




CHAPTER 2. AN ALTERNATIVE TO TENSOR PRODUCT: COSET SUM

respectively, and H is interpolatory.

From Step (i) of the algorithm in Section §2.4.2, we know that, with aG = 2n −

(2n − 1)(2−G(0)),

aG yj(2k)=2nyj−1(k)−
∑
ν∈Γ′

∑
L∈Z\0

G(L)yj(2k + Lν)

=2nyj−1(k)−
∑
ν∈Γ′

∑
L≡1

G(L)yj(2k + Lν)

−
∑
ν∈Γ′

∑
L≡0,L6=0

G(L)yj(2k + Lν) (2.26)

where ≡ is used to denote congruence in modulo 2Z. Since the masks S and U are biorthog-

onal, from (2.1) and the connection between the filter and the mask, it is easy to see that

the associated filters G and H satisfy the following condition:

∑
m∈Z

G(L+m)H(m) =


0, if L ≡ 0, L 6= 0,

2, if L = 0.

Combining this with the fact that H is interpolatory leads to

∑
m≡1

G(L+m)H(m) =


0−G(L), if L ≡ 0, L 6= 0,

2−G(0), if L = 0.

From this and the change of variables, we see that

∑
ν∈Γ′

∑
L≡0,L6=0

G(L)yj(2k + Lν)

=
∑
ν∈Γ′

∑
L≡0,L6=0

(
0−

∑
m≡1

G(L+m)H(m)

)
yj(2k + Lν)

=−
∑
ν∈Γ′

∑
m≡1

∑
L≡0

G(L+m)H(m)yj(2k + Lν)

+
∑
ν∈Γ′

∑
m≡1

G(m)H(m)yj(2k)

=−
∑
ν∈Γ′

∑
m≡1

∑
n≡1

G(n)H(m)yj(2k + (n−m)ν)

+(2n − 1)(2−G(0))yj(2k)

59



CHAPTER 2. AN ALTERNATIVE TO TENSOR PRODUCT: COSET SUM

=−
∑
ν∈Γ′

∑
L≡1

∑
m≡1

G(L)H(m)yj(2k + (L−m)ν)

+(2n − 1)(2−G(0))yj(2k)

By substituting this result to (2.26) and solving for yj(2k), we obtain

yj(2k) = yj−1(k)− 1

2n−1

∑
ν∈Γ′

∑
L∈Z

G(2L+ 1)wν,j−1(k + Lν)

as desired.
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Chapter 3

Prime Coset Sum: A Systematic

Method for Designing Multi-D

Wavelet Filter Banks with Fast

Algorithms

3.1 Preliminaries

3.1.1 Introduction

Wavelet representation has been one of the most popular data representations in

the last two decades. Wavelet filter banks, which can lead to wavelet systems in L2(Rn)

under some well-understood constraints, has been widely used in signal processing applica-

tions. In order to obtain wavelet representation for multi-dimensional (multi-D) data, one

61



CHAPTER 3. PRIME COSET SUM METHOD

needs multi-D wavelets. Tensor product is the most common method for constructing multi-

D wavelets, and the resulting wavelets are typically referred to as the separable wavelets.

However, the separable wavelets constitute only a small portion of multi-D wavelets, and

they have some unavoidable limitations. One of the limitations of tensor-based wavelets is

that the resulting multi-D filters have dense supports. It is well known that the fast algo-

rithms associated with tensor-based wavelets have a complexity constant (cf. Section §3.3.2

for the definition of complexity constant) that increases linearly with the spatial dimension

n. While this complexity may be satisfactory for many of the regular 2-D image processing,

it can pose a problem when dealing with large volume data such as medical images in [57],

Geographic Information Systems images in [58] and seismic data in [59]. Moreover, tensor-

based discrete wavelet transform is memory consuming and cannot be used to directly

obtain the target subband signals, due to its dependent subband decomposition process

[60]. Motivated by the aforementioned drawbacks, much work has been done to improve

the implementation of tensor-based wavelets [61–64]. There have been many researches on

non-tensor-based multi-D wavelet constructions too [7–20, 49, 53, 65–72]. However, most of

these methods work only for low dimensions or have additional constraints on the lowpass

filters. Furthermore, most of them are not associated with fast algorithms, preventing them

from being widely used in practice.

Recently, the authors introduced a new method called coset sum for constructing

non-tensor-based multi-D wavelets in [4]. There it was shown that the resulting wavelets are

associated with fast algorithms whose complexity constant does not increase as the spatial

dimension increases. It was also shown there that many features of tensor product that
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makes it attractive in wavelet construction still hold true for coset sum.

However, similar to the tensor product method, coset sum also assumes the dyadic

dilation. We recall that the n × n matrix Λ is called a dilation matrix if it is an integer

matrix whose spectrum lies outside the closed unit disc. It determines the exact way of

how downsampling and upsampling are performed in wavelets or wavelet filter banks. The

dilation is called scalar if the dilation matrix is the scalar multiple of the identity matrix,

i.e., Λ = λIn with λ ≥ 2 an integer. In particular, it is called dyadic if Λ = 2In and prime

if Λ = pIn with p a prime number. Wavelets with dyadic dilation are referred to as dyadic

wavelets. Dyadic wavelets are the standard and traditional types of wavelets, however they

are not suitable for all applications. For non-dyadic frequency divisions [73], non-dyadic

scale ratios [74], or flexible decompositions of the data [75], non-dyadic wavelets are more

suitable.

In this paper, we show that we can generalize the coset sum in the sense that

multi-D wavelet filter banks with fast algorithms can be constructed for any prime dilation

pIn. We also show that the complexity constant for our fast algorithms with prime dilation

pIn is independent of the spatial dimension.

The organization of this paper is as follows. The rest of Section §3.1 is a brief review

of some relevant concepts including the coset sum method. In Section §3.2 we discuss a

possible generalization of the coset sum, which we call prime coset sum, together with its

properties. In Section §3.3 we present a new method to construct multi-D wavelet filter

banks based on the prime coset sum refinement masks and show that they are associated

with fast algorithms. Section §3.4 is a summary of our results. Some technical proofs and
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details in this paper are placed in Appendix §3.5.

3.1.2 Notation and basic concepts

Let Λ be a dilation matrix and let q := | det Λ|. In the multiresolution analysis [1]

setting, the (compactly supported) scaling or refinable function φ (with dilation Λ) satisfies

the following refinement relation:

φ(·) =
∑
k∈Zn

hφ(k)φ(Λ · −k), (3.1)

where hφ : Zn → R is the associated finitely supported filter with dilation Λ.

A mask associated with a finitely supported filter h : Zn → R is a Laurent trigono-

metric polynomial defined as

τ(ω) :=
1

q

∑
k∈Zn

h(k)e−ik·ω =: ĥ(ω),

for any ω ∈ Tn := [−π, π]n. That is, τ = ĥ is the Fourier transform of the filter h, up to a

normalization. Throughout this paper, we use â to denote this Fourier transform of a.

By taking the Fourier transform of (3.1), the refinement relation can be recast as

φ̂(Λ∗ω) = τ(ω)φ̂(ω), ∀ω ∈ Tn,

where τ is the mask associated with hφ, and ∗ is used to denote the conjugate transpose of

a matrix, hence Λ∗ is the same as ΛT , the transpose of Λ, in this case.

A mask τ with τ(0) = 0 is typically referred to as a wavelet mask. In this paper,

we use the normalization of the mask so that a mask with τ(0) = 1 is referred to as a

refinement mask. This is equivalent to
∑

k∈Zn h(k) = q, which is our normalization for a
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filter to be lowpass. A refinement mask τ is called interpolatory if

∑
γ∈Γ∗

τ(ω + γ) = 1,

for any ω ∈ Tn, where Γ∗ is a complete set of representatives of the distinct cosets of

2π(((Λ∗)−1Zn)/Zn) containing 0. For example, for the scalar dilation with λ, the set

2π
λ {0, 1, · · · , λ − 1}n can be used for Γ∗. We note that τ is interpolatory if and only if

its corresponding filter h satisfies

h(k) =


1, if k = 0,

0, if k ∈ ΛZn\0.
(3.2)

The order of zeros of τ at γ ∈ Γ∗\0 is called the accuracy number of τ . Throughout

this paper, we assume that all refinement masks have at least accuracy number one. The

order of zeros of τ at the origin is called the number of vanishing moments of τ . Thus a

mask is a wavelet mask if and only if it has at least one vanishing moment. The order of

zeros of 1− τ at the origin is called the flatness number of τ . Thus a mask is a refinement

mask if and only if it has at least flatness number one. Throughout this paper, we use the

accuracy number, the number of vanishing moments, and the flatness number both for a

mask and for the filter associated with it.

Two refinement masks τ and τd are called biorthogonal if

∑
γ∈Γ∗

(ττd)(ω + γ) = 1,

for any ω ∈ Tn. Here and below, the overline is used to denote the complex conjugate. For

the corresponding filters h and g of τ and τd, respectively, the biorthogonality condition

becomes

∑
k∈Zn

h(k)g(k + Λl) = qδl,0 =


q, if l = 0,

0, if l ∈ Zn\0.
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For a pair of biorthogonal refinement masks τ and τd and wavelet masks tj and tdj , j =

1, . . . , q−1, we refer to (τ, (tj)j=1,...,q−1) and (τd, (tdj )j=1,...,q−1) as the combined biorthogonal

masks if they satisfy the following condition: for every ω ∈ Tn,

τ(ω + γ)τd(ω) +

q−1∑
j=1

tj(ω + γ)tdj (ω) = δγ,0 =


1, if γ = 0,

0, if γ ∈ Γ∗\0.
(3.3)

It is well known that the combined biorthogonal masks can give rise to a biorthogonal

wavelet system in L2(Rn) (see, for example, [33]).

A filter bank is a finite set of filters. We consider only the filter banks that

are non-redundant with the perfect reconstruction property [3]. A (non-redundant) filter

bank consists of analysis bank and synthesis bank, which are collections of q = |det Λ|

filters linked by downsampling and upsampling operators, respectively, associated with the

dilation matrix Λ. The analysis bank splits the input signal into q signals typically called

subband signals using a parallel set of bandpass filters. The synthesis bank reconstructs

the original data from q subband signals. We are interested in the wavelet filter bank for

which each of analysis and synthesis banks has exactly one lowpass filter and the rest of

them are all highpass filters. We recall that a filter h is highpass if the associated mask is a

wavelet mask, i.e.
∑

k∈Zn h(k) = 0. The filters associated with the combined biorthogonal

masks constitute a wavelet filter bank. Furthermore, it is well known that the minimum of

accuracy numbers of lowpass filters in a wavelet filter bank provides a lower bound for the

number of vanishing moments of the highpass filters in the same wavelet filter bank [36].
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3.1.3 Multi-D wavelet construction methods: tensor product and coset

sum

When q = | det Λ| is large, in general, it is not easy to find the combined biorthog-

onal masks (τ, (tj)j=1,...,q−1) and (τd, (tdj )j=1,...,q−1). However, if the dilation is dyadic (i.e.

Λ = 2In and q = 2n) and the spatial dimension n satisfies n ≥ 2, then the well-known

tensor product and more recent coset sum can be used. Below we provide a brief review of

these methods.

We recall that the n-D tensor product mask from n (possibly distinct) 1-D masks

R1, R2, . . . , Rn is defined as, for ω = (ω1, ω2, . . . , ωn) ∈ Tn,

Tn[R1, R2, . . . , Rn](ω) := R1(ω1)R2(ω2) · · ·Rn(ωn).

Then starting from 1-D combined biorthogonal masks (S0, S1) and (U0, U1) with dyadic

dilation, one can construct n-D combined biorthogonal masks with dyadic dilation by setting

the n-D biorthogonal refinement masks as

τ := Tn[S0, S0, . . . , S0], τd := Tn[U0, U0, . . . , U0],

and the n-D wavelet masks tν , tdν , ν = (ν1, ν2, . . . , νn) ∈ {0, 1}n\0, as

tν = Tn[Sν1 , Sν2 , . . . , Sνn ], tdν = Tn[Uν1 , Uν2 , . . . , Uνn ].

It is well known that the above tensor product method has many advantages: 1)

it preserves the interpolatory property and the accuracy number of 1-D refinement masks;

2) it also preserves the biorthogonality between two refinement masks; and 3) the resulting

separable wavelets are associated with fast algorithms (cf. Section §3.3.2). However, as

67



CHAPTER 3. PRIME COSET SUM METHOD

discussed in Section §3.1.1, the limitations of the separable wavelets constructed from the

tensor product are also prominent.

A new alternative method called coset sum ([4]) for constructing n-D dyadic re-

finement masks from 1-D dyadic refinement masks is recently proposed. The coset sum

refinement mask Cn[R] for a 1-D dyadic refinement mask R is defined as:

Cn[R](ω) :=
1

2n−1

1− 2n−1 +
∑

ν∈{0,1}n\0

R(ω · ν)

 , ω ∈ Tn.

The following results about coset sum refinement masks and coset sum wavelet systems

have been proved in [4].

Result 1 Let Cn be the coset sum, and let R and R̃ be univariate dyadic refinement masks.

(a) Cn[R] is interpolatory if and only if R is interpolatory.

(b) Suppose that one of R and R̃ is interpolatory. Then Cn[R] and Cn[R̃] are biorthogonal

if and only if R and R̃ are biorthogonal.

(c) Suppose that R is interpolatory. Then Cn[R] and R have the same accuracy number. �

Result 2 Suppose that S and U are 1-D biorthogonal dyadic refinement masks, and that

U is interpolatory. Define n-D biorthogonal refinement masks as

τ := Cn[S], τd := Cn[U ],

and n-D wavelet masks tν , ν ∈ {0, 1}n\0, as

tν(ω) = e−iω·νU(ω · ν + π), ω ∈ Tn. (3.4)

Then there exist tdν , ν ∈ {0, 1}n\0, such that (τ, (tν)ν∈{0,1}n\0) and (τd, (tdν)ν∈{0,1}n\0) are

n-D combined biorthogonal masks with dyadic dilation. �
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As we can see above, the coset sum and the tensor product method share many

useful properties. In addition, the coset sum wavelets can overcome some of the limitations

of the separable wavelets. For example, attributed to the smaller supports (number of

nonzero entries) of the resulting multi-D filters, as well as the special structure of the

filters, the coset sum can be associated with fast algorithms whose complexity constant

does not increase with the spatial dimension. Therefore, in higher dimension, coset sum

fast algorithms can be much faster than the tensor product fast algorithms. For more details

about the coset sum including its comparison with the tensor product, we refer to [4].

3.2 Prime coset sum

Since coset sum has many attractive properties including fast algorithms, which

can be much faster than the existing tensor product fast algorithms, in this section, we

try to extend the coset sum method to non-dyadic scalar dilations. For the usefulness of

non-dyadic dilation wavelets, we refer to the discussion in Section §3.1.1. The following

simple lemma plays an important role in our generalization of coset sum.

Lemma 1 Let p be a prime number, and let Γ and Γ∗ be the complete set of representatives

of the distinct cosets of Zn/pZn and 2π((p−1Zn)/Zn), respectively, containing 0. Then for

every γ ∈ Γ∗\0, we have

#{ν ∈ Γ : γ · ν ≡ 0 (mod 2πZ)} = pn−1. �

Remark 1 A special case of Lemma 1 for p = 2 is used for the coset sum (cf. (19) in [4]).

�
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Remark 2 In general, Lemma 1 does not hold true if p is not a prime number. For

example, when p = 4 and n = 1, we can take Γ = {0, 1, 2, 3} and Γ∗\0 = {2π
4 ,

4π
4 ,

6π
4 }.

Then, it is easy to see that if γ = 2π
4 or γ = 6π

4 , then the cardinality of the set Zγ := {ν ∈

Γ : γ · ν ≡ 0 (mod 2πZ)} is 1 (in fact, Zγ = {0} in both cases), whereas if γ = 4π
4 , then

Zγ = {0, 2} and hence its cardinality is 2. As we will see below, a crucial step in our proof

of the lemma is the fact that Z/pZ is a finite field for a prime number p, which does not

hold true anymore if p is not a prime number. �

Proof 1 (Proof of Lemma 1) First of all, we claim that, without lose of generality, we

may assume Γ = {0, 1, · · · , p − 1}n and Γ∗ = 2π
p {0, 1, · · · , p − 1}n. This is because for any

other Γ̃ and Γ̃∗, there is a one-to-one correspondence between the elements of Γ̃ and Γ, and

between the elements of Γ̃∗ and Γ∗. To be more specific, for any other Γ̃ and Γ̃∗, and for

any ν̃ ∈ Γ̃ and γ̃ ∈ Γ̃∗\0, there exist unique ν ∈ Γ and γ ∈ Γ∗\0 such that

ν ≡ ν̃ (mod pZn),
p

2π
γ ≡ p

2π
γ̃ (mod pZn),

and vice versa. Therefore, γ̃ · ν̃ ≡ γ · ν (mod 2πZ). Hence the cardinality of the set {ν ∈ Γ :

γ · ν ≡ 0 (mod 2πZ)} is the same as the cardinality of the set {ν̃ ∈ Γ̃ : γ̃ · ν̃ ≡ 0 (mod 2πZ)}.

