
A CASE STUDY IN PHYSICAL-LAYER
STEGANOGRAPHY APPLIED TO

MULTICARRIER TRANSMISSIONS

by

Daniel William Chew

A dissertation submitted to Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Engineering

Baltimore, Maryland

July, 2022

© 2022 Daniel William Chew

All rights reserved



Abstract

Covert communications can be a force for good, such as providing a means of

message authentication to prevent malicious actors from spoofing networks. This

dissertation explores the design of a covert signal to be hidden inside the bandwidth

of an Orthogonal Frequency Division Multiplexing (OFDM) signal. In order to

make detection by unintended observers as difficult as possible, the covert signal

operates as interference inside the OFDM signal and is set to a high Signal to In-

terference Ratio (SIR). Given the high SIR, the OFDM signal must be cancelled in

order to recover the covert signal. The detectability of the covert signal is tested

using multiple detectors with and without cancellation. Among the detectors used

is a Convolutional Neural Network (CNN) designed for image classification that

has been repurposed through transfer learning to detect signal activity in noise

and interference. The CNN detector demonstrates resilience in the presence of

narrowband interference. The cancellation algorithm is enhanced with an estimate

of OFDM windowing as applied at the transmitter, which is an often-overlooked

parameter in cancellation applications. The enhanced cancellation-algorithm im-

proves the cancellation of OFDM signals by 5.3 dB in an over-the-air test. The

enhanced cancellation-algorithm also improves the Packet Error Rate of OFDM

signals and improves the recovery of the covert signal. The improved recovery

has direct application to Power-Domain Non-orthogonal Multiple Access and Rate-

Splitting Multiple Access, which both rely on successive interference cancellation.

Lastly, to frustrate any efforts to analyze the covert waveform, the covert signal
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is augmented with an adversarial waveform designed to exploit weaknesses in

CNNs used for modulation classification. The classification system suffers from

uncertainty in the bandwidth estimate of the covert signal. The system will likely

err on the side of making the bandwidth wider than necessary. It is demonstrated

that a wider bandwidth makes the attack more successful, as opposed to other

estimation errors which prior literature has shown to weaken the effectiveness of

these attacks.
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Chapter 1

Introduction

1.1 Covert Communications as a Force for Good

The term covert communications may elicit assumptions of nefarious purposes. It is

true that covert communications can be used for exfiltration and other exploits; but

these covert communications can also be a force for good. Two example applications

for this type of signal are as a means of message authentication to prevent malicious

actors from spoofing networks [43], and to provide metadata and emergency alerts

[32]. As an example, consider the consequences of an eavesdropper intercepting a

signal from a medical device [42]. Just the act of intercepting the signal may allow

the eavesdropper to know that the patient has such a device and then extrapolate

private information. Intercepting the signal may also allow the eavesdropper to

track the patient. Encryption will not mitigate either of those risks. In this case,

hiding such signals helps protect the patient’s privacy and security. Low probability

of detection (LPD) signals are useful to reduce the probability of a wireless signal

being exploited, as they remove the ability of a hacker to intercept a signal in the

first place. Promoting strong privacy and security is the goal of this research. In

order to accomplish that, the research described herein focuses on advancing the

state-of-the-art in covert communications. Physical-layer steganography represents

the cutting edge of covert communications waveforms. Therefore this research
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shall be a thorough case study into the development of a covert signal by which

physical-layer steganography is applied to multicarrier transmissions.

1.2 Low Probability of Detection Signals

The concept of LPD communications can be explained as a wireless link between

“Alice” and “Bob,” where the two characters want to exclude “Eve the Eavesdrop-

per” from detecting their communications signal. This scenario is illustrated in Fig.

1.1. When Alice transmits to Bob, her transmitter emits a signal. The goal is to make

the waveform in such a way as to make Eve’s detection of the signal improbable.

However, it is also important that Alice’s signal be recoverable by Bob. One way of

achieving this is for Alice and Bob to share a secret such as a spreading code. Bob

knows the spreading code, and can de-spread Alice’s signal. Eve cannot de-spread

Alice’s signal and therefore must employ a wider bandwidth than does Bob. Alice

and Bob hope this makes Eve employ a receiver with a wider bandwidth than Bob’s

receiver, making Eve’s eavesdropping less probable.

Among the earliest publications explicitly to address such covert LPD wave-

forms are [36], [39] and [34]. In reference [36], the authors analyze the capability of

a radiometer1 to detect a spread spectrum signal, and it is established that noise

uncertainty reduces the effectiveness of this detection method, especially against

spread spectrum signals. LPD waveforms are defined in [39] as effecting a low

detection probability by way of having a Signal-to-Noise Ratio (SNR) at an inter-

cepting receiver that is lower than the intercepting receiver’s Minimum Detectable

Signal (MDS).

The research in [34] compares the probability of detection of the LPD waveforms

to that of more conventional non-LPD waveforms, identifying common detection

1Also known as an energy detector

2



Figure 1.1: Alice, Bob, and Eve

techniques such as energy detectors, carrier regeneration, clock extraction, and

exploits against unintended emissions from the transmitter. The latter, unintended

emissions from the transmitter, is specific to flaws in the design of the transmitter.

Carrier regeneration and clock extraction are both the results of mixing the signal

with itself. For example, squaring a Binary Phase Shift Keying (BPSK) signal will

result in a spike in the spectrum of the resulting product located at twice the carrier

frequency.

1.3 Physical-Layer Steganography

The advent of ubiquitous wireless systems provides new opportunities in which to

camouflage covert communications. The covert signal and the incumbent transmit

concurrently and in the same bandwidth. The covert signal is thus conveyed as

perturbations in the incumbent waveform. The covert signal described in this

work can be called physical-layer steganography because it is hiding one waveform
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inside another waveform. The concept is more generally referred to as “network

steganography,” as defined in [25], and the idea can be applied to any layer of the

protocol stack of an incumbent signal.

Examples of steganography applied to the higher layers involve manipulating

subsets of the payload bits. Another example of steganography applied to the

Medium Access Layer involves modifying the timing of shared medium access

in such a way as to convey a pulse-width modulated message [23]. The trouble

with these methods is that they are of low data rate. Steganography applied to the

physical layer offers a much higher data rate [13].

Applying steganography at the physical layer presents an advantage over the

traditional LPD signal relying on noise at Eve’s receiver. Being inside the incumbent

offers significant concealment [13]. The features the traditional signal detectors

rely upon, such as energy, are now extracted from the incumbent signal much

more so than the covert signal. That the incumbent signal is the primary source

of energy within the bandwidth will frustrate energy detection techniques. The

feature-extraction techniques such as the carrier regeneration method in [34] will

also expose the features of the incumbent signal more so than the covert signal.

1.4 Creating a Covert Signal using Physical-Layer Steganog-
raphy

This dissertation explores covert communications where the covert signal is hidden

inside the bandwidth of another transmission, the latter signal being termed the

incumbent2. It is intended that the incumbent be an Orthogonal Frequency Division

2In terms common to steganography, the incumbent signal would be called the cover signal
and the signal hidden inside of it would be the covert signal. The problem with that terminology
is that cover and covert are only one letter apart. This work utilizes terminology common to the
Cognitive Radio community where the term incumbent implies higher priority and/or ownership of
the spectrum being used.
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Multiplexed (OFDM) signal. OFDM is a multicarrier modulation scheme found

in many signals used today, including but not limited to 4G cellular, 5G cellular,

and IEEE 802.11 Wireless Local Area Networks (WLANs). OFDM signals were

chosen as the target incumbent signal because they are ubiquitous and therefore

offer ample opportunity for camouflage.

The intention is for this covert signal to provide a “sizeable throughput.” There-

fore, it is insufficient to simply lower the data rate of the covert link in order to

recover the signal and reduce the impact on the OFDM signal. Novel means of

signal recovery were explored. The throughput achieved was compared to the state

of the art in the literature. This covert communications technique must also be

feasible in a realistic setting; therefore experiments with over-the-air (OTA) data

were performed.

1.5 Vision and Approach

There were several goals for the covert signal developed in this work:

• It is the responsibility of the covert signal to mask itself in the incumbent, no

cooperation from the incumbent can be expected,

• The interference from the covert signal must not inflict a noticeable reduction

in the throughput of the incumbent signal or else the covert signal may be

exposed,

• The covert receiver does not have a copy of the incumbent signal in advance,

• The covert link must provide a sizeable throughput, and

• The covert transmitter must embed resistance in the covert signal to classifica-

tion and reverse engineering in order to frustrate any exploitation efforts in

the event of signal detection.
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This list of goals guided the development of the covert waveform. For example,

to reduce the detectability of the covert signal, and to reduce the impact of the covert

signal on the incumbent, the covert signal operates at a high Signal-to-Interference

Ratio (SIR). At a high SIR, the recovery of the covert signal required the development

of novel cancellation methods in order to maintain a high throughput. Given

that the OFDM incumbent does not cooperate with the covert signal, the covert

receiver must model and estimate the OFDM incumbent sufficiently for cancellation

purposes. The following sections detail the approach taken in developing the covert

waveform and quantitatively measuring its performance.

1.5.1 Covert Communications through Imperfect Cancellation

Signal detection methods in academic literature were briefly discussed in section

1.2. The eavesdropper may employ more sophisticated methods, such as extracting

cyclostationary features from the signal [37]. As a means of competing with more

sophisticated detection techniques, the covert signal can be embedded within

another signal as an alternative to hiding in AWGN [25]. Such a method for

embedding a covert signal into an OFDM signal was developed in this work. The

covert signal was designed as a Direct-Sequence Spread Spectrum (DSSS) signal and

injected into the OFDM signal while complying with the spectral mask specified by

the standard. The covert signal operates as interference inside the OFDM signal.

The Packet Error Rate (PER) of the OFDM signal was measured as a function of the

Signal to Interference Ratio (SIR) in order to quantify the impact of the covert signal

on the incumbent. The Bit Error Rate (BER) of the covert signal was measured as

a function of SIR. In order to make detection by unintended observers as difficult

as possible, a high SIR was used. Given the high SIR, it was determined that de-

spreading alone was insufficient to recover the covert signal. To overcome this,

the covert signal was extracted by cancellation of the OFDM signal in the covert
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receiver. The detectability of the covert signal was tested using an energy detector

and a cyclostationary detector. The cyclostationary detector was based on the Fast

Fourier Transform (FFT) Accumulation Method which provides an estimate of

the spectral correlation function [33] [3]. That estimate is used to produce a cycle-

frequency domain profile from which features are extracted for signal detection

[22]. The energy detector and cyclostationary detector were both tested with and

without the benefit of their own OFDM cancellation capability and it was found

that the detectors needed to use cancellation. The recovery of the covert signal was

tested with OTA recordings of 802.11 packets and demonstrated the effectiveness

of the technique using that real-world OTA data. This work has been accepted to

IH&MMSec 2022 [7].

1.5.2 Spectrum Sensing in Interference and Noise Using Deep
Learning

In this experiment, spectrum sensing was transformed into image recognition

by taking the spectrogram 3 of the received data and processing that as an im-

age. A well-known Convolutional Neural Network (CNN) for image classification,

AlexNet [24], was repurposed as a signal detector through the process of “fine-

tuning” [18]. By way of fine-tuning, AlexNet was retrained using a small training

set of a few hundred samples. AlexNet was chosen for this task due to its demon-

strated resilience to Gaussian noise [19]. The performance of the new detector was

compared to the performance of more traditional energy detection. The new detec-

tor surpassed the performance of the energy detector in the presence of co-channel

interference and did not require a separate noise estimate. This work was published

in CISS 2020 [5]. The resilience of the new detector to co-channel interference made

it a candidate detector for secondary signaling such as the covert signal developed

3A spectrogram is a two dimensional frequency vs time image of a signal.
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in this dissertation. Another experiment was performed in which the new detector

was trained in cancellation residue. The new detector was then tested against the

covert signal. The results were compared to those from the energy detector and

cyclostationary detector. Like the other detectors, the new detector was ineffective

without its own cancellation capability. With a cancellation capability, the new

detector performed well by comparison to the other two. This novel method can

be used in any application in which signals must be detected in the presence of

interference.

1.5.3 OFDM Window Estimation for Interference Cancellation

Windowing at the transmitter is a popular means to control the bandwidth of an

OFDM signal because it is cheaper than filtering [15]. OFDM windowing at the

transmitter is typically implemented by extending the cyclic prefix into the previous

OFDM symbol and creating a cyclic suffix that is extended into the next OFDM

symbol. These cyclic extensions are then tapered by multiplying their samples

with the window coefficients. The effect is a tapered transition from one OFDM

symbol into another. The problem with this windowing is that the extension into

adjacent symbols is self-interference. This work demonstrated that the windowing

applied at the transmitter has a significant impact on the ability to cancel that OFDM

signal. In this work, windowing was added to the signal model used to cancel the

OFDM signal. The window was estimated from received samples, and that window

estimate was used to cancel the OFDM signal without prior knowledge of the

windowing function. The suppression of the OFDM signal was measured with and

without the window estimation improvement using both synthetic and OTA data.

It was found that the window estimate offered a 5.3 dB improvement with the OTA

data. The cancelling was also selectively applied only to the self-interference and

improved the PER of the OTA OFDM signal. The improved cancelling algorithm
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was then used to improve the recovery of the covert signal. This work is of active

patent interest and a provisional patent has been filed [4]. This work is under review

for publication.

1.5.4 Adversarial Attacks on Deep-Learning RF Classification in
Spectrum Monitoring with Imperfect Bandwidth Estimation

In the event that the covert signal is detected, the likely next step of the eavesdropper

would be to attempt to classify the modulation of the covert signal. CNNs are often

used as automated modulation classifiers [30]. The covert signal was augmented

with an adversarial waveform designed to exploit weaknesses in CNNs used for

automated modulation classification in order to hamper any efforts to analyze the

covert signal. An adversarial waveform is a small additive perturbation at the

transmitter, and is generated similarly to adversarial examples used against image

classifiers [38]. An adversarial waveform was developed against one CNN and

then deployed against another CNN thus transferring the attack. This transfer of

the attack was done without knowledge of the second CNN. This technique can be

used to develop an attack against modulation classification CNNs and then deploy

that attack against 3rd party spectrum monitors. The adversarial waveform was

created by constraining the signal-to-interference ratio at the transmitter, which has

the dual benefits of making the adversarial waveform easy to deploy and mitigating

impairment to the communications link. The adversarial waveform does introduce

interference in the covert link; however, the matched filter in the covert receiver

filters out the majority of the power of the adversarial waveform, thus the addition

of the adversarial waveform has only a small impact on the covert signal BER.

Testing demonstrated that the vulnerability of a CNN classifier to this type of attack

was in part a function of bandwidth uncertainty, where the classifier does not have

an exact estimate of the bandwidth of the covert signal. The classification system
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will likely err on the side of making the bandwidth wider than necessary, because

to do otherwise would filter out needed information. It was demonstrated that a

wider bandwidth makes the attack more successful, as opposed to other estimation

errors which prior literature has shown to weaken the effectiveness of these attacks.

A small over-estimation of signal bandwidth provides a significant increase to the

effectiveness of the attack. This work has been accepted to WCNC 2022 [6].

1.5.5 Applications Outside of Covert Communications

This covert signal employs techniques found in other applications such as Paired

Carrier Multiple Access (PCMA) for satellite communications [11], Message Au-

thentication [43], RF watermarking in television transmission [32], Power-Domain

Non-Orthogonal Multiple Access (PD-NOMA) [40] and Rate Splitting Multiple

Access (RSMA) [8]. In each of these applications there signals are transmitted

within the same spectrum resource, and a means of signal cancellation is required. A

spectrum resource is defined by a period of time, a band of frequencies (a frequency

channel), and often a geographic location. The sharing of spectrum resources is

an active area of research. The techniques developed in this dissertation can be

extended to those other areas.

1.6 Outline of this Work

Each chapter in this dissertation documents research conducted to explore an aspect

or problem related to covert communications in an interference channel.

• Chapter 2, “Covert Communications through Imperfect Cancellation”, de-

tails the design and operation of a covert signal deployed inside an OFDM

incumbent. An algorithm for extracting the covert signal is developed. The

chapter also provides measurements of the performance of the covert signal
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as a means of communications and the performance of the OFDM incumbent

in the presence of the covert signal. The sum of the work in this chapter was

published in [7].

• Chapter 3, “Image Classification for Signal Detection”, describes a novel

signal-detection method in which an image-recognition deep-learning net-

work is retrained and re-purposed for signal detection. The sum of the work

in this chapter was published in [5].

• Chapter 4, “OFDM Window Estimation for Interference Cancellation”, details

the benefits of estimating the windowing function used at the transmitter by

the OFDM incumbent. This parameter has a significant impact on the total

cancellation of the incumbent. In addition to the impact on cancellation, it

was discovered that the cancellation algorithm can be used to remove the

self-interference caused by this OFDM windowing parameter and improve

the Packet Error Rate (PER) of the OFDM incumbent itself.

• Chapter 5. “Exploiting Vulnerabilities Deep-Learning RF Classification using

an Interference Signal”, details the use of a secondary signal to frustrate the

classification efforts of a spectrum monitor. The sum of the work in this

chapter was published in [6].

• Chapter 6 provides summarizes the preceding topics and discusses future

work.

