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Abstract

Speech translation is the task of translating speech in one language to text or speech

in another language, while simultaneous translation aims at lower translation latency by

starting the translation before the speaker finishes a sentence. The combination of the two,

simultaneous speech translation, can be applied in low latency scenarios such as live video

caption translation and real-time interpretation.

This thesis will focus on an end-to-end or direct approach for simultaneous speech trans-

lation. We first define the task of simultaneous speech translation, including the challenges

of the task and its evaluation metrics. We then progressly introduce our contributions to

tackle the challenges. First, we proposed a novel simultaneous translation policy, mono-

tonic multihead attention, for transformer models on text-to-text translation. Second, we

investigate the issues and potential solutions when adapting text-to-text simultaneous poli-

cies to end-to-end speech-to-text translation models. Third, we introduced the augmented

memory transformer encoder for simultaneous speech-to-text translation models for better
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computation efficiency. Fourth, we explore a direct simultaneous speech translation with

variational monotonic multihead attention policy, based on recent speech-to-unit models.

At the end, we provide some directions for potential future research.

Primary Reader and Advisor: Philipp Koehn

Secondary Readers: Sanjeev Khudanpur, Juan Pino
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Chapter 1

Introduction

Machine translation quality has been greatly improved over the past few years, especially

with the rise of neural methods. However, most recent work on machine translation focuses

on the translation from text. Given that one of the important situations with translation

applied is oral communication between people from different linguistic backgrounds, the

direct translation from human speech in real-time is also of great importance. Such real-time

systems can be deployed in scenarios such as translation of streaming videos, interpretation

of speakers in international conferences, or personal translator. More specifically, for a

real-time speech translation system, two important factors should be considered:

1. The translation system is capable of processing the speech input, and generating

correct translation in text or speech output.

1



CHAPTER 1. INTRODUCTION

2. The latency of the translation system should be low enough without huge sacrifice on

translation quality for real-time communication.

The first factor defines a speech translation system, which maps a source speech utterance

to target text or speech. In fact, speech translation has been heavily investigated since 1980s.

However, most of the work focuses on the cascaded approach, where several submodules

are involved:

1. An automatic speech recognition (ASR) system to transcribe source speech to source

text.

2. A text-to-text machine translation system to translate source text to target text.

3. An optional text-to-speech synthesis system to synthesize target text to target speech.

While the cascaded approach can be built on top of several developed submodules, it has

two disadvantages. First, errors can accumulate through the pipeline of submodules, and it

is non-trivial to recover from such errors. Second, the pipeline structure introduces extra

latency to the whole system, due to the additional computation time and a possible lack

of synchronism between submodules. Recent neural-based end-to-end speech translation

models have been developed as the solution for these two issues. They have shown strong

performance over the cascaded approach, especially when large amounts of labeled and

weakly labeled data are available. For streaming translation, an end-to-end speech translation
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system is an even better solution for following reasones,

• The end-to-end model can over perform the cascaded model under certain settings.

For instance, Wang et al. (2022) show that the end-to-end approach for simultaneous

speech-to-text translation can be competitive, and sometimes better, compared with

cascaded approach.

• The End-to-end model can achieve lower latency because of no synchronization

between components. For instance, Chen et al. (2021) shows that the cascaded model

will introduce extra latency because the translation module has to wait until streaming

ASR’s output stabilizes.

• The end-to-end model can save disk space which is crucial for on-device applications.

For instance, Inaguma et al. (2020) show that the end-to-end model could achieve

similar performance with half of the parameters compared with the cascaded model.

The second factor for a real-time speech translation system is low latency. The latency

of a speech translation can come from two parts, one is the computation time of the model,

the other one is the delay caused by the algorithm which determines the wait time for

translation. The first part is a general topic for neural models, which can be addressed

by methods such as model quantilization or compressing. The second part, on the other

hand, is a more specific problem on sequence-to-sequence generation. To address this

3



CHAPTER 1. INTRODUCTION

issue, an algorithm is preferred, in which the model is capable of starting the generation of

the target output before reading the whole source input. The study of such algorithms is

referred to as simultaneous translation. While great progress has been made on the study of

simultaneous translation, most of the work focuses on text-to-text translation. However, the

speech translation scenarios are where the most simultaneous translation are needed.

In this thesis, I will focus on the design of an end-to-end simultaneous speech translation

model, which can be potentially deployed in real-time applications. The major contributions

of the thesis include the following aspects:

• The evaluation of an end-to-end simultaneous speech translation model. It is of great

importance to determine the evaluation metrics for the system before designing it.

The evaluation of a simultaneous model includes two aspects: quality and latency.

While the quality evaluation is similar to the offline system, the evaluation of latency

has to be well-defined, with consideration of both algorithm delay and computation

time. We present a comprehensive definition and evaluation of the simultaneous

speech translation task. We also developed the open-source toolkit SimulEval for

simultaneous translation evaluation, as published in Ma et al. (2020b) (Chapter 2)

• The development of the state-of-the-art text-to-text simultaneous translation policy,

monotonic multihead attention (MMA), along with novel latency regularization

methods, as published in Ma et al. (2019b). MMA adapts monotonic attention based

4



CHAPTER 1. INTRODUCTION

methods to the state-of-the-art transformer (Vaswani et al., 2017) models, achieving a

better latency-quality trade-off than prior work. (Chapter 4)

• The adaptation of text-to-text simultaneous policies to the end-to-end speech trans-

lation, as published in Ma et al. (2020). This thesis is one of the first to discuss

simultaneous translation for end-to-end speech-to-text translation. We analyze the

difficulty of such adaptation, including the longer length and more continuous char-

acteristics of speech input compared with text input. The concept of a pre-decision

module is proposed to enable the text-to-text simultaneous policy work on speech

input. (Chapter 5)

• The development of augmented memory transformer for streaming translation, as

publised in Ma et al. (2021). The augmented memory transformer (Wu et al., 2020)

was first introduced as a transducer-based model for streaming automatic speech

translation. We apply the augmented memory transformer to simultaneous speech

translation to achieve better computation aware latency. (Chapter 6)

• The first attempt of direct simultaneous speech-to-speech translation. A new policy,

variational monotonic attention is introduced to handle not only the long speech input

but also long speech output. The policy is then applied to the direct speech-to-unit

(Lee et al., 2022) model which is independent of intermediate text. (Chapter 7)

5



CHAPTER 1. INTRODUCTION

The summarization of the remaining chapters is as below

• Chapter 3 provides a comprehensive introduction on the related work, including works

on speech-to-text and speech-to-speech translation in both cascade and end-to-end

model. Simultaneous policies, especially monotonic attention based methods are also

introduced.

• Chapter 8 summarizes the thesis, including the findings, limitations and potential

future directions.

6



Chapter 2

Task Formalization

2.1 Introduction

In order to understand the challenges of simultaneous speech translation, it is of great

importance to have a comprehensive definition on the task, along with the evaluation metrics.

There are two aspects of the simultaneous speech translation: speech and simultaneous.

The goal for speech part is to build a system that is able to process human speech, targeting

a more direct translation for communications. A speech translation system automatically

generates text or speech in target language from source speech. Similar to text translation,

the quality of the translation defines the competence of the system. On the other hand, the

simultaneous part indicates that such generation happens concurrently with the input, where

7



CHAPTER 2. TASK FORMALIZATION

the translation starts before the speaker finish a sentence. It focuses on the promptness of

translation, similar to simultaneous human interpretation. Therefore, besides the translation

quality, the latency of the translation is another major factor to consider for simultaneous

translation.

In this chapter, we will give a comprehensive formalization of the task of simultaneous

speech translation. We first introduce the basic concept of speech translation, including the

processing of speech signals, speech-to-text and speech-to-speech translation, and quality

evaluation of a speech translation system. Next we discuss the concept of simultaneous

translation, along with the definition of latency metrics, the simultaneous evaluation setup,

and a toolkit for evaluation.

2.2 Speech Translation

The task of speech translation is a sequence-to-sequence problem, which expects a

probabilistic model, shown as Equation 2.1

Ŷ = argmax
Y

P(Y|X) (2.1)

Where the X is input, and Y is output, Ŷ is the best hypothesis given a probabilistic model.

Different input and output media and languages result in different tasks. Define f as source

8
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language and e as target language. Denote Sf (t) and Se(t) as source and target speech

signals, Wf and We as source and target text. t is the time variable and S∗(t) are real time

signals. Sf (t) and Se(t) are time series values, while Wf and We are sequences of text

tokens. Given different types of input and output, the sequence-to-sequence tasks can be

categorized into four types, shown in Table 2.1. This thesis focus on speech translation

(ST), in which the input is speech in source language and the output can be text or speech in

target language, as listed speech-to-text (S2T) and speech-to-speech (S2S) translation in

Table 2.1. Figure 2.1 illustrates the relationships of tasks in speech applications.

Task input output

Automatic Speech Recognition Sf (t) Wf

Text-to-text Translation Wf We

Speech-to-text Translation Sf (t) We

Speech-to-speech Translation Sf (t) Se(t)
Text-to-speech Translation Wf Se(t)
Text-to-speech Synthesis We Se(t)

Table 2.1: Sequence generation tasks with different input and output.

Automatic 
Speech 

Recognition

Text-to-text 
Translation

Text-to-speech 
Synthesis

Speech-to-text 
Translation

Speech-to-Speech 
Translation

Text-to-Speech 
Translation

Figure 2.1: Tasks in speech applications.
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2.2.1 Speech Processing

Speech signals, or waveform, are a continuous function of time, S(t), which are usually

sampled to reduced to discrete values for storing and processing. Denote the sampling

frequency as fs Hz. The fundamental frequency of a typical adult man ranges from 80

to 180 Hz and that of a typical adult woman from 165 to 255 Hz. Furthermore, there

are higher frequencies in human speech containing other information, such as speaker

identification and timbre. Thus, the sample rate fs has to be high enough to capture the

adequate human speech information for speech applications. Some common sample rates

in different applications are shown as Table 2.2

Sample rate (kHz) Applications

8 Analogy telephone
16 Modern voice over IP communication

22.05 AM Radio
44.1 Audio CD
48 DV, digital TV, DVD, and films

Table 2.2: Sample rates in different speech applications.

Despite of being discrete, the sampled speech waveform is still too sparse to directly

work with. For instance, an utterance of speech of T seconds will be represented by T · fs

scalar values. Therefore, most speech systems operates on speech features, which are

parametric representations mapping small segments of speech utterance into vectors. Define

the window size as Tw and step size as Ts. A speech waveform S(t) can be represented as a

10
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sequence of vectors S = [s1, s2, ...], such that,

si = f (S(t)) , i · Ts −
Tw

2
< t < i · Ts +

Tw

2
(2.2)

where f is a feature extraction function. The design of the feature extraction has been

studied for decades. They are usually functions converting signals from time to frequency

domain, over small segments of the speech utterance. S is also known as speech features,

and the popular choices include Short-Time Fourier Transform (STFT) (Oliver, 1952),

Mel-Frequency Cepstrum Coefficients (MFCC) (Davis and Mermelstein, 1980), Linear

Prediction Coding (LPC) (Portnoff, 1981), Perceptual Linear Prediction (PLP) (Hermansky,

1990), and Log Mel-Filter Bank (LMFB) (Murthy et al., 1999). In practice, the features are

low-dimensional vectors (less than 100), and common practice for timing is Tw = 25ms

and step size as Ts = 10ms.

Speech processing is also known as the front-end procedure, which is a huge topic in

speech applications. But there will not be further discuss in this thesis, since its not our

focus. We will treat the front-end procedure as a black box. Meanwhile, instead of Sf (t),

we will assume the input of the system is source speech feature Sf , On the other hand,

the processing of target speech can be different for tasks, and will be introduced in later

chapters.

11
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2.2.2 Speech-to-Text Translation

A speech-to-text (S2T) translation system is a system which translation source speech

into target text. An illustration of S2T system is shown as Figure 2.2. More specifically,

the system takes source speech feature Sf and generates target text We. Also as shown

in Figure 2.2, there are two approaches to build a S2T translation system: cascaded and

end-to-end.

Front-End

End-to-End

Cascaded

Speech-to-text 
Translation 

System

Figure 2.2: Speech-to-text (S2T) translation.

The cascaded system includes two submodules — An automatic speech recognition

module that transcribes source speech Sf to source text Wf , and a text-to-text machine

translation system to translate Wf to We. One big advantage of the cascaded approach is

that it can be built on top of existing strong systems. As shown in late chapter, the cascaded

approach is the most common direction in the early speech translation research. However,

the cascaded model needs two pass generation and thus will introduce extra latency and

12
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compounding errors.

The end-to-end system directly generates We without the intermediate text Wf . In

spite of requiring more training data, the advantages of the end-to-end approach include

low latency and less accumulated errors. Recently, end-to-end systems have become the

state-of-the-art for the S2T translation task. In this thesis, we focus on end-to-end approach

for translation.

The evaluation of the S2T systems is similar to text-to-text speech translation, in which

the quality is usually measured by automatic metrics, such as BLEU (Papineni et al., 2002)

TER (Snover et al., 2006) and METEOR (Banerjee and Lavie, 2005). In the rest of the thesis,

the translation output is evaluated with the BLEU score. We use the toolkit SacreBLEU

(Post, 2018).

2.2.3 Speech-to-Speech Translation

The input and output of a speech-to-speech (S2S) translation system are both speech,

shown as Figure 2.3. The S2S can also be categorized into two types: cascaded and direct.

Similar to the cascaded S2T, the cascaded S2S is constituted by submodules: a S2T system,

either cascaded or end-to-end, and a text-to-speech synthesis (TTS) system which is applied

on top of We to generate the final output Se(t). Such an approach requires at least target

text We. On the other hand, the direct approach addresses the independence of intermediate
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text, either source or target. The direct approach focus on the immediate generation of target

speech features Se from Sf . An extra vocoder is applied after Se. It can be treated as an

reversed operation of front-end feature extraction, and is separately trained and light-weight.

Front-End

Speech-to-Speech 
Translation 

System

S2T

Cascaded

Direct

TTS

Vocoder

Figure 2.3: Speech-to-text (S2T) translation.

The evaluation of S2S system considers two aspects, the translation quality and the

speech quality. For translation quality, the output is transcribed by a ASR system into text,

which is then evaluated with text translation quality metrics. The speech quality, or the

naturalness of the speech, is usually evaluated by mean opinion score (MOS) from human

evaluators, who give a score from 1-5 on each speech output. Such setting has been widely

adopted in the TTS system evaluation.
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2.3 Simultaneous Translation

Simultaneous translation is the task which starts the translation before the end of source

input. It focus on the latency of the translation, which is important for applications such as

live video translation, personal translator and international conferences. In this section, we

will mathematically define the task of simultaneous translation, and its evaluation scheme.

