1

iCân

GPS Integrated Smart Cane for the Blind
Johns Hopkins University
Principles of Biomedical Instrumentation

Prepared by: Albert Liu and Peter Li
December 4, 2009

Project Objective
	The objective of our device was to build and demonstrate the feasibility of an electronically enhanced cane for the blind, dubbed the iCân (pronounced “I cane”). This device would have the ability to warn users of obstacles such as people, objects, and stairs in addition to being able to guide users to preprogrammed destinations via GPS tracking.
Introduction
The WHO estimated that in 2002, about 37 million people worldwide were blind. The primary assistive device for blindness is the basic white cane, allowing users to probe for objects ahead of them below waist level and informing others of their condition. While this device has been adequate at helping users move from place to place, much can still be improved on in terms of functionality. For example, objects could be above the level of the cane, which would not be able to warn users of the object. Also, it may be useful to allow the cane to detect objects farther than the reach of the cane so as to avoid the inconvenience of bumping into other people or objects with the cane. Another need identified by a blind person was the usefulness of incorporating a guidance system to inform users of destinations outside of the users’ regular route. For example, if the blind person needed to visit an unfamiliar territory without outside help, it would be very difficult to find the building or location that the person needed to get to. Thus, the design of our cane incorporated both an obstacle detection mechanism and GPS guidance system.
Design Process
Part 1 – Designing the Cane and Sensors
Selecting the sensors
The sensors selected for the cane had to demonstrate both extreme accuracy and ability to perform under different terrains. Based on previous cane designs, ultrasonic sensors and infrared (IR) sensors provided cost-efficient options that are both reliable and robust. For our application, we determined that we needed to find a long-distance sensor that will provide feedback to the user for obstructions from a reasonable distance beyond the cane (about 5 feet). We also decided to install a short distance sensor, mounted at a particular angle close to the end of the cane, to determine upstairs and downstairs.
Firstly, we tested out the performance of the long distance ultrasonic sensor. It was determined that although the ultrasonic sensor gave out relatively clean output voltages (corresponding to distance), the window in which it detected objects was too large: at times, we would see the voltage fluctuate, presumably due to the large window of detection. We then tested out the IR sensor, which gave a fuzzy voltage reading, but had a narrower window (i.e. it detects objects directly in front of the sensor, with no window of detection to the sides by any degree). We ultimately decided to utilize the strengths of both sensors, and programmed our PIC accordingly, resulting in consistently accurate readings.
	The short distance sensor was oriented slightly downwards from a vertical orientation. Careful placement ensured that the cane would not be erroneously detected, and that it would detect both upstairs and downstairs. If the user were approaching stairs going up, the short-distance IR sensor would detect a jump in voltage. If the user were approaching stairs leading downwards, the sensor would output a sharp drop in voltage.
Calibrating the sensors
In order to calibrate the sensors, we needed measuring tape, and an object for the sensor to detect. We observed that due to the nature of IR sensor detection, the object could not be colored black, as the infrared light is presumably absorbed. Thus, we had one partner stand in a blue outfit while the other partner carried the other end of the measuring tape, with the sensor.
We determined the reasonable range of operation that we wanted each our sensors to operate in. Then, taking the maximum distance, we recorded varying distances and their corresponding voltage output. Finally, we plotted these points on an excel graph, and produced a line of best fit, or our calibration curve for the sensor. Please refer to Appendix A.
Programming the PIC (averaging alg.)
Both the ultrasonic and the long range IR sensor data were fed into the PIC16F877 and processed to provide reliable feedback. Firstly, the equations (Please refer to Appendix A) from the calibration curves were incorporated to easily specify the critical distance at which the vibrator would trigger. From initial testing, it was found that the ultrasound data was often highly variable, as it would jump between the desired and the rail pulse durations. Thus, in addition to requiring that both the IR and ultrasound cross the threshold to trigger the vibrator, an averaging algorithm was used to take the average of the last 6 (approx. 1 sec) ultrasound readings. This would minimize jumping since it would average out the fluctuations. This algorithm seemed to produce fairly reliable sensor readings of obstacles.
	Independent of the object sensors is the stair sensor at the bottom of the cane. The programming for this involved first finding a baseline voltage when the PIC is first turned on, since the level of ground will vary depending on the surface and height of the user. From this baseline voltage, the sensor would be able to detect the presence of grass or an upstair if the voltage increases beyond a certain threshold and a drop or downstair if the voltage drops beyond a certain threshold.
Part 2 – Interfacing the GPS
Design specifications required a small, cost effective, and power efficient GPS chip that could be easily integrated into the limited space available in a lightweight cane. To this end, we ordered the EM-406A GPS module from USGlobalSat. It is based on the SiRF StarIII chipset with 5 meter positional accuracy in North America, dimensions of 30 mm x 30 mm x 10.5 mm, 350 mW power consumption, serial RS232 output, a weight of 16g, and with a cost of less than 60USD. The GPS module was able to interface with the computer via an evaluation board and a USB connection emulating a virtual COM port. Using this setup, we were able to verify the chip was operating properly and receiving correct latitude and longitude data. However, our original design of incorporating the GPS into the cane requires the GPS to directly interface with the PIC microcontroller, eliminating the need for an evaluation board. Therefore, we directly soldered wires to the power, ground, and output pins of the GPS to eventually plug into our circuit. It was at this point that problems began to occur. We were unable to get the microcontroller to properly read and store the RS232 data coming out of the GPS, even though we demonstrated it was possible with the same circuit on the computer. We believe that it may have either been a data buffering issue or a hardware issue; however, there was insufficient time and resources to fully pinpoint the problem. Instead, we developed an alternative strategy that involved interfacing the GPS to a portable device (in this case, our laptop, since it had an already demonstrated to receive GPS data), which could in turn interface to the Smart Cane via a wireless XBee chip. We believed that this design remained a plausible option in the real world because having a separate GPS module would reduce the weight of the cane and allow users to choose to leave the module at home if they are in familiar territory.
With this strategy, we were able to incorporate a much more advanced feedback mechanism, that is, voice feedback through the audio output on the computer. The feedback was designed to be activated only at the press of the corresponding button on the cane; once the button was pressed, a serial signal would be sent via the XBee to the computer, which would then tell the user the distance and direction to the destination (fig. 1). The algorithm to determine the user’s current vector relative to the destination was fairly simple: the MATLAB program would first subtract the previous recorded latitude and longitude from the most current coordinate to determine the traveler’s current vector. Then, it would subtract the user’s current location from the location of the destination to determine the vector relative to the traveler’s location. The program would finally subtract from that vector the traveler’s current direction to tell the user whether the destination is left, right, forward, back, etc. of his or her current location. The distance is calculated based on the decimal degree to meter conversion specific to the immediate area within Johns Hopkins University, as the conversion would change at different geospatial locations. Finally, depending on the direction and distance calculated, the program would play the appropriate audio files.
 (
Fig. 1 – Flow
diagram
)[image:]