The remainder of this introductory chapter provides background material and

describes concepts important to the research documented in this dissertation
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1.7 Cognitive Radio Terminology

Cognitive radio terminology, as it relates to the topic of communications in an

interference channel, describes the operation of a secondary user attempting to gain

access to the spectrum. In order to understand this concept, the idea of a primary

and secondary user must first be defined. Primary users are defined by IEEE 1900.1

[20] as “Users with higher priority or legacy rights on the usage of a particular

spectrum frequency band.” This means that a primary user has the right to transmit

on a given channel. The users in the channel who do not meet this criteria are

secondary users. It is the responsibility of the secondary user to keep its interference

on the primary user within set bounds. How those bounds are defined depends on

numerous factors including the method of secondary access.

Primary users are called incumbent users in some literature, such as TV Whites-

pace applications where a broadcast station, or another user designated by the

spectrum regulatory authority, has primary rights to a frequency channel. Broad-

cast stations and their exclusive use of a bandwidth are not the only examples of

primary users.

The covert signal described in this work would be a secondary user by this defi-

nition. The covert signal described in this work would be classified as making use of

“spectrum underlay” by the IEEE 1900.1 standard. The standard defines spectrum

underlay to include any case where a secondary user concurrently transmits on

the same spectrum resource as a primary user, and the underlaying secondary user

keeps the resulting interference within established tolerable bounds. The concept

of underlaying is illustrated in Fig. 1.2 from [14]. The abbreviation “IT” stands for

Interference Temperature. This is to say that the secondary transmission must be kept

below a specific power to avoid interfering with the primary signal beyond that

which the wireless link of the primary user can tolerate. This is contrasted with
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“spectrum overlay”, also defined in the IEEE 1900.1 standard, in which a secondary

user makes opportunistic use of spectrum whitespace. Whitespace is an unused

spectrum resource in both frequency and time. Given a specific frequency channel,

whitespace would be a period of time during which a primary user is not using that

frequency channel. The secondary user senses the spectrum for these white spaces

and then transmits when and where the primary user is not present. This way, the

secondary user attempts to avoid inflicting any interference on the primary user.

Figure 1.2: Underlaying [14] ©2017 IEEE

The terminology defined in IEEE 1900.1 is not universal in literature. A separate

but related taxonomy is found in [17] that defines three categories of spectrum

re-use: overlay, underlay and interweaving. In that taxonomy, underlay specifically

refers to a secondary user occupying the same spectrum resource as a primary user,

and therefore interferes with that primary user to some tolerable amount. In [17],
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the term “overlay” refers to a secondary user (called the cognitive user) relaying the

primary user’s signal within the secondary user’s signal, thus overlaying the two

signals. The term “interweaved” is used in [17] to describe what the IEEE 1900.1

standard calls “overlaying”.

1.8 Interference Cancellation

Multi-User Interference Cancellation (MUIC) is a well-known concept that enables

wireless users to address interference caused by multiple users accessing a single

spectrum resource concurrently. MUIC is the process of modeling and reproducing

a signal from one particular user for the purposes of removing that signal from

the summed ensemble of all received signals. Successive Interference Cancellation

(SIC) [28] is a category of MUIC implementations in which cancellation is applied

sequentially over multiple users in the ensemble. Such cancellation is a topic

explored for a variety of applications, among those applications is PD-NOMA. PD-

NOMA is a multiple access scheme that accepts interference as part of the channel.

Unlike other multiple access schemes that attempt to separate different emitters

in frequency, time, and/or location, PD-NOMA requires the receiver to be able to

remove unwanted signals.

A detailed description and argument in favor of PD-NOMA can be found in

[40]. A summary is provided here: In a conventional system, the two users must

take exclusive turns. The achievable overall throughput for the two users has a

linear relationship with the number of turns allocated to each user. Hence, for

every time-frequency resource that user 1 yields to user 2, user 2 gains a specific

amount of throughput and user 1 loses a specific amount of throughput. Unlike

the conventional scheme, in PD-NOMA signals for the two users are transmitted

on the single spectrum resource concurrently. The signal for user 2 is transmitted
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at a higher power than user 1. The interference caused by the lower-power signal

for user 1 therefore factors into the achievable throughput for user 2. User 1

employs signal cancellation to remove the signal for user 2, and then access their

own intended signal once the signal for user 2 has been removed. Both users can

therefore enjoy a higher simultaneous data rate than they would have if they took

exclusive turns accessing the spectrum resource.

The capacity of a channel is the maximum rate at which information can be reli-

ably transmitted over that communication channel, as defined in [21] and detailed

in [2]. There are many different types of channels. One type of channel of interest to

this research is the bandlimited Additive White Gaussian Noise (AWGN) channel

the capacity of which is expressed in (1.1), and a detailed analysis can be found in

[16]. The capacity in (1.1) is measured in bits/second, gamma is the SNR, and B is

the bandwidth of the channel.

C(γ) = Blog2(1 + γ) (1.1)

Now consider a situation where a single broadcaster wants to send independent

messages to two different users. The two users are thus sharing one spectrum

resource. That channel is a Gaussian Broadcast channel as defined and analyzed

in [29]. This scenario is also discussed in [40] which advocates for PD-NOMA. A

summary is provided here: The Gaussian Broadcast channel has a capacity region

that is defined as the closure of the set of achievable rates for all users. For a multiple

access channel with only two users, that set of rates can be called a rate pair, (R1, R2)

where R1 is the achievable data rate for user 1 and R2 is the achievable data rate for

user 2.

Two different cases of the Gaussian Broadcast channel are considered. The first

case is where the users are given exclusive access to the spectrum resource. That
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is to say, in traditional systems, a transmitter must stop using spectrum resources

to transmit the signal for user 1 if it is going to transmit a signal for user 2. This

case is called “Orthogonal Multiple Access” in [40]. Let the variable α represent the

share of the spectrum resource available to user 1, and 1 − α represent the share

available to user 2. The parameter α ranges from 0 to 1, where at 0 only user 2 gets

the spectrum resource, and at 1 only user 1 gets the spectrum resource. γi represents

the SNR for a given user i and is defined in (1.4) where hi represents the channel

loss for a given user i, σ2
i is the noise variance at the receiver, and P is the transmit

power of the broadcaster. The possible data rates over this channel with exclusive

access to the spectrum resource are expressed in (1.2) and (1.3). Fig. 1.3 illustrates

the capacity region of such a system where the bandwidth is 20 MHz, user 1 enjoys

an SNR of 25 dB but user 2 has an SNR of -6 dB.

R1 = αC(γ1) (1.2)

R2 = (1 − α)C(γ2) (1.3)

γi = P|hi|2/σ2
i (1.4)

For a PD-NOMA system, the achievable rates are expressed in (1.5) and (1.6).

The variables h1 and h2 represent the coefficients of the propagation channel for each

user. The variables σ1 and σ2 represents the noise at the receiver of each user. The

broadcaster always transmits at power P. In the case of PD-NOMA, α represents

the share of the transmit power of the base station dedicated to each of the two user

signals. In this scenario, the bandwidth is 20 MHz, user 1 enjoys an SNR of 25 dB

but user 2 has an SNR of -6 dB. Because user 1 has the higher SNR, user 1 will apply

SIC. User 2 does not perform SIC in this scenario. Therefore, the signal for user 1
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counts as noise in the calculation of the data rate for user 2. Note that this scenario

assumes that user 2 will have the ability to cancel the signal from user 1 completely.

Fig. 1.3 illustrates how the achievable rates in a PD-NOMA system are higher than

that of the more traditional exclusive access model.

R1 = C(αP|h1|2/σ2
1 ) (1.5)

R2 = C(
(1 − α)P|h2|2

σ2
2 + αP|h2|2

) (1.6)

Figure 1.3: Capacity Region for PD-NOMA, Overlaid with the Capacity Region for OMA

MUIC schemes have been proposed for numerous wireless systems, e.g., MUIC

and PD-NOMA have been proposed for 5G New Radio [10] [12] [1]. MUIC has
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also been proposed in RSMA [8] which is a multiple access scheme that has been

projected to outperform PD-NOMA [27]. Given that the waveform being used in

these cases is OFDM, the question arises as to how well one can cancel another

user’s signal when using OFDM waveforms.

1.9 Complications in Interference Cancellation

The data rate equations in section 1.8 made several assumptions. That analysis

assumed that the interference caused by user 1 on user 2 is the same as additional

AWGN. In a single-carrier communication scheme, it is unlikely that the distribution

of the single-carrier signal is Gaussian or that the samples are independent. In a

multicarrier scheme like OFDM, one may be able to approximate the distribution

of the signal as Gaussian by way of the central limit theorem. The passband of

the signal is broad in the spectrum relative to the sample rate and very flat, thus

simulating the spectrum of AWGN, even though the samples of the OFDM signal

are not strictly independent.

The analysis in section 1.8 also assumes the perfect cancellation of user 2 from the

bandwidth of user 1. The use of MUIC requires that the receiver be able to cancel a

portion of the received signal. That assumes that the receiver has a sufficient model

of the signal and can estimate the parameters of that model with sufficient accuracy.

All the models begin with demodulating the signal and then remodulating. The

remodulated signal is then augmented with estimated impairments for a better

match at cancellation. This process is described in [28] but it does not define the

parameters to be estimated. The signal model employed for cancellation in [9]

estimates the channel coefficients. The signal model in [31] employs estimates

for channel coefficients and “inter-channel interference” (ICI) meaning wireless

impairments have caused the subcarriers of the OFDM symbol to no longer be
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orthogonal. The signal model in [26] estimates amplitude and phase. These signal

models for cancellation may be insufficient. There are signal model parameters that

are often overlooked in MUIC and PD-NOMA literature.

As explained in [35], hardware imperfections are among the overlooked param-

eters in MUIC and PD-NOMA literature. It is common for wireless standards to

limit the transmitter implementation in terms of transmitter error vector magnitude

and frequency accuracy, and this allows significant room for individual vendors

to employ hardware with various impairments including but not limited to I/Q

imbalance and power amplifier nonlinearity. The degradation in the Bit Error Rate

Curve of a radio node, U2, required to cancel the signal for another node, U1 is

shown in Fig.1.4 from [35] and illustrates the effect on bit error rate of two differ-

ent radio hardware impairments. Those two impairments are a non-linear power

amplifier at the transmitter and I/Q imbalance at the receiver. The BER curves

for two radio nodes, U1 and U2 are shown. The radio node U2 must cancel the

signal for radio node U1 in this example. The SNR from AWGN for both nodes,

not counting Multi-User Interference, is 25 dB. The independent axis is the power

splitting parameter, “a”, which is the same as α in Fig. 1.3.

In the OTA experiments performed in this work, it was found that the inclusion

of OFDM windowing at the transmitter into the signal model provided a 5.3 dB

improvement to the cancellation of the incumbent OFDM signal. The benefits of

windowing at the transmitter are explored in detail in [15]. OFDM systems often

employ windowing at the transmitter in order to meet the spectral mask imposed

by a given wireless standard. The IEEE 802.11 standard suggests such a window

but does not mandate it. The use, shape, and length of such a window are left to

individual vendors. Fig. 1.5 illustrates windowing applied at the transmitter and the

receiver. Windowing at the transmitter is applied in order to smooth the transitions

between OFDM symbols and thus limit the bandwidth of the OFDM signal. The
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Figure 1.4: Degradation of the BER Curve in PD-NOMA with Radio Hardware Impairments
[35] ©2019 IEEE

period T in Fig. 1.5 represents the total OFDM symbol period including the FFT

period and the period for the required cyclic prefix. That OFDM symbol is extended

by 0.5T0 into both adjacent symbols, and both adjacent symbol are extended by

0.5T0 into the current OFDM symbol. OFDM Windowing at the receiver is also

illustrated in Fig. intro:fig:ofdmwindrxtx from [15]. OFDM windowing at the
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receiver serves different purposes, has no impact on the transmitted signal, is not

useful for cancellation, and is therefore not germane to this discussion.

Figure 1.5: OFDM Windowing Transmit and Receive [15] ©2011 IEEE

OFDM windowing at the transmitter deliberately introduces inter-symbol inter-

ference between adjacent OFDM symbols. The effects of this self-interference on

802.11a/g OFDM signal were documented in [41]. Individual vendors are free to

apply what windows they choose at the transmitter, but they must still meet the

modulation accuracy requirements in the standard.

This work will show that the transmitter-windowing parameter in OFDM has a

significant effect on MUIC performance. The estimation of the shape and length of

the OFDM window is detailed in chapter 4.
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Chapter 2

Covert Communications through
Imperfect Cancellation

2.1 Introduction

Low probability of detection (LPD) signals are useful to reduce the probability

of detection of a signal by an unauthorized observer. Much of the literature on

LPD communications involves hiding the signal in additive white Gaussian noise

(AWGN). Spread spectrum is popular for covert communication when the unautho-

rized observer does not know the spreading code and must, therefore, operate with

a wider bandwidth than the intended recipient does and admit greater noise power.

Detection is more likely to be successful if the unauthorized observer attempts

to extract cyclostationary features from the signal [17] as opposed to e.g. energy

detection.

In order to compete with more sophisticated detection techniques, a signal can

be embedded within another signal as an alternative to hiding in AWGN [13]. The

signal used for camouflage is the incumbent signal, and the signal intended to be

hidden shall be referred to as the covert signal. The covert signal can be injected into

any layer of the protocol stack of an incumbent signal, for example, by modifying

the timing of the MAC layer in order to convey a pulse-width modulated message
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[12]. Hiding a covert signal in the physical layer offers a much higher data rate

as compared to using other layers of the stack thus motivating our work [6]. This

work presents a novel means of covert communications in which a covert signal

will be transmitted inside an OFDM signal and employ imperfect cancellation to

minimize detectability of the covert signal while maintaining a high covert data

rate. The contributions of this work are: 1) The design of a covert DSSS signal to be

hidden in a OFDM signal (Section 2.3); 2) Test of the impact of this covert signal on

the incumbent signal (Section 2.4.2); 3) An OFDM cancellation scheme designed to

maintain white noise for the covert receiver (Section 2.5); 4) Test of the detectability

of this covert signal (Section 2.7); and 5) Application of this cancellation scheme

against a popular OFDM waveform (802.11) using both synthetic (Section 2.6) and

OTA data (Section 2.8).

In the experiments, measurements of the PER of the OFDM signal and the BER

of the covert signal were taken, both as functions of the signal-to-interference power

ratio (SIR). The results show that the despreading alone was insufficient to recover

the covert signal at an SIR high enough to preserve the PER of the OFDM signal.

To address this problem, a cancellation stage was developed to provide sufficient

suppression of the OFDM signal to recover the covert signal. The cancellation

scheme was designed to avoid shaping the noise in the covert receiver.

The structure of this chapter is as follows: Section 2.2 provides a literature

survey into related work. Section 2.3 describes the covert spread signal. Section

2.4 considers the recovery of the covert signal using despreading alone. Section 2.5

establishes the OFDM signal model and presents our method for partially canceling

the OFDM signal. Section 2.6 demonstrates that with this cancellation, we can

retrieve the covert signal with significant improvements to the BER. Section 2.7

details an experiment where the covert signal is tested against two variants of two

detectors empirically proving that the covert signal is well hidden inside the OFDM
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packet. Section 2.8 applies the technique to Over-the-Air data and demonstrates

that the cancellation technique is effective in a real world environment. Section 2.9

summarizes the results, compares this work to prior work in covert communications

under OFDM incumbent1 signals, and provides some direction for future research.

A portion of this chapter has been accepted to be published in [4].

2.2 Related Work

Both [6] [7] make use of dirty constellations, by which a small error is added to the

constellation of a incumbent signal and the value of that error conveys the covert

signal. Tracking the error between what was expected of the incumbent signal and

what was received is related to the cancellation technique discussed in this work.

One problem we see with the dirty constellations is that the method relies on the

received signal being equalized and thus shapes the noise in the covert receiver.

This was avoided in our implementation as explained in section 4.2.2.

Four covert channels in Wi-Fi are analyzed in [5]. Those four covert channels

were 1) modifying the symbols in the Short Training Field (STF) to add phase

modulation for the covert signal once per OFDM packet, 2) adjusting the carrier

frequency offset, 3) adding additional signals into the unused subcarriers of the

OFDM symbol (as introduced by [9]), and 4) replacing parts of the OFDM Cyclic

Prefix as introduced by [8].

Method 1 in [5] hides one covert symbol per STF. As there is only one STF per

OFDM packet, the covert signal in this work has a higher data rate than method 1.

Method 3 violates the spectral mask of the standard. The claim is that a spectrum

monitor won’t notice because the covert signal is attempting to look like another

1in terms common to steganography, this OFDM signal would be called the cover signal and the
signal hidden inside of it would be the covert signal. The problem with that terminology is that cover
and covert are only one letter apart. This work will rely on terminology common to the Cognitive
Radio community and name the OFDM signal the incumbent signal.
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version of the standard that the authors concede is not in use at the target location.

Method 4 replaces the cyclic prefix with a covert signal, and this has negative

consequences in multipath channels.