Figure 2.4 shows the difference between an offline and simultaneous model.

 
Heute werde ich über Energie und Klima sprechen

Today I am going to talk     about           energy  and      climate

Offline S2T

 
Heute werde ich über      Energie und Klima sprechen

Today I am going to talk about                 energy  and      climate

Simultaneous  S2T

Figure 2.4: Difference between offline and simultaneous translation. Simultaneous transla-
tion starts generation before the end of the sentence.

As described in Equation 2.1, the translation system task takes input sequence X and

generate output sequence Ŷ. Denote the corresponding output text isŴe = [ŵ1
e, ..., ŵ

(|Ŵe|)
e ],

which is either Ŷ itself if the output is text or transcription of Ŷ if the output is speech.

Additionally, for speech output, we define Tŵi
e

as the duration of ŵi
e. We define the delay

sequence D, in which each item di is the length of input that has been used to generate

ŵi
e. Figure 2.5 is an example of the relationships among these variables in a speech-to-text

translation setting.
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Heute               werde          ich          über            Energie            und        Klima    sprechen

Today    I am  going to talk about                       energy  and             climate

Figure 2.5: An example of variables in simultaneous speech-to-speech translation: time
t, source speech signal Sf (t), source speech feature Sf , source text Wf , target word We,
duration of the target words Tŵi

e
and delays di. X and Ŷ represent system input and output.

In this example, X = Sf and Ŷ = We

D is a monotonic increase sequence and |D| = |Ŵe|. Thus, a translation system is

simultaneous as long as there exists i < |Ŵe| such that di < |X|. Meanwhile, an offline

translation means di = |X| for all i. The measurement of D varies with input and output

media. Assuming ŵi
e is generated from [x1, ...xj], the measurement of di is defined in

Table 2.3

Input X Output Ŷ Delay Measurement

Wf We j Number of tokens
Sf We j · Ts Time
Sf Se max(j · Ts + Tŵi

e
, di−1 + Tŵi

e
) Time

Table 2.3: Sequence generation tasks with different input and output, and the corresponding
when ŷi is generated by [x1, ..., xj]. Ts is the feature step size in source feature extractor.
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While the delay for text output (first two lines in Table 2.3) is straightforward, the

situation can be complicated since the speech output does not finish immediately after

generation. For speech output we define the delay at the end of each transcribed word,

shown in Figure 2.6 There are two situations. In the first situation, shown as (A) in Figure 2.6,

(A) (B)

Figure 2.6: Two situations when measure the delay di for t̂f(i): (A) di = j · Ts + Tŵi
e

(B)
di = di−1 + Tŵi

e
. In (A), the system is about to finish the previous words before the new

input, while in (B) the system keep generating speech signal when new input coming in.

the reading of xj happens after the full generation of previous token Tŵi
e
. The delay in this

case is straightforward, which is the sum of source speech duration j · Ts and the current

prediction duration Tŵi
e
. The other situation, shown as (B) in Figure 2.6, is that even though

the system already read xj , the generation of previous word ŵi−1
e is not finished. In this

case, the delay is simply di−1 + Tŵi
e
. We use max operation in Table 2.3 to cover both

situation. The long delay in (B) can be either from long target tokens or computation time.

In real application, one has to consider the computation during generation. Thus, in Ma
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et al. (2020), we introduce the concept of computation-aware (CA) and a non computation-

aware (NCA) delay. The CA delay of yi, dCA(yi), is defined as the time that elapses from

the beginning of the process to the prediction of yi, while the NCA delay for yi, dCA(yi)

is defined in Table 2.3. Note that dNCA is an ideal case for dCA where the computational

time for the model is ignored. In other words, dNCA measures the latency caused by the

policy, while dCA additionally takes the system runtime into consideration. Figure 2.7 is an

example of both delays.

Input : ......

......
Output :

Figure 2.7: Illustration the difference between dCA and dNCA. Yellow block is the window
shift time for feature extraction and red blocks are computational time for an SimulS2T
model. dCA consider both yellow and red blocks, while dNCA only consider yellow ones

The delay sequence D is of great importance for simultaneous translation. The way to

evaluate latency of a simultaneous translation system is to compute latency metrics from D.

In the rest of the section, we will introduce the automatic latency metric calculated from D,

and the toolkit used to evaluate latency.
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2.3.1 Latency Metrics

We first introduce the three most common metrics, all of which were first introduced in

text-to-text simultaneous translation. All the latency metrics are defined as functions, of

which the input is D and output is a scalar.

Average Proportion (AP) (Cho and Esipova, 2016), defined in Equation 2.3, measures

the average of proportion of source input read when generating a target prediction.

AP =
1

|X||Ŷ|

|Ŷ|∑︂
i=1

di (2.3)

Despite AP’s simplicity, several concerns have been raised. Specifically, AP is not length

invariant, i.e. the value of the metric depends on the input and output lengths. Moreover,

AP is not evenly distributed over the [0, 1] interval, i.e., values below 0.5 represent models

that have lower latency than an ideal policy, and an improvement of 0.1 from 0.7 to 0.6 is

much more difficult to obtain than the same absolute improvement from 0.9 to 0.8 (Ma et al.,

2019a). Therefore, AP has become less popular in recent simultaneous translation papers.

Average Lagging (AL) (Ma et al., 2019a) first defined an ideal policy, which is equivalent

to a wait-0 policy that has the same prediction as the system to be evaluated. Ma et al.

(2019a) define AL as

AL =
1

τ(|X|)

τ(|X|)∑︂
i=1

di −
(i− 1)

γ
(2.4)
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where τ(|X|) = min{i|di = |X|} is the index of the target token when the policy first

reaches the end of the source sentence and γ = |Ŷ|/|X|. (i− 1) /γ term is the ideal policy

for the system to compare with. AL has good properties such as being length-invariant and

intuitive. Its value directly describes the lagging behind the ideal policy.

While Equation 2.4 is defined on text input and output, we extend AL to speech translation

in Ma et al. (2020) as

ALspeech =
1

τ ′(|X|)

τ ′(|X|)∑︂
i=1

di − d∗i , (2.5)

where τ ′(|X|) = min{i|di = |S(t)|}, |S(t)| is the length of speech input in time. d∗i are the

delays of an ideal policy, of which the straightforward adaption is d∗i = (i−1)×|S(t)|/|Ŷ|.

However such adaptation is not robust for models that tend to stop hypothesis generation

too early and generate translations that are too short. This is more likely to happen in

simultaneous speech translation where a model can generate the end of sentence token

too early, for example when there is a long pause even though the entire source input has

not been consumed. Figure 2.8 illustrate this phenomenon. The red line in Figure 2.8

corresponds to the ideal policy defined in Ma et al. (2019a). We can see that when the

model stops generating the translation, the lagging behind the ideal policy is negative. This

is because the model stops reading any input after completing hypothesis generation. This

kind of model can obtain relatively good latency-quality trade-offs as measured by AL (and

BLEU), which does not reflect the reality. Thus, given the reference translation Y, we
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Actual Source Length

Figure 2.8: An example of original AL failed on early stop translation. Red (solid straight)
line shows the ideal policy in (Ma et al., 2019a). Green (dotted straight) line depicts the
modified ideal policy in this paper. Black (solid zigzag) line demonstrates the alignment
between source and target.

define,

d∗i = (i− 1) · |S(t)|
|Y|

(2.6)

to prevent this issue, i.e., it is assumed that the ideal policy generates the reference rather

than the system hypothesis. The newly defined ideal policy is represented by the green line

in Figure 2.8.

Although (Arivazhagan et al., 2019) proposed the differentiable average lagging, the original

lagging itself is also differentiable. For instance, in a monotonic attention policy parameter-
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ized by θ, the expected alignment between i-th target and j-th source can be represented as

a differentiable function αij(θ)
1, and further the expected delays can be represented as

di =

|X|∑︂
j=1

αij(θ) (2.7)

Considering Equation 2.4, the derivative is computed as follow

∂AL

∂θ
=

1

τ(|X|)

τ(|X|)∑︂
i=1

∂di
∂θ

(2.8)

=
1

τ(|X|)

τ(|X|)∑︂
i=1

|X|∑︂
j=1

∂

∂θ
αij(θ) (2.9)

where during the training time, both τ(|X|) and |X| are known constants. Hence the AL is

also differentiable during training.

Differentiable Average Lagging (DAL) (Arivazhagan et al., 2019) introduced a minimum

delay of 1/γ after each operation. Unlike AL, it considers the tokens when i > τ(|X|)

(Cherry and Foster, 2019). It is defined in Equation 2.10:

DAL =
1

|Y|

|Y|∑︂
i=1

d′i −
i− 1

γ
, (2.10)

1Details are introduced in Chapter 4
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where

d′i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
di i = 0

max(di, d
′
i−1 + γ) i > 0

. (2.11)

A minimum delay prevent DAL recovering from lagging once it has been incurred. For the

speech task still uses Equation 2.10 and Equation 2.11 with a new γ defined as

γspeech = |Y|/
|X|∑︂
j=1

Ts (2.12)

2.3.2 Latency Evaluation Toolkit: SimulEval

To make the latency evaluation processes across different works consistent is non-trivial:

• the latency metric definitions are not precise enough with respect to text segmentation;

• the definitions are also not precise enough with respect to the speech segmentation,

for example some models are evaluated on speech segments (Ren et al., 2020) while

others are evaluated on time duration (Ansari et al., 2020; Anastasopoulos et al., 2021;

Anastasopoulos et al., 2022);

• little prior work has released implementations of the decoding process and latency

measurement.
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The lack of clarity and consistency of the latency evaluation process makes it challenging

to compare different works and prevents tracking the scientific progress of this field.

In order to provide researchers in the community with a standard, open and easy-to-use

method to evaluate simultaneous speech and text translation systems, we introduce the

toolkit SimulEval in Ma et al. (2020b), an open source evaluation toolkit which automati-

cally simulates a real-time scenario. SimulEval creates a fully simultaneous translation

environment and has been used for shared tasks such as the IWSLT 2020/2021/2022 shared

task on simultaneous speech translation 2.

SimulEval simulates a real-time scenario by setting up a server and a client. The server

and client can be run separately or jointly, and are connected through RESTful APIs. An

overview is shown in Figure 2.9. The server provides source input (text or audio) upon

Read

StateWrite

Client

GET

PUTPost-Process

Pre-Process

Server

Policy

Agent

......

......

......

RESTful API

Figure 2.9: The architecture of SimulEval. The client executes the policy and the server
operates the evaluation. The server and client communicate through RESTful API to
simulate the streaming setting.

the reading request from the client. It also receives predictions from the client and returns

2http://iwslt2020.ira.uka.de/doku.php?id=simultaneous_translation
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different evaluation metrics when the translation process is complete. It has primarily four

functions.

1. Read source and reference files.

2. Send source segments to the client upon a READ action.

3. Receive predicted segments from the client upon a WRITE action, and record the

corresponding delays.

4. Run the evaluation on instances.

The evaluation process by the server on one instance is shown in Algorithm 1. Note that in

line 18 in Algorithm 1, the server only runs sentence-level metrics. The server will collect

Y and D for every instance in the evaluation corpus, and calculate corpus-level metrics

after all hypotheses are complete.

The client contains two components — an agent and a state. The agent is a user-defined

class that operates the policy and generates hypotheses for simultaneous translation, the

latter provides functions such as pre-processing, post-processing and memorizing context.

The purpose of this design is to make the user free from complicated setups, and focus on

the policy. The client side algorithm is shown in Algorithm 2.
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Algorithm 1 Server side algorithm. The functions of the server includes: 1. Provide source
input (text or speech) when receiving the request from the client; 2. Record the translation
and delay when receiving a prediction from the client, and compute latency at the end of
evaluation.

Input: X = [x1, ..., x|X|],Y = [y1, ..., y|Y|]
Input: Y = [],D = []
Input: i = 0, j = 0, y0 = BOS, d0 = 0

1: while ŷi ̸= EOS do
2: r = await_request_from_client()
3: if r.action == READ then
4: if j < |X| then
5: j = j + 1
6: send_segment_to_client(xj)
7: else
8: send_segment_to_client(EOS)
9: else

10: i = i+ 1
11: ŷi = r.segment
12: Ŷ = Ŷ + [ŷi]
13: Record current di
14: D = D+ [di]

15: return evaluate(Ŷ,Y,D)
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Algorithm 2 Client side algorithm. The client is a wrapper over a simultaneous policy.
When the policy decides to read, the client sends request to server for new input; when the
policy decides to write, the client sends the prediction to the server.

Input: X = [], i = 0, j = 0, y0 = BOS, State, Agent
1: while ŷi ̸= EOS do
2: action = Agent.policy(State)
3: if action == READ then
4: x = request_segment_from_server(segment_size)
5: if x is not EOS then
6: j = j + 1
7: xj = State.preprocess(x)
8: States.update_source(xj)
9: continue

10: i = i+ 1
11: ŷi = Agent.predict(State)
12: ŷi = State.postprocess(ŷi)
13: States.update_target(ŷi)
14: send_segment_to_server(ŷi)

2.4 Conclusion

In this chapter, we formalize the tasks of speech translation and simultaneous translation.

Furthermore, we introduce the latency evaluation metrics for simultaneous speech translation.

Finally, We propose an open source toolkit SimulEval (Ma et al., 2020b) for evaluation of

simultaneous translation, which is published in EMNLP 2020 Demo track.
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Related Work

3.1 Speech Processing

The research of speech processing involves a wide range of topics, including the genera-

tion of the human speech, digital processing of speech signals and recognition and synthesis

of speech. While speech processing covers many techniques, this section will only give a

brief introduction on the background required for this thesis, including digitalizing speech

signals, the feature extraction of speech signal, and automatic speech recognition, which is

a task of transcribing speech to text.

