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Abstract

This thesis will focus on two important aspects of dynamic Positron Emission

Tomography (PET): (i) Motion-compensation , and (ii) Pharmacokinetic analysis

(also called parametric imaging) of dynamic PET images. Both are required to enable

fully quantitative PET imaging which is increasingly finding applications in the clinic.

Motion-compensation in Dynamic Brain PET Imaging: Dynamic PET

images are degraded by inter-frame and intra-frame motion artifacts that can affect

the quantitative and qualitative analysis of acquired PET data. We propose a Gener-

alized Inter-frame and Intra-frame Motion Correction (GIIMC) algorithm that unifies

in one framework the inter-frame motion correction capability of Multiple Acquisition

Frames and the intra-frame motion correction feature of (MLEM)-type deconvolution

methods. GIIMC employs a fairly simple but new approach of using time-weighted

average of attenuation sinograms to reconstruct dynamic frames. Extensive validation

studies show that GIIMC algorithm outperforms conventional techniques producing

images with superior quality and quantitative accuracy.

Parametric Myocardial Perfusion PET Imaging: We propose a novel frame-
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work of robust kinetic parameter estimation applied to absolute flow quantification

in dynamic PET imaging. Kinetic parameter estimation is formulated as nonlin-

ear least squares with spatial constraints problem where the spatial constraints are

computed from a physiologically driven clustering of dynamic images, and used to

reduce noise contamination. The proposed framework is shown to improve the quan-

titative accuracy of Myocardial Perfusion (MP) PET imaging, and in turn, has the

long-term potential to enhance capabilities of MP PET in the detection, staging and

management of coronary artery disease.
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Chapter 1

Introduction

Nature has inspired numerous groundbreaking discoveries in mathematics and

applied sciences. Isaac Newton observed the falling apple (Figure 1.1 (a)) which

motivated him to discover and establish the foundations of gravity. The Wright

brothers studied the aerodynamics of birds to make fix winged powered flight plausible

(Figure 1.1 (b)). Likewise, objects casting shadows is a universally observed and

understood phenomenon (Figure 1.1 (c)) that has inspired several landmark scientific

discoveries. This simple observation i.e. every 3-D object1 casts a shadow in a low

dimensional space raises the following deep and interesting question:

[Inverse Problem: Shape Reconstruction]

Can we reconstruct 3-D shapes from shadows?

1 in this thesis we focus on objects in R3

1



CHAPTER 1. INTRODUCTION

Figure 1.1: (a) Isaac Newton contemplating about gravitational force, (b) Wright brothers fanciful
flying in the air, and (c) flock of birds casting shadows on the ground. Images taken
from www.google.com.

A general answer to this question is Yes. Aristotle was, perhaps, the first one to

use this insight to conclude that the Earth is spherical in shape. He carefully studied

lunar eclipse which occurs when the Sun, the Earth, and the Moon are almost collinear

with the Earth in the middle (Figure 1.2). He observed that the shadow of the Earth

on the Moon is always a circular arc which can only happen if the Earth is spherical

in shape. This was a powerful indirect reasoning to conclude about the shape of the

Earth from its shadows.

Figure 1.2: Lunar eclipse. Image taken from www.google.com. An interesting talk by Terence Tao
on the Cosmic Distance Ladder2 also expounds on this insight.

2 http://terrytao.wordpress.com/2010/10/10/the-cosmic-distance-ladder-ver-4-1/

2

www.google.com
www.google.com
http://terrytao.wordpress.com/2010/10/10/the-cosmic-distance-ladder-ver-4-1/


CHAPTER 1. INTRODUCTION

Figure 1.3 shows a simple setup to acquire shadows of an object from multiple

views. A 3-D object is placed over a turntable and illuminated from one side by a

light source. The object occludes the light rays and in the process casts a shadow on a

translucent panel. The shadow image is recorded by a camera placed on the opposite

side of the light source. As the turntable rotates, shadows of the objects from multiple

views are collected. The collected set of 2-D shadows are used to reconstruct the 3-D

shape of the object by a technique called Shadow Carving [1, 2].

Figure 1.3: Reconstruction of 3-D shapes from silhouettes [1].

With a feasible approach to reconstruct shapes from shadows, a logical extension

would be to ask the following question:

[Inverse Problem: Tomography]

Can we image/visualize the inner structure of a 3-D object without physically slicing

it?

The most complex known object in the world is the human body and we are

3



CHAPTER 1. INTRODUCTION

interested in imaging the internal structure (organs) of the human body. We cannot

proceed with the previous approach as shadows only carry information about the outer

structure of the object. To answer the previous question in the affirmative, we need

penetrating light (e.g. in optical imaging [3]), sound (e.g. ultrasound imaging [4])

or matter (e.g. emission tomography [5]) to capture the internal structures of the

object. Figure 1.4 shows an experimental setup to acquire multiview projection data

using (penetrating) X-rays. A collimated X-ray source emits parallel X-rays that are

attenuated as they penetrate the internal structures of the object (e.g. Shepp-Logan

phantom [6]) before being detected by an array of detectors at the opposite end.

The intensity profile recorded by the array of detectors is called a projection profile,

P (r, θ), which is a function of detector position, r, and projection angle, θ.

Figure 1.4: Tomographic reconstruction experimental setup [7]. The mathematical object being
imaged is a Shepp-Logan phantom [6] which contains ellipses of different sizes and
intensities mimicking internal structures (organs) of a human body. Source-detector
pairs are rotated to collect multiview projection data.
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The physics of the process is described by the Beer-Lambert law [8]:

I = I0e
−

∫
µ(x,y)dy

− ln
I

I0

=

∫
µ(x, y)dy

(1.1)

where I0 is the incident intensity of X-ray source, I is the detected (attenuated)

intensity of X-rays, and µ(x, y) is the 2-D attenuation distribution of the object

under study3. µ(x, y) encodes all information about the internal structures of the

object and needs to be estimated from the projection data. Hence, the problem can

be mathematically stated as follows:

[Inverse Problem: Tomographic Reconstruction]

Solve the following integral equation for µ(x, y):

P (r, θ) =

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)δ(x cos θ + y sin θ − r) dx dy (1.2)

where {P (r, θ)} is the multiview projection data for θ ∈ [0, 2π).

The R.H.S of equation 1.2 is called the Radon transform [9] of µ(x, y) i.e. R{µ(x, y)} =∫∞
−∞

∫∞
−∞ µ(x, y)δ(x cos θ + y sin θ − r) dx dy. Radon transform collects line integrals

(or projection data) at multiple views of the underlying object where the line is

described by r = x cos θ + y sin θ. For the forward model, the discretized Radon

3 generalizations to 3-D attenuation distribution is pretty straightforward
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transform is called the forward projection operator and for the inverse model, the

adjoint of the discretized Radon transform is also called the backprojection operator.

The forward projection operator generates projection data and the backprojection

operator reconstructs the object from the projection data. Projection data is stacked

in a 2-D matrix called sinogram where the columns index the projection angles or

views (i.e. θ) and the rows index the detector position (i.e. r). Figure 1.5 shows a

small program to simulate tomographic reconstruction in MATLAB. Figure 1.6 shows

original phantom image, noise-free sinogram, and the reconstructed image obtained

from the MATLAB code.

Figure 1.5: MATLAB code for 2-D image reconstruction from projection data.

Problem 1.2 is ill-posed in the sense of Hadamard4 [10, 11] if the multiview pro-

jection data set is noisy and incomplete which is usually the case in reality.

4 A problem is well-posed if (1) the solution exists, (2) the solution is unique, and (3) the solution
continuously depends on data. Problems that are not well-posed in the sense of Hadamard are
ill-posed. Inverse problems are usually ill-posed.
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Figure 1.6: (Left) Original image of Shepp-Logan phantom, (Middle) Noise-free sinogram, and
(Right) Reconstructed image from 2-D sinograms

3-D reconstruction of objects from 2-D multiview projection data finds numerous

applications in various disciplines e.g. medical imaging [12–14], computer vision [15],

shape theory [16], pure and applied mathematics (solution of hyperbolic PDEs, re-

construction of functions from integrals e.g. Minkowski-Funk) [17–19], radar imaging

(SAR image reconstruction, reflection seismology) [20], and many more.

1.1 Imaging Modalities

In a human body, we are interested in studying the structural or morphological as-

pects of the organs of interests and/or the functional or biochemical processes taking

place inside the organs of interest. For structural or morphological imaging, the pri-

mary imaging modalities are computed tomography (CT), magnetic resonance imag-

ing (MRI), and ultrasound, and for functional or molecular imaging, the primary

imaging modalities are positron emission tomography (PET), single photon emission

tomography (SPECT), optical imaging, and functional magnetic resonance imaging

(fMRI). Figure 1.7 shows a pictorial representation of these imaging modalities.

7
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Figure 1.7: Morphological and functional imaging modalities. Image is borrowed from Jeff Siew-
erdsen’s talk on Multi-Modality Imaging: Technologies, Applications, and Future Di-
rections5. Yellow bars show the combinations of anato-functional imaging modalities
for multi-modality imaging e.g. PET-CT, PET-MR, SPECT-MR etc.

In this thesis, we are primarily interested in functional imaging via positron emis-

sion tomography (PET). However, for accurate tomographic reconstruction of func-

tional images, correction for attenuation due to anatomical structures has to be made.

In this respect, tomographic imaging can be subdivided into two broad classes: (1)

transmission tomography [21], and (2) emission tomography [5]. In transmission to-

mography (e.g. CT), the transmission source emits low energy X-rays that penetrate

the object of interest getting attenuated by anatomical structures with varying at-

tenuation coefficients, µ(x, y), along the way. The attenuated X-rays are ultimately

recorded by a detector array placed diametrically opposite to the source array. The

source-detector array is rotated around the object to collect multiview projection

data. The transmission or attenuation image is estimated from the multiview projec-

5 http://www.aapm.org/meetings/amos2/pdf/35-9794-56056-401.pdf

8

http://www.aapm.org/meetings/amos2/pdf/35-9794-56056-401.pdf


CHAPTER 1. INTRODUCTION

tion data set by solving discretized version of Problem 1.2.

In emission tomography (e.g. PET, expounded in Section 1.2), a radionuclide is

injected into the blood stream and it redistributes itself in the body depending on the

molecular process under study. The unstable radionuclide disintegrates by emitting

γ-rays which are recorded by a detector array surrounding the object of interest.

Functional image is also reconstructed from the collected multiview projection data

set by solving the discretized version of Problem 1.2 (µ(x, y) is replaced by f(x, y)).

Figure 1.8 summarizes the differences between transmission and emission tomography.

Figure 1.8: Comparison of transmission vs emission tomography

9
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1.2 Positron Emission Tomography

Positron Emission Tomography has emerged as a powerful non-invasive imaging tech-

nique enabling in vivo measurements of neurochemistry and physiology [22]. In this

section we will first motivate the need of having an imaging modality like PET in

Section 1.2.1. This is followed by a basic description of the PET process in Sec-

tion 1.2.2 and PET image reconstruction in Section 1.2.3. We elaborate on the image

degradation factors in Section 1.2.4 and conclude this section with clinical applica-

tions of PET imaging in Section 1.2.6. Our exposition will be at a basic level and

direct the interested readers to references [5,8,23,24] for in-depth reading on various

instrumentation and image generation, reconstruction, and quantification aspects of

PET imaging. Another interesting resource is a video talk by Dr. Osama Mawlawi

on the Fundamentals of Positron Emission Tomography6.

1.2.1 Motivation

The goal is to image and study the functional or biochemical processes of vari-

ous organs of interest. Functional processes of interest include blood flow, glucose

metabolism, receptor density etc [25–34]. A promising approach involves injection

of radiolabeled compounds with site specific uptake in the blood stream followed by

tracking the compound as it traverses through the biological pathway and gets dis-

tributed in the target region. Positron emission tomography, as the name suggests,

6 http://hstalks.com/main/view_talk.php?t=1877&c=252
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uses positron emitters to label site specific compounds. The advantage of PET over

other functional imaging modalities is that many positron emitters like 11C, 18F , 13N ,

15O occur naturally in biological molecules. Hence, depending on the molecular pro-

cess under study (e.g. blood flow), a biological molecule is labeled with a radioactive

isotope as shown below:

[Radiolabeling of Biological Molecule]

H2O
16︸ ︷︷ ︸

Biological Molecule

Radiolabeling−−−−−−−→
for blood flow

H2O
15︸ ︷︷ ︸

Radiolabeled Molecule

(1.3)

Compared to biological compounds, positron emitters have smaller molecular

weights. Moreover, radiolabeled compounds are administered in smaller quantities

(i.e. tracer amounts7) without impacting the chemical behavior of the biological

molecules in the body. Table 1.1 lists positron emitting radiopharmaceuticals and

their biomedical applications.

1.2.2 The PET Process

Figure 1.9 shows a simplistic diagram of the PET process. The radiotracer is intra-

venously injected into the blood stream and is redistributed in the patient body based

on its biochemical fate. The unstable radionuclide decays to a stable energy state by

7 hence, radiolabeled compounds are also called radiotracers.
8 reproduced from [24].
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Table 1.1: Biomedical applications of positron emitting radiopharmaceuticals8.

radiotracer Radiopharmaceutical Examples of Biomedical Applications
15O oxygen oxygen metabolism
15O carbon monoxide blood volume
15O carbon dioxide blood flow
15O water blood flow
13N ammonia blood flow
18F FDG glucose metabolism
18F FDOPA pre-synaptic dopaminergic activity
18F FMISO hypoxic cell tracer
11C DTBZ vesicular monoamine transporter VMAT2
11C raclopride dopamine D2 receptor
11C methylphenidate (MP) dopamine membrane transporter DAT
11C SCH23390 dopamine D1 receptor
11C flumazenil benzodiazepine receptor

proton decay which is governed by the following equation:

p+ −→ n+ β+ + ν (1.4)

where p+ is a proton, n is a neutron, β+ is a positron, and ν is neutrino. For a general

radionuclide, X, the proton decay process can be described as follows:

M
Z X −→M

Z−1 X + β+ + ν (1.5)

where M is the total number of protons and neutrons, and Z is the number of protons.

Positrons are emitted with a continuous spectrum of energies and Table 1.2 lists the

maximum energy in MeV of commonly used positron emitting radiotracers.

9 reproduced from [24].
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Table 1.2: Properties of commonly used radiotracers in PET Imaging9.

radiotracer T 1
2

(min) Emax (MeV) Positron range in Water (mm)
18F 109.8 0.64 1.0
11C 20.3 0.96 1.1
13N 9.97 1.19 1.4
15O 2.03 1.70 1.5

68Ga 67.8 1.89 1.7
82Rb 1.26 3.15 2.7

The emitted positrons loose their kinetic energy via Coulomb interactions with

electrons while propagating through the surrounding medium before reaching ther-

mal energy levels. When positrons reach thermal energy levels they annihilate with

an electron transferring their mass into energy which appears as two almost anti-

parallel γ-rays of 511 keV each. The emitted γ photons are detected by a detector

ring surrounding the patient body. Since the γ photons are isotropically emitted,

projection data is simultaneously collected from multiple projection views and stored

as a sinogram10.

1.2.3 PET Image Reconstruction

Images of activity distribution are reconstructed from projection data by solving the

discretized version of Problem 1.2. Image reconstruction algorithms can be classified

into two categories: (1) analytical reconstruction methods [5, Chapter 20], [24, Chap-

ter 2], and (2) statistical reconstruction methods [5, Chapter 21], [24, Chapter 2− 4].

10 projection data can also be saved in a list-mode format. We direct the reader to reference [24,
Chapter 1] for further reading.
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Figure 1.9: PET data acquisition process

In this thesis, we focus on statistical reconstruction methods which have demonstrated

superior performance over analytical methods. Statistical methods allow accurate

modeling of statistical noise, complex detector geometries, and the detection process

to correct for image degrading effects (Section 1.2.4) [35, 36]. We next elaborate on

the mathematics of image reconstruction in PET.

Let Yi (i = {1, · · · ,M}) denote the elements of the sinogram matrix (projec-

tion data) where M is the number of sinogram bins. {Yi}Mi=1 are well-modeled as

independent Poisson random variables:

Yi ∼ Poisson{yi} (1.6)

Let y = [y1 y2 · · · yM ]T and y = [y1 y2 · · · yM ]T denote column vectors of

measured counts and expected counts. Expected counts are related to the unknown
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activity distribution, x ∈ RN , by an affine transform:

y = Px + r (1.7)

where P ∈ RM×N is the detection probability matrix (or forward projection operator,

Page 5) with the (i, j) element equal to the probability of detecting an event from

the jth voxel at the ith detector pair, and r ∈ RM is the contribution of scatter and

random events (Section 1.2.4.2, 1.2.4.3) in the projection data. The log-likelihood

function for the Poisson distributed projection data can be written as follows:

L(y|x) =
M∑
i=1

yi log yi − log yi − log yi! (1.8)

The image reconstruction task can now be framed as an optimization problem

which is solved using the maximum likelihood expectation maximization algorithm

(MLEM [37, 38]). MLEM algorithm has proven convergence properties, and easily

incorporates non-negativity constraints in the sense that if the initial estimate is

non-negative, image estimates at every iteration are non-negative.