Now for any γ ∈ Γ∗\0 = 2π
p {0, 1, · · · , p− 1}n\0, and ν ∈ Γ = {0, 1, · · · , p− 1}n, we

let µ := p
2πγ, and let µi and νi, i = 1, . . . , n, be the i-th component of µ and ν. Then both

µi and νi lie in the set {0, 1, · · · , p− 1}. Since γ 6= 0, at least one of µi’s is not 0. Without

loss of generality, we may assume µn 6= 0. Furthermore, γ · ν ≡ 0 (mod 2πZ) if and only if

µ1ν1 + · · ·+ µnνn ≡ 0 (mod pZ).

For any γ ∈ Γ∗\0, and any νi ∈ {0, 1, · · · , p − 1}, i = 1, . . . , n − 1, let k ∈
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{0, 1, · · · , p− 1} satisfy

µ1ν1 + · · ·+ µn−1νn−1 ≡ k (mod pZ).

Since Z/pZ is a finite field for a prime number p, there exists a unique multiplicative

inverse ρ(µn) ∈ {1, · · · , p − 1} with µnρ(µn) ≡ 1 (mod pZ). Then there exists a unique

νn ∈ {0, 1, · · · , p− 1} satisfies

νn ≡ (−k)ρ(µn) (mod pZ).

Thus

µ1ν1 + · · ·+ µn−1νn−1 + µnνn ≡ k + µn(−k)ρ(µn) ≡ 0 (mod pZ).

Since there are pn−1 different choices for ν1, ν2, · · · , νn−1, for any γ ∈ Γ∗\0, we have

#{ν ∈ Γ : γ · ν ≡ 0 (mod 2πZ)} = pn−1. �

With Lemma 1 in hand, we define a particular generalization of coset sum for the

prime dilation Λ = pIn, where p ≥ 2 is a prime number. Let Γ and Γ∗ be defined as in

Lemma 1. For example, Γ = {0, 1, · · · , p− 1}n and Γ∗ = 2π
p {0, 1, · · · , p− 1}n can be used.

Motivated by the definition of the original coset sum Cn (cf. Section §3.1.3), we

consider a generalized coset sum Cn,p of the form

Cn,p[R](ω) = A

(
B +

∑
ν∈Γ′

R(ω · ν)

)
,

where Γ′ := Γ\0, and A and B are constants that will be determined soon. To pin down

the constants A and B, we impose two conditions that we consider natural on the map Cn,p.

Firstly, we require Cn,p to map a 1-D refinement mask with dilation p to an n-D refinement
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mask with dilation pIn. That is, we want Cn,p[R](0) = 1 whenever R(0) = 1. From this we

get the equation

B + pn − 1 =
1

A
. (3.5)

Secondly, we require the accuracy number of Cn,p[R] to be at least one whenever the accuracy

number of the 1-D refinement mask R is at least one. That is, we want, for any γ ∈ Γ∗\0,

0 = Cn,p[R](γ) = A

(
B +

∑
{ν∈Γ′,γ·ν≡0}

R(0)

)
= A

(
B + pn−1 − 1

)
,

where the last equality is due to Lemma 1. This gives the equation

B + (pn−1 − 1) = 0. (3.6)

By solving A and B that satisfy (3.5) and (3.6) simultaneously, we reach the following

definition of a generalized coset sum for prime dilations.

Definition 2 Let p be a prime number. We define the prime coset sum Cn,p that maps a

1-D refinement mask R with dilation p to an n-D refinement mask Cn,p[R] with dilation pIn

as follows: for any ω ∈ Tn,

Cn,p[R](ω) :=
1

(p− 1)pn−1

(
1− pn−1 +

∑
ν∈Γ′

R(ω · ν)

)
,

where Γ′ = Γ\0. �

Remark 3 We refer to the refinement mask obtained by Cn,p as the prime coset sum refine-

ment mask. We notice that the prime coset sum Cn,p with p = 2 reduces to the original coset

sum Cn for dyadic dilation, i.e. Cn,2 = Cn (cf. Section §3.1.3 for the choice of Γ = {0, 1}n

and [4] for more general choice of Γ). �
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1 1 1 −→

1 1 1

1 1 1

1 1 1

Figure 3.1: Construction of centered 2-D Haar lowpass filter with dilation 3 using prime
coset sum (cf. Example 1)2

Let H be the 1-D lowpass filter associated with the 1-D refinement mask R. Let h

be the n-D lowpass filter associated with the n-D refinement mask Cn,p[R]. We refer to such

a filter h as the prime coset sum lowpass filter. For any nonzero k ∈ Zn, we define a set Wk

as Wk := {l ∈ Z\0 : k = lν for some ν ∈ Γ′}. Then the n-D prime coset sum lowpass filter

h can be written in terms of the 1-D lowpass filter H as follows:

h(k) =


1
p−1(p− pn + (pn − 1)H(0)), if k = 0,

1
p−1

∑
l∈Wk

H(l), if k 6= 0.

(3.7)

Now we give a simple example to show the construction of multi-D prime coset

sum lowpass filters.

Example 1 (Centered 2-D Haar lowpass filter with dilation 3). Consider the cen-

tered 1-D Haar lowpass filter with dilation 3

H(K) =


1, if K = 0 or K = ±1,

0, otherwise.

Let us take Γ = {−1, 0, 1}2 = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(1,−1)}. Then it is easy to

check that the 2-D prime coset sum lowpass filter constructed from the 1-D centered Haar

is

h(k) =

 1, if k = (0, 0), k = ±(1, 0), k = ±(0, 1), k = ±(1,−1) or k = ±(−1, 1),

0, otherwise.

2Bold-faced number indicates that it is at the origin. This figure is also given out in [76].
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Figure 3.1 shows the 1-D filter H and the resulting 2-D filter h. �

Some of the properties of the original coset sum (cf. Section §3.1.3) still hold true

for the generalized prime coset sum.

Lemma 2 Let Cn,p be the prime coset sum, and R be a univariate refinement mask with

dilation p. If R is interpolatory, then Cn,p[R] is interpolatory. �

Proof 2 See Appendix §3.5.1. �

Lemma 3 Let Cn,p be the prime coset sum, R be a univariate refinement mask with dilation

p, and let m1 and m2 be positive integers. Suppose that R has m1 accuracy and m2 flatness.

Then Cn,p[R] has at least min{m1,m2} accuracy. �

Proof 3 See Appendix §3.5.2. Similar arguments to the ones given in [4] are used in our

proof. �

Remark 4 If R is interpolatory, then m1 = m2. Hence, the above lemma says that, when

R is interpolatory, the accuracy number of Cn,p[R] is at least as many as the accuracy

number of R. For the case of the original coset sum with dyadic dilation, the accuracy

number of Cn[R] is exactly the same as the accuracy number of R when R is interpolatory

(cf. Result 1(c)). We do not yet know whether this result would hold true for the prime

coset sum in general. �

Lemma 4 Let Cn,p be the prime coset sum, and R be a univariate refinement mask with

dilation p. Then the flatness number of Cn,p[R] is at least the flatness number of R. �
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We omit the proof of Lemma 4 as it is a simple variant of our proof of Lemma 3.

Unlike the original coset sum with dyadic dilation (cf. Result 1(b)), in general,

the prime coset sum does not preserve the biorthogonality of 1-D refinement masks when

p > 2, even if one of them is interpolatory. Let us look at two examples to this end. Both

of them are related with the Haar refinement masks with dilation 3.

Example 2 (Centered 2-D Haar refinement mask with dilation 3). Let us consider

the centered 1-D Haar refinement mask as in Example 1:

1

3

(
eiω + 1 + e−iω

)
.

Then the above mask has dilation 3 and it is associated with the refinable function φ =

χ[−1/2,1/2]. If we define both R and R̃ to be this centered 1-D Haar refinement mask with

dilation 3, then they are interpolatory and biorthogonal with one accuracy.

Let us now take Γ = {−1, 0, 1}2 = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(1,−1)}. Then,

it is easy to see that transforming R and R̃ to 2-D using the prime coset sum with p = 3

produces two 2-D refinement masks C2,3[R] and C2,3[R̃] (cf. Figure 3.1) that are not only

interpolatory with one accuracy, but also biorthogonal. �

Example 3 (2-D Haar refinement mask with dilation 3). Now let us consider the

regular 1-D Haar refinement mask with dilation 3:

1

3

(
1 + e−iω + e−2iω

)
,

that is associated with the refinable function φ = χ[0,1], where χ[0,1] is the characteristic

function on [0, 1]. Let both R and R̃ be the above 1-D Haar refinement mask with dilation
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3. Then it is easy to see that R and R̃ are interpolatory and biorthogonal, and they have

one accuracy.

We use Γ = {0, 1, 2}2 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}

this time. By transforming R and R̃ to 2-D masks using the prime coset sum with p = 3,

we see that C2,3[R] and C2,3[R̃] are still interpolatory and they still have one accuracy, but

that they are no longer biorthogonal. �

3.3 Multi-D wavelet filter banks with fast algorithms

3.3.1 Theory

Suppose that S and U are 1-D biorthogonal refinement masks with dilation p,

and that U is interpolatory. Since the n-D prime coset sum refinement masks Cn,p[S] and

Cn,p[U ] are not necessarily biorthogonal (cf. Example 3 in Section §3.2), it is not trivial

to construct wavelet filter banks from Cn,p[S] and Cn,p[U ] directly. We propose to use a

recently developed method called effortless critical representation of Laplacian pyramid

[44]. This method can construct wavelet filter banks from two refinement masks that are

not necessarily biorthogonal, as long as one of them is interpolatory. Noting that Cn,p[U ]

is interpolatory (cf. Lemma 2), we apply this method to Cn,p[S] and Cn,p[U ] to construct

wavelet filter banks. As we will see later (cf. Section §3.3.2), similar to coset sum, the

resulting wavelet filter banks using this method can be associated with fast algorithms,

that are faster than the tensor product fast algorithms.

Since the method in [44] works for any dilation matrix Λ, below we present it

for the general dilation matrix Λ with q = |det Λ|. Let Γ and Γ∗ be the complete set
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of representatives of the distinct cosets of Zn/ΛZn and 2π(((Λ∗)−1Zn)/Zn), respectively,

containing 0. The following result is from [44] written in terms of our notation.

Result 3 Suppose g and h are two n-D lowpass filters with dilation Λ, and h is interpola-

tory. Then the two n-D refinement masks defined as

τ(ω) := ĝ(ω) +
(

1−
∑
γ∈Γ∗

ĝ(ω + γ)ĥ(ω + γ)
)
, τd(ω) := ĥ(ω),

for every ω ∈ Tn, and the n-D wavelet masks defined as

tν(ω) := e−iω·ν − q (h(ν + Λ·))̂(Λ∗ω),

and

tdν(ω) :=
1

q
e−iω·ν − (g(ν + Λ·))̂(Λ∗ω) ĥ(ω),

for every ω ∈ Tn, and ν ∈ Γ′ = Γ\0, form the combined biorthogonal masks (cf. (3.3)). �

Proof 4 Result 3 is proved in [44], but under slightly different settings. For completeness,

we provide an alternative proof that does not rely on the results of [44]. Our proof is placed

in Appendix §3.5.4. �

Remark 5 In fact, the results in [44] say that, if we assume that, in addition to the assump-

tions of Result 3, h has α1 accuracy, g has α2 accuracy, and α3 flatness, then τ has at least

min{α1, α2, α3} accuracy. In such a case, tν and tdν , ν ∈ Γ′, have at least min{α1, α2, α3}

vanishing moments (cf. Section §3.1.2). �

For the rest of this section, we assume that the dilation is prime, i.e. Λ = pIn, and

that the sets Γ and Γ∗ are associated with the prime dilation, i.e., Γ and Γ∗ are the complete
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set of representatives of the distinct cosets of Zn/pZn and 2π((p−1Zn)/Zn), respectively,

containing 0. In particular, we have q = |det Λ| = pn in this case.

Before presenting our main theorem, let us first define a map

η : F ′p × Γ′ → Γ′,

with F ′p := Fp\0, where Fp is a complete set of representatives of the distinct cosets of

Z/pZ that contains 0. For example, the set {0, 1, · · · , p − 1} can be used for Fp. Let

(l, ν) ∈ F ′p × Γ′ ⊂ Z×Zn. Then there exists the unique multiplicative inverse ρ(l) ∈ F ′p of l

(cf. Remark 2 in Section §3.2). After computing the multiplication ρ(l)ν in the usual sense,

we define η(l, ν) to be the element in Γ′ = Γ\0 so that

η(l, ν) ≡ ρ(l)ν (mod pZn).

By the above conditions, η(l, ν) is uniquely well defined as an element in Γ′ since ρ(l)ν is

in Zn but not in pZn. For example, if n = 2, p = 3, Fp = {0, 1, 2} and Γ = {0, 1, 2}2, then

η(2, (1, 1)) = (2, 2) and η(2, (2, 2)) = (1, 1).

Now we are ready to present our result.

Theorem 3 Suppose that G and H are two 1-D lowpass filters with dilation p, and that H

is interpolatory. Let S := Ĝ and U := Ĥ be the 1-D refinement masks associated with G

and H, and let Cn,p be the prime coset sum. Define n-D biorthogonal refinement masks as

τ(ω) := Cn,p[S](ω) +

1−
∑
γ∈Γ∗

Cn,p[S](ω + γ)Cn,p[U ](ω + γ)

 , τd(ω) := Cn,p[U ](ω),

for every ω ∈ Tn, and n-D wavelet masks as

tν(ω) := e−iω·ν

1− p

p− 1

∑
l∈F ′p

ei(ω·η(l,ν))l Ul

(
pω · η(l, ν)

) , ν ∈ Γ′ (3.8)
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and

tdν(ω) :=
1

pn
e−iω·ν

1− p

p− 1

∑
l∈F ′p

ei(ω·η(l,ν))l Sl

(
pω · η(l, ν)

)
τd(ω)

 , (3.9)

for ν ∈ Γ′, and for every ω ∈ Tn, where Ul(ξ) := (H(l+p·))̂(ξ), and Sl(ξ) := (G(l+p·))̂(ξ),

ξ ∈ T.3 Then (τ, (tν)ν∈Γ′) and (τd, (tdν)ν∈Γ′) form n-D combined biorthogonal masks. �

Remark 6 In the dyadic setting, i.e., when p = 2, one can take F2 = {0, 1} and Γ =

{0, 1}n. Then, since 1 is the only element in F ′2 and η(1, ν) = ν for all ν ∈ {0, 1}n\0, the

n-D wavelet masks in (3.8) become

tν(ω) = e−iω·ν − 2 U1

(
2ω · ν

)
= e−iω·ν − 2 eiω·ν

(
U(ω · ν)− 1

2

)
= e−iω·ν − e−iω·ν

(
1− 2 U(ω · ν + π)

)
= 2e−iω·ν U(ω · ν + π), ν ∈ {0, 1}n\0,

where the second identity is from the definition of U1 and the third identity is from the fact

that U is interpolatory. The above wavelet masks are the same as the wavelet masks in

the coset sum wavelet system (cf. (3.4) in Result 2) up to a normalization factor. In fact,

the exact forms of tdν for coset sum wavelet system are also provided in [4], and similar

calculation shows that they are the same as tdν in (3.9) up to a normalization factor when

p = 2. Hence we conclude that Theorem 3 reduces to the known result of the original coset

sum case when p = 2. �

Remark 7 We refer to the wavelet filter bank associated with the combined biorthogonal

masks constructed in Theorem 3 as the prime coset sum wavelet filter bank. There are many

3Ul and Sl can be interpreted as the polyphase decomposition of filter H and G, respectively (cf. Ap-
pendix §3.5.3).
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potentially useful properties of the prime coset sum wavelet filter banks. One important

property is that it can be implemented by fast algorithms (cf. Section §3.3.2). �

Remark 8 In addition to the assumptions of Theorem 3, if we assume that U has α1

accuracy, S has α2 accuracy, and α3 flatness, then by Lemma 3 and Lemma 4, Cn,p[U ] has

at least α1 accuracy, Cn,p[S] has at least min{α2, α3} accuracy, and at least α3 flatness.

Combining these with Remark 5, we conclude that τ has at least min{α1, α2, α3} accuracy,

and tν and tdν , ν ∈ Γ′, have at least min{α1, α2, α3} vanishing moments. �

In order to prove Theorem 3, we use the following lemma which connects the

polyphase decomposition of the 1-D lowpass filter H and the polyphase decomposition of

the n-D prime coset sum lowpass filter h obtained from H. Polyphase decomposition is a

useful tool in signal processing and we give a brief review in Appendix §3.5.3.

Lemma 5 Let H be a 1-D lowpass filter with dilation p, and let h be the n-D lowpass filter

obtained from H by applying the prime coset sum Cn,p. Let the sets Γ′ and F ′p, and the map

η : Γ′ × F ′p → Γ′ be defined as before. Then for any ν ∈ Γ′,

(h(ν + p·))̂(pω) =
1

(p− 1)pn−1

∑
l∈F ′p

eiω·(ν−η(l,ν)l)
(
H(l + p·)

)̂(pω · η(l, ν)), ω ∈ Tn. �

Proof 5 First it is easy to see that (cf. (3.15) in Appendix §3.5.3)

Ĥ(ω) =
∑
l∈Fp

e−iωl
(
H(l + p·)

)̂(pω), ω ∈ T.

