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Abstract

Multi-sensor signal processing plays a crucial role in the working of several

everyday technologies, from correctly understanding speech on smart home

devices to ensuring aircraft fly safely. A specific type of multi-sensor signal

processing called beamforming forms a central part of this thesis. Beamform-

ing works by combining the information from several spatially distributed

sensors to directionally filter information, boosting the signal from a certain

direction but suppressing others. The idea of beamforming is key to the

domains of audio, ultrasound, and radar.

Machine learning is the other central part of this thesis. Machine learning,

and especially its sub-field of deep learning, has enabled breakneck progress

in tackling several problems that were previously thought intractable. Today,

machine learning powers many of the cutting edge systems we see on the

internet for image classification, speech recognition, language translation, and

more.

In this dissertation, we look at beamforming pipelines in audio, ultrasound,

and radar from a machine learning lens and endeavor to improve different

parts of the pipelines using ideas from machine learning. We start off in

the audio domain and derive a machine learning inspired beamformer to
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tackle the problem of ensuring the audio captured by a camera matches its

visual content, a problem we term audiovisual zooming. Staying in the audio

domain, we then demonstrate how deep learning can be used to improve the

perceptual qualities of speech by denoising speech clipping, codec distortions,

and gaps in speech.

Transitioning to the ultrasound domain, we improve the performance of

short-lag spatial coherence ultrasound imaging by exploiting the differences in

tissue texture at each short lag value by applying robust principal component

analysis. Next, we use deep learning as an alternative to beamforming in

ultrasound and improve the information extraction pipeline by simultane-

ously generating both a segmentation map and B-mode image of high quality

directly from raw received ultrasound data.

Finally, we move to the radar domain and study how deep learning can

be used to improve signal quality in ultra-wideband synthetic aperture radar

by suppressing radio frequency interference, random spectral gaps, and con-

tiguous block spectral gaps. By training and applying the networks on raw

single-aperture data prior to beamforming, it can work with myriad sensor

geometries and different beamforming equations, a crucial requirement in

synthetic aperture radar.
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Chapter 1

Introduction

Life today has become inextricably linked with the many sensors working in

concert in our environment. When we wake up and check our phone for the

day’s weather, our phone communicates with a cell tower miles away to get

us the information (Roh et al., 2014). This is made possible by large arrays

of wireless transmitters and receivers on the cell tower that work together to

beam information across large distances. Or perhaps one possesses a smart

home device like an Amazon Echo or Google Home that one queries for this

information. Multiple microphones working in concert on the device help

boost the signal quality before handing it off to automatic speech recognition

and natural language understanding algorithms in the cloud (Chhetri et al.,

2018).

The challenge in the above scenarios is how to efficiently process the data

from the multiple sources. The discipline of signal processing that studies

processing sensory data from multiple spatially distributed sources jointly for

directional signal transmission and reception is termed beamforming (Van

Trees, 2004) and forms a crucial component of working systems in fields as
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diverse as audio, ultrasound, radar, and wireless communication.

In a beamformer, the multiple sensors are not just giving us independent

observations of the quantity of interest, but as the sensors are spatially dis-

tributed they collect spatial samples of the propagating wave fields (Van Veen

and Buckley, 1988). One can exploit this geometric knowledge of the system

under study to further enhance performance and solve tasks impossible to

solve with a single omni-directional sensor. Such tasks include performing

spatial filtering by boosting signals arriving from a single target point (or

direction) and attenuating all other interfering signals from other points (or

directions). This allows for the successful separation of multiple sources

transmitting in the same spectrum as long as they are spatially separated,

a scenario of operation common to audio, ultrasound, radar, and wireless

communication.

Recently, the field of machine learning, and its sub-field of deep learning in

particular, has become very popular due to the breakthroughs it has enabled in

tackling several difficult problems such as large scale image classification (He

et al., 2016), automatic speech recognition (Chan et al., 2016), natural language

translation (Vaswani et al., 2017), and others. Machine learning is succinctly

defined by Tom Mitchell as “the study of computer algorithms that improve

automatically through experience” (Mitchell et al., 1997) and thus it should

be no surprise that machine learning methods are the driving force behind

scaling algorithms to the big data (Qiu et al., 2016) regime where datasets can

contain well over a billion samples and models can contain well over a trillion

learnable parameters (Fedus, Zoph, and Shazeer, 2021).
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Motivated by the success of machine learning, there have been many

attempts to combine machine learning ideas with beamforming. Given that

there are multiple points in the processing pipeline of beamforming systems

where machine learning can be used to improve overall performance, we

divide these attempts into the following categories:

1. Machine learning prior to beamforming: Machine learning models can

be applied to the raw signal received in sensor elements prior to the

beamforming step. In the audio domain, it is popular to use machine

learning on raw multichannel audio to set the beamformer weights –

either directly as in Xiao et al., 2016 and Li et al., 2016 or by learning

intermediate representations which plug in to standard beamformers

(Erdogan et al., 2016; Heymann, Drude, and Haeb-Umbach, 2016; Ceolini

and Liu, 2019). Audio dereverberation using deep networks (Kinoshita

et al., 2017) prior to beamforming is also popular. In ultrasound, ma-

chine learning has been used on raw pre-beamformed ultrasound data

to compress it for wireless transmission before decompressing it for

beamforming (Perdios et al., 2017) and to interpolate sub-sampled raw

data prior to beamforming (Yoon et al., 2018). In the radar field, Elbir,

Mishra, and Eldar, 2019 employed a convolutional neural network to

perform cognitive radar antenna selection and Nguyen, Tran, and Tran,

2019 used a generative adversarial network to denoise raw radar data,

both prior to beamforming.

2. Machine learning to replace beamforming: Machine learning mod-

els can also be trained to replace the beamforming model in several
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pipelines. For example, in the audio case, Tolooshams et al., 2020 intro-

duced a channel-attention mechanism inside the deep network while

Tzirakis, Kumar, and Donley, 2021 viewed each audio channel as a node

in a graph neural network to capture spatial correlations between differ-

ent channels and replace the beamforming step for multichannel speech

enhancement. In the ultrasound field, Simson et al., 2018 proposed the

DeepFormer network to directly reconstruct high quality ultrasound im-

ages from raw sub-sampled data bypassing beamforming, while Vedula

et al., 2018 instead expressed the ultrasound beamforming operation as

a grid resampling operation using a spatial transformer network (Jader-

berg et al., 2015). Deep learning has also been used to form high quality

images from delayed input data directly, replacing beamforming (Hyun

et al., 2019; Luijten et al., 2019). In the closely related field of photoa-

coustic imaging, Allman, Reiter, and Bell, 2018 used a deep network to

directly perform source detection and artifact removal on raw received

data, bypassing the beamforming step. In the radar field, to the best

of our knowledge, there has surprisingly not been work on this topic.

This is likely due to the wide variance in radar sensor geometries and

scenes as a result of the popularity of synthetic aperture radar. Any

model replacing beamforming will likely be restricted to only a certain

geometry and scene, a much more crippling impediment in radar than

audio and ultrasound.

3. Machine learning post-beamforming: Machine learning can be applied

on the post-beamformed data as well. In the audio domain, there is a
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large body of research into single channel speech enhancement (Abdul-

baqi, Gu, and Marsic, 2019; Hu et al., 2020; Bulut and Koishida, 2020),

which can be viewed either as the scenario of having only one micro-

phone available or having access to only post-beamformed data. In

ultrasound, machine learning models have applied on beamformed ul-

trasound data to improve image quality (Gasse et al., 2017; Perdios et al.,

2019), perform breast mass segmentation (Kumar et al., 2018), and im-

plement ultrasound-based robotic visual servoing (Mebarki, Krupa, and

Chaumette, 2010). In radar, applications where machine learning has

been used post-beamforming include classification (Geng et al., 2015),

target recognition (Ding et al., 2016), and denoising (Wang, Zhang, and

Patel, 2017), to name just a few.

Note however that these categories need not be mutually exclusive – there

are several works that extend across the boundaries of the above categorization

e.g. Cauchi et al., 2015; Cheng and Bao, 2020.

1.1 Thesis Outline and Contributions

In this thesis, we examine several scenarios in the audio, ultrasound, and

radar domains where machine learning can be leveraged to improve signal

processing in systems involving beamforming. Our contributions address

problems in all three of the categories enumerated prior and are summarized

as follows:

1. We start off in the audio domain and tackle the problem of ensuring
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the audio captured by a camera matches its visual content, a problem

we term audiovisual zooming. While traditional beamforming formula-

tions are designed to steer in a single direction (or few directions), we

demonstrate how, inspired by the simple linear discriminant analysis

formulation from machine learning, we are able to elegantly derive and

analyze a beamformer for audiovisual zooming that enhances incoming

signal from the entire field of view of the camera while suppressing

audio originating from outside it. We present this work in Chapter 2.

2. Continuing in the audio domain, we then showcase how deep learning

can be used to eliminate speech clipping, codec distortions, and gaps

in speech to improve the perceptual quality of single channel speech.

Through this study, we reveal the importance of recovering the phase

of the speech which is traditionally ignored in single channel speech

enhancement but forms the foundation of beamforming. This work is

presented in Chapter 3.

3. Moving to the ultrasound domain, we showcase how algorithmic ad-

vances in machine learning can be applied to improve ultrasound image

quality. We improve the performance of short-lag spatial coherence

ultrasound imaging by noting the step of directly summing across the

lags can be improved. We instead consider the content of images formed

with different lags and exploit the differences in tissue texture at each

short-lag value by weighting the addition of lag values and by applying

robust principal component analysis. We present this work in Chapter 4.

4. Staying in the ultrasound domain, we demonstrate how deep learning
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can function as an alternative to beamforming in ultrasound. We design

a fully convolutional neural network that improves the information

extraction pipeline in ultrasound by simultaneously generating both a

segmentation map and a B-mode image of high quality directly from

raw received ultrasound data. This work is presented in Chapter 5.

5. Finally, we move to the radar domain and study the problem radar

signal enhancement. Specifically, we investigate how deep learning can

be used to improve signal quality in ultra-wideband synthetic aperture

radar suffering from radio frequency interference, random spectral gaps,

and a contiguous block spectral gap. We design our networks to operate

on raw single-aperture data prior to beamforming and by doing so, we

show that the same network can work with various sensor geometries,

a crucial requirement for successful deployment to synthetic aperture

radar scenarios. We present this work in Chapter 6.

This thesis is built from the contents of several peer-reviewed publications

and thus many sections include text from the original manuscripts in unaltered

form. Consequently, there might at first glance appear to be overlap between

material in different chapters but this overlap is required to maintain the

self-consistency and flow of each chapter, and to cater to the nuances of

each problem being addressed. For example, signal-to-noise ratio (SNR) is

redefined in almost every single chapter but the definition of SNR varies

depending on the task and domain at hand.
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Chapter 2

Audiovisual Zooming: What You
See is What You Hear

When capturing videos on a mobile platform, often the target of interest

is contaminated by the surrounding environment. To alleviate the visual

irrelevance, camera panning and zooming provide the means to isolate a

desired field of view (FOV). However, the captured audio is still contaminated

by signals outside the FOV. This effect is unnatural—for human perception,

visual and auditory cues must go hand-in-hand.

We present the concept of Audiovisual Zooming, whereby an auditory FOV

is formed to match the visual. Our framework is built around the classic idea

of beamforming, a computational approach to enhancing sound from a single

direction using a microphone array. Yet, beamforming on its own can not

incorporate the auditory FOV, as the FOV may include an arbitrary number

of directional sources. Inspired by the formulation of linear discriminant

analysis (LDA) in machine learning, we formulate our audiovisual zooming

as a generalized eigenvalue problem and propose an algorithm for efficient

computation on mobile platforms. To inform the algorithmic and physical
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implementation, we offer a theoretical analysis of our algorithmic components

as well as numerical studies for understanding various design choices of

microphone arrays. Finally, we demonstrate audiovisual zooming on two

different mobile platforms: a mobile smartphone and a 360◦ spherical imaging

system for video conference settings. The work presented in this chapter was

published earlier in Nair et al., 2019.

2.1 Introduction

The camera can tilt, pan, pedestal, dolly, truck, and zoom—to control what

the viewer sees. Historically, this rich vocabulary of camera control is only at

the professional’s disposal. Today, every mobile device is equipped with a

compact and light camera, allowing anyone to decide what imagery in what

way is to be captured. Whenever one captures a video, audio is also captured,

but the vocabulary with which a user can exert control over the audio pales

in comparison to user control over the video. No matter where the camera

is pointed or how zoomed it is, the sound is always recorded regardless of

its incoming direction, be it from behind the camera or somewhere in the

view. As a result, the captured video might not match the audio, leading to an

unnatural experience.

The problem is that the camera lacks an auditory field of view, one that is syn-

chronized with and driven by the camera’s optical field of view (FOV). In this

work, we introduce the concept of focusing an auditory FOV (see Figure 2.1)

to address the problem. We call our concept Audiovisual Zooming.

The closest field-of-study to this concept is Beamforming (Gannot et al.,
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(a)

(b)

(c)
Figure 2.1: Audiovisual zooming. When the camera captures both people (a), we
hear them both talk. (b) As the camera zooms in and focuses on the woman, her
speech in the captured video is enhanced while the man’s speech is suppressed. (c)
Then, the camera pans and focuses on the man, in this process his speech becomes
more pronounced while the woman’s speech fades out. In our system, the camera’s
FOV synchronizes with its auditory focus—what you see is what you hear (see
supplementary video).

2017), a computational technique that constructs a directional microphone

by using an array of omnidirectional microphones. Leveraging the differ-

ent time delays of signals that arrive from different directions, the idea is

to linearly combine microphone signals into an output signal boosting the

sound coming from a target direction, while suppressing everything else for

directional sound filtering. In almost all beamforming techniques, the single

target direction needs to be specified or estimated, and plays an important role

in the mathematical formulation of beamforming. It is this essential notion of

14



target direction that sets apart our method from the traditional beamforming.

Our audiovisual zooming requires no target direction. In contrast, we

introduce auditory FOV, which defines a directional region (i.e., a solid angle

area) consistent with the camera’s optical FOV. All sounds, no matter how

many, coming from within this region are enhanced, while those outside of the

region are suppressed. In this way, the captured audio is in synchronization

with the captured imagery. In other words, what you see is what you hear.

One approach toward this goal is jointly analyzing the captured audio

and visual content through deep learning (Ephrat et al., 2018; Zhao et al.,

2018; Owens and Efros, 2018). The success of this approach lies in the strong

correlation between the motion in captured imagery and the resulting audio,

as well as the feasibility of constructing a large training dataset. But often

the motion-audio correlation is weak or even undetectable—for example,

when the sound source is far from the camera, or occluded by other objects

(but still in the FOV). In addition, there may be arbitrary numbers/types of

sound sources in the FOV. Constructing a training dataset that covers all these

cases quickly becomes intractable, and the resulting deep neural networks

are unlikely to run on a low-budget mobile device where the camera often

resides.

Technical contributions: In this work, we augment the microphone array

and beamforming approaches to enable audiovisual zooming, without learn-

ing from training data. Motivated by microphone array beamforming, we

view the signals sampled by individual microphones as random variables

of some underlying stochastic process. From this perspective, we estimate
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two complex-valued matrices, called spectral matrices, in frequency domain:

one describes the autocorrelation and cross-correlation of microphone signals

that come from within the FOV, and the other describes signals coming from

outside of the FOV. We show that with these two matrices, the problem of

enhancing towards an FOV can be formulated as a generalized eigenvalue

problem that can be easily solved on a mobile device. Our approach is not

meant to improve beamforming, but rather to enable audiovisual zooming.

To analyze our approach, we derive a theoretical error bound for our

spectral matrix estimation, and reveal a connection of the error residual to the

performance of the classic minimum variance distortionless response (MVDR)

beamformer. Empirically, we conduct simulations to understand how various

design parameters affect a microphone array.

These inferences inform our implementation. Our final algorithm is simple

and can be easily deployed on mobile devices. We realize the audiovisual

zooming system by attaching a planar microphone array to two different

mobile imaging platforms: a mobile smartphone and a 360◦ spherical imaging

system for teleconference settings (see Figure 2.2). Finally, we demonstrate

our system in a number of use cases.

2.2 Related Work

Our audiovisual zooming is built on classic beamforming. We therefore briefly

review related work in this area. We also discuss the difference of our approach

from the general idea of audiovisual machine learning approaches.
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Figure 2.2: Audiovisual zooming is implemented on two mobile platforms: an off-
the-shelf planar microphone array (with 6 microphones) is attached to a smartphone
[left] and a 360° Ricoh camera [right] to show smartphone and teleconferencing utility.

2.2.1 Beamforming

A rich and mature research field, acoustic beamforming has a long history, dat-

ing back to 1970s when Billingsley and Kinns, 1976 invented the microphone

antenna called the acoustic telescope. We refer the reader to Michel et al.,

2006 for a review of the development of acoustic beamforming techniques and

to Gannot et al., 2017 for an exhaustive survey of the state of the field.

In general, the various beamforming methods falls into one of two cate-

gories: fixed and adaptive. Fixed beamformers are best summarized by the

well-known Delay-and-Sum method (Veen and Buckley, 1988; Teutsch, 2007),

which delays the signal received by each microphone according to the relative

propagation delays from a target direction, and then sums the signals together

across the microphones. This serves to enhance the gain of the target direction,
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but often does little to suppress anything else.

The seminal work of Capon, 1969 introduces an adaptive, or data-dependent,

beamforming technique, later known as the Minimum Variance Distortionless

Response (MVDR) beamformer (Stoica, Moses, et al., 2005; Trees, 2002). This

approach optimizes a set of weights to linearly combine the signals in time-

frequency space so as to minimize residual noise and constrain the sound from

the desired direction to be undistorted. The robustness of MVDR beamformer

is later improved by various extensions such as dynamic loading (Li, Stoica,

and Wang, 2003). Since our method is built on the MVDR beamformer, we

will briefly review its formulation in §2.3.2. There are also other variants, such

as the Linearly Constrained Minimum Variance (LCMV) (Griffiths and Jim,

1982), Principal component (Hung and Turner, 1983; Yu and Yeh, 1995), and

Generalized Eigenvalue (Warsitz and Haeb-Umbach, 2007) beamformers, all of

which are special cases of a shared underlying optimization framework (Trees,

2002).

All these beamforming techniques have the same goal: enhancing the

sound from a single direction, and they have no notion of field of view (FOV). In

contrast, our goal is to enhance all sounds from within an arbitrary FOV and

suppress everything outside. It is this very difference that requires a different

beamforming formulation and thus necessitates the development of a new

algorithm.

Recently, a few methods have been proposed to enhance sounds from

multiple sources. Thiergart, Kowalczyk, and Habets, 2014 introduced acous-

tic zoom, wherein all detected sound sources are individually isolated via
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direction-of-arrival (DOA) estimation and beamforming, and then combined

through a weighting scheme defined by their zooming parameters. Ruochen,

Yuhong, and Wei, 2014 used a spherical microphone array and the psy-

choacoustic theory to model sound perceptions and control audio boost-

ing using camera metadata in so-called B-Format Encoding. A more recent

method, Duong et al., 2017, uses MVDR beamforming in three orthogonal

directions and chooses the sound from the microphone closest to the target

region. Just by choosing a microphone signal, this method does not enhance

received sound, and is inherently limited for small form-factor arrays. An-

other line of work using spherical arrays and cameras together (Mendat et al.,

2017; VisiSonics 5/64 Audio Visual Camera) and beamforming based on spherical

harmonics (Li and Duraiswami, 2007) can enhance multiple sound sources but

again requires individual detection and isolation of each source using DOA

estimation and beamforming before combining the individual beamformed

tracks while also requiring large arrays (8.4cm – 20cm diameter) with large

numbers of microphones (32-64) to function. Our method, in contrast, requires

no estimation of DOAs and can be implemented using compact microphone

arrays.

2.2.2 Audiovisual learning

Recently, a line of work has emerged that combines computer vision and audio

via deep learning for speech recognition, separation, and enhancement (Feng

et al., 2017; Mroueh, Marcheret, and Goel, 2015; Rivet et al., 2014; Hershey

and Casey, 2002). Particularly related to our work, Ephrat et al., 2018 recently
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introduced a deep learning model that detects and analyzes facial movements

along with learning a mask on Fourier coefficients to mask out desired speech

associated with particular facial motion. Zhao et al., 2018 addressed a similar

problem of separating the sound of multiple on-screen objects by training a

self-supervised model. Owens and Efros, 2018 used a deep neural network

to predict whether audio and visual tracks are temporally aligned. Features

learned through training are then used to perform an on/off screen speaker

separation. Afouras, Chung, and Zisserman, 2018 trained a deep neural net-

work that takes audio and visual cues to denoise speech spectrograms. While

impressive, these work require that the visual component of the sound is both

visible and has sufficient pixel resolution to capture the appearance and mo-

tion. Our work does not rely on any analysis of visual cues, and as such, can

enhance sound coming from any FOV even when the motion that produces

this sound is occluded or far away from the camera.

2.2.3 Summary

Our method differs from previous works in that 1) no knowledge of DOAs

is required, 2) the user may specify any arbitrary FOV to match that of a

camera’s, and 3) our approach will enhance only the sound from within that

FOV and attenuate everything else. In this way, the camera drives the experience

entirely, forcing the focused audio content to match what is being viewed.
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2.3 Theory of Audiovisual Zooming

A cornerstone of our audiovisual zooming system is microphone array beam-

forming. To understand our algorithm, we start with a brief review of this

classic technique.

2.3.1 Microphone array model

We consider a microphone array that consists of M sensors receiving sound

from all directions. The time-domain signals captured by microphone i (i =

1...M) is

yi(t) =
S

∑
s=1

hs→i(t) ∗ xs(t) + ni(t), (2.1)

where ∗ denotes the convolution operator, s indices individual sound sources,

xs(t) is the signals emitted at sound source s, ni(t) is the noise at microphone

i, and hs→i(t) is the Acoustic Transfer Function for source s impinging on mi-

crophone i. This transfer function accounts for how the sound propagates

from s to i, including both direct and indirect propagation (e.g., reflection and

diffraction by the environment).

Because the sound propagation largely depends on its frequency compo-

nents, the microphone array model is often expressed in time-frequency (T-F)

domain (Gannot et al., 2017) through the Short-Time Fourier Transform (STFT).

In T-F domain, the convolution operator becomes into a multiplication, and

Eq. (2.1) is written as

Yi(n, ω) =
S

∑
s=1

Hs→i(n, ω)Xs(n, ω) + Ni(n, ω), (2.2)
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where n and ω index the time frame and the discrete frequency bin, respec-

tively. We then stack the STFT coefficients for all sensors in a vector,

Y(n, ω) = [Y1(n, ω), . . . , YM(n, ω)]T . (2.3)

With these notations, we now briefly review the classic beamforming algo-

rithms, as follows.

2.3.2 Beamforming Briefing

The general idea of beamforming is simple. It linearly combines the input

multi-channel signals into a mono-channel signal in T-F domain. Provided

a set of frequency-dependent weights w(ω) = [w1(ω), . . . , wM(ω)]T, the

linear combination outputs a signal as wH(ω)Y(n, ω), where the superscript

H denotes conjugate transpose. By carefully choosing the weights w, the

resulting signal enhances the sound received from a given single direction d.

Intuitively, this is possible because the sound signals recorded at different

microphones differ in both amplitude and phase. One can choose the weights

w to “adjust” the differences such that when the signals are superimposed,

they interfere constructively for sound coming from the direction d but de-

structively for sound from other directions. Numerous algorithms have been

devised to estimate the weights w. Here we only review the ones that are most

relevant to our method, while referring the reader to the textbooks Brandstein

and Ward, 2013; Trees, 2002 for a comprehensive introduction.
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2.3.2.1 Spectral matrix

A fundamental philosophy in microphone array processing is to model the re-

ceived signal as a stochastic process. Each individual sample yi[t] of microphone

i is assumed to be an outcome of some underlying random process.

An important notion from this vantage point is the spectral matrix, an

M × M complex-valued Hermitian matrix, denoted as R(ω), describing the

frequency-domain signal statistics received by the microphone array. Its

diagonal element Rii(ω) indicates the autocorrelation (in frequency domain) of

the impinging signal received by microphone i, that is, the power spectrum of

the signal at i. Its off-diagonal element Rij(ω) describes the cross-correlation

of signals received by microphone i and j, reflecting the phase differences

between the two microphone signals. In short, the spectral matrix encapsulates

information needed for the estimation of w—toward constructively enhancing

the signal of a given direction.

In practice, R(ω) is estimated using the frequency-domain snapshots

Y(n, ω) in (2.3). A simple yet common estimator is

R(ω) ≈ 1
N

N

∑
n=1

Y(n, ω)Y H(n, ω), (2.4)

from which many improvements have been developed (such as the Forward-

Backward averaging (Stoica, Moses, et al., 2005)).

If a set of weights w(ω) is used to combine the microphone signals in

the frequency band ω, it can be shown that the output signal has the power

spectrum expressed as wH(ω)R(ω)w(ω) (Brandstein and Ward, 2013)). From

now on, when there is no confusion, we will ignore the frequency parameter
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ω and simply write R and w.

2.3.2.2 Minimum Variance Distortionless Response (MVDR) beamformer

In beamforming theory, the spectral matrix R is viewed as a composition of

two parts, signal spectral matrix Rs and noise spectral matrix Rn. Rs accounts

for the signal solely from the desired direction d (sometimes also called the

direction of arrival), while Rn accounts for the unwanted signals including both

the ambient noise (i.e., Ni in (2.2)) and those from the undesired directions.

Note that R might not be a simple summation of Rs and Rn if the unwanted

signals and the desired signal are (at least partially) correlated.

The classic MVDR beamformer finds the optimal w in the following sense:

it minimizes the power of unwanted signals, while keeping the signal from

the desired direction undistorted. This is formally expressed as a constrained

optimization problem,

wBF = arg min
w

wHRnw, s.t. wHvd = 1. (2.5)

Here the objective function measures the power of unwanted signals in the

output. The constraint requires the incoming signal from the direction d to

remain undistorted in the output signal. The vector vd, called the steering vector,

indicates the relative phases of the signal impinging on all M microphones

from the desired direction d, defined as

vd =
[︂
e−j ω

c dT p1 · · · e−j ω
c dT pM

]︂T
, (2.6)

where c is the speed of sound, and pi (i = 1...M) is the spatial position
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of each microphone in the array. The steering vector describes the relative

phase difference of a plane wave sound impinging on the microphones from

direction d. The intuition behind the constraint in (2.5) is that the weights w

need to compensate the received phase differences at the microphones from

direction d and thereby constructively combine the signals to boost the signal

from d.

MVDR beamformer is one of the most widely used beamforming tech-

niques. Provided a single steering direction d and an estimation of Rn, it has

realtime performance even on a low-budget mobile device, since the weights

can be analytically written as

wBF =
vH

d R−1
n

vH
d R−1

n vd
. (2.7)

Oftentimes, however, estimation of Rn from microphone recordings is chal-

lenging. An approximation is by replacing Rn in (2.5) with the spectral matrix

R, as R can be directly estimated using the recorded signals in (2.4). Then, the

optimization objective is to minimize the total output power subject to the

constraint in (2.5). This is the so-called Minimum Power Distortionless Response

(MPDR) beamformer, one that lays the foundation of our audiovisual zooming

method.

2.3.3 Beamforming Toward a Field of View

Almost all beamforming techniques require to know a steering direction d.

Indeed, this single steering direction is pivotal for establishing the constraint in

MVDR/MPDR formulation (2.5). However, in our work, we wish to enhance
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Figure 2.3: Unlike traditional beamforming, our audiovisual zooming system does
not rely on a specific target direction. Any sound sources captured by the camera’s
FOV will be enhanced, while those outside of the FOV are suppressed.

signals toward a field of view (FOV), that is, a continuous set of steering

directions (Figure 2.3). How to incorporate the FOV in microphone array

beamforming is the challenge that we need to overcome.