[Inverse Problem: Maximum Likelihood Estimate]

x̂ = argmax
x≥0

L(y|x) (1.9)

xn+1 =
xn

PT1M
PT y

Pxn
(1.10)
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where xn is the image estimate at the nth iteration, PT is the backprojection operator

(Page 5), and 1M is a column vector of ones.

An accelerated version of MLEM, called the ordinary subset expected maximiza-

tion algorithm (OSEM [39]), uses subsets of projection data to iteratively update

the estimated image. The speed-up factor is equal to the number of subsets used in

the block-iterative updates. Unlike MLEM algorithm, the OSEM algorithm is not

necessarily convergent, though convergent variation of it has been proposed [40–44].

Since the tomographic reconstruction problem is ill-posed, ML estimates are ex-

tremely noisy and need to be regularized to obtain more meaningful estimates of

activity distribution [45, 46]. Instead of maximizing the log-likelihood function, one

maximizes the penalized log-likelihood function, Φ(x) (1.11), where R(x) is a penalty

function that encourages smooth solutions (e.g. quadratic penalty) and β is the tuning

parameter that controls the resolution-noise properties of image estimates [45,47–49].

The penalty function may be obtained by taking the logarithm of the a priori distri-

bution on the estimated image i.e p(x) = 1
Z
e−βR(x), where Z is a normalizing constant.

In this case, the penalized log-likelihood estimate is also called maximum a posteriori

estimate (MAP) [50–54]. The penalized log-likelihood function is optimized using

one-step late (OSL) algorithm [55,56].
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[Inverse Problem: Penalized Maximum Likelihood Estimate]

x̂ = argmax
x≥0

Φ(x) , L(y|x)− βR(x) (1.11)

xn+1 =
xn

PT1M − β∇xR(x)|x=xn

PT y

Pxn
(1.12)

In equation 1.7, the system matrix is the detection probability matrix P. However,

as mentioned before, statistical reconstruction methods allow modeling of physical

degradation factors (discussed Section 1.2.4) in the reconstruction framework. The

system matrix can be factorized as follows [57]:

P = Pdet. sens.Pdet. blur.Pattn.Pgeom.Ppos. range. (1.13)

where Ppos. range. models positron range blurring in the image space, Pgeom. is the

detection probability matrix, Pattn. is a diagonal matrix of attenuation correction

factors, Pdet. blur. models detector blurring in the sinogram space, and Pdet. sens. is a

diagonal matrix containing normalization factors. We describe these various degra-

dation factors next.

1.2.4 Degradation Factors in PET

Several physical factors can degrade the qualitative and quantitative accuracy of

PET images. Appropriate correction methods can be adopted for each one of them

17



CHAPTER 1. INTRODUCTION

Figure 1.10: Degradation factors in PET: (a) true LOR (coincidence event), (b) mispositioned
LOR due to scatter (red arrow), (c) mispositioned LOR due to random (red arrow),
(d) positron range, (e) photon non-collinearity, (f) depth of interaction, (g) detector
response function, and (h) geometric correction
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to ensure an accurate reconstruction of the underlying radiotracer distribution in the

organ of interest. Before we list the degradation factors, we need to have a clear

understanding of what constitutes a true event (also called true coincidence).

As mentioned in Section 1.2.2, a positron annihilates with an electron producing

two anti-parallel γ photons. In a degradation free system, these photons will travel in

straight lines before being detected at the detector ring. To localize the annihilation

event along this line of response (LOR), γ photons must be detected in coincidence

which implies that the arrival times of the photons fall within a coincidence time

window (6−12 ns). An annihilation event detected within a coincidence time window

is called a true event or true coincidence. Figure 1.10 (a) shows a true LOR. Now we

are able to discuss various degradation factors in PET.

1.2.4.1 Attenuation

γ photons interact with matter while traveling through the medium. Interactions are

primarily of two types: (1) photoelectric absorption, and (2) Compton scattering.

Photoelectric absorption is the dominant photon-matter interaction in human tissues

for photon energies below 100 keV, whereas, Compton scattering is dominant for

photon energies between 100 keV and 2 MeV [58, 59]. Compton scattering is the

main source of photon-matter interaction in PET and the probability of occurrence

of a Compton effect is given by the Klein-Nishina equation [60].

Compton scattering occurs when a γ photon interacts with a valence shell electron.
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The photon looses part of its kinetic energy to the loosely bound electron and is

scattered at an angle away from the “true” LOR as shown in Figure 1.11. The energy

of the scattered photon is given by the following equation:

Esc =
E0

1 + E0

0.511
(1− cos θ)

(1.14)

where E0 is the energy of the γ photon before interaction and θ is the scattering

angle.

Compton effect may result in a γ photon being scattered out of the field of view

(FOV) or be detected at another detector outside the coincidence time window. Either

of these cases results in a loss of LOR, a phenomenon termed as attenuation.

Figure 1.11: Compton scattering of γ photon.

Attenuation effects needs to be incorporated in the image reconstruction process

to avoid under-estimation of the radiotracer distribution. Attenuation factor (AF)

is computed from the survival probability of a photon which is defined as the prob-

ability that a photon propagates through an attenuating medium (with attenuation
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coefficient µ) without interacting with matter.

AF = e−µd (1.15)

In PET, a photon pair needs to be detected in coincidence to be counted as a

true event. Hence, AF is a product of the survival probabilities of the photons being

detected by a detector pair.

AFPET = e−µde−µ(D−d) = e−µD (1.16)

where D is the distance between the two detector’s surfaces. Therefore, AF in PET is

independent of the spatial position of the annihilation event which makes attenuation

correction straightforward compared to SPECT imaging which has depth dependent

AF. AF can also be obtained from blank scan and tranmission scans and transmission

image segmentation methods [24, Section 1.6.1].

1.2.4.2 Scattered Events

One or both of the γ photons after undergoing Compton scattering may still be de-

tected by a detector pair within a coincidence time window. In this scenario, although

the coincidence event is counted as a true event, the annihilation event is localized

along an incorrect LOR as shown in Figure 1.10 (b). Hence, annihilation events

localized to an incorrect LOR due to Compton scattering are termed as scattered
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events. Mis-positioning of LOR degrades the spatial resolution of the underlying ac-

tivity distribution. In 2-D PET, scatter fractions range from 10 % to 20 % depending

on the scanner geometry, size of the object, and the energy threshold. In 3-D PET,

scatter fractions increase three folds to 30 − 50 % range [61–63]. Scatter correction

can be achieved using convolution-subtraction methods [64, 65], dual-energy window

acquisition methods [66], comparisons of 2-D and 3-D distributions [67], and direct

calculation of scatter distribution using Klein-Nishina equation [68,69].

1.2.4.3 Random Events

Two γ photons originating from two distinct annihilation events may be detected

within a coincidence time window. This category of true events are called random

events (also called accidental coincidences). Random events also localize the annihi-

lation event along an incorrect LOR as shown in Figure 1.10 (c). Detection of one of

the γ photons from an annihilation event is called a single event. Two independent

single events detected within a coincidence time window constitute a random event.

Single events happen when the other γ photon (from the same annihilation event)

undergoes either of these phenomena:

1. is scattered out of the FOV.

2. passes through the detectors without being detected.

3. is not incident on any detector due to the orientation of the annihilation event,

or
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4. undergoes photoelectric absorption (< 1 % in PET).

Given a detector pair (i, j), the rate of random events along a LOR, Rr, is defined

by the following equation:

Rr = τSiSj (1.17)

where Si and Sj are the singles rate for the detector pair and τ is the coincidence

time window. Randoms rate is reduced for narrower coincidence time windows and

increases proportionally with the singles rate. Singles rate is directly proportional

to the injected activity and, hence, randoms rate is proportional to the square of

the injected activity [70]. Randoms correction can be achieved using image-based

convolution-subtraction method [65], incorporating an estimated distribution of ran-

dom events in the image reconstruction framework [71], or delayed-window meth-

ods [72]. Distribution of random events can be estimated from the singles rate [73]

or analytically computed from the transmission and emissions images [74].

1.2.4.4 Positron Range

Positron range is defined as the distance a positron travels in the medium before

annihilating with an electron as depicted in Figure 1.10 (d). Positron range depends

on the kinetic energy of the positrons and is tracer dependent. Table 1.2 shows the

positron range of commonly used radiotracers in PET. Positron range also introduces

spatial blurring in reconstructed images [75]. For 18F radioisotope, positron range is

smaller than the intrinsic resolution of the scanner and is often ignored. However, for
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82Rb radiotracer used in myocardial perfusion PET or 68Ga used in cancer imaging,

positron range is large and may be corrected to remove blurring effects from recon-

structed images. Positron range is usually modeled as an image-space blurring kernel

which can be incorporated in the image reconstruction framework or removed using

deconvolution methods [76–81].

1.2.4.5 Photon Noncollinearity

Positron and electron have non-zero kinetic energy before annihilation. When the two

particles annihilate, conservation of momentum can make the annihilation photons

deviate from the straight line trajectory as shown in Figure 1.10 (e). The deviation

is around 0.4◦ full width at half maximum (FWHM) [82]. The resolution loss due to

photon noncollinearity is a function of the diameter of FOV:

FWHM = 0.0022D (1.18)

where D is the diameter of the FOV. The larger the FOV (i.e. large D) the larger

the mispositioning of the LOR. Photon noncollinearity can be modeled as a sinogram

blurring kernel in the image reconstruction framework [83].

1.2.4.6 Depth of Interaction

Figure 1.10 (f) shows that γ photons from coincidence events away from the center

of the FOV have increasingly higher probability of penetrating through the detectors
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(i.e. enter one detector but penetrate in the adjacent detector). It happens due to

the decrease in the detector size subtended by the curvature of the scanner. This

spill-over or penetration of photons in the neighboring detectors is called depth of

interaction (DOI). DOI results in non-stationary resolution along the radial direction

due to mispositioning of LORs [84]. DOI effects can be resolved by computing the

detector response function (DRF), as shown in Figure 1.10 (g), and incorporating it

in the image reconstruction framework. This approach is called point spread function

recovery [85–89].

1.2.4.7 Inter-crystal Scattering

γ photons incident on a detector crystal may undergo Compton scattering and/or

photo-electrical absorption. Inter-crystal scattering refers to the scattering of incident

γ photons in the neighboring crystals. This also results in a mispositioning of LOR

[90]. Inter-crystal scattering at the center of the FOV still results in an event being

detected along an incorrect LOR. On the contrary, γ photons incident on the edge

crystals maybe scattered outside the detector block and lost forever.

1.2.4.8 Detector Sensitivity

Another factor affecting the LOR measurements are variations in the efficiency of

the detector elements. The efficiency of the detector elements depends on the angle

of incidence of the photons on the crystal surface, effective surface area of the crys-
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tal, depth-of-interaction, crystal imperfections, light guide variations, variations in the

gains of the photo-multiplier tubes (PMT) and the associated electronics. These vari-

ations in the LORs can be compensated by incorporating detector sensitivity factors

in the reconstruction process. Detector sensitivity factors, also called normalization

coefficients (NCs), can be obtained from a normalization scan which is acquired by

illuminating all LORs with an isotropic source [24, Section 1.6.4].

1.2.4.9 Geometric Correction

Circular detector geometry in PET results in non-uniform sampling of LOR in a

projection profile. LOR are denser (or narrowly spaced) away from the center of

the FOV where they are widely spaced as shown in Figure 1.10 (h). Non-uniform

sampling can be resolved by applying a simple geometric correction factor:

4r = 4d
√

1− 2r

D
(1.19)

where 4d is the detector width, r is the position of the LOR, D is the diameter of

the FOV, and 4r is the correction factor [91, Page 516− 517].

1.2.4.10 Detector Dead Time

Dead time is the time it takes to process an event. During this time the detector is

unable to process incoming events resulting in loss of counts [92]. With higher count

rates (corresponding to higher injected dose), a large fraction of counts are lost due
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to dead time effects which limits the amount of administered dose [8]. Dead time

correction involves scaling the counts by dead time correction factors which can be

measured from singles rate [8, Pages 178− 183].

1.2.4.11 Radioactive Decay

Positron emitting radioisotopes are unstable and undergo radioactive decay. The

emitted positrons annihilate with electrons to produce γ photons. With the passage of

time, due to radioactive decay, the number of disintegrations per second (dps) decrease

resulting in fewer annihilation photons. Decay correction is achieved by rescaling the

image counts with decay correction factors which depend on the radionuclide used in

the study. Table 1.2 lists the half-lives of commonly used radiotracers in PET.

Figure 1.12: Patient motion modifies AFs for individual LOR [93, Figure 2].

1.2.4.12 Patient Motion

High resolution PET imaging has allowed image acquisitions with a spatial resolution

of 2−5 mm FWHM range [94]. Despite enhanced spatial resolution, PET images can
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be severely degraded by patient motion thereby undermining the high resolution imag-

ing capability of the scanner. Equation 1.20 relates the effective resolution of a PET

image, FWHMeffective, with the intrinsic resolution of the scanner, FWHMtomograph,

and the FWHM of the distribution of patients motion, FWHMmotion [95]. Resolu-

tion degradation is evident when FWHMtomograph is comparable to FWHMmotion.

FWHMeffective =
√
FWHM2

tomograph + FWHM2
motion (1.20)

Figure 1.12 schematically shows how patient motion modifies AFs for individ-

ual LOR and Figure 1.13 shows motion artifacts in reconstructed transmission and

emission images for multi-frame PET study.

Figure 1.13: Motion artifacts in reconstructed transmission and emission images for multi-frame
PET study. White ellipses highlight artifacts due to motion.

Chapter 2 provides an extensive discussion on motion correction in brain PET

imaging and proposes a new approach for inter-frame and intra-frame motion correc-

tion in dynamic brain PET imaging [96–98].
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1.2.5 Pharmacokinetic Analysis in PET Imaging

Reconstructed PET images show radiotracer distribution in the organ(s) of interest.

The next step is to relate this activity distribution to the underlying physiological or

biochemical processes. This can be achieved by modeling the biological processes of

interest, a field called tracer kinetic modeling [99–105]. In this thesis, we will focus on

compartmental models of tracer kinetics and direct the readers to references [106,107]

for other modeling approaches [104, Section 1].

Figure 1.14: Two-tissue compartmental model for PET radiotracers [104, Figure 1]. CP (t) is the
activity concentration time-course in plasma, CF+NS(t) is the activity concentration
time-course for free and non-specific binding, and CSP (t) is the activity concentration
time-course for specific binding. K1, k2, k3, and k4 are the transport rate constants.

Figure 1.14 shows a two-tissue compartmental model for PET radiotracers (e.g.

18F-FDG). Tracer dynamics can be described by a system of first-order ordinary

differential equations (ODEs) whose coefficients are transport rate constants:

dCF+NS(t)

dt
= K1CP (t) + k4CSP (t)− (k2 + k3)CF+NS(t)

dCSP (t)

dt
= k3CF+NS(t)− k4CSP (t) (1.21)
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The solution of ODE (1.21) is given by:

CF+NS(t) =
K1

α2 − α1

[(k4 − α1)e−α1t + (α2 − k4)e−α2t]u(t)⊗ CP (t) (1.22)

CSP (t) =
K1k3

α2 − α1

[e−α1t − e−α2t]u(t)⊗ CP (t) (1.23)

where ⊗ denotes convolution, α1, α2 = k2+k3+k4

2
∓
√

(k2+k3+k4)2−4k2k4

2
, and u(t) is the

unit step function.

The measured PET signal, CPET (t) is the cumulative concentration time-course

from the free and non-specific binding compartment, specific binding compartment,

and blood plasma in the tissue of interest.

CPET (t) = η

(
CF+NS(t) + CSP (t)

)
+ (1− η)CP (t) (1.24)

CPET (t) = ηCtissue(t) + (1− η)CP (t) (1.25)

where Ctissue(t) = CF+NS(t)+CSP (t), and η is the blood volume fraction in the tissue

of interest. We are now in a position to formulate the inverse problem in pharma-

cokinetic analysis which may be solved using iterative techniques e.g. Levenberg-

Marquardt algorithm [108,109]:

[Inverse Problem: Parametric Imaging]

Given the measured noisy PET signal Cmeas(t) and the two-tissue compartment model
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of the PET signal, CPET (1.24), solve the following optimization problem

min
β
‖Cmeas(t)− CPET (t;β)‖2

W (1.26)

where β = [K1 k2 k3 k4 η]T and W is a diagonal matrix of weighting factors.

Transport rate constants, also called microscopic parameters, and functions of

microscopic parameters, called macroscopic parameters, have immense physiological

importance and quantitatively capture the physiological and chemical kinetics of the

processes under study e.g. relative blood flow [110], glucose metabolism [111], receptor

content [112] etc. These quantitative parameters of interest are also called biomarkers.

