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Abstract

We present an active-set algorithm for finding a local minimizer to a nonconvex

bound-constrained quadratic problem. Our algorithm extends the ideas developed

by Dostál and Schöberl1 that is based on the linear conjugate gradient algorithm

for (approximately) solving a linear system with a positive-definite coefficient ma-

trix. This is achieved by making two key changes. First, we perform a line search

along negative curvature directions when they are encountered in the linear conjugate

gradient iteration. Second, we use Lanczos iterations to compute approximations to

leftmost eigen-pairs, which is needed to promote convergence to points satisfying cer-

tain second-order optimality conditions. Preliminary numerical results show that our

method is efficient and robust on nonconvex bound-constrained quadratic problems.

Advisor: Dr. Daniel P. Robinson
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Chapter 1

Introduction

Quadratic problems form an important class of nonlinear optimization problems.

They involve the minimization of a quadratic objective function subject to linear

constraints on optimization variables. Quadratic programs find applications in a

wide variety of disciplines, e.g., portfolio optimization,2 machine learning,3,4 com-

puter vision,5 signal and image processing,6,7 optimal control,8 optimization with

partial differential equation (PDE) constraints,9 shape theory,10 sequential quadratic

programming,11,12 linearly constrained Lagrangian methods,13 and many more.

An important subclass of constrained quadratic problems are those with only sim-

ple bounds on the optimization variables. Such bound-constrained quadratic problems

(BCQPs), which are the focus of this thesis, are important in their own right with

applications to augmented Lagrangian methods,14,15 PDE-constrained optimization

problems,16 machine learning,3,4 and beyond.
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CHAPTER 1. INTRODUCTION

In this section we lay the foundation for the thesis by first introducing in Sec-

tion 1.1 the basic optimization problem that we study, i.e., the BCQP. In Section 1.2

we then give the contributions of this thesis and explain why they are important.

In Section 1.3 we summarize the notation used throughout, while in Section 1.4 we

summarize key definitions. Finally, we finish in Section 1.5 by giving the optimality

conditions for the BCQP that we study.

1.1 The problem formulation

In this thesis we focus on a special optimization problem called a bound constrained

quadratic problem (BCQP). A BCQP is found in many image processing and medical

imaging applications with upper and lower bounds on the parameter(s) of interest

(e.g., image intensity). Specifically, the BCQP may be written as

minimize
x∈Rn

q(x) :=
1

2
xTHx− cTx

subject to l ≤ x ≤ u,

(1.1)

where q is the quadratic objective function, H is a given symmetric n × n Hessian

matrix, c ∈ Rn is a given column vector, and l, u ∈ Rn are column vectors such that

l < u componentwise; components of l/u are allowed to have −∞/∞ values. We note

that there is no loss in generality with assuming that l < u since if li = ui for some i,

then any solution x∗ to (1.1) must also satisfy x∗i = li. Consequently, the ith variable

2



CHAPTER 1. INTRODUCTION

may be considered as fixed and need not be a variable in the optimization problem.

The tractability of solving the BCQP (1.1) depends on the properties of q, in

particular those of H. If H is positive semidefinite, (1.1) is a convex optimization

problem, which means that any local minimizer is also a global minimizer. In the

special case ofH = 0, the convex BCQP reduces to a linear program. IfH is indefinite,

problem (1.1) is nonconvex so that finding the global solution is NP-hard.17,18 In

particular, a local minimizer is not necessarily a global minimizer.

1.2 The contributions of this thesis

This thesis presents a new algorithm for solving BCQPs. The core components

of the method are similar to those presented by Dostál and Schöberl.1 In particular,

a prominent role is served by the linear conjugate gradient (CG) algorithm for ap-

proximately solving a linear system with a positive-definite coefficient matrix. Their

method has proved effective on a diverse range of applications that require the solu-

tion to convex BCQPs. Unlike their method, our proposed algorithm is applicable to

nonconvex BCQPs. To tackle the challenges associated with non-convexity, we use

a special procedure when the linear CG iteration encounters negative curvature, and

include a mechanism (based on the Lanczos iteration for approximating eigenvalues)

that incorporates the leftmost eigen-vector when appropriate. Our numerical results

indicate that our method is efficient and robust.

3



CHAPTER 1. INTRODUCTION

1.3 Notation

The notation used is standard in optimization and gathered here for reference.

• The optimization variables are denoted as the vector x ∈ Rn.

• The quadratic objective function (see (1.1)) is denoted by q : Rn → R.

• The gradient of q is denoted by g := ∇xq, i.e., g(x) = Hx− c.

• Given the kth iterate xk, we use qk := q(xk) and gk := g(xk) to denote the

objective function and its first derivative, respectively, evaluated at xk.

• The search direction at iterate xk is represented by sk.

• For any matrix M , we use M � 0 to mean that M is positive definite, M � 0

to mean that M is positive semidefinite, M 6� 0 to mean that M is not positive

definite, and M 6� 0 to mean that M is not positive semidefinite.

• The index set of all variables is N := {1, 2, . . . n}.

• The ith component of a vector v will sometimes be written as [v]i.

• The subvector of v with components given by the index set S is given by [v]S .

• The vector two-norm or induced matrix norm is denoted by ‖.‖.

• The minimum eigenvalue of a matrix A is represented by λmin(A).

• Given any vector y, we let [y]+ := max(y, 0) and [y]− := min(y, 0).

4



CHAPTER 1. INTRODUCTION

1.4 Definitions

In this section, we define various optimization terminology used in the thesis. Our

first definition concerns the feasible set for problem (1.1).