We determine the beamforming FOV based on the camera’s FOV (elabo-

rated in §2.5.3). We also note that the beamforming FOV may vary as the user

zooms in/out or pans the camera.

2.3.3.1 Generalized eigenvalue formulation

The starting point of our method is also the spectral matrix (recall §2.3.2.1).

Yet, for our purpose of beamforing toward an FOV, the signal and noise

spectral matrices, Rs and Rn, must be interpreted in a different way. Now,

Rs accounts for all signals coming from directions inside the FOV, while Rn

includes signals outside of the FOV. Suppose for now we know both Rs and

Rn. We can formulate a beamforming optimization problem by maximizing
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the output signal-to-noise (SNR) ratio, namely

wFOV = arg max
w

wHRsw
wHRnw

. (2.8)

Here the numerator and denominator measure the powers of desired signals

and unwanted signals, respectively. This formulation is known in traditional

beamforming, although not widely used. This is because it needs the estima-

tion of both Rs and Rn, and when a single steering direction is considered (e.g.,

when the desired signal is a plane wave along a direction), this formulation is

identical to MVDR beamformer (Trees, 2002)—no need to solve (2.8) directly.

But this formulation is significant for our problem, since it requires no

steering direction. Indeed, the desire of steering toward an FOV can be

expressed by Rs, which can include signals from an arbitrary set of directions.

If Rs and Rn can be robustly estimated, then solving for wFOV amounts to a

simple generalized eigenvalue problem (by noticing that the objective in (2.8)

is a generalized Rayleigh quotient):

Rsw = λRnw. (2.9)

The solution wFOV in (2.8) is the eigenvector of the maximal eigenvalue.

2.3.3.2 Estimation of signal and noise spectral matrices

The remaining question is how to estimate Rs and Rn that respect the FOV.

Some traditional beamforming methods (such as MVDR) also need to es-

timate Rn, for which a popular approach is by estimating a noise mask in

T-F domain (Heymann, Drude, and Haeb-Umbach, 2016). There, a common
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assumption is that the desired signal is the speech of a single voice. In other

words, it assumes that the desired signal has a T-F structure, which can be

inferred and used to estimate the mask by a machine learning model trained

over a large speech dataset.

In our problem, the desired signals are those received in the FOV. In stark

contrast to the single speech assumption, their structure is unclear, as they

might include an arbitrary number of speakers, other types of sound, and

even ambient noise coming from the FOV. It is too expensive to construct a

sufficient training dataset for a machine learning model producing reasonable

masks.

We resort to the MPDR beamformer to estimate Rs and Rn. First, consider a

direction θ. The MPDR weights wθ for enhancing signals from θ is expressed

in (2.7), where the steering vector vd = vθ is defined in (2.6) and the matrix Rn

is replaced by the total spectral matrix R estimated using (2.4). Substituting

this expression in wH
θ Rwθ yields the power spectrum of the MPDR output

signal,

P(θ) =
[︂
vH

θ R−1vθ

]︂−1
. (2.10)

Recall that the effect of MPDR beamformer is to boost the signal from direction

θ while suppressing signals from other directions. Thus, P(θ) can be viewed

as an estimation of the power of a plane wave coming from the direction θ.

Using this estimation, the microphone array spectral matrix resulted from

the sound wave only from θ direction is written as P(θ)vθvH
θ (see Appendix 2.7

for more details). If we assume that signals from different directions are

uncorrelated, then the signal spectral matrix for sound coming from an FOV
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is an integral of the single-direction estimation over the entire FOV:

Rs ≈
∫︂

Θ
P(θ)vθvH

θ dθ, (2.11)

where Θ is the solid angle area spanned by the camera’s FOV, set by the

current camera direction and zoom settings. Similarly, the noise spectral

matrix Rn can be estimated using the same integral but over the solid angle

area S3 \ Θ, where S3 denotes the solid angle of an entire 3D sphere. Note

that both Rs and Rn are frequency dependent, and thus they are estimated for

each individual frequency band. The estimation (2.11) can be applied to an

arbitrary FOV, and is agnostic to the sound source distribution in the FOV.

We note that a similar integral has been used for the standard MVDR

beamformer (Gu and Leshem, 2012) to estimate the spectral matrix excluding

a single sound direction. However, the accuracy of the power spectrum

estimation (2.10) and the matrix estimation (2.11) are unclear. In the rest of

this section, we theoretically analyze and justify this estimation.

2.3.3.3 Analysis

Our estimation of the single-direction power P(θ) is built on the MPDR

beamformer. Traditionally, a beamformer is used to enhance sound from a

direction s. It has been shown that the MPDR beamformer is identical to the

MVDR beamformer when the steering direction d (in MPDR) is chosen to

be the true sound source direction s, but MPDR beamformer is much less

reliable (Brandstein and Ward, 2013): a small mismatch between d and s

can degrade significantly the MPDR performance. Fortunately, this is not an
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issue in our case, since we have no explicit notion of sound sources. When

evaluating the integral (2.11), we treat each direction d in the FOV as a true

sound source direction s.

Next, we present an analytical understanding of (2.10) and (2.11) for spec-

tral matrix estimation. First, if the recording environment has only (uncor-

related) ambient noise, then the acoustic power is uniform in space, and the

spectral matrix R has the form, R = σIM, where σ is the ambient noise power,

and IM is an M × M identity matrix, where M is the number of microphones.

We therefore expect the estimated Rs to have power proportional to the FOV

area . In this case, P(θ) is a constant σ/M, and Rs in (2.11) indeed has diagonal

elements proportional to the FOV area. Now, consider the general case of

estimating the signal power P(θ) for the direction θ. Assuming signals from

different directions are uncorrelated, then the (true) spectral matrix can be

decomposed into two,

R = Rc + mθvθvH
θ , (2.12)

where Rc accounts for the sound signals from all directions but θ, and the

second term is the contribution of a plane wave coming from θ: mθ is its

power, and vθ is a vector defined in (2.6) (see Appendix 2.7 for more expla-

nation of the plane wave contribution). To see how well the estimation (2.10)

approximates the true power mθ, we express P(θ) analytically by applying
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the matrix inversion lemma (Meyer, 2000) on R and obtain

P(θ) =

[︄
vH

θ R−1
c vθ −

mθ

1 + mθvH
θ R−1

c vθ

(vH
θ R−1

c vθ)
2

]︄−1

=

(︃
a − mθa2

1 + mθa

)︃−1

= mθ +
1
a

,

(2.13)

where a denotes vH
θ R−1

c vθ for short. It is evident the estimated power P(θ)

differs from the true power mθ by a constant 1/a. In fact, 1/a is the noise power

in the output signal from the MVDR beamformer (i.e., using Rc in (2.5) and

computing wH
FBRcwFB), and the MVDR beamformer is designed to minimize

exactly this noise power (1/a). Here noise is all the signals not from direction θ.

Thus, from (2.13), we conclude that the estimation accuracy of P(θ) depends

on mθa, the output SNR ratio of the MVDR beamformer.

Furthermore, we show that the estimation of Rs in (2.11) has a bounded

error. Formally, we rewrite (2.11) as

Rs =
∫︂

Θ
mθvθvH

θ dθ+ ∆. (2.14)

The first term here is the true signal spectral matrix, and ∆ is the error residual

introduced by the estimator (2.11). As derived in Appendix 2.8, ∆ is bounded

from above and below:

λmin

M

∫︂
Θ

vθvH
θ dθ ≤ ∆ ≤ λmax

M

∫︂
Θ

vθvH
θ dθ, (2.15)
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where λmin and λmax are the minimal and maximal eigenvalues of Rc, respec-

tively. This derivation indicates that the residual is bounded from above,

proportional to the power of the strongest signal direction other than θ and

inversely proportional to the microphone array size.

In light of this, a simple strategy for improving estimation accuracy of

Rs is improving the MVDR’s output SNR ratio or increasing the number

of microphones (i.e., M). In the next section, we provide more guidance

on microphone array design for audiovisual zooming through numerical

simulations.

2.4 Empirical Studies of Array Designs

We implement our audiovisual zooming system on a microphone array, which

has many design parameters. Yet, there is no golden rule to set those pa-

rameters; they depend on specific applications (Lai, Nordholm, and Leung,

2017). We conduct a series of simulation experiments to understand the design

parameters tailored for our applications, wherein the mobile device such as a

smartphone is the form factor that we will restrict the microphone array to fit

in. Concretely, we explore the following questions:

• How does beamforming change with frequency?

• How big should the array be?

• What number of microphones should we use?

• How should we sample the spatial directions in (2.11)?
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The first three questions are to understand microphone array configuration,

while the last is for efficient implementation of our audiovisual zooming

algorithm. Because the audiovisual zooming is based on MVDR beamform-

ing, we must understand how the beamforming performance changes with

respect to the array’s design parameters. Therefore, the studies here are not

meant to evaluate our audiovisual zooming method. Rather, we examine

MVDR beamforming under different setups to understand design parameter

choices. While there have been plenty of empirical studies of microphone

array parameters (e.g., see Rabinovich and Alexandrov, 2013; Gannot et al.,

2017; Microphone Array Beamforming 2013), our primary goal of conducting

these studies is to inform our specific algorithm.

In this section, we present the conclusions we learned from the empirical

studies. The details of our simulations and their results are in Appendix 2.9 of

the supplementary.

The setup we consider is that of a circular array consisting of a number of

omnidirectional microphones evenly placed on a circle in the X-Y plane (see

Figure 2.7 in Appendix 2.9) centered at the origin. We choose this configuration

because it matches the off-the-shelf physical array that we will use. We also

place six sound sources throughout the space: four orthogonal sources in

the X-Y plane at 0◦, 90◦, 180◦, and 270◦. The other two are placed along the

positive and negative Z-axes, respectively. The environment is filled with

ambient Gaussian noise. The MVDR beamformer aims to enhance the sound

coming from the positive Z-direction, while suppressing everything else.
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2.4.1 Frequency dependence

MVDR performance is frequency dependent. Our experiments focus on the

frequency range of typical human speech (i.e., 300-3420Hz). The results are

visualized as MVDR beam patterns in Figure 2.7 of Appendix 2.9 at 300Hz,

1860Hz, and 3420Hz. Towards the steering direction, the beamformer always

has unit gain, thanks to the distortionless constraint in (2.5), but its shape

varies across frequencies. In general, beamforming performance increases as

frequency increases. The beam pattern at 3420Hz (Figure 2.7-d) also shows

some side lobs near the X-Y plane—a phenomenon known as spatial aliasing

occurring at high frequencies.

2.4.2 Array size

Next, we study the effect of the overall size of the array: the number of

microphones is fixed and the inter-microphone spacing is changed. Figure 2.8

in Appendix 2.9 shows the details of our studies. In general, the simulations

show that better directionality requires a larger array size—but not too large. For

example, once the array size reaches 50cm, we get non-trivial spatial aliasing

effects. Though there is a strong gain toward the target direction, there are

also many unwanted secondary gains in other directions. One way to avoid

spatial aliasing is to increase the spatial sampling rate. This brings up the next

natural question: how many microphones should we use?

34



2.4.3 Number of microphones

We simulate the beamformer response as we change the number of micro-

phones while fixing the overall size (i.e., 5cm in radius). The results are shown

in Figure 2.9 in Appendix 2.9. When we increase the number of microphones,

we obtain better suppression of the interference relative to the target. However

(and perhaps somewhat surprisingly), the performance plateaus once we have

sufficient microphones. Figure 2.9 shows that 16 microphones become super-

fluous, yielding no improvement over 8. In other words, more microphones

improve performance, but have diminishing returns.

For the 8- and 16-microphone cases, there are “indentations” in the di-

rections of the X-Y plane interferers (bottom row of Figure 2.9), indicating

so-called null responses toward those directions—this is the desired effect. Al-

though there are reasonably larger gains near the areas of those indentations,

no sounds comes from those directions in our setup, and so no suppression

is needed. This is the advantage of adaptive beamformers (like MVDR):

they work to rearrange the gain distribution to best nullify interferers while

distributing energy in places where no sound is thought to be.

2.4.4 Sampling density

Our audiovisual zooming algorithm estimates spectral matrices Rn and Rs

in (2.11) through Monte Carlo integration. In practice, we need to sample

directions within a desired FOV Θ and at its outside S3 \ Θ. The sampling

density of the directions should not be arbitrary because for each target we

beamform towards, there is an effective main lobe with a non-trivial width,
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meaning that although the gain in the direction of the target is maximal, there

is also non-zero gain from directions nearby the target direction. As shown in

Figure 2.10 in Appendix 2.9, the gain falls off as the sound incoming direction

deviates from the target direction. We determine an acceptable reduction in

dB (i.e., 1.8dB) for nearby sounds and Figure 2.10 suggests sampling directions

with an angular separation of 20◦.

2.4.5 Discussions: extending to 3D arrays

Thus far, most microphone arrays have a 2D planar configuration. We note that

there is inherently a symmetry. For the sound wave coming from an elevation

angle θ in spherical coordinates, no 2D planar array can disambiguate it from

the wave coming from the same but negated elevation angle −θ (and the same

azimuthal angle). For our applications, this is not a significant problem, as

the sound waves from behind the array are often blocked by the user who

is holding the camera to capture or the table on which the array is placed

(see Figure 2.4). Nevertheless, here we study the performance of a 3D array

for future extension. We add an additional microphone at the center of the

array and gradually move it along the negative Z-axis to break the planar

symmetry. We then examine how this affects the beam pattern. As shown in

Figure 2.11, this additional microphone indeed helps to break the symmetry.

As it moves further away from the microphone plane, the interferer behind

the array attenuates more. However, such a 3D array is much more bulky

than the 2D array. Today, the form factor of a mobile device is one of the most

decisive factors for its use on a daily basis. It is unclear if a 3D array is worth
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equipping on mobile devices.

2.5 Experiments and Results

We demonstrate our results via experiments on both synthetic and real data:

first, we use synthetic mixtures of clean speech sources in various config-

urations to evaluate audiovisual zooming enhancement (§2.5.1) using the

following quantitative metrics:

1. Signal-to-Distortion-Ratio (SDR) (Vincent, Gribonval, and Fevotte, 2006):

SDR evaluation takes as input the enhanced signal and the reference

signal it should ideally match. It first decomposes the enhanced signal

into four components: a target component coming from the reference

signal, an interferer component containing other unwanted sources’

contributions, a noise component encapsulating sensor noises and an

artifact component capturing distortions from other sources (like for-

bidden distortions of the sources and/or "burbling" artifacts). SDR is

then calculated as the logarithmic ratio (in dB) of the energy in the target

component to the energy in the unwanted components.

2. Signal-to-Noise-Ratio (SNR): SNR is defined here to be the logarithmic

ratio (in dB) of the energy of the enhanced signal to that of the noise

signal, the latter of which is defined at each time point as the difference

between the enhanced signal and the reference signal.

3. Waveform Amplitude Distribution Analysis SNR (WADA-SNR) (Kim

and Stern, 2008): This metric evaluation assumes that clean speech has
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an amplitude distribution well approximated by the Gamma distribu-

tion with a shaping parameter of 0.4, and that the additive noise signal is

Gaussian. It is calculated by studying the amplitude distribution of the

enhanced signal. As the reference signal we are attempting to recover

in our experiments is oftentimes speech, we use this metric to measure

enhancement quality that better correlates with our task.

4. Short-Time Objective Intelligibility (STOI) (Taal et al., 2010): Popular

objective measures such as SDR and SNR above often do not reflect

well the speech intelligibility–how easily the resulting signals can be

understood by humans. The STOI score is designed to bridge that divide.

5. Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001): Sim-

ilar to STOI, common measures like SDR and SNR do not correlate well

with voice quality evaluation results from humans. PESQ was devel-

oped to model these subjective tests better, and is a widely used industry

standard for objective voice quality testing.

Next, we perform real experiments using audio loud speakers in various

configurations to compute SDR, SNR, WADA-SNR, STOI and PESQ enhance-

ments. Finally, we show qualitative performance using two different hardware

platforms to demonstrate feasibility in mobile settings. For all experiments,

we tested our method against the MVDR beamforming approach as a basis-of-

comparison.
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2.5.1 Synthetic Mixture of Speech

As there are no public datasets for audiovisual zooming, we generated data by

mixing clean speech tracks in different (virtual) geometric configurations. We

performed randomized trials to span the space around a given microphone

array, varying the number of speakers and the solid angle over which we

wished to enhance the sound. For each target solid angle, different numbers of

speech signals were randomly placed within to differentiate from traditional

beamforming scenarios where only one sound source is targeted.

We use the same 6-microphone hexagonal array configuration as in §2.4

and simulate sound source directions by delaying the audio signal at each

microphone appropriately. In all cases, clean speech signals are obtained

from real recordings. For each trial, we do as follows: a) starting from a

selection of 10 clean speech sound tracks, we randomly choose between 2-10

overall speakers, of which 1-4 are randomly chosen to be targets and the rest

are interferers; b) we randomly select a solid angle between 10° and 120° in

both azimuth and elevation as well as a randomly-chosen direction-to-focus;

c) given these setups, we randomly place the targets within the solid angle

target-FOV as well as randomly place the interferers elsewhere. We run 500

random trials, applying both our method as well as MVDR (directed towards

the center of the target FOV), and compute averaged metrics. The results are

shown in Table 2.1.

Qualitatively, because MVDR (and other beamforming methods) only en-

hances sound from a single direction, when a conic angle of space contains
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MVDR Our Method
SDR [dB] -2.96793 -0.0095
SNR [dB] -0.86467 1.80908
WADA-SNR [dB] 5.1604 7.55923
STOI 0.66414 0.71992
PESQ 1.75125 2.04402

Table 2.1: Comparison of our method against MVDR. Our method consistently
outperforms MVDR.

multiple sounds, a relatively muffled sound enhancement results when point-

ing towards the FOV center. In contrast, our method integrates all sounds

coming from within the desired FOV and attempts to enhance all equally,

resulting in a more crisp sound enhancement.

2.5.2 Audio Speaker Experiments

We perform real experiments using four loudspeakers, playing individual

sound tracks through each in various geometric configurations. The speakers

are placed about a circular round-table, at 90°, 45°, 30°, and 15° (see Figure 2.4).

In each scenario, a single sound track is produced from each speaker and

all speakers play simultaneously from different directions. We then cycle

through the speakers and select either two or three adjacent speakers as the

targets, while all others serve as the interferers. Again, we focus on more than

one target sound at a time so as to differentiate from traditional beamforming

scenarios. In some experiments, all speakers play clean speech tracks whereas

in others, one of the speakers plays either a soft music track (e.g., jazz) or

a pre-recorded “crowd noise” (e.g., recording from a crowded restaurant).

Never is the music or crowd chosen as the target: these serve only to provide
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(a) (b)

(c) (d)

Figure 2.4: Loudspeaker experiments. Four audio loudspeakers play individual
sounds in configurations of 90° (a), 45° (b), 30° (c), and 15° (d) angular separations.
The microphone array is placed on the table (indicated by the orange boxes). We then
select anywhere between 2-3 speakers to simultaneously enhance while attenuating
all other speaker sounds (see supplementary video to the paper).

interference signals.

In each experiment, once the target and interferers are chosen, we play the

sounds twice: a) first, all are played together to mimic a “noisy” environment;

b) second, we play only the target sounds alone to serve as the “ground truth”

against which we can compute SNR/SDR metrics. We present our results

in each of the angular cases separately in Table 2.2. By all the metrics, our

method out-performs MVDR.

2.5.3 Use Case Demonstration

Finally, we demonstrate Audiovisual Zooming on two mobile platforms: a

smartphone and a 360° camera, both attached to a 6-microphone hexagonal
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Metric Method 90◦ 45◦ 30◦ 15◦

SDR [dB] MVDR -4.08 -1.10 -3.54 -1.98
Ours -2.11 0.08 -2.56 -1.29
MVDR -0.55 0.78 -0.52 -0.19SNR [dB] Ours 0.75 1.86 0.48 0.79
MVDR -0.24 1.73 1.13 1.60WADA-SNR [dB] Ours 1.30 3.39 3.42 4.26
MVDR 0.46 0.58 0.50 0.53STOI Ours 0.59 0.63 0.54 0.56
MVDR 1.72 1.95 1.86 1.71PESQ Ours 2.00 2.17 2.07 1.80

Table 2.2: Comparison of our method against MVDR for real loudspeaker experi-
ments shown in Figure 2.4.

array (see Figure 2.2).

We refer to our supplementary video for the audiovisual zooming demon-

stration using both platforms. Using the smartphone, we demonstrate a sce-

nario in which a user captures two persons speaking simultaneously. When

both persons are captured in the camera’s FOV (see Figure 2.1-a), their voices

are mixed together. As the user zooms in the camera’s FOV to focus on

one person (see Figure 2.1-b), her voice stands out while the other’s voice is

suppressed. Next, the user shifts the camera’s FOV to another person (see

Figure 2.1-c), and consequently his voice gradually becomes clear while the

other fades out. We note that in this process the change of audio signal is fully

synchronized with the change of the camera’s FOV, thanks to our audiovisual

zooming technique—for example, the sound gradually changes from one

person’s voice to another voice as the camera pans.

To demonstrate the 360° camera, four people sit around a round table

and simultaneously converse. The 360° camera with the microphone array
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Figure 2.5: Speaker separation on a Ricoh camera. Using a mobile microphone
array attached to a 360° camera, we perform audiovisual zooming on 4 people seated
around a table at roughly 90° angular offsets from one another. In this scenario, 2
pairs of people are having simultaneous conversations and we use our method to
focus in on one conversation. The left shows the raw noisy spectrogram as recorded
in one of the microphones in the array. On the right, we show the spectrogram after
sound enhancement using our method, which is noticeably cleaner (see supplementary
video).

is placed on the table and pointed upwards. It is difficult to distinguish the

individual speakers in the raw audio. Since the 360° camera captures all

speakers, the user can set the camera’s FOV on individual speakers to boost

their voice relative to the others’. As the camera’s FOV switches from one

speaker to another, the boosted voice switches correspondingly. Consequently,

the user can choose to see and hear individual speakers (see supplementary

video).

In these scenarios, it was not possible to obtain ground truth (e.g., target-

only sounds that perfectly match the raw, noisy signals), and so here we show

our results qualitatively via spectrograms before and after enhancement (see

Figure 2.5).
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2.6 Conclusion

In this work, we extend the concept of the camera’s FOV to enhance au-

dio recording. Traditionally, camera’s FOV defines only the visual frustum

through which the visual content is captured by the camera. A fundamental

limitation is the inconsistency between captured visual and auditory content—

the sound is captured regardless of the FOV setup. To address this limitation,

we have introduced an audiovisual zooming technique by leveraging the

microphone array and augmenting classic beamforming methods. We have

presented a method that estimates the sound spectral matrices which accounts

for the desired sound signals within the FOV and those outside of the FOV.

The estimated spectral matrices allow us to enhance sound coming within

the FOV by solving a generalized eigenvalue problem. Our method requires

no analysis of captured video frames. It can enhance however many sound

sources within the FOV, and the captured imagery is in tandem with the

resulting sound signal.

A limitation of our approach is that in a reflective environment, a sound

source outside of the FOV may emit sound waves that arrive to the micro-

phone from within the FOV through reflections. In this case, our audiovisual

zooming method will still enhance those received sound signals. In the fu-

ture, we plan to investigate this limitation by estimating the room acoustics,

which might require the analysis of captured video frames to understand the

environment geometry and acoustic properties (e.g., Li, Langlois, and Zheng,

2018).
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2.7 Appendix: Spectral Matrix of Sound from a Di-
rection θ

Consider a plane wave impinging on a microphone array (see Figure 2.6).

Let pi denote the position of individual microphones, and the plane wave

comes from the direction d with an intensity A. The angle between the sound

incoming direction and the microphone array’s facing direction is θ. Then, the

sound waves received at individual microphone is expressed as

si = A
1
2 e−j(ω

c dT pi+ωt).

Here ω
c dT pi is the (relative) phase at the microphone i. Putting all si into a

vector s = [s1 . . . sM]T, we can compute the spectral matrix by its defini-

tion (Oppenheim, 1999) as

R(ω) = FFT{ssT} = AvdvH
d , (2.16)

where vd is the steering vector defined in (2.6). This expression (2.16) is what

we used in (2.11).

2.8 Appendix: Derivation of Error Bound (2.15)

First, we substitute (2.13) into the Rs estimation (2.11) and obtain the expres-

sion of ∆ in (2.14),

∆ =
∫︂

Θ

1
a

vθvH
θ =

∫︂
Θ

1
vH

θ R−1
c vθ

vθvH
θ . (2.17)
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Figure 2.6: Consider a microphone array in which each microphone is located at
position pi. A single sound comes from the direction d as a plane wave. The angle
between the microphone array’s facing direction and the sound incoming direction is
θ.

Here vH
θ R−1

c vθ is bounded by the maximum and minimum eigenvalue of

R−1
c . Also, notice that vθ is the steering vector, which has a specific form (2.6).

Therefore, we have

λĉ
minvH

θ vH
θ = λĉ

minM ≤ vH
θ R−1

c vθ ≤ λĉ
maxvH

θ vH
θ = λĉ

maxM, (2.18)

where M is the number of microphones; λĉ
max and λĉ

min are the maximum and

minimum eigenvalues of R−1
c , respectively. They are related to the eigenvalues

of Rc through

λĉ
max =

1
λmin

and λĉ
min =

1
λmax

.

Combing this expression with (2.17) and (2.18), we obtain the error bound of

∆ as shown in (2.15).
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2.9 Appendix: Details of Empirical Studies

In our empirical studies, the MVDR beamformer aims to enhance the sound

coming from the positive Z-direction, while suppressing everything else. Since

we know precisely what the unwanted signals are in our simulation, we can

directly compute the noise spectral matrix Rn, which is in turn used in (2.7) to

evaluate wBF. We visualize MVDR performance by evaluating its beam pattern

across a range of frequencies. The beam pattern describes the effective gain

for signals coming from individual directions θ when the beamformer is set to

enhance toward a direction θ0. It is defined as

g(θ; θ0) = |wH
BF,θ0

vθ|, (2.19)

where wH
BF,θ0

is the MVDR weights from (2.7) when the steering direction is

set to be θ0, and vθ is defined in (2.6).

2.9.1 Frequency dependence

To study the frequency dependence of the microphone array’s performance,

we use sound sources that produce sound signals at a fixed frequency, and the

frequency is varied to ascertain the beamforming performance with respect

to frequency change. This is seen in Figure 2.7 as tighter main lobes in the

target’s direction for higher frequencies, meaning the interfering sounds are

better suppressed.
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(a) (b)(a) (b)

(a) (c) (c) (d)

Figure 2.7: Frequency dependence. We visualize the frequency dependence of the
MVDR beam patterns. (a) The array consists of 6 microphones shown as gray cubes
on the X-Y plane, where the microphones are spaced evenly 5cm from one another.
The 6 sound sources are spread throughout the space: 4 interfering sources are shown
in red on the X-Y plane along with another interfering source in the negative z-axis.
The target is shown in blue in the positive z-axis. (b-d) The MVDR beam patterns at
three different frequencies, 300Hz (b), 1860Hz (c), and 3420Hz (d), are shown both in
the shape of the surface and as the color (yellow as 1 and blue as 0).

2.9.2 Array size

Figure 2.8 shows the change in average beam pattern across the human speech

frequency range (300-3420Hz) as the microphone spacing is changed from

0.5cm to 5cm and then to 50cm. The more microphones we have, the better we

can sample (spatially) with larger array sizes. The smallest spacing setting of

0.5cm gives almost no directionality, with an omni-directional gain response.
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As we increase to 5cm, the directionality improves with better suppression of

the interference sources relative to the target.

