To Bhavadasan Bhattathiripad, my grandfather
Abstract

Answering how animal brains measure the passage of time, and, make decisions about the timing of rewards (e.g. smaller-sooner versus larger-later) is crucial for understanding normal and clinically-impulsive behavior. This thesis attempts to further our understanding of these questions using both experimental and theoretical approaches.

In the first part of my thesis, I developed a visually-cued interval timing task that required rats to decide when to perform an action following a brief visual stimulus. Using single-unit recordings and optogenetics in this task, I showed that activity generated by the primary visual cortex (V1) embodies the target interval and instructs the decision to time the action on a trial-by-trial basis. A spiking neuronal model of local recurrent connections in V1 produced neural responses that predict and drive the timing of future actions, consistent with the experimental observations. My data demonstrate that the primary visual cortex contributes to instructing the timing of visually-cued actions.

In the second part of my thesis, I theoretically address the question of how animals and humans perceive delays to rewards and decide about such delayed rewards. Humans, as with other animals, decide between courses of action based on the evaluation of the relative worth of expected outcomes. How outcome magnitude interacts with temporal delay, however, has yet eluded a principled understanding that reconciles the breadth of well-established behaviors in intertemporal decision-making. I first review the history of this endeavor to rationalize decision-making regarding the domain of time, highlighting extant theories, their limitations, and recent experimental advances. I then propose a
simple theoretical solution to this problem. My theory recasts long presumed deficiencies in observed decision-making behavior, not as flaws, but rather as signs of optimal decision-making under experiential constraints. This new conception naturally unites the fields of intertemporal decision-making and time perception, which have long been recognized to be interconnected but not yet unified in a formal framework.

I extend the results of my theoretical work in the third part and show analytically that the perception of reward magnitude, time, and subjective value change all approximately obey Weber’s law.
Thesis Readers

Marshall G Hussain Shuler, Ph.D., (Advisor), Assistant Professor, Dept. of Neuroscience

James J Knierim, Ph.D., Professor, Dept. of Neuroscience
Preface

First and foremost, I want to thank my parents for bringing me into this world and for all the love and support that they have provided me over the years. I am positive that if not for their guidance, I would be far less responsible, far less motivated and far less compassionate. I don’t think that my love, respect and gratitude for them could ever be translated into words and hence, such an attempt will not be made. In the same breath that I thank my parents, I would also like to thank my sister. Everything I said about my feelings for my parents is also true about my feelings for her. Next, I would like to thank my maternal grandfather, who always had a simple expectation from me: to be the best in whatever I do. Regardless of whether it’s my high school class or college or a national exam, he would always be disappointed if I wasn’t the best. Needless to say, he has been disappointed many times. But I hope that if he was still alive, he would be proud of this thesis. I would like to also thank all of my teachers (that taught me right from kindergarten to graduate school) that molded me into the person I am today. I am grateful to Steve Hsiao and King Wai Yau for believing in me and giving me the chance to be a part of the Hopkins neuroscience family. I also am grateful to Rita Ragan and Beth Wood Roig for all their support during my graduate school. I thank Ernst Niebur and Rudiger von der Heydt for agreeing to take me on as a rotation student and giving me part of my foundational research training. I would also like to thank my undergraduate research mentor, Rohit Manchanda, for introducing me formally to the field of computational neuroscience.
I am thankful for my thesis committee members James Knierim, David Foster and Ernst Niebur for guiding my project from its initial stages. I am, of course, especially thankful to my mentor, Marshall Hussain Shuler, for everything that he has done for me over this long journey. He provided me with a rich, intellectual and nurturing environment in which I could really explore countless ideas. To me, he has been the perfect guide, providing me with just the right mix of independence and intellectual support. This freedom to explore my own ideas largely shaped the trajectory of my theoretical work. In his lab, I owe so much of my early growth to Emma Roach and Camila Zold. Without their support, my experimental work would have severely diminished in quality. I also thank Tanya Marton and Joshua Levy for countless hours of intellectual discussions and their scientific curiosity, rigor and support. Tanya, especially deserves special mention for asking the right (but tough) questions that spawned my theoretical work. More importantly, I thank Emma, Camila, Tanya and Josh for being very close friends and for the emotional and moral support that they provided me over the years. I would also like to thank Mitchell Datlow, Richa Gujarati, Kevin Monk and Simon Allard for their help and support. Kevin Monk, especially, helped me with histology and infection surgeries.

I would especially like to thank Stefan Mihalas. In my first year, he was my immediate mentor in Ernst Niebur’s lab. He has been among the strongest intellectual influence on me in the neuroscience department. As someone entering neuroscience from an entirely different field, his mentorship really eased my transition. He truly provided the bedrock for my growth as a neuroscientist and has been a collaborator ever since my first year.
It is my belief that no individual can lead a happy life without friends and I have been no exception. I would like to thank all of my friends for their love and support over the years. In addition to my lab mates named above, I would especially like to thank Karthika Menon, Vineesh Sagar, Abhishek Tiwari, Gerald Sun, Ting Feng, Augusto Lempel, Aneesh Donde, Chanel Matney, Naween Anand, Daria Rylkova, Arnab Kundu, Shweta Naik, Rajiv Mathew and Sandhya Sameera. I would also like to thank all of my other good friends for their love and support.

Last, but certainly not the least, I would like to thank my wife, Devika Krishnakumar. Even though she entered my life only towards the end of my doctoral work, she instantly made every day all the more enjoyable and wonderful. Not a single day has gone by since I have known her in which she hasn’t managed to lift my mood. I would also like to thank her lovely family for all their support.
Contents

ABSTRACT ... III

PREFACE ... VI

CHAPTER 1. GENERAL INTRODUCTION .. 1

1.1 TIME INTERVAL PRODUCTION .. 2

1.2 TEMPORAL DECISION-MAKING .. 9

1.3 REPRESENTATION OF SUBJECTIVE TIME .. 9

CHAPTER 2. PRIMARY VISUAL CORTEX EXPRESSES VISUALLY-CUED INTERVALS INFORMING TIMED ACTIONS ... 14

2.1 INTRODUCTION ... 14

2.2 RESULTS: VISUALLY-CUED TIMING BEHAVIOR .. 17

2.3 RESULTS: NEURAL ACTIVITY CONVEYS ACTION TIMING .. 24

2.4 RESULTS: OPTOGENETIC PERTURBATION CONSISTENTLY SHIFTS TIMING 38

2.5 RESULTS: SPIKING NEURONAL MODEL & REWARD RESPONSES .. 44

2.6 DISCUSSION ... 55

2.7 EXPERIMENTAL PROCEDURES .. 57

2.7.1 Subjects.. 57

2.7.2 Behavioral Task .. 57

2.7.3 Behavioral analysis .. 60

2.7.4 Neural recordings .. 61

2.7.5 Analysis of neural response .. 63

2.7.6 Optogenetics ... 70

2.7.7 Spiking neuronal model .. 76

CHAPTER 3. RATIONALIZING DECISION-MAKING: UNDERSTANDING THE COST AND PERCEPTION OF TIME ... 80
CHAPTER 3. A TEMPORAL BASIS FOR WEBER’S LAW IN VALUE PERCEPTION ... 183

3.1 INTRODUCTION ... 80

3.1.1 History of theories of intertemporal decision-making ... 81

3.2 RECENT EXPERIMENTAL AND THEORETICAL ADVANCES IN THE STUDY OF INTERTEMPORAL
DECISION-MAKING .. 94

3.2.1 Experimental advances .. 95

3.2.2 Theoretical advances ... 101

3.2.2.1 The past matters .. 109

3.2.2.2 TIMERR Algorithm .. 111

3.2.2.3 Expressing the TIMERR algorithm in terms of Subjective Value 118

3.2.2.4 The effect of changing the look-back time, \(T_{\text{INE}} \), and the magnitude of accumulated reward, \(r \), on the valuation of given reward options. .. 120

3.2.2.5 When should an offered reward be forgone? ... 126

3.2.2.6 Choosing a punishment over a reward?... 126

3.2.2.7 Re-expressing subjective value as a discounting function, and the effect of \(T_{\text{INE}} \). 134

3.2.2.8 The Magnitude Effect ... 136

3.2.2.9 The Sign Effect ... 142

3.2.2.10 New perspective on the meaning of the terms in Equation (3.9)................................. 144

3.2.2.11 Connection to experimental data ... 145

3.2.2.11.1 Data from non-human animals ... 146

3.2.2.11.2 Data from humans .. 150

3.3 CONNECTION BETWEEN THEORIES OF INTERTEMPORAL DECISION-MAKING AND TIME PERCEPTION 158

3.4 IMPULSIVITY IN THE DOMAIN OF TIME ... 177

3.5 CONCLUSION .. 180

CHAPTER 4. A TEMPORAL BASIS FOR WEBER’S LAW IN VALUE PERCEPTION 183

4.1 INTRODUCTION ... 183

4.2 RESULTS ... 185

4.2.1 Contribution of time measurement error to the error in subjective value 188
4.2.2 Sensory measurement error of reward magnitude due to evidence accumulation 194
4.2.3 Combined error due to time and magnitude measurements on subjective value 203
4.3 DISCUSSION ... 208
4.4 METHODS .. 212
4.5 APPENDIX .. 213
 4.5.1 A1 213
 4.5.2 A2 214
 4.5.3 A3 215

CHAPTER 5. GENERAL DISCUSSION .. 218

BIBLIOGRAPHY ... 224

CURRICULUM VITAE ... 270
List of Figures

Figure 1 Visually-cued timing behavior ... 19
Figure 2 Analysis related to Figure 1 ... 22
Figure 3 Raster plot showing conceptual and observed neural responses 26
Figure 4 Analysis related to Figure 3 ... 27
Figure 5 Trial-by-trial correlations reflect timing and not the first lick itself 29
Figure 6 Analysis related to Figure 5 ... 30
Figure 7 Population analysis of single unit data ... 32
Figure 8 Data related to Figure 7 ... 34
Figure 9 Optogenetic perturbations of V1 cause a significant shift in wait times .. 41
Figure 10 Analysis related to Figure 9 ... 42
Figure 11 Spiking neuronal model ... 46
Figure 12 Analysis related to Figure 11 ... 47
Figure 13 Reward magnitude response observed in V1 52
Figure 14 Analysis related to Figure 13 (A-C) and to Figure 3-Figure 7(D) 53
Figure 15. Modified from Figure 3 of (Blanchard et al., 2013) 98
Figure 16. *Does the past matter?* .. 105

Figure 17. *The effect of “looking-back” different amounts of time in evaluating realizable session reward rates* ... 107

Figure 18. *The TIMERR decision making algorithm and its graphical depiction*... 114

Figure 19. *Subjective value derived from the TIMERR algorithm and graphically depicted* .. 116

Figure 20. *The effect of changing the look-back time, T_{ine}, and the magnitude of accumulated reward, R, on the valuation of given reward options* 122

Figure 21. *When should an offered reward be forgone?* 124

Figure 22. *Choosing a punishment over a reward?* .. 129

Figure 23. *Subjective value expressed as a discounting function, and, the effect of T_{ine}* ... 131

Figure 24. *The Magnitude Effect is a consequence of experientially constrained reward rate maximization as conceptualized by TIMERR* .. 138

Figure 25. *The “Sign Effect” as explained by the TIMERR conception, in net positive, negative, and neutral reward environments* .. 140

Figure 26. *A neural accumulator circuit that implements the simple mathematical argument (similar to BeT) presented in Section 3.3, modified from Figure 1 in (Simen et al., 2011)* .. 166
Figure 27. *Representation of subjective time. Reprinted from (Namboodiri, Mihalas, Marton, et al., 2014)* ..170

Figure 28. *Modified from Figure 3 (Gibbon et al., 1997)*..........................172

Figure 29 *Recapping the TIMERR algorithm* ..186

Figure 30 *Error in subjective value due to error in time perception*190

Figure 31 *Dependence of error in subjective value on past integration interval and past reward rate* ...192

Figure 32 *Confirmatory simulations (see Section 4.4) of the analytical solution of an accumulator model in which the sensory and feedback noise combine additively* 201

Figure 33 *Confirmatory simulations (see Section 4.4) of the analytical solution of an accumulator model in which the sensory and feedback noise combine multiplicatively*202

Figure 34 *The error in subjective value is affected by errors in the measurement of both delay (as shown in Figure 30) and reward magnitude*204
Chapter 1. General Introduction

Animals, including humans, have evolved to accumulate food and other rewards like water, sex, wealth, etc. Such accumulation has to be necessarily carried out over the dimension of time. Unlike space, we cannot control our location in time. Hence, time must play a fundamental role in our lives, especially in the decisions that we make. For instance, if an animal is given the choice of receiving 10,000 units of food provided it waits for 20 days without eating, it would never pick that option because the likelihood of death in that time is near-definite. On the other hand, if that same amount of food would be available ad-lib, it would never be forgone. Thus, time clearly affects the decisions that animals make. Time also affects our lives in another way; specifically in the production of timed actions. In sports, for instance, the timing of actions is often the most important aspect in one’s skill set.

It is thus clear that the passage of time affects our lives fundamentally. Yet, in spite of decades of research, little is known about how time is processed in the brain and how it is included in our decisions. This thesis hopes to further our understanding of these questions. To this end, I first investigate the general question of how animal brains produce timed actions; specifically, I address whether primary sensory areas can have any role in the instruction of timed behavior. Indeed, I found that the primary visual cortex instructs the production of a timed action in a visually-cued timing task. In the second part of my thesis, I theoretically address the question of how animals make decisions about delayed rewards. I showed that the breadth of the decision-making
literature can be accounted for by a simple theory. In this theory, I propose that animals try to maximize reward rates over finite temporal intervals. In this theory, I also derive an expression for how time is subjectively represented by an individual, thereby addressing the questions of temporal decision-making and time perception. Finally, I address how errors in time perception and reward magnitude perception would affect the decisions related to delayed rewards.

1.1 Time interval production

Animals have the ability to perceive the passage of time over several orders of magnitude. The most recognized timing ability is colloquially referred to as the “body clock”. The scientific term for the body clock is “circadian rhythm” (Buhusi & Meck, 2005; Buonomano, 2007). It refers to our ability to detect timescales of the order of a day. It is widely believed that such ability does not require the specialized processing of neurons since even plants and single-celled organisms have this ability (Mcclung, 2001). At the other end of the spectrum, we have the ability to perceive sub-millisecond intervals, helping us to localize a sound source (Buhusi & Meck, 2005; Buonomano, 2007; Moisef & Konishi, 1981). This ability depends on highly specialized circuits in the auditory pathway that have not been shown to have any role in the perception of longer intervals (Burger, Fukui, Ohmori, & Rubel, 2011; Seidl, Rubel, & Harris, 2010). Slightly higher on the spectrum, producing intervals of the order of tens of milliseconds is required for motor timing (Ivry & Keele, 1989), speech generation (Schirmer, 2004)
and music perception (Zatorre, Chen, & Penhune, 2007). In this range, it is thought that timing depends on the intrinsic timescales of neural processing (Buhusi & Meck, 2005; Buonomano, 2007).

Timing of the order of hundreds of milliseconds to seconds to minutes is called as “interval timing” and has been the focus of most studies on timing (Buhusi & Meck, 2005; Buonomano, 2007; Matell & Meck, 2000). This range is much higher than the intrinsic timescales of neurons, but too low for the chemical mechanisms controlling circadian rhythms. Hence, it is widely believed that time perception in this range requires the recruitment of networks of neurons (Buhusi & Meck, 2005; Buonomano, 2007; Matell & Meck, 2000). In this thesis, I only focus on this range of durations.

In the interval timing literature, there is a rich history of studies on how animals produce temporal intervals. The typical tasks used for this purpose are peak/fixed interval tasks (Lejeune & Wearden, 1991; Matell & Meck, 2004; Matell & Portugal, 2007), differential reinforcement of low rate (DRL) tasks (Jasselette, Lejeune, & Wearden, 1990) and temporal reproduction (Jazayeri & Shadlen, 2010). In peak/fixed interval tasks, animals have to produce behavioral responses, for instance, a lever press, so as to obtain reward. In fixed interval tasks, reinforcement is obtained for responses that occur after a fixed interval has expired since the last reinforcement (Lejeune & Wearden, 1991). Responses earlier than the fixed interval do not get reinforced. In peak interval tasks, there is an additional trial type (called the peak trials) for which no reinforcement is provided. Thus, the responses of animals on these peak trials are an indication of the temporal judgment of animals. Typically, the responses of animals forms a distribution centered on the
criterion duration, indicating that animals learn the temporal interval (e.g. Matell & Portugal, 2007). In DRL tasks, responses occurring after a given criterion duration from the previous response are reinforced (i.e. inter-response time has to be greater than criterion duration). The distribution of inter-response time is evaluated to study the temporal judgment of animals (Jasselette et al., 1990). In temporal reproduction tasks, an interval presented to the subject has to be immediately reproduced by the subject, with the reproduced interval providing an estimate of temporal judgment.

The aim of the first part of this thesis is to shed some light on neural mechanisms of time interval production in the interval timing range (~seconds). Numerous prior studies have addressed the question of how the passage of time is represented in the animal brain (Buhusi & Meck, 2005; Chubykin, Roach, Bear, & Shuler, 2013; Gu, Laubach, & Meck, 2013; Leon & Shadlen, 2003; Matell & Meck, 2000; Mauk & Buonomano, 2004; Meck, 1996; Merchant, Harrington, & Meck, 2013; Narayanan & Laubach, 2009; Shuler & Bear, 2006). Early models of timing held that just like other sensory modalities such as vision, audition etc, there are specialized regions in the brain involved in temporal processing (Allan, 1979; Gibbon, Church, & Meck, 1984; Treisman, 1963). In other words, these models held that there are central clocks in the brain. Support for such models was obtained from some initial studies that showed that timing performance is independent of whether or not the task used motor or sensory timing (Ivry & Hazeltine, 1995; Meegan, Aslin, & Jacobs, 2000). However, while such a hypothesis was intuitive, neurophysiological evidence for it was found to be lacking (Wiener, Turkeltaub, & Coslett, 2010). An alternative hypothesis is that timing is carried out locally or by the
interaction of different regions of the brain depending on task demands (Wiener, Matell, & Coslett, 2011; Wiener et al., 2010). Some early behavioral studies supported the notion of distributed processing. In these studies, it was found that performance on temporal tasks combining two modalities (audition and vision) was worse than the performance on the same tasks if the modalities were not combined (Grondin & Rousseau, 1991; Rousseau, Poirier, & Lemyre, 1983; Westheimer, 1999). Similarly, such tasks also demonstrated that auditory timing is better than visual timing (Grondin & Rousseau, 1991; Rousseau et al., 1983). These pieces of evidence are consistent with the idea of locally distributed timing mechanisms. Consistent with this hypothesis, numerous neurophysiological studies have also found evidence of temporal representations in different regions of the brain for different tasks (Brody, Hernandez, Zainos, & Romo, 2003; Genovesio, Tsujimoto, & Wise, 2006, 2009; Jin, Fujii, & Graybiel, 2009; Leon & Shadlen, 2003; MacDonald, Carrow, Place, & Eichenbaum, 2013; Narayanan & Laubach, 2006, 2009; Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008; Shuler & Bear, 2006; Xu, Zhang, Dan, & Poo, 2014).

The specific mechanisms of timing observed in these studies across different brain regions were found to be different. Phenomenologically, it was found that temporal representations of neurons fell into different categories. Some neurons represent time using peak responses in their firing around the interval of interest (Narayanan & Laubach, 2006, 2009; Shuler & Bear, 2006). Others represent time using a ramping profile of their firing rate (Brody et al., 2003; Leon & Shadlen, 2003; Narayanan & Laubach, 2006, 2009). Yet others use sustained modulations in firing rate during the temporal interval to
represent time (Narayanan & Laubach, 2006, 2009; Shuler & Bear, 2006). It has also been found that some neurons represent time using oscillatory patterns in their firing rate (Jacobs, Kahana, Ekstrom, & Fried, 2007; Ruskin, Bergstrom, & Walters, 1999) and that there are cells that represent relative durations between stimuli (Genovesio et al., 2009). Temporal representations based on the magnitude of firing rate (Genovesio et al., 2006) and of a sequence of instances between two moments (Jin et al., 2009; MacDonald et al., 2013; Pastalkova et al., 2008) have also been found.

The underlying mechanisms for these observations remain largely untested. However, there have been numerous computational models attempting to explain these observations. They can be largely classified as oscillator models (Matell & Meck, 2004; Miall, 1989), spectral models (Grossberg & Schmajuk, 1989), accumulator models (Simen, Balci, de Souza, Cohen, & Holmes, 2011; Simen, Balci, Desouza, Cohen, & Holmes, 2011) or network models (Buonomano & Maass, 2009; Buonomano, 2000; Gavornik & Shouval, 2011; Gavornik, Shuler, Loewenstein, Bear, & Shouval, 2009; Karmarkar & Buonomano, 2007). Oscillator models employ underlying oscillations in neuronal activity to explain temporal processing (Matell & Meck, 2004; Miall, 1989). Spectral models use a spectrum of neurons with different intrinsic temporal properties to generate timing (Grossberg & Schmajuk, 1989). Accumulator models are neuronal drift-diffusion processes that integrate the passage of time using ramps in firing rates (Simen, Balci, de Souza, et al., 2011; Simen, Balci, Desouza, et al., 2011). Network models employ the recurrent connection properties of networks of neurons to generate stable
reports of interval timing (Buonomano & Maass, 2009; Buonomano, 2000; Gavornik & Shouval, 2011; Gavornik et al., 2009; Karmarkar & Buonomano, 2007).

An interesting question regarding the generation of temporal intervals is whether even brain regions that are specialized for other functions can perform temporal computations. Interestingly, it was found that even a primary sensory area (the primary visual cortex, or V1) is capable of representing temporal intervals. Specifically, it was found that in animals expecting a reward at an average delay from a visual stimulus, neurons in V1 represent the mean delay between visual stimulus and reward (Shuler & Bear, 2006). The specific form of this representation was different in different units. Some units represented the mean delay using sustained modulations in their firing rate for the delay, whereas others represented the mean delay using a peak in their firing rate around the mean delay. Since such temporal representations are highly unexpected within a primary sensory area specialized in visual processing, a trivial explanation for these findings could have been that these signals merely reflect feedback from a “higher” brain region. However, these findings could be explained using a computational model of recurrent connections that are local to V1 (Gavornik & Shouval, 2011; Gavornik et al., 2009). Briefly, the model posits that with training, the strength of connection between different neurons is tuned so that a transient visual stimulus produces a reverberation that lasts for the mean delay between a visual stimulus and reward. This learning of synaptic weights is dependent on the reward obtained by the animal. To test whether such a local model could explain the presence of temporal representations within V1, it was shown that the learning depended on cholinergic projections from basal forebrain to V1 (Chubykin et al.,
2013). In other words, when these targeted projections to V1 are removed, neurons in V1 can no longer learn the mean delay between visual stimulus and reward, thus supporting the notion that this learning is local to V1. Further, it was shown that even in-vitro preparations of V1 can represent temporal intervals, much like in-vivo preparations (Chubykin et al., 2013). Thus, even primary sensory areas can generate temporal intervals locally. However, it was unclear whether such temporal representations can be directly used for timing behavior.

For my thesis, I was interested in testing whether such ability of V1 to represent temporal intervals can be used to produce timed behaviors. To this end, an appropriate timing behavior had to be employed. The timing tasks mentioned above either require the animal to produce multiple responses (hence producing only a coarse measure of timing) (peak/fixed interval tasks, DRL), or, are externally cued (temporal reproduction). In order to obtain a precise measure of the self generation of temporal intervals, in this thesis, a novel timing task was designed, in which the delay waited by an animal until producing an action would determine the amount of reward obtained. Specifically, the amount of reward linearly increased until a target interval, beyond which there is no reward (Section 2.2). Well-trained rats performing this timing task presented a model system to address whether V1 has any role in the instruction of timed behavior. In Chapter 2, I show that neural activity in V1 can indeed contribute to instructing the production of visually-cued timed intervals. Thus, this part of my thesis lends support to the hypothesis that neural control of timing can be performed locally by different regions of the brain.
1.2 Temporal decision-making

Frequently, rewards are available only as a result of deliberate actions in their pursuit. For instance, a hungry lion might have to decide between two areas of the forest for foraging, one closer but with fewer prey and the other farther but with more prey. In order to be successful in the wild, animals must have evolved an effective mechanism to make such complex decisions, comparing between multiple options with differing magnitudes, delays and probabilities of rewards. Humans, too, routinely make such decisions in their day-to-day lives, to choose, for instance, between a closer but less preferred coffee shop and a farther, but better one. In this thesis, I only consider the role of time in such decision-making. The question of how animals (including humans) make such decisions has been the subject of research spanning more than a century. In Chapter 3, I consider the full history of this research to show that there is not yet a single, unified theory that explains the role of time in decision-making. I then provide a simple conceptual framework that is capable of explaining a variety of observations in this field. The theory is explained in full in Chapter 3.

1.3 Representation of subjective time

In order to make decisions about delayed rewards, animals must obviously be able to measure those delays. However, it is interesting that theories that address how animals
decide about delayed rewards and those that address how they measure temporal intervals have been largely independent (G. Ainslie, 1975; Bateson, 2003; Frederick, Loewenstein, Donoghue, & Donoghue, 2002; Gibbon, Malapani, Dale, & Gallistel, 1997; Gibbon, 1977; Killeen & Fetterman, 1988; Matell & Meck, 2000; Stephens, Kerr, & Fernández-Juricic, 2004; Stephens & Krebs, 1986). In my theory, I attempt to bridge this gap and show that it can explain observed correlations between intertemporal decision-making and time perception. It also explains the co-morbidity of impulsive decision-making and aberrant time perception (Barkley, Edwards, Laneri, Fletcher, & Metevia, 2001; Barratt, 1983; Bauer, 2001; Baumann & Odum, 2012; Berlin, Rolls, & Kischka, 2004; Berlin & Rolls, 2004; W K Bickel & Marsch, 2001; Dougherty et al., 2003; Heilbronner & Meck, 2014; Levin et al., 1996; Pine, Shiner, Seymour, & Dolan, 2010; Reynolds & Schiffbauer, 2004; van den Broek, Bradshaw, & Szabadi, 1992; Wittmann, Leland, Churan, & Paulus, 2007; Wittmann & Paulus, 2008).

One of the fundamental observations in time perception is that the ability of animals to measure temporal intervals decreases as the interval increases. In fact, it has often been observed that the error in time perception increases linearly with the interval being timed. This is referred to as Weber’s law or scalar timing (Allan & Gibbon, 1991; Russell M Church & Gibbon, 1982; Gibbon et al., 1984, 1997; Gibbon & Church, 1981; Gibbon, 1977, 1992; Lejeune & Wearden, 2006; Meck & Church, 1987; J. H. Wearden & Lejeune, 2008). While deviations from this law have been observed under some circumstances (especially at very short and very long intervals), it is largely held as a fundamental truth about time perception. Hence, theories of time perception are often
built to explain this observation (Bateson, 2003; Gibbon et al., 1997; Gibbon, 1977; Killeen & Fetterman, 1988; Matell & Meck, 2000). A fundamental question addressed by these theories is how time is subjectively represented in the brain, i.e. is there a consistent relation between the subjective map of time and the objective duration that is represented? A simple solution to the problem of why Weber’s law exists was proposed in the late 70’s (R M Church & Deluty, 1977). This solution postulated that subjective time is logarithmic with respect to real time. Because of this relationship, it is easy to prove that a constant error in the representation of subjective time would result in linearly increasing errors in real time, i.e. scalar timing. The problem with this simple solution was that no one has been able to demonstrate experimentally that subjective time is indeed logarithmic. Subjective time (as is referred here) means the quantitative representation of an interval in a subject’s brain (for instance, by the firing rate of a neuron). Of course, it must be noted that experimentally measuring subjective time is extremely difficult since one will have to behaviorally access what is essentially, a subjective scale. Nevertheless, early timing researchers assumed that verbal reports of the duration of an interval represent the subjective scale (Allan, 1979). However, this assumption was later questioned because there is no reason why the verbal estimate is linearly related to the subjective representation of an interval. Thus, in the absence of evidence for logarithmic representation of subjective time, subsequent theories assumed a linear representation of time.

It is important to note that absence of evidence is not evidence of absence; it’s just more parsimonious to assume linearity in representation when the measurement of subjective
time is difficult. However, in a linear scale for subjective time, how does one obtain Weber’s law? A simple solution was proposed in 1977 by John Gibbon (Gibbon, 1977). He proposed that the comparison of intervals is performed using the ratio of the intervals rather than their difference. Thus, if the ratio of two intervals is sufficiently close to one, they are deemed as equal. This solution is also unfortunately fraught with the problem that it has not been shown that neural systems involved in such decision-making perform such ratio comparisons. There are numerous other theories of time perception, some of which will later be discussed in Section 3.3.

In my theory, I propose that time is subjectively represented so that the animal’s estimate of subjective reward rate is equal to the objective change in reward rate at an instant. This postulate will be explained in more detail later in Section 3.3. But the result of this postulate is that I predict that the subjective representation of time is non-linear. Even though there is no current experimental proof for this prediction (since it is difficult to experimentally assess), this postulate naturally leads to another prediction that there will be correlations between intertemporal decision-making and time perception (as mentioned earlier). The latter prediction has ample experimental support (Barkley et al., 2001; Barratt, 1983; Bauer, 2001; Baumann & Odum, 2012; Berlin et al., 2004; Berlin & Rolls, 2004; W K Bickel & Marsch, 2001; Dougherty et al., 2003; Heilbronner & Meck, 2014; Levin et al., 1996; Pine et al., 2010; Reynolds & Schiffbauer, 2004; van den Broek et al., 1992; Wittmann et al., 2007; Wittmann & Paulus, 2008). For a more detailed discussion, see Chapter 3.
Chapter 4 examines the role of errors in time perception and reward magnitude perception on decision-making. There, I show that my theory predicts that the errors in decision-making will depend on the reward environment of an animal, and hence that they will be different between animals and even within an animal across different contexts.
Chapter 2. Primary visual cortex expresses visually-cued intervals informing timed actions

2.1 Introduction

The production of a behavior often requires an animal to sense the external world, make decisions based on that information and generate an appropriate motor response (Goldman-Rakic, 1988; Kandel, Schwartz, & Jessel, 2000; Miller & Cohen, 2001). The canonical view of brain organization is that these functions are performed hierarchically by sensory, association, and motor areas respectively (Felleman & Van Essen, 1991; Kandel et al., 2000; Miller & Cohen, 2001). The role of sensory areas—especially primary sensory areas—has long been regarded as providing a faithful representation of the external world (Felleman & Van Essen, 1991; Goldman-Rakic, 1988; Kandel et al., 2000; Miller & Cohen, 2001); several studies have shown that these areas convey sensory information (Ghazanfar & Schroeder, 2006; Hubel & Wiesel, 1962, 1968; Lemus, Hernández, Luna, Zainos, & Romo, 2010; Liang, Mouraux, Hu, & Iannetti, 2013), while others have shown causal roles in sensory perception (Glickfeld, Histed, & Maunsell, 2013; Jaramillo & Zador, 2011; Sachidhanandam, Sreenivasan, Kyriakatos, Kremer, & Petersen, 2013). However, this view has recently been challenged by observations that sensory cortices represent not only stimulus features but also non-sensory information (Ayaz, Saleem, Schölvinck, & Carandini, 2013; Brosch, Selezneva, & Scheich, 2011; Fontanini & Katz, 2008; Gavornik & Bear, 2014; Jaramillo & Zador, 2011; Keller,
Bonhoeffer, & Hübener, 2012; Niell & Stryker, 2010; Niwa, Johnson, O’Connor, & Sutter, 2012; Pantoja et al., 2007; Samuelsen, Gardner, & Fontanini, 2012; Serences, 2008; Shuler & Bear, 2006; Stanisor, Togt, Pennartz, & Roelfsema, 2013; Zelano, Mohanty, & Gottfried, 2011). In the visual modality, it has been shown that V1 can predict learned intervals between a stimulus and a reward (Chubykin et al., 2013; Shuler & Bear, 2006) and that the ability to learn such intervals depends on cholinergic input from the basal forebrain (Chubykin et al., 2013). In fact, such timing responses can be trained even within an isolated in-vitro preparation of V1 (Chubykin et al., 2013), demonstrating that the site of learning is local to V1. However, whether such predictive signals (Brosch et al., 2011; Chubykin et al., 2013; Pantoja et al., 2007; Serences, 2008; Shuler & Bear, 2006; Stanisor et al., 2013) in primary sensory areas can directly instruct and govern behavior is unclear.

For my thesis, I developed a novel visually-cued interval timing task to address this question. Rats performing this task must decide when to lick on a spout to obtain the maximum water reward: licking at longer delays following the visual stimulus (up to a target interval) results in larger reward volumes. Delays longer than the target interval result in no reward (Figure 1). Hence, trained animals wait a stereotyped interval after the stimulus before deciding to lick. The design of the current task was motivated to address whether V1 activity that reflects the average delay between stimulus and reward could be used to directly instruct the lapse of a target interval in order to time an action. As in prior tasks, single unit recordings showed responses that represent the mean expected delay between the stimulus and the reward; but in addition, other responses correlate with the
timed action on a trial-by-trial basis. Among this latter group, I found neurons that represent a target interval from the cue as well as others that report the expiry of the target interval, potentially informing the timing of the behavioral response. Crucially, I show that many neural responses correlate with the timing of the action only on trials in which the animal timed its behavioral action from the visual stimulus. In contrast, on trials in which the action was not visually timed, the firing of the neurons did not relate to the action, even though these trials contain the same visual stimulus and action. Further, even when the action was visually-timed, many neurons convey information about the timing of the action in an eye-specific manner. I further show that optogenetic perturbation of activity in V1 during the timed interval (but after cue offset) shifts timing behavior. My results indicate that post-stimulus activity in V1 embodies the wait interval and governs the timing of the behavioral response. I show that a recurrent network model of spiking neurons that evolved cue-evoked responses from those that report attributes of the stimulus to those that predict the timing of future rewards (Gavornik & Shouval, 2011; Gavornik et al., 2009) can produce the timing of future actions. As observed experimentally, single unit activity within this network shows trial-by-trial correlations with the action, and a perturbation of the network activity produces a shift in the timing of the action, confirming that a model of local recurrent connections within V1 can explain my observations.
2.2 Results: Visually-cued timing behavior

To initiate a trial in my visually-cued timing task, animals enter a port (“nosepoke”) containing a lick spout and remain so that after a random delay, a monocular visual stimulus is presented. The reward is delivered immediately upon the first lick after the visual stimulus. Importantly, the amount of reward obtained has a ramp profile with respect to the time waited by animals from the visual stimulus until the first lick (“wait time”) (Figure 1A). Early in training, the wait times of animals occur at very short lags after the visual stimulus and are likely independent of the stimulus (see Section 2.7.2 for details of behavioral shaping) (Figure 1C). Unlike early stages, as the animals advance to an intermediate stage of training, their wait times begin to be stereotyped. In other words, the cumulative distribution function (CDF) of their wait times acquires a sigmoidal shape—indicating that their lick behavior is increasingly being timed from the visual stimulus. In later stages of learning, the animals’ behavior shows a tighter sigmoidal shape (Figure 1C,D) with a median greater than one second, and a low coefficient of variation (CV) (~0.25). To ascertain whether the asymptotic wait times are near-optimal (Balci et al., 2011), I calculated the mean wait time that leads to the maximum reward per trial for a given coefficient of variation (Figure 1D, red dotted line). Because timing behavior follows scalar variability (Buhusi & Meck, 2005; Buonomano, 2007; Matell & Meck, 2004; Merchant et al., 2013), longer wait times are associated with larger variances, such that a larger proportion of wait times exceed the target interval, receiving no reward (Figure 2). Hence, the optimal wait time (given ramping reward to 1.5s) for a
CV close to 0.25 is approximately 1.1 seconds. The asymptotic wait times for the animals were thus near-optimal (Figure 1D).
Figure 1 *Visually-cued timing behavior*

A & B. Visually-cued timing task, showing that the time waited by an animal from the visual stimulus onset until the first lick (“wait time”) determines the reward obtained (see 2.7.2).
C & D. Example performance of animals at early (brown), intermediate (orange) and late (cyan) stages of learning, shown using cumulative-distribution-functions (C) and a population plot (D) of asymptotic coefficient of variation (CV) with mean wait time (5 animals each). Red dotted line shows optimal behavior (see Figure 2).
E-G. Raster plots showing relation between delay from nosepoke-entry (grey) to visual stimulus (green), to the corresponding first licks (black dots), when aligned to nosepoke entry (E, G) and
visual stimulus (F). Non-visually-timed trials (see text) are shown in red. This is the session in which the neuron showed in Figure 5A was recorded.
A. Calculation of Optimal Wait Time for a Given CV

- Mean wait time = 0.75s
- Mean wait time = 1s

<table>
<thead>
<tr>
<th>CV = 0.1</th>
<th>CV = 0.5</th>
<th>CV = 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Graphs showing probability and reward density functions]</td>
<td>[Graphs showing probability and reward density functions]</td>
<td>[Graphs showing probability and reward density functions]</td>
</tr>
<tr>
<td>[Average reward per trial (U4)]</td>
<td>[Average reward per trial (U4)]</td>
<td>[Average reward per trial (U4)]</td>
</tr>
</tbody>
</table>

B. Behavior across training

- Mean wait time (ms) vs. Coefficient of variation

C. Are first licks independent of nosepoke entry?

- Nosepoke to goggle delay (s)
- CDF

D. Separation of trials into visually-timed and non-visually-timed trials

- Nosepoke to goggle delay (s)
Figure 2 Analysis related to Figure 1 (Calculation of optimality and separation of trials into visually-timed and non-visually-timed trials)

A. Calculation of optimal wait time given a coefficient of variation (CV) is shown. For a given value of CV and mean wait time, the probability density function of licking and the corresponding reward density function (reward obtained at a wait time multiplied by the probability density at that wait time) are plotted, assuming a lognormal distribution of wait times. Thus, the average reward obtained for a given CV and mean wait time is shown by the blue shaded area. Combinations of three different CV’s and mean wait times are shown. For a given value of CV, this procedure is repeated for mean wait times ranging from 0.75 s to 1.5 s (last column) so as to calculate the mean wait time that leads to the maximum average reward on a trial (black dashed line). The resultant curve showing optimal wait times for different CV’s is shown in Figure 1D. B. The behavior of an example animal is shown from the first day of training to the last, showing a constant progression towards optimality. C-E. The procedure for separating non-visually-timed trials from visually-timed trials for the example session shown in Figure 1E-G. C. Scatter plot of wait times on different trials with respect to the delay between nosepoke entry and visual stimulus presentation. D. The CDF of the change in R² upon the removal of every individual trial is shown. Every trial that showed a positive change of at least 1.5 times the interquartile change from the median change is judged to be a non-visually-timed trial. This threshold is shown by the dashed green line. E. New scatter plot showing the separated trial types.
If these stereotyped wait times truly reflected timing from the visual stimulus, they should have no dependence on other behavioral events (such as the nosepoke entry), as was largely observed (Figure 1E) (since licks follow the visual stimulus). However, a closer examination of the dependence between per-trial wait times and the corresponding delays between the nosepoke entry and visual stimulus revealed a small, but significant, negative correlation ($R^2 \sim 0.05$) (an example session is shown in Figure 1F). A simple explanation of this correlation is that a subset of trials was timed from the nosepoke entry rather than the visual stimulus. On the few trials timed from the nosepoke, the longer the delay from nosepoke to visual stimulus presentation, the shorter the corresponding wait time would be from the visual stimulus. To detect such non-visually-timed trials, I analyzed the effect of removing individual trials from the correlation, so as to identify the trials that contributed the most to the original correlation (Figure 2). Such non-visually-timed trials (marked with red squares in Figure 1F,G) also include trials showing outlier wait times (wait times less than 300ms or greater than 3000ms; see 2.7.3). Aside from the outliers, the non-visually-timed trials show a consistent delay from nosepoke-entry independent of the visual stimulus, implying that they are likely timed from the nosepoke entry (Figure 1G). Separating out timing signals from those that merely reflect the action used to indicate the expiry of the timed interval is a challenge associated with studying the neural genesis of timing (Brody et al., 2003; Namboodiri & Hussain Shuler, 2014; Narayanan & Laubach, 2006, 2009; Xu et al., 2014). Hence, I used the above method to separate trials containing nominally the same action (licks), based on whether or not the actions were timed from the visual stimulus (Section 2.7.3). If activity in V1 was driven by the action itself, it would be present on both visually-timed and non-visually-timed
trials. If, on the other hand, V1 instructed the timing of the action, the activity in V1 would correlate with the action only on visually-timed trials, and not on non-visually-timed trials.

2.3 Results: Neural activity conveys action timing

Neurons that embody an interval from a visual stimulus should reflect this information in their firing profile and can do so in different ways, including sustained responses or linear ramps of a given duration (Figure 4A). It has been shown that neurons in V1 can represent both 1) temporal intervals (by sustained modulations of their firing rate for the duration of the mean delay between visual stimulus and reward (Chubykin et al., 2013; Shuler & Bear, 2006)), and, 2) the lapse of such intervals (by a peak in firing rate (Chubykin et al., 2013; Shuler & Bear, 2006)). If such representations are not used for the timing of an action, there will be no trial-by-trial correlation between the neural response and the action, as observed previously and termed “reward timing” (Chubykin et al., 2013; Shuler & Bear, 2006) since they expressed the typical delay to reward (Figure 3A-D shows a schematic). On the other hand, if the interval represented by such neurons is used to instruct the timing of an action, there would be a trial-by-trial correlation between the neural representation of the interval and the action. Conceptually, an “intervalkeeper” neuron that represents a target interval would persistently modulate its firing rate (by either an increase or a decrease) from the onset of the visual stimulus until the target interval expires. Since the animal’s indication of the lapse of the interval (lick) is
informed by such a neuron, the lick would follow the moment at which the neuron indicates the expiry of the target interval. On trials in which the neural response lasts longer, the licks will be correspondingly delayed and vice-versa (Figure 3E,F). Neurons that decode the activity of such intervalkeepers to instruct the animal to lick would modulate their population firing rate immediately prior to the lick: the later they fire on a trial, the later the lick occurs (Figure 3G,H). V1 neurons recorded from well-trained animals with stereotyped timing behavior showed responses expressing these conceptualized forms, with strong trial-by-trial correlations with the action indicating the expiry of the timed interval (Figure 3I-L), in addition to other neurons showing reward timing (Figure 4B). Such units that show trial-by-trial correlations with the action in their response profile are labeled as “action units”.
Figure 3 *Raster plot showing conceptual and observed neural responses*

Shown for example neurons that measure the passage of a target interval (A, B, E, F, J) and those that indicate its expiry (C, D, G, H, K, L). The target interval measured by intervalkeepers (and thus reflected by decoders) shows trial-by-trial variability, which is consequently reflected by the action of first lick (pink).
Figure 4 *Analysis related to Figure 3*

A. Two possible example timing signals are shown. One is a digital clock pulse, whereas the other is a linear ramp with constant slope and threshold. Both can be used to time an interval, even though the digital clock pulse cannot be used to continually represent the passage of time. Hence, even neural signals that are time-invariant during an interval (other than at onset and offset) can represent temporal intervals. Note though, that I do
not assert that my observed neural signals need abide by either form. B. The units that did not show trial-by-trial correlations (n=241) were analyzed to test for reward timing (Chubykin et al., 2013; Shuler & Bear, 2006). The reward timing analysis is explained in 2.7.5. A total of 37% units were classified as reward timing units. The CDF of reward timing index for stimulations of contralateral and ipsilateral eyes (with respect to the hemisphere from which the unit was recorded) are shown. The median reward timing index of 0.11 implies that for a median wait time of one second (close to the asymptotic wait time of animals), the median neural report of time is 1.2 seconds. This is consistent with prior observations (Chubykin et al., 2013; Shuler & Bear, 2006). C. All 122 action units (showing trial-by-trial correlations with action) from trained animals were manually classified (see 2.7.5) as either intervalkeepers or decoders or both. The latency of neural response of time and the proportions are shown for each category. The distribution of latency of neural response of time is similar for the different categories. D. Histology showing an electrode track in V1. The targeted location for implantation of electrodes was 1.5 mm anterior and 4.2 mm lateral from lambda, at a depth of 1.0 mm.
Figure 5 Trial-by-trial correlations reflect timing and not the first lick itself:

A & B. Example units from Figure 3I,J showing that trial-by-trial correlations with first licks are absent when they are not timed from the visual stimulus (see text).
Figure 6 Analysis related to Figure 5

The analysis method is shown for the example single unit shown in Figure 3J. A. The latency at which the maximum change in firing rate for this unit (see 2.7.5 and Figure 14D) happened in visually-timed trials was 50 ms after the first lick. The quantification of this firing rate change was done by analyzing the spike count difference in a 100 ms bin before (red) and after (blue) the first lick. B. The corresponding spike count histogram, i.e. histogram of number of spikes within the bin, is shown. C. The
bootstrapped sampling distribution of AuROC of spike counts in these two bins. **D & E.**

The corresponding firing properties are shown for non-visually-timed trials. **F.** The sampling distribution for the difference in AuROC between visually-timed and non-visually-timed trials. **G & H.** The corresponding firing properties for false first licks (see 2.7.5). **I.** The sampling distribution of difference in AuROC between visually-timed and false first licks.
A. 122 out of 363 units recorded from 5 trained animals show trial-by-trial correlations with action and are labeled as “action units” (see 2.7.5). B. Of these, 31% can be definitively classified as action timing and 6% as action feedback (see text). The others are likely action timing units but cannot be definitively classified due to the low number of non-visually timed licks performed by trained animals (see text). C. Histogram showing the earliest moment at which units contain information about the action. D. 29 out of 77 action timing/feedback units show a significant difference in the action response for both eyes (orange) (see text). E. Only 2% units show significant correlations with action early in training, reflecting the false positive rate of my statistical test.
Figure 8 *Data related to Figure 7*

A. An example feedback unit with no significant difference between visually-timed and non-visually-timed licks (top and middle panel) that also shows a significant trial-by-trial correlation with the first lick on non-visually-timed licks (middle panel) is shown. This unit also shows a significant trial-by-trial correlation with false first licks (bottom panel).

B. An example of an eye-specific action timing/feedback unit from the population data shown in Figure 7D. Even though this unit shows no obvious trial-by-trial correlation with the first lick in non-visually-timed right eye trials and hence shows a clear difference between visually-timed and non-visually-timed trials, this difference was not statistically significant due to only 5 trials being available for analysis in the non-visually-timed trials. The unit does show a significant difference (p<0.001) between visually-timed and false first licks. However, I required that both the visually-timed to non-visually-timed comparison *and* the visually-timed to false first lick comparison show significant differences. Hence, this unit was classified as an action timing/feedback unit, even though it is unlikely to be a simple reflection of the first lick (due to eye-specificity and significant differences in visually-timed and false first licks).

C-I. All seven single units out of 353 that were recorded early in training showing trial-by-trial correlations with the first lick as determined by my analysis are shown. The false positive rate of my two-leveled (each level’s false positive rate = 5%) nested analysis is lower than at least 5%. Hence, the observed rate of trial-by-trial correlations of 7/353*100 = 2% likely reflects false positives.
I quantified the correlation between neural response and action by testing whether a neuron modulated its firing rate at fixed latencies with respect to the action (see 2.7.5). To further test whether such an observed firing rate change truly results from timing the action and not, alternatively, reflecting merely the past presence of the corresponding visual stimulus (i.e. reward timing), I did a shuffle analysis that maintained the average relationship between the stimulus and the action, but shuffled the trial-by-trial relationship to the visual stimulus (see 2.7.5). Of a total of 363 single units recorded from five trained animals, I found significant correlations with the action (in excess of visually-driven correlations) in 122. These strong trial-by-trial correlations observed in the above “action” units can arise from two possible scenarios: either the neural response instructs the action (“action timing”) or the action instructs the neural response (“action feedback”).

Firing rate modulations that drive the visually-cued timing of the action should be absent when the visual stimulus is not being used to time the action—as in non-visually-timed trials. Therefore, I tested the activity of these 122 action-correlated neurons in trials with non-visually-timed licks. Additionally, such activity should be absent when the stimulus is not presented prior to the animal initiating licking in the nosepoke. To address this possibility, on some trials (“NoStim”, see 2.7.2) I withheld the presentation of the visual stimulus, which, nevertheless, could result in licks, though not timed from a visual stimulus. Further, entries into the nosepoke during a mandatory intertrial interval sometimes resulted in licks (false entry licks) that also, then, were not timed from a visual stimulus (see 2.7.3). Such licks made in the absence of visual stimuli (NoStim licks and
false entry licks), are referred to as “false first licks”. These false first licks afford an additional opportunity to examine neural activity to first licks not timed from the visual stimulus. Note however, that the occurrence of all of these non-visually timed licks diminishes with increases in performance level.

Of the 122 “action” units, I found that 38 (labeled “action timing” units) showed a significant difference in activity between both visually-timed and non-visually-timed trials, as well as between visually-timed trials and false first licks (see Figure 5A,B for examples and Figure 6 for analysis). Hence, the activity of these units cannot be explained by the mere presence of the action. Seven units showed no significant differences between these trial types, but showed significant responses to either the false first licks or the non-visually-timed licks or both (see Figure 8A for an example). These units are labeled “action feedback” units as they contain information about the first lick, independent of whether or not it was timed from the visual stimulus. The remaining 77 units were classified as “action timing/feedback units” because they were from animals performing an insufficient number of false first licks or nosepoke timed trials to unambiguously classify as “action timing” or “action feedback” (see Figure 8B for an example). This is because as animals gain more and more experience, they perform fewer and fewer non-visually-timed or false first licks. Nonetheless, these units show significant trial-to-trial correlations with the action and are therefore likely to be predominantly “action timing” units, as 38 out of 45 (number of “action timing” + number of “action feedback”) with sufficient statistical power are “action timing” (Figure 8B shows such a likely “action timing” unit). Also, note that as with any analysis, the
classification of trials into visually-timed and non-visually-timed may contain false positives/negatives. Yet, the presence of such errors would but reduce my ability to distinguish neural activity between these trial types.

Hence, consistent with the hypothesis that neural activity drives behavior when animals time their action from cue, I find that a significant portion of units show a difference between visually-timed trials and non-visually-timed trials. Additionally, if the action did in fact result from the firing pattern of these neurons, their activity should contain information about the action prior to its occurrence. In line with this prediction, I found that the earliest latency at which “action timing” units carried information about the action (“neural report of time”; see 2.7.5) was prior to the action (median= -50ms, p=0.0013, one-tailed, W32=104.5, z= -3.01, Wilcoxon signed-rank test). Further, the action feedback units showed a median neural report of time significantly later than the median report of the timing units (median= 50ms, p=0.005, one-tailed, U=242, z=2.55, Mann-Whitney U-test) (Figure 7C).

To further examine the 77 units that defied classification as action timing or action feedback (due to the low number of false first licks and non-visually-timed trials performed by highly trained animals), I reasoned as follows: should these units simply reflect the action, there should be no difference in their responses to the action following stimulation of either eye. Contrary to this, I found that 29 out of these 77 showed significant differences (see 2.7.5) at the time of the action (Figure 7D), according to which eye was stimulated in that trial. This is inconsistent with them merely reporting the presence of the action (see Figure 8 for an example).
Further, I found that out of 351 single units recorded from three naïve animals early in training (2.7.5), only seven showed significant action correlations (Figure 7E), approximating the expected false positive rate of the test (see Figure 8C-I to see all of these responses). This observation indicates that trial-by-trial correlation exists in V1 only after animals learn to time their licking behavior, again confirming that the response is not simply driven by the action of licking.

2.4 Results: Optogenetic perturbation consistently shifts timing

If visual stimuli evoke responses in V1 that not only convey the presence of the stimulus, but also instruct the timing of the action, a manipulation of neural activity in the interceding interval between the stimulus and the action should lead to a consistent shift in the timed behavior. In order to test this hypothesis, I measured the behavioral effect of a brief optogenetic perturbation of ongoing activity in V1 during the wait time (see 2.7.6 and Figure 9A). This perturbation (lasting 200ms) was applied 300 ms after the visual stimulus offset so as to minimize interference with the ability of animals to sense the stimulus (Figure 9A-C). I confirmed that the optogenetic perturbation was able to affect the firing properties of the network using single unit recordings in one animal (Figure 10). Should the optogenetic perturbation affect the timing of the action as hypothesized, the entire distribution of wait times must shift, as experimentally observed (Figure 9B). In order to quantify whether the entire CDF of wait times showed a shift, I measured the
shift as the “normalized absolute median percentile shift” (defined in 2.7.6; also see Figure 10B). As a population, I found that perturbations over a range of intensities significantly (see 2.7.6) shifted the wait time (Figure 9D) compared to fluctuations expected by chance (p<0.001, two-tailed, bootstrapping, n=18; see Figure 10 and 2.7.6). To test whether this shift resulted from non-specific effects of the laser, I performed the same experiment in saline-injected animals and found no significant effect (p>0.1, two-tailed, bootstrapping, n=19). Additionally, the effect in virally-infected (mean = 0.111) animals was significantly higher than in saline-injected animals (mean = 0.061, p=0.0036, two-tailed, t_{35}=3.22, Welch’s t-test). It could potentially be argued that the shift in timing observed due to the optogenetic perturbation is a result of the animal treating the laser as a second visual stimulus, or of the animal becoming “confused” by the perturbation. To examine the hypothesis that animals might treat the laser as a visual stimulus, I assessed the probability of licking in “NoStim” trials in the presence and absence of laser for individual animals (at maximum intensity). I found no significant increase in licking induced by the laser in any animal (p>0.05 with Holm-Bonferroni correction for multiple comparisons, n=30 trials in each animal, one-tailed bootstrapping). Further, if animals treated the laser as a second visual stimulus, there is no reason why it would speed up their timing as shown in Figure 9B. This is also inconsistent with animals resetting their timing upon receiving the optogenetic perturbation. To address whether the animals become “confused”, I measured the variability in timing behavior under perturbation. I found (Figure 12I) that the optogenetic perturbation in experimental animals did not affect the coefficient of variation of wait times (p=0.85, two-tailed Wilcoxon signed-rank test, W_{18}=81, z = -
0.1960). This implies that the animals are still timing their licks (albeit shifted) as their actions remain consistent with scalar timing (Buhusi & Meck, 2005; Buonomano, 2007; Matell & Meck, 2004; Merchant et al., 2013), and, that the observed shift does not merely result from a non-specific disruption of behavior. In the next section, I show that a model of a local recurrent network within V1 is sufficient to explain the results of my optogenetic experiment. Taken together, these results indicate that optogenetically perturbing V1 activity in the interceding wait time between the visual stimulus and the action causally affects the timing of visually-cued actions.
Figure 9 Optogenetic perturbations of V1 cause a significant shift in wait times

A. Schematic of a trial containing the laser presentation. B & C. Example wait time distributions on laser and no-laser trials from an animal infected with ChR2 (B) and another infected with saline (C). D. The quantified shift in wait time, the normalized absolute median percentile shift (this is not the ratio of shift to the median wait time, see 2.7.6 for definition), for the experimental population shows significant differences from both control and chance levels (null). Error bars denote s.e.m. E. Histology showing expression of ChR2 and the placement of optical fiber (cyan). Grey bar indicates the placement of electrodes in one animal used to verify the neural perturbation.
A-C. Quantification of shift in wait times induced by the presentation of laser (see 2.7.6). A is reproduced from Figure 9B. My aim was to quantify the consistent shift observed throughout the CDF, across different percentiles. To this end, I measured the shift
between the two distributions at each percentile and quantified the median percentile
shift, as shown in B. C. The null distribution of the normalized median percentile shift
(normalized by the interquartile range of the wait time distribution in no-laser trials) was
obtained using bootstrapping by resampling with replacement from the wait time
distribution of no-laser trials. The p value of the observed median percentile shift for this
session was calculated using a two-tailed measure (p<0.001). D-K. Single unit
recordings from one animal performed to confirm perturbations of neural activity indeed
showed that the laser (blue bar) affected neural activity across all intensities used.
2.5 Results: Spiking neuronal model & Reward responses

Based on these data, one can infer that V1 is involved in engendering action timing. But what is the mechanism that gives rise to visually-cued action timing? Previous experimental work has shown that the average delay between predictive cues and reward (i.e. reward timing) can be locally generated within V1 (Chubykin et al., 2013). Further, a computational model has been proposed for how such visually-cued temporal intervals may be learned and expressed (Gavornik & Shouval, 2011; Gavornik et al., 2009).

Therefore, I and our collaborators (Marco Huertas and Harel Z Shouval) postulated that action timing may arise from reward timing activity. To explore this possibility, we examined whether the same local recurrent connections in V1 that give rise to reward timing activity can also generate action timing. We reasoned that since a population of neurons can report an average temporal interval (reward timing), a subpopulation could be used to instruct the timing of an action, thereby expressing both reward and action timing activity in V1. If so, would individual neurons in this subpopulation show trial-by-trial correlations with the action despite the fact that only their aggregate activity instructs the action? To address these questions, we modified our previous model of visually-cued reward timing in V1 (Gavornik et al., 2009) (Figure 11A), so generating both action and reward timing responses (see 2.7.7 for details). Individual neurons of the subpopulation that reports the expiry of the interval and drives the action showed responses remarkably similar to the experimental data, exhibiting significant trial-by-trial correlations with the action (p<0.01, n=60 trials, bootstrapping) (Figure 11B). The remaining neurons
reflected only the average time between stimulus and reward, and not the individual actions (Figure 12). Therefore, action timing can be derived from reward timing activity.
Figure 11 *Spiking neuronal model*

A. Schematic of the model showing the network architecture (“a” is the subpopulation driving the action; see 2.7.7). **B.** Raster plot showing significant trial-by-trial correlations with action, of example intervalkeeper (E population; p<0.001) and decoder (P population; p=0.010) units. Each trial began 500 ms prior to visual stimulation. **C.** The effect of the introduction of a “laser” perturbation in the model is shown using a CDF plot and is quantified using its normalized median percentile shift (see 2.7.7). The resultant significant shift in wait times (p=0.039, bootstrapping) is similar to the population data shown in Figure 9D. Error bar is the s.e.m, as obtained using bootstrapping. This result holds for a range of parameters in the model (Figure 12H).
Figure 12 Analysis related to Figure 11
A-C. The activity of each unit in the P population of the spiking neuronal network model (as shown in Figure 11A) is shown for three different trials, showing action generation (purple line) following visual stimulation (green bar) (see 2.7.7). The neurons controlling the action are shown in purple. D-F. The summed population activity is shown for both the action generating subpopulation (purple) and all others (black). The action is generated at the peak of this summed activity, but even individual units show trial-by-trial correlations with the action (as shown in Figure 11B). Importantly, the population activity of the other neurons does not correlate with the action time, but reflects the median reward time. G. The activity of single units that do not control the action does not show trial-by-trial correlations with the action. Instead, these neurons represent the median reward time. Neuron 156 is shown in upper panel and neuron 146 in the lower. H. The range of normalized median percentile shifts observed for the model is similar to the experimentally observed shifts across different parameters. For the experiments, the shifts from all 18 sessions are shown. For the model, the fraction of excitatory and inhibitory neurons activated by the laser in ascending order of observed shifts are: (10%, 20%), (5%, 10%), (8%, 10%), (9%, 20%), (10%, 10%), (6%, 10%) and (4%, 10%). I. Individual sessions in both the experiment and the model show non-significant differences in coefficient of variation due to the optogenetic perturbation (p>0.05 with Holm-Bonferroni correction for multiple comparisons, two-tailed bootstrapping). The population of shifts in CV is also not significantly different from zero for either the experimental data (p=0.85, two-tailed Wilcoxon signed-rank test, W_{18}=81, z = -0.1960) or the model (p=0.19, two-tailed Wilcoxon signed-rank test, W_{7}=3).
To test whether the above model (producing timed actions based on local recurrent connections within a network) also explains the results of my optogenetic experiment, we introduced a perturbation in the network mimicking the optogenetic perturbation (see 2.7.7). In order to assess whether the experimental observations can be sufficiently explained by our model, we tested the following four questions: 1) does the perturbation produce a shift in the distribution of wait times, 2) if so, is this a consistent shift in the distribution, 3) is the magnitude of shift comparable to the experimental data, and, 4) does the shifted distribution still abide by scalar timing? The answer to each question was in the affirmative, as experimentally observed (Figure 11C and Figure 12). This confirms that the experimentally observed shift in behavior is as expected if V1, as proposed in our model, is instructing the timing of the action.

In order for the model to learn to predict and drive the timing of future actions, it would need to receive a feedback signal that reflects the magnitude of reward received (Gavornik et al., 2009) (see 2.7.7). Such primary reward responses have been reported in auditory cortex (Brosch et al., 2011; FitzGerald, Friston, & Dolan, 2013) and somatosensory cortex (Pleger et al., 2009; Pleger, Blankenburg, Ruff, Driver, & Dolan, 2008), but have not hitherto been reported within V1 (Weil et al., 2010). Because of the unique design of my task in which different wait times lead to differing magnitudes of reward, we were able to test whether the magnitude of received reward is conveyed by the firing pattern of neurons in V1. I found that 23 units (Figure 13) showed significant differences between rewarded and unrewarded trials in addition to showing a significant correlation with the amount of reward received (see Figure 14 for analysis). This
confirms that primary reward information reaches V1, potentially permitting the relationship between actions and rewards to be learned locally.
Figure 13 *Reward magnitude response observed in V1*

A. Example unit showing a response indicating the receipt of reward of a given magnitude (larger the wait time, larger the reward obtained). Blue curve shows smoothed spike counts (during 200-300ms following first lick and reward; shown by the blue bar) for individual trials. **B.** 23/363 units show reward magnitude coding.
Figure 14 Analysis related to Figure 13 (A-C) and to Figure 3-Figure 7(D)
A-C. Analysis for testing reward magnitude information in V1 for the example unit shown in Figure 13A. A. The probability histogram of spike counts (normalized for number of trials) shows a higher firing rate in rewarded trials. B. This difference is quantified as an AuROC and tested for significance by generating a sampling distribution using bootstrapping (see 2.7.5). C. If the above comparison shows a significant difference (p<0.05) between rewarded and unrewarded trials, I tested whether the spike counts actually reflect the magnitude of reward obtained. The grey line shows the unsmoothed spike counts on a trial with a given obtained reward magnitude; the cyan line is the best fit linear correlation. The unit is deemed as representing reward magnitude information only if both of these tests are significant, and if the difference in spike counts between rewarded and unrewarded trials does not result from the difference in lick density (see 2.7.5). D. Flow chart showing the analysis of neural data for timing (see 2.7.5). The latencies with maximum and minimum signed firing rate change are detected. An ROC analysis detects whether a linear classified can assert the firing rates as changing at that latency. If the firing rate change is significant, it is tested to see whether it can be explained by reward timing, i.e. firing profile representing an average interval from the visual stimulus. If it cannot be explained by reward timing, the activity is analyzed on non-visually-timed trials and false first licks. If the neuron’s activity cannot be explained by the mere presence of an action, it is classified as action timing and if it can be explained by the action alone, it is classified as action feedback.
2.6 Discussion

The production of the stereotyped timing behavior observed in my visually-cued timing task requires that the brain sense the presence of a visual stimulus, generate the stereotyped waiting interval, and then produce the lick. The traditional view of primary sensory cortices would assume that V1 has a role only in sensing the stimulus. However, I show that the cue evoked responses in V1 evolve from those that merely reflect the presence of a stimulus to those consistent with driving the timing of delayed voluntary actions. By parsing the effect of the timed interval from the action indicating the lapse of that interval, I show that neurons in V1 correlate with the action only when it is visually-timed, ruling out the alternative that the correlation is merely due to the presence of the action. This is the first time that a neural signal generating a timed action by a persistent modulation of firing during the wait interval until action has been observed anywhere in the cortex (Buhusi & Meck, 2005; Buonomano & Laje, 2010; Johnson, Goel, & Buonomano, 2010; Leon & Shadlen, 2003; Matell & Meck, 2000; Merchant et al., 2013). Prior reports of timing typically show peak responding (Shuler & Bear, 2006), ramps in activity (Buhusi & Meck, 2005; Leon & Shadlen, 2003), oscillations (Buhusi & Meck, 2005; Matell & Meck, 2004; Merchant et al., 2013) or network representations (Buonomano & Laje, 2010; Johnson et al., 2010). Perturbing activity in V1 during the interceding interval indicates that V1 neurons contribute to instructing the decision of when to lick. Note, however, that I do not claim that the timing of visually-cued actions in this task is exclusively controlled by V1, or that other regions do not play a role. It is
possible that V1 might only be one of many regions that simultaneously control the action of the timed lick in this task. In such a network of multiple controllers, assessing whether V1 has any contribution to the instruction of timing requires perturbing its activity. My optogenetic experiment was thus designed only to perturb the activity, rather than silence it, since intact timing behavior under silencing may simply mean that other regions also instruct timing or compensate for the absence of activity in V1. Perturbing (rather than silencing) activity in V1 to show a shift in timing behavior, however, directly addresses whether V1 itself has any role in the timing of the actions. Nevertheless, our spiking neuronal model confirms that such control of timed actions can be performed locally within V1 by a recurrent network of neurons. In our model, a recurrent network of neurons was sufficient to produce timed actions, neural responses showing correlation with the timed action, and, shifts in timing due to brief perturbations of network activity.

Interestingly, due to the unique design of my task with a continuous gradient of reward depending on the time waited by animals, I also found primary reward responses in V1, confirming that it does indeed receive feedback regarding the outcome of recent actions. My data demonstrate that “higher order” decisions such as when to perform an action can be instructed even by primary sensory areas.

My work raises the question of why a primary sensory area might be involved in the instruction of timed actions. Since successful execution of this behavioral task merely requires the sensation of a visual stimulus and the generation of a temporal interval prior to motor production, an area that has the ability to sense visual stimuli and produce temporal intervals would be capable of solving the task. Because of the metabolic cost
incurred from using more neurons than strictly necessary to optimally perform a task, I posit that it may be sufficient for a primary sensory area to control highly stereotyped actions so as to efficiently balance the trade-off between redundancy of processing, metabolic demands, and reward maximization (Bullmore & Sporns, 2012; Namboodiri, Mihalas, Marton, & Hussain Shuler, 2014).

2.7 Experimental Procedures

2.7.1 Subjects
Animal subjects were wild-type adult male Long-Evans rats with weights between 300-400g and age between P60-100. All experimental procedures were approved by the Institutional Animal Care and Use Committee. The animals were singly-housed in a vivarium with a 12 hour light/dark cycle and the experiments were conducted during the day (light cycle).

2.7.2 Behavioral Task
Prior to behavioral training, goggle posts were mounted using dental cement on the skull of animals under sterile surgical conditions. Following a recovery period of 7-10 days, animals were water deprived but given ad-lib access to food. Animals began behavioral training after two days of water deprivation. During this period, they obtained water only
within the behavioral task in addition to brief scheduled access periods every day and a
night of free access every week.

The behavioral task was a visually-cued timing task, performed in a standard operant
chamber (Med Associates) containing a port (nosepoke) that housed a lick tube. A
behavioral session consisted of 360 trials. A nosepoke entry was required to initiate a
trial. After the nosepoke, a random delay of 0.6-1.6s expired during which the animal is
allowed to lick. At the expiry of this random delay, if the animal had not licked in the
previous 0.2-1.2s (randomly set on each nosepoke entry), the visual stimulus was
presented to either the left or the right eye (Figure 1A). If instead the animal had licked,
0.2-1.2s had to elapse without a lick for the visual stimulus to be presented. The visual
stimulus was a full field green LED-powered flash of 100ms presented using detachable
head-mounted goggles covering each eye. Entries into the nosepoke and licks were
registered using two IR emitter-receiver pairs (Med Associates). If, without having exited
the nosepoke, the rat subsequently licked following the offset of the visual stimulus, it
immediately received a water reward with a probability of 5/6. Rewarded and
unrewarded trials were randomly interleaved such that no more than 4 unrewarded trials
could be presented in a row. The reward volume was chosen depending on the wait time
as shown in Figure 1B. The reward delivery system used a solenoid (custom modified to
eliminate any operational noise) which was controlled by a microcontroller generating
sub-millisecond precision for open times. A trial ended when the rat exited the nosepoke.
An obligatory intertrial interval (ITI) of 500ms was enforced after every trial such that
the animal had to wait outside the nosepoke until its expiry. Entries into the nosepoke
within the ITI did not result in a visual stimulus presentation and caused a reset of the ITI. After every 12 trials, animals were presented with a “NoStim” trial (total of 30, in addition to 360 visual stimulus presentations). In this trial type, the animal had to wait in the nosepoke as it would on a visual stimulus trial but instead of a light flash, no stimulus was presented. These NoStim trials were included so as to determine whether licking behavior was driven by and timed from the visual stimulus, as well as to assess neural activity on trials in which a lick was registered following this NoStim event. As mentioned in the text, licks after a NoStim or false entry to the nosepoke (during the mandatory ITI) were combined to form the “false first licks” as shown in Figure 5A,B and Figure 6 and Figure 8. Early in training, the following behavioral shaping was used.

On the first day of training, the animals were given a free reward on every trial 500 ms after the corresponding nosepoke entry. If the animals did not stay in the nosepoke until visual stimulus presentation, no further free reward was delivered on the next nosepoke entry. The lick-free pause (shown in Figure 1A) required to deliver a visual stimulus was set between 200-400 ms. Free rewards were then subsequently delivered only on the first 200, 100 and 20 trials respectively in the next 3 sessions. On the 4th session, the lick-free pause requirement was increased to 200-600 ms, followed consecutively by 200-800 ms, 200-1000 ms and finally, 200-1200 ms, as they progressed in training. This resulted in the animals licking prior to visual stimulus presentation only on a very small fraction of trials (<10%) by the final stage. In some cases, to speed the rate at which the animals increased their wait time, the ramp duration (wait time at which maximum reward was
obtained) was increased to 2 seconds. Once the median wait time increased beyond 1s, the ramp duration was held at 1.5 seconds.

2.7.3 Behavioral analysis

All analysis in this chapter was performed by custom-written scripts in MATLAB (The Mathworks). I did not do a power analysis for the sample sizes used as there are no reasonable estimations for the expected distributions of the various statistics measured for this study, as the phenomenology is novel.

When parsing non-visually-timed and visually-timed trials, any trial with a wait time less than 300 ms and a wait time greater than 3000 ms was also grouped into the category of non-visually-timed trials (I do not necessarily know if these were timed from the nosepoke, but it is unlikely that they were timed from the visual stimulus, and since I was only interested in testing visually-timed trials against non-visually timed trials, these were included along with the non-visually-timed trials). Subsequently, the effect of removing individual trials on the R^2 of the correlation between the delay from nosepoke entry to visual stimulus presentation and the wait time was measured (whenever the original correlation was significant). If removal of a given trial produced a reduction in correlation that was 1.5 times the interquartile range from the median change in correlation, it was deemed to be a non-visually-timed trial (Figure 2).

For behavioral sessions early in training, there were some additional constraints placed on the analysis. If the coefficient of variation of the wait time distribution was greater
than 0.6 (very low precision), it was deemed that the animal had not yet learned to time its licks from the visual stimulus. This happened only early in training and neural recordings were obtained from such sessions only in the three animals shown in Figure 7. Nevertheless, the neural analysis as discussed below was carried out to test for trial-by-trial correlations with the action, even though, at this early stage, I could not test whether visually-timed and non-visually-timed trials showed different neural responses.

2.7.4 Neural recordings

Once the animals were deemed behaviorally-trained (at least three consecutive sessions with median wait times greater than one second), custom-built 16-channel electrode arrays were implanted bilaterally in V1 (targeted stereotaxic coordinates of 1.5mm anterior and 4.2 mm lateral to lambda at a depth of 1mm) following sterile surgical procedures.

The electrode implant surgeries were performed once the animals learned the task (at least three consecutive sessions with median wait times greater than a second), except for three animals for which data was acquired early in training (Figure 7E). During the surgery, animals were anesthetized using isoflurane, had scalps shaved, were given dexamethasone (.2mg/mL), and were placed into a stereotaxic apparatus atop a heating pad. After swabbing the area to be incised with betadine and ethanol, a subcutaneous injection of lidocaine (0.1mL) was administered. An incision was made and connective
tissue was retracted to expose the skull. The surface of the skull was dried by applying 3% hydrogen peroxide, following which six screws were uniformly placed across the exposed skull. Bilateral craniotomies and durotomies were then made overlying the primary visual cortex to implant custom-made movable 16-channel electrode arrays. Following the insertion of electrodes, the ground wires were wrapped around the screws, and a petrochemical gel was applied on the exposed surface of the brain. The entire skull was then covered with dental cement. The animal was given a subcutaneous drug cocktail containing an antibiotic (gentamicin, 1mg/mL) and an NSAID (flunixin, 4mg/mL).

The same parameters were used for recovery and subsequent water deprivation prior to recordings during behavior. Experiments were continued only in the animals (n=5) that produced usable neural recordings. No blinding or randomization of subjects was performed as these experiments used a within-subject design.

The electrode arrays were moved down by a distance of approximately 15-60 µm on a day, if necessary, so as to increase the yield of single unit recordings. Signal from each electrode array was sent to headstage amplifiers, and, bandpass filtered (1-10 kHz) neural signals were sampled at 33 kHz by commercially available hardware (Neuralynx). Commercially available software packages were used to manually sort the waveforms into single units (Offline Sorter, Plexon) and to visualize the timestamps (Neuroexplorer, Nex Technologies) of these sorted units. The manual sorting was done by tracing the boundaries of the clusters in a 3D space formed by three of the following variables: principal components 1 and 2, valley timing, non-linear energy and peak minus valley amplitude. Units with unstable waveforms or greater than 3% refractory period (1.5 ms)
violations were excluded, along with multi-unit recordings. A unit was deemed as different from any previous recording if one of the following criteria were met: 1) no unit was observed from the same channel on the previous session; units recorded from the same channel on the previous day showed 2) different waveforms, or 3) different visually-evoked response; or, 4) the electrode array was moved more than 60 μm between the two sessions. If none were met, then the unit was deemed as a repeat. In this case, only the first instance was counted.

For obtaining histological confirmation of electrode locations, animals were deeply anesthetized with pentobarbital and transcardially perfused with 1x PBS followed by 4% PFA. Brains were then harvested and stored in 4% PFA until being transferred to a solution of 30% sucrose in PBS until time of sectioning. Brains were sectioned into 60μm slices and mounted on gelatin-coated slides (FisherBrand). Slices were then imaged using an inverted microscope (Zeiss Instruments). Electrode tracks were verified to be found in V1 (see Figure 4D).

2.7.5 Analysis of neural response
To test whether there were any trial-by-trial correlations between the activity of a single unit and the first lick, I tested whether there was a significant change in firing rate locked to the first lick in visually-timed trials, separately for left-eye-stimulated and right-eye-stimulated trials. To this end, I checked whether a linear classifier could decode the firing rate change between a 100 ms bin before and after a given latency from the first lick. The latencies tested were -300 ms, -250 ms, -200 ms,…, 100 ms, and, 150 ms. I restricted the
decoder analysis to only the two latencies that led to the maximum and minimum signed change in firing rate. Since I was testing only these two bins for significance, I corrected for multiple comparisons using Bonferroni correction. Trials with less than 1 Hz of firing in a window starting from 200 ms prior to the visual stimulus to 200 ms after the first lick were excluded.

Once the latencies with maximum and minimum firing rate changes were identified, units that fired less than 1 Hz in both of these bins were excluded from further analysis. Further, only trials in which the visual stimulus turned off at least 100 ms prior to each latency were included in the analysis for that latency. To test whether an ideal observer can measure the change in firing rate at a given latency, I quantified the area under an ROC curve (AuROC) formed by the spike count distributions for the 100 ms bins flanking the latency. Another possible method was to test whether the peri-stimulus time histogram showed a significant increase in firing rate locked to the first lick. In order to test significance, most standard methods assume Poisson statistics of firing. However, the units recorded in my task often violated this assumption (data not shown). Further, I was interested in quantifying whether a downstream decoding area could tell the difference in firing rate so as to instruct the action. For this purpose, a linear decoding strategy such as that assumed in ROC analysis was deemed more appropriate. Additionally, I was also interested in testing whether the change in firing rate was consistently present across trials. This was implicitly tested by my resampling method (explained below) in which I resampled individual trials, as opposed to individual spike counts.
Next, I asked two questions to ascertain whether there is a firing rate change locked to the action of the first lick (Figure 14D). First, I asked whether there was a statistically significant change in firing rate from that expected by chance. Second, I asked whether this change could be completely explained by visually-evoked activity. The latter was required to rule out changes locked to the action that did not truly result in or from the action. The significance testing for AuROC was done by estimating the sampling distribution using bootstrapping (Figure 14D). This was done by sampling with replacement 18000 (= number of latencies tested×2000; so p=0 implies p<0.001 after Bonferroni correction) times from the available pool of trials, i.e. individual trials were resampled, including both the earlier and later bin. The p value was tested by reading off the percentile at which chance level of 0.5 for the AuROC lay, using a two-tailed test (Obuchowski & Lieber, 1998). If this p value was found to be less than 0.05, it means that there was a significant change in firing rate at the corresponding latency. Further action-timing analysis was performed only if this was true. The next step, as mentioned above, was to test whether the observed change in firing rate could be explained by visually-evoked activity. This was done by generating fake first lick events (not to be confused with false first licks) for each trial, by randomly permuting the wait times. This ensured that the mean interval between the visual stimulus and the fake first lick is preserved, but the relationship to individual trials, being shuffled, was randomized. If such shuffling did not affect the AuROC at the corresponding latency with respect to the new fake first licks, then the change in firing rate was judged to have resulted from visually-evoked activity, and not timing of, or execution of, the action. Such a procedure was repeated 18000 times to generate the sampling distribution of AuROCobserved.
AuROC\textsubscript{falsefirstlicks}. The p value was read off as the percentile at which chance level of zero lay. If this p value was also found to be less than 0.05, the neuron was deemed to show trial-by-trial correlations with the action (“action unit”).

The next step in the action timing analysis was to determine whether the trial-by-trial correlations between the neural activity and the action could be explained by the mere presence of the action, or whether it required the trial to actually be timed from the visual stimulus. To this end, I tested whether the change in firing rate observed at the given latency was present also on non-visually-timed trials and false first licks. This was done by conducting a two-sample version of the significance test mentioned above (Obuchowski & Lieber, 1998) to generate sampling distributions of AuROC\textsubscript{visually-timed}-AuROC\textsubscript{non-visually-timed} and AuROC\textsubscript{visually-timed}-AuROC\textsubscript{falsefirstlicks}, and determining the corresponding p values (labeled p\textsubscript{1} and p\textsubscript{2}). An example is shown in Figure 6. Further, to test whether there were any significant trial-by-trial correlations of the activity with non-visually-timed licks and false first licks, I repeated the same analysis that was performed on visually-timed trials, i.e. it was tested whether there was any significant change in firing rate at the given latency on non-visually-timed licks (labeled p\textsubscript{3}) and whether the observed firing rate change was explained by the visually-evoked activity (labeled p\textsubscript{4}). It was also tested to see whether there was a significant change in firing rate at the given latency with respect to the false first licks (labeled p\textsubscript{5}).

The animals from which the neural recordings early in training were obtained were implanted prior to any behavioral training and were also run on a reward profile that ramped to 1 second instead of 1.5 seconds. The lowest coefficient of variation of the wait
times from a session with at least one single unit recorded was 0.45 across these animals, showing that the recordings were all made in an early stage of learning. Early in training, the earliest latency tested for trial-by-trial correlations with the action depended on the wait time distribution (this was true also for neurons later in training, but the following procedure later in training always resulted in the earliest latency being -300 ms). This was done to avoid the short-latency visually-evoked activity from directly affecting action responses. If the 25th percentile of the wait time distribution was greater than 500 ms, the earliest latency tested was -300 ms from the action. Instead, if it fell between 400 and 500 ms, the earliest latency tested was -200 ms, and if it was between 300 and 400 ms, the earliest latency tested was -100 ms and if it was between 200 and 300 ms, the earliest latency tested was 0 ms. If the 25th percentile fell between 100 and 200 ms, the earliest latency tested was 100 ms with respect to the action and if it was less than 100 ms, the units from that session were not analyzed for action timing.

The neural report of time for a unit was defined as the earliest latency at which it contained any information about the action (in either left-eye or right-eye visually-timed trials). Based on the p values obtained for the five comparisons (p1-p5) mentioned above, the unit was subsequently classified as “action timing” or “action feedback”, or as “action timing/feedback” if this classification could not definitively be made (owing to low number of non-visually-timed and false first licks). Action timing units were those that showed both p1 and p2 lower than 0.05, i.e. visually-timed licks were different from both non-visually-timed and false first licks. Action feedback units were those that were not action timing, but rather showed a significant change in firing rate locked either to non-
visually-timed licks (p_3<0.05 and p_4<0.05) or false first licks (p_5<0.05). All remaining units were classified as “action timing/feedback”.

A significant (p<0.05) eye difference for the action timing response on action timing/feedback units (Figure 7D) was tested by checking whether the AuROC for the action response was different following the stimulation of both eyes. This difference (|AuROC_{left eye}–AuROC_{right eye}|) is labeled as “eye-specificity index” in Figure 7D.

To classify units as intervalkeepers or decoders, action units (showing trial-by-trial correlations with the action) were manually classified using the following criteria: if the unit showed a sustained response from visual stimulus to action, it was called an intervalkeeper. If instead, it only showed a peak modulation around the action, it was called a decoder. If it showed both, it was called an intervalkeeper and a decoder.

For the reward timing analysis shown in Figure 4B, the following analysis was performed. In order to test whether the firing rate showed any long-latency modulations, I compared long-latency responses evoked by the stimulation of either eye to the baseline firing rate observed just prior to the stimulus presentation. A window of 100 ms was used to obtain the baseline spike counts. The activity in the first 300 ms following visual stimulus onset was considered as a transient response, and hence, was not analyzed. I used a sliding window of 100 ms, sliding by 50 ms, up to a maximum of 2 seconds, to test for significant modulations of firing with respect to baseline, using an ROC analysis (quantified by AuROC). Significance testing was done using bootstrapping, similar to the action timing analysis. The longest streak of consecutive significant modulation was identified, and if this streak lasted less than 300 ms, the unit was deemed as a non-reward
timing unit. Instead, if the unit showed significant modulation in more than 6 consecutive bins (spanning 300 ms), the unit was deemed as a reward timing unit. In order to determine the neural report of time, the firing profile was first classified as a sustained excited, sustained inhibited or a peak excited or peak inhibited profile. If the longest streak of modulation did not begin for at least 500 ms after the visual stimulus offset, the response was classified as a peak; otherwise, it was classified as a sustained response. The sign of the modulation determined whether it was excited or inhibited. For sustained responses, the neural report of time was defined as the last bin that showed significant modulation compared to the baseline, whereas for peaks, it was defined as the bin showing maximum modulation. The reward timing index for a unit was defined as the ratio of the difference between the neural response of time and the median wait time to the sum of these two quantities. For instance, if the neural report of time was 1.22 seconds for a session with median wait time equaling one second, the reward timing index will be ~0.1. This is the median reward timing observed for the population, as shown in Figure 4B.

For analyzing primary reward responses in V1 as shown in Figure 13, the following analysis was performed. Reward responses were quantified by testing the spike count distribution of one of three possible bins, all starting 200 ms after the action (reward onset) and ending at one of 300, 400 or 500 ms. All p values were corrected for multiple comparisons using Bonferroni correction. For each bin, the spike count distribution on rewarded trials was tested against that on unrewarded trials using AuROC. If this was found to be significant, the response was subsequently tested to determine if there was a
significant correlation between the spike counts on a trial and the reward obtained. The neuron was deemed to convey reward magnitude information only if both the above tests were significant. Further, I also tested whether the observed difference between rewarded and unrewarded trials resulted from a difference in licking behavior for these trial types in the corresponding bins. To this end, I quantified the lick count and spike count on each trial and tested whether the change in spike counts between rewarded and unrewarded trials was linearly correlated with the corresponding change in lick counts. This was done using bootstrapping by resampling with replacement from the available trials and generating a sampling distribution of the slope in linear correlation. If the sampling distribution was significantly different from zero, it was deemed that the difference in neural activity between rewarded and unrewarded trials resulted from the difference in lick rates on the corresponding trials. No unit tested showed such a relationship (p>0.5).

2.7.6 Optogenetics

Animals were injected with either the virus containing the channelrhodopsin (ChR2) construct (UPenn Vector Core: AAV9.CAG.ChR2-Venus.W.SV40 (Petreanu, Mao, Sternson, & Svoboda, 2009)) or saline randomly, using sterile surgical procedures as described below. The investigator was not blind to the identity of each animal; however all analyses were fully automated.

Three craniotomies were made overlying primary visual cortex (V1; 1-2mm anterior, 4-4.5mm lateral from Lambda) in order to allow for cortical infections at two depths (0.9-1.0mm and 0.5mm ventral from dura). A nanoliter injector (Drummond Scientific) was
backfilled with mineral oil as well as either the virus containing the channelrhodopsin (ChR2) construct (UPenn Vector Core: AAV9.CAG.ChR2-Venus.W.SV40) or saline. The injector was then lowered into the most ventral depth and KwikCast (World Precision Instruments) was applied to the surrounding area and allowed to cure before infusing. The pump introduced 32.2nL of infusant every 10s over 2.5 minutes for a total volume of 483nL after which the tip was kept in place for 5 minutes to ensure that all infusant diffused away from the tip. The injector was then raised to the more dorsal infection site and another injection was similarly carried out. This process was repeated for each craniotomy for a total of 12 infections delivering roughly 5.8µL of infusant throughout cortex. Following infusions, Kwikcast was placed atop each hemisphere’s three craniotomies, and, after curing, the skin was sutured together.

After at least a month, animals underwent a second surgery in which optical fibers were placed at the surface of the brain bilaterally (1.5mm anterior and 4.2mm lateral to lambda) along with goggle posts. In one experimental animal infected with ChR2, custom-built bundles of sixteen electrodes were also implanted bilaterally at a depth of 1.0mm at the above mentioned coordinates, so as to verify that the optogenetic perturbation indeed affected neural activity (Figure 10D-K).

For obtaining immunohistochemistry to confirm ChR2 infection, animals were perfused and brains sectioned as described above. After sectioning, using a mini-orbital shaker, slices were washed in 1x PBS for ten minutes three times before being blocked in 10%NDS/0.5%triton-X/PBS solution for one hour. Slices were then incubated with a primary anti-GFP antibody (ab290, abcam) overnight at 4C. After three 10m 1xPBS
washes, slices were incubated with the secondary donkey anti-rabbit 488 antibody (Alexa Fluor) to verify protein expression (see Figure 9D).

Prior to optogenetic testing, the dental cement headcap of each animal was painted black using nail polish so as to prevent the leakage of laser light. The laser was a 473nm blue light (Cobolt, Blues 473nm DPSS laser).

For this experiment, the ramping profile of the reward was offset by 500ms (no reward for wait times less than 500ms; done to ensure that the bulk of first-licks fell after the laser offset), reaching the same maximum reward volume at 1500ms. There was a 50% probability that a given trial would result in a laser presentation lasting 200ms (300ms after visual stimulus offset). The laser and no-laser trials were computer-generated and randomly interleaved throughout a session of 360 trials. Laser was also presented on 50% of the NoStim trials to test whether the laser was treated as a visual stimulus, thereby triggering licking behavior. In each of the experimental animals (n=3), two sessions each were run at laser intensities of 0.21, 0.69 and 1.67 mW/mm² (measured at the tip of the optical fiber that is placed on the surface of the brain), thereby producing 18 data points. In one of the saline control animals (n=4), only the highest intensity was used since one implanted optical fiber failed prior to testing the lower intensities, and in another, one last session at 0.21 mW/mm² could not be performed for the same reason. This resulted in a total of 19 (6+6+2+5) data points from the saline group.

One possible way to quantify whether the optogenetic perturbation caused any significant change in wait time is to do a Kolmogorov-Smirnov test to check for significant differences in distributions of wait times between laser and no-laser trials. However, my
aim was to test whether there was a consistent shift introduced by the presence of the laser, rather than merely testing for differences in distribution (for instance, KS test also returns significance for significant change in variance). To this end, I defined the shift statistic as the absolute median percentile shift (see below) and generated bootstrapped sampling distributions for significance testing. This is also why I avoided standard ordinal tests that simply check for differences in median.

The absolute median percentile shift was calculated thus: for the CDF of wait times, for each percentile (i.e. 0, 1, 2, …, 99, 100 percentile), the shift in wait times between the “laser” and “no laser” trials was measured. The absolute value of the median of this list of one hundred data points (i.e. shifts at each percentile) was defined as the absolute median percentile shift (see Figure 10).

There were three different statistical tests performed on this dataset, corresponding to three different questions. In all cases, only first licks following the laser offset were analyzed. The first question was whether, in an individual session, laser trials had a significant shift in wait times.

To this end, the observed median percentile shift was compared against that expected by chance. The null distribution was created by resampling with replacement from the wait time distribution in no-laser trials and measuring the absolute median percentile shift for each resampling. This was repeated 2000 times to calculate a two-tailed p value for the observed median percentile shift. This resulted in 8 statistically significant shifts in the experimental group out of a total of 18 sessions, along with 3 sessions with a p value
between 0.05 and 0.06. There were no significant shifts (at p>0.05) observed in the 19 sessions of the control group.

The second test was to determine whether the population of all observed absolute median percentile shifts was significantly different from that expected by chance. As my aim was only to test whether there was an observed shift for the group as a whole (and not to quantify the shift for each individual laser intensity), I pooled the data from all sessions. Since the larger the variability in the wait times, the larger the shift expected by chance will be, the absolute median percentile shifts were normalized for each animal by dividing it by the inter-quartile range of the wait time distribution in no-laser trials. To test whether the population of normalized absolute median percentile shifts (n=18) was significantly different from that expected by chance, it was compared against the bootstrapped null distributions generated from the 18 individual sessions (using the procedure mentioned above after normalization) and was significant in all cases (p<0.001, one-tailed). For the purpose of Figure 9, the null distribution of one randomly selected session was used.

The above two questions only answer whether the laser presentation led to an observable shift in the wait time distribution in experimental animals. However, this observed shift could be the result of non-specific effects of laser presentation. To test against this possibility, I tested the population of normalized absolute median percentile shifts from the experimental animals (infected with ChR2) against the saline-control animals. Since I could not assume homoscedascity for these two populations, I performed the Welch’s t
test for the hypothesis that the shift in the experimental group is larger than the shift in the control group.

In order to test whether the significant effect of the laser in the aggregate as shown in Figure 9C was consistently present in all animals, I tested individual experimental animals against the controls. Even under greatly reduced statistical power, I found that two animals showed significant differences with the control group (p values of 0.01 and 0.03) with the remaining animal missing significance (p=0.11, one tailed, Welch’s t test). In this last animal, three individual sessions showed significant shifts in wait time distribution between laser and no-laser trials. In order to test whether the optogenetic results were significant merely due to the duplication of data at each laser power, I also tested the difference between the experimental and saline groups after averaging the observed shifts at each intensity within an animal. The comparison is still significant (p=0.0061, one-tailed, t=2.92, Welch’s t test).

To test whether the laser presentation led to an observable increase in the probability of licking in individual experimental animals, I tested for differences in the probability of licking in the presence and absence of laser using bootstrapping with 10,000 re-samples with replacement. To correct for the multiple comparisons, I used Holm-Bonferroni correction (since it is more powerful than Bonferroni correction) and found no significant effect in any animal (p>0.05).
2.7.7 Spiking neuronal model

The model (uploaded to ModelDB and available upon request) consisted of three populations of spiking neurons forming a network as illustrated in Figure 11A. Two populations, labeled E and P, contain excitatory neurons and the other, labeled I, is formed by inhibitory neurons. All synaptic weights are denoted by the form W_{ij}, where the indices i and j label post- and pre-synaptic populations. The magnitudes of these weights were learned as explained previously (Gavornik & Shouval, 2011; Gavornik et al., 2009) so as to represent a median interval of one second. Recurrent synaptic connections within E (W_{EE}) and P (W_{PP}) populations and projections between these (W_{PE}) had a spatial probability of connection that is Gaussian-distributed with a standard deviation equivalent to 12 neighboring neurons, while connections between excitatory and inhibitory populations (W_{IE}, W_{EI}, W_{IP}, W_{PI}) were sparse with a uniform 20% probability of connection.

Neurons in each population were modeled as leaky integrate-and-fire units. The equation for the membrane potential for neuron i is described by the differential equation

$$C \frac{dV}{dt} = g_L (E_L - V_i) + g_{E,i} (E_E - V_i) + g_{I,i} (E_I - V_i)$$ \hspace{1cm} (2.1)$$

where C is the membrane capacitance, V_i is the membrane potential; g_L, $g_{E,i}$ and $g_{I,i}$ are the conductance of the leak current, total excitatory and total inhibitory synaptic currents, respectively, and E_L, E_E and E_I are the corresponding reversal potential of each current.
To simulate the effect of optogenetic activation of neurons, we included an additional current of the form $I_{\text{ChR2}} = g_{\text{ChR2,}i}(E_{\text{ChR2}}-V)$, where $g_{\text{ChR2,}i}$ and E_{ChR2} are the conductance and reversal potential of the membrane current associated with ChR2.

Except for the leak conductance, the total synaptic conductance takes the form (e.g. for excitation) $g_{E,i} = g_{E} \sum W_{ij} s_j$, where g_{E} is the maximum conductance of the current, s_j is the synaptic efficacy of presynaptic synapse j and W_{ij} is the synaptic strength. Each s_j is modeled as an exponentially decaying function that obeys the differential equation

$$\frac{ds_j}{dt} = -\frac{s_j}{\tau_s} + \rho(1-s_j)\sum \delta(t-t_{\text{pre}})$$

where τ_s is the synaptic decay time constant, ρ is the fractional change in synaptic efficacy due to the arrival of a presynaptic spike that occurs at time t_{pre} and the sum is over all pre-synaptic spikes; δ is the Dirac delta function.

We computed the response of the network to an initial presentation of a 100 ms long full-field visual stimulation, represented as a train of action potentials with a constant firing rate. The initial values of the synaptic weights W_{EE}, W_{PP} and W_{PE} were obtained after training (Gavornik & Shouval, 2011; Gavornik et al., 2009) so that the activity of the excitatory population E exhibited an initial rise in its firing rate in response to the visual stimulation followed by a slow decay due to reverberations within the population that decayed to baseline 1000 ms after the stimulus on average. Changes in synaptic weights were calculated using the Reward-Dependent Expression (RDE) rule (Gavornik et al.,
The output from the E population, and consequently from the I population onto P, led to a response that was qualitatively similar to the previously observed peak responses. Once trained, the values of these synaptic weights remained constant for the rest of the simulations.

To simulate the spontaneous activity of neurons, all three populations received feed-forward excitatory input in the form of random Poisson distributed spike trains at a constant frequency of 5 Hz. The addition of noise induced trial-by-trial variability in the response of the network. Furthermore, to represent a transient visual input, excitatory populations E and P received additional excitatory feed-forward input at a higher mean rate, representing drive from the visual thalamus. In this network, the E population represents “intervalkeepers” since they represent the target interval in the duration of sustained responses triggered by the visual stimulus. The P population represents “decoders” since they represent the moment of target interval expiry. Action neurons were selected from the P population and consisted of 10 neurons that were spatially close in synaptic connectivity, and thus showed a high degree of correlation. The action was signaled when the summed firing rate of this subpopulation exceeded 15 Hz and reached its peak value (Figure 12). Other neurons in this population, synaptically distant from these action neurons, were thus less correlated to the action neurons and (consequently) the time of action. Hence, they did not represent the action time, but represented the median reward time (Figure 12).
For simulating the optogenetic perturbation, we modeled the activation as affecting more inhibitory neurons than excitatory ones. This was for two reasons. First, based on the firing patterns of the neurons recorded during optogenetic stimulation, the predominant effect in the network is the inhibition of activity, as is observed immediately following laser offset (Figure 10D-K). Second, the laser power decreases rapidly over depth of the cortex and hence, the strongest activation would be in the superficial layers. In layer 1, ~90% neurons are inhibitory (Fitzpatrick, Lund, Schmechel, & Towles, 1987; Hendry, Schwark, & Jones, 1987; Meinecke & Peters, 1987). Within the excitatory populations (E and P), we assumed an equal split of neurons getting activated. The identity of the neurons getting activated within each subpopulation was randomized. We found that if inhibitory activation was twice that of excitatory activation, the network was nearly balanced with the resulting shift in wait times being minimal. For the simulations in Figure 11C, 9% of the excitatory neurons and 20% of the inhibitory neurons were activated for 200 trials. The activation ratios were systematically varied, showing perturbations similar to those observed experimentally (Figure 12).
Chapter 3. Rationalizing decision-making: understanding the cost and perception of time

3.1 Introduction

The question of how animals, including humans, make decisions between differently sized rewards at differing delays (“intertemporal decision-making”) has been the subject of at least eight decades of active research, in fields as diverse as economics, psychology, evolutionary ecology, neuroscience and addiction. Across the spectrum of these fields, researchers have approached this problem in myriad ways, with some proposing theories of animal behavior and others measuring animal behavior experimentally. However, there has not yet been significant agreement between theories and experiments. In this chapter, I review theoretical work addressing this problem, in the context of some recent advances in experiments and my own theoretical contributions.

In order to make decisions about delayed rewards, animals must be able to measure those delays. Hence, the problem of “intertemporal decision-making” is intertwined with time perception. However, theoretical and experimental work on 1) how animals measure delays, and, 2) how they make decisions between differently delayed rewards, has been largely non-overlapping. Nevertheless, there has been some recent work, both theoretical and experimental, that examines the connection between how animals make intertemporal decisions and how they perceive time. In the latter half of the chapter, I
therefore focus on time perception, in the context of recent experimental attempts and my theoretical contributions to create a unified understanding of intertemporal decision-making and time perception.

First, I will provide a historical account of theories of intertemporal decision-making.

3.1.1 History of theories of intertemporal decision-making

The problem of intertemporal choice was first mentioned in 1834 by John Rae (Rae, 1834). In his work, he wondered about the origins of differences in wealth between nations. Rae claimed that one of the key determinants of wealth of a nation is the nation’s “desire of accumulation”. The desire of accumulation, according to him, was determined by the balance between two kinds of psychological factors, one that motivates the nation to invest and save for the future and another that derives pleasure from immediate consumption. Thus, the idea of making decisions about delayed outcomes was framed as the conflict between two different psychological impulses of humans (and societies).

The notion of intertemporal choices being driven by innate psychological quantities stuck ever since John Rae and persists to this day (Warren K Bickel et al., 2007; Frederick et al., 2002; Kalenscher & Pennartz, 2008; Madden & Bickel, 2010; McClure, Laibson, Loewenstein, & Cohen, 2004; van den Bos & McClure, 2013). The first attempt to mathematically formalize the treatment of such psychological factors was made a century
later by Paul Samuelson in 1937 (Samuelson, 1937) (but see (Bohm-Bawerk, 1889; Fisher, 1930)) when he invented the “Discounted Utility Theory” (DUT). It is important to point out that DUT was borne out of ideas that originated from John Rae, and thus shared many of the same limitations. For instance, both models framed decisions as being based on a purely subjective quantity representing self control, rather than any objective maximization of fitness (will be discussed later). Nevertheless, it was the first simple and mathematically tractable formulation of the problem of intertemporal choice. Briefly, DUT states that intertemporal choices are made so as to maximize the “net discounted utility” of the future. Here, DUT assumes that the “utility” of a reward is given by its face value, if it were to be received immediately. For instance, the utility of $20 is $20, irrespective of when you receive it. However, the immediate subjective value of $20 delayed by a fixed amount would be given by its “discounted utility”.

The key postulate of DUT is that the “discounted utility” of a delayed reward is determined by an exponential discounting function, with the exponential constant—the discount rate—determining the ability of a person to delay gratification. In simpler terms, the discount rate measures the patience of an individual—the lower the discount rate, the higher your patience in waiting for a reward, i.e. the longer you are willing to wait to obtain that reward. The major simplification achieved by Samuelson was in compressing the different psychological factors of John Rae and others into a single, measurable parameter of self-control.
The other major advance made by Samuelson was in treating the utility of different future rewards as the sum of their respective discounted utilities. This “net discounted utility”, as mentioned earlier, was expressed as shown below.

$$\text{Maximize } U = \int_0^T D(t)u(t)dt; \text{ where } D(t) = e^{-kt}$$ \hspace{1cm} (3.1)

Here, $D(t)$ is the discounting function, and $u(t)$ is the utility of a single reward received at a delay of t. Time was assumed to be integrated up to a maximum delay of consideration, also known as the temporal horizon of a decision, represented by T.

Samuelson’s model was simple and elegant, with its exponential form particularly attractive, owing to similarities with the calculation of compound interest. It further provided a single, measurable parameter of an individual’s ability to delay gratification (viz. k). Despite all these advantages, however, Samuelson had a number of reservations about the validity and utility of his model. Since most of these concerns were ignored by future researchers due to its distinct advantages, I would like to point them out here, in Samuelson’s own words.

Concern 1 (pp. 159 Samuelson, 1937): “In the first place, it is completely arbitrary to assume that the individual behaves so as to maximize an integral of the form envisaged. This involves the assumption that at every instant of time the individual's satisfaction depends only upon the consumption at that time, and that, furthermore, the individual tries to maximize the sum of instantaneous satisfactions reduced to some comparable base by time discount.”
Concern 2 (pp. 160 Samuelson, 1937): “A less important point to be noted is the fact that our equations hold only for an individual who is deciding at the beginning of the period how he will allocate his expenditures over the period. Actually, however, as the individual moves along in time there is a sort of perspective phenomenon in that his view of the future in relation to his instantaneous time position remains invariant, rather than his evaluation of any particular year (e.g. 1940). This relativity effect is expressed in the behavior of men who make irrevocable trusts, in the taking out of life insurance as a compulsory savings measure, etc….Moreover, in the analysis of the supply of savings, it is extremely doubtful whether we can learn much from considering such an economic man, whose tastes remain unchanged, who seeks to maximize some functional of consumption alone, in a perfect world, where all things are certain and synchronized.”

In sum, Samuelson wrote “any connection between utility as discussed here and any welfare concept is disavowed”, stressing that there was no a priori reason why his model would be a valid or normative way of describing human behavior.

Despite these strong reservations, Samuelson’s work paved the way for the exponential model of discounting, and more generally, the idea of discounting functions, to be ingrained into work on intertemporal choices (Benzion, Rapoport, Yagil, Science, & Mar, 1989; Fehr, 2002; Fishburn & Rubinstein, 1982; Frederick et al., 2002; Kalenscher & Pennartz, 2008; Laibson, 1997; Lancaster, 1963; Madden & Bickel, 2010; Thaler, 1981; van den Bos & McClure, 2013). DUT received further theoretical support in 1960 when Koopmans showed that DUT can be derived from a set of simple axioms (Koopmans, 1960). The most important axiom was the statement (one that Samuelson recognized, as
mentioned above) that the intertemporal preferences of an individual are stationary over time, i.e. if an individual prefers option 1 in a choice between option 1 and option 2, if the delay between the two options is fixed, the individual will always prefer option 1, independent of how much time has elapsed since the first decision was made. Like Samuelson, Koopmans also did not argue for the normative or descriptive validity of these axioms.

Nevertheless, further work on intertemporal choice in economics considered consistent time preferences and stationarity as a fundamental tenet of human rationality (see Drouhin, 2009; Fishburn & Rubinstein, 1982; Frederick et al., 2002; Koopmans, 1960; Lapied & Renault, 2012a, 2012b; Strotz, 1956 for discussion). However, experimental evidence repeatedly showed that this core postulate is violated by humans (G. Ainslie & Monterosso, 2003; G. Ainslie, 1975; Benzion et al., 1989; Frederick et al., 2002; Green, Fristoe, & Myerson, 1994; Holt, Green, & Myerson, 2003; G. Loewenstein & Prelec, 1992; McClure et al., 2004; Thaler, 1981), pigeons (G. W. Ainslie, 1974; Chung & Herrnstein, 1967; Rachlin, Green, & Vi, 1972) and rats (Bennett, 2002; Ito & Asaki, 1982). In fact, the axiom of constant time preference can be immediately seen to be violated by considering the following two example choices: “which would you prefer: $100 now or $105 in a month?” and “which would you prefer: $100 in a year or $105 in a year and one month?” It should be immediately clear that while most people prefer $105 in the second question, they prefer $100 in the first, thus violating the assumption of stationary preferences.
In the face of such overwhelming evidence, there are two possible recourses to solving the apparent contradiction: 1) change one’s definition of rationality, or, 2) state that all the animals tested above are irrational. Many economists chose the latter option, maintaining the axiom of stationary time preferences (and exponential discounting) as “rational” (see Drouhin, 2009; Lapied & Renault, 2012a, 2012b for a discussion). This is partly due to equating stationarity and time consistency (see Drouhin, 2009; Lapied & Renault, 2012a, 2012b for a discussion), and partly due to the fact that other models of rationality, like reward rate maximization (Bateson & Kacelnik, 1996; Stephens & Anderson, 2001; Stephens & Krebs, 1986; Stephens, 2008), have not been successful in explaining animal behavior.

In addition to the violation of the assumption of stationarity of choices, many other assumptions of DUT have been shown to be violated by human behavior. For instance, DUT assumes consumption independence—the utility of a reward does not depend on whether or not that reward was obtained in the immediate past. This is patently false, as surely animals can become sated over time. Consider too, for instance, that the preference for a restaurant will obviously depend on whether or not an individual ate there for the past five days. There are numerous other violations of DUT that are not going to be discussed here. For a more detailed overview of these violations, see prior reviews on this topic (Frederick et al., 2002; Kalenscher & Pennartz, 2008).

An assumption related to the stationarity axiom is that the discount factor (rate of discounting per unit discounting) is constant over time. Behavioral scientists and psychologists have shown that this, too, is repeatedly violated in experiments across
many different species (G. Ainslie & Monterosso, 2003; G. W. Ainslie, 1974; G. Ainslie, 1975; Benzion et al., 1989; Calvert, Green, & Myerson, 2010; Green et al., 1994; Holt et al., 2003; Kobayashi & Schultz, 2008; Rachlin et al., 1972; Thaler, 1981). In fact, it was observed experimentally in 1967 that delayed food rewards were preferred in inverse proportion to their delay (Chung & Herrnstein, 1967). This relationship was later mathematically reformulated within the framework of a discounting function by Ainslie (G. Ainslie, 1975) and experimentally confirmed by numerous subsequent papers (e.g. G. Ainslie & Monterosso, 2003; G. W. Ainslie, 1974; G. Ainslie, 1975; Benzion et al., 1989; Calvert et al., 2010; Green et al., 1994; Holt et al., 2003; Kobayashi & Schultz, 2008; Rachlin et al., 1972; Thaler, 1981). Specifically, this discounting function, that approximated intertemporal choice behavior better than exponential discounting functions, was hyperbolic in form. The animal’s choice under this conception can be expressed mathematically as shown below:

\[
Choose \ max(r(t)D(t)); \ D(t) = \frac{1}{1+kt}
\]

(3.2)

where \(D(t)\) represents the discounting function, \(r(t)\) is the reward magnitude of a reward available at delay \(t\) and \(k\) is the discounting constant.

It is important to point out that the casting of experimental observations into a “discounting function” framework is due to the legacy of Samuelson’s work (Samuelson, 1937). In this view, the agency for the reduction in value of a reward with delay (temporal discounting) is due completely to a psychologically-innate discounting function. The contribution of Ainslie provided a much better descriptive model of
experimental data. However, the contribution was only to find that a hyperbolic
discounting function provided a better fit to experimental data than an exponential
discounting function, and not a rationale for why hyperbolic discounting would better
describe the data.

Recently, many other forms of discounting functions have been proposed that provide
even better fits to experimental data than pure hyperbolic discounting functions (al-
Nowaihi & Dhami, 2008; Green & Myerson, 2004; Killeen, 2009; Laibson, 1997;
McClure et al., 2004; Schweighofer et al., 2006; van den Bos & McClure, 2013). Among
the most prominent are quasi-hyperbolic discounting functions (Laibson, 1997) and β-δ
discounting functions (McClure et al., 2004; van den Bos & McClure, 2013).

A major limitation of the hunt for the perfect discounting function to fit experimental data
is that it provides only that—a fit to the data. It does not provide an explanation for why
animals discount delayed rewards the way they do. Further, it also cannot rationalize the
observed steepness of temporal discounting (a measure of patience, like k in DUT) of an
individual in a given reward environment. Hence, all the different discounting functions
described above are fits to the data which are assumed to originate from some innate
psychological quality. For instance, finding that β-δ discounting functions provide better
fits to experimental data has been used to infer that the brain has two separate systems
involved in processing immediate and delayed rewards, respectively. Indeed, recent
human imaging studies have shown that different areas of the brain are differentially
involved when a subject is considering an immediate or a delayed reward (McClure et al.,
A wholly different perspective to the problem of intertemporal choice, not wed to the notion of a discounting function, can be obtained by considering the field of behavioral ecology. In 1966, a highly influential paper was published in theoretical behavioral ecology by MacArthur and Pianka (MacArthur & Pianka, 1966). This paper considered how foraging animals should decide between different patches of food, if they behaved economically. It introduced the idea that animals should forage so as to maximize their net energy intake in the long run. Net energy intake was operationally defined as the total reward obtained per unit time spent in obtaining it. The idea behind the postulate was simple: obtaining a maximal rate of food intake would maximize the chances of living. Hence, in this conception, time was not merely a component of decision-making, but the most important dimension over which rewards needed to be accumulated.

The idea of maximizing long-term reward rates was the key thesis behind many subsequent theories on optimal foraging (Charnov, 1976a, 1976b; B. Y. J. R. Krebs, Erichsen, & Webber, 1977; J. R. Krebs, 1978; Pyke, Pulliam, & Charnov, 1977; Pyke, 1984). This literature is too vast to be fully considered here. For a detailed review of such theories, see (Pyke, 1984; Stephens & Krebs, 1986). Together, these theories came to be known as the Optimal Foraging Theory (OFT).

Mathematically, OFT’s postulate of maximizing long-term reward rates can be expressed as:

\[
\text{Maximize} \quad \frac{\sum_{i=1}^{\infty} r_i}{\sum_{i=1}^{\infty} t_i}
\]

(3.3)
Here, all possible future rewards are added in the numerator \((r_i \text{ is an individual reward}) \) and divided by the total time it takes to acquire them. \(t_i \) is the delay in getting the \(i^{th} \) reward from the moment that the \((i-1)^{th}\) reward was obtained. If the sum is carried over to infinity as shown above, the total time spent as shown in the denominator will be \(\infty \). A more realistic conception would be to state that the long term reward rate is calculated not over an infinite future time horizon, but a finite (though appreciable), time horizon, \(T \), similar to the temporal horizon considered in equation (3.1) for DUT. Thus, equation (3.3) can be rewritten as:

\[
\text{Maximize } \int_0^T \frac{r(t)dt}{T} \tag{3.4}
\]

where \(r(t) \) is the reward available at a delay of \(t \). This equation looks similar in form to equation (3.1) of DUT, but with a key difference: the quantity that is being maximized is not the net discounted utility, but the net reward rate.

Let us now consider how equation (3.4) was used to predict the intertemporal decisions of animals. Consider an animal choosing between two reward options, \((r_1, t_1)\) and \((r_2, t_2)\), where the ordered pair represents the reward magnitude and delay to reward, respectively. Consider too that after either reward, the animal has to wait a fixed intertrial interval \((ITI)\) until foraging again. This might represent the time required to consume the rewards, for instance.

It was argued, then, that the choice of the animal between option 1 and option 2 would be effectively the choice between the long-term reward rate obtained if the animal picked
option 1 alone, and, the long-term reward rate obtained if the animal picked option 2 alone. Thus, the animal’s choice could be written as

\[
\text{Choose } \max\left(\frac{r_i}{ITI + t_i} \right) ; i \in \{1,2\}
\]

(3.5)

Here, the total reward rate achieved if the animal picked only option \(i \) is the reward magnitude of option \(i \) divided by the total effective time spent per receipt of reward.

Interestingly, a closer examination of equation (3.5), along with equation (3.2) reveals that the choice of maximizing reward rate as expressed in (3.5) is similar to maximizing a hyperbolically-discounted reward, with the hyperbolic constant \(k \) (Equation (3.5)) replaced by \(1/ITI \). Thus, it was argued that maximizing long-term reward rate underlies the experimentally observed hyperbolic discounting function mentioned earlier. This was the first instance wherein the agency for the decay in value of delayed rewards was not placed on an innate discounting function, but on the need to maximize an ecologically-relevant metric of fitness, i.e. reward rate.

Especially in the context of foraging, maximizing fitness or reward rate was a better definition of “rational” decision-making than stationarity of time preferences. However, it was soon obvious that while the experimental data on intertemporal decisions indicated a hyperbolic discounting function, this function did not result from a maximization of reward rates as considered in OFT. This was because, in experiments in which animals were given choices between two reward options but where the total trial duration was a constant (and not the ITI), animals did not always pick the larger reward (G. W. Ainslie, 1974; Bateson & Kacelnik, 1996; Blanchard, Pearson, & Hayden, 2013; Cardinal,
Pennicott, Sugathapala, Robbins, & Everitt, 2001; Grossbard & Mazur, 1986; Alex Kacelnik & Bateson, 1996; Kalenscher et al., 2005; Kobayashi & Schultz, 2008; Louie & Glimcher, 2010; James E Mazur, 1988; Pearson, Hayden, & Platt, 2010; Rachlin et al., 1972; Roesch, Calu, & Schoenbaum, 2007; Stephens & Anderson, 2001; Winstanley, Theobald, Cardinal, & Robbins, 2004). This was a direct challenge to the choice algorithm shown in equation (3.5) since the effective time spent on either option was equal, but the animals still did not pick the option with the larger reward magnitude.

In the face of apparent empirical rejection, behavioral ecologists proposed an alternative decision-making algorithm within the realm of rate maximization. It was proposed that instead of maximizing long-term reward rates, animals maximized single-trial reward rates (Bateson & Kacelnik, 1996; Real, 1991; Stephens et al., 2004; Stephens & Krebs, 1986; Stephens, 2008). This approach has been referred to by many different names across the literature (Bateson & Kacelnik, 1996; Real, 1991; Stephens et al., 2004; Stephens & Krebs, 1986; Stephens, 2008), but I will refer to it by the name of Ecological Rationality Theory (ERT), as used by (Stephens et al., 2004; Stephens, 2008). Regardless of the name, however, all these papers propose the following choice algorithm:

\[\text{Choose } \max \left(\frac{r_i}{t_i} \right) \] \hspace{1cm} (3.6)

The major difference between the predictions of equations (3.5) and (3.6) is in the inclusion/exclusion of the various delay components into the decision. While equation (3.5) (OFT) considers all effective intervals within a trial, ERT only considers the delay to reward. Post-reward delays of any sort are excluded in the decision algorithm of ERT.

92
The rationale for their exclusion was that in the wild, foraging animals rarely decide between options with differing post-reward delays associated with them. In fact, it was argued (Stephens et al., 2004; Stephens, 2008) that typical decisions in the wild are not even in the form of binary choices as presented above. Instead, it was argued (Stephens et al., 2004; Stephens, 2008), that typical decisions in the wild have a “foreground-background nature”, i.e. that a choice is presented always in the context of background activity. Interestingly, it was shown that in laboratory tasks where such a foreground-background structure was presented to animals, equation (3.6) resulted in long-term reward rate maximization, as expressed in equation (3.4) (Stephens & Anderson, 2001; Stephens, 2008). This result—that in typical foraging decisions, maximizing single-trial reward rates is the same as maximizing long-term reward rates—provided support for the argument that animals only maximized single-trial reward rates, and is the basis of the name, Ecological Rationality Theory.

While ERT provided better fits to experimental data in the foraging literature than OFT (Bateson & Kacelnik, 1996; Stephens & Anderson, 2001; Stephens, 2008), it was nevertheless insufficient at providing quantitative fits to the experimental data collected in standard psychological tasks involving binary choices. This was because the effective discounting constant predicted by equation (3.6), according to a hyperbolic discounting function, is ∞. Yet, every discounting study measured finite, non-zero discounting constants (G. W. Ainslie, 1974; Bateson & Kacelnik, 1996; Blanchard et al., 2013; Cardinal et al., 2001; Grossbard & Mazur, 1986; Alex Kacelnik & Bateson, 1996; Kalenscher et al., 2005; Kobayashi & Schultz, 2008; Louie & Glimcher, 2010; James E
Mazur, 1988; Pearson et al., 2010; Rachlin et al., 1972; Roesch et al., 2007; Stephens & Anderson, 2001; Winstanley et al., 2004).

In conclusion, theories from behavioral ecology that attempted to rationalize intertemporal decision-making within the framework of reward-rate maximization failed to provide satisfactory explanations for empirical data. Further, the theory (DUT) based on the assumption that temporal discounting must lead to stationary time preferences, and hence should abide by exponential discounting, is also inconsistent with experimental observations. Only psychological models like the hyperbolic discounting model proposed by Ainslie (G. W. Ainslie, 1974; G. Ainslie, 1975), among others (al-Nowaihi & Dhami, 2008; Green & Myerson, 2004; Killeen, 2009; Laibson, 1997; McClure et al., 2004; Schweighofer et al., 2006; van den Bos & McClure, 2013), provided good fits to observed data from laboratory tasks. These models, however, are not based on any normative principle of decision-making, unlike DUT, OFT and ERT, and therefore do not rationalize why apparent discounting functions take the shape that they do.

3.2 Recent experimental and theoretical advances in the study of intertemporal decision-making

In this section, I will focus on recent advances in aligning theories and experiments of intertemporal decision-making. For this purpose, I only consider normative theories and
models that propose principles of intertemporal decision-making. For recent descriptive models that attempt to fit data, see the literature (al-Nowaihi & Dhami, 2008; Killeen, 2009; van den Bos & McClure, 2013).

3.2.1 Experimental advances

As was mentioned in Section 1.1, the crucial observation that invalidated the idea of long-term reward rate maximization was the finding that animals do not include post-reward delays in their decisions (G. W. Ainslie, 1974; Bateson & Kacelnik, 1996; Blanchard et al., 2013; Cardinal et al., 2001; Grossbard & Mazur, 1986; Alex Kacelnik & Bateson, 1996; Kalenscher et al., 2005; Kobayashi & Schultz, 2008; Louie & Glimcher, 2010; James E Mazur, 1988; Pearson et al., 2010; Rachlin et al., 1972; Roesch et al., 2007; Stephens & Anderson, 2001; Winstanley et al., 2004). This meant that in a choice between two rewards that effectively take the same time, the animals did not necessarily choose the larger reward, hence violating the idea of reward rate maximization. It was also found that delays common to both options, like the ITI term in Equation (3.5) did not have an effect that matched that expected from maximizing long-term reward rates (Bateson & Kacelnik, 1996; Logue, Smith, & Rachlin, 1985; J E Mazur, 2001; James E Mazur, 1989; Snyderman, 1987; Stephens & Anderson, 2001).

While these observations were a severe challenge to the idea of long-term reward rate maximization, some researchers realized that it was not a death blow (Blanchard et al., 2013; Alex Kacelnik & Bateson, 1996; Stephens, 2002). An explanation for these
observed results could be that animals are not able to learn the association between the rewards and their corresponding post-reward delays. Were they able to learn the association between a post-reward delay and the choices presented, they could potentially have chosen the larger option, consistent with reward rate maximization. Hence, it is not that animals do not maximize reward rates; it is just that they do so within constraints of evolved mechanisms of associative learning. This idea was first presented in 1996 by Alex Kacelnik and Melissa Bateson (Alex Kacelnik & Bateson, 1996). They proposed the following mechanistic explanation for why delays following the receipt of reward might not be learned by animals performing standard intertemporal decision-making tasks.

In order to measure the preferences of animals between two delayed rewards, they are first trained to learn the meaning of two conditioned stimuli (CS) (usually visual or auditory cues) that correspond to either reward option. In other words, prior to receiving the choices, the animals are presented with the CSs and their associated delayed rewards and post-reward delays. Once the animals learn the meaning of both CSs, they are presented with choice trials in which they should pick one or the other CS, so as to receive the corresponding delayed reward. In order to learn the association between a CS and the corresponding reward, it was argued that it makes functional sense for the learning to be driven by the receipt of reward, so as to learn the causal relationship between the CS and the reward (Dickinson, 1980; Alex Kacelnik & Bateson, 1996). In this framework, the retrospective assignment of value to the CS is driven only by the reward and not the moment of expiry of the post-reward delay. Hence, it was argued that the reason for choice behavior being insensitive to post-reward delays was simply due to
the lack of its learning. For a similar mechanistic argument from reinforcement-theory, based on neural recordings from honeybees, see (Montague, Dayan, Person, & Sejnowski, 1995).

An indirect support to the above hypothesis was provided in 2010 when Pearson et. al. found that presenting explicit cues to indicate the lapse of a post-reward delay made the choice behavior of monkeys move towards long-term reward rate maximization (Pearson et al., 2010). Specifically, they designed the CSs to be vertical bars whose length was proportional to the net delay associated with that choice. The moment of receipt of reward was indicated by a colored horizontal line placed at a location corresponding to the delay to reward. The color of the reward line represented the reward magnitude. Hence, the post-reward delays were indicated by the length of the bar following the reward line. Crucially, as the monkeys chose an option, the other option disappeared from the screen and the chosen option’s vertical bar started to shrink in proportion to the passage of time. In this way, the monkeys were explicitly cued to the passage of the delay to reward and the post-reward delay. Interestingly, the explicit cueing was sufficient to increase the monkeys’ choice for the larger reward, thus indicating that in the presence of explicit information of the post-reward delays, the choice behavior of monkeys accorded better with long-term reward rate maximization.
Behavior of 3 monkeys is shown in a task that compares their performance between a standard intertemporal decision-making task (“std”) in which post-reward delays are adjusted to make the trial duration constant, and a random variant of the task in which the post-reward delays are randomly chosen for each option (“rand”). As can be seen, all three monkeys showed similar discounting steepness across the standard and random variant, indicating that they did not appropriately learn the relationship between the rewards and their corresponding post-reward delays. The optimal performance of an agent that correctly learns this relationship is shown by the black bar (“opt”), showing that none of the monkeys are optimal.
Nevertheless, a direct test of the above-mentioned hypothesis would have been to test whether animals performing intertemporal choices can associate the appropriate post-reward delay with a given option. This is exactly what Blanchard et. al. did in 2013 (Blanchard et al., 2013). In their study, they performed three variants of the experiment mentioned above, but without any explicit cueing of the post-reward delay. In other words, in all their three experiments, the vertical bars only indicated the delay to reward.

In the first experiment, they compared the performance of monkeys in the standard intertemporal choice task (with post-reward delays adjusted to have constant trial duration) to their performance in a task where the post-reward delays were randomly shuffled between the options. If the monkeys were able to correctly associate the post-reward delays with their corresponding reward, their performance would be different across these two versions. However, their results clearly indicated that monkeys failed to associate the post-reward delays to their corresponding reward option (Figure 15).

Since the above hypothesis claims that learning is only triggered by the receipt of reward, another prediction is that when the post-reward delays are followed by a reward, they should be included in the decision. Blanchard et. al. confirmed this prediction in a second experiment by presenting a small, but equal volume of reward at the end of the post-reward delays of both options. This, too, increased the likelihood of the monkeys choosing the larger reward.

Finally, in the third experiment, they addressed whether the monkeys’ preferences were sensitive to the magnitude of the post-reward delay. In this experiment, they used an equal post-reward delay for both reward options, much like a constant ITI in earlier
experiments, and varied it from 0s to 10s. Their results showed a clear dependence of the
discounting steepness on the duration of the post-reward delay. This is similar to the
effect of the *ITI* term in Equation (3.5), except that the parameter that fit the choice data
was always significantly lower than the real delay used. The reason for this discrepancy
was claimed by the authors to result from a biased measure of the post-reward delay by
the monkeys. However, it must be pointed out that prior tasks studying the effect of
intertrial intervals did not observe as clear a dependence of the discounting constant on
the ITI (Bateson & Kacelnik, 1996; Logue et al., 1985; J E Mazur, 2001; James E Mazur,
1989; Snyderman, 1987; Stephens & Anderson, 2001). Further, in many timing tasks,
animals’ perception of time is much more accurate than is required for these results to be
explained by biased time perception, i.e. animals represent intervals at least up to ten
seconds quite accurately (e.g. Buhusi & Meck, 2005; Matell & Meck, 2004). Thus, it is
likely that the reason for this discrepancy might not result fully from an inaccurate
perception of post-reward delays. For a more detailed discussion of this point, see Section
2.2.

In sum, the experiments of Blanchard et. al. (Blanchard et al., 2013) convincingly
demonstrate that the reason for insensitivity of choice behavior to post-reward delays is
the lack of ability of animals to correctly associate those delays with the corresponding
reward option. Hence, it would be incorrect to rule out theories of long-term reward rate
maximization purely on the basis of this observation. In the next section, I present a novel
theory of intertemporal decision-making which is based on reward rate maximization. I
present the theory from first principles.
3.2.2 Theoretical advances

Were decision-making simply the evaluation of offered reward magnitudes, the learning of the relationship between cues and their associated reward amounts would suffice to understand choice behavior. However, if offers are differentially displaced in time, the simple determination of which cue connotes the greatest reward no longer suffices to understand choice behavior should the goal of an animal be to gather the most reward while in an environment. The reason, as previously mentioned, is that time itself has a cost; in having chosen to pursue a larger later reward over a smaller earlier reward, the difference in reward amount achieved must outstrip the difference in the time invested which could otherwise be put to use in further gainful activity.

In the prior sections, I reviewed theories that contend with this issue. One such theory, DUT, is based on the normative argument that intertemporal decisions must be stationary in time, which, as mentioned, does not hold up to experimental scrutiny. And why, if mechanisms of intertemporal decision-making evolved under pressures of foraging, would stationary preferences be a better normative argument than simply the maximization of reward rates? From an evolutionary perspective, theories based on reward rate maximization (Stephens & Anderson, 2001; Stephens et al., 2004; Stephens & Krebs, 1986) are more compelling, yet also do not well explain experimental data as animals do not include post-reward delays in their decision-making. Nevertheless, the exclusion of post-reward delays does not in itself rule out rate maximization as the goal, as it has been shown that their disregard is a consequence of an inability to learn the experimental contingency (Blanchard et al., 2013). Hence, my goal here is to approach
the problem from the point of view of reward rate maximization, as in OFT. However, whereas OFT only considers future options inferred from the current choice as affecting decision-making, I show that it is the past that matters to estimate the cost of time so as to maximize long-term reward rates.

To appreciate this difference in approach, let us start with the stated goal of OFT—to maximize long-term reward rates. As one cannot change the decisions made in the past, what is wrong with the seemingly reasonable notion in OFT that decision-making to maximize reward rate would be concerned only with the future, being wholly prospective in its outlook? An obvious constraint on so seeking to maximize long-term reward is that, in most decisions, one cannot know the future pattern of rewards beyond those currently available. But for the sake of argument, let us ignore this constraint and consider the case wherein an animal (or an agent) can see many choices (or trials) into the future. Specifically, let us consider an agent that can see ten future trials with each requiring a choice between different reward options. In order to achieve the stated goal of OFT, the agent will now have to calculate the optimal choice path across all ten trials. There is only one method to obtain the exact optimal solution: the agent will have to consider all 2^{10} possibilities to determine the option-path that leads to the highest reward rate. In other words, on choice number 1, the agent will have to consider the effect of that choice on all possible future choices, and so forth. Clearly, such an exact solution is computationally intensive, with the combinatorial explosion making it infeasible for an animal to perform this computation beyond some limited number of trials.
Therefore, given that the exact solution is not attainable, how could one arrive at an approximate solution? Maximizing reward rate requires an animal to not waste time on a given trial, if that given trial presents options that are significantly worse than the environment as a whole. Hence, at its core, it requires the animal to be able to compare the reward rate available on a trial with the reward rate available on the session as a whole, so as to make an appropriate decision on that trial. A solution is to estimate the average reward rate of the ten known trials so as to estimate the reward rate achievable in the session as a whole. However, this is only possible under the assumption that the future is knowable. Therefore, let us now revoke this unrealistic assumption.

If the environment is assumed to be stationary (time-independent statistics), an approximate solution can yet be to use the past as a model to predict the immediate future, as the correlation between the immediate past and the immediate future is likely high. Of course this approximation would work only if the environment is stationary in time. Let us call such an epoch of time, modeled by the animal to be stationary, as a “session”. An example is a typical experimental session in the laboratory with unchanging reward statistics. Hence, a simple approximate solution to maximize reward rates over the session can be to maximize the reward rates over the time that one has spent in the session, i.e. instead of maximizing the reward rate prospectively in the session, maximize the reward rate achieved in the session so far. This solution contrasts with the solution presented by OFT shown in equation (3.5) because equation (3.5) assumed that the net reward rate for a given option is the reward rate achievable if one chose only that option. Instead, we use the past to compare the worth of a given option to
the environment as a whole. This is the rationale for my theory, named Training-Integrated Maximized Estimation of Reinforcement Rate (TIMERR). In the remainder of this section, I formalize the above argument and show the implications it has on choice behavior.
Figure 16. *Does the past matter?*

A) Maximizing reward rate on a trial basis. An agent (black circle) presented with offers of reward that vary in magnitude and temporal displacement \((r_1, t_1)\) or \((r_2, t_2)\) may decide upon a given option by calculating which offer yields the highest rate of reward in the trial. By normalizing reward magnitudes by the times to their future acquisition, Option 1 (red vector) in the instance given is found to have the highest trial reward rate. Trial reward rate is depicted graphically as the slope of the vector connecting the agent in the present moment (now) along the x-axis of time to the magnitude of future reward. B) Maximizing session reward rate. Alternatively, an agent presented with the same offers of reward as that in (A) may decide upon a given offer by calculating which option yields the highest session, rather than trial-rate of reward. Session reward rate is depicted graphically as the slope of the line connecting the agent on entry into the environment—its “past” self (grey circle) along the x-axis of time—to the magnitude of future reward. By normalizing the magnitude of a reward offered by the sum of the time already spent in
the session plus the time to its future acquisition, Option 2 (blue vector) is found to have the highest session reward rate. C) Comparing choice behavior governed by trial reward rate versus session reward rate. By comparing the choices made by the agents in A and B to the same reward offers, it is apparent that decision-making governed by trial and session rate maximization are not equivalent, as they can lead to opposite choice behavior. Hence, if the objective is to gather the most reward while within a given environment, the past does in fact matter, as even evidenced when only considering elapsed time in the environment.
Figure 17. The effect of “looking-back” different amounts of time in evaluating realizable session reward rates

A) No “look-back” time. Should a session-reward-rate-maximizing agent look into its past no amount time (as potentially the case were it to have just entered into a foraging environment) it would choose Option 1 in the depicted example, as it yields the highest session reward rate. In this special case where \(T_{\text{ime}} = 0 \), evaluating reward options by maximizing session reward rate is equivalent to maximizing trial reward rate. B) Increasing \(T_{\text{ime}} \) (while decreasing the realizable session reward rates) does not affect the option chosen until \(T_{\text{ime}} \) reaches a value, as depicted in (B), wherein the reward options affect equivalent session reward rates. In this case, option 2 would be chosen as frequently as option 1. Growing the time in which the agent looks back into its past beyond this point results in a reversal of choice from Option 1 to Option 2, as depicted in
(C). Therefore, the setting of T_{ime} critically affects the evaluation of delayed reward offers.
3.2.2.1 The past matters

An agent, as in Figure 16, presented with offers of reward that vary in magnitude and temporal displacement \((r_1, t_1)\) or \((r_2, t_2)\), may decide upon a given option by calculating which offer yields the highest rate of reward in the trial. By normalizing reward magnitudes by the times to their future acquisition, Option 1 (red bar) in this instance is found to have the highest trial reward rate. Trial reward rate is depicted graphically as the slope of the choice vector connecting the agent in the present moment (“now”) along the x-axis of time, to the magnitude of future reward (the slope of the red and blue vectors). Alternatively, an agent presented with the same offers of reward may decide upon a given offer by calculating which option yields the highest session, rather than trial rate of reward. Session reward rate is depicted graphically as the slope of the line connecting the agent on entry into the environment, its “past” self (grey circle) along the x-axis of time, to the magnitude of future reward. By normalizing the magnitude of a reward offered by the sum of the time already spent in the session plus the time to its future acquisition, Option 2 (blue bar) is found to have the highest session reward rate (slope of the blue vector). By comparing the choices made by the agents in A and B to the same reward offers, it is apparent that decision-making governed by trial and session rate maximization are not equivalent, as they can lead to opposite choice behavior. Hence, if the objective is to gather the most reward while within a given environment, the past does in fact matter, as even evidenced when only considering elapsed time in the environment.
Hence, what it means to select a reward option that “maximizes the rate of reward” depends, as evidenced in the prior figure, on the objective of the agent. An agent that makes its current choice based on maximizing the session reward rate—by considering how much time it has already spent in the environment—will outperform an agent that is wholly prospective (without including a model of the future based on the past) in its decision-making. Therefore, as a commonly stated goal within optimal foraging is to gather the most reward while within an environment, the former of the two agents would rightly be regarded as the rational of the two.

If wholly prospective decision-making is not characteristic of rational decision-making, is exhibiting a consistency in choice behavior to the same reward options (like in DUT)? Consider an agent (as depicted in Figure 17) that maximizes the session rate of reward. When being presented reward options upon entering an environment, as in panel A, the session-rate-maximizing agent selects option 1. However, if a quantity of time were to have passed in the environment prior to the presentation of the same reward options, as depicted in panel B, at that moment, choosing either option would be regarded as equivalent. Indeed, were even more time to have passed in the environment prior to presentation of the same options (as in panel C), option 2 would be selected. In all cases, the reward options presented are the same, making choice behavior appear to be inconsistent across the same reward offers. Only from the perspective of selecting the option that results in the highest session reward rate can choice behavior be regarded as actually being consistent, resulting in different reward options being selected.
3.2.2.2 TIMERR Algorithm

Till now, I have considered the effect of the past on the valuation of reward offers under the special case that the agent has not acquired any (net) reward over that time. Of course, an agent may acquire reward in its past, and, should it have done so, the amount consumed need be taken into account in its current decision-making. Why is this so? In the prior figure, I provide an explanation as to why “looking back” in time would and should affect intertemporal decision-making even when the agent has not, to the present moment, accumulated any net reward. The benefit of looking back into one’s recent experience can be appreciated in another way, however, apart from simply the time spent in an environment, by considering, in addition, that a notion of experienced reward rate can be determined by normalizing the accumulated rewards harvested by the time spent harvesting in the environment. Therefore, one looks into the past not only to appreciate what interval reward rate should be maximized over, but to apprehend the rate of reward as already experienced in the environment.

Consider the case where the experienced environment has been a net positive one, meaning that the sum of acquired rewards (denoted by \(R \)) over the “look-back” time \((T_{\text{ime}}) \) has a positive value. Whatever the rate of reward experienced over this past look-back interval, offers of future reward must yield a rate greater than the experienced reward rate to ensure that the reward rate of the session increases. Therefore, looking back serves the purpose of determining the rate of reward that one should expect of an environment: reward options that decrease the experienced rate of return signify that they are subpar options that should not be taken.
The rate of experienced reward can be incorporated into the graphical depiction as previously given for the (special) case—wherein the rewards accumulated in the environment sum to zero, as in Figure 17—to yield a depiction of the decision-making algorithm in the general case where accumulated reward can take on any value, be it positive or negative (Figure 18). As in Figure 17, the right hand y-axis in Figure 18 plots the magnitude of future reward offers. Also as in Figure 17 (though there not labeled as such), the left hand y-axis plots the magnitude of accumulated past reward, the value of which the backwardly pointing grey vector terminates. Whereas in Figure 17, the backward pointing grey vector points to a value of accumulated past reward equal to zero, in Figure 18 it points to some positive value of accumulated past reward, R, thereby shifting the origin of the left-hand y-axis representing accumulated past reward downward. The rate of experienced reward (R/Time) is thus graphically depicted as the slope of the line connecting the agent’s past self with its current self (black vector). By depicting accumulated past rewards and future reward offers in this manner, the relationship between the past reward rate and the offered future reward rates can be seen to sum to yield the realizable session reward rates (the slope of the red and blue vectors). Given known reward offers, deciding between offers is then simply a matter of determining which opportunity yields the highest session reward rate, and, should it exceed the experienced reward rate, choosing that reward option. Expressed another way, offered reward rates are added to the experienced reward rates to determine session reward rates, the largest of which (so long as it exceeds that which is already experienced) is then selected. This can be expressed as the following choice algorithm:
Choose \(\max \left(\frac{r + R}{t + T_{ine}} \right) \) \hspace{1cm} (3.7)
Figure 18. *The TIMERR decision making algorithm and its graphical depiction*

The TIMERR algorithm can be understood simply as choosing the option that leads to the highest reward rate over the experienced interval within an environment up to and including the time to the future reward option. Reward accumulated within the environment \((R) \) over the time the agent looks back into its past \((T_{\text{ime}}) \) yields the experienced reward rate \((R/T_{\text{ime}}, \text{slope of the black vector}) \) which is added to the reward rate of a future option \((r_i, t_i) \) to yield a realizable reward rate having chosen that option. The agent then selects the realizable reward rate with the highest rate of return. A caveat is that the agent may forgo an option even if it evaluates to the highest realizable reward rate should that rate be less than the experienced reward rate (see section 2.2.5). Black circle: the agent at the present moment of time, “now”. Grey circle: the agent’s past self on entry into an environment at which time it has yet to accumulate any reward within it.
Slope of the red and blue vectors: the realizable reward rates of the reward options \((r_1,t_1)\) and \((r_2,t_2)\). Left-hand y-axis: the amount of accumulated reward in the environment from entry into the environment until the present moment, “now”. Backward-pointing grey vector: the magnitude of the grey vector indicates the time over which the agent looks into its past. Its termination points to the amount of reward so far accumulated over that interval of time. Right-hand y-axis: the magnitude of future reward options.
Figure 19. *Subjective value derived from the TIMERR algorithm and graphically depicted*

Under the TIMERR conception, a future offer of reward of known magnitude and temporal displacement \((r_2, t_2)\) is equivalent to an offer of reward presented at the current moment of time \((r_1, t_1)\) that effectuates the same realizable session reward rates (the slope of blue and red choice vectors), as graphically depicted above. This graphical depiction of TIMERR, thus provides a ready visual means of apprehending the subjective value of any outcome; it is the y-axis intercept at the present moment of time (red circle with blue fill represents the subjective value of option1 being equivalent to the subjective value of option 2). Therefore, as subjective value is the magnitude of reward given now that is perceived as being equivalent to a larger later reward, the TIMERR algorithm can be
used to derive an expression for subjective value by setting the future reward option
\((r_2, t_2)\) as equal to a present reward option \((r_1, t_1)\) where \(t_1 = 0\) and solving for \(r_1\), the
subjective value of the larger later offer. The expression for subjective value, so derived,
is given in equation (3.8). Note that in this instance, reward options result in realizable
session rates of reward that exceed the experienced reward rate (slope of the black vector)
of the agent (black circle), and are accordingly positive subjective values. Were an
option to result in a realizable session rate below the experienced rate of reward, its y-
axis intercept would be negative, resulting in a negative subjective value.
3.2.2.3 Expressing the TIMERR algorithm in terms of Subjective Value

Subjective value is the magnitude of reward available “now” (see Figure 19) that is perceived as being equivalent to a larger later reward. Indeed, decision-making using the TIMERR algorithm, rather than being a determination of session reward rate as in Equation (3.7), can alternatively be re-conceptualized as selecting the option offering the highest positive subjective value. In this re-conceptualization of the TIMERR algorithm, the subjective value of a future reward option is equivalent to the magnitude of reward given “now” that yields the same session reward rate. Therefore, the graphical depiction of the TIMERR algorithm in the preceding figures provides a ready means of determining the subjective value of any presented offer: subjective value is the y-intercept of the offer’s session rate vector at the present moment of time.

Consider the options presented in Figure 19. Option 2 is a reward of magnitude, r_2, set to occur at a delay, t_2, in the future. Selecting this option will yield a session reward rate given by the slope of the blue vector. Option 1 is a reward of magnitude, r_1, occurring now ($t = 0$) that yields the same session reward rate as Option 2 (the slopes of the red and blue vectors are equal). As subjective value is the magnitude of reward given now that is regarded as equivalent to a larger later reward, setting t_1 to zero and solving for r_1 is solving for the subjective value of Option 2. Therefore, by so expressing reward options as an equality between a future offer and an offer presented now that yields the same
session reward rate, the decision-making algorithm of TIMERR can be used to derive the subjective value of any reward. As shown in the figure, this can be expressed as

$$SV(r,t) = \frac{r - a_{est}t}{1 + \frac{t}{T_{ime}}}$$

(3.8)

where $a_{est}=R/T_{ime}$ is the past reward rate, and $SV(r,t)$ is the subjective value of a reward of magnitude r delayed by t.

The derivation of subjective value from the TIMERR algorithm (Figure 19, Equation (3.8)) provides an opportunity to appreciate this deceptively simple process from a different perspective. The subjective value of a future offer is defined, in part, by the numerator, being the magnitude of the offered reward, r, less the amount of reward expected to occur in lieu of taking the offer. The amount of reward expected to occur in lieu of taking the offer is the opportunity cost, $(a_{est}t)$, which is determined by multiplying the experienced rate of reward $(a_{est} = R/T_{ime})$ by the time required for the offered reward’s acquisition (t). The denominator is the explicit cost of time itself, and is notable in that the general form it takes bears resemblance to that of typical discounting functions, save for the fact that they have a free-fit parameter governing the steepness of discounting in time. Here, the discounting constant (like k in Equation (3.2)) for time is not a free-fitting parameter of uncertain biological meaning but rather is the reciprocal of the look-back time, T_{ime}. By so expressing TIMERR in terms of subjective value, the experienced reward rate is understood as governing opportunity cost, whereas T_{ime} controls the steepness of temporal discounting.
3.2.2.4 The effect of changing the look-back time, T_{ime}, and the magnitude of accumulated reward, r, on the valuation of given reward options.

What then is the effect of different look-back times and magnitudes of accumulated reward on the subjective value of given reward options? Let us first consider the effect of the look-back time, T_{ime}, as we have in prior figures (Figure 16 & Figure 17), but from the perspective of determining the subjective value of rewarding options. An agent, as in Figure 20, that looks-back a relatively large amount of time into its past to calculate its experienced rate of return in the environment regards the larger later reward option as the option with the highest subjective value. However, if the agent’s look-back time were to be less extensive, an intermediate value of T_{ime} exists that results in the agent regarding the same offers as subjectively equivalent. In the particular instance given in Figure 20B, the subjective values of option 1 and 2 are equivalent and have a value of zero, for choosing either option would neither advance nor retard the reward rate experienced in the environment. If T_{ime} were to be smaller still, the smaller earlier option would be evaluated as having the greater subjective value (Figure 20C). Therefore, the amount in which the animal looks back into its past affects choice behavior to what otherwise would be regarded as the same reward options, as mentioned previously.

How does the amount of accumulated reward acquired by the agent over a fixed amount of time affect the evaluation of subjective value? Consider the agent with a fixed look-back time (T_{ime}) that is offered the same rewarding options in three different
environments yielding low, modest, and high (Figure 20D-F) experienced reward rates. Having experienced a low rate of reward (Figure 20D), the offers presented are evaluated such that larger later reward option has the highest subjective value. In the modestly rewarding environment (Figure 20E), both offers are equivalent and have a value of zero, as choosing either option, again, neither advances nor retards the reward rate experienced. Finally, in the higher reward environment (Figure 20F), the same reward options presented to the animal evaluate such that the smaller earlier option has the greater subjective value. Therefore, as with T_{lin}, the amount of reward accumulated ($R=a_{ext}$) over that look-back time affects the evaluation of subjective value to the same rewarding options. The significance of these effects is that ostensibly inconsistent choice behavior may manifest from the consistent application of the TIMERR algorithm maximizing reward acquisition.
Figure 20. The effect of changing the look-back time, T_{ime}, and the magnitude of accumulated reward, R, on the valuation of given reward options

(A-C) The effect of changing T_{ime} on the valuation of a pair of known reward options ((r_1, t_1), (r_2, t_2)) evaluates to different session rates of reward, and therefore, different choices, such that the agent in (A) that looks back a relatively longer amount of time selects option 2, whereas the agent in (B), looking back an intermediate amount of time regards the options as equivalent, and finally, where the agent in (C), that looks back a brief amount of time, selects option 1. (D-F) The effect of varying the experienced reward rate ($R= a_{\text{eff}}$) obtained from a low (D), modest (E), or high (F) reward environment, on the valuation of the same reward options. D) When having experienced a low rate of
reward, the offers presented evaluate such that the larger later reward option is greatest.
E) In a more rewarding environment, both offers evaluate to the same subjective value, being zero, as neither advances nor retards the reward rate experienced. F) In an even more rewarding environment, the same reward options evaluate such that the larger later reward yields the greater of the two subjective values. Parametrically changing the look-back time, T_{line}, or the magnitude of accumulated reward, R, is thus shown to affect the experienced reward rate and therefore, the valuation of future reward options, thereby determining option selection.
Figure 21. *When should an offered reward be forgone?*

A) An agent, having experienced a net positive rewarding environment, is presented with reward options 1&2 and selects option 1 as it yields the highest session reward rate, or equivalently, the highest subjective value (red circle). B) The same reward options presented again to the agent, but subsequent to having obtained a higher experienced rate than that in (A), are now forgone, as their respective realizable session reward rates are less than the experienced reward rate, and thereby evaluate to negative subjective value. So, despite the fact that the offer’s session reward rates are positive, the agent forgoes the reward options presented in the instance presented, as its experience in the environment indicates that a superior reward option is expected to occur in the future. The environment shown here is similar to that shown in Figure 20F. Hence, even in Figure
20F, if the agent had an option to choose either reward or forgo both, both would be forgone.
3.2.2.5 When should an offered reward be forgone?

When should reward options be foregone? TIMERR dictates that the option that yields the highest positive subjective value is chosen, so ensuring that the most reward possible is garnered while in the environment till now. Consider, for instance, the agent depicted in Figure 21A, which, having experienced a net positive rewarding environment, is presented with reward options 1&2. In this case, the agent selects option 1, in that that option yields the highest achievable session reward rate, or equivalently, the highest subjective value (red circle). Should the agent have experienced an even greater reward rate (slope of black vector) after continuing to forage in the environment, as in Figure 21B, the same offers now evaluate to negative subjective values, as their session reward rate vectors now have negative y-axis intercepts. So, despite the fact that the offer’s session reward rates are positive, the agent should and would (if given the option) forgo the reward options presented in this instance, as they yield session rates of reward that are less than the experienced reward rate.

3.2.2.6 Choosing a punishment over a reward?

Presently, I have only considered intertemporal decision-making with respect to rewarding outcomes. Of course, behaviorally significant events can be not only rewarding but punishing as well. Faced with an option to choose a punishing or a rewarding outcome, would an agent ever choose the punishing one? The agent in Figure 22A is presented such an option between a punishment at a short delay \((r_1, t_1)\) and a
reward at a long delay \((r_2, t_2)\). If it has experienced a net positive reward environment as depicted, both offers in this instance evaluate to negative subjective values (as their realizable session reward rates are lower than that of the experienced rate of reward). Therefore, in keeping with the prior section, the agent would forgo both options. However, should the possibility of additional trials be contingent on completing the current one, as is often the case experimentally in forced-trial designs, selecting the early punishment over the later reward would be optimal as it incurs the least cost. In this case, then, an early punishment would be chosen over a later reward.

Might then a later punishment ever be selected over an earlier reward? Envision an environment where the net accumulated reward is negative (i.e. there is an experienced rate of punishment). As depicted in Figure 22B, an agent in such an environment, given the options depicted between an early reward and a later punishment, would pick the later punishment. The agent would pick the later punishment because it effectuates the greatest positive change (greatest decrease in the rate of punishment) in the session reward rate, thereby expressing the highest positive subjective value.

The examples in Figure 22A&B give insight into what circumstances lead to the unintuitive selection of earlier or later punishment over a reward. What, however, is the effect of changing the environment to a net negative one on the valuation of given offered rewards, as in Figure 22C&D? In Figure 22C the agent is in a net neutral environment and is given an option between two rewards that are of the same magnitude, but displaced in time. Here, the subjective value of the early option is the greatest, as the added cost of time diminishes the subjective value of the equally sized, later reward. However,
presented with the same reward options but now when having experienced a net negative
rewarding environment, the same agent selects the later over the earlier reward. Why?
In this case, it is not only the magnitude of reward that decreases the rate of punishment,
but also its associated delay; time, rather than having an associated cost, can under some
circumstances have an associated \textit{gain}.

These instances, albeit unusual, are instructive in that no trial-reward-rate-maximizing
agent would ever choose to forgo a reward option (as in section 3.2.2.5), nor select the
punishment option (as in this section), nor pick a later instance of an equivalently sized
reward.
Figure 22. *Choosing a punishment over a reward?*

A) Given a net rewarding environment, outcome options between an early punishment and a later reward may be presented to an agent such that evaluation of the outcomes yields a higher subjective value for the early punishment. In this case, note that the subjective values of either offer are negative, and therefore would be forgone by the
agent. However, if continuation of foraging for reward is contingent on making a choice between the options at hand (as is commonly the case in forced-choice experiments), the agent would select the early punishment as it incurs the least cost to the animal. B) Conversely, an agent may choose a later punishment over reward were it to have been experiencing a net negative reward (punishing) environment. In the case depicted, the later punishment is selected as it has the highest subjective value. C&D) When might an agent prefer a later reward of a given magnitude over an earlier reward of the same magnitude? C&D depict the case where an agent selects the earlier reward in one case (C; a net neutral environment) and the latter reward in another (D; a net negative rewarding environment).
Figure 23. *Subjective value expressed as a discounting function, and, the effect of T_{ime}*

A. The realizable reward rate (the slope of the blue vectors) of an offer of magnitude, r, starting from the present moment and arrayed at fixed intervals into the future (black dots), is depicted for an agent that has accumulated a total reward R, over its look-back time, T_{ime}. Red dots along the “now” y-axis indicate the subjective value of the offer at corresponding delays (the magnitude of the offer needed now that would be treated as subjectively equivalent to the later larger reward). Note that as the offer recedes in time, the realizable reward rate, and therefore subjective value, correspondingly drops, but
diminishingly so. B. Expressing the subjective values derived in (A) in terms of a
discounting function. By reploting the subjective values of the reward option, \(r \), across
fixed intervals of \(t \), to their corresponding delays, the drop in subjective value of a given
offer with time can be appreciated. Note, here, that the y-axis, equivalent to that shown
in (A), is now re-expressed as subjective value per unit of offered reward. The resulting
temporal discounting function is hyperbolic in shape, according with the preponderance
of experimental observation. C. The effect of looking back more distantly into the past.
For the same offers of reward as that considered in (A), an agent looking back more
distantly into its past (but experiencing the same accumulated reward) will evaluate those
offers as having higher realizable rates of return and therefore correspondingly higher
subjective value (purple dots along the y-axis, “now”). Replotting those subjective
values as in (B), one then observes that agents that look back over greater stretches of
time into their past, treat nominally the same reward offers as being more valuable, and
therefore generate apparent discounting functions that are less steep. In short, the larger
the value of \(T_{\text{ine}} \), the less steep apparent discounting; alternatively, the more patient the
agent. E) Discounting Function. Discounting functions convey subjective value
(\(SV(r,t) \)) of an offer as a function of time, expressed as a fraction of the offer’s outcome
magnitude. Replacing \(SV(r,t) \) for the right-hand side of equation (3.8) and then
simplifying yields the TIMERR algorithm expressed as a temporal discounting function
(Equation (3.9)). Of central importance is that the term controlling the steepness of
temporal discounting function is not a free-fit parameter of uncertain biological meaning
but rather is the reciprocal of the look back time of the animal (\(1/T_{\text{ine}} \)).
3.2.2.7 Re-expressing subjective value as a discounting function, and the effect of T_{ime}.

The degree to which one looks back into the their past as well as the magnitude of reward accumulated over that time have both been shown to fundamentally affect the valuation of future rewards; yet, I have not systematically examined the effect of delaying a given outcome on its valuation. Consider the agent in Figure 23A that has experienced a net positive reward, R, over its look-back time, T_{ime}. If presented a reward of magnitude (r) at the present moment of time, how does this reward’s temporal displacement into the future affect its valuation? From the perspective of its realizable reward rate in the environment, this rate (the slope of the blue vectors) decreases as the reward is displaced further into the future. Equivalently, for each delay examined, the subjective value can be calculated (Equation (3.8), see Figure 19) and appreciated graphically as the corresponding vector’s y-intercept at the present moment of time (“now”). As a given sized reward recedes into the future, its subjective value correspondingly drops with a decreasing rate. Indeed, by re-plotting the subjective values to their respective delays, as in Figure 23B, the manner by which subjective value decreases with time can more readily be appreciated; it is in fact—when expressed as a fraction of the actual outcome magnitude—the “temporal discounting function”. The discounting function is thus expressed mathematically as
By so re-expressing subjective value, evaluation of an offer by the TIMERR algorithm can be understood in terms of an *apparent* discount function. One need note, however, that the drop with time of 1) the slope of realizable reward rate, 2) the subjective value, and 3) the discounting function are all mathematically equivalent means of understanding the TIMERR algorithm. So, while expressing intertemporal decision-making by TIMERR in terms of a discounting function is of use in relating it to established notions of discounting functions, from the perspective of the TIMERR algorithm, there is no requirement to actually *have* a discounting function. As such, its observation is but a consequence of the TIMERR algorithm rather than evidence of an entity (with agency) that is applied to offers so as to determine their subjective value, as commonly held. Nonetheless, the shape of the apparent discounting function that derives from the TIMERR algorithm is hyperbolic in form, according well with the preponderance of experimental observation (G. Ainslie & Monterosso, 2003; G. Ainslie, 1975; Kalenscher & Pennartz, 2008; G. Loewenstein & Prelec, 1992).

An important feature of TIMERR then, is that the *apparent* discount function is controlled by the amount of time that the agent looks back into its past, T_{ime}. The effect of looking back in time on the steepness of discounting is readily apparent by comparing Figure 23A&B to panels C&D. The longer the agent looks back, the more patient the agent appears to be, being more willing to wait for the same magnitude of reward at a
greater temporal delay. Conversely, the less the agent looks back into its past, the more impulsive, seemingly, the agent. Therefore, whereas extant models of temporal discounting inject a free-fit parameter of unknown biological meaning so as to best approximate experimental observation, the feature that wholly controls the steepness of discounting in the TIMERR conception is the degree to which the agent looks back into its past.

3.2.2.8 The Magnitude Effect

The applicability of the TIMERR conception to understanding intertemporal decision-making rests on making an accounting for hallmark observations well established in the behavioral literature. Above, I have ascertained that the appearance of hyperbolic discounting would be observed in an agent that operates in a manner consistent with the TIMERR algorithm. Since the TIMERR algorithm maximizes reward under experiential constraints, temporal discounting that exhibits a hyperbolic form resulting from TIMERR is not irrational, but rather reward maximizing. Might other so-called “anomalous observations” (in economics, see (Frederick et al., 2002; Kalenscher & Pennartz, 2008; G. Loewenstein & Prelec, 1992) for reviews) in intertemporal-decision making be similarly predicted by the TIMERR algorithm, and if so, be shown not to be deficiencies in, but rather signs of, rational decision-making?

One such hallmark observation is that of the “magnitude effect”, wherein the steepness of observed temporal discounting is dependent on the magnitude of the offered reward, such
that larger rewards exhibit shallower discounting than smaller rewards. Might the magnitude effect be a natural consequence of the TIMERR algorithm? As in the prior figure, subjective value can be determined for a reward of a given magnitude that is arrayed across temporal delays (Figure 24A), and re-plotted as a temporal discounting function (Figure 24B). Consider, now, the subjective values for a reward half that magnitude arrayed across the same range of delays (Figure 24C). By similarly re-plotting subjective values, normalized to the magnitude of the offer as before, it is apparent that the steepness of discounting decreases the larger the offered reward magnitude (Figure 24D). Therefore reward rate maximization while in an environment results in the appearance of a discounting function that is sensitive to the magnitude of offered reward.
Figure 24. *The Magnitude Effect is a consequence of experientially constrained reward rate maximization as conceptualized by TIMERR*

A) Realizable reward rates (the slope of blue vectors) to a reward of a given size but arrayed in time illustrates how the rate of return decreases, diminisingly, as the reward recedes in time. The subjective value of each offer can be found as its y-intercept at the present moment (“now”). B) Discounting function of the temporally arrayed offer in (A). By replotting each subjective value to its corresponding temporal interval, subjective value is observed to decrease hyperbolically with temporal delay. C) Realizable reward
rates are again plotted but to a reward arrayed through time of half the magnitude as that in (A). The subjective value of each offer is again found as its corresponding y-intercept at the present moment (“now”). D) The discounting function of the temporally arrayed offer in (C, purple) compared to that derived in (B, red) demonstrates that the steepness of discounting is less steep for the larger of the two rewards, ie, the “Magnitude Effect”. Subjective value is normalized to the reward magnitude when plotting the discounting function.
Figure 25. The “Sign Effect” as explained by the TIMERR conception, in net positive, negative, and neutral reward environments.
A. The sign-effect in a net positive reward environment. Experienced reward history generates a bias in evaluating equivalently sized outcomes of opposite sign, leading to an apparent discounting function for rewards that is less steep than that for punishments. B. The “sign-effect” as predicted by TIMERR for an agent having experienced a net negative reward environment also exhibits asymmetric discounting functions for rewards and punishments, yet here, punishments rather than rewards discount less steeply, ie. the sign of the sign-effect is reversed. C. The absence of a net positive or negative reward experience leads to the absence of bias in evaluating the worth of rewards and punishments. Under this condition, outcomes of equivalent magnitudes, be they rewards or punishment, discount at the same rate. Therefore, given a net neutral reward experience within an environment, the sign effect will not be observed.
3.2.2.9 The Sign Effect

Another so-called anomalous behavior observed in intertemporal decision-making is that of the “sign-effect” wherein outcomes of equal magnitude but opposite sign are observed to discount at different rates; specifically, that rewards discount more steeply than punishments. The origins and necessary conditions of this effect are evident in the graphical depiction of TIMERR in Figure 25A-C. Here, an agent considers rewards and punishments of equal magnitude arrayed into the future under three different environments: net positive (Figure 25A), net negative (Figure 25B), and net neutral (Figure 25C) outcome environments. Within the first environment (Figure 25A), the agent has experienced a net positive accumulation of reward, \(R \), over its look back time, \(T_{\text{time}} \), and therefore has a positive experienced rate of reward (black vector). Following prior convention, realizable reward rates given any outcome selection are depicted as the slope of the choice vectors (blue) connecting the agent’s past self to its future self having chosen an option. The intersection of these choice vectors with the y-axis at the present moment of time yields the outcomes’ respective subjective values. Re-plotting these subjective values to their corresponding temporal delays produces the temporal discounting functions for the positive and negative rewards (as all outcomes considered are of unit magnitude, the y-axis of subjective value is equivalent to a y-axis of subjective value normalized by unit outcome magnitude). The origin of the sign-effect in a net rewarding environment is then understood as the effect of reward magnitudes countermanding opportunity cost, while punishment magnitudes exacerbating opportunity cost.
In Figure 25A, I note that the sign-effect arises due to the opposite impact of magnitude of rewards and punishments on opportunity cost. Suppose, however, that an agent has experienced a net negative (punishing) environment (Figure 25B). Should the sign-effect be observed? In that outcomes of equal magnitude but opposite sign are observed to discount at different rates, yes, a sign-effect would, under the TIMERR conception, be observed. However, should the “sign-effect” be defined as rewards discounting more steeply than equally sized punishment, then no. Rather, TIMERR predicts that in net negative environments it is punishments that discount more steeply than equally sized rewards. The sign of the “sign-effect” flips in net negative environments. Why?

Whereas in net rewarding environments there is an opportunity cost associated with any reward in time, in net punishing environments there is an opportunity gain associated with any punishment in time. Therefore, the origination of this sign-effect in a net punishing environment is understood as the effect of punishment magnitudes countermanding opportunity gain, whereas reward magnitudes combine with opportunity gain.

What then of the sign-effect if the agent has experienced a net neutral reward environment? In this case (Figure 25C) there is no opportunity cost/gain associated with any reward or punishment. Therefore, rewards and punishments of equal magnitude neither countermand not exacerbate opportunity cost, leading to discounting functions that are equivalently steep. An important aspect, then, in determining the presence, severity, and sign of the sign-effect is the nature of the outcome environment experienced. In conclusion, the “sign effect” (Frederick et al., 2002; Kalenscher &
Pennartz, 2008; G. Loewenstein & Prelec, 1992), as the “magnitude effect” (Frederick et al., 2002; Kalenscher & Pennartz, 2008; G. Loewenstein & Prelec, 1992), is a consequence of experientially constrained reward rate maximization as conceptualized by TIMERR, not a flaw in rational decision-making.

3.2.2.10 New perspective on the meaning of the terms in Equation (3.9)

In the above sections, I have treated T_{ime} as representing the total time an agent has spent within a session, and a_{est} as the ratio of the total reward achieved during this time to T_{ime}. However, real animals face at least three major constraints that limit the validity of this interpretation: (1) their reinforcement environments are not stationary; (2) there is increasing computational and metabolic costs associated with integrating over a long time, and, (3) indefinitely long intervals without reward cannot be sustained by an animal (while maintaining fitness) even if they were to return the highest long-term reward rate (e.g., choice between 10,000,000 units of food in 100 days vs. 10 units of food in 0.1 day). Hence, I think that the duration of T_{ime} is more appropriately thought of as a “past integration interval” over which recent reward history (a_{est}) is estimated, instead of the total time spent in an environment. The value of T_{ime} might in fact need to be adjusted to the current environment so as to make optimal decisions (see Section 3.4 for a longer discussion). Further, it must be pointed out that the past reward rate (a_{est}) might not be as simply estimated as the ratio of the rewards accumulated over T_{ime}, to T_{ime}. This would
imply that rewards obtained just beyond T_{ine} have zero contribution to the past reward rate whereas all rewards obtained within T_{ine} contribute fully. In fact, I have shown previously that if the updating of the past reward rate has to be done locally (without storing every past reward’s magnitude and time of receipt in memory), the past reward rate has to be calculated using an exponential weighting function (Namboodiri, Mihalas, Marton, et al., 2014). Hence, since T_{ine} is the effective duration over which past reward rates are estimated, I will refer to it from here on as the “past integration interval” and not the “look-back time” as in prior sections.

3.2.2.11 Connection to experimental data

In this section, I review experimental data from a wide array of fields that can be systematized by my theory. For this purpose, I treat typical human and non-human animal experiments separately as typical human experiments differ from animal experiments in one fundamental way: humans are often given hypothetical rewards involving hypothetical delays. However, animals face real rewards requiring real investments of time. I will first cover non-human animal experiments. But before considering them separately, I will first discuss commonalities in animal and human experiments. In both groups, hyperbolic discounting has provided better fits to data than exponential discounting functions (e.g. G. Ainslie & Monterosso, 2003; G. W. Ainslie, 1974; G. Ainslie, 1975; Benzion et al., 1989; Calvert et al., 2010; Green et al., 1994; Holt et al., 2003; Kobayashi & Schultz, 2008; Rachlin et al., 1972; Thaler, 1981), as predicted by DUT (however for an exception, see (Schweighofer et al., 2006)). My theory fits with
this observation as Equation (3.9) predicts a temporal discounting function that is a hyperbolic discounting function minus a constant \((a_{est} T_{time})\) that depends on the immediate reinforcement history.

Another finding that is consistently observed across humans and non-human animals is variability in the discounting steepness within and across individuals (G. Ainslie & Monterosso, 2003; G. W. Ainslie, 1974; G. Ainslie, 1975; Benzion et al., 1989; Blanchard et al., 2013; Calvert et al., 2010; Frederick et al., 2002; Green et al., 1994; Holt et al., 2003; Jimura, Myerson, Hilgard, Braver, & Green, 2009; Kobayashi & Schultz, 2008; Myerson & Green, 1995; Odum, 2011; Pearson et al., 2010; Rachlin et al., 1972; Richards, Zhang, Mitchell, & de Wit, 1999; Rosati, Stevens, Hare, & Hauser, 2007; Shamosh et al., 2008; Thaler, 1981). While common accounts of such variability invoke differences in “personality” (or other psychological/neurological) traits (Warren K Bickel et al., 2007; Kalenscher & Pennartz, 2008; Madden & Bickel, 2010; Odum, 2011; Richards et al., 1999; van den Bos & McClure, 2013), I ascribe it a more functional meaning: variability across subjects reflects variability in the past integration interval, appropriate for the individuals’ respective reward environments. Relatedly, apparent differences between subjects may actually reflect differences in experienced past reward rate \((a_{est} \text{ in Equation (3.9)})\). Nonetheless, some variability across subjects may yet lie in subjects’ innate neural differences, independent of their environment or experience.

3.2.2.11.1 Data from non-human animals

A fundamental prediction of Equation (3.9) is that the discounting steepness will depend on the past reward rate. This means that, for instance, when the duration between rewards
is increased, animals should become more tolerant to delays, since the longer the duration between rewards, the lower the past reward rate and therefore, the lower the discounting steepness (Figure 20). Data from (Blanchard et al., 2013) discussed in Section 3.2.1 support this prediction. As mentioned above, they observed lower levels of discounting steepness when the post-reward delays (equal for both options in experiment 3) were increased. Since they wished to use this observation to advance a rate-maximizing equation such as Equation (3.5), they had to further assume that representations of post-reward delays are biased. As discussed earlier, this is not consistent with many other experimental results on time perception (e.g. Buhusi & Meck, 2005; Matell & Meck, 2004). A simpler explanation for their data, within a reward-rate maximizing framework is the one I’ve proposed. Another paper that observes a similar effect in a different task is (James E Mazur & Biondi, 2011). In their study, they found that the delay at which a delayed reward is treated as equivalent to a standard reward of fixed magnitude and delay, depended on the intertrial interval, again consistent with the effect of reducing past reward rates.

Another key prediction of Equation (3.9) is the “magnitude effect”, as shown in Figure 24. Before considering experimental evidence addressing whether animals show “magnitude effect”, note that in Figure 24, I assumed the past reward rate to be constant, or at least equal for both reward options. Is this assumption valid in interpreting results from experiments?

There are two kinds of experimental designs used to study “magnitude effect” in animals. One is an “adjusting-amount” or “titration” procedure. In this design, a standard reward
option (with fixed delay and magnitude) is compared against an option with an immediate reward with varying magnitudes. The magnitude of the second option is adjusted depending on the animal’s previous choice. If the animals choose the second option, then its magnitude is decreased and vice-versa. Discounting functions obtained from such experiments did not show any difference in the indifference point—the magnitude at which both options are treated equivalently—for different magnitudes of the standard option (Calvert et al., 2010; Freeman, Green, Myerson, & Woolverton, 2009; Green, Myerson, Holt, Slevin, & Estle, 2004; Green & Myerson, 2004; Richards, Mitchell, de Wit, & Seiden, 1997). Therefore, these authors conclude that there is no observable “magnitude effect”. Another kind of experimental design used to study “magnitude effect” in animals is a “concurrent chains task” (R. C. Grace, Sargisson, & White, 2012; R. C. Grace, 1994; R. Grace, 1999; Kinloch & White, 2013; Ong & White, 2004). In this design, animals responded to concurrently available options (keys to peck, for instance) in a “choice phase” so as to access one of two reinforcement schedules (different rewards at differing delays) in an “outcome phase”. In the earlier versions of this experiment (R. Grace, 1999; Ong & White, 2004), the magnitude for both options was equal in one block. Once preferences at that magnitude were measured, observations were repeated for a different magnitude. In both the above types of experiments, it is clear that when the magnitude under study was large, so was the past reward rate. Looking back at Equation (3.9), it is evident that when the past reward rate is proportional to the reward magnitude, the effect of the reward magnitude cancels out such that there will be no “magnitude effect”. Interestingly, when the above authors repeated the “concurrent chains” design with a simultaneous change of magnitude and
delay, they observed a “magnitude effect” in pigeons as well as humans (R. C. Grace et al., 2012; Kinloch & White, 2013). While this result has not been explained yet, it has a straightforward explanation in my framework: when both magnitude and delay are changed across reinforcement schedules, the past reward rate will not be simply proportional \((a_{est} \text{ would still show a positive correlation with } r)\) to the reward magnitude, as when only the magnitude was changed. Hence, the \(a_{est}/r\) term in the numerator of Equation (3.9) does not cancel out, revealing the “magnitude effect”.

It is important to point out that a descriptive model of discounting that has been recently proposed (Killeen, 2009) can indeed fit the “magnitude effect” data in (R. C. Grace et al., 2012), along with an earlier descriptive model (R. C. Grace, 1994). Interestingly, Killeen’s additive utility model has mathematical similarities to Equation (3.9). Yet there is no explanation for why there is an additive term in this model. In my theory, a subtractive opportunity cost automatically emerges as a direct consequence of experientially informed rate maximization. Precisely due to this difference, my theory also predicts that in experimental designs where the subtractive opportunity cost term is directly proportional to the reward magnitude, there will be no observed “magnitude effect”. Such data cannot be explained by the additive utility model.

Another prediction of Equation (3.9) is the “sign effect”, as shown in Figure 25. This prediction is however, methodologically challenging in animals since it is difficult to create punishments of equal magnitudes as rewards. Nevertheless, it has strong support in human data, as will be discussed in the next section.
The most important prediction, however, of Equation (3.9) is as yet untested. This is the prediction that as the duration over which past reward rates are estimated increases (or decreases), the steepness of temporal discounting decreases (or increases). This will provide the direct falsifiable test of my theory. However, as discussed in the next section, some indirect evidence from humans supports the above prediction.

3.2.2.11.2 Data from humans

As mentioned earlier, my theory, TIMERR, was developed in the context of optimal foraging, as we hoped to find an evolutionary argument for discounting. It is in fact derived from the same starting postulate as Optimal Foraging Theory—that animals evolved to maximize reward rates (the key difference being that while OFT holds that only future reward values matter, TIMERR uses the past to inform the maximization of reward; in some sense, an algorithm for infinite-time-horizon maximization of reward rates, as postulated in OFT, can be thought of as TIMERR with $T_{\text{time}}=\infty$). Hence, the theory was developed assuming that tasks faced by animals involve real rewards which require real investments in time. Crucially, all animal tasks that I am aware of require the animals to invest the delay solely for the purpose of collecting an offered reward. In other words, in animal tasks, they cannot go about their daily lives seeking other opportunities for reward while waiting for the promised reward to become available. This is, however, different for typical human tasks (see Frederick et al., 2002; Kalenscher & Pennartz, 2008 for a review). In typical human tasks, one is asked hypothetical questions involving hypothetical delays. Let us consider an example: “what would you prefer: $10 in an hour or $20 in four hours? After the chosen delay expires, we will come find you and pay you
the amount”. From anecdotal experience, I have observed that most people prefer $20 in four hours. How does this vary from typical animal tasks? To see this difference, let us now consider a different question: “what would you prefer: $10 for waiting in line for an hour or $20 for waiting in line for four hours? If you wait for the delay, the reward delivery is certain”. Interestingly, the choice in this question is typically the former: most people do not want to invest the real four hours for obtaining just $20. Even more interesting was the observation that anyone that tended to still favor the $20 was a (poor) graduate student, or currently unemployed. This too, makes sense. If one’s hourly salary is being cut during the wait time, a rich CEO would never wait four hours for $20, whereas a graduate student might gladly do so because his/her opportunity cost for waiting is close to zero. This experiment, though anecdotal, immediately makes it intuitive that animal experiments are different from typical human experiments involving hypothetical questions. It also intuitively explains why it is important for animals to include opportunity costs in their decisions. TIMERR goes beyond this simple realization only in deriving that the effective time interval over which opportunity costs are calculated directly determines the steepness of temporal discounting, in addition to the opportunity cost itself.

In light of this realization that opportunity costs are not directly enforced in typical human tasks, how can TIMERR explain such data? Does Equation (3.9) apply to such decisions? I reason that the mathematical form of Equation (3.9) would still apply to such decisions but the meaning of the terms might be different. Specifically, I believe that T_{line} would still be a past integration interval, but instead of it being determined by the
experience of the subject, it might be determined by the hypothetical choice at hand. For instance, when one considers choices involving delays of seconds versus choices involving delays of hours, the past integration interval would adjust flexibly so as to provide an appropriate time frame for the question at hand. Perhaps this underlies the observation that when average delays are long, temporal discounting is correspondingly shallow, compared to when the average delays are short (Carter, Meyer, & Huettel, 2010; Frederick et al., 2002; Jimura et al., 2009; Kable & Glimcher, 2007; Kalenscher & Pennartz, 2008; G. Loewenstein & Prelec, 1992; Luhmann, Chun, Yi, Lee, & Wang, 2008; McClure et al., 2004; Rosati et al., 2007; Schweighofer et al., 2006).

The numerator of Equation (3.9), on the other hand, has a subtractive term which reflects the opportunity cost of waiting. Since there is no real waiting required, one might suppose that opportunity costs may not exist in such decisions. However, the subtractive term in the numerator of Equation (3.9) could arise due to two possible reasons: 1) even though such choices are typically one-shot, it might be implicitly assumed that the choices will repeat, such that an opportunity cost based on the presented options (e.g. average reward rate of the presented options) is automatically included in the decision, or alternatively, 2) humans could incorporate a model of linear risk into such decisions.

In the former possibility, the subjective value of a delayed reward would still be given by Equation (3.9), but with the a_{est} term representing the average reward rate modeled based on the current environment (i.e. current options). A prediction of this account would be that every option presented on a given choice will affect the decision; in a choice between two options, adding a third decoy option worse than both should have an effect on the
choice even though the decoy option would never be picked. A similar observation (though not in intertemporal decisions) is commonly known as the “decoy effect” or the “asymmetric dominance effect” in marketing (e.g. Huber, Payne, & Puto, 1982), wherein adding a decoy option (inferior in all respects to one option but not easily comparable to the other) automatically shifts preference towards the option that is superior to the decoy. For a longer discussion on how decisions between options are made in relation to the environment, see (Ariely, 2008).

To explain the second possibility of a linear risk, let us consider an example: “you are offered a bag of M&M’s candy containing 100 candies, available to you after 15 minutes. However, during the 15 minutes, the bag is left open on a table in the hallway. How many candies would you expect to receive after 15 minutes?” If one assumes that there is a constant probability of 0.5 that everyone walking by the hallway will pick a candy each, and one expects 20 people to walk by the hallway in 15 minutes, the expected number of candies will be: 100 – 0.5*20*1 = 90. If the bag were left out for a time long enough that at least 200 people are expected to pass by, the number of candies left would be zero.

Thus, the simplest model of risk involved in delaying a reward is that the offered reward reduces in magnitude at a constant linear rate over time, i.e.

\[\frac{dr(t)}{dt} = -k \]

(3.10)

If humans do include such a risk model in their decisions, the expected reward that can be collected after waiting the given delay of \(t \) will be \(r(t) = r - kt \). If they simply calculate the net expected reward rate by dividing this quantity by the past integration interval plus the
delay \(t \) (just like in the earlier treatment of TIMERR), their subjective value will look like Equation (3.9), with the linear opportunity cost term \((a_{est}t)\) being replaced by \(kt\), i.e.

\[
SV(r,t) = \begin{cases}
\frac{r - kt}{1 + \frac{t}{T_{\text{time}}}} & ; t < \frac{r}{k} \\
0 & ; t \geq \frac{r}{k}
\end{cases}
\]

(3.11)

Hence, the mathematical predictions from Equation (3.9) like “magnitude effect” and “sign effect” would still hold.

There is no first principles reason for why a risk model such as the one envisaged in Equation (3.10) would be employed by humans in these hypothetical questionnaire tasks. Nevertheless, a similar risk model has been assumed in a recent successful descriptive model of discounting (Killeen, 2009). Also, see my previous paper (Namboodiri, Mihalas, Marton, et al., 2014) for more complex models of risk. Mathematically, the two possibilities mentioned above are equivalent and result in the same predictions presented earlier.

Numerous papers evidence “magnitude effect” (Benzion et al., 1989; Frederick et al., 2002; Green et al., 1994; Green, Myerson, & McFadden, 1997; Thaler, 1981) and “sign effect” (Benzion et al., 1989; Frederick et al., 2002; Thaler, 1981) in humans. This has also been repeated using real rewards, instead of hypothetical rewards. In fact, a recent paper using a task typically done by animals (“concurrent chains task” mentioned in Section 3.2.2.11.1) in humans choosing between hypothetical rewards also showed a clear “magnitude effect” (Kinloch & White, 2013). Another prediction of TIMERR is
that the size of the “sign effect” will be larger for smaller magnitudes (see Consequences of the Discounting Function in the Appendix of Namboodiri et al., 2014). This too has been observed in experiments (Benzion et al., 1989; G. Loewenstein & Prelec, 1992; Thaler, 1981). Further, Equation (3.9) predicts that a magnitude-like effect for losses (in net rewarding environments) will be in the opposite direction as that for gains, i.e. losses of larger magnitudes will be discounted steeper than losses of smaller magnitudes. This was recently tested in 2012 (Hardisty, Appelt, & Weber, 2012) and found to be true.

Yet another prediction similar to the above effects is that losses will be treated differently depending on their magnitude (see Consequences of the Discounting Function in the Appendix of Namboodiri et al., 2014). Specifically, a smaller loss (a loss smaller in magnitude than the magnitude of the accumulated reward) will become even more of a loss when delayed, whereas a larger loss becomes less of a loss with additional delay. Such a differential treatment of losses is also widely observed in experiments (Benzion et al., 1989; Berns et al., 2006; G. F. Loewenstein, 1987; Mackeigan, Larson, Draugalis, Bootman, & Burns, 1993; Mischel, Grusec, & Masters, 1969; Redelmeier & Heller, 1993; Yates & Watts, 1975). The above experiments rationalize this result as resulting from increased “anticipation” of losses (for example, see (G. F. Loewenstein, 1987)). However, we do not have to make such ad-hoc justifications; it is a natural consequence of reward rate maximization, as in my theory.

Another “anomalous” observation (from the perspective of DUT) is the “delay-speedup effect” (Benzion et al., 1989; G. Loewenstein & Prelec, 1992; G. Loewenstein, 1988). This refers to the observation that subjects expect more compensation for delaying receipt
of a reward (from t_1 to t_2) than they are willing to pay to speed it up by that same amount (from t_2 to t_1). There are two potential explanations for this phenomenon. One explanation, as previously noted by (Killeen, 2009) is that it could simply be a consequence of recursive discounting, i.e. the subjective value of a reward delayed from t_1 to t_2 is the subjective value of the reward at t_1 discounted again by the additional delay of t_2-t_1. Thus, a reward expected at t_1 when delayed to t_2 has a subjective value lower than a reward expected at a delay of t_2. I will not mathematically prove this property here for Equation (3.9) since it is straightforward. One problem, however, with this account (and the one presented in (Killeen, 2009)) is that if t_1 were zero, there is no predicted “delay-speedup effect”, even though experiments clearly demonstrate an effect even when $t_1=0$ (Benzion et al., 1989; G. Loewenstein & Prelec, 1992; G. Loewenstein, 1988). Another potential explanation is that whenever subjects are told that they have “received a reward at time t_1”, they automatically incorporate the receipt of that reward into the risk term in Equation (3.11). This is more easily understood with the M&M’s example. The “delay” experiment goes thusly: “imagine you have received 100 M&M’s. How many more M&M’s should I give you such that you are willing to delay receipt by 15 minutes?” Going back to the calculation above, if you expect that in 15 minutes, the actual number of M&M’s you receive is 90 (since 20 people take one each at 0.5 probability), you will require compensation for this assumed reduction as well. On the other hand, the “speedup” experiment goes thusly: “imagine you will receive 100 M&M’s in 15 minutes. How many are you willing to pay so as to receive it immediately?” When one evaluates this question, it makes sense to assume that it is certain that the 100 M&M’s exist after 15 minutes (because it has not been left out in the hallway). Hence, in speeding up its
receipt, one only needs to pay for the pure temporal cost (and not the linear risk cost). Of course, further experiments will be needed to test this hypothesis. Note also that both of the above arguments make it clear that delaying a reward in multiple steps by short delays causes it to decay faster than delaying it by the total amount all at once. This effect has been previously observed and labeled as “subadditivity” (Read, 2001).

In sum, most human discounting tasks differ from animal tasks in a crucial aspect: humans do not have to wait the corresponding delays. Consequently, the opportunity cost term in TIMERR should not directly apply to these tasks. However, assuming that humans employ a simple model of risk (constant decay) in such decisions—similar to an assumption made previously in a successful descriptive model (Killeen, 2009)—preserves all of the mathematical qualities of the subjective value of a delayed reward as derived by TIMERR. Evidence collected across numerous experiments (see Kalenscher & Pennartz, 2008; G. Loewenstein & Prelec, 1992; Madden & Bickel, 2010 for reviews) support these predictions. Recently, there have been attempts to test humans on discounting tasks similar to animal tasks, requiring them to wait out the delays for real rewards (e.g. Reynolds & Schiffbauer, 2004). More work is needed to know whether behavior in this task will reproduce the above results (Jimura et al., 2009; Krishnan-Sarin et al., 2007; Melanko, Leraas, Collins, Fields, & Reynolds, 2009; Reynolds, Penfold, & Patak, 2008; Reynolds, 2006; Shiels et al., 2009; Smits, Stein, Johnson, Odum, & Madden, 2013).
3.3 Connection between theories of intertemporal decision-making and time perception

As mentioned early in the Introduction, it is only natural that time perception and intertemporal decision-making go hand-in-hand since the latter requires the former. It is also then intuitive to assert that the former is more fundamental than the latter. In this view, mechanisms of time perception evolved under their own evolutionary pressures, whereas intertemporal decision-making was only as good as animals’ ability to perceive the delays to reward. Hence, all prior attempts to connect intertemporal decision-making and time perception have assumed time perception to be the more fundamental of the two processes (Bateson, 2003; Cui, 2011; Gibbon, Church, Fairhurst, & Kacelnik, 1988; Alex Kacelnik & Bateson, 1996; Kim & Zauberman, 2009; Lapied & Renault, 2012a; Ray & Bossaerts, 2011; Takahashi, Oono, & Radford, 2008; Takahashi, 2005, 2006; Zauberman, Kim, Malkoc, & Bettman, 2009).

The *sine-qua-non* of theories of time perception is their treatment of Weber’s law (Bateson, 2003; Gibbon et al., 1997; Gibbon, 1977; Killeen & Fetterman, 1988; Matell & Meck, 2000). Weber’s law is easily understood by considering an example. Imagine that one is tasked with finding the longer rod among two iron rods placed in parallel from just a glance; no measurements or realignments are allowed. If one of them were a meter and the other two, the difference should be as clear as night and day. However, if they are a hundred meters and a hundred and one meters long, this will be considerably more
difficult, even though the difference is still one meter. Essentially, Weber’s law states that the difference between two quantities is judged relative to the quantities themselves. Weber’s law also appears in timing: it is easier to discriminate one second from two seconds than to discriminate one hundred seconds from one hundred and one seconds. A mathematical statement of Weber’s law for timing goes even further. It states that the precision of perceiving an interval decreases in direct proportion to the interval; in other words, the error in perception of an interval grows linearly in proportion to the interval. This relationship is more commonly known as scalar timing, and has been observed repeatedly in experiments for humans and non-human animals (Allan & Gibbon, 1991; Russell M Church & Gibbon, 1982; Gibbon et al., 1984, 1997; Gibbon & Church, 1981; Gibbon, 1977, 1992; Lejeune & Wearden, 2006; Meck & Church, 1987; J. H. Wearden & Lejeune, 2008).

Before I consider the different theories of time perception and how they explain scalar timing, I would like to explain how scalar timing can explain non-stationary time preferences. Recall that the most well-established result on intertemporal decision-making is that time preferences are non-stationary. Let us reconsider the two example questions I provided earlier to illustrate this point: “which would you prefer: $100 now or $105 in a month?” and “which would you prefer: $100 in a year or $105 in a year and one month?” Considering the above questions from the perspective of scalar timing, it must be immediately clear that the month of difference in the first question is “subjectively longer” than the month in the second question (of course, when the numbers are specified, they should be treated as mathematically equivalent, but animals
must estimate such durations from experience). So essentially, even though the interval between both rewards is constant, the further away the rewards are from the decision, the harder it is to discriminate between the two delays. Hence, as the delays are perceived to be more and more similar, the tendency to pick the larger reward should increase. Thus, scalar timing can lead to non-stationary time preferences.

The above argument is the essence of numerous prior attempts to connect theories of time perception to theories of intertemporal decision-making (Bateson, 2003; Cui, 2011; Gibbon et al., 1988; Alex Kacelnik & Bateson, 1996; Stephens, 2002; Zaubergerman et al., 2009). In fact, it has also been shown that if the perception of time were logarithmic, which is consistent with scalar timing, an exponential discounting in subjective time is mathematically equivalent to a hyperbolic discounting in real time (Takahashi, 2005; Zaubergerman et al., 2009). Similar explanations also exist using other non-linear representations of subjective time (Ray & Bossaerts, 2011). Thus, it has been argued that the reason for non-stationary intertemporal preferences is because of imperfections in time perception (Bateson, 2003; Cui, 2011; Gibbon et al., 1988; Alex Kacelnik & Bateson, 1996; Kim & Zaubergerman, 2009; Laped & Renault, 2012a; Ray & Bossaerts, 2011; Takahashi et al., 2008; Takahashi, 2005, 2006; Zaubergerman et al., 2009). For other connections between time perception and intertemporal decision-making, see (Balci et al., 2011; Balci, Freestone, & Gallistel, 2009; Staddon & Cerutti D T, 2003; Wynne & Staddon, 1988).

Now, let us consider the different theories of time perception. All the theories considered here pertain to interval timing, i.e. timing in the range of seconds to minutes. Further, I
will only consider two of the most popular theories of timing, as my major goal here is in
studying the relationship between intertemporal decision-making and time perception.
For a more thorough review of the models of timing, see the many reviews and primary
articles that have been written on this topic (Ahrens & Sahani, 2011; Almeida & Ledberg,
2010; Buhusi & Meck, 2005; Buonomano & Karmarkar, 2002; Buonomano, 2007;
Gallistel & Gibbon, 2000; Gavornik et al., 2009; Gibbon et al., 1997; Grossberg &
Schmajuk, 1989; Hass, Blaschke, Rammsayer, & Herrmann, 2008; Hass & Herrmann,
2012; Ludvig, Sutton, & Kehoe, 2008; Luzardo, Ludvig, & Rivest, 2013; Machado,
1997; Matell & Meck, 2000, 2004; Mauk & Buonomano, 2004; Meck, 1996; Merchant et
al., 2013; Miall, 1989; Rivest & Bengio Yoshua, 2011; Shankar & Howard, 2012; Simen,
Balci, de Souza, et al., 2011; Simen, Rivest, Ludvig, Balci, & Killeen, 2013; Staddon,
Chelaru, & Higa, 2002; Staddon & Higa, 1999; Teki, Grube, & Griffiths, 2011; Treisman,
1963; Wackermann & Ehm, 2006).

The most popular theory of timing is the Scalar Expectancy Theory (SET) (Gibbon et al.,
1984; Gibbon, 1977). This theory proposes that there are three different modules working
together to time an interval. The first stage is a pacemaker that produces a continuous
pulse train that is gated on to a second, accumulator, stage upon receipt of a signal to
time. The accumulator counts the number of pulses until the end of the interval being
timed. The total number of accumulated pulses is then compared against a representation
of that interval stored in a reference memory stage. Crucially, the comparison is based on
a ratio-rule so as to achieve scalar timing. Such ratio comparisons are commonly
observed in many timing tasks (Gibbon & Fairhurst, 1994; Gibbon et al., 1997; Gibbon,
The most important source of variability in timing (among variability in clock speed, clock reliability, accumulation, comparator and memory) according to SET is the variability introduced when a current duration in working memory is compared to a remembered duration (Gibbon et al., 1984).

A major competitor to SET is the Behavioral Theory of Timing (BeT) (Killeen & Fetterman, 1988). BeT, too, effectively uses a similar pacemaker-accumulator system. BeT states that signals that instruct timing onset result in a series of “adjunctive behavioral states”—a stereotyped sequence of psychological states—that indicate the passage of time. According to BeT, animals tell time by knowing the position of their current adjunctive state in relation to the sequence. In the simplest approximation, the transition time between states was assumed to be exponentially distributed as resulting from a Poisson clock, thereby making the arrival time of a given state, gamma distributed. The core assumption of BeT is that the rate of the Poisson accumulation is proportional to the reinforcement rate. As most timing tasks confound reinforcement rate with the target interval (since in many tasks, rewards are received only at the end of the intervals to be timed) (e.g. Killeen & Fetterman, 1988; Killeen, 1975), the above assumption means that the standard deviation of the distribution of a given adjunctive state is proportional to the period of food delivery, thus resulting in scalar timing (Bizo et al., 1997; Killeen & Fetterman, 1988).

I am not going to review the merits and demerits of the above theories or any of the alternate theories of timing (Ahrens & Sahani, 2011; Almeida & Ledberg, 2010; Creelman, 1962; Gallistel & Gibbon, 2000; Gavornik et al., 2009; Grossberg &
One possible solution is to postulate that animals’ timing can only be as good as the neurons that help them to time. Since we know that neurons are inherently noisy information processors, timing behaviors will reflect the noise-duration relationship that neurons produce. Let us now consider the simplest assumption of noisiness in neuronal firing, i.e. that they fire according to a Poisson process of rate λ. Assume that timing of an interval is done by counting the number of spikes: the moment the target number of spikes (say n) has been emitted, the interval is deemed to have expired. Hence, the expiration of an interval is treated as the arrival time of the n^{th} spike. For a Poisson
distribution, the arrival time of the n^{th} spike has an Erlang distribution (special case of a gamma distribution) with a mean and standard deviation expressed as:

$$\mu = \frac{n}{\lambda}; \sigma = \frac{\sqrt{n}}{\lambda}$$

(3.12)

The corresponding C_v (coefficient of variation = standard deviation/mean) is given by

$$C_v = \frac{1}{\sqrt{n}}$$

(3.13)

If the firing rate of the Poisson process is represented as λ, the number of spikes required to time a target interval of t is simply $n = t\lambda$. Thus, the C_v can be re-written as $\frac{1}{\sqrt{t\lambda}}$.

Therefore, it is clear that for a Poisson process to produce scalar timing (constant C_v), its rate has to be inversely proportional to the interval being timed (i.e. $t\lambda = constant$). To be sure, the above treatment is the exact mathematical equivalent of BeT. However, the difference is in the meaning of the variables. While BeT’s Poisson process is an abstract sequence of behavioral states, the above Poisson process is a spike train of a neuron. Owing to this critical difference, BeT had to assume that the rate of the Poisson process is inversely proportional to the reinforcement density (which is in turn inversely proportional to the target time, in typical tasks) so as to obtain a constant $t\lambda$. This assumption was not borne out empirically (Bizo et al., 1997). But the mathematical elegance of BeT is captured by the above treatment of a Poisson neural spike train.

To summarize, here is a simple neural model for timing that produces scalar timing: a Poisson spike train is initiated with a rate inversely proportional to the time interval to be
timed. The interval is read out as the time to fire a constant threshold of spikes. Let us now actually calculate some numbers to see if this model is neurally plausible. Typical C_v values are around 0.1-0.5 in animals (e.g. Matell, Bateson, & Meck, 2006; Matell, Meck, & Nicolelis, 2003). From Equation (3.13), the number of spikes for the threshold, n, is approximately 11 (considering a C_v of 0.3). Since $n = t\lambda$, this means that in order to time an interval of 11s, this neuron has to spike at 1Hz, and at 0.1Hz for an interval of 110s. This firing rate is prohibitively low to be neurally plausible (Simen et al., 2013). Hence, the above simple neural model which is mathematically equivalent to BeT cannot be implemented by single neurons.

However, one could imagine the above model to be implemented by a network of excitatory and inhibitory neurons working so as to produce a balanced integration of Poisson-like spikes. This is exactly what was done in 2011 by Simen et. al. (Simen, Balci, de Souza, et al., 2011). They showed that under some simple assumptions, a drift-diffusion accumulator model of timing comprising Poisson neurons connected into balanced excitatory and inhibitory networks can work similarly to the mathematical model presented above. This is shown in Figure 26. In this conception, the mathematics of BeT is a special case when there is no inhibitory input. I will not go into a more detailed review of this model, other than to point out that while it retains most of the mathematical elegance of BeT (and the treatment above), it differs in some quantitative details; the distribution of the timed interval is inverse-Gaussian and not a gamma distribution (Simen, Balci, de Souza, et al., 2011).
Figure 26. *A neural accumulator circuit that implements the simple mathematical argument (similar to BeT) presented in Section 3.3, modified from Figure 1 in (Simen, Balci, de Souza, et al., 2011)*

There are four different modules in the model. Bistable switches turn on upon timing onset (“start”) to produce clock speeds adjusted to the target interval (“clock pulse generator”). An “integrator” produces a linearly rising ramp with the passage of time. The moment the ramp hits a threshold, a “trigger” turns on indicating the lapse of the target interval so as to produce the corresponding behavior. Simulations of the model are shown below to show the different clock speeds producing an inverse-Gaussian distribution of timed intervals (Simen, Balci, de Souza, et al., 2011).
Hence, according to the view of the above theories, scalar timing is a consequence of noisy information processing by neurons. It must be emphasized that the above models and theories of timing do not postulate any direct correlations between time perception and intertemporal decision-making. Recent experimental evidence, however, suggests otherwise (Baumann & Odum, 2012; Wittmann et al., 2007; Wittmann & Paulus, 2008). In fact it was found that in general, individuals with better perception of time were more tolerant to delay (e.g. Baumann & Odum, 2012; Wittmann & Paulus, 2008) (for a more detailed discussion of these results, see Section 4). This result is not consistent with the proposition earlier in this section that Weber’s law underlies non-stationary time preferences. This is because as the perception of time becomes better and the delays between two options become better discriminated, the tendency to pick the smaller reward should increase (compared to when the delays are judged to be similar). The above argument clearly predicts a reduced tolerance to delay with better perception of time, in contrast to experimental data.

In my theory, I approached the problem of time perception entirely differently. In fact, I argued that intertemporal decision-making is the more fundamental of the two, completely opposite to all the prior attempts to connect intertemporal decision-making and time perception (Bateson, 2003; Cui, 2011; Gibbon et al., 1988; Alex Kacelnik & Bateson, 1996; Kim & Zauberman, 2009; Lapied & Renault, 2012a; Ray & Bossaerts, 2011; Takahashi et al., 2008; Takahashi, 2005, 2006; Zauberman et al., 2009). I postulated that time is subjectively represented in such a way that the subjective
representation of reward rate (subjective value per unit subjective time) is an accurate reflection of the true change in expected reward rate.

Using the same symbols as in Section 2.2, this postulate can be expressed as

\[
\frac{SV(r,t)}{ST(t)} = \frac{r}{t} - a_{\text{est}}
\]

(3.14)

Here, \(ST(t) \) is the subjective representation of the true delay to reward \(t \). Solving for the subjective time, we get the following simple expression

\[
ST(t) = \frac{t}{1 + \frac{t}{T_{\text{ime}}}}
\]

(3.15)

where \(T_{\text{ime}} \) is the past integration interval, as mentioned in Section 2.2. It must be emphasized that the subjective representation of the delay is not the subjective report of the delay; it is how the interval is represented on a subjective neural scale. Figure 27 shows a plot of \(ST(t) \) with respect to the actual delay, \(t \). From the plot, it is clear that the ability to discriminate between intervals decreases as they increase. Further, low values of \(T_{\text{ime}} \) lead to underproduction of time intervals in a simulated time reproduction task (Figure 27C,D), appearing as if an internal “clock” is running faster. To see the details of how this accumulator model works, see (Namboodiri, Mihalas, Marton, et al., 2014), but an intuitive explanation for why there is an underproduction of intervals for low \(T_{\text{ime}} \) is as follows: during the production phase of the reproduction task, the time is judged to have elapsed when the accumulator hits for the first time the remembered threshold (from the estimation phase). Since the more non-linear the dependence of \(ST(t) \) on \(t \) (i.e. the lower
the value of T_{ine}, the more the chance that the accumulation will hit the threshold earlier (due to the noise in accumulation), and hence, the higher the bias towards an earlier time.
A. Two illustrative animals with different values of the past integration interval (T_{ime}) are shown, along with their respective subjective representations of the rewards. B. The subjective representation of time function as expressed in Equation (3.15) is plotted for both cases, indicating that the ability to discriminate between the subjective representations of 40 and 50 seconds is higher for the monkey with $T_{\text{ime}}=300$s. C. Results from a simulated time reproduction task are shown using an accumulator model as described in (Namboodiri, Mihalas, Marton, et al., 2014), demonstrating the underproduction of long intervals. D. The underproduction of intervals, interpreted commonly to result from a faster “clock”, is more pronounced when T_{ime} is low. Hence, individuals with low values of T_{ime} will appear as if their internal “clocks” are faster.
Figure 28. Modified from Figure 3 (Gibbon et al., 1997)

Coefficient of variation across different timing tasks is plotted as a function of the interval being timed.
We showed previously (Namboodiri, Mihalas, Marton, et al., 2014) that a noisy accumulator model implementing the above equation leads to the following expression of C_v

$$C_v \approx k \left(1 + \frac{t}{T_{ime}}\right)^2 + c \left(1 + \frac{t}{T_{ime}}\right)$$

(3.16)

where c is a constant additive noise in a memory process and k represents the accumulation noise. If $c=0$, the above equation implies a constant C_v plus a deviation that decreases with the past integration interval. As the past integration interval becomes larger and larger, the coefficient of variation is closer and closer to a constant. In other words, timing becomes more and more scalar the larger the value of the past integration interval (and larger the tolerance to delay in intertemporal decisions). Crucially, Equation (3.16) predicts quantitative deviations from scalar timing, depending on the interval being timed and the past integration interval. In fact, a review of thirty-four studies in 1997 by the creator and proponents of scalar timing (Gibbon et al., 1997) observed a C_v that increased with the duration being timed (see Figure 28), as predicted by Equation (3.16) (assuming constant T_{ime} across these experiments). For other studies showing an increase in C_v at long durations, consistent with Equation (3.16), see (Bizo, Chu, Sanabria, & Killeen, 2006; Lejeune & Wearden, 1991; Zeiler & Hoyert, 1989; Zeiler & Powell, 1994; Zeiler, 1991), but also see (Lewis & Miall, 2009) for the opposite pattern. Nevertheless, it must be pointed out that Equation (3.16) results from specific assumptions (e.g. Poisson-like noise in accumulation) about the neural implementation of Equation (3.15). It is
possible that more detailed and realistic neural implementations might differ from the approximation expressed in Equation (3.16).

Another key feature of temporal discrimination tasks is the point of subjective equality (PSE)—the duration which is judged to be equidistant between two intervals to be discriminated. SET predicts PSE to be at the geometric mean of the two intervals (Allan & Gibbon, 1991; Gibbon et al., 1984; Gibbon, 1977). This prediction received considerable experimental support (e.g. Allan & Gibbon, 1991; Church & Deluty, 1977; Gibbon, 1986; Platt & Davis, 1983) and has been proposed to either result from ratio comparisons using linear subjective time or from logarithmic subjective time (Gibbon & Church, 1981). However, a significant number of experiments also show deviations from the geometric mean (e.g. Kopec & Brody, 2010; J H Wearden, 1991). In fact, in a re-analysis of some earlier data (claiming PSE at geometric mean) using a more precise model, (Killeen, Fetterman, & Bizo, 1997) found that the PSE was found to vary between the harmonic mean and the arithmetic mean. My theory also predicts that the PSE will be between the harmonic and arithmetic mean depending on the past integration interval. The lower the past integration interval, the more non-linear the representation of time becomes and the closer the PSE gets to the harmonic mean. When the past integration interval is very large, the PSE instead approaches the arithmetic mean. It must be pointed out that I have not attempted to quantitatively fit the PSE observed in previous studies because of the difficulty in knowing the value of T_{line} across these studies. However, for a different model that attempts to systematically explain variance in the PSE, see (Kopec &
Brody, 2010). See also (Balci et al., 2011) for an interesting perspective on how differing abilities to time would dictate different values of optimal PSE.

In sum, prior theories of time perception treat time perception as independent of intertemporal decision-making. Attempts to connect both have always treated time perception as more fundamental, implicitly assuming that mechanisms of time perception evolved under their own selective pressures. The most popular of these models are accumulator models, in which scalar timing is assumed to result from different sources of neural variability connected to the accumulation process (e.g. accumulation variability, pacemaker variability, memory variability etc). However, in TIMERR theory, I postulate that intertemporal decision-making is more fundamental, i.e. that animals evolved to maximize reward rates and that scalar timing is a result of representing time subjectively so that the subjective reward rate accurately represents the change in expected reward rate (Equation (3.14)). This model is able to explain some experimentally-observed deviations from Weber’s law (but fails to explain some others) as well as individual variability in points of subjective equality in temporal discrimination experiments. More crucially, however, according to my theory, time perception is fundamentally linked to intertemporal decision-making: the higher the tolerance to delays, the better the perception of time. Ours is the only current mathematical theory that can explain such experimentally observed correlations (Barkley et al., 2001; Barratt, 1983; Bauer, 2001; Baumann & Odum, 2012; Berlin et al., 2004; Berlin & Rolls, 2004; W K Bickel & Marsch, 2001; Dougherty et al., 2003; Heilbronner & Meck, 2014; Levin et al., 1996;
Pine et al., 2010; Reynolds & Schiffbauer, 2004; van den Broek et al., 1992; Wittmann et al., 2007; Wittmann & Paulus, 2008) systematically.

To revisit, the reason why I treated decision-making as fundamental is that while decision-making can be clearly treated within the optimization problem of maximizing reward rates, there is no such well-defined optimization problem for time perception (in fact, the most optimal model would have a constant precision, independent of the duration represented). Interestingly, while previous models that connect intertemporal decision-making and time perception treat the psychophysical observations of time perception (scalar timing) as a fundamental postulate, I am able to derive approximate scalar timing from reward rate maximization. I would like to point out that the fact that such a connection can be made does not prove that time perception indeed evolutionarily followed the need to maximize reward rates, nor does it mean that every instance of time perception requires decision-making (making intertemporal decisions, of course, necessitates the measurement of time). It only suggests that maximizing reward rates might underlie the evolutionary origin of the psychophysics of time perception.

In the next section, I focus on how variability in the past integration interval leads to corresponding variability in intertemporal decision-making and time perception.
3.4 Impulsivity in the domain of time

As discussed in Section 3.2.2 and Section 3, my theory postulates that the duration over which the past reward rate is estimated (T_{me}) directly determines the tolerance to delays in intertemporal decision-making (i.e. the steepness of temporal discounting) and the non-linearity of time perception. Hence, a fundamental question is how the past integration interval is determined. We have previously listed a set of qualitative arguments on this issue (see "Effects of Plasticity in the Past Integration Interval" in Appendix of Namboodiri et al., 2014) and here, I will present a brief summary of those arguments.

An optimal value of T_{me} will have to satisfy four criteria: (1) it should maximize the metabolic fitness of the animal, through (2) reliable estimation of the past reward rate and temporal delays in the environment (larger the value of T_{me}, better the accuracy in time perception) so as to (3) appropriately estimate the opportunity cost involved in decisions, while (4) minimizing computational/memory costs. The essence of this optimization is the trade-off between maximizing reward rates and minimizing metabolic costs: integrating over long intervals in stationary environments would lead to better estimates of opportunity costs, but lead to increased metabolic costs associated with the energy spent by the brain in its execution. Further, when environments are non-stationary, the problem becomes even more complicated as one will have to find the duration of history that appropriately represents the current decisions. I will not attempt a quantitative
treatment of this problem here. Similar, but less general, optimization problems have been investigated elsewhere (Behrens, Woolrich, Walton, & Rushworth, 2007; Bialek, 2005; Courville, Daw, & Touretzky, 2006; Nassar, Wilson, Heasly, & Gold, 2010; Pearson, Heilbronner, Barack, Hayden, & Platt, 2011; Wilson, Nassar, & Gold, 2013).

I am especially interested in environments that result in low values of the past integration interval, and consequently steep temporal discounting. This is because steep temporal discounting has been associated with a set of behavioral disorders under the umbrella of “impulsivity” (Evenden, 1999; Madden & Bickel, 2010). Below, I will only focus on the aspects of impulsivity that relate to decisions in the dimension of time.

In a non-stationary environment with a high temporal frequency of instability, the optimal T_{me} will have to be correspondingly low so as to provide an appropriate opportunity cost estimate for current decisions. At the other extreme, in a stationary (stationary refers to time-independent statistics and not low variability in the reward statistics) environment in which the variability in reward rate is very low, a low T_{me} is sufficient to appropriately estimate the long-term statistics. Hence, here too, since there is diminishing benefits in integrating over longer and longer durations, the metabolic costs will drive down T_{me}. Another instance where T_{me} would be low is when the reward rates are very high. In a highly rewarding environment, any additional benefit in integrating over long intervals would be offset by the increase in metabolic costs. Hence, I predict that individuals living in the above reward environments will discount rewards steeply, because steep discounting is optimal in these environments. In this conception, abnormally-steep discounting observed in experiments is not necessarily a sign of a
behavioral disorder (viz. impulsivity), but could represent optimality in an individual’s perceived reward environment. Of course, this does not mean that every instance of abnormally-steep discounting is optimal; it could also result from aberrations in the brain mechanisms underlying appropriate setting of T_{ime}. Such aberrations might be present in neurobiological disorders leading to impulsive decision-making as seen, for instance, in Parkinson’s disease (Housden, O’Sullivan, Joyce, Lees, & Roiser, 2010; Voon & Dalley, 2011; Voon et al., 2010) and schizophrenia (Avsar et al., 2013; Heerey, Robinson, McMahon, & Gold, 2007; Strauss, Waltz, & Gold, 2014).

Since my theory also predicts that abnormally-steep temporal discounting will be correlated with highly non-linear time perception, I would predict, for instance, that in a highly rewarding environment in which T_{ime} is low, temporal perception would appear sped up. This prediction may underlie anecdotal observations that “time flies when you’re having fun”. My account would also predict that a decrease in reward rate might lead to temporal perception appearing slowed down. This might explain some recent observations (Galtress & Kirkpatrick, 2009; Galtress, Marshall, & Kirkpatrick, 2012; Kirkpatrick, 2014) that cannot be explained by current timing theories (see Galtress et al., 2012 for a discussion). I would like to point out at this stage that there are other models that also predict a dependence of time perception on the recent history, arguing that recently experienced temporal intervals act as a prior for time perception (e.g. (Jazayeri & Shadlen, 2010)).

As mentioned in Section 3.3, variability in T_{ime} is also expected to underlie 1) deviations from Weber’s law at long durations, and, 2) variations in the point of subjective equality.
in temporal discrimination tasks. While other models ascribe such observed variability to variability in properties of the accumulator or other neural variables (e.g. Bizo et al., 2006; Killeen et al., 1997), I predict that variability within subjects can arise from a drive to maximize reward rates in varied experimental settings. A strong and unique prediction of this account is that temporal perception is correlated with intertemporal decision-making. Experimental observations have supported this prediction (Barkley et al., 2001; Barratt, 1983; Bauer, 2001; Baumann & Odum, 2012; Berlin et al., 2004; Berlin & Rolls, 2004; W K Bickel & Marsch, 2001; Dougherty et al., 2003; Heilbronner & Meck, 2014; Levin et al., 1996; Pine et al., 2010; Reynolds & Schiffbauer, 2004; van den Broek et al., 1992; Wittmann et al., 2007; Wittmann & Paulus, 2008). A stronger, yet untested, falsifiable prediction is that causing changes in the duration over which past reward rate is estimated leads to corresponding changes in discounting steepness and time perception. This is the essence of my theory.

3.5 Conclusion

A rationalization of decision-making in the temporal domain has long been sought, yet an understanding of this problem remains unfulfilled. I have identified three general reasons why there has not yet been significant agreement between theories and experimental observation. The first is that, ever since the first formal attempts to make a reckoning of how humans and animals regard the cost of time, the notion of a discounting function has
pervaded, having been ingrained and reified not as a description of observed behavior but rather as a thing with agency applied by the agent to determine an outcome’s subjective value. The second is that intertemporal decision-making has not been framed as reward rate maximization under the constraint of what is feasibly achievable by an agent given the unknowable future. The third is that temporal discounting and time perception have largely been treated as separate problems; when not so, intertemporal decision-making has been regarded as subordinate to time perception rather than being fundamental. These historical biases have combined so that the search for the perfect discounting function, that makes a principled, concise, and full accounting of decision-making in the time domain, has remained an elusive one.

While I posit that, for these reasons, an unresolved tension between theory and observation exists, theories of intertemporal decision-making over nearly two centuries have led to a sophisticated and rich understanding of this issue, from the recognition of an interplay between the magnitude of an outcome and its cost in time, to its formalization as a psychological conflict, and subsequently to its reframing as a maximization to increase fitness. Nonetheless, theories from economics and behavioral ecology, whether attempting to rationalize intertemporal decision-making within the framework of discounted utility or of reward-rate maximization, fail to provide satisfactory explanations for empirical data, or, in the case of descriptive modeling that provides good fit to observation, fail to provide any normative understanding of why discounting functions take on their apparent form. Recent experiments (Blanchard et al., 2013; Pearson et al., 2010), however, have shown that what has been previously regarded as
clear evidence that animals do not maximize reward rate results from limits in their associative learning.

Recognizing that reward rate maximization could then yet be the fundamental principle behind intertemporal decision-making, I have derived (Namboodiri, Mihalas, Marton, et al., 2014) from first principles a decision-making algorithm that would lead to reward-rate maximization under experiential constraints. In this theory, we find that the duration over which the past reward rate is integrated directly determines the tolerance to delays in intertemporal decision-making (i.e. the steepness of temporal discounting) and the non-linearity of time perception. Thereby, I also provide a novel theory of time perception which can explain hallmark behavioral observations (e.g. Weber’s law, point of subjective equality). Unique to my theory, I predict that the ability of individuals to perceive time is correlated with their tolerance to delay in intertemporal decision-making. Therefore, my theory suggests that aberrant timing behavior seen in a range of cognitive/behavioral disorders can be rationalized as a consequence of aberrant integration over experienced reward history. A fundamental test of TIMERR, then, is assessing whether, as the duration over which past reward rates are estimated increases (or decreases), the steepness of temporal discounting decreases (or increases). This is the direct falsifiable test of my theory.
Chapter 4. A temporal basis for Weber’s law in value perception

4.1 Introduction

Weber’s law, or approximate Weber’s law, has been observed in the perception of stimulus features such as weight (Killeen, Cate, & Tran, 1993; Weber, 1978), length (Akre & Johnsen, 2014; Dehaene & Brannon, 2011; Droit-Volet, 2013), brightness (Rovamo, Mustonen, & Näsänen, 1995), number (Beran, 2007; Cantlon & Brannon, 2006; Cordes, Gelman, Gallistel, & Whalen, 2001; Droit-Volet, 2013; Gallistel, 2011; Nieder & Miller, 2003; Whalen, Gallistel, & Gelman, 1999), reward magnitude (Bateson, Kacelnik, Road, & Ox, 1995; Alex Kacelnik & Bateson, 1996; Killeen et al., 1993), time (Buhusi & Meck, 2005; Gibbon et al., 1984; Gibbon, 1977; Matell & Meck, 2000), loudness (Bee, Vélez, & Forester, 2012; Forrest, 1994) etc (Akre & Johnsen, 2014). It states that the ability to perceive a change in a quantity decreases in proportion to its magnitude. The fact that our ability to perceive a change in a stimulus often decreases as its magnitude increases is immediately recognized; for instance, it is more difficult to perceive an increase of 1g if one is measuring 100g as opposed to when measuring 2g. Weber’s law, however, states that this decrease in ability to assess magnitude is proportional to the magnitude of the stimulus, i.e. that it is 50 times more difficult to perceive a given change around 100g than it is to perceive the same change around 2g. Even though there is considerable experimental support for the law, its neural or
evolutionary origin is unclear (Akre & Johnsen, 2014; Bueti & Walsh, 2009; Walsh, 2003). Further, since animals are often thought to make decisions so as to maximize reward rates (thus requiring perception of reward magnitude and delays) (Balci et al., 2011; Blanchard et al., 2013; Namboodiri, Mihalas, Marton, et al., 2014; Stephens & Krebs, 1986), Weber’s law in the perception of reward magnitudes and delays must affect such decisions. The mathematical properties of such effects on the decisions of animals are, however, unclear.

In the previous chapter, I presented a theory of decision-making and time perception that postulates that the decision of animals regarding delayed outcomes is a consequence of reward rate maximization in a limited temporal window that includes a past integration interval (over which experienced reward rate is estimated) and the delay to a given reward (TIMERR) (Namboodiri, Mihalas, Marton, et al., 2014). I showed that the decision-making algorithm resulting from this postulate automatically includes an estimate of opportunity cost and an explicit cost of time. I further showed that it can explain the breadth of behavioral observations on intertemporal decision-making. The theory also postulates that time is represented subjectively such that the subjective reward rate equals the objective change in reward rate, i.e. a subject’s estimate of the subjective value per unit subjective time accurately represents how much the reward rate of the current offer exceeds the experienced reward rate. Using this theory, I examine the origin of Weber’s law in reward magnitude in this chapter and show that the perception of reward magnitude is correlated with the perception of time, and that the subjective value change of a delayed reward should also approximately abide by Weber’s law. I also
present a novel accumulator model of sensory perception that predicts approximate Weber’s law for quantities (such as reward magnitude) that are measured over finite sensory intervals.

4.2 Results

My main aim in this chapter is to study how errors in the subjective representation of an interval correspondingly affect the subjective value of that reward. To this end, I first express the subjective value of a delayed reward in terms of the subjective representation of the delay.

The subjective value of a reward with magnitude \(r \) delayed by an interval \(t \) as calculated in TIMERR (Figure 29) is:

\[
SV(r, t) = \frac{r-a_{est}t}{1 + \frac{t}{T_{ime}}}
\]

(6.1)

where \(T_{ime} \) represents the past integration interval, i.e. the interval over which the past reward rate (\(a_{est} \)) is estimated. Importantly, \(T_{ime} \) is not a perceived temporal interval, but is merely the effective interval over which the past reward rate is estimated (e.g. using an exponential memory filter as in (Namboodiri, Mihalas, & Hussain Shuler, 2014)).

185
The subjective value of a delayed reward \((r) \) is calculated as the immediate reward that produces the same total reward rate over a window including a past-integration interval \((T_{\text{time}}) \) (over which experienced reward rate is calculated, \(a_{\text{exp}} \)) and the expected delay \((t) \) to a future reward. The figure shows a ready means to visually depict the subjective value of a delayed reward, shown as the purple bar at time zero ("now"). Modified from (Namboodiri, Mihalas, & Hussain Shuler, 2014) and Figure 19.

Figure 29 *Recapping the TIMERR algorithm*
In the above equation, \(r \) can be thought of as the magnitude of an offered reward. But a more rigorous definition of \(r \) is the subjective value of an immediate offered reward, i.e. \(r = SV(r, 0) \).

Correspondingly, the subjective representation of the delay \(t \) as expressed in TIMERR is:

\[
ST(t) = \frac{t}{1 + \frac{t}{T_{ime}}} \tag{6.2}
\]

Thus, the subjective representation of time is a non-linear mapping and its non-linearity is controlled by the past integration interval. It is important to emphasize that the subjective representation of the delay expressed above is not the subjective (verbal) report of an interval; it can be thought of as the non-linear neural representation of an interval.

Equation (4.1) can now be re-expressed in terms of the subjective representation of time as shown in Equation (4.2) as

\[
SV(r, t) = \frac{r}{1 + \frac{t}{T_{ime}}} - a_{est}ST(t) = r \frac{ST(t)}{T_{ime}} - a_{est}ST(t) = r \frac{ST(t)}{1 - \frac{ST(t)}{T_{ime}}} \tag{6.3}
\]

Therefore,

\[
SV(r, t) = r - \left(\frac{r}{T_{ime}} + a_{est} \right)ST(t) \tag{6.4}
\]

Thus, the discounting of a delayed reward is linear with respect to the subjective representation of that delay. I assume here that the subjective value of a delayed reward is
calculated by first measuring the subjective representation of the delay and then linearly
discounting using the form expressed in Equation (4.4). This linear discounting with
respect to the subjective representation of time is a direct result of the postulate of my
theory that animals maximize reward-rates over a limited temporal window including the
past integration interval and the delay to future reward.

4.2.1 Contribution of time measurement error to
the error in subjective value

From this relation, we can now calculate the error in subjective value of a delayed reward
resulting from an error in the representation of subjective time (Figure 30). To this end,
let us denote that the just-noticeable-difference (JND) in the subjective representation
$ST(t)$ of the delay t by $\delta ST(t)$, and that the error in the corresponding subjective value is
denoted by $\delta SV(r,t)$. For the purpose of this section, I assume that the measurement of the
reward magnitude is noiseless. Then, as the subjective representation of the delay t
increases by its JND, the subjective value will increase by the corresponding error. This
can be expressed mathematically as:

$$SV(r,t) + \delta SV(r,t) = r - \left(\frac{r}{T_{\text{me}}} + a_{\text{ext}}\right)\left(ST(t) + \delta ST(t)\right)$$

(6.5)

From Equations (4.5) and (4.4), we can now calculate the JND in subjective value as

$$\delta SV(r,t) = -\left(\frac{r}{T_{\text{me}}} + a_{\text{ext}}\right)\delta ST(t)$$

(6.6)
The negative sign here implies that as the delay increases, the subjective value decreases, i.e. the value is discounted.

I have previously shown that the error in the subjective representation of time is approximately linearly related to the subjective representation of time in an accumulator model (Namboodiri, Mihalas, Marton, et al., 2014), i.e. $\delta ST(t) = kST(t) + c$. The contribution due to the constant term c can be thought of a constant read-out error and is quite small except in the limit of $ST(t)$ approaching zero. Substituting this relationship into Equation (4.6), we get

$$\delta SV(r,t) = -(\frac{r}{T_{\text{time}}} + a_{\text{est}})(kST(t) + c)$$

Equation (4.7) can also be rewritten using Equation (4.4) as

$$\delta SV(r,t) = -c(\frac{r}{T_{\text{time}}} + a_{\text{est}}) - k(r - SV(r,t))$$

From the above equation, it can be seen that the error in subjective value of a delayed reward is linearly related to the drop in subjective value from time zero due to the passage of time. Hence, Weber’s law applies to the reduction in subjective value of a delayed reward due to its delay, i.e. to $r-SV(r,t)$. In other words, as the delay increases and the subjective value reduces, the error in the change of subjective value due to the delay is proportional to the change in subjective value. Henceforth, I refer to this as Weber’s law in value perception.
Errors in measurement of the delay to a future reward results in a corresponding error in subjective value. If the delay to the reward is perceived as earlier by the just-noticeable difference (JND), the subjective value is perceived as being larger. This error in subjective value is shown in the red bar and is calculated analytically in Section 4.2.1.
Let us now examine the effect of reducing the delay to zero. Since the negative sign in the above equations only indicates the direction of change, I drop this sign from here on for the calculation of noise. Thus, when \(t=0 \), both Equations (4.7) and (4.8) become

\[
\delta SV(r, 0) = c\left(\frac{r}{T_{\text{me}}} + a_{\text{er}}\right)
\]

Thus, the error in the subjective value of an immediate reward is proportional to the magnitude of the reward. This is Weber’s law in magnitude perception resulting purely from an error in the perception of an infinitesimally small immediate delay rather than arising solely from magnitude measurement error as is commonly believed. Interestingly, as the past integration interval \((T_{\text{me}}) \) increases—leading to an increased accuracy of time perception (Namboodiri, Mihalas, Marton, et al., 2014)—so does the accuracy of reward magnitude perception. This is a novel, untested prediction of the account presented here. This temporal basis of Weber’s law for the perception of reward magnitude also predicts that the accuracy of magnitude representation reduces when the past reward rate is high. This too, is a novel, testable prediction and is consistent with the notion that when reward rate is high, the need to represent rewards accurately (thus incurring greater metabolic costs) is reduced. The above two predictions regarding the dependence of errors in subjective value on the past integration interval and the past reward rate is depicted in Figure 31.
Figure 31 Dependence of error in subjective value on past integration interval and past reward rate
A. The Weber fraction of error in subjective value decreases with an increase in the past integration interval. This is mathematically represented in Equation (4.8). Compared to Figure 30 (represented as low T_{ane} in the graph on the right), the past integration interval is larger in this panel, thus reducing the error in subjective value while increasing the subjective value. The Weber fraction is thus smaller. B. The Weber fraction of error in subjective value increases with an increase in the past reward rate. This is mathematically represented in Equation (4.8). Compared to Figure 30 (represented as low a_{est} in the graph on the right), the past reward rate is larger in this panel, thus increasing the error in subjective value while decreasing the subjective value. The Weber fraction is thus larger.
The above treatment indicates that noise in time perception results in reward magnitude perception that abides by Weber’s law. Yet note that, to calculate the error in subjective magnitude (resulting purely from the noise in the measurement of the infinitesimally-small delay to immediate reward), I heretofore have ignored the contribution of noise in the measurement of the reward magnitude itself. Since we do not know the relative contributions of these sources of noise, it is possible that the source related to time might contribute but minimally to the overall error in reward magnitude perception. Therefore, in the next section, I present a model of sensory perception for reward magnitude, and then calculate the resulting perceptual error.

4.2.2 Sensory measurement error of reward magnitude due to evidence accumulation

In this section, I calculate the sensory measurement error of reward magnitude (e.g. error in the measurement of the volume of a water reward). In some modalities, the sensory receptor is itself thought to produce scalar noise (Donner, Hemilä, & Koskelainen, 1998; Matthews, Fain, Murphy, & Lamb, 1990; Nieder & Miller, 2003). While this is possible in the measurement of reward magnitude, I do not consider this simple solution here as neural elements in the central nervous system are typically considered to approximate Poisson processes, which have square-root noise and not linear noise (Rieke, Warland, van Steveninck, & Bialek, 1999). Rather, I consider errors in ascribing value to a given reward magnitude as resulting from central and not peripheral processes. While there are
other models for Weber’s law in sensation (Deco & Rolls, 2006; Dehaene, 2003; Shouval, Agarwal, & Gavornik, 2013; Treisman, 1966), ours is based on the fact that the measurement of any sensory quantity has to be carried out over time.

To this end, I assume that the sensory process for measuring the magnitude is carried out in time over a small temporal window of sensation. This sensory window is defined as the time over which there is a constant rate of sensory input. Hence, I assume that the net perceived reward magnitude is proportional to the time it takes to integrate the sensory input (e.g. when drinking water at a constant rate, the amount of water obtained is proportional to the duration of consumption). For an alternative model of sensory integration, see Appendix A1. In order to evaluate the noise in measurement, I assume that this sensory integration can be described by an accumulator model similar to previous decision-making models used for evidence accumulation (e.g. Simen et al., 2011; Brunton et al., 2013). I further assume that the reward magnitude is represented linearly and does not undergo a logarithmic transformation, as has been suggested for number representation (Dehaene, 2003). In the rest of this section, I formalize this accumulator model using a stochastic differential equation, and then analytically calculate the time dependence of its mean and variance.

If the neural system carrying out this sensory integration were perfectly noiseless, I can describe the accumulator model by the following differential equation

\[dr_t = adt; \quad 0 \leq t \leq t_{\text{sensory}} \] \hspace{1cm} (6.10)
Here, r_t represents the integrated reward magnitude at a given time. Thus, the measured reward magnitude r will be the integrated magnitude at the end of the sensory window, t_{sensory}, i.e. $r = r_{t_{\text{sensory}}}$. The rate of sensory input is denoted by a.

I now relax the assumption that the sensory integration is noiseless. Noise in such an accumulator system can result from two sources: noise in the sensory input and feedback noise in the accumulator. I assume that the feedback is a zero mean noise resulting from balanced excitatory/inhibitory connections, similar to many previous works (e.g. Simen et al., 2011; Brunton et al., 2013), and that the neurons performing these computations can all be described as Poisson point processes, i.e. the variance of each source of noise will be proportional to the corresponding signal. Thus, the variance of the sensory input will be proportional to the input (a) and the feedback noise will be proportional to r_t. I denote the proportionality constants as b and σ respectively.

For simplicity, I first assume that these two sources of noise are independent and additive. Since the variance of the sum of two independent sources sum up, the net variance can be expressed as $\sigma^2 r_t + b^2 a$. If we consider the variance of the noise term as constant throughout the integration, it can be represented by introducing an additional diffusive term that approximates a Brownian motion with infinitesimal variance of $\sigma^2 r_t + b^2 a$ into Equation (4.10). Thus, the introduction of these noise sources can be formally described by the following stochastic differential equation

$$dr_t = adt + \sqrt{\sigma^2 r_t + b^2 a} \, dW_t; \quad 0 \leq t \leq t_{\text{sensory}} \quad (6.11)$$
\(W_t \) represents a standard Wiener process (Brownian motion).

I will analytically solve the time dependence for the first and second moments of the above accumulator (shown in Equation (4.11)) so as to calculate the mean and variance at the end of the sensory window.

Taking the expectation values on both sides of Equation (4.11), we get

\[
d < r_t > = adt; \quad 0 \leq t \leq t_{\text{sensory}}
\]
(6.12)

where \(<r_t>\) represents the expectation value of \(r_t\). Since \(<r_0>=0\), we can write the solution obtained by integrating from 0 to \(t\) as

\[
<r_t> = at
\]
(6.13)

The time evolution equation for \(<r_t^2>\) can similarly be calculated by applying Ito’s product rule as

\[
d r_t^2 = 2r_t dr_t + (dr_t)^2 = 2ar_t dt + 2r_t \sqrt{\sigma^2 + b^2 a} \ dW_t + (ad + \sqrt{\sigma^2 + b^2 a} \ dW_t)^2; \quad 0 \leq t \leq t_{\text{sensory}}
\]
(6.14)

Using \(dr^2=0, dW_t dt=0\) and \(dW_t^2=dt\) and taking the expectations of both sides, we get

\[
d < r_t^2 > = (2<ar_t> + \sqrt{\sigma^2 + b^2 a} \sqrt{\sigma^2 + b^2 a}) dt; \quad 0 \leq t \leq t_{\text{sensory}}
\]
(6.15)

Simplifying, we get

\[
d < r_t^2 > = ((\sigma^2 + 2a) <r_t> + b^2 a) dt; \quad 0 \leq t \leq t_{\text{sensory}}
\]
(6.16)
Substituting from Equation (4.13) and integrating from 0 to \(t \) with the boundary condition of \(<r_t=0> = 0 \), we get

\[
<r_t^2> = a(\sigma^2 + 2a)\frac{t^2}{2} + b^2 at; \quad 0 \leq t \leq t_{\text{sensory}} \tag{6.17}
\]

Thus, the variance of \(r_t \) can be calculated as

\[
\text{var}(r_t) = <r_t^2> - <r_t>^2 = \frac{a\sigma^2 t^2}{2} + b^2 at; \quad 0 \leq t \leq t_{\text{sensory}} \tag{6.18}
\]

The coefficient of variation of \(r_t \) is thus

\[
\text{CV}(r_t) = \sqrt{\frac{\sigma^2}{2a} + \frac{b^2}{at}}; \quad 0 < t \leq t_{\text{sensory}} \tag{6.19}
\]

Since the measured reward magnitude is the integrated magnitude after the sensory window, the CV of the measurement can be written as

\[
\text{CV}(r) = \sqrt{\frac{\sigma^2}{2a} + \frac{b^2}{at_{\text{sensory}}}} \tag{6.20}
\]

Or

\[
\text{CV}(r) = \sqrt{\frac{\sigma^2}{2a} + \frac{b^2}{r}} \tag{6.21}
\]

If one assumes that the rate of sensory input is a constant, the above equation shows that except for low reward magnitudes, the CV is a constant, i.e. Weber’s law holds approximately for reward magnitude perception. If \(\sigma^2/a \) is large compared to \(b^2 \), the
constant term will dominate and the CV would be almost exactly constant. These analytical results are confirmed in numerical simulations as shown in Figure 32.

The mathematics of the accumulator shown in Equation (4.11) is quite similar to Equation 9 in (Simen, Balci, de Souza, et al., 2011). But there are some significant differences in the meaning of the terms. First, my model is for reward magnitude perception, whereas theirs is for time interval production. Second, as a consequence, while in my model the rate of sensory input is assumed to be a constant, they assume that the rate of accumulation is tuned for the interval to be timed. For this reason, their model can produce scalar timing only for time interval production and not for time interval measurement/perception where the coefficient of variation decreases in inverse proportion to the square root of the interval (similar to the second term in Equation (4.21)).

Equations (4.11)-(4.21) assumed that the sensory input noise is additive with respect to the feedback noise. Instead, if this noise were in fact multiplicative, Equation (4.11) would change to

\[dr_i = adt + \sigma \sqrt{b^2 r_i^2} \; dW_i; \quad 0 \leq t \leq t_{\text{sensory}} \] \hspace{1cm} (6.22)

In this case, the CV can similarly be calculated as (shown in Appendix A)

\[CV(r) = \frac{\sigma b}{\sqrt{2}} \] \hspace{1cm} (6.23)

Thus, when the sensory and feedback noises multiply, the coefficient of variation is independent of the magnitude of the sensory signal \(a\).
Again, I performed confirmatory numerical simulations of Equation (4.22), the results of which are shown in Figure 33. Therefore, if the sensory input noise is multiplicative, the coefficient of variation is exactly constant, thus making Weber’s law exact. Instead, if the sensory input noise is additive, the coefficient of variation shows deviations from exact Weber’s law at low reward magnitudes.
Figure 32 Confirmatory simulations (see Section 4.4) of the analytical solution of an accumulator model in which the sensory and feedback noise combine additively

The red line shows the result of the analytical calculation as expressed in Equation (4.21), wherein the sensory signal (a), magnitude of sensory noise (b), and the magnitude of feedback noise (σ) are varied. The black dots show the results of numerical simulation. The results approximate Weber’s law well but for low reward magnitudes and high sensory noise (b).
Confirmatory simulations (see Section 4.4) of the analytical solution of an accumulator model in which the sensory and feedback noise combine multiplicatively.

The red line shows the result of the analytical calculation as expressed in Equation (4.23) wherein the sensory signal \(a \), magnitude of sensory noise \(b \), and the magnitude of feedback noise \(\sigma \) are varied. The black dots show the results of numerical simulation. Here, Weber’s law is exact.
The accumulator model considered above is similar to the one that I previously proposed for the representation of subjective time (Namboodiri, Mihalas, Marton, et al., 2014), with two differences. The most important difference is that whereas subjective time is assumed to be a non-linear transform of real time, subjective reward is assumed to be linearly proportional to the real reward. Due to this difference, the reward magnitude accumulator is analytically tractable, unlike the subjective time accumulator, for which the analytical solution was approximate (Namboodiri, Mihalas, Marton, et al., 2014). The other difference is that since the reward magnitude accumulator operates on a sensory input (Unlike the subjective time accumulator), the contribution of this sensory noise has also been included.

4.2.3 Combined error due to time and magnitude measurements on subjective value

We now have all the elements to calculate the error in subjective value of a delayed reward resulting from errors in both magnitude and time measurements (Figure 34).
Figure 34 The error in subjective value is affected by errors in the measurement of both delay (as shown in Figure 30) and reward magnitude.

This combined error is calculated analytically in Section 4.2.3.
Returning to Equation (4.4), if we consider the effect of adding the JND of both r and $ST(t)$, we see that while adding the JND of r leads to an increase in the $SV(r,t)$, adding the JND of $ST(t)$ leads to a decrease (due to temporal discounting). Since we are only interested in the net error, so as to match the direction of change, we will consider the effect of error in both r and $ST(t)$ by adding the JND of r and subtracting the JND of $ST(t)$. Thus, we get the following equation

$$SV(r,t) + \delta SV(r,t) = r + \delta r - \left(\frac{r + \delta r}{T_{me}} + a_{est}\right)(ST(t) - \delta ST(t)) \quad (6.24)$$

Therefore, using Equation (4.4), the error in subjective value $\delta SV(r,t)$ can be written as

$$\delta SV(r,t) = \delta r \left(1 - \frac{ST(t)}{T_{me}}\right) + \left(\frac{r}{T_{me}} + a_{est}\right)\delta ST(t) + \frac{\delta r \delta ST(t)}{T_{me}} \quad (6.25)$$

From Equation (4.4), \(1 - \frac{ST(t)}{T_{me}} = \frac{SV(r,t) + a_{est}ST(t)}{r}\). Therefore Equation (4.25) becomes

$$\delta SV(r,t) = \frac{\delta r}{r} (SV(r,t) + a_{est}ST(t)) + \left(\frac{r}{T_{me}} + a_{est}\right)\delta ST(t) + \frac{\delta r \delta ST(t)}{T_{me}} \quad (6.26)$$

For simplicity, we consider the exact form of Weber’s law to hold for the sensory measurement of r. Therefore, we write $\frac{\delta r}{r} = l$, where l is the Weber fraction.

From Equations (4.6) and (4.8), the second term in the R.H.S is equal to $c\left(\frac{r}{T_{me}} + a_{est}\right) + k(r - SV(r,t))$, where $\delta ST(t) = kST(t) + c$.

205
Before calculating the error in subjective value at any delay, I first calculate its value for an immediate reward, where $t=0$ and $ST(t)=0$. From Equation (4.26), this can be written as

$$\delta SV(r,0) = lr + c\left(\frac{r}{T_{ime}} + a_{est}\right) + \frac{lcr}{T_{ime}}$$

(6.27)

Simplifying, we get

$$\delta SV(r,0) = r(1 + \frac{c}{T_{ime}}) + \frac{cr}{T_{ime}} + ca_{est}$$

(6.28)

The above equation obeys Weber’s law for reward magnitude perception, resulting from errors in both the measurement of magnitude and the measurement of the infinitesimal delay to an immediate reward. As can be seen, the Weber fraction (slope of $\delta SV(r,0)$ with respect to r) depends on T_{ime}, the past integration interval. Thus, I predict that even within an individual, the Weber fraction in the perception of reward magnitude (subjective value of an immediate reward) can change depending on the context, as the past integration interval changes. The direction of this change will be such that the better the perception of time, the better the perception of reward magnitude. Further, as mentioned previously after Equation (4.9), the above equation also predicts that the larger the experienced reward rate, the larger the error in perception of reward magnitude. These are the strong falsifiable predictions of my account.

I now calculate the error in subjective value at a given delay t due to errors in both time and reward magnitude measurement. From Equation (4.26), I get
\[
\delta SV(r, t) = lSV(r, t) + a_{est}ST(t) + c\left(\frac{r}{T_{ime}} + a_{est} \right) + k\left(r - SV(r, t) \right) + \frac{lr(kST(t) + c)}{T_{ime}}
\] (6.29)

Simplifying, we get

\[
\delta SV(r, t) = (l - k)SV(r, t) + (la_{est} + \frac{lrk}{T_{ime}})ST(t) + r\left[\frac{(1 + l)c}{T_{ime}} + k \right] + ca_{est}
\] (6.30)

Since I am interested in the noise in subjective value of a constant reward magnitude delayed by varying amounts, if I treat \(r \) as a constant (for now), I can write (using Equation (4.4))

\[
ST(t) = \frac{r - SV(r, t)}{r + \frac{a_{est}}{T_{ime}}}
\]

Grouping the terms that are proportional to \(SV(r, t) \) separately from the other terms, the above equation becomes

\[
\delta SV(r, t) = \left(l - k - \frac{a_{est}T_{ime} + rk}{a_{est}T_{ime} + r} \right) SV(r, t) + \left(r\frac{(1 + l)c}{T_{ime}} + k + l\frac{a_{est}T_{ime} + rk}{a_{est}T_{ime} + r} \right) + ca_{est}
\]

(6.31)

The above equation also abides by Weber’s law. Thus, I have shown that the error in subjective value of a given reward delayed by different amounts is proportional to the subjective value at each given delay. Again, the Weber fraction depends on the reward environment of the animal since it depends on \(r, a_{est} \) and \(T_{ime} \).

We can also similarly calculate the subjective value error at a given delay for differing reward magnitudes. To do this, we substitute \(r \) as (using Equation (4.4))

\[
r = \frac{SV(r, t) + a_{est}ST(t)}{1 - \frac{ST(t)}{T_{ime}}}
\]

in a rewritten version of Equation (4.25) as shown below.
\[\delta SV(r, t) = lr(1 - \frac{ST(t)}{T_{ime}}) + c(\frac{r}{T_{ime}} + a_{est}) + k(\frac{r}{T_{ime}} + a_{est})ST(t) + \frac{lr(kST(t) + c)}{T_{ime}} \] (6.32)

Thus,

\[\delta SV(r, t) = l(SV(r, t) + a_{est}ST(t)) + r(1 + l)\frac{c + kST(t)}{T_{ime}} + a_{est}(c + kST(t)) \] (6.33)

Or,

\[\delta SV(r, t) = SV(r, t)\left(l + (1 + l)\frac{c + kST(t)}{T_{ime} - ST(t)} \right) + a_{est}\left(lST(t) + ST(t)(1 + l)\frac{c + kST(t)}{T_{ime} - ST(t)} + c + kST(t) \right) \] (6.34)

where \(ST(t) = \frac{t}{1 + \frac{t}{T_{ime}}} \).

This too abides by Weber’s law. Thus, I have also shown that the error in subjective value at a given delay for different reward magnitudes is proportional to the subjective value.

4.3 Discussion

Previously, I presented a general theory of intertemporal decision-making and time perception (TIMERR) that explains many well-established observations in these fields.
(Namboodiri, Mihalas, Marton, et al., 2014). My theory states that the decisions of animals are a consequence of maximizing reward rates in a limited temporal window including a past integration interval and the delay to a current reward. Interestingly, I showed that the representation of time is also related to the past integration interval in my framework, and that impulsive (low tolerance to