 0.9638 0.9641 0.9699
3.856 mm 0.9571 0.9585 0.9663
4.82 mm 0.9469 0.9510 0.9638

Dice(3rd)

1.205 mm 0.9149 0.9149 0.9163 0.9174
1.928 mm 0.9095 0.9097 0.9141
3.0125 mm 0.8945 0.8940 0.9073
3.856 mm 0.8779 0.8761 0.8937
4.82 mm 0.8560 0.8545 0.8832

Dice(4th)

1.205 mm 0.8954 0.8941 0.8973 0.8983
1.928 mm 0.8891 0.8851 0.8947
3.0125 mm 0.8741 0.8657 0.8878
3.856 mm 0.8550 0.8463 0.8753
4.82 mm 0.8254 0.8216 0.8629

Dice(whole)

1.205 mm 0.9690 0.9690 0.9696 0.9699
1.928 mm 0.9665 0.9672 0.9690
3.0125 mm 0.9602 0.9614 0.9675
3.856 mm 0.9524 0.9552 0.9632
4.82 mm 0.9408 0.9470 0.9607

improved MRI resolution both visually and quantitatively. The methodol-

ogy of SMORE was introduced in the previous chapter. In this chapter, we

made important contributions about the utility of SMORE, and show that

SMORE can be reliably and widely used in practice. First, this chapter showed
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the application of SMORE on MR images produced from different pulse se-

quences, contrasts, and in different organs. To the best of our knowledge, no

other published deep-learning SR method has demonstrated improvement on

such diverse MRI data sets without training data. Second, we have demon-

strated how SMORE can improve segmentation accuracy and showed there

are quantifiable improvements from using SMORE in addition to the visual

improvements in image quality.

In this chapter, we demonstrated the application of SMORE in real scenar-

ios for MR images. First, we considered an important distinction between

general SR on natural images and SR on real acquired MR images. Although

the general SR problem has been discussed extensively in computer vision, the

common SR problem setting requires well-established LR/HR paired external

training data. In contrast to natural images, such external training data is

much more difficult to obtain for MR images. SMORE is an SSR algorithm

which requires no external training data; in other words, what it needs is

only the input subject image itself. This makes SMORE more applicable in a

real scenario. Second, SMORE works for a common type of MRI acquisitions

that have high in-plane resolution but low through-plane resolution (thick

slices). This type of MRI is widely acquired in clinical and research applica-

tions. The four experiments in this chapter were performed on four different

MRI datasets with three out of them being real acquired LR datasets. From a

visual comparison, we find that SMORE enhances edges but does not create

structures out of nothing; this reduces the risk of wrongly altering anatomical

structures. Finally, the experiment in Sec. 5.5 showed that SMORE is not only
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visually appealing, but it also gives quantitative improvements in SSIM and

PSNR. More importantly, applying SMORE as a preprocessing step improves

ventricular segmentation accuracy on this brain MRI dataset. Furthermore,

we note that sometimes lower resolution images processed with SMORE yield

better segmentation results than those from higher resolution images pro-

cessed with interpolation. This suggests that SMORE post-processing may

allow shorter scan times.

There are several limitations when using SMORE. First, the algorithm is

based on the assumption that the in-plane slices are high resolution images.

This assumption neglects the fact that these in-plane slices are thick. Bad

through-plane resolution will make the in-plane blurry. Second, the CNN

used in SMORE is 2D, which cannot guarantee slice consistency. These two

issues are addressed in Chapter 6.

There are other limitations of SMORE that are not addressed in this thesis.

First, SMORE is not robust to motion artifacts. Such artifacts in MRI tend to

appear as high-frequency arcs, which can actually be accentuated by SMORE.

Preprocessing to reduce these artifacts could offer one approach to permit use

of SMORE in these cases. Second, both SMORE(2D) and SMORE(3D) require

knowledge of h(x), the point spread function (or slice profile), which may not

be known accurately in some cases. Third, we did not apply SMORE(2D) on

MR data with slice separation different from slice thickness. Thus SMORE(2D)

may not be reliable on such data. In addition, the best resolution that can

be achieved by SMORE is limited to the in-plane resolution. Because of

this, for example, SMORE cannot be used to enhance images that have been
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acquired with isotropic resolution. Also, SMORE does not consider cases

where resolution differs in three orientations. Future work may address these

issues.

In conclusion, SMORE produces results that are not only visually appeal-

ing, but also more accurate than interpolation. More importantly, applying it

as a preprocessing step can improve segmentation accuracy. Our SMORE re-

sults were obtained without collecting any external training data. This makes

SMORE a useful preprocessing step in many MRI analysis tasks.
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Chapter 6

iSMORE: an iterative framework of
SMORE

6.1 Introduction

In the previous chapter, we explored four applications of SMORE and showed

that SMORE brings substantial improvement compared to interpolation.

SMORE and other self-supervised super-resolution (SSR) methods, such as the

one introduced by Weigert et al. [105], assume that the in-plane slices of the

subject image are HR and can therefore be used as HR training data. However,

this assumption does not quite hold up to close scrutiny. To explain, consider

a thick in-plane slice. Although it has the appearance of HR, it does suffer

from through-plane blurring. Edges that pass through the slice orthogonally

will appear to be sharp while edges that pass through obliquely will appear

to be blurry. An example can be found in Fig. 5.1. In this figure, although the

axial plane is considered as HR in-plane, we can see that the axial slice of the

subject image suffers from through-plane blurring, especially near the ventri-

cles. This is because the thick in-plane slices can be considered as averaged
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HR thin slices, and the averaging brings blurring. Training on thick slices

is equivalent to training on averaged true HR images, which is suboptimal.

Therefore, using these blurred in-plane slices as HR training data will degrade

the performance of the SSR algorithm.

Another issue with the previous CNN-based SSR methods including

SMORE is that they all use a 2D CNN on 3D volumes. We know that a

2D CNN cannot guarantee slice consistency. This is especially important

for 2D acquisition protocols, i.e., when images are acquired in 2D and then

stacked into 3D volumes. Such 2D acquisitions may not have good slice con-

sistency at the outset, and applying a 2D CNN on them can only make the

slice consistency worse. For these 2D protocols, a 3D CNN is preferred, yet

this has not been reported for SSR.

The third issue is that the previous SSR methods are only applied in a single

image modality with no guidance on how to modify them for other modal-

ities. Weigert et al. [105] developed a method for confocal and light-sheet

microscopy data of cells. The SSR method in Jog et al. [102] and SMORE(3D)

were developed for MRI acquired from 3D protocols, while SMORE(2D) was

developed for MRI acquired from 2D protocols.

This chapter describes an extension to SMORE called iSMORE. The chapter

describes its four major contributions: 1) an iterative SSR framework, 2) a

new 3D CNN for SSR, 3) a new loss function and noise reduction, 4) the appli-

cation to two image modalities including MRI and two-photon fluorescence

microscopy.
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6.2 Method

6.2.1 2D iSMORE

A workflow for the iterative framework of iSMORE is shown in Fig. 6.1(a).

Consider an input image g(x, y, z) with anisotropic spatial resolution—i.e,

three full-width-half-maxima (FWHM) of the point spread function—of a ×

a × b, with a < b, and let the HR in-plane directions be x and y and the LR

through-plane direction be z. Our goal is to restore an HR image f with

resolution a × a × a. Traditional SSR methods extract in-plane (xy-plane)

slices with resolution a × a from input image g, which are considered by these

methods to be HR data, apply a point spread function (PSF) which mimics

the mechanism of LR in the through-plane direction, and simulate LR data

with resolution b × a from these HR data with resolution a × a. The LR/HR

pairs are used as training data for super-resolution (SR) networks. The trained

SR networks are then applied to LR zx-plane slices with resolution b × a to

restore HR at (ideally) a × a. Finally, the super-resolved zx-plane slices are

stacked in y-axis into a 3D volume, which is the SSR result f1. This SMORE

SSR procedure is the first iteration in iSMORE.

For input image g, the thick in-plane slices are actually blurred, so they

are not perfect training data. On the other hand, the SSR result f1 has thinner

slices. Thus, f1 has better through-plane resolution than input image g, and

serves as better training data than g. Taking in-plane slices from f1 as HR

training data, we subsequently fine-tune (in the training sense) the SR network.