2.9.3 Number of microphones

The simulation setup and results are shown in Figure 2.9 and its caption.

2.9.4 Sampling density

Figure 2.10 (bottom) shows a plot of average gain (y-axis) within the human

frequency range as a function of elevation (x-axis) angle (e.g., offset from the

target direction). Note that we ignore the variation of azimuth angle because it

has no effect for the given array configuration and target direction, as shown in

Figure 2.7. Therefore, we consider the microphone array scenario as shown on

the top (circular 6-sensor array with 5cm spacing). The simulation shows that

the gain falls off from the target direction for any nearby sounds within a small

FOV of the target. We use this to determine a reasonable sampling rate for our

sphere integration approach, as discussed in the main text (in §2.4). Here, we

convert the gain as expressed in (2.19) to dB as: gdB(θ) = 20 ∗ log10(g(θ)).

2.9.5 Extension to 3D arrays

We explore the effect of a 3D microphone array as a future extension. 3D array

is able to break the symmetry that a 2D array suffers from, although it is much

more bulky and might not be compatible with the small form factor of most

mobile devices. The result and simulation details are shown in Figure 2.11

and its caption.
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(a)

(b)

(c)

Figure 2.8: Role of array size. We use a 6-element circular array but vary the inter-
microphone spacing to adjust the overall array size. On the left of each subplot is
the spatial configuration: the target, interferers, and ambient noise are the same as
before (Figure 2.7), and the spacing of the microphones (in the x-y plane) changes
from 0.5cm (a) to 5cm (b) to 50cm (c). On the right of each subplot is the average
beam pattern across the frequency range of human speech, to indicate the average
performance of the beamformer in that range.
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Figure 2.9: Number of microphones. Here the microphone array geometry is a circle
with a fixed 5cm radius in the X-Y plane. We examine how changing the number of
microphones on this circle affects the average beam pattern of the beamformer. The
definition of beam pattern is presented in Appendix 2.9. [Top-Left] A single micro-
phone yields an omnidirectional response. [Top-Right] Two microphones improves
directionality by suppressing two side interferers, but not the others. [Middle-Left]
Four microphones improves directionality further. [Middle-Right] Eight microphones
are better, and the performance plateaus as 16 [Bottom-Left] or 32 [Bottom-Right]
microphones yield no clear improvement.
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Figure 2.10: Target proximity sensitivity. When beamforming at a target in the
presence of interferers, it is important to know how the gain falls off from the direction
of the target for nearby interferers. We show this for a given 6-microphone array
configuration with 5cm spacing [left] as a 3D surface plot of average gain (across the
human frequency range) as a function of azimuth and elevation angular offset from
the desired target direction [right]. This allows us to better understand how close
sounds can be before they are not sufficiently separable.
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Figure 2.11: 3D asymmetries. Effect of MVDR beamforming as a microphone as
added to the third dimension. We consider our baseline 6-microphone circular planar
array and we add an extra microphone at the center. We then move the extra mic
along the negative z-dimension to break the 2D symmetry and observe how this
affects the gain for the previously-ambiguous interference behind the array. [Top-
Left] The extra mic is at z=0, and so the symmetry remains. [Top-Right] The extra mic
moves down the negative z-axis by 5mm, and the gain in the direction of the interferer
subsides. As the microphone moves further along the axis by 10mm [Middle-Left],
15mm [Middle-Right], 20mm [Bottom-Left], and 30mm [Bottom-Right], the gain in
the direction of the interferer attenuates more and more while the gain in the direction
of the target remains maximal.
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Chapter 3

Single Channel Speech
Enhancement Using Deep Learning

In this chapter, we demonstrate how deep learning can be used to improve the

perceptual qualities of degraded speech to make it more pleasing to human

listeners. Speech enhancement aims to improve speech quality by eliminating

noise and distortions. While most speech enhancement methods address

signal independent additive sources of noise, several degradations to speech

signals are signal dependent and non-additive, like speech clipping, codec

distortions, and gaps in speech. Here, we first systematically study and

achieve state of the art results on each of these three distortions individually.

Next, we demonstrate a neural network pipeline that cascades a time domain

convolutional neural network with a time-frequency domain convolutional

neural network to address all three distortions jointly. We observe that such

a cascade achieves good performance while also keeping the action of each

neural network component interpretable.

While the previous chapter dealt with multi-channel (i.e., multi micro-

phone) speech, here, we concern ourselves only with single channel speech
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which might be either the signal recorded my a single microphone or the

output from a prior beamforming step. In addition, the angle from which we

approach the problem hinges on a topic – the phase of the speech – often tradi-

tionally ignored (Wang and Lim, 1982) in single channel speech enhancement

but one which forms the foundation upon which all of beamforming is built.

Through our investigation, we demonstrate scenarios in which speech phase,

crucial in multi-channel speech enhancement, is also essential to successful

single channel speech enhancement, an observation confirmed by recent state

of the art results in speech enhancement (Hu et al., 2020; Isik et al., 2020) .

Thus, even though beamforming is not the direct focus here, it is our hope

that a better understanding of the role of speech phase in audio quality and

developing phase-aware enhancement pipelines will aid us in designing better

machine learning driven audio beamforming pipelines. The work presented

in this chapter has been accepted for publication in Nair and Koishida, 2021.

3.1 Introduction

Speech in the real world is almost always contaminated by noise. The primary

goal of speech enhancement (Loizou, 2013) is to improve the intelligibility and

perceptual quality of speech by reducing (ideally, eliminating) the presence

of unwanted noise signals. Successful speech enhancement helps us humans

understand and communicate not only with each other but also with machines

(e.g, automatic speech recognition (Lee, 1988))

Traditionally, speech enhancement was achieved through signal processing

methods (Wiener, 1950; Boll, 1979; Ephraim and Malah, 1984). Lately, deep
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neural network (DNN) approaches to speech enhancement have demonstrated

superior performance (Kumar and Florencio, 2016). Solutions based on a

wide variety of DNN architectures – fully connected Networks (FCNs) (Xu

et al., 2013; Xu et al., 2014), denoising autoencoders (DAEs) (Lu et al., 2013),

convolutional neural networks (CNNs) (Park and Lee, 2017), recurrent neural

networks (RNNs) (Weninger et al., 2015), and generative adversarial networks

(GANs) (Pascual, Bonafonte, and Serra, 2017) – have all been proposed for the

speech enhancement task.

DNN methods mostly fall into two families depending on the input

data – either the input is in the time domain (Pascual, Bonafonte, and Serra,

2017; Stoller, Ewert, and Dixon, 2018; Luo and Mesgarani, 2019) or the time-

frequency domain (Bulut and Koishida, 2020; Park and Lee, 2017; Williamson

and Wang, 2017). Time-frequency networks largely operate on magnitude

spectrograms and combine the noisy phase of the input with the enhanced

output magnitude spectrogram to reconstruct speech (Bulut and Koishida,

2020). In contrast, time domain networks can operate on and enhance the

phase information as well (Paliwal, Wójcicki, and Shannon, 2011) as the time

domain input contains both magnitude and phase information.

The majority of existing speech enhancement methods largely address

scenarios of signal independent additive noise removal – such as the removal

of an air conditioner’s hum from a video call. However, several degradations,

especially in telecommunication applications, are signal dependent. Clip-

ping, codec distortions, and gaps are three common speech degradations in

telecommunications. Speech clipping is a non-linear signal distortion that
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occurs when the speech signal exceeds the recording microphone’s dynamic

range. The vast majority of declipping methods are based on signal process-

ing (Záviška et al., 2020) with deep learning only very recently being used

(Kashani et al., 2019; Mack and Habets, 2019). Codec distortions occur when

speech is encoded by a lossy codec for transmission. Due to limited band-

width, a low bitrate codec might be used which results in the encoded speech

being of poor quality. Various deep learning architectures have been studied

for improving the quality of the encoded speech (Biswas and Jia, 2020; Zhao,

Liu, and Fingscheidt, 2018; Deng et al., 2020). Gaps in speech arise as a result

of poor network conditions. Due to packet loss or jitter in the network, some

speech packets are missed and the corresponding speech is not reconstructed.

To tackle this, gap filling methods have been developed (Mohamed, Nessiem,

and Schuller, 2020).

While each of clipping, codec distortions, and gaps is challenging to ad-

dress in its own right, in practice these distortions occur together. Our contri-

bution is jointly addressing the three distortions. First, we start by studying

each distortion individually, achieving state of the art results. Next, guided

by the observation that clipping and gaps are better addressed in time and

codec distortions in time-frequency, we propose a novel convolutional neural

network (CNN) pipeline based on the UNet (Ronneberger, Fischer, and Brox,

2015) architecture that cascades a time domain UNet (T-UNet) with a time-

frequency UNet (TF-UNet) to achieve the best results on the task. A benefit of

our pipeline is the function of each component network remains interpretable

while still achieving good performance.
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The work is organized as follows: Section 3.2 presents clipping, codec

distortions, and gaps in speech in more detail and also elaborates on the

network architectures used. Section 3.3 describes the dataset and experiments

conducted. Section 3.4 presents the findings from our experiments . Section

3.5 concludes the work.

3.2 Method

Let [x1, ..., xn] = x ∈ Rn denote the original (clean signal) vector. Here, xk is

the k-th speech sample. Let [y1, ..., yn] = y ∈ Rn denote the degraded signal

vector.

3.2.1 Speech Degradations - Clipping, Codec Distortions, Gaps
in Speech

The first speech degradation modeled is speech clipping (Záviška et al., 2020).

Clipping is a non-linear distortion that occurs when the speech signal exceeds

the dynamic range of the recording microphone and can be expressed as the

element-wise function:

yn =

{︄
xn if |xn| < θ

θ.sgn(xn) if|xn| ≥ θ
(3.1)

where the threshold θ is called the clipping threshold.

The second speech degradation we model is codec distortion. Speech is

commonly encoded prior to transmission (or storage) and decoded only when

it needs to be played to reduce the amount of data that needs to be transmitted

(or stored). A codec ( portmanteau of coder-decoder) is a software written to
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compress speech for transmission or storage. To achieve better compression

rates, codecs (especially at low bitrates) are lossy (i.e., the decoded data is

not an exact match for the original data prior to encoding). This can result in

artifacts that are audible to the human ear. Mathematically, we can express

the action of a codec as:

y = ψ(x) (3.2)

where the function ψ(.) represents the action of an element-wise codec (e.g.

µ− law compression) or a frame-wise codec (e.g. Adaptive Multi-Rate Wide-

band (AMR-WB) or MP3).

The third speech degradation modeled is gaps in speech. Poor network

conditions result in speech packets being dropped due to packet loss or jitter

(Mohamed, Nessiem, and Schuller, 2020). This can be expressed mathemati-

cally as a vector Hadamard product:

y = m ⊙ x (3.3)

where the mask m contains 0s and 1s. Contiguous subsets of mask samples

with sizes matching the packet size must either be missing together (all 0s) or

observed together (all 1s).

3.2.2 Network Architectures

We make extensive use of two U-Net (Ronneberger, Fischer, and Brox, 2015)

architectures in our study – T-UNet (see Fig. 3.1), a time domain U-Net

for time domain experiments, and TF-UNet (see Fig. 3.2), a time-frequency

domain network for time-frequency domain experiments
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Figure 3.1: T-UNet network architecture used for speech enhancement in this work

Figure 3.2: TF-UNet network architecture used for speech enhancement in this work
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T-UNet was designed based on the structure of the generator in the popular

SEGAN (Pascual, Bonafonte, and Serra, 2017) architecture with some key

differences – it has smaller convolutional kernels of width 5 and stride 2, is

fully deterministic (no Gaussian noise injection in the bottleneck layer), uses

LeakyReLU non-linearities and has sub-pixel convolutions in the decoder

branch which are demonstrated to work better (Eskimez, Koishida, and Duan,

2019). Further structural details such as number of layers, number of feature

maps in each layer etc. can be observed in Fig. 3.1.

The TF-UNet uses the 2D UNet network architecture proposed in Bulut

and Koishida, 2020. Key features of it include separable convolutions in the

encoder (first downsampling is performed in frequency, then in time), pixel

shuffling in the decoder layers, and training with log-spectral distance (LSD)

loss. Each of these modifications improve performance on speech tasks (Bulut

and Koishida, 2020). See Fig. 3.2 for more details.

As comparing approaches in time and time-frequency for each distortion

is of interest, model complexity in both T-UNet and TF-UNet were matched

by ensuring the number of learnable parameters are comparable (11,283,585

for T-UNet vs. 9,711,361 for TF-UNet).

3.3 Experiments

3.3.1 Dataset and Degradation Modeling

The Interspeech 2020 Deep Noise Suppression (DNS) Challenge dataset (Reddy

et al., 2020) was used to train and test the models. Clean data in the training

set of the corpus was corrupted and used as training data. For testing, the
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synthetic non-reverberant test data of the corpus was similarly corrupted and

used. There is no speaker overlap between training and test sets. All data was

sampled at 16 kHz.

For creating clipped data, the parameter θ in Eqn. 3.1 was set as θ =

a × xmax, where xmax is the maximum value of the clean speech x loaded

from a single wav file and the multiplier a is randomly chosen from a trun-

cated random normal distribution with mean 0, standard deviation 0.2, lower

threshold of 0.01 and upper threshold of 0.5. This results in a typical speech

signal having between 0.36% and 62% of its samples clipped. This generating

model was chosen to present more tougher examples to the network while

still presenting easy examples so that performance on easy cases does not

degrade.

To model codec distortions, the FFmpeg software (FFmpeg A complete,

cross-platform solution to record, convert and stream audio and video.) was used to

degrade clean speech with either the 8-bit µ−law, AMR-WB, or MP3 codec.

For the latter two codecs, only a subset of possible bitrates (6.60kbit/s and

23.85kbit/s for AMR-WB, 8kbit/s, 16kbit/s, 24kbit/s, 40kbit/s, and 96kbit/s

for MP3) were used for training but testing was done on all codec bitrates to

check generalization of the trained networks.

To create gaps in speech, a fixed packet size of 16ms was used because

voice packet sizes for VOIP applications are typically 10–20ms long (Mohamed,

Nessiem, and Schuller, 2020). Each clean speech utterance was partitioned

into 16ms frames and each frame was either set to zero or observed as is

according to Eqn. 3.3. The probability of the frame being set to zero was set as
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10%, modeling severe VOIP degradation (Kenneth, Mansfield, and Antonakos,

2010).

3.3.2 Data Preprocessing and Network Training Details

For the T-UNet, input is of size 16,384 time samples. This corresponds to ≈ 1s

of speech considering the dataset is sampled at 16kHz. During test time, the

degraded test signal is partitioned into 1s segments which are processed by

the network individually before being stitched back together

For the TF-UNet, degraded speech is passed through a 512-point (32 ms)

STFT with 50% overlap. The magnitudes of the 257 unique STFT coefficients

obtained are squared and log compressed to give the log-power spectrogram

(LPS) of the signal. The bin corresponding to the highest frequency STFT

coefficient is then removed to get an input with 256 frequencies, a power of 2

as required by the TF-UNet architecture (Bulut and Koishida, 2020). Along the

time axis of the LPS, the signal is partitioned into blocks of 64 frames (≈ 1s),

making the input to the network of size 256× 64. During testing, the enhanced

LPS is transformed back into STFT magnitudes before it is combined with the

noisy phase of the input and the inverse STFT is applied.

All T-UNets and TF-UNets networks are trained with the Adam optimizer

(Kingma and Ba, 2014) with a batch size of 64, a learning rate of 0.0001 and

decay rates of β1 = 0.5 and β2 = 0.9.
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3.3.3 Preprocessing Speech Gap Regions

A simple gap identification method using normalized cross correlation (NCC)

was developed to aid with gap filling. As packet size (16ms) is assumed

known, NCC between 1 − |(y)| (where y is the input signal with speech gaps

in time domain) and a vector of all ones of length 16ms should yield a NCC

value of 1, enabling gap identification. However, silence regions were also

falsely detected as gaps, so the silence detector in Librosa (McFee et al., 2015)

was used to suppress them. This simple gap detection algorithm achieved an

impressive mean Dice Similarity Coefficient of 0.99 on the test data. After gap

identification, a mask m̂ can be constructed which is an estimate of the true

gap mask m in Eqn. 3.3. The estimated mask can then be stacked onto y along

the channel dimension and fed in to the neural network as shown in Fig. 3.3

(a). It is straightforward to use the time domain mask estimate m̂ to create a

time-frequency domain mask estimating time-frequency bins affected by gaps

by taking the STFT of 1 − m̂ and labeling time-frequency bins with energy

content as affected by a gap and those without energy as not affected by gaps.

In addition, different initialization methods for the gap regions were stud-

ied. Either the gap was initialized as is (i.e., filled with zeros), filled with the

average of the previous and next packets in time (T-init), or the gap-affected

LPS frame was initialized with the average of the previous and next LPS

frames (TF-init).
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Figure 3.3: Proposed T-UNet + TF-UNet pipeline for jointly addressing clipping,
codec distortions, and gaps. Speech with clipping, codec distortions, and gaps along
with an optional gap mask (a) is input to a T-UNet trained to remove clipping and
gaps and output speech with only codec distortions (b). This speech (b) is transformed
into an LPS (c) which is input to a TF-UNet trained to remove codec distortions and
produce a clean LPS (d) which is combined with the phase of (b) to produce enhanced
speech (e).

3.3.4 Unified T-UNet + TF-UNet Pipeline Training

The proposed T-UNet + TF-UNet pipeline illustrated in Fig. 3.3 contains

both a time-domain UNet and a time-frequency domain UNet to leverage the

processing strengths of each domain. The training phase for the pipeline is

partitioned into two stages. In the first stage, the two networks are trained

individually – the T-UNet is trained to perform gap filling and declipping

on input data corrupted by all the three degradations of clipping, codec

distortions, and gaps (Fig. 3.3 (a)). The target output is data with only codec

distortions (Fig. 3.3 (b)) – i.e., the target output is itself degraded. Concurrently,

69



the TF-UNet is trained to perform codec distortion removal on LPS data with

codec distortions (Fig. 3.3 (c)). The target output is the clean speech LPS (Fig.

3.3 (d)). Once both the T-UNet and TF-UNet are trained, the second stage is

to fine-tune the TF-UNet on the output of the T-UNet to address any domain

shift between the output of the T-UNet and data with only codec distortions.

3.3.5 Studying Phase Distortion Introduced By Clipping, Codec
Distortions, and Gaps in Speech

An advantage of T-UNet over TF-UNet is that while TF-UNet only operates

on magnitude spectrogram information, T-UNet can operate on phase infor-

mation as well. This suggests that the more severe the phase distortion, the

better T-UNet should perform compared to TF-UNet. The phase distortion

introduced by each of clipping, codec distortions, and gaps was studied by

combining distorted phase caused by each of the three degradations with clean

magnitude information, and measuring the degradation in speech quality.

3.3.6 Evaluation Metrics

Objective evaluation of the enhanced speech was done using the PESQ, CSIG,

CBAK, and COVL measures. Each measure compares the enhanced speech

with a corresponding ground truth clean speech signal. PESQ, or Perceptual

Evaluation of Speech Quality, is a common assessment measure of the speech

quality as experienced by a user of a telephony system and returns a value

between -0.5 and 4.5. CSIG, CBAK, and COVL are objective measures that

aim to predict the subjective Mean Opinion Score (MOS), or how well would

an average human listening to the (enhanced speech, clean speech) pair rate
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Table 3.1: Declipping Performance

PESQ CSIG CBAK COVL
Noisy 1.93 3.79 3.74 2.90
Baseline (UNet) (Kashani et al., 2019) 3.68 4.81 4.39 4.41
T-UNet 3.97 4.93 4.80 4.66
TF-UNet 3.83 4.89 4.58 4.54

the quality of the enhanced speech, on three different criteria – CSIG predicts

signal distortion MOS, CBAK predicts background-noise intrusiveness and

COVL predicts overall signal quality MOS. All three produce MOS values

from 1 to 5. For all the metrics, a higher score corresponds to better quality

enhanced speech.

3.4 Results

3.4.1 Clipping

Performance of the T-UNet and TF-UNet on the declipping task are compared

it with a state of the art declipper based on the UNet network (Kashani

et al., 2019) trained on our data in Table 3.1. Compared to the baseline,

the modifications in the TF-UNet make it better for modeling speech and it

consequently performs better. However, the best performing approach to

declipping is the proposed T-UNet approach, achieving superior performance

according to all measures. These results suggests declipping is a problem best

addressed in time domain.
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Table 3.2: Codec Distortion Removal Performance

PESQ CSIG CBAK COVL
Noisy 3.76 4.03 4.20 3.93
Baseline (SEGAN) (Biswas and Jia, 2020) 3.75 4.34 4.32 4.12
T-UNet 3.85 4.41 4.38 4.22
TF-UNet 4.10 4.88 4.37 4.65

Table 3.3: Gap Filling Performance

PESQ CSIG CBAK COVL
Noisy 1.89 4.18 4.29 3.08
Baseline (SEGAN) (Shi et al., 2019) 3.08 4.88 4.80 4.05
T-UNet 3.26 4.93 4.82 4.18

+ mask 3.24 4.92 4.77 4.16
+ mask + T-init 3.38 4.96 4.70 4.28

TF-UNet 2.96 4.84 4.71 3.96
+ mask 2.96 4.84 4.70 3.96
+ mask + T-init 3.25 4.97 4.82 4.19
+ mask + TF-init 2.95 4.83 4.70 3.95

3.4.2 Codec Distortions

T-UNet and TF-UNet approaches to codec distortion removal were compared

with a state of the art SEGAN baseline (Biswas and Jia, 2020) trained on our

data in Table 3.2. In comparison, our T-UNet and TF-UNet achieve better

results. Best overall results are obtained with the TF-UNet which suggests

codec distortion removal is best done in the time-frequency domain.

3.4.3 Gaps in Speech

The performance of the different networks trained to fill in speech gaps is

compared with a state of the art SEGAN baseline (Shi et al., 2019) trained

on our data in Table 3.3. T-UNet outperforms the baseline, while TF-UNet
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Table 3.4: Performance addressing clipping, codec distortions, and gaps in speech
jointly

PESQ CSIG CBAK COVL
Noisy 1.35 2.75 2.61 2.05
T-UNet 2.61 3.84 3.60 3.26
TF-UNet 2.76 4.22 3.41 3.52
T-UNet (Large) 2.56 3.80 3.55 3.21
TF-UNet (Large) 2.76 4.26 3.41 3.54
T-UNet+TF-UNet
(w/o fine-tune) 2.62 3.23 3.36 2.94

T-UNet+TF-UNet
(w/ fine-tune) 3.46 4.63 3.87 4.10

does not. On studying example outputs from both networks, it was observed

that the biggest issue with the enhanced outputs was not incorrect speech

reconstruction but a lack of reconstruction of the missing speech in gap regions.

Consequently, as described in Section 3.3.3, explicit supervision was provided

to the network on gap locations by inputting a gap mask m̂ as well as better

initializing gap regions by filling in the average of neighboring samples either

in time (T-init) or time-frequency (TF-init). From the experiments, using both

a gap mask and T-init together works best for both T-UNet and TF-UNet, with

the former performing as well or better than the latter (except on the CBAK

measure), suggesting the T-UNet is overall better suited to performing gap

filling.

3.4.4 Jointly Addressing Clipping, Codec Distortions, and Gaps

We observe the performance of networks trained to jointly address all three

distortions – clipping, codecs and gaps – in Table 3.4. Compared to training a

single T-UNet or TF-UNet to handle all three distortions, better performance
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can be obtained by incorporating the knowledge gained in Sections 3.4.1–3.4.3

that clipping and gaps are best addressed in time and codec distortions in

time-frequency. A pipeline tailored to the task was designed that cascades a T-

UNet with a TF-UNet and trained as described in section 3.3.4. A first attempt

of training a T-UNet and TF-UNet in parallel and connecting them together

(T-UNet + TF-UNet (w/o fine-tune) in Table 3.4) was unsuccessful because of

the domain shift between the output of the T-UNet trained to remove clipping

and gaps and data corrupted only by codec distortions. On fine-tuning the

TF-UNet on the output of the T-UNet, this domain shift was bridged and

significantly better results were obtained ((T-UNet + TF-UNet (w/ fine-tune)

in Table 3.4). The performance of the proposed pipeline remained superior

even when larger networks (denoted as T-UNet (Large) and TF-UNet (Large)

in Table 3.4) with more filters per layer to match the number of parameters in

our T-UNet + TF-UNet pipeline were trained on the joint distortion removal

task.

3.4.5 Discussion

We attempted to understand why T-UNet performs better than TF-UNet on the

declipping and gap filling tasks by studying phase distortion as described in

Section 3.3.5, using PESQ to evaluate speech quality. We observed that codec

distortions produced less phase distortion, lowering PESQ by an average of

0.26, while clipping and speech gaps caused more phase distortion, lowering

PESQ by an average of 0.32 and 1.25, respectively, and are the two cases

where T-UNet outperformed TF-UNet. This observation confirms that T-UNet

74



performs better relative to TF-UNet in the presence of more severe phase

distortion as T-UNet enhances phase information as well, and highlights the

importance of choosing the right domain (time vs. time-frequency) in which

to process each distortion.

3.5 Conclusion

In this work we systematically study the problem of enhancing speech suffer-

ing from three degradations – clipping, codec distortions, and gaps – using

DNNs in the time and time-frequency domains. We achieve state of the art per-

formance on each degradation before developing a neural network pipeline

consisting of cascaded time domain and time-frequency domain UNets to

address all three distortions together. The cascaded pipeline developed nears

the performance ceiling set by the most challenging single distortion of gaps

in speech while simultaneously allowing the function of each component

network to remain interpretable.
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Chapter 4

Robust Short-Lag Spatial
Coherence Imaging

In this chapter, we demonstrate how the performance of Short-Lag Spatial

Coherence (SLSC) imaging (Lediju et al., 2011) can be improved using Robust

Principal Component Analysis (RPCA) (Candès et al., 2011). SLSC imag-

ing displays the spatial coherence between backscattered ultrasound echoes

instead of their signal amplitudes and is more robust to noise and clutter arti-

facts when compared to traditional delay-and-sum (DAS) B-mode imaging.

However, SLSC imaging does not consider the content of images formed with

different lags, and thus does not exploit the differences in tissue texture at each

short lag value. Our proposed method improves SLSC imaging by weight-

ing the addition of lag values (i.e., M-weighting) and by applying RPCA to

search for a low dimensional subspace for projecting coherence images created

with different lag values. The RPCA-based projections are considered to be

de-noised versions of the originals that are then weighted and added across

lags to yield a final Robust Short-Lag Spatial Coherence (R-SLSC) image. Our

approach was tested on simulation, phantom, and in vivo liver data. Relative
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to DAS B-mode images, the mean contrast, signal-to-noise ratio (SNR), and

contrast-to-noise ratio (CNR) improvements with R-SLSC images are 21.22

dB, 2.54 and 2.36 respectively, when averaged over simulated, phantom, and

in vivo data and over all lags considered which corresponds to mean improve-

ments of 96.4%, 121.2% and 120.5% respectively. When compared to SLSC

images, the corresponding mean improvements with R-SLSC images were

7.38 dB, 1.52 and 1.30, respectively, (i.e., mean improvements of 14.5%, 50.5%

and 43.2%, respectively). Results show great promise for smoothing out the

tissue texture of SLSC images and enhancing anechoic or hypoechoic target

visibility at higher lag values which could be useful in clinical tasks such as

breast cyst visualization, liver vessel tracking, and obese patient imaging. The

work presented in this chapter was published earlier in Nair, Tran, and Bell,

2017.