Putting the Cane Together
The first step was to find a pole that will accommodate electronic components: in other words, this pole had to maintain structural integrity during the installation of electrical components. We went to our household cleaning closet to find a Swiffer® Sweeper. Made of a very lightweight metal and relatively small diameter, the pole was large enough in diameter for our wiring needs. Additionally, the handgrip was already engineered for easy handling. The result was a very sleek and very lightweight electronic cane, comparable in weight to those of non-electronic canes.
The second step was to determine the type of feedback that the user receives through the cane. In order to provide feedback without being a disturbance to the user or the user's environment, the cane utilized an exclusively tactile feedback via vibration motors. This prevents the audible feedback that many other designs utilized from causing a cacophonous nuisance during use. We mounted a set of vibrators that would activate when the user approaches an object. These shaft-less vibrators were mounted around the handle, and we drilled through the handle towards the hollow center of the cane to feed the wiring of these motors. Next, we installed a button in front of the thumb placement on the handle to allow for GPS interaction (please refer to the "Interfacing the GPS" above).
	The ultrasonic long-distance sensor was placed nearest the handle, and the IR long-distance sensor was placed slightly under the ultrasonic sensor. Both sensors were oriented facing completely forward. Between the two sat the enclosure that contained the PIC, its circuitry, the XBee transmit chip, and the power supply (a 9-Volt battery). The IR short-distance sensor was placed at the very end of the cane, close to the ground. With no exposed wires, and almost all electronics placed inside the cane, our cane is potentially waterproof.

