

1

Abstract

An important task for computer vision systems is to

segment adjacent structures in images without producing

gaps or overlaps. Multi-object Level Set Methods (MLSM)

perform this task with the benefit of sub-pixel accuracy.

However, current implementations of MLSM are not as

computationally or memory efficient as their region

growing and graph cut counterparts which lack sub-pixel

accuracy. To address this performance gap, we present a

novel parallel implementation of MLSM that leverages the

sparse properties of the segmentation algorithm to

minimize its memory footprint for multiple objects. The

new method, Multi-Object Geodesic Active Contours

(MOGAC), can represent N objects with just two

functions: a label image and unsigned distance field. The

time complexity of the algorithm is shown to be

O((M^d)/P) for M^d pixels and P processing units in

dimension d={2,3}, independent of the number of objects.

Results are presented for 2D and 3D image segmentation

problems.

1. Introduction

The Level Set Method (LSM) [1, 2] is popular in

computer vision systems for segmenting images [3]. LSM

solves PDEs to produce image segmentations with sub-

pixel accuracy. The multi-object version is capable of

segmenting adjacent structures without gaps or overlaps

[4-9]. However, current implementations of the Multi-

object Level Set Method (MLSM) are slow and require a

large memory footprint compared to their region growing

[10] and graph cut counterparts [11], which lack sub-pixel

accuracy. A modern challenge is to develop MLSM

implementations that have competitive computational and

memory efficiency with region growing and graph cut

methods.

2. Related Work

Several methods have been proposed for segmenting

objects with level set functions [4, 6, 8] that are stored

as images. Storage of these level set images is intractable

for tasks such as cell tracking in microscopy images [12]

where there are potentially hundreds to thousands of

objects. The Multi-phase LSM [7] reduces the number of

level sets to , and the Multi-compartment LSM [5,

9] reduces the number of functions to 4 in 2D and 6 in 3D.

Even with these advancements, some segmentation tasks

are still intractable because the time complexity for

existing MLSMs is dependent on the number of objects.

By comparison, region growing techniques require only

one function to represent objects, and the computation

time can be independent of the number of objects.

All previous MLSMs use serial implementations of the

narrow-band method [1], which requires periodic re-

initialization of the signed distance field. One notable

exception is the work by Lie et al. [13], but their method

does not have sub-pixel precision. The fast-marching

method [14] for distance field re-initialization is a

computational bottleneck whose complexity is

 for pixels in dimension . A

more efficient approach is to use the sparse-field method

[15] that has time complexity. The sparse-field

LSM stores only the minimum narrow-band needed for

finite difference calculations and maintains an

approximation to the signed distance field at every time

step. The sparse-field LSM is competitive with region

growing methods and will be extended in this work to

create a new MLSM.

To develop LSMs that run at faster, real-time speeds,

implementations must leverage parallelism now abundant

on modern GPUs and CPUs. There has been work on

parallel implementations of single object LSMs [16-18]

that achieve substantial speed-up. Memory consumption is

a concern for these parallel implementations because

GPUs generally have access to less memory than CPUs;

and at real-time speeds, memory latency and access

patterns become a major performance concern. These

concerns complicate development of a parallel MLSM,

which has yet to be proposed in literature. We regard

parallelism as a necessary consideration when proposing a

new algorithm because computing hardware is becoming

more parallel as opposed to becoming faster.

Multi-Object Geodesic Active Contours (MOGAC):

 A Parallel Sparse-Field Algorithm for Image Segmentation

Blake C. Lucas

Johns Hopkins University

Baltimore, MD
blake@cs.jhu.edu

Michael Kazhdan

Johns Hopkins University

Baltimore, MD
misha@cs.jhu.edu

Russell H. Taylor

Johns Hopkins University

Baltimore, MD
rht@jhu.edu

2

3. Overview

The contributions of this work are two-fold. First, we

describe how to represent level sets with only two

functions. Second, we present a parallel implementation of

the sparse-field LSM for segmenting objects in 2D and

3D. Properties of the sparse-field LSM are leveraged to

represent and evolve level sets with only two functions.