Speech signals or waveforms, generated by the human speech production organs, are

analog and stored digitally by sampling. The signals are represented as a sequence of
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numbers, each of which measures the amplitude of the signals at a given time. Speech

features, are usually frequency-based scalars or vectors extracted from small segments

of speech signals. The popular choices of speech features include, Short-Time Fourier

Transform (STFT) (Oliver, 1952), Mel-Frequency Cepstrum Coefficients (MFCC) (Davis

and Mermelstein, 1980), Linear Prediction Coding (LPC) (Portnoff, 1981), Perceptual

Linear Prediction (PLP) (Hermansky, 1990), and Log Mel-Filter Bank (LMFB) (Murthy

et al., 1999). The detailed process can be found in Section 2.2

Automatic speech recognition (ASR) is the task to convert continuous speech to the

corresponding text. The first practical large vocabulary and speaker independent ASR

system Sphinx was introduced by Lee et al. (1990) and Huang et al. (1993), which includes

a hidden Markov model (HMM) (Baum and Petrie, 1966) acoustic model and n-gram

language model. More recently, the neural network based models, including hybrid model

(Graves et al., 2006) and end-to-end model (Graves and Jaitly, 2014), have become the start-

of-the-art architecture. Nowadays, high quality ASR systems can be built from several open

source projects (Povey et al., 2011; Hannun et al., 2014; Collobert et al., 2016; Watanabe

et al., 2018; Kuchaiev et al., 2018; Wang et al., 2020a).
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3.2 Offline Speech Translation

Speech translation is the task to translate speech in one language to either text or speech

in another language. In following sections, for simplicity, ST represents general speech

translation, while S2T stands for speech-to-text translation and S2S stands for speech-to-

speech translation. ST has been an active research topic over decades since 1990s, and the

architecture of the ST systems have been changing dramatically over the time, especially

after the great success of deep neural networks. In this section, a brief introduction of speech

translation will be given, with the two different approaches — cascaded and end-to-end.

3.2.1 Cascaded Approach

A cascaded ST system usually contains a pipeline of multiple submodules. More

specifically, an automatic speech recognition (ASR) module serves as the front end of

the system that processes the speech signals to linguistics representations, usually text or

grammar structures; a text-to-text (T2T) machine translation then translates the output of

ASR module to another language; an additional text-to-speech synthesis module is applied

on the text translation to generate the final speech output for a S2S system. The cascaded

approach was explored first by researchers due to its advantage of building the ST system

on top of existing submodules.
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The earliest attempts to build a fully functional ST system even happened before strong

statistical MT systems arrived. Many of the early ST systems included a rule-based or

knowledge-based MT module. Tomita et al. (1990) proposed the Universal Parser Architec-

ture for spoken language translation, which passes the output of a speech recognition system

to a knowledge-based system to generate the translation. Morimoto et al. (1990) introduced

SL-TRANS, which is a three-stage system that integrated speech recognition and language

processing. Kitano (1991) introduced ΦDM-Dialog, with the concept of “processing flow”

with a hidden markov based (HMM) ASR system, a knowledge-based machine translation

system, and a voice generation system. Wahlster (1993) introduced Verbmobil system which

is designed to translate face-to-face dialogs. Wasyliw and Clarke (1994) introduced speech

translation system for pilot air traffic control (ATC) communication. Rayner et al. (1995)

used limited-domain data to build a air travel planning speech translation system. JANUS

(Jain et al., 1991; Lavie et al., 1996; Woszczcyna et al., 1998) is also an early effort on

speech translation, which is capable of translating spontaneous speech in limited domain.

Lavie et al. (2002) introduced NESPOLE!, which is a S2S machine translation system

designed with real-world settings of common users involved in e-commerce applications.

Konuma et al. (2002) introduced an experimental S2S translation hardware platform, which

outputs 2 to 10 times faster than a conventional translation device. Shimohata et al. (2003)

proposed an S2S translation system with example based translation module. Dillinger and
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Seligman (2004) introduced a S2S translation system to help Spanish-speaking patients to

communicate with English-speaking doctors, nurses, and other health-care staff. Gu and

Gao (2004) proposed the concept based S2S system in which the feature is selected based

on maximum entropy. Bouillon et al. (2005) proposed MedSLT, which is an open source

platform for developing limited-domain medical speech translation systems.

The break-through of statistical phrase-based MT system (Koehn et al., 2003) also

provides more possibilities for ST. Bach et al. (2007) proposed a portable two-way S2S

translation system with phrase-based MT system. Pérez et al. (2007) discussed the benefit

from additional knowledge sources such as semantically motivated segmentation or statistical

categorization. Kao et al. (2008) report a rapid development of S2S system with phrase-

based MT for low resource languages. Kolss et al. (2008) build a simultaneous S2S system

for German-English lecture translation. Lim et al. (2010) introduced a real-time language

identification and recognition system, for S2ST translation. Raybaud et al. (2011) proposed

an integrated S2T translation system for news translation. Maergner et al. (2011) proposed

a method for vocabulary selection for simultaneous speech translation for lectures. Ahmed

et al. (2012) proposed a hierarchical phrased-based statistical machine translation module for

speech translation. Cho et al. (2012) addressed the issue on segmentation and punctuation

prediction for ST. Kano et al. (2012) proposed a method to use paralinguistic information

for speech translation. Khadivi and Vakil (2012) proposed a speech-enabled interactive-
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predictive computer-assisted translation system. Prasad et al. (2012) introduced a ST system

with capability of active error detection and resolution. Kumar et al. (2015) proposed error-

tolerant S2S system for Arabic-English translation. Microsoft introduced a near real-time

S2T system, Skype Translator (Lewis, 2015), for translation in online communication. Do

et al. (2015) proposed a method which improve the emphasis with pause prediction for S2S

systems.

One of the disadvantages of the cascaded approach is that the errors are difficult to

recover from the down streaming task. For instance, Ruiz and Federico (2014) pointed out

that “ the linguistic properties of ASR errors have ramifications on SMT quality in speech

translation”. Thus, more coupled systems are also introduced. Ney (1999) first proposed the

concept coupling speech recognition and translation with local averaging approximation and

the monotone alignments. Zhang et al. (2005) proposed a decoding algorithm which runs

on speech recognition word lattice instead of output text. Zhang et al. (2005) considered

using multiple recognition hypotheses to improve the translation quality. Alabau et al.

(2007) included word posterior probabilities for S2T decoding. Patry and Langlais (2008)

proposed an open source decoder MISTRAL for speech translation on word lattice. Pérez

et al. (2010) considered the potential scope of a fully-integrated architecture for speech

translation. Peitz et al. (2012) proposed a method to train the S2T model transcribed text.

Ananthakrishnan et al. (2013) tried to alleviating the impact of unrecoverable ASR errors
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by locally-derived penalties on language model. Cho et al. (2013) introduced a conditional

random field (CRF)-based speech disfluency detection system to improve the performance.

3.2.2 End-to-End Approach

Recently, a growing amount of work has focused on the neural end-to-end approach,

with the expectation that a less complex system has the capability of reducing compounding

errors between the subsystems and improving the overall efficiency with the end-to-end

or direct translation. We will first discussed speech-to-text and then speech-to-speech

translation.

When the neural machine translation became the state-of-the-art approach for text

translation task (Anastasopoulos et al., 2022), people start to explore adapting the same

architecture to speech-to-text translation task, which soon starts to show competitive results

compared with the cascade approaches. Duong et al. (2016) first proposed an attention-

based sequence-to-sequence structure for the task. They use an recurrent neural networks

(RNN) based encoder-decoder architecture on speech-to-text translation task. They also

introduced the stacked and pyramidal RNN encoder to reduce the sequence length, because

the speech features are usually much longer than the text output. Despite the novelty of

Duong et al. (2016)’s work, there is huge downgrade of translation quality compared with

cascaded approaches. Some later work (Berard et al., 2016; Weiss et al., 2017; Bansal et al.,
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2018; Bérard et al., 2018) added convolutional layers before the RNN sequence-to-sequence

structure. The conventional layers help to better encode the speech features and significantly

improve the end-to-end model performance, which are then comparable with cascaded

models. With the great success of Transformer (Vaswani et al., 2017) on text translation

task, Di Gangi et al. (2019b) and Inaguma et al. (2020) applied the Transformer architecture

to the speech translation task, which further improves both translation quality and training

speed.

Similar to many deep-learning models, the biggest challenge for end-to-end the speech

translation model is data scarcity. Multitask-learning and pre-training (Weiss et al., 2017;

Bérard et al., 2018; Bansal et al., 2018; Stoian et al., 2020; Wang et al., 2020b), data

augmentation and self-training (Jia et al., 2019a; Salesky et al., 2019; Pino et al., 2019;

Pino et al., 2020) are widely used for the task. Furthermore, other techniques in machine

learning, such as knowledge distillation (Liu et al., 2019) and meta-learning (Indurthi et al.,

2020), are also introduced to improve the translation quality.

A general architecture of a state-of-the-art offline end-to-end speech-to-text translation

model is shown as Figure 3.1. Different from text-to-text encoder-decoder models, of which

the inputs are usually word representations, the inputs of the speech models are usually

features extracted from a fixed size sliding window. As introduced in Section 3.1, the speech

waveforms are firstly converted to a sequence of speech features, which will be fed into the
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speech encoder. The encoder is a stack of two modules, convolutional layers and recurrent

layers, The convolutional layers learns local speech feature information, and often reduce

the input length with pooling. The recurrent layers, which can be LSTM or self-attention

based architecture, capture the sequential information. Finally, the decoder is similar to the

text translation decoder. which takes a weighted sum of encoder states and the previous

decoder state at each step, and generate the prediction of next target token.

Speech
Features

Speech  
Waveform

Encoder

Decoder

Attention 
Mechanism

Translation

Today I am going to talk about energy and climate.

Heute spreche ich zu Ihnen über Energie und Klima.

Figure 3.1: The general architecture of offline end-to-end speech-to-text translation model.
The speech signals are converted into speech features which are then processed by a deep
learning encoder. The decoder produces output text based on the encoder representations,
with a soft attention mechanism.

With the respect of end-to-end S2S translation, Jia et al. (2019b) explored the very
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first end-to-end speech-to-speech translation model, Translatotron. Translatotron is able

to directly generate speech features without relying on an intermediate text representation.

The follow-up work Translatotron 2 (Jia et al., 2021) used an auxiliary target phoneme

decoder to address the over-generation issue, where the model tends to generates long output.

Kano et al. (2021) proposed a scheme where the end-to-end model is stacked by separately

pretrained ASR, MT and TTS submodules. Lee et al. (2022) proposed a direct model which

predicts self-supervised discrete representations of the target speech instead of features.

Unlike the speech-to-text task, a gap still exists between the end-to-end and the cascade

approaches.

We will introduce the details of Lee et al. (2022)’s speech-to-unit model, which we use

in Chapter 7. In the speech-to-unit model, the target speech units are prepared beforehand.

Unsupervised continuous representations for every 20ms frame are learned on the target

speech corpus by a HuBERT model (Hsu et al., 2021). Then the k-means algorithm is

applied to the representations to generate K cluster centroids. For each window, its closest

centroid index is used as discrete label. We denote the discrete sequence as Z = z1, ...zL.

Given the discrete units, Lee et al. (2022) build a transformer-based (Vaswani et al., 2017)

model, of which inputs are speech feature and output are discrete units. In the encoder, a

stack of 1D-convolutional layers serve as downsampler for the speech input. Since the target

sequence is discrete, the S2U model can be trained with cross-entropy loss. Finally, the
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vocoder converts the discrete units to speech signal. Lee et al. (2022) use a modified version

of the HiFi-GAN neural vocoder (Polyak et al., 2021) for unit-to-waveform conversion.

3.3 Simultaneous Text-to-text Translation

The core of simultaneous translation is to develop a policy, which could determine the

optimal timing for read and write actions. The difficulty of find optimal timing depending

on the similarity of languages. Or more specifically the reordering between the source and

target languages. For instance, we show the amount of the of reordering between most

common 11 European Languages, Figure 3.2. We can see that building an English to

Spanish system is far more difficult than English to Danish. Such observation can also be

seen in the IWSLT shared task of simultaneous speech translation (Anastasopoulos et al.,

2022; Anastasopoulos et al., 2021). English-Japanese systems tend to have greater BLEU

score drop comparing with English-German given the same latency.

In this section we will introduce the modeling of simultaneous policy, including the

concept of READ and WRITE action in the policy, and two common policices: monotonic

attention (Raffel et al., 2017) and wait-k policy (Ma et al., 2019a).
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Figure 3.2: The reordering amount measured by RQuantity from Birch et al. (2008)

3.3.1 Simultaneous policies

Simultaneous translation means starting the translation before finishing reading the

source input. While most of work on simultaneous translation focuses on the text translation,

it can be generalized and applied to speech translation. Figure 3.3 is an illustration of a

generalized simultaneous translation process. At a given time when input length is j and

output length is i, the simultaneous policy takes current context (source and target sequence)

as inputs and generate a Bernoulli distribution parameterized by pi,j on two actions, READ

and WRITE. READ means that the model pauses the generation and reads one input unit

39



CHAPTER 3. RELATED WORK

from the source side, while WRITE stops taking new inputs and generates a new prediction.

Specifically, in an offline system, pi,j = 0 for any i, j, and pi,j = 1 if j equals to the length of

the source input. More formally, a general simultaneous translation algorithm is described

as Algorithm 3.

Simultaneous 
Policy

...... ......

......

Yes

No

Write

Read

Figure 3.3: Generalized simultaneous decoding process.

The simultaneous policies fall into three categories. The first one is the pre-defined

context-free rule-based policies. Cho and Esipova (2016) proposed a Wait-If-* policy to

enable an offline model to decode simultaneously. Dalvi et al. (2018) modified the Wait-If-*

policy (Cho and Esipova, 2016) to enable decoder for consecutive prediction. Ma et al.

40



CHAPTER 3. RELATED WORK

(2019a) proposed a Wait-k policy where the model first reads k input, then reads and writes

alternatively. In the second category, a learnable flexible policy with an agent is introduced

and reinforcement learning is applied. Grissom II et al. (2014) introduced an agent based

on Markov chain to phrase-based machine translation models for simultaneous machine

translation, in which reinforcement learning is used to learn the read-write policy based

on states. Gu et al. (2017) introduced an agent which learns to make decisions on when to

translate from the interaction with a pre-trained offline neural machine translation model.

Luo et al. (2017) used continuous rewards policy gradient for online alignments for speech

recognition. Lawson et al. (2018) proposed a hard alignment with variational inference for

online decoding. Alinejad et al. (2018) proposed a new operation predict which predicts

future source tokens. Zheng et al. (2019b) introduced a restricted dynamic oracle and

restricted imitation learning for simultaneous translation. Zheng et al. (2019a) trained the

agent with an action sequence from labels that are generated based on the rank of the gold

target word given partial input. Models from the last category leverage monotonic attention

and replace the Softmax attention with a closed form expected attention calculated from a

stepwise Bernoulli selection probability. Raffel et al. (2017) first introduced the concept of

monotonic attention for online linear time decoding, where the attention only attends to one

encoder state at a time. Chiu* and Raffel* (2018) extended (Raffel et al., 2017)’s work to

enable the model to attend to a chunk of encoder states. Arivazhagan et al. (2019) also made
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use of the monotonic attention but introduced an infinite lookback to improve the translation

quality. Ma et al. (2019b) adapted monotonic attention to transformer architecture with

multihead attention.