The fine-tuned network is then applied to input g as in the first iteration, and
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(a)

(b)

Figure 6.1: (a) The framework of iSMORE. The sequence of super-resolution net-
works (SR) are trained on the SSR result from the previous iteration, and SR is always
applied to the input data.(b) Architecture of 3D EDSR.

the SSR result f2. We iteratively perform these steps until the stop condition is

met.

We use SMORE as our baseline SSR method and apply our 2D iterative

framework to the SMORE result, yielding 2D iSMORE. Data augmentation

for training includes flipping and rotation except for the rotation of 90◦ which

is only used for validation to avoid overfitting.

6.2.2 3D iSMORE and a new 3D network

It is problematic to directly train a 3D network to perform SSR. If we degrade

the input image g into an LR image with resolution b × a × b, and train a 3D

network to learn the mapping from the degraded LR image with resolution

b × a × b to g with resolution a × a × b, then it is wrong to apply the network

to the rotated input image g with resolution b × a × a because this resolution

does not match the LR training data with resolution b × a × b. This is the main

reason that the previous CNN-based SSR methods all use 2D CNNs instead
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of 3D CNNs.

We note that current SSR methods including SMORE give a result f1

which has improved through-plane resolution. Now let us assume that f1 has

resolution a × a × c, with c ≈ a. Then in the second iteration, we degrade f1

into an image with resolution b × a × c and train a 3D network that learns the

mapping from the image with resolution b × a × c to image with resolution

a × a × c. The network is applied to a rotated input image g with resolution

b × a × a. Although a and c are not exactly the same, we believe that the

trained network can tolerate this inconsistency since c ≈ a. We iteratively

perform these steps until the the maximum iteration number is met.

In this 3D iterative framework, the first iteration is SMORE using 2D

networks, while the subsequent iterations use 3D networks. We designed a 3D

EDSR style network, with the architecture shown in Fig. 6.1(b). Since only the

first dimension is LR, making all the convolutional kernels to be 3 × 3 × 3 is a

waste of parameters. We therefore only use 3 × 3 × 3 kernels in the beginning

and the end, while the repeated residual blocks contain 3× 3× 1 and 3× 1× 3

kernels. The number of features is 256 as in 2D EDSR. Since 3D networks are

more data hungry than 2D networks, we use reflection padding instead of

zero padding for convolution to make good use of small training patches.

6.2.3 Modifications for MRI and Two-photon Fluorescence
Microscopy

The choice of 2D iSMORE or 3D iSMORE depends on the data. 3D iSMORE

uses a 3D CNN, which better preserves slice consistency yet is very time
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consuming to train and test. 2D iSMORE on the other hand, saves time and

is less prone to overfitting since 2D CNNs are not as data hungry as 3D

CNNs. For MRI and two-photon fluorescence microscopy, we made different

modifications to iSMORE.

MRI: SMORE(3D) and SMORE(2D) are SSR methods designed for MRI ac-

quired from 3D and 2D protocols. 3D MRI protocols acquire data in 3D Fourier

space while 2D MRI protocols acquire data in 2D Fourier space (after slice

selection). 3D MRI requires an inverse 3D Fourier transform for reconstruction

while 2D MRI requires a set of inverse 2D Fourier transforms for 2D slices

which are then stacked to form a 3D volume. For MRI data acquired from

3D and 2D protocols, we use the corresponding SMORE as our baseline SSR

method, and apply our iterative framework on the SMORE result, yielding

iSMORE.

For further improvement, we made another modification to SMORE. The

original method uses L1 loss ∑x | f (x)− f̂ (x)| to train the CNN to perform SR,

with x being the coordinates, f̂ being the output of the network, and f being

the ground truth images. Here, we use Sobel filters to compute edge maps

in each dimension of images f̂ and f , and define a Sobel edge loss function

|Sobel ◦ f (x)− Sobel ◦ f̂ (x)|, which is previously used in Bei et al. [124] for

2D natural image super-resolution. This loss can emphasize the edges, which

are what we want to enhance most. The final loss function we here used

is ∑x | f (x)− f̂ (x)|+ w|Sobel ◦ f (x)− Sobel ◦ f̂ (x)|, with weight w = 1. We

demonstrate the effect of Sobel loss in Sec. 6.3.1. In this chapter, we only

empirically choose w = 1. Future work may explore its effect.
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Two-photon Fluorescence Microscopy: Two-photon fluorescence microscopy

data are acquired in 2D, and then stacked into 3D volumes, which is a similar

strategy as MRI acquired from 2D protocols. Thus we use SMORE(2D) as the

baseline method, but we make two modifications. First, the spatial resolution

(defined as the FWHM of the PSF) in the z-axis of two-photon fluorescence

microscopy data is affected by the optical setting and imaging parameters.

Ideally, when the laser is perfectly focused, the PSF can be specified in closed

form, which depends on the numerical aperture (NA) of the optical system

and the wavelength of the laser used [125]1. However, in reality, the laser is

very difficult to be perfectly focused. Even if the laser is perfectly focused,

it is only perfect for a certain depth z. Thus the ideal PSF is unachievable.

Fortunately, we know that the orthogonal cross-section of the vessels are

close to isotropic circles, and the true isotropic HR image should have the

same property. Taking advantage of this fact, we can manually estimate the

FWHM of the PSF from those enlongated orthogonal cross-sections in the

subject image by computing the fraction between the width and height of

these cross-sections. We model the PSF along the z-axis as Asinc(βz/4)4 [125],

with β computed from the estimated FWHM.

Second, two-photon fluorescence microscopy data have a much higher

noise level than MRI. An example is shown in the first column of Fig. 6.3. SR

networks sharpen edges but also emphasize noise. To prevent further noise

amplification, we add noise to the LR training data but not to the HR data,

thus forcing the network to perform resolution enhancement and denoising
1The 3D PSF model for a perfectly focused two-photon fluorescence microscopy is

complicated. Yet on the z-axis, PSF(0, 0, z) is modeled as Asinc(u/4)4, with optical unit
u = 8πn

λ sin2( α
2 )z. n is refractive index, λ is the wavelength, α is the beam conus angle. [125]
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at the same time. The noise we add contains both Poisson noise and speckle

noise to mimic the noise seen in the LR subject image without noise reduction.

Poisson noise is also called shot noise, which is due to the quantum nature

of light. Poisson noise is considered in some literature to be the dominating

noise source in fluorescence microscopy [126]. However, we found that adding

Poisson noise to training data is not adequate to denoise the images. So we

considered adding other type of noise source, such as speckle noise. Speckle

noise [127] results from the reflection of coherent lights at rough surfaces. The

level of speckle noise depends on the imaged object. We tried different levels

of speckle noise, and empirically chose one for this microscopy data.

For the two-photon fluorescence microscopy data, we use a 3D network.

The two-photon fluorescence microscopy we are studying contains a large

number of vessels that pass through planes. For such data, results from

CARE [105] and SMORE both show that a 2D network cannot guarantee slice

consistency and is not able to capture enough 3D information. An example

is shown in Fig. 6.3. Therefore, we use 3D iSMORE applied to the denoised

version of SMORE(2D). The 3D network uses the 3D Sobel edge loss2.

6.2.4 Comparison between SMORE and iSMORE

The comparison between SMORE and iSMORE is shown in Table 6.1, and

explained below.

• The first iteration of iSMORE, i.e. iSMOREi=1, is modified SMORE. The

difference between SMORE and iSMOREi=1 is the Sobel edge loss. For

2Code is available in https://github.com/volcanofly/tf_Sobel_edge_3D
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noisy data like microscopy, iSMOREi=1 has an additional denoising

module.

• The difference between iSMOREi=1 and iSMOREi>1 is the iterative

framework shown in Fig. 6.1(a).

• The difference between 2D iSMOREi>1 and 3D iSMOREi>1 is the re-

trained network architecture.

• For 3D iSMORE, the first iteration is modified SMORE using 2D network,

while the remaining iterations use a 3D network.

