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Abstract 

This dissertation addresses three open questions related to the economics of 

pharmaceutical development. First, how much does it cost to conduct a clinical trial? 

Second, what effect has the model policy for incentivizing pharmaceutical development, 

the Orphan Drug Act, had on pharmaceutical availability? And third, how can the costs 

and risks of pharmaceutical development be used to model an optimal development 

portfolio? We estimate clinical trial costs by decomposing firms’ publicly reported 

research and development expenses against clinical trial data. We obtain estimates that 

are broadly consistent with older estimates based on proprietary data. We also estimate 

the costs of clinical trial subjects. To our knowledge, such costs have not been estimated 

previously. We find that the costs of Phase I and Phase II clinical trial subjects are very 

high, supporting the adoption of adaptive trial designs to decrease trial length and size. 

We measure the effects of the Orphan Drug Act by estimating the size of a regression 

discontinuity in drug prescriptions as a function of disease prevalence. We find no 

significant discontinuity around the prevalence threshold that qualifies products to 

receive “orphan incentives” under the Act. We offer a novel theoretical explanation for 

the lack of an observed discontinuity: the Act has a perverse effect on drug availability 

due to price effects of the orphan incentives. Last, we estimate the costs of the U.S. 

Public Health Emergency Medical Countermeasure Enterprise (PHEMCE), based on a 

survey of product pipelines, and design an optimal portfolio for achieving fixed success 

probabilities. Our results support the President’s budget request for PHEMCE but suggest 

that to achieve reasonable success probabilities, PHEMCE will need to prioritize some 
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products over others, or reduce costs by funding smaller trials. We formally model the 

tradeoff of cost for safety, and describe some policy implications of the tradeoff. 
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INTRODUCTION 

 

The delivery of drugs and vaccines ranks among the most cost-effective health 

interventions in both developed and developing countries. A number of public and 

private initiatives have been proposed to support the development of new 

pharmaceuticals, which are needed to address the remaining burden of diseases such as 

HIV, malaria, and tuberculosis, the potential burden of pandemic influenza and other 

emerging infectious diseases, and the prevention of several cancers. These initiatives 

include Advanced Market Commitments that guarantee markets for new products, 

expansions of Priority Review Vouchers that allow firms to transfer regulatory benefits to 

other products, and expansions of the Orphan Drug Act that provide market exclusivity to 

new pharmaceuticals.  

Evaluations of these policy proposals have been handicapped by a dearth of 

economic analysis. While the costs of delivering existing pharmaceuticals to populations 

are well-documented, the costs of developing new pharmaceuticals, and the effectiveness 

of incentives to accelerate their development, have received scant attention from 

economists. As a result, we have little evidence to support budgets for pharmaceutical 

development, to support cost-effectiveness analysis of investments in pharmaceutical 

development, or to help design incentives intended to increase pharmaceutical 

availability. 

In this three-manuscript dissertation, I address three open questions related to the 

economics of pharmaceutical development. First, how much does it cost to conduct a 

clinical trial? Second, what effect has the model policy for incentivizing pharmaceutical 
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development, the Orphan Drug Act, had on pharmaceutical availability? And third, how 

can the costs and risks of pharmaceutical development be used to model an optimal 

development portfolio? 

In the first manuscript, I, along with co-author Brad Herring, estimate the costs of 

clinical trials. Clinical trials are the most costly aspect of pharmaceutical development, 

but just how costly remains a matter of sustained debate. Clinical trial costs are a trade 

secret for pharmaceutical companies, and there are no publicly available data on clinical 

trial costs for more than a few individual products. We impute the costs of clinical trials 

using FDA clinical trial data and data from pharmaceutical firms’ reported annual 

research and development expenses. We estimate firm-level multivariate regression 

models with firms’ total annual R&D expenses as the dependent variable and various 

indicators for the number and scale of clinical trials as explanatory variables. Using this 

approach, we estimate the costs of a clinical trial and the costs of a clinical trial subject. 

To our knowledge, our study represents the only empirical estimate of these costs using 

recent data, based on a sample of 189 firms and roughly 10,000 clinical trial-years. 

In the second manuscript, I, along with co-author Brad Herring, estimate the 

effects of the Orphan Drug Act (ODA) on pharmaceutical availability. The ODA 

included a number of incentives to encourage the development of drugs against “orphan 

diseases” – diseases with a prevalence less than 200,000 cases in the U.S. These 

incentives have been viewed as a model for effective policy and have been widely 

imitated globally. But the empirical evidence for the ODA has remained equivocal. We 

adapt Salop’s spatial market model to develop an economic model of drug prescriptions. 

We test our model using a regression discontinuity design and data from the U.S. 
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National Ambulatory Medical Care Survey. Our approach estimates the size of the 

discontinuity in prescription behavior that would be expected between diseases with 

prevalence less than 200,000 cases, and those with prevalence greater than 200,000 cases. 

Our design is the closest we can come, absent a controlled experiment, to an estimate of 

the causal effects of orphan drug incentives.  

In the third manuscript, I, along with co-authors Michael Mair, Brad Smith, and 

Brad Herring, demonstrate a general approach for planning a portfolio of pharmaceutical 

development. As a case study, we consider the U.S. Public Health Emergency Medical 

Countermeasure Enterprise (PHEMCE) -- the most detailed set of requirements for drugs 

and vaccines established by the U.S. government. We survey candidate products in 

development and estimate their future clinical development costs, based on historical 

costs and failure rates. We then design an optimal portfolio to ensure fixed probabilities 

of success. To our knowledge, this is the only empirical estimate of the PHEMCE’s 

expected costs. In addition, we explore one strategy for reducing the costs of PHEMCE – 

reducing the size of clinical trials. We estimate the economic advantages of decreasing 

clinical trial sizes and the effects on Type II errors for detecting adverse events. 

Together, the three manuscripts provide new empirical evidence on three 

controversial topics – the costs of clinical trials, the effects of orphan drug incentives, and 

the costs of the PHEMCE. The manuscripts also illustrate methods that can be applied 

more generally to open problems in pharmacoeconomics. In the conclusion of this 

dissertation, I discuss our results and their implications for policy -- from setting realistic 

budgets for publicly and privately funded pharmaceutical development programs, to 

setting appropriate sizes and structures for R&D incentives.   
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Abstract 

 

Information about the costs incurred by the pharmaceutical industry to produce a new 

drug is relatively limited. We examine the costs of clinical trials using data from 

pharmaceutical firms’ reported annual research and development expenses and FDA 

clinical trial data for years 2006 through 2010. We estimate firm-level multivariate 

regression models with total annual R&D expenses for the firm as the dependent variable 

and various indicators for the number and scale of Phase I through IV clinical trials as 

explanatory variables. We find that the annual cost is $19.9 million for a Phase I trial, 

$24.2 million for a Phase II trial, $48.9 million for a Phase III trial, and $35.2 million for 

a Phase IV trial. These results are consistent with previous estimates and yield an 

expected cost per approved pharmaceutical of $600 million – or over $1.2 billion when 

capitalized at 11% per year. Because the scale of these clinical trials varies considerably, 

we also decompose these average costs into the fixed costs of running a trial and the 

variable costs per human subject. We find that the annual cost for a clinical trial subject is 

$489,900 for Phase I, $303,100 for Phase II, $12,400 for Phase III, and statistically 

insignificant for Phase IV. We believe that these estimates can help firms, policymakers, 

and foundations to set realistic budgets for pharmaceutical development, and to quantify 

the benefits of alternative trial designs that reduce trial size and length. 
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Introduction 

To be approved for marketing by the U.S. Food and Drug Administration (FDA), a new 

pharmaceutical must undergo three phases of clinical trials, in which the safety and 

efficacy of a new product is demonstrated in tests involving human subjects. The clinical 

trial process is lengthy, costly, and risky. Four candidates enter clinical trials for every 

one approved by the FDA, and the transformation of a candidate into a marketable 

product typically takes more than 10 years (Davis et al., 2011).  

 Phase I trials are typically conducted with up to 100 healthy subjects to assess the 

safety of a previously untested product. Phase I trials are often conducted in inpatient 

clinics for full-time observation. Manufacturing costs can be high for Phase I trials, given 

the initial startup costs of producing a sufficient volume of the pharmaceutical at a 

precise dosage and purity. Because there are no prior human data on the product’s safety, 

monitoring costs may be high, and subjects are exposed to a higher level of risk than in 

subsequent phases. Because the subjects are healthy, they do not receive any health 

benefit from participating in the trial. One study found that difficulties in recruiting 

healthy volunteers delayed US-based trials by more than one year, on average (Belforti, 

et al., 2010). Phase I trials last 2.4 years, on average, and of drug candidates that enter 

Phase I studies, 83% successfully complete them (Davis et al., 2011).  

 Phase II trials are typically conducted with up to 300 subjects who suffer from the 

target disease, and measure both safety and efficacy. The product has already been tested 

for safety, and these subjects may benefit from an effective drug. Monitoring is typically 

performed on an outpatient basis. Phase II trials last 3.4 years, on average, and of drug 
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candidates that enter Phase II studies, 56% successfully complete them (Davis et al., 

2011).  

Phase III trials are typically conducted with up to 3,000 subjects who suffer from 

the target disease, and measure safety and efficacy in a larger, more diverse population, 

with different dosages and product combinations. Phase III trials last 3.2 years, on 

average, and of drug candidates that enter Phase III studies, 65% successfully complete 

them (Davis et al., 2011).  

 Phase IV studies occur after the FDA has approved a drug for marketing, to 

gather additional information about a product’s safety, efficacy, and optimal use in a 

patient population (FDA, 2012).  Phase IV monitoring is typically performed on 

thousands of subjects on an outpatient basis, with less frequent data collection.  

 The cost of conducting a single clinical trial is generally believed to average in the 

tens of millions of dollars, but estimates of the actual amounts remains controversial. 

Clinical trial costs include manufacturing costs for the pharmaceuticals used during 

testing, laboratory costs, advertising and search costs for subject recruitment, and salaries 

and contract payments to study administrators (Wright, et al., 2005). Financial payments 

to clinical trial subjects are common (Grady, 2005; Ripley et al., 2010), as are payments 

to subjects’ physicians, to compensate for the additional monitoring physicians are 

required to perform during a trial (Emanuel et al., 2003). 

The costs associated with clinical trials are a trade secret for pharmaceutical 

companies, and to our knowledge, there are no publicly available data on clinical trial 

costs for more than just a few individual products. The most commonly cited estimate of 

drug development costs -- $802 million (in year 2000 dollars) in capitalized costs per new 
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drug approved -- is based on a confidential survey of pharmaceutical firms by Tufts 

University’s Center for the Study of Drug Development (CSDD), for the period 1980 to 

1999 (DiMasi, Hansen, and Grabowski, 2003). More recent estimates of drug 

development costs have also used these CSDD data: Adams and Brantner (2006) 

estimated capitalized costs of $868 million per approved drug (2000 dollars), while 

DiMasi and Grabowski (2007) estimated capitalized costs of $1.3 billion (2005 dollars). 

The CSDD data have several limitations. Most of the data are now more than two 

decades old. The sample included only 10 firms and 68 drugs. All of the firms are large 

multinational pharmaceutical firms, whose costs may be unrepresentative of small- and 

medium-sized firms. All firms self-selected into the study and all firms self-reported their 

costs. Costs are unverifiable, as there are no independent data to confirm the development 

costs of individual drugs. There is no evidence that pharmaceutical firms misreported 

their costs in the CSDD surveys. But critics have argued that firms may be motivated to 

collectively exaggerate their costs in order to support lobbying efforts for pharmaceutical 

subsidies and patent protection (Light and Warburton, 2005; Love, 2003).  

To our knowledge, there is only one published empirical estimate of the cost of 

drug development that does not use these CSDD data. Adams and Brantner (2010) 

estimated drug development costs between 1989 and 2001 by decomposing the R&D 

expenditures of 183 publicly traded firms against clinical trial data for those firms. The 

study used annual R&D expenditure data reported in firms’ audited public filings, and 

firm-level drug development data reported in Pharmaprojects, a proprietary database that 

summarizes industry press releases and direct correspondence with the firms. By 

regressing each firms’ annual R&D expenditures on the number of drugs under 
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development, Adams and Brantner estimated the uncapitalized annual costs of clinical 

trials to be $17 million for Phase I, $34 million for Phase II, and $27 million for Phase III 

(1999 dollars). Using phase durations and success probabilities estimated from 

Pharmaprojects data, Adams and Brantner estimated the capitalized costs at $1.2 billion 

per approved drug, even higher than the CSDD estimate of $802 million.  

Adams and Brantner (2010) address many of the concerns with the CSDD results 

by using an independent, publicly verifiable source of expenditure data for a large 

number of firms. But the study still has a number of limitations. To match part of the time 

period of CSDD’s data, they used data that are more than a decade old. This time period 

also prevented the use of official FDA data on clinical trials, as the FDA did not maintain 

such a database until 2005. They also excluded Phase IV costs. By necessity, Adams and 

Brantner obtained drug development data from a proprietary database, based on industry 

reports that may be incomplete -- particularly for smaller firms that do not issue press 

releases. Relatively few regressions were tested, none of which leveraged the panel 

structure of the data. Finally, some of their results simply lack face validity; for instance, 

their estimated Phase I costs are not significantly different from zero. Our study produces 

more up-to-date estimates of clinical trial costs and attempts to produce more accurate 

estimates by addressing many of the Adams and Brantner (2010) study’s limitations, 

while adopting their general decomposition strategy.  

We believe that our estimates can yield a number of benefits. Cost estimates help 

firms set realistic expectations for pharmaceutical R&D budgets. Estimates of the costs of 

clinical trials also help set appropriate budgets for government- and foundation-funded 

R&D initiatives, such as those of the National Institute of Allergy and Infectious Diseases 
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(NIAID), the Biomedical Advanced Research and Development Authority (BARDA), 

and the Malaria Vaccine Initiative (Matheny, Mair, and Smith, 2008). Estimates help 

multilaterals establish appropriate sizes and structures for R&D incentives, such as 

Advanced Market Commitments and Priority Review Vouchers (Berndt et al., 2007; 

Ridley, Grabowski, and Moe, 2006; Matheny et al., 2009). And reliable estimates of the 

costs of clinical trials can allow researchers to perform cost-effectiveness analysis of 

pharmaceutical R&D in priority-setting exercises, such as the Disease Control Priorities 

Project (Mahmoud et al., 2006). A recurring question in such exercises is whether the 

cost of pharmaceutical development is justified, given potentially cheaper public health 

interventions. But such judgments depend on having a reliable account of pharmaceutical 

development costs. 