In Chapter 3, we provide a robust approach of estimating quantitative parameter

of interest in cardiac PET imaging called myocardial blood flow which is a function

of uptake rate, K1.

1.2.6 Clinical Applications of PET

Positron emission tomography (PET) finds numerous applications in clinical oncology

[113], brain tumor imaging and quantification [114], myocardial blood flow and flow

reserve imaging and quantification in cardiology [115], and molecular drug discovery

and development [116,117].
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1.3 Main Contributions

Motion-compensation in Dynamic Brain PET Imaging: We present a frame-

based motion correction algorithm referred to as Generalized Inter-frame and Intra-

frame Motion Correction (GIIMC) that compensates for motion in a dynamic PET

study. Faber et. al. 2009 [118] employed a Richardson-Lucy deconvolution approach

[119,120] to compensate for motion in brain PET imaging. The method was applied

to single frame static PET acquisition. We extend this work to enable application

to multi-frame dynamic PET acquisition where inter-frame and intra-frame motion

compensation are both performed. Another issue not quantified in Faber et. al. 2009

[118] that we carefully study is the occurrence of attenuation artifacts that arise from

transmission-emission mismatches. We study this issue elaborately, and show that

these mismatch artifacts can become significant in the presence of increasing intra-

frame motion. At the same time, we propose a fairly simple approach of using time

weighted average of motion transformed transmission images for reconstruction, that

alleviates this issue. We validated the proposed approach on extensive simulations

with real patient motion profile.

Parametric Myocardial Perfusion PET Imaging: We propose a novel frame-

work of robust kinetic parameter estimation applied to absolute flow quantification

in dynamic PET imaging. Kinetic parameter estimation is formulated as a non-

linear least squares with spatial constraints problem (NLLS-SC) where the spatial
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constraints are computed from a physiologically driven clustering of dynamic images,

and used to reduce noise contamination. The proposed methodology makes use of the

physiological similarity of voxels to penalize deviation of voxel kinetics from physio-

logical partners. The proposed approach is validated with simulated data (transmural

and non-transmural perfusion defect) and clinical studies.
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Motion Correction in Dynamic

Brain PET Imaging

Frame-acquired (dynamic) PET images suffer from inter-frame and intra-frame mo-

tion artifacts that can degrade the qualitative and quantitative analysis of PET

data in the following ways: (1) Patient motion introduces transmission-emission

mismatches which leads to an incorrect scatter and attenuation correction in the

reconstruction process. As a result, the reconstructed dynamic images carry erro-

neous estimates of radioactivity distribution [121, 122]. (2) Patient motion modifies

the Time Activity Curves (TACs) at a voxel or ROI level resulting in an erroneous

estimate of kinetic parameters [123]. (3) Patient motion causes a loss of contrast due

to motion-blurring artifacts leading to a poor discernibility of small structures like

lesions [124] or small brain structures of neurochemical interests like ventral striatum.
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This calls for an appropriate motion correction technique to considerably reduce (ide-

ally eliminate) inter-frame and intra-frame motion artifacts in dynamic PET images.

It is important to note that intra-frame motion correction is less readily addressed in

comparison to inter-frame motion correction which is commonly incorporated in the

various algorithms summarized in Table 2.1.

Dynamic brain PET imaging sessions (e.g. for applications like neuroreceptor

mapping and quantification) are typically very long (∼ 60− 120 mins) making it un-

reasonable to assume that even very cooperative patients remain static for the entire

acquisition duration [125]. This assumption is even worse if the patient is suffer-

ing from neurological or psychological disorders resulting in involuntary motion e.g.

restless-leg syndrome and epilepsy [126,127], or Tourette’s syndrome [128]. Voluntary

head movements due to coughing, leg crossing, etc. are also commonly observed in

PET scans [129].

Existing motion correction techniques may be grouped into two broad categories

[124]: A) algorithms that exploit motion information acquired from optical tracking

apparatus [118, 130], and B) algorithms that realign reconstructed PET frames and

co-register them to a template (reference) frame [122,124,131,132]. Table 2.1 attempts

to summarize motion correction approaches in brain PET imaging. It highlights the

pearls and pitfalls of the algorithms used for motion correction in brain PET imaging.

In particular, the method of Multiple Acquisition Frames (MAF) [130] corrects

inter-frame motion artifacts by removing average motion from all the independently
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Table 2.1: Pearls and pitfalls of motion correction algorithms in brain PET Imaging.

Methods Pearls Pitfalls

Head Restraints
[127,133]

• Reduces head movements by fix-
ing the head with the head-rest us-
ing thermoplastic masks or neoprene
caps.

• Does not eliminate motion.

• Relative motion between head-
restraint and skull due to coughing,
sneezing, leg crossing etc.

Event Driven Correction
[127,134–142]

• Compensates individual lines of re-
sponse (LORs) based on measured
motion information.

• Requires access to list-mode acquired
data.

• Can lead to artifacts unless careful
normalization is performed.

Multiple Acquisition Frames
(MAF)

[123,130,143]

• Corrects for inter-frame artifacts by
realigning the independently recon-
structed frames to a reference (tem-
plate) frame.

• Low motion threshold results in ac-
quisition of low-statistics frames and
higher reconstruction times.

• High motion threshold results in sub-
stantial intra-frame motion artifacts.

• Increasing the number of frames pro-
portionally increases reconstruction
times.

Image Registration Methods
[122,124,131,132]

• Provides motion-corrected attenua-
tion correction of PET data with
task-related motion.

• Corrects for misalignment between
transmission and emission scans.

• Reduced noise, false-positives and
false-negatives.

• It depends on acquired PET data
with poor spatial information.

• Realignment may occur several times
per second instead of realigning long
(duration) frames.

System Matrix Modeling
[93]

• Incorporates known-motion into
system response function used in
MLEM.

• Does not require list-mode acquisi-
tions.

• Requires access to, and the ability to
modify, the system matrix used for
reconstruction.

Kernel-based Deconvolution
[135]

• Motion-defined deconvolution of
motion-blurred reconstructed im-
ages.

• Theoretically well-behaved for nois-
less data.

• Deconvolution amplifies noise in PET
data.

• Spatially variant deconvolution op-
erators required for significant rota-
tions. This augments computational
costs and adds potential artifacts.

Iterative Richardson-Lucy
Deconvolution

[118,144]

• Incorporates iterative Richardson-
Lucy Deconvolution.

• Allows spatially variant or nonlinear
deblurring kernels.

• Does not require list-mode acquisi-
tions.

• Can incorporate complex movements.

• Applies only to single-frame PET ac-
quisition.

• Attenuation artifacts from misreg-
istration of emission-transmission
data.

• Transmission-emission mismatches
significant with increasing intra-
frame motion.
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reconstructed frames. The drawback is that a high motion threshold neglects consid-

erable intra-frame motion. By contrast, a low motion threshold results in acquisition

of low-statistic frames, thereby, degrading image quality and increasing the number

of frames which proportionally increases reconstruction time [95].

Another approach for motion compensation in PET imaging is to employ the

Richardson-Lucy (R-L) algorithm [119], [120], as proposed by Faber et al. [118], and

further implemented, optimized and validated by Raghunath et al. [144]. The ap-

proach was applied to single-frame static PET acquisition (which we extend in the

present work to enable application to multi-frame dynamic PET acquisition). An-

other issue not quantified was the occurrence of attenuation artifacts that arise from

transmission-emission mismatches. We study this issue elaborately, and show that

these mismatch artifacts can become significant in the presence of increasing intra-

frame motion.

An alternative solution to eliminate transmission-emission mismatch artifacts is to

correct the individual lines of response (LORs) for motion [134], [127]. This approach

is more invasive as it requires access to, and processing of, the acquired list-mode data.

More importantly, it has been shown by our group [22, 139] as well as others [137–

139,141] that mere motion compensation of LORs can lead to artifacts, and must be

accompanied by modifying probabilities of detection due to motion, posing additional

algorithmic and computational complexity to the problem. We have discussed these

issues in a review article on motion compensation methods [95].
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By contrast, the present work builds upon the straightforward and feasible ap-

proach by Faber et al. [118, 144], including extension to dynamic PET acquisition in

a framework we refer to as Generalized Inter-frame and Intra-frame Motion Correction

(GIIMC) [96], [97]. At the same time, an important component of the present work

is to shed light upon and characterize the limitations of the overall R-L framework as

applied to motion compensation, and to seek means to alleviate these limitations. As

a short summary, the GIIMC algorithm aims to better address the following issues:

• Incorporate inter-frame and intra-frame motion correction in one framework

and preserve the desired dynamic framing sequence.

• Reduce transmission-emission mismatches by reconstructing the individual frames

with a time-weighted average of motion transformed transmission images for

each frame.

• Suppress noise propagation in iterative deconvolution process by performing

inter-iteration smoothing.

2.1 Methods and Materials

2.1.1 Inter-frame Motion Correction

In brain PET imaging, patient motion is modeled as a 3-D rigid body motion and,

thus, follows the 3-D rigid body kinematics. 3-D rigid body motion can be completely
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characterized by a set of 4× 4 transformation matrices of the form:

{R v

0 1


∣∣∣∣∣ R ∈ SO(3), v ∈ R3

}
(2.1)

where R is a 3× 3 rotation matrix and v is a 3× 1 translation vector. This forms a

Special Euclidean Group, SE(3), which is a 6-D manifold (3 rotation and 3 translation

parameters). SO(3) is the group of 3-D rotational matrices defined as follows:

SO(3) = {R ∈ GL(3) : RRT = I, |det(R)| = 1} (2.2)

where GL(3) is a set of 3 × 3 non-singular matrices (Generalized Linear Group).

These constraints together with the identification of antipodal points, i.e. points

that generate the same rotation matrix, completely characterizes the topology of

SO(3) [145,146].

The first step to correct for inter-frame motion is to compute average motion in

each independently reconstructed frame. This is equivalent to computing a transfor-

mation matrix which gives the average (mean) motion in each frame. A point that

merits close attention is that mere averaging (in a Euclidean sense) of the elements

of transformation matrices loses the geometric properties of the individual transfor-

mations (except in few exceptions e.g. pure translations) and, hence, is not a valid

transformation matrix [91], [147].
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Algorithm 1 outlines a procedure for estimating time-weighted mean transforma-

tion with a fast convergence rate. The time-weights of each motion transformation for

individual frames are derived from the motion file acquired by a Polaris Motion Track-

ing device during a PET study (Section 2.1.4.2). The details on the necessary and

sufficient conditions for the existence, uniqueness and convergence of Algorithm 1

are contained in references [148], [149]. An alternative approach of independently

averaging the quaternion and translation components is also possible and yielded

comparable results.

Algorithm 1 Manton’s weighted mean transformation.

1: Given: {Ti, wi}Ni=1, and δ > 0.
2: input: K ← Ti for any i ∈ {1, · · · , N}.
3: Compute: M ← 1

N

∑N
i=1wi · exp−1(K−1Ti).

4: if ‖M‖ < δ then
5: Set Tmean ← K. return
6: else
7: Update K ← Kexp(M).
8: Update M ← 1

N

∑N
i=1wi · exp−1(K−1Ti).

9: end if
10: Output: Tmean.

2.1.2 Transmission-Emission Alignment Strategies

Subject motion results in spatial misalignment between transmission and emission

scans, leading to inaccurate attenuation and scatter correction in the reconstruction

process. A common solution to this is to align the transmission image to some “aver-

age” position of the emission object within the particular frame of interest. Example

of this “average” position includes the mean motion transform or the median motion
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transform (Section 2.1.2.1). However, we have observed in the present work that

in the case of considerable intra-frame motion, these approaches are sub-optimal,

and that an alternative approach is considerably more rewarding. There is a differ-

ence between mapping by an average motion transform, versus averaging of images

mapped by different motion transforms. We propose using time-weighted average of

attenuation sinograms to reconstruct individual dynamic frames. Also proposed is

a computationally faster approach of forward projecting a time-weighted average of

motion transformed transmission images for reconstruction with comparable results.

The mathematical notation used in this section is as follows:

µ0 transmission image (µ-map)

A0 attenuation sinogram obtained from the µ-map

Ti,j ith motion transformation for dynamic frame j

Nj number of motion transformations in frame j

wi,j time-weight of ith motion transformation for dynamic frame j

We subdivide the alignment strategies into conventional methods and proposed

methods:

2.1.2.1 Conventional Methods

Transmission Image transformed by T1,j

µ0, is transformed by the first (intra-frame) motion-transformation of frame j

and then forward projected to generate attenuation sinogram, A1,j , which is used to
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reconstruct dynamic frame j.

µ1,j = T1,j{µ0} (2.3)

A1,j = e−fwdproj{µ1,j} (2.4)

Transmission Image transformed by Tmedian,j:

The set of intra-frame motion transformations for frame j, {Ti,j}
Nj

i=1, are sorted

chronologically (based on time-stamps) and the median motion transformation, Tmedian,j,

is computed. µ0 is transformed by Tmedian,j and then forward projected to generate

attenuation sinogram, Amedian,j , which is used to reconstruct dynamic frame j.

Tmedian,j = median{T1,j, T2,j, · · · , TNj ,j} (2.5)

µmedian,j = Tmedian,j{µ0} (2.6)

Amedian,j = e−fwdproj{µmedian,j} (2.7)

Transmission Image transformed by Tmean,j:

Algorithm 1 is used to compute time-weighted mean of intra-frame motion trans-

formations {Ti,j}
Nj

i=1, for frame j, denoted by Tmean,j. Then µ0 is transformed by the

single transformation Tmean,j and forward projected to generate attenuation sinogram,
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Amean,j , which is used to reconstruct dynamic frame j.

Tmean,j = mean{T1,j, T2,j, · · · , TNj ,j} (2.8)

µmean,j = Tmean,j{µ0} (2.9)

Amean,j = e−fwdproj{µmean,j} (2.10)

2.1.2.2 Proposed Method

Time-weighted average of attenuation sinograms:

µ0 is transformed by each of the Nj intra-frame motion-transformation, {Ti,j}
Nj

i=1,

and then forward projected to generate a set of attenuation sinograms, {Ai,j}
Nj

i=1.

A time-weighted average of {Ai,j}
Nj

i=1 is computed and used to reconstruct dynamic

frame j.

µi,j = Ti,j{µ0} (2.11)

Ai,j = e−fwdproj{µi,j} (2.12)

Ap
mean,j =

Nj∑
i=1

wi,jAi,j (2.13)

One shortcoming of this approach is that it involves Nj forward projection operations

for each frame j.

Time-weighted average of Transmission Images:

µ0 is transformed by each of the Nj intra-frame motion-transformation, {Ti,j}
Nj

i=1,
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to generate a set of motion-transformed transmission images, {µi,j}
Nj

i=1. A time-

weighted average of {µi,j}
Nj

i=1 is computed and forward projected to generate mean

attenuation sinogram, Aq
mean,j , for reconstruction of dynamic frame j.

µi,j = Ti,j{µ0} (2.14)

µmean,j =

Nj∑
i=1

wi,jµi,j (2.15)

Aq
mean,j = e−fwdproj{µmean,j} (2.16)

This approach is computationally faster than the previous one as it performs a single

forward projection operation for each frame j.

To see this better, we note that for an object fTi at a time/position with motion

transformation Ti (i = {1, · · · , N}), the projected data Y (prior to adding noise), is

given by:

Y =
N∑
i=1

wiATiPfTi (2.17)

where wi = 4Ti/T is the time weight for each motion transformation, P denotes

the projection matrix including everything (e.g. image-space blurring, geometric

projection and normalization, equation 1.13) except for the effect of attenuation,

which, because of the fact that the transmission image is itself also moving, is modified

with each motion, and is given by ATi . For a given frame with mean motion T ,
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conventional methods assume the following approximation:

Y =
N∑
i=1

wiATPfTi = ATP

(
N∑
i=1

wifTi

)
(2.18)

thus arriving at a single sinogram AT for attenuation correction of the motion-

degraded frame. By contrast, the proposed method effectively assumes the following:

Y =

(
N∑
i=1

wiATi

)
P

(
N∑
i=1

wifTi

)
= ATP

(
N∑
i=1

wifTi

)
(2.19)

where AT denotes the overall attenuation sinogram obtained by time-weighted av-

eraging. A fast method to approximate AT is to actually perform time-weighted

averaging of the transmission images, followed by forward-projection to obtain mean

attenuation sinogram, as opposed to the computationally intense approach of per-

forming individual forward-projections of motion-transformed transmission images,

followed by averaging. In fact, we observed both approaches to produce images of

very comparable quantitative performance, and as such, pursued the computationally

faster approach in what follows.

2.1.3 The GIIMC Algorithm

Algorithm 2 outlines the procedure for the GIIMC Algorithm in multi-frame PET

Imaging. Figure 2.1 shows a flowchart of the algorithm.
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Algorithm 2 Generalized Inter-frame and Intra-frame Motion Correction Algorithm.