Table 6.1: Comparison of SMORE and iSMORE

Subject image acquisition protocol Network Loss Denoise iterative
SMORE(2D) acquired as 2D, stack to 3D 2D L1 No No
SMORE(3D) acquired in 3D k-space 2D L1 No No
2D iSMOREi=1 same with corresponding SMORE 2D L1 + edge Optional No
2D iSMOREi>1 same with corresponding SMORE 2D L1 + edge Optional Yes
3D iSMOREi=1 same with corresponding SMORE 2D L1 + edge Optional No
3D iSMOREi>1 same with corresponding SMORE 3D L1 + edge Optional Yes

6.3 Experiments

6.3.1 2D iSMORE on MRI from 3D protocols

We compare 2D iSMORE (iSMORE using 2D network) to the original SMORE

using MRI downsampled following 3D protocols. The ground truth HR

images are T2-weighted images from 14 multiple sclerosis subjects imaged on

a 3T Philips Achieva scanner with acquired resolution of 1 × 1 × 1 mm. The

high frequency signals in the z-axis are completely zeroed out to simulate 3D

protocols. An additional Fermi filter is applied to simulate an anti-ringing filter.
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The blurred LR images have resolution 1 × 1 × r mm, where r = {2, 3, . . . , 6}.

They are used as input images for methods including zero filling interpolation,

SMORE(3D), and 2D iSMORE.

We computed the peak signal to noise ratio (PSNR) and the structural

similarity (SSIM) for the results of these methods using the ground truth HR

images as references. The mean values are shown in Table. 6.2. We see that

the both the Sobel edge loss and the iterative strategy of iSMORE always

improves the mean SSIM and PSNR 3.

Table 6.2: Quantitative evaluations for iSMORE using 2D network on MRI from
3D protocols: PSNR and SSIM evaluation on fourteen 1 × 1 × r mm T2-w subjects
down- sampled from 1 × 1 × 1 mm MRI acquired with 3D protocols with different
ratio r. We compare the SSIM/PSNR of results from zero filling interpolation, original
SMORE, iSMORE using 2D network after iteration from i=1 and i=5.

interp. SMORE iSMOREi=1 iSMOREi=5
Network - 2D 2D 2D
Sobel edge loss - No Yes Yes
Denoise - No No No
Iterative - No No Yes

PSNR

r = 2 35.9028 38.1731 38.4205 38.5536
r = 3 32.0577 34.2162 34.3696 34.5477
r = 4 29.9575 31.9099 32.0198 32.2273
r = 5 28.6226 30.4116 30.5206 30.6989
r = 6 27.6569 29.1900 29.3343 29.5421

SSIM

r = 2 0.9377 0.9510 0.9534 0.9542
r = 3 0.8638 0.8990 0.9021 0.9041
r = 4 0.7881 0.8394 0.8432 0.8461
r = 5 0.7224 0.7863 0.7903 0.7940
r = 6 0.6643 0.7379 0.7380 0.7414

In Fig. 6.2, we show the ratios between iSMOREi and iSMOREi=1 for the

first five iterations of iSMORE. We see that the largest improvement happens

3Although a Wilcoxon signed-rank test was performed and reported in [46], we later
realized that the this statistic should not be used since we cannot prove the difference of
paired samples are distributed symmetrically, which is the assumption of Wilcoxon signed-
rank test. The correct test is a sign test, but we cannot carry this out as the original data have
been lost as of this writing.
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Figure 6.2: The ratio of PSNR/SSIM between iSMORE with i = 1, 2, 3, 4, 5 and i = 1.
The experiment setting is same as Table 6.2.

between i = 1 and i = 2. If computational time is of concern, then i = 2 is

a good choice. Another finding is that generally the improvement from the

iterative framework is larger when the LR factor r is larger. This finding is not

strict, yet holds true in general. A third observation is that improvement in

PSNR is larger than that of SSIM. This might come from the fact that the first

step in computing the SSIM is to apply a Gaussian filter, which degrades the

details.

6.3.2 3D iSMORE on Two-photon Fluorescence Microscopy

We used serial two-photon tomography (STPT) to image brain blood vessel

images at cellular resolution in mice. The data was acquired by Dr. Seoyoung

Son and Dr. Yongsoo Kim from Penn State University. To label blood ves-

sels, a mouse was transcardially perfused with 0.9% saline followed by 4%

paraformaldehyde and a Fluorescein isothiocyanate (FITC)-albumin conju-

gated gel. Detailed information about STPT imaging was described in Ragan
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et al. [128]. Briefly, the brain was embedded in 4% oxidized agarose and

the embedded brain was placed on the motorized stage in tissuecyte 1000

(Tissuevision). The brain was imaged at 1 µm (xy-plane) resolution with 5 µm

z-axis increment for 200 µm thickness.

In Fig. 6.3, we show the original LR image, and the results of cubic b-

spline interpolation (BSP), Content-AwaRE image restoration (CARE) [105]

and SMORE(2D) with estimated z-axis FWHM of 15µm, the denoised ver-

sion of SMORE(2D), and the proposed 3D iSMORE after the third iteration.

CARE [105] is an SSR tool designed for fluorescence microscopy with a de-

noise option, and has publicly available code. Compared with the original

LR image, the BSP result is less noisy and blurry. The CARE result is sharp

and relatively clean, yet many cross-sections of vessels in that result are not

ellipses, which implies that CARE contains sharp artifacts. The SMORE result

is much sharper than BSP, but is very noisy. The denoised version of SMORE

assumes Poisson noise and 30% speckle noise as described in Sec. 6.2.3, yield-

ing a result with much less noise, which forms our iSMOREi=1. The result of

the proposed 3D iSMOREi=3 has vessels with more isotropic cross-sections,

and contains the fewest artifacts in this comparison.

It is very difficult to obtain isotropic HR ground truth for STPT data

since acquiring data with an isotropic PSF is generally not possible. Thus,

metrics like SSIM and PSNR are not available. In order to show iSMORE’s

overall performance in the 3D volume, we performed maximum intensity

projection (MIP) on three planes, as shown in Fig 6.4. Visually, the MIP of

the proposed method iSMORE looks the most isotropic and clear. CARE also
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Figure 6.3: Views from three orthogonal planes of the original LR image, the cubic
B-spline (BSP) interpolated image, result of CARE [105], SMORE(2D), our denoised
version of SMORE(2D) which is also the first iteration of iSMORE, and our proposed
3D iSMORE with i = 3.

provides a good MIP, yet the artifacts shown in Fig. 6.3 cannot be ignored.

6.4 Conclusion and Discussion

In this chapter, we described 2D and 3D iSMORE, an iterative framework

built upon the SMORE method. The comparison between the methodologies

of iSMORE and SMORE is shown in Table. 6.1. The idea behind iSMORE is

that thick in-plane slices are not as good as thin slices in training. Using this

idea, iSMORE improves the performance of SMORE. And more importantly,

it enables a 3D network, which solves the slice consistency issue raised by 2D

networks used by previous SSR methods.

There are some limitations of iSMORE that we would like to discuss. First,
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Figure 6.4: Maximum intensity projection (MIP) on three orthogonal planes of the
original LR image, the cubic B-spline (BSP) interpolated image, result of CARE [105],
SMORE(2D), our denoise version of SMORE(2D) which is also the first iteration of
iSMORE, and our proposed 3D iSMORE with i = 3.

it might be confusing that we use 2D iSMORE for images with 3D protocols,

while using 3D iSMORE for images with 2D protocols. To clarify, 2D/3D

protocols describe the MRI acquisition method used and are not the same as

2D/3D iSMORE, where 2D/3D describes the 2D/3D CNN used. Although 3D

iSMORE preserves slice consistency, 2D iSMORE uses a 2D CNN, is easier to

train, and saves time. One more iteration takes about 20 mins for 2D iSMORE,

and more than 1 hour for 3D iSMORE on microscopy data. Images acquired

with 3D protocols already have good slice consistency, so 2D iSMORE is able

to handle them. For images acquired with 2D protocols, slice consistency is

more of a concern. Thus, 3D iSMORE is a better choice in this case, however

it requires a larger computation time. Second, the number of iterations of

iSMORE that we used was manually set. To clarify, due to computation time,

118



we do not recommend a large number of iterations. From Fig. 6.2, we found

that mean SSIM/PSNR increase monotonically as iteration i increases from

1 to 5. However, we only recommend using of i = 2 for this dataset since

time increases linearly with i. For microscopy data, we use i = 3 since the

improvement between the 2nd and 3rd iteration is still large. Future work will

include the development of a method for choosing i. Finally, one might be

concerned that a large number of iterations might bring overfitting or artifacts.

However, from our experiment whose results are shown in Fig. 6.2, both

SSIM/PSNR increase with iteration count. Moreover, from Fig. 6.3, we see

that iSMORE with i = 3 has better cross-sectional shapes and fewer artifacts

than iSMORE with i = 1 and CARE.