While there are few estimates of the costs of clinical trials, to our knowledge there 

are no estimates of the costs of a clinical trial subject, or how these costs vary by trial size 

and duration. Reliable estimates of clinical trial subject costs would have their own 

benefits. The regulatory process for drug approval is a difficult balancing act. Increasing 

the size of clinical trials increases statistical power and thus improves the inferences that 

regulatory bodies can make about a drug’s estimated safety and efficacy. At the same 

time, increasing the size of clinical trials presumably increases their costs and increases 

the aggregate risks to human subjects who participate. A regulator trying to determine the 

optimal size (and length) of a clinical trial would require a careful accounting of the 

costs, benefits, and risks. At the same time, recent developments in clinical trial design 

could significantly affect the costs of recruiting and managing clinical trial subjects 

through all phases. In “adaptive” designs, preliminary trial results are used to adjust the 
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size, duration, and/or structure of a trial while it is active. Several studies have outlined 

the potential advantages of adaptive clinical trials in reducing clinical trial size and 

length, thus reducing subjects’ exposure to risk (Chow and Corey, 2011; Kairalla, et al., 

2012; Chow and Chang, 2008). Adaptive designs have been chosen to be a key part of 

FDA’s Critical Path Initiative – a U.S. effort to improve the speed and efficiency of drug 

development. However, without estimates of clinical trial subject costs, no study appears 

to have quantified the potential economic benefits of adaptive designs – or even more 

conventional tradeoffs of trial size and risk.  

 

Research Methods 

We estimate the costs of clinical trials by decomposing firms’ public annual R&D 

expenditures against FDA clinical trial data associated with those firms. This approach 

allows us to use only publicly available data and to draw upon both a large and 

comprehensive set of diverse firms and clinical trials. In the section below, we first 

describe the COMPUSTAT database for annual R&D expenditures and the FDA’s 

ClinicalTrial.gov database for clinical trials. We then describe our empirical methods for 

decomposing these annual R&D expenditures. 

 

Data 

Although pharmaceutical firms do not release information on the costs of individual 

clinical trials, the U.S. Securities and Exchange Commission (SEC) requires publicly 

traded firms to submit public filings on their finances, including their sales and their 

R&D expenditures. These filings are subject to SEC audits and public review. We obtain 
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filings data from the COMPUSTAT Fundamentals Annual database. COMPUSTAT is a 

database of corporate financial data dating back to 1950, maintained by McGraw-Hill 

Companies. (In COMPUSTAT, pharmaceutical firms’ annual R&D expenditures and 

sales are coded XRD and SALE, respectively.) We obtain all the available data for years 

2006 through 2010 for firms with the industry code for pharmaceuticals (i.e., NAICS 

325412). (We begin with year 2006 due to the availability of the clinical trials data we 

merge to these COMPUSTAT data.) Data for subsidiaries are merged with those of their 

parent companies. For example, “Abbott Diagnostics” and “Abbott Vascular” are merged 

under “Abbott.” The financial data are adjusted to 2010 U.S. dollars using the Consumer 

Price Index (USBLS, 2012). (We discuss the limitations associated with using only 

publicly-traded companies in our conclusion section, though we note that the 

COMPUSTAT data are not limited to firms based in the U.S.) 

We obtain clinical trial data from the FDA’s ClinicalTrials.gov database. 

Registration of clinical trials in ClinicalTrials.gov has been required by the International 

Committee of Medical Journal Editors since September 2005 (Laine, Horton, DeAngelis, 

et al., 2007) and by the Food and Drug Administration Amendments Act (PL 110-95), 

since 2007. The database includes over 130,000 clinical trials registered since the year 

2005. As of January 2013, ClinicalTrials.gov had over 19,000 citations in PubMed, and 

multiple studies have documented its accuracy, timeliness, and representativeness (Zarin, 

et al., 2011; Califf, et al., 2012).  

We extract all of the clinical trial data from interventional studies by industry in 

Phase I, II, III, or IV, that were active at some point between January 1, 2006 and 

December 31, 2010. We obtain data on the sponsoring firm, intervention class 
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(categorized as drug, vaccine, or other), start date, primary completion date, phase, and 

number of subjects enrolled. We then aggregate these data by the firm-year for our 

subsequent merge with the COMPUSTAT data; for each firm-year, the number of trials 

and number of subjects are totaled by phase and by intervention class.  

We then merge the COMPUSTAT data to the clinical trial data by firm name and 

year. Naming conventions vary across ClinicalTrials.gov and COMPUSTAT. For 

instance, ClinicalTrials.gov names “Pfizer” while COMPUSTAT names “Pfizer Inc”. 

Firm names are therefore fuzzy-matched to an 80% substring match.
1
 The resulting 

candidates are then manually matched.  

 

Methods 

Our first set of empirical models examines the cost per clinical trial, while our second set 

of models examines the cost per clinical trial subject.  

 

Cost per clinical trial 

Clinical trial costs are estimated by regressing firms’ annual R&D expenditures against 

firms’ numbers of clinical trials. This approach estimates the average annual marginal 

cost of a clinical trial. Importantly, R&D expenditures include not only the costs of 

clinical trials, but also the preclinical R&D expenditures – drug discovery, in vitro 

studies, and (nonhuman) animal tests. Preclinical R&D spending is a source of 

unexplained heterogeneity in Adams and Brantner (2010). Assuming that annual 

                                                 
1
 Fuzzy matching, also known as approximate string matching, is a technique for matching expressions that 

are similar but not identical. In our case, we generated candidates for manual matching from cases where a 

substring in one database (e.g., “Pfizer” is a substring of “Pfizer Inc.”) had at least 80% of the same 

characters as a substring in another database. 
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preclinical spending varies across firms but does not vary significantly within firms 

across the five-year period, a fixed-effects model is appropriate. Assuming preclinical 

spending is uncorrelated with development spending, a random-effects model is 

appropriate. We test both assumptions using the Hausman specification test.  

 We estimate the following four main specifications using an ordinary least 

squares regression: 
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In these models, yjt is the R&D expenditure of firm j in year t; α is the intercept; β is the 

estimate of the annual marginal cost per trial, for intervention class c (if applicable) in 

phase i (if applicable); and n is the number of relevant trials in effect for a given firm in a 

given year. Compared to Model 1, Model 2 examines these three classes separately: 

drugs, vaccines, and other.
2
 Compared to Models 1 and 2, Models 3 and 4 use separate 

counts of the Phase I, II, III, and IV trials. For each of these four models, we examine 

models replacing the intercept term with both firm-level random effects and fixed effects. 

We also examine models using the log of the number of relevant trials (restricted to firms 

with a non-zero number of trials).  

Using the coefficients from these decomposition models, we then calculate the 

expected cost per clinical trial as: 

                                                 
2
 The “other” class includes non-vaccine biologics, medical devices, procedures, radiation therapy, 

behavior modification, and dietary supplements. 

(Model 1) 

 

(Model 2) 

 

(Model 3) 

 

(Model 4) 
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iii tc ̂ˆ            (Eq. 1) 

where it  is the mean phase length for phase i in years, and ̂  is the coefficient estimating 

the annual phase cost. Standard errors for c


 are calculated (assuming uncorrelated errors 

between t and β) as: 
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,
ˆ

tt SESEtSE          (Eq. 2) 

The expected clinical development cost per approved product is calculated as: 

a

i

ii

p

cp

C



3

1

ˆ
ˆ          (Eq. 3) 

where pi is a Phase i-1 candidate’s probability of reaching phase i, and pa is a Phase III 

candidate’s probability of receiving FDA approval. Transition probabilities and mean 

phase lengths are obtained from Davis et al. (2011), based on a sample of 4,235 drugs 

and vaccines. Note that the cost of clinical development does not include Phase IV costs, 

which are post-development costs incurred after marketing. 

Because drug development can take a decade or longer, the choice of discount 

rate affects the estimates of capitalized costs considerably. By funding drug development, 

a pharmaceutical firm ties up large amounts of capital over many years. The opportunity 

cost is the profit that could have been obtained by the firm, had it invested that capital in 

some other profitable activity, such as the stock market. The discount rate is thus 

assumed to equal the rate of return for investments of similar risk. The variance of 

pharmaceutical profits has historically corresponded to the variance observed in stocks 

with an 11% (real) rate of return (DiMasi and Grabowski, 2007). Here we also assume an 

11% discount rate, consistent with past models (DiMasi, Hansen, and Grabowski, 2003; 
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Adams and Brantner, 2006), but we also produce results assuming a 5% discount rate. 

The expected capitalized cost per approved product is calculated as: 

a

i
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p

ecp

C
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ˆ

'ˆ         (Eq. 4) 

where r is the discount rate.  

 

Cost per clinical trial subject 

Because the FDA’s ClinicalTrials.gov database provides detailed information on the 

number of human subject enrolled in each trial phase, we are also able to estimate the 

costs of clinical trials per subject.  

We examine the four models described above, where Model 2 (relative to Model 

1) again examines these three classes separately, and Models 3 and 4 (relative to Models 

1 and 2) again use separate counts of the Phase I, II, III, and IV trials. As before, we 

estimate an OLS regression using the firms’ annual R&D expenditures as the dependent 

variable, while we now use the firm-level data on the number of clinical trial subjects as 

the explanatory variables. This approach estimates the annual marginal cost of a clinical 

trial per subject. As before, we also estimate fixed-effects and random-effects models to 

see how preclinical spending varied across firms and test them using the Hausman 

specification test.  

Due to the higher risk of an untested product in a Phase I trial, initial 

manufacturing startup costs, monitoring costs, and the impossibility of healthy subjects 

receiving a medical benefit, one would expect per-subject costs to be highest in Phase I. 

If costs decrease with the level of prior testing, and if there are diminishing marginal 
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costs in the number of subjects, one would expect costs to strictly decrease in each 

subsequent phase. We therefore test the hypothesis that per-subject annual costs strictly 

decrease from Phase I to Phase IV for Models 3 and 4: 

H11: 0 > β2 > β3 > β4   (H10: 0 ≤ β2 or β2 ≤ β3 or β3 ≤ β4) 

One would also expect economies of scale in study administration and recruitment. We 

therefore additionally examine the following fifth empirical model to test the hypothesis 

that firms have diminishing marginal costs in trial subjects: 
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1   (Model 5) 

H21: β1  > 0 and  β2 < 0 (H20: β1 ≤ 0 or β2 ≥ 0) 

 

Results 

Data summary 

Table 1 shows the number of firm-years, clinical trial-years and clinical subject-years, 

broken down across both the different classes (e.g., drug, vaccine, other) and the different 

Phases I through IV. The matched dataset includes 189 firms, 573 firm-years, 11,145 

clinical trial-years, and 4,153,155 clinical subject-years.  312 firms are listed in 

COMPUSTAT as having industry code NAICS 325412. 123 of these firms could not be 

matched to entries in ClinicalTrials.gov during 2006-2010. These firms may not have 

conducted clinical trials during the period. Alternatively, they may have conducted 

clinical trials under a different legal name. The unmatched firms had average R&D 

spending of $116 million (2010 dollars), and average sales of $649 million (2010 

dollars). In contrast, the matched firms had average R&D spending of $716 million and 
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average sales of $3.06 billion (2010 dollars). The unmatched firms are thus much smaller, 

on average, and may have included more biotechnology companies that perform only 

nonclinical research. 

 

[Table 1 here] 

 

Table 2 shows the distribution of firm-level annual R&D costs across the 573 

firm-years. The sample of firms is diverse, ranging in size from small biotechnology 

companies with no sales and/or no R&D expenditures, to large multinational 

pharmaceutical companies with billions of dollars in sales and/or R&D expenditures. 

 

[Table 2 here] 

 

Cost per trial 

Table 3 presents the results for the clinical trial cost regressions using the number of 

relevant clinical trials as the independent variable. A minimal OLS model regressing 

research costs on the number of clinical trial years yields an average trial-year cost of 

$30.54 million (Model 1). Disaggregating product types improves the model’s r-squared 

but yields coefficients not significantly different from zero (Models 2 and 4). 

Disaggregating phases yields estimates for all phases significantly different from zero, 

with the mean annual marginal cost per Phase I trial at $19.93 million, Phase II trial at 

$24.23 million, Phase III at $44.88 million, and Phase IV at $35.18 million (Model 3).
3
  

                                                 
3
 In results not shown, we used a variable for annual sales as an explanatory variable for R&D expenditures 

to examine whether these merged data produced results consistent with findings for R&D intensity from the 
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[Table 3 here] 

 

A Hausman test indicates that a random-effects model is appropriate, due to the 

low correlation between the regressors and the firm-level effects. However, the random-

effects models for Models 3 and 4 still yield insignificant and negative coefficients. Fixed 

effects also generates poor results (Appendix Table 1). Using the logarithm of trial-years 

does not improve estimates for any model, suggesting that there are not diminishing 

marginal costs in the number of trials that firms manage (Appendix Table 1).  

Table 4 shows our estimates for the mean cost per clinical trial using the results 

from Model 3. The point estimate for the mean cost is calculated from Equation 1 above, 

while the standard error is calculated from Equation 2 above. The mean cost per Phase I 

trial (in 2010 dollars) is $47.6 million; the mean cost per Phase II trial is $81.9 million; 

and the mean cost per Phase III trial is $141 million. All estimates are significantly 

different from zero at the 0.05 level. 