Problems Encountered
In summary, the following is a list of problems we encountered. Their respective contexts can be found in the sections above.
1. When picking out the long-distance sensor, we realized that the ultrasonic sensor alone was not a consistent sensor. Thus, we helped improve its accuracy by coupling it with a long-distance IR sensor reading. Thus, a reading given by one sensor can be confirmed by another before providing feedback to the user.
2. Due to complications with the PIC being unable to properly read and store the RS232 data coming out of the GPS, we mitigated the problem by proposing another method to interface the cane with a GPS device, via a laptop. Given the power of the laptop, we were able to provide voice feedback through headphones connected to the laptop, allowing the user to determine his or her location.

Possible Design/Device Improvements
As this device was built as a prototype to determine the feasibility and practicality of an electronically-assisted cane, we foresee many design improvements that can be made to the current design. First and foremost, we originally anticipated the circuitry, including the PIC and GPS module, to fit inside the cane. For this reason, we bought a PIC with a smaller width, and attempted unsuccessfully to program it with the given PICSTART® Plus. In the future, we hope to minimize the size of our wiring and circuit board, in order to be able to fit all electronics inside the cane. Secondly, provided that we are given compatible hardware, the GPS module can successfully communicate with the PIC. This will eliminate the need for any external hardware that is currently required to operate the GPS. Next, the bottom of our cane does not include a foot of any kind. By adding a plastic cap, we can prevent the cane from easily wearing down.
Overall, the main downfall of an electronic cane is its size, weight, and marginal utility. By using a lightweight metal alloy for our cane, we were able to maximize structural stability while minimizing weight and size. However, through additional research, we may be able to find even better and lighter metal compounds that fit our quality and reliability standards. Also, by placing more research on the various types of ultrasonic sensors and IR sensors available in the industry, we may be able to find different sensors from those we are currently using that may meet the specifications of our requirements.
Potential Biomedical Applications
	Other potential biomedical applications that utilize the technologies incorporated in this cane include patient tracking and movement measurements. The GPS technology developed here can be used to track the locations of at-risk patients that need supervision such as mentally ill or elderly persons. Should something like a blood pressure or pacemaker alarm set off, the GPS would be able to instantaneously tell first responders the location of the patient, allowing the patient to receive medical attention quickly, possibly saving his/her life. The technologies that could be used with the other sensors on the cane can be used to detect patient movement so as to alert hospitals that a patient is moving too much if they are supposed to stay immobile. Another use for this is for experiments or assays that require measuring a patient’s range of motion, which could be measured by an array of sensors.

Appendix A – Calibration Curves of Sensors

Ultrasonic Sensor Calibration Curve:

Long Distance IR Sensor Calibration Curve:

Appendix B - Smart Cane Code

smartcane.c (main PIC file)
//smartcane.c

#include <16F877.h>
#include <stdio.h>
#include <stdlib.h>
#define TXBEE PIN_C6
#define RXBEE PIN_C7
#use delay(clock=20000000)
#use rs232(baud=9600, XMIT=TXBEE, RCV = RXBEE, parity=N, bits=8)

void main()
{
 int old = 0;
 int time1, time2, dur, i, n, m, IRinput, object;
 double avg = 0;
 double dis = 0;
 double baseline;
 double last10[6] = {0,0,0,0,0,0};
 setup_adc(ADC_CLOCK_INTERNAL);
 setup_adc_ports(AN0_AN1_AN3);