Using this identity and the definition of prime coset sum, we get

ĥ(ω) =
1

(p− 1)pn−1

(
1− pn−1 +

∑
ν∈Γ′

Ĥ(ω · ν)

)
, ω ∈ Tn

=
1

(p− 1)pn−1

1− pn−1 +
∑
ν∈Γ′

∑
l∈Fp

e−iω·νl
(
H(l + p·)

)̂(pω · ν)

 . (3.10)
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Next we use another identity that can be quickly derived (cf. (48) in [44]):

(h(ν + p·))̂(pω) =
1

pn

∑
γ∈Γ∗

ei(ω+γ)·ν ĥ(ω + γ), ω ∈ Tn. (3.11)

By using (3.10), (3.11), and the fact that
(
H(l+p·)

)̂(p(ω+γ) · ν̃) =
(
H(l+p·)

)̂(pω · ν̃),

for any l ∈ Fp, ω ∈ Tn, γ ∈ Γ∗ and ν̃ ∈ Γ′, we obtain (h(ν + p·))̂(pω) =

1

pn

∑
γ∈Γ∗

ei(ω+γ)·ν 1

(p− 1)pn−1

1− pn−1 +
∑
ν̃∈Γ′

∑
l∈Fp

e−i(ω+γ)·ν̃l
(
H(l + p·)

)̂(pω · ν̃)

 .

Then we use the following simple identity (cf. (3.20)):

∑
γ∈Γ∗

eiγ·ν = pnδν,0 =


pn, if ν = 0,

0, if ν ∈ Γ′\0,

to get

(h(ν + p·))̂(pω)

=
1

pn

∑
γ∈Γ∗

ei(ω+γ)·ν 1

(p− 1)pn−1

∑
ν̃∈Γ′

∑
l∈F ′p

e−i(ω+γ)·ν̃l
(
H(l + p·)

)̂(pω · ν̃)

=
1

pn
1

(p− 1)pn−1

∑
ν̃∈Γ′

∑
l∈F ′p

eiω·(ν−ν̃l)
(
H(l + p·)

)̂(pω · ν̃)
∑
γ∈Γ∗

eiγ·(ν−ν̃l), ω ∈ Tn.

Noting that
∑

γ∈Γ∗ e
iγ·(ν−ν̃l) = pn if ν̃ = η(l, ν), and it is equal to 0 otherwise, we obtain

(h(ν + p·))̂(pω) =
1

(p− 1)pn−1

∑
l∈F ′p

eiω·(ν−η(l,ν)l)
(
H(l + p·)

)̂(pω · η(l, ν)), ω ∈ Tn,

as desired. �

We now present the proof of Theorem 3.

Proof 6 (Proof of Theorem 3) Let g and h be the n-D lowpass filters associated with

refinement masks Cn,p[S] and Cn,p[U ]. Since U is interpolatory, by Lemma 2, Cn,p[U ] is also
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interpolatory, i.e., h is interpolatory. Therefore, we can obtain the combined biorthogonal

masks by using Result 3. By setting ĝ := Cn,p[S] and ĥ := Cn,p[U ] in Result 3, we obtain

that, for every ω ∈ Tn,

τ(ω) = ĝ(ω) +
(

1−
∑
γ∈Γ∗

ĝ(ω + γ)ĥ(ω + γ)
)

= Cn,p[S](ω) +

1−
∑
γ∈Γ∗

Cn,p[S](ω + γ)Cn,p[U ](ω + γ)

 ,

and

τd(ω) = ĥ(ω) = Cn,p[U ](ω).

Since, in this case, Λ = pIn and q = pn, the n-D wavelet masks tν , ν ∈ Γ′, are

tν(ω) = e−iω·ν − q (h(ν + Λ·))̂(Λ∗ω)

= e−iω·ν − pn (h(ν + p·))̂(pω), ω ∈ Tn.

Since H is the 1-D filter associated with U and h is the n-D filter associated with Cn,p[U ],

by Lemma 5, we have

(h(ν + p·))̂(pω) =
1

(p− 1)pn−1

∑
l∈F ′p

eiω·(ν−η(l,ν)l)
(
H(l + p·)

)̂(pω · η(l, ν)).

Therefore,

tν(ω) = e−iω·ν − pn 1

(p− 1)pn−1

∑
l∈F ′p

eiω·(ν−η(l,ν)l)
(
H(l + p·)

)̂(pω · η(l, ν))

= e−iω·ν − p

p− 1

∑
l∈F ′p

eiω·(η(l,ν)l−ν)
(
H(l + p·)

)̂(pω · η(l, ν))

= e−iω·ν

1− p

p− 1

∑
l∈F ′p

eiω·η(l,ν)l Ul

(
pω · η(l, ν)

) , ω ∈ Tn.
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The wavelet masks tdν , ν ∈ Γ′, in (3.9) can be obtained by applying similar arguments to the

general from of tdν , ν ∈ Γ′, in Result 3. This concludes that (τ, (tν)ν∈Γ′) and (τd, (tdν)ν∈Γ′)

defined as in Theorem 3 form n-D combined biorthogonal masks. �

The following corollary of Theorem 3 may be useful on its own in some contexts.

Corollary 1 Suppose that S and U are two 1-D refinement masks with dilation p, and that

U is interpolatory. Let Cn,p be the prime coset sum. Then the two n-D refinement masks

Cn,p[U ] and

Cn,p[S] +

1−
∑
γ∈Γ∗

Cn,p[S](·+ γ)Cn,p[U ](·+ γ)


with dilation pIn are biorthogonal. �

Remark 9 Of the two prime coset sum refinement masks Cn,p[S] and Cn,p[U ], only the

non-interpolatory mask Cn,p[S] is modified by adding 1−
∑

γ∈Γ∗ Cn,p[S](·+ γ)Cn,p[U ](·+ γ).

We note that the statement of Corollary 1 holds true trivially for the case when Cn,p[S] and

Cn,p[U ] are already biorthogonal, since 1−
∑

γ∈Γ∗ Cn,p[S](·+ γ)Cn,p[U ](·+ γ) = 0 in such a

case. One such case is when S and U are biorthogonal and p = 2 (cf. Result 1(b)). �

Next we illustrate our findings in two examples.

Example 4 (Centered n-D Haar combined biorthogonal masks with dilation 3).

Let us consider the centered 1-D Haar refinement mask with dilation 3 as in Example 1.

We let both S and U be

S(ω) = U(ω) :=
1

3

(
eiω + 1 + e−iω

)
.
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Then they are both interpolatory with one accuracy. Now let us take Γ = {−1, 0, 1}n and

Γ∗ = 2π
3 {−1, 0, 1}n for any dimension n. Then by Theorem 3 the n-D biorthogonal refine-

ment masks

τ(ω) = τd(ω) =
1

3n

∑
ν∈Γ

e−iω·ν , ω ∈ Tn,

and n-D wavelet masks

tν(ω) = e−iω·ν − 1, tdν(ω) =
1

3n
e−iω·ν − 1

9n

∑
µ∈Γ

e−iω·µ, ω ∈ Tn,

for ν ∈ Γ′, form n-D combined biorthogonal masks. These combined biorthogonal masks are

studied also in [76]. By direct computation, we see that both τ and τd have one accuracy,

and that both tν and tdν have one vanishing moment for any ν ∈ Γ′. The number of nonzero

entries, or the support of the filter associated with tν is only 2 for any ν ∈ Γ′ and any

dimension n. �

Example 5 (2-D combined biorthogonal masks with higher vanishing moments).

Let U be a 1-D interpolatory refinement mask with dilation 3 and accuracy 4 4

U(ω) :=
1

3

(
−

4

81
e5iω −

5

81
e4iω +

30

81
e2iω +

60

81
eiω + 1 +

60

81
e−iω +

30

81
e−2iω −

5

81
e−4iω −

4

81
e−5iω

)
.

Let S be defined as in Example 4. We take Γ = {−1, 0, 1}2 and Γ∗ = 2π
3 {−1, 0, 1}2. Then

by Theorem 3 the 2-D biorthogonal refinement masks

τ(ω) =
1

9

83

27
+
∑
ν∈Γ′

e−iω·ν −
25

81

∑
ν∈Γ′

e−3iω·ν +
4

81

∑
ν∈Γ′

e−6iω·ν

 , ω ∈ T2,

τd(ω) =
1

9

1 +
60

81

∑
ν∈Γ′

e−iω·ν +
30

81

∑
ν∈Γ′

e−2iω·ν −
5

81

∑
ν∈Γ′

e−4iω·ν −
4

81

∑
ν∈Γ′

e−5iω·ν

 , ω ∈ T2,

and 2-D wavelet masks

tν(ω) = e−iω·ν +
5

81
e3iω·ν − 60

81
− 30

81
e−3iω·ν +

4

81
e−6iω·ν , ω ∈ T2,

4U is obtained from Example 1) in Section V. A. of [49].
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− 4
81 − 5

81 0 30
81

60
81 1 60

81
30
81 0 − 5

81 − 4
81

Filter associated with U

C2,3 (Prime coset sum)
?

− 4
81 0 0 0 0 − 4

81 0 0 0 0 − 4
81

0 − 5
81 0 0 0 − 5

81 0 0 0 − 5
81 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 30
81 0 30

81 0 30
81 0 0 0

0 0 0 0 60
81

60
81

60
81 0 0 0 0

− 4
81 − 5

81 0 30
81

60
81 1 60

81
30
81 0 − 5

81 − 4
81

0 0 0 0 60
81

60
81

60
81 0 0 0 0

0 0 0 30
81 0 30

81 0 30
81 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 − 5
81 0 0 0 − 5

81 0 0 0 − 5
81 0

− 4
81 0 0 0 0 − 4

81 0 0 0 0 − 4
81

Filter associated with τd = C2,3[U ]

Figure 3.2: Lowpass filters associated with the masks U and τd in Example 5.

tdν(ω) =
1

9

(
e−iω·ν − τd(ω)

)
, ω ∈ T2,

for ν ∈ Γ′, form 2-D combined biorthogonal masks (cf. Figure 3.2 for the filters associated

with U and τd). Direct computation shows that τ has one accuracy, τd has 4 accuracy,

tν , ν ∈ Γ′, have 4 vanishing moments, and tdν , ν ∈ Γ′, have one vanishing moment. The

support of the filter associated with tν is only 5 for any ν ∈ Γ′. �
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3.3.2 Algorithms

Theorem 3 provides only one of many ways to obtain the non-redundant wavelet

filter bank, given the two n-D refinement masks Cn,p[S] and Cn,p[U ]. However, the resulting

prime coset sum wavelet filter bank can be associated with fast algorithms that are faster

than the usual tensor product ones. Below we present these fast prime coset sum algorithms.

Fast Prime Coset Sum Wavelet Algorithms. Let G and H be two 1-D lowpass filters

with dilation p, where H is interpolatory. In presenting our algorithms, we use the set Fp

and the map η that we defined in Section §3.3.1.

input yJ : Zn → R

(1) Decomposition Algorithm: computing yj−1, wν,j−1, ν ∈ Γ′ from yj

for j = J, J − 1, . . . , 1

for ν ∈ Γ′ and k ∈ Zn

wν,j−1(k) = yj(pk + ν)− 1

p− 1

∑
l∈F ′p

∑
m≡l

H(m)yj(pk + ν − η(l, ν)m) (i)

end

for k ∈ Zn

yj−1(k) = yj(pk) +
1

(p− 1)pn

∑
ν∈Γ′

∑
l∈F ′p

∑
m≡l

G(m)wν,j−1(k − ν − η(l, ν)m

p
) (ii)

end

end

(2) Reconstruction Algorithm: computing yj from yj−1, wν,j−1, ν ∈ Γ′

for j = 1, . . . , J − 1, J

for k ∈ Zn
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yj(pk) = yj−1(k)− 1

(p− 1)pn

∑
ν∈Γ′

∑
l∈F ′p

∑
m≡l

G(m)wν,j−1(k − ν − η(l, ν)m

p
) (iii)

end

for ν ∈ Γ′ and k ∈ Zn

yj(pk + ν) = wν,j−1(k) +
1

p− 1

∑
l∈F ′p

∑
m≡l

H(m)yj(pk + ν − η(l, ν)m) (iv)

end

end

For decomposition, we compute the coarse coefficients yj−1 and wavelet coefficients

wν,j−1, ν ∈ Γ′, from yj . To obtain wν,j−1, ν ∈ Γ′, we apply the filter associated with tν ,

ν ∈ Γ′ to yj , followed by downsampling with respect to the dilation matrix Λ = pIn, as is

typically done in wavelet decomposition. Since tν , ν ∈ Γ′, are written in terms of Ul, l ∈ F ′p,

and since Ul can be written in terms of 1-D filter H, we obtain the formula for Step (i).

The proof of the identity in Step (i) is given in Appendix §3.5.5, in which the concept of

polyphase decomposition (cf. Appendix §3.5.3) is used.

A key step of our decomposition algorithm is Step (ii). Typically, to obtain yj−1,

one needs to apply the filter associated with τ to yj , followed by downsampling. However,

since here τ = Cn,p[S] +
(

1−
∑

γ∈Γ∗ Cn,p[S](·+ γ)Cn,p[U ](·+ γ)
)

(cf. Theorem 3), contrary

to the filter associated with the first part of τ , i.e. Cn,p[S], it is not clear how the filter

associated with the rest of the mask τ , i.e. 1 −
∑

γ∈Γ∗ Cn,p[S](· + γ)Cn,p[U ](·+ γ), would

look like. As a result, the support of the filter associated with τ could be large. Therefore,

the algorithm may not be faster than other wavelet algorithms if we use the filter associated

with τ directly. However, by using the polyphase representation (cf. Appendix §3.5.3), one

can show that yj−1 can also be derived by applying the filter associated with Cn,p[S] (the
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first part of τ) to wν,j−1, ν ∈ Γ′. This is our Step (ii), and the details of exactly how it is

done are written in Appendix §3.5.5.

Our reconstruction algorithm is not the same as the typical wavelet reconstruction

procedure either. We recall that the typical wavelet reconstruction is conducted by applying

the reconstruction filters to yj−1 and wν,j−1, ν ∈ Γ′, upsampling them, and then summing

them up. We reconstruct the signal by simply reversing Step (i) and (ii). Step (iii)

is a reverse procedure of Step (ii) that can always be performed. Step (iv) is a reverse

procedure of Step (i), and it is possible because the only yj needed in the right-hand side

of Step (iv) is yj(pk), which is already computed in Step (iii).

Complexity. Next we discuss the complexity of the fast prime coset sum wavelet algo-

rithms. We measure the complexity by counting the number of multiplicative operations

needed in a complete cycle of 1-level-down decomposition and 1-level-up reconstruction,

meaning the number of operations needed to fully derive yj−1 and wν,j−1, ν ∈ Γ′ from yj ,

and to get back yj . Here we only compute the number of multiplicative operations such as

multiplication and division, as computing additive operations gives a similar result.

Suppose that at level j, we have input data yj with N data points. For simplicity,

we assume that N is a multiple of pn, where p is the dilation and n is the spatial dimension.

Then after 1-level-down decomposition, we obtain N/pn coarse coefficients yj−1 in Step

(ii), and N/pn wavelet coefficients wν,j−1 for each ν ∈ Γ′ in Step (i). We reconstruct

the input data yj from coarse coefficients yj−1 and wavelet coefficients wν,j−1, ν ∈ Γ′.

In particular, we obtain N/pn original data yj(pk) in Step (iii) and N/pn original data

yj(pk + ν) for each ν ∈ Γ′ in Step (iv).
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Suppose α and β are the number of nonzero entries in the 1-D lowpass filter G

and H, respectively. Recall that H is interpolatory. Let

α̃ := #{G(m) : G(m) 6= 0 and m ≡ l (mod pZ) for some l ∈ F ′p}.

Given the N data points of the input data yj , the number of multiplicative operations

needed in a complete cycle of 1-level-down decomposition and 1-level-up reconstruction is

the sum of

• 2β(pn − 1) Npn [for Step (i) and (iv)], and

• 2
(

(pn − 1)α̃+ n+ 1
)
N
pn [for Step (ii) and (iii)].

Therefore, as a result, the complexity of the fast prime coset sum wavelet algorithms is

(
2(pn − 1)β + 2(pn − 1)α̃+ 2n+ 2

pn

)
N. (3.12)

Since α̃ ≤ p−1
p (α+ 1), this complexity is bounded above by

(
2β + 2

p− 1

p
(α+ 1) + 1

)
N. �

Recall that in dyadic case, the fast tensor product wavelet algorithms have com-

plexity (α+ β)nN , where α and β are the number of nonzero entries of 1-D lowpass filters,

n is the spatial dimension and N is the data size (see, for example, [4]). Therefore, the

algorithm has linear complexity, i.e., ∼ CN , with the data size N , where C is some con-

stant that does not depend on N . We refer to this constant as the complexity constant.