1: Given: {Yj}Mj=1, {Ti,j , wi,j}
Nj ,M
i=1,j=1, and

∑Nj

i=1wi,j = 1, ∀j.
2: Compute: Tmean,j for each frame j using Algorithm 1.
3: Compute: Aj , for each frame j using one of the methods from Section 2.1.2.
4: Reconstruct: emission image, Ij using Yj and Aj for each frame j (Section 1.2.3).
5: Compute: residual motion transformations, T resi,j = T−1

mean,j · Ti,j for each frame j.

6: Inter-frame motion correction: Qj = T−1
mean,j{Ij} for each frame j.

7: Intra-frame motion correction: R-L iterative deconvolution for each frame j

λn+1
j =

λn
j∑Nj

i=1 wi,j ·T res−1
i,j {1}

∑Nj

i=1wi,j · T res
−1

i,j

{
Qj∑Nj

i=1 wi,j ·T res
i,j {S(λn

j )}

}
where n is the iteration number, and S is an inter-iteration smoothing operator (e.g.
Gaussian filter with FWHM = 2 mm).

8: Output: motion compensated multi-frame images {λj}Mj=1.

2.1.4 Experimental Methods

2.1.4.1 Tomograph

PET data was acquired on the second generation High Resolution Research Tomo-

graph (HRRT) [150]. The detector heads in the octagonal design consist of a dou-

ble 10 mm layer of LSO/LYSO for a total of 119, 808 detector crystals (crystal size

2.1 × 2.1 × 10 mm3). The total number of possible LORs is 4.486 × 109. The di-

mensions of the reconstructed image is 256 × 256 × 207 and the voxel volume is

1.219 × 1.219 × 1.219 mm3. The images were reconstructed using the OSEM algo-

rithm (10 iterations, 16 subsets).
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Figure 2.1: Flowchart of GIIMC Algorithm.

2.1.4.2 Polaris Motion Tracking and Calibration

GIIMC algorithm exploits motion information acquired during a PET study using

external motion tracking device. In particular, we used Polaris Vicra to track head

motion [129, 151]. Polaris Vicra is a high resolution (< 0.1 mm) infra-red (IR) op-

toelectronic system that uses 4 IR retro-reflective spheres in a known geometry. In
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a human study it is fixed to the head via an elastic swimming cap. The 4 spheres

face the Polaris inside the gantry which in turn acquires motion-transformations at

30 ms resolution. The Polaris system is synchronized with the PET acquisition using

a TCL (Tool Command Language) script and the program generates a motion file

containing time-stamped motion parameters (4 quaternion and 3 translation param-

eters). Polaris motion tracking is insensitive to lighting conditions, uses significantly

less disk space for data storage (in comparison to saving optical image sequences) and

is commercially available and economical [95].

Polaris-to-Tomograph transformation, [P2T ]4×4, was computed via a series of cal-

ibration experiments performed simultaneously with Polaris and transmission scan

measurements [142], [151]. The Polaris tool was placed in a static position in the

scanner and the coordinates of its center along with its orientation (quaternion and

translation vectors) were determined by Polaris. Given the knowledge of the relative

positions of the 4 spheres, the 3-D positions of the spheres were extracted. During

this time, a 10 min transmission scan of the tracking tool was also obtained. From the

reconstructed transmission image, the coordinates of the 4 spheres were determined

by first isolating the 4 spheres from the clamp-plate and then fitting a 3-D Gaussian

to the center of each sphere. This entire process was repeated 10 times to increase the

accuracy of the calibration. [P2T ]4×4 was obtained by employing a least squares fit

to the Polaris and tomograph measurements [152]. [P2T ]4×4 is later applied during

the post-reconstruction motion compensation procedure.
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The motion file generated by the Polaris Vicra consists of motion-transformations

in the form of a quaternion vector, [q0 q1 q2 q3], and a translation vector, [tx ty tz]

i.e. 7 numbers. We first average the motion-transformations accumulated over 1 sec

intervals to reduce Polaris measurement noise. This gives us motion-transformations

corresponding to each second of PET acquisition. Subsequently we applied a combi-

nation of motion threshold (0.3− 1 mm) and a time threshold of 15 seconds duration

to get significant motion transformations. The motion threshold (of 1 mm) was set

to be one-third of the PET system resolution at the center of the field of view [153].

A time threshold of 15 seconds was empirically chosen to eliminate impulsive motion;

i.e. movements that last for very short durations. In Algorithm 2 the significant

motion-transformation were represented by {Ti,j}
Nj M
i=1,j=1 and the time-stamps gives us

the time weights, {wi}
Nj M
i=1,j=1, where M is the total number of frames and Nj is the

number of significant motion-transformations obtained for each frame j.

2.1.5 Simulations

We used a Mathematical Brain Phantom (MB-Phantom) [142] to conduct simulation

studies based on real-patient motion profile acquired by the Polaris Vicra during sub-

ject PET studies. The MB-Phantom is constructed using subdivision surfaces [154].

Subdivision surfaces enable efficient modeling of arbitrary topological structures like

brain, skull, muscle tissue, and vasculature. The details on surface modeling are con-

tained in [142] and the references therein. Figure 2.2 shows the transaxial, coronal and
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saggital slices of the MB-Phantom. The activity-numbers in the MB-phantom were

derived from an FDG study. We then performed analytical simulations incorporating

attenuation, normalization and realistic Poisson noise.

Figure 2.2: (a) Mathematical Brain Phantom. (b)-(d) Transaxial, Coronal, and Saggital slices of
the brain phantom.

2.1.6 Subject Study

A human subject was recruited to be scanned on the HRRT scanner following a

clinical (non-research) FDG PET scan. The patient was consented and enrolled under

a JHU IRB approved research protocol and monitored for safety by a study physician

during participation. No adverse events were observed or reported. The Polaris

Vicra and PET acquisition system were synchronized with a master clock using TCL

scripts. The tracking tool was fixed to the patient’s head via an elastic swimming

cap. Before scanning, appropriate measures were taken to minimize relative motion

between the tracker and the patient’s head and to ensure that the tracker did not

slip away during scanning. The patient was injected with ∼ 20 mCi of FDG 1.75 hrs

prior to scanning. A transmission scan was performed for the first 6 mins followed
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by a 25 mins emission scan. The patient was asked to remain very still during the

transmission scan and the first 5 mins of the emission scan to acquire a reference

image with minimal motion. The patient was asked to make a number of movements

and move freely for the rest of the study. The Polaris Vicra generated a motion file

from which significant motion-transformations for individual frames were extracted.

Figure 2.3 shows motion profile of a scanned patient. The markers, �, show the frame

time points (9 frames in total). The framing sequence is 1 × 300 secs, 8 × 150 secs.

The first 5 mins frame clearly show minimal motion and, hence, is used as a reference

frame for qualitative and quantitative analysis. We performed experiments, based on

the conventional and proposed methodologies, on the acquired real-patient data and

validated our findings from the phantom simulations. We cannot use a hypothetical

approach with real-patient PET data as it is an impossible physics scenario. As the

patient moves during PET acquisition, the µ-map changes accordingly.

Figure 2.3: Motion profile acquired during a 25 mins emission scan. Row 1 shows the translation
profiles and Row 2 shows the rotation profiles in x, y, and z axial-directions wrt to the
transmission scan. We see significant translational motion in the x axial-direction and
significant rotational motion in the z axial-direction as expected. Markers, �, shows
the frame time points (9 frames in total). The framing sequence is 1×300 secs, 8×150
secs.

51



CHAPTER 2. MOTION CORRECTION IN DYNAMIC BRAIN PET IMAGING

Figure 2.4 shows motion-trajectory of a reference point located in the brain for a

150 sec frame duration. The magnitude of intra-frame motion is quantified by mean

displacement, Disp, elaborated in Section 2.1.7. Frame 3 has Disp = 5.92 mm.

Figure 2.4: Motion trajectory of a reference point located in the brain during a 150 seconds frame.
The origin is at the center of the scanners FOV. The magnitude of intra-frame motion
is 5.92 mm.

2.1.7 Quantitative Metrics

This section elaborates upon the quantitative metrics used to analyze the motion com-

pensated images. The reference image used in these computations corresponded to

the first five minutes of emission scan that contained minimal motion (see Figure 2.3).

We preferred it over the original true phantom as the latter does not contain partial

volume effects (PVE).

Error-norm:

The error norm is a voxel-wise comparison between the reference image, R, and
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the motion compensated PET image, I. It is defined as follows:

‖I, R‖ =
N∑
i=1

|I[i]−R[i]| (2.20)

Mean Displacement:

We use the time-weighted mean displacement, Disp, to quantify motion in a

dynamic PET image. For each dynamic frame, Disp is calculated with respect to the

mean motion transformation in that frame, T :

Disp =
V∑
i=1

N∑
j=1

wj · ‖Tj[i]− T [i]‖ (2.21)

where V is the total number of voxels in the masked image, N is the total number

of significant motion transformations in each frame, wj is the time-weight for the jth

motion transformation, and T [i] denotes the spatial coordinates of voxel i under the

motion transformation T .

Noise and Bias:

We quantitatively analyzed different regions of interest (ROIs): white matter,

caudate, putamen, cingulate, thalamus, globus pallidus, frontal-orbital gyrus, and

occipitotemporal gyrus. For noise-bias analysis, we computed regional bias, RB, and
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regional normalized standard deviation, RNSD, for each ROI:

RBr =
|λr − µr|

µr
(2.22)

RSNDr =

√
1

Lr−1

∑
β∈r(λ

β − λr)2

λr
(2.23)

where r indexes the ROIs, λr denotes mean reconstructed activity of ROI r in the

motion compensated image, µr denotes mean activity of ROI r in the reference image,

Lr is the total number of voxels in ROI r and β ∈ r indexes them.

Figure 2.5: Absolute error images between the estimated and simulated motion-blurred and at-
tenuated emission sinogram. (a) uses attenuation sinogram A1,j , (b) uses attenuation
sinogram Amedian,j , (c) uses attenuation sinogram Amean,j , (d) uses attenuation sino-
gram Ap

mean,j , and (e) uses attenuation sinogram Aq
mean,j .

54



CHAPTER 2. MOTION CORRECTION IN DYNAMIC BRAIN PET IMAGING

2.2 Results

2.2.1 Comparison of Transmission-Emission Alignment Strategies

We now compare transmission-emission alignment strategies discussed in Section 2.1.2.

For quantitative evaluation, we used the following error metric, E(A), which is a func-

tion of the attenuation sinogram, A, used to reconstruct the emission images:

E(A) =

∣∣∣∣∣
N∑
i=1

wiATiPfTi −A
N∑
i=1

wiPfTi

∣∣∣∣∣ (2.24)

Figure 2.5 shows the absolute difference sinogram, E(A). The proposed approach

is seen to outperform conventional methods by substantially reducing transmission-

emission misalignment (order of magnitude improvement).

Figure 2.6: (Rows 1 and 2: L-to-R) (a) reference image, motion compensated image using the
transmission image transformed by (b) median and (c) mean motion transformation,
and (d) the proposed approach of using time-weighted motion transformed transmis-
sion images respectively. White ellipses highlight the artifacts in motion compensated
images using conventional approach of transmission-emission alignment.
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Qualitative and quantitative comparisons of various motion compensated recon-

structed images are depicted in Figures 2.6 and 2.7, respectively (Frame 8 with

Disp = 4.83 mm and Frame 5 with Disp = 9.08 mm). It is seen that the proposed

approach of transmission-emission alignment considerably reduced mismatch artifacts

and produced images with superior quality compared to conventional methods. With

increased intra-frame motion (higher Disp), transmission-emission mismatch becomes

increasingly significant, and the motion compensated images from conventional meth-

ods degraded severely. The proposed approach showed substantial improvement even

for motion magnitude of ∼ 9 mm. From here on, the results from simulations and

subject study will focus only on using the transmission image transformed by the

mean (not median) motion Tj, for each frame j, for conventional approach and using

time-weighted average of motion transformed transmission images for the proposed

approach.

2.2.2 Qualitative and Quantitative Analysis of Phantom Simulations

Figure 2.8 depicts motion compensated images obtained from phantom simulations.

We depict results from Frame 5 and Frame 8 with Disp = 4.83 mm and Disp = 9.08

mm respectively. We show motion compensated images with inter-frame motion cor-

rection only, as well as additional intra-frame motion correction (with deconvolution

iterations 8 and 15 respectively), employing conventional and proposed approaches of

transmission-emission alignment.

56



CHAPTER 2. MOTION CORRECTION IN DYNAMIC BRAIN PET IMAGING

Figure 2.7: Error norm curves from simulations using different transmission-emission alignment
strategies. The proposed approach of using time-weighted motion transformed trans-
mission images clearly outperforms conventional methods for minimizing mismatch
artifacts in motion compensated images.

Our proposed approach is seen to considerably remove inter-frame and intra-frame

motion artifacts. The results are consistent across different levels of intra-frame

motion. The conventional approach produced images that are visibly degraded by

transmission-emission mismatch artifacts, even with small movements. These arti-

facts are amplified with increased deconvolution iterations and motion levels. We

concluded from this qualitative analysis that the proposed approach produced mo-

tion compensated images with superior quality. We now substantiate this assessment

through quantitative analysis of motion compensated dynamic images.

Figure 2.9 shows the error norm curves for the proposed and conventional ap-

proaches with varying deconvolution iterations. 0th deconvolution iteration implies
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Figure 2.8: (L-to-R) inter-frame motion compensated images, inter-frame and intra-frame mo-
tion compensated images with conventional and proposed approaches of transmission-
emission alignment, and deconvolution iterations 8 and 15 respectively. White ellipses
highlight artifacts. Proposed approach outperforms conventional methods in producing
motion compensated images with superior quality.

inter-frame only motion correction. We omitted frames with negligible intra-frame

motion. The proposed approach showed a larger error drop compared to the con-

ventional approach. In fact, for the conventional approach, the error norm increases

with deconvolution iterations and intra-frame motion. This is again attributed to

transmission-emission mismatch which starts to dominate with higher intra-frame

motion.

Figure 2.10 shows the Error Norm vs. Disp plots for the proposed and con-
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Figure 2.9: Error norm plot for different frames against deconvolution iterations (10 OSEM itera-

tions, 16 subsets). 0th iteration implies intra-frame only motion correction. Proposed
approach outperformed conventional approach exhibiting a larger error drop. Conven-
tional approach showed an increase in error norm because the transmission-emission
mismatch starts to dominate with increased deconvolution iterations.

ventional approaches with inter-frame and intra-frame motion correction (10 decon-

volution iterations). We obtained a proportional relationship between error norm

and Disp. Conventional approach showed significant discrepancy with increasing

intra-frame motion (quantified by Disp). Even at higher levels of intra-frame motion

(higher Disp), the proposed approach showed a significantly better error performance

compared to the conventional approach.

Figure 2.11 shows overall noise vs. bias plots for deconvolution iterations 1, 2, 3, 5,

8, 10, 15, and 20 (across 8 ROIs). The proposed approach outperformed conventional

approach in noise vs. bias tradeoff at different magnitudes of intra-frame motion.

With increasing deconvolution iterations we saw a greater reduction in bias at a

cost of smaller increase in noise levels. For conventional approach, the noise-bias

performance worsened with increasing deconvolution iterations, which is attributed
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Figure 2.10: Error Norm vs. Disp plot for individual frames. It shows increased discrepancy with

higher intra-frame motion (higher Disp). Proposed approach outperforms conven-
tional approach by significantly reducing the transmission-emission mismatch arti-
facts (as shown by a better error performance).

to the transmission-emission mismatch artifacts.

2.3 Discussions and Conclusions

We have presented an approach to correct for intra-frame motion in multi-frame PET

imaging. Intra-frame motion compensation is achieved by iteratively removing resid-

ual motion blur from the individually reconstructed frames using a Richardson-Lucy

deconvolution approach. To more appropriately accommodate this framework, we

presented a novel approach of using time-weighted averaging of motion transformed

transmission images to mitigate transmission-emission mismatch artifacts caused by

patient motion. Our methodology is amenable to different framing sequences in a

dynamic study.
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Figure 2.11: Overall noise-bias plots across deconvolution iterations 1, 2, 3, 5, 8, 10, 15, 20 re-
spectively for 8 ROIs. Proposed approach shows a better noise-bias performance over
conventional approach with a greater reduction in bias at a cost of smaller increase
in noise levels.

We studied three transmission-emission alignment strategies in multi-frame PET

imaging at various magnitudes of intra-frame motion (quantified by Disp). The

first two approaches, classified as conventional methods, used: (1) transmission im-

age transformed by mean motion transformation, and (2) transmission image trans-

formed by median motion transformation to generate ACFs. The third approach, our

proposed method, performed time-weighted averaging of motion transformed trans-

mission images to generate ACFs. The reconstructed images were corrected for inter-

frame and intra-frame motion. Qualitative analysis of motion compensated images

showed that the proposed approach produced images with superior quality compared

to the conventional approach (Figure 2.6). Small regions of interest such as the cau-

date and putamen were clearly distinguishable, and the functional morphology was

preserved for different magnitudes of intra-frame motion. On the contrary, the im-
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ages from the conventional approach were visibly degraded by transmission-emission

mismatch artifacts that degraded the uptake distribution in the caudate and puta-

men (Figure 2.6). The artifacts became severe with increasing intra-frame motion.