 

[Table 4 here] 

 

Per Equation 3, we obtain an estimate of $600 million for the expected clinical 

development cost for one FDA-approved drug. Per Equation 4, applying a cost of capital 

at a real discount rate of 11%, the expected capitalized clinical cost of developing one 

                                                                                                                                                 
Congressional Budget Office (2006). Doing so improved the r-squared and produced a coefficient on sales 

of 0.1 which was statistically significantly. This implies that every $1 increase in sales is associated with a 

mean $0.10 increase in R&D expenditures, which is consistent with the CBO’s review of past research in 

the range of 8% to 10% (CBO, 2006). 
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approved drug is $1.21 billion. Applying a cost of capital at a real discount rate of 5%, 

the expected capitalized cost of developing one approved drug is $818 million. 

 

Cost per clinical trial subject 

Table 5 presents our results for clinical trial subject costs. A minimal OLS model 

regressing annual research expenditures on the number of clinical subject-years yields an 

annual marginal cost per subject of $56,000 (i.e., Model 1). Disaggregating products (i.e., 

Model 2) improves the r-squared (relative to Model 1) and yields estimates for all classes 

significantly different from zero. We find that the annual marginal cost per subject is 

$89,600 for drugs, $9,500 for vaccines, and $123,000 for other products.   

 Disaggregating phases (i.e., Model 3) improves the r-squared (relative to Model 

1) and yields estimates for Phases I, II, and III significantly different from zero. 

Specifically, we find that the annual marginal cost per subject across all products is 

$489,900 for Phase I, $303,100 for Phase II, and $12,400 for Phase III. Phase IV subject 

costs are not significantly different from zero. Disaggregating product classes and phases 

together (i.e., Model 4) yields some insignificant and negative coefficients. A Hausman 

test indicates that a random-effects model is justified, due to the low correlation between 

the regressors and the firm-level effects. However, neither the random effects model nor 

the fixed effects model improves fit.  

We test H10 using a Wald test for the results from Model 3 and obtain F(1,567)= 

8.03, p>F=0.0048, rejecting the null. Costs appear to be strictly decreasing with each 

phase. We test H20 using a Wald test for the results from Model 5 and obtain F(1,570)= 

754, p>F=0.000, rejecting the null. Firms appear to experience diminishing marginal 
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costs with the number of subjects, but the cost savings are very small -- less than a 

0.001% decrease in marginal costs for every 1% increase in trial size. 

 

[Table 5 here] 

 

Discussion 

Our estimates for clinical trial costs are comparable to past estimates, shown in Table 6. 

The estimates from the Tufts University’s CSDD data are that Phase I, Phase II, and 

Phase III clinical trial costs are $15.2, $23.5, and $86.3 million in 2000 dollars, 

respectively (DiMasi, Hansen, and Grabowski, 2003). Adjusting their costs for inflation 

(USBLS, 2012), and dividing their phase costs by their phase lengths from the CSDD 

data (1.83, 2.17, and 2.17 years, respectively) yields clinical trial costs of $10.5, $13.8, 

and $50.5 million per year in 2010 dollars. Adams and Brantner (2010) estimate these 

annual costs as $16.8, $33.6, and $26.8 million in 1999 dollars; adjusting for inflation 

yields clinical trial costs of $22.0, $44.0, and $35.1 million per year in 2010 dollars. Our 

estimates of $19.9, $24.2, and $44.9 million per year are thus intermediate between 

CSDD and Adams and Brantner. Our study has potential advantages over both, including 

the use of more recent, official FDA data. But the broad conclusions are the same – 

namely, that clinical trials are a highly costly undertaking.  

 

[Table 6 here] 

 



22 

 

Our results do not include estimates of preclinical research. However, our model 

intercepts can be interpreted as the average annual fixed costs of preclinical research, plus 

the average annual fixed costs of supporting clinical trials. From our results for Model 3, 

these fixed costs are $122 million per year per firm, on average, representing 18% of 

average annual R&D costs. In contrast, CSDD estimates preclinical research costs, alone, 

are 30% of annual R&D costs in their sample of firms (DiMasi, Hansen, and Grabowski, 

2003).  

To our knowledge, no previous study has estimated the cost per clinical trial 

subject, so we are unable to compare our results to others. However, our results are 

consistent with expectations: per-subject costs progressively decrease from Phase I to 

Phase IV, as the risks to subjects decrease, requirements for intensive monitoring 

decrease, and potential benefits to subjects increase. By Phase IV, marginal per-subject 

costs are not significantly different from zero. (Phase IV fixed costs are captured in the 

model intercept.) Our results also suggest that firms enjoy diminishing marginal costs in 

trial size, perhaps due to economies of scale in trial administration. We are unable to 

compare subject costs across product classes, though the descriptive statistics indicate 

that vaccine trials are significantly larger than other trials (Table 1).  

Our results suggest that clinical trial costs could be significantly reduced by 

decreasing clinical trial size and/or length, particularly in Phases I and II. Our study 

makes no claims about whether these cost savings are worth the potential risks to the 

quality of trial results. Adaptive trial designs remain controversial, and the FDA’s 

“Guidance for Industry: Adaptive Design Clinical Trials for Drugs and Biologics” 
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remains in draft form after three years. Nevertheless, our figures can help inform an 

accounting of the costs and benefits of trial designs. 

 

Caveats 

All of our estimates are based on a decomposition of firm-level R&D spending. While 

this allows us to use public data, the approach has a number of potential weaknesses. 

First, the start and end dates of clinical trials rarely coincide with the start and end dates 

of fiscal years used for financial reporting. This does not bias estimates as long as clinical 

trial dates are uniformly distributed; however, the misalignment of data reduces the 

precision of our estimates.  

Second, much of the heterogeneity in R&D costs may be due to preclinical R&D. 

While pharmaceutical companies are required to submit data on clinical trials to a public 

FDA database, there is no comparable requirement or database for preclinical R&D 

activities. The poor results from our panel models suggest that, while there may be firm-

level differences in preclinical R&D, those differences may not be systematic. 

Alternatively, the poor results may be due to the highly unbalanced panel dataset, which 

ranges from one to five COMPUSTAT observations per firm. An unbalanced panel is one 

in which observations are missing for some individuals for some time periods. If many 

observations are missing, this can reduce the precision of the firm-level intercept, as there 

are fewer data to explain variance. If missing observations are due to a nonrandom 

process, then the estimates can also be biased. In our case, there is no evidence of bias in 

COMPUSTAT – the missing years appear to be years in which the firm was not publicly 

traded.  



24 

 

A third limitation to our study is that our models rely on expenditure data from 

public filings that are required only for publicly traded firms. Our sample is thus likely to 

be biased toward larger, more established pharmaceutical firms. Table 2 indicates that our 

sample does include small firms – but they may still be unrepresentative of private 

companies, for which we have no expenditure data. 

Fourth, our models do not account for joint ventures by multiple firms. As a 

result, the models may misattribute R&D effort from supporting firms to the single firm 

that took primary responsibility for managing a clinical trial. This should reduce the 

precision of our estimates rather than biasing them. 

Despite these caveats, our clinical trial cost estimates are comparable to previous 

estimates by CSDD and Adams and Brantner. That three different estimates, each based 

on different data and modeling assumptions, produce similar clinical development costs 

lends credence to the results. Claims that the “$802 million” figure is an exaggeration by 

pharmaceutical firms (Light and Warburton, 2005) appear increasingly unlikely. Clinical 

development is an extremely costly enterprise, and a realistic assessment of these costs is 

needed to set appropriate budgets for R&D investments, and to estimate their cost-

effectiveness relative to other health interventions.  

 

Future research 

Future research could focus on estimating clinical trial costs by product type. A few 

studies have reported expert opinions on vaccine development costs (e.g., U.S. 

Department of Defense, 2001). But to our knowledge no study has empirically estimated 

these costs. Although the development of vaccines bears similarities to the development 
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of other pharmaceuticals, vaccines face unique technical and economic challenges due to 

pathogen evolution, a narrow preclinical research pipeline, and additional regulatory 

requirements, such as certification of vaccine manufacturing processes prior to clinical 

approval (Coleman et al. 2005; Offit 2005). As such, the costs of vaccine R&D may 

differ in important respects from those of drugs. Few pharmaceutical companies develop 

vaccines, and our dataset had insufficient observations to separately estimate the costs of 

vaccine development. Additional years of data, including financial data manually 

obtained from firms’ annual reports, might allow estimation in the future.  

Future research could also quantitatively compare the risks and benefits of smaller 

trials. For instance, the economic cost of achieving a particular statistical power in a 

clinical trial could be compared to the expected number of disability-adjusted life years 

averted, given a prior probability for adverse outcomes that would be detected in a larger 

trial. Such an analysis could help inform debates over clinical trial designs. 



26 

 

References 

 

Adams CP, Brantner VV. Estimating the Cost of New Drug Development: Is it Really 

802 Million Dollars? Health Affairs. 2006;25(2):420-428. 

 

Adams CP, Brantner VV. Spending on new drug development. Health Economics. 

2010;19: 130-141. 

 

Bansal N. The opportunities and challenges in conducting clinical trials globally. Clinical 

Research and Regulatory Affairs. 2012;29(1):9-14. 

 

Belforti RK, et al. International Outsourcing of Medical Research by High-Income 

Countries: Changes from 1995 to 2005. Journal of Investigative Medicine. 

2010;58(2):287-294. 

 

Berndt ER, Glennerster R, Kremer MR, Lee J, Levine R, Weizsacker G, Williams H. 

Advance market commitments for vaccines against neglected diseases: estimating costs 

and effectiveness. Health Economics. 2007;16(5):491-511. 

 

Califf RM, et al. Characteristics of clinical trials registered in ClinicalTrials.gov, 2007-

2010. JAMA. 2012;307(17):1838-47.  

 

Chow SC, Corey R. Benefits, challenges and obstacles of adaptive clinical trial designs.  

Orphanet Journal of Rare Diseases. 2011;6(1):79-88.  

 

Chow SC, Chang M. Adaptive design methods in clinical trials – a review. Orphanet 

Journal of Rare Diseases. 2008;3(1):11-23. 

 

Coleman MS, Sangrujee N, Zhou F, Chu S. Factors affecting U.S. manufacturers’ 

decisions to produce vaccines. Health Aff (Millwood). 2005 May/Jun;24(3):635–642. 

 

Congressional Budget Office (CBO), Research and Development in the Pharmaceutical 

Industry, October 2006.  

 

Davis MM, Butchart AT, Wheeler JRC, et al. Failure-to-success ratios, transition 

probabilities and phase lengths for prophylactic vaccines versus other pharmaceuticals in 

the development pipeline. Vaccine. 2011;29:9414-9416. 

 

DiMasi JA, Hansen RW, Grabowski HG. The Price of Innovation: New Estimates of 

Drug Development Costs. Journal of Health Economics. 2003;22:151-185. 

 

DiMasi JA, Grabowski HG, Vernon J. R&D costs and returns by therapeutic category. 

Drug Inf J. 2004;38:211–223.  

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Califf%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=22550198
http://www.ncbi.nlm.nih.gov/pubmed/22550198


27 

 

DiMasi JA, Grabowski HG. The cost of biopharmaceutical R&D: Is biotech different? 

Manage Decis Econ. 2007;2(28):469-479.  

 

Kairalla JA, Coffey CS, Thomann MA, Muller KE. Adaptive trial designs: a review of 

barriers and opportunities. Trials. 2012;13:145.  

 

Karlberg JPE. Sponsored clinical trial globalization trends. Clin Trial Magnifier. 

2008;1:13-19. 

 

Laine C, Horton R, DeAngelis CD, et al. Clinical trial registration – looking back and 

moving ahead. N Engl J Med. 2007;356:2734-6.  

 

Light DW, Warburton RN. Extraordinary claims require extraordinary evidence. Journal 

of Health Economics. 2005;24:1030-1033. 

 

Love J. Evidence Regarding Research and Development Investments in Innovative and 

Non-Innovative Medicines. Consumer Project on Technology, Washington, DC, 2003.  

 

Mahmoud A, Danzon PM, Barton JH, Mugerwa RD. Product Development Priorities. In 

Disease Control Priorities in Developing Countries (2nd Edition): 139-156. New York: 

Oxford University Press, 2006.   

 

Matheny JG, Smith BT, Courtney B, Mair M. Drug and Vaccine Development for 

Infectious Diseases: The Value of Priority Review Vouchers. Clinical Pharmacology and 

Therapeutics. 2009;85(6). 

 

Matheny JG, Mair M, Mulcahy A, Smith BT. Incentives for biodefense countermeasure 

development. Biosecurity and Bioterrorism 2007;5(3). 

 

Matheny JG, Mair M, Smith BT, Biodefense: how costly and how likely to succeed? 

Nature Biotechnology. 2008;26(9):981-3.  

 

Offit PA. Why are pharmaceutical companies gradually abandoning vaccines? Health Aff 

(Millwood). 2005 May/Jun;24(3):622–630. 

 

Ridley DB, Grabowski HG, Moe JL. Developing drugs for developing countries. Health 

Aff (Millwood). 2006 Mar/Apr;25(2):313–324. 

 

Ripley E, et al. Who’s Doing the Math? Are We Really Compensating Research 

Participants? J Empir Res Hum Res Ethics. 2010 Sep;5(3):57–65. 

 

Sen AK. Outsourcing of Research and Development Activities: Evidence from US 

Biopharmaceutical Firms. Global Journal of Business Research. 2009;3(1):73-82. 

 

Thiers F, Sinskey AJ, Berndt ER. Trends in the globalization of clinical trials. Nature Rev 

Drug Discov. 2008;7:13-14. 



28 

 

 

United States Bureau of Labor Statistics, Inflation Calculator. Available from: 

http://data.bls.gov/cgi-bin/cpicalc.pl. Last accessed on 20 November, 2012. 

 

United States Department of Defense. Report on Biological Warfare Defense Vaccine 

Research & Development Programs. 2001. Available from: 

http://www.defenselink.mil/pubs/ReportonBiologicalWarfareDefenseVaccineRDPrgras-

July2001.pdf. 

 

United States Food and Drug Administration. The FDA's Drug Review Process: Ensuring 

Drugs Are Safe and Effective. Available from: 

http://www.fda.gov/drugs/resourcesforyou/consumers/ucm143534.htm. Last accessed on 

20 November, 2012. 

 

Wright JR, et al. Estimating per patient funding for cancer clinical trials. Contemporary 

Clinical Trials. 2005;26(4):421-9. 