4.1 Introduction

Displaying the spatial coherence of backscattered ultrasound waves is a

promising alternative to generate ultrasound image contrast when compared

to traditional, amplitude-based delay-and-sum (DAS) beamforming. This

alternative is motivated by the van Cittert Zernike (VCZ) theorem applied to

ultrasound (Cittert, 1934; Zernike, 1938; Goodman, 2015), which states that for

an incoherent source and a spatially incoherent medium, the expected spatial

coherence is the squared Fourier transform of the product of the transmit beam

intensity distribution and the reflectivity profile of the insonified medium.

The VCZ theorem supported ultrasound-based investigations by Mallart
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and Fink, 1991, Liu and Waag, 1995, and Bamber, Mucci, and Orofino, 2002,

and led to the development of short-lag spatial coherence (SLSC) (Lediju et al.,

2011) imaging. SLSC imaging has since demonstrated remarkable improve-

ments over traditional ultrasound B-mode imaging when visualizing liver

tissue (Jakovljevic et al., 2013), endocardial borders (Bell et al., 2013a), fetal

anatomical features (Kakkad et al., 2013), and point-like targets in the pres-

ence of noise (Bell, Dahl, and Trahey, 2015). A suite of traditional ultrasound

transducer arrays (i.e., linear (Lediju et al., 2011), curvilinear (Jakovljevic et al.,

2013), phased (Bell et al., 2013a), and 2D matrix (Hyun et al., 2014; Jakovljevic

et al., 2014) arrays) were demonstrated to be compatible with SLSC imag-

ing. This new imaging method was additionally extended to photoacoustic

imaging to improve the visibility of prostate brachytherapy seeds (Bell et al.,

2013b), to improve signal contrast when imaging with low-energy, pulsed

laser diodes (Bell et al., 2014) and to potentially guide minimally invasive surg-

eries (Gandhi et al., 2017). Additional work in this area has weighted SLSC

images with traditional DAS images (Alles, Jaeger, and Bamber, 2014) and

utilized SLSC beamforming to reduce clutter and sidelobes in photoacoustic

images (Pourebrahimi et al., 2013).

SLSC imaging is implemented by computing the spatial correlation be-

tween received signals at various element separations (or lags), then summing

across the lags to generate the final output image. In doing so, SLSC imaging

inherently weights all lags equally and does not consider differences in tissue

texture appearances when SLSC images are formed with various combina-

tions of lag values. One possibility to consider texture differences is to apply
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uneven weighting to the lag images prior to summation. Another possibility

is to apply linear dimensionality reduction.

Principal component analysis (PCA) (Jolliffe, 1986) is a popular method for

linear dimensionality reduction, with wide-ranging domains of application

that include data mining (Han, Kamber, and Pei, 2011), neuroscience (Turk

and Pentland, 1991), and linear control systems (Moore, 1981). PCA finds

the orthogonal directions of highest variance by taking the singular value

decomposition of a data matrix and preserving the subspace corresponding

to the largest singular values. Assuming that data is corrupted by dense,

low-magnitude, Gaussian noise, PCA returns the maximum likelihood esti-

mate for an underlying subspace (Bishop, 2006). Projecting data onto this

low-dimensional, underlying subspace, then re-projecting to a high dimen-

sional space is generally a useful denoising technique that eliminates spurious

directions of variance corresponding to noise in the data.

PCA was successfully applied to various ultrasound imaging tasks, includ-

ing motion estimation (by leveraging its signal separation capabilities to reject

decorrelation and noise) (Mauldin, Viola, and Walker, 2010) and on-line clas-

sification of arterial stenosis intensity (Prytherch et al., 1982). However, one

limitation of PCA is that it lacks robustness (Wright et al., 2009) and displays

a high sensitivity to outliers.

Robust Principal Component Analysis (RPCA) (Wright et al., 2009; Lin,

Chen, and Ma, 2010; Lin et al., 2009) was developed to recover a low rank

matrix from a matrix of corrupted observations, particularly when the errors

are arbitrarily large. In addition, as stated in Wright et al., 2009, in most cases
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the low rank matrix can be recovered from most common corruptions by

solving a convex optimization problem. In the context of ultrasound imaging,

RPCA was utilized to automatically classify acoustic radiation force impulse

(ARFI) displacement profiles in the presence of high variance outlier profiles

(Mauldin Jr et al., 2008) and to implement motion-based clutter reduction

(Lediju et al., 2009).

In this work, we propose a modification to the SLSC algorithm to explic-

itly consider the content of coherence images formed with different lags by

applying RPCA to first search for a low dimensional subspace, then project

individual coherence images onto this low dimensional subspace. We assume

that this approach enables us to denoise the observations at higher lags and

incorporate them in our imaging pipeline. The projections are denoised ver-

sions of the originals that are then weighted and summed across the lags to

yield the final Robust Short-Lag Spatial Coherence (R-SLSC) image. We also

consider the effect of weighting without applying RPCA.

Our work is organized as follows: Section 4.2 details the background that

motivated this work, specifically the SLSC algorithm and the RPCA algorithm.

Section 4.3 describes our proposed R-SLSC method in detail. Section 4.4

provides details about our simulation, phantom and experimental data and

related evaluation metrics. Section 4.5 presents the results of our study, while

section 4.6 discusses the strengths and limitations of the proposed algorithm.

We conclude our work in section 4.7.
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4.2 Background

4.2.1 Short-Lag Spatial Coherence (SLSC) Imaging

SLSC beamforming (as discussed extensively in (Lediju et al., 2011; Bell,

Dahl, and Trahey, 2015; Dahl et al., 2011)) computes and displays the spatial

coherence between backscattered ultrasound echoes at different short lag

values, and thereby removes clutter artifacts. The ultrasound channel data

consists of echoes received by N equi-spaced detector elements of an array.

Assuming si is the time-delayed, zero mean data received by the ith detector

element, let a measurement corresponding to the nth depth (in samples) of this

data be the signal si(n). The spatial covariance across the face of the aperture

is evaluated as:

Ĉ(m) =
1

N − m

N−m

∑
i=1

n2

∑
n=n1

si(n)si+m(n) (4.1)

where m is the lag (in number of elements) between two detector elements

of the array. The size of the correlation kernel (ı.e., n2 − n1) is fixed to be

approximately one wavelength in order to maintain an axial resolution similar

to that of DAS B-mode images without compromising the stability of the

calculated coherence functions.

Eq. (4.1) is normalized by the individual variances of the two scan lines

being considered, and the spatial correlation R̂ at lag m is:

R̂(m) =
1

N − m

N−m

∑
i=1

∑n2
n=n1 si(n)si+m(n)√︂

∑n2
n=n1 s2

i (n)∑n2
n=n1 s2

i+m(n)
(4.2)
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which results in a spatial coherence function. We integrate this spatial coher-

ence function over the first M lags to achieve a SLSC image pixel:

Rsl =
∫︂ M

m=1
R̂(m)dm ≈

M

∑
m=1

R̂(m) (4.3)

Eqs. (4.1)-(4.3) are repeated at various axial and lateral positions to generate a

SLSC image.

The coherence functions scale with the size of the aperture, thus M is

expressed in terms of a quantity Q, which is defined to be the percentage

fraction of the receive aperture over which we are summing, ı.e.:

Q =
M
N

× 100% (4.4)

in order to standardize across various receive aperture sizes.

4.2.2 Robust Principal Component Analysis (RPCA)

RPCA (Wright et al., 2009; Lin, Chen, and Ma, 2010) is implemented by finding

a low-rank approximation A of a noisy observation matrix D, which can be

expressed as:

D = A + E + N (4.5)

where A is the low-rank ground truth matrix, E is an error matrix which is

considered to be sparse but allowed to have high magnitude errors, while N

contains dense, low-magnitude errors. The main objective is to calculate the

lowest rank A that approximates the data subject to the outlier errors being

sparse ı.e. ∥E∥0 ≤ K for some appropriately chosen threshold K (where ∥.∥0 is

the L0 norm, which counts the number of non-zero entries in E). Writing out
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the Lagrangian formulation, we obtain:

min
A,E

Rank(A) + λ∥E∥0 subject to D = A + E + N ≈ A + E (4.6)

where λ is a penalty factor based on the quantity of outliers present in data.

Note that Eq. (4.6) is difficult to optimize as it is non-convex. Relaxing the

rank constraint to a nuclear norm constraint and the L0 norm constraint to an

L1 norm constraint, we rewrite Eq. (4.6) as:

min
A,E

∥A∥∗ + λ∥E∥1 subject to D ≈ A + E (4.7)

where the nuclear norm, ∥.∥∗, is the sum of the singular values of a matrix.

This relaxation is reasonable because the solution to (4.7) is almost always the

same as the solution to (4.6), as proved in Wright et al., 2009.

To solve Eq. (4.7), we utilized a numerical optimization method based

on the Augmented Lagrangian Multiplier (ALM) (Lin, Chen, and Ma, 2010)

method. This solver relaxes Eq. (4.7) by solving for the minimum of the

Lagrangian L(A, E, Y, µ) of the problem, where L(A, E, Y, µ) is defined as:

L(A, E, Y, µ) = ∥A∥∗ + λ∥E∥1 + ⟨Y, D − A − E⟩

+
µ

2
∥D − A − E∥2

F

We used the MATLAB inexact ALM solver based on Lin, Chen, and Ma, 2010

and hosted at https://people.eecs.berkeley.edu/ yima/matrix-rank/sample_code.html

to perform RPCA.
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4.3 Proposed Algorithm

4.3.1 Robust Short-Lag Spatial Coherence (R-SLSC) Imaging

If we define outliers in SLSC images as pixels with coherence values that

differ significantly from their surroundings and from their values at other

lags, we observe that SLSC images formed with higher lags tend to have more

outliers (Bell, 2012). These outliers adversely affect contrast, and thus reduce

the diagnostic utility of SLSC imaging. Consequently, we hypothesize that

filtering out these coherence outliers is an important step in order to consider

the additional information that is provided at higher lag values.

We also hypothesize that because each image corresponds to an observa-

tion of the same ground truth, we can treat the images at the different lags

as noisy, corrupted versions of this ground truth, each affected differently by

clutter and coherence outliers. We can thus reformulate finding the optimal

summation of the coherence images as a RPCA application (Wright et al., 2009;

Lin, Chen, and Ma, 2010; Lin et al., 2009) and we call this combination R-SLSC.

The first step of R-SLSC is to perform SLSC beamforming and generate the

coherence images at various lags. Each of these lag images is then vectorized

as illustrated in Fig. 4.1a. The vectorized lag images (up to a specific lag M)

are stacked horizontally to form the noisy data matrix D. This matrix D is

then fed into the RPCA algorithm, which returns a low rank estimate that

corresponds to A in Eq. (4.7), which is the denoised data matrix, with both

coherence outliers (stored in E) and low magnitude dense noise (stored in

N) removed. We then apply a weighted sum across the columns to generate
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(a)

(b)

Figure 4.1: (a) Summary of the the whole-image R-SLSC imaging process. The
individual coherence images up to a specific lag M are vectorized and stacked into a
matrix. RPCA is performed on this data matrix, and the denoised coherence images
are weighted and summed across the lag dimension. Finally, the vectorization is
reversed to yield the output R-SLSC image at lag M. (b) Columnwise R-SLSC imaging
is similar, with the exception that the whole image is subdivided into individual
columns for the denoising step. Patchwise R-SLSC imaging (not shown) denoises
individual patches rather than columns.
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the vectorized output R-SLSC image corresponding to lag M. The weighting

applied could be uniform (as in traditional SLSC imaging), but we apply a

linearly decreasing weighting scheme (weight 1 to lag image 1, weight M−1
M

to lag image 2, ..., weight 1
M to lag image M) to enforce our prior knowledge

that SLSC image characteristics such as Contrast, CNR, SNR are superior in

the short-lag region. We call this weighting scheme linear M-weighting. With

linear M-weighting, the higher lag value observations are primarily used to

refine our estimate of the data subspace for A in Eq. (4.7). The final step

involves reshaping the vectorized image to obtain the output R-SLSC image

corresponding to lag M.

We additionally note that we can vary the λ parameter (see Eqn. 4.7) to

apply a penalty factor to the quantity of coherence outliers present. The λ

value reported throughout this chapter is multiplied by 1√
size(D,1)

, where D

is the data matrix being considered. We chose λ to equal 1 unless otherwise

stated.

4.3.2 Columnwise and Patchwise R-SLSC Imaging

With the addition of RPCA to SLSC imaging, one expected concern with

R-SLSC imaging is the additional processing time. While real-time SLSC

imaging has previously been demonstrated (Hyun, Trahey, and Dahl, 2013;

Hyun, Trahey, and Dahl, 2015), performing real-time R-SLSC on the entire

image is not possible as currently implemented.

The bottleneck in R-SLSC processing times is the Singular Value Decom-

position (SVD) step of the RPCA algorithm. The time complexity, O, of SVD
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is generally O(min(mn2, m2n)), where m is the number of rows of the data

matrix D and n is the number of columns (Holmes, Gray, and Isbell, 2007).

Thus, we hypothesize that subdividing the large SVD problem into smaller

SVDs, each solved independently using parallel computing, will increase

algorithm speed.

We experimented with two methods for subdividing our problem:

• Columnwise R-SLSC (summarized in Fig. 4.1b)

• Patchwise R-SLSC

To implement columnwise R-SLSC, the first step entails performing SLSC

beamforming and generating the coherence images at the various lags. How-

ever, instead of vectorizing the images, we extract a specific column from

each of these lag images (up to a specific lag M) and stack these extracted

columns horizontally to form the noisy data matrix D as illustrated in Fig. 4.1b.

We repeat this process across all columns to achieve n independent RPCA

subproblems (where n is the number of columns). The RPCA subproblems

are then solved, and the results from each are combined to obtain the final

columnwise R-SLSC image corresponding to lag M.

The process for patchwise R-SLSC is similar, with the exception that the

independent subproblems correspond to patches and not columns.
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Table 4.1: Ultrasound Transducer and Image Acquisition Parameters

Experiments PICMUS
Aperture Width 19.2 mm 38.4 mm
Element Width 0.24 mm 0.27 mm

Number of Receive Elements 64 128
Pitch 0.30 mm 0.30 mm

Transmit Frequency 8 MHz 5.208 MHz
Sampling Frequency 40 MHz 20.832 MHz

Pulse Bandwidth 61% 67%

4.4 Evaluation Methods

4.4.1 Simulation Data

Field II (Jensen, 1996; Jensen and Svendsen, 1992) was used to generate a

numerical phantom of width 50 mm, height 60 mm (located between 30 mm

and 90 mm depth) and transverse width 10 mm. A total of 3,141,360 scatterers

(corresponding to 20 scatterers per resolution cell) were randomly placed in

this volume, with amplitudes that were randomly drawn from a standard

normal distribution. An anechoic cyst of diameter 4 mm was centered at a

depth of 60mm. Focused transmits with dynamic receive were used to image

the cyst. The parameters of the simulated probe matched those of the Alpinion

L3-8 linear array transducer which was used to acquire experimental data (see

Table 4.1 for transducer and image acquisition parameters). The sampling

frequency was 40 MHz, and the center frequency was 8.0 MHz. Additive

white Gaussian noise of SNR -10 dB was added to the channel data and the

summed signal was bandpass filtered with cutoff frequencies equal to the

-6 dB cutoff frequencies of the ultrasound transducer in order to simulate

acoustic noise received by the transducer (Bell, Dahl, and Trahey, 2015; Dahl
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et al., 2011).

4.4.2 Experimental Phantom and In Vivo Data

Ultrasound data was acquired with an Alpinion E-Cube 12R connected to an

L3-8 linear ultrasound transducer. An 8mm diameter cylindrical anechoic

cyst target of a CIRS Model 054GS ultrasound phantom at a depth of 4cm

was insonified. The sampling frequency of the probe was 40 MHz and the

center frequency for the transmission was 8.0 MHz. The probe possessed 128

elements, with only 64 allowed to receive simultaneously at any point in time.

Additional transducer and image acquisition parameters are listed in Table

4.1.

Using the same ultrasound system, a 4mm diameter vessel located at a

depth of 34mm in the liver of a healthy female was imaged with approval

from the Johns Hopkins University Institutional Review Board (Protocol

HIRB00005688). The patchwise and columnwise R-SLSC methods were only

applied to this in vivo dataset. CPU parallelization was performed using the

parfor subroutine in MATLAB on an Intel(R) Core(TM) i7-4720HQ CPU with a

clock speed of 2.60 GHz. This in vivo dataset was additionally used to experi-

ment with the direct display of M-weighted SLSC images without applying

RPCA and to experiment with the optimal λ parameter for R-SLSC imaging.
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4.4.3 Plane Wave Data

In addition to simulation and experimental data acquired with focused trans-

mits, we tested our algorithm on the publicly available plane wave experi-

mental data provided through the Plane-Wave Imaging Challenge in Medical

Ultrasound (PICMUS) (Liebgott et al., 2016), which was organized for the 2016

IEEE International Ultrasonics Symposium. The data consisted of 75 steered

plane wave sequences with an angular range of -16 degrees to +16 degrees,

acquired with a Verasonics Vantage 256 research scanner and a L11 probe

(Verasonics Inc., Redmond WA). The probe specifications and acquisition

parameters are reported in Table 4.1.

A CIRS Multi-Purpose Ultrasound Phantom (Model 040GSE) was imaged

using this setup. Specifically, the region corresponding to a -3dB and a +3dB

cyst set against a speckle background with a pair of anechoic targets was

recorded. Both cysts are located at a depth of 3cm and have diameters of 8

mm, while the anechoic targets are located at depths of 15mm and 45mm, and

are smaller with a diameter of 3mm. The anechoic target located at 45mm

depth was the focus of our study, as highlighted by the red box in Fig. 4.2.

4.4.4 Image Quality Metrics

The contrast, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)

metrics were calculated for each data set, as:

Contrast = 20 log10

(︂ Si

So

)︂
(4.8)
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Figure 4.2: Schematic diagram of phantom used for the plane wave data. The red
rectangle shows the anechoic target of interest for our study.

with Si and So representing the mean signal intensities inside and outside

selected regions of interest (ROIs) at the same image depth.

SNR =
So

σo
(4.9)

where σo is the standard deviation of the background ROI.

CNR =
|Si − So|√︂

σ2
i + σ2

o

(4.10)

where σi is the standard deviation of the signal in the chosen ROI.

Note that SLSC images can contain negative pixels due to potential nega-

tive correlations from signals that are out of phase. However, we observed

that these negative values mostly appear in anechoic or hypoechoic regions,

and they are not significant (i.e., they are closer to 0 than −1). When log
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compressing an image with negative values, the negative correlations are con-

verted to positive values that degrade the image quality. Hence, our approach

when calculating our quality metrics and displaying our images was to set all

negative SLSC image pixels to zero.

To evaluate the PICMUS data and to enable past and future users of the

PICMUS dataset to compare their results with our method, we additionally

report a modified version of the contrast evaluation script provided by the

PICMUS challenge organizers. The modified script calculates contrast as:

PICMUS Contrast = 20 log10

(︄
|Si − So|√︂

σ2
i +σ2

o
2

)︄
(4.11)

All data analysis and beamforming was performed in MATLAB (MathWorks

Inc., Natick, MA).

4.5 Results

4.5.1 Correlation Curves

The VCZ theorem predicts that when imaging diffuse scatterers like tissue,

the expected spatial correlation across the receive aperture is a triangle, with a

peak of 1 at lag 0 and a minimum of 0 at lag N − 1, where N is the total number

of elements in the transmit aperture. However, when imaging anechoic or

hypoechoic regions (like the cyst or the vessel), the spatial correlation is

expected to significantly drop from 1 to 0 in the short-lag region, with low

magnitude oscillations about 0 as lag increases beyond the initial drop (Lediju

et al., 2011).
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Simulation Experimental Phantom PICMUS In Vivo

(a) (b) (c) (d)
Figure 4.3: Measured spatial coherence within regions of interest (ROIs) inside and
outside anechoic or hypoechoic targets. The lines show the means and the error bars
show ± one standard deviation of the measured spatial correlation within each ROI.
The locations of the ROIs relative the cyst are shown in Figs. 4.4, 4.6, and 4.7 for the
simulated, phantom, and PICMUS data, respectively.

We measured the spatial correlation for a pair of rectangular windows (one

in the background, and the other within the target), resulting in the correlation

curves shown in Fig. 4.3. The lines correspond to the mean value measured

within each ROI, while the errorbars display ± one standard deviation of the

measured correlation within each ROI.

The experimental correlation curves generally agree with our expectations.

One notable difference between the simulated and experimental coherence

curves is the significant decrease in coherence at lag 1 in simulation, which

occurs because of the presence of noise in the simulation (Pinton, Trahey,

and Dahl, 2014; Bottenus and Trahey, 2015). We additionally note that the

standard deviations (represented by the amplitude of the error bars) appear

to increase as we increase lag both inside and outside anechoic regions. This

increase is generally greater outside rather than inside the anechoic region

with the exception of the simulation result. Fig. 4.3 provides evidence that

noise and outliers increase as lag increases, which is one primary motivation

97



(a) B-Mode (b) SLSC

(c) R-SLSC

Q=7.8% Q=15.6% Q=31.2% Q=46.9% Q=62.5%

Figure 4.4: (a) DAS B-mode image of an anechoic cyst simulated with Field II (Jensen,
1996; Jensen and Svendsen, 1992). The white rectangles show the ROIs used to
calculate Contrast, SNR, CNR, and the correlation curves in Fig. 4.3a. (b) SLSC images
corresponding to Q-values of 7.8%, 15.6%, 31.2%, 46.9% and 62.5%, respectively. (c)
Corresponding R-SLSC images created with the same Q-values. All images are
displayed with 60 dB dynamic range.

for pursuing R-SLSC imaging, as we assume that the ground truth for each

correlation estimate lies somewhere within the error bars.

4.5.2 Simulation Results

B-mode, SLSC, and R-SLSC images of the simulated anechoic cyst target are

displayed in Fig. 4.4. The rectangles in the B-mode image (Fig. 4.4a) corre-

spond to the regions inside and outside the cyst used to calculate contrast,

SNR and CNR, and they were maintained for all performance metrics cal-

culated for this phantom. Fig. 4.4b shows the SLSC beamformed outputs

corresponding to Q-values of 7.8%, 15.6%, 31.2%, 46.9 % and 62.5%, respec-

tively, while Fig. 4.4c shows the R-SLSC beamformed outputs for the same
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Simulation Data Phantom Data PICMUS Data In Vivo

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 4.5: Comparison of B-mode, SLSC, and R-SLSC Contrast, CNR and SNR
measurements and their variation with Q, as measured in (a, e, i) simulated data
with -10dB channel noise, (b , f, j) experimental phantom data acquired with focused
transmit beams, (c, g, k) experimental phantom data acquired with plane wave
transmission, and (d, h, l) in vivo liver data. For the in vivo liver data, the patchwise
and columnwise results overlap the results obtained with R-SLSC applied to the
whole image in most cases. B-mode images were created with the entire receive
aperture, and the Q values do not apply to the B-mode results.

Q-values. All images are displayed with a 60 dB dynamic range.

The mean gain in R-SLSC contrast (for all Q values considered) is 1.48 dB,

when compared to that of SLSC, which corresponds to a mean gain of 4.53%.

The mean gains in R-SLSC SNR and CNR (when compared to SLSC SNR and
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(a) B-Mode (b) SLSC

(c) R-SLSC

Q=7.8% Q=15.6% Q=31.2% Q=46.9% Q=62.5%

Figure 4.6: (a) DAS B-mode image of an anechoic cyst in a CIRS 054GS experimental
phantom. The white rectangles show the ROIs used to calculate Contrast, SNR, CNR,
and the correlation curves in Fig. 4.3b. (b) SLSC images corresponding to Q-values of
7.8%, 15.6%, 31.2%, 46.9% and 62.5%, respectively. (c) Corresponding R-SLSC images
created with the same Q-values. All images are displayed with 60 dB dynamic range.

CNR) are 0.35 and 0.35, respectively, which correspond to improvements of

22.72% and 22.87%. The contrast and CNR of SLSC and R-SLSC generally

outperform DAS B-Mode in this simulation result, as shown in Fig. 4.5 (left),

particularly at the higher lag values.

4.5.3 Experimental Phantom Results

A B-mode image of the anechoic cyst phantom target is displayed in Fig. 4.6a

with white rectangles that demarcate the regions inside and outside the cyst

being considered when evaluating contrast, SNR and CNR. The same ROIs are

used for all performance metrics calculated with this phantom. SLSC and R-

SLSC images of this phantom are displayed in Fig. 4.6b and 4.6c, respectively

(created with Q-values equal to 7.8%, 15.6%, 31.2%, 46.9 % and 62.5 %).
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The mean gain in R-SLSC contrast (for all Q-values considered) is 23.91 dB

when compared to that of SLSC, which corresponds to a mean gain of 43.18%.

The mean gains in R-SLSC SNR and CNR (when compared to SLSC SNR and

CNR) are 2.10 and 2.03, respectively, which correspond to improvements of

65.30% and 63.16%. R-SLSC contrast, CNR, and SNR generally outperform

B-Mode imaging for the majority of Q-values considered, as shown in the

second column of Fig. 4.5.

Qualitatively, for this phantom data, we observe that at the lower lags,

boundary delineation for R-SLSC is worse than that of SLSC, likely because R-

SLSC does not have sufficient data to estimate a suitable subspace. However,

this boundary delineation is improved at higher lags when compared to lower-

lag R-SLSC images and when compared to comparable-lag SLSC images. We

additionally observe that at lower lags the poor boundary definition results

in seemingly smaller cyst sizes. This is related to the finite width of the

ultrasound beam and the lower lags containing only local information, which

is insufficient to produce a good boundary estimate. However, at higher

lags, the cyst size returns closer to its original size because the algorithm

incorporates the higher resolution information that is contained within the

higher element separations. The tissue texture surrounding the cyst also

appears smoother at the higher-lag R-SLSC images when compared to the

higher-lag SLSC images.
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(a) B-Mode (b) SLSC

(c) R-SLSC

Q=7.8% Q=15.6% Q=31.2% Q=46.9% Q=62.5%

Figure 4.7: (a) DAS B-mode image constructed from from the PICMUS (Liebgott et al.,
2016) experimental data of an anechoic target in a CIRS 040GSE phantom. The white
rectangles show the ROIs used to calculate Contrast, SNR, CNR, and the correlation
curves in Fig. 4.3c. (b) SLSC images corresponding to Q-values of 7.8%, 15.6%, 31.2%,
46.9% and 62.5%, respectively. (c) Corresponding R-SLSC images created with the
same Q-values. All images are displayed with 60 dB dynamic range.

4.5.4 Application to Plane Wave Imaging

B-mode, SLSC and R-SLSC images of the plane wave data are displayed in

Fig. 4.7. The rectangles in the DAS image (Fig. 4.7a) correspond to the target

and background ROIs used to evaluate contrast, SNR and CNR and they are

maintained for this phantom. Fig. 4.7b shows SLSC images corresponding

to Q-values of 7.8%, 15.6%, 23.4%, 31.2% and 39.0%, while Fig. 4.7c shows

corresponding R-SLSC images.

Based on the metrics shown in Fig. 4.5 for the PICMUS data, R-SLSC has a

mean contrast gain (averaged over all Q-values considered) of 4.62 dB (12.28%)

when compared to SLSC, with gains in SNR and CNR of 2.37 (42.41%) and

2.14 (41.50%), respectively. Similar to the previous phantom results achieved
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with focused transmits, R-SLSC imaging outperforms B-Mode imaging for

this PICMUS data obtained with plane wave transmits, particularly at higher

lags, as evident in Figs. 4.5c, 4.5g, and 4.5k.