The most promising method in [5] is method 2 where one covert symbol is

embedded in every 1 OFDM symbol, that being 80 samples at 20 MSPS. This is

a slightly faster symbol rate than the covert signal developed in this work which

transmits one covert signal every 128 samples. Method 2 is an FSK covert signal

that multiplies a carrier offset of each individual OFDM symbol. Because method 2

is an FSK waveform, and does not have its own power to noise ratio, the covert BER

is a function of the frequency deviation and the SNR of the OFDM signal. The BER

of the covert signal improves as the frequency deviation is increased. Unfortunately,

increasing the frequency deviation of the covert signal increases the impairment on

the OFDM signal, which increases the PER curve of the OFDM signal and makes

the covert signal noticeable. The results for method 2 showed that it required a a

frequency deviation of 5 kHz or lower to avoid detection, however those results

were not well explained. A 5 kHz frequency deviation over a 4 µs period results in

a 0.04π radian phase shift. It was unclear under what criteria the authors declared

this phase error to have no perceptible effect on the error rate of the OFDM signal.

Using a smaller frequency deviation, such as 1 kHz, will reduce the impact on the

incumbent but require the covert receiver to be closer to the OFDM transmitter in

order to enjoy the high SNR values that would be needed to demodulate the covert

signal at that frequency deviation.

In [16], a covert signal was created by introducing an artificial channel effect at

the transmitter resulting in transmitting one covert symbol per OFDM packet. The

work in [15] adds distortion to a 802.11 signal and uses a neural network to classify

that distortion resulting in a covert signal data rate of 93.75 kbps. The covert signal

presented in this work exceeds these data rates.
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2.3 Covert Signal Design

The covert signal used here is a direct sequence spread spectrum (DSSS) signal that

distributes signal power over the OFDM signal. The covert signal is injected into

the unused (null) OFDM bin and is constrained by the spectral mask imposed by

the 802.11 standard [10] in order to prevent self-revelation. Spreading mitigates

interference and multipath, and despreading will spread the OFDM signal, reduc-

ing the total interference to the covert signal. The spread carrier conveys BPSK

information at 156.25 kbaud and uses a pseudo-random sequence derived from the

polynomial z6 + z + 1. The peak-to-sidelobe ratio is 20.56 dB. The autocorrelation

function of the spreading code is illustrated in Fig. 2.1.

Figure 2.1: Spreading Code ACF

Each covert symbol requires 64 chips. At 10 Mcps, this requires 6.4 microsec-

onds per covert symbol. When an 802.11 signal is used as the incumbent, the 6.4
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microseconds period is twice the IFT frame of the OFDM symbol. The 802.11 signal

applies a 0.8 microsecond cyclic prefix to each OFDM symbol making the total

length 4 microseconds per OFDM symbol. These time values must be taken into

account when injecting the covert signal into the incumbent signal. In order for the

covert signal to remain within the time duration of an incumbent OFDM packet, the

total transmit time of the covert signal must be less than that of the OFDM packet.

Each instance of the covert signal can only have as many spread symbols as will fit

inside the OFDM packet. The relationship in time is illustrated in Fig. 2.2.

Figure 2.2: The Covert and OFDM Signal in Time

The spectrum of the OFDM signal and the covert signal are shown in Fig. 2.3. In

this case the 802.11 signal is 23 dB above the noise power. The power of the covert

DSSS signal is 35 dB below the OFDM signal. The covert signal adds no significant
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power to the sidelobes of the OFDM signal or the center bin. The effect that this

covert signal has on the OFDM signal will be measured in the following sections.

Figure 2.3: The Covert and OFDM Signal in Frequency

2.4 System Performance Without Cancellation

2.4.1 Performance Baseline

The first step in our experiment is to establish a baseline of the performance of

the 802.11 receiver in terms of PER as a function of SNR without the covert signal

present. This information will be used to determine what range of cascaded noise

figures this receiver can handle. A noise figure is a characterization of a component

that describes the degradation of the SNR from the input to the output of that

component. A cascaded noise figure is an aggregate noise figure resulting from

multiple cascaded components [14]. That range of cascaded noise figures will

establish whether or not this can represent realistic receiver hardware.

Synthetic packets are generated to measure PER at different SNRs. Each packet

has 1000 octets of random data. We iterate through SNR values from 0 to 25dB in
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steps of 0.5 dB, passing the synthetic packet through an AWGN channel. For each

SNR, we attempt to demodulate 5000 random packets with noise, recording the

packet error we receive. This process is repeated for all modulation and coding

schemes allowed by 802.11 b/g for a 20 MHz channel. For this experiment, we do

not add synchronization or multipath impairments. Fig. 2.4 illustrates the results.

Table 2.1 records the SNR value required to meet a 1% PER and shows the minimum

input sensitivity requirements in dBm specified by the standard [10] at which the

receiver must achieve a PER of 10% of less. The minimum sensitivity is -65 dBm

for a data rate of 54 Mbps. The power spectral density (PSD) of thermal noise at

290◦ K is -174 dBm/Hz. Using a channel bandwidth of 20 MHz and a PSD of -174

dBm/Hz, the thermal noise power is -101 dBm. Therefore the receiver used in this

work can handle a cascaded noise figure of up to 14.5 dB and still operate at a PER

of 1% which exceeds the requirements of the standard.

2.4.2 OFDM PER as a Function of SIR

When an interferer tries to establish a covert channel, the predominant factor of

outage for the OFDM signal can be attributed to that interferer. The work in [2]

and [1] develops outage probabilities as a function of SIR. If the covert signal is too

powerful, the PER of the OFDM incumbent will rise and will force the incumbent

network to adapt or fail. Any monitor noticing this phenomenon may attribute

the event to the presence of an interferer, thus negating covertness. It is therefore

necessary to limit the power of the covert signal to prevent an increase in PER that

would raise suspicions. At the receiver of the OFDM signal, PERs that deviate from

the performance established in section 2.4.1 are good indicators for the presence

of interferers. Such an outage, in the case of our covert channel, can be mitigated

by reducing the power spectral density (PSD) of the covert signal further after the

DSSS operation. The reduction has the unwanted effect of lowering the covert
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Table 2.1: SNR Needed to Achieve 1% PER for each Data Rate
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channel’s capacity as it reduces the energy available per symbol for the covert

signal. Without a mechanism to separate the OFDM signal from the covert channel,

the processing gain achieved from despreading does not provide a margin big

enough to achieve the desired bit error performance. This is especially true if the

competing objective to keep a low PER for the OFDM signal is desired. This leads to

a search for a SIR operating point at which one finds the lowest BER for the covert

signal and the performance of the OFDM signal is within a target PER. In order to

evaluate this operating point, PER of the OFDM signal is measured over a range

of SIR values. Noise power is kept constant in these measurements. Multipath

and synchronization impairments were not added to the OFDM or covert signals.

The OFDM signal was set to a data rate of 54 Mb/s (subcarrier modulation of 64

QAM with a coding rate of 3/4), which represents the highest data rate for 802.11

b/g. Our choice of the highest data rate for 802.11 b/g establishes the worst-case

scenario in terms of PER performance for the 802.11 receiver. The results of this

experiment are shown in Fig. 2.5. Four different SNRs were tested: no noise, 21 dB,

23 dB, and 25 dB. The SIR for each case was ranged from 0 dB to 45 dB. Note that the

lowest PER possible for each curve relating to a finite SNR is reached asymptotically

indicating an irreducible error rate determined by the presence of AWGN. These

results show that the SIR must be kept above 30 dB in order for the covert signal to

not be the dominant contributor to the PER in the OFDM signal.

2.4.3 Covert Signal BER as a Function of SIR

Fig. 2.6 depicts the bit error rate of the covert signal when the OFDM data rate

is 54 Mb/s. The four curves represent different SNR values of the OFDM packet,

including one with no AWGN. The driving factor is SIR rather than SNR. The

difference in BER performance under different SNR scenarios is negligible. This is

a reiteration of the fact that interference from the OFDM signal, and not ambient
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Figure 2.5: PER for 54 Mb/s 802.11 with a Covert Signal Present

noise, is the driving factor for the BER performance of the covert channel. Moreover,

the SIR required to operate at 10−5 to 10−4 BER for the DSSS signal is around 12 dB.

One can choose a lower SIR operating point for the covert signal but the limitation,

as discussed earlier, is precipitated by reduced performance of the OFDM receiver.

Because the primary source of interference for the covert signal is the OFDM

signal, some means of suppressing that interference must be introduced. The next

section will introduce a method of partially canceling the OFDM signal.

2.4.4 Analysis of Incumbent PER and Covert BER as a Function of
SIR

It was found that the SIR must be kept above 30 dB in order for the covert signal to

not be the dominate cause of the PER for the incumbent OFDM signal. It was also
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Figure 2.6: BER for Covert Signal inside 54 Mb/s 802.11

found that the SIR required to operate at 10−5 to 10−4 BER for the covert signal is

around 12 dB. These two requirements have no overlap. Therefore, it is not possible

to reliably communicate the covert signal in the OFDM incumbent without some

additional processing applied.

2.5 OFDM Signal Cancellation

2.5.1 OFDM Signal Model

An OFDM packet is a concatenation of N OFDM symbols o⃗p, p = 0, 1, ...N − 1,

where each individual symbol is created as the length-M Inverse Fourier transform

(IFT) of a complex data vector d⃗p as shown in (2.1) where k represents discrete time
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for that OFDM symbol. Each element of dp will modulate a subcarrier in the IFT.

The data frame dp is composed of modulated complex-valued symbols, both for

pilot subcarriers and data subcarriers, as well as null values for null subcarriers.

op[k] =
M−1

∑
m=0

dp[m]ej 2πmk
M (2.1)

Most OFDM systems use a mandatory cyclic prefix which extends the OFDM

symbols to be longer in time than the number of points in the IFT. This cyclic prefix

helps mitigate the effects of multipath channels. As an example, an 802.11g OFDM

symbol uses a 64-length IFT (M=64) at 20 MSPS for a frame period of 3.2 µs.That is

then extended with a cyclic prefix by 0.8 µs for a total OFDM symbol period of 4 µs.

This will be the OFDM symbol period used in the subsequent experiments in this

chapter.

An OFDM packet is a concatenation of N OFDM symbols in time, where each

individual symbol is denoted op[k]. The subscript p indicates the placement of an

OFDM symbol in the packet and k indexes the individual samples in a given OFDM

symbol. A model for an OFDM packet s⃗ is in (2.2). The initial OFDM symbols are

often defined to serve as a preamble to aid synchronization and channel estimation

at the receiver.

s⃗ = {o⃗0∥o⃗1...∥o⃗N−1} (2.2)

2.5.2 ODFM Signal Parameter Estimation

The demodulation process begins with receiving the preamble of the OFDM packet

and performing frame synchronization. The 802.11 receiver firsts detects the packet

and estimates the timing sample offset. The sample rate is not corrected.

The OFDM packet as seen by the receiver r⃗ after frame synchronization is shown
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in (2.3) where matrix H represents the multipath channel, the diagonal matrix ΛΘ

represents the carrier frequency offset, and n⃗ noise at the receiver.

r⃗ = ΛΘHs⃗ + n⃗ (2.3)

The carrier offset diagonal matrix ΛΘ contains phase offsets for each sample of s⃗

as shown in (2.4). If the carrier frequency offset is constant then when integrated

in time it will produce a phase ramp in ΛΘ. The magnitude of each element is

unity. Each element on the diagonal represents a phase offset value Θ[k] shown as

a phase ramp in (2.5). The carrier frequency offset can be reversed by multiplying

the diagonal matrix with its conjugate. The product results in an identity matrix,

Λ∗
ΘΛΘ = I.

ΛΘ = diag(ejΘ⃗) (2.4)

Θ[k] = ωk + ϕ (2.5)

Once sample timing of the 802.11 packet has been determined, estimates are

needed for ΛΘ and H, those being ˆ︂ΛΘ and ˆ︁H. After those parameters are estimated,

the conjugate and inverse of those estimates ˆ︂ΛΘ
∗

and ˆ︁H−1 will be found. Because

the estimates ˆ︂ΛΘ and ˆ︁H are not perfect representations of ΛΘ and H, there will be

some error when the inverse of the estimate is applied.

The first impairment to be estimated is the center frequency impairment defined

in (2.4). In order to correct the impairments, the estimates must be applied to the

received samples. However, these impairment estimations are imperfect. The error

resulting from applying the conjugate of the estimate of the carrier frequency offset

is represented as the diagonal matrix ΛϵΘ defined in (2.6) indicating that some
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residual offset remains.

ˆ︂ΛΘ
∗
ΛΘ = ΛϵΘ (2.6)

The frequency correction estimate ˆ︂ΛΘ
∗

is applied to the received samples r⃗

before an estimate of the channel matrix can be calculated. Therefore, the error ΛϵΘ

propagates into the estimation of the channel impulse response. The estimate of

the channel impulse response is initially calculated using the known sequence in

the 802.11 preamble. This only provides estimates for the 52 non-zero subcarriers.

The channel estimate is linearly interpolated over the null-subcarriers in phase and

magnitude.

If the channel impulse response has an inverse, then the inverse channel matrix

H−1 can be multiplied with H and the result will be the identity matrix, H−1H = I.

The inverse of the channel estimate ˆ︁H is calculated and used to equalize the received

signal. The channel estimate is imperfect and therefore the equalization will be

imperfect. The combined error resulting from the imperfections of both the inverse-

channel estimate and the carrier frequency offset estimate is represented as ϵHΘ as

shown in (2.7). This error trends to the identity matrix as the estimates come closer

to the actual impairments.

ˆ︁H−1ΛϵΘ H = ϵHΘ (2.7)

2.5.3 Applying Cancellation

The cancellation process is illustrated in Fig. 2.7. The OFDM transmitter modulates

and transmits an OFDM packet. That packet passes through a multipath channel.

The covert receiver estimates carrier frequency offset, channel impulse response,

and demodulates the OFDM packet. The demodulated bits can be encrypted and

41



the covert receiver has no need of decrypting these bits. The covert receiver will

re-modulate the bits creating a local version of the received OFDM packet. The

covert receiver will use this local copy to cancel the received OFDM signal. If the

cancellation provides sufficient suppression of the OFDM signal, the covert signal

can be recovered.

Figure 2.7: Covert Signal Recovery with Cancellation

The re-modulation produces an estimated OFDM waveform which will be

represented as ˆ︁s. The waveform s⃗ represents the OFDM signal at the transmitter

with no impairments of any kind. After the estimated corrections have been applied

to the received samples, the estimated OFDM signal can be subtracted from the
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received samples resulting in a residue u⃗ as shown in (2.8).

u⃗ = ϵHΘ s⃗ + ˆ︁H−1 ˆ︂ΛΘ
∗
n⃗ − s⃗ (2.8)

Assuming the demodulation process saw no bit errors, and assuming ˆ︁H and ˆ︂ΛΘ

are perfect estimates, then ˆ︁s = s⃗. In this case, the residue reduces to (2.9).

u⃗ = (ϵHΘ − I)s⃗ + ˆ︁H−1 ˆ︂ΛΘ
∗
n⃗ (2.9)

The signal-error-term of the residue is ϵ(HΘ−I)s⃗. As the estimation functions

improve, ϵHΘ → I, driving the residue error to zero. The noise-term of the residue

is ˆ︁H−1 ˆ︂ΛΘ
∗
n⃗. The diagonal matrix ˆ︂ΛΘ

∗
will not change the autocorrelation of the

noise. The inverse channel response ˆ︁H−1 may shape the noise in spectrum meaning

the autocorrelation is no longer an impulse and therefore samples of noise are no

longer independent. In addition to shaping the noise, applying the equalizing

inverse channel may affect the covert signal. Consider the case in (2.10) where a

covert signal c⃗ is present and may have different impairments than the incumbent

signal s⃗.

r⃗ = ΛΘs Hs s⃗ + ΛΘc Hc c⃗ + n⃗ (2.10)

If Hs ̸= Hc then applying the equalization ˆ︁H−1
s on all of r⃗ would further impair

the covert signal. Given the potential for problems, an alternate approach to cancel-

lation is used. Instead of applying the inverse estimated channel to the received

samples, the estimated channel is applied to the estimated signal as shown in (2.11).

u⃗ = ΛΘHs⃗ + n⃗ − ˆ︂ΛΘ ˆ︁Hˆ︁s (2.11)

Using the same assumption about the transmitter and bit errors, the residue

reduces to (2.12).

43



u⃗ = (ΛΘH − ˆ︂ΛΘ ˆ︁H)s⃗ + n⃗ (2.12)

The signal-error-term of the residue is (ΛΘH − ˆ︂ΛΘ ˆ︁H)s⃗. As the estimation

functions improve, the estimated parameters approach the actual parameters,ˆ︂ΛΘ ˆ︁H → ΛΘH. As that happens, the signal-error term goes to zero. This would

leave only the noise term in the residue. We do not expect that our signal parame-

ters will be perfect. The cancellation technique is expected to be imperfect and we

expect some remainder of the OFDM signal to be present in the residue. The goal is

to estimate a sufficient number of signal parameters to create a copy of the OFDM

with enough accuracy to provide significant suppression of the OFDM signal.

2.6 System Improvement With Cancellation

For this experiment, we recover the spread signal after cancellation in our simulation

as described in section 2.5. Estimates for carrier frequency offset and the channel

impulse response are created as part of the demodulation process. However, we

found that the estimates of the channel impulse response and carrier frequency

offset could be improved by comparing the remodulated signal to the original

received signal. We adjust the power of the remodulated signal ˆ︁s to match the

received signal r⃗. We also compare the phase difference between ˆ︁s and r⃗ and rotate

ˆ︁s with a phase (not frequency) offset to lower the mean difference in phase between

the two signals.