Definition 1.4.1 (Feasible set and feasible point) The feasible set, Ω, for prob-

lem (1.1) is defined as

Ω := {x ∈ Rn | l ≤ x ≤ u},

which is closed and convex. We say that x is a feasible point if and only if x ∈ Ω.

We may associate with any feasible point the active set.

Definition 1.4.2 (Active set) The active set at any x ∈ Ω, denoted as A(x), is

A(x) := {i ∈ N | xi = li or xi = ui}.

The active set satisfies the identity A(x) = A(x) ∪ Ā(x), where

A(x) := {i ∈ N | xi = li} and Ā(x) := {i ∈ N | xi = ui},

are disjoint (since l < u) subsets of A(x).

The variables that are not in the active set are considered to be in the free set.

5



CHAPTER 1. INTRODUCTION

Definition 1.4.3 (Free set) The free set of variables at x, denoted as F(x), is

F(x) := N \ A(x).

We use the concept of the free and chopped gradient as first introduced by Dostál

and Schöberl1 and given in the next definition. In the next section, we show how

these objects may be used to characterize first-order optimality.

Definition 1.4.4 (Free gradient and chopped gradient) At a pint x, the free

gradient, ϕ(x), and chopped gradient, β(x), are defined as

[ϕ(x)]i :=


[g(x)]i if i ∈ F(x);

0 if i ∈ A(x);

and [β(x)]i :=



0 if i ∈ F(x);

[g(x)]−i if i ∈ A(x);

[g(x)]+i if i ∈ Ā(x).

1.5 Optimality conditions

In this section, we present first- and second-order optimality conditions for the

BCQP (1.1). We begin with the first-order necessary conditions.

Result 1.5.1 (first-order necessary optimality conditions) If x∗ is a minimizer

for problem (1.1), then with g(x∗) ≡ [g(x∗)]+ + [g(x∗)]− it follows that

x∗ ∈ Ω, [g(x∗)]+ · (x∗ − l) = 0, and [g(x∗)]− · (u− x∗) = 0,

6



CHAPTER 1. INTRODUCTION

which are equivalent to

x∗ ∈ Ω and ν(x∗) := ϕ(x∗) + β(x∗) = 0. (1.2)

The conditions in (1.2) naturally lead us to the idea of a first-order KKT point.

Definition 1.5.1 (first-order KKT point) We say that a vector x is a first-order

KKT point if and only if x ∈ Ω and ν(x) = 0 with ν is defined in (1.2).

To state second-order optimality conditions, we need to define the sets of strongly

active constraints at a first-order KKT point x given by

A+(x) := {i ∈ A(x) : [g(x)]+i > 0} and Ā+(x) := {i ∈ Ā(x) : [g(x)]−i < 0},

with their union being defined as

A+(x) := A+(x) ∪ Ā+(x).

We also define the sets of weakly active constraints at a first-order KKT point x as

A0(x) := {i ∈ A(x) : [g(x)]+i = 0} and Ā0(x) := {i ∈ Ā(x) : [g(x)]−i = 0},

7



CHAPTER 1. INTRODUCTION

with their union being defined as

A0(x) := A0(x) ∪ Ā0(x).

We may now state the second-order necessary and sufficient optimality conditions.

Result 1.5.2 (second-order necessary and sufficient optimality conditions)

The vector x∗ is a minimizer for problem (1.1) if and only if

x∗ ∈ Ω, ν(x∗) = 0, and pTHp ≥ 0 for all p ∈ C(x∗),

where the critical cone C(x∗) is defined using A+ = A+(x∗) and A0 = A0(x∗) as

C(x∗) := {p ∈ Rn : [p]A+ = 0 and [p]A0 ≥ 0}.

The second-order optimality condition given in Result 1.5.2 are generally not

practical since verifying that H is positive semi-definite over the convex cone C(x∗)

is difficult. Instead, we will use a practical condition that verifies that the curvature

condition holds over a smaller set, but for which verification is much easier. This

leads to the definition of what we will call a second-order point. We comment that

the goal of the algorithm we propose in Chapter 4 is to generate a sequence of iterates

{xk} that has a second-order point as a limit point.

8



CHAPTER 1. INTRODUCTION

Definition 1.5.2 (A second-order point) We say that x is a second-order point

if and only if with F = F(x) it follows that x ∈ Ω, ν(x) = 0, and HFF � 0, where

HFF is the submatrix of H consisting of the rows and columns indexed by F .

Note that the condition HFF � 0 is equivalent to saying that pTHp ≥ 0 for

all p ∈ CS(x) := {p ∈ Rn : [p]A(x) = 0}. Since, in general, we only know that

CS(x) ⊆ C(x), the conditions in Definition 1.5.2 are not, in general, sufficient for

ensuring that a point is a minimizer. On the upside, however, the condition HFF �

0 can (in exact arithmetic) be verified computationally. In this thesis, we search

for second-order points, and comment that most algorithms in the literature merely

ensure convergence to first-order KKT points.

9



Chapter 2

Minimizing Quadratic Functions

Subject to Bound-Constraints

Many methods have been proposed to minimize quadratic objective functions

subject to linear constraints. This class of problems is more general than the BCQPs

that are the focus of this thesis, and the associated algorithms are necessarily more

complex. In addition to being more complex, the tools they use are more limited

since the general linear constraints are more complicated than simple bounds on the

optimization variables. Since the focus of this thesis is the BCQP, in this chapter we

describe the three main classes of algorithms used to solve BCQPs: (i) traditional

active-set methods (Section 2.1); (ii) gradient projection methods (Section 2.2); and

(iii) interior-point methods (Section 2.3).