 //finds baseline SIR voltage
 m = 0;
 for (m=1;m<=10;m++){
 delay_ms(100);
 set_adc_channel(1);
 delay_us(10);
 baseline = baseline + read_adc();
 }
 baseline = baseline/10;

 while(TRUE){
 //trigger pulse
 output_high(PIN_B7);
 delay_us(11);
 output_low(PIN_B7);
 //calculates duration of ultrasonic pulse
 i = 0;
 for (i=0;i<50;i++) {
 delay_ms(1);
 if (old==0 && input(PIN_B6)>0){
 time1 = i;
 old = 1;
 }
 if (old==1 && input(PIN_B6)==0){
 time2 = i;
 old = 0;
 }
 }
 delay_ms(10);
 dur = time2-time1;
 dis = 0.5826*dur - 0.0311; //converts to distance in ft

 //gets long IR data
 set_adc_channel(0);
 delay_us(10);
 IRinput = read_adc();
 if (IRinput>100){ //corresponds to 2.6 V or 3.5 ft
 object = 1;
 }
 else {
 object = 0;
 }
 delay_ms(1);

 // takes average of last 10 recorded distances
 n = 0;
 avg = 0;
 for (n=0;n<5;n++){
 last10[n] = last10[n+1];
 }
 last10[5] = dis;
 for (n=0;n<6;n++){
 avg = last10[n] + avg;
 }
 avg = avg/6;

 //user feedback
 if (avg<4.5 && object==1){

 output_high(PIN_D2);
 }
 else {
 output_low(PIN_D2);
 }

 //gets short IR data

 set_adc_channel(1);
 delay_us(10);
 IRinput = read_adc();
 if (IRinput>2*baseline){ //upstairs
 output_high(PIN_C4);
 delay_ms(400);
 output_low(PIN_C4);
 delay_ms(200);
 output_high(PIN_C4);
 delay_ms(400);
 output_low(PIN_C4);
 }
 else if(IRinput<.25*baseline){ //downstairs
 output_high(PIN_C4);
 delay_ms(1000);
 output_low(PIN_C4);
 }
 else{
 output_low(PIN_C4);
 }

 delay_ms(100);

		//checks GPS trigger
		if (input(PIN_B3)==1){
			printf("11111111111111");
			putc(13);
			putc(11);
		}
		else {
			printf("00000000000000");
			putc(13);
			putc(11);
		}
	}
}

GPS_run.m (MATLAB file for main GPS operation):
% GPS_run.m

format long g;
dest_lat = 19.6090;
dest_long = 37.2689;
c_lat = 1182.2;
c_long = 1735.2;
lat_old = 0;
long_old = 0;
click = 0;
pos = 1;

while (1)
 try
 %checks for mouse click for 3 seconds
 scrsz = get(0,'ScreenSize');
 f = figure('Position',[1 scrsz(2) scrsz(3) scrsz(4)]);
 h = uicontrol('Position',[0 0 scrsz(3) scrsz(4)],'String','Continue','Callback','onclick');
 uiwait(gcf,3)
 close(f);

 GGA = fscanf(gps) %gets data from buffer
 lat = regexp(GGA, '.........,N', 'match')
 long = regexp(GGA, '.........,W', 'match')

 if ~isequal({},lat) && ~isequal({},long)
 lat = str2num(lat{1}(3:9));
 long = str2num(long{1}(3:9));
 latd = c_lat*(lat - lat_old);
 longd = c_long*(long - long_old);
 dir = get_dir(latd,longd);
 for i = 1:length(dir)
 if dir(i)==1
 pos = i;
 break;
 end
 end
 % if mouse is clicked
 if click==1
 lat_vec = c_lat*(dest_lat - lat);
 long_vec = c_long*(dest_long - long);
 distance = sqrt(lat_vec^2 + long_vec^2); %distance in meters