 

Zarin DA, et al. The ClinicalTrials.gov Results Database — Update and Key Issues. N 

Engl J Med. 2011;364:852-860. 

http://data.bls.gov/cgi-bin/cpicalc.pl
http://www.fda.gov/drugs/resourcesforyou/consumers/ucm143534.htm


29 

 

 

Table 1: Matched observations by phase and product class 

 

  Phase I Phase II Phase III Phase IV Total 

Trial-years by phase and product class 

All      3,483       2,870          3,333       1,459       11,145  

Drugs      3,207       2,430          2,717       1,248         9,602  

Vaccines           95          272             394            74            835  

Other         181          168             222          137            708  

      
Subject-years by phase and product class 

All  166,616   560,588   2,651,898   774,053  4,153,155  

Drugs  140,810   401,481   1,743,329   496,112  2,781,732  

Vaccines    16,836   131,331      748,201   204,516  1,100,884  

Other      8,970     27,776      160,368     73,425  270,539  

      
Mean annual number of trials per firm 

All 3.69 3.04 3.53 1.54 11.79 

Drugs 3.39 2.57 2.88 1.32 10.16 

Vaccines 0.10 0.29 0.42 0.08 0.88 

Other 0.19 0.18 0.23 0.14 0.75 

 
     

Mean number of subjects per trial 

All           48          195             796          531         1,569  

Drugs           44          165             642          398         1,248  

Vaccines         177          483          1,899       2,764         5,323  

Other           50          165             722          536         1,473  
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Table 2: Firm annual Research and Development (R&D) costs and sales ($M, 2010) 

 
  R&D costs Sales 

N 573 573 

Mean 716 3,060 

Standard deviation 1,897 10,697 

Minimum 0 0 

25
th
 percentile 15 0 

Median 40 2 

75
th
 percentile 161 134 

Maximum 10,991 67,691 
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Table 3: Model results for estimated clinical trial costs per year (2010 $M) 

 
Model  1 2 3 4 3, with 

Random 

effects 

4, with  

Random 

effects 

All  

Trials 

30.54** 

(0.94) 

     

All  

Drugs 

 20.67** 

(1.18) 

    

All  

Vaccines 

 -7.04 

(4.87) 

    

All  

Other 

 6.62 

(11.63) 

    

All  

Phase I 

  19.93** 

(3.48) 

 4.06* 

(2.07) 

 

All  

Phase II 

  24.23* 

(10.78) 

 29.35** 

(7.29) 

 

All  

Phase III 

  44.88** 

(9.38) 

 7.04 

(5.65) 

 

All  

Phase IV 

  35.18** 

(13.56) 

 10.17 

(8.57) 

 

Drug  

Phase I  

   14.02** 

(3.75) 

 3.93 

(2.33) 

Drug  

Phase II  

   68.53** 

(14.25) 

 25.00** 

(10.39) 

Drug  

Phase III  

   45.92** 

(9.67) 

 12.15 

(6.82) 

Drug  

Phase IV  

   22.41 

(14.35) 

 9.00 

(10.18) 

Vaccine  

Phase I  

   107.87 

(79.15) 

 73.44 

(44.31) 

Vaccine  

Phase II  

   -18.28 

(44.58) 

 33.49 

(26.65) 

Vaccine  

Phase III  

   -41.84 

(28.40) 

 7.37 

(18.24) 

Vaccine  

Phase IV  

   66.83 

(121.91) 

 -49.76 

(69.59) 

Other  

Phase I 

   53.65 

(47.78) 

 -5.99 

(28.43) 

Other  

Phase II 

   95.39 

(59.60) 

 74.17** 

(32.85) 

Other  

Phase III 

   126.43** 

(42.61) 

 80.79** 

(30.56) 

Other  

Phase IV 

   -101.93 

(82.60) 

 -2.55 

(52.58) 

Constant 121.51* 

(50.80) 

60.64 

(34.02) 

122.43* 

(50.60) 

21.28 

(50.45) 

371.76** 

(87.97) 

340.14** 

(85.68) 

Observations 573 573 573 573 573 573 

R
2
 0.64 0.84 0.65 0.69 0.64 0.63 

* Statistically different from zero at the 0.05 level; ** at the 0.01 level. Standard errors are in parentheses.  
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Table 4: Clinical trial costs, lengths, and success probabilities  

 
 Cost per trial-year 

(2010 $M) 

Phase length 

(years) 

Probability of 

succeeding in phase 

Cost per trial 

(2010 $M) 

  Phase I 19.9 (3.48) 2.39 (0.07) 0.83 (0.02) 47.6 (8.43) 

  Phase II 24.2 (10.8) 3.38 (0.07) 0.56 (0.02) 81.9 (36.5) 

  Phase III 44.9 (9.38) 3.15 (0.07) 0.65 (0.02) 141.0 (29.7) 

Standard errors are in parentheses.  
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Table 5: Model results for estimated annual marginal cost per subject (2010 $M) 

 
Model  1 2 3 4 3 with  

Random 

Effects 

4 with 

Random 

Effects 

5 

All  

Trials 

0.0560** 

(0.0020) 

     .1252396**   

(.0045589) 

All  

Trials^2 

      -4.73e-07**   

(2.88e-08) 

All  

Drugs 

 0.0896** 

(0.0038) 

     

All  

Vaccines 

 0.0095* 

(0.0045) 

     

All  

Other 

 0.1230** 

(0.0188) 

     

All  

Phase I 

  0.4899** 

(0.0770) 

 0.1339** 

(0.0441) 

  

All  

Phase II 

  0.3031** 

(0.0348) 

 0.0855** 

(0.0182) 

  

All  

Phase III 

  0.0124* 

(0.0057) 

 0.0088** 

(0.0030) 

  

All  

Phase IV 

  0.0042 

(0.0091) 

 0.0071 

(0.0044) 

  

Drug  

Phase I  

   0.2586** 

(0.0840) 

 0.1185* 

(0.0554) 

 

Drug  

Phase II  

   0.5357** 

(0.0479) 

 0.1676** 

(0.0293) 

 

Drug  

Phase III  

   0.0249** 

(0.0083) 

 0.0107 

(0.0057) 

 

Drug  

Phase IV  

   0.0159 

(0.0147) 

 0.0186* 

(0.0088) 

 

Vaccine  

Phase I  

   0.9420* 

(0.392) 

 0.8402** 

(0.2307) 

 

Vaccine  

Phase II  

   0.0122 

(0.0549) 

 0.0505 

(0.0334) 

 

Vaccine  

Phase III  

   -0.0049 

(0.0064) 

 0.0189** 

(0.0051) 

 

Vaccine  

Phase IV  

   -0.0190 

(0.010) 

 -0.0078 

(0.0061) 

 

Other  

Phase I 

   1.6831* 

(0.691) 

 0.3506 

(0.4375) 

 

Other  

Phase II 

   -0.0368 

(0.118) 

 -0.1809** 

(0.0680) 

 

Other  

Phase III 

   0.1167** 

(0.022) 

 0.0205 

(0.0134) 

 

Other  

Phase IV 

   0.0960** 

(0.034) 

 0.0665** 

(0.0202) 

 

Constant 304.91** 

(56.49) 

204.19**     

(51.58) 

213.01** 

(52.67) 

100.03* 

(46.56) 

421.18** 

(89.49) 

354.56** 

(79.22) 

115.28**   

(47.99) 

Observations 573 573 573 573 573 573 573 

R
2
 0.53 0.62 0.61 0.71 0.60 0.62 0.68 

* Statistically different from zero at 0.05 level; ** at 0.01 level. Standard errors are in parentheses.  
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Table 6: Comparing annual clinical trial cost estimates (2010 $M) 

 
  

CSDD 

(2003) 

Adams and 

Brantner 

(2010) 

 

Our  

estimates 

Phase I  10.5 22.0 19.9 

Phase II 13.8 44.0 24.2 

Phase III 50.5 35.1 44.9 

Phase IV -- -- 35.2 
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 Table 7: Model results for estimated clinical trial costs per year (2010 $M) 

 
Model  3 with 

Fixed 

effects 

4 with 

Fixed 

effects 

1 with 

Log 

Number 

2 with 

Log  

Number 

3 with 

Log 

Number 

3 with  

Log 

Number & 

Random 

effects 

3 with  

Log 

Number 

&  

Fixed  

effects 

All  

Trials 

  893.52** 

(39.42) 

    

All  

Drugs 

   2000.61** 

(326.11) 

   

All  

Vaccines 

   -133.74 

(243.92) 

   

All  

Other 

   200.71 

(367.33) 

   

All  

Phase I 

-3.20 

(1.78)  

  311.52* 

(145.20) 

114.25 

(114.15) 

-135.10 

(102.86) 

All  

Phase II 

-0.97 

(6.49)  

  728.93* 

(293.56) 

551.76* 

(263.18) 

-174.08 

(258.34) 

All  

Phase III 

-7.47 

(4.79)  

  685.28** 

(252.26) 

614.54** 

(225.19) 

-205.54 

(242.89) 

All  

Phase IV 

12.50 

(7.22)  

  503.46* 

(213.95) 

429.86* 

(197.08) 

246.12 

(193.45) 

Drug  

Phase I  

 -1.93 

(1.94) 

     

Drug  

Phase II  

 -7.78 

(8.83) 

     

Drug  

Phase III  

 -0.78 

(5.71) 

     

Drug  

Phase IV  

 9.00  

(8.48) 

     

Vaccine  

Phase I  

 -2.06 

(36.88) 

     

Vaccine  

Phase II  

 -12.66 

(22.83) 

     

Vaccine  

Phase III  

 3.70 

(15.35) 

     

Vaccine  

Phase IV  

 -110.73 

(56.98) 

     

Other  

Phase I 

 -39.96 

(23.19) 

     

Other  

Phase II 

 13.71 

(26.84) 

     

Other  

Phase III 

 50.20 

(25.50) 

     

Other  

Phase IV 

 -4.16 

(44.11) 

     

Constant 751.46** 

(33.07) 

751.77** 

(35.23) 

-

652.77** 

(83.40) 

-3415.65** 

(783.07) 

-1861.56** 

(362.20) 

-912.84 

(468.79) 

3908.85** 

(766.09) 

Observations 573 573 573 573 573 111 111 

R
2
 0.43 0.26 0.47 0.47 0.71 0.71 0.46 

* Statistically different from zero at 0.05 level; ** at 0.01 level. Standard errors are in parentheses. 



36 

 

 

 

MANUSCRIPT 2 

 

Determinants of Pharmaceutical Availability:  

The Case of the Orphan Drug Act  
 

 

 

Jason Matheny, MPH, MBA 

PhD Candidate, Health Economics Program 

Johns Hopkins Bloomberg School of Public Health 

Department of Health Policy and Management 

624 North Broadway, Room 412 | Baltimore, MD 21205 

443-221-8344 | jmatheny@jhsph.edu 

 

Bradley Herring, PhD 

Associate Professor of Health Economics 

Johns Hopkins Bloomberg School of Public Health 

Department of Health Policy and Management 

624 North Broadway, Room 408 | Baltimore, MD 21205 

410-614-5967 | bherring@jhsph.edu 

 

 

August 23, 2013 

  



37 

 

 

Abstract 

 

In 1983, the United States enacted the Orphan Drug Act (ODA) to encourage the 

development of drugs against “orphan diseases” – diseases with a prevalence less than 

200,000 cases in the United States.  The ODA is widely considered to be a success: in the 

United States from 1983 to 2010, the number of drugs with orphan indications increased 

from 38 to 353. However, the increase may have been due to causes other than the ODA, 

and may not have translated into an increase in orphan drug use. To illustrate the intended 

incentives from the ODA, we adapt Salop’s spatial market model to develop an economic 

model of drug prescriptions. We test our model’s predictions using a regression 

discontinuity design and data from the U.S. National Ambulatory Medical Care Surveys 

for the years 1985, 1996, and 2006. We do not find evidence of a significant discontinuity 

in drug prescriptions as the disease prevalence approaches 200,000 cases. One possible 

explanation for our empirical finding is a perverse effect of the ODA: it encourages firms 

to charge monopoly prices for existing products. A price increase could cause a sufficient 

decrease in prescriptions for existing orphan drugs, and that effect could negate any 

increase in prescriptions for new orphan drugs. 
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Introduction  

A range of policies have aimed to increase the availability of pharmaceuticals in order to 

achieve public health objectives. These include the Orphan Drug Act (ODA), which 

provides incentives to firms that introduce products for rare diseases; FDA’s Priority 

Review Program, which accelerates the review of new products deemed important to 

public health; and the Hatch-Waxman Act, which increases a product’s patent life by 

recovering the time spent during FDA reviews. But there is little empirical evidence on 

the drivers of, and barriers to, pharmaceutical availability. Pharmaceutical availability 

may be influenced by a number of variables, including those related to target disease 

characteristics, product characteristics, regulatory factors, and firm characteristics (Figure 

1). Below we describe these variables and the (generally scant) empirical literature on 

their effects. 

 

[Figure 1 here] 

 

Disease characteristics 

Disease characteristics can influence both product characteristics and regulatory factors. 

They include disease prevalence, disease research, known targets, whether the disease is 

chronic or acute, and affected global regions. Prevalence may influence regulatory risk-

benefit tolerance, FDA review type (e.g., Priority Review), market exclusivity (e.g., 

“orphan” designation), a product’s expected market size, the market’s willingness-to-pay, 

and clinical trial recruitment costs. Lichtenberg and Waldfogel (2003) found that disease 

prevalence was positively correlated with the number of drugs prescribed for that disease. 
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Prevalence may also affect the volume of published research on a disease, which can in 

turn affect the number of drug targets. Ward and Dranove (1995) and Toole (2000) found 

that NIH funding on diseases was positively correlated with private R&D spending.  