10



CHAPTER 2. SOLVING BCQPS

2.1 Traditional active-set methods

Traditional primal active-set methods19–21 solve (1.1) by generating primal feasi-

ble iterates. During each iteration, a set of variables—called the active variables or

the active set—are forced to be equal to either their lower or upper bound, while the

remaining variables (the free variables) are optimized. In particular, the optimal free

variables may be obtained by solving a system of equations with coefficient matrix

HFF . If any of the optimal free variables violates their constraint bounds, then the

one that is violated ”first” becomes a member of the active-set. This process may

be continued until the minimizer over the set of free variables is feasible.22,23 If the

minimizer over this partition of active and free variables is not optimal for prob-

lem (1.1), then an active variable is chosen (by inspecting all of their dual/Lagrange

multiplier values) to be moved to the set of free variables, and the entire process is

then repeated. The key attribute that drives convergence to a solution is that the

objective function q is strictly decreased each time the sets of active/free variables

change. Since the total number of partitions of the variables is finite, this means that

eventually this process must terminate, and it turns out (modulo some details and

assumptions) that the final iterate solves (1.1). We also comment that it is only at

the solution that the dual variables (i.e., the Lagrange multipliers) are dual feasible.

Let’s now consider one major assumption that was being made during the last

paragraph. In order to solve the reduced system of equations we would need to know

that the matrix HFF is indeed nonsingular. This is guaranteed if H � 0, but not if H

11



CHAPTER 2. SOLVING BCQPS

is indefinite and possibly singular. Thus, it is clear that modifications must be made

to traditional primal active-set methods to ensure their applicability to nonconvex

problems. Here, we do not give any more details in this direction, but simply point

the reader to Nocedal and Wright [24, Chapter 16] to learn more.

Traditional primal active-set methods benefit from warm starts (i.e., the ability to

efficiently use an accurate estimate of a solution) and have the advantage of comput-

ing accurate solutions when HFF is ill-conditioned. On the negative side, traditional

active-set methods25–27 are not suited for large-scale problems for two main reasons.

First, they add/remove one variable at a time from the active and free sets of vari-

ables. Since a linear system of equations must be solved each time these sets change,

there may be, in the worse case, a combinatorial number of linear systems solved. Al-

though computational savings may be realized through matrix factorization updating

strategies, this fact still limits their use for very large-scale problems. Second, the

auxiliary problems need to be solved accurately, which precludes the use of iterative

methods for solving linear systems of equations such as CG or MINRES.

Most traditional dual active-methods are restricted to strictly convex problems,

although, for example, the algorithm introduced by Golfarb and Idnani28 for strictly

convex problems was adapted by Boland29 to handle merely convex problems. In

contrast to their primal counterpart, traditional dual active-set methods first compute

a dual feasible point and then maintain dual feasibility throughout; it is only the

terminal point that is primal feasible. Since the main contribution of this thesis

12



CHAPTER 2. SOLVING BCQPS

is that of a new algorithm for solving nonconvex BCQPs, we do not discuss dual

active-set methods further since they are restricted to convex problems.

2.2 Gradient projection methods

A feature of traditional active-set methods that limits their application to very

large-scale problems is the one-in and one-out nature in which the active set of vari-

ables evolves. To overcome this weakness, gradient projection methods30–35 adjust

the set of active variables based on minimizing the objective function along the path

defined by projecting the ray defined along the negative gradient direction, i.e., along

the projected gradient path. This strategy, therefore, does not place any limit on the

number of variables that may leave or enter the active set of variables during each iter-

ation. The Goldstein-Levitin-Polyak30,31 gradient projection method, though suitable

for large-scale problems, has the tendency to ”zigzag” based on different variables en-

tering and leaving the active-set (at least on degenerate problems) and exhibits a slow

convergence rate even once the optimal active-set has been identified.32 To overcome

this latter weakness, Bertsekas33 proposed a Newton-like gradient projection method

that exhibits a superlinear rate of convergence once the active set associated with an

optimal solution has be identified.

Perhaps the most popular approaches for ensuring fast local convergence as well

as quick evolution of the active set of variables are two-phase methods. One of the

13



CHAPTER 2. SOLVING BCQPS

first such methods was proposed by Dembo and Tulowitzki,32 in which they suggested

the use of the CG method to solve a reduced system of equations with matrix HFF ,

where the free variables in the set F are the complement of those variables deemed

active by searching along the projected gradient path. The authors are able to utilize

the finite termination property of CG to conclude finite termination of the overall

method, at least on nondegenerate problems. Yang and Tolle34 extended these ideas

and proved finite termination even for degenerate problems. A perceived downside of

this approach was that for starting points far from an optimal solution, it may take

many iterations before identifying the active set of variables at the solution. Moré and

Toraldo35 studied a similar approach that used only the gradient projection steps until

a ”suitable” active set was found or no further ”substantial” progress toward a solution

was measured. At this point, CG was used to approximately solve the reduced system

of linear equations, which was equivalent to approximately minimizing a reduced

unconstrained quadratic subproblem. This approach achieved convergence for strictly

convex problems and finite termination for nondegenerate problems. Importantly,

their numerical experiments also clearly showed that the gradient project steps very

quickly identified the variables that were active at the solution provided the Hessian

matrices were well condition. In fact, there was a rather strong connection between

the conditioning of the Hessian matrix and the speed at which the active variables at

the solution were discovered by the projected gradient steps.