The complexity constant for fast tensor product wavelet algorithm is CTP = (α + β)n. In

particular, it grows linearly with the dimension n. Now let us consider the fast prime coset
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sum wavelet algorithm. In dyadic case, i.e., when p = 2, the complexity is bounded above

by (α + 2β + 2)N . Therefore, the complexity constant is CPCS = α + 2β + 2, which does

not increase as dimension n increases. Furthermore, since α ≥ 2, we have CPCS ≤ CTP for

all n ≥ 2, which suggests that our fast prime coset sum algorithms can be much faster, at

least in theory, than the fast tensor product algorithms when n is large.

Our fast algorithms with p = 2 are different from the original fast coset sum

algorithms in [4], which results in a different complexity constant for the coset sum case.

The complexity constant for the fast coset sum algorithms is CCS = 3
2α + 2β, and as a

result, we have CPCS ≤ CCS as long as α ≥ 4.

There are a couple of factors that contribute to make our algorithms this fast.

Firstly, the number of nonzero entries in the n-D filter associated with tν , ν ∈ Γ′, is es-

sentially the same as that of the 1-D filter H (cf. Step (i)). Secondly, our decomposition

algorithm is performed by bypassing the filter associated with τ (cf. Step (ii)), which could

have large support, in general. Finally, the reconstruction algorithm has trivial reconstruc-

tion steps, which completely bypass the filters associated with tdν , ν ∈ Γ′ (cf. Step (iii)

and (iv)).

We now illustrate our findings using some examples.

Example 6 (Fast prime coset sum wavelet algorithms for centered n-D Haar

with dilation 3). Let us consider the centered n-D Haar combined biorthogonal masks

with dilation 3 constructed in Example 4. In this case, the 1-D filter G and H are given as

G(K) = H(K) =


1, if K = 0,

1, if K = ±1,

0, otherwise.
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Then one can follow Step (i) – (iv) with this pair of G and H to perform the fast algorithms.

In this case, α = β = 3, α̃ = 2 and p = 3. Hence for any dimension n, and input data of

size N , the algorithms have complexity

(
6(3n − 1) + 4(3n − 1) + 2n+ 2

3n

)
N ≤ 11N.

Hence the complexity constant in this case is 11, and it does not grow as the dimension n

grows. �

Example 7 (Fast prime coset sum wavelet algorithms for 2-D wavelets with

higher vanishing moments). Let us consider the 2-D combined biorthogonal masks con-

structed in Example 5. In this case, the 1-D filter G and H are given as

G(K) =


1, if K = 0,

1, if K = ±1,

0, otherwise,

H(K) =



1, if K = 0,

60
81 , if K = ±1,

30
81 , if K = ±2,

− 5
81 , if K = ±4,

− 4
81 , if K = ±5,

0, otherwise.

Then this pair of G and H can be used in Step (i) – (iv) to implement the fast algorithms

for the wavelet filter bank constructed in Example 5. In particular, since α = 3, β = 9,

α̃ = 2, p = 3 and n = 2, the fast algorithms have complexity

(
18(32 − 1) + 4(32 − 1) + 6

32

)
N ≤ 21N,

for any input data of size N . Hence the complexity constant in this case is 21. �
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3.4 Conclusion

In this paper we introduced a method called prime coset sum to construct multi-

D refinement masks from 1-D refinement masks. This method is a generalization of the

existing method, the coset sum ([4]), that works only for the dyadic dilations. We showed

that for a prime dilation, the prime coset sum method maintains many important properties

from the 1-D refinement masks, such as interpolatory property, and under some conditions,

the accuracy number. More importantly, the prime coset sum refinement masks can be

used to construct wavelet filer banks with fast algorithms. Similar to the coset sum method

for dyadic case, the prime coset sum fast algorithms have complexity constant that does

not increase as the spatial dimension n increases. This is contrary to the tensor product

method, since its complexity constant increases linearly with the spatial dimension.

3.5 Appendix

3.5.1 Proof of Lemma 2 in section §3.2

Suppose H and h are the filters associated with masks R and Cn,p[R]. If R is

interpolatory, by (3.2), H(0) = 1, and H(K) = 0 for any K ∈ pZ\0. Then, by (3.7),

h(0) = 1
p−1(p − pn + (pn − 1)H(0)) = 1, and h(k) = 1

p−1

∑
l∈Wk

H(l) for any k 6= 0. Since

for each k ∈ pZn\0, every element l in the set Wk = {l ∈ Z\0 : k = lν for some ν ∈ Γ′}

must lie in pZ\0, we see that h(k) = 1
p−1

∑
l∈Wk

H(l) = 0 for any k ∈ pZn\0. Hence Cn,p[R]

is interpolatory.
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3.5.2 Proof of Lemma 3 in section §3.2

First we note that Cn,p[R] has at least accuracy number one, since R has at least

accuracy number one and Cn,p is defined so that it preserves positive accuracy.

Let F ∗p be a complete set of representatives of the distinct cosets of 2π((p−1Z)/Z)

containing 0. Since the order of zeros of R at ξ ∈ F ∗p \0 is m1, and the order of zeros of

1−R at the origin is m2, we have, for any integer 1 ≤ k ≤ min{m1,m2} − 1,

(DkR)(ξ) = 0, for any ξ ∈ F ∗p . (3.13)

Thus, for any γ ∈ Γ∗ and any µ ∈ Nn with 1 ≤ |µ| ≤ min{m1,m2} − 1, where |µ| :=

µ1 + · · ·+ µn, we get

(DµCn,p[R])(γ) =
1

(p− 1)pn−1

∑
ν∈Γ′

(Dµ[R(ω · ν)]) |ω=γ

=
1

(p− 1)pn−1

∑
ν∈Γ′

 n∏
j=1

ν
µj
j

 (D|µ|R)(γ · ν) = 0,

where the last equality is from (3.13) and the fact that γ · ν (mod pZ) belongs to F ∗p . This

implies the accuracy number of Cn,p[R] is at least min{m1,m2}.

3.5.3 Review of polyphase representation of wavelet filter banks

The polyphase decomposition in [77] is widely used in signal processing. We briefly

review some relevant concepts in polyphase decomposition in terms of our notation and

terminology, and refer other papers (e.g. [44, 78]) for details.

As before, we use Λ to denote the dilation matrix, and q to denote | det Λ|. The

polyphase decomposition transforms a filter (or signal) into q filters (or signals) running at

the sampling rate 1/q. Let Γ be a complete set of representatives of the distinct cosets of
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Zn/ΛZn containing 0, and let Γ′ = Γ\0. For example, for the scalar dilation with λ, the set

{0, 1, · · · , λ− 1}n can be used for Γ.

The polyphase decomposition of a synthesis filter h is defined as the Fourier series

of h(ν + Λ·), ν ∈ Γ:

Hν(ω) := (h(ν + Λ·))̂(ω) =
1

q

∑
k∈Zn

h(ν + Λk)e−ik·ω, ω ∈ Tn, (3.14)

and the polyphase representation of a synthesis filter h is defined as the column q-vector of

the form

H(ω) := [Hν0(ω), Hν1(ω), · · · , Hνq−1(ω)]T , ω ∈ Tn,

where ν0 = 0 and νj , j = 1, . . . , q−1, are the ordered elements of the set Γ′. Then it is easy

to see that the Fourier series of h can be written in terms of the polyphase decomposition

of h as follows:

ĥ(ω) =
∑
ν∈Γ

e−iω·νHν(Λ∗ω). (3.15)

Similarly, the polyphase decomposition of an analysis filter g is defined as the complex

conjugate of the Fourier series of g(ν + Λ·), ν ∈ Γ:

Gν(ω) := (g(ν + Λ·))̂(ω) =
1

q

∑
k∈Zn

g(ν − Λk)e−ik·ω, ω ∈ Tn, (3.16)

and the polyphase representation of an analysis filter g is defined as the row q-vector of the

form

G(ω) := [Gν0(ω), Gν1(ω), · · · , Gνq−1(ω)], ω ∈ Tn,

and, as a result, we have the identity

ĝ(ω) =
∑
ν∈Γ

eiω·νGν(Λ∗ω).
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Under these notations, it is easy to see that h and g are biorthogonal if and only if

G(ω)H(ω) = 1/q.

A filter bank (that is non-redunant with perfect reconstruction property) can be

represented by two q×q polyphase matrices A(ω) and S(ω) that satisfy S(ω)A(ω) = (1/q)Iq.

The row vectors of A(ω) represent the polyphase representation of analysis filters, where the

first row corresponding to the lowpass filter and the rest to the highpass filters. The column

vectors of S(ω) represent the polyphase representation of synthesis filters, where the first

column corresponding to the lowpass filter and the rest to the highpass filters.

We finish this subsection by stating Result 3 in terms of the polyphase represen-

tation, as it will be useful in the later part of the paper.

Result 4 (Result 3 stated in terms of polyphase representation) Suppose g and h

are two n-D lowpass filters with dilation Λ, and h is interpolatory. Let G(ω) and H(ω) be

the polyphase representation of g and h with length q = | det Λ|, and let G̃(ω) and H̃(ω) be

the subvectors of G(ω) and H(ω) of length q − 1, respectively, obtained by removing the first

entry. Then the following two polyphase matrices

A(ω) :=

Gν0(ω) + q B(ω) G̃(ω)

−q H̃(ω) Iq−1

 S(ω) :=


1

q
− 1

q
G̃(ω)

H̃(ω)
1

q
Iq−1 − H̃(ω)G̃(ω)

 (3.17)

satisfy S(ω)A(ω) = (1/q)Iq, where B(ω) := 1/q − G(ω)H(ω).
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3.5.4 Proof of Result 3 in section §3.3.1

We want to show that τ , τd, tν and tdν , ν ∈ Γ′, in Result 3, satisfy the following

identity (cf. (3.3) in Section §3.1.2)

τ(ω + γ)τd(ω) +
∑
ν∈Γ′

tν(ω + γ)tdν(ω) = δγ,0 =


1, if γ = 0,

0, if γ ∈ Γ∗\0.

By substituting the masks τ , τd, tν and tdν , ν ∈ Γ′, in Result 3, we get

τ(ω + γ)τd(ω) +
∑
ν∈Γ′

tν(ω + γ)tdν(ω)

=
(
ĝ(ω + γ) +

(
1−

∑
γ̃∈Γ∗

ĝ(ω + γ̃ + γ) ĥ(ω + γ̃ + γ)
))
ĥ(ω)

+
∑
ν∈Γ′

(
ei(ω+γ)·ν − q(h(ν + Λ·))̂(Λ∗ω)

)(1

q
e−iω·ν − (g(ν + Λ·))̂(Λ∗ω) ĥ(ω)

)
= ĝ(ω + γ) ĥ(ω) + ĥ(ω)−

∑
γ̃∈Γ∗

ĝ(ω + γ̃ + γ) ĥ(ω + γ̃ + γ)ĥ(ω)

+
1

q

∑
ν∈Γ

eiγ·ν − 1

q
−

(∑
ν∈Γ

ei(ω+γ)·ν (g(ν + Λ·))̂(Λ∗ω) ĥ(ω)− g(Λ·)̂(Λ∗ω) ĥ(ω)

)

−

(∑
ν∈Γ

e−iω·ν(h(ν + Λ·))̂(Λ∗ω)− h(Λ·)̂(Λ∗ω)

)
+q
∑
ν∈Γ′

(h(ν + Λ·))̂(Λ∗ω) (g(ν + Λ·))̂(Λ∗ω) ĥ(ω).

It is easy to see that the following identity is true:

∑
ν∈Γ

eiγ·ν = qδγ,0 =


q, if γ = 0,

0, if γ ∈ Γ∗\0,
(3.18)

where q = | det Λ|. Since h is interpolatory, we have

h(Λ·)̂(Λ∗ω) =
1

q
. (3.19)

Then by using (3.18), (3.19), (3.15), and the fact that (g(ν+Λ·))̂(Λ∗ω) = (g(ν+Λ·))̂(Λ∗(ω+

γ)), for any ν ∈ Γ, ω ∈ Tn, and γ ∈ Γ∗, we get

τ(ω + γ)τd(ω) +
∑
ν∈Γ′

tν(ω + γ)tdν(ω)

96



CHAPTER 3. PRIME COSET SUM METHOD

= δγ,0 −
∑
γ̃∈Γ∗

ĝ(ω + γ̃) ĥ(ω + γ̃)ĥ(ω) + q
∑
ν∈Γ

(h(ν + Λ·))̂(Λ∗ω) (g(ν + Λ·))̂(Λ∗ω) ĥ(ω)

= δγ,0 −

∑
γ̃∈Γ∗

ĝ(ω + γ̃) ĥ(ω + γ̃)− q
∑
ν∈Γ

(h(ν + Λ·))̂(Λ∗ω) (g(ν + Λ·))̂(Λ∗ω)

 ĥ(ω).

Moreover, by (3.15), and the dual identity of (3.18):

∑
γ∈Γ∗

eiγ·ν = qδν,0 =


q, if ν = 0,

0, if ν ∈ Γ′\0,
(3.20)

we have

∑
γ∈Γ∗

ĝ(ω + γ) ĥ(ω + γ)

=
∑
γ∈Γ∗

(∑
ν∈Γ

ei(ω+γ)·ν (g(ν + Λ·))̂(Λ∗ω)

)(∑
ν̃∈Γ

e−i(ω+γ)·ν̃ (h(ν̃ + Λ·))̂(Λ∗ω)

)

=
∑
ν̃∈Γ

∑
ν∈Γ

( ∑
γ∈Γ∗

eiγ·(ν−ν̃)
)
eiω·ν (g(ν + Λ·))̂(Λ∗ω)

 e−iω·ν̃(h(ν̃ + Λ·))̂(Λ∗ω)

= q
∑
ν∈Γ

(h(ν + Λ·))̂(Λ∗ω) (g(ν + Λ·))̂(Λ∗ω).

Therefore,

τ(ω + γ)τd(ω) +
∑
ν∈Γ′

tν(ω + γ)tdν(ω) = δγ,0.

This concludes the proof.

3.5.5 Proof of the identities in the decomposition algorithm in section

§3.3.2

The polyphase decomposition of a signal yj with respect to the dilation matrix

Λ = pIn, with q = | det Λ| = pn, is defined as the Fourier series of yj(ν + p·), ν ∈ Γ:

Yν,j(ω) := (yj(ν + p·))̂(ω) =
1

q

∑
k∈Zn

yj(ν + pk)e−ik·ω, ω ∈ Tn,
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and the polyphase representation of a signal yj is defined as the column q-vector of the form

Yj(ω) := [Yν0,j(ω), Yν1,j(ω), · · · , Yνq−1,j(ω)]T , ω ∈ Tn,

where ν0 = 0 and νj , j = 1, . . . , q − 1, are the ordered elements of the set Γ′. Let Yj−1

and Wν,j−1 be the Fourier series of coarse coefficients yj−1 and wavelet coefficients wν,j−1,

ν ∈ Γ′, respectively,

Yj−1(ω) :=
1

q

∑
k∈Zn

yj−1(k)e−ik·ω,

Wν,j−1(ω) :=
1

q

∑
k∈Zn

wν,j−1(k)e−ik·ω, ν ∈ Γ′,

for every ω ∈ Tn. Then an 1-level-down decomposition, in frequency domain, can be written

as  Yj−1(ω)

Wj−1(ω)

 = A(ω)

Yν0,j(ω)

Ỹj(ω)

 ,
whereWj−1(ω) := [Wν1,j−1(ω), · · · ,Wνq−1,j−1(ω)]T and Ỹj(ω) is a subvector of Y(ω) of length

q − 1 obtained by removing the first entry.

A key observation, which is also part of the reason why the fast prime coset sum

wavelet algorithms is fast, is that A(ω) as defined in (3.17) can be decomposed into two

triangular matrices:

A(ω) =

1 G̃(ω)

0 Iq−1


 1 0

−q H̃(ω) Iq−1

 .
Thus we can calculate Wj−1(ω) first, then use Wj−1(ω) to compute Yj−1(ω) as follows,

Wj−1(ω) = −q H̃(ω)Yν0,j(ω) + Ỹj(ω), (3.21)

Yj−1(ω) = Yν0,j(ω) + G̃(ω)Wj−1(ω). (3.22)
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From these (3.21) and (3.22), we now derive Step (i) and (ii) in our decomposition

algorithm.

From (3.21), (3.14) and Lemma 5, we know that, for any ν ∈ Γ′,

Wν,j−1(ω) = −q Hν(ω)Yν0,j(ω) + Yν,j(ω)

= −q (h(ν + p·))̂(ω)Yν0,j(ω) + Yν,j(ω)

= − p

p− 1

∑
l∈F ′p

e
iω· (ν−η(l,ν)l)

p

(
H(l + p·)

)̂(ω · η(l, ν))Yν0,j(ω) + Yν,j(ω).

Hence,

1

pn

∑
k∈Zn

wν,j−1(k)e−ik·ω = Wν,j−1(ω) =
1

pn

∑
k∈Zn

yj(pk + ν)e−ik·ω

− p

p− 1

∑
l∈F ′p

e
iω· (ν−η(l,ν)l)

p
1

p

∑
m∈Z

H(l + pm)e−im(ω·η(l,ν)) 1

pn

∑
k′∈Zn

yj(pk
′)e−ik

′·ω.