 

Product characteristics 

Product characteristics that may influence pharmaceutical availability, either directly or 

indirectly through regulatory factors, include drug class, drug targets, product novelty, 

market size, and willingness-to-pay. Pharmaceutical classes such as vaccines, 

antibacterials, and antivirals may vary in R&D costs due to distinct technical challenges, 

as well as differences in regulatory treatment; for instance, biologics undergo a different 

review process from small molecules, and because vaccines are given to healthy 

individuals, there may be less risk tolerance during their review. DiMasi et al. (1995), 

DiMasi, Grabowski, and Vernon (2004), and Adams and Brantner (2006) found that costs 

and risks varied significantly across classes and targets. Product novelty may affect both 

the level of technical challenge, as well as regulatory treatment. Reiffen and Ward (2005) 

found that the R&D costs of imitative generics are significantly lower than that of novel 

products.  

Walker (2002) reported the reasons for terminating development of new products 

among 28 pharmaceutical manufacturers, estimating that 20% of terminations were due 

to clinical safety issues, 23% were due to disappointing clinical efficacy results, 16% 

were due to various other factors, and 22% were based on “portfolio considerations.”  

Expected returns for a product can influence a firm’s level of R&D effort. 

Grabowski and Vernon (2000) and Vernon (2005) found that expected returns explained 



40 

 

much of the variation in pharmaceutical firms' R&D expenditures. Similarly, Scherer 

(2001) found that R&D investments were correlated with profitability, Giaccotto et al. 

(2003) found that at the industry level, R&D expenditures were associated with prices, 

while Acemoglu and Linn (2004), Lichtenberg (2005) and Civan and Maloney (2006) 

found that the likelihood of developing a pharmaceutical was positively associated with 

its expected market size.  

 

Regulatory factors 

Regulatory factors that may influence development success include patent and market 

exclusivity; review type; clinical trial size, duration, and location; FDA staffing; and 

whether efficacy is determined by testing against a competing therapy or against a 

placebo. The Prescription Drug User Fee Act requires that, with few exceptions, drug 

developers pay a fee to the federal government to help cover FDA’s review costs. The 

Internal Revenue Code’s Research and Experimentation Tax Credit provides a 50% 

subsidy for eligible preclinical Research and Development (R&D) costs; clinical trial 

costs are typically disallowed. Orphan designation confers to a developer tax credits for 

clinical trials, as well as seven-year market exclusivity on a licensed product. Evidence 

regarding the effects of orphan designation is described in detail below. Priority Review 

shortens the FDA review period by several months. Clinical trial size, duration, and 

location may be determined both by product and disease characteristics, and in turn 

influence R&D costs. FDA staffing levels can influence the duration of review, which 

affects discounted costs and the net present value of returns. A product proved effective 
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compared to a placebo can be more or less technically challenging to develop than a 

product proved effective compared to a competing therapy.  

 

Firm characteristics 

Firm characteristics that may affect pharmaceutical availability include firm size, R&D 

salaries, R&D management, funding sources, the cost of capital, and the R&D 

technologies the firm employs. Larger firms may have economies or diseconomies of 

scale in R&D. DiMasi, Grabowski, and Vernon (1995) and Henderson and Cockburn 

(1996) found that average R&D costs tended to correlate with firm size. R&D salaries 

can influence the level of funding available for product development. The type of R&D 

management employed (e.g. contract research or “virtual pharma”) may influence costs. 

Firms attracting public versus private funding may be more or less efficient. A firm’s cost 

of capital influences the rate of return it will tolerate in product development. Some 

technologies used in R&D, such as high-throughput screening, may affect R&D costs. 

Product development partnerships (PDPs) may lower R&D costs by outsourcing 

R&D to the lowest-cost developers, without regard for potential intellectual property 

violations or trade secret piracy. However, PDPs may have higher failure rates if their 

managers face less incentive to terminate dead-end candidates (Munos, 2006; Grace, 

2006).  

The Congressional Budget Office (2006) hypothesized that the historical growth 

in pharmaceutical R&D costs could be due to increasing clinical trial sizes and durations, 

comparisons to existing treatments rather than placebos, R&D salaries, a shift from acute 

to chronic diseases, and FDA staffing. However, these potential associations were not 
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measured by CBO. The Government Accountability Office (GAO) (2006) found that 

industry experts cited several of these factors as important determinants of R&D costs.  

The ODA represents a unique lens through which to examine the determinants of 

pharmaceutical R&D. Probably no policy has been more strongly focused on increasing 

the availability of a class of pharmaceuticals than the ODA, and no policy has influenced 

more determinants simultaneously – market exclusivity, FDA staffing, tax credits, 

PDUFA waivers, and R&D funding. Below we describe the history of the ODA and 

evidence regarding its effects on pharmaceutical availability. 

 

The Orphan Drug Act 

In 1983, the United States enacted the Orphan Drug Act (ODA) to encourage the 

development of drugs against “orphan diseases” – diseases for which there is “no 

reasonable expectation” that sales could support a drug’s development. The ODA was 

amended in 1984 to define “orphan diseases” as those with prevalence less than 200,000 

cases in the United States. There are over 7,000 such diseases, and they represent a major 

health burden, affecting over 25 million people in North America, alone (Braun et al., 

2010).  

The ODA provides a number of benefits to sponsors that develop a drug for an 

orphan disease: a 50% tax credit on clinical trial expenses, a waiver of user fees charged 

under the Prescription Drug User Fee Act (PDUFA), development grants, counseling and 

guidance from the U.S. Food and Drug Administration (FDA), and a seven-year market 

exclusivity period for its drug if ultimately approved. The exclusivity period is potentially 

the most valuable to a firm: if a market competitor wishes to introduce a drug for the 
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same indication, the competitor must prove that its drug is therapeutically superior to the 

incumbent. While the ODA was intended to boost drug development, its benefits apply 

not only to new drugs, but also to drugs that have already been marketed, and even those 

whose patents have expired.  

The FDA’s Office of Orphan Products Development (OOPD) is responsible for 

reviewing requests for orphan designation. To qualify for designation, a sponsor must 

provide evidence that a product is “promising” for the treatment or prevention of a 

disease, and demonstrate that the prevalence of the disease is less than 200,000 in the 

United States. If a product meets these two criteria, the product is “designated” for the 

disease. At that point, the sponsor is qualified to receive the all of the benefits authorized 

by the ODA, with the exception of market exclusivity. Market exclusivity can be 

awarded only after a product has received FDA approval for marketing, following an 

FDA review of the product’s safety and efficacy (Thorat et al., 2012). 

The prevalence criterion is critical to orphan designation, and prevalence must be 

based on verifiable data. According to OOPD staff, “Sponsors do their due diligence to 

provide credible prevalence data in their application packages. This information is crucial 

to determining whether or not the disease of interest is a rare one. The sources of 

prevalence figures include authoritative references that may include published journal 

articles, government and patient support group Web sites, and so forth. . . . The 

prevalence estimate must also be current in relationship to the time of submission of the 

request for orphan drug designation. These are then verified by OOPD review staff” 

(Thorat et al., 2012). 



44 

 

The ODA is widely considered to be a success (Arno, Bonuck, and Davis, 1995; 

Grabowski 2005), and similar orphan legislation has been enacted in Singapore (1991), 

Japan (1993), Australia (1997), and the European Union (1999) (Braun et al., 2010). 

Empirical evidence for the effect of the ODA remains equivocal, however. Here we 

briefly review the evidence for and against the ODA’s effects on drug research, 

development, introductions, and prescriptions. 

Two studies estimated the effect of the ODA on orphan drug R&D. Heemstra et 

al. (2009) measured the number of medical publications on rare diseases over time. From 

the period 1976-1983 to the period 2000-2007, the average number of publications per 

rare disease increased from 330 to 1,319. However, this increase was not significantly 

different from the increase in medical publications, as a whole, over the same period. 

Heemstra et al. concluded that the ODA did not significantly affect research on orphan 

diseases – at least as measured in publication rates. In contrast, Yin (2008) found that 

following the ODA, the number of clinical trials for rare diseases was 69% greater than 

the number of clinical trials one would have expected, based on a set of matched clinical 

trials for control diseases with prevalence above 200,000. However, Yin’s choice of 

control diseases was nonrandom and these diseases may have differed in important ways 

from rare diseases. For instance, diseases with higher prevalence may be more difficult 

targets for pharmaceuticals. (A Bayesian argument is that one should downwardly update 

the probability of success against prevalent diseases -- if prevalent diseases were easy to 

treat, they would not be prevalent.) 

The evidence for the ODA’s effects on drug introductions is more suggestive. In 

the United States from 1983 to 2010, the number of orphan drug introductions increased 



45 

 

from 38 to 353 (FDA, 2013). Improvements in drug discovery, clinical trial design, and 

drug review increased the introduction of new drugs, overall. However, even the share of 

orphan drugs increased. Orphan drug approvals increased as a fraction of all drug 

approvals, from 17% in 1984-1988, to 31% in 2004-2008 (Cote et al. 2010). Still, the 

ODA may not have been the only reason for the observed increase in orphan drug 

introductions. 

Even if the ODA increased the introduction of orphan drugs, the ODA may not 

have affected the treatment of orphan diseases. Drugs that are already approved for non-

orphan diseases can be prescribed “off-label” for orphan diseases. The effect of the ODA 

on prescriptions for orphan diseases could thus be muted by physicians’ judgments about 

existing treatment options. Indeed, after the ODA passed, many orphan designations 

simply “caught up” with existing treatment options: pharmaceutical companies obtained 

orphan indications for drugs that had already been approved and, in many cases, already 

prescribed for orphan diseases. Grabowski (2005) estimated that from 1983 to 2002, 

more than half of the drugs approved for orphan indications were already approved for 

other indications. Even new orphan drugs may not have affected prescription behavior if 

they were not perceived to be of sufficient quality or affordability.  

The strongest evidence for a positive effect of the ODA on prescriptions comes 

from Lichtenberg and Waldfogel (2003). Using U.S. medical survey data from 1979 (pre-

ODA) and 1998 (post-ODA), they regressed the differences between the two surveys in 

the rates of any drug prescriptions for a disease, on the differences in disease prevalence 

and the rates of orphan drug prescriptions. They concluded that the ODA increased the 

probability of having any drug prescribed from 5% to 6%. Although this difference-in-
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difference model controls for unobserved heterogeneity that may have affected 

prescription rates at a single point in time, it assumes that the only relevant exogenous 

change between the two surveys was the introduction of the ODA. This is possible, but it 

is also quite plausible that other changes over the 19-year period may have affected the 

relationship between disease prevalence and drug prescriptions.  

Whether the ODA has had positive effects, and whether these effects have been 

clinically significant, is a question that remains relevant today. The apparent success of 

the ODA has inspired efforts to amend the ODA to cover additional diseases (Villa, 

Compagni, and Reich, 2009). And even sustaining the ODA carries significant potential 

costs and risks. Because of the ODA’s market exclusivity clause, orphan drugs face 

significantly less competition from generic products, causing higher prescription costs 

(Seoane-Vazquez et al., 2008). The ODA’s tax credit and user fee waiver are a cause of 

lost federal income: the user fee waiver costs the FDA more than $1 million per product 

(Braun et al., 2010), and ODA-related tax credits have cost over $400 million per year 

(Yin, 2008). In addition, safety problems have disproportionately affected orphan drugs 

since the ODA passed, attributed to the favorable regulatory treatment and the small, 

nonrandomized trial designs commonly used after the ODA (Kesselheim, 2011). For 

example, alglucerase, a treatment for a rare congenital enzyme deficiency, was approved 

for orphan designation after a one-year trial with twelve patients (Kesselheim, 2011).  

Therefore it remains important to evaluate the benefits of the ODA, and how these 

benefits might compare to its potential costs. In addition, the ODA is one of only a few 

U.S. policies that use supply-side subsidies to stimulate R&D (Yin, 2008). Tests of the 

ODA’s effects may thus be of broader significance to policy efforts aimed at stimulating 
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innovation. In the remainder of this paper, we begin by outlining a simple economic 

model of pharmaceutical availability. We then test this model’s predictions using 

prescription data from clinical visits in the United States. 

 

An economic model of pharmaceutical availability 

We derive a model of pharmaceutical availability from Salop’s (1979) spatial market 

model. Like Yin (2008), we conceive of “locations” that are associated with the benefits 

obtained from a pharmaceutical. If we assume that physicians are responsible agents for 

their patients, a physician prescribes drug i to maximize the patient’s utility:  

  spllU itii *),(max          (Eq. 1) 

where li is the actual “location” of a drug in pharmacokinetic space, l* is the optimal 

“location” of the drug for treating the patient, pi is the price of the drug i at time t, and s is 

the patient’s surplus. The distance between li and l* is a measure of the efficacy and 

safety of the drug. At distance zero, the drug provides maximum benefit to the patient. At 

some maximum distance, the drug has no benefit for the patient, and will not be 

prescribed. Equation (1) can be rewritten as  

  0*max  itii pllcv        (Eq. 2) 

where c is the “transport cost” in using a drug that is not perfectly indicated for the 

patient and υ is the resulting utility-based “willingness to pay” for the drug. This 

“transport cost” could be the cost of inefficacy and/or the cost of side effects. The 

maximum distance of a drug to a patient is  

 *max llx i            (Eq. 3) 
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Physicians will not prescribe drugs that exceed x distance from l*. If no drug exists 

within this distance, then no drug will be prescribed. Combining Equations (2) and (3) we 

get 

c

pv
x it
           (Eq. 4) 

The prevalence, θ, of a disease can be thought of as the “density” of patients in 

this pharmacokinetic space. Additionally, we use the terminology i=0 here and below to 

denote an instance when no drug exists (i.e., a drug company has not invested adequate 

R&D costs to produce the drug), and we use i≠0 to denote an instance when a drug does 

exist. When a drug exists, the total number of drug prescriptions, Q, for patients is then: 

   xxlxlQ 2**  , for i≠0     (Eq. 5) 

Substituting Equation (4) into Equation (5), we get 

)(
2

itpv
c

Q 


, for i≠0       (Eq. 6) 

Equation (6) therefore represents the quantity of drugs that will be prescribed if a drug 

exists within this pharmacokinetic space. This quantity is higher when the prevalence θ is 

higher, when the inefficacy and/or side effects are lower (i.e., c is smaller), when the 

“willingness to pay” υ is higher, and when the price pit is lower. If a drug does not exist 

within this space, then the quantity is simply zero.   