In summary, in this chapter we described a new algorithm called iSMORE.

We evaluated this algorithm both quantitatively and qualitatively, and applied

it on both downsampled and real acquired low resolution medical images

with two very different modalities. We applied iSMORE to downsampled

MR images with ground truth HR images to evaluate its accuracy with SSIM

and PSNR. The results from Table 6.2 show that both Sobel edge loss and

the iterative framework can improve the accuracy in MRI. Furthermore, we

adjusted iSMORE to be applied in real two-photon fluorescence microscopy

data which have a higher noise level. The result and its maximum intensity

projection on three orthogonal planes are visually more isotropic, the vessels

are visually clearer and easier to track than the original SMORE. Future work

will include a deeper exploration on the parameters used in this algorithm as

well as a comparison on different network architectures.
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Chapter 7

Discussion, Conclusions, and
Future Work

7.1 Summary

In this thesis, we described one algorithm for image modality synthesis and

two algorithms for image resolution enhancement. In Chapter 3, we discussed

our CNN-based CT-to-MR image synthesis algorithm. Then we described

our SSR algorithm SMORE for MRI acquired with 3D and 2D protocols in

Chapter 4, and its applications on various MR images in Chapter 5. Finally, in

Chapter 6, we described an extension of SMORE — the iterative framework

iSMORE — as well as its application on two-photon fluorescence microscopy

images. In this chapter, we summarize what we have learned and discuss

possible improvements in the future.
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7.2 Image Modality Synthesis

7.2.1 Key Points and Results

• The CT-to-MR synthesis we developed is based on the CNN machine

learning methodology. As the first CNN-based CT-to-MR synthesis

algorithm published in 2017, it refutes the pessimistic assertion about

CNN-based CT-to-MR synthesis [23], and shows that it is not only possi-

ble but it can be done with sufficient quality to open up new clinical and

scientific opportunities in neuroimaging.

• This is the first work to provide grey matter anatomical labels on a

CT neuroimage. Through image modality synthesis, this algorithm

synthesized MR from CT, converts CT-MR multi-modal registration

problem into MR-MR mono-modal registration, and thus significantly

improves multi-atlas segmentation, which is based on registration.

7.2.2 Future Work

• As an early exploration, this work used a modified 2D U-net as the

neural network architecture. More recent work like attention network,

adversial loss, perceptual loss, semi-supervised learning, self-supervised

learning, and meta-learning can be explored to improve the synthesis

results.

• MRI data have various contrasts. Developing algorithms that can handle

such MRI data is a very practical problem, and can be considered in

future work.
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• The possible misregistration between paired CT/MR training data may

require newly designed networks that are robust to such imperfect

training data.

• This work is based on a 2D network, which has the issue of slice con-

sistency. A 3D network can keep slice consistency yet requires a large

amount of training data. Future work includes developing a few-shot

CNN algorithm that does not have slice consistency issue and does not

need a large amount of training data.

• This work demonstrates how image synthesis improves multi-atlas seg-

mentation. Future work may explore its applications in other tasks, such

as direct CNN-based segmentation, CNN-based registration, computer

aided diagnosis, etc.

7.3 Image Resolution Enhancement Method SMORE
and iSMORE

7.3.1 Key Points and Results

• SMORE and iSMORE improve through-plane resolution of subject im-

ages without using any high-resolution images as training data. The

main difference is that iSMORE is an iterative extension of SMORE.

Compared with SMORE, iSMORE gives a small but significant improve-

ment on MRI as measured by SSIM/PSNR, and visually much better

performance on a real two-photon fluorescence microscopy data.

• SMORE is not an algorithm that simply replaces a traditional regressor
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with a deep network. It is the first self-supervised super-resolution

method that takes MRI 2D and 3D acquisition models into consideration.

Its good performance is based on the understanding of the underlying

models of MRI acquisition.

• Several advantages of SMORE make it easy to be applied. The biggest

advantage of SMORE is the fact that SMORE does not need external

training data. Second, SMORE needs no preprocessing step other than

N4 inhomogeneity correction [94]. Third, extensive parameter tuning

is not required for SMORE. All these properties are desirable for easy

application to new MRI datasets.

• Because of the advantages described above, we easily demonstrated the

four applications of SMORE in real world scenarios for MR images in

Chapter 5, including a quantitative experiment on segmentation. To the

best of our knowledge, no other published deep-learning SR method

has demonstrated improvement on such diverse MRI data sets without

training data.

7.3.2 Future Work

• iSMORE for two-photon fluorescence microscopy is not as mature as

SMORE on MRI. It has only been tested on a small amount of data, and

requires further efforts to make it robust on various datasets.

• iSMORE requires manual specification of the blur model and noise level

of two-photon fluorescence microscopy data. Future work should make

123



this step fully automatic.

7.4 Concluding Thoughts

Deep learning has dominated medical image research in the past few years. It

outperforms previous methods in many tasks. However, the performance of

a deep network largely relies on training data. This drawback cannot be ne-

glected especially in medical imaging since high quality data is more difficult

to obtain than in natural images. An ideal set of training data should have

high resolution and similar contrast as the testing data. This is a requirement

not only in the case of deep networks, but is also desired for visualization and

registration.

In this thesis, we have presented one algorithm for image modality synthe-

sis and two algorithms for image resolution enhancement. The goal of this

work was to develop image synthesis and resolution enhancement algorithms

as effective preprocessing tools both for visual quality and for automatic med-

ical image analysis methods such as registration or segmentation. We have

shown that our image synthesis algorithm does improve registration-based

segmentation, and our resolution enhancement algorithms do provide visual

enhancement and improve CNN-based segmentation.

Our hope is that researchers find these tools worth using as preprocessing

steps. Particularly, we would like to make SMORE more user-friendly and

available to the community for research purposes. In the long term, SMORE

has the potential to be included in the MRI scanner firmware due to its easy
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application when the image acquisition parameters are known. As a CNN-

based method, it gives excellent results yet does not require the availability of

high-resolution training data and thus does not involve privacy issues with

patient information. A patent on SMORE has been filed. We hope the usage

of SMORE can benefit researchers, doctors, and patients in the future.
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Appendix A

A supervoxel-based random forest
framework for bidirectional
MR/CT synthesis

Abstract

Synthesizing magnetic resonance (MR) and computed tomography (CT) im-

ages (from each other) has important implications for clinical neuroimaging.

The MR to CT direction is critical for MRI-based radiotherapy planning and

dose computation, whereas the CT to MR direction can provide an economic

alternative to real MRI for image processing tasks. Additionally, synthesis in

both directions can enhance MR/CT multi-modal image registration. Existing

approaches have focused on synthesizing CT from MR. In this appendix, we

propose a multi-atlas based hybrid method to synthesize T1-weighted MR im-

ages from CT and CT images from T1-weighted MR images using a common

framework. The task is carried out by: (a) computing a label field based on

supervoxels for the subject image using joint label fusion; (b) correcting this

result using a random forest classifier (RF-C); (c) spatial smoothing using a
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Markov random field; (d) synthesizing intensities using a set of RF regressors,

one trained for each label. The algorithm was evaluated using a set of six

registered CT and MR image pairs of the whole head.

A.1 Introduction

Synthesizing computed tomography (CT) images from magnetic resonance

(MR) images has proven useful in positron emission tomography (PET)-MR

image reconstruction [129, 1] and in radiation therapy planning [130]. To over-

come the lack of a strong MR signal in bone, one method [129] used specialized

MR pulse sequences and another method [1] used multi-atlas registration with

paired CT-MR atlas images. The synthesis of MR images from CT images

is a new challenge that has not been reported until very recently [23, 131].

Potential uses for this process include 1) intraoperative imaging where visual-

ization of soft tissue from cone-beam CT could be enhanced by generation of

a synthetic MR image and 2) in multi-modal registration where use of both

modalities can improve the accuracy of registration [132, 133]. The difficulty

in CT-to-MR synthesis is the lack of a strong soft-tissue contrast in the source

CT images. Given the duality that appears between these tasks, we have

discovered a core organizing principle for bi-directional image synthesis and

developed a new image synthesis approach.