Therefore,

∑
k∈Zn

wν,j−1(k)e−ik·ω

=
∑
k∈Zn

yj(pk + ν)e−ik·ω

− 1

p− 1

∑
l∈F ′p

∑
m∈Z

∑
k′∈Zn

e
iω· (ν−η(l,ν)l)

p e−im(ω·η(l,ν))e−ik
′·ωH(l + pm)yj(pk

′)

=
∑
k∈Zn

yj(pk + ν)e−ik·ω

− 1

p− 1

∑
l∈F ′p

∑
m∈Z

∑
k∈Zn

e−ik·ωH(l + pm)yj(pk + ν − η(l, ν)(pm+ l))

=
∑
k∈Zn

yj(pk + ν)− 1

p− 1

∑
l∈F ′p

∑
m∈Z

H(l + pm)yj(pk + ν − η(l, ν)(pm+ l))

 e−ik·ω

=
∑
k∈Zn

yj(pk + ν)− 1

p− 1

∑
l∈F ′p

∑
m≡l

H(m)yj(pk + ν − η(l, ν)(m))

 e−ik·ω,
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which in turn implies that we have for any k ∈ Zn and ν ∈ Γ′,

wν,j−1(k) = yj(pk + ν)− 1

p− 1

∑
l∈F ′p

∑
m≡l

H(m)yj(pk + ν − η(l, ν)m).

This is exactly Step (i) in our decomposition algorithm.

From (3.22), (3.16) and by Lemma 5 we know that

Yj−1(ω) = Yν0,j(ω) +
∑
ν∈Γ′

Gν(ω)Wν,j−1(ω)

= Yν0,j(ω) +
∑
ν∈Γ′

g(ν + p·)̂(ω) Wν,j−1(ω)

= Yν0,j(ω) +
∑
ν∈Γ′

1

(p− 1)pn−1

∑
l∈F ′p

e
iω· (η(l,ν)l−ν)

p

(
G(l + p·)

)̂(ω · η(l, ν)) Wν,j−1(ω).

Hence,

1

pn

∑
k∈Zn

yj−1(k)e−ik·ω = Yj−1(ω) =
1

pn

∑
k∈Zn

yj(pk)e−ik·ω +

∑
ν∈Γ′

1

(p− 1)pn

∑
l∈F ′p

e
iω· (η(l,ν)l−ν)

p

∑
m∈Zn

G(l − pm)e−im(ω·η(l,ν)) 1

pn

∑
k′∈Zn

wν,j−1(k′)e−ik
′·ω.

Therefore, we have

∑
k∈Zn

yj−1(k)e−ik·ω

=
∑
k∈Zn

yj(pk)e−ik·ω

+
1

(p− 1)pn

∑
ν∈Γ′

∑
l∈F ′p

∑
m∈Zn

∑
k′∈Zn

e
iω· (η(l,ν)l−ν)

p e−im(ω·η(l,ν))e−ik
′·ωG(l − pm)wν,j−1(k′)

=
∑
k∈Zn

yj(pk)e−ik·ω

+
1

(p− 1)pn

∑
ν∈Γ′

∑
l∈F ′p

∑
m∈Zn

∑
k∈Zn

e−ik·ωG(l − pm)wν,j−1(k − ν − η(l, ν)l

p
− η(l, ν)m)

=
∑
k∈Zn

yj(pk) +
1

(p− 1)pn

∑
ν∈Γ′

∑
l∈F ′p

∑
m≡l

G(m)wν,j−1(k − ν − η(l, ν)m

p
)

 e−ik·ω,
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As a result, we have, for any k ∈ Zn,

yj−1(k) = yj(pk) +
1

(p− 1)pn

∑
ν∈Γ′

∑
l∈F ′p

∑
m≡l

G(m)wν,j−1(k − ν − η(l, ν)m

p
).

This is exactly Step (ii) in our decomposition algorithm.
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Chapter 4

Multi-D Wavelet Filter Bank

Design using Quillen-Suslin

Theorem for Laurent Polynomials

4.1 Introduction

The main objective of this paper is to present a new approach for constructing

nonseparable multidimensional (multi-D) non-redundant wavelet filter banks (FBs). Con-

structing wavelet FBs is often reduced to solving a matrix equation with Laurent polynomial

entries [46]. Connecting wavelet FBs with the Laurent polynomial matrices is usually done

by the polyphase representation [77]. The key idea for our method is to decompose the

z-transform of filters using, instead of the usual polyphase representation, a special type of

valid (generalized) polyphase representation [79], which we obtain from the Quillen-Suslin
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Theorem for Laurent polynomials. This new representation allows us to use the matrix

analysis techniques that were not available for the usual polyphase representation.

Quillen-Suslin Theorem (or unimodular completion), a celebrated theorem in Alge-

braic Geometry, states that a unimodular matrix with polynomial entries can be completed

to a square polynomial matrix of determinant 1. This result was extended by R. G. Swan

to unimodular matrices with Laurent polynomial entries [80].

While there have been several uses of unimodular completion in constructing multi-

D FBs [47], constructing multi-D wavelet FBs using unimodular completion is mostly done

by imposing additional constraints after multi-D FBs are constructed. Our method is

different from these existing methods in that it gives an algorithm to construct multi-D

wavelet FBs more readily. Our method provides an algorithm for constructing a wavelet

FB from a single lowpass filter so that its vanishing moments are at least as many as the

accuracy number of the lowpass filter.

The wavelet representation, along with Fourier representation, has been one of

the most effective data representations. Constructing 1-D wavelets is well understood by

now, but the situation is quite different for multi-D case. The most commonly used method

for constructing multi-D wavelets is the tensor product, but the resulting wavelets have

many unavoidable limitations. Many researches on constructing non-tensor-based multi-

D wavelet FBs or wavelets have been performed [4, 7–20, 29, 35, 36, 44, 49]. Drawbacks of

existing non-tensor-based multi-D wavelet constructions include the following. Many of

the existing methods work only for low spatial dimensions and cannot be easily extended

to higher dimensions. Others assume that the lowpass filters or refinable functions satisfy
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additional conditions such as interpolatory condition. Our construction method presents

some advantages over these existing methods of multi-D wavelet construction. It works for

any spatial dimension and for any sampling matrix. Furthermore, it does not require the

initial lowpass filters to satisfy any additional assumption such as interpolatory condition.

We now outline the rest of our paper. In Section §4.2, we briefly review some

technical background about wavelet FBs, unimodular completion and other relevant con-

cepts. In Section §4.3, we present our main results together with examples illustrating our

findings. We summarize our results and provide outlooks in Section §4.4. Appendix §4.5

contains some technical proofs.

4.2 Preliminaries

4.2.1 Wavelet filter banks and their polyphase representation

Let Λ be an n× n integer sampling or dilation matrix. By definition, this means

that Λ is an integer matrix and its spectrum lies outside the closed unit disc. Throughout

the paper, we use q to denote the magnitude of det Λ, i.e. q := |det Λ|.

A Laurent trigonometric polynomial is typically referred to as a mask, and a mask

τ with τ(0) =
√
q and τ(0) = 0 as a refinement mask and wavelet mask, respectively.

It is well known that refinement masks can be used to obtain refinable functions used in

wavelet construction via the cascade algorithm (or subdivision scheme) [41] and, together

with wavelet masks, they can be used to construct wavelet systems in L2(Rn) [1]. We recall

that a filter f : Zn → R is associated with a mask τ if τ is the Fourier transform of f . A
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filter f is called lowpass or refinement if

∑
k∈Zn

f(k) =
√
q,

and highpass or wavelet if ∑
k∈Zn

f(k) = 0.

In this paper we consider only the finite impulse response (FIR) filters. A FB consists of the

analysis bank and the synthesis bank, which are collections of finite number, say p, of FIR

filters linked by downsampling and upsampling operators, respectively, with the sampling

matrix Λ [3]. We refer to a filter from the analysis bank as an analysis filter and a filter from

the synthesis bank as a synthesis filter. We consider only the FBs that satisfy the perfect

reconstruction condition, which implies p ≥ q. We are interested in the FB for which each

of its analysis and synthesis banks has exactly one lowpass filter and the rest of them are all

highpass filters. We refer to such a FB as a wavelet FB. A FB is called critically sampled or

non-redundant if p = q and oversampled or redundant otherwise. Designing non-redundant

wavelet FBs is an important problem since it leads to the construction of wavelet bases

under well-understood constraints [1–3].

We recall that for a filter f , the number of zeros of the Fourier transform of f

at ω = 0 is referred to as the number of (discrete) vanishing moments of the filter f [36].

Thus, a filter f is highpass if and only if f has at least one vanishing moment. We say

that a wavelet FB has s ∈ N vanishing moments if the minimum of all its highpass filters’

vanishing moments is s.

We use Γ to denote a complete set of representatives of the distinct cosets of the

quotient group Zn/ΛZn containing 0, and Γ∗ to denote a complete set of representatives of
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the distinct cosets of 2π(((Λ∗)−1Zn)/Zn) containing 0. Throughout this paper, for a matrix

M , M∗ is used to denote its conjugate transpose. We note that both the sets Γ and Γ∗

have q = | det Λ| elements. For example, for the 2-D dyadic dilation matrix Λ = 2I2, the

sets Γ = {(0, 0), (1, 0), (0, 1), (1, 1)} and Γ∗ = {(0, 0), (π, 0), (0, π), (π, π)} can be used. We

also use the notation

ν0 = 0, ν1, · · · , νq−1

to denote the elements of Γ.

The concept of polyphase decomposition is to transform a filter or a signal into q

filters or signals running at the sampling rate 1/q [77]. For a given FB, let h be an analysis

filter, and g a synthesis filter. Then the polyphase decomposition of h (respectively, g) is a

set of q filters hν , ν ∈ Γ, (respectively, gν , ν ∈ Γ) that are defined as

hν(m) := h(Λm− ν), gν(m) := g(Λm+ ν), ∀m ∈ Zn.

The z-transform ([81]) Y (z) of a filter y : Zn → R is defined as

Y (z) := Z{y} :=
∑
m∈Zn

y(m)z−m

where for z = [z1, . . . , zn]T ∈ Cn\{0} with |z| = 1 and m = [m1, . . . ,mn]T ∈ Zn, zm is

defined to be
∏n
j=1 z

mj
j . Here and below, T is used to represent the matrix transpose. We

note that Y (eiω), ω ∈ Tn, is the Fourier transform of y. We let 1 := [1, · · · , 1]T be the

vector of ones. The z-transforms of the filters h and g can be written as

H(z) =
∑
ν∈Γ

zνHν(zΛ), G(z) =
∑
ν∈Γ

z−νGν(zΛ) (4.1)

where Gν and Hν are the z-transforms of gν and hν , and zΛ := [zΛ1 , . . . , zΛn ]T with the

column vectors Λ1, . . . ,Λn of Λ. The polyphase representation of the filters h and g are
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defined as

H(z) := [Hν0(z), Hν1(z), . . . ,Hνq−1(z)], G(z) := [Gν0(z), Gν1(z), . . . , Gνq−1(z)]T .

The polyphase representation of analysis and synthesis parts of a FB can be rep-

resented by a p × q matrix A(z) and a q × p matrix S(z), respectively, where p is the

number of filters in each bank. In this case, the row vectors of A(z) represent the polyphase

representation of analysis filters, and the column vectors of S(z) represent the polyphase

representation of synthesis filters. Then the perfect reconstruction condition of the FB be-

comes S(z)A(z) = Iq, with p ≥ q. For non-redundant FBs, the polyphase matrices A(z) and

S(z) should be q × q square matrices.

Finally we briefly review the valid polyphase representation [79] in our context. If

we define v(z) := [1, zν1 , · · · , zνq−1 ]T to be the usual polyphase basis, then from (4.1), we

see that the z-transform of h can be written as

H(z) = H(zΛ)v(z).

We recall that u(z) := M(zΛ)v(z) is called a valid polyphase basis if and only if M(z) is an

invertible matrix, i.e. M(z) ∈ GLq(R[z±1]). Then the z-transform of the filter can be written

using the new basis,

H(z) = Hu(zΛ)u(z),

where

Hu(z) := H(z)[M(z)]−1

is called the valid (generalized) polyphase representation of the filter h with respect to the

basis u(z).
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4.2.2 Unimodular vector completion and its use in FB design

Let k be a field and let k[z±1] be the Laurent polynomial ring, consisting of all

Laurent polynomials in z = [z1, . . . , zn]T with coefficients in k. A vector v = [v1, . . . , vn]

with Laurent polynomial entries is called unimodular if its entries generate 1, i.e. there exist

Laurent polynomials g1, . . . , gn such that v1g1 + · · · + vngn = 1. In general, a matrix with

Laurent polynomial entries is called a unimodular matrix if its maximal minors generate 1.

In 1955, Jean Pierre Serre made a conjecture regarding vector bundles over an

affine space [82]. This problem became a daunting task for many mathematicians, and was

fully solved only in 1976, 20 years after the question was raised. Serre’s conjecture, which

is now known as the Quillen-Suslin Theorem ([83, 84]) after the two mathematicians who

independently solved this long standing problem, asserts that any unimodular matrix over

a polynomial ring can be completed to an invertible square matrix, i.e. a square matrix

of nonzero constant determinant. And in 1978, R.G. Swan [80] extended this result to the

case of Laurent polynomial rings.

Theorem 4 (Unimodular Completion, or Quillen-Suslin Theorem for Laurent

polynomials) Let A be a p×q unimodular matrix, p ≥ q, with Laurent polynomial entries.

Then A can be completed to a square p× p unimodular matrix Ā ∈ GLp(k[z±1]) by adding

p− q columns to the matrix A. �

The polyphase representation of a FB consists of the Laurent polynomials in z with

real coefficients, which allows many concepts and results in FB design to be stated in terms

of these Laurent polynomials. For example, we recall that the two polyphase lowpass filters

H(z) (analysis) and G(z) (synthesis), or the associated filters h and g, are called biorthogonal
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Figure 4.1: Unimodular completion of A to Ā

if H(z)G(z) = 1, which is equivalent to the row vector H(z) or the column vector G(z) being

unimodular. In such a case, G(z) (respectively, g) is called a dual of H(z) (respectively, h).

Hilbert’s Nullstellensatz ([85]) for the Laurent polynomial ring R[z±1] says that a given

row vector H(z) = [Hν0(z), Hν1(z), . . . ,Hνq−1(z)] is unimodular if and only if the Laurent

polynomials Hν(z), ν ∈ Γ, do not have a nonzero complex common root. Therefore, for a

given polyphase analysis lowpass filter H(z), a dual polyphase synthesis filter G(z) exists if

and only if the components of H(z) do not have a nonzero complex common root. For a

given a unimodular polyphase analysis lowpass filter H(z), Gröbner bases techniques ([86])

can be used to find a particular dual polyphase synthesis lowpass filter, as well as the most

general form of dual lowpass filters.

Our method is based on the following special case of the unimodular completion

over Laurent polynomial rings:

Result 5 (Unimodular vector completion) Let F(z) ∈ R[z±1]q be a unimodular col-

umn vector of length q. Then there exists an invertible q × q matrix K(z) ∈ GLq(R[z±1])

such that K(z)F(z) = [1, 0, . . . , 0]T . �

109



CHAPTER 4. MULTI-D WAVELET FILTER BANK DESIGN USING
QUILLEN-SUSLIN

While the original proofs of Quillen-Suslin Theorem were nonconstructive, algo-

rithmic proofs were studied in [87–89]. By using these algorithms, given a unimodular

polynomial vector F(z), one can compute a companion unimodular polynomial matrix K(z)

in Result 5. This algorithm was extended to unimodular Laurent polynomial matrices

in [90], which was implemented as a part of the Maple package QuillenSuslin by Anna

Fabiańska (see http://wwwb.math.rwth-aachen.de/QuillenSuslin/).

There have been many studies on the design of multi-D FBs using unimodular

completion (cf. Section §4.1), but there was little success in developing a simple construc-

tion method for wavelet FBs, not just FBs. In other words, how one can make sure the

resulting FB to have a certain number of vanishing moments, without much work, has been

a remaining challenge for the most part. Our approach in this paper provides an answer

toward this direction.

It is well known that (see, for example, [36]) the number of vanishing moments of

the non-redundant wavelet FB is at least s if the accuracy numbers of its lowpass filters are

at least s. We recall that for a given lowpass filter f , the number of zeros of the Fourier

transform of f at ω ∈ Γ∗\{0} is referred to as the accuracy number [3]. This number

determines the maximum degree of polynomials that can be reproduced by the filter f

and it is closely related with the Strang-Fix order in the wavelet theory [91]. When a

wavelet FB gives rise to a wavelet system in L2(Rn), the number of vanishing moments of

the wavelet system is completely determined by the (discrete) vanishing moments of the

wavelet FB. Therefore, for constructing multi-D wavelet bases with a certain number of

vanishing moments, we can start from the two biorthogonal lowpass filters with prescribed
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accuracy numbers. Unfortunately, this too is not easy in general and requires great care in

the construction process. Our result (Corollary 4) presented in the next section provides a

solution to this problem.