We were unable to obtain meaningful results when directly implementing

the contrast evaluation script provided by PICMUS organizers because the

zero-value pixels in R-SLSC images returned −∞ values after applying the

log operation step provided in the script. We therefore made one change to

the evaluation script and measured performance prior to log compression,

resulting in a contrast of 7.90 dB for the DAS B-Mode image and a mean

contrast (averaged over all Q-values considered) of 11.95 dB for the R-SLSC

images, which confirms our observations that R-SLSC imaging produces better

anechoic cyst contrast (4.05 dB greater) than B-mode imaging.

We additionally note that the hyperechoic point target, which is clearly

observable in the DAS B-mode image, is difficult to visualize in both the SLSC

and R-SLSC images. Generally, SLSC is known to perform poorly with point

target visualization (Lediju et al., 2011) (except in the presence of noise (Bell,

Dahl, and Trahey, 2015)). We see that this is also true for R-SLSC imaging with

plane wave transmissions. There are also a few coherence outliers within the

cyst that are not removed with R-SLSC imaging, although the corresponding

location of these outliers have lower amplitudes and are less pronounced in

the B-mode image.
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B-Mode SLSC MW-SLSC R-SLSC Patch R-SLSC

(Q = 43.8%) (Q = 43.8%) (Q = 51.6%) (Q = 51.6%)

(a) (b) (c) (d) (e)
Figure 4.8: In Vivo images of hypoechoic blood vessels in a healthy liver. (a) B-mode
image, (b) traditional SLSC image created with Q = 43.8%, (c) M-weighted SLSC
image (without RPCA), (d) whole-image R-SLSC created with Q = 51.6% and λ = 0.6,
(e) Patchwise R-SLSC image created with Q = 51.6% and λ = 0.6. The dynamic range
for each image was chosen to best visualize the data (i.e, 60 dB for the B-mode image
and 30 dB for the SLSC, M-weighted SLSC, and R-SLSC images). Arrow #1 points to
the ROI used to calculate contrast, CNR, and SNR, while arrow #2 points to a vessel
that is noticeably improved with SLSC, M-weighting, and R-SLSC.

4.5.5 In Vivo Liver Data

B-mode, SLSC, and R-SLSC images of a hypoechoic vessel target in an in vivo

liver are shown in Figs. 4.8a, 4.8b, and 4.8d, respectively. Although rectangles

corresponding to the ROIs used to evaluate contrast, SNR and CNR were

omitted to improve vessel visibility, they correspond to the largest vessel at a

the transmit focal depth of 35mm, located between lateral positions 20 and

30mm (see arrow #1). We also note that the top of these in vivo SLSC and

R-SLSC images are dark because they are outside of the focal zone.

The mean R-SLSC contrast loss (averaged over all Q-values shown in the

last column of Fig. 4.5) is 0.48 dB when compared to that of SLSC, which
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corresponds to a 2% decrease. When we exclude the lower lags from this

comparison and only consider the higher lags ranging from Q = 43.75% to

Q = 78.12% (where we see the most contrast improvement), we achieve a

higher mean contrast gain of 2.69dB (11.86%) for R-SLSC images compared

to SLSC images. The mean SNR and CNR gains (averaged over all Q values)

are 1.26 and 0.67, respectively, corresponding to improvements of 71.62%

and 45.26%. Similar to phantom data, R-SLSC imaging outperforms B-Mode

imaging for this in vivo case, as shown in Figs. 4.5d, 4.5h, and 4.5l. The

additional lines seen in this last column of Fig. 4.5 are explained in Section

4.5.6.

Qualitatively, there are several additional aspects of these R-SLSC in vivo

images that are improved over SLSC and B-mode images. For example, clutter

obscures the appearance of the vessel located from depth 20 mm to 30 mm

in the B-mode image (see arrow #2), but this vessel is more clearly visualized

in the SLSC and R-SLSC images. The tissue within the transmit focal zone

is additionally brighter overall in R-SLSC images (when compared to SLSC

images created with similar lag values). Similar to the phantom and simulated

data, the tissue texture also appears to be smoother with R-SLSC images. This

smoothing of tissue texture helps with discerning the hypoechoic vessels from

their surroundings and reduces the speckle-like texture of the images.

4.5.6 Parallelization

After calculating delays and computing a SLSC image, the average addi-

tional computation time required to calculate the robust principal components
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Figure 4.9: Calculation times to obtain B-mode and SLSC images with the computer
described in Section 4.4.2, compared to calculation times for the RPCA step required
to obtain R-SLSC images with and without patchwise and columnwise parallelization.
The calculation time for R-SLSC is reduced by a factor of 2.6 with parallelization.

is 23 seconds per R-SLSC image (using the computer described in Section

4.4.2). One approach to reduce the R-SLSC image computation time is to

subdivide the RPCA computation for parallel processing as illustrated in Fig.

4.1b. We successfully implemented this alternative using the same number

of columns as scanlines (i.e., 128 columns) for the columnwise implemen-

tation and using 64 pixel x 64 pixel patches (i.e. 88 patches total each of

size 19.2mm (lateral) × 1.23mm (axial)) for the patchwise implementation,

thereby reducing our RPCA computation times to 9s each. For comparison,

Fig. 4.9 shows the calculation times for these various R-SLSC implementations
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alongside the calculation times for SLSC correlation calculations and B-mode

imaging obtained with the computer described in Section 4.4.2.

A patchwise R-SLSC image of the in vivo liver is shown in Fig. 4.8e. When

comparing the process for creating this image with that of the corresponding

R-SLSC image obtained without parallelization (Fig. 4.8d), we note that this

patchwise image excludes the black region at the top of the image when imag-

ing the vessels closer to the image focus. This exclusion results in slightly less

clutter inside vessel # 1 which is close to the focus, although the performance

metrics in Fig. 4.5 are not affected. In addition, the patchwise image slightly

reduces the overall image brightness (when compared to the R-SLSC image

without parallelization) because this image is based on the local estimates

within each patch. Otherwise, the reduction in computation times achieved

with parallelization has minimal impact on image quality. This observation is

particularly true at the higher lags, which can be confirmed quantitatively by

noting that the two additional lines in Figs. 4.5d, 4.5h, and 4.5l (representing

the columnwise and patchwise implementations) overlap the whole-image

R-SLSC implementation at the higher lags.

4.5.7 Effect of the λ Parameter and M-Weighting

As speckle SNR is an important characteristic of ultrasound images, the

Q−values of the in vivo R-SLSC images in Fig. 4.8 were chosen to closely

match the speckle SNR of DAS images. Our specific selections are represented

by the open circles in Fig. 4.10a, which shows the results of our investigations

to determine the optimal λ parameter for R-SLSC imaging. While the SLSC
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(a) (b) (c)

Figure 4.10: (a) SNR, (b) Contrast, and (c) CNR of in vivo B-mode, SLSC, M-weighted
SLSC, and R-SLSC images. The R-SLSC image metrics are calculated with λ =
1.0, 0.8, 0.6 and 0.4. Note that R-SLSC images can be tuned to provide similar tissue
SNR to B-mode images by adjusting the λ parameter, an option that is not possible
with SLSC imaging. The black circles correspond to the lags displayed in Fig. 4.8(b),
Fig. 4.8(c) and Fig. 4.8(d). B-mode images were created with the entire receive
aperture, and the Q values do not apply to the B-mode results.

images possess high SNR (in most cases higher than B-mode), we find that

we can control the SNR more directly in R-SLSC imaging by adjusting the λ

parameter.

Fig. 4.10 shows contrast, CNR, and SNR for B-mode, traditional SLSC, and

R-SLSC with λ equal to 1.0, 0.8, 0.6 and 0.4. We observe from Fig. 4.10 that

decreasing the λ parameter results in applying less penalty to labeling pixels

as outliers, and as a result more coherence values are labeled as outliers to

be discarded (which effectively increases the SNR). These changes in SNR

generally have minimal impact on image contrast, except when λ=0.4 (see Fig.

4.10b).

When comparing R-SLSC (λ = 1) to SLSC images created with the linear

M-weighting described in Section 4.3.1 (applied without RPCA), we observe

that the majority of the improvements obtained with R-SLSC are primarily

due to this weighting step. For example, an M-weighted SLSC image without
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the application of RPCA is shown in Fig. 4.8c, and it looks strikingly similar

to the R-SLSC image achieved with the same Q−value (43.8%) and λ = 1,

which is confirmed quantitatively in Fig. 4.10b, as M-weighted SLSC images

obtained with different Q-values have similar contrast to R-SLSC (λ = 1)

images. The SNR and CNR of these two image types are also similar at higher

lag values (Figs. 4.10a and 4.10c). This observation is true not only for the

in vivo data, but also for the phantom and simulated data (although images

are not shown without RPCA applied for these data). Thus, M-weighting is

a major step towards improving SLSC image quality and incorporating the

information from higher lags.

Despite this similarity between M-weighted SLSC images and R-SLSC

images achieved with λ = 1 (and the significantly reduced processing time re-

quired for M-weighted SLSC compared to R-SLSC imaging), R-SLSC imaging

can potentially be considered more advantageous because we can use RPCA

to incorporate up to 8% more lags (i.e. 43.8% vs. 51.6%, which corresponds

to 10 additional element separations for a 128-element aperture) and achieve

similar SNR to B-mode images by decreasing the λ parameter, as shown quan-

titatively in Fig. 4.10 with an example image displayed in Fig. 4.8d. Although

the number of coherence outliers are greater at higher lags, it appears that

more of them are rejected with lower values of λ. This data-dependent ad-

justment of the λ parameter effectively allows us to utilize more lags, achieve

similar speckle SNR to B-mode images, and obtain greater improvements in

contrast and CNR when compared to traditional SLSC images achieved with

the same Q-values.
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4.6 Discussion

There are four key contributions of this work. First, we applied both linear

M-weighting and RPCA to the traditional SLSC imaging method in order

to incorporate previously discarded information from higher lags. With M-

weighting, it appears that the short lags provide more structural information

(i.e., general cyst location) while the longer lags provide more boundary in-

formation, and both contributions work together to improve image quality

for anechoic and hypoechoic targets after incorporating more lags with more

weight applied to the short lag region. Additional weighting schemes could

be applied in the future to explore the optimal weights for a range of imaging

targets and anatomical structures. R-SLSC could be considered as a more

advanced weighting scheme that improves image quality by both rejecting

coherence outliers and taking advantage of the demonstrated benefits of

M-weighting. Our second contribution highlights the data-dependent perfor-

mance of R-SLSC, which can be tuned to provide similar tissue SNR to B-mode

images by adjusting the λ parameter. Third, we showed that the processing

times for R-SLSC can be reduced by subdividing the image data. Finally, we

demonstrated that R-SLSC imaging outperforms traditional SLSC imaging

(defined as improved SNR, CNR, and contrast of anechoic or hypoechoic

regions) at higher lags when applied to data acquired with both focused and

plane wave transmissions.

When anechoic and hypoechoic targets are barely discernible in B-mode

images due to low contrast and clutter, we expect SLSC and R-SLSC to clearly

distinguish these targets from their surroundings, particularly in high-noise
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environments as represented by the simulation results in Fig. 4.4 and the in

vivo results in Fig. 4.8. R-SLSC experiences additional improvements over

SLSC as lag increases in all example cases shown in this work (simulation,

phantom, and in vivo), as demonstrated in Fig. 4.5. This improvement at

higher lags is caused by a combination of applying both linear M-weighting

and the RPCA algorithm, which develops a better subspace estimate as the

amount of data available to the algorithm increases. Therefore, rejection of

the noise and outliers is more prevalent at the higher lags, leading to an

image with smoother tissue texture. This smoothing of tissue texture helps

to discern anechoic and hypoechoic structures from their surroundings and

reduces the speckle-like texture of the images, which is generally beneficial

for boundary detection (e.g., similar to spatial compounding (Trahey, Smith,

and Von Ramm, 1986; Entrekin et al., 1999)), but could potentially limit the

diagnostic information typically provided by the presence of speckle. We can

potentially recover some of this diagnostic value by adjusting the λ parameter,

which we envision being controlled by an additional knob on an ultrasound

scanner, similar to existing options like focal depth or time gain compensation

that are currently used to enhance ultrasound image quality. These results

imply that both R-SLSC and M-weighting will perform well in high-noise

clinical scenarios where anechoic or hypoechoic target visualization is critical.

Possible clinical applications include breast cyst visualization (Stavros, 2004),

liver vessel tracking (De Luca et al., 2015), and obese patient imaging.

One common characteristic between SLSC and R-SLSC images is height-

ened sensitivity to structural boundaries. For example, when low-amplitude
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signals are surrounded by hyperechoic structures with high-amplitude signals

and high spatial coherence, the coherence of the lower amplitude signal is re-

duced relative to that of the higher amplitude signal. While this characteristic

is a major strength when detecting cyst-like structures, it is also a limitation

when imaging hyperechoic boundaries next to tissue structures. This observa-

tion was evident in in vivo cardiac images (Bell et al., 2013a), and it is present

at the distal liver boundary in Fig. 4.8, where this boundary appears to be

separated from the rest of the liver tissue in SLSC and R-SLSC images.

While the processing times for R-SLSC could be considered as an addi-

tional limitation of R-SLSC imaging, Fig. 4.9 demonstrates that it is feasible

to subdivide the RPCA step to implement parallel processing for real-time

imaging. This alteration provides sufficient information to locally estimate a

suitable subspace while rejecting appropriate coherence outliers.

When comparing the SLSC contrast curves for simulated and experimental

data in Fig. 4.5 to the corresponding coherence curves inside the cyst (Fig.

4.3), the shapes of these curves are similar as a function of Q. While changes

in the contrast of SLSC images seems to be correlated with changes in the

corresponding coherence curves as a function of Q, the contrast of the R-SLSC

images is more stable at higher lags as a result of robustness to coherence

outliers. This observation further supports the implementation of R-SLSC

imaging.
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4.7 Conclusion

This work is the first to re-examine the lag summation step of the SLSC algo-

rithm and achieve additional robustness to coherence outliers through both

weighted summation of individual coherence images (i.e., M-weighting) and

the application of RPCA. The original SLSC imaging algorithm does not con-

sider the content of the images formed at different lags before summing them,

and thus does not exploit tissue texture differences in SLSC images created

with various short lag values. In addition, the traditional SLSC beamform-

ing method is somewhat restricted to short lag values when considering the

widely varying coherence values present at the longer lags. Our methods im-

prove the original SLSC imaging method by incorporating a linearly decaying

weighting scheme to achieve M-weighted SLSC images. RPCA is additionally

utilized to search for a low dimensional subspace to the coherence images

at different lags. The RPCA projections and consequent denoising of the

individual images on this low dimensional subspace are then used to achieve

R-SLSC images. Both M-weighted SLSC and R-SLSC imaging enable the use

of higher lag information, offer increased contrast, SNR and CNR, and are

generally more robust to noise (defined as coherence outliers) when compared

to traditional SLSC imaging.
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Chapter 5

Deep Learning for Simultaneous
Ultrasound Image Formation and
Segmentation

In this chapter, we demonstrate how modern deep learning (Goodfellow

et al., 2016) techniques can improve the information extraction pipeline in

ultrasound imaging. Specifically, we work with the challenging scenario of

single plane wave ultrasound imaging (Montaldo et al., 2009). Single plane

wave transmissions are promising for automated imaging tasks requiring

high ultrasound frame rates over an extended field of view. However, a single

plane wave insonification typically produces sub-optimal image quality. To

address this limitation, we explore the use of deep neural networks (DNNs)

as an alternative to traditional beamforming. The objectives of this work

are to obtain information directly from raw channel data and to simultane-

ously generate both a segmentation map for automated ultrasound tasks and

a corresponding ultrasound B-mode image for interpretable supervision of

the automation. We focus on visualizing and segmenting anechoic targets
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surrounded by tissue and ignoring or de-emphasizing less important sur-

rounding structures. DNNs trained with Field II simulations were tested

with simulated, experimental phantom, and in vivo datasets that were not

included during training. With unfocused input channel data (i.e., prior to the

application of receive time delays), simulated, experimental phantom, and in

vivo test datasets achieved mean ± standard deviation Dice similarity coeffi-

cients of 0.92 ± 0.13, 0.92 ± 0.03, and 0.77 ± 0.07, respectively, and generalized

contrast-to-noise ratios (gCNR) of 0.95 ± 0.08, 0.93 ± 0.08, and 0.75 ± 0.14,

respectively. With subaperture beamformed channel data and a modification

to the input layer of the DNN architecture to accept these data, the fidelity of

image reconstruction increased (e.g., mean gCNR of multiple acquisitions of

two in vivo breast cysts ranged 0.89-0.96), but DNN display frame rates were

reduced from 395 Hz to 287 Hz. Overall, the DNNs successfully translated

feature representations learned from simulated data to phantom and in vivo

data, which is promising for this novel approach to simultaneous ultrasound

image formation and segmentation. The work presented in this chapter was

published earlier in Nair et al., 2020.

5.1 Introduction

Ultrasound images are widely used in multiple diagnostic, interventional,

and automated procedures that range from cancer detection (Pons et al., 2016;

Kumar et al., 2018) to ultrasound-based visual servoing (Mebarki, Krupa, and

Chaumette, 2010). Despite this wide clinical utility, there are three perva-

sive challenges. First, the presence of speckle and clutter often complicates
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image interpretation (Entrekin et al., 2001), particularly during automated

ultrasound-based tasks. Second, speckle, clutter, and other inherent ultra-

sound image features tend to confuse simple thresholding and filtering al-

gorithms and require the use of more complex procedures to successfully

perform automated segmentations (Xian et al., 2018). Third, segmentation

tasks are traditionally implemented after image formation (Noble and Bouk-

erroui, 2006; Xian et al., 2018), which further increases the computational

complexity of implementing segmentation algorithms to provide a desired

segmentation result. These three challenges have the potential to be addressed

by simultaneously outputting multiple desired information in parallel, directly

from the raw ultrasound channel data, with the assistance of deep learning.

The field of deep learning has traditionally been applied to diagnostic

ultrasound tasks, such as classification, segmentation, and image quality

assessment (Liu et al., 2019). Recently, there has been growing interest in

applying deep neural networks (DNNs) to augment or replace steps of the

ultrasound image formation process. For example, there is a class of deep

learning approaches that improves data quality obtained from a single plane

wave transmission by enhancing the beamformed data (Perdios et al., 2019;

Gasse et al., 2017; Zhang et al., 2018; Zhou et al., 2018). Another class of

ultrasound-based deep learning approaches produces high-quality images

with reduced data sampling in order to increase frame rates (Perdios et al.,

2017; Yoon et al., 2017; Yoon et al., 2018; Yoon and Ye, 2018; Khan, Huh, and

Ye, 2019b; Khan, Huh, and Ye, 2019a; Vedula et al., 2018b; Huang et al., 2018).

Deep learning has also been used to replace portions of the beamforming
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process by learning the parameters of a model created during an intermedi-

ary beamforming step (Luchies and Byram, 2017; Luchies and Byram, 2018;

Luchies and Byram, 2019; Luijten et al., 2019; Vedula et al., 2018a). How-

ever, none of these methods provide an end-to-end transformation that learns

information directly from raw channel data.

Prior work from our group (Nair et al., 2018b; Nair et al., 2018a; Nair

et al., 2019) introduced DNNs that were trained purely with simulated data to

successfully extract information directly from raw radiofrequency (RF) single

plane wave channel data, prior to the application of time delays or any other

traditional beamforming steps. Similarly, Simson et al., 2018 introduced a

method to learn the entire beamforming process without applying delays to

the input data. This approach trains on real data rather than simulated data

and uses focused transmissions rather than plane wave transmissions. With

the exception of Nair et al., 2019, no existing methods simultaneously provide

ultrasound images and segmentation information directly from raw channel

data.

One challenge with learning information directly from raw channel data is

the absence of receive focusing delays. Instead, the DNN input has dimensions

of time vs. channels, and the DNN output has dimensions of depth vs. width.

Thus, the network architecture must account for the mapping of time (recorded

on each channel) to depth, as well as the mapping of multiple channels

(which includes temporal recordings) to a single pixel in the image width

dimension, and the proposed task is therefore not a simple image-to-image

transformation. This challenge is not present in other ultrasound-based deep
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Figure 5.1: Illustration of our proposed DNN goals (bottom) in comparison to the
traditional approach (top). Traditionally, raw channel data undergoes delay-and-
sum beamforming followed by envelope detection, log compression and filtering
to produce an interpretable delay-and-sum (DAS) beamformed image, which is
then passed to a segmentation algorithm to isolate a desired segment of the image.
We propose to replace this sequential process with a fully convolutional neural
network (FCNN) architecture, consisting of a single encoder and two decoders, that
simultaneously outputs both a DNN image and a DNN segmentation directly from
raw ultrasound channel data received after a single plane wave insonification. The
input is in-phase/quadrature (IQ) ultrasound data, presented as a three-dimensional
tensor.

learning approaches that learn image-to-image transformations using input

and output data that are both represented in the same spatial domain. In

addition, our previous work did not take advantage of the lower spatial

frequencies available when performing this transformation with raw, complex,

baseband, in-phase and quadrature (IQ) data (when compared to the higher

spatial frequencies of raw RF ultrasound channel data).

The primary contribution of this work is a description and analysis of

a DNN framework that is, to the author’s knowledge, the first to replace

beamforming followed by segmentation (as illustrated in the top of Fig. 5.1)

with parallel B-mode and segmentation results offered as a paired network
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output from a single network input of raw IQ data (as illustrated in the

bottom of Fig. 5.1). This parallel information may be extracted directly from

the recorded echoes received after a single plane wave insonification, either

before or after the application of time delays (which can be implemented in

hardware), or after receiving channel data from focused transmissions. We

compare these three options in this work and show that a simple modification

to the input layer of a DNN can be used to accommodate each of these

options. These options have the potential to simultaneously benefit both

robot-based computer vision tasks (which often discard many of the details

in ultrasound B-mode images through post-processing and primarily utilize

resulting target segmentation information (Mebarki, Krupa, and Chaumette,

2010; Huang et al., 2019)) and human observers (who may require the more

familiar B-mode information to override, supervise, or otherwise interpret the

output of automated and image segmentation tasks). Assuming that DNNs

can be optimized to be faster than current acquisition rates (Bianco et al.,

2018) and provide better than current image quality with single plane wave

beamforming, we also provide some guidelines to focus future efforts.

To demonstrate initial proof of principle, we focus on the detection of

small, round, anechoic, cyst-like targets. This focus characterizes a range of

anatomical targets, including urine-filled renal calyces (which can range from

3 mm to 7 mm in diameter (Cadeddu et al., 1997)), cysts in the breast (which

can be as small as 2-3 mm in ultrasound images (Jackson, 1990) with a mean

size of 2.0 ± 1.8 cm (Vargas et al., 2004)), and ovarian follicles (which can

range from 10-17 mm in width (Wikland et al., 2001)). We train a task-specific
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DNN to target these types of structures and ignore or de-emphasize structures

that are not anechoic (considering that this information would otherwise be

ignored through image post-processing to achieve the proposed task). One key

feature of our training approach is the use of ground truth segmentation masks

to produce enhanced beamformed images in order to enhance identification of

anechoic targets during network training. In addition, network training in this

work is performed in a purely supervised manner using a fully convolutional

neural network (FCNN), making the network easier and faster to train when

compared to the generative adversarial network (GAN) employed in our

previous paper (Nair et al., 2019).

The remainder of this chapter is organized as follows. Section 5.2 de-

scribes our network architecture, training, and evaluation methods. Section

5.3 presents our results. Section 5.4 includes a discussion of key insights from

our results, and Section 5.5 summarizes our major conclusions.

5.2 Methods

5.2.1 Problem Formulation for Unfocused Input Channel Data

Let Id be a tensor that contains downsampled IQ channel data of size d ×

w × q, where d is the length of each downsampled IQ signal, w is the IQ

data image width, which is set to be equivalent to the number of transducer

element receive channels, and q has two channels, each representing the in-

phase or quadrature component of the recording. Our goal is to produce

one DNN beamformed image, D, and one segmentation map prediction, Sp,

each with dimensions d × w, using Id as input. We employ a FCNN with
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trainable parameters θ to learn the optimal mapping of Id → y that produces

acceptable images for robotic automation and human supervision, where y

is the reference for the optimal mapping. This reference consists of a true

segmentation map, St, and the corresponding enhanced beamformed image,

E. Thus, y describes the tuple (E, St).

Our DNN architecture, shown in Fig. 5.2, was designed based on the U-

Net (Ronneberger, Fischer, and Brox, 2015) architecture for biomedical image

segmentation, possessing a single encoder adopting the VGG-13 (Simonyan

and Zisserman, 2014) encoder with batch normalization (BatchNorm) (Ioffe

and Szegedy, 2015) layers to stabilize training and speed up convergence.

There is one encoder, which takes the input and passes it through a series of

ten 3x3 convolutional layers and downsamples in the spatial domain using 2x2

max pooling (MaxPool) layers while simultaneously increasing the number

of feature channels in the data. This process is followed by two decoders,

each with nine convolutional layers. One decoder produces a DNN image,

D(Id; θ), while the second decoder produces the DNN segmentation image,

Sp(Id; θ). The structures of the decoders are identical, each having a similar

architecture to the encoder but mirrored, with 2x2 up-convolutional (UpConv)

layers performing upsampling in the spatial domain and simultaneously

decreasing the number of feature channels in the data. Both decoders have

a sigmoid non-linearity in the last layer, ensuring the final predicted DNN

image or DNN segmentation is restricted to be between 0 and 1. In addition,

skip connections (He et al., 2016) are implemented to copy extracted features

from the encoder to the decoder at the same scale (as in Ronneberger, Fischer,
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Figure 5.2: FCNN architecture and training scheme for simultaneous DNN image
and DNN segmentation generation.

and Brox, 2015). The skip connections enable the network to learn finer details

which might otherwise be lost as a result of downsampling, to enhance the

flow of information through the network, and to reduce training time and

training data requirements (Ronneberger, Fischer, and Brox, 2015; Simonyan

and Zisserman, 2014).
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5.2.2 Network Architecture

5.2.3 Mapping and Scaling of Network Input and Training
Data

In order to consider the time-to-depth mapping described in Section 5.1,

each recorded channel data image, I, was downsampled from a grid size

of approximately 8,300 pixels x 128 pixels (time samples x receive channel

number) to a grid size of 256 pixels x 128 pixels (depth x width) with linear

interpolation, satisfying Nyquist criteria and resulting in Id. To achieve Id,

each axial line in I (i.e., the recorded echo samples) was mapped to a fixed

position in space using an input speed of sound value that is either known

(for simulated data) or assumed (for experimental data). In general, the

reduction of the input data size (e.g., from I to Id) is necessary to maintain the

entire input and corresponding output images, as well as the corresponding

gradient information of the DNN, within the GPU memory during training,

and to increase training and inference speed. Id was then normalized by the

maximum absolute value to ensure Id ∈ [−1, 1], resulting in the network

input.

To scale the training data used to obtain the DNN image output, the

recorded channel data image I was demodulated to baseband, beamformed,

downsampled, filtered to create envelope-detected data, then log-compressed

to achieve IdB. The demodulation, beamforming, downsampling, and filtering

steps were implemented with the Ultrasound Toolbox (Rodriguez-Molares

et al., 2017). IdB was initially displayed on a log scale with a dynamic range

of 60 dB (which is a common dynamic range when displaying ultrasound
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Figure 5.3: From left to right, this example shows a simulated DAS beamformed
ultrasound image, In, the ground truth segmentation of the cyst from surrounding
tissue, St, and the corresponding enhanced beamformed image, E.

images). IdB was then rescaled to In as follows:

In =
IdB + 60

60
(5.1)

in order to ensure In ∈ [0, 1]. This normalization is an important step for stable

DNN training, as neural networks are highly sensitive to data scaling (Ioffe

and Szegedy, 2015), and optimal performance is typically achieved when the

ranges of the inputs and outputs of the network are normalized.