To overcome the poor performance of the method by Moré and Toraldo35 on

14



CHAPTER 2. SOLVING BCQPS

ill-conditioned problems, Robinson et. al36 proposed a two-phase matrix-splitting

method that also utilized CG to optimize over a subspace defined from an active-set

of variables. In their method, a gradient projection step was replaced by a more

general matrix splitting iteration for which the projected gradient, projected Jacobi,

and projected Gauss-Seidel iterations are special cases. By using these more powerful

matrix splitting iterations—in place of projected gradient iterations—to perform the

active-variable identification, they were able to show better performance in compar-

ison to the method by Moré and Toraldo as the condition number of the Hessian

matrix became even moderate in size. On the downside, the method by Robinson et.

al is in general slightly more expensive since, even on sparse problems, computing a

projected Gauss-Seidel step is modestly more expensive than performing a projected

gradient step. It is also important to mention that their method was, in theory, ap-

plicable to nonconvex problems, but in that case the only known practical splitting

iteration is equivalent to the projected gradient step as was already commonly used.

Robinson et al.36 also numerically compared their algorithm to a method by Dostál

and Schöberl,1 which was designed to solve convex BCQPs. The Dostál and Schöberl

method was modestly inferior on well-condition problems, but became equally effi-

cient on moderately ill-conditioned problems, and eventually became superior on ill-

conditioned problems. Their method is not, in spirit, that different from the method

by Moré and Toraldo described above. The biggest and most important difference

is that they developed conditions that determined how accurately each reduced lin-
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CHAPTER 2. SOLVING BCQPS

ear system should be solved using CG. This dynamic nature was, in fact, the reason

why the method by Robinson et. al was inferior on ill-conditioned problems: their

method wasted great computational effort in approximately solving an ill-conditioned

linear system using CG (a task sure to demand an exorbitant cost without a suitable

preconditioner), whereas the adaptive conditions used by Dostál and Schöberl more

quickly realized when the current active-set was incorrect, and moved on.

In this thesis we take the ideas introduced by Dostál and Schöberl for convex

BCQPs, and extend them to the nonconvex setting. In doing so, we obtain an effi-

cient algorithm for solving nonconvex and convex BCQPs on well- and ill-conditioned

problems, and in addition promote convergence to second-order optimality points.

2.3 Interior-point methods

Unlike active-set methods, interior-point methods37–39 generate iterates in the

interior of the feasible region. The generated iterates follow a continuous path to the

optimal solution that can be parameterized by a positive parameter. The parameter

regularizes the linear system of equations that is solved in each iteration. Interior-

point methods make rapid progress to the optimal solution since a single linear system

solve is required per iteration. This feature makes interior-point methods a popular

choice for large-scale problems. Probably their biggest disadvantage is that they do

not—in contrast to active-set methods—efficiently use a good initial estimate of a
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CHAPTER 2. SOLVING BCQPS

solution. This attribute is a consequence of the fact that their efficiency usually

requires an initial iterate that is well centered in the interior of the feasible region.

Ye and Tse 40 proposed an interior ellipsoid method for convex problems. During

each iteration, the objective function is minimized oven an ellipsoidal region whose

size depends on the distance between the current strictly feasible point and the bound-

ary of the feasible region. They proved for convex problems that if the sequence of

iterates converges, then the limit point must be optimal, while for strictly convex

problems the sequence of iterates converges to the unique optimal solution.41 Cole-

man and Liu42 proposed an interior-point Newton method with strong convergence

properties in the sense that the generated sequence of iterates converged to a point

that satisfied certain second-order conditions. Moreover, if the limit point satis-

fied second-order sufficiency conditions, then the local rate of convergence was 2-step

quadratic. A closely related class of methods consists of barrier methods, which avoid

explicit inequality constraints by penalizing points close to the boundary of the fea-

sible region.43,44 This modification results in equality-constrained subproblems that

must be solved (approximately) using a Newton-based method.45 Finally, perhaps the

most successful methods are primal-dual interior-point methods,37,46,47 which exhibit

superlinear asymptotic convergence and can accommodate infeasible starting points.

We emphasize that every method described in this section suffers—in contrast to

active-set methods—from the inability to efficiently use a good initial estimate of a

solution, which is very important in certain applications such as in optimal control.48
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Chapter 3

The Dostál and Schöberl

Algorithm for Convex Problems

In this chapter, we expound upon the Dostál and Schöberl algorithm1 (henceforth

called the DS algorithm) because it forms the basis of our proposed algorithm for

solving nonconvex BCQPs. In the process, we generalize the presentation of their

original method since we incorporate the lower and upper bound constraints present

in the optimization problem (1.1) (their formulation only considered lower bounds).

3.1 An overview of the method

The DS algorithm is built around the use of CG to explore the reduced space

defined over the set of free variables, i.e., the set complementary to an active set of

18
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variables. Unlike the two-phase methods described in Section 2.2, they developed an

adaptive stopping condition to be used for judging when the CG iterations should be

terminated. As we will see, the stopping condition is based on quantities related to

the KKT conditions (see (1.2)). The CG step is critical and is the focus of Section 3.2.

As with all active-set methods, the DS algorithm has a strategy for adding vari-

ables to the active-set when necessary. This is done by monitoring the iterates com-

puted by CG and taking action as soon as an iterate becomes infeasible. As soon as

a violation is detected, the violated variable is added to the current active set. In ad-

dition, a single projected gradient step is performed to ensure that sufficient progress

is achieved. These two actions taken in tandem results in the expansion step, which

is the topic of Section 3.3.