To synthesize CT images from MR images, Burgos et al. [1] used multiple

CT/MR atlas pairs, wherein the atlas MR images are deformably registered

to the target MR image. The transformations are then applied to the atlas

CT images and fused to form a single CT intensity. Although this approach
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can also be used to synthesize MR from CT, some degree of blurring can be

expected due to the inaccuracies in registration due to poor soft-tissue contrast

in the CT images. Machine-learning approaches that have been developed

for image synthesis (cf. [9, 24]) can also be used for synthesizing MR from

CT; but image patches by themselves do not contain sufficient information to

distinguish tissue types without additional information about the location of

the patches.

Image segmentation has long been used for image synthesis [16]. If the

tissue type and physical properties are known, then given the forward model

of the imaging modality, the corresponding tissue intensity can be estimated.

However, in our framework, segmented regions are used to provide context

wherein synthesis can be carried out through a set of learned regressions that

relate the intensities of the input modality to those of the target modality. We

demonstrate synthesis in both directions, MR to CT and CT to MR, using our

method.

A.2 Methods

Given a subject image of modality 1 (M1), denoted by IM1, our goal is to

synthesize an image of modality 2 (M2), denoted by ÎM2. To achieve this goal,

we have a multi-atlas set, A = {(AM1
n , AM2

n )| n = 1, ..., N}, which contains

N pairs of co-registered images of M1 and M2. An example of an atlas pair,

where M1 is CT and M2 is MR (T1-weighted) is depicted in Fig. A.1(a). The

two intensities in atlas image pairs are examples of possible synthetic values,

when synthesizing in either direction. It is well known that this relationship is
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Figure A.1: (a) Two CT/MR atlas pairs; (b) result of SLIC over-segmentation; (c) k-
means clustering of supervoxels yields a z-field image; (d) training of 2 × K RF
regressors; (e) RF-Cs trained to estimate z-fields from single modalities; and (f) com-
putation of pairwise potentials for a MRF.

not a bijection; given an intensity in M1 there may be multiple corresponding

intensities in M2. However, given a particular tissue (e.g., white matter)

the relationship is less ambiguous. We carry out a segmentation on the atlas

images that divides them into distinct regions characterized by different paired

intensities. Paired intensities from these regions are then used to train separate

regressors that predict one modality from the other given the tissue class.

We start with the atlas image set A. Each pair of atlas images is processed

using the following steps with the eventual goal of learning regressions that

predict the target modality given the input modality. The first step is a su-

pervoxel over-segmentation process using a 3D version of the simple linear
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iterative clustering (SLIC) method [134] wherein the intensity feature space

comprises the M1 and M2 intensity pairs. A result of SLIC on two atlas pairs

is shown in Fig. A.1(b). Multichannel k-means and fuzzy k-means have been

previously used for tissue classification in neuroimaging [135]. However, it is

difficult to obtain spatially contiguous regions using these simple methods.

Super-voxel over-segmentation provides us with spatially contiguous regions

that have homogeneous intensities.

We combine these homogeneous intensity regions by clustering them on

the basis of their average supervoxel intensities taken jointly from both M1

and M2. These are clustered using the k-means clustering algorithm, which

yields supervoxels that are labeled as z = 1, 2, . . . , K. The voxels forming each

supervoxel inherit the cluster label of the supervoxel and therefore yield an

image of labels, which we call the z-field. Two examples of z-fields are shown

in Fig. A.1(c), where each label in the z-field is shown using a different color.

A random selection of intensity pairs are plotted in the center of Fig. A.1(c)

(CT/MR on the horizontal/vertical axis), and colored by the z-field. These

intensity pairs and their voxel-wise features, along with their labels provide

the training data for regressors that predict the intensity of the target modality

given the features of the input modality. Our features consist of 3× 3× 3 image

patches together with average image values in patches forming a constellation

around the given voxel (“context features” similar to those in [136, 10]). We

need 2 × K regressors, one each per modality and cluster. For each label z,

we extract features from M1 images and pair them with corresponding M2

intensities. This acts as the training data set for a random forest (RF) regressor.
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The training step is depicted in Figure A.1(d).

Given the subject image IM1 and the corresponding z-field that labels its

voxels, we can apply the corresponding regressor based on the z value at

that voxel to predict the synthetic M2 intensity in image ÎM2. Thus, we next

describe how to estimate the z-field for the subject image. The z-field of IM1

is estimated by fusing two approaches. First, we predict an estimate of the

z-field directly from the same image features that were noted above using a

random forest classifier (RF-C). Shown in Fig. A.1(e), are two random forests

designed to synthesize K labels from either M1 or M2, which are trained in

analogous fashion to the RF regressors described above. A second estimate

of the z-field is generated using a multi-atlas segmentation. In this case,

we augment the atlases to include the z-fields found using the supervoxel

clustering approach (essentially augmenting the image pairs in Fig. A.1(a)

with the label fields in Fig. A.1(c)), deformably register every atlas pair to IM1,

apply the learned transformations to the corresponding z-fields, and combine

the labels using joint label fusion (JLF) [84]. The registration between IM1 and

the atlas pair uses a two-channel approach in which the first channel uses the

cross-correlation metric between IM1 and AM1 and the second channel uses

the mutual information metric between IM1 and AM2.

We now have two estimates of the z-field for IM1, ẑRF-C and ẑJLF, each pro-

viding a probability for each label at each voxel, PRF-C(z) and PJLF(z). Our

experiments reveal that the RF-C yields inferior results in regions where inten-

sities of the labels are ambiguous, while the JLF yields inferior results in areas

where the registration is not accurate. We choose the label that maximizes the
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product of their probabilities at each voxel with a MRF spatial regularization.

Using a conventional MRF framework, we define the estimated z-field,

ẑ = arg min
z(i)

∑
i

Eunary
(︁
z(i)

)︁
+ ∑

i,j
Epair

(︁
z(i), z(j)

)︁
, (A.1)

where Eunary
(︁
z(i)

)︁
is the unary potential for voxel i and Epair

(︁
z(i), z(j)

)︁
is the

pairwise potential for adjacent (6-connected) voxels i and j. Since this energy

will be used in a Gibbs distribution, the unary potential is defined as follows

Eunary
(︁
z(i)

)︁
= − log PRF−C

(︁
z(i)

)︁
− log PJLF

(︁
z(i)

)︁
(A.2)

which yields the desired product of probabilities as the driving objective

function for assigning labels to voxels.

Although the Potts model is often used in multi-label MRF models [137]—

this is the model in which different labels have unity cost and similar labels

have zero cost—we can exploit our atlas and its subsequent analysis to yield a

cost function that is highly tailored to our application. Consider the z-fields

produced by over-segmentation followed by k-means, as shown in Fig. A.1(c),

and consider adjacent voxels i and j. From the full collection of these images,

we can compute the empirical joint probability mass function P(z(i), z(j)) for

all adjacent voxels, as illustrated in Fig. A.1(f). Some labels will almost never

appear adjacent to each other and thus should be penalized heavily in the

MRF we design. Accordingly, we define the pairwise potential as

Epair (z(i), z(j)) = − log P
(︁
z(i), z(j)

)︁
+

1
2
(︁

log P (z(i), z(i))+ log P (z(j), z(j))
)︁
.

(A.3)
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When the labels are the same the cost is zero and when they are different,

the cost increases according to their rarity of occurrence in the atlas. Given

these definitions of unary and pairwise potentials (which is a semimetric),

the estimated z-field is found by solving (A.1) using the α-β swap graph cut

approach [138].

A.3 Experiments

MR images were obtained by Dr. Junghoon Lee from Johns Hopkins School of

Medicine using a Siemens Magnetom Espree 1.5 T scanner (Siemens Medical

Solutions, Malvern, PA) and CT images were obtained using Philips Brilliance

Big Bore scanner (Philips Medical Systems, Netherlands) under the routine

clinical protocol from brain cancer patients treated by stereotactic-body ra-

diation therapy (SBRT) or radiosurgery (SRS). Geometric distortions in MR

images were then corrected using a 3D correction algorithm available in the

Siemens Syngo console workstation. All MR images were then N4 corrected

and normalized by aligning white matter peak identified by fuzzy C-means.