For time periods t after a drug’s exclusivity has expired, the manufacturer will 

face the competitive price pc, equaling marginal cost, m: 

mpc           (Eq. 7) 

For time periods t prior to a drug’s exclusivity expiring, exclusivity allows a monopoly 

price pm, equal to: 
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)1/(,  mpm         (Eq. 8) 

where η is the inverse of the price elasticity of demand.  

Let N equal the average effective period of exclusivity in the absence of orphan 

designation. (In the case of a typical New Chemical Entity, N=5.) Manufacturers of drugs 

with disease prevalence greater than or equal to 200,000 cases will therefore receive pm 

for years t=1 through t=N and then receive pc for years t=N+1 onward. The ODA 

increases this period of exclusivity from N years to 7 years for manufacturers of drugs 

with disease prevalence less than 200,000 cases. As a result, these orphan drug 

manufacturers will receive pm for years t=1 through t=7 and then receive pc for year t=8 

onward.   

Substituting Equation (7) for the monopoly price and Equation (8) for the 

competitive price into Equation (6) gives the following expression for the total number of 

prescription drugs: 

 

    0        , for i(θ)=0 (Eq. 9) 

 

Q =     
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    , for i(θ)≠0 and θ < 200,000  
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 , for i(θ)≠0 and θ ≥ 200,000 

 

where we have now altered the expression for whether a drug exists (i≠0) or does not 

exist (i=0) to instead be i(θ) to clarify that the existence of the drug is determined by 
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whether the ODA is in effect and whether the prevalence θ is below or above the 200,000 

prevalence threshold.     

The number of prescriptions is thus generally increasing in prevalence, but with a 

potential discontinuity at θ=200,000. Interestingly, though, whether the number of 

prescriptions Q increases or decreases as the prevalence crosses the 200,000 threshold is 

actually ambiguous.  

For the “extensive” margin for whether a drug is developed (and thus able to be 

consumed), being just underneath the ODA’s 200,000 prevalence threshold has a positive 

effect on the quantity Q, as the increase in potential monopoly profits has an 

unambiguous effect on increasing the likelihood that a new drug is developed.  Most 

advocates for the ODA seemingly focus on this extensive margin regarding drug 

development.   

However, for the “intensive” margin for the number of prescriptions for existing 

drugs (which would have been developed in the absence of the ODA’s new incentives), 

being just underneath the ODA’s 200,000 prevalence threshold actually has a negative 

effect on the quantity Q. That is, the higher monopoly price for years N+1 through 7 (i.e., 

the price is pm rather than pc) implies a lower number of drug prescriptions during those 

years. Moreover, the magnitude of this marginal reduction in quantity depends on the 

extent to which the demand for the drug is elastic. (To our knowledge, this potentially 

perverse effect of the ODA does not appear to have been described elsewhere.)  

Our theoretical model therefore predicts one of three possibilities. One is a 

positive discontinuity on quantity of prescription drugs as the prevalence passes below 

the 200,000 threshold; this would result from the consumption of newly-developed drugs 
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outweighing the reduced consumption of higher-priced existing drugs. The second is a 

negative discontinuity on quantity as the prevalence passes below the 200,000 threshold; 

this would result from reduced consumption of higher-priced existing drugs outweighing 

the consumption of newly-developed drugs. The third is no discontinuity at the 200,000 

prevalence threshold; this would result from the consumption of newly-developed drugs 

equaling the reduced consumption of higher-priced existing drugs. Our empirical strategy 

is to therefore test for the presence (and, if applicable, the direction) of this discontinuity, 

which can in turn help us evaluate the overall effect of the ODA.  

 

Research Methods 

We test whether there is a discontinuity in drug prescriptions for conditions with 

prevalence above and below 200,000 cases. In particular, we measure how many drug 

prescriptions were made for each ICD9 per year, as a function of prevalence for that 

ICD9, and we test for the presence of a discontinuity at a prevalence of 200,000 cases. In 

contrast to prior research on the effect of the ODA, we employ a regression discontinuity 

design that approaches the unbiasedness of a true experiment. This design also allows us 

to infer whether the ODA increased the availability of drugs, as reflected in the 

prescription of drugs located an acceptable “distance” from the patient. 

 

Data 

We examine prescription patterns for the years 1985, 1996, and 2006 – a period that 

covers a time shortly after the ODA’s passage, to more than 10 years after its passage, to 

more than 20 years after its passage. Diagnosis codes and drug prescription codes were 
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obtained from the National Ambulatory Medical Care Surveys (NAMCS) for the years 

1985, 1996, and 2006. The NAMCS collect data on patient visits to a national sample of 

office-based physicians. The sample includes office visits to non-federally employed 

physicians classified by the American Medical Association or the American Osteopathic 

Association as “office-based, patient care” from 112 Primary Sampling Units in the 

United States.  

We used the following NAMCS records from each office visit: the physician’s 

diagnoses (classified by ICD9 codes), any drugs prescribed, and the sampling weight. For 

each ICD9 diagnosis, we estimated the U.S. disease prevalence by multiplying survey 

diagnosis counts by survey sampling weights. Likewise, for each prescription in the 

sample, we estimated U.S. drug prescription counts by multiplying survey drug counts by 

the survey sampling weight associated with the entry.  

 

Methods 

Equation (9) above suggests that the number of drug prescriptions for a disease is 

generally an increasing function of disease prevalence. Lichtenberg and Waldfogel 

(2003) found this assumption to hold true for drug prescriptions, as a whole. If the ODA 

has positively affected drug prescriptions for rare diseases, we should observe a larger-

than-expected number of prescriptions as prevalence decreases just below the threshold 

of 200,000 cases. That is, the ODA should introduce a discontinuity in the relationship 

between disease prevalence and drug prescriptions (Figure 2).  

 

[Figure 2 here] 
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The presence of such a discontinuity can be tested using a regression discontinuity 

design (RDD). RDD is an econometric technique used in cases where assignment to one 

of two groups is determined by position above or below a threshold on a single 

continuous variable -- in this case, disease prevalence. Two lines are fit to data within a 

small distance of both sides of the threshold, and the effect of assignment is the 

difference between the two lines’ intercepts. Observations at small distances above or 

below the threshold are unlikely to be systematically different, except for their 

(exogenous) assignment to one of the two groups – in this case, orphan drug designation. 

Thus their assignment is effectively random, and RDD approaches the unbiasedness of a 

true experiment (Lee and Lemieux, 2010). 

Following the RDD approach, the numbers of drug prescriptions were estimated 

in the non-parametric local linear regression: 

  )200(*]200[1)200(]200[1 321Q  (Eq. 10) 

where ]200[1   is the indicator function for prevalence less than 200,000 cases, and 

where 200-h ≤   ≤ 200+h. The optimal bandwidth, h, was determined by the cross-

validation criterion: 
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     (Eq. 11) 

where Q


is the estimated number of drug prescriptions as a function of prevalence for a 

given bandwidth, and N is the number of observations captured in that bandwidth 

(Imbens and Lemieux, 2008). For ease of implementing the RDD, we used a 

nonparametric regression rather than an alternative model of utilization counts using a 
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Poisson or negative binomial. All coding and analyses were performed in Stata 10. (The 

Stata .do file is available online at www.jgmatheny.org.) 

 

Results 

Data summary 

Table 1 lists the sample size, number of unique diagnoses, and number of drug 

prescriptions observed in each NAMCS. The 1985 survey was three times the size of the 

1996 and 2006 surveys. As a result, the diversity of diagnoses and prescriptions was 

substantially larger.  

 

[Table 1 here] 

 

Figure 3 plots the total annual number of drug prescriptions against disease 

prevalence. The top, middle, and bottom panels show results for 1985, 1996, and 2006, 

respectively. All plots show an increasing trend in prescriptions as a function of 

prevalence.  

 

[Figure 3 here] 

 

Regression discontinuity estimates 

Table 2 lists the regression discontinuity estimates for prescriptions as a function of 

prevalence. The estimates represent the effects of orphan designation – the differences 

between the right- and left-hand vertical intercepts on the prevalence threshold of 
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200,000 cases. The table presents the estimates and standard errors for the effect of 

orphan designation on the number of drug prescriptions. The three columns show the 

results for the different years. In all three instances, the estimates are not significantly 

different from zero. That is, for all three years, there is no significant discontinuity in the 

number of drug prescriptions for a disease, as a function of prevalence. Moreover, the 

point estimates are relatively small in magnitude, suggesting that our insignificant results 

are mainly driven by small underlying magnitudes rather than by large estimated standard 

errors. For instance, in 1996, the point estimate for the effect of the discontinuity at the 

200,000 prevalence threshold on the number of drug prescriptions is only 2,480, 

compared to a predicted value of 161,052 prescriptions for a prevalence of 200,000.   

 

[Table 2 here]  

 

Discussion 

The absence of regression discontinuities in 1985, 1996, and 2006 suggests that the ODA 

did not affect the rates of drug prescriptions for rare diseases. This result is not 

inconsistent with most of the prior research we cited above. The strongest evidence for 

the ODA’s effects has been the number of orphan drugs developed and marketed (Cote et 

al., 2010; Yin, 2008). But as we demonstrated in our theoretical model, an increase in the 

number of orphan drugs marketed does not necessarily imply an increase in the overall 

number of orphan drug prescriptions. Regardless, an increase in the number of orphan 

drugs prescribed over time could be due to causes other than the ODA.  
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Our results contradict only one study’s findings – Lichtenberg and Waldfogel 

(2003). They found a statistically significant but small (one percentage point) effect of 

the ODA on orphan drug prescriptions. The differences in our results might be explained 

by the different assumptions in our empirical strategies. The weakest assumption in their 

strategy is that exogenous changes during the 19-year study period were due only to the 

ODA. Over such a long period, it seems likely that changes in income, treatment-seeking 

behavior, and clinical practice could have significantly affected the relationship between 

disease prevalence and drug prescriptions.  

In contrast, the weakest assumption of our strategy is the relevance of prevalence 

estimates from NAMCS. This assumption is shared by Lichtenberg and Waldfogel, but 

our models may be more sensitive to the assumption. Like Lichtenberg and Waldfogel, 

we matched prevalence data with prescription data of the same year. It typically takes 

several years for a pharmaceutical to move from the beginning of clinical trials to 

marketing approval. Thus the prevalence data supporting a drug’s orphan designation are 

typically several years older than the drug’s prescription data. If disease prevalence 

changed significantly over this time, the time-lag would blur any threshold in our sample. 

However, Yin (2008) found that this was not the case in his study. In a sample of 1,177 

diseases studied from 1981 to 1994, U.S. disease prevalence estimates changed 

significantly for only six diseases. This suggests that our contemporaneously matched 

data are unlikely to mask a threshold.  

Another concern regarding our prevalence data is that they may not be 

representative of the data used in orphan-designation. Developers applying for orphan 

designation are responsible for providing FDA with evidence that the target disease has a 
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prevalence less than 200,000. Developers may thus be motivated to develop drugs for a 

disease with a prevalence marginally above 200,000 if they can find corroborating 

prevalence studies, however suspect or outdated. Such behavior would have the effect of 

increasing the right-side intercept on the RDD threshold, decreasing the apparent effect 

of the ODA. Without access to confidential orphan drug applications to FDA, this is 

difficult to test.  

A possible explanation for our results is that market exclusivity has had a perverse 

effect on orphan drug price, quality, and consumption. One perverse effect was 

mentioned as a feature of our economic model above: the monopolist’s increase in the 

price decreases the number of prescriptions for the drug, and the magnitude of this 

decrease in consumption depends on the price elasticity of demand for an orphan drug. 

Most drugs receiving orphan designation were actually already on the market 

(Grabowski, 2005). The introduction of monopoly prices for these existing products 

could have decreased consumption sufficiently to balance any increase in consumption 

resulting from the introduction of new orphan drugs. The dual effects of increasing the 

prices of existing products while increasing the number of new products could neutralize 

any impact of the ODA, positive or negative, on orphan drug prescriptions. 

Another perverse effect of the ODA is deterrence of late entrants. While the ODA 

provisions reward early-entry firms for introducing new orphan drugs, they deter late-

entry firms. Firms may be unable to prove the superiority of a product in a small clinical 

trial (as efficacy trials for rare diseases necessarily are), and the ODA provides no reward 

for reducing cost. As a result, the total number of drugs for a condition may rarely exceed 

one, and quality may be only marginally better than off-label drugs. 
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It is also possible that the ODA had clinically significant effects by increasing the 

quality, rather than the quantity, of prescribed drugs. Physicians may be motivated to 

prescribe an ineffective drug in the absence of an effective one. (In our model, such 

physicians would be prescribing drugs that exceed a distance of x from the patient.) The 

psychology of such a practice seems realistic -- physicians may feel compelled to do 

something rather than nothing, and patients may prefer the same. Such practice would 

tend to inflate prescription behavior for rare diseases, masking the effect of orphan-

designation. The main effect of the ODA could have been a substitution of effective 

drugs for ineffective drugs. Further research could test this effect, by examining 

regression discontinuities in health outcomes for diseases by prevalence. 
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Figure 1: Conceptual framework for pharmaceutical availability 
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Figure 2. Hypothetical discontinuity in drug prescriptions (thousands per year) as a 

function of prevalence (thousands of cases per year) 

 

 
 

 

  

0

100

200

300

400

0 100 200 300 400

N
u
m

b
er

 o
f 

p
re

sc
ri

p
ti

o
n
s 

Disease prevalence 



65 

 

Figure 3. Scatter plots of numbers of drug prescriptions (thousands per year) by 

disease prevalence (thousands of cases per year). 
 