The expansion step gets triggered if any CG step violates the bounds on the

variables, i.e., become infeasible. If this situation never happens for the current

active set, then the CG iterations will converge to the unique solution of the reduced

linear system of equations. (Recall that algorithm DS is only appropriate for strictly

convex problems, which means that the reduced linear system of equations will always

be defined by a positive-define matrix). This is equivalent to saying that the iterates

will converge to a minimizer of q over the space of free variables, i.e., those not in the

active set. If the limiting point is not optimal, then eventually a decision has to be

made to free-up at least one of the active variables; this is called the proportioning

step and is considered in Section 3.4.
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3.2 The conjugate gradient step

An important aspect of algorithm DS is the ability to use CG on the subspace of

free variables. Let x̃ ∈ Rn and consider using linear CG to solve the problem

minimize
p∈Rn

q̃(p) = 1
2
(x̃+ p)TH(x̃+ p)− cT(x̃+ p)

subject to IAp = [p]A = 0,

(3.1)

where IA = IA(x̃) contains the rows of the n × n identity matrix that correspond to

the indices in A(x̃). We may then easily see that the columns of the matrix ITF with

IF = IF(x̃) form a basis for the null space of IA. This leads to the following algorithm,

which is based on [49, Algorithm 5.4.2].

Algorithm 1 The CG algorithm for the reduced space problem (3.1).

1: Define A = A(x̃) and F = F(x̃).
2: Set p0 = 0, g0 ← ∇̃q(p0) ≡ H(x̃+ p0)− c, v0 ← ([g0]F , 0) ≡ ϕ(x̃), and s0 ← v0.
3: for j = 0, 1, 2, . . . do
4: Set αj ← (gTjvj)/(s

T
jHsj).

5: Set pj+1 ← pj − αjsj.
6: Set gj+1 ← gj − αjHsj ≡ ∇̃q(pj+1).
7: Set vj+1 ← ([gj+1]F , 0) ≡ ϕ(x̃+ pj+1).
8: Set γj ← (gTj+1vj+1)/(gTjvj).
9: Set sj+1 ← vj+1 − γjsj.
10: end for

Algorithm 1 computes a sequence {pj} that converges to the unique solution of

problem (3.1). If we now define xj := x̃+ pj, we may adjust the linear CG algorithm

so that it generates iterates {xj} that converge to the solution of the subproblem in

terms of x instead of p; this results in Algorithm 2.
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Algorithm 2 The CG algorithm for the reduced space problem (3.1) in terms of x.

1: Define A = A(x̃) and F = F(x̃).
2: Set x0 ← x̃, g0 ← Hx0 − c, s0 ← ϕ(x0).
3: for j = 0, 1, 2, . . . do
4: Set αj ←

(
gTjϕ(xj)

)
/(sTjHsj).

5: Set xj+1 ← xj − αjsj.
6: Set gj+1 ← gj − αjHsj.
7: Set γj ←

(
gTj+1ϕ(xj+1)

)
/
(
gTjϕ(xj)

)
.

8: Set sj+1 ← ϕ(xj+1)− γjsj.
9: end for

As mentioned in the overview Section 3.1, steps generated from Algorithm 2, i.e.,

steps that reduce the quadratic objective function over the space of free variables,

form the basis of the DS algorithm. Since they ultimately minimize q in the space

of free variables, they have the effect, if iterated forever, of driving {ϕ(xj)} to zero

(recall Definition (1.4.4)). Thus, we only continue the computation of CG when

‖β(xk)‖2 ≤ Γϕ̃(xk)Tϕ(xk) (3.2)

is satisfied for some Γ > 0, where the reduced free gradient ϕ̃ is defined as

ϕ̃(x) := min

{
x− l
ᾱ

,
u− x
ᾱ

, ϕ(x)

}
(3.3)

for some fixed ᾱ ∈ (0, ‖H‖−1]. When (3.2) holds, this indicates that substantial

progress from continuing CG is still possible.
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3.3 The expansion step

It is possible that the CG Algorithm 2 computes a direction sj such that the vector

xj −αjsj in Step 5 violates the bound constraints in problem (1.1). In this situation,

we first take a step along the CG direction sj to the nearest blocking constraint(s) as

described in Step 4 of Algorithm 3; this adds at least one variable to the current active

set. This is then immediately followed by a gradient projection step in the space of free

variables (see Step 6). The projected gradient step allows for potentially many new

variables to be added to the current active-set. Since these steps only expand/increase

the size of the active set, the overall resulting step is called an expansion step. In

Algorithm 3, the projection operator PΩ is defined componentwise by

[PΩ(x)]i := max{li,min{xi, ui}}, (3.4)

where the definition of the feasible set Ω is stated as Definition 1.4.1.

Algorithm 3 The expansion step.

1: available constant: ᾱ ∈ (0, ‖H‖−1].
2: input: vector sj from Algorithm 2 that satisfies (xj − αjsj) /∈ Ω.
3: Set αfeas ← max{α : xj − αsj ∈ Ω}.
4: Set xj+ 1

2
← xj − αfeassj.

5: Set gj+ 1
2
← gj − αfeasHsj.

6: Set xj+1 ← PΩ(xj+ 1
2
− ᾱϕ(xj+ 1

2
)).