We applied our method to six subjects each associated with true CT and

MR images to which to compare our results. For algorithm comparison,

we implemented Burgos et al. [1] with a different local similarity measure,

referred as Burgos+. Burgos et al. [1] employs an intensity fusion method

that uses local normalized cross correlation (LNCC) as the local similarity

measure. Burgos+ uses SSIM instead as suggested in Lee et al. [139]. Existing

work on CT/MR synthesis [1] has focused on synthesizing CT from MR, so

we can directly compare. Without a published method for synthesizing MR
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from CT, we simply applied Burgos+ in the reverse direction. To evaluate

efficacy of synthesis, we computed SSIM and PSNR on the synthetic images

with respect to the true images. The result is shown in Figure A.2. In addition

to the comparison with Burgos+, we have shown how well modifications of

our own algorithm perform. The “JLF” result uses only the z-field computed

from JLF, the “RF-C” result uses only the z-field computed from RF-C, the

“JLF+RF-C” result uses the product of the two z-field probabilities without

MRF; and the “MRF” result is our proposed algorithm. We can see our method

produces, in terms of SSIM and PSNR, better synthetic MR in every respect,

while the synthetic CT images are better than Burgos+ in terms of SSIM and

comparable in terms of PSNR.

Figure A.3 shows the estimated z-fields and final synthetic CT images for

two subjects. It shows that our synthetic CT images have higher contrast

and no blurry edges as compared to Burgos+, yet look somewhat artificial

compared to the truth. Figure A.4 shows the estimated z-fields and final

synthetic MR images for the same two subjects. It shows that our synthetic

MR images also have high contrast and no blurry edges as compared to

Burgos+. We notice in Fig. A.4(e), the result from Burgos+ cannot synthesize

the soft tissues correctly. This is because the result depends on the accuracy

of registration between atlas image pairs and subject CT images, which is

relatively low in areas of soft tissues. Our method is more robust to registration

inaccuracies because we use a MRF to predict the z-field and the K random

forests used in synthesis overlap in their intensity coverage to some extent.
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Figure A.2: Evaluation of synthesis result. The six colors are for six subjects.

Table A.1: Evaluation of registration results: Mean (and Std. Dev.) of MSE between
reference MR and registered MR image; MI between target CT and registered MR
image; p-value of paired-sample t-test for the MSE and MI of the two methods.

MSE MI

2 Channel CC 2.746(±0.6492)×104 1.2314(±0.0746)
Single Channel MI 3.375(±0.6635)×104 1.2429(±0.1018)

p-value over Single Channel MI 8.7637e-16 0.1962

To evaluate whether our synthesis method improves multi-modal regis-

tration, we carried out a multi-modal registration experiment between the

CT image of one subject and the MR image of another subject. The conven-

tional approach for multi-modal registration uses mutual information (MI) as
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(a) (b) (c) (d) (e)

Figure A.3: Synthetic CT images: For two subjects, one in each row, we show the
(a) input MR image, the (b) estimated z-field after MRF smoothing, the CT images
generated by (c) our method, (d) Burgos+, and the (e) ground truth.

(a) (b) (c) (d) (e)

Figure A.4: Synthetic MR images: For two subjects, one in each row, we show the
(a) input CT image, the (b) estimated z-field after MRF smoothing, the MR images
generated by (c) our method, (d) Burgos+, and the (d) ground truth.

a similarity metric. With synthetic images, multi-modal registration can be

carried out using a two-channel mono-modal registration process [132, 133].
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In our case, for registration between Subject 1 and Subject 2, the first channel

uses the original CT image of Subject 1 and the synthetic CT for Subject 2. The

second channel uses the synthetic MR image of Subject 1 and the original MR

image of Subject 2. The metric used in both channels is cross correlation (CC).

We used SyN deformable registration on 6 subjects yielding 30 pairs of

registration experiments in all. The single MI registration and two-channel

CC registration share the same parameters, including the number of iterations.

As the true MR image is known, we compare the transformed MR image to

the true MR image for each individual registration experiment. The difference

between these two images is measured using both MSE and MI after either

two-channel CC or single-channel MI (results are in Table A.1). While the

two images are not statistically different according to MI, the two-channel

registration approach (which uses our synthetic images) is statistically better

than the single-channel MI approach.

A.4 Conclusion

We have presented a bidirectional MR/CT synthesis method based on approx-

imate tissue classification and image segmentation. The method synthesizes

CT images from MR images with performance comparable to Burgos et al. [1]

and is better than Burgos et al. [1] for synthesizing MR images from CT images.

Our method reduces intensity ambiguity by estimating a z-field that is derived

from both modalities and can be consistently created given just one modality

as input.
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Appendix B

Effects of spatial resolution on
image registration

Abstract

This appendix presents a theoretical analysis of the effect of spatial resolution

on image registration. Based on the assumption of additive Gaussian noise in

images, the mean and variance of the distribution of the sum of squared differ-

ences (SSD) is computed. Using these computations, we evaluate a distance

between the SSD distributions of aligned images and non-aligned images.

Experimental results show that by matching the resolutions of the moving

and fixed images in the registration one can get a better image registration

result. These results agree with our theoretical analysis of SSD, but also reveal

that our analysis may be valid for mutual information as well.
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B.1 Introduction

Image registration is the process of transforming the coordinate system of

a given moving image to that of a fixed image 1. It is a key component

of medical image analysis, including segmentation, multi-modality fusion,

longitudinal studies, population modeling, and statistical atlases [140, 141,

142, 143, 144, 145, 146, 147, 148, 149]. Typically, the moving and fixed images

have identical digital resolutions, though it is common for interpolation to be

used to upsample the low digital resolution image to the higher resolution one.

Interpolation blurs edge information; consequently, it is more difficult to align

two edges with different spatial resolutions compared to edges with the same

resolution. However, the effect of spatial resolution on image registration has

not been theoretically discussed before.

There has been a lot of work on using multi-resolution registration schemes

based on pyramid representations going back over several years. The advan-

tages of these pyramid representations are reduced computational cost, and

the establishment of links between global information and local informa-

tion [69, 150]. However, the effect of spatial resolution on image registration

has not been studied before.

This appendix presents a theoretical analysis of the effect of spatial resolu-

tion on image registration. The contributions are summarized as below:

• We develop quantitative guidance to process the images in order to

match their resolutions, and a measure for anisotropic spatial resolution

1Moving and fixed images are sometimes referred as source and target images.
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is additionally discussed based on the idea of isotropic spatial resolu-

tion [151].

• We experimentally explore the effects of random noise and spatial resolu-

tion in image registration. We assume that the random noise is additive

Gaussian, and hence the SSD between the two images can be considered

to be a random variable with a distribution. The separability of the SSD

distributions of perfectly aligned image pairs and misaligned (in our

case, tranlated) image pairs determines how well images can be regis-

tered. By assuming that the noise is additive Gaussian, we can estimate

the mean and variance of the distribution. From there, we can evaluate

a distance between the SSD distributions of aligned images pairs and

shifted image pairs. We also present experimental results using the

mutual information (MI) [152, 153, 154].

B.2 Theoretical prediction of the effect of spatial
resolutions on image registration

B.2.1 Problem setting

Let x be a voxel coordinate, and n1(x) and n2(x) be two independent additive

Gaussian N (0, σ2) noise components. Let z1(x) be the fixed image and z2(x)

be the moving image, both instances of the same true high resolution (HR)

image f (x) with noise n1(x) and n2(x), respectively; i.e., zi(x) = f (x) +

ni(x) i = 1, 2. The low resolution (LR) image derived from f is f̃ with

corresponding z̃1 and z̃2, so that z̃i(x) = f̃ (x) + ni(x) i = 1, 2. If z2(x− v(x))
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Figure B.1: Explanation of problem setting.

is a transformed noisy version of f , then registering z1 and z2 aims to recover

v(x). This setting is summarized in Fig. B.1.

In this section, we take SSD as the metric for registration. In order to

analyze the effect on registration, we first analyze the SSD in the following

three cases.

Case 1: Registration of two HR images. We wish to compute the mean

and variance of SSD (z1(x), z2(x − v(x))), which we denote as Sv(z1, z2).

Then, Sv(z1, z2) = ∑x(z1(x)− z2(x − v(x)))2, while S0(z1, z2) = ∑x(z1(x)−

z2(x))2 is perfect registration.

Case 2: Registration of two LR images. Following the same procedure,

we have Sv(z̃1, z̃2) = SSD (z̃1(x), z̃2(x − v(x))).

Case 3: Registration of one HR and one LR images. Following the same

procedure, we have Sv(z1, z̃2) = SSD (z1(x), z̃2(x − v(x))).

Note that (n1(x)− n2(x)) ∼ N (0, 2σ2). Let N denote the number of voxels

in the image domain. The mean and variance of Sv can now be calculated; the

results are listed in Table B.1.