 Results are presented for 2D/3D segmentation of

multiple, potentially overlapping, objects. The scalability

of the algorithm is analyzed, and the computational

complexity of the algorithm is discussed and juxtaposed

with other MLSM implementations. The algorithm is

implemented as a mixture of Java and OpenCL, and the

source code is distributed as part of the Java Image

Science Toolkit
1
 [19] to encourage development of new

image analysis tools.

4. Method

4.1. Representation

The following LSM, which we refer to as Multi-Object

Geodesic Active Contours (MOGAC), segments a gray

level image with domain in dimension

 into at most object regions represented by

signed distance fields for labeled regions

 . The segmentation is compressed into a

label function and unsigned distance field

 :

 (1)

Fig. 1 depicts both the unsigned distance field and label

image representing 5 objects that overlap to create a total

of different object regions.

(a) (b)

Figure 1: (a) Distance field and (b) label image

An approximation to is computable from and

 at the boundary of region :

 (2)

1 Please visit http://www.nitrc.org/projects/jist

where is the -connected neighborhood of

pixel and the sign is indicated by,

 .

(3)

The partially reconstructed level set is

given by,

 . (4)

 Eq. 4 accurately measures the signed distance at the

boundary of two objects. At the shared boundary of more

than two objects, this measurement is approximate.

provides enough information to extract an iso-surface with

marching cubes [20] or recover the entire signed distance

field with fast-marching [14]. As previously mentioned,

we want to avoid fast-marching to save time and memory.

Therefore, the level set evolution scheme must restrict its

computational domain to for each level set . The

sparse-field LSM [15] has exactly this property.

4.2. Level Set Evolution

The objects represented by level sets
 are evolved through time by solving

the following differential equation:

 , (5)

where is the speed function and is an

 diagonal matrix whose diagonal entries are

compactly supported approximations to the dirac delta

 . The diagonal entry . Subsequent

examples use speed functions of the following form:

(6)

where is a pressure force that drives the object's

boundary towards a particular image intensity,

is an external velocity field that drives the boundary

towards edges in the image, and is the mean

curvature for object . Relative contributions of each force

are controlled by weights , , and . Forces are

computed with first-order upwind finite differences [1] on

either a or stencil in 2D or 3D

respectively. A first-order solution to eq. 5 yields the

following iterative scheme:

 (7)

The evolution process changes the location of the zero iso-

level for each object, thereby moving object boundaries in

accordance with the speed function . After computing

updates for all level sets , the result must be stored in

the label and unsigned distance images and

respectively. To do this, we use the projection method

proposed by Losasso et al. [8]. New level set values are

sorted to find the smallest two and s.t.

http://www.nitrc.org/projects/jist

3

 among those labels for which .

The label and unsigned distance images are updated via:

 (8)

and

 . (9)

This projection technique has several useful properties.

First, it reduces the complexity of topological relationships

between objects in any finite dimension to just two

objects in one dimension. Second, it insures objects within

a distance of 1 pixel from each other do not overlap or

have air gaps. Third, it couples forces between adjacent

objects so that the shared boundary can move without

creating gaps or overlaps.

The initial segmentation may have overlaps even

though the final image segmentation should not. One goal

of level set evolution is to remove these overlaps. For this

task, overlapping object regions in the initial segmentation

are treated as different objects using bit masks. If a pixel

belongs to object , then there will be a 1 in the bit

position of label . A label image stored as 32 bit integers

can distinguish between 32 distinct objects and

different combinations of objects. It is then necessary to

define forces that contract overlapping object regions so

that the final segmentation contains only distinct objects.

To evolve , we evaluate eq. 7 on the subset

(eq. 10), by windowing to have support
pixels.

 (10)

The CFL condition [21] is enforced by choosing s.t.

 where .

To compute with finite differences, must be

known in the neighborhood around . If and

 , it is true that ,
 because either which implies

 , or which implies is inside object

 , so must be a measurement to object . If

but and s.t. are all

different, could be a measurement to object instead

of . The problem can be resolved by setting
 if . To address the problem in

general for larger neighborhoods, we recommend the

Multi-compartment LSM [5, 9]. A solution is not

implemented in this work because the problem is

unnoticeable in practical examples. Future work will

implement a solution.

 The level set evolution process is described by

Algorithm 1. The unsigned distance field is rebuilt

(Rebuild) within a distance of pixels via the fast

approximation described in [15] (see Algorithm 2).