7: Set gj+1 ← Hxj+1 − c.
8: Set sj+1 ← ϕ(xj+1).
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3.4 The proportioning step

If (3.2) does not hold, it indicates that a Lagrange multiplier estimate associated

with at least one active variable has a substantially wrong sign in comparison to

the size of the free gradient. It is thus prudent to step off of such a variable, i.e., to

transfer that variable to the set of free variables. Therefore, it makes sense to minimize

the objective function q along the direction sj = β(xj) (see Step 2 of Algorithm 4)

while maintaining feasibility. This computation results in the point given in Step 6.

Updates of this type first release variables from their bounds, and then potentially

fix some. In general, nothing can be said about the net difference in activities.

Algorithm 4 The proportioning step.

1: available constant: ᾱ ∈ (0, ‖H‖−1].
2: Set sj ← β(xj).
3: Set

αmin ←

{
(sTjgj)/(s

T
jHsj) if sTjHsj > 0;

∞ otherwise.

4: Set αfeas ← max{α : xj − αsj ∈ Ω}.
5: Set αj ← min{αmin, αfeas}.
6: Set xj+1 ← xj − αjsj.
7: Set gj+1 ← gj − αjHsj.
8: Set sj+1 ← ϕ(xj+1).

3.5 The complete algorithm

The DS algorithm for solving problem (1.1) when H � 0 is given by Algorithm 5.
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Algorithm 5 The DS Algorithm for strictly convex BCQP.

1: input: x0 ∈ [l, u] with l < u and τstop > 0.
2: Choose Γ > 0 and ᾱ ∈ (0, ‖H‖−1].
3: Set g0 ← Hx0 − c and s0 ← ϕ(x0).
4: for k = 0, 1, 2, . . . do
5: if ‖ν(xk)‖ ≤ τstop then
6: return an approximate first-order KKT point xk.
7: end if
8: if (3.2) is satisfied then
9: Set αcg ←

(
gTkϕ(xk)

)
/(sTkHsk).

10: Set αfeas ← max{α : xk − αsk ∈ Ω}.
11: if αcg ≤ αfeas then . conjugate gradient step
12: Set xk+1 ← xk − αcgsk.
13: Set gk+1 ← gk − αkHsk.
14: Set βk ←

(
gTk+1ϕ(xk+1)

)
/
(
gTk ϕ(xk)

)
.

15: Set sk+1 ← ϕ(xk+1)− βksk.
16: else . expansion step
17: Set xk+1/2 ← xk − αfeassk.
18: Set gk+1/2 ← gk − αfeasHsk.
19: Set xk+1 ← PΩ(xk+1/2 − ᾱϕ(xk+1/2)).
20: Set gk+1 ← Hxk+1 − c.
21: Set sk+1 ← ϕ(xk+1).
22: end if
23: else . proportioning step
24: Set sk ← β(xk).
25: Set

αmin ←

{
(sTkgk)/(sTkHsk) if sTkHsk > 0;

∞ otherwise.

26: Set αfeas ← max{α : xk − αsk ∈ Ω}.
27: Set αk ← min{αmin, αfeas}.
28: Set xk+1 ← xk − αksk.
29: Set gk+1 ← gk − αkHsk.
30: Set sk+1 ← ϕ(xk+1).
31: end if
32: end for
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Chapter 4

A New Algorithm for Nonconvex

Problems

In the previous section we elaborated on the Dostál and Schöberl algorithm (called

the DS algorithm) for solving strictly convex BCQPs. In this chapter we describe our

new algorithm for solving nonconvex BCQPs, which we call NC-DS, since it may solve

NonConvex problems. In particular, our new method includes additional machinery

to handle the complications that may arise when the problem is nonconvex. First,

we use negative curvature directions when they are encountered in the CG iteration,

which we call negative curvature CG steps (see Section 4.1). Second, to promote

convergence to points satisfying second-order conditions, we use Lanczos iterations

to compute, when needed, approximations to the left most eigen-pairs, which result

in a negative curvature Lanczos step (see Section 4.2).
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4.1 A negative curvature CG step

If the CG Algorithm 2 finds a direction of nonpositive curvature, i.e. sTjHsj ≤ 0,

then an alternative course of action must be taken. We choose to simply minimize

the objective function along either the direction sj (if sj is not a descent direction) or

along sj (if sj is a descent direction) subject to remaining feasible. This is achieved

by using Algorithm 6 below.

Algorithm 6 The negative curvature CG step.

1: available constants: {η, ρ} ⊂ (0, 1).
2: input: vector sj from Algorithm 2 that satisfies sTj Hsj ≤ 0.
3: if sTjg(xj) < 0 then
4: Set sj ← −sj. . ensure that sj is not a descent direction.
5: end if
6: Set αfeas ← max{α : xj − αsj ∈ Ω}.
7: Set xj+1 ← xj − αfeassj.

4.2 A negative curvature Lanczos step

One final step must be considered in order to escape first-order KKT points that

are not necessarily minimizers. Specifically, if the current iterate, say xk, is near a

first order KKT point in the sense that

ν(xk) ≤ τstop (4.1)
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for some stopping tolerance τstop > 0, then we must be prepared to compute a suf-

ficiently large negative curvature direction in the space of free variables. In our

algorithm this amounts to either verifying that xk is an approximate second-order

point that satisfies

λmin(HFF) ≥ −τstop, (4.2)

or calculating a pair (sk, λk) that approximates the leftmost eigen-pair of the reduced

Hessian matrix HFF by satisfying

[sk]A = 0 and [sk]TFHFF [sk]F ≤ −1
2
τstop‖[sk]F‖2. (4.3)

This can be achieved, for example, via the matrix-free Lanczos algorithm,50 which is

practical for very large-scale sparse problems. If both (4.1) and (4.2) are satisfied, we

return xk as the approximate second-order point (see Definition 1.5.2). Otherwise, we

take the longest step possible subject to remaining feasible along either the direction

sk if ∇q(xk)Tsk ≥ 0, or along −sk if ∇q(xk)Tsk < 0. This is equivalent to minimizing

the objective function q along the ray defined by the direction sk.