In order to obtain a correct registration result, we need S0 to be less than
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Table B.1: Mean and Variance of SSD for different resolution pairs

Mean E [Sv] Variance Var (Sv)

Case 1: Sv(z1, z2) ∑x ( f (x)− f (x − v(x)))2 + 2Nσ2 8σ2 ∑x ( f (x)− f (x − v(x)))2 + 8Nσ4

Case 2: Sv(z̃1, z̃2) ∑x
(︁

f̃ (x)− f̃ (x − v(x))
)︁2

+ 2Nσ2 8σ2 ∑x
(︁

f̃ (x)− f̃ (x − v(x))
)︁2

+ 8Nσ4

Case 3: Sv(z1, z̃2) ∑x
(︁

f (x)− f̃ (x − v(x))
)︁2

+ 2Nσ2 8σ2 ∑x
(︁

f (x)− f̃ (x − v(x))
)︁2

+ 8Nσ4

Table B.2: Sensitivity index d′(Sv,S0) of SSD for images with correct alignment
and images with misalignment. A negative value of d′(Sv,S0) indicates misregis-
tration. A higher value of d′(Sv,S0) is desired.

Case 1: d′HR,HR = d′
(︁
Sv(z1, z2),S0(z1, z2)

)︁
= ∑x( f (x)− f (x−v(x)))2

2σ
√

2Nσ2+∑x( f (x)− f (x−v(x)))2

Case 2: d′LR,LR = d′
(︁
Sv(z̃1, z̃2),S0(z̃1, z̃2)

)︁
= ∑x( f̃ (x)− f̃ (x−v(x)))2

2σ
√

2Nσ2+∑x( f̃ (x)− f̃ (x−v(x)))2

Case 3: d′HR,LR = d′
(︁
Sv(z1, z̃2),S0(z1, z̃2)

)︁
= ∑x( f (x)− f̃ (x−v(x)))2−∑x( f (x)− f̃ (x))2

2σ
√

2Nσ2+∑x( f (x)− f̃ (x−v(x)))2+∑x( f (x)− f̃ (x))2

Sv. How well we can distinguish the distributions of S0(z1, z2) and Sv(z1, z2)

determines the quality of the registration output. We use the sensitivity index,

d′(Sv,S0), defined as

d′(Sv,S0) =
E [Sv]− E [S0]√︂

1
2 (Var (Sv) + Var (S0))

.

Taking results from Table B.1, we derive formulas for d′(Sv,S0) in our

three cases, which have shown in Table B.2.

We note that d′HR,LR < 0 indicates that the expectation of Sv(z1, z̃2) is less

than S0(z1, z̃2). When this happens, any registration algorithm that uses SSD

will misregister the images. The larger we make d′ the more confidence we

can have in a registration result. This gives us an optimality criterion for

matching the resolution of images during registration. We compare d′s in

order to understand the effect of resolution on image registration.
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B.2.2 Claims and Proofs

We now compare d′LR,LR, d′HR,HR, and d′HR,LR.

Claim 1: d′
LR,LR < d′

HR,HR

Proof 1:

Using a Taylor series expansion and assuming that v(x) is small,

| f (x)− f (x − v(x))| ∼ v(x)∇ f (x),

where ∇ f (x) is the gradient of the image.

Since a smoother image has a smaller gradient, we have

∑
x
( f̃ (x)− f̃ (x − v(x)))2 < ∑

x
( f (x)− f (x − v(x)))2.

Thus, d′LR,LR < d′HR,HR.

Proof 2:

If we assume the image is wide sense stationary (WSS), and the low res-

olution image f̃ (x) = f (x) ∗ h(x), in which h(x) is a low pass filter, then the

autocorrelation is R f̃ f̃ (l) = h(−l) ∗ h(l) ∗ R f f (l). In other words, R f̃ f̃ (l) is a
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low-pass filtered version of R f f (l). Thus we have:

∑x ( f (x)− f (x − v(x)))2 = 2 ∑
x

(︂
f (x)2 − f (x) f (x − v(x)

)︂
∼ 2

(︁
R f f (0)− R f f (v(x))

)︁
∑x( f̃ (x)− f̃ (x − v(x)))2 ∼ 2

(︂
R f̃ f̃ (0)− R f̃ f̃ (v(x))

)︂
< 2

(︁
R f f (0)− R f f (v(x))

)︁
Therefore, ∑x( f̃ (x)− f̃ (x−v(x)))2 < ∑x( f (x)− f (x−v(x)))2 and d′LR,LR <

d′HR,HR.

Implication: We can conclude that d′LR,LR < d′HR,HR; thus, when the res-

olutions of the two images are the same, there is a better chance to obtain a

correct registration result with high resolution images.

Claim 2: d′
HR,LR < d′

HR,HR

Proof:

∑
x
( f (x)− f̃ (x − v(x)))2 + ∑

x
( f (x)− f̃ (x))2 ∼ 2

(︂
R f f (0) + R f̃ f̃ (0)− R f f̃ (0)− R f f̃ (v(x))

)︂

2
(︂

R f f (0) + R f̃ f̃ (0)− R f f̃ (0)− R f f̃ (v(x))
)︂
< 2

(︂
R f f (0)− R f f̃ (v(x))

)︂
< 2

(︂
R f f (0)− R f f (v(x))

)︂

Therefore,

∑
x
( f (x)− f̃ (x − v(x)))2 + ∑

x
( f (x)− f̃ (x))2 < ∑

x
( f (x)− f (x − v(x)))2
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and

∑x( f (x)− f̃ (x − v(x)))2 − ∑x( f (x)− f̃ (x))2

2σ
√︂

N2σ2 + ∑x( f (x)− f̃ (x))2 + ∑x( f (x)− f̃ (x − v(x)))2

<
∑x( f (x)− f̃ (x − v(x)))2 + ∑x( f (x)− f̃ (x))2

2σ
√︂

N2σ2 + ∑x( f (x)− f̃ (x))2 + ∑x( f (x)− f̃ (x − v(x)))2

<
∑x( f (x)− f (x − v(x)))2

2σ
√︁

N2σ2 + ∑x( f (x)− f (x − v(x)))2
.

Thus d′HR,LR < d′HR,HR, as required.

Implication: We can conclude that compared to images with different

resolutions, there is a higher chance to obtain better registration results for a

pair of high resolution images.

Claim 3: d′
HR,LR < d′

LR,LR unless the resolution of the two images are only

slightly different.

Proof:

∑
x
( f (x)− f̃ (x − v(x)))2 − ∑

x
( f (x)− f̃ (x))2 ∼ 2

(︂
R f̃ f̃ (0)− R f f̃ (v(x))

)︂

2
(︂

R f f (0) + R f̃ f̃ (0)− R f f̃ (0)− R f f̃ (v(x))
)︂

> 2
(︂

R f̃ f̃ (0)− R f f̃ (v(x))
)︂

> 2
(︂

R f̃ f̃ (0)− R f̃ f̃ (v(x))
)︂

∑
x
( f (x)− f̃ (x − v(x)))2 + ∑

x
( f (x)− f̃ (x))2 > ∑

x
( f (x)− f̃ (x − v(x)))2 − ∑

x
( f (x)− f̃ (x))2

> ∑
x
( f̃ (x)− f̃ (x − v(x)))2
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Whether

∑x( f (x)− f̃ (x − v(x)))2 − ∑x( f (x)− f̃ (x))2

2σ
√︂

N2σ2 + ∑x( f (x)− f̃ (x − v(x)))2 + ∑x( f (x)− f̃ (x))2

<
∑x( f̃ (x)− f̃ (x − v(x)))2

2σ
√︂

N2σ2 + ∑x( f̃ (x)− f̃ (x − v(x)))2

is valid depends on the relationship between f̃ (x) and f (x).

Implications:

1. If there is a sufficient difference between f̃ (x) and f (x), which indicates

a large enough ∑x( f (x)− f̃ (x))2, then d′HR,LR < d′LR,LR < d′HR,HR.

2. If f̃ (x) ≈ f (x), then d′HR,LR ≈ d′HR,HR > d′LR,LR. However, this is not a

situation that concerns us, since it indicates that there is only a slight

difference between resolutions.

3. If there is a large difference between f̃ (x) and f (x), which makes ∑x( f (x)−

f̃ (x))2 > ∑x( f (x)− f̃ (x − v(x)))2, then d′HR,LR < 0 < d′LR,LR < d′HR,HR,

which indicates that misregistraion is more likely to occur between HR

and LR images.

