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Abstract 
 

An important task for computer vision systems is to 

segment adjacent structures in images without producing 

gaps or overlaps. Multi-object Level Set Methods (MLSM) 

perform this task with the benefit of sub-pixel accuracy. 

However, current implementations of MLSM are not as 

computationally or memory efficient as their region 

growing and graph cut counterparts which lack sub-pixel 

accuracy. To address this performance gap, we present a 

novel parallel implementation of MLSM that leverages the 

sparse properties of the segmentation algorithm to 

minimize its memory footprint for multiple objects. The 

new method, Multi-Object Geodesic Active Contours 

(MOGAC), can represent N objects with just two 

functions: a label image and unsigned distance field. The 

time complexity of the algorithm is shown to be 

O((M^d)/P) for M^d pixels and P processing units in 

dimension d={2,3}, independent of the number of objects. 

Results are presented for 2D and 3D image segmentation 

problems.  

 

1. Introduction 

The Level Set Method (LSM) [1, 2] is popular in 

computer vision systems for segmenting images [3]. LSM 

solves PDEs to produce image segmentations with sub-

pixel accuracy. The multi-object version is capable of 

segmenting adjacent structures without gaps or overlaps 

[4-9].  However, current implementations of the Multi-

object Level Set Method (MLSM) are slow and require a 

large memory footprint compared to their region growing 

[10] and graph cut counterparts [11], which lack sub-pixel 

accuracy. A modern challenge is to develop MLSM 

implementations that have competitive computational and 

memory efficiency with region growing and graph cut 

methods. 

2. Related Work 

Several methods have been proposed for segmenting   

objects with   level set functions [4, 6, 8]  that are stored 

as images. Storage of these level set images is intractable 

for tasks such as cell tracking in microscopy images [12] 

where there are potentially hundreds to thousands of 

objects. The Multi-phase LSM [7] reduces the number of 

level sets to        , and the Multi-compartment LSM [5, 

9] reduces the number of functions to 4 in 2D and 6 in 3D. 

Even with these advancements, some segmentation tasks 

are still intractable because the time complexity for 

existing MLSMs is dependent on the number of objects. 

By comparison, region growing techniques require only 

one function to represent   objects, and the computation 

time can be independent of the number of objects.  

All previous MLSMs use serial implementations of the 

narrow-band method [1], which requires periodic re-

initialization of the signed distance field. One notable 

exception is the work by Lie et al. [13], but their method 

does not have sub-pixel precision. The fast-marching 

method [14] for distance field re-initialization is a 

computational bottleneck whose complexity is 

          for    pixels in dimension        . A 

more efficient approach is to use the sparse-field method 

[15] that has         time complexity. The sparse-field 

LSM stores only the minimum narrow-band needed for 

finite difference calculations and maintains an 

approximation to the signed distance field at every time 

step. The sparse-field LSM is competitive with region 

growing methods and will be extended in this work to 

create a new MLSM.  

To develop LSMs that run at faster, real-time speeds, 

implementations must leverage parallelism now abundant 

on modern GPUs and CPUs. There has been work on 

parallel implementations of single object LSMs [16-18] 

that achieve substantial speed-up. Memory consumption is 

a concern for these parallel implementations because 

GPUs generally have access to less memory than CPUs; 

and at real-time speeds, memory latency and access 

patterns become a major performance concern. These 

concerns complicate development of a parallel MLSM, 

which has yet to be proposed in literature. We regard 

parallelism as a necessary consideration when proposing a 

new algorithm because computing hardware is becoming 

more parallel as opposed to becoming faster. 
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3. Overview 

The contributions of this work are two-fold. First, we 

describe how to represent   level sets with only two 

functions. Second, we present a parallel implementation of 

the sparse-field LSM for segmenting   objects in 2D and 

3D.  Properties of the sparse-field LSM are leveraged to 

represent and evolve   level sets with only two functions. 

 Results are presented for 2D/3D segmentation of 

multiple, potentially overlapping, objects. The scalability 

of the algorithm is analyzed, and the computational 

complexity of the algorithm is discussed and juxtaposed 

with other MLSM implementations. The algorithm is 

implemented as a mixture of Java and OpenCL, and the 

source code is distributed as part of the Java Image 

Science Toolkit
1
 [19] to encourage development of new 

image analysis tools. 

4. Method 

4.1. Representation 

The following LSM, which we refer to as Multi-Object 

Geodesic Active Contours (MOGAC), segments a gray 

level image        with domain      in dimension 

        into at most   object regions represented by 

signed distance fields         for labeled regions 

             . The segmentation is compressed into a 

label function        and unsigned distance field 

      :  

        
 

         (1) 

Fig. 1 depicts both the unsigned distance field and label 

image representing 5 objects that overlap to create a total 

of     different object regions. 