A final enhancement was applied to In to obtain an enhanced B-mode

image, E, in efforts to overcome the poor contrast and acoustic clutter lim-

itations of single plane wave transmissions. For example, Fig. 5.3 shows a

DAS beamformed image obtained after a single plane wave insonification of

an anechoic cyst simulated with Field II (Jensen and Svendsen, 1992; Jensen,

1996), followed by the true segmentation and the enhanced image used during

network training only. The rationale for this enhancement is that the cyst is
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intrinsically anechoic, but the visualized cyst in the DAS beamformed image

contains acoustic clutter (e.g., the sidelobe responses of the scatterers in the

surrounding tissue region extending into the anechoic cyst region). Our goal

is to ideally obtain better quality images than that of DAS images (and not

to simply replicate poor DAS image quality during training). Toward this

end, the pixel labels obtained from the input echogenicity map (which is also

considered as the true segmentation mask, St) were used to set the pixel values

of the anechoic regions in In to zero while preserving the pixel values of the

surrounding tissue, with the intention of removing the clutter observed within

the cyst and thereby restoring the desired anechoic appearance of the cyst, as

shown in Fig. 5.3. Enhanced beamformed DAS images, E, were only used to

train the DNN to learn the mapping function required for estimation of the op-

timal network parameters θ by minimizing the loss between the reconstructed

images ŷ and the reference y, where ŷ describes the tuple (D, Sp). Note that

the procedure described to obtain enhanced images was not applied to alter

any of the DNN output images.

5.2.4 Network Training

During training, the total network loss, LT(θ), was composed of the weighted

sum of two losses. The first loss was the mean absolute error, or L1Loss, be-

tween the predicted DNN image, D, and the reference enhanced beamformed

image, E, defined as:

L1Loss(θ) =
1
n

n

∑
i=1

||Di(Id; θ)− Ei||1
N

(5.2)
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where || · ||1 is the ℓ1 norm, Di and Ei are the vectorized images for each

training example, N is the total number of image pixels, and n is the total

number of training examples in each mini-batch (i.e., the mini-batch size).

The second loss was the Dice similarity coefficient, or DSCLoss, between the

predicted DNN segmentation, Sp, and the true segmentation, St, defined as:

DSCLoss(θ) =
1
n

n

∑
i=1

1 − 2
|Sp,i(Id; θ) ∩ St,i|
|Sp,i(Id; θ)|+ |St,i|

(5.3)

where Sp,i and St,i are the vectorized segmentation masks for each training

example. While the target segmentation mask is binary valued, the predicted

segmentation mask is allowed to be continous valued between 0 and 1 (with

the range restricted by the sigmoid non-linearity in the final layer). A pixel

value of 0 in the predicted segmentation can be interpreted as the pixel being

predicted as tissue with 100% confidence, and a value of 1 can be interpreted

as the pixel being predicted as cyst with 100% confidence. Thus, the DSCLoss

function is implemented as a soft loss, ensuring gradient information can flow

backwards through the network. The total network loss was the weighted

sum of the two losses defined in Eqs. 5.2 and 5.3, each loss receiving a weight

of one, as defined by:

LT(θ) = L1Loss(θ) + DSCLoss(θ)

=
1
n

n

∑
i=1

||Di(Id; θ)− Ei||1
N

+ 1 − 2
|Sp,i(Id; θ) ∩ St,i|
|Sp,i(Id; θ)|+ |St,i|

(5.4)

In summary, the network was trained to learn ŷ, which was composed of

representations of E and St from input Id, to jointly produce both the DNN

image, D, and the DNN segmentation, Sp.
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Unless otherwise stated, the DNN was trained using the following base-

line settings. The Adam (Kingma and Ba, 2014) optimizer used a learning

rate of 10−5 for 25 epochs, where one epoch is defined as one pass over the

entire training dataset (i.e., the entire training dataset is once presented to the

network for training). The mini-batch size for the training dataset was set to

16.

Training was performed on a system with an Intel Xeon E7 processor and

four Tesla P40 GPUs, each equipped with 24 GB of graphics memory. To relate

these computer specifications to a real-time frame rate, the training time for

25 epochs was 100 minutes. However, we contrast this with the inference time

for our network to process 51,200 images, as reported in Section 5.3.

5.2.5 Comparisons to Training with Receive Delays Applied

To emphasize the challenge of deep learning from unfocused channel data,

the input to the architecture shown in Fig. 5.2 was modified to be focused

channel data and the first layer of this network was modified to accept the

focused channel data. Specifically, the recorded channel data image, I, was

transformed to the focused data tensor, I f , by applying receive time delays,

resulting in a 3D tensor with the new third dimension containing the number

of focused scan lines. I f was then downsampled (using the same downsam-

pling procedure described in Section 5.2.3 to convert I to Id), followed by the

subaperture summation procedure as described in Hyun et al., 2019a, result-

ing in I f ds, which is a tensor of size d × w × qs, where qs is twice the number

of subapertures, each representing the in-phase or quadrature component of
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the recording. Our modified goal was to input I f ds to produce D and Sp, each

with dimensions d × w.

To perform subaperture beamforming (Hyun et al., 2019a), the third dimen-

sion of I f (which contains the receive delays for each scan line) was divided

into 16 subapertures (i.e., 8 elements per subaperture). The delayed data

corresponding to each subaperture was summed, resulting in 16 complex

valued images, one for each of the 16 subapertures. The I and Q channels

of each subaperture were then grouped together within the third dimension

of the tensor to give 32 feature channels in total. Although this subaperture

beamforming was performed in software in this work for ease of demonstra-

tion of the feasibility of this approach, this subaperture beamforming step can

also be implemented in hardware (Santos et al., 2016), which would still result

in a raw channel data input to our network (yet has the expected trade-off of

increased data transfer rates).

We employed the same FCNN described in Section 5.2.2 with the exception

of a modified input layer and updated trainable parameters θ to learn the

optimal mapping of I f ds → y. Specifically, the first layer of the architecture

shown in Fig. 5.2 was modified to accept 32 feature channels rather than two

feature channels due to the subaperture beamforming step. This modified

network was then trained as described in Section 5.2.4, after replacing Id in

Eqs. 5.2-5.4 with I f ds. The same computer described in Section 5.2.4 was

used for training. Training time for this modified network was 315 minutes.

However, we contrast this with the inference time for this network to process

51,200 images, as reported in Section 5.3.
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Table 5.1: Simulated cyst image data parameters

Parameter Range Increment
Radius (r) 2-8 mm 1-2 mm

Speed of Sound (c) 1420-1600 m/s 10 m/s
Lateral position of cyst center (x) -16 mm - 0 mm 2 mm
Axial position of cyst center (z) 40-70 mm 2.5 mm

5.2.6 Simulated Datasets for Training and Testing

The Field II (Jensen and Svendsen, 1992; Jensen, 1996) ultrasound simulation

package was used to generate 22,230 simulations of individual anechoic cysts

surrounded by homogenous tissue. We employed simulations in our training

approach for two primary reasons. First, simulations enable the generation

of large, diverse datasets that are required to train robust DNNs. Second, for

segmentation tasks, simulations enable the specification of ground truth pixel

labels, allowing one to avoid the expensive and time-consuming step of a

human annotator to provide segmentation labels.

The simulated cyst radius (r), lateral and axial center positions of the cyst

(x and z, respectively), and speed of sound in the medium (c) were varied

using the range and increment sizes defined in Table 5.1. The values of r were

2, 3, 4, 6, and 8 mm, which is within the range of renal calyx, breast cyst,

and ovarian follicle sizes (Cadeddu et al., 1997; Jackson, 1990; Vargas et al.,

2004; Wikland et al., 2001). These cysts were contained within a cuboidal

phantom volume located between an axial depth of 30 mm and 80 mm, with a

lateral width of 40 mm, and an elevational thickness of 7 mm. The cysts were

modeled as cylinders with the same diameter in each elevational cross section.

Each simulation contained a unique speckle realization, enforced by using a
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Table 5.2: Transducer parameters

Parameter Simulated L3-8 L8-17
Number of Elements 128 128 128

Pitch 0.30 mm 0.30 mm 0.20 mm
Element Width 0.24 mm 0.24 mm 0.11 mm

Kerf 0.06 mm 0.06 mm 0.09 mm
Aperture 38.4 mm 38.4 mm 25.6 mm

Elevational Width 7 mm 7 mm 4 mm
Elevational Focus 35 mm 35 mm 20 mm

Transmit Frequency 4 MHz 4 MHz 12 MHz
Sampling Frequency 100 MHz 40 MHz 40 MHz
Pulse length (cycles) 4 4 1

Center Frequency 5.5 MHz 5.5 MHz 12.5 MHz
Fractional Bandwidth 0.65 0.65 0.65

different seed for the random number generator. A total of 50,000 scatterers

were contained within the simulated phantom to ensure fully developed

speckle.

In each simulation, a single plane wave at normal incidence was simulated

to insonify the region of interest. The simulated ultrasound probe matched

the parameters of the Alpinion L3-8 linear array transducer, and its center

was placed at the axial, lateral, and elevation center of the phantom (i.e., 0

mm, 0 mm, and 0 mm, respectively). The simulated probe parameters are

summarized in Table 5.2. The one exception to matching the real hardware

system was a simulated sampling frequency of 100 MHz (rather than the 40

MHz sampling frequency of the Alpinion ultrasound scanner used to acquire

the experimental phantom and in vivo data described in Sections 5.2.7 and

5.2.8, respectively) in order to improve the Field II simulation accuracy (Jensen

and Svendsen, 1992; Jensen, 1996).
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A total of 80% of the 22,230 simulated examples was reserved for training,

and the remaining 20% were used for network testing. Considering that cysts

were purposely simulated to reside on the left side of the phantom (see Table

5.1), data augmentation was implemented by flipping the simulated channel

across the x = 0 axis to incorporate right-sided cysts in our training and

testing.

To investigate the impact of depth-dependent attenuation on network

training sensitivity, half of the 22,230 simulated Field II examples were simu-

lated with an attenuation coefficient of 0.5 dB/cm-MHz, and the remaining

half did not include attenuation. One DNN was trained with attenuated data,

a second DNN was trained with non-attenuated data, and a third DNN was

trained with the combined dataset. Each network was trained for 27,625 itera-

tions. Therefore, for this investigation, one epoch was considered to be either

one pass over the combined dataset (i.e., for the third DNN) or two passes

over either dataset with or without attenuation (i.e., for the first or second

DNN, respectively), as each of these datasets is half the size of the combined

dataset. Using these updated definitions, the three networks were trained for

25 epochs. Unless otherwise stated (i.e., when not investigating attenuation),

results are reported for networks trained with the combined dataset.

5.2.7 Phantom Datasets

Channel data from a cross sectional slice of two anechoic cylinders in a CIRS

054GS phantom located at depths of 40 mm and 70 mm were acquired using

an Alpinion L3-8 linear array ultrasound transducer attached to an Alpinion
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E-Cube 12R research scanner. Two independent 80-frame sequences were

acquired. The anechoic targets were consistently in the left or right half of

the image for each acquisition sequence, achieved by manually flipping the

ultrasound probe. In addition, the channel data corresponding to each of

the 80 frames in each sequence was flipped from left to right, producing

a dataset consisting of 320 total images in order to test the generalizability

of the trained networks. The ground truth for this phantom dataset was

specified by manually annotating pixels in the beamformed ultrasound image

as cyst or tissue. When quantitatively evaluating these phantom examples, the

mean result for the two anechoic cysts in the same image is reported, unless

otherwise stated.

5.2.8 In Vivo Data

An 80-frame sequence of in vivo data from a simple anechoic cyst surrounded

by breast tissue (denoted as Cyst #1) was acquired using an Alpinion L3-

8 linear array transducer with parameters summarized in Table 5.2. Each

plane wave acquisition was flipped from left to right to double this in vivo

test dataset size. The ground truth for this in vivo dataset was specified by

manually annotating pixels in the beamformed ultrasound image as cyst or

tissue. In addition, the channel data input, Id, was cropped to minimize the

presence of bright reflectors that were not included during training. Because

bright reflectors were not similarly prevalent after subaperture beamforming,

the channel data input, I f ds, was not cropped until after images were created

in order to match the field of view for more direct comparisons to the results
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obtained with input Id.

To highlight the versatility of the DNN trained with I f ds, this DNN was

evaluated with a 10 frame sequence of an in vivo simple cyst surrounded

by breast tissue (denoted as Cyst #2), which was originally acquired for the

separate study reported in Wiacek et al., 2018. These data were acquired

with focused (rather than plane wave) transmissions, using an Alpinion L8-17

linear array transducer with parameters for the acquisition listed in Table

5.2. We include this acquisition in this work to demonstrate that plane wave

input data is not a requirement for the DNN trained with focused data. The

ultrasound probe also has a range of different parameters (including transmit

frequency) when compared to the L3-8 linear array, which was simulated and

used to train the DNN, as reported in Table 5.2.

In addition to the channel data described above, clinical screenshots of

the two in vivo cysts were additionally acquired with the Alpinion E-Cube

12R to assist with manual annotations of the cyst boundaries for ground truth

segmentations. For Cyst #1, a noticeable deformation occurred between the

acquisitions due to the sequential acquisition of clinical reference images fol-

lowed by plane wave data acquisitions. Therefore, the clinical B-mode image

was stretched and scaled and only used to help guide the segmentation bound-

ary definition. The acquisition of all in vivo data was performed after informed

consent with approval from the Johns Hopkins Medicine Institutional Review

Board.
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5.2.9 Comparison with Sequential Approaches

Results obtained with the trained DNNs were compared against four alter-

native and sequential approaches, namely DAS beamforming followed by

non-local means (NLM), binary thresholding, NLM combined with binary

thresholding, and a baseline U-Net architecture. The NLM (Buades, Coll, and

Morel, 2005; Coupe et al., 2009) and binary thresholding algorithms were

implemented in MATLAB on an Intel Xeon E 5645 CPU with a clock speed

of 2.40 GHz. NLM served as a baseline image smoothing algorithm. Most

hyperparameters were set to their default values (i.e., the ‘SearchWindoSize’

hyperparameter was set to 21, the ‘ComparisonWindowSize’ hyperparameter

was set to 5), with the exception of the ‘DegreeOfSmoothing’ hyperparameter,

which was set to 0.1.

Binary thresholding followed by morphological filtering (abbreviated as

BT) was implemented as described in (Gomez et al., 2009; Luo et al., 2017;

Noble and Boukerroui, 2006) to compare the DNN segmentations. To summa-

rize our BT implementation, the mean of the normalized DAS B-mode image

(In) was calculated, and the binarization decision threshold value was set as

0.70 times the mean pixel value. Pixels above and below the threshold were

labeled as tissue and cyst, respectively. Connected components labeled as

cyst tissue smaller than 50 pixels (i.e., an area of approximately 3 mm2) were

removed to eliminate false positives. Morphological closing (i.e., a dilation

followed by an erosion) was then performed with a disk element of radius

1 pixel to fill in gaps in the segmentations. Morphological dilation dilation

was then performed using a disk element of radius 2 pixels to expand the
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cyst segmentations (considering that previously implemented steps tend to

underestimate cyst size). Hyperparameter tuning was performed to choose

the baseline hyperparameters.

DAS beamforming followed by NLM then BT (i.e., DAS+NLM+BT) was

implemented to produce sequential segmentation and speckle reduced images

for comparison to the parallel outputs produced by the DNN from raw IQ

channel data. Finally, to compare results to the current state of the art for ultra-

sound image segmentation, a baseline U-Net (Ronneberger, Fischer, and Brox,

2015) network with a single encoder and a single decoder was implemented.

This network was trained to predict a segmentation mask, Sp(In; θ), from input

In, using St as the ground truth. We employed the same FCNN described in

Section 5.2.2 with the exception of a modified input layer, a single decoder

module, and updated trainable parameters θ to learn the optimal mapping

of In → Sp. Specifically, the first layer of the architecture shown in Fig. 5.2

was modified to accept one feature channel rather than two feature channels

due to the input being the normalized DAS B-mode image, In. In addition, as

only the DNN segmentation is being produced, only one decoder module is

needed. This modified network was trained using the DSCLoss described by

Eq. 5.3, after replacing Sp,i(Id; θ) with Sp,i(In; θ). The same baseline settings

and computer reported in Section 5.2.4 were used during training.

5.2.10 Evaluation Metrics

1. Dice Similarity Coefficient (DSC): DSC quantifies overlap between two

segmentation masks (Zou et al., 2004). The DSC between the predicted
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DNN segmentation, denoted by Sp and the true segmentation, denoted

by St, is defined as:

DSC(Sp, St) = 2
|Sp ∩ St|
|Sp|+ |St|

(5.5)

A perfect DNN segmentation produces a DSC of 1. Prior to display

and evaluation, the predicted segmentation mask was binarized using a

threshold of 0.5, considering that a predicted pixel value > 0.5 indicates

that the network is more confident that the pixel is cyst than tissue (and

vice versa for pixel values < 0.5).

2. Contrast: Contrast is fundamentally a measure to quantify differences

between the minimum and maximum values in an image, particularly

for regions inside and outside an anechoic cyst, respectively. This metric

is defined as:

Contrast = 20 log10

(︃
Si

So

)︃
(5.6)

where Si and So represent the mean of individual uncompressed signal

amplitudes, si and so, in selected regions of interest (ROIs) inside and

outside the cyst, respectively, taken from the normalized image, In (see

Eq. 5.1). The ROI inside the cyst was automated as a 2 mm-radius

circular region centered at the cyst center for the simulated and phantom

examples, and a 1.5 mm radius circular region for the more irregularly

shaped in vivo examples. The choice to automatically use a small circular

region about the cyst center was made to avoid manual ROI selection

across the thousands of simulation and phantom test sets, yet still ensure
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that the results would be a meaningful assessment of the difference in

signal amplitude inside and outside the detected cyst region. This auto-

mated ROI selection additionally is intended to prevent the inclusion

of misclassifications (e.g., cyst pixels at the cyst boundary detectected

as tissue and vice versa), which are instead evaluated with the gCNR

metric (Rodriguez-Molares et al., 2019). The ROI outside of the cyst was

the same size as the inside ROI and was located at the same depth as

the cyst. These ROIs were used to calculate the contrast of DNN, DAS

beamformed, and enhanced beamformed images.

Because the desired DNN output image was log-compressed with a

chosen dynamic range of 60 dB, an uncompressed signal, s was first

calculated as:

s = 10sdB/20 (5.7)

where s refers to si or so (i.e., the subscripts were removed for simplicity),

and sdB is the log-compressed equivalent of s. The values of s were then

used to calculate Si and So in Eq. 5.6. Note that the maximum dynamic

range of our network is 60 dB, which translates to a maximum possible

contrast of 60 dB in the DAS beamformed and enhanced beamformed

images.

3. Signal-to-Noise Ratio (SNR): Tissue SNR quantifies the smoothness of

the background region surrounding the cyst, defined as:

SNR =
So

σo
(5.8)
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where σo represents the standard deviation of individual uncompressed

signal amplitudes, so, in the selected ROI outside the cyst (i.e., the same

ROI used to calculate contrast in Eq. 5.6). The enhanced beamformed

image contains the same tissue background as the DAS beamformed

image and therefore has identical SNR to the DAS beamformed image.

4. Generalized Contrast-to-Noise Ratio (gCNR): The gCNR was recently

introduced as a more accurate measure of lesion detectability in com-

parison to CNR (Rodriguez-Molares et al., 2019), and it calculated as:

gCNR = 1 −
1

∑
x=0

min
x

{pi(x), po(x)} (5.9)

where pi(x) and po(x) are the probability mass functions of si and so, re-

spectively. Considering that gCNR is intended to measure cyst detection

probability, choosing the ROIs defined for contrast would bias gCNR

toward better results by only providing a subset of pixels within the cyst

region. Therefore, si for the gCNR metric was updated to be the ground

truth cyst segmentation within St, and so was updated to be the same

size and located at the same depth as si.

5. Peak Signal-to-Noise Ratio (PSNR): PSNR quantifies the similarity of

the generated DNN image to the reference enhanced beamformed image,

considering both the pixel values inside the cyst as well as the values

outside the cyst to give a single value defining a global quality estimate,
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defined as:

PSNR(D, E) = 10 log10

(︄
MAX2

E
MSE

)︄
(5.10)

= 10 log10

⎛⎝ 1
||D−E||22

N

⎞⎠ (5.11)

where || · ||2 is the ℓ2 norm, D and E are the vectorized DNN image and

the reference enhanced beamformed image respectively, N is the number

of pixels in the images, and MSE is the mean square error between D

and E. Because E ∈ [0, 1], MAXE (i.e., the maximum absolute pixel

value of image E) is equal to 1.

6. Coefficient of Variation (CV): To study the effect of minimal (e.g., due

to hand tremors) to no perturbations in the phantom data across a given

acquisition sequence, the coefficient of variation (CV) of the contrast,

SNR, and gCNR metrics was calculated as:

CV =
σ

µ
× 100% (5.12)

where µ is the mean metric value across multiple acquisitions, and σ is

the standard deviation of the metric across the same acquisitions. CV

was calculated for both DNN and beamformed images.

7. Processing Times: Processing times for DAS beamforming, DNN per-

formance, and NLM, BT, and U-Net comparisons were calculated. The

processing time to perform DAS beamforming with a single plane wave

was approximated from the GPU beamformer processing times for 25
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plane waves reported in Hyun et al., 2019b. We included the times to per-

form the delay and sum operations (i.e., FocusSynAp and ChannelSum,

respectively), and divided the summation of the reported processing

times for these operations by 25 to achieve a processing time estimate for

a single plane wave. The reported processing times were implemented

on an NVIDIA Titan V GPU.

The processing times for NLM and BT were calculated after applying

these algorithms to the entire test set of 4,554 simulated B-mode im-

ages. The total processing time was then divided by the total number

of images processed to provide an estimate of the time to produce a

single image. This time was added to the time per image reported for

DAS beamforming to estimate the times for DAS+NLM, DAS+BT, and

DAS+NLM+BT.

To calculate the processing times for U-Net segmentation, a mini batch

of 512 tensors of simulated In were input 100 times into the trained

network, and the total processing time was divided by the total number

of images processed (i.e., 51,200 images). This time was added to the

time per image reported for DAS beamforming to estimate the times for

DAS+U-Net.

To calculate the processing time per image during DNN testing, a mini

batch of 512 tensors of simulated Id or I f ds were input 100 times into the

DNN trained with unfocused or focused, data, respectively. The total

processing time for each DNN was then divided by the total number of

images processed (i.e., 51,200 images) to provide an estimate of the time
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it would take to process a single image for each DNN.

Calculated processing times were then inverted to provide expected

frame display rates. Although these reports combine CPU and GPU

performance, we only perform direct comparisons of CPU-to-CPU and

GPU-to-GPU processing times implemented on the same computer.

5.2.11 Exclusion Criteria

As demonstrated in our previous work (Nair et al., 2018a), higher DSCs are

achieved with larger cysts compared to smaller cysts. In addition, small

cysts have greater potential to be missed, which is quantified as a DSC of

approximately zero. Based on this knowledge, we prioritize a fair comparison

of the multiple network parameters, which we define as a minimum DSC

≥ 0.05. This criterion was required for the network trained with the baseline

settings reported in Section 5.2.4, and test cases that did not meet this basic

criterion with this baseline test set were excluded from the results reported

in this work. Note that our exclusion criteria was only applied to one of

several test sets, and the excluded images from this test set analysis were then

excluded in subsequent test sets (i.e., the exclusion criteria was not repeated

for each test set).

The resulting detection rate is listed for each cyst radius in Table 5.3.

Overall, no experimental phantom or in vivo data met our exclusion criteria,

and the network successfully detected the simulated cysts in 4, 274 out of 4, 554

test examples. Table 5.3 also indicates that segmentation failure primarily

occurs with 2 mm-radius cysts. The remaining cyst examples were successfully

146



Table 5.3: Detection rate of simulated test set after training with the baseline parame-
ters listed in Section 5.2.4 and implementing the exclusion criteria listed in Section
5.2.11

Cyst Total # # of Images Detection
Radius of Images Included Rate
2 mm 904 624 69%
3 mm 880 880 100%
4 mm 972 972 100%
6 mm 902 902 100%
8 mm 896 896 100%

detected, and we prefer to limit our methodology feasibility assessments to

these cases. Therefore, the results in Section 5.3.1 are reported for this subset

of the simulated test set. This information can additionally be used to avoid

applications of our approach to cysts smaller than 2 mm radii, which are

challenging for the DNN to detect, likely due to the presence of acoustic

clutter in the single plane wave image.

5.3 Results

5.3.1 Simulation Results

Fig. 5.4 shows an example simulated test case from the DNN architecture

shown in Fig. 5.2, using the baseline settings noted in Section 5.2.4. From top

left to bottom right, this example shows simulated raw IQ channel data, the

corresponding DAS beamformed ultrasound and DNN image, the known

segmentation of the cyst from surrounding tissue, the DNN segmentation

predicted by our network, and the DNN segmentation overlaid on the true

segmentation. This example produces a DSC of 0.98, a contrast of −42.11 dB,
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Figure 5.4: Simulation result showing, from top left to bottom right, raw IQ channel
data (displayed with 60 dB dynamic range after after applying envelope detection
and log compression), a DAS beamformed ultrasound image, a DNN image produced
by our network, the known segmentation of the cyst from surrounding tissue, the
DNN segmentation predicted by our network, and an image with a red transparent
overlay of the DNN segmentation over the true segmentation.

an SNR of 3.06, a gCNR of 0.99, and a PSNR of 20.32 dB. The test set (excluding

the cases noted in Section 5.2.11) produced a mean ± one standard deviation

DSC of 0.92 ± 0.13, contrast of −40.07 ± 11.06 dB, SNR of 4.29 ± 1.26, gCNR

of 0.95 ± 0.08 and PSNR of 20.19 ± 0.40 dB.

Fig. 5.5 shows the aggregated mean DSC, contrast, SNR, gCNR and PSNR
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Figure 5.5: Aggregated mean (from top to bottom) DSC, contrast, SNR, gCNR and
PSNR ± one standard deviation as a function of (from left to right) variation in r, c,
z, and x for simulated results, and phantom results. Phantom results are displayed
using unfilled circle markers. “Enhanced” indicates the performance of the enhanced
B-mode images that were used for DNN training, as described in Section 5.2.3, and
they represent the limits to an ideal DNN performance.

± one standard deviation as a function of (from left to right) variation in

r, c, z, and x for simulated results and phantom results. The simulation results

in Fig. 5.5 reveal that the smaller, 2-mm radii cysts yield the worst DNN

segmentations with a mean DSC of 0.70. The DSC rises to 0.99 for 8 mm
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cysts. Similarly, as r increases, contrast improves from −18.12 dB to −44.20

dB, gCNR improves from 0.83 to 0.97, and PSNR improves from 19.95 dB to

20.42 dB. Unlike DSC, contrast, gCNR, and PSNR, SNR does not change as r

increases. The DSC, contrast, SNR, and gCNR results are otherwise relatively

constant as functions of the remaining parameters (i.e., c, z, and x).