 dist_str = num2str(round(distance));
 play_num(dist_str); % plays distance
 pause(.5);
 turn = get_dir(lat_vec,long_vec);
 for i = 1:length(turn)
 if turn(i)==1
 turn_pos = i;
 break;
 end
 end
 new_pos = turn_pos-(pos-1)
 if new_pos <= 0
 new_pos = new_pos + 8;
 end
 turn_dir = [0 0 0 0 0 0 0 0];
 turn_dir(new_pos) = 1;
 play(turn_dir); % plays direction
 disp('played')
 click = 0;
 pos = 1;
 end

 lat_old = lat;
 long_old = long;
 end
 catch
 disp('error detected');
 end
end
GPS_mouseclick.m (MATLAB file that gets GPS signal from virtual COM port)
% GPS_mouseclick.m
% lat 39 deg, long 76 deg

gps = serial('COM3');
fopen(gps);
set(gps, 'BaudRate', 4800, 'DataBits', 8, 'Parity', 'none', 'StopBits', 1);

GPS_run

fclose(gps)
delete(gps)
clear gps

getdir.m (gets direction)
% get_dir.m

% dir = [N, NE, E, SE, S, SW, W, NW]

function dir = get_dir(lat,long)
if long > 0 && lat > 0 && atand(abs(lat/long))>53
 dir = [1 0 0 0 0 0 0 0];
elseif long < 0 && lat > 0 && atand(abs(lat/long))>53
 dir = [1 0 0 0 0 0 0 0];
elseif long < 0 && lat > 0 && atand(abs(lat/long))<53 && atand(abs(lat/long))>36
 dir = [0 1 0 0 0 0 0 0];
elseif long < 0 && lat > 0 && atand(abs(lat/long))<36
 dir = [0 0 1 0 0 0 0 0];
elseif long < 0 && lat < 0 && atand(abs(lat/long))<36
 dir = [0 0 1 0 0 0 0 0];
elseif long < 0 && lat < 0 && atand(abs(lat/long))>36 && atand(abs(lat/long))<53
 dir = [0 0 0 1 0 0 0 0];
elseif long < 0 && lat < 0 && atand(abs(lat/long))>53
 dir = [0 0 0 0 1 0 0 0];
elseif long > 0 && lat < 0 && atand(abs(lat/long))>53
 dir = [0 0 0 0 1 0 0 0];
elseif long > 0 && lat < 0 && atand(abs(lat/long))>36 && atand(abs(lat/long))<53
 dir = [0 0 0 0 0 1 0 0];
elseif long > 0 && lat < 0 && atand(abs(lat/long))<36
 dir = [0 0 0 0 0 0 1 0];
elseif long > 0 && lat > 0 && atand(abs(lat/long))<36
 dir = [0 0 0 0 0 0 1 0];
elseif long > 0 && lat > 0 && atand(abs(lat/long))>36 && atand(abs(lat/long))<53
 dir = [0 0 0 0 0 0 0 1];
else
 dir = [0 0 0 0 0 0 0 0];
end