After cancellation, the ratio of the power of the residue and the OFDM signal

represents the suppression of the OFDM signal, and that is calculated to be -20

dB. Given that the noise is 23 dB below the OFDM signal, and the residue is 20 dB

below the OFDM signal, we conclude that there remains some OFDM signal power

in the residue. That some OFDM signal power remains is to be expected, as the
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cancellation is imperfect. If the cancellation were perfect, then the residue would

contain only noise.

The second part of this experiment injects the covert signal into the OFDM signal

before any parameter estimation is performed. The power of the covert signal is

varied relative to the power of the OFDM signal, varying the SIR. The results are

plotted in Fig. 2.8. The covert signal BER dramatically improves when aided by

the cancellation algorithm. Note that as SIR decreases below 24 dB, the BER of

the covert signal begins to increase. This is due to the covert signal interfering

with the OFDM signal so severely that it causes bit errors and thus degrades the

demodulation process illustrated in Fig. 2.7.

Figure 2.8: Covert BER Improvement
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2.7 Detection of the Covert Signal

In this experiment, we test the detectability of the covert signal against a cyclosta-

tionary detector and an energy detector. The cyclostationary detector based on the

FFT Accumulation Method which provides an estimate of the spectral correlation

function [3]. That estimate is used to produce a cycle-frequency domain profile from

which features are extracted for signal detection [11]. These tests are performed on

synthetic data. We test two cases for each detector. The first test case executes the

detection against the received signal as defined in (2.3) (no covert signal) and (2.10)

(covert signal present). This test case represents the performance of the covert signal

against detectors with no augmentation. The second test case gives the detectors the

same cancellation advantage as the covert receiver in section 2.6, thus the detectors

are run against the residue defined in (4.7). Sample packets from the incumbent

OFDM signal are created with an SNR of 25 dB. The covert signal is injected beneath

half of those packets at an SIR of 31 dB. The results of these experiments are shown

in the receiver operating characteristic (ROC) plot in Fig. 2.9, illustrating the results

of the energy detector (ED) with and without cancellation and the cyclostationary

detector (CSA) with and without cancellation. In all cases without cancellation, the

detectors are incapable of reliably detecting the presence of the covert signal.

The cyclostationary detector augmented with cancellation performs well, yield-

ing a ROC curve with a considerable area under the curve. This means that a low

probability of false alarm can be selected and still maintain a high probability of

detection. However, this means that the cyclostationary detector must include an

OFDM cancellation capability. The energy detector does not show much promise

with or without the cancellation, although cancellation does yield some improve-

ment to the ROC curve of the energy detector.
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Figure 2.9: Receiver Operating Characteristic curves of the Four Detectors

2.8 OTA Experiment

For this experiment, complex baseband recordings were made at 40 MSPS of OTA

802.11g Wi-Fi packets with a data rate of 54 Mb/s. The Wi-Fi signals in these

recordings exhibit real-world multipath channels and carrier frequency offsets. The

cancellation process is the same as in sections 2.6 and 2.7, except for two additional

steps. The first modification was to compare the phase difference between ˆ︁r and r⃗,

where ˆ︁r = ˆ︂ΛΘ ˆ︁Hˆ︁s, and rotate ˆ︁s with a phase offset to lower the mean difference in

phase between the two signals. The second additional step was to normalize the

power between ˆ︁r and r⃗.

We injected the covert signal into the OTA Wi-Fi recordings. The SNR estimates

of the OTA packets varied from 29 to 31 dB. The covert signal is not perfectly aligned
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with the Wi-Fi packet as the Wi-Fi packet has a carrier frequency offset. Additionally,

the covert signal is not impaired with a multipath channel whereas the OTA Wi-Fi

Packet does exhibit that impairment. This is to say that the covert signal shares

neither a frequency reference nor a multipath channel with the incumbent signal.

The resulting BER will therefore provide a best-case for the covert signal given

the impairments of the OTA incumbent. The covert signal is injected before any

parameter estimation is performed, therefore the effect on the incumbent estimators

will be tested in this experiment. The power of the covert signal is varied relative to

the power of the OTA Wi-Fi signal, and this varies SIR. Finally, we measure the BER

performance of the covert signal with and without cancellation as a function of SIR.

We ran 35427 covert bits beneath 961 OTA packets over a range of SIR values. The

results are plotted in Fig. 2.10. The average cancellation was 19.5 dB with no covert

signal present, which is lower than observed in simulation. The covert signal BER

dramatically improves when aided by the cancellation algorithm. The range of SIR

values in which the covert signal can operate exceeds the requirements established

in analysis.

2.9 Conclusion

The work in this chapter measured the impact of a DSSS spread covert signal on an

OFDM signal. We have shown that SIR, not SNR, is the primary limitation of the

covert signal sharing the link with the OFDM signal. When high modulation orders

are used in the OFDM signal, the covert signal must operate at high SIR values in

order to prevent the interference from causing easily identified anomalies in loss

of throughput for the incumbent signal. A higher SIR at a fixed SNR impacts the

BER of the covert signal as the power of the covert signal power is being reduced

with respect to noise. One means of mitigating this problem is to reduce the data

rate of the covert signal. Instead of reducing the bandwidth of the covert signal,
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Figure 2.10: Covert BER using OTA Data

we implemented imperfect cancellation of the OFDM signal and demonstrated

that was sufficient to recover a 156.25 kbaud BPSK signal spread at 10 Mcps from

beneath an OFDM signal using 64 QAM. This recovery was demonstrated both in

simulation and when using OTA data. We observed that the cancellation on OTA

data is lower than that of our simulation, and we attribute that to signal parameters

not estimated in our signal model. Our covert signal is capable of operating at SIR

values higher than 30 dB, which maintains the throughput of the OFDM signal.

Future research on the covert method described in this work includes but is not

limited to increasing the modulation order of the covert signal in order to increase

the data rate and more direct comparisons with methods like those described in [6]

and [7].
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Chapter 3

Image Classification for Signal
Detection

3.1 Introduction

Given the near-insatiable demand for wireless connectivity, the 2.4 GHz ISM band

has become heavily congested with competing signals, including WiFi, Bluetooth,

and some Zigbee waveforms. As unlicensed and shared spectrum becomes more

crowded, spectrum sensing becomes increasingly necessary to determine if a channel

is occupied before using it. In dynamic spectrum access, sometimes called opportunis-

tic spectrum sharing, the spectrum is monitored for available spectral slots, or white

space. Upon detecting an available slot, the system then transmits in that slot. One

example of dynamic spectrum access is in accessing TV white space [16]. Another

example of opportunistic spectrum sharing is the Citizens Broadband Radio Ser-

vice (CBRS) [11], [14], which uses a frequency band that had, until recently, been

reserved for the use of radar systems. Due to this increasing demand, improved

methods of spectrum sensing are being explored. Spectrum sensing in this context

is to classify a set of input data as either having a signal present or having no signal

present.

Classification techniques can be generalized as having two stages, a feature
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extractor and a classifier. A feature of the signal is a quantitative measurement

of some attribute of that signal. Some examples of features of signals are energy,

bandwidth, center frequency, duration in time, and symbol rate [1]. It is sometimes

useful to think of raw features which comes directly from the data source and

derived features which come from some manipulation of that data [9]. The feature

extractor maps the input data to points in a set of features, and the classifier uses

those features to discern between classes. Feature selection is an important part

of the classification process. Features for classification are intended to minimize

the difference within a class and maximize the differences between classes. The

exact boundaries between classes within the chosen feature space is determined in

the classifier. An Artificial Neural Network (ANN) provides a trainable classifier

which can learn how to draw those boundaries. Rather than use hand-engineered

features to discern between classes, Deep Learning can be used to converge on a

set of features to be extracted from the input data. This chapter explores the use of

Deep Learning to detect the presence of signals in noise. A convolutional neural

network (CNN) is an example of Deep Learning that has been used to distinguish

between classes of images [12].

Taking the spectrogram 1 of the received data allows the signal detection problem

to become an image-recognition problem. To this end, a CNN was modified and

repurposed through the process of “fine-tuning” [6]. The concept of fine-tuning

was used to re-purpose a CNN, which had been pre-trained for image recognition,

by replacing the classification layers and training those new layers on new images

without causing a large effect to the feature extraction gained from the pre-training.

This process is also called “transfer learning.” The AlexNet CNN [12] was chosen

for this research due to the demonstrated resilience to noise [7]. Transfer learning

enables this task to make use of AlexNet with only a few hundred training samples,

1A spectrogram is a two dimensional frequency vs time image of a signal.
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as opposed to the over one million training samples originally required. After fine-

tuning the CNN to distinguish between spectrograms in which a signal is present or

not, the modified CNN is referred to in this work as the CNN detector. The system

performance is characterized from experimental outcomes and compared to the

classic energy detector [18].

Five experiments were performed in this work. The first three experiments aim

to detect a primary user in noise and interference. The primary user experiments

assess the ability of the CNN detector to detect signals in: (i) a fixed noise floor;

(ii) across variable noise floor; and (iii) with interference. The experiments were

separated into training and testing phases, and the signal is BPSK in all the primary

user experiments.

In the noise floor experiment, the CNN detector was tested across different SNRs

where the absolute value of the noise power was fixed and only the relative value

of the signal power was allowed to vary. In the variable noise floor experiment,

the CNN detector was again tested across a range of SNR values, but this time the

absolute value of noise power varied. The goal of both noise experiments was to

demonstrate that the CNN detector is a viable signal detection method that operates

without a noise floor estimate. In the interference experiment, a variable power,

random frequency Continuous Wave (CW) interference signal was added to the

received signal.

The first three experiments were published in [2] and are focused on users with

exclusive access to a channel, i.e., primary users. The last experiment in this work

tests the AlexNet detector’s ability to detect the covert signal as defined in chapter

2 and [3]. That experiment is generalized to other secondary users as defined in

chapter 1.

The secondary-user AlexNet Detector is trained on residue impaired by errors

in the center frequency, channel, and payload estimates as described in chapter 2
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and [3].These secondary-user detectors are then tested in imperfect cancellation

residue. For completeness, the primary-user detectors (those trained on AWGN)

are also tested in the secondary-user experiments. Using these different detectors

trained in different types of noise answers the research questions: (i) how well can

the detectors perform in the imperfect cancellation residue; (ii) how well do the

detectors transfer across those distributions; and (iii) whether or not the Constant

False Alarm Rate (CFAR) behavior of the detectors is maintained between operating

in AWGN and the cancellation residue.

The structure of this chapter is as follows: Section 3.2 provides a brief literature

survey into examples of neural networks being employed for similar or related

tasks. Section 3.3 describes the operation of the classic energy detector. Performance

characteristics and closed form solutions for that classic detector are provided.

Section 3.4 describes the creation and operation of the CNN detector. Section

3.5 discusses training the CNN detector. Section 3.6 provides the test results for

the experiments in AWGN and interference. Section 3.7 concludes the primary-

user experiments in AWGN and represents the end of the work published in [2].

Section 3.8 extends the work in [2] by describing experiments in cancellation residue.

Section 3.9 provides an analysis of the experiments in cancellation residue. Lastly,

section 3.10 provides directions for future work.

3.2 Neural Networks for Signal Detection

For signal detection, the classifier will distinguish between two classes, Signal

Present and Signal Not Present. The classifier presented in this chapter will perform

this function in the presence of AWGN and CW interference. One of the earliest

references to the use of machine learning in signal detection comes from [20] and [15].

In [20], a multilayer perceptron was used for detecting the presence of a target signal
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corrupted by bandlimited AWGN. In both [20] and [15] it is shown that a multilayer

perceptron can converge to a minimum mean square error approximation of the

Bayes optimal discriminant. This concept was further tested in [13] where it was

demonstrated that for a single signal the multilayer perceptron did converge to the

optimal classifier. As more types of signals were added, increasing uncertainty, the

multilayer perceptron did not converge to the optimal detector. It was concluded

in [13] that the nonlinearities (activation functions) used in the neurons could not

approximate the optimal likelihood ratio test in the presence of multiple classes of

signals. The nonlinearity of the multilayer perceptron was replaced with a radial-

basis function in [5] and used to detect signals in non-Gaussian noise that followed

either a double exponential, contaminated Gaussian, or Cauchy distribution.

Reference [19] describes the use of a Support Vector Machine (SVM) to determine

the threshold for a CFAR energy detector. An SVM is a classifier, and the exper-

iment in [19] used the SVM to classify the environment. From that classification

of the environment, a CFAR threshold was selected. In reference [17], an ANN

was employed for signal detection using multiple features combining energy and

cyclostationary properties. The test signal in reference [17] was analog Amplitude

Modulation, oversampled by 10 with 1024 samples.

Deep learning is a subset of machine learning where the feature extractor is

trained along with the classifier. The advantage is that the deep learning classifier

can, through training, identify a feature set which distinguishes between the desired

classes as opposed to designing those features by hand. Deep learning was used

for signal detection in [8]. Reference [8] uses a CNN to detect a Binary Phase-Shift

Keying (BPSK) signal oversampled by 100. Reference [8] provides cyclostationary

properties as the input to the CNN.
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3.3 The Energy Detector

The classic energy detector [18], also called a radiometer, computes the sum of the

squares of the magnitude of each sample over a vector of observed samples. This

sum of squared-magnitude values represents the energy of the signal. The energy

detector uses this measure of energy to perform a binary hypothesis test. If the

measured energy exceeds a predetermined threshold, then the detector determines

that a signal is present, however, this decision may be incorrect and therefore a false

alarm. If the energy falls short of the threshold, then the detector will determine

there is no signal present, however this decision may be incorrect and therefore

a missed detect. The incoming signal will be complex-valued and at baseband;

therefore the decision regions shown in Fig. 3.1 are on the complex plane. There are

two error categories, false alarm and missed detection. A false alarm (fa), occurs when

the detector erroneously determines that a signal is present. A missed detect (md),

occurs when the detector fails to determine that a signal is present. The probabilities

Pfa and Pmd of false alarm and missed detection, respectively are not symmetric.

The energy detector is a parametric detector as it requires knowledge of the noise

power.

Expressions for Pfa and Pmd in AWGN are given in equation 3.1 and 3.3. Proofs

are provided in reference [4]. Γ(·, ·) is the normalized upper incomplete gamma

function as shown in (3.2) where the normalization is 1
Γ(N)

= (N − 1)!. σ is the

standard deviation of the AWGN. λ is the tuneable threshold for the energy detector.

The Q function is the Marcum-Q function. N is the number of complex samples

used to measure the energy. γ is the Signal to Noise ratio (SNR).

Pf a = Γ
(︃

N,
λ

2σ2

)︃
(3.1)
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Figure 3.1: Energy Detector Decision Regions

Γ(N, b) =
1

(N − 1)!

∫︂ ∞

b
xN−1e−xdx (3.2)

Pmd = 1 − QN

(︄√︃
γ

σ2 ,

√︃
λ

σ2

)︄
(3.3)

Using (3.1), one can solve for a threshold to given a desired probability of false

alarm and estimate of the noise variance. That solution is shown in (3.4) where
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Γ−1 is the inverse normalized upper gamma function. This function is available in

Matlab.

λ = σ2Γ−1(N, Pf a) (3.4)

The Pfa does not vary with signal power, only with noise power and the thresh-

old. As a result of this phenomenon, a common method for determining where

to place the threshold is CFAR. In CFAR, the threshold is chosen for an acceptable

Pfa with respect to some measured noise power at the receiver. The noise at the

receiver is expected to be wide-sense stationary. Pmd depends upon the power of

the received signal and the power of the noise; and the power of the received signal

will vary. This concept is illustrated in Fig. 3.2.

When comparing the CNN detector against the classic energy detector, it is

assumed the energy detector enjoys a perfect noise-floor estimation. In practice, the

performance of the energy detector would heavily depend on the accuracy of the

noise-floor estimate.

For an energy detector taking 453 observations, with noise at unit variance, and

no normalization of the sum of energy, Pfa and Pmd are shown in Table 3.1. The

length of the measurement is set to 453 samples because that is the length of the

measurements used by the AlexNet detector, and will be explained in section3.4.

The “Pfa” column in Table 3.1 is the false alarm probility used to compute the

threshold. The values in Table 3.1 are calculated directly from equations 3.1 and 3.3.

Simulation results of the energy detector are shown in Fig. 3.2. For the simulation,

SNR is calculated by adjusting signal power with respect to the noise power. Fig.

3.2 shows the probabilities Pfa and Pmd as a function of the detector threshold for

different Signal to Noise Ratios (SNRs) while holding noise power at the receiver

constant. In the simulation, the square-root of the average energy was used in order
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to compress the x-axis of the Fig. 3.2. The overlap between the Pfa and Pmd curves

increases as SNR decreases.

Table 3.1: Missed Detect Rate for the Energy Detector in AWGN

Pfa

SNR
3 dB 0 dB -3 dB -6 dB -9 dB

1e-3% 0.00% 0.00% 0.00% 25.72% 94.90%
0.25% 0.00% 0.00% 0.00% 2.12% 58.91%
1.50% 0.00% 0.00% 0.00% 0.42% 34.80%
8.00% 0.00% 0.00% 0.00% 0.00% 12.90%

Fig. 3.3 shows how the energy detector responds to different levels of SIR.