Algorithm 3 Generalized simultaneous translation algorithm
Input: Simultaneous policy P , modelM
Input: Input sequence X = [x1, ...xM ], Predicted sequence Y.
Input: i = 1, j = 1, y1 = StartOfTranslation

1: while yi ̸= EndOfTranslation do
2: X1:j = [x1, ...xj],Y1:i = [y1, ...yi] # Current context.
3: pij = P(X1:j,Y1:i) # Stepwise probability.
4: if pik > 0.5 or j == M then
5: yi+1 =M(Y1:i,X1:j)
6: i = i+ 1 # Write a target prediction.
7: else
8: j = j + 1 # Read a source input.

3.3.2 Monotonic Attention

Since the monotonic attention approaches have been the state-of-the-art for the simulta-

neous translation task, we now introduce more details on this method. The hard monotonic

attention mechanism (Raffel et al., 2017) was first introduced in order to achieve online

linear time decoding for RNN-based encoder-decoder models. We denote the input se-

quence as X = {x1, ..., xT}, and the corresponding encoder states as M = {m1, ...,mT},

with T being the length of the source sequence. The model generates a target sequence

Y = {y1, ..., yU} with U being the length of the target sequence. At the i-th decoding step,
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the decoder only attends to one encoder state mti with ti = j. When generating a new target

token yi, the decoder chooses whether to move one step forward or to stay at the current

position based on a Bernoulli selection probability pi,j , so that ti ≥ ti−1. Denoting the

decoder state at the i-th position, starting from j = ti−1, ti−1 + 1, ti−1 + 2, ..., this process

can be calculated as follows:

ei,j = MonotonicEnergy(si−1,mj) (3.1)

pi,j = Sigmoid (ei,j) (3.2)

zi,j ∼ Bernoulli(pi,j) (3.3)

When zi,j = 1, we set ti = j and start generating a target token yi; otherwise, we set

ti = j+1 and repeat the process. During training, an expected alignment α is introduced to

replace the softmax attention. Furthermore, to encourage discreteness, Raffel et al. (2017)

added a zero mean, unit variance pre-sigmoid noise to ei,j .

Different from a reinforcement learning approach, monotonic attention utilizes an closed

form calculation of expectation alignment αij , given the stepwise probability pij shown in
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line 3 of Algorithm 3. αij can be calculated in a recurrent manner, shown in Equation 3.4:

αi,j = pi,j

j∑︂
k=1

(︄
αi−1,k

j−1∏︂
l=k

(1− pi,l)

)︄

= pi,j

(︃
(1− pi,j−1)

αi,j−1

pi,j−1

+ αi−1,j

)︃ (3.4)

Raffel et al. (2017) also introduce a closed-form parallel solution for the recurrence relation

in Equation 3.5:

αi,: = pi,:cumprod(1− pi,:)cumsum
(︃

αi−1,:

cumprod(1− pi,:)

)︃
(3.5)

where cumprod(x) = [1, x1, x1x2, ...,
∏︁|x|−1

i=1 xi] and cumsum(x) = [x1, x1 +

x2, ...,
∑︁|x|

i=1 xi]. In practice, the denominator in Equation 3.5 is clamped into a

range of [ϵ, 1] to avoid numerical instabilities introduced by cumprod. The expected

alignment α then replaces the Softmax attention during the training time.

Although the monotonic attention mechanism achieves online linear time decoding,

the decoder can only attend to one encoder state. This limitation can diminish translation

quality as there may be insufficient information for reordering. Moreover, the model

lacks a mechanism to adjust latency based on different requirements at decoding time. To

address these issues, Chiu* and Raffel* (2018) introduced Monotonic Chunkwise Attention

(MoChA), which allows the decoder to apply soft attention on a fixed-length subsequence
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of encoder states. Alternatively, Arivazhagan et al. (2019) introduced Monotonic Infinite

Lookback Attention (MILk) which allows the decoder to access encoder states from the

beginning of the source sequence. Instead of the expected alignment, MILk applied the

expected soft attention for training shown in Equation 3.6:

βij =

|X|∑︂
k=j

(︄
αik exp(uij)∑︁k
l=1 exp(uil)

)︄
(3.6)

where uij is the soft-attention energy for xj and yi. Note that the wait-k policy (Ma et al.,

2019a) is a special case of MILk where pij = 1 if i− j < k otherwise pij = 0. Arivazhagan

et al. (2019) also introduced the latency augmented training for latency control. Given the

expected alignment aij , the expected delays of all the prediction can be calculated as

n̂(yi) =

|X|∑︂
j=1

jαij (3.7)

A latency loss C([n̂(y1), ..., n̂(yN)]) is then added to the total loss function, where C is a

latency metric. By adjusting the latency loss weight, one can control the latency of the

system.
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3.3.3 Wait-k policy

Wait-k, or prefix-to-prefix, policy is a simple and effective baseline for most research

in simultaneous translation. It is a rule based policy, which only consider the dynamic

length of input and output sequences. First, k source words are read by the model, which

then translates concurrently with the rest of source sentence. More specifically, read one

token on the source side, and write one token on the target side. Mathematically, the

step-wise probability pij and monotonic alignment α can be expressed as Equation 3.8 and

Equation 3.8

pij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, j − i < k

0, otherwise

(3.8)

αij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, j − i = k or i = |Y|

0, otherwise

(3.9)
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Monotonic Multihead Attention

4.1 Introduction

Different from an offline machine translation model, in which the decoder starts transla-

tion after the encoder reads all the source input sentence, a simultaneous translation model

starts the translation with partial input, and then alternates between reading the input and

writing the output using either a fixed or learned policy. More specifically, a policy in

simultaneous translation controls two actions: read and write. The read action indicates the

model waiting for more input context, while the write action indicates the model generating

predictions.

Monotonic attention mechanisms has recently become the state-of-the-art approach for
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this task. It falls into the flexible policy category, in which the policies are automatically

learned from data. As introduced in Section 3.3.2, recent exploration on monotonic attention

for simultaneous translation includes several variants: hard monotonic attention (Raffel et al.,

2017), monotonic chunkwise attention (MoChA) (Chiu* and Raffel*, 2018) and monotonic

infinite lookback attention (MILk) (Arivazhagan et al., 2019). MILk in particular has

shown better quality/latency trade-offs than fixed policy approaches, such as wait-k (Ma

et al., 2019a) or wait-if-* (Cho and Esipova, 2016) policies. MILk also outperforms hard

monotonic attention and MoChA, while the other two monotonic attention mechanisms only

consider a fixed reading window during inference. MILk computes a softmax attention over

all previous encoder states, which may be the key to its improved latency-quality trade-offs.

The monotonic attention approaches provide a closed-form expression for the expected

alignment between source and target tokens. Therefore, one of the advantages of monotonic

attention is that it does not rely on a reinforcement learning component (Gu et al., 2017).

However, monotonic attention-based models, including the state-of-the-art MILk, were all

built on top of RNN-based models. RNN-based models have been outperformed by the

recent state-of-the-art Transformer model (Vaswani et al., 2017), which features multiple

encoder-decoder attention layers and multiple attention heads at each layer.

In this chapter, We will present monotonic multihead attention (MMA), which combines

the high translation quality from multilayer multihead attention and low latency from mono-
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tonic attention. This is one of the first flexible simultaneous policies that has been proposed

to Transformer-based model. The chapter will only discuss on text-to-text translation, with

a main focus on the policy design. We proposed two variants of the model, Hard MMA

(MMA-H) and Infinite Lookback MMA (MMA-IL). MMA-H is designed with streaming

systems in mind where the attention span must be limited. MMA-IL emphasizes the quality

of the translation system. We also propose two novel latency regularization methods. The

first encourages the model to be faster by directly minimizing the average latency. The

second encourages the attention heads to maintain similar positions, preventing the latency

from being dominated by a single or a few heads. The main contributions from this chapter

include:

1. A novel monotonic attention mechanism, monotonic multihead attention, which

enables the Transformer model to perform online decoding. This model leverages the

power of the Transformer and the efficiency of monotonic attention.

2. Better latency/quality tradeoffs compared to the MILk model, the previous state-

of-the-art, on two standard translation benchmarks, IWSLT15 English-Vietnamese

(En-Vi) and WMT15 German-English (De-En).

3. Analyses on how our model is able to control the attention span and the relationship

between the speed of a head and the layer it belongs to. We motivate the design of

our model with an ablation study on the number of decoder layers and the number of
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decoder heads.

4.2 Methodology

4.2.1 Monotonic Multihead Attention

Previous monotonic attention approaches are based on RNN encoder-decoder models

with a single attention head and have not explored the power of the Transformer model1.

The Transformer architecture (Vaswani et al., 2017) has recently become the state-of-the-art

for machine translation. An important feature of the Transformer is the use of a separate

multihead attention module at each layer. Thus, we propose a new approach, Monotonic

Multihead Attention (MMA), which combines the expressive power of multihead attention

and the low latency of monotonic attention.

As introduced in Vaswani et al. (2017), multihead attention allows each decoder layer to

have multiple heads, where each head can compute a different attention distribution. Given

queries Q, keys K and values V , multihead attention MultiHead(Q,K, V ) is defined in

1MILk was based on a strengthened RNN-based model called RNMT+. The original RNMT+ model uses
multihead attention, computes attention only once, and then concatenates that single attention layer to the
output of each decoder layer block. However, the RNMT+ model used for MILk in (Arivazhagan et al., 2019)
only uses a single head.
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Equation 4.1.

MultiHead(Q,K, V ) = Concat(head1, ..., headH)W
O

where headh = Attention
(︂
QWQ

h , KWK
h , V W V

h ,
)︂ (4.1)

The attention function is the scaled dot-product, defined in Equation 4.2:

Attention(Q,K, V ) = Softmax
(︃
QKT

√
dk

)︃
V (4.2)

There are three applications of multihead attention in the Transformer model:

1. The Encoder contains self-attention layers where all of the queries, keys and values

come from previous layers.

2. The Decoder contains self-attention layers that allow each position in the decoder to

attend to all positions in the decoder up to and including that position.

3. The Encoder-Decoder attention contains multihead attention layers where queries

come from the previous decoder layer and the keys and values come from the output

of the encoder. Every decoder layer has its own encoder-decoder attention.

For MMA, we assign each head to operate as separate monotonic attention in encoder-

decoder attention.
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For a transformer with L decoder layers and H attention heads per layer, given the

encoder state mj at j-th step and the decoder state si−1 at i − 1-th step, we define the

selection process of the h-th head encoder-decoder attention in the l-th decoder layer as

el,hi,j =

(︄
mjW

K
l,h(si−1W

Q
l,h)

T

√
dk

)︄
i,j

(4.3)

pl,hi,j = Sigmoid(el,hi,j ) (4.4)

zl,hi,j ∼ Bernoulli(pl,hi,j ) (4.5)

where Wl,h is the input projection matrix, dk is the dimension of the attention head. We

make the selection process independent for each head in each layer. We then investigate

two types of MMA: MMA-H(hard) and MMA-IL(infinite lookback). For MMA-H, we use

Equation 3.4 in order to calculate the expected alignment for each layer each head, given

pl,hi,j . For MMA-IL, we calculate the softmax energy for each head as follows:

ul,h
i,j = SoftEnergy =

(︄
mjŴ

K

l,h(si−1Ŵ
Q

l,h)
T

√
dk

)︄
i,j

(4.6)

and then use Equation 3.6 to calculate the expected attention. Notice that Equation 4.6 has

similar function as Equation 4.3 but different parameters. Each attention head in MMA-

H attends to one encoder state. On the other hand, each attention head in MMA-IL can

52



CHAPTER 4. MONOTONIC MULTIHEAD ATTENTION

attend to all previous encoder states. Thus, MMA-IL allows the model to leverage more

information for translation, but MMA-H may be better suited for streaming systems with

stricter efficiency requirements. Finally, our models use unidirectional encoders: the encoder

self-attention can only attend to previous states, which is also required for simultaneous

translation.

At inference time, our decoding strategy is shown in Algorithm 4. For each l, h, at

decoding step i, we apply the sampling processes discussed in Section 3.3.2 individually

and set the encoder step at tl,hi . Then a hard alignment or partial softmax attention from

encoder states, shown in Equation 4.7, will be retrieved to feed into the decoder to generate

the i-th token. The model will write a new target token only after all the attentions have

decided to write. In other words, the heads that have decided to write must wait until the

others have finished reading.

cli = Concat(cl,1i , cl,2i , ..., cl,Hi )

where cl,hi = fcontext(h, t
l,h
i ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
mtl,hi

MMA-H

tl,hi∑︂
j=1

exp
(︂
ul,h
i,j

)︂
∑︁tl,hi

j=1 exp
(︂
ul,h
i,j

)︂mj MMA-IL

(4.7)

Figure 4.1 illustrates a comparison between our model and the monotonic model with one

attention head.

53



CHAPTER 4. MONOTONIC MULTIHEAD ATTENTION

Figure 4.1: Monotonic Attention (Left) versus Monotonic Multihead Attention (Right). The
hard monotonic attention only attends to one encoder state. Monotonic multihead attention
is able to attend multiple encoder states at the same time.

Compared with the monotonic model, the MMA model is able to set attention to different

positions so that it can still attend to previous states while reading each new token. Each

head can adjust its speed on-the-fly. Some heads read new inputs, while the others can stay

in the past to retain the source history information. Even with the hard alignment variant

(MMA-H), the model is still able to preserve the history information by setting heads to past

states. In contrast, the hard monotonic model, which only has one head, loses the previous

information at the attention layer.

4.2.2 Latency Control

Effective simultaneous machine translation must balance quality and latency. At a high

level, latency measures how many source tokens the model has read until a translation is

generated. The model we have introduced in Section 4.2.1 is not able to control latency on

its own. While MMA allows simultaneous translation by having a read or write schedule
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Algorithm 4 MMA monotonic decoding. Because each head is independent, we compute
line 3 to 16 in parallel
Input: x: source tokens.
Input: h: encoder states.
Input: y0: Start of the target sequence.
Input: L: Number of decoder layers.
Input: H: Number of attention heads in decoder each layer.
Input: i = 1, j = 1, tl,h0 = 1

1: while yi−1 ̸= EndOfSequence do
2: tmax = 1
3: h = empty sequence
4: for l← 1 to L do
5: for h← 1 to H do
6: for j ← tl,hi−1 to |x| do
7: pl,hi,j = Sigmoid

(︁
MonotonicEnergy(si−1,mj

)
)︁

8: if pl,hi,j > 0.5 then
9: tl,hi = j

10: cl,hi = fcontext(h, t
l,h
i )

11: Break
12: else
13: if j > tmax then
14: Read token xj

15: Calculate state hj and append to h
16: tmax = j

17: cli = Concat(cl,1i , cl,2i , ..., cl,Hi )

18: sli = DecoderLayerl(sl1:i−1, s
l−1
1:i−1, c

l
i)

19: yi = Output(sLi )
20: i = i+ 1
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for each head, the overall latency is determined by the fastest head, i.e. the head that reads

the most. It is possible that a head always reads new input without producing output, which

would result in the maximum possible latency. Note that the attention behaviors in MMA-H

and MMA-IL can be different. In MMA-IL, a head reaching the end of the sentence will

provide the model with maximum information about the source sentence. On the other

hand, in the case of MMA-H, reaching the end of sentence for a head only gives a hard

alignment to the end-of-sentence token, which provides very little information to the decoder.