Evolve is straightforward to parallelize because each

for-loop over is dependent on only the -connected

neighborhood around each pixel. The only step that is non-

trivial to parallelize is computation of , which can be

done with a parallel reduction [22] in

time. This computation can be avoided by crafting s.t.

 or clamping to the range
Clamping is an acceptable shortcut in image segmentation

problems because forces do not have to be physically

accurate. Furthermore, forces only need to be evaluated

for objects that compete for a particular pixel, which is at

most . The computational complexity of

Evolve is then for pixels and

processing units. Details of the implementation are

contained in the open-source release, which does compute

 .

Algorithm 1. Evolve

foreach do

if then
// Compute speeds for all pixels in the active set for every

// pair of adjacent objects.

 foreach do

// Find the maximum speed.

if then else

foreach do

if then

// Compute level set updates for objects that compete for pixel .

for do

if then

// Resolve air-gaps and overlaps with projection technique.

 Sort by to find and
// Store the new level set value.

 Compute and
 Rebuild

Algorithm 2. Rebuild

foreach do

foreach do

// if is not in the previous active set and the new distance

// measurement has not been computed yet.

if

and then
// Estimate the minimum distance to the closest object.

4

5. Results

5.1. Image Segmentation in 2D

Multi-Object Geodesic Active Contours (MOGAC)

were applied to segmentation of 2D images into multiple

compartments. The following segmentation example of a

 “X” im ge w s co structe to ev lu te the

performance of the algorithm.

 In the first experiment, the image was segmented into 5

objects (i.e. compartments). Objects overlap in the initial

segmentation for a total of labeled object regions.

The 5 objects were evolved with pressure and curvature

forces [2]. Overlapping object regions were assigned a

constant inward pressure force to cause their contraction.

The final segmentation contains only the 5 objects with no

gaps or overlaps (Fig. 2).

(a) (b)

Figure 2: (a) Initial segmentation and (b) final segmentation.

To evaluate scalability of the algorithm, the problem

size was increased by horizontally and vertically tiling the

“X” im ge i iti l segme t tio s. The lgorithm w s

executed on a PC with dual Quad-core 2.54 GHz Intel

Xeon processors and an NVIDIA Quadro 4000 graphics

card. Fig. 3a shows the computation time per iteration

averaged over the 2000 iterations required to segment each

image. The original image took 4.9 sec. to segment on the

GPU, and the computation time scaled almost linearly as a

function of image size.

A second experiment was conducted to evaluate the

 lgorithm’s perform ce s fu ctio of the umber of

objects. Segmentation of the original image was initialized

with between 1 and 16 randomly placed circles. Results

are depicted in Fig. 3b. Computation time is almost

constant as a function of the number of objects.

MOGAC was applied to cell tracking in a

microscopy image acquired from the Cell Centered

Database (CCDB) [23]. The image was first automatically

segmented with MIPAV [24] through gray-level

morphology and thresholding techniques (Fig. 4a). The

segmentation was then refined with MOGAC to better

localize boundaries on the 138 detected objects (Fig. 4b).

The segmentation was driven by pressure forces and

external velocity field produced by GVF [25]. The GPU

implementation of MOGAC ran for 250 iterations at a

speed of 12 ms per iteration (3.03 sec. total).

 (a) (b)

Figure 3: Segmentation of “X” im ge s fu ctio of (a) image

size and (b) number of initial objects.

(a) (b)

Figure 4: (a) Initial segmentation of microscopy image and (b)

MOGAC segmentation refinement of 138 objects. Cells appear

blue in this imaging modality.

5.2. Image Segmentation in 3D

The 3D version of MOGAC is almost identical to the

2D version, except that a 6-connected 3D neighborhood is

used and finite difference calculations are evaluated on a

 stencil. As synthetic examples, MOGAC was

applied to 3D segmentation of a metasphere and the Igea

model at an image resolution of
In the first example, the segmentation was initialized

with a torus and sphere which overlap to create 3 object

regions. The segmentation process was again driven by

pressure and curvature forces to produce a segmentation

consisting of deformed versions of the torus and sphere

without gaps or overlaps (Fig. 5). The segmentation

required 700 iterations, and the GPU implementation

required on average 196 ms per iteration (137 sec. total).