When an interfering signal is added to the received signal, the total power of that

received signal increases. The result is that the Pfa and Pmd curves move to the right.

The energy detector threshold is sensitive to absolute power, and that threshold

will need to be recalculated for every power level of the CW interferer that is

encountered in order for the energy detector to maintain a constant false alarm rate

or overall accuracy.

The values in Table 3.1 are dependent on absolute power. If the absolute power

of the received signal were to change, as would happen if there were an adjustment

in the automatic gain control of the analog front-end of the receiver, the Pfa and Pmd

curves would shift much like is shown in interference example in Fig. 3.3.

3.4 The CNN Detector

The CNN detector is obtained by retraining the AlexNet CNN, to classify 227×227

sized spectrograms as representing signal plus noise or noise only. The spectrogram

is calculated from the signal, and given to the CNN Detector for classification. Each

spectrogram is created for complex-valued baseband samples. Those samples are

entered into a length 227 delay line. Every new sample in pushes one sample
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Figure 3.2: Energy Detector Performance
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Figure 3.3: Energy Detector Performance in the Presence of Interference

out. The delay line begins full. For each new sample, a 227-length Discrete Fourier

Transform (DFT) is taken. The magnitude-squared of each sample from the resulting

vector output by the DFT is then taken. That vector of magnitude-squared values

produces one row in the 227×227 spectrogram. In total, 453 samples are used in the

creation of a spectrogram. The spectrogram is then converted to decibels (dB). The
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smallest bin in dB in the spectrogram is set to pixel intensity 0. All dB bin values are

then normalized by the largest dB bin value. All normalized dB bin values are then

scaled by 255. This yields a spectrogram images with pixel intensities that always

range from 0 to 255.

Given that the goal is to detect images in AWGN with low SNRs, it is important

to select a CNN that shows some resilience in the face of significant AWGN. Ref-

erence [7] compares numerous CNNs against different impairments. The CNNs

which did well against AWGN were VGG-Faces, SqueezeNet, and AlexNet. Refer-

ence [7] tested other impairments such as brightness. Brightness is a concern in this

work due to the limited dynamic range provided by the 8 bits available for pixel

intensity. SqueezeNet lagged behind AlexNet when the images were impaired by

brightness. After all considerations, AlexNet was chosen for these experiments.

3.5 Training Results in AWGN (Primary-User Detec-
tors)

All training used mini-batches and stochastic gradient descent with momentum.

Momentum was set to 0.9. The mini-batch size was set to 10. All training sets are

split such that 10% of the training set is reserved as a validation set.

For the two noise experiments, the CNN detectors were trained against images

that were created at four SNR values (-9 dB, -6 dB, -3 dB, 0 dB) using AWGN and a

BPSK signal oversampled at 4 samples per symbol. For each SNR case, one CNN

detector was created and trained. The CNN detector only needed to be trained once

in order to be tested in both experiments. Both noise experiments use the same

trained CNN detector for a given SNR, but use two different sets of testing images.

When training for the two noise experiments, training was substantially slower in

the low SNR cases as compared to the high SNR cases. When trained against 0 dB
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SNR spectrograms, a total of 800 training images were used in 5 epochs resulting

in a 100% validation at the end of training, while training at -9 dB SNR required

1600 training images and 24 epochs with an 82.5% validation accuracy. The CNN

detector at -3 dB was trained in 6 epochs settling on 100% validation using 800

training images. The CNN detector trained at -6 dB SNR was trained in 9 epochs

settling on 93.75% validation with 800 training images. These values are shown in

Table 3.2. Given the falling validation accuracy, -9 dB SNR was taken as the lower

limit for these experiments.

For the interference experiment, the CNN detector was trained against 0 dB

SNR and a random Signal-to-Interference ratio (SIR) where the CW interferer had a

random center frequency for each spectrogram. When training for the interference

experiment, 1600 training samples were used and 100% validation accuracy was

achieved in 3 epochs. The CNN detector was retrained for 3 epochs on a 0 dB SNR

spectrogram with a CW interferer. The power of the CW interferer is a uniformly

distributed random variable ranging between 0 (no interferer) and 0 dB SIR (equal

to the signal power). The frequency of the CW interferer is a uniformly distributed

random variable between -0.5 and +0.5 of the sample rate.

Table 3.2: Training Results

Trained SNR Epochs Training Samples Validation Accuracy
0 5 800 100.00%
-3 6 800 100.00%
-6 9 800 93.75%
-9 9 1600 82.50%
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3.6 Testing Results in AWGN (Detecting a Primary-
User)

For all experiments, each test case was conducted with 800 unique test images. In

each test case, 400 of the images contained a signal and 400 images did not. The

SNR or SIR of the images used in a test case are specific to that case. The signal

was a BPSK signal oversampled at 4 samples per symbol. The noise, and in some

cases random CW interference, was added to the signal before the spectrogram

was taken. Images without a signal were produced from noise and in some cases

random CW interference.

3.6.1 Detection in the Presence of a Fixed Noise Floor

The first test for the CNN Detector was to characterize the performance of the

detector in AWGN. In the training phase, four separate CNN detectors were trained,

each focused on a different target SNR. Each of those CNN detectors was tested

with new spectrograms. The tests measured the rate of missed detects and false

alarms across SNR values of 3 dB, 0 dB, -3 dB, -6 dB and -9 dB.

The results for the Pfa are shown in Table 3.3. Each row is a trained value (Train)

meaning that specific CNN detector was trained against spectrograms with that

SNR. The column headers are for test values (Test) meaning that a specified CNN

detector was tested against spectrograms with that SNR. The CNN detector behaves

as a CFAR detector where the false alarm rate is determined by the SNR against

which it was trained.

The results for Pmd are shown in Table 3.4. Comparing Table 3.4 and Table 3.1

shows that the perfect energy detector exhibits better performance at a threshold

related to the CFAR exhibited by the CNN detector. Much like the energy detector,

Pmd at low SNRs improves as Pfa is allowed to worsen.
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Table 3.3: False Alarm Rate for the CNN Detector in AWGN

Train
Test 3 dB 0 dB -3 dB -6 dB -9 dB

0 dB 0.00% 0.00% 0.00% 0.00% 0.00%
-3 dB 0.75% 0.00% 0.25% 0.25% 0.00%
-6 dB 1.75% 1.00% 1.25% 2.00% 1.50%
-9 dB 6.50% 7.75% 8.00% 8.25% 8.50%

Table 3.4: Missed Detect Rate for the CNN Detector in AWGN

Train
Test 3 dB 0 dB -3 dB -6 dB -9 dB

0 dB 0.00% 0.25% 12.50% 69.00% 96.25%
-3 dB 0.00% 0.00% 0.25% 30.00% 79.75%
-6 dB 0.00% 0.00% 0.00% 10.75% 55.50%
-9 dB 0.00% 0.00% 0.00% 1.25% 21.50%

3.6.2 Primary-User Detection in the Presence of a Variable Noise
Floor

In this experiment, the CNN detector was tested on spectrograms resulting from

signals with the same SNR but varying absolute values of noise power resulting

in different noise floor levels. The goal of this experiment was to determine if the

AlexNet detector could maintain the same performance across different absolute

values of noise without an explicit noise estimate. No retraining was performed.

Because the SNR was constant, a change to the absolute value of the noise requires

the same change in dB to the absolute value of the power of the signal. The CNN

detector has no such dependency on absolute values and continues to operate

on the spectrograms. The results of this experiment are shown in Table 3.5. The

CNN detector used for this experiment was the one trained against -3 dB SNR. The

spectrograms for testing where all at 0 dB SNR.

The CNN detector results in Table 3.5 demonstrate near identical performance to
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Table 3.4 and Table 3.3. This is quite different from the Energy Detector which must

change the threshold in order to maintain an optimal overall accuracy or CFAR

to accommodate a changes to the absolute power levels. It is clear that the CNN

detector has no such dependency on absolute power.

Table 3.5: Variable Noise Power Results

Noise Variance Missed Detect False Alarm
0.5 (-3 dB) 0.00% 0.00%

1 (0 dB) 0.00% 0.00%
2 (3 dB) 0.25% 0.50%
4 (6 dB) 0.50% 0.00%

3.6.3 Primary-User Detection in the Presence of Noise and Inter-
ference

In the last experiment, the CNN detector was tested against an environment with

interference. Spectrograms without a signal were created from a CW tone that was

added to AWGN. Three cases of CW interferer power were tested, those being CW

interferer power equal to the signal (0 dB SIR), random CW interferer power, and no

CW interferer. Fig. 3.4 shows two conditions side by side. One spectrogram in Fig.

3.4 has only noise and the other has noise and a CW tone, which is the white line

on the left. The center frequency of the CW interferer was random, ranging across

the entire band in the spectrogram. For any one spectrogram, the CW interferer

would be of one absolute power and one center frequency. For a spectrogram with

a signal, a CW tone and AWGN were added to the BPSK signal (oversampled by 4).

The results are shown in Table 3.6. An SIR of ∞ dB indicates there was no

interferer in that test case. One CNN detector, trained on a variety of CW interferer

powers and frequencies, can distinguish spectrograms containing signals whether

the interferer is present or not. The CNN detector does not need to be retrained if
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Figure 3.4: Noise and Interference

the CW interferer goes away or re-appears.

Table 3.6: Interference Results

SIR Missed Detect False Alarm
0 dB 1.00% 0.00%

Random 0.50% 0.00%
∞ dB 1.50% 0.00%

3.7 Conclusion of the Primary-User Detection Tests

The CNN detector demonstrates strong advantages over the classic energy detector.

The energy detector’s threshold can be tuned for a specific set of absolute power

levels, but for a range of absolute power levels, the CNN detector shows better

performance. The energy detector’s threshold can be tuned to a constant false

alarm rate corresponding to a specific noise floor measurement, but this requires

an accurate noise floor measurement. Because the received signal will vary in
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power, attempting to normalize the variance of the input to the energy detector will

cause a change to the absolute power of the noise floor and thus break the constant

false alarm rate. The CNN detector has no such dependency on absolute power at

the receiver. The CNN detector achieves CFAR performance by being trained on

specific SNRs, and does not require an estimate of the noise floor.

The CNN detector demonstrated superior performance as compared to the

energy detector in the presence of an interferer, and did not require any parame-

terization of that interferer. The threshold for the energy detector moved with the

power of the interferer whether the threshold be set for overall accuracy or constant

false alarm.

When compared the results of these experiments to those reported in [8], cal-

culations converting SNR to energy per sample over the power spectral density of

noise, Es/N0, must take oversampling into account. Without band-limiting after

digitization, Es/N0 will be 10log10 (OSR) dB higher than the reported SNR; where

OSR is the rate by which the data is oversampled. This is due to the increased noise

power commensurate with the wider Nyquist bandwidth resulting from oversam-

pling. The CNN used in [8] detected the BPSK signal with 70% accuracy at -20 dB

SNR while oversampling by 100. This means the detector had a 70% probability of

signal detection at 0 dB Es/N0. The CNN detector oversampled the BPSK signal by

4, therefore an SNR of -6 dB corresponds to an Es/N0 of 0 dB, at which point the

CNN detector had a 98.75% probability of signal detection when trained against -9

dB SNR.

In addition to the advantages in performance as a signal detector, the CNN

detector demonstrates how fine tuning can quickly re-purpose an existing CNN

to perform a new task seemingly unrelated to the original task. With very few

samples, and on readily available desktop computing hardware, a CNN as complex

as AlexNet can be redeployed to numerous other tasks by way of fine tuning.
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3.8 Detection in Cancellation Residue

The following sections will detail the training and testing of the AlexNet detector

for detecting the presence of secondary users in cancellation residue. The residue is

created as described in chapter 2 and [3]. An Energy detector and a Cyclostationary

detector establish a means by which to compare the performance of the AlexNet

detectors. Two of the AlexNet detectors from the preceding sections are re-used

for these experiments, those being the detectors trained at -3 and -6 dB SNR. In

addition, two secondary-user detectors are trained on cancellation residue impaired

by imperfections in the frequency, channel, and payload estimates as originally

described in chapter 2 and [3].

The secondary-user detectors were each trained on 1600 training samples. As

in section 3.5, the training used mini-batches and stochastic gradient descent with

momentum. Momentum was set to 0.9. The mini-batch size was set to 10. The

sampling rate was 20 MSPS, and thus the covert signal was sampled at 2 samples

per chip. Both detectors were trained for 6 epochs. Two detectors were trained, one

with residue produced with an OFDM signal at 25 dB SNR and the other at 27 dB

SNR. Both had the covert signal set to 31 dB SNR. The AlexNet detector trained on

the 25 dB SNR residue had a final validation accuracy of 80%. The AlexNet detector

trained on the 27 dB SNR residue had a final validation accuracy of 88.75%

3.8.1 Determining the Range of Test Cases

The goal of these measurements is to find the effective ranges of the detectors. Three

test cases are presented in this section and are defined by pairs of SNR and SIR

values. SNR refers to the Signal to Noise ration of the incumbent OFDM signal.

SIR refers to the Signal to Interfere Ratio measured as the ratio of the power of the

OFDM signal to the power of the covert signal. The Interference to Noise Ratio
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(INR) is the ratio of the power of the covert signal to the power of the noise and that

is calculated in decibels as INR = SNR − SIR. The values in Table 3.7 are provided

for convenience.

Because the energy detector does not normalize the power of the input, this

experiment was designed in a manner similar to section 3.6.2 where the power of

the input is varied. As in [3] and [2], a noise estimate is not being generated for the

energy detector.

The cyclostationary detector relies on the cycle-frequency domain profile which

is extracted from the spectral coherence as described in [10]. Therefore the features

used by the cyclostationary detector in this experiment are normalized.

In these tests, ROC curves are produced by varying the detector threshold across

the signal-present and signal-not-present distribution of measurements. These tests

were run using a packet of 1000 bytes for a total of 3440 samples.

Table 3.7: INR values for SNR,SIR pairs

SNR (dB) SIR (dB) INR (dB)
25 31 -6
25 33 -8
23 31 -8

In the first test case with an SNR of 25 dB and an SIR of 31 dB, as shown in Fig.

3.5, the cyclostationary detector with cancellation performs well yielding a ROC

curve with a considerable area under the curve. This means that a low probability

of false alarm can be selected and still maintain a high probability of detection. The

energy detector does not show much promise without or without the cancellation,

although cancellation does yield some improvement to the ROC curve of the energy

detector.

The second test case uses an SNR of 25 dB and an SIR of 33 dB.The INR of this
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Figure 3.5: ROC for SNR 25 dB, SIR 31 dB

test case is -8 dB, meaning that the covert signal will be 8 dB below the noise floor

as opposed to the INR of -6 dB in the previous test case. The results are shown in

Fig. 3.6. The ROC curve of the cyclostationary detector with cancellation begins

to fall back toward the diagonal line. This is due to the reduction in power of the

covert signal. The covert signal is 8 dB below the noise floor.

In the third test case the SIR is restored to 31 dB but the SNR of the OFDM signal

is reduced to 23 dB. The INR is -8 dB just like in the second test case, but now bit

and packet errors are more likely due to the lower SNR of the OFDM signal. The

ROC curve is plotted in Fig. 3.7 and that result is comparable to the second test case

plotted in Fig. 3.6.

These experiments have shown that the energy detector fails to detect the covert
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Figure 3.6: ROC for SNR 25 dB, SIR 33 dB

signal at all, and that the performance of the cyclostationary detector begins to

plummet around -8 dB INR. These results provide a range of test cases for the

AlexNet experiments. The AlexNet test will focus on testing at -6 dB INR with a 25

dB SNR and a 31 dB SIR and -8 dB INR with a 23 dB SNR and a 31 dB SIR.

3.8.2 AlexNet Detector Performance in Imperfect Residue

In this experiment, the AlexNet detectors were run against residue from imperfect

cancellation. What makes the cancellation imperfect is there are errors in the esti-

mation of the exact waveform to be canceled. These errors can be bit errors from

incorrect demodulation, errors in the frequency and phase estimates, and errors in

the channel estimates.

The results for False Alarm are shown in Table 3.8, and the results for Missed
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Figure 3.7: ROC for SNR 23 dB, SIR 31 dB

Detect are shown in Table 3.9. Each row in the tables gives results for one of the

previously defined AlexNet detectors. The columns indicate the SNR and SIR of

the test case where 25/31 is an SNR of 25 dB and an SIR of 31 dB.

Table 3.8: False Alarm Rate for the AlexNet Detector in Imperfect Residue

Label
Test 25/31 23/31 25/33

-3 dB 0.50% 1.125% 0.75%
-6 dB 0.125% 0.125% 0.50%

25 dB Imp 8.375% 8.5% 7.875%
27 dB Imp 7.375% 7.00% 6.75%
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Table 3.9: Missed Detect Rate for the AlexNet Detector in Imperfect Residue

Label
Test 25/31 23/31 25/33

-3 dB 82.63% 91.88% 92.50%
-6 dB 84.50% 93.00% 93.75%

25 dB Imp 35.375% 49.25% 50.5%
27 dB Imp 36.625% 47.25% 49.75%

3.9 Analysis of the Secondary-User Detection Results

The experiment with the secondary-user detectors was designed to answer several

research questions: (i) how well can the detectors perform in the imperfect can-

cellation residue; (ii) how well do the detectors transfer across those distributions;

and (iii) whether or not the CFAR behavior of the detectors is maintained between

operating in AWGN and the cancellation residue.