play.m (plays audio feedback for direction)
% play.m

function play(dir)
if dir == [1 0 0 0 0 0 0 0]
 [y,Fs,NBITS]=wavread('Cane Tunes\forward.wav');
 sound(y,Fs,NBITS);
elseif dir==[0 1 0 0 0 0 0 0]
 [y,Fs,NBITS]=wavread('Cane Tunes\forward.wav');
 sound(y,Fs,NBITS);
 pause(.6);
 [y,Fs,NBITS]=wavread('Cane Tunes\right.wav');
 sound(y,Fs,NBITS);
elseif dir==[0 0 1 0 0 0 0 0]
 [y,Fs,NBITS]=wavread('Cane Tunes\right.wav');
 sound(y,Fs,NBITS);
elseif dir==[0 0 0 1 0 0 0 0]
 [y,Fs,NBITS]=wavread('Cane Tunes\back.wav');
 sound(y,Fs,NBITS);
 pause(.6);
 [y,Fs,NBITS]=wavread('Cane Tunes\right.wav');
 sound(y,Fs,NBITS);
elseif dir==[0 0 0 0 1 0 0 0]
 [y,Fs,NBITS]=wavread('Cane Tunes\back.wav');
 sound(y,Fs,NBITS);
elseif dir==[0 0 0 0 0 1 0 0]
 [y,Fs,NBITS]=wavread('Cane Tunes\back.wav');
 sound(y,Fs,NBITS);
 pause(.6);
 [y,Fs,NBITS]=wavread('Cane Tunes\left.wav');
 sound(y,Fs,NBITS);
elseif dir==[0 0 0 0 0 0 1 0]
 [y,Fs,NBITS]=wavread('Cane Tunes\left.wav');
 sound(y,Fs,NBITS);
elseif dir==[0 0 0 0 0 0 0 1]
 [y,Fs,NBITS]=wavread('Cane Tunes\forward.wav');
 sound(y,Fs,NBITS);
 pause(.6);
 [y,Fs,NBITS]=wavread('Cane Tunes\left.wav');
 sound(y,Fs,NBITS);
end

play_num.m (plays distance)
%play_num.m

function play_num(number) %number is a string
for i=1:length(number)
 find_num(number(i));
 pause(.5);
end
[y,Fs,NBITS]=wavread('Cane Tunes\meters.wav');
sound(y,Fs,NBITS);
end

function find_num(num)
if isequal(num,'1')
 [y,Fs,NBITS]=wavread('Cane Tunes\one.wav');
 sound(y,Fs,NBITS);
elseif isequal(num,'2')
 [y,Fs,NBITS]=wavread('Cane Tunes\two.wav');
 sound(y,Fs,NBITS);
elseif isequal(num,'3')
 [y,Fs,NBITS]=wavread('Cane Tunes\three.wav');
 sound(y,Fs,NBITS);
elseif isequal(num,'4')
 [y,Fs,NBITS]=wavread('Cane Tunes\four.wav');
 sound(y,Fs,NBITS);
elseif isequal(num,'5')
 [y,Fs,NBITS]=wavread('Cane Tunes\five.wav');
 sound(y,Fs,NBITS);
elseif isequal(num,'6')
 [y,Fs,NBITS]=wavread('Cane Tunes\six.wav');
 sound(y,Fs,NBITS);
elseif isequal(num,'7')
 [y,Fs,NBITS]=wavread('Cane Tunes\seven.wav');
 sound(y,Fs,NBITS);
elseif isequal(num,'8')
 [y,Fs,NBITS]=wavread('Cane Tunes\eight.wav');
 sound(y,Fs,NBITS);
elseif isequal(num,'9')
 [y,Fs,NBITS]=wavread('Cane Tunes\nine.wav');
 sound(y,Fs,NBITS);
elseif isequal(num,'0')
 [y,Fs,NBITS]=wavread('Cane Tunes\zero.wav');
 sound(y,Fs,NBITS);
end
end

56	61	67	77	82	92	118	154	164	10	9	8	7	6	5	4	3	2	ADC value

distance (ft)

6	5.6	5	4.5999999999999996	4	3.6	3	2.5	2	1.5	1	0.5	10.799999999999995	9.6000000000000085	8.6000000000000085	7.6000000000000005	6.7999999999999901	6	5.1999999999999957	4.4000000000000083	3.6000000000000085	2.75	1.6000000000000021	1.1500000000000061	distance (in)

pulse width (ms)

iCân
image1.png
Button press

PIC

“jl“\“ /53

MAX232

XBee‘ ‘XBee

com4

Ta—

COM&

GPS

Liptop

Audio feedback