1985: 

 
1996: 

 
2006: 

 
Note: Based on diagnosis and prescription data in the National Ambulatory Medical Care 

Surveys (NAMCS) for the years 1985, 1996, and 2006. Prescription data and prevalence 

data were matched by IC9 code. Every point represents a unique ICD9 code. For clarity, 

figures are centered on disease prevalence of 200,000 cases.  
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Table 1: Cases and numbers of unique diagnoses and prescribed drugs  

 

 1985 1996 2006 

Cases with a diagnosis 71,281 24,956 23,088 

Unique ICD9 diagnosis codes 3,234 2,196 2,280 

Unique Drug IDs 1,642 1,099 834 

 

Note: Based on ICD9 case counts and drug prescriptions from the National Ambulatory 

Medical Care Surveys (NAMCS) for the years 1985, 1996, and 2006. 
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Table 2: Regression discontinuity estimates  

 

 

1985 1996 2006 

Number of drug prescriptions    

RD point estimate 

  

-15.43 

 

2.48 

 

27.71 

RD standard error 

 

22.40 

 

31.66 

 

25.75 

 

Note:  Point estimates in thousands. Estimates based on diagnosis and prescription data in 

the National Ambulatory Medical Care Surveys (NAMCS) for the years 1985, 1996, and 

2006. Prescription data and prevalence data were matched by IC9 code. The numbers of 

matched observations were 3,234, 2,196, and 2,280 for the years 1985, 1996, and 2006, 

respectively.  
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Abstract 

The U.S. Public Health Emergency Medical Countermeasure Enterprise (PHEMCE) has 

defined a set of requirements for drugs and vaccines to protect civilians against biological 

threats. We survey candidate PHEMCE products in development and estimate their future 

clinical development costs based on historical costs and failure rates. We estimate that the 

cost of supporting existing candidates through clinical development is likely to be $428 

million in fiscal year 2014 alone. Given the high failure rate of biopharmaceutical 

development, the probability of developing approved products from the existing pipeline 

is between 0% and 90% per requirement. To increase the probability to 90% for all 

requirements, a significantly expanded portfolio would be needed, with an expected 

clinical development cost of $9.8 billion over ten years.  
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Introduction  

In 2006, the Pandemic and All-Hazards Preparedness Act (PAHPA, PL 109-417) was 

signed into law, creating the Biomedical Advanced Research and Development Authority 

(BARDA) within the U.S. Department of Health and Human Services (HHS).  One of 

BARDA’s core missions, as defined by PAHPA, is to promote the clinical development 

of drugs and vaccines effective against chemical, biological, radiological, and nuclear 

(CBRN) threats to the United States. BARDA was intended to bridge the “valley of 

death” between National Institute of Allergy and Infectious Diseases (NIAID) funding 

for research and preclinical development, and federal procurement of developed products 

via the BioShield program that was established by law in 2004 (P.L. 108-276) (Figure 1). 

 

[Figure 1 here] 

 

In the April 2007 Public Health Emergency Medical Countermeasure Enterprise 

(PHEMCE) Implementation Plan (USDHHS, 2007), HHS defined requirements for 

pharmaceuticals that address CBRN “Material Threats” – threats assessed by the US 

Department of Homeland Security to pose a significant risk to US citizens. Since 2007, 

pharmaceuticals addressing the PHEMCE requirements are eligible to receive funding 

from BARDA for clinical development. The President’s fiscal year 2014 (FY14) budget 

includes $415 million for BARDA. However, to our knowledge, no empirical analysis 

has been performed to determine whether this budget is sufficient to accomplish 

BARDA’s mission.  
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To analyze BARDA’s current budget’s capabilities, we first survey the pipeline of 

candidates in or entering clinical development that could be responsive to the eight 

PHEMCE requirements addressing infectious diseases (Box 1), updating earlier surveys 

by Matheny, Mair, and Smith (2008, 2009). We then apply recent estimates of 

pharmaceutical development costs (Matheny and Herring, 2013) to calculate the level of 

funding needed to support this pipeline through clinical development. Using historical 

failure rates of pharmaceutical development, we estimate the size and cost of a portfolio 

that could yield a 70%, 80%, and 90% probability of at least one FDA-approved product 

per PHEMCE requirement.  

We conclude by exploring one possible approach to reducing PHEMCE 

requirement costs: reducing the size and/or lengths of BARDA-funded clinical trials. The 

size and lengths of clinical trials are typically chosen to achieve a level of statistical 

power for assessing the safety and efficacy of candidate products. However, PHEMCE 

products are an unusual case, as they are intended to be used only during a public health 

emergency. During a declared emergency, the FDA has the authority to issue 

“Emergency Use Authorizations” (EUAs) to deploy products that have not met the usual 

requirements for regulatory review. P.L. 108-276 states: “the FDA Commissioner may 

allow unapproved medical products or unapproved uses of approved medical products to 

be used in an emergency to diagnose, treat, or prevent serious or life-threatening diseases 

or conditions caused by such agents, when there are no adequate, approved and available 

alternatives.” While EUAs place the public at some risk, the public would arguably be at 

greater risk if they had no access to products during an emergency. The same argument 

could be used to justify smaller clinical trials, if it is a choice between products tested in 
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small trials, versus no products, whatsoever. We therefore explore the consequences of 

smaller trials for costs and statistical power. 

 

Data and Methods 

As noted above, our methodological approach is to first identify the set of candidates 

currently in clinical development that are likely to respond to the PHEMCE requirements 

for infectious diseases. We then calculate the level of funding needed to support this 

current pipeline through clinical development and estimate the probability that this 

current portfolio yields at least one FDA-approved product. We then calculate the level of 

funding needed to support alternative pipelines with higher probabilities of yielding at 

least one FDA-approved product. We conclude by also examining the consequences of 

reducing the number of clinical trial participants.    

 PHEMCE requirements are based on the PHEMCE Implementation Plan 

(USDHHS, 2007), reiterated in the 2012 PHEMCE Strategy (USDHHS, 2012). (See Box 

1.) Our analysis includes only pharmaceutical requirements for infectious diseases, which 

form the majority of PHEMCE requirements, and excludes pharmaceuticals for 

radiological, nuclear, or chemical agents, as well as diagnostics and biodosimetry assays.  

 

[Box 1 here] 

 

There is no single database of pharmaceutical candidates that could meet 

PHEMCE requirements. We identify candidates by drawing upon five sources of 

information: (1) FDA’s ClinicalTrials.gov database (FDA, 2012), using searches for the 



73 

 

appropriate targets (e.g., “smallpox”, “junin”); (2) HHS’ MedicalCountermeasures.gov 

contract database (HHS, 2012); (3) National Institute of Allergy and Infectious Diseases 

(NIAID) reports (NIAID, 2012); (4) pharmaceutical and biotechnology companies’ press 

releases and quarterly and/or annual reports; and (5) discussions with biopharmaceutical 

managers and HHS staff. The resulting list of pharmaceutical candidates we compile 

excludes products that are already under an HHS BioShield procurement contract, as 

these are ineligible for BARDA funding.  

We base the clinical development costs on recent empirical estimates from public 

data for over 2,000 clinical trials during the years 2006 to 2010 (Matheny and Herring, 

2013).
 
These costs are assumed to remain constant at 2010 levels. Annual clinical trial 

costs are assumed to be equal across product classes (antibiotics, antivirals, vaccines, and 

antitoxins). Transition probabilities and durations are based on historical averages (Davis 

et al., 2011), separated into two classes: small molecule drugs (antibiotics and antivirals) 

and biologics (vaccines and antibodies).  

We assume that our cost estimates from a wide range of product classes are 

comparable to those costs for drugs in the PHEMCE portfolio. Most PHEMCE 

requirements address infectious diseases that present a potential risk to human health but 

currently have a prevalence of zero. For instance, there are currently no human cases of 

smallpox. Without human patients already suffering from such diseases, and given the 

significant risks to subjects who might volunteer to be infected under experimental 

conditions, candidate products for PHEMCE requirements cannot be evaluated for 

efficacy on human patients. While a product’s safety is still assessed using human 

patients, its efficacy is evaluated using non-human animals. The FDA’s Animal Efficacy 
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Rule provides guidance for using animal models as replacements for traditional efficacy 

tests (Gronvall, Trent, Borio, et al., 2007). While one might expect this Rule to reduce 

clinical trials costs, typical Phase II and Phase III trials employ the same human patients 

for both safety and efficacy tests, so the removal of efficacy tests is unlikely to reduce 

trial size. In fact, BARDA-funded candidates currently in Phase II trials involve a larger 

than average number of human subjects. (There are no BARDA-funded candidates in 

Phase III trials.) 

We also assume that candidate products are at the midpoint of their current phase 

of preclinical or clinical development. As each phase has a mean duration over two years, 

we assume that for FY14, all candidates would remain in their current phase for the 

remainder of the fiscal year.  

FY14 costs of clinical development for existing candidates are calculated by 

multiplying the number of candidates in each clinical phase by the respective annual cost 

per FY14 phase. The cost of supporting clinical development for all existing candidates 

up to failure or approval is calculated as: 
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where Ni is the number of candidates at phase i (“phase 0” is preclinical), Pr(j) is the 

probability of transitioning from phase j-1 to phase j, cj is the annual cost per trial in 

phase j, and tj  is the duration of phase j in years. The probability of at least one approved 

product per PHEMCE requirement is calculated as: 
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where Pr(Approval | i) is the conditional probability of a candidate at phase i receiving 

FDA approval. 

In addition to reporting the cost and success probability of the current PHEMCE 

portfolio, we also use Equations (1) and (2) to analyze alternative portfolios. Specifically, 

we use Equation (2) to first estimate three alternative number of candidates Ni
*
 in order 

for Pr(Approval≥1)
*
 to equal to 70%, 80%, and 90%. We then determine the 

corresponding costs C* for each of these three alternative Ni
*
 values using Equation (1).  

We conclude by analyzing the implications of reducing the number of participants 

in clinical trial sizes – specifically focusing on the reduction in overall costs of 

development and on the reduced likelihood of detecting adverse events. Regarding the 

costs of development, we estimate the cost savings of reducing clinical trial sizes by 

using an alternative specification for clinical trial costs based on the number of clinical 

trial subjects: 
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where nj is the number of subjects in phase j, cj is now the marginal cost per subject, and 

kj is the fixed cost of a clinical trial; each of these estimates are from Matheny and 

Herring (2013). 

Regarding the reduced likelihood of detecting adverse events, we estimate how 

reductions in clinical trial size would affect inferences about a product’s safety, given 

observations of a control group and an experimental group. In particular, we estimate the 

statistical power of a one-sided t-test for α=0.05: 

  90.064.11   inD      (Eq. 4) 
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where ni is the number of subjects in phase i, D is the expected difference in the adverse 

event rates between the control and experimental groups, σ is the standard deviation of 

the observed number of adverse events, and Φ is the normal cumulative distribution 

function. For illustration, we focus on the statistical power of a Phase II drug trial and 

assume a difference of 0.1 in adverse event rates and a standard deviation of 0.2. 

 

Results 

Our survey identified 32 candidates that could fulfill PHEMCE requirements (Table 1). 

Of these 32 candidates, 12 are now in preclinical development, 13 are in Phase I trials, 

and 7 are in Phase II trials.  

 

[Table 1 here] 

 

Given the assumptions described above for expected costs, timelines, and success 

rates (Table 2), we estimate that the direct (out-of-pocket) costs for the clinical 

development of all 32 existing candidates up to failure or approval would total $4.2 

billion over 10 years, comprised of $1.6 billion towards antivirals and antibiotics and 

$2.6 billion towards vaccines and antitoxins (Table 3). Costs for FY14, alone, would total 

$428 million, comprised of $152 million towards antivirals and antibiotics and $276 

million towards vaccines and antitoxins.   

 

[Table 2 here] 

[Table 3 here] 
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The probability of at least one approved product per PHEMCE requirement 

within the existing pipeline is 90% for an anthrax vaccine, 83% for an anthrax antitoxin, 

64% for a filovirus vaccine, 77% for a filovirus antiviral, 26% for a Junin virus antiviral, 

67% for a smallpox antiviral, 61% for a Gram(-) antibiotic, and 0% for a Gram(+) 

antibiotic (Table 4).  

 

[Table 4 here] 

 

To yield at least a 70% probability of one approved product for each of the eight 

PHEMCE requirements, the portfolio of preclinical candidates would need to expand by 

a total of 19 candidates (Table 5). There is relatively wide variation in the number of 

additional candidates needed across the requirements, with a value of zero for three of the 

requirements, up to 8 for a gram(-) broad spectrum antibiotic. Supporting the clinical 

development of these additional candidates up to failure or approval would cost 

approximately $5.8 billion over 10 years for the 70% threshold, compared to the current 

portfolio’s cost of $4.2 billion with 5 of the 8 requirements under 70%. While the costs 

increase linearly with the number of candidates, the probability of success increases only 

logarithmically, as illustrated in Figures 2 and 3. Adding those costs to the clinical 

development costs of existing candidates, the clinical development costs for a portfolio 

large enough to have a 80% probability of yielding at least one approved product per 

PHEMCE requirement would be $7.2 billion over 10 years (for an additional 35 

candidates relative to the current portfolio), and the clinical development costs for a 
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portfolio large enough to pass the 90% probability for each PHEMCE requirement would 

be $9.8 billion over 10 years (for an additional 64 candidates relative to the current 

portfolio). 

 

[Table 5 here] 

[Figure 2 here] 

[Figure 3 here] 

 

Finally, reducing clinical trial size would result in significant cost savings. While 

costs increase linearly with trial size, statistical power increases as a function of the 

square root of trial size. For instance, a 25% decrease in the size of a Phase II drug trial 

would decrease costs by $12 million, while decreasing the probability of detecting an 

adverse event by only 8 percentage points (Figure 4).  

 

[Figure 4 here] 

 

It should be noted that these results assume the use of classical inference in 

estimating the rates of adverse events. Alternative trial designs have been proposed that 

use Bayesian inference. Such designs could reduce the number of subject-years with 

minimal effect on the probability of Type II errors (Chow and Chang, 2008; Kairalla, et 

al., 2012). However, such designs are rarely used due to uncertainties about their 

regulatory treatment. 
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Four caveats should be noted about our analysis. First, because our analysis 

assumes that clinical development will be funded by the U.S. government under 

BARDA, our cost estimates include only out-of-pocket costs. Capitalized costs would be 

significantly higher. (For instance, at the 11% rate typically used for pharmaceutical 

companies, the capitalized cost of $5.6 billion over ten years would be $15.9 billion; even 

at a 5% rate, the capitalized cost would be $9.1 billion.) Second, our analysis 

underestimates the total level of funding needed to support BARDA, whose requirements 

include the development of diagnostics and biodosimetry assays, as well as 

pharmaceuticals for chemical, radiological, and nuclear agents. (However, these 

additional requirements are a minority of PHEMCE requirements.) Third, our cost 

estimates are for clinical development and do not include the costs of basic research, 

preclinical development, large-scale manufacturing, or stockpiling in the Strategic 

National Stockpile (SNS), which are not part of BARDA’s advanced development 

mission, as defined by law. Fourth, our cost projections assume constant clinical trial 

costs at 2010 levels. There is some historical evidence of clinical trial costs increasing 

faster than inflation (DiMasi, Hansen, and Grabowski, 2003), but we are not aware of 

recent evidence. 