The secondary-user AlexNet detectors outperformed the energy detector with

cancellation, even though the energy detector had 3440 samples and the AlexNet

detector can only use 453 samples. The cyclostationary detector outperformed

the AlexNet detector, however it was able to use far more samples. This is one

area where the AlexNet detector does not do well: it is not as easily scalable in

input size as are the energy and cyclostationary detectors. The detectors do not

transfer well outside of the distribution of the noise in which they were trained.

The two AlexNet detectors trained in AWGN did not perform well in the residue.

This shows that an AlexNet detector trained in a distribution of noise must remain

in that distribution of noise. The AlexNet detectors did not require a noise floor

estimate in cancellation residue. The AlexNet detectors maintained their CFAR-like

performance in cancellation residue.
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3.10 Future Work

It may be possible to repeat these successes in signal detection with a CNN less com-

plex than AlexNet. Reducing the computational complexity of the CNN detector is

one avenue of future work. For example, the cyclostationary detector outperformed

the AlexNet detector in cancellation residue, however the cyclostationary detector

is computationally costly. If a simpler network could be employed, that network

could outperform the cyclostationary detector from the perspective of computa-

tional cost. A CNN detector could be expanded to tackle other interference sources

and jamming threats. This would require identifying the interference, simulating

the interference, and training the CNN detector to ignore the interference.
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Chapter 4

OFDM Window Estimation for
Interference Cancellation

4.1 Introduction

Windowing at the transmitter is a popular means to control the bandwidth of an

OFDM signal. This windowing is typically implemented by extending the cyclic

prefix is into the previous OFDM symbol and adding a cyclic suffix that extends

into the next OFDM symbol. These two extensions are tapered by multiplying

the samples with a windowing function. The effect is a tapered transition from

one OFDM symbol into another. The benefit of these tapered extensions is to limit

the bandwidth of the OFDM signal in a way that is less expensive than direct

filtering. The benefits of windowing at the transmitter are explored in detail in [3].

Windowing at an OFDM transmitter is often optional, not required, by a wireless

standard. For example, the IEEE 802.11 standard suggests windowing to limit the

OFDM bandwidth and provides a window definition, but does not mandate the use

of it [6]. The effects of the recommended IEEE 802.11 window are documented in

[15]. The use, shape, and length of a window at the transmitter is left to individual

vendors in the 802.11 standard. The effects of windowing at the transmitter are kept

in check by the modulation accuracy requirements of the standard.
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4.1.1 Effects of OFDM Windowing at the Transmitter on PER

The downside of these extensions into adjacent symbols is that they constitute

self-imposed inter-symbol interference, reducing the resilience of the OFDM signal

to multipath channels. The effect of OFDM windowing at the transmitter as self-

interference on multipath immunity was explored in [5] and [7] which propose

“orthogonality restoration” to remove the self-interference by cancellation and

improve system performance. In order for this cancellation to work, the windowing

term is included when reconstructing the interference. Both [5] and [7] assume the

windowing function is known in advance, thus the window is not estimated.

4.1.2 Multi-User Interference Cancellation Considerations for OFDM
Windowing at the Transmitter

Multi-User Interference Cancellation (MUIC) is a well-known concept that enables

wireless users to address interference caused by multiple users accessing a single

spectrum resource concurrently. MUIC is the process of modeling and reproducing

a signal from one particular user for the purposes of removing that signal from

the summed ensemble of all received signals. Successive Interference Cancellation

(SIC) [9] is a category of MUIC implementations in which cancellation is applied

sequentially over multiple users in the ensemble.

The use of MUIC requires that the receiver be able to cancel a portion of the

received signal. That assumes that the receiver has a sufficient model of the signal,

and can estimate the parameters of that model with sufficient accuracy. Several

models appear in literature. All the models begin with demodulating the signal

and then remodulating. The remodulated signal is then augmented with estimated

impairments for a better match at cancellation. This process is described in [9]

but it does not define the parameters to be estimated. The signal model employed

for cancellation in [2] estimates the channel coefficients. The signal model in [10]

80



employs estimates for channel coefficients and “inter-channel interference” (ICI)

meaning wireless impairments have caused the subcarriers of the OFDM symbol

to no longer be orthogonal. The signal model in [8] estimates amplitude and

phase. These signal models for cancellation may be insufficient. The work in this

chapter shows that OFDM windowing at the transmitter has a significant impact

on cancelling the OFDM signal.

4.1.3 Contributions of this Chapter

The work in this chapter shows that the window applied at the OFDM transmitter

can be estimated from the received samples. That estimate can then be used to

remove the aforementioned self-interference or improve over-all cancellation for

MUIC applications. Despite uncertainty in the estimate of the window, it is shown

that this signal parameter can offer significant SIC performance improvements.

The goal is to estimate a sufficient number of signal parameters to create a copy of

the OFDM with enough accuracy to provide significant suppression of the OFDM

signal.

OFDM symbols from IEEE 802.11 are used as a working example without loss of

generality. Multiple examples of windows are used following the recommendation

in the 802.11 standard. The estimation of the window is detailed and applied to

improve the PER as selectively applied cancellation can remove self-interference.

The estimate of the window is also applied to cancel whole OFDM packets. The

novel contributions of this chapter are as follows:

• The work in this chapter shows that the windowing parameter in OFDM has

a significant effect on cancellation performance.

• The estimation of the OFDM window is detailed in this chapter. The OFDM

window is estimated without assuming window symmetry. That window
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estimate is then be used to cancel the self-interference caused by windowing.

• In this chapter it is not assumed that the OFDM transmitter has special im-

plementation, meaning one cannot rely on any symbol alignment, common

OFDM numerology, superposition coding as in [14], or some other means

implemented to the ease retrieval of lower power users.

4.1.4 Organization of this Chapter

The structure of this chapter is as follows: Section 4.2 develops a signal model

for cancellation similar to that in [2] using estimates of the channel coefficients

and the center frequency offset (CFO), without accounting for windowing. Section

4.3 develops a signal model for OFDM with windowing. Section 4.4 develops

an algorithm to estimate the window which includes the presence of a multipath

channel. The RMS error of the algorithm is plotted as functions of the number of

OFDM symbols used to generate the estimate and as a function of the power of noise.

Section 4.5 applies the algorithms from in sections 4.2 and 4.4 to synthetic OFDM

packets and shows that estimating the window provides significant improvement

in cancellation. Section 4.6 describes an experiment applying the algorithms in

sections 4.2 and 4.4 to cancel OFDM signal data collected over-the-air. It is shown

that the new method provides a 5.3 dB improvement over the method in section

4.2. The cancellation is then applied to the covert signal established in chapter

5. It is shown that the cancellation algorithm enhanced with a window estimate

decreases the BER of the covert signal, outperforming the original design. Lastly, it

is shown that using the enhanced cancellation algorithm to selectively cancel the

self-interference of the cyclic extensions results in an improved PER for the OFDM

waveform itself. Section 4.7 summarizes the results.
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4.2 OFDM Signal Model without Windowing

An OFDM symbol is created using an M-length Inverse Fast Fourier Transform

(IFFT) represented in (4.1) where M represents the total number of subcarriers

including all pilots and nulls. An OFDM packet is a concatenation of N OFDM

symbols in time, where each individual symbol is denoted op[k]. The subscript

p indicates the placement of an OFDM symbol in the packet and k indexes the

individual samples which comprise that OFDM symbol. The data frame dp in (4.1)

represents all data to go into the IFFT for any one OFDM symbol. A single OFDM

symbol is length K and is at least M + L long where L is the mandatory cyclic prefix

length and L < M. As an example, an 802.11g OFDM symbol uses a 64-length

IFFT (M=64) and an OFDM symbol length of 80 (K=80) after a cyclic prefix of 16

(L=16). The range −L ≤ k ≤ −1 represents the mandatory cyclic prefix and the

range 0 ≤ k ≤ M − 1 represents the original length-M IFFT.

op[k] =
M−1

∑
m=0

dp[m]ej 2πmk
M (4.1)

An OFDM packet is a concatenation of N OFDM symbols in time, where each

individual symbol is denoted op[k] as represented in (4.2). The subscript p indicates

the placement of an OFDM symbol in the packet and k indexes the individual

samples which comprise that OFDM symbol.

s⃗ = {o⃗0∥o⃗1...∥o⃗N−1} (4.2)

4.2.1 Channel and Frequency Offset Impairments

The OFDM packet as seen by the receiver r⃗ after timing offset correction is shown

in (4.3) where matrix H represents the multipath channel, the diagonal matrix ΛΘ

represents the carrier frequency offset, and n⃗ noise at the receiver. The carrier offset
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diagonal matrix ΛΘ contains phase offsets for each sample of s⃗ as shown in (4.4). If

the carrier frequency offset is constant then when integrated in time it will produce

a phase ramp in ΛΘ. The magnitude of each element is unity. Each kth element on

the diagonal represents a phase offset value Θ[k] shown as a phase ramp in (4.5).

r⃗ = ΛΘHs⃗ + n⃗ (4.3)

ΛΘ = diag(ejΘ) (4.4)

Θ[k] = ωk + ϕ (4.5)

In order to correct the impairments, the corrections derived from estimates of

those impairments must be applied to the received samples. Once the first sample

of the 802.11 packet has been determined, estimates are needed for ΛΘ and H,

those being ˆ︂ΛΘ and ˆ︁H. After those parameters are estimated, the conjugate and

inverse of those estimates ˆ︂ΛΘ
∗

and ˆ︁H−1 will be found. However, these impairment

estimations are imperfect and there will be some error after the corrections are

applied.

The first impairment to be estimated is the CFO impairment defined in (4.4).

The frequency correction estimate ˆ︂ΛΘ
∗

is applied to the received samples r⃗ before

an estimate of the channel matrix can be calculated. Therefore, this error propagates

into the estimation of the channel impulse response. The estimate of the channel

impulse response is initially calculated using the known sequence in the 802.11

preamble. This only provides estimates for the 52 non-zero subcarriers. The channel

estimate is linearly interpolated over the null-subcarriers in phase and magnitude.

The inverse of the channel estimate ˆ︁H−1 is calculated and used to equalize the

received signal. The channel estimate is imperfect and therefore the equalization
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will be imperfect.

4.2.2 Applying Cancellation

The re-modulation produces an OFDM waveform ˆ︁s representing the estimate of the

OFDM signal at the transmitter with no impairments. Applying the corrections to

the received waveform may shape the noise and may adversely affect signals from

other users. Therefore, the estimated channel ˆ︁H and the estimated carrier frequency

offset ˆ︂ΛΘ are applied to ˆ︁s as shown in (4.6).

u⃗ = ΛΘHs⃗ + n⃗ − ˆ︂ΛΘ ˆ︁Hˆ︁s (4.6)

Assuming the demodulation process saw no bit errors, then ˆ︁s = s⃗ and the

residue reduces to (4.7).

u⃗ = (ΛΘH − ˆ︂ΛΘ ˆ︁H)s⃗ + n⃗ (4.7)

The signal-error-term of the residue is (ΛΘH − ˆ︂ΛΘ ˆ︁H)s⃗. As the estimation

functions improve, the estimated parameters approach the actual parameters,ˆ︂ΛΘ ˆ︁H → ΛΘH. As that happens, the signal-error term goes to zero. This would

leave only the noise term in the residue. It is not expected that the parameter

estimates will be perfect. The cancellation technique is expected to be imperfect and

it is expected that some remainder of the OFDM signal to be present in the residue.

Furthermore, these two impairments may be insufficent as will be shown in the

subequent sections.
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4.3 OFDM Windowing at the Transmitter

Different windowing schemes have been explored in literature, such as [3] [11] [4]

[13] and others. Here the general case is analyzed. A generalized model for the

windowing function wi is provided in (4.8) where i is the sample index, L is the

length of the cyclic prefix and suffix in samples, and M is the IFFT length in samples.

The variable i is being used instead of k because the application of the window to

the OFDM signal is periodic. The length L is generally set the longest multipath

channel in which the OFDM signal is expected to operate. Note that the window

definition in (4.8) does not assume that the windowing is symmetric. There are

two transition regions in the window definition defined by two separate sets of

coefficients αi and βi. The transition from 1 to 0 at the end of a symbol, including

the cyclic suffix, is represented by the coefficients αi. The transition from 1 to 0 in

the cyclic prefix, including any extension thereof, is represented by the coefficients

βi.

The window definition in (4.8) does set some practical limits on the window,

without loss of generality. The window is only given nonzero values for −2L ≤

i ≤ M + L − 1. The window values are 1 for 0 ≤ i ≤ M − L − 1. The indices for α

and β range over 0 ≤ i ≤ 2L − 1. The length of the α and β coefficients is set to 2L;

however, some of these coefficients may be zero or one.

wi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for i > M + L − 1
αi−M+L for M − L ≤ i ≤ M + L − 1
1 for 0 ≤ i ≤ M − L − 1
β−1−L−i for − 2L ≤ i ≤ −1
0 for i < −2L

(4.8)

The definition in (4.8) limits the nonzero values in a window applied to any one

OFDM symbol to a range −2L ≤ i ≤ M − L − 1. This imposes a maximum length

of M + 3L on the extended OFDM symbol where M + L represents the standard
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length of the OFDM symbol, L represents the maximum extension of the cyclic

prefix, and the final L term represents the maximum length of the cyclic suffix.

The index into α is i − M + L where the offset −M + L represents the start of that

transition. The index into β is −1 − L − i where the term −i reverses the order of

the coefficients and where the offset −1 − L represents the optional extension of the

cyclic prefix.

Windowing is illustrated in Fig. 4.1. The figure shows three copies of an OFDM

symbol o[k] each of M samples. The repetitions on either end form the cyclic prefix

and suffix. The cyclic prefix is longer than the suffix because the cyclic prefix has a

mandatory minimum length of L. The cyclic suffix and extended cyclic prefix must

protrude into the adjacent OFDM symbol.

Figure 4.1: Cyclic Prefix and Suffix as Repeating Symbols and Window

The IEEE 802.11 standard contains a windowing recommendation that defines

a window transition period spanning equally across the boundary between two

OFDM symbols adjacent in time. One half of that transition window extends the

cyclic prefix past 16 samples and into the previous OFDM symbol. The other half of

the transition window creates a cyclic suffix which extends into the cyclic prefix of

the next OFDM symbol. This is illustrated in Fig. 4.2 where a transition region is

shown between the two sequential and overlapping OFDM symbols.

The windowed OFDM symbols are defined in (4.9). The sample index k is

relative to the current OFDM symbol op. This is why the previous and next OFDM

symbols, o(p−1) mod N and o(p+1) mod N require offsets in the sample index. The
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Figure 4.2: Cyclic Prefix and Suffix Overlapping

window coefficients used on an OFDM symbol are selected by the sample index

plus offset applied to that OFDM symbol. Three OFDM symbols are windowed

and then summed to create a combined symbol vp. With no windowing v−1 and v1

are always zero, and thus v⃗ = s⃗ where s⃗ is defined in (4.2). This process introduces

self-interference from o(p−1) mod N and o(p+1) mod N into op. The summation in (4.9)

can be compressed into (4.10) where q is an integer −1 ≤ q ≤ 1 representing the

previous, current, and next OFDM symbol.

vp[k] =

wk+M+Lo(p−1) mod N [k + M + L]

+ wkop [k]

+ wk−M−Lo(p+1) mod N [k − M − L]

(4.9)

v[k] =
1

∑
q=−1

{w [k − q (M + L)]

o(p+q) mod N [k − q (M + L)]}

(4.10)

Fig. 4.3 illustrates the creation of vp and the resulting self-interference. The

cyclic prefix of op+1 extends into the end of op. The cyclic suffix of op−1 extends

into the cyclic prefix of op. Therefore OFDM symbol op has interference from both
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adjacent symbols.

Figure 4.3: Overlaying the Extended OFDM Symbols

4.4 Estimating the OFDM Window

While using a cyclic suffix and windowing an OFDM symbol is well documented,

window estimation for OFDM signals is rarely found in the literature. Estimating

the window function is not necessary for demodulation. A cyclic suffix and window

are not required in many OFDM standards, such as IEEE 802.11.

A preamble is included at the start of many OFDM packets in order to facilitate

estimation of various parameters such as carrier frequency offset and symbol timing

phase. That estimate is used to synchronize the received signal. In addition to

synchronization impairments, the windowed OFDM signal defined in (4.9) passes

through a wireless channel modeled as a linear convolutional impairment shown

in (4.11). The term h represents the channel impulse response. An estimate of

the channel impulse response can be obtained from the aforementioned preamble.