 
(a) (b) 

Figure 1: (a) Distance field      and (b) label image       

 

An approximation to       is computable from       and 

     at the boundary of region  : 

                                 (2) 

 
1 Please visit http://www.nitrc.org/projects/jist 

where      is the   -connected neighborhood of 

pixel   and the sign       is indicated by, 

       
        
          

 . 

 

 

(3) 

The partially reconstructed level set           is 

given by, 

                 . (4) 

 Eq. 4 accurately measures the signed distance at the 

boundary of two objects. At the shared boundary of more 

than two objects, this measurement is approximate.     

provides enough information to extract an iso-surface with 

marching cubes [20] or recover the entire signed distance 

field with fast-marching [14]. As previously mentioned, 

we want to avoid fast-marching to save time and memory. 

Therefore, the level set evolution scheme must restrict its 

computational domain to    for each level set   . The 

sparse-field LSM [15] has exactly this property. 

4.2. Level Set Evolution 

The   objects represented by   level sets     
                are evolved through time by solving 

the following differential equation: 

          

  
                   , (5) 

where            is the speed function and      is an 

    diagonal matrix whose diagonal entries are 

compactly supported approximations to the dirac delta 

    . The     diagonal entry                . Subsequent 

examples use speed functions of the following form: 

                                   

                  
(6) 

where        is a pressure force that drives the object's 

boundary towards a particular image intensity,          

is an external velocity field that drives the boundary 

towards edges in the image, and          is the mean 

curvature for object  . Relative contributions of each force 

are controlled by weights   ,   , and   . Forces are 

computed with first-order upwind finite differences [1] on 

either a     or       stencil in 2D or 3D 

respectively. A first-order solution to eq. 5 yields the 

following iterative scheme: 

                                           (7) 

The evolution process changes the location of the zero iso-

level for each object, thereby moving object boundaries in 

accordance with the speed function   . After computing 

updates for all level sets       , the result must be stored in 

the label and unsigned distance images      and      

respectively. To do this, we use the projection method 

proposed by Losasso et al. [8]. New level set values are 

sorted to find the smallest two       and       s.t. 

http://www.nitrc.org/projects/jist
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            among those labels   for which       . 

The label and unsigned distance images are updated via: 

        
                        
          

  (8) 

and  

       
 

 
                 . (9) 

This projection technique has several useful properties. 

First, it reduces the complexity of topological relationships 

between   objects in any finite dimension to just two 

objects in one dimension. Second, it insures objects within 

a distance of 1 pixel from each other do not overlap or 

have air gaps. Third, it couples forces between adjacent 

objects so that the shared boundary can move without 

creating gaps or overlaps.  

The initial segmentation may have overlaps even 

though the final image segmentation should not. One goal 

of level set evolution is to remove these overlaps. For this 

task, overlapping object regions in the initial segmentation 

are treated as different objects using bit masks. If a pixel 

belongs to object  , then there will be a 1 in the     bit 

position of label  . A label image stored as 32 bit integers 

can distinguish between 32 distinct objects and     

different combinations of objects. It is then necessary to 

define forces that contract overlapping object regions so 

that the final segmentation contains only distinct objects.  

To evolve       , we evaluate eq. 7 on the subset    

(eq. 10), by windowing      to have support            
pixels.  

                                 (10) 

The CFL condition [21] is enforced by choosing    s.t. 

            where                            . 

To compute         with finite differences,       must be 

known in the neighborhood around  . If      and 

      , it is true that        ,       
           because either           which implies 

    , or           which implies    is inside object 

 , so      must be a measurement to object  . If      

but        and        s.t.            are all 

different,      could be a measurement to object   instead 

of  . The problem can be resolved by setting       
              if      . To address the problem in 

general for larger neighborhoods, we recommend the  

Multi-compartment LSM [5, 9]. A solution is not 

implemented in this work because the problem is 

unnoticeable in practical examples. Future work will 

implement a solution.  

 The level set evolution process is described by 

Algorithm 1. The unsigned distance field   is rebuilt 

(Rebuild) within a distance of     pixels via the fast 

approximation described in [15] (see Algorithm 2). 

Evolve is straightforward to parallelize because each 

for-loop over   is dependent on only the   -connected 

neighborhood around each pixel. The only step that is non-

trivial to parallelize is computation of     , which can be 

done with a parallel reduction [22] in                

time. This computation can be avoided by crafting    s.t. 

               or clamping       to the range         
Clamping is an acceptable shortcut in image segmentation 

problems because forces do not have to be physically 

accurate. Furthermore, forces only need to be evaluated 

for objects that compete for a particular pixel, which is at 

most       . The computational complexity of 

Evolve is then         for    pixels and   

processing units. Details of the implementation are 

contained in the open-source release, which does compute 

    . 