Furthermore, it is possible that an MMA-H attention head stays at the beginning of sentence

without moving forward. Such a head would not cause latency issues but would degrade

the model quality since the decoder would not have any information about the input. In

addition, this behavior is not suited for streaming systems.

To address these issues, we introduce two latency control methods. The first one is

weighted average latency, shown in Equation 4.8:

dWi =
exp(dl,hi )∑︁L

l=1

∑︁H
h=1 exp(dl,hi )

dl,hi (4.8)

where dl,hi =
∑︁|x|

j=1 jαi,j . Then we calculate the average latency loss with a differentiable

latency metric C.

Lavg = C
(︁
dW
)︁

(4.9)
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Like Arivazhagan et al. (2019), we use the Differentiable Average Lagging. It is important

to note that, unlike the original latency augmented training in (Arivazhagan et al., 2019),

Section 4.2.2 is not the expected latency metric given C, but weighted average C on all

the attentions. The real expected latency is d̂ = maxl,h
(︁
dl,h
)︁

instead of d̄, but using this

directly would only affect the speed of the fastest head. Section 4.2.2 can control every head

in a way that the faster heads will be automatically assigned to larger weights and slower

heads will also be moderately regularized. For MMA-H models, we found that the latency

of are mainly due to outliers that skip almost every token. The weighted average latency

loss is not sufficient to control the outliers. The reason use weighted average over maximum

is because the maximum function is too sparse to regularize all the outliers. We therefore

introduce the head divergence loss, the average variance of expected delays at each step,

defined in Section 4.2.2:

Lvar =
1

LH

L∑︂
l=1

H∑︂
h=1

(︂
dl,hi − d̄i

)︂2
(4.10)

where dī = 1
LH

∑︁|Y|
i di The final objective function is presented in Equation 4.11:

L(θ) = − log(y | x; θ) + λavgLavg + λvarLvar (4.11)

where λavg, λvar are hyperparameters that control both losses. Intuitively, while λavg controls
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the overall speed, λvar controls the divergence of the heads. Combining these two losses,

we are able to dynamically control the range of attention heads so that we can control the

latency and the reading buffer. For MMA-IL model, we only use Lavg; for MMA-H we only

use Lvar.

4.3 Experimental Setup

4.3.1 Datasets

Dataset RNN Transformer

IWSLT15 En-Vi 25.6 2 28.7
WMT15 De-En 28.4 (Arivazhagan et al., 2019) 32.3

Table 4.1: Offline model performance with unidirectional encoder and greedy decoding.

Dataset Beam Search Bidirectional Encoder Unidirectional Encoder

WMT15 De-En 1 32.6 32.3
4 33.0 33.0

IWSLT15 En-Vi 1 28.7 29.4
10 28.8 29.5

Table 4.2: Effect of using a unidirectional encoder and greedy decoding to BLEU score.
Greedy search and unidirectional encoder can potentially both affect the translation quality.

We evaluate our method on two standard machine translation datasets, IWSLT14 En-Vi

and WMT15 De-En. For each dataset, we apply tokenization with the Moses (Koehn et al.,

2Luong et al. (2015) report a BLEU score of 23.0 but they didn’t mention what type of BLEU score they
used. This score is from our implementation on the data aquired from https://nlp.stanford.edu/projects/nmt/
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2007) tokenizer and preserve casing.

IWSLT15 English-Vietnamese TED talks from IWSLT 2015 Evaluation Campaign (Cet-

tolo et al., 2016). We follow the settings from Luong et al. (2015) and Raffel et al. (2017).

We replace words with frequency less than 5 by <unk>. We use tst2012 as a validation set

tst2013 as a test set.

WMT15 German-English We follow the setting from Arivazhagan et al. (2019). We

apply byte pair encoding (BPE) (Sennrich et al., 2016) jointly on the source and target to

construct a shared vocabulary with 32K symbols. We use newstest2013 as validation set

and newstest2015 as test set.

4.3.2 Models

We evaluate MMA-H and MMA-IL models on both datasets. The MILK model we

evaluate on IWSLT15 En-Vi is based on Luong et al. (2015) rather than RNMT+ (Chen

et al., 2018). In general, our offline models use unidirectional encoders, i.e. the encoder

self-attention can only attend to previous states, and greedy decoding. We report offline

model performance in Table 4.1 and the effect of using unidirectional encoders and greedy

decoding in Table 4.2. For MMA models, we replace the encoder-decoder layers with

MMA and keep other hyperparameter settings the same as the offline model. Detailed
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hyperparameter settings can be found in Appendix A.1. We use the Fairseq library (Ott

et al., 2019) for our implementation.

4.4 Results

In this section, we present the main results of our model in terms of latency-quality

tradeoffs, ablation studies and provide further analysis. In the first study, we analyze the

effect of the variance loss on the attention span. Then, we study the effect of the number of

decoder layers and decoder heads on quality and latency. We also provide a case study for

the behavior of attention heads in an example. Finally, we study the relationship between

the rank of an attention head and the layer it belongs to.

4.4.1 Latency-Quality Tradeoffs

We plot the quality-latency curves for MMA-H and MMA-IL in Figure 4.2. The BLEU

and latency scores on the test sets are generated with different regularization weights. We

select the checkpoint with best BLEU score on the validation set. We use differentiable

average lagging (Arivazhagan et al., 2019) when setting the latency range. We find that for

a given latency, our models obtain a better translation quality. While MMA-IL tends to have

a decrease in quality as the latency decreases, MMA-H has a small gain in quality as latency
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Figure 4.2: Latency-quality tradeoffs for MILk and MMA on IWSLT15 En-Vi and WMT15
De-En. Detailed results can be Appendix A.2

decreases: a larger latency does not necessarily mean an increase in source information

available to the model. In fact, the large latency is from the outlier attention heads, which

skip the entire source sentence and point to the end of the sentence. The outliers not only

increase the latency but they also do not provide useful information. We introduce the

attention variance loss to eliminate the outliers, as such a loss makes the attention heads

focus on the current context for translating the new target token. It is interesting to observe
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that MMA-H has a better latency-quality tradeoff than MILk3 even though each head only

attends to only one state. Although MMA-H is not yet able to handle an arbitrarily long input

(without resorting to segmenting the input), since both encoder and decoder self-attention

have an infinite lookback, that model represents a good step in that direction.

4.4.2 Attention Span

In Section 4.2.2, we introduced the attention variance loss to MMA-H in order to prevent

outlier attention heads from increasing the latency or increasing the attention span. We

have already evaluated the effectiveness of this method on latency in Section 4.4.1. We also

want to measure the difference between the fastest and slowest heads at each decoding step.

We define the average attention span in Equation 4.12:

S̄ =
1

|y|

⎛⎝ |y|∑︂
i

max
l,h

tl,hi −min
l,h

tl,hi

⎞⎠ (4.12)

It estimates the reading buffer we need for streaming translation. We show the relation

between the average attention span versus λvar in Figure 4.3. As expected, the average

attention span is reduced as we increase λvar.

3The numbers of MILk on WMT15 De-En are from Arivazhagan et al. (2019)
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Figure 4.3: Effect of λvar on the average attention span. The variance loss works as intended
by reducing the span with higher weights.

4.4.3 Effect on Number of Layers and Number of Heads

One motivation to introduce MMA is to adapt the Transformer, which is the current

state-of-the-art model for machine translation, to online decoding. Important features of the

Transformer architecture include having a separate attention layer for each decoder layer

block and multihead attention. In this section, we test the effect of these two components

on the offline, MMA-H, and MMA-IL models from a quality and latency perspective. We

report quality as measured by detokenized BLEU and latency as measured by DAL on the

WMT13 validation set in Figure 4.4. We set λavg = 0.2 for MMA-IL and λvar = 0.2 for

MMA-H.

The offline model benefits from having more than one decoder layer. In the case of 1

decoder layer, increasing the number of attention heads is beneficial but in the case of 3

and 6 decoder layers, we do not see much benefit from using more than 2 heads. The best

performance is obtained for 3 layers and 2 heads (6 effective heads). The MMA-IL model
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behaves similarly to the offline model, and the best performance is observed with 6 layers

and 4 heads (24 effective heads). For MMA-H, with 1 layer, performance improves with

more heads. With 3 layers, the single-head setting is the most effective (3 effective heads).

Finally, with 6 layers, the best performance is reached with 16 heads (96 effective heads).

The general trend we observe is that performance improves as we increase the number

of effective heads, either from multiple layers or multihead attention, up to a certain point,

then either plateaus or degrades. This motivates the introduction of the MMA model.

We also note that latency increases with the number of effective attention heads. This is

due to having fixed loss weights: when more heads are involved, we should increase λvar or

λavg to better control latency.

4.4.4 Attention Behaviors

We characterize attention behaviors by providing a running example of MMA-H and

MMA-IL, shown in Figure 4.5 and Figure 4.6. Each curve represents the path that an

attention head goes through at inference time. For MMA-H, shown in Figure 4.5, we found

that when the source and target tokens have the same order, the attention heads behave

linearly and the distance between fastest head and slowest head is small. For example,

this can be observed from partial sentence pair “I also didn’t know that” and target tokens

“Tôi cũng không biết rằng”, which have the same order. However, when the source tokens
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Figure 4.4: Effect of the number of decoder attention heads and the number of decoder
attention layers on quality and latency, reported on the WMT13 validation set.

and target tokens have different orders, such as “the second step” and “bước (step) thứ hai

(second)”, the model will generate “bước (step)” first and some heads will stay in the past

to retain the information for later reordered translation “thứ hai (second)”. We can also see

that the attention heads have a near-diagonal trajectory, which is appropriate for streaming

inputs.

The behavior of the heads in MMA-IL models is shown in Figure 4.6. Notice that we

remove the partial softmax alignment in this figure. We don’t expect streaming capability
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Figure 4.5: Attention heads movements of MMA-H, Lvar = 1.0

for MMA-IL: some heads stop at early position of the source sentence to retain the history

information. Moreover, because MMA-IL has more information when generating a new

target token, it tends to produce translations with better quality. In this example, the MMA-

IL model has a better translation on “isolate the victim” than MMA-H (“là cô lập nạn nhân”

vs “là tách biệt nạn nhân”)
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Figure 4.6: Attention heads movements of MMA-IL, Lavg = 0.2

4.4.5 Rank of the Heads

The rank of the attention is the number place during decoder. For instance, the fastest

head has a rank of 1, while the slowest attention head has rank of L × H In Figure 4.7

and Figure 4.8, we calculate the average and standard deviation of rank of each head when

generating every target token. For MMA-IL, we find that heads in lower layers tend to have

higher rank and are thus slower. However, in MMA-H, the difference of the average rank

are smaller. Furthermore, the standard deviation is very large which means that the order of
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Figure 4.7: Attention heads movements of MMA-H, Lvar = 1.0

the heads in MMA-H changes frequently over the inference process.

4.5 Conclusion

In this chapter, we propose two variants of the monotonic multihead attention model

for simultaneous machine translation. By introducing two new targeted loss terms which

allow us to control both latency and attention span, we are able to leverage the power of

the Transformer architecture to achieve better quality-latency trade-offs than the previous

state-of-the-art model. We also present detailed ablation studies demonstrating the efficacy
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Figure 4.8: Attention heads movements of MMA-IL, Lavg = 0.2

Figure 4.9: The average rank of attention heads during inference on IWSLT15 En-Vi. Error
bars indicate the standard deviation. L indicates the layer number and H indicates the head
number.

and rationale of our approach. This work was publish in (Ma et al., 2019b) as a conference

paper in ICLR 2020
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Chapter 5

End-to-End Simultaneous

Speech-to-Text Translation

5.1 Introduction

The early research of simultaneous translation policies (Grissom II et al., 2014; Gu et al.,

2017; Lawson et al., 2018; Zheng et al., 2019a; Zheng et al., 2019b; Arivazhagan et al.,

2019; Ma et al., 2019b) focus on text input and output, given that most real-time systems

back then is cascade based. Since great progress has recently been achieved on the end-to-

end speech translation, there has been motivations to apply some policies to end-to-end

models. An end-to-end simultaneous speech translation system can potentially, feature a
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smaller model size, greater inference speed and fewer compounding errors compared to

cascade systems. Some initial attempt of this kind (Ren et al., 2020) has demonstrated

that end-to-end simultaneous speech-to-text systems can have lower latency than cascade

systems.

In this chapter, we will introduce our first attempt on end-to-end speech-to-text simul-

taneous translation (SimulS2T). This work was published in Ma et al. (2020). We study

how methods developed for simultaneous text translation (SimulT2T) can be adopted to

end-to-end speech-to-text translation. We demonstrate that a direct application of SimulT2T

methods to SimulS2T can be challenging:

1. The input of a speech translation system is much longer than text model.

2. The speech inputs are continuous speech features.

In order to address the issues, we introduce the concept of pre-decision module. Such module

guides how to group encoder states into meaningful units prior to making a READ/WRITE

decision. A detailed analysis of the latency-quality trade-offs when combining a fixed or

flexible pre-decision module with a fixed or flexible policy is provided.
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5.2 Methodology

5.2.1 Model Architecture

End-to-end S2T models directly map a source speech utterance into a sequence of target

tokens. The encoder of a ST model takes a sequence of acoustic features X = Se as input

and generates a sequence of hidden representations HE = [hE
1 , ..., h

E
|HE |]. The encoder

usually includes a subsampling operation, such that |HE| < |X|. We define the ratio of

downsizing as

re =
|HE|
|X|

(5.1)

Next, the decoder takes HE as input and generates decoder states HD = [hD
1 , ..., h

D
|HD|],

which are then converted to target tokens Y = [y1, ..., y|Y|]. In this chapter, We use the

S-Transformer architecture proposed by Di Gangi et al. (2019b), which achieves com-

petitive performance on the MuST-C dataset (Di Gangi et al., 2019a). In the encoder,

two-dimensional attention is applied after the CNN layers and a distance penalty is in-

troduced to bias the attention towards short-range dependencies. More specifically, the

two-dimensional attention attends both time and feature dimensions.