Quantitative analysis of motion compensated images showed that the proposed ap-

proach resulted in a substantial reduction of error norm in comparison to conventional

methods (Figure 2.7), thus further validating our inference from qualitative analysis.

Hence, the proposed approach of using time-weighted average of motion transformed

transmission images showed enhanced recovery both qualitatively and quantitatively

by substantially reducing transmission-emission mismatch artifacts in reconstructed

images.

In the context of multi-frame PET images, incorporating the proposed transmission-

emission alignment strategy, qualitative and quantitative analysis from simulations

showed that our approach of intra-frame motion compensation produced images with

superior quality (Figure 2.8), improved accuracy (Figure 2.9), and enhanced noise-

bias performance (Figure 2.10). Error norm increased with intra-frame motion (Fig-

ure 2.11), which was attributed to the significant transmission-emission mismatch

artifacts. However, even for high intra-frame motion, the proposed methodology of

transmission-emission alignment and intra-frame motion compensation resulted in

considerably less error norm (discrepancy) compared to conventional approach and

inter-frame only motion compensated images.

Following development and validation of the proposed framework as presented
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here, future efforts include application to cohort studies involving dynamic PET imag-

ing and assessment in the context of quantitative parametric imaging. In parallel,

we note that our intra-frame motion correction approach relies on accurate tracking

of patient motion over time. The Polaris Vicra optical tracking system is utilized

by a number of users and has resulted in enhanced reconstructions for different algo-

rithms [129, 138, 151, 155]. Nonetheless, use of this device has the potential to suffer

from drifts of the cap on which the retro-reflective spheres are mounted or of the scalp

with respect to the skull (e.g. due to rubbing of head against the bed). Tracking so-

lutions that seek to minimize such issues are clearly preferred, an example of which

has been the promising use of structured light motion tracking of the face [156,157],

which can be utilized in the context of our proposed methodology.

In conclusion, we have empirically demonstrated that: (1) reconstructing emis-

sion images with time-weighted average of motion transformed transmission images

greatly reduces transmission-emission mismatches. (2) Coupled with a Richardson-

Lucy deconvolution procedure to compensate for intra-frame motion, our proposed

approach produces motion compensated images with superior quality compared to

the conventional approach which is prone to noticeable transmission-emission mis-

match artifacts. (3) Our proposed methodology works for different framing sequences

in a dynamic study.
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Chapter 3

Quantitative Myocardial Perfusion

PET Imaging

Quantitative myocardial perfusion (MP) PET has the potential to enhance detection

of early stages of atherosclerosis or microvascular dysfunction, characterization of

flow-limiting effects of coronary artery disease (CAD), and identification of balanced

reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET

at the individual voxel level, which has the potential to allow enhanced visualization

and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as com-

puted from uptake parametric images. This framework is especially challenging for

the 82Rb radiotracer. The short half-life enables fast serial imaging and high patient

throughput; yet, the acquired dynamic PET images suffer from high noise-levels intro-

ducing large variability in uptake parametric images and, therefore, in the estimates
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of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy

data, degrading valuable functional information of physiological and pathological im-

portance. We present a feasible and robust approach to generate parametric images

at the voxel-level that substantially reduces noise without significant loss of spa-

tial resolution. The proposed methodology, denoted physiological clustering, makes

use of the functional similarity of voxels to penalize deviation of voxel kinetics from

physiological partners. The results were validated using extensive simulations (with

transmural and non-transmural perfusion defects) and clinical studies. Compared

to post-smoothing, physiological clustering depicted enhanced quantitative noise vs.

bias performance as well as superior recovery of perfusion defects (as quantified by

CNR) with minimal increase in bias. Overall, parametric images obtained from the

proposed methodology were robust in the presence of high-noise levels as manifested

in the voxel time-activity-curves.

3.1 Introduction

Studies worldwide have attributed a high morbidity and mortality rate to cardio-

vascular diseases [158–162]. The World Health Organization has predicted that by

2030 approximately 23.6 million people will die due to coronary artery disease. Subse-

quently, there has been considerable attention and efforts devoted to instrumentation,

experimentation, assessment, and analysis of the early detection, staging, and man-

agement of CAD [163].
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Absolute quantification of myocardial blood flow (MBF) and flow reserve (MFR),

i.e. ratios of MBF values at peak stress to rest, augments conventional myocar-

dial perfusion imaging (MPI) and can potentially allow early detection of preclini-

cal atherosclerosis, providing an opportunity to modify risk factors or initiate treat-

ment [162, 164, 165]. MFR has been shown to be related to the degree of coronary

artery stenosis (CAS) [166]. It thus allows for noninvasive assessment of the func-

tional importance of CAS and may aid identification of patients with either diffuse,

nonocclusive luminal coronary artery narrowing or a balanced reduction in coronary

artery blood flow (extensive multi-vessel coronary disease) [167].

PET naturally enables noninvasive and accurate quantification of MBF and MFR

[163, 168–170], and compared to SPECT, has higher sensitivity as well as superior

spatio-temporal resolution, and involves more straightforward attenuation correc-

tion [22, 164, 171–174]. Dynamic cardiac PET has also demonstrated superior di-

agnostic accuracy and added prognostic value for the detection of CAD at low levels

of administered dose [170,175–177].

Despite all these benefits, quantification of MBF and MFR remains to be trans-

lated into routine clinical practice and, thus far, remains primarily as a research

adventure. An impediment has been the need for production and delivery of short-

lived radiotracers at the clinical site. 82Rb provides great opportunities to this

end [163, 178, 179], as it does not require an onsite cyclotron. Furthermore, its short

half-life of 76 secs enables fast serial imaging (∼ 15 mins) [180] and high patient
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throughput. However, low count statistics produces very noisy dynamic (uptake) im-

ages adversely impacting accurate quantification of MBF and MFR especially at the

voxel-level (parametric images) [181]. Figure 3.1 shows LV myocardial uptake images

(without post-smoothing) from a clinical study and the corresponding voxel time ac-

tivity curves (TACs). The TACs demonstrate an erratic behavior due to poor SNR

at the voxel scale. Such a concentration curve may be physiologically implausible

resulting in highly unstable parameter estimates [182].

Figure 3.1: (top) Short-axis view of LV myocardial uptake images for 82Rb radiotracer (without
post-smoothing) from a clinical subject. Uptake images are summed images from
24 minutes. High noise-levels are clearly visible in the images. (bottom) The LV
myocardium TACs, at the voxel-scale, exhibit an erratic time-course due to poor SNR
in the dynamic images. This results in highly unstable estimates of physiological
parameters of interest at the voxel-level.

We emphasize that we aim to enable quantitative MP PET at the individual voxel
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level. This has the potential to enable enhanced visualization and quantification

of MBF/MFR as well as abnormal decrease (gradient) in longitudinal myocardial

blood flow from the base to the apex of the heart (e.g. diffuse luminal narrowing

in patients with mild angiographic CAD) [183–187]. One way to address the issue

of high noise-levels is to perform heavy post-smoothing on reconstructed dynamic

images before estimating functional parameters by kinetic modeling. This comes at a

cost of substantial resolution degradation (high estimation bias). Another approach is

to perform region-of-interest (ROI) quantification of MBF and MFR where the voxel

intensities are averaged over each ROI. This also comes at a cost of loss of spatial

information and underlying tissue heterogeneity.

One way to address the issue of high noise-levels is to perform heavy post-smoothing

on reconstructed dynamic images before estimating functional parameters by kinetic

modeling. This comes at a cost of substantial resolution degradation (high estimation

bias). Another approach is to perform region-of-interest (ROI) quantification of MBF

and MFR where the voxel intensities are averaged over each ROI. This also comes at

a cost of loss of spatial information and underlying tissue heterogeneity. Table 3.1

reviews some of the existing approaches in quantitative imaging literature for the

estimation of functional parameters of interest at an ROI or voxel-level.

We propose a novel framework of robust kinetic parameter estimation at the in-

dividual voxel level that substantially reduces noise using a method which we term

“physiological clustering” [188], and as elaborated in Section 3.2. Physiological clus-
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tering is an approach of clustering a PET image driven by the underlying physiology.

The resulting label map is a union of disjoint clusters each represented by its mean

kinetics. The parameter estimation problem is then formulated as nonlinear least

squares with spatial constraints (NLLS-SC) where the spatial constraints are derived

from the physiologically clustered image.

Section 3.3 describes the experimental design used to validate our methodology, with

results presented in Section 3.4. Discussions and conclusions are presented in Sec-

tions 3.5 and 3.6 respectively.

3.2 Theory

3.2.1 Pharmacokinetic Model for the 82Rb Radiotracer

82Rb radiotracer kinetics can be described by a one-tissue compartment model [181,

189–191]. The myocardial activity concentration time-course, Cmyo(t), is defined by

first-order ordinary differential equation (ODE):

dCmyo(t)

dt
= K1Ca(t)− k2Cmyo(t) (3.1)

where Ca(t) is the arterial input function (which is commonly approximated by

CLV (t), the LV blood concentration time-course, as used from here onwards), and

K1 (uptake rate in units of mL/min/g) and k2 (washout rate in units of 1/min) are

the transport rate constants. Solving the ODE (equation 3.1) for Cmyo(t) gives the
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Table 3.1: A brief review of some of the existing approaches in quantitative imaging literature for
the estimation of physiological parameters of interest at an ROI or voxel-level.

Methods Remarks

ROI-average Approach
[192–195]

• number of computations reduced from number of voxels (NV ) to number
of ROIs (NR), where NR << NV .

• loss of spatial information and underlying tissue heterogeneity.

• neglects spatial variations of tracer kinetics within an ROI due to partial
volume effects (PVE).

Least Squares Approach
Basis Function Method

[104,196]

• preserves tissue heterogeneity by computing voxel-wise parameter esti-
mates.

• unstable parameter estimates due to poor SNR.

Regularization Approach
[197–199]

• stabilizes voxel-wise parameter estimation by adding a smoothness con-
straint (penalty function) e.g. Tikhonov regularization.

• smoothness penalties blur edges and can be replaced by edge-preserving
penalties.

• mutual information penalties to incorporate structural information.

Mixture Modeling
[200,201] • represents voxel TACs as a mixture of multiple kinetic processes (biolog-

ical heterogeneity, low spatial resolution, PVE).

Bayesian Approach
[202,203]

• models the noise in the TACs as a Gaussian error distribution.

• facilitates uncertainty quantification of estimated kinetic parameters.

• high variance in voxel-wise estimates due to poor SNR.

Clustering Approach
[204–211]

• clusters the dynamic images into several homogeneous regions.

• clustering based on lowest-order moments (tracer clearance rate, k2).

• clustering based on the shape and magnitude of TACs.

• hierarchical clustering using weighted dissimilarity metric.

• clustering based on multivariate Gaussian mixture models.

Wavelet Processing
[212–220]

• image denoising using spatio-temporal wavelets.

• apriori knowledge of the dimensionality of wavelet transform is required.

• denoising procedure depends on the chosen threshold for the shrinkage
operation.
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following convolution equation:

Cmyo(t) = CLV (t)⊗K1e
−k2t (3.2)

where we use Ca(t) = CLV (t). Due to partial volume effects (PVE), caused by the

limited resolution of PET scanners, the measured myocardial tissue concentration

time course, Cmeas(t), is contaminated by “spill-over” of activity from the LV blood-

pool and the RV blood-pool:

Cmeas(t) = fLVCLV (t) + fRVCRV (t) + (1− fLV − fRV )CLV (t)⊗K1e
−k2t (3.3)

where fLV (fRV ) is the fractional blood volume spill-over from LV (RV) that accounts

for contribution of blood activity in the measured myocardial tissue concentration

time-course.

K1 estimates from a 82Rb study needs to be corrected for the extraction fraction,

EF , which can be performed via the generalized Renkin-Crone model [221].

K1 = MBF × EF = MBF ×

(
1− ae−

b
MBF

)
(3.4)

The extraction fraction, EF , is a nonlinear function of MBF and decreases with

increase in MBF due to tracer extraction from blood via diffusion and active trans-

port [222, 223]. Many studies have reported the generalized Renkin-Crone model
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parameters (a and b) for various radiotracers and a comprehensive table can be found

in [181, Table 4]. In this work we chose a = 0.77 and b = 0.63 [189].

3.2.2 Image Derived Input Functions

The input function can be measured invasively by arterial cannulation which is a

cumbersome procedure, both for the clinician and the patient. This calls for alterna-

tive ways to acquire the input function. Generation of image derived input function

(IDIFs) from the reconstructed dynamic images is the noninvasive and feasible alter-

native [224]. In the above-mentioned commonly utilized framework (i.e. equation 3.3),

estimation of the parameter vector β , [K1 k2 fLV fRV ]T requires knowledge of the

input functions CLV (t) and CRV (t), which are conveniently estimated given the large

blood pools of LV and right atrium (RA) in the PET FOV [164].

CLV (t) and CRV (t) were extracted from co-registered dynamic PET images by

placing an elliptical ROI (∼ 100 mm2) in the LV and RV blood pools. These concen-

tration curves are generated from 4 mid-ventricular imaging planes and then averaged

to reduce noise [225].

3.2.3 Physiological Clustering

Clustering techniques for enhanced parameter estimation have been reported be-

fore [205, 207–210]. However, in this work, clustering is driven by the underlying

physiology of functional regions. The physiological clustering approach for noise re-
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duction is motivated by the observation that accurate kinetic parameter estimation

requires segmentation; ideal segmentation requires knowledge of the underlying phys-

iological (kinetic) parameters [211]. This dilemma is easily addressed by performing

clustering and kinetic modeling in an iterative fashion. This approach reduces bias

propagation from clustering into parameter estimation which may dominate if the

two processes are performed separately.

Algorithm 3 describes a pseudocode for physiological clustering that uses K-means

with kinetic modeling (KM-KM) [211]. K-means clustering uses the Euclidean norm

of the TACs to gauge physiological similarity of a pair of voxels indexed by (i, j):

SK−means(i, j) = ‖TACi − TACj‖W (3.5)

=
√

(TACi − TACj)TW (TACi − TACj) (3.6)

where W is the data weighting matrix. Algorithm 3 generates a label map where

each functionally homogeneous region is represented by mean kinetics. Mean kinetics

of each cluster forms the spatial constraints set {βsc} for robust parameter estimation.

Algorithm 3 Physiological Clustering: K-means clustering with Kinetic Modeling (KM-KM)

1: Given: number of clusters, N .
2: Smooth dynamic images only for the generation of label map.
3: Randomly sample the dynamic space to select N representation TACs for the myocardial tissue.
4: Perform kinetic modeling to estimate kinetic parameters from the N representation TACs.
5: Compute noise-free TACs from the estimated kinetic parameters in Step 4. These N TACs form the initial cluster

centroids for clustering.
6: repeat
7: Generate voxel-wise label map using K-means clustering and the N representation TACs from Step 5.
8: Compute representative TACs (noisy centroids) for the N clusters using the label map from Step 7.
9: Repeat Step 4 to estimate kinetic parameters for the N representation TACs from Step 8.
10: Repeat Step 5 to generate a new set of N representative, noise-free, TACs (cluster centroids).
11: until (no significant change in cluster centroids)
12: Estimate kinetic parameters from the final set of N representative, noise-free, TACs.
13: Output: Kinetic parameters from Step 12 act as spatial constraints for their individual clusters.
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3.2.4 Robust Parameter Estimation

Robust estimation of physiologically meaningful parameters (like the uptake rate K1)

is achieved by solving the following nonlinear least squares with spatial constraints

(NLLS-SC) optimization problem for each voxel:

β̂ = argmin
β
‖Cmeas(t;β)−CPET (t)‖2

W + γ‖β − βsc‖2
2 (3.7)

where β , [K1 k2 fLV fRV ]T is the desired parameter vector, Cmeas(t, β) models

the measured PET signal (equation 3.3), CPET (t) is the measured voxel TAC, βsc

is the spatial constraint derived from physiological clustering of dynamic images (Al-

gorithm 3; as concluded with step 13), and W is the data weighting matrix. Each

voxel belongs to one of the N clusters and the representative kinetic parameter vector

for that cluster forms the spatial constraint vector. γ penalizes large deviations from

mean kinetics. Figure 3.2 depicts a flowchart of the overall proposed approach.