 

Discussion 

Our survey identified 32 products currently in preclinical development or clinical trials 

that could satisfy the eight requirements set by HHS in its PHEMCE Implementation 

Plan. To support these candidates through clinical development, BARDA would need an 

estimated $428 million in fiscal year 2014 and a total of $4.2 billion over 10 years. The 
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$415 million requested in the President’s FY14 budget is thus almost sufficient to cover 

existing candidates. However, because of the high failure rates in drug and vaccine 

development, the existing pipeline of candidates has a low probability of ultimately 

satisfying all of the government’s requirements. Without additional candidates, it is 

unlikely that products will be approved for most of the PHEMCE requirements. 

Supporting an expanded portfolio of candidates to yield with 90% probability one 

approved product per PHEMCE requirement would cost more than $9.8 billion over 10 

years.  

With historic funding rates, it is unlikely that BARDA could support such a 

pipeline. HHS has several alternatives. First, it could consider exercising its Emergency 

Use authorities to employ products that have been approved using smaller clinical trials. 

Our results suggest that reducing clinical trial sizes would significantly reduce costs with 

relatively small losses in statistical power. HHS could also consider focusing its limited 

funds on the one or two agents believed to present the greatest risk to public health. 

Congress could provide BARDA with the authority to employ incentives, such as priority 

review vouchers, to supplement funding shortfalls in pharmaceutical development grants 

and contracts (Matheny, Smith, Courtney, Mair, 2009). Lastly, the costs and benefits of 

achieving the PHEMCE requirements could be compared to those of achieving other 

public health objectives that may be more cost-effective. 
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Box 1: PHEMCE requirements for infectious diseases 

 

Anthrax antitoxin 

Filovirus vaccine  

Anthrax vaccine 

Smallpox antiviral 

Filovirus antiviral 

Junin virus antiviral 

Gram(+) broad-spectrum antibiotic 

Gram(–) broad-spectrum antibiotic 

 



84 

 

Table 1. Candidates potentially eligible for BARDA funding in FY14 

 

Category Company Candidate Phase  

Anthrax  

Vaccines Fraunhofer USA Plant-derived oral anthrax vaccine Preclinical 

 

Pharmathene Third-generation rPA  Preclinical 

 

DynPort IM vaccine Phase I 

 

Emergent Biosolutions BioThrax AVA Phase I 

 

Panacea Biotec Recombinant anthrax vaccine Phase I 

 

Vaxin 

Adenovirus-vectored nasal anthrax 

vaccine Phase I 

 

Emergent Biosolutions rPA (formerly VaxGen) Phase II 

 

Pharmathene SparVax  Phase II 

Filovirus  

Vaccines Alphavax Marburg  Preclinical 

 

Genphar Pan-Filovirus  Preclinical 

 

Integrated 

BioTherapeutics Ebola/Marburg  Preclinical 

 

Genphar Marburg  Phase I 

 

Genphar Ebola  Phase I 

Anthrax  

antitoxins Cangene Anthrax Immune Globulin Phase I 

 

Elusys Therapeutics Anthim monoclonal antibody Phase I 

 

Emergent Biosolutions AVP-21D9 monoclonal antibody  Phase I 

 

Emergent Biosolutions Anthrax Immune Globulin Phase II 

 

Pharmathene, Medarex Valortim antibody  Phase II 

Filovirus 

antivirals Siga Technologies ST-383  Preclinical 

 

UTMB, USAMRIID LJ001 - Ebola Preclinical 

 

Functional Genetics FGI-101  Phase I 

 

Sarepta  AVI-7537 - Ebola  Phase I 

 

Sarepta  AVI-7288 - Marburg  Phase II 

Junin  

Antivirals Siga Technologies ST193  Preclinical 

 

Siga Technologies ST-294 Preclinical 

Smallpox 

antivirals Biofactura Monoclonal antibody  Preclinical 

 

TSRL Cyclic cidofovir Preclinical 

 

Chimerix CMX001 Phase I 

 

Siga Technologies ST-246 Phase II 

Broad 

spectrum 

antibiotics* Nanotherapeutics NanoGENT Gram(-) Preclinical 

 

CUBRC, Tetraphase TP-434 Gram(-) Phase I 

 

GlaxoSmithKline GSK2251052 Gram(-) Phase II 

* Only broad-spectrum antibiotics with PHEMCE indications were included. 
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Table 2. Underlying assumptions for clinical development costs, sizes, durations, 

and transition probabilities  

 
 Antivirals and 

antibiotics 

Vaccines and 

antitoxins 

Preclinical development   

  Transition probability 47% 48% 

Phase I    

  Annual cost per trial ($M)   19.9 19.9 

  Annual cost per subject ($K) 490 490 

  Number of subjects 44 177 

  Duration (years) 2.39 2.88 

  Transition probability 83% 74% 

Phase II   

  Annual cost per trial ($M) 24.2 24.2 

  Annual cost per subject ($K) 303 303 

  Number of subjects 165 483 

  Duration (years) 3.38 3.96 

  Transition probability 56% 58% 

Phase III   

  Annual cost per trial ($M) 44.9 44.9 

  Annual cost per subject ($K) 12.4 12.4 

  Number of subjects 642 1,900 

  Duration (years) 3.15 3.76 

  Transition probability 65% 61% 

Notes: Costs and numbers of subjects from Matheny and Herring (2013) in 2010 dollars; 

durations and transition probabilities from Davis et al. (2011). 
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Table 3. R&D costs for clinical development of candidates 

 

Current number of candidates per phase 

Expected clinical 

development costs ($M) 

Pre-clinical Phase I Phase II Phase III  FY14  Total* 

Antivirals and 

antibiotics 7 4 3 0 $152 $1,584 

Vaccines and 

antitoxins 5 9 4 0 $276 $2,611 

 

Total 12 13 7 0 $428 $4,195 

* Total costs represent clinical development costs accrued until the success or failure of existing 

candidates (in 2010 dollars). 
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Table 4. Probability of satisfying PHEMCE requirements  

PHEMCE 

requirement 

Number of Candidates Probability of Approval at Phase* Probability 

of at least 

one 

approval  

Pre-

clinical 

Phase 

I 

Phase 

II 

Phase 

III 

Pre-

clinical 

Phase 

I 

Phase 

II 

Phase 

III 

Anthrax  

vaccine 
2 4 2 0 13% 26% 35% 61% 90% 

Anthrax  

antitoxin 
0  3 2 0 13% 26% 35% 61% 83% 

Filovirus  

vaccine 
3 2 0 0 13% 26% 35% 61% 64% 

Filovirus  

antiviral 
2 2 1 0 14% 30% 36% 65% 77% 

Junin virus  

antiviral 
2 0 0 0 14% 30% 36% 65% 26% 

Smallpox  

antiviral 
2 1 1 0 14% 30% 36% 65% 67% 

BSA:  

Gram(-)** 
1 1 1 0 14% 30% 36% 65% 61% 

BSA:  

Gram(+)** 
0 0 0 0 14% 30% 36% 65% 0% 

* These estimates are based on historical, aggregate data, and do not reflect judgments of the 

merits of any specific product currently in development. 
** BSA = Broad spectrum antibiotic 
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Table 5. Portfolios to satisfy PHEMCE requirements 

 

PHEMCE requirement 

Additional preclinical 

candidates needed for one 

approved product per 

requirement with 

probability: 

70% 80% 90% 

Anthrax vaccine 0 0 0 

Anthrax antitoxin 0 0 4 

Filovirus vaccine 2 5 9 

Filovirus antiviral 0 1 6 

Junin virus antiviral 6 9 13 

Smallpox antiviral 1 4 8 

Broad spectrum antibiotic: Gram(+) 2 5 9 

Broad spectrum antibiotic: Gram(-) 8 11 15 

Total  19 35 64 

Total clinical development costs for 

existing pipeline plus additional 

candidates ($M)  

$5,834 $7,229 $9,786 
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Figure 1. R&D and funding pathway for meeting PHEMCE requirements 
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Figure 2. Cost and success probabilities for at least one approved drug 
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Figure 3. Cost and success probabilities for at least one approved vaccine or 

antitoxin 
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Figure 4. Phase II drug clinical trial size, cost, and statistical power 
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CONCLUSION 

 

In this dissertation, I, along with co-authors, addressed three open questions related to the 

economics of pharmaceutical development. First, how much does it cost to conduct a 

clinical trial? Second, what effect has the model policy for incentivizing pharmaceutical 

development, the Orphan Drug Act, had on pharmaceutical availability? And third, how 

can the costs and risks of pharmaceutical development be used to model an optimal 

development portfolio? 

Regarding the first question, we find that the annual cost of clinical trials is $19.9 

million for a Phase I trial, $24.2 million for a Phase II trial, $48.9 million for a Phase III 

trial, and $35.2 million for a Phase IV trial. These results are consistent with previous 

estimates and yield an expected cost per approved pharmaceutical of $600 million – or 

over $1.2 billion when capitalized at 11% per year. Previous claims that pharmaceutical 

firms exaggerate their costs therefore appear to be unfounded. Pharmaceutical 

development is a very costly enterprise, and firms, policymakers, and foundations need a 

realistic accounting of these costs when planning pharmaceutical development efforts.  

Because the scale of clinical trials varies considerably, we also decompose 

average costs into the fixed costs of running a trial and the variable costs per human 

subject. We find that the annual cost for a clinical trial subject is $489,900 for Phase I, 

$303,100 for Phase II, $12,400 for Phase III, and statistically insignificant for Phase IV. 

Our results suggest that clinical trial costs could be significantly reduced by decreasing 

clinical trial size and/or length – particularly during the first two phases. Adaptive trial 

designs are one such approach to reducing the number of clinical trial subject-years, by 
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using early results to inform the design of subsequent experiments. FDA has been slow to 

provide guidance on adaptive trial designs. Our results suggest that much could be gained 

if FDA were to enable such designs. 

Our second questions was, what effect has the Orphan Drug Act (ODA), had on 

pharmaceutical availability? We do not find evidence of a significant discontinuity in 

drug prescriptions as prevalence approaches 200,000 cases. The absence of such a 

discontinuity suggests that the ODA did not significantly affect prescriptions for orphan 

diseases. One possible explanation for our result is a perverse effect of the ODA: it 

encourages firms to charge monopoly prices for existing products. A price increase could 

cause a sufficient decrease in prescriptions for existing orphan drugs, and that effect 

negates any increase in prescriptions for new orphan drugs. Given how costly the ODA is 

to maintain, more research on this question would be highly valuable. If confidential 

orphan drug applications to the FDA could be analyzed, this would help to clarify 

whether the prevalence estimates we used in our analysis are representative. A second 

research question is whether the main effect of the ODA could have been a substitution 

of effective drugs for ineffective drugs. Further research could test this effect, by 

examining regression discontinuities in health outcomes for diseases by prevalence. 

Our third question was, how can the costs and risks of pharmaceutical 

development be used to model an optimal development portfolio? As a demonstration, 

we estimate the cost of the U.S. Public Health Emergency Medical Countermeasure 

Enterprise (PHEMCE) – the U.S. government’s most detailed set of pharmaceutical 

requirements for any class of diseases. We find that the cost of supporting existing 

PHEMCE candidates through clinical development is likely to be $428 million in fiscal 
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year 2014 alone. This is close to the President’s request of $415 million in fiscal year 

2014, suggesting that the request was informed by a similar model.  

However, given the high failure rate of biopharmaceutical development, the 

probability of developing approved products from the existing pipeline is between 0% 

and 90% per requirement. To increase the probability to 90% for all requirements, a 

significantly expanded portfolio would be needed, with an expected clinical development 

cost of $9.8 billion over ten years. At historic funding rates, building such a portfolio is 

unlikely. PHEMCE would need to identify a subset of products to receive priority 

funding. Alternatively, PHEMCE could significantly reduce the cost per product by 

funding smaller clinical trials. We find that the benefits from decreasing clinical trial 

sizes can be substantial. For instance, a 25% decrease in the size of a Phase II drug trial 

would decrease costs by $12 million, while decreasing power by only 0.08. We note that 

the U.S. Department of Health and Human Services could exercise Emergency Use 

authorities to employ products that have been approved using small clinical trials. We 

could find no prior analysis of the tradeoffs between cost and safety in choosing clinical 

trial sizes – but formalizing this tradeoff, particularly when costs could mean there is no 

product at all, seems valuable.  

This dissertation offers answers to three controversial questions in 

pharmacoeconomics. It also demonstrates technical approaches that can be applied more 

generally to set realistic budgets for pharmaceutical development, support policies 

tailored to accelerate pharmaceutical development, and inform cost-effectiveness analysis 

of pharmaceutical projects. More accurate data on the costs and risks of pharmaceutical 

R&D, as well as their determinants, would help to: set appropriate budgets for 
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government R&D initiatives, such as those of the National Institute of Allergy and 

Infectious Diseases (NIAID), the Biomedical Advanced Research and Development 

Authority (BARDA), and BioShield; set realistic expectations and funding levels for anti-

infective R&D within the global health community, including NGO-led efforts to develop 

products for HIV, malaria, and tuberculosis; set targets for development pipelines needed 

to ensure at least one approval per target disease; establish appropriate sizes and 

structures for R&D incentives, such as Advanced Market Commitments and Priority 

Review Vouchers; support evaluation of Product Development Partnerships; and support 

cost-effectiveness analysis of pharmaceutical R&D in global health priority-setting 

exercises, such as the Disease Control Priorities Project, including comparisons with non-

pharmaceutical measures to control infectious diseases. 
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