We investigate two types of simultaneous translation mechanisms, flexible and fixed

policy. In particular, we investigate monotonic multihead attention(MMA) (Ma et al.,

2019b), which is an instance of flexible policy and the prefix-to-prefix model (Ma et al.,
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2019a), an instance of fixed policy, designated by wait-k from now on, as introduced in

Section 3.3.1

5.2.2 Pre-Decision Module

As introduced in Section 2.3, in SimulT2T, READ or WRITE decisions are made at

the token (word or BPE) level. However, with speech input, it is unclear when to make

such decisions. For instance, one could choose to read or write after each frame or after

generating each encoder state. Under a common setting where re = 4, a frame typically

only covers 10ms of the input while an encoder state generally covers 40ms of the input, and

the average length of a word in our training dataset is 270ms. Thus, a policy like wait-k will

not have enough information to write a token after reading a frame or generating an encoder

state. Meanwhile, a flexible or model-based policy, such as MMA, should be able to handle

granular input in theory. Our analysis will show, however, that while MMA is more robust

to the granularity of the input, it also performs poorly when the input is too fine-grained.

In order to overcome these issues, we introduce the notion of a pre-decision module,

which groups frames of encoder states, prior to making a simultaneous decision on READ

or WRITE. A pre-decision module generates a series of trigger probabilities ptr(∗) on each

encoder states to indicate whether a simultaneous decision should be made. If ptr > 0.5,

the model triggers the simultaneous decision making, otherwise keeps reading new frames.
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The full architecture of the model is shown in Figure 5.1. An overview of the SimulS2T

 ......

40 ms

Encoder

Softmax
Attention

query

values

WRITE

READ

0.1 0.3 0.2 0.1 0.4 0.9 0.2 0.0

Simultanuous
Decision
Making

10 ms

keys

0.9

......

Pre-Decision

Figure 5.1: The full architecture of the proposed end-to-end simultaneous speech-to-text
translation model with pre-decision module. The pre-decision module is an encoder-only
module which group the encoder states for policy decision making. During the inference
time, the pre-decision module first compute a trigger probabality ptr. The simultaneous
policy will only involve when ptr > 0.5.

process with a pre-decision module is described in Algorithm 5.
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Algorithm 5 Decoding process of end-to-end SimulST with a pre-decision module. The
pre-decision module first checks whether to trigger the simultaneous policy decision making
process.
Input: Input: X
Input: Encoder subsampling ratio: re
Input: i = 1, j = 1, tl,h0 = 1, y0 = StartOfSequence.
1: while yi−1 ̸= EOS do
2: hj = Encoder(X1:j·re)
3: ptr(j) = PreDecisionModule(hj)
4: if ptr(j) > γtr then
5: pij = MonotonicAttention(si−1,hj)
6: if pij > 0.5 then
7: yi, si = Decoder(S1:i−1,H1:j)
8: i = i+ 1
9: Continue

10: j = j + 1

We propose two types of pre-decision modules:

Fixed Pre-Decision A straightforward policy for a fixed pre-decision module is to trigger

simultaneous decision making every fixed number of frames. Let ∆t be the time corre-

sponding to this fixed number of frames, with ∆t a multiple of Ts, and re = int(|X|/|H|)

ptr(j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if mod(j · re · Ts,∆t) = 0,

0 Otherwise.

(5.2)

Flexible Pre-Decision We use an oracle flexible pre-decision module that uses the source

boundaries either at the word or phoneme level. Let A be the alignment between encoder
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states and source labels (word or phoneme). A(hi) represents the token that hi aligns to.

ptr(j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if A(hj) = A(hj−1)

1 Otherwise.

(5.3)

5.3 Experiments

We conduct experiments on the English-German portion of the MuST-C dataset (Di

Gangi et al., 2019a), where source audio, source transcript and target translation are available.

We train on 408 hours of speech and 234k sentences of text data. We use Kaldi (Povey

et al., 2011) to extract 80 dimensional log-mel filter bank features, computed with a 25

ms window size and a 10 ms window shift. For text, we use SentencePiece (Kudo and

Richardson, 2018) to generate a unigram vocabulary of size 10,000. We use Gentle1 to

generate the alignment between source text and speech as the label to generate the oracle

flexible pre-decision module.

All speech translation models are first pre-trained on the ASR task where the target

vocabulary is character-based, in order to initialize the encoder. We follow the same

hyperparameter settings from (Di Gangi et al., 2019b). We follow the latency regularization

method introduced by (Ma et al., 2019b; Arivazhagan et al., 2019). The objective function

1https://lowerquality.com/gentle/
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to optimize is

L = −log (P (Y |X)) + λmax (C(D), 0) (5.4)

Where C is a latency metric (AL in this case) and D is described in Section 2.3. Only

samples with AL > 0 are regularized to avoid overfitting. For the models with monotonic

multihead attention, we first train a model without latency with λlatency = 0. After the

model converges, λlatency is set to a desired value and we continue training the model until

convergence.

5.4 Results

5.4.1 Latency-Quality Tradeoffs

We explore the latency-quality trade-offs of the 4 types of model from the combination

of fixed or flexible pre-decision with fixed or flexible policies. The non computation-aware

delays are used to calculate the latency metric in order to evaluate those trade-offs from a

purely algorithmic perspective.

Fixed Pre-Decision + Fixed Policy We use the wait-k policy with k range from 1 to 10.

The results are shown as Figure 5.2. As expected, both quality and latency increase with

step size and lagging. In addition, the latency-quality trade-offs are highly dependent on the
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step size of the pre-decision module. For example, with step size 120ms, the performance is

very poor even with large k because of very limited information being read before writing

a target token. Large step sizes improve the quality but introduce a lower bound on the

latency. Note that step size 280ms, which yields the most effective latency-quality trade-off,

also matches the average word length of 271ms. This motivates the study of a flexible

pre-decision module based on word boundaries.

Figure 5.2: Latency-Quality trade-off curves for Wait-k. The unit of average legging (AL)
is millisecond. Different colors indicate different step sizes.

Fixed Pre-Decision + Flexible Policy We conduct the experiments with MMA policy

for this setting. For each curve, the latency loss weight λ in Equation 5.4 we use are
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[0.004, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1]. The results are shown in Figure 5.3 Similar to wait-

k, MMA obtains very poor performance with a small step size of 120ms. For other step sizes,

MMA obtains similar latency-quality trade-offs, demonstrating some form of robustness to

the step size.
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Step size: 120ms
Step size: 200ms
Step size: 280ms
Step size: 360ms
Step size: 440ms
Step size: word
Step size: phoneme

Figure 5.3: Latency-Quality trade-off curves for MMA. The unit of AL is millisecond.

Flexible Pre-Decision Curve ⋆ and in Figure 5.2 and Figure 5.3 show latency-quality

trade-offs when the pre-decision module is determined by oracle word or phoneme bound-

aries. A SimulST model does not have the access to this information and the purpose of

this experiment is to guide future design of a flexible pre-decision model. First, as previ-
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ously observed, the granularity of the pre-decision greatly influences the latency-quality

trade-offs. Models using phoneme boundaries obtain very poor translation quality because

those boundaries are too granular, with an average phoneme duration of 77ms. In addition,

comparing MMA and wait-k with phoneme boundaries, MMA is found to be more robust

to the granularity of the pre-decision module.

Best Curves The best settings for each approach are compared in Figure 5.4. For fixed

pre-decision, we choose the setting that has the best quality for each latency bucket of

500ms, while for the flexible pre-decision we use oracle word boundaries. For both wait-k

and MMA, the flexible pre-decision module outperforms the fixed pre-decision module.

This is expected since the flexible pre-decision module uses oracle information in the form

of pre-computed word boundaries but provides a direction for future research. The best

latency-quality trade-offs are obtained with MMA and flexible pre-decision from word

boundaries.

5.4.2 Computation Aware Latency

We also consider the computation-aware latency described in Section 2.3, shown in

Figure 5.5. The focus is on fixed pre-decision approaches in order to understand the relation

between the granularity of the pre-decision and the computation time. Figure 5.5 shows

that as the step size increases, the difference between the non-computation aware and the
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Figure 5.4: Comparison of best models in four settings

computation aware latency shrinks. This is because with larger step sizes, there is less

overhead of recomputing the bidirectional encoder states 2. We recommend future work on

SimulS2T to make use of computation aware latency as it reflects a more realistic evaluation,

especially in low-latency regimes, and is able to distinguish streaming capable systems.

5.5 Conclusion

This chapter introduced our first attempt on end-to-end simultaneous speech translation

model. We investigated how to adapt SimulT2T methods to end-to-end SimulS2T by
2This is a common practice in SimulT2T where the input length is significantly shorter than in

SimulS2T (Arivazhagan et al., 2019; Ma et al., 2019a)
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Figure 5.5: Computation-aware latency for fixed pre-decision + wait-k policy. Points on
dotted lines are computation-aware, without lines are non-computation-aware

introducing the concept of pre-decision module. We also adapted original average lagging

to be computation-aware. The effects of combining a fixed or flexible pre-decision module

with a fixed or flexible policy were carefully analyzed. This work was publish in (Ma et al.,

2020) as a conference paper in IJCNLP-AACL 2020
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Chapter 6

Augmented Memory Transformer for

Simultaneous Speech-to-Text

Translation

6.1 Introduction

As introduced in previous chapters, while most previous work on simultaneous transla-

tion focus on text input (Ma et al., 2019a; Arivazhagan et al., 2019; Ma et al., 2019b) the

end-to-end approach for simultaneous speech translation has also very recently attracted

interest from the community (Ren et al., 2020; Ma et al., 2020) due to potentially lower
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latency compared with cascade models. However, most studies tend to focus on an ideal

setup, where the computation time to generate the translation is neglected. This assumption

may be reasonable for text to text but not for speech to text translation since the latter has

much longer input sequences. A simultaneous speech translation model may have the ability

to generate translations with partial input but may not be useful for real-time applications

because of slow computation in generating output tokens.

Meanwhile, despite the impressive progress on streaming ASR, most prior work is

not directly applicable to translation. Encoder-only or transducer structures are widely

implemented for ASR, since the output is assumed monotonically aligned to the input. In

order to achieve an efficient streaming speech translation model, we combine streaming ASR

and simultaneous translation techniques and introduce an end-to-end transformer-based

speech translation model with an augmented memory transformer encoder (Wu et al., 2020).

In this chapter, we introduce a SimulS2T model based on the augmented memory

transformer to address this issue. The augmented memory encoder has shown considerable

improvements on latency with little sacrifice on quality with hybrid or transducer-based

models on the ASR task. It incrementally encodes fixed-length sub-sentence level segments

and stores the history information with a memory bank, which summarizes each segment.

The self-attention is only performed on the current segment and memory banks. A decoder

with simultaneous policies is then introduced on top of the encoder.
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6.2 Methodology

The proposed streaming speech translation model, illustrated in Figure 6.1 consists of

two components, an augmented memory encoder and a simultaneous decoder. The encoder

incrementally and efficiently encodes streaming input, while the decoder starts translation

with partial input, then interleaves reading new input and predicting a target token under the

guidance of a simultaneous translation policy.

6.2.1 Augmented Memory Encoder

The self-attention module in the original transformer model (Vaswani et al., 2017)

attends to the entire input sequence, which precludes streaming capability. We denote

H = [h1, ...] as the input of a certain encoder layer, with ht ∈ RD. Notice that the length of

H can be unbounded for a streaming model. In the encoder, each self-attention projects the

input into query Q, key K and value V.

Q = WqH,K = WkH,V = WvH (6.1)

At each position j, a weight is calculated as follows

αj,j′ =
exp(β ·QT

j Kj′)∑︁
k exp(β ·QT

j Kk)
(6.2)
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Where β = 1√
D

is a scaling factor. The self-attention at position j can then be calculated as

Zj =
∑︂
j′

αj,j′Vj′ (6.3)

The calculation of self-attention makes it inefficient for streaming applications. According

to Equation 6.1, the self-attention needs full encoder states H for calculation. To address

this issue, Wu et al. (2020) proposes an augmented memory transformer encoder to address

this issue. Instead of attending to entire input sequence X, the self-attention is applied to

a sequence of sub-utterance level segments S = [s1, ...]. A segment sn, which contains a

span of input features, consists of three parts: left context ln of size L, main context cn of

size C and right context rn of size R. Each segment overlaps with adjacent segments —

the overlap between current and previous segment is ln, and between current and the next

segment is rn. Self-attention is computed at the segment level, which reduces the amount

of computation. The new query, key and value for each segment are

qn = Wq(ln, cn, rn, σn) (6.4)

kn = Wk(Mn−N :n−1, ln, cn, rn) (6.5)

vn = Wv(Mn−N :n−1, ln, cn, rn) (6.6)
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Where σn =
∑︁

xk∈sn xk is a summarization of the segment sn, and Mn−N :n =

[mn−N , ...,mn−1] are the memory banks. Denote q−1 is a projection of σn and α−1,j′ is the

attention weight when the query is q−1. Each memory bank is calculated as follows:

mn =
∑︂
j′

α−1,j′(vn)j′ (6.7)

which is introduced to represent history information. A hyperparameter N controls how

many memory banks are retained. Self-attention is then calculated as follows:

αj,j′ =
exp((qT

n )j(kn)j′)∑︁
k exp(β · (qT

n )j(kn)k)
(6.8)

(zn)j =
∑︂
j′

αj,j′(β · vn)j′ (6.9)

Where N + L < j ≤ N + L + C. Then only the central encoder states are kept and a

the concatenation of the segment states Z = [z1, ...] is passed to decoder. Because of the

left and right contexts, an arbitrary encoder can run on the segments without boundary

mismatch. In this paper, we adapt the encoder of convtransformer (Inaguma et al., 2020).

Before the self-attention layers, the encoder consists of two convolutional layers, with stride

of 2 on temporal dimension for each layer.
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Full Self-attention

Decoder
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Figure 6.1: Architecture of streaming transformer model with an augmented memory
encoder. The encoder only perform fully self-attention on segments of speech to improve
efficiency, while the decode operate simultaneous policies.
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6.2.2 Simultaneous Decoder

A simultaneous decoder starts translation with partial input based on a policy. Simultane-

ous policies decide whether the model should read new inputs or generate a new prediction

at a given time. However, different from text translation, our preliminary experiments

show that for simultaneous speech translation, encoder states are too fine-grained for policy

learning. Thus, we adopt the idea of pre-decision introduced in Section 5.2.2, for better

efficiency by making simultaneous read and write decision on chunks of encoder states.