B.2.3 Conclusions

We claim that d′LR,LR < d′HR,HR, which shows that the higher the resolution of

the images, the more confidence we are about the registration results. We also

claim that d′HR,LR < d′HR,HR and that if the resolution difference between f and

f̃ is sufficiently enough, then d′HR,LR < d′LR,LR, which may be counterintuitive.
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Figure B.2: An example of edge and gradient profile.

It appears that the HR image carries more information; thus, two LR images

should have resulted in a worse registration result; however, our analysis

reveals the opposite. There is a larger chance to obtain a better registration

result when dealing with similar resolution images as compared to images

with different resolutions unless the resolution difference is very small.

B.3 An edge-based method to measure resolution

Next we develop a measure of anisotropic spatial resolution based on the idea

of isotropic spatial resolution [151]. We have previously shown that matching

the resolution of two images increases the confidence of acquiring a more

accurate registration result. Thus, we need to be able to measure the resolution

of the images. To do so, we consider the edges and the gradient profiles of

images. An example of edge and gradient profile is shown in Fig. B.2.

The gradient profile of the LR edge is more spread out; therefore, we

can use the full width at half maximum (FWHM) of the gradient curve as a

measure of the resolution.

Our algorithm to identify gradient curves and thus their FWHM is:
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1. Use the Canny edge detector to identify edge voxels.

2. Find the gradient direction at each edge voxel, then collect the edge

voxels that have similar gradient directions with the target direction.

3. Apply blob matching to the gradient profile in order to find the center

and range of each edge, and then calculate the FWHM.

B.4 Experiments

B.4.1 Effect of spatial resolution on image registration

The objective of Experiment 1 is to verify the claims in Sec. B.2 by comparing

d′HR,HR, d′LR,LR and d′HR,LR. Specifically, we aim to verify that (a) d′HR,HR >

d′LR,LR, (b) d′HR,HR > d′HR,LR, and (c) d′LR,LR > d′HR,LR.

Using the MRI 2D slices in the multi-modal reproducibility resource

dataset [155] as the true HR image f , we simulate a noisy HR image z1 (see

Fig. B.3). The second noisy HR image z2 is a shifted version of f with different

random noise. We consider 4 different shifts (v) which are translations in the

y-plane by 0, 1, 2, and 3 voxels. For each of these shifts, we calculate the SSD

between z1 and z2. We do this for 500 simulations of z1 and z2 and build a

distribution of SSD values for each of the 4 shifts. We calculate the sensitiv-

ity d′HR,HR index, between the SSD distributions for the different shifts, for

HR images. These values are recorded in the first row of the SSD portion of

Table B.3.

Similarly, we simulate LR images by blurring f (see Fig B.3) using a Gaus-

sian blur kernel with a standard deviation (std) of 1.5 and by then adding
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(a) Subject images: The HR image is
a 256 × 256 2D MR brain image, while
the LR image is obtained by filtering
the HR image using Gaussian kernel
with a standard deviation (std) of 1.5.
All the image intensities are normal-
ized between [0, 255]. The additive
Gaussian noise has a std σ = 10.

(b) Distribution of SSD and MI: The distributions of Sv(z1, z2) (upper row) and
MI(z1, z2) (lower row). The left column represents the results of the experiment
implemented on a pair HR images. While the middle column displays the results of
a pair of LR images, and the right are the results of a HR image and a LR image. In
the right column, the distribution of SSD and MI with v = 0 (blue curve) and
v = 1 (orange curve) are too close to distinguish, which indicates that we are more
likely to get misregistration when v = 1.

Figure B.3: Experiment results on SSD and MI distributions regard to image pairs
with different spatial resolution.
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Table B.3: Experiment results of effects of spatial resolution on image registration:
d′ for SSD and MI for image pairs shifted by v = 1, 2, 3 voxels. It agrees with our
claim that d′HR,LR < d′LR,LR < d′HR,HR.

SSD

1 2 3

d′HR,HR 96.0 201.5 272.9
d′LR,LR 31.8 102.2 172.6
d′HR,LR 0.34 61.6 146.0

MI

v 1 2 3

d′HR,HR 37.5 65.0 76.1
d′LR,LR 21.0 50.0 68.2
d′HR,LR 1.4 20.0 37.4

Gaussian noise. We then calculate d′LR,LR, which we show in the second

row of the SSD portion of Table B.3. For all the shifts, it is apparent that

d′HR,HR > d′LR,LR, thus verifying our first claim. Next, we choose z1 as a noisy

HR image, and z2 as a noisy LR image, carry out the simulations, and calculate

d′HR,LR, which is the last row of the SSD portion of Table B.3. Comparing this

row to the first and second rows, it is clear that for all shifts, d′HR,HR > d′HR,LR,

d′LR,LR > d′HR,LR, thus verifying our second and third claims.

If instead of SSD, we use the mutual information (MI) in our simulations,

we observe that our claims are still true, as is demonstrated in the MI part of

Table B.3. This is an empirical result which points to an interesting connection

between using the SSD and the MI as similarity measures, but we do not have

at this point a theoretical proof for the relationships between d′HR,HR, d′LR,LR,

and d′HR,LR on the MI distributions.

Figure. B.3 (b) shows our fits for the SSD (first row) and MI (second row)

distributions for four different shifts (0, 1, 2 , 3). Each column corresponds to

the pairs HR-HR, LR-LR and HR-LR of images. Visually, we can appreciate the

fact that the SSD distribution for v = 0 is far apart from the SSD distribution

for v = 1 in the case of HR-HR and the LR-LR. However, for the HR-LR case,
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the SSD distributions for v = 0 and v = 1 overlap with each other, indicating

that a registration algorithm can result in a lower SSD for a shift of 1 voxel,

which is clearly not the correct result leading to an undesirable behavior.

B.4.2 Resolution measure

We use the measure in Sec. B.3 to estimate the image resolution. The HR data

we use are BrainWeb images [18]. The LR data is the Gaussian blurred results

from the HR data, with blur kernel being 1.5 × 0.5 × 0mm. All the image

intensities are normalized between [0, 255]. The additive Gaussian noise has a

standard deviation = 1, which makes the SNR≈ 38. The measured resolutions

are listed in Table B.4(a). The ground truth of rHR should be 1 × 1 × 1mm,

whereas the ground truth of rLR should be 1.80 × 1.12 × 1mm. The ground

truth of
√︂

r2
LR − r2

HR should be 1.5× 0.5× 0mm. We can see that the measured

resolutions are close to the ground truth.

We then repeat the SSD experiment presented in Sec. B.4.1 with v = 1 on

three directions. To obtain blurred HR images, we apply a lowpass filter on

the HR noisy images using a Gaussian blur kernel with std of
√︂

r2
LR − r2

HR.

The result is shown in Table B.4(b). It can seen that d′blurHR,LR > d′HR,LR.

Therefore, matching the resolution of two subject images can give a better

image registration result.

B.5 Conclusion

In this work, we analyzed the effect of resolution on image registration. Our

theoretical analysis and experiments show that 1) images with the same
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Table B.4: Effects of matching resolution on image registration: (a) Measured res-
olution of the subject images from BrainWeb. The ground truth of rHR should be
1 × 1 × 1mm. The ground truth of rLR should be 1.80 × 1.12 × 1mm. The ground

truth of
√︂

r2
LR − r2

HR should be 1.5 × 0.5 × 0mm. (b) d′ for SSD. The blurHR image is
blurred HR image with blur kernel std being 1.55 × 0.45 × 0mm.

(a) Measured resolution [mm]

v x y z

rHR 1.1 1.0 1.2
rLR 1.9 1.1 1.2√︂

r2
LR − r2

HR 1.55 0.45 0

(b)SSD

v x y z

d′HR,HR 42.1 36.7 33.9
d′LR,LR 38.1 29.7 30.2
d′HR,LR 29.6 22.6 22.6
d′blurHR,LR 36.7 28.8 29.3

resolution can be registered accurately with more confidence; and 2) matching

the resolution of two subject images can give better guarantees for an image

registration result.

This work did theoretical analysis only for registration using SSD. The

experiment was performed only on image translation. Future work will

include a theoretical analysis of other cost functions and other transforms.

Also the resolution measure is sensitive to parameter tuning and does not

perform well on real clinical data. Future work will include a more robust

resolution measure for real data.
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