The channel impulse response is estimated in the frequency domain and provides

estimates for non-zero subcarriers only. In the case of IEEE 802.11g this represents

52 out of 64 possible subcarriers. The channel estimate is linearly interpolated over

the null-subcarriers in phase and magnitude as described in [12]. The channel

estimate is then converted to the time domain. The sample index k − ℓ in (4.11) can

take on a value less than −L, as allowed by (4.9) for any combined symbol vp.
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yp[k] =
L−1

∑
ℓ=0

h[ℓ]vp[k − ℓ] (4.11)

The receiver generates an estimate of the received signal ŷp[k] which includes

the multipath channel distortion. This estimate is constructed from estimates of

the individual OFDM symbols ôp and an estimate of the multipath channel ĥ. A

squared-error term is defined in (4.12) using the estimate ŷp[k]. Minimizing the

error defined in (4.12) with respect to the window coefficients provides an estimate

of the window ŵi[Kp + k] where K is the length of an OFDM symbol without

windowing. Note that the sample index k is relative to the current symbol. For each

OFDM symbol p, the sample index k ranges over −L ≤ k ≤ M − 1 thus creating

M + L error samples for each OFDM symbol used. As an example, for an 802.11

OFDM sample, there would be 80 (64+16) error samples produced for each OFDM

symbol. The estimation of the window is performed over N OFDM symbols each

of length K samples.

|ϵ[Kp + k]|2 =
(︂

yp[k]− ŷp[k]
)︂ (︂

y∗p[k]− ŷ∗p[k]
)︂

(4.12)

Taking the derivative of (4.12) with respect to the estimate of the window ŵi[Kp+

k] where i = k − q (M + L)− ℓ, and substituting vp[k − ℓ] with (4.10), the derivative

in (4.13) is found. The derivative in (4.13) reduces to (4.14).

∂|ϵ[Kp + k]|2
∂ŵi[Kp + k]

=

− ϵ[Kp + k]ĥ
∗
[ℓ]ô∗(p+q) mod N[i]

− ϵ∗[Kp + k]ĥ[ℓ]ô(p+q) mod N[i]

(4.13)
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∂|ϵ[Kp + k]|2
∂ŵi[Kp + k]

=

− 2 Re{ϵ∗[Kp + k]ĥ[ℓ]ô(p+q) mod N[i]}

(4.14)

The update step is defined in (4.15). For every OFDM symbol there are L updates

to each window coefficient estimate as the channel h is L coefficients long. Each

OFDM symbol is indexed by p indicating the sequential placement of that OFDM

symbol in the OFDM packet. The update function in (4.14) is scaled by a step

size µ and accumulated into estimates of all ŵi[Kp + k + 1] for each valid index

i. The values for α are the window coefficient estimates ŵi[Kp + k + 1] where

M − L ≤ i ≤ M + L − 1. The values for β are the window coefficient estimates

ŵi[Kp + k + 1] where −2L ≤ i ≤ −1.

ŵi[Kp + k + 1] = ŵi[Kp + k]

+ 2µ Re{ϵ∗[Kp + k]ĥ[ℓ]ô(p+q) mod N[i]}
(4.15)

The process of estimating an OFDM window is as follows: when receiving an

OFDM packet, demodulate all symbols. Use the demodulated bits to create a new

OFDM packet. The received OFDM packet is yp[k] and the locally generated one

is ŷp[k]. Use no windowing on ŷp[k]. The estimate ŷp[k] is used as the reference

in (4.12) to which the received data measurement yp[k] is compared. The received

OFDM signal yp[k] and the estimate ŷp[k] are then used as in (4.14) to create an

estimate of the window ŵ.

Adding noise into the window estimation creates uncertainty not only in the

measurement yp[k] but also in the reference ŷp[k] to which that measurement is

compared because the added noise creates bit errors. Those bit errors cause errors

in the estimate ŷp[k] and that reduces the total accuracy of the window estimation.

Fig. 4.4 shows the average RMS error resulting from estimating the window of a
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received OFDM packet as a function of SNR. The estimate is performed on an IEEE

802.11 packet using 64 QAM. The channel estimate is perfect for this measurement.

Each data point in Fig. 4.4 represents an estimate performed over 148 OFDM

symbols using a step size of 0.01 and 20 epochs. The window defined in [6] and the

parameter transition time serves as a roll-off. Here the transition time is set to 500

ns for ease of visualization. The window error is not linear with SNR because the

frequency of bit errors increases as SNR decreases, adding additional uncertainty

into the estimate.

Fig. 4.5 shows the actual and estimated window overlaid. The window was

estimated with a data symbol Es/N0 of 27 dB using 20 epochs. The index i ranges

from −32 ≤ i ≤ 79, that being −2L ≤ i ≤ M + L − 1. The regions representing α

Figure 4.4: Window Error as a function of SNR
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and β are shown.

4.5 Cancelling OFDM Signals with Imperfect Window
and Channel Estimates

Combining the definition of windowing in (4.10) with that of cancellation in (4.6)

results in (4.16). For the purposes of cancellation, windowing is represented as a

diagonal matrix Λwq estimated as ˆ︃Λwq . Each element is Λwq is the window value

applied to the signal sq offset by q as in (4.10). Three copies of the signal s⃗ without

windowing are created, offset in samples, and then windowed by the respective

Λwq . The channel and CFO estimates will be imperfect as in (4.6).

Figure 4.5: Actual and Estimated Window Overlaid
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u⃗ = ΛΘH
1

∑
q=−1

Λwq sq + n⃗ − ˆ︂ΛΘ ˆ︁H 1

∑
q=−1

ˆ︃Λwq ˆ︁sq (4.16)

In this experiment, 500 synthetic OFDM packets are generated each with a

payload of 4000 bytes. The raised cosine window as defined in [6] with a range

of transition times to the packets from 100 ns to 1 µs. A window transition time

of 100 ns represents the smallest window that can be applied to the 802.11 packet.

We execute the window estimation algorithm across a range of SNR from 20 to 30

dB. We then perform cancellation with and without the window estimate following

(4.6) and (4.16). The cancellation c is calculated as c = var(r⃗)/var(u⃗) that being the

ratio of the variance of the received samples r⃗ to that of the residue u⃗. The ratio of

the cancellation c with windowing to without windowing for six window transition

values are plotted in Fig. 4.6. The two methods are equal (0 dB) when no window

is present. As soon as even a small window is applied, the cancellation method

with windowing falls well short of that without. In Fig. 4.7 the power of the residue

resulting from each test case is subtracted from the SNR of that test case. The SNR

represents the absolute maximum cancellation, as then the residue would be noise.

The results are all negative values demonstrating all test cases fall short of perfect

estimates. The test cases employing windowing estimation keep much closer to a

ratio 0 dB ratio.

4.6 Over The Air Experiment

4.6.1 OTA Cancellation Residue Reduction

The OTA data from chapter 2 and [1] was used in an experiment to determine the

how well the technique described in this chapter would improve cancelling OTA

OFDM signals. In this experiment, the two cancellation algorithms were applied to

961 OFDM packets captured OTA. The SNR estimates of the OTA packets varied
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from 29 to 31 dB. The modulation scheme used by all captured OFDM packets for

the data was QAM64. The average cancellation without estimating the window

as in (4.6) was 19.5 dB. The average cancellation with estimating windowing as

in (4.16) was 5.3 dB higher. Both the base cancellation without windowing and

the windowing improvement fell short of expectations from the experiment with

synthetic data, however, this experiments demonstrates unequivocally that the

window estimation provided a substantial boost in cancellation. Fig. 4.8 is a

spectrum plot showing a single recorded OTA packet and the residue from the

cancellation algorithms with and without windowing. This figure illustrates the

impact of including windowing in the cancellation algorithm.

Figure 4.6: Cancellation Improvement as a function of SNR
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Figure 4.7: Ratio of Cancellation to SNR as a function of SNR

Fig. 4.9 shows the residue of the cancellation in time with and without window-

ing. The residue without windowing is as it was in chapter 2. The cancellation

improves by 5.3 dB. There is still a periodic jump in the residue magnitude that

occurs in between OFDM symbols, but it is now diminished.

4.6.2 OTA PER Improvement

The OTA data from chapter 2 and [1] was used in an experiment to determine the

how well the technique described in this chapter would improve Packet Error Rates.

The improvement was measured over a range of SNR. In order to generate that

range, synthetic complex-valued noise was added to the recorded packets. The

synthetic noise was scaled relative to the variance of a given OTA recording. If
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a given OTA recording had a variance of σ2
r , the noise would be scaled to have a

variance of ρσ2
s where ρ is the linear value of the desired SNR. The variance σ2

r is

for a given recording, including the noise in that recording as r = s + n. This the

actual SNR for any instance in this experiment is actually lower (worse) than the

target SNR. That fact is not important to this experiment as the PER resulting from

the window cancellation improvement will be compared to the PER at that same

simulated SNR without the window cancellation improvement.

Fig. 4.10 shows the PER curves as functions of SNR resulting of this experiment.

The improvement enabled by the window cancellation is more clear in Fig. 4.11

where the difference between the two PER curves, PERnormal − PERcancel is plotted.

Note that the difference is always positive meaning the PER of the normal case

Figure 4.8: Spectrum of OTA Packet and Two Residues
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Figure 4.9: OTA Cancellation Residue with and without Windowing

is always worse than the case with window cancellation. The difference in Fig.

4.11 is plotted as an absolute value of increased throughput. The peak of this

absolute value occurs in the low 20s of dB SNR where the PER curve for the 64QAM

modulation scheme began to accelerate upward in chapter 2. At the peak of the PER

improvement, the maximum throughput of the 54 Mbps data rate mode (64QAM)

of 802.11a/g increases by 1.428 Mbps representing a 2.65% improvement.

4.6.3 OTA Covert Signal BER Improvement

The OTA experiment from chapter 2 and [1] was repeated to determine if Window

estimation improved the covert signal BER. The covert signal is the same as in chap-

ter 2 and [1]. The average cancellation without estimating the window as in (4.6)
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Figure 4.10: Packet Error Rate as a function of SNR

was 19.5 dB with no covert signal present. Fig. 4.12 plots the resulting BER curves.

The first curve is the covert BER with no cancellation of the incumbent OFDM

signal. The second curve is the covert BER with cancellation but no accounting for

the windowing at the OFDM transmitter. The last covert BER employs cancellation

of the incumbent with an estimate of the windowing at the OFDM transmitter.

The estimated window gives better performance than with no accounting for the

windowing at the OFDM transmitter.

4.7 Conclusion

We have presented and evaluated the performance of both an OFDM window esti-

mation method and a technique to use that estimate to cancel the self-interference
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Figure 4.11: Difference in the Packet Error Rate as a function of SNR

resulting from OFDM windowing. We presented the window estimation method

in a generalized form that does not require foreknowledge of the window imple-

mentation. We use 802.11 as an example application for this method. We show that

despite the presence of bit errors which cause uncertainty in the window estimate,

the estimation and cancellation methods offer significant performance improvement.

Self-interference resulting from OFDM windowing The work in this chapter has

developed an algorithm to estimate at the receiver the OFDM window applied at

the transmitter. The estimation algorithm was designed to be applied to any OFDM

windowing at the transmitter without foreknowledge of the window implementa-

tion. The estimation algorithm was evaluated in terms of RMS in AWGN. 802.11

was used as an example application for this method. The estimation algorithm
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Figure 4.12: Difference in the Packet Error Rate as a function of SNR

was used to create window estimates that were then applied to the cancellation

synthetic and OTA OFDM signals. It was shown that including windowing greatly

improved the total cancellation of OFDM signals. The targeted cancellation of the

extended cyclic prefix and entire cyclic suffix resulted in an improvement in PER.
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Chapter 5

Exploiting Vulnerabilities in
Deep-Learning RF Classification using
an Interference Signal

5.1 Introduction

Spectrum monitoring is a function performed for a number of commercial and

military applications. Spectrum monitors will sense the spectrum for wireless

activity and will often attempt some form of classification if activity is found. The

scenario is illustrated in Fig. 5.1. Two nodes are communicating, and the spectrum

monitor intercepts their communication. The spectrum monitor can then fill the

role of “Eve the Eavesdropper" discussed in chapter 1. It is common for spectrum

monitors to have a modulation classification capability. CNNs have been used

in prior work as a means of modulation classification such as in [11]. One of the

things that can be done with the modulation classifier is reverse engineering the

intercepted link. For the sake of privacy, and to prevent spoofing, it is advantageous

to make such reverse engineering expensive. To that end this chapter will focus on

breaking the modulation classification capability in the spectrum monitor.

The covert signal developed in chapter 2 and [3] is a BPSK waveform hidden
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Figure 5.1: Spectrum Monitoring Scenario

inside an OFDM incumbent. In the case of detection, it is beneficial to frustrate clas-

sification efforts to potentially convince the monitor the detection was an anomalous

false alarm and to frustrate any reverse engineering. Therefore, it is advantageous

to arm the covert signal with a means to defeat a modulation classifier.

It is well documented that CNNs are susceptible to adversarial attacks, the

concept being first introduced in [13]. Prior work has shown the potential to

transfer such attacks from one CNN to another [5]. It was suggested in [5] that the

cause of this transferability phenomenon was that these different CNNs are learning

similar functions when they are trained to perform the same task. Therefore, it may

be possible to develop an adversarial attack against one CNN modulation classifier

and deploy it against a different and unknown CNN also used for modulation

classification. This will allow the two in-network nodes to employ a means to
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frustrate a monitor’s modulation classification without knowledge of the internals

of the CNN used.

Prior work has shown that modulation classifiers based on CNNs are susceptible

to adversarial attacks as shown in [12] [1] [4] [8] [6] and [7]. The work in [12] uses

the Fast Gradient Method to develop the adversarial waveform for untargeted

attacks and measured the frequency of misclassification. The work in [1] uses

the Fast Gradient Sign Method to generate a targeted attack. The work in [8]

considers adversarial waveforms for both targeted and untargeted attacks with

consideration of the multipath channel. The work in [4] examines the effect of

several RF impairments on the application of an adversarial waveform created using

the Fast Gradient Sign Method, those impairments being noise, center frequency

offset (CFO), sample time offset, and a dynamic channel. In [4] it was found

that the adversarial example was less effective as CFO increased. The analysis

in [4] has similarities to this work; however, in this work we allow the spectrum

monitor to determine the center of the energy detected in the spectrum and allocate

a bandwidth for classification. The results in this work show the attack is more

effective as the spectrum monitor overestimates or deliberately allows a larger

bandwidth. The training method in [6] and [7] is similar to the one employed in

this work. In [7] an adversarial waveform is created for the purpose of masking

a communication link from a monitor using Projected Gradient Descent. This

constrains the L2 norm of the input vectors, thus constraining the power of the

adversarial waveform, for the purpose of mitigating adverse effects on the BER

of the communication link. The difference in the training method in this work

and [7] is that the constraint employed here is imposed on the ratio between the

training waveform and the adversarial waveform, thus the power of the adversarial

waveform can be scaled freely with respect to the transmitted waveform. All of the

cited prior work allows the monitor to intercept the waveform with no uncertainty
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in the symbol rate (in terms of samples per symbol). In a deployed spectrum

monitoring system, the monitor would not have this information. A common

technique would be for the monitor to employ spectrum sensing to detect the

waveform, perform bandwidth estimation on the waveform, and then estimate

the necessary sample rate based on that information. In this work, we test the

transferability of an adversarial waveform with this uncertainty in mind.

In this work, a system consisting of a two communicating wireless network

nodes and a spectrum monitor was considered. The spectrum monitor intercepts

the wireless link between the two nodes and attempts to determine the modulation

being used. The spectrum monitor was modeled as sensing the wireless activity,

estimating the bandwidth, and allocating a sample rate to be used for classification

based on that bandwidth estimation. The monitor employs a CNN to classify the

observed modulation scheme.

In order to frustrate classification, the wireless nodes employed an interfer-

ence signal to be transmitted concurrently with the communication signal. This

specialized interference is referred to as the adversarial waveform. This adversarial

waveform provided a targeted attack, meaning that the misclassification was directed

to a chosen false modulation scheme. The adversarial waveform was trained to be a

targeted attack and to constrain the Signal-to-Interference Ratio (SIR) to a constant

value. That attack was then applied against another CNN modulation classifier

with a different but overlapping set of modulation classes, different structure, and

trained on different data. Not all misclassifications observed in the second modu-

lation classifier were equal to the intended target modulation. Both targeted and

untargeted misclassifications on the second classifier were measured over a range

of error of the bandwidth estimate.

The contributions of this work are:
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• Create an adversarial waveform that is easily deployable. Because the adver-

sarial waveform and the communication signal are transmitted from the same

node concurrently and additively, the monitor will receive them both across

the same multipath channel. Therefore, there is no separate multipath channel

to consider for the adversarial waveform. To further simplify deployment,

the power of the adversarial waveform will be scaled with the power of the

communication signal to meet a target SIR. The power of the adversarial

waveform need only be set relative to the locally generated transmitted signal.

To meet this goal, SIR was chosen as the sole constraint to be applied to the

training of the adversarial waveform.

• Create an adversarial waveform that mitigates the adverse effects of the self-

interference on the desired communication signal. We trained an adversarial

waveform on one CNN, called CNN-A, by constraining SIR. The adversarial

waveform in this work is not explicitly constrained to minimize its impact

on the BER rate of the communication signal. Our contention is that we can

mitigate the adverse effects on the communication signal by constraining SIR.

• Test the transferability of the adversarial waveform to an unknown CNN,

representing the monitor and called CNN-B, with symbol rate uncertainty. The

two wireless nodes cannot know the details of the modulation classifier used

by the monitor. The development of the adversarial waveform is deprived

of any knowledge of the training set or modulation classes employed by

the monitor. Therefore the adversarial waveform must be developed on a

separate modulation classification CNN. Additionally, the monitor does not

have exact knowledge of the symbol rate. The modulation classification will

be performed over a range of symbol rate estimation error.

Two different CNNs were used for modulation classification which will be
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referred to as CNN-A and CNN-B. CNN-A and CNN-B were trained to classify

different, but overlapping, sets of modulation classes and at a different number of

samples per symbol. The two CNNs were trained on different data.