Here, we use the simple fixed pre-decision strategy where the decision is made every fixed

number of encoder states. We denote the sequence of chunks as W = [w1, ...] and the start

and end encoder state index of wk is Ws(k),We(k). We denote the prediction of model as

Y = [y1, ...]. The general decoding algorithm of a simultaneous policy P with augmented

memory transformer is described in Algorithm 6. In theory, Algorithm 6 supports arbitrary

simultaneous translation policies. For simplicity, wait-k (Ma et al., 2019a) is used. It waits

for k source tokens and then operating then reading and writing alternatively. Notice that

our method is compatible with an arbitrary simultaneous translation policy.

Note that the decoder self-attention still has access to all previous decoder hidden states

up to previous end-of-sentence token; in order to preserve streaming capability for the de-

coder, decoder states are reset every time an end-of-sentence token is predicted. Augmented

memory is not introduced in the decoder because the target sequence is dramatically smaller
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Algorithm 6 Chunk-based simultaneous policy with an augmented memory encoder
Input: Chunk-based simultaneous policy P
Input: Streaming input X. Memory banks M. Prediction Y
Input: Maximum memory size N . Decision chunk size W
Input: Central context size C. Encoder pooling ratio R
Input: i = 1, n = 1, k = 1.
Input: We(1) = 1, y0 = BOS
1: while yi−1 ̸= EndOfTranslation do
2: if We(k) +W > n · C ·R then
3: zn,mn = Encoder(sn,Mn−N :n−1)
4: Z = [Z, zn],M = [M,mn]
5: n = n+ 1 # Read a new segment of input features
6: wk = Summarize(ZWs(k):We(k))
7: pik = P([Y1:i−1],wk)
8: if pik > 0.5 then
9: yi = Decoder([Y1:i−1],Z)

10: i = i+ 1 # Predict a target token
11: else
12: Ws(k + 1) = We(k) + 1
13: k = k + 1 # Move to the next chunk of encoder states

than the source speech sequence. The decoder can still operate in negligible time, even if

the input becomes longer.

6.3 Experiments

Experiments were conducted on the English-German MuST-C dataset (Di Gangi et al.,

2019a). The training data consists of 408 hours of speech and 234k sentences of text. We

use Kaldi (Povey et al., 2011) to extract 80 dimensional log-mel filter bank features. The

features are computed with a 25ms window size and a 10ms window shift and normalized
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with global cepstral mean and variance. Text is tokenized with a SentencePiece (Kudo

and Richardson, 2018) 10k unigram vocabulary. Translation quality is evaluated with

case-sensitive detokenized BLEU with SacreBLEU1. Latency is evaluated by Average

Lagging (Ma et al., 2019a; Ma et al., 2020), with the SimulEval (Ma et al., 2020b) toolkit.

The speech translation model is based on the convtransformer architecture (Inaguma et

al., 2020; Di Gangi et al., 2019a). It first contains two convolutional layers with subsampling

ratio of 4. Both encoder and decoder have a hidden size of 256 and 4 attention heads. There

are 12 encoder layers and 6 decoder layers. The model is trained with label smoothed (0.1)

cross entropy. We use the Adam optimizer (Kingma and Ba, 2015), with a learning rate of

0.0001 and an inverse square root schedule.

We use a simplified version of Ren et al. (2020) as our baseline model. While in Ren

et al. (2020), the simultaneous policy on word boundaries generated by a separate model, we

simply utilize a fixed-decision module introduced in Section 5.2.2. Our choice is motivated

by the fact that in Chapter 5, a fixed chunk size gave similar quality-latency trade-offs as

word boundaries. A unidirectional mask is introduced to prevent the encoder from looking

into future information.

All transformer-based speech translation models are first pre-trained on the ASR task,

in order to initialize the encoder. Each experiment is run on 8 Tesla V100 GPUs with 32

1https://github.com/mjpost/sacrebleu
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GB memory. The code is developed based on Fairseq2.

6.4 Results

We first analyze the effect of the segment and context sizes, and use the resulting optimal

settings for further analysis on the maximum number of memory banks and for comparison

with the baseline.

6.4.1 Effect of Segment and Context Size

We analyze the effect of different segment, left and right context sizes. For all experi-

ments, we use the wait-k (k = 1, 3, 5, 7) policy on a chunk of 8 encoder states (Ma et al.,

2020). The latency-quality trade-offs with different sizes are shown in Figure 6.2. We first

observe that, increasing the left and right context size will improve the quality with very

small increase on latency, for instance, from curve “S64 L16 R16” to “S64 L32 R32”. This

indicates that context of both sides can alleviate the boundary effect. We also notice that

when we reduce the segment size from 64 to 32, the BLEU score decreases dramatically.

Similar observations are made in (Wu et al., 2020) but the ASR models are more robust to

decreasing the segment and context sizes. We hypothesize that reordering in translation

2https://github.com/pytorch/fairseq
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makes the model more sensitive to these sizes.
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Figure 6.2: Effect of segment, left and right context size. Each curve represents wait-k,
k = 1, 3, 5, 7 policies. The size is measured on a frame of 10 ms. “S{x} L{y} R{z}” means
a encoder with segment size x, left size y and right size x.

6.4.2 Number of Memory Banks

In streaming translation, the input is theoretically unbounded. In order to prevent

memory explosion, we explore the effect of reducing the number of the memory banks.

Figure 6.3 shows the effect of different numbers of memory banks. We can see that the

model is very robust to the size of the memory banks. Similar to Wu et al. (2020), when the

maximum number of memory banks is large, for instance, larger than 3, there is little or

no performance drop. However, we still observe a drop in performance with a maximum

number of one memory bank. Finally, we found that training with different maximum

numbers of memory banks was necessary as limiting the number of memory banks only at
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Figure 6.3: Effect of the maximum number of memory banks. Each curve represents one
policy. The number on top of the nodes indicates the number of memory banks being kept.

inference time degraded performance.

6.4.3 Comparison with Baseline

In Figure 6.4, we compared our model with the baseline model described in Section 6.3.

The proposed model achieves better quality with an increase in computation aware and

non computation aware latency. The baseline achieves competitive latency because it only

updates encoder states every 8 steps. However, there may be instances where recomputing

encoder states every step may be needed, for example in the case of a flexible pre-decision

module or when a the model includes a boundary detector (Ren et al., 2020). In Figure 6.4,

the computation aware AL for the baseline increases substantially with a chunk of size 1.
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Figure 6.4: Comparison with baseline model. CA indicates measured by computation
aware latency. Chunk of x means that the encoder states are updated every x steps.

6.5 Conclusion

In this chapter, we tackle the real-life application of streaming simultaneous speech

translation. We propose a transformer-based model, equipped with an augmented memory,

in order to handle long or streaming input. We study the effect of segment and context sizes,

and the maximum number of memory banks. We show that our model has better quality

with an acceptable latency increase compared with a transformer with unidirectional mask

baseline and presents better quality-latency trade-offs than that baseline where encoder

states are recomputed at every step. This work was publish as Ma et al. (2021) in ICASSP

2021.
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Chapter 7

Direct Simultaneous Speech-to-Speech

Translation

7.1 Introduction

While a fair amount of research has been conducted on simultaneous translation with text

target, only a few works have explored simultaneous speech-to-speech translation (SimulS2S)

(Zheng et al., 2020; Sudoh et al., 2020) which mostly adopt the cascaded approach. However,

as discussed in Section 3.2, cascaded systems have several disadvantages. First, the pipeline

of multiple submodules introduces extra latency. Second, the errors can be propagated and

accumulated through the pipeline.
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Recent efforts on direct S2ST provide a new possibility for SimulS2S, where the inter-

mediate text representations are no longer needed. Among these models, Lee et al. (2022)

proposed a direct S2ST model, where a sequence of discrete units instead of spectrograms

are directly generated from the translation model. The discrete units are then passed to a

vocoder for target speech synthesis. The labels of units are self-supervised representations

learned from HuBERT (Hsu et al., 2021). A seperate vocoder can be trained separately

and run on-the-fly given the discrete units. Such approach shows potential computationally

advantage compared with spectrogram based model such as Translatotron (Jia et al., 2019b)

and Translatotron 2 (Jia et al., 2021)

Meanwhile, we find it can be challenging to adapt simultaneous policies to SimulS2S

model. Several prior works on monotonic attention based policies (Raffel et al., 2017;

Arivazhagan et al., 2019; Ma et al., 2019b) use a closed form estimation on simultaneous

alignment during the training time. We find that such estimation can be biased given long

sequences, which usually happens in speech applications.

In this chapter, we introduce one of the first attempts for direct simultaneous speech-

to-speech translation SimulS2S model. The model is based on recent progress on speech-

to-units (S2U) translation (Lee et al., 2022), along with a novel simultaneous policy —

variational monotonic multihead attention (V-MMA). Our approach is featured with two

characteristics. First, the model is simultaneous, and able to generate the target speech
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based on the partial source speech before obtaining the complete input; second, the model

is independent from intermediate text outputs when generating target speech. We carry

out experiments on the Fisher Spanish-English (Post et al., 2013) and MuST-C English-

Spanish datasets (Di Gangi et al., 2019a) and provide a comprehensive empirical comparison

between direct and cascaded models in SimulS2S.

7.2 Methodology

7.2.1 Variational Monotonic Multihead Attention

As introduced in Section 3.3.1, the alignment between source and target sequences is

estimated with Equation 3.4. However, in Chapter 5, we found that such approach degrades

the model performance on speech-to-text translation. We also observed this deficient policy

learnt in the preliminary experiments on speech-to-speech task. We found that as the length

of speech sequence increases, the estimation of alignment α̂i,j tends to be divergent, which

is due to the recurrent calculation of α̂i,j in Equation 3.4.

To address this issue, we propose the variational monotonic multihead attention (V-

MMA), which models the alignment with a latent variable α instead of recurrent estimation

in sequence-to-sequence modeling. Suppose that the source sequence is X and the target

sequence is Y. Traditional seq2seq model is trained to maximize the log probability
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log p(Y |X). Instead, we maximize its evidence lower bound (ELBO) derived with the latent

variable α as below.

L(ω, ϕ, θ) =Eα∼qϕ [log pθ(Y|X, α)]

− KL [qϕ(α|Y,X)||pω(α|X)] ,

(7.1)

where pω(α|X) is the prior of the monotonic alignment, qϕ(α|Y,X) is the posterior of the

monotonic alignment and pθ(Y|X, α) is the prediction of target sequence given the input

and alignment. The latent variable α, in the form of a matrix, is a monotonic alignment

between the target and source sequences of size |X| by |Y|, where αij indicates the yi is

generated from x1 to xj .
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0 0 0 1 1 1 0 0 1 1 1 0 0 1 1

0 0 0 1 0 0 1 0 1 0 0 1 0 1 1
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0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

Figure 7.1: Sampling process of variantional monotonic multihead attention. The green
path contains the all the actions, while the blue blocks indicate the switch point. We first
sample S, which is the linearization of switching actions. Then we found the Z, which is
the linearization of the simultaneous actions. Finally from Z we can have α, which is the
alignment used for training.

However, sampling α is non-trivial since α is a 2-D matrix with monotonicity. Therefore,
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we propose an approach for efficient sampling, as shown in Figure 7.1. We can first find the

one-to-one mapping between α and a binary sequence Z of length |X|+ |Y |+ 1, where

each z ∈ Z indicates write action if z = 1, otherwise read action. We illustrate an example

of matrix α and its corresponding sequence Z in Figure 7.1. Given a sequence Z, we

can map it to a unique path in a fixed length 2-D grid, which is then used as alignment

matrix α. Because the total number of write actions is the number of target words, we have∑︁
z∈Z z = |Y |. Sampling 1-D sequence of Z is easier than 2-D matrix of α. Furthermore,

we want the learned policy to have lower frequency of change for the purpose of smooth

speech segment synthesis. Therefore, we sample a sequence of the change of action S for a

better control during the training time, while for 1 < k < |X|+ |Y |+ 1

sk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 zk−1 ̸= zk

0 otherwise

(7.2)

During sampling, each sk is sampled from a Bernoulli distribution parameterized by psk,

psk = (1− eλ(k−k′)2)f(X:i, Y:j), (7.3)

where λ is a hyperparameter controlling the frequency of change, i is the current target

size, j is the current source size, and k′ = argmaxk′<k Sk′ = 1 is the latest index of action
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change. f(X:i, Y:j) is the context score, which is used as pi,j in Equation 3.4. Finally, we

sample of α from Z, which is derived from S given the one-to-one mapping between S and

Z.

Additionally, the calculation of the second term in Equation 7.1 can be written as

KL [qϕ(α|Y,X)||pω(α|X)]

= log
qϕ(α|Y,X)

pω(α|X)

= log

∏︁N
i=1 ϕi,zi

∏︁N
i=0

∏︁zi+1−1
j=ai

(1− ϕi,j)∏︁N
i=1 ωi,zi

∏︁N
i=0

∏︁zi+1−1
j=zi

(1− ωi,j)

=
N∑︂
i=1

log
ϕi,zi

ωi,zi

+
N∑︂
i=1

zi+1−1∑︂
j=zi

log
1− ϕi,j

1− ωi,j

,

(7.4)

where the ϕ is the posterior probability matrix and ω is the prior probability matrix. We

fixed diagonal as the prior.

7.2.2 Simultaneous Speech-to-Units Model

Figure 7.2 illustrate the architecture of the direct Simul-S2ST model with discrete units.

The encoder reads the speech features with downsampling, and generates a sequence of

hidden representations. Then, the simultaneous policy replaces soft-attention in the offline

model to connect encoder and decoder. Because of the granularity of the encoder states,

we follow the same setup as Ma et al. (2020) to use a fixed pre-decision module before
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Simultaneous Policy

Encoder

Vocoder

... ... ...

Vocoder Vocoder

Figure 7.2: Architecture of direct Simul-S2ST model with discrete units.

applying the simultaneous policy. The policy contains two actions: READ and WRITE.

The READ action indicates that the model takes another chunk of speech segment to update

the encoder states, while the WRITE action predicts the discrete units.

A vocoder will be applied to the discrete units to synthesize the final speech output.

Denote the emission rate l, the vocoder will be called every time l units are predicted. Note

that the vocoder is not used during training time. Because the vocoder is trained on short

speech segment in a non-autoregressive manner, as shown in the results, a small l can

achieve good latency without a huge sacrifice on quality.
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7.3 Experiments

Two datasets–Fisher and MuST-C–commonly used for speech translation tasks are used

in this work.