Equation 3.7 is solved using the basis function method [196] for weighted least

squares. W = diag{ 4t2
DF 2C

} where 4t, DF , and C are vectors of frame durations,

decay correction factors, and frame counts respectively [226, Page 76]. 200 basis

functions (Bi(k
i
2; t); i = {1, · · · , 200}) were assumed with nonlinear parameter, ki2,

logarithmically spaced in the range [0 1]. MBF is estimated from K1 by solving

equation 3.4 using a fixed-point iteration approach [227].
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Figure 3.2: Flowchart of the proposed approach: Kinetic parameter estimation is formulated as
a nonlinear least squares with spatial constraints problem (NLLS-SC) where spatial
constraints are computed from a physiologically driven clustering of dynamic images.
Physiological clustering of dynamic images is performed using K-means clustering with
kinetic modeling in an iterative fashion. This gives a map of labels where each function-
ally homogeneous cluster is represented by mean kinetics (cluster centroid). Paramet-
ric images are acquired by solving the NLLS-SC problem for each voxel by penalizing
spatial variations from mean kinetics. This substantially reduces noise in the estima-
tion process for each voxel by utilizing kinetic information from physiologically similar
voxels (cluster members). Resolution degradation may be substantially minimized as
regression is performed on non-smoothed (raw) dynamic images.

3.3 Methods

3.3.1 Simulations

3.3.1.1 Perfusion Defects

Transmural and non-transmural perfusion defects were simulated at different locations

along the LV wall using the NCAT phantom [228]. Figure 3.3 illustrates short-axis

views of the perfusion defects and the corresponding parameters used to generate
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the phantoms. Defects were simulated in stress images and were placed over the

anterior-lateral and lateral-inferior regions.

Figure 3.3: (top) Short-axis and long-axis views of the LV wall with the region of perfusion defect
shaded. Cold defects are parameterized by (θcenter, 4θ, zcenter, 4z, and wall fraction).
(bottom) Table shows the short-axis views of the simulated perfusion defects and the
corresponding parameters used to generate the phantoms [229].

3.3.1.2 Simulation and Reconstruction

Original TACs were generated for five tissues (liver, lung, muscle, normally perfused

myocardium, and myocardium defect) using realistic kinetic parameters and the one

tissue-compartment model. Table 3.2 lists the kinetic parameters used in the sim-

ulations. Arterial blood fraction for the myocardial tissue was simulated as 25%.

Figure 3.4 shows the noise free TACs for LV and RV input functions, normally per-
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fused myocardium, and the perfusion defect.

The dynamic data set consisted of 32 time frames (24 × 5 secs, 4 × 20 secs, and

4 × 40 secs) for a total duration of 6 minutes. Analytic simulations were performed

for the dynamic images utilizing 315 angular samples covering 180◦, 323 radial bins

with 2.26 mm spacing, and 47 axial bins with 3.27 mm spacing [230]. Reconstructions

were performed utilizing 128× 128× 47 voxels in the transaxial (x, y) and axial (z)

directions, respectively, with voxel dimensions 3.27× 3.27× 3.27 mm3. Attenuation,

normalization, randoms, scatter, and decay were also incorporated. For randoms and

scatter, a uniform distribution was assumed in the projection space. Poisson noise

was then added to generate 30 realizations of noisy dynamic sinograms which were

reconstructed using the OSEM algorithm (3 iterations, 21 subsets) [39].

3.3.1.3 Parametric Imaging using Physiological Clustering

Physiological clustering was performed on post-smoothed reconstructed dynamic im-

ages to generate a set of spatial constraint vectors, one for each functional cluster.

Three clusters were assumed a priori (background, normal myocardium, and perfu-

sion defect). Parametric images were generated using non-smoothed reconstructed

dynamic images and varying penalty parameter, γ ∈ [0 1 × 10−1] (equation 3.7).

γ = 0 corresponds to no spatial constraint (unconstrained minimization).
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Table 3.2: Kinetic parameters used in simulation of cardiac PET images for 82Rb radiotracer.

Tissue K1 (mL/min/g) k2 (1/min)
Liver 0.57 0.97
Lung 0.18 0.98

Muscle 0.06 0.21
Myocardium (rest) 0.70 0.16

Myocardium (stress) 1.48 0.32
Perfusion Defect (stress) 0.74 0.25

3.3.1.4 Parametric Imaging following Post-smoothing

To evaluate the efficacy of our approach we computed parametric images by first post-

smoothing the reconstructed dynamic images to reduce noise followed by solving the

following weighted nonlinear least squares problem using basis function method:

β̂ps = argmin
β
‖Cmeas(t;β)−Cps

PET (t)‖2
W (3.8)

where Cps
PET (t) denotes the voxel TAC from post-smoothed dynamic images. Post-

smoothing was performed using Butterworth filter of order 4 and cutoff frequencies

ranging from 0.2 cycle/cm to 1 cycle/cm (0.1 cycle/cm increments). Equation 3.8 is

a special case of equation 3.7 when γ = 0 and CPET (t) = Cps
PET (t).

3.3.1.5 Figures of Merit

We quantitatively analyzed parametric images (from physiological clustering, Sec-

tion 3.3.1.3, and post-smoothing, Section 3.3.1.4) by computing the following figures
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of merit [231]:

Bias =
1

Np

∑
j∈ROI

|( 1
R

∑R
i=1 θ

est
i,j )− θtruej |

θtruej

(3.9)

NSD =
1
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∑
j∈ROI

√
1

R−1
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i=1(θesti,j − 1

R
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i=1 θ

est
i,j )2

1
R

∑R
i=1 θ

est
i,j

(3.10)

RMSE =

√∑Np

j=1

∑R
i=1(θesti,j − θtruej )2

Np ×R
(3.11)

Contrast =
θN

θD
− 1 (3.12)

where θtruej is the jth voxel value of the true parametric image, θesti,j is the jth voxel

value of the estimated parametric image from the ith noise realization, R is the total

number of noise realizations, and Np is the total number of voxels in an ROI. Two

ROIs were drawn on the normally perfused myocardium and the perfusion defect.

Overall Bias, NSD, and RMSE were calculated by computing a weighted average of

the ROI values (weighted by the size of the ROI). Contrast was calculated from the

mean uptake values from the normal and defect regions, θN and θD, respectively.

3.3.2 Clinical Studies

3.3.2.1 Patient Dataset

We studied 3 patients (2 males and 1 female) that underwent 82Rb PET/CT scans

for a rest-stress study. The average age of these patients was 65± 16 years, and the

average weight of these patients was 182± 61 lbs. All patients had a history of CAD
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Figure 3.4: Noise-free TACs were generated using a one-tissue compartment model and the kinetic
parameters specified in Table 3.2. LV and RV concentration curves were extracted
from a clinical study and fitted with a multiexponential model [232] to generate finely
sampled concentration time course. This plot shows TACs extracted from noise-free
simulated dynamic images.

and showed perfusion defects along the inferior-lateral wall. Table 3.3 summarizes

the characteristics of the clinical data.

3.3.2.2 PET/CT Protocol

Sinograms were acquired using a GE LYSO-crystal, 64-slice Discovery Rx VCT scan-

ner. Subjects were positioned supine using a scout scan. This was followed by a

low-dose CT scan (120 kV, 80 mA) with shallow breathing for attenuation correction

of PET data. Using a large intravenous line, 35− 50 mCi of 82Rb was infused at 50

ml/min over 30 seconds, and a list-mode 2-D PET scan was acquired for 8 minutes.

After rest acquisition, subjects received 0.4 mg of A2A adenosine receptor agonist

Regadenoson, infused intravenously over 10 seconds. Within 20 seconds of pharma-

cologic induced stress, a second dose of 35− 50 mCi of 82Rb was injected followed by
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another 8 minute acquisition of list-mode 2-D PET scan. Rest and stress PET data

were registered with the CT scan and the latter was used for attenuation correction of

PET data. Randoms and scatter corrections were also applied to the emission data.

Dynamic sinograms were reconstructed using the OSEM algorithm (2 iterations, 21

subsets) into 32 dynamics frames (framing sequence: 20× 6 secs, 5× 12 secs, 4× 30

secs, and 3×60 secs) where each frame is a 128×128×47 matrix with a voxel volume

of 3.27× 3.27× 3.27 mm3.

Table 3.3: Characteristics of the clinical dataset for 82Rb radiotracer.
Notation: BP (mm-Hg): rest systolic/diastolic blood pressure - stress systolic/diastolic blood pressure,
HR (bpm): rest heart rate - peak heart rate, and LVEF (%) : Left Ventricle Ejection Fraction (rest -
stress).

No. Gender Age (years) BP (mm-Hg) HR (bpm) Weight (lb) LVEF (%) Defect Type
1 M 64 116/69 - 103/55 80 - 146 172 30 - 42 Large fixed inferior wall defect
2 M 49 119/65 - 133/60 75 - 96 247 45 - 50 Fixed perfusion defect in lateral wall
3 F 81 98/61 - 120/62 59 - 162 126 29 - 32 Fixed large inferior-lateral wall defect

3.3.2.3 Parametric Imaging using Physiological Clustering

Physiological clustering was performed on post-smoothed reconstructed dynamic im-

ages to generate a set of spatial constraint vectors, one for each functional clus-

ter. Three clusters were assumed a priori. Parametric images were generated us-

ing non-smoothed reconstructed dynamic images and varying penalty parameter,

γ ∈ [0 1 × 10−1] (equation 3.7). γ = 0 corresponds to no spatial constraint (un-

constrained minimization).
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3.3.2.4 Parametric Imaging following Post-smoothing

We also computed parametric images by performing weighted nonlinear regression

(equation 3.8) on post-smoothed reconstructed dynamic images. Post-smoothing was

performed using Butterworth filter of order 4 and cutoff frequencies ranging from 0.2

cycle/cm to 1 cycle/cm (0.1 cycle/cm increments).

3.3.2.5 Figures of Merit

We quantitatively analyzed parametric images (from physiological clustering, Sec-

tion 3.3.2.3, and post-smoothing, Section 3.3.2.4) by computing Contrast-to-Noise

ratio, CNR = contrast
NSD

, where NSD and contrast are defined as follows:

NSD =

√
1

NB−1

∑
i∈B(θesti − 1

NB

∑
i∈B θ

est
i )2

1
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∑
i∈B θ

est
i

(3.13)

Contrast =
1
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∑
i∈B θ

est
i

1
ND

∑
i∈D θ

est
i

− 1 (3.14)

θesti is the ith pixel value of the estimated parametric image, NB is the number of

pixels in the background ROI, B, and ND is the number of pixels in the perfusion

defect ROI, D.
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3.4 Results

3.4.1 Simulations

We compared parametric images of uptake rate (K1) obtained using the proposed

approach of physiological clustering and the conventional approach of post-smoothing.

In physiological clustering approach, we varied the penalty parameter, γ, from 0 to

1 × 10−1 and in post-smoothing approach, we varied the cutoff frequency of the

Butterworth filter, wcutoff, from 0.2 cycles/cm to 1 cycles/cm.

3.4.1.1 Transmural Perfusion Defect

Figure 3.5 shows that with decreasing values of wcutoff
1, and increasing values of γ,

for the conventional post-smoothing and proposed physiological clustering methods,

respectively, noise is considerably reduced in K1 parametric images. In the post-

smoothing approach, at lower cut-off frequencies typically encountered in clinical

settings (wcutoff ≤ 0.5 cylces/cm), the images are blurred especially around the septal,

anterior-lateral and lateral-inferior regions of the myocardium. By comparison, visual

(qualitative) assessment reveals that the proposed approach produces sharper images

with increased noise reduction. Increasing γ values increasingly penalize deviations

of voxel estimates from spatial constraints which utilize kinetic information from

physiologically similar voxels. This considerably reduces noise with reduced mixing

1 Lower wcutoff (i.e. smaller value) in the Butterworth filter corresponds to higher smoothing.
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of information from functionally heterogeneous regions.

Figure 3.5: K1 parametric images: we show K1 images from rest-stress simulation. Perfusion
defect was placed along the lateral myocardium wall in stress images. For each set
of images we show: (Row 1) true K1 image, (Row 2) K1 images obtained from
post-smoothed dynamic images with varying cutoff frequencies: (L-to-R) wcutoff =
0, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2 cycles/cm where wcutoff = 0 corresponds to
no post-smoothing, and (Row 3) K1 images obtained from physiological clustering
approach by varying the penalty parameter: (L-to-R) γ = 0, 1 × 10−5, 5 × 10−5, 8 ×
10−5, 1×10−4, 3×10−4, 6×10−4, 9×10−4, 1×10−3, and 1×10−2 where γ = 0 corresponds
to no spatial constraint. wcutoff = 0 and γ = 0 are identical scenarios which involve
weighted nonlinear regression on raw dynamic images (as seen from equations 3.7 and
3.8).

For quantitative analysis, Figure 3.6 shows plots of overall noise (NSD) versus

overall bias for the K1 parametric images for both rest (left) and stress (stress) MP

simulations. Clearly, enhanced quantitative noise vs. bias performance is observed

for the proposed framework. Table 3.4 also highlights key numerical performance

of the two approaches in comparison to baseline parametric imaging (wcutoff = 0

and γ = 0). For instance, in the case of rest imaging at optimal performance (i.e.

minimum overall RMSE), post-smoothing gave an overall NSD reduction of ∼ 31%
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at a cost of ∼ 1% increase in overall bias (∼ 50% reduction in overall RMSE) while

the physiological clustering approach gave an NSD reduction of ∼ 35% and bias

reduction of ∼ 5% (∼ 61% reduction in overall RMSE). In stress simulations, at

optimal performance (minimum overall RMSE), post-smoothing approach gave an

overall NSD reduction of ∼ 28% at a cost of ∼ 4% increase in overall bias (∼ 38%

reduction in overall RMSE) while physiological clustering approach gave an overall

NSD reduction of ∼ 30% at a cost of ∼ 1% increase in overall bias (∼ 46% reduction

in overall RMSE). Thus, by comparison, physiological clustering resulted in superior

quantitative accuracy by substantially reducing the overall RMSE (∼ 11% and 8%

further reduction in rest and stress images, respectively, compared to post-smoothing)

without degrading resolution (∼ 1% increase in overall estimation bias). We also

computed CNR in stress uptake images (where perfusion defect was present) and

found that physiological clustering, compared to post-smoothing approach, resulted

in a higher CNR (13.7 as opposed to 7.2) at optimal performance.

We also studied the quantitative performance of the two approaches at the ROI

level. Figure 3.7 shows the NSD versus bias curves for each of the normal myocardium

and the perfusion defect. Clearly enhanced noise vs. bias trade-off performance

is observed for the proposed framework. Numerical comparisons between the two

approaches are summarized in Table 3.5 for both ROIs. In the normal myocardium,

at optimal performance (minimum regional RMSE), post-smoothing gave an NSD

reduction of ∼ 27% at a cost of ∼ 5.6% increase in bias (∼ 36% reduction in RMSE)
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Figure 3.6: Transmural perfusion defect: plots of overall NSD versus overall bias comparing the
K1 parametric images obtained from post-smoothing approach and physiological clus-
tering approach. Points on the post-smoothing curve correspond to different cutoff
frequencies of Butterworth filter (wcutoff) and points on the physiological clustering
curve correspond to different values of penalty parameter (γ). wcutoff ≤ 0.5 cycles/cm
are typically found in clinical settings [233,234].

while physiological clustering approach gave an NSD reduction of ∼ 31% at a cost of

∼ 4.6% increase in bias (∼ 43% reduction in regional RMSE). In the perfusion defect

region, at optimal performance (minimum regional RMSE), post-smoothing gave an

NSD reduction of ∼ 42% at a cost of ∼ 2.1% increase in bias (∼ 56% reduction

in regional RMSE) and physiological clustering approach gave an NSD reduction of

∼ 41% and a bias reduction of ∼ 11% (∼ 68% reduction in regional RMSE). This

analysis demonstrates the efficacy of physiological clustering approach in substantially

reducing noise and bias in the perfusion defect: the latter is related to the presence

of noise-induced bias in non-linear estimation tasks [235], which can result in bias

reduction when noise is handled more appropriately.

To quantify the ability to resolve perfusions defect, we studied CNR as a function

of wcutoff and γ for the post-smoothing physiological clustering approaches, respec-
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Table 3.4: Transmural perfusion defect: summary of the quantitative performance of physiological
clustering and post-smoothing approaches, compared to the baseline (no processing;
wcutoff = 0 and γ = 0). We include results for wcutoff = 0.5 cycles/cm and wcutoff = 0.3
cycles/cm which are typically found in clinical settings and may not be the optimal
value [233,234].
Note: optimal performance parameter(s) are highlighted in blue color.
Abbreviations: Inc. - Increase, Red. - Reduction, Post-smooth. - Post-smoothing, Phys. Clust. -
Physiological Clustering

Quantitative Metrics: Rest

Methodology Parameter Bias Inc. (%) NSD Red. (%) RMSE Red. (%) CNR

0.3 cycles/cm 10.5 40 40.3 -
Post-smooth. 0.5 cycles/cm 3.3 34 49 -

0.6 cycles/cm 1 31 50 -

Phys. Clust. 1× 10−2 -5.1 34.8 61.2 -

Quantitative Metrics: Stress

Methodology Parameter Bias Inc. (%) NSD Red. (%) RMSE Red. (%) CNR

0.3 cycles/cm 15.6 37.8 22.2 9.9
Post-smooth. 0.5 cycles/cm 8.4 33 34.3 9

0.7 cycles/cm 3.9 27.5 38.2 7.2

Phys. Clust. 4× 10−3 1.2 32.6 46 13.7

Figure 3.7: Transmural Perfusion Defect: Regional NSD versus bias curves for K1 parametric im-
ages obtained from post-smoothing approach and physiological clustering approach.
Points on the post-smoothing curve correspond to different cutoff frequencies of But-
terworth filter (wcutoff) and points on the physiological clustering curve correspond to
different values of penalty parameter (γ). wcutoff ≤ 0.5 cycles/cm are typically found
in clinical settings.
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Table 3.5: Transmural Perfusion Defect: Summary of the quantitative performance of physiological
clustering and post-smoothing approaches in the two ROIs: normal myocardium and
perfusion defect. In the normal myocardium the optimal parameter values were wcutoff =
0.7 cycles/cm and γ = 4 × 10−3 and in the perfusion defect the optimal parameter
values were wcutoff = 0.3 cycles/cm and γ = 1× 10−2. Optimal parameters correspond
to minimum regional RMSE.