4.3 The complete algorithm

Our new method for solving nonconvex BCQPs is given by Algorithm 7.
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Algorithm 7 Algorithm NC-DS for solving nonconvex BCQPs.

1: Input: x0 ∈ [l, u], {Γ, τstop} > 0, and ᾱ ∈ (0, ‖H‖−1].
2: Set g0 ← Hx0 − c and s0 ← ϕ(x0).
3: for k = 0, 1, 2, . . . do
4: if (4.1) holds then . approximate first-order KKT point
5: Compute approximate eigen-pair (sk, σk) satisfying (4.2) or (4.3).
6: if (4.2) is satisfied then
7: return approximate second-order KKT point xk.
8: else . negative curvature step
9: if sTkg(xk) < 0 then
10: Set sk ← −sk.
11: end if
12: Set αfeas ← max{α : xk − αsk ∈ Ω} and xk+1 ← xk − αfeassk.
13: Set gk+1 ← gk − αfeasHsk and sk+1 ← ϕ(xk+1).
14: end if
15: else
16: if (3.2) holds then
17: if sTkHsk ≤ 0 then . negative curvature CG step
18: Compute αfeas from Algorithm 6 with input vector sj = sk.
19: Set xk+1 ← xk−αfeassk, gk+1 ← gk−αfeasHsk, and sk+1 ← ϕ(xk+1).
20: else
21: Set αcg ←

(
gTkϕ(xk)

)
/(sTkHsk) and αfeas ← max{α : xk −αsk ∈ Ω}.

22: if αcg ≤ αfeas then . conjugate gradient step
23: Set xk+1 ← xk − αcgsk and gk+1 ← gk − αkHsk.
24: Set βk ←

(
gTk+1ϕ(xk+1)

)
/
(
gTkϕ(xk)

)
and sk+1 ← ϕ(xk+1)− βksk.

25: else . expansion step
26: Set xk+1/2 ← xk − αfeassk and gk+1/2 ← gk − αfeasHsk.

27: Set xk+1 ← PΩ

(
xk+1/2 − ᾱϕ(xk+1/2)

)
.

28: Set gk+1 ← Hxk+1 − c and sk+1 ← ϕ(xk+1).
29: end if
30: end if
31: else . proportioning step
32: Set sk ← β(xk).
33: Set

αmin ←

{
(sTk gk)/(sTkHsk) if sTkHsk > 0;

∞ otherwise.

34: Set αfeas ← max{α : xk − αsk ∈ Ω} and αk ← min{αmin, αfeas}.
35: Set xk+1 ← xk − αksk, gk+1 ← gk − αkHsk, and sk+1 ← ϕ(xk+1).
36: end if
37: end if
38: end for
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Chapter 5

Numerical Results

We created a Matlab implementation of Algorithm 7 and tested it by solving

randomly generated problems of the form (1.1) with varying numbers of variables (n)

and condition numbers of H (Hcond). Specifically, we tested our implementation on

all combinations of number of variables in the set {102, 103} and condition numbers

for H in the set {102, 104, 106, 108}. Each instance of H was generated by Matlab’s

sprandsym routine. The problems were created so that there were (roughly) an equal

number of lower-active, upper-active, and inactive primal variables for at least one of

the optimal solutions (since H is indefinite, there may be multiple local minimizers).

We generated 50 problem instances for each of the 8 possible combinations and

report in Tables 5.1 and 5.2 the mean and standard deviation of various quantities of

performance. Specifically, we provide measures of the following: the number of itera-

tions (“Total Iterations”); the number of negative curvature CG steps (“Neg. Curv.
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Steps”); the number of linear CG steps (“CG Steps”); the number of expansion steps

(“Expansion Steps”); the number of proportioning steps (“Proportioning Steps”);

and the number of matrix-vector products calculated with H (“Hx Products”). We

also note that statistics for the negative curvature Lanczos steps (see Section 4.2)

were not included since they rarely occurred in practice.

The results in this section were obtained with the following choice of control

parameters: the stopping tolerance was τstop = 10−5, the scalar in (3.2) was Γ = 102,

and the fixed step length was ᾱ = 1
2
‖H‖−1. Although not stated in Algorithm 7, we

also imposed an iteration limit of 20000, although this was never reached in our tests.

The values chosen for the parameters ᾱ and Γ were based on empirical performance.

Table 5.1: Results for Algorithm 7. The mean (mean) and standard deviation (s.d.)
were computed over 50 randomly generated nonconvex test problems.

Total Iterations Neg. Curv. Steps CG Steps
n Hcond mean s.d. mean s.d. mean s.d.