4.3 Construction of multi-D wavelet FBs using Quillen-Suslin

theorem

In this section, we present a new method for constructing multi-D wavelets using

the Quillen-Suslin Theorem over Laurent polynomials. From this method, algorithms for

constructing a non-redundant multi-D wavelet FB just from a single lowpass filter can be

obtained. The motivation and the main idea of our method is presented in Section §4.3.1,

the main results are shown in Section §4.3.2, and the algorithms are shown in Section §4.3.3.

4.3.1 Motivation

Many of the existing construction methods for multi-D wavelet systems ([4,29,35,

36, 44, 49]) assume that at least one of the lowpass filters is interpolatory. We recall that a

lowpass filter f is interpolatory if

f(0) =
1
√
q

and f(Λm) = 0, ∀m ∈ Zn\{0}.

Equivalently, the polyphase lowpass filter F(z) is interpolatory if its first component satisfies

Fν0(z) =
1
√
q
.

It is easy to see that every polyphase interpolatory lowpass filter F(z) is unimodular, since

the dual vector can be chosen so that its first component is
√
q and the rest are all zero.

111



CHAPTER 4. MULTI-D WAVELET FILTER BANK DESIGN USING
QUILLEN-SUSLIN

The Laplacian pyramid (LP) representation ([45]) has been used in many image

processing applications [92–94]. In the LP algorithms, if the interpolatory lowpass filter h

is used for analysis and the “lazy” interpolatory ([95]) lowpass filter g is used for synthesis

as its dual, then we have ([78])

H(z) = [
1
√
q
,Hν1(z), · · · , Hνq−1(z)], G(z) = [

√
q, 0, · · · , 0]T

and [
G(z) Iq

] H(z)

Iq − G(z)H(z)

 = Iq.

Although the above matrices can be considered as a polyphase representation of a redundant

FB, it is clear that this FB is not a wavelet FB as the synthesis filters associated with the

column vectors of the polyphase matrix Iq do not have any vanishing moment. A new

method called the interpolatory effortless critical representation of LP is proposed in order

to transform these LP-based, redundant non-wavelet, FBs to non-redundant wavelet FBs in

a remarkably simple way [44]. This new method provides a way to construct non-redundant

wavelet FBs for any dimension and any dilation. A critical assumption for this method is

that H(z) has to be essentially interpolatory (see (23) in [44] for a precise statement of the

assumption).

A closer look at the interpolatory lowpass filter reveals that not only its polyphase

representation H(z) is unimodular, but also it has a dual with a unit in at least one of its

components. We recall that an element in a ring is called a unit if its multiplicative inverse

lies in the ring. Scrutinizing the techniques used in [44] shows that many arguments used

there rely on this “nice” property of analysis interpolatory lowpass filters. Therefore it is

not clear how to directly apply them to more general analysis lowpass filters.
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On the other hand, we notice that many techniques used in [44] do not care

whether the Laurent polynomial matrices come from the polyphase representation or not.

The key idea of our new construction method is to decompose the z-transform of filters

using a special type of the valid polyphase representations obtained by unimodular vector

completion over Laurent polynomial rings. In some sense, this can be understood as a

change of basis, from the usual polyphase basis to the valid polyphase basis, in the Laurent

polynomial ring. In the next subsection, we show exactly how this new representation is

obtained.

4.3.2 Main results

Our new construction method relies on Result 5. In fact, the following slightly

modified version of Result 5 is sufficient for the arguments in the proof and it gives more

flexibility in the construction process.

Corollary 2 (A slightly modified version of Result 5) Let F(z) ∈ R[z±1]q be a uni-

modular column vector of length q. Then there exists an invertible q × q matrix T(z) ∈

GLq(R[z±1]) such that T(z)F(z) is a unimodular column vector that has a unit in at least

one of its components. �

Our main theorem is placed below. It provides the theory and the algorithm to

construct a non-redundant wavelet FB from a lowpass filter whose polyphase representation

is unimodular. It uses Corollary 2 and part of the arguments used to prove some results

(Theorem 1 and 2) in [44]. It is also a variant of a result1 (Theorem 1) in [96].

1While the statement of Theorem 1 in [96] is correct, the proof presented there turns out to contain an
error.
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Theorem 5 Let h be a lowpass filter with positive accuracy. If its polyphase representation

H(z) as a row vector is unimodular, then there exists a non-redundant wavelet FB whose

analysis lowpass filter is h. �

Proof 7 Since H(z) = [Hν0(z), . . . ,Hνq−1(z)] is unimodular, there exists

F(z) = [Fν0(z), . . . , Fνq−1(z)]T

such that

H(z)F(z) = Hν0(z)Fν0(z) + . . .+Hνq−1(z)Fνq−1(z) = 1.

Thus F(z) is also unimodular. By Corollary 2, there exists an invertible q× q square matrix

T(z) such that T(z)F(z) is a unimodular vector with a unit in at least one of its components.

Without loss of generality, we assume the first component of T(z)F(z) is a unit.

Let g be another lowpass filter with positive accuracy that can possibly be different

from h, and let G(z) := [Gν0(z), Gν1(z), . . . , Gνq−1(z)]T be its synthesis polyphase represen-

tation.

From the discussion at the end of Section §4.2.1, we see that the z-transform of

h, f and g can be written as

H(z) = H(zΛ)v(z), F (z) = v(z)∗F(zΛ), G(z) = v(z)∗G(zΛ),

where v(z) = [1, zν1 , · · · , zνq−1 ]T is the usual polyphase basis as before, and v(z)∗ := v(z−1)T

is the conjugate transpose of v(z).

We take the approach in [79] but extend it slightly by allowing two different valid

polyphase bases for analysis and synthesis filters. More precisely, using the above invertible

matrix T(z), we define a new pair of valid polyphase bases u(z) := T(zΛ)v(z) and w(z) :=
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[T(zΛ)∗]−1v(z), and use them instead of the usual basis v(z) to represent the z-transform of

the analysis and the synthesis filters, respectively. For example,

H(z) = Hu(zΛ)u(z), F (z) = w(z)∗Fw(zΛ), G(z) = w(z)∗Gw(zΛ),

where

Hu(z) := H(z)[T(z)]−1, Fw(z) := T(z)F(z), Gw(z) := T(z)G(z)

are the valid polyphase representation of h, f and g with respect to the new valid polyphase

basis pair (u(z), w(z)).

Then from the fact that Fw(z) is a particular dual to Hu(z), i.e. Hu(z)Fw(z) =

H(z)F(z) = 1, we see that any column vector of the form Gw(z) + Fw(z)(1 − Hu(z)Gw(z)) is

also dual to Hu(z). In fact, it is easy to see that the matrix identity

[
Gw(z) + Fw(z)(1− Hu(z)Gw(z)) Iq − Fw(z)Hu(z)

] Hu(z)

Iq − Gw(z)Hu(z)

 = Iq (4.2)

always holds true.

Since Fwν0
(z) is assumed to be a unit, if we let the (q+1)× (q+1) reduction matrix

R(z) to be

R(z) :=



1 0 0 0 0

0 c(z)Fwν0
(z)

0 c(z)Fwν1
(z) 1

0
...

. . .

0 c(z)Fwνq−1
(z) 1


with any unit c(z) in the Laurent polynomial ring R[z±1], then the second column of[

Gw(z) + Fw(z)(1− Hu(z)Gw(z)) Iq − Fw(z)Hu(z)

]
R(z)
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becomes a zero column vector. Since the reduction matrix R(z) is invertible, i.e. R(z) ∈

GLq+1(R[z±1]), by inserting R(z)[R(z)]−1 between the two matrices in the left-hand side of

(4.2), we get

[Gw(z)+Fw(z)(1−Hu(z)Gw(z)), Iq−Fw(z)Hu(z)]R(z)[R(z)]−1

 Hu(z)

Iq − Gw(z)Hu(z)

 = Iq (4.3)

By letting S(z) be the q × q matrix obtained by deleting the second column of the product

of the first two matrices in the left-hand side, and A(z) be the q × q matrix obtained by

deleting the second row of the product of the last two matrices in the left-hand side, we get

a non-redundant FB with S(z)A(z) = Iq.

Since the first row of [R(z)]−1 is [1, 0, · · · , 0], the first row of the analysis polyphase

matrix A(z) is Hu(z), which in turn implies that the analysis lowpass filter is h in the above

non-redundant FB. In order to finish the proof, we need to show that the non-redundant FB

obtained above is a wavelet FB. It suffices to show that both the analysis lowpass filter h

and the synthesis lowpass filter, say d, have positive accuracy (cf. Section §4.2.2). Since h

has positive accuracy by the assumption, we only need to show that d has positive accuracy.

Since its polyphase representation satisfies

D(z) = [T(z)]−1(Gw(z) + Fw(z)(1− Hu(z)Gw(z))) = G(z) + F(z)(1− H(z)G(z)),

and since both h and g are assumed to have positive accuracy, we have D(1) = G(1)+F(1)(1−

H(1)G(1)) = 1√
q [1, . . . , 1]T + F(1)(1− 1√

q [1, . . . , 1] 1√
q [1, . . . , 1]T ) = 1√

q [1, . . . , 1]T , from which

we can conclude that d also has positive accuracy (cf. Result 2 in [44]). �

Remark 1: Although we stated Theorem 5 for the case when the lowpass filter is used for

the analysis, a similar statement can be made for the synthesis lowpass filter. �
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Remark 2: It is easy to see that the converse of the statement of Theorem 5 is also true.

�

Although the construction method developed in the above theorem works for any

dimension and for any dilation, it is especially useful for the wavelet construction in multi-D

setting as this is where the problem gets more challenging. We now present 2-D examples

to illustrate our findings. For simplicity, in all of our examples, we consider the dyadic

dilation and choose Γ = {(0, 0), (1, 0), (0, 1), (1, 1)}.

Example 1 (2-D wavelet FB generated from an interpolatory lowpass filter). Let

h be the lowpass filter associated with the bivariate piecewise-linear box spline B1,1,1 based

on the three directions (1, 0), (0, 1), and (1, 1) (see [40] for the definition of box splines and

their properties), i.e.

h :

1
4

1
4

1
4

1
2

1
4

1
4

1
4

Here and below, the number in the box represents the coefficient of the filter at the origin.

Since h is interpolatory and its polyphase representation is

H(z) = [ 1
2

1
4z
−1
1 + 1

4
1
4z
−1
2 + 1

4
1
4z
−1
1 z−1

2 + 1
4

],

we can choose F(z) = [ 2 0 0 0 ]T . If we take g = h and T(z) = I4, then the matrix

identity (4.2) becomes

[
H∗(z) + F(z)(1− H(z)H∗(z)) I4 − F(z)H(z)

] H(z)

I4 − H∗(z)H(z)

 = I4 (4.4)

where H∗(z) = H(z−1)T is the conjugate transpose of H(z). Hence, from the arguments in

the proof of Theorem 5, we obtain a non-redundant wavelet FB. Let A(z) be its analysis
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polyphase matrix. Then the first row of A(z) is H(z), and the second through the fourth

rows of A(z) are the transpose of the following column vectors

− 1
8 −

1
8z1

− 1
16z

−1
1 + 7

8 −
1
16z1

− 1
16z

−1
2 − 1

16z
−1
2 z1 − 1

16 −
1
16z1

− 1
16z

−1
1 z−1

2 − 1
16z

−1
2 − 1

16 −
1
16z1


,



− 1
8 −

1
8z2

− 1
16z

−1
1 − 1

16z
−1
1 z2 − 1

16 −
1
16z2

− 1
16z

−1
2 + 7

8 −
1
16z2

− 1
16z

−1
1 z−1

2 − 1
16z

−1
1 − 1

16 −
1
16z2


,



− 1
8 −

1
8z1z2

− 1
16z

−1
1 − 1

16 −
1
16z2 −

1
16z1z2

− 1
16z

−1
2 − 1

16 −
1
16z1 −

1
16z1z2

− 1
16z

−1
1 z−1

2 + 7
8 −

1
16z1z2


,

respectively. Its synthesis polyphase matrix S(z) is given as

α(z1, z2) − 1
2z

−1
1 − 1

2 − 1
2z

−1
2 − 1

2 − 1
2z

−1
1 z−1

2 − 1
2

1
4 + 1

4z1 1 0 0

1
4 + 1

4z2 0 1 0

1
4 + 1

4z1z2 0 0 1


where α(z1, z2) = 1

2 +2(3
8−

1
16(z−1

1 +z−1
2 +z−1

1 z−1
2 +z1 +z2 +z1z2)). In particular, the three

synthesis highpass filters, say k1, k2, and k3, are directional and aligned along the nonzero
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cosets, i.e.,

k1 : −1
2 1 −1

2
k2 :

−1
2

1

−1
2

k3 :

−1
2

1

−1
2

�

Example 1 provides a simple way to construct a 2-D non-redundant wavelet FB

from an interpolatory lowpass filter h, and the resulting synthesis highpass filters are direc-

tional and very sparse. Since h is interpolatory, other existing methods (e.g. methods in

[4,44]) may be used under appropriate choice of parameters in order to give a similar result.

In the next example, we show how our method can be used to construct a non-redundant

wavelet FB from a non-interpolatory lowpass filter h.

Example 2 (2-D wavelet FB generated from a non-interpolatory lowpass filter).

Let h be the lowpass filter associated with the bivariate box spline B1,1,2 based on the four

directions (1, 0), (0, 1), (1, 1) and (1, 1), i.e.

h :

1
8

1
8

1
4

3
8

1
8

1
8

3
8

1
4

1
8

1
8

Then the filter h is no longer interpolatory and its polyphase representation H(z) is

[ 3
8 + 1

8z
−1
1 z−1

2
1
8 + 1

4z
−1
1 + 1

8z
−1
1 z−1

2
1
8 + 1

4z
−1
2 + 1

8z
−1
1 z−1

2
1
8 + 3

8z
−1
1 z−1

2
].

We choose F(z) = [ 3 0 0 −1 ]T as a dual of H(z). As we did in Example 1, we take

g = h and T(z) = I4. Then we obtain the same identity as in (4.4) of Example 1 for our new

F(z) in this example. By using the arguments in the proof of Theorem 5 again, we obtain
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a non-redundant wavelet FB. Let A(z) be its analysis polyphase matrix. Then the first row

of A(z) is H(z), whereas the second through the fourth rows of A(z) are the transpose of the

following column vectors

− 1
16 −

3
32z1 −

1
32z

−1
2 − 3

64z1z2 −
1
64z

−1
1 z−1

2

29
32 −

1
32z1 −

1
32z

−1
1 − 1

32z2 −
1
32z

−1
2 − 1

64z1z2 −
1
64z

−1
1 z−1

2

− 1
32 −

1
16z1 −

1
16z

−1
2 − 1

64z1z2 −
1
64z

−1
1 z−1

2 − 1
16z1z

−1
2

− 1
16 −

1
32z1 −

3
32z

−1
2 − 1

64z1z2 −
3
64z

−1
1 z−1

2


,



− 1
16 −

1
32z

−1
1 − 3

32z2 −
3
64z1z2 −

1
64z

−1
1 z−1

2

− 1
32 −

1
16z

−1
1 − 1

16z2 −
1
64z1z2 −

1
64z

−1
1 z−1

2 − 1
16z

−1
1 z2

29
32 −

1
32z1 −

1
32z

−1
1 − 1

32z2 −
1
32z

−1
2 − 1

64z1z2 −
1
64z

−1
1 z−1

2

− 1
16 −

3
32z

−1
1 − 1

32z2 −
1
64z1z2 −

3
64z

−1
1 z−1

2


,



3
16 −

5
32z1z2 −

1
32z

−1
1 z−1

2

− 1
12 −

1
16z

−1
1 − 5

48z2 −
5
96z1z2 −

1
32z

−1
1 z−1

2

− 1
12 −

5
48z1 −

1
16z

−1
2 − 5

96z1z2 −
1
32z

−1
1 z−1

2

13
16 −

5
96z1z2 −

3
32z

−1
1 z−1

2


,

respectively. Its synthesis polyphase matrix S(z) is given as
D(z)

− 3
8 −

3
4z

−1
1 − 3

8z
−1
1 z−1

2 − 3
8 −

3
4z

−1
2 − 3

8z
−1
1 z−1

2 − 3
8 −

9
8z

−1
1 z−1

2

1 0 0

0 1 0

1
8 + 1

4z
−1
1 + 1

8z
−1
1 z−1

2
1
8 + 1

4z
−1
2 + 1

8z
−1
1 z−1

2
9
8 + 3

8z
−1
1 z−1

2


where

D(z) =



3
8 + 1

8z1z2 + 3( 1
2 −

1
16 (z−1

1 + z−1
2 + 2z−1

1 z−1
2 + z1 + z2 + 2z1z2))

1
8 + 1

4z1 + 1
8z1z2

1
8 + 1

4z2 + 1
8z1z2

1
8 + 3

8z1z2 − ( 1
2 −

1
16 (z−1

1 + z−1
2 + 2z−1

1 z−1
2 + z1 + z2 + 2z1z2))


.

�
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Below we list two corollaries of Theorem 5, whose proofs are placed in Appendix §4.5.