Quantitative Metrics: Normal Myocardium

Methodology Bias Increase (%) NSD Reduction (%) RMSE Reduction (%)

Post-smoothing 5.6 27 36.1
Physiological Clustering 4.6 30.7 42.8

Quantitative Metrics: Perfusion Defect

Methodology Bias Increase (%) NSD Reduction (%) RMSE Reduction (%)

Post-smoothing 2.1 42 56.2
Physiological Clustering 11 40.6 68.3

tively. Figure 3.8 depicts plots for RMSE versus CNR as well as bias versus CNR. At

higher CNR (≥ 3), physiological clustering, compared to post-smoothing, resulted in

K1 parametric images with significantly lower RMSE and estimation bias. With de-

creasing wcutoff (especially wcutoff ≤ 0.5 cycles/cm as commonly encountered in clinical

practice), the estimation bias (and RMSE) were severely degraded resulting in un-

stable K1 parametric estimates. On the contrary, physiological clustering resulted in

improved CNR without aggravating RMSE and estimation bias. Doubling the CNR

(from ∼ 5 to 10) was at the cost of 11% increase in estimation bias and 3.6% increase

in RMSE for post-smoothing, while this was at a cost of < 1% increase in estima-

tion bias and an actual improvement of 8% in RMSE in the proposed framework.

This analysis demonstrates that the proposed approach of physiological clustering

can better resolve perfusion defects without compromising the robustness of the esti-
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mated K1 parametric images, both of which are important in clinical decision making

(diagnosis, prognosis and treatment response assessment).

Figure 3.8: (Left) RMSE versus CNR and (Right) bias versus CNR curves for post-smoothing
approach and physiological clustering approach. Points on the post-smoothing curve
correspond to different cutoff frequencies of Butterworth filter (wcutoff) and points on
the physiological clustering curve correspond to different values of penalty parameter
(γ). In both plots, the left-most point corresponds to wcutoff = 0 and γ = 0.

3.4.1.2 Non-Transmural Perfusion Defect

We evaluated qualitative and quantitative performance for non-transmural perfusion

defect placed along the lateral myocardium wall (wall fraction = 0.75, Figure 3.3).

The defect was only simulated in stress images and, hence, we focus on stress up-

take parametric images (Figure 3.9) obtained using post-smoothing and physiological

clustering approaches.

Figure 3.9 shows that with increasing values of γ and decreasing values of wcutoff

noise is considerably reduced inK1 parametric images. However, in the post-smoothing
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approach, it becomes increasingly difficult to distinguish between transmural and non-

transmural perfusion defects due to mixing of kinetic information from heterogeneous

voxels on the boundary of the defect. At lower cutoff frequencies typically encountered

in clinical settings (wcutoff ≤ 0.5 cycles/cm), the images are blurred specially around

the septal, the anterior-lateral, and the lateral-inferior regions of the myocardium.

On the contrary, the physiological clustering approach is able to resolve the non-

transmural perfusion defect by only utilizing kinetic information from homogenous

voxels to reduce noise.

Figure 3.9: K1 Parametric Images: We show uptake images from stress simulation. Non-
transmural perfusion defect was placed along the lateral myocardium wall (wall
fraction = 0.75, Figure 3.3). We show: (Row 1) true K1 image, (Row 2) K1

images obtained from post-smoothed dynamic images with varying cutoff frequen-
cies: (L-to-R) wcutoff = 0, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2 cycles/cm where
wcutoff = 0 corresponds to no post-smoothing, and (Row 3) K1 images obtained
from physiological clustering approach by varying the penalty parameter: (L-to-R)
γ = 0, 1× 10−5, 5× 10−5, 8× 10−5, 1× 10−4, 3× 10−4, 6× 10−4, 9× 10−4, 1× 10−3, and
1× 10−2 where γ = 0 corresponds to no spatial constraint. wcutoff = 0 and γ = 0 are
identical scenarios which involve weighted nonlinear regression on raw dynamic images
(as seen from equations 3.7 and 3.8)

Figure 3.10 shows plots of overall NSD versus overall bias for the K1 parametric

images. At optimal performance (minimum overall RMSE), post-smoothing gave an

overall NSD reduction of ∼ 28% at a cost of ∼ 4.7% increase in overall bias (∼ 37%

reduction in overall RMSE) while physiological clustering approach gave an overall
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NSD reduction of ∼ 33% at a cost of ∼ 3.0% increase in overall bias (∼ 47% reduction

in overall RMSE). Physiological clustering approach showed superior quantitative ac-

curacy by substantially reducing the overall RMSE (∼ 10% reduction compared to

post-smoothing approach) with minimal resolution degradation (∼ 3% increase in

overall estimation bias). We also computed CNR and found that physiological clus-

tering, compared to post-smoothing approach, resulted in a higher CNR (11.3 as

opposed to 5.7) at optimal performance (minimum overall RMSE). Table 3.6 summa-

rizes the quantitative performance of the two approaches for non-transmural perfusion

defect.

Figure 3.10: Non-Transmural Perfusion Defect: Plots of overall NSD versus overall bias comparing
the K1 parametric images obtained from post-smoothing approach and physiological
clustering approach. Points on the post-smoothing curve correspond to different cutoff
frequencies of Butterworth filter (wcutoff) and points on the physiological clustering
curve correspond to different values of penalty parameter (γ).

Quantitative performance of the two approaches at the ROI level is also depicted

in Figure 3.11 for the normal myocardium and the perfusion defect. As before, Ta-
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Table 3.6: Non-Transmural Perfusion Defect: Summary of the quantitative performance of physi-
ological clustering and post-smoothing approaches. We include results for wcutoff = 0.5
cycles/cm and wcutoff = 0.3 cycles/cm which are typically found in clinical settings and
may not be the optimal value.
Note: optimal performance parameter(s) are highlighted in blue color.
Abbreviations: Inc. - Increase, Red. - Reduction, Post-smooth. - Post-smoothing, Phys. Clust. -
Physiological Clustering

Quantitative Metrics: Stress

Methodology Parameter Bias Inc. (%) NSD Red. (%) RMSE Red. (%) CNR

0.3 cycles/cm 18.1 37.4 17.8 2.3
Post-smooth. 0.5 cycles/cm 10.1 33.1 31.3 5.3

0.7 cycles/cm 4.7 27.8 36.9 5.7

Phys. Clust. 4× 10−3 3 33.4 47.1 11.3

ble 3.7 also shows numerical comparison between the two approaches. Overall, the

results demonstrate the efficacy of the physiological clustering approach in enabling

substantially enhanced noise vs. bias quantitative performance in the non-transmural

perfusion defect.

Figure 3.11: Non-Transmural Perfusion Defect: Regional NSD versus bias curves for K1 para-
metric images obtained from post-smoothing approach and physiological clustering
approach. Points on the post-smoothing curve correspond to different cutoff frequen-
cies of Butterworth filter (wcutoff) and points on the physiological clustering curve
correspond to different values of penalty parameter (γ).
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Table 3.7: Non-Transmural Perfusion Defect: Summary of the quantitative performance of physio-
logical clustering and post-smoothing approaches in the two ROIs: normal myocardium
and perfusion defect. In the normal myocardium the optimal parameter values were
wcutoff = 0.7 cycles/cm and γ = 1 × 10−2 and in the perfusion defect the optimal pa-
rameter values were wcutoff = 0.3 cycles/cm and γ = 4 × 10−3. Optimal parameters
correspond to minimum regional RMSE.

Quantitative Metrics: Normal Myocardium

Methodology Bias Increase (%) NSD Reduction (%) RMSE Reduction (%)

Post-smoothing 5.9 27.6 35.8
Physiological Clustering 5 33.7 44.9

Quantitative Metrics: Perfusion Defect

Methodology Bias Increase (%) NSD Reduction (%) RMSE Reduction (%)

Post-smoothing 4.5 50 51.7
Physiological Clustering -3.4 33.1 57.7

Figure 3.12 shows plots for RMSE versus CNR as well as bias versus CNR. In

physiological clustering approach, as the CNR doubled from 5 to 10, RMSE was

improved from 44% to 6% and the estimation bias increased from 2.3% to 3.4%.

However, with post-smoothing, the achievable CNR was less than six (CNR < 6),

and the RMSE and bias performance was clearly degraded in comparison to the

physiological clustering approach.

3.4.2 Patient Dataset

We compared, qualitatively and quantitatively, parametric images of stress uptake

rate (K1) obtained using the proposed approach of physiological clustering and the

conventional approach of post-smoothing. Figure 3.13 shows summed stress uptake

images for three 82Rb PET patient studies. The characteristics of the dataset are
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described in Table 3.3. In the clinic, post-smoothed reconstructed dynamic images are

summed to generate a static image with a higher SNR. This gives better visualization

of normal uptake regions and perfusion defects. However, this analysis is qualitative

and does not result in voxel-wise parametric images. Figure 3.14 shows that with

increasing values of γ and decreasing values of wcutoff noise is considerably reduced in

K1 parametric images. However, compared to post-smoothing approach, physiological

clustering is able to resolve the perfusion defects without blurring the region of normal

uptake at the interface of the defect.

Figure 3.12: (Left) RMSE versus CNR and (Right) bias versus CNR curves for post-smoothing
approach and physiological clustering approach. Points on the post-smoothing curve
correspond to different cutoff frequencies of Butterworth filter (c) and points on the
physiological clustering curve correspond to different values of penalty parameter (γ).
In both plots, the left-most point corresponds to wcutoff = 0 and γ = 0.

For quantitative comparison, Figure 3.15 depicts uptake rate (K1) versus CNR

for the two approaches in normally perfused region and perfusion defect. Physiolog-

ical clustering outperformed post-smoothing approach in the sense that for a given

uptake rate, higher CNR was obtained. In post-smoothing approach, with decreasing
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wcutoff, the uptake rate deteriorates even for normal myocardium which is attributed

to the heterogeneous mixing of voxels at the interface of the perfusion defect. On the

contrary, physiological clustering approach is able to resolve the perfusion defect with

substantial noise reduction resulting in a higher CNR. These results demonstrate the

efficacy of physiological clustering approach on clinical data.

Figure 3.13: Short-axis slices of summed stress uptake images for three patient studies. Yellow
arrows point to the perfusion defects. Note: These are not parametric images but
just the sum of post-smoothed dynamic images.

3.5 Discussion

3.5.1 K-means Clustering Algorithm

We used the K-means clustering algorithm to segment dynamic PET images into

functionally homogeneous clusters. K-means clustering, though extremely simple

and straightforward, is sensitive to the initialization of representative TACs due to

non-convex objective function, requires a priori specification of number of clusters,

and the similarity metric does not incorporate spatial proximity of voxels. We discuss
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Figure 3.14: K1 Parametric Images: We show short-axis views of stress uptake images from three
patient studies. For the post-smoothing approach, K1 images were obtained by vary-
ing cutoff frequencies: (L-to-R) wcutoff = 0, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1
cycles/cm where wcutoff = 0 corresponds to no post-smoothing, and, for physiological
clustering approach K1 images were obtained by varying the penalty parameter: (L-
to-R) γ = 0, 2× 10−6, 5× 10−6, 1× 10−5, 5× 10−5, 8× 10−5, 1× 10−4, 3× 10−4, 6×
10−4, 9× 10−4, and 1× 10−3 where γ = 0 corresponds to no spatial constraint. Per-
fusion defects are shown by yellow arrows.

these aspects below and plan to pursue and carefully study them in future work.

3.5.1.1 Sensitivity to initialization of clusters

Non-convexity can be addressed by a convex relaxation of the K-means objective

function [236,237]:

min
U

Fρ(U) ,
1

2

p∑
i=1

‖TACi − ui‖2
W + ρ

∑
i<j

wi,j‖ui − uj‖1 (3.15)

where p is the number of voxels, ρ is a tuning parameter, wi,j is a non-negative

weight, and the ith column of matrix U (i.e. ui) is the cluster centroid for voxel i.
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Figure 3.15: CNR versus uptake rate curves for post-smoothing approach and physiological clus-
tering approach. Points on the post-smoothing curve correspond to different cutoff
frequencies of Butterworth filter (wcutoff) and points on the physiological clustering
curve correspond to different values of penalty parameter (γ). In both plots, the
right-most point corresponds to wcutoff = 0 and γ = 0. Uptake rates were computed
in a small ROI (∼ 20 voxels) in the vicinity of the perfusion defect.

An interesting aspect of this convexification is that it obviates the need of predefining

number of clusters at the cost of fixing the tuning parameter ρ. Voxels i and j belong

97



CHAPTER 3. QUANTITATIVE MYOCARDIAL PERFUSION PET IMAGING

to the same cluster if ui = uj. When ρ = 0, ui 6= uj, ∀ i, j and there are p singleton

clusters, and when ρ is sufficiently high, all voxels amalgamate into a single cluster.

Equation 3.15 can be solved using the ADMM algorithm [238].

3.5.1.2 Number of Clusters

For simulations, we chose the true number of clusters (N = 3) in Algorithm 3, and

for clinical studies, we also chose three clusters (N = 3) after carefully visualizing

the summed dynamic images with the help of a resident. We quantitatively analyzed

simulated stress uptake images obtained using the physiological clustering approach

with varying number of clusters, N = 3, 5, 8, and 11. Figure 3.16 shows the per-

centage reductions achieved in overall NSD, bias, and RMSE in the estimated K1

parametric images. For N = 3 and 5, the quantitative performance is almost similar

(< 2% difference) but, for N = 8 and 11, the performance degrades further by > 5%.

Overall, it was observed that in MP PET imaging, the performance is less sensitive

to the number of clusters than in whole brain imaging [239], which is understandable

given the greater number of distinct regions in the latter. Some variability in the

quantitative performance is attributed to random initializations of the clustering al-

gorithm as discussed before. Apart from the initialization of the clustering algorithm,

choosing a very large number of clusters may lead to sub-optimal quantitative perfor-

mance as shown in Figure 3.16. Estimating the true number of clusters is a common

problem in clustering algorithms and there exist a number of efforts to address this
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issue e.g. Akaike information criterion [240] or Bayesian information criterion [241],

cross-validation [242] etc.

Figure 3.16: A bar graph showing percentage reduction achieved in overall NSD, bias, and RMSE
by varying the number of clusters in the physiological clustering process.

3.5.1.3 Spatially Proximity of Voxels

The similarity metric in equation 3.5 can be modified to account for spatial proximity

of voxels. Such metrics are found in normalized cuts and spectral clustering algorithms

[243,244]:

SSpec. Clust.(i, j) = exp

(
− ‖TACi − TACj‖2

W

σ2
TAC

)
exp

(
− ‖Xi −Xj‖2

2

σ2
X

)
(3.16)

for ‖Xi − Xj‖2 < r where Xi is the spatial coordinate of voxel i. Incorporating

spatial coordinates of voxels in the similarity metric encourages contiguous clusters,
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which is physiologically more plausible; however, this benefit comes at the cost of

optimizing an additional parameter (σX), which we intend to study.

In our simulations, we randomly sampled the myocardium to select representative

TACs to initialize the clustering process (Step 3, Algorithm 3). Hence, parametric

images obtained from the proposed approach of physiological clustering are not only

robust to high noise-levels in the voxel TACs but also robust to the inherent variability

in the clustering across multiple noise realizations. At the same time, it is plausible

that incorporating the afore-mentioned features in the clustering algorithm or utilizing

a specialized clustering technique could lead to further enhanced performance.