(a) (b) (c) (d)

Figure 5: (a) Initial segmentation showing sphere and torus. (b)

Target metasphere shape. Deformed (c) sphere and (d) torus.

500K 1M 2M 5M 10M 16M
2

3

5

10

20

50

100

250

500

Pixels

C
o
m

p
u
ta

ti
o
n
 T

im
e
 p

e
r

It
e
ra

ti
o
n
 (

m
s
)

Multi-Object Image Segmentation in 2D

OpenCL - CPU

OpenCL - GPU

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

Number of Objects

C
o
m

p
u
ta

ti
o
n
 T

im
e
 p

e
r

It
e
ra

ti
o
n
 (

m
s
)

Multi-Object Image Segmentation in 2D

OpenCL - CPU

OpenCL - GPU

5

To evaluate the algorithm's scalability in 3D as a

function of image size, the experiment was repeated on

smaller images of size that were tiled

horizontally and vertically. Results shown in Fig. 6a

follow the same linear trends observed in the 2D case.

MOGAC was then applied to segmentation of the Igea

model. The number of initial objects was varied between 1

and 27. Fig 6b depicts computation time as a function of

the number of objects. Spheres placed outside the object

contract to a point and disappear from the segmentation.

The segmentation in Fig. 7 required 500 iterations, and the

GPU implementation required 200 ms per iteration (100

sec. total).

(a) (b)

Figure 6: (a) Segmentation of Metasphere as a function of image

size and (b) segmentation of the Igea model as a function of the

number of objects. Computation time increases slightly in (b)

because the total surface area increases with the number of

spheres.

(a) (b)

(c) (d)

Figure 7: Segmentation of Igea model from 27 objects showing

(a) initial segmentation, (b) iteration 100, (c) iteration 200, and

(d) iteration 500.

MOGAC was used to clean-up existing segmentations

of MR images. In the first example, the algorithm was

initialized with a previous segmentation of the epicardium

in an MR image that contains small

gaps and overlaps between structures (Fig. 8a). MOGAC

was used to remove these gaps and overlaps to produce a

sub-pixel segmentation that is a proper partition of the

epicardium into 4 structures (Fig. 9b). The MOGAC

clean-up required 50 iterations (2.5 sec. total).

In the second experiment, a whole brain was segmented

into 10 structures with TOADS [26] on a
 MR image from the OASIS database [27]. The hard

classification was smoothed with MOGAC for 10

iterations (2.3 sec. total) to produce the segmentation

shown in Fig. 10b.

(a) (b)

Figure 8: Epicardium showing right ventricle and atrium (green),

myocardium (blue), left ventricle (pink), and left atrium (red). (a)

Initial heart segmentation and (b) MOGAC segmentation

overlaid on MR Image.

(a) (b)

Figure 9: Epicardium showing right ventricle and atrium (green),

myocardium (blue), left ventricle (pink), and left atrium (red). (a)

Initial segmentation and (b) MOGAC segmentation.

(a) (b)

Figure 10: (a) Initial hard segmentation of 10 brain structures. (b)

Segmentation after mean curvature smoothing with MOGAC.

500K 1M 2M 5M 10M 16M
2

3

5

10

20

50

100

250

500

Pixels

C
o
m

p
u
ta

ti
o
n
 T

im
e
 p

e
r

It
e
ra

ti
o
n
 (

m
s
)

Metasphere Segmentation in 3D

OpenCL - CPU

OpenCL - GPU

5 10 15 20 25
0

50

100

150

200

250

300

350

400

450

500

Number of Objects

C
o
m

p
u
ta

ti
o
n
 T

im
e
 p

e
r

It
e
ra

ti
o
n
 (

m
s
)

Igea Segmentation in 3D

OpenCL - CPU

OpenCL - GPU

6

6. Discussion

A Multi-object LSM has been presented that can

segment any number of objects with the same small

memory footprint. The algorithm was applied to image

segmentation in 2D in 3D. The 2D version can run at 400

Hz for any number of objects at an image resolution of

 , making it applicable to real-time computer

vision applications. The 3D version can segment images

faster than the Multi-compartment LSM [9], which is

reported to require 22.5 sec. per iteration to clean-up a

segmentation of 10 brain structures at an image resolution

of . The same task was repeated on a

 MR image, for which MOGAC was

approximately 100 times faster.