Focusing on the contrast results in Fig. 5.5, the contrast of the DNN

images approaches that of the enhanced beamformed image as r increases and

is consistently superior to the contrast of the traditional DAS beamformed

images, with a mean contrast improvement measuring 20.71 dB. In addition,

Fig. 5.4 demonstrates that the tissue texture is smoother in the DNN images

when compared to the DAS beamformed images. The quantitative SNR results

in Fig. 5.5 support this observation, and the mean SNR improvement is 2.30.

These two improvements combine to produce a mean gCNR improvement of

0.19 when DNN images are compared to DAS beamformed images.

5.3.2 Phantom Results

Fig. 5.6 shows an example test case from the phantom dataset. From top left

to bottom right, this example shows raw phantom IQ channel data, a DAS

beamformed ultrasound image and corresponding DNN image, the known

segmentation of the cyst from surrounding tissue, the DNN segmentation

predicted by our network, and the DNN segmentation overlaid on the true

segmentation. This example produces a DSC of 0.92, a contrast of −40.69

dB, an SNR of 4.96, a gCNR of 0.93, and a PSNR of 18.97 dB. The entire test

set produced a mean ± one standard deviation DSC of 0.92 ± 0.03, contrast
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Figure 5.6: Phantom result showing, from top left to bottom right, raw IQ channel
data (displayed with 60 dB dynamic range after after applying envelope detection
and log compression), a DAS beamformed ultrasound image, a DNN image produced
by our network, the known segmentation of the cyst from surrounding tissue, the
DNN segmentation predicted by our network, and an image with a red transparent
overlay of the DNN segmentation over the true segmentation.

of −39.13 ± 5.86 dB, SNR of 4.96 ± 1.84, gCNR of 0.93 ± 0.08, and PSNR of

19.33 ± 0.83 dB.

The aggregated results of this entire dataset as functions of r, c, z, and x

are shown in Fig. 5.5 as unfilled circles overlaid on the previously discussed

simulation results. The color of each circle corresponds to the color-coded
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data type listed in the legend. Fig. 5.5 shows that the mean DSC, contrast, and

gCNR measurements for the phantom results are generally within the range

of the standard deviations of these same measurements for the simulation

results. However, the SNR and PSNR of the phantom results are outliers

when compared to those of the simulation results, because of the differences

in tissue texture achieved with the DNN image.

Note that the phantom test dataset consists of 160 total plane wave in-

sonifications. Half of these acquisitions contain the two anechoic cysts on the

left side of the image, and the other half (acquired with the probe physically

flipped) contain the same anechoic cysts on the right side of each image. The

raw data from each acquisition was then flipped, yielding a dataset with a

total of 320 plane waves and a total of eight individual “cyst templates.” CV

was calculated for each individual cyst template, and the mean of these eight

CVs was 0.12%, 2.38%, and 0.36% for DNN image contrast, SNR, and gCNR

measurements, respectively. These results are comparable to those of the DAS

beamformed images (i.e., contrast, SNR, and gCNR CVs of 1.19%, 0.63%, and

0.82%, respectively). This result indicates that there were minimal variations

in the acquired phantom results which were purposely acquired with minimal

to no perturbations to the acquisition setup. The implication of this result is

discussed in more detail in Section 5.4.

5.3.3 Incorporating Attenuation

Fig. 5.7 (top) shows example test cases from the three networks trained with,

without, and both with and without attenuation combined. From left to
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Figure 5.7: (top) Attenuation results showing, from left to right, the DAS beamformed
image and ground truth segmentation reference pair, the corresponding outputs of the
network trained with non-attenuated data, attenuated data, and the combined dataset
of both attenuated and non-attenuated data. (bottom) Aggregated attenuation results,
showing mean DSC, contrast, SNR, gCNR and PSNR ± one standard deviation as a
function of epoch.

right, the first column of images displays the DAS beamformed image along

with the true segmentation, the second column displays the output of the

network trained without attenuation, the third column displays the output of

the network trained with attenuated data, and the fourth column displays the

output of the network trained with the combined dataset of both attenuated

and non-attenuated data. The example output from the network trained

with non-attenuated data produced DSC, contrast, SNR, gCNR, and PSNR of

0.66, −41.64 dB, 3.08, 0.64, and 14.16 dB, respectively. The network trained

with attenuated data produced DSC, contrast, SNR, gCNR, and PSNR of
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0.86, −40.27 dB, 4.79, 0.85, and 18.16 dB, respectively, representing improved

DSC, SNR, gCNR, and PSNR with similar contrast. Similar improvements

were achieved when training with both attenuated and non-attenuated data,

producing DSC, contrast, SNR, gCNR, and PSNR of of 0.92, −40.69 dB, 4.96,

0.93, and 18.97 dB, respectively.

Fig. 5.7 (bottom) shows the aggregated mean DSC, contrast, SNR, gCNR,

and PSNR ± one standard deviation as a function of the number of epochs for

the networks trained with attenuated data and with the combined dataset of

both attenuated and non-attenuated data. When trained with the combined

dataset, it is remarkable that the addition of non-attenuated data does not sig-

nificantly impact the performance of the network in spite of the test phantom

dataset having tissue attenuation. Instead, the inclusion of non-attenuated

data seems to be responsible for a subtle boost in performance. For example,

when the measured DSC is averaged over epochs 11 through 25, this average

improves from 0.88 when the network is trained with the attenuated dataset

to 0.92 when the network is trained with the combined dataset. Similarly,

when each metric result is averaged over all epochs, SNR improves from 5.26

to 5.73, gCNR improves from 0.88 to 0.92, and PSNR improves from 18.38 dB

to 18.98 dB. Contrast results are similar between the two networks.

5.3.4 Comparisons Between Focused and Unfocused Input
Data

Fig. 5.8 shows phantom images comparing unfocused input data, Id, to fo-

cused input data, I f ds. The contrast, SNR, and gCNR of the image created with

the focused input is −36.22 dB, 1.63, and 0.94, respectively. The corresponding

154



Figure 5.8: Comparison of Id and I f ds input phantom data showing, from left to
right, the DAS beamformed image and ground truth segmentation reference pair,
the unfocused and focused IQ channel data envelopes of the input data Id and I f ds,
respectively, and corresponding outputs of the two DNNs. For the focused IQ channel
data envelope image, a subaperture near the center of the probe is displayed as a
representation of the input to one channel of the DNN.

values for the image created with unfocused data are −38.41 dB, 5.61, and

0.98, respectively. Therefore, these metrics are improved with unfocused data

in this particular example. However, the PSNR and DSC are 20.14 dB and

0.94, respectively, with the unfocused input, compared to 22.63 dB and 0.94,

respectively, with the focused input. While the higher PSNR with the focused

input is due to tissue SNR that more closely resembles that of the DAS B-mode

images, the similar DSC results demonstrate that the similar segmentation

performance can be achieved with DNNs regardless of the inclusion of focus-

ing. Table 5.4 summarizes these metrics for the acquired phantom images,

and this table also compares the time required to create each image.

Table 5.4 further demonstrates that similar image quality to the reference
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Table 5.4: Performance comparisons of DAS beamforming, non-local means (NLM)
speckle reduction, binary thresholding segmentation followed by morphological
filtering (abbreviated as BT), U-Net segmentation, and DNN results with focused and
unfocused input data. Processing times for NLM and BT were calculated on a CPU
with remaining processing times calculated on GPUs.

Traditional Sequential Approaches Proposed DNN Approaches

DAS DAS+NLM DAS+BT DAS+NLM+BT DAS+U-Net Unfocused
DNN Input, Id

Focused
DNN Input, I f ds

Processing Time 0.25 ms 13.29 ms 2.20 ms 15.41 ms 1.72 ms 2.53 ms 3.48 ms
Frame Rate 4,000 Hz 75 Hz 455 Hz 64 Hz 583 Hz 395 Hz 287 Hz
Phantom
DSC N/A N/A 0.68 ± 0.09 0.77 ± 0.08 0.92 ± 0.02 0.92 ± 0.03 0.93 ± 0.01
Contrast (dB) -17.14 ± 4.51 -16.08 ± 4.51 -17.14 ± 4.51 -16.08 ± 4.51 -17.14 ± 4.51 -39.13 ± 5.86 -37.30 ± 6.86
SNR 1.97 ± 0.22 5.76 ± 2.03 1.97 ± 0.22 5.76 ± 2.03 1.97 ± 0.22 4.96 ± 1.84 1.82 ± 0.37
gCNR 0.77 ± 0.07 0.94 ± 0.03 0.77 ± 0.07 0.94 ± 0.03 0.77 ± 0.07 0.93 ± 0.08 0.95 ± 0.03
PSNR (dB) N/A 17.22 ± 0.99 N/A 17.22 ± 0.99 N/A 19.33 ± 0.83 23.07 ± 0.86
In Vivo Cyst #1
DSC N/A N/A 0.68 ± 0.00 0.76 ± 0.00 0.83 ± 0.01 0.77 ± 0.07 0.82 ± 0.03
Contrast (dB) -13.61 ± 2.36 -11.43 ± 2.48 -13.61 ± 2.36 -11.43 ± 2.48 -13.61 ± 2.36 -25.72 ± 9.25 -25.30 ± 3.69
SNR 1.27 ± 0.07 1.76 ± 0.15 1.27 ± 0.07 1.76 ± 0.15 1.27 ± 0.07 3.94 ± 0.59 1.12 ± 0.21
gCNR 0.56 ± 0.03 0.76 ± 0.03 0.56 ± 0.03 0.76 ± 0.03 0.56 ± 0.03 0.75 ± 0.14 0.89 ± 0.04
PSNR (dB) N/A 16.47 ± 0.01 N/A 16.47 ± 0.01 N/A 15.05 ± 0.86 18.86 ± 0.31
In Vivo Cyst #2
DSC N/A N/A 0.78 ± 0.01 0.81 ± 0.00 0.72 ± 0.07 - 0.79 ± 0.02
Contrast (dB) -18.27 ± 2.59 -16.40 ± 2.55 -18.27 ± 2.59 -16.40 ± 2.55 -18.27 ± 2.59 - -31.62 ± 2.56
SNR 1.29 ± 0.13 3.08 ± 0.38 1.29 ± 0.13 3.08 ± 0.38 1.29 ± 0.13 - 1.39 ± 0.12
gCNR 0.75 ± 0.09 0.94 ± 0.02 0.75 ± 0.09 0.94 ± 0.02 0.75 ± 0.09 - 0.96 ± 0.01
PSNR (dB) N/A 19.45 ± 0.02 N/A 19.45 ± 0.02 N/A - 19.58 ± 0.16

B-mode image is achieved when the input data is focused to include receive

time delays. However, this focusing approach requires an updated network

input layer with 30 additional input channels (to accept the increased input

data size), as well as the additional step of subaperture beamforming, which

both reduce the overall frame rates. Note that the additional step associated

with subaperture beamforming is not included in the processing time results

reported in Table 5.4, as subaperture beamforming could be implemented in

hardware.

Fig. 5.9 shows in vivo images of Cyst #1 comparing unfocused input data,

Id, to focused input data, I f ds. The DSC, contrast, SNR, gCNR, and PSNR of

the outputs created with the unfocused input are 0.83, −34.89 dB, 4.57, 0.90,

and 15.85 dB, respectively. Although the DSC and gCNR results are lower
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Figure 5.9: Comparison of Id and I f ds input in vivo data from Cyst #1 showing,
from left to right, the clinical image obtained from the scanner with an 8 MHz
transmit frequency focused at a depth of 20 mm, the DAS beamformed image of
Cyst #1 obtained using a single 0◦ incidence plane wave transmitted at 4 MHz and
the corresponding ground truth segmentation reference pair, the unfocused and
focused IQ channel data envelopes (with the latter showing the envelope of a single
subaperture) of the input data Id and I f ds, respectively, and corresponding outputs of
the two DNNs.

than the majority of examples previously shown, it is important to note that

the size of Cyst #1 is approximately 3 mm in radius, and the DSC and gCNR

results of this cyst are within the range of the means ± one standard deviation

obtained for the 2-4 mm radii results reported in Fig. 5.5 (i.e., 0.70 ± 0.21 to

0.96 ± 0.2 and 0.83 ± 0.14 to 0.97 ± 0.03, respectively). In addition, SNR starts

at a lower value than the phantom and simulated DAS results reported in Fig.

5.5, therefore the final value obtained with the DNN is also lower than those

shown in Fig. 5.5. Nonetheless, there is still an SNR increase and contrast is

improved in the DNN image compared to the DAS image.

The DSC, contrast, SNR, gCNR, and PSNR of the outputs created with

the focused input, I f ds, are 0.85, −21.89 dB, 0.93, 0.85, and 19.01 dB, respec-

tively, for the example shown in Fig. 5.9. However, the DNN overestimates

the proximal cyst boundary in this example, likely due to large amplitude

differences at that boundary, which were not included during training. The
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mean ± standard deviation of the evaluation metrics for the entire 160 frames

in the test dataset for Cyst #1 are reported in Table 5.4.

Figs. 5.8 and 5.9 reveal that more similar SNR results were obtained with

phantom and in vivo data when I f ds was the input, as summarized in Table

5.4. In particular, with I f ds as the input, the SNRs of the phantom and in vivo

data more closely match the SNR results reported for the corresponding DAS

B-mode images. The higher tissue SNR of DNN images obtained with Id as

the input, when compared to corresponding DAS images, occurs because

of the smoother tissue texture in these DNN images, despite both DNNs

being trained with data that fundamentally contains speckle, which is caused

by constructive and destructive interference from sub-resolution scatterers

(Wagner, 1983; Burckhardt, 1978).

These SNR results demonstrate that the DNN with Id as input is unable

to learn the finer details associated with the transformation from unfocused

tissue texture to traditional B-mode image speckle (which is included in

the transformation Id → D), and therefore ŷ is not a faithful representation

of y from this perspective. In contrast, considering that the same network

architecture was implemented after receive focusing delays were applied to

the input data (and after the input layer was modified to accept this larger

input data), the transformation I f ds → D appears to be a simpler task for

this DNN, which can be explained by the transformation from focused tissue

texture to speckle being a more direct image-to-image transformation.

While the smoothing and higher SNRs observed in the output DNN im-

ages created from the unfocused input data, Id, may be viewed as a failure
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Figure 5.10: In vivo clinical image of Cyst #2 obtained from the scanner with a 12
MHz transmit frequency focused at a depth of 10 mm, DAS beamformed image of
Cyst #2, the corresponding DNN image, and the corresponding DNN segmentation
overlaid on the true segmentation.

of the network from the perspective of faithful image reconstruction, from

the perspective of the proposed task and the DNN goals, the higher tissue

SNR and smoother tissue texture is viewed as a benefit. These achievements

are aligned with the goals of maximizing achievable frame rates, deempha-

sizing unimportant structures, and emphasizing structures of interest for the

proposed task.

Fig. 5.10 shows an additional example of this expected trade-off between
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preserving fidelity and achieving task-specific image reconstruction goals with

Cyst #2. This example was obtained from focused transmissions and with a

higher transmit frequency than that used during training, thus highlighting

the versatility of the DNN with I f ds as input. This network produces DNN

images that have a closer match to the DAS beamformed image, but the DNN

image contains tissue structure and speckle that can potentially confuse an

observer who is not skilled with reading ultrasound images (in addition to

requiring more time to produce this image in comparison to the image that

would be produced with an unfocused data input). The DSC, contrast, SNR,

gCNR, and PSNR for this result are 0.82, −34.18 dB, 1.50, 0.97, and 19.45 dB,

respectively. The mean ± standard deviation of these metrics for the entire 20

frames in the test dataset for Cyst #2 are reported in Table 5.4.

When comparing the presented DNN performance to more standard meth-

ods, Table 5.4 demonstrates that although B-mode alone produces the fastest

frame rates (i.e., 4,000 Hz on a GPU), frame rates are expected to be reduced

after image formation followed by either speckle reduction (i.e., DAS+NLM

results in 75 Hz on a GPU+CPU), segmentation (i.e., DAS+BT results in

455 Hz on a GPU+CPU), or both speckle reduction and segmentation (i.e.,

DAS+NLM+BT results in 64 Hz on a GPU+CPU). The DNN that accepts unfo-

cused data has faster frame rates (i.e., 395 Hz) when compared to the DNN

that accepts focused data (i.e., 287 Hz). Although implementation on two

different GPU configurations confounds direct processing time comparisons,

the sequential DAS+U-Net approach was faster than the parallel DNN ap-

proaches. There is also room for improvement of the parallel DNN approaches
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to achieve even faster frame rates than currently reported (Bianco et al., 2018),

particularly when considering that Table 5.4 reports initial proof-of-principle

results and network optimization typically follows after demonstrations of

feasibility.

Table 5.4 also demonstrates that the DNN that accepts unfocused data

achieves consistently higher DSC and contrast when compared to DAS+NLM+BT.

The DNN that accepts focused data consistently achieves similar or better

DSC results when compared to the state of the art (i.e., DAS+U-Net) and

consistently improves image quality (i.e., contrast, gCNR, and PSNR) when

compared to DAS+NLM, DAS+BT, DAS+NLM+BT, and DAS+U-Net. These

improvements were achieved in parallel rather than sequentially, due to our

task-specific training on enhanced B-mode images for simultaneous detection,

visualization, and segmentation of anechoic cysts.

5.4 Discussion

The results presented in this work describe our initial successes and chal-

lenges with using deep learning to provide useful information directly from

a single plane wave insonification. Overall, the proposed task-specific DNN

approach is feasible. It is remarkable that acceptable images were achieved

prior to the application of receive time delays to compensate for time of ar-

rival differences. In particular, the contrast and gCNR of anechoic regions

were improved with DNN images over DAS B-mode images created with

a single plane wave, tissue SNR was either improved or similar depending

on the inclusion of receive delays with subaperture beamforming, and DSC
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values were similar, regardless of the presence of receive delays. Therefore,

the benefits of this approach are that we can train exclusively on simulations

of single plane wave transmissions, successfully transfer the trained networks

to experimental single plane wave ultrasound data, and produce B-mode

images of anechoic targets with superior contrast and gCNR (i.e., two metrics

representing improved image quality) and either similar or smoother tissue

texture compared to DAS beamforming. An additional benefit is that these

image quality improvements were achieved while concurrently extracting

segmentation information directly from the raw ultrasound channel data,

resulting in similar or better segmentation performance with focused input

data when compared to the current state of the art (see Table 5.4).

Typically, image formation is followed by segmentation, and this sequen-

tial process for singular plane wave transmissions generally has the limitations

of reduced throughput, as well as poor image quality (which generally pro-

duces poor image segmentations). Increasing the number of plane wave

transmissions further reduces throughput, yet improves image quality at the

expense of frame rates. In addition to parallelizing image formation and

segmentation, the proposed DNNs offer real-time feasibility (with frame rates

of 287-395 Hz based on our hardware and network parameters) as well as

improved image quality with a single plane wave transmission. There is ad-

ditional room for improvement by optimizing the proposed implementation

to increase real-time frame rates (Bianco et al., 2018) and to increase in vivo

segmentation accuracy by including more features during training, which will

be the focus of future work.
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There are four key observations and insights based on the presented results

of applying DNNs to the challenging task of reconstructing sufficient quality

images from single plane wave channel data acquisitions. First, we success-

fully achieved one of the primary goals of our network training, which was to

only display structures of interest and otherwise ignore (or de-emphasize) sur-

rounding structures. For example, the higher SNR and smoother tissue texture

with the unfocused input data align with our goal of de-emphasizing unim-

portant structures for robotic automation. It is additionally advantageous that

this network produced images with smoother tissue texture without relying

on computationally expensive methods, such as NLM (Coupé et al., 2009)

or anisotropic diffusion (Yu and Acton, 2002), to generate training data. If

speckle is truly desired, we previously demonstrated that a GAN, rather than

the FCNN employed in this work, has the potential to produce speckle and

provide simultaneous DNN images and segmentation maps from a single

input of unfocused plane wave channel data (Nair et al., 2019).

Similar to the FCNN deemphasis of speckle, the -6 dB cyst in Fig. 5.6

is poorly visualized in the DNN image. Although the network was trained

with anechoic cysts and was not trained to detect hypoechoic cysts, this

result suggests that the decoder for the DNN image is somewhat sensitive

to echogenecity. However, the hypoechoic cyst in Fig. 5.6 does not appear

in the DNN segmentation output, which suggests that the decoder for the

segmentation is selective to the detection of anechoic regions in the input

data. Similar task-specific DNN approaches may be devised and implemented

to emphasize (as demonstrated with anechoic regions) or de-emphasize (as
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demonstrated with speckle and the low-contrast cyst) other structures of

interest for ultrasound-based interventions (e.g., needle tips).

The second insight is that the results of the attenuation study (see Fig.

5.7) indicate that the DNN trained without simulated depth-dependent at-

tenuation learns to be sensitive to the amplitude of received echoes in order

to determine if a given region is cyst or tissue. However, tissue attenuation

confounds this particular network and causes performance deeper into the

tissue to drop, as the network confuses the decrease in echo intensity due

to tissue attenuation with a decrease in echo intensity due to an anechoic

cyst. Counterintuitively, we noticed that performance rises when unrealis-

tic data in the form of the dataset without attenuation (in addition to data

containing attenuation) is included in the training dataset provided to the

network. This rise in performance highlights the importance of diversity in

the dataset – more diverse data yields better generalization. It also showcases

that the network has the potential to automatically learn what is useful (e.g.,

the location-dependent spatial response of the cysts) and discard what is not

useful (e.g., the unrealistic lack of attenuation) with additional training data.

Third, although the DNNs were trained with circular, anechoic, cyst-like

structures, there was some ability to generally distinguish tissue from cyst

in the presence of irregular boundaries (see Fig. 5.9), although the bound-

aries themselves seemed to be estimated by the DNN as smooth and circular

like the training data. The DNNs also generalized reasonably well to cyst

sizes that were not included during training. The network that accepted fo-

cused data was additionally able to generalize to data acquired with focused
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rather than plane wave transmissions, as shown in Fig. 5.10. There were

also generalizations across transmit frequencies and other parameters that

differ when comparing the Alpinion L3-8 and L8-17 ultrasound transducer

parameters in Table 5.2. In addition, although the DNN that accepts focused

data was trained with data containing mostly homogeneous tissue, it was

able to generalize to the heterogeneities of the majority of breast tissue sur-

rounding Cysts #1 and #2. One possible reason for poorer performance with

Cyst #1 is the presence of bright reflectors in the channel data, which were not

included during training. Future work will include additional modeling of

heterogenous tissue. Nonetheless, the observed generalizations are promising

for translation to other organs of interest for the proposed DNN (e.g., kidney

calyces and ovarian follicles), as well as to other anatomical structures with

similar characteristics.

The fourth observation is that the <2.5% mean CV values reported in

Section 5.3.2 indicate stability and robustness when there is minimal to no

perturbations in the input over time. This minimal CV also demonstrates that

similar results were produced over the acquisition sequences. Stability and

robustness are desirable properties of DNNs (Papernot et al., 2016), which are

particularly necessary for biomedical imaging tasks, as imperceptibly small

perturbations to the input can often significantly alter the output.

Aside from the common limitations of pilot testing (including few in vivo

test cases and questions about generalizability to other cases), one limitation

observed from the presented results is that smaller cysts presented a greater

challenge than larger cysts. This observation is based on the worse DSC,
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contrast, and gCNR with smaller cysts compared to larger cysts in Fig. 5.5,

and the lower cyst detection ratio for smaller cysts compared to larger cysts

in Table 5.3. It is known that the DSC penalizes errors obtained with smaller

cysts more severely than errors obtained with larger cysts (Glocker et al., 2007).

While the lower DSCs with smaller cysts are consistent with DSCs achieved

with other segmentation approaches (Pons et al., 2016; Kumar et al., 2018),

the degraded contrast and gCNR with decreased cyst size might be linked

to the context-detail tradeoff inherent to deep learning. Prior work (Yuille

and Liu, 2018) demonstrated that CNNs rely on sufficient context to make

successful predictions. Linearly interpolating the data to a reduced grid size

of 256 x 128 pixels provides each neuron in the CNN with greater context as

each neuron sees more of the neighborhood of a particular pixel to make a

prediction. However, downsampled data has reduced detail, with the same 2

mm cyst now occupying fewer input pixels in the input to a given neuron. We

hypothesize that linearly downsampling to a larger grid size is one possible

solution toward addressing the poorer performance with smaller cysts.

The success of the presented results has implications for providing mul-

tiple (i.e., more than two) DNN outputs from a single network input. For

example, in addition to beamforming and segmentation, deep learning ul-

trasound image formation tasks have also been proposed for sound speed

estimation (Feigin, Freedman, and Anthony, 2018), speckle reduction (Hyun

et al., 2019a), reverberation noise suppression (Brickson, Hyun, and Dahl,

2018), and minimum-variance directionless response beamforming (Simson

et al., 2019), as well as to create ultrasound elastography images (Wu et al.,
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2018), CT-like ultrasound images (Vedula et al., 2017), B-mode images from

echogenecity maps (Tom and Sheet, 2018), and ultrasound images from 3D

spatial locations (Hu et al., 2017). We envisage the future use of parallel

networks that output any number of these or other mappings to provide a

one-step approach to obtain multimodal information, each originating from a

singular input of raw ultrasound data.

One example of a specific future application possibility from this per-

spective, which is also supported by the results presented in this work, is

high-frame rate decision support without requiring multiple different transmit

sequences to obtain multiple different output images. More specifically, the

parallel B-mode and segmentation information can possibly be extended to

include parallel B-mode, segmentation, elastography, sound speed estima-

tion, and CT-like ultrasound images. One could also envision periodically

interspersing the more accurate focused DNN results (compared in Figs. 5.8)

among the faster unfocused results to increase the confidence of system per-

formance. These possibilities open new avenues of research to explore the

benefits of producing multiple outputs from a single input for parallel clinical,

automated, and semi-automated decision making.

5.5 Conclusion

This work demonstrates a possible use of DNNs to create ultrasound images

and cyst segmentation results directly from raw single plane wave channel

data. This approach is a promising alternative to traditional DAS beamforming

followed by segmentation. A novel DNN architecture was developed and
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trained with Field II simulated data containing anechoic cysts insonified

by single plane waves. The feature representations learned by the DNN

from simulated data were successfully transferred to real phantom and in

vivo data. This success has future implications for task-specific ultrasound-

based approaches to emphasize or de-emphasize structures of interest and

for producing more than two output image types from a single input image

of raw IQ channel data, opening up new possibilities for ultrasound-based

clinical, interventional, automated, and semi-automated decision making.
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Chapter 6

Radar Signal Enhancement using
Deep Learning

In this chapter, we demonstrate how deep learning can be used to improve

signal quality in radar, specifically a type of radar called ultra-wideband

(UWB) radar, by denoising the raw received signal in each sensor element

prior to beamforming. Modern UWB radar systems transmit a wide range of

frequencies, spanning hundreds of MHz to a few GHz, to achieve improved

penetration depth and narrower pulse width. A common challenge faced is

the presence of other commercial transmission equipment operating in the

same band, causing radio frequency interference (RFI). To overcome this RFI

issue, radar systems have been developed to either avoid operating in bands

with RFI or suppress the RFI after reception. In this work, we examine both

families of operation and demonstrate that 1D convolutional neural networks

based on the UNet architecture can provide powerful signal enhancement

capabilities on raw UWB radar data. The model is trained purely on simulated

data and translated to real UWB data, achieving impressive results compared

to traditional sparse-recovery baseline algorithms. The work in this chapter
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has been accepted for publication in Nair et al., 2021.

6.1 Introduction

Ultra-wideband (UWB) radar systems have gained significant traction due to

their superior penetration capability and improved imaging resolution (Taylor,

2012). The U.S. Army, for example, has been developing UWB radar systems

for detection of difficult targets in foliage penetration (Nguyen, Kapoor, and

Sichina, 1997), ground penetration (Nguyen et al., 1998), and sensing-through-

the-wall (Nguyen, Ressler, and Sichina, 2008). For superior penetration ability,

these systems must operate in the low-frequency spectrum that spans from

under 100 MHz to several GHz.