The first corollary says that the accuracy number of the synthesis lowpass filter of the non-

redundant wavelet FB in Theorem 5 can be stated in terms of the accuracy number and the

flatness number of the other filters involved in the construction. Here, the flatness number

of a filter f is defined to be the number of zeros of
√
q − F (eiω) at ω = 0. Notice that f is

a lowpass filter if and only if its flatness number is positive.

Corollary 3 Let h be a lowpass filter with flatness βh. Suppose that h has a dual lowpass

filter. Let f be a dual lowpass filter of h with accuracy αf , and let g be a lowpass filter with

accuracy αg and flatness βg. Suppose that the accuracy number αg is positive. Then there

exists a dual lowpass filter d of h such that the filter d is determined entirely from f , g, and

h, and that the accuracy of the filter d is at least min{αg, αf + βg, αf + βh}. �

In the above corollary, the dual filter d has positive accuracy since min{αg, αf +

βg, αf + βh} is clearly positive, which in turn is implied by the positivity of αg, βg, and βh.

However, min{αg, αf +βg, αf +βh} may be lagging behind αh, the accuracy number of the

lowpass filter h. In such a case, one may want to find a dual whose accuracy number is at

least αh. The next corollary says that such a dual can always be found.

Corollary 4 Let h be a lowpass filter with positive accuracy αh. Suppose that h has a

dual lowpass filter f . Then there exists a dual lowpass filter d of h such that the filter d is

determined entirely from f and h, and that the accuracy of the filter d is at least αh. �

As we observed in the previous subsection, a new method developed in [44] pro-

vides a motivation for our construction method presented in this paper. Indeed, the fact
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that it is a special case of our general construction can be shown as follows. We re-

call the polyphase representation of an interpolatory analysis lowpass filter is given as

H(z) = [ 1√
q , Hν1(z), · · · , Hνq−1(z)]. Thus we can set F(z) = [

√
q, 0, · · · , 0]T and T(z) = Iq (cf.

Example 1). Therefore, in this case, no change of basis is needed and the usual polyphase

representation is sufficient. The identity (4.2) in this case becomes
D(z)

0 −√qHν1(z) · · · −√qHνq−1(z)

0

Iq−1
...

0



 H(z)

Iq − G(z)H(z)

 = Iq,

where D(z) := G(z) + F(z)(1− H(z)G(z)). By deleting the second column of the first matrix

and the second row of the second matrix, we obtain the non-redundant wavelet FB in

[44]. Hence our result here can be considered as a generalization of the method in the

aforementioned paper.

4.3.3 Algorithms for constructing multi-D wavelet FBs from a single low-

pass filter

Our methodology in the previous subsection is very general. In particular, the

filters f, g, and h in Corollary 3 or 4 do not, in general, uniquely determine the highpass

filters of the associated wavelet FB, which may not be desirable for some applications. The

following corollary provides a way to obtain unique highpass filters given f, g, and h by

choosing the matrix T(z) in the proof of Theorem 5 to be a special form. Its proof is placed

in Appendix §4.5.
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Corollary 5 Let h be a lowpass filter with accuracy αh and flatness βh. Suppose that h

has a dual lowpass filter. Let f be a dual lowpass filter of h with accuracy αf , and let g be a

lowpass filter with accuracy αg and flatness βg. Suppose that the accuracy numbers αh and

αg are positive. Let K(z) be an invertible q × q matrix such that K(z)H(z)T = [1, 0, · · · , 0]T

where H(z) (as a row vector) is the polyphase representation of h. Let d be the filter whose

polyphase representation is G(z) + F(z)(1− H(z)G(z)) where G(z) and F(z) are the polyphase

representation (as a column vector) of g and f . Let k1, . . . , kq−1 and j1, . . . , jq−1 be the

filters whose polyphase representations are the 2nd through the qth column of K(z)T and

the 2nd through the qth row of [K(z)T ]−1[Iq − F(z)H(z)][Iq − G(z)H(z)], respectively. Then

{h, j1, . . . , jq−1}, {d, k1, . . . , kq−1} form a wavelet FB with at least min{αh, αg, αf +βg, αf +

βh} vanishing moments. �

The above corollary provides an algorithm to construct a non-redundant wavelet

FB just from a single lowpass filter h, provided that h has positive accuracy and its

polyphase representation H(z) is unimodular. We note that this positive accuracy condition

on h and the unimodularity condition on H(z) are necessary conditions for any lowpass filter

to be used for wavelet FBs. In this sense, one can say that our algorithms below work under

the minimum assumptions on the lowpass filter h.

Algorithm 1: An algorithm for constructing a non-redundant wavelet FB from

a lowpass filter.

Input: h: a lowpass filter with positive accuracy and with unimodular polyphase represen-

tation.

Outputs: d: a dual lowpass filter of h with positive accuracy.
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Output: j1, . . . , jq−1, k1, . . . , kq−1: highpass filters that form a wavelet FB, together

Outpu: j1, . . . , jq−1, k1, . . . , kq−1: with h and d.

Step 1: Choose a lowpass filter g with positive accuracy.

Step 2: Find a lowpass filter f that is dual to h.

Step 3: Find an invertible q × q matrix K(z) such that K(z)H(z)T = [1, 0, · · · , 0]T , where

H(z) (as a row vector) is the polyphase representation of h.

Step 4: Set d to be the filter whose polyphase representation is G(z) + F(z)(1− H(z)G(z))

where G(z) and F(z) are the polyphase representation (as a column vector) of g and f .

Step 5: Set k1, . . . , kq−1 to be the filters whose polyphase representations are the 2nd

through the qth column vectors of K(z)T .

Step 6: Set j1, . . . , jq−1 to be the filters whose polyphase representations are the 2nd

through the qth row vectors of the matrix [K(z)T ]−1[Iq − F(z)H(z)][Iq − G(z)H(z)]. �

The above algorithm starts from a given lowpass filter h to build a wavelet FB,

whose analysis lowpass filter is h. The filter g in Step 1 is an arbitrary lowpass filter with

positive accuracy. One possible choice is to take g := h as we did in our examples in the

previous subsection. The existence of f in Step 2 and K(z) in Step 3 is due to the facts

that h has positive accuracy and H(z) is unimodular. In fact, one can always choose f

to be the filter whose polyphase representation is the first column vector of K(z)T once

K(z) is determined. Although algorithms for finding f and K(z) are implemented in many

mathematical softwares such as Maple, Singular and CoCoA, the QuillenSuslin package in

Maple (cf. Section §4.2.2) is the only implementation that we know to give a square matrix

K(z) for any unimodular H(z). Given h, once specific f , g and K(z) are chosen, the wavelet
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FB having h as its analysis lowpass filter is uniquely determined.

From Corollary 5, we see that the vanishing moments of the FBs constructed

following Algorithm 1 are at least min{αh, αg, αf + βg, αf + βh}. Although this number is

clearly positive, which is enough for the FB to be a wavelet FB, it can be lagging behind

αh. By combining Corollary 5 (or Algorithm 1) with the idea used in Corollary 4, one can

obtain the following algorithm that provides wavelet FBs whose vanishing moments are at

least αh.

Algorithm 2: An algorithm for constructing a non-redundant wavelet FB from a

lowpass filter so that its vanishing moments are at least as many as the accuracy

number of the lowpass filter.

Input: h: a lowpass filter with positive accuracy αh and with unimodular polyphase rep-

resentation.

Outputs: Ite: the number of iterations performed.

Output: d: a dual lowpass filter of h with positive accuracy.

Output: j1, . . . , jq−1, k1, . . . , kq−1: highpass filters that form, together with h and d,

Outpu: j1, . . . , jq−1, k1, . . . , kq−1: a wavelet FB with at least αh vanishing moments.

Step 1: Set Ite := 1 and g := h.

Step 2: Find a lowpass filter f that is dual to h.

Step 3: Find an invertible q×q matrix K(z) such that K(z)H(z)T = [1, 0, · · · , 0]T where H(z)

(as a row vector) is the polyphase representation of h.

Step 4: Set d to be the filter whose polyphase representation is G(z) + F(z)(1− H(z)G(z))

where G(z) and F(z) are the polyphase representation (as a column vector) of g and f .
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Step 5: If αf + (Ite)βh < αh, set Ite := Ite+ 1 and repeat Step 4 with f := d. Otherwise,

go to Step 6.

Step 6: Set k1, . . . , kq−1 to be the filters whose polyphase representations are the 2nd

through the qth column vectors of K(z)T .

Step 7: Set j1, . . . , jq−1 to be the filters whose polyphase representations are the 2nd

through the qth row vectors of the matrix [K(z)T ]−1[Iq − F(z)H(z)][Iq − G(z)H(z)]. �

4.4 Summary and outlook

In this paper we presented a new algebraic approach for constructing wavelet FBs

using Quillen-Suslin Theorem for Laurent polynomials. Our method is motivated by some

existing techniques that were used mostly only for interpolatory filters (cf. Section §4.3.1).

Quillen-Suslin Theorem for Laurent polynomials is used to transform the filters in polyphase

representation to a special form of valid polyphase representations, for which the existing

matrix analysis tools can be readily applied (cf. Section §4.3.2). Our method works for

any dimension and for any dilation, but it would be most beneficial for multi-D case since

this is where the construction gets more difficult. The method provides algorithms for

constructing multi-D wavelet FBs from a single lowpass filter with minimal assumptions:

positive accuracy and unimodularity of the polyphase representation (cf. Section §4.3.3).

Our findings in this paper show that constructing multi-D wavelet FBs using the

Quillen-Suslin Theorem, a well-known result in Algebraic Geometry, offers some noteworthy

advantages over other more traditional approaches. We plan to explore the opportunities

to study other challenges in multi-D wavelet FB construction using Algebraic Geometry
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techniques in our future researches.

4.5 Appendix

4.5.1 Proof of Corollary 3 in section §4.3.2

We first recall that a filter f has accuracy number k ∈ N if and only if its Fourier

transform F (eiω) satisfies

F (ei(ω+γ)) = O(|ω|k), (near ω = 0),

for all γ ∈ Γ∗\{0}, and it has flatness k ∈ N if and only if

√
q − F (eiω) = O(|ω|k), (near ω = 0).

From the proof of Theorem 5, we know that for any lowpass filters h, f , and g

that satisfy the assumptions of Corollary 3, there exists a dual lowpass filter d of h whose

polyphase representation satisfies

D(z) = G(z) + F(z)(1− H(z)G(z)).

The z-transform of d is obtained via

D(z) = v(z)∗D(zΛ)=v(z)∗G(zΛ) + v(z)∗F(zΛ)(1− H(zΛ)G(zΛ))

=G(z) + F (z)(1− H(zΛ)G(zΛ))

=G(z) + F (z)B(zΛ)

where B(z) := 1− H(z)G(z). Let z = ei(ω+γ), then

D(ei(ω+γ)) = G(ei(ω+γ)) + F (ei(ω+γ))B((ei(ω+γ))Λ).
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Thus it suffices to show that

D(ei(ω+γ)) = O(|ω|min{αg ,αf+βg ,αf+βh})

near ω = 0, for all γ ∈ Γ∗\{0}.

From the fact that B((ei(ω+γ))Λ) = B((eiω)Λ) for all γ ∈ Γ∗\{0}, and the simple

observation (cf. Appendix C in [44])

B((eiω)Λ) = 1− 1

q

∑
γ∈Γ∗

H(ei(ω+γ))G(ei(ω+γ)),

we have

B((eiω)Λ)=1− 1

q
H(eiω)G(eiω) +O(|ω|αh+αg)

=1− 1

q
(
√
q +O(|ω|βh))(

√
q +O(|ω|βg)) +O(|ω|αh+αg)

=O(|ω|min{βh,βg ,αh+αg}), (near ω = 0).

Therefore

D(ei(ω+γ))=G(ei(ω+γ)) + F (ei(ω+γ))B((ei(ω+γ))Λ)

=O(|ω|αg) +O(|ω|αf )O(|ω|min{βh,βg ,αh+αg})

=O(|ω|min{αg ,αf+βg ,αf+βh})

near ω = 0, for all γ ∈ Γ∗\{0}.

4.5.2 Proof of Corollary 4 in section §4.3.2

In this proof, we use an iterative method to construct a dual lowpass filter d of h

such that the accuracy number of d is at least αh. For any lowpass filters h with positive
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accuracy αh, if we let g := h and f be a dual lowpass filter of h, then by Corollary 3 and its

proof, we know that there exists a dual lowpass filter d of h whose polyphase representation

is

D(z) = G(z) + F(z)(1− H(z)G(z)) (4.5)

and its accuracy number is at least min{αg, αf + βg, αf + βh} = min{αh, αf + βh}. If

αf + βh < αh, then we set f := d, and use this new f in (4.5) to construct a new d. This

new d now has accuracy number at least min{αh, αf + 2βh}. Since βh ≥ 1, αf + 2βh is

strictly larger that αf + βh, and if αf + 2βh < αh, we can iteratively update f to be the

new d until αf + (Ite)βh ≥ αh, where Ite denotes the number of iterations. Thus we obtain

a dual lowpass filter d whose accuracy number is at least αh.

4.5.3 Proof of Corollary 5 in section §4.3.3

Since K(z)H(z)T = [1, 0, · · · , 0]T , we have H(z)K(z)T = [1, 0, · · · , 0]. Therefore,

H(z) = [1, 0, · · · , 0][K(z)T ]−1, i.e., the first row of [K(z)T ]−1 is H(z).

Let T(z) in the proof of Theorem 5 be [K(z)T ]−1. Then Hu(z) = H(z)[T(z)]−1 =

[1, 0, · · · , 0] and the first component of Fw(z) = T(z)F(z) is 1 since the first row of [K(z)T ]−1

is H(z) and f is dual to h.

Then, after some calculation, we see that the identity (4.3) in the proof of Theo-
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rem 5 becomes


Dw(z)

0 0 · · · 0

0 1

...
. . .

0 1





Hu(z)

1−Gwν0(z) 0 · · · 0

−Gwν1(z)− Fwν1(z)(1−Gwν0(z)) 1

...
. . .

−Gwνq−1
(z)− Fwνq−1

(z)(1−Gwν0(z)) 1


= Iq

where Dw(z) := Gw(z)+Fw(z)(1−Hu(z)Gw(z)) and c(z) in the reduction matrix R(z) is taken

to be 1.

By deleting the second column of the first matrix and the second row of the second

matrix in the above equation, we obtain a non-redundant FB. From Theorem 5, we know

that this FB is a wavelet FB. The analysis lowpass filter is h and the synthesis lowpass

filter d has polyphase representation D(z) = G(z) + F(z)(1 − H(z)G(z)). From Corollary 3,

we know that the accuracy number of d is at least min{αg, αf + βg, αf + βh}. Therefore

this wavelet FB has at least min{αh, αg, αf + βg, αf + βh} vanishing moments.

Let k1, · · · , kq−1 be the synthesis highpass filters and j1, · · · , jq−1 be the anal-

ysis highpass filters of the non-redundant wavelet FB that we just found. Let e0 :=

[1, 0, · · · , 0]T , e1 = [0, 1, 0, · · · , 0]T , · · · , eq−1 = [0, 0, · · · , 0, 1]T be the standard unit vectors in

Rq. Then from the synthesis side (the one derived from the first matrix of the above matrix

identity) of the non-redundant wavelet FB, we see that the polyphase representation for

the synthesis highpass filter ki, for i = 1, · · · , q − 1, is

[T(z)]−1ei = K(z)T ei = (i+ 1)th column of K(z)T .

The polyphase representation for the analysis highpass filter ji, for i = 1, · · · , q − 1, can

be obtained from the analysis side (the one derived from the second matrix of the above
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matrix identity) of the non-redundant wavelet FB. They are

[(
−Gwνi(z)− F

w
νi (z)(1−G

w
ν0

(z))
)
eT0 + eTi

]
T(z)

=
[(
− eTi T(z)G(z)− eTi T(z)F(z)(1− eT0 T(z)G(z))

)
eT0 + eTi

]
T(z)

= eTi T(z)
[
− G(z)eT0 T(z)− F(z)eT0 T(z) + F(z)eT0 T(z)G(z)eT0 T(z) + Iq

]
= eTi T(z)

[
− G(z)H(z)− F(z)H(z) + F(z)H(z)G(z)H(z) + Iq

]
, ( eT0 T(z) = H(z) )

= eTi [K(z)T ]−1[Iq − F(z)H(z)][Iq − G(z)H(z)]

= (i+ 1)th row of [K(z)T ]−1[Iq − F(z)H(z)][Iq − G(z)H(z)], i = 1, · · · , q − 1,

and this concludes the proof.
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Chapter 5

Appendix: The Design of

Non-redundant Directional

Wavelet Filter Bank Using 1-D

Neville Filters

5.1 Introduction

In the last couple of decades, wavelets have been a popular and useful tool in many

applications such as signal and image processing. One of important remaining challenges

in wavelets is to construct multi-D directional wavelet systems or wavelet filter banks.