 

Algorithm 1. Evolve 

foreach      do 

if             then 
// Compute speeds for all pixels in the active set for every 

// pair of adjacent objects. 

  foreach               do 
           

                        

         
// Find the maximum speed. 

        
   

        

if        then             else        

foreach      do 

if             then 
    

// Compute level set updates for objects that compete for pixel  . 

for            do 

        
                   
if         then             

// Resolve air-gaps and overlaps with projection technique. 

  Sort   by   to find       and       
// Store the new level set value. 

  Compute           and           
 Rebuild 

 

Algorithm 2. Rebuild 

foreach       do 

foreach      do 

// if   is not in the previous active set and the new distance  

// measurement has not been computed yet.  

if             

and                    then 
// Estimate the minimum distance to the closest object. 
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5. Results 

5.1. Image Segmentation in 2D 

Multi-Object Geodesic Active Contours (MOGAC) 

were applied to segmentation of 2D images into multiple 

compartments. The following segmentation example of a 

          “X” im ge w s co structe  to ev lu te the 

performance of the algorithm.  

 In the first experiment, the image was segmented into 5 

objects (i.e. compartments). Objects overlap in the initial 

segmentation for a total of     labeled object regions. 

The 5 objects were evolved with pressure and curvature 

forces [2]. Overlapping object regions were assigned a 

constant inward pressure force to cause their contraction. 

The final segmentation contains only the 5 objects with no 

gaps or overlaps (Fig. 2). 

 
(a) (b) 

Figure 2: (a) Initial segmentation and (b) final segmentation.  

 

To evaluate scalability of the algorithm, the problem 

size was increased by horizontally and vertically tiling the 

“X” im ge     i iti l segme t tio s. The  lgorithm w s 

executed on a PC with dual Quad-core 2.54 GHz Intel 

Xeon processors and an NVIDIA Quadro 4000 graphics 

card. Fig. 3a shows the computation time per iteration 

averaged over the 2000 iterations required to segment each 

image. The original image took 4.9 sec. to segment on the 

GPU, and the computation time scaled almost linearly as a 

function of image size.  

A second experiment was conducted to evaluate the 

 lgorithm’s perform  ce  s   fu ctio  of the  umber of 

objects. Segmentation of the original image was initialized 

with between 1 and 16 randomly placed circles. Results 

are depicted in Fig. 3b. Computation time is almost 

constant as a function of the number of objects. 

MOGAC was applied to cell tracking in a           

microscopy image acquired from the Cell Centered 

Database (CCDB) [23]. The image was first automatically 

segmented with MIPAV [24] through gray-level 

morphology and thresholding techniques  (Fig. 4a). The 

segmentation was then refined with MOGAC to better 

localize boundaries on the 138 detected objects (Fig. 4b). 

The segmentation was driven by pressure forces and 

external velocity field produced by GVF [25]. The GPU 

implementation of MOGAC ran for 250 iterations at a 

speed of 12 ms per iteration (3.03 sec. total). 

 
       (a)      (b) 

Figure 3: Segmentation of “X” im ge  s   fu ctio  of (a) image 

size and (b) number of initial objects. 

 

 
(a) (b) 

Figure 4: (a) Initial segmentation of microscopy image and (b) 

MOGAC segmentation refinement of 138 objects. Cells appear 

blue in this imaging modality.  

5.2. Image Segmentation in 3D 

The 3D version of MOGAC is almost identical to the 

2D version, except that a 6-connected 3D neighborhood is 

used and finite difference calculations are evaluated on a 

      stencil. As synthetic examples, MOGAC was 

applied to 3D segmentation of a metasphere and the Igea 

model at an image resolution of              
In the first example, the segmentation was initialized 

with a torus and sphere which overlap to create 3 object 

regions. The segmentation process was again driven by 

pressure and curvature forces to produce a segmentation 

consisting of deformed versions of the torus and sphere 

without gaps or overlaps (Fig. 5). The segmentation 

required 700 iterations, and the GPU implementation 

required on average 196 ms per iteration (137 sec. total).  

 
(a) (b) (c) (d) 

Figure 5: (a) Initial segmentation showing sphere and torus. (b) 

Target metasphere shape. Deformed (c) sphere and (d) torus.   
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To evaluate the algorithm's scalability in 3D as a 

function of image size, the experiment was repeated on 

smaller images of size          that were tiled 

horizontally and vertically. Results shown in Fig. 6a 

follow the same linear trends observed in the 2D case.  

MOGAC was then applied to segmentation of the Igea 

model. The number of initial objects was varied between 1 

and 27. Fig 6b depicts computation time as a function of 

the number of objects. Spheres placed outside the object 

contract to a point and disappear from the segmentation. 