3.5.2 Image Derived Input Function

In our experiments, we extracted the input functions by manually placing an elliptical

ROI in the LV and RV blood pools. There are several approaches in the scientific

literature which automatically extract the input functions from dynamic PET images

e.g. utilizing factor analysis (FA) [245], non-negative matrix factorization (NMF)

[246], and independent component analysis (ICA) [191]. The basic theme underlying

these approaches is shared. The dynamic data set (A) is factorized into a product of

factor images (W ) and coefficient matrix (H):

AN×M = WN×rHr×M (3.17)
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where r is the number of factors chosen a priori, N is the number of voxels, and M

is the number of dynamic frames. The rows of H matrix provide the TACs for the r

factors. In MP PET imaging, r = 3 (RV, LV, and myocardium). A shortcoming of

these splitting techniques is the non-uniqueness of the solution matrices (W and H),

upto a rotation matrix Q, as shown below [247,248]:

A = (WQ−1)(QH) = W̃ H̃ (3.18)

where W , H, W̃ , and H̃ are nonnegative matrices. Non-uniqueness in FA is ad-

dressed by imposing minimal structure overlap (MSO) constraint as implemented in

generalized FA for dynamic sequences (GFADS) [190]. NMF is preferred over GFADs

which uses conjugate gradient algorithm as opposed to simple multiplicative/additive

update equation in NMF [249]. Automatically extracted input functions using matrix

factorization techniques may further enhance performance of the proposed approach.

3.5.3 Resolution Degrading Factors

Spatial resolution of 82Rb PET images is impacted by the high positron range, pho-

ton non-collinearity and inter-crystal scattering [76, 250, 251]. Resolution is further

degraded due to patient motion (cardiac motion, respiratory motion, and bulk mo-

tion) [252]. It has been shown before [253] that these degrading factors resulted in

∼ 48% underestimation of myocardial activity, leading to inaccurate estimates of

parametric images; however, when correcting for all degrading effects (including mo-

101



CHAPTER 3. QUANTITATIVE MYOCARDIAL PERFUSION PET IMAGING

tion) except for 82Rb positron range, ∼ 23% underestimation continued to remain. A

thorough comparison of the impact of various correction methods for resolution degra-

dation, including post-reconstruction PVC [254] and reconstruction-based resolution

modeling (RM) [83] on MP PET parametric imaging remains to be performed.

In our proposed approach of physiological clustering, kinetic parameters are esti-

mated from pre-smoothed dynamic images which influence the accuracy of the esti-

mated parameters. This reinforces the need of incorporating resolution modeling and

appropriate motion correction schemes in the reconstruction process to obtain high

quality perfusion images which may lead to more accurate parametric images.

3.5.4 Direct 4-D Parametric Imaging

Direct 4-D parametric imaging reduces noise in the parametric images by incorporat-

ing kinetic modeling within the image reconstruction framework. There have been a

few approaches to this in the specific context of MP PET imaging. Rakvongthai et.

al., [255] proposed a direct 4-D reconstruction method solved using preconditioned

conjugate gradient to estimate uptake rate images for 18F-Flurpiridaz radiotracer.

Rahmim et al., [256] used numerical methods with optimization transfer approach to

estimate K1 parametric images for 82Rb radiotracer. Su et al., [231], used a mod-

ified EM method to estimate K1 parametric images for 13N-Ammonia radiotracer.

Quadratic penalty function is commonly employed to minimize intensity differences

between neighboring voxels in the image space [255]. Future work involves incorpo-
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rating cluster-based priors, such as utilized in the present work, within the direct 4-D

reconstruction to obtain substantial noise reduction at the cost of minimal increase

in bias.

3.6 Conclusions

Parametric imaging based on physiological clustering clearly outperforms conven-

tional parameter estimation techniques by producing images with higher SNR. It

substantially reduces noise with minimal increase in bias by utilizing kinetic infor-

mation from physiologically similar voxels. Functionally similar voxels are binned in

the same cluster with each cluster represented by mean kinetics. The mean kinetic

information for each cluster is enforced as a spatial constraint in the voxel-wise pa-

rameter estimation process thereby forcing (by tuning the penalty parameter γ) the

estimated parameters to be close to the mean kinetics of its representative cluster.

Unlike previous approaches, it avoids resolution degradation as no spatial smoothing

of heterogeneous functional regions is performed. The proposed approach showed

enhanced qualitative and quantitative performance for simulations and patient data.
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Dual-biomarker Parametric

Imaging from Dynamic 11C-PiB

PET

The biodistribution and chemical kinetics of the administered radiopharmaceutical in

the organ of interest is usually quantified by computing parametric images of phys-

iological parameters like relative blood flow (R1), metabolism, distribution volume

ration (DVR), receptor content etc. Such biomarkers provide fruitful information

about neuronal activities in ROIs and to monitor and diagnose neurodegenration.

Parametric images are generated via a “compact” tracer kinetic model that encap-

sulates all the biological and physiological factors that contribute to the measured

tissue concentration of radiotracer [99].
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11C-PiB compound is a PET radiotracer used to image amyloid deposition in

patients suffering from neurodegenrative dementia e.g. Alzheimer disease [257, 258].

Regional cerebral glucose metabolism (quantified using 18F -FDG PET) and regional

cerebral blood flow (CBF, quantified using 15O-water PET) are used as biomarkers

of neurodegenration [259]. CBF reflects neuronal activity, shown (in mouse models)

to regulate regional vulnerability to β-amyloid deposition (11C-PiB) [260]. Figure 4.1

shows correlations maps between DVR and CBF and DVR and R1 for the whole

group of 55 subjects and Figure 4.2 shows correlations maps between DVR and CBF

and DVR and R1 for the two subgroups (18 subjects each) with mean cortical DVRs

of 1.49 and 0.93 respectively.

Figure 4.1: Positive Relationship between DVR maps and Cerebral Blood Flow (a) and DVR maps
and R1 maps (b) in entire group of non-demented older adults (n = 55). Reproduced
from [260]

Recently, for the 11C PiB compound, parametric images of R1 and DVR has been

proposed as an approach for dual-biomarker imaging to diagnose early onset of demen-

tia from a single PET acquisition [259,261]. This approach has also been considered

to evaluate biological correlations between relative blood flow and β-amyloid depo-
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sitions [260, 262]. However, the poor SNR of the acquired PET images, the kinetic

model employed, and the limitations of the parameter estimation techniques results

in noise-induced correlations that can be easily confounded with biological correla-

tions. We demonstrate that noise-induced correlations pose significant confounds to

interpretation [110].

Figure 4.2: Positive Relationship between DVR maps and CBF (a, c) and DVR maps and R1

maps (b, d) shown by tertiles of cortical β-amyloid load (n = 18 per group with mean
cortical DVRs of 1.49 and 0.93 respectively). Reproduced from [260]
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4.1 Theory

4.1.1 Pharmacokinetic Model for the 11C-PiB Compound

We employ two-tissue compartment model with reference tissue input function as

shown in Figure 4.4 to model the kinetics of 11C-PiB compound. Tracer dynamics

can be described by a system of first-order ordinary differential equations (ODEs) for

tissue of interest and reference tissue:

dCF+NS(t)

dt
= K1CP (t) + k4CSP (t)− (k2 + k3)CF+NS(t)

dCSP (t)

dt
= k3CF+NS(t)− k4CSP (t) (4.1)

dCR(t)

dt
= K

′

1CP (t)− k′2CR(t)

A simplified reference tissue model (SRTM) can be obtained under the assumption

of rapid equilibrium attained between CF+NS and CSP . At equilibrium, the total

activity concentration in specific binding regions is approximated with a one-tissue

compartment model with CT (t) = CF+NS(t) + CSP (t). Solving the differential equa-

tions (4.1) for SRTM and substituting R1 = K1

K
′
1

and BP = k3

k4
= DV R− 1 yields the

following analytical expression:

CT (t) = R1CR(t) +

(
k2 −

R1k2

1 +BP

)
CR(t)⊗ e−

k2
1+BP

t (4.2)
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Equation (4.2) can be solved using the basis function method [196] for weighted least

squares.

4.1.2 Linearized Regression Method (Zhou et. al. 2003)

The differential equations for SRTM can be written as follows:

dCT (t)

dt
= K1CP (t) + k2aCT (t)

dCR(t)

dt
= K

′

1CP (t)− k′2CR(t) (4.3)

k2a =
k2

1 +BP
(4.4)

K
′
1

k
′
2

=
K1

k2

(4.5)

CP (t) can be eliminated from the set of differential equations (4.3) and, using equa-

tions (4.4)-(4.5), one can write a single ODE interms of CR(t):

dCT (t)

dt
= R1

dCR(t)

dt
+ k2CR(t)− k2

1 +BP
CT (t) (4.6)

Integrating both sides of equation (4.6) and applying the initial conditions CT (0) =

CR(0) = 0 gives:

CT (t) = R1CR(t) + k2

∫ t

0

CR(s) ds− k′2
∫ t

0

CT (s) ds (4.7)
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Multiplying both sides of equation (4.7) by 1+BP
k2

and rearranging gives:

∫ t

0

CT (s) ds = DV R

∫ t

0

CR(s) ds+
DV R

k2/R1

CR(t)− DV R

k2

CT (t) (4.8)

Equations (4.7)-(4.8) can be solved using linearized regression method [263] to obtain

estimates of R1 and DVR.

In our analysis, we used two approaches: (1) basis function method to solve

equation (4.2) and (2) linearized regression method to solve equations (4.7)-(4.8) to

obtain voxel-wise estimates of R1 and DVR.

4.1.3 Noise-induced correlations: A Mathematical Formulation

A mathematical formulation is presented which helps to understand the noise-induced

effects from a theoretical point of view. It allows us to distill two conditions or

constraints which, if enforced, will help preserve the true correlations in estimated

parameters. Table 4.1 describes the notation used in the analysis.

Table 4.1: Mathematical notation for noise-induced correlations analysis.

Description Notation
Data vector y ∈Mn×1(R)
Noise vector w ∈Mn×1(R)

Parameter vector β ∈Mp×1(R)
System model X ∈Mn×p(R)

Linear operator L ∈Mp×n(R)
True Covariance Matrix K ∈Mp×p(R)
Noise Covariance Matrix Kw ∈Mn×n(R)

109



CHAPTER 4. DUAL-BIOMARKER IMAGING FROM DYNAMIC 11C-PIB PET

We assume that y follows a linear model contaminated by additive Gaussian noise:

y = Xβ +w (4.9)

where w ∼ N (0,Kw). The estimated parameter vector, β̂, linearly depends on data:

β̂ = Ly (4.10)

= L(Xβ +w) (4.11)

= LXβ +Lw (4.12)

The estimated covariance matrix, K̂, is computed as follows:

K̂ = Cov(β̂) (4.13)

= E(β̂β̂T )− E(β̂)E(β̂)T (4.14)

= E(LXβ +Lw)(LXβ +LwT )− E(LXβ +Lw)E(LXβ +Lw)T(4.15)

= (LX)Cov(β)(LX)T +LKwL
T (4.16)

= (LX)K(LX)T +LKwL
T (4.17)

Equation (4.17) shows that the estimated covariance matrix, K̂, is additively con-

taminated by the shaped noise-covariance matrix, LKwL
T . The first term on the

RHS of equation (4.17) also shows that even in the absence of noise the true covari-
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ance matrix is shaped by the operator LX. This equation provides two constraints

that need to be enforced in order to recover the true covariance matrix, K. These

constraints are listed below:

LX = I (4.18)

LKwL
T = γR (4.19)

where I is an identity matrix, R is a prespecified positive definite diagonal matrix,

and γ is a positive real number.

4.2 Methodology

For validation, kinetic parameters (K1, k2, k3, k4) from 11C-PiB studies of normal

controls were estimated, averaged and assigned to a mathematical brain phantom,

from which time-activity-curves (TACs) were generated using a two-tissue compart-

mental model (blood-volume fraction was set to 3%). This was followed by realistic

simulations of dynamic frames for the geometry of the HRRT scanner (including 20

noise realizations in the sinogram-space of the same subject; i.e. simulating no bio-

logical correlations). OSEM reconstructions (1− 10 iterations) for each dataset were

generated. Parametric Images of R1 and DVR (= BP + 1) were obtained via the

simplified reference tissue model (SRTM) using (1) the basis function method (BFM)

and (2) linearized formulation and regression (LR) to estimate the parameters. Noise-
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Bias trade-off curves were obtained for R1 and DVR images, demonstrating reduced

bias with increasing iterations at the cost of enhanced noise levels, as expected.

Next, Pearson correlation coefficients were determined for each voxel-pair of (R1,

DVR) vectors (across the 20 noise realizations) with lower and upper bounds for a

95% confidence interval, and quantitatively evaluated for each OSEM reconstruction.

A hypothesis test for no correlation with a probability value (p-value) of 0.05 was

also conducted, and the resulting correlation images were analyzed qualitatively and

quantitatively for all OSEM iterations. Specifically, 13 regions-of-interest (ROIs) were

considered. Overall, R1 and DVR showed statistically significant correlations, across

the OSEM iterations, for all ROIs using the BFM approach, while this was also the

case for the LR method with the exception of the parietal cortex, pons and occipital

pole. Figure 4.3 shows a schematic of the adopted methodology for simulations and

analysis.

4.3 Results and Conclusions

Figure 4.5 shows parameteric images of R1 and DVR for increasing OSEM iterations.

Figure 4.6 shows R1-DVR correlation plots against OSEM iterations. R1 and DVR

showed statistically significant noise induced correlations, for all ROIs using the basis

function method (BFM). Weighted linear regression method showed reduced noise-

induced correlations in some regions (compared to BFM) except Cerebellum, Parietal

Cortex, Frontal Cortex, Pons and Thalamus; but still depicted significant correlations
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for a number of regions. The observed significant correlations are attributed purely

to noise in parametric quantification of dynamic 11C-PiB PET. This shows that in

R1-DVR analysis, biological correlations may be confounded with noise-induced cor-

relations. Future work should explore potential approaches that quantify and account

for there associations to provide more accurate estimates of correlations between DVR

and R1 estimates from a single acquisition.
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Figure 4.4: Two-tissue compartmental model with reference tissue input function for 11C-PiB com-
pound [104, Figure 1]. CP (t) is the activity concentration time-course in plasma,
CF+NS(t) is the activity concentration time-course for free and non-specific bind-
ing, CSP (t) is the activity concentration time-course for specific binding, CT (t) =
CF+NS(t) + CSP (t) is the total activity concentration time-course in the tissue of in-
terest, and CR(t) is the activity concentration time-course in the reference tissue. K1,
k2, k3, and k4 are the transport rate constants for the tissue of interest and K

′

1 and k
′

2

are the influx and efflux rate constants for the reference tissue.

Figure 4.5: Simulated parametric images of R1 and DVR against OSEM iterations.
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Figure 4.6: R1-DVR correlation plots against OSEM iterations (95% confidence interval).
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Conclusions and Future Work

Motion-compensation in Dynamic Brain PET Imaging: We have demon-

strated through extensive simulations that GIIMC algorithm enables compensation

of both inter-frame and intra-frame motion in a unified framework. It significantly

reduces transmission-emission mimatches by coregistering emission data with time-

weighted average of motion-transformed transmission data for each dynamic frame.

Such transmission-emission mismatch artifacts are significant even for low motion

levels when convention methods of transmission-emission alignment are employed.

GIIMC algorithm is also amenable to different framing sequences.

Future work involves: (1) validation on cohort studies involving dynamic PET

imaging and assessment in the context of quantitative parametric imaging. An inter-

esting cohort would be subjects with Tourette syndrome which constitutes significant

patient motion during the dynamic PET scan. A scatter plot of the distribution vol-
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ume ratios (DVRs) with and without motion correction would be a promising statistic

that may reveal the ability of GIIMC algorithm to efficiently segregate normal sub-

jects from Tourette subjects, (2) incorporating motion correction in Direct 4-D para-

metric image reconstruction to obtain parametric images with superior resolution-

noise performance [264]. This approach is feasible as the motion blurring kernel for

each dynamic frame, obtained from optical motion tracking, can be applied in the

parametric image space with two convolution operations (in forward and back projec-

tion operations), and (3) further minimizing susceptibility to transmission-emission

mismatch artifacts using TOF PET image reconstruction techniques. TOF PET

reconstruction, compared to non-TOF reconstruction methods, has demonstrated ro-

bustness to inconsistencies between emission data and corrections [265].

Parametric Myocardial Perfusion PET Imaging: Parametric imaging based

on physiological clustering clearly outperforms conventional parameter estimation

techniques by producing images with higher SNR. It substantially reduces noise with

minimal increase in bias by utilizing kinetic information from physiologically similar

voxels. Unlike previous approaches, it avoids resolution degradation as no spatial

smoothing of heterogeneous functional regions is performed. The proposed approach

showed enhanced qualitative and quantitative performance for simulations (transmu-

ral and non-transmural perfusion defect) and patient data.

Future work involves: (1) application of physiological clustering approach to other

tracers (e.g. 13N -ammonia and 18F -FDG) used in myocardial perfusion imaging, us-
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ing convex K-means clustering to obviate sensitivity to initialization, incorporating

spatial proximity in the similarity metric to reduce miss-classification of voxels, study-

ing the impact of resolution modeling on the proposed physiological clustering based

parameter estimation method, and the influence of IDIF from FA or ICA on the accu-

racy of estimated parameters, (2) incorporating spatio-temporal priors within Direct

4-D reconstruction to obtain substantial noise reduction at the cost of minimal in-

crease in bias, and (3) comparing the proposed approach with various existing noise

reduction techniques like non-local means filtering, principle component analysis, and

wavelet smoothing techniques.
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