After training the two CNNs on their respective training sets, an adversarial

waveform was created using CNN-A. The adversarial waveform was created by

applying a waveform to the input layer of the CNN, but calculating the loss function

against a deliberately incorrect label. When creating the adversarial waveform all

layers of CNN-A are left constant and not updated as part of back-propagating

the error all the way to the input layer. The error at the input layer is accumulated

over multiple training iterations and constrained to meet a constant SIR. Instead

of adjusting the network weights, the accumulated error is used to bias the input

waveform so as to reduce the loss on the next training iteration. This accumulated

error becomes the adversarial waveform. The effect of the adversarial waveform

on the BER of the original communication system was measured over a range of

Eb/N0 and SIR. The transferability of the adversarial waveform to another CNN

was tested by deploying it against CNN-B over a range of SIR values and symbol

rate uncertainty. CNN-B is used to test the adversarial waveform. Therefore,

the internals are unknown to the in-network nodes deploying the adversarial

waveform.

This chapter is organized as follows: Section 5.2 details the CNNs under test

and the methods by which those CNNs were trained. The differences between the

CNNs in terms of samples per symbol, modulation classes, and input layer size

are detailed. Section 5.3 details the creation of the adversarial waveform. Section

5.4 details the effects of the adversarial waveform on the communication signal

intended to be masked by the adversarial waveform. Section 5.5 details how well

the adversarial attack transferred between the CNNs under test. Conclusions and

future work are discussed in Section 5.6.
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A portion of this chapter has been accepted to be published in published in [2]

5.2 Convolutional Neural Networks Under Test

5.2.1 CNN-A

For CNN-A we used the CNN model from the MATLAB example ”Modulation

Classification with Deep Learning” [10]. The layers of CNN-A are shown in Table

5.1, and are as specified in [10]. CNN-A has an input layer which takes in 1024 input

time-domain complex samples processed as an image of size 2x1024 at 8 samples

per symbol (sps) thus there are 128 symbols in each input vector. Each of the

convolutional layers use rectified linear activation units. The first five convolutional

layers in CNN-A end with max pooling. The sixth convolutional layer of CNN-A

ends in average pooling.

5.2.1.1 Implementation

Table 5.1: Structure of CNN-A

Layer Dimensions
Input 2 × 1024
Conv 1 16×8×2
Conv 2 24×8×16
Conv 3 32×8×24
Conv 4 64×8×48
Conv 5 96×8×64
Softmax 11

CNN-A supports the following 11 modulation classes:

• Binary phase shift keying (BPSK)

• Quadrature phase shift keying (QPSK)
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• 8-ary phase shift keying (8-PSK)

• 16-ary quadrature amplitude modulation (16-QAM)

• 64-ary quadrature amplitude modulation (64-QAM)

• 4-ary pulse amplitude modulation (PAM4)

• Gaussian frequency shift keying (GFSK)

• Continuous phase frequency shift keying (CPFSK)

• Broadcast FM (B-FM)

• Double sideband amplitude modulation (DSB-AM)

• Single sideband amplitude modulation (SSB-AM)

5.2.1.2 Modulation Classification Training for CNN-A

The training information is provided in [10]. Here an overview is provided: CNN-A

was trained using synthetic data representing the 11 different modulation classes. A

square root raised cosine (RRC) filter is applied to the symbols of the linear digital

modulation schemes (BPSK, QPSK, PSK, QAM, PAM). The excess bandwidth of the

RRC filter is 0.35, the filter spans 4 symbols at 8 sps. The GFSK modulation uses a

bandwidth-time product of 0.35. The CPFSK modulation uses a modulation index

of 0.5.

5.2.2 CNN-B

CNN-B is based on "CNN2" from [11]. The layers of CNN-B are shown in Table 5.2.

CNN-B has an input layer which takes in 128 input time-domain complex samples

processed as an image of size 2x128 at 4 samples per symbol.
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Table 5.2: Structure of CNN-B

Layer Dimensions
Input 2 × 128
Conv 1 256×1×3
Conv 2 80×1×3
Dense
ReLU

256

Softmax 7

CNN-B supports the following 7 modulation classes:

• Binary Continuous Phase Frequency Shift Keying (labeled “2CPM”)

• 4-ary Continuous Phase Frequency Shift Keying (labeled "4CPM")

• Binary Phase Shift Keying (BPSK)

• Quadrature Phase Shift Keying (QPSK)

• 16-ary quadrature amplitude modulation (16-QAM)

• 4-ary pulse amplitude modulation (PAM4)

• Gaussian minimum shift keying (GMSK)

5.2.2.1 Modulation Classification Training for CNN-B

Time error was introduced as uniformly random sample shifts in the range of

[0,OSR], where OSR represents the oversampling rate and was set to 4 sps. That

there are 4 sps means that each length 128 input vector represents 32 symbols.

Phase error is introduced as a static rotation that is randomly selected for each set

of 128 samples from the range of [0,2π]. Frequency offsets were induced to emulate

112



tuning error in a standard software-defined radio (SDR). Therefore, we defined the

upper and lower bounds of our frequency error to be 10% of our symbol rate; the

frequency error applied to each set of 128 samples is sampled from the uniform

distribution with the bounds specified by ±10% fSYMB. The range of signal-to-noise

(SNR) ratio used for training and validation was [6 dB, 30 dB]. Finally, each input of

128 samples was normalized to 0 dB average power. Training was conducted with

a batch size of 1024, using negative log likelihood loss (NLLL) and Adam optimizer

[9] with a learning rate of 10−3.

5.3 Creating the Adversarial Waveform

The adversarial waveform was created by training on CNN-A. For each training

iteration, a batch of 128 random BPSK waveforms was generated. Each waveform

was complex valued and 1024 samples long. Signal power was kept constant

for each input waveform during adversarial waveform training. The label of

the training data is set to CPFSK instead of BPSK. Because the training data is

deliberately mislabeled to a specific modulation scheme, the resulting adversarial

waveform will be a targeted attack. The loss function for the training was cross

entropy. The layers of CNN-A were prevented from updating any weights during

the training. The error gradient was back propagated to the input layer where it

was accumulated as a bias that becomes the adversarial waveform. The adversarial

waveform was initially set to random values following a Gaussian distribution.

After each training iteration, the power of the adversarial waveform was measured.

The power of the adversarial waveform was compared to the constant waveform

power to measure SIR. The accumulated adversarial waveform is then scaled such

that the SIR was kept constant across all training iterations. This scaling imposes a

constraint on the power of the adversarial waveform relative to the power of the

training samples. The update equation is shown in (5.1) where k is an iteration
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index, x⃗ is the current vector of BPSK samples to be input, a⃗[k] is the current vector

representing the adversarial waveform, ytarget is the target class, µ is the step size,

Pu⃗[k] is the average power of the intermediate vector u⃗, and PSIR is the desired SIR.

a⃗[k] =
u⃗[k]
Pu⃗[k]

PSIR (5.1)

u⃗[k] = a⃗[k − 1]− µ∇x⃗(L(θ, x⃗[k − 1] + a⃗[k − 1], ytarget)) (5.2)

A target SIR of 7 dB was found to provide consistent misclassification after 100

training iterations. The spectrum of the pulse shaped BPSK signal overlaid with the

spectrum of the adversarial waveform is shown in Fig. 5.2.

Figure 5.2: Spectrum of RRC BPSK and Adversarial Waveform
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After the adversarial waveform was trained, CNN-A was tested against all

modulation types with the adversarial waveform added. The confusion matrix is

shown in Fig. 5.3. The adversarial waveform pushed the classification of linear

modulation schemes toward CPFSK. CPFSK was unaffected. Angular modulation

schemes such as B-FM and GFSK were affected much less than the linear modulation

schemes.

Figure 5.3: Confusion Matrix of CNN-A after Adversarial Waveform Applied

Figure 5.4: Communication System Model
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Figure 5.5: BER Loss using the Adversarial Waveform as a function of SIR

Figure 5.6: Matched Filter Effect on the Adversarial Waveform
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5.4 Impact of the Adversarial Waveform on the Com-
munication System

The impact of the adversarial waveform on the BER of the communication signal

was tested. The proposed communication system making use of an adversarial

waveform is illustrated in Fig. 5.4. The transmitter sends the communication

signal and masks that signal with the adversarial waveform. The receiver of the

communication signal uses a matched filter. A significant portion of the power of

the adversarial waveform is outside of the bandwidth of the matched filter.

The loss to BER performance as a function of SIR is shown in Fig. 5.5. At an SIR

of 5 dB the total loss in BER performance is about 1 dB in Eb/N0.

The matched filter reduces the effective SIR at the receiver by suppressing a

significant portion of the adversarial waveform. Thus the SIR at the receiver is

significantly less than the SIR at the transmitter. This is illustrated in Fig. 5.6

which shows the filtered and unfiltered spectrum of the adversarial waveform.

The matched filter reduces the impact of the adversarial waveform on the BER

performance of the communication signal. The monitor does not have the benefit of

this matched filter. The monitor cannot limit the bandwidth of the received signal

to the specifications of the receiver node and also provide a generalized modulation

classification function. In this work, the transmitter and receiver used RRC filters

with an excess bandwidth of 0.35, as per the training data used for CNN-A. After

the matched filter, the effective SIR increased by 16 dB.

5.5 Transferability of Attack

The adversarial noise from CNN-A was applied to a set of 512 randomly generated

BPSK signals at varying SIRs and supplied them as batch input to the CNN-B
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network. 512 randomly generated BPSK signals were generated and the adver-

sarial noise was non-coherently combined at varying SIRs. Because the monitor

is intercepting the transmission and does not have knowledge of the modulation

scheme, thus the need for modulation classification, there will be uncertainty in

the monitor’s estimate of the symbol rate. In this experiment, the error between

the symbol rate used by the communication system and the monitor was ranged

between 1/1, 10/9, 5/4, and 4/3. These resample rates represent an increase in the

bandwidth allocated for analysis at the spectrum monitor from 0% to 33%. The

assumption is the spectrum monitor will err on the side of making the bandwidth

wider rather than risk making the bandwidth too narrow and inadvertently filter

the target out. The composite signal to be intercepted by the monitor was resampled

to simulate the symbol rate mismatch. Then these resampled composite signals

were input into CNN-B. CNN-B was trained on a sample rate of 4 samples per

symbol. A resample rate of 1/1 provides that number of samples per symbol. A

resample rate of 5/4 provides 5 samples per symbol, thus increasing the bandwidth

allowed for analysis at the spectrum monitor.

The results are shown in Fig. 5.7. The classification accuracy of each resampling

rate is plotted alongside the misclassification rate as functions of the SIR in dB.

The misclassification accuracy measures how often the BPSK signal is misclassified

as 2CPM or 4CPM. The best classification accuracy for each symbol rate can be

seen at the highest SIR, and there is a decrease in the best accuracy as a function

of the resample rate. However, the increase in the analysis bandwidth renders the

spectrum monitor far more vulnerable to the adversarial waveform. Assuming

the monitor can match the symbol rate of the communication system with 100%

accuracy, that being a resample rate of 1/1, the SIR required to reduce classification

accuracy to 50% is around 1 dB. This improves to an SIR of 5 dB when the monitor

samples the intercepted signal at a rate of 5 samples per symbol, which is a resample
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rate of 5/4. The impact of a resampling error is most severe from 1/1 to 10/9, where

the SIR required to confuse CNN-B drops the most. This shows that only a small

amount of uncertainty is required to increase the vulnerability of CNN-B to the

transferred attack. Given that the monitor will not have knowledge of the symbol

rate beforehand, this presents a significant vulnerability.

5.6 Conclusion

Our test presents means to attack spectrum monitors using modulation classifiers

that rely on CNNs. CNN-A had a different structure, used a different symbol

rate, was trained on a different data, and had a different set of modulation classes

as compared to CNN-B. An adversarial waveform was generated from CNN-A

and effectively transferred to CNN-B despite these differences. This experiment

demonstrates the potency of the adversarial waveform attack. We trained the

adversarial waveform using a method in which SIR is kept constant such that we

could target a low SIR. We then varied the SIR and found that a stronger interferer

was needed when transferring the attack against CNN-B.

Though the two CNNs had different modulation classes, the two sets were

overlapping. As suggested in [5], the cause of this transferability phenomenon seen

in this experiment could be that these different CNNs are learning similar functions

as the output does have some overlap. Future research may determine how a

transferred adversarial waveform would affect a CNN with a non-overlapping set

of classes.

In addition to demonstrating the transferability, we also demonstrated that er-

rors in symbol rate estimation at the monitor renders the modulation classification

more susceptible to such attacks. The attack becomes more effective if the spectrum
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monitor assigns a higher sampling rate. A small over-estimation of signal band-

width provides a significant increase to the effectiveness of the attack. Designers of

a spectrum monitor may be tempted to increase the bandwidth of the analysis of

detected wireless activity; however, this comes at the cost of greater vulnerability to

adversarial waveforms.

This technique can be used as obfuscation against classification, frustrating

reverse engineering efforts, or potentially allow a signal detection to be discarded as

an anomalous false alarm. Therefore this adversarial waveform can aid the covert

signal developed in chapter 2 and [3].

It has been demonstrated that in a realistic environment, where the monitor is

uncertain of the symbol rate, the monitor is far more susceptible to such attacks.

Such attacks make reverse engineering more expensive while maintaining the

usability of the communication signal. Future research may be able to use this

technique to strengthen classifiers. Additionally, physical layer anomaly detection

may reveal the presence of an adversarial waveform masking the modulation type.
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Chapter 6

Conclusion

6.1 Summary, Discussion, and Future Work

This dissertation began with the notion that covert communications can be a force

for good, that covert communications could protect privacy and security. In order

to advance the state-of-the-art in covert communications, this research focused on

physical layer steganography. Physical layer steganography represents the cutting

edge of covert communications waveforms. This chapter will summarize the work

and offers thoughts on the road ahead.

There were several goals for the covert signal developed in this work:

• It is the responsibility of the covert signal to mask itself in the incumbent, no

cooperation from the incumbent can be expected,

• The interference from the covert signal must not inflict a noticeably reduce the

throughput of the incumbent signal or else the covert signal may be exposed,

• The covert receiver does not have a copy of the incumbent signal in advance,

• The covert link must provide a sizeable throughput, and

• The covert transmitter must embed resistance in the covert signal to classifica-

tion and reverse engineering in order to frustrate any exploitation efforts in
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the event of signal detection.

In each chapter of this dissertation, one or more of these goals was addressed.

In chapter 5 and [3], a covert signal was developed using interference cancella-

tion to remove the incumbent OFDM signal, and the recovery of that covert signal

was demonstrated using OTA data. In the context of this interference channel, it

was shown that SIR, not SNR, is the primary limitation of the covert signal sharing

the link with the OFDM signal. Future research on the covert method described

in this work includes but is not limited to increasing the modulation order of the

covert signal in order to increase the data rate and more direct comparisons with

methods like those described in [4] and [5].

A novel signal detection method was developed that can detect signals in the

presence of interference and without an explicit noise floor estimate in chapter

3 and [1]. The covertness of the hidden signal was tested against this and other

detectors. The CNN detector achieved CFAR performance by being trained on

specific SNRs, and does not require an estimate of the noise floor. The CNN detector

demonstrated superior performance as compared to the energy detector in the

presence of an interferer. It may be possible to repeat these successes in signal

detection with a CNN less complex than AlexNet. Reducing the computational

complexity of the CNN detector is one avenue of future work. A CNN detector

could be expanded to tackle other interference sources and jamming threats. This

would require identifying the interference, simulating the interference, and training

the CNN detector to ignore the interference.

In order to facilitate cancelling the incumbent, a parsimonious model of OFDM

signalling was developed prioritizing the effect of the model parameters on cancel-

lation in chapter 4. It was demonstrated that OFDM windowing at the transmitter

has a significant impact on cancellation applications. This work developed an
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algorithm for OFDM window estimation in a generalized form that does not require

foreknowledge of the window implementation. This work then evaluated that

algorithm and applied it to cancel the self-interference resulting from OFDM win-

dowing, resulting in an improvement in the PER of existing OFDM systems. The

estimation of the OFDM window provided significant performance improvement

in cancellation applications. The cancellation technique developed in this research

is applicable to many situations in which signals are transmitted within the same

spectrum resource as an OFDM signal, specifically in the development of new

cellphone standards.

Lastly, in chapter 5 and [2], an attack was developed against automated classifi-

cation tools in order to further protect the privacy and security of the covert signal.

This attack can be used as obfuscation against classification, frustrating reverse en-

gineering efforts. The attack became more effective if the spectrum monitor assigns

a higher sampling rate. A small over-estimation of signal bandwidth provides a

significant increase to the effectiveness of the attack. Designers of a spectrum moni-

tor may be tempted to increase the bandwidth of the analysis of detected wireless

activity; however, this comes at the cost of greater vulnerability to adversarial wave-

forms. Future research may determine how a transferred adversarial waveform

would affect a CNN with a non-overlapping set of classes. Future research may

be able to use this technique to strengthen classifiers. Additionally, physical layer

anomaly detection may reveal the presence of an adversarial waveform masking

the modulation type.

With the capabilities of this covert waveform tested and quantified, this research

task concludes as a completed case study into physical layer steganography applied

to multicarrier transmissions.
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