The segmentation in Fig. 7 required 500 iterations, and the 

GPU implementation required 200 ms per iteration (100 

sec. total). 

 
(a) (b) 

Figure 6: (a) Segmentation of Metasphere as a function of image 

size and (b) segmentation of the Igea model as a function of the 

number of objects. Computation time increases slightly in (b) 

because the total surface area increases with the number of 

spheres. 

 
(a) (b) 

 
(c) (d) 

Figure 7: Segmentation of Igea model from 27 objects showing 

(a) initial segmentation, (b) iteration 100, (c) iteration 200, and 

(d) iteration 500. 

 

MOGAC was used to clean-up existing segmentations 

of MR images. In the first example, the algorithm was 

initialized with a previous segmentation of the epicardium 

in an             MR image that contains small 

gaps and overlaps between structures (Fig. 8a). MOGAC 

was used to remove these gaps and overlaps to produce a 

sub-pixel segmentation that is a proper partition of the 

epicardium into 4 structures (Fig. 9b). The MOGAC 

clean-up required 50 iterations (2.5 sec. total).  

In the second experiment, a whole brain was segmented 

into 10 structures with TOADS [26] on a         
    MR image from the OASIS database [27]. The hard 

classification was smoothed with MOGAC for 10 

iterations (2.3 sec. total) to produce the segmentation 

shown in Fig. 10b. 

 
(a) (b) 

Figure 8: Epicardium showing right ventricle and atrium (green), 

myocardium (blue), left ventricle (pink), and left atrium (red). (a) 

Initial heart segmentation and (b) MOGAC segmentation 

overlaid on MR Image.  

 
(a) (b) 

Figure 9: Epicardium showing right ventricle and atrium (green), 

myocardium (blue), left ventricle (pink), and left atrium (red). (a) 

Initial segmentation and (b) MOGAC segmentation. 

 
(a) (b) 

Figure 10: (a) Initial hard segmentation of 10 brain structures. (b) 

Segmentation  after mean curvature smoothing with MOGAC. 
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6. Discussion 

A Multi-object LSM has been presented that can 

segment any number of objects with the same small 

memory footprint. The algorithm was applied to image 

segmentation in 2D in 3D. The 2D version can run at 400 

Hz for any number of objects at an image resolution of 

       , making it applicable to real-time computer 

vision applications. The 3D version can segment images 

faster than the Multi-compartment LSM [9], which is 

reported to require 22.5 sec. per iteration to clean-up a 

segmentation of 10 brain structures at an image resolution 

of            . The same task was repeated on a 

            MR image, for which MOGAC was 

approximately 100 times faster. 

Table 1 summarizes the theoretical performance for 

each Multi-object LSM. MOGAC is theoretically faster 

and uses less memory than all existing methods. This is 

largely due to its use of the sparse-field instead of narrow-

band method. Furthermore, implementing the algorithm in 

OpenCL provides additional speed-up by leveraging 

multiple cores available on the CPU or GPU.  

Algorithm 1 spends a lot of computation time checking 

if             . To avoid traversing the entire volume, a 

more work-efficient approach is to index   . A parallel 

algorithm for indexing    has already been described [16], 

and a variant of that algorithm is implemented in the open-

source release of MOGAC. 

 
TABLE I 

ALGORITHM COMPLEXITY 

Method Time  Memory 

  level set methods [4, 6, 8]                     

Multi-phase [7]                         

Multi-compartment [5, 9]                     

MOGAC               

Work-efficient MOGAC2                 

Algorithm complexity for Multi-object LSMs based on    

pixels,   objects, and   processing units in dimension        . 

  

 The  lgorithm’s perform  ce is tie  to the sp rse-field 

algorithm and its approximation to the signed distance 

field. It is known that this approximation has aliasing 

artifacts (see Fig. 7). To remove these artifacts, we 

recommend either smoothing the final iso-surface meshes 

in a post-processing step [28] or rendering objects with 

volumetric techniques that reduce the appearance of 

artifacts [29]. 

  Segmentation problems can be phrased as either region 

growing, active contour segmentation, or a combination of 

both [30]. Active contour segmentation is analogous to 

simulation of physical objects that experience internal and 

 
2 Although not described in this work, a variant of the work-efficient 

level set method [16] is implemented in the open-source release of 
MOGAC. 

external forces, whereas region growing is analogous to 

statistical classification of pixels that lie at the boundary of 

a region. Both interpretations have merit, but region 

growing is usually faster and requires less memory 

because it is only pixel accurate.  

 What we have presented is an efficient algorithm that 

makes multi-object level set segmentation competitive 

with region growing with respect to time and memory 

complexity. MOGAC is open-source and distributed as 

part of the Java Image Science Toolkit [19] to facilitate 

development of new segmentation algorithms that involve 

large numbers of objects. 
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