Table 1 summarizes the theoretical performance for

each Multi-object LSM. MOGAC is theoretically faster

and uses less memory than all existing methods. This is

largely due to its use of the sparse-field instead of narrow-

band method. Furthermore, implementing the algorithm in

OpenCL provides additional speed-up by leveraging

multiple cores available on the CPU or GPU.

Algorithm 1 spends a lot of computation time checking

if . To avoid traversing the entire volume, a

more work-efficient approach is to index . A parallel

algorithm for indexing has already been described [16],

and a variant of that algorithm is implemented in the open-

source release of MOGAC.

TABLE I

ALGORITHM COMPLEXITY

Method Time Memory

 level set methods [4, 6, 8]

Multi-phase [7]

Multi-compartment [5, 9]

MOGAC

Work-efficient MOGAC2

Algorithm complexity for Multi-object LSMs based on

pixels, objects, and processing units in dimension .

 The lgorithm’s perform ce is tie to the sp rse-field

algorithm and its approximation to the signed distance

field. It is known that this approximation has aliasing

artifacts (see Fig. 7). To remove these artifacts, we

recommend either smoothing the final iso-surface meshes

in a post-processing step [28] or rendering objects with

volumetric techniques that reduce the appearance of

artifacts [29].

 Segmentation problems can be phrased as either region

growing, active contour segmentation, or a combination of

both [30]. Active contour segmentation is analogous to

simulation of physical objects that experience internal and

2 Although not described in this work, a variant of the work-efficient

level set method [16] is implemented in the open-source release of
MOGAC.

external forces, whereas region growing is analogous to

statistical classification of pixels that lie at the boundary of

a region. Both interpretations have merit, but region

growing is usually faster and requires less memory

because it is only pixel accurate.

 What we have presented is an efficient algorithm that

makes multi-object level set segmentation competitive

with region growing with respect to time and memory

complexity. MOGAC is open-source and distributed as

part of the Java Image Science Toolkit [19] to facilitate

development of new segmentation algorithms that involve

large numbers of objects.

7. Acknowledgement

This work was funded by a graduate student fellowship

from the Johns Hopkins Applied Physics Laboratory. We

would like to thank Dr. Terry Peters at the Robarts

Research Institute for providing Cardiac MRI data.

8. References

[1] J. Sethian, Level set methods and fast marching methods:

evolving interfaces in computational geometry, fluid

mechanics, computer vision, and materials science:

Cambridge Univ Pr, 1999.

[2] V. Caselles, R. Kimmel, and G. Sapiro, "Geodesic active

contours," International journal of computer vision, vol. 22,

pp. 61-79, 1997.

[3] D. Cremers, M. Rousson, and R. Deriche, "A review of

statistical approaches to level set segmentation: integrating

color, texture, motion and shape," International journal of

computer vision, vol. 72, pp. 195-215, 2007.

[4] C. Samson, L. Blanc-Féraud, G. Aubert, and J. Zerubia, "A

level set model for image classification," International

journal of computer vision, vol. 40, pp. 187-197, 2000.

[5] X. Fan, P. L. Bazin, and J. L. Prince, "A multi-compartment

segmentation framework with homeomorphic level sets,"

presented at the Computer Vision and Pattern Recognition,

IEEE Conf. on, 2008.

[6] N. Paragios and R. Deriche, "Coupled geodesic active

regions for image segmentation: A level set approach,"

Computer Vision—ECCV 2000, pp. 224-240, 2000.

[7] L. A. Vese and T. F. Chan, "A multiphase level set

framework for image segmentation using the Mumford and

Shah model," International journal of computer vision, vol.

50, pp. 271-293, 2002.

[8] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw, "Multiple

interacting liquids," ACM Transactions on Graphics (TOG),

vol. 25, pp. 812-819, 2006.

[9] X. Fan, P. L. Bazin, J. Bogovic, Y. Bai, and J. L. Prince, "A

multiple geometric deformable model framework for

homeomorphic 3D medical image segmentation," presented

at the Computer Vision and Pattern Recognition Workshops

(CVPRW '08), 2008.

[10] R. Adams and L. Bischof, "Seeded region growing,"

Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 16, pp. 641-647, 1994.