There has been a lot of attempts to develop such wavelet systems or their variants

for 2-D or 3-D signals, such as curvelets, contourlets, shearlets, etc. Despite many benefits of
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these existing systems, most of them are redundant with possibly huge redundancy factors,

and they do not have a trivial generalization to higher dimensions. Although a recent

study by the authors provides the construction of non-redundant wavelet filter banks with

directional highpass filters for any dimension [4], it only deals with the dyadic dilation

matrices. Other approaches based on anisotropic wavelet bases have also been proposed

(see, for example, [65, 71, 97] and the references therein). However, these wavelets are

designed in continuous domain and implementing them in discrete setting is not trivial.

In this paper, we develop a new method to construct non-redundant wavelet filter

banks that can capture the directional information in multi-D signals. Our method is a

general designing recipe in the sense that it can work in any dimension for any dilation

matrix. In the design, one can even specify the number of directions and which directions

to consider.

5.2 Preliminaries

In this section, we review some basic concepts and notations about wavelet filter

bank construction. In particular, we review the concept of Neville filters and how to use

Neville filters to build multi-D wavelet filter banks.

5.2.1 Notation

In this paper, we use boldface to indicate vectors and matrices. A filter f is a a

linear time-invariant operator characterized by its impulse response {f(k) ∈ R|k ∈ Zn}.
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The z-transform of a filter is a Laurent polynomial

F (z) =
∑

k f(k)z−k

where z = (z1, z2, . . . , zn) and zk :=
∏n
i=1 z

ki
i . In this paper, we refer to both the z-transform

F (z) and the impulse response f(k) as the filter, and sometimes we omit z and k in the

parentheses for convenience. Define the adjoint of a filter as [F (z)]∗ := F (1/z). Throughout

this paper, we assume all filters have finite impulse response.

A dilation matrix D is a n × n integer matrix with | det D| := m > 1. Given a

dilation matrix D, the set Zn of integer grids can be split into m disjoint subsets

Zn =
⋃m−1
i=0 (DZn + ti), ti ∈ Zn

where t0 = 0. We call {t1, t2, . . . , tm−1} as a set of (nonzero) distinct coset representatives

of the dilation matrix D.

A filter bank (FB) consisting of an analysis bank and a synthesis bank is a set of

filters. For a given dilation matrix D, a filter in the analysis bank {Ai, i = 0, . . . , l− 1} and

a filter in the synthesis bank {Si, i = 0, . . . , l− 1} can be written as the sum of m polyphase

components

Ai(z) =
∑m−1

j=0 ztjAi,j(z
D), ai,j(k) := ai(Dk− tj) (5.1)

Si(z) =
∑m−1

j=0 z−tjSi,j(z
D), si,j(k) := si(Dk + tj) (5.2)

where zD := (zD1 , zD2 , . . . , zDd), Di is the ith column vector of D. Then the pair of matrices

A(z) := [Ai,j(z)]i=0,...,l−1;j=0,...,m−1

S(z) := [Sj,i(z)]j=0,...,m−1;i=0,...,l−1
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is called the polyphase matrix representation [3] of the FB.

A FB satisfies the perfect reconstruction condition if the polyphase matrices satisfy

S(z)A(z) = Im, which can happen only when l ≥ m. A FB is called non-redundant if l = m.

In this paper, we are only interested in non-redundant FBs satisfying the perfect re-

construction condition, and we assume there are exactly one lowpass filter A0 in the analysis

bank and one lowpass filter S0 in the synthesis bank. The rest, A1, . . . , Am−1, S1, . . . , Sm−1,

are all highpass filters.

We use ΠN to denote the set of all polynomials of total degree less than N .

We say a FB has N ∈ N vanishing moments [36] if, for any highpass filter f in the FB,

(f ∗′ π)(Zn) = 0,∀π ∈ ΠN , or equivalently,

∑
k f(−k)kn = 0, ∀n ∈ Nn0 , |n| < N

where n := (n1, n2, . . . , nn), N0 := N ∪ {0} and |n| := n1 + n2 + . . . + nn. Here we used

(f ∗′ π)(·) :=
∑

k∈Zn f(k)π(· − k).

5.2.2 Neville filters and their use in wavelet FB construction

In [26], Kovačević and Sweldens introduce a class of filters called Neville filters

(Definition 1) and their characterization (Result 1). When applied to a sampled polynomial,

they result in the same polynomial but shifted by a shift parameter τ ∈ Rn.

Definition 1. A filter f is a Neville filter of order N with shift τ if (f ∗′π)(Zn) = π(Zn+τ ),

for any π ∈ ΠN . �

Result 1 (Proposition 4 in [26]). A filter f is a Neville filter of order N with shift τ if
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and only if f satisfies

∑
k f(−k)kn = τn, ∀n ∈ Nn0 , |n| < N. (5.3)

�

In 1-D case, the construction of Neville filters of order N is straightforward. Once

we fix the positions of N filter taps, we obtain a linear system with an N × N coefficient

matrix from (5.3). Since the coefficient matrix in this case is a Vandermonde matrix, it

is always solvable. In multi-D case, the solvability of the linear system not only depends

on the number of filter taps but also on the geometric shape of the filter. Hence it is

more challenging to construct a multi-D Neville filter with a prescribed order and shift. An

approach based on an algorithm in [98] to solve this problem is proposed in [26], but it is

highly non-trivial to control the shape of the filters using that approach.

Using the property of Neville filters, Kovačević and Sweldens propose a method for

constructing wavelet FBs based on lifting scheme [48]. They use two lifting steps: predict

(cf. Ri) and update (cf. Ui), as shown in (5.4) and (5.5) to build the wavelet FB with

desirable vanishing moments:

A =



1 U1 · · · Um−1

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1





1 0 · · · 0

−R1 1 · · · 0

...
...

. . .
...

−Rm−1 0 · · · 1



=



1−
m−1∑
i=1

UiRi U1 · · · Um−1

−R1 1 · · · 0

...
...

. . .
...

−Rm−1 0 · · · 1


(5.4)
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S =



1 0 · · · 0

R1 1 · · · 0

...
...

. . .
...

Rm−1 0 · · · 1





1 −U1 · · · −Um−1

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1



=



1 −U1 · · · −Um−1

R1 1−R1U1 · · · −R1Um−1

...
...

. . .
...

Rm−1 −Rm−1U1 · · · 1−Rm−1Um−1


, (5.5)

where Ri are called predict filters, Ui are called update filters, and m = | det D|. More

precisely, the following is a variant of the result they prove in [26], written in terms of our

terminology.

Result 2. Let {t1, t2, . . . , tm−1} be a set of distinct coset representatives of the n × n

dilation matrix D. For i = 1, · · · ,m − 1, let Ri be a n-D Neville filter of order N with

shift τ i = D−1ti, and Ui be the filter obtained by multiplying 1/m to the adjoint of a n-D

Neville filter of order N with shifts τ i. Then the analysis polyphase matrix constructed as

(5.4) and the synthesis polyphase matrix constructed as (5.5) form a wavelet FB with N

vanishing moments. �

This construction works for any dilation matrix D in any dimension. It uses n-D

Neville filters with prescribed orders and shifts to construct n-D wavelet FBs.

5.3 Directional wavelet FB design using 1-D Neville filters

In this section, we introduce a method to design directional wavelet FBs using 1-D

Neville filters and the lifting based wavelet construction method reviewed in Section §5.2.2.
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Let us first define an operator that maps 1-D filters to n-D filters.

Definition 2. Define the operator that maps a 1-D filter F to a n-D filter Mt(F ) along

direction t ∈ Zn as

Mt(F )(z) := F (zt). �

The following simple lemma, which says that the operatorMt preserves the order

of Neville filters is a key ingredient of our directional wavelet FB construction.

Lemma 6 If F is a 1-D Neville filter of order N with shift τ ∈ R, then the n-D filter

Mt(F ) is a Neville filter of order N with shift τt, t ∈ Zn. �

Proof 8 Let G :=Mt(F ), and let g be the impulse response of G. Then, we have

g(k) =

 f(k), if k = kt for some k ∈ Z ,

0, for all other k ∈ Zn,

where f is the impulse response of F . Therefore

∑
k g(−k)kn=

∑
k f(−k)(kt)n =

∑
k f(−k)k|n|tn

=τ |n|tn = (τt)n,

for any n ∈ Nn0 , |n| < N , where the second last equation holds because F is a 1-D Neville

filter of order N with shift τ . Thus G is a d-D Neville filter of order N with shift τt. �

Example 1: Mapping 1-D Neville Filter to 2-D. F (z) = 1/3z + 2/3 is an 1-D Neville

filter of order 2 with shift τ = 1/3. Then mapping it to 2-D along direction t = (1, 1) results

in Mt(F )(z) = 1/3z1z2 + 2/3. It can be easily checked that Mt(F ) is a Neville filter of

order 2 with shift τt = (1/3, 1/3).
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1
3

2
3 −→

0 2
3

1
3 0

Figure 5.1: Mapping 1-D Neville filter to 2-D. The impulse response of F and Mt(F ) in
Example 1. Underlined position is the origin.

Figure 5.1 shows the impulse response of F and Mt(F ). �

From Example 1, we see that the multi-D Neville filter constructed by the operator

Mt is directional along direction t. We now discuss how to use these directional multi-D

Neville filters to construct directional wavelet FB.

Let us first look at a simple case when the dilation matrix D = cIn where c ∈

Z, c > 1 and In is the identity matrix. In this case, D−1 = (1/c)In. The multi-D Neville

filters used to construct predict and update filters in Result 2 need to have shift parameters

τ i = D−1ti = (1/c)ti. Therefore, it is possible to construct all these multi-D Neville filters

by mapping a single 1-D Neville filter with shift τ = 1/c but with different directions ti. In

this way, we can avoid constructing multi-D Neville filters directly, which is often difficult

to do. Moreover, it can be shown that the highpass filters built on these multi-D Neville

filters are also directional.

To generalize this idea to a general dilation matrix D, let us consider the shift

parameters τ i = D−1ti again. In this case, if we factor out τ = 1/m as the shift parameter

for 1-D Neville filters, then τ i = τ t̃i, where t̃i = mD−1ti ∈ Zn, hence we can map a single

1-D Neville filter with shift τ = 1/m along different directions t̃i. For example, for dilation
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matrix

D =

 2 −1

1 2

 (5.6)

a set of distinct coset representatives of D are t1 = (0, 1), t2 = (1, 1), t3 = (0, 2), t4 =

(1, 2). The shift parameters of Neville filters needed to construct wavelet FB are τ 1 =

(1/5, 2/5), τ 2 = (3/5, 1/5), τ 3 = (2/5, 4/5), τ 4 = (4/5, 3/5). Therefore, we can construct all

these multi-D Neville filters by mapping one 1-D Neville filter with shift 1/5 along directions

t̃1 = (1, 2), t̃2 = (3, 1), t̃3 = (2, 4), t̃4 = (4, 3).

In fact, we can factor out any τ = 1/s, where s ∈ Z, as the shift parameter for 1-D

Neville filters, as long as τ i = τ t̃i and t̃i = sD−1ti ∈ Zn. In the simple case when D = cId,

s := c can be chosen, while in other cases such as (5.6), s := m can be chosen. Therefore,

we have the following theorem. For a general n-D dilation matrix D with |det D| = m,

we can construct a directional wavelet FB with analysis highpass filters presenting at most

m− 1 different directions as follows.

Theorem 6 Let {t1, t2, . . . , tm−1} be a set of distinct coset representatives of D. Let s

be an integer such that sD−1ti ∈ Zn. For i = 1, · · · ,m − 1, let Pi and Qi be the 1-D

Neville filters of order N with shift 1/s. Set t̃i = sD−1ti. Let d-D filter Ri := Mt̃i
(Pi)

and Ui := (1/m)[Mt̃i
(Qi)]

∗. Then the analysis polyphase matrix given by (5.4) and the

synthesis polyphase matrix given by (5.5) form a directional FB with N vanishing moments

and the analysis highpass filters are placed along directions ti. �

Proof 9 Since Pi (resp. Qi) is a 1-D Neville filter of order N with shift 1/s, by Lemma

1, Ri = Mt̃i
(Pi) (resp. Mt̃i

(Qi)) is a d-D Neville filter of order N with shift (1/s)t̃i =
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(1/s)sD−1ti = D−1ti. Thus Ui = (1/m)[Mt̃i
(Qi)]

∗ is 1/m times the adjoint of Neville

filter of order N with shift D−1ti. By Result 2, we see that (5.4) and (5.5) form a wavelet

FB with N vanishing moments.

To prove the directionality of analysis highpass filters, consider the ith analysis

highpass filter denoted by Ai. Since

Ri(z) =Mt̃i
(Pi)(z) = P (zt̃i) = P (zsD

−1ti),

from (5.1) and (5.4), we see that Ai(z) is equal to

−Ri(zD) + zti = −Pi(zDsD
−1ti) + zti = −Pi(zsti) + zti .

If we replace zti with z in the last equation on the right hand side, we get a 1-D filter

−Pi(zs) + z. Thus Ai can be understood as the result of taking the 1-D filter −Pi(zs) + z

and placing it in n-D space along direction ti. �

Remark 1. In Theorem 1, a single 1-D Neville filter of order N and shift 1/m can be used

for all of Pi and Qi, or different 1-D Neville filters can be used. In fact Pi and Qi can have

different orders if we invoke more generalized version of Result 2 from [26]. In this case,

if Pi’s order is Ñi and Qi’s order is Ni, then the vanishing moments of the FB is given as

min{Ñ1, . . . , Ñm−1, N1, . . . , Nm−1}. �

Remark 2. The analysis highpass filters Ai of the FB in Theorem 1 are placed along

directions ti ∈ Zn, i = 1, . . . ,m − 1 (not t̃i = mD−1ti). Therefore, by carefully choosing

the distinct coset representatives of D, one can custom-design the directions of the filters

(cf. Example 2). There are at most m− 1 different directions that can be presented by the

analysis highpass filters. �
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In the next example, we illustrate how to use Theorem 1 to construct directional

wavelet FB.

Example 2: 2-D Directional Wavelet FB with 2 Vanishing Moments. For dilation

matrix D = 3I2, since | det D| = 9, there are 9 − 1 = 8 distinct coset representatives

{t1, t2, . . . , t8} that we can choose. We know that the directions of coset representatives

are exactly the directions of resulting analysis highpass filters. Here we want to choose

directions that divide the 2-D plane as equally as possible. Thus we choose t1 = (1, 0), t2 =

(−1, 0), t3 = (0, 1), t4 = (0,−1), t5 = (2, 1), t6 = (1, 2), t7 = (−2, 1), t8 = (−1, 2). Then

the resulting analysis highpass filters will present 6 different directions in the 2-D plane:

approximately, 0◦ (t1, t2), 30◦ (t5), 60◦ (t6), 90◦ (t3, t4), 120◦ (t8) and 150◦ (t7) from the

positive x-axis.

Next we pick a single 1-D Neville filter of order 2 with shift 1/3 for all Pi and Qi:

Pi(z) = Qi(z) = 1/3z + 2/3, for i = 1, . . . , 8. Theorem 1 says that if we choose, for each i,

Ri(z) = Pi(z
ti) = 1/3zti + 2/3

Ui(z) = (1/m)[Qi(z
ti)]∗ = (1/9)(1/3z−ti + 2/3)

then we get the wavelet FB with 2 vanishing moments, whose polyphase matrices are A

and S in (5.4) and (5.5). Using formula (5.1) and (5.2), we can read off the corresponding

filters. For example, the resulting synthesis lowpass filter S0 is

S0(z) = 1 +
∑8

i=1 z−tiRi(z
D)

and the resulting analysis highpass filter associated with coset representative t5 = (2, 1) is

A5(z) = −R5(zD) + zt5 = −(1/3z6
1z

3
2 + 2/3) + z2

1z2.
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Figure 5.2: 2-D directional wavelet FB with 2 vanishing moments in Example 2: (a) syn-
thesis lowpass filter, (b)-(i) directional analysis highpass filters with each direction along
the coset representatives: ti, i = 1, . . . , 8 .

Figure 5.2 shows the synthesis lowpass filter S0 and the analysis highpass filters Ai, i =

1, . . . , 8. �

5.4 Experimental result

We did an experiment using the 2-D directional wavelet FB constructed in Example

2. For an original image “circle” (Figure 5.3(a)), we did a 1-level-down decomposition using

the analysis highpass filters obtained in Example 2 (as shown in Figure 5.2(b)-(i)). The
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(a) Original

(b) A1 (1, 0) (c) A2 (−1, 0) (d) A3 (0, 1) (e) A4 (0,−1)

(f) A5 (2, 1) (g) A6 (1, 2) (h) A7 (−2, 1) (i) A8 (−1, 2)

Figure 5.3: (a) The original image “circle”, (b)-(i) the images after passing highpass filters
A1, . . . , A8.

images after passing through each highpass filter (wavelet coefficients) are shown in Figure

5.3(b)-(i). The result shows that different directional components of the circle are captured

by different directional highpass filters. A highpass filter with direction t can mainly capture

the directional content that is orthogonal to the direction t.
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5.5 Conclusion

In this paper, we developed a method to use 1-D Neville filters to build multi-D

directional wavelet FBs. The resulting FB is a non-redundant FB which can capture the

directional information in multi-D signals.
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