1e+02 1e+02 1.1e+02 0.2e+02 4.9e+01 0.9e+01 3.6e+01 1.1e+01
1e+02 1e+04 1.8e+02 0.3e+02 5.3e+01 1.2e+01 1.0e+02 0.3e+02
1e+02 1e+06 2.5e+02 0.9e+02 5.7e+01 1.2e+01 1.5e+02 0.8e+02
1e+02 1e+08 2.3e+02 0.8e+02 5.1e+01 1.3e+01 1.4e+02 0.7e+02
1e+03 1e+02 8.7e+02 0.9e+02 7.1e+02 0.9e+02 1.2e+02 0.2e+02
1e+03 1e+04 1.5e+03 0.1e+03 7.1e+02 0.7e+02 6.5e+02 1.0e+02
1e+03 1e+06 3.9e+03 0.6e+03 6.8e+02 0.6e+02 3.1e+03 0.6e+03
1e+03 1e+08 8.6e+03 3.4e+03 6.5e+02 0.6e+02 7.7e+03 3.4e+03

We now make some observations about the performance of Algorithm 7. Tables 5.1

and 5.2 show that Algorithm 7 is efficient, at least on average. However, since every

one of the 400 = 8 · 50 test problems were solved, we can also conclude that our
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Table 5.2: Results for Algorithm 7. The mean (mean) and standard deviation (s.d.)
are computed over 50 randomly generated nonconvex test problems.

Expansion Steps Proportioning Steps Hx Products
n Hcond mean s.d. mean s.d. mean s.d.

1e+02 1e+02 1.6e+01 0.6e+01 4.5e+00 1.2e+0 1.2e+02 0.2e+02
1e+02 1e+04 2.4e+01 0.8e+01 6.1e+00 1.6e+00 2.1e+02 0.4e+02
1e+02 1e+06 3.2e+01 1.3e+01 7.3e+00 1.9e+00 2.8e+02 1.0e+02
1e+02 1e+08 3.0e+01 1.2e+01 7.0e+00 2.0e+00 2.6e+02 0.9e+02
1e+03 1e+02 4.6e+01 1.1e+01 6.4e+00 1.3e+00 9.2e+02 0.9e+02
1e+03 1e+04 1.0e+02 0.1e+02 8.0e+00 1.1e+00 1.6e+03 0.1e+03
1e+03 1e+06 1.7e+02 0.2e+02 9.9e+00 1.6e+00 4.1e+03 0.6e+03
1e+03 1e+08 2.3e+02 0.4e+02 1.1e+01 0.3e+01 8.8e+03 3.5e+03

method is robust, i.e., it solved all of the problems. We do see, however, that the

total number of iterations increases with the problem size and the condition number

of H, which is typical for active set methods. The number of matrix-vector products

increases roughly proportionally to the number of iterations (see Figure 5.1).

Figure 5.1: Plots of the number of iterations versus the number of matrix-vector
products for problem sizes n = 102 and n = 103. The points on the
curves represent (scaled) values from Tables 5.1 and 5.2 that correspond
to condition numbers for H from the set {102, 104, 106, 108}.
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For problems of a fixed size, varying the condition number of H had little effect

on the number of negative curvature CG steps. In contrast, the number of CG steps

increased along with the condition number of H. This behavior was expected since,

in general, the number of CG iterations needed to solve a linear system of equations

defined with a positive-definite coefficient matrix increases with the condition number.

It is important to discuss the effect that the choice of Γ had on the numerical

results. It is clear that larger values of Γ makes it easier to satisfy (3.2). Thus, an

extremely large value for Γ would make it ”harder” to compute proportioning steps. In

fact, they would not be computed until a highly accurate minimizer, over the current

set of inactive variables, was obtained. This computationally inefficient choice for Γ is

not necessarily better than the other extreme. If Γ was chosen to be extremely small,

condition (3.2) would be ”easy” to satisfy so that many proportioning steps would be

computed. In contrast to the previous case, this would mean that Algorithm 7 would

keep stepping off of bounds (proportioning step) far away from any minimizer in the

space defined by the current set of free variables. In our results, the value of Γ = 102

represented the best trade-off between these two extremes, and was the value used in

the numerical results that we presented.
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Conclusions

We presented a new algorithm in Chapter 4 for solving nonconvex bound-constrained

quadratic problems (BCQPs). Our method was motivated by ideas that were first

introduced by Dostál and Schöberl1 for strictly convex BCQPs. In order to han-

dle negative curvature, we incorporated directions of negative curvature in a fairly

natural manner. Although our algorithm was slightly more complicated than that

presented by Dostál and Schöberl, it had the added capability of solving both convex

and nonconvex BCQPs. In fact, if the BCQP happened to be strictly convex, then

our method reduced to the method by Dostál and Schöberl.

The numerical experiments that we presented in Chapter 5 indicated that our

method was both efficient and robust on well-conditioned and ill-conditioned prob-

lems. That level of performance on problems that spanned a large range of condition

numbers is a testament to the dynamic nature of the termination conditions that we
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used. In particular, these conditions were used to guide the choice of step types that

were computed and used during each iteration.

It is important to develop algorithms that are robust in terms of solving problems

with diverse condition numbers. Not only are they important in their own right,

but they are great choices as the subproblem solver in, for example, augmented La-

grangian methods.15,51 For this reason, our first direction for future research will be

to incorporate our new solver into an augmented Lagrangian framework.

As a second direction of research, we will explore whether ideas similar to those

used within our algorithm can be used to develop algorithms for solving other classes

of problems. A natural starting point would be the class of linear complementar-

ity problems. Such problems are important in computational mechanics, financial

engineering, transportation, and beyond. This line of research would be particular

important for asymmetric linear complementarity problems for which essentially no

practical algorithms for the large-scale case exist.
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