7

[11] J. Shi and J. Malik, "Normalized cuts and image

segmentation," Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 22, pp. 888-905, 2000.

[12] K. Li, E. D. Miller, M. Chen, T. Kanade, L. E. Weiss, and

P. G. Campbell, "Cell population tracking and lineage

construction with spatiotemporal context," Medical image

analysis, vol. 12, pp. 546-566, 2008.

[13] J. Lie, M. Lysaker, and X. C. Tai, "A binary level set model

and some applications to Mumford-Shah image

segmentation," Image Processing, IEEE Transactions on,

vol. 15, pp. 1171-1181, 2006.

[14] J. A. Sethian, "A fast marching level set method for

monotonically advancing fronts," Proceedings of the

National Academy of Sciences, vol. 93, p. 1591, 1996.

[15] R. Whitaker, "A level-set approach to 3D reconstruction

from range data," International journal of computer vision,

vol. 29, p. 231, 1998.

[16] M. Roberts, J. Packer, M. C. Sousa, and J. R. Mitchell, "A

work-efficient GPU algorithm for level set segmentation,"

in HPG '10 2010, pp. 123-132.

[17] G. Tornai and G. Cserey, "2D and 3D level-set algorithms

on GPU," 2010, pp. 1-5.

[18] H. Mostofi, J. Schnabel, and V. Grau, "Fast Level Set

Segmentation of Biomedical Images using Graphics

Processing Units," Oxford University2009.

[19] B.C. Lucas, J.A. Bogovic, A. Carass, P.L. Bazin, J.L.

Prince, D. Pham, and B. A. Landman, "The Java Image

Science Toolkit (JIST) for Rapid Prototyping and

Publishing of Neuroimaging Software," Neuroinformatics,

2010.

[20] W. E. Lorensen and H. E. Cline, "Marching cubes: A high

resolution 3D surface construction algorithm," ACM

Siggraph Computer Graphics, vol. 21, pp. 163-169, 1987.

[21] R. Courant, K. Friedrichs, and H. Lewy, "On the partial

difference equations of mathematical physics," IBM Journal

of Research and Development, vol. 11, pp. 215-234, 1967.

[22] M. Harris, G. E. Blelloch, B. M. Maggs, N. K. Govindaraju,

B. Lloyd, W. Wang, M. Lin, D. Manocha, P. K.

Smolarkiewicz, and L. G. Margolin, "Optimizing parallel

reduction in CUDA," Proc. of ACM SIGMOD, 21, vol. 13,

pp. 104-110.

[23] M. E. Martone, A. Gupta, M. Wong, X. Qian, G. Sosinsky,

B. Ludäscher, and M. H. Ellisman, "A cell-centered

database for electron tomographic data," Journal of

Structural Biology, vol. 138, pp. 145-155, 2002.

[24] M. J. McAuliffe, F. M. Lalonde, D. McGarry, W. Gandler,

K. Csaky, and B. L. Trus, "Medical image processing,

analysis & visualization in clinical research," cbms, p. 0381,

2001.

[25] X. Chenyang and J. L. Prince, "Snakes, shapes, and gradient

vector flow," Image Processing, IEEE Transactions on, vol.

7, pp. 359-369, 1998.

[26] P. L. Bazin and D. L. Pham, "Topology-preserving tissue

classification of magnetic resonance brain images," Medical

Imaging, IEEE Transactions on, vol. 26, pp. 487-496, 2007.

[27] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C.

Morris, and R. L. Buckner, "Open Access Series of Imaging

Studies (OASIS): cross-sectional MRI data in young,

middle aged, nondemented, and demented older adults,"

Journal of Cognitive Neuroscience, vol. 19, pp. 1498-1507,

2007.

[28] S. Fleishman, I. Drori, and D. Cohen-Or, "Bilateral mesh

denoising," ACM Transactions on Graphics (TOG), vol. 22,

pp. 950-953, 2003.

[29] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M.

Gross, "Real-Time Ray-Casting and Advanced Shading of

Discrete Isosurfaces," 2005, pp. 303-312.

[30] S. C. Zhu and A. Yuille, "Region competition: Unifying

snakes, region growing, and Bayes/MDL for multiband

image segmentation," Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 18, pp. 884-900,

1996.