• Fisher Spanish-English dataset (Post et al., 2013). The dataset consists of 139k

sentences from telephone conversations in Spanish, the corresponding Spanish text

transcriptions and their English text translation. As (Lee et al., 2022), a high-quality

in-house TTS is used to prepare English speech with a single female voice.

• MuST-C dataset (Di Gangi et al., 2019a). It is a multilingual speech translation

corpus collected from TED Talks. We use English-Spanish data, where we synthesize

Spanish speech from Spanish texts provided by MuST-C with the help of an in-house

TTS model.

Various models are included as baselines for a comprehensive empirical comparison.

• Offline cascaded S2S translation. The offline cascaded system consists of two compo-

nents: S2T and TTS. The S2T model is the s2t_transformer_s architecture provided

by FAIRSEQ S2T for speech-to-text translation (Wang et al., 2020a). The target

vocabulary in S2T model consists of 47 English characters on Fisher data, and 8000

Spanish unigrams on MuST-C data. As for the TTS, we use a Transformer model

with 6 layers, 4 attention heads and dimensions of 512 and 2048, and a HiFi-GAN
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based vocoder generating speech from the predicted mel-spectrograms (Kong et al.,

2020).

• Simultaneous cascaded S2S model consisting of S2T and TTS modules. Its S2T

component has the same architecture as the offline S2T Transformer. As for the

simultaneous strategies in S2T part, we use two methods: (1) Wait-k strategy, (2)

MMA strategy. As for the incremental TTS module in the cascaded model, we

adapt the non-autoregressive FastSpeech 2 model (Ren et al., 2022). It incrementally

generates utterances word-by-word, utilizing the duration predictor for segmenting

output word boundaries (Stephenson et al., 2021). It further uses a lookahead of 1

word, which is equivalent to a wait-k strategy at test-time (Ma et al., 2019a; Ma et al.,

2020a), where k is two words1. To improve performance on partial inputs, we apply

the prefix augmentation procedure described in Liu et al. (2022).

• Offline direct S2S translation (Lee et al., 2022). It is a state-of-the-art direct translation

model without reliance on intermediate text outputs. On Fisher dataset, the direct

model uses 12 encoder layers, 6 decoder layers, 4 attention heads, an embedding

dimension of 256 and a feedforward dimension of 2048. As for MuST-C data, we

use a larger model with attention heads increased to 8 and the embedding dimension

increased to 512.
1Wait-(k + 1) is equivalent to lookahead-k following the definition in (Ma et al., 2020a)
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• Direct S2S translation with wait-k policy (Ma et al., 2019a). We simply add the policy

to attention mechanism in offline direct S2S translation model. We also try to directly

add monotonic multihead attention (MMA) module (Ma et al., 2019b), but the model

failed to converge.

Offline models would provide an upper bound of the translation quality. As the first work

in simultaneous speech-to-speech translation, we explore various simultaneous strategies

including wait-k strategy, V-MMA strategy with and without offline knowledge in the direct

S2U translation model. We follow the same training setup as Lee et al. (2022), except that a

masked attention for our simultaneous policies is used for mode training with partial inputs

(Ma et al., 2019a).

Additionally, we also tried to incorporate external guidance for policy learning. We first

trained an offline model and exported the alignment labels by finding the most possible

target prediction by feeding a partial input. We then leverage the offline labels for V-MMA

by minimizing the distance between the alignment matrix α and the offline labels. 2
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BLEU CA AL (ms)

Offline Cascaded (S2T+TTS) 39.5 -
Direct S2U 37.2 -

Simul

Cascaded
(S2T with wait-k

+ incremental TTS)

k=1 23.9 1317
k=3 25.4 3109
k=5 25.9 3004
k=10 28.1 3476
k=15 29.2 3803
k=20 30.1 4099
k=25 31.4 4460

Cascaded
(S2T with MMA

+ incremental TTS)

lw=1e− 4 28.4 3884
lw=1e− 3 30.5 3737
lw=5e− 4 35.8 4504

Direct S2U with wait-k
k=5 22.2 1757
k=10 27.9 3520
k=15 33.5 4127
k=20 34.3 4409

Direct S2U with V-MMA
λ=0.01, w/o label 25.3 3136
λ=0.01, w/ label 25.9 3215
λ=0.5, w/o label 33.4 4564
λ=0.5, w/ label 34 4558

Table 7.1: BLEU scores and latency of models on the Fisher Spanish-English dataset.
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BLEU CA AL (ms)

Offline Cascaded (S2T+TTS) 24.4 -
Direct S2U 23.7 -

Simul

Cascaded
(S2T with wait-k

+ incremental TTS)

k=3 9.7 1094
k=5 11.7 2892
k=7 12.8 3108
k=9 14.3 3159

Cascaded (S2T with MMA
+ incremental TTS)

lw=1.5e− 3 15.8 3249
lw=1e− 3 15.9 3283

lw=1.2e− 3 15.9 3303
lw=8e− 4 16.4 3547

Direct S2U with wait-k
k=5 9.2 839
k=10 10.8 2718
k=15 16.7 3278
k=20 18.6 4473

Direct S2U with V-MMA
λ=0.01, w/o label 11.5 2706
λ=0.01, w/ label 12.2 2927
λ=0.5, w/o label 18.1 4421
λ=0.5, w/ label 18.2 4534

Table 7.2: BLEU scores and latency of models on the MuST-C English-Spanish dataset.
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7.4 Results

In this section, we report the results of both offline and simultaneous models on Fisher and

MuST-C datasets respectively. We compare direct with cascaded approaches to simultaneous

translation, and analyze the impact of discontinuity on synthesized speech.

7.4.1 Latency-Quality

We first compare simultaneous translation models on Fisher dataset, and results are

shown in Table 7.1.

Cascaded models. Wait-k and MMA strategies demonstrate comparable performance

in terms of BLEU and latency.

Direct models. As for direct models, the V-MMA policy controls model by the hy-

perparameter λ in Equation 7.3. V-MMA policy has similar performance compared with

wait-k policy in direct S2S models.

Direct v. cascaded. We include offline speech-to-speech models which provide an

upper bound of the translation quality. In the offline setting, the direct S2S model falls behind

the cascaded model by 2.3 BLEU. As for the simultaneous setting, latency is an important

factor besides the translation quality. With wait-k policy, direct models achieve higher

2The results of this setup are not included in the thesis because the work was mostly done by Hongyu
Gong from Meta Facebook AI Research.
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BLEU than cascaded models in the high-latency setting (> 4000 ms). This demonstrates

that direct models have the ability to handle compounding errors while the error propagation

hurts the performance of cascaded models. In the low-latency region (< 4000 ms), direct

models have comparable BLEU and latency in comparison with cascaded models when

wait-k strategy is applied.

We evaluate simultaneous translation models on MuST-C English-Spanish dataset, and

summarize their performance in Table 7.2.

Simultaneous policies. For the direct simultaneous model, V-MMA outperforms wait-

k given latency lower than 3000 ms, e.g., V-MMA has a BLEU of 11.5 which is higher than

wait-k’s BLEU of 10.8 with a latency of 2706 ms which is comparable to wait-k’s latency

of 2718 ms. When it comes to high-latency region, V-MMA has a lower BLEU of 18.1

with 4421-ms latency than wait-k which has a BLEU of 18.6 with 4473-ms latency.

Direct v. cascaded. We again include offline speech-to-speech models which provide

an upper bound of the translation quality. In the offline setting, the direct model falls behind

the cascaded model by 0.7 BLEU. In the simultaneous setting, both wait-k and V-MMA in

direct models have higher BLEU scores in comparison with wait-k and MMA in cascaded

models given latency higher than 3000 ms.

7.5 Conclusion
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Conclusion

8.1 Summary of Findings

In this thesis, we conduct research on the end-to-end / direct approach for simultaneous

speech translation. The summarization of the main findings and contributions of this thesis

are listed as follow.

• In Chapter 2, we formalized the tasks of this thesis, including the definition, challenges

and evaluation procedures. We extend existing latency metrics to speech tasks. We

develop an open source toolkit, SimulEval (Ma et al., 2020b), for standard and

generalized evaluation for simultaneous translation.

• In Chapter 4, we proposed monotonic multihead attention (MMA) to extend mono-
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tonic attention to Transformer (Vaswani et al., 2017) to leverage the quality of simul-

taneous translation model. We proposed two types of MMA models, hard and infinite

lookback. We achieve the state-of-the-art performance on quality-latency trade-off

compared with baseline.

• In Chapter 5, we adapted the simultaneous policy from text-to-text translation to

speech-to-text translation. We analyze the challenge of the adaptation and proposed

the concept of pre-decision module to address the issue.

• In Chapter 6, we introduce augmented memory transformer (Wu et al., 2020) to

simultaneous translation task to improve the efficiency of simultaneous encoder.

Compared with uni-directional masked fully attended baseline, the proposed approach

achieved a better computation-aware latency.

• In Chapter 7, we attempt the direct simultaneous speech-to-speech translation based-

on recent proposed speech-to-unit (Lee et al., 2022) model. To address the issue that

the alignment estimation of MMA is huge on long target speech unit sequence, we

proposed the variational monotonic multihead attention. We find that the task is very

challenging, where the direct model underperforms the cascaded model.
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8.2 Future Works

8.2.1 Direct Simultaneous Speech-to-Speech Translation

The low-latency speech-to-speech (S2S) translation is crucial for lots of applications,

such as real-time communications. However, as introduced in chapter 7, the task is very

challenging, especially for the direct approach. In this chapter 7, we proposed variational

monotonic multihead attention. However, it failed to achieve satisfying quality compared

with the cascaded baseline. We proposed the following idea for potential improvement:

• Currently, most MMA-based models have no explicit history dependency. Introducing

such independency is important for S2S because we hope the actions to be continues

to reduce the discontinuity in the generated speech

• Better training strategies, including data augmentation (such as knowledge distillation),

pre-training from offline model and unsupervised encoder, has great potential to

improve the translation quality

• New architectures besides encoder-decoder models, such as transuducer-based models,

start to show decent performance when massive training data is available. Such new

architectures give the new think for the simultaneous translation task.
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8.2.2 Improvement on Evaluation

The current evaluation metrics for simultaneous translation are all utterance based.

Utterance level latency evaluation on standard test-sets, such as test-COMMON in MuST-C

(Di Gangi et al., 2019a) which only has a average length of 6s, can be underestimated.

Furthermore, the oracle system delays, which usually used to compute the latency metrics,

are usually from an evenly distributed linear-time system. However, for human speech, the

information is not evenly distributed. Therefore, we think the following future works on

evaluation metrics design can be important:

• A streaming level, segmentation free latency metric.

• A latency metric with consideration on information distribution over speech.

• A standard test-set for streaming translation.

• Evaluation for Read/Write parallel execution.

8.2.3 Incorporation of Human Interpretation

Different from explicit translation, human interpreters usually combine translation and

summarization during simultaneous interpretation. which for a long time has been neglected

by the machine translation research community during either data collection or evaluation

process. In future, we should leverage the human interpretation, such as
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• Design systems which combine translation and summarization to generate the results

similar to human interpreter.

• Collect human interpreter data for simultaneous model training and evaluation.

• Use human interpreter as the oracle system in the latency calculation for better

estimation.

• Conduct human evaluation on the latency of real-time translation

8.2.4 Simultaneous Translation with Multi-Modality

In many applications, such as video chat and TED talks, additional modality, such as

video and text are available. Potentially, the data in additional modality can be used for

• Improving the simultaneous policy. Some visual data, such as lip movements, are

more deterministic than speech signals.

• Determine the domain of the speech. For instance, the we can infer the domain from

the video background to deploy the most in-domain model.

• Improving the speech robustness and Speaker diarisation in multi-speaker senorios.
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Appendix of Chapter 4

A.1 Hyperparameters

The hyperparameters we used for offline and monotonic transformer models are defined

in Table A.1.

A.2 Detailed results

We provide the detailed results in Figure 4.2 as Table A.2 and Table A.3.
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Hyperparameter WMT15 German-English IWSLT English-Vietnamese

encoder embed dim 1024 512
encoder ffn embed dim 4096 1024
encoder attention heads 16 4
encoder layers 6
decoder embed dim 1024 512
decoder ffn embed dim 4096 1024
decoder attention heads 16 4
decoder layers 6
dropout 0.3
optimizer adam
adam-β (0.9, 0.98)
clip-norm 0.0
lr 0.0005
lr scheduler inverse sqrt
warmup-updates 4000
warmup-init-lr 1e-07
label-smoothing 0.1
max tokens 3584× 8× 8× 2 16000

Table A.1: Offline and monotonic models hyperparameters.
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BLEU AP AL DAL

λavg MMA-IL

0.05 30.7 0.78 10.91 12.64
0.1 30.5 0.70 7.42 8.82
0.2 30.1 0.63 5.17 6.41
0.3 30.3 0.60 4.18 5.35
0.4 29.2 0.59 3.75 4.90
0.5 26.7 0.59 3.69 4.83
0.75 25.5 0.58 3.40 4.46
1.0 25.1 0.56 3.00 4.03

λvar MMA-H

0.1 28.5 0.74 8.94 10.83
0.2 28.9 0.69 6.82 8.622
0.3 29.2 0.64 5.45 7.03
0.4 28.5 0.59 3.90 5.21
0.5 28.5 0.59 3.88 5.19
0.6 29.6 0.56 3.13 4.32
0.7 29.1 0.56 2.93 4.10

Table A.2: Detailed results for MMA-H and MMA-IL on WMT15 DeEn
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BLEU AP AL DAL

λ MILk

0.1 24.62 0.71 5.93 7.19
0.2 24.68 0.67 4.90 5.97
0.3 24.31 0.65 4.45 5.43
0.4 23.73 0.64 4.28 5.24

λavg MMA-IL

0.02 28.28 0.76 7.09 8.29
0.04 28.33 0.70 5.44 6.57
0.1 28.42 0.67 4.63 5.65
0.2 28.47 0.63 3.57 4.44
0.3 27.9 0.59 2.98 3.81
0.4 27.73 0.58 2.68 3.46

λvar MMA-H

0.02 27.26 0.77 7.52 8.71
0.1 27.68 0.69 5.22 6.31
0.2 28.06 0.63 3.81 4.84
0.4 27.79 0.62 3.57 4.59
0.8 27.95 0.60 3.22 4.19

Table A.3: Detailed results for MILk, MMA-H and MMA-IL on IWSLT15 En-Vi
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Vĕra Kloudová, Surafel Lakew, Xutai Ma, Prashant Mathur, Paul McNamee, Kenton
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