As well as requiring low frequency operation for penetration, synthetic

aperture radar (SAR) obtains high resolution images by transmitting pulses

with UWB — the wider the pulse bandwidth in frequency, the narrower

the pulse in time, improving spatial resolution (Taylor, 2012; Carin et al.,

1999; Soumekh, 1999). However, the transmission of UWB pulses is often

complicated by the presence of other communication equipment sharing the

same spectrum. UWB radar signals span a wide spectrum that also includes

radio, TV, cellular phones, and other communication systems, each of which

inject radio frequency interference (RFI) into the data.

This leaves the radar system with two approaches to solve the prob-

lem. The first is to continue to transmit in those bands and denoise the

RFI-contaminated radar data after reception (Miller, Potter, and McCorkle,

1997; Nguyen and Tran, 2015). The second is to employ stepped-frequency
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radars (SFRs) (Nguyen and Park, 2016; al., 2017a; al., 2017b) with frequency

hopping capabilities. SRFs allow for the transmission of UWB pulses while

still maintaining precise control over the transmitted spectrum, utilizing fre-

quency synthesizers that can be configured to avoid transmitting energy in

prohibited/interference frequency bands. Unfortunately, notches in the fre-

quency domain caused by this transmission method create strong sidelobes

(or ringing artifacts) in the received time domain data, which requires further

signal processing to ameliorate.

One could argue that the second approach (spectral gap extrapolation)

partially subsumes the first approach (RFI suppression) — as one can always

suppress frequency components where there is heavy RFI by setting those

Fourier coefficients to zero and then proceeding to extrapolate the resultant

spectral gaps. However, this line of thinking has two major problems. First,

it is assumes that the operating spectrum affected by RFI is known exactly,

or else unnecessary performance degradation will be introduced. Second,

there are often better performing pre-processing methods than notching RFI-

affected radar data. Thus, it is better to deal with each scenario separately.

Sparsity-based signal processing methods have achieved great success

in both suppressing RFI (Nguyen and Tran, 2016; Song et al., 2018) and

performing spectral gap extrapolation (Cetin and Moses, 2005; Nguyen and

Do, 2012; Nguyen, Tran, and Do, 2014) to combat frequency notches. However,

they still struggle to distinguish neighboring and/or weak targets at fine

resolution and performance drops precipitously when the RFI bands (or

notches) are wider or affect more frequencies.

178



Deep neural networks (DNNs), and deep convolutional neural networks

(CNNs) in particular, have recently become immensely popular for a wide

variety of traditional signal processing tasks like image segmentation (Ron-

neberger, Fischer, and Brox, 2015), denoising (Zhang et al., 2017), and point

source localization in the presence of noise (Allman, Reiter, and Bell, 2018), dis-

playing extremely impressive results. In the radar domain, DNNs have been

successfully used for target detection and classification (Brodeski, Bilik, and

Giryes, 2019), antenna selection in cognitive radar (Elbir, Mishra, and Eldar,

2019), interference mitigation (Mun, Kim, and Lee, 2018) and vehicle detection

(Major, 2019) in automotive applications, and activity recognition (Gurbuz and

Amin, 2019; Jokanovic, Amin, and Ahmad, 2016; Seyfioğlu, Özbayoğlu, and

Gürbüz, 2018) applications in indoor monitoring. For SAR specifically, image

despeckling (Zhang et al., 2020), phase error correction (Mason, Yonel, and

Yazici, 2017), change detection (Gong et al., 2015), ship detection (Deng et al.,

2019) and discrimination (Schwegmann et al., 2016), and image reconstruction

(Yonel, Mason, and Yazıcı, 2017; Thammakhoune and Yavuz, 2020) are just

some of the problems where deep learning has helped.

Past work from our group (Tran, Tran, and Nguyen, 2018; Nguyen, Tran,

and Tran, 2019) investigated the use of a specific kind of deep neural network,

called a generative adversarial network (GAN) (Goodfellow et al., 2014), to

perform spectral gap extrapolation and obtained promising results. In this

work, we expand upon the prior work in three important ways. First, in

addition to spectral gap extrapolation, we also demonstrate successful RFI

suppression using a deep network. Second, we demonstrate state-of-the-art
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results on real UWB SAR data. Third, we demonstrate this success via a

simple 1D CNN based on the UNet (Ronneberger, Fischer, and Brox, 2015)

architecture, which is easier and more stable to train than a GAN.

6.2 Method

The goal of this work is to successfully recover clean raw UWB SAR data, x,

from noisy observations, y, observed by sensors. Specifically, we consider

three kinds of noise: (i) RFI, where the majority of the energy of the interfering

signal is located in a few frequency bands; (ii) random spectral gaps, where

several randomly chosen narrow spectral bands are missing; and (iii) a block

spectral gap, where a single contiguous segment of the operating spectrum is

missing. We investigate the efficacy of using 1D UNet (Ronneberger, Fischer,

and Brox, 2015) CNNs to remove each kind of noise – a different 1D UNet is

trained for each noise type – and compare it with competitive baselines. The

UNet is trained end-to-end (i.e., all layers are learned simultaneously).

6.2.1 Ground-truth Dataset for Network Training

To create the clean training data, a sparsity-based linear model widely em-

ployed in compressed sensing SAR (Nguyen, Tran, and Do, 2014) was used.

The scene of interest was modeled as a sparse collection of independent point

scatterers randomly distributed in space. As the model is linear, it is assumed

that the scatterers do not interact with each other, and the final received sig-

nal is simply the sum of reflections from each of the individual scatterers.
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Mathematically, the model can be expressed as

x(t) = ∑
i

r(zi)p(t; zi) (6.1)

where x(t) is the received raw SAR signal, r(zi) is the reflectivity of a point

scatterer located at zi, and p(t; zi) represents the point spread function of a

scatterer with unit reflectivity located at zi.

To implement (6.1), the template pulse p(t; 0) is linearly shifted to represent

the response from various locations p(t; z), and the shifted pulses are stored as

columns of a dictionary P. Simulating data comes down to sampling possible

sparse code coefficients, r, to combine with the dictionary to yield the received

raw data

x = Pr. (6.2)

An advantage of this modeling approach over Nguyen, Tran, and Tran,

2019 is that we operate on the received 1D data from each aperture element

individually, i.e., the geometry of the entire aperture does not matter — a

neural network trained on one geometry can generalize to another. The actual

image creation (slow-time processing) is accomplished later.

The template pulse is sampled at 37.48 GHz and contains most of its energy,

as measured by the -12 dB points, between 380 and 2080 MHz. We set the

signal dimension (i.e., the lengths of x and r) to a fixed value of 1024 samples.

A total of 1,000,000 possible sparse codes were sampled from realistic

sparse code distributions mimicking coefficients obtained in side-looking SAR

to construct the ground-truth training dataset. An additional 12,500 samples

(of course, with no intersection with the training set) were generated and
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reserved as a clean simulated test set. Lastly, 3,600 samples corresponding to

two real data acquisitions of 1,800 samples each from circular-sensing SAR

were reserved as a clean real test set. Each of these were then corrupted with

noise to generate paired clean+noisy data, as detailed in Section 6.2.2.

6.2.2 Noise Modeling

In this work, we focus on three kinds of noise – RFI, random spectral gaps,

and a block spectral gap. Below, we provide details on each and elaborate on

their modeling.

6.2.2.1 Radio Frequency Interference

The scenario of RFI occurs when an interfering source transmits most of its

energy in a small subset of the spectrum of the UWB SAR. Mathematically,

this can be modeled as an additive noise:

yint = x + i (6.3)

where i is the RFI signal and yint represents the observed noisy data.

The RFI, i, used in this work is obtained from real RFI data recorded over

a long time horizon. We split the recorded RFI signal into two parts — we

use samples from the first half to generate training data and samples from

the second half to generate test data. For each set, we mix a randomly chosen

clean signal and RFI samples at various signal-to-noise ratios (SNRs) randomly

chosen from -15, -10, -5, 0, 5, and 10 dB.
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6.2.2.2 Random Spectral Gaps

The scenario of random spectral gaps occurs when several narrowband sec-

tions of the radar spectrum might be restricted and off-limits to data trans-

mission. Mathematically, this can be modeled as a masking operation in the

Fourier domain:

FFT(yrg) = mrg ⊙ FFT(x) (6.4)

where mrg is a binary mask. The total signal bandwidth is divided into 10

narrow spectral bands and depending on the missing percentage, several

bands are masked to zero, while the mask affecting the remaining coefficients

is one. Here, yrg represents the observed noisy data suffering from random

spectral gaps.

Noisy data corresponding to spectral missing percentages of 50%, 60%,

70%, 80%, and 90% were generated for use in training and testing by randomly

choosing and eliminating the chosen percentage of spectral coefficients from

the ground-truth data.

6.2.2.3 Block Spectral Gap

The scenario of a centered block spectral gap occurs as the worst-case scenario

when a contiguous section of the radar spectrum centered on the middle

of the transmitted template pulse’s bandwidth (where most of the pulse’s

energy is located) is marked as restricted and not allowed for transmission.

Mathematically, this too can be modeled as a masking operation in the Fourier

domain:

FFT(ybg) = mbg ⊙ FFT(x) (6.5)
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where mbg is a binary mask of zeros and ones determining which spectral

coefficients are transmitted and which are not available. Unlike mrg where

the zeros are chosen to lie randomly in several narrow spectral gaps, in mbg

the vanishing region is located contiguously around the center frequency of

the pulse. We use ybg to represent the observed noisy data suffering from the

centered block spectral gap.

Noisy data corresponding to spectral missing percentages of 50%, 60%,

70%, 80%, and 90% were generated for use in training and testing by setting

to zero the chosen percentage of spectral coefficients of the clean data.

6.2.3 Neural Network Details

The network architecture used in this study is an adaptation of the popular

UNet (Ronneberger, Fischer, and Brox, 2015) architecture adapted to the 1D

signal processing scenario. A visualization of its structure with the number

of filters in each layer is presented in Fig. 6.1. It has a fully convolutional

encoder-decoder type architecture, with a total of 20 layers – 10 layers each in

the encoder and decoder. Convolutional kernel size is set to 5, with encoder

layers having a stride of 2 to downsample the feature map in each layer (except

for the input layer, which has a stride of 1). The decoder layers all have a

stride of 2 to upsample the feature map at each layer. Skip connections are

employed to connect encoder and decoder layers at the same level. Each

layer uses BatchNorm (BN) (Ioffe and Szegedy, 2015) and LeakyReLU as

its nonlinearity components (except for the output layer, which has neither).

Sub-pixel convolutions, also known as PixelShuffle (Odena, Dumoulin, and
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Figure 6.1: Proposed 1D UNet for UWB signal denoising. Noisy input data degraded
by one of RFI, random spectral gaps, or a centered block spectral gap is denoised by
the network trained on that noise type to yield an estimate of the clean target signal.

Olah, 2016; Shi et al., 2016), are used in the decoder as they seem to work

better than transposed convolutions and they reduce recovery artifacts. The

total number of trainable parameters in the network is 7,182,209.

A different network was trained for each noise type, but in each case, a

single network was trained to denoise all noise conditions for the chosen noise

type. All networks were trained with L1Loss, or mean absolute error, as the

loss criterion, using the Adam optimizer (Kingma and Ba, 2014) with a batch

size of 64 and a learning rate of 0.0001.
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6.2.4 Baselines

For RFI suppression, we implement a simple but effective frequency masking

baseline. As most of the energy of the bandlimited RFI signal was observed to

be between 256 and 476 MHz, the Fourier coefficients of the noisy input data

between those limits were set to zero to yield a baseline enhanced signal with

which to compare our neural network approach.

For spectral gap extrapolation on signals with random spectral gaps, we

implement a sparse coding baseline via Orthogonal Matching Pursuit (OMP)

(Tropp and Gilbert, 2007) (or any of its variants such as Varadarajan, Khu-

danpur, and Tran, 2011), following the approach proposed in Nguyen and

Do, 2012; Nguyen, Tran, and Do, 2014. Similar to the way the dictionary P in

(6.2) was constructed, a dictionary P̃ was constructed by linearly shifting a

corrupted transmitted pulse (possessing the same random spectral gap struc-

ture as the noisy data). Every random spectral gap structure encountered

required its own tailored dictionary. Sparse coding was performed on the

noisy input data using this corrupted dictionary. Assuming robust sparse

codes, we obtained the recovered signal from the clean dictionary P. The

number of sparse coefficients in the OMP algorithm, K, was tuned on the test

data itself. While this is not possible in practice, it does yield the best possible

performance for the baseline algorithm.

For spectral gap extraction on signals with a centered contiguous gap, a

sparse coding baseline very similar to the one implemented for the random

spectral gaps was used. Here, since the gap structure remains the same

for all data at a specific missing percentage, the corrupted dictionary with
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linearly shifted corrupted template pulses P could be shared. Sparse coding

was performed on the noisy input data using this corrupted dictionary, and

the sparse code thus obtained was combined with the clean dictionary P

to yield the baseline enhanced signal. Again, we manually tune the OMP

hyperparameter, K, tuned on the test data itself to obtain the best performance

for comparison.

6.2.5 Evaluation

Quantitative evaluation of denoising performance is carried out with the

general purpose SNR metric reported in the dB scale. It was measured as

SNR(x, z) = 20 log10
||x||2

||x − z||2
(6.6)

where x is the target clean signal, z is the signal being compared to it, and ||.||2

is the ℓ2 norm.

6.3 Experiments

6.3.1 Radio Frequency Interference

Fig. 6.2 shows quantitative comparisons between the output SNR (in dB)

of the UNet-based approach and the baseline approach that sets the Fourier

coefficients affected strongly by RFI to zero for various input SNR values. It is

observed that the UNet approach consistently outperforms the baseline on

both the simulated and real test data for all input SNR values, delivering an

average SNR gain (averaged over all input SNR values) of 25.5 and 21.87 dB

on simulated and real data, respectively. In contrast, the baseline only yields
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Figure 6.2: Simulated and real RFI affected data are enhanced by the baseline and
the UNet. Enhancement performance at different noise levels is studied by plotting
output SNR as a function of input SNR for the baseline enhanced data and the UNet
enhanced data.

an average simulated and real SNR gain of 7.1 and 7.0 dB, respectively.

To visualize these results, Fig. 6.3 shows (from top-left to bottom-right) (a)

clean target data, (b) noisy input data corrupted by RFI, (c) baseline enhanced

output data, and (d) enhanced output data obtained from the UNet. All

images are plotted with a dynamic range of 40 dB. The specific example

displayed here is the real test data in the most challenging scenario when RFI

is very strong (input SNR is -15dB). As a result, the target structure is barely

visible in the noisy input data shown in Fig. 6.3 (b). The baseline algorithm

enhances the image slightly, but the UNet does significantly better, efficiently

exploiting the structure in the RFI signal and suppressing it.
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Figure 6.3: Visualization of real data denoising under challenging RFI noise condi-
tions. (a) is the clean target data, (b) the noisy data suffering from RFI with an SNR
of -15 dB, (c) the enhanced output from the baseline method, and (d) the enhanced
output from the UNet trained to tackle RFI.

Figure 6.4: A single representative aperture element is chosen from Fig. 6.3 and
the radar waveforms corresponding to clean, noisy, baseline enhanced, and UNet
enhanced data are plotted for RFI noise in (a) with the corresponding magnitude
spectra plotted in (b).
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Figure 6.5: Visualization of real data denoising under milder RFI noise conditions. (a)
is the clean target data, (b) the noisy data suffering from RFI with an SNR of 0 dB, (c)
the enhanced output from the baseline method, and (d) the enhanced output from
the UNet trained to tackle RFI.

Figure 6.6: A single representative aperture element is chosen from Fig. 6.5 and
the radar waveforms corresponding to clean, noisy, baseline enhanced, and UNet
enhanced data are plotted for RFI noise in (a) with the corresponding magnitude
spectra plotted in (b).
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We study the enhancement in more detail by plotting the 1D radar wave-

forms received by a single representative aperture element from Fig. 6.3 in Fig.

6.4 (a). It is clear here too that the UNet does a better job suppressing the RFI

and recovering the shape of the target pulse. This is confirmed again when

examining the corresponding magnitude spectra in Fig. 6.4 (b).

Figs. 6.5 and 6.6 contain similar RFI denoising results for the second real

dataset under milder noise.

6.3.2 Random Spectral Gaps

Fig. 6.7 plots the SNRs (in dB) versus the missing spectrum percentage for

noisy input affected by random spectral gaps, baseline enhanced output,

and UNet enhanced output, on both simulated and real test data. The UNet

approach consistently performs as well as or better than the baseline on both

simulated and real test data for all input SNR values, delivering an average

SNR gain (averaged over all input SNR values) of 22.75 and 10.19 dB on

simulated and real data, respectively. In contrast, the baseline only yields an

average simulated and real SNR gain of 10.40 and 6.76 dB, respectively.

The network output SNR here on real data is lower than the case of RFI

because we train our networks on simulated data and there is a domain

shift between the training data and test data that negatively impacts network

performance, which is especially impactful when the noise is signal-dependent

like random spectral gaps. Thus, it is important to make our training data as

representative of real test data as possible. This is the major current bottleneck

to further improvements within this framework.
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Figure 6.7: Simulated and real data suffering from random spectral gaps are enhanced
by the baseline and the UNet. Enhancement performance at different noise levels is
studied by plotting output SNR as a function of missing spectrum percentage for the
input noisy data, the baseline enhanced data, and the UNet enhanced data.

Fig. 6.8 shows (from top-left to bottom-right) (a) clean target data, (b) noisy

input data corrupted by random spectral gaps setting 90% of the spectrum

to zero, (c) enhanced output data obtained from the OMP baseline, and (d)

enhanced output data obtained from the UNet. The UNet does well in recov-

ering the target clean data, outperforming the baseline in this severe noise

condition and recovering the target structures. The radar signals recorded by

a single representative aperture and its magnitude spectra can be observed in

Fig. 6.9 (a) and (b), respectively.

Figs. 6.10 and 6.11 contain similar random spectral gap extrapolation

results for the second real dataset under milder noise.
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Figure 6.8: Visualization of real data denoising under challenging random spectral
gaps noise conditions. (a) is the clean target data, (b) the noisy data suffering from
random spectral gaps with a spectral missing percentage of 90%, (c) the enhanced
output from the baseline method, and (d) the enhanced output from the UNet trained
to tackle random spectral gaps.

Figure 6.9: A single representative aperture element is chosen from Fig. 6.8 and the
radar waveforms corresponding to clean, noisy, baseline enhanced, and UNet en-
hanced data are plotted for random spectral gaps noise in (a) with the corresponding
magnitude spectra plotted in (b).
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Figure 6.10: Visualization of real data denoising under milder random spectral gaps
noise conditions. (a) is the clean target data, (b) the noisy data suffering from random
spectral gaps with a spectral missing percentage of 50%, (c) the enhanced output from
the baseline method, and (d) the enhanced output from the UNet trained to tackle
random spectral gaps.

Figure 6.11: A single representative aperture element is chosen from Fig. 6.10 and
the radar waveforms corresponding to clean, noisy, baseline enhanced, and UNet en-
hanced data are plotted for random spectral gaps noise in (a) with the corresponding
magnitude spectra plotted in (b).
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Figure 6.12: Simulated and real data suffering from a centered block spectral gap are
enhanced by the baseline and the UNet. Enhancement performance at different noise
levels is studied by plotting output SNR as a function of missing spectrum percentage
for the input noisy data, the baseline enhanced data, and the UNet enhanced data.

6.3.3 Centered Block Spectral Gap

Fig. 6.12 plots SNR (in dB) versus missing spectrum percentage for noisy input

data affected by a centered block spectral gap, baseline enhanced output, and

UNet enhanced output, on both simulated and real test data. The UNet-based

approach outperforms the baseline OMP approach on all missing percentages

on both simulated and real data, yielding a SNR gain of 20.31 and 10.37 dB,

respectively, compared to 7.60 and 3.51 dB, respectively. The network output

SNR here on real data though is lower than the case of RFI due to the same

data domain shift as elaborated on in Section 6.3.2.

Fig. 6.13 shows (from top-left to bottom-right) (a) clean target data, (b)
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Figure 6.13: Visualization of real data denoising under challenging centered spectral
gap noise conditions. (a) is the clean target data, (b) the noisy data suffering from
a centered block spectral gap with a spectral missing percentage of 90%, (c) the
enhanced output from the baseline method, and (d) the enhanced output from the
UNet trained to tackle the centered block spectral gap.

Figure 6.14: A single representative aperture element is chosen from Fig. 6.13 and
the radar waveforms corresponding to clean, noisy, baseline enhanced, and UNet
enhanced data are plotted for centered spectral gap noise in (a) with the corresponding
magnitude spectra plotted in (b).
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Figure 6.15: Visualization of real data denoising under milder centered spectral
gap noise conditions. (a) is the clean target data, (b) the noisy data suffering from
a centered block spectral gap with a spectral missing percentage of 50%, (c) the
enhanced output from the baseline method, and (d) the enhanced output from the
UNet trained to tackle the centered block spectral gap.

Figure 6.16: A single representative aperture element is chosen from Fig. 6.15 and
the radar waveforms corresponding to clean, noisy, baseline enhanced, and UNet
enhanced data are plotted for centered spectral gap noise in (a) with the corresponding
magnitude spectra plotted in (b).
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noisy input data corrupted by a centered block spectral gap setting 90%

of the spectrum to zero, (c) enhanced output data obtained from the OMP

baseline, and (d) enhanced output data obtained from the UNet. The UNet

does well, largely eliminating ringing artifacts and recovering target structural

information better than OMP. This observation is confirmed by studying

closely the radar signals recorded by a single representative aperture and its

magnitude spectra in Fig. 6.14 (a) and (b), respectively.

Figs. 6.15 and 6.16 contain similar block spectral gap extrapolation results

for the second real dataset under milder noise.

6.4 Conclusion

In this work, we demonstrated the efficacy of using 1D UNet networks to

address three types of noise widely encountered by a UWB SAR – bandlimited

RFI, random spectral gaps, and a contiguous block spectral gap, with the

networks – one trained for each noise type – achieving good results even

in challenging scenarios and displaying the recovery robustness at multiple

noise levels. We trained our model purely on simulated data generated by

a simple sparse linear model and demonstrated the network’s remarkable

generalization to real test data. Since our approach operates on individual

data apertures, one key benefit is that the test sensor geometry is no longer

required to match the training sensor geometry. In other words, our approach

is less scene-dependent. In fact, we trained our networks using syntheti-

cally generated data on a side-looking geometry and successfully tested our

networks on raw SAR data collected from a circular 360◦-sensing geometry.
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Chapter 7

Summary and Future Directions

This dissertation examines a number of problems where the exciting re-

cent progress made by machine learning can be brought to bear to improve

beamforming in the domains of audio, ultrasound, and radar. This includes

progress in using machine learning to enhance data prior to beamforming, to

replace the beamforming step itself, and to enhance post-beamformed data.

Starting off in Chapter 2, we implemented audiovisual zooming by draw-

ing inspiration from linear discriminant analysis in machine learning to design

a novel beamformer that extended the concept of the camera’s FOV to enhance

audio recording. We presented a method that estimates the sound spectral

matrices which accounts for the desired sound signals within the FOV and

those outside of the FOV. The estimated spectral matrices allow us to enhance

sound coming within the FOV by solving a generalized eigenvalue problem.

Our method requires no analysis of captured video frames. It can enhance

however many sound sources within the FOV, and the captured imagery is in

tandem with the resulting sound signal.

Next, in Chapter 3, we presented a novel deep learning pipeline using
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cascaded DNNs in both the time and time-frequency domains to enhance

speech suffering from clipping, codec distortions, and gaps, together. The

cascaded pipeline developed nears the performance ceiling set by the most

challenging single distortion of gaps in speech while simultaneously allowing

the function of each component network to remain interpretable.

Moving to ultrasound, in Chapter 4 we re-examined the lag summation

step of the short-lag spatial coherence algorithm to improve performance.

While the original short-lag spatial coherence (SLSC) imaging algorithm does

not consider the content of the images formed at different lags before summing

them, our proposed method exploits tissue texture differences in SLSC images

created with various short lag values through both weighted summation of

individual coherence images (i.e., M-weighting) and the application of robust

principal component analysis, demonstrating increased contrast, signal-to-

noise ratio, and contrast-to-noise ratio.

Next, in Chapter 5 we demonstrated a deep neural network approach

to creating ultrasound images and cyst segmentation results directly in one

step from raw single plane wave channel data. This approach holds promise

to replace the classical beamform-then-segment approach followed by most

imaging pipelines. In addition, our network was trained only with Field II

simulated data containing anechoic cysts insonified by single plane waves but

generalized to real phantom and in vivo data.

Lastly, we move to the radar domain in Chapter 6 where we demonstrated

the efficacy of using 1D UNet networks to address bandlimited radio fre-

quency interference, random spectral gaps, and contiguous block spectral
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gaps. A separate network was trained for each noise type, and the networks

were performant even in challenging scenarios, displaying recovery robust-

ness at multiple noise levels. As our approach operates on individual data

apertures, the test sensor geometry is no longer required to match the training

sensor geometry making our approach less scene-dependent, a fact demon-

strated by training our networks using synthetically generated data on a

side-looking geometry and successfully testing our networks on raw synthetic

aperture radar (SAR) data collected from a circular 360◦-sensing geometry.

7.1 Future Directions

1. Extending the audiovisual zooming algorithm to reverberant environ-

ments: As our audiovisual zooming algorithm currently stands, it per-

forms poorly in highly reverberant environments. This is because in

such environments, a sound source outside of the field of view (FOV)

may emit sound waves that arrive to the microphone array from within

the desired FOV through reflections. Our audiovisual zooming method

is unable to distinguish between these reflected signals and the direct

path signals from targets actually in the field of view that we desire

to enhance. Future work will investigate addressing this limitation by

one or more of dereverberating the signal (Zhang et al., 2020), relaxing

the strong coupling between estimation of the spectral matrices and the

camera geometry and instead using the visual content (Yu et al., 2020),

or estimating the room acoustics by analyzing captured video frames

to understand the environment geometry and acoustic properties (Li,
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Langlois, and Zheng, 2018; Gao et al., 2020).

2. Studying complex networks for speech enhancement: Recent advances

in speech enhancement research have enabled deep neural networks to

work directly with the complex spectrograms (Hu et al., 2020; Isik et al.,

2020). This allows us to no longer require operating in the time domain

in order to enhance phase information. Comparing the efficacy of our

proposed cascaded pipeline with a single complex network architecture

is a promising future direction.

3. Task-specific deep ultrasound beamformers: The success achieved by

our deep learning beamformer holds promise for future task-specific

ultrasound-based approaches to emphasize or deemphasize other struc-

tures of interest apart from anechoic cysts. In addition, though we are

currently producing two outputs – a B-mode image and a segmenta-

tion – we can generalize the architecture to produce more than two

output image types (e.g., adding a third simultaneous output of a sound

speed image, as estimated with deep learning in Feigin, Freedman, and

Anthony, 2019) from a single input image of raw IQ channel data, open-

ing up new possibilities for ultrasound-based clinical, interventional,

automated, and semi-automated decision making.

4. Incorporating scene geometry in deep learning for SAR: While we

achieved promising results operating on single aperture elements, better

modeling the geometry of raw SAR data for arbitrary sensor geometries

is key to better integrating deep learning in different parts of the SAR

imaging pipeline together. While we have achieved some progress in
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doing so for fixed (linear) sensor geometries, doing so for arbitrary

geometries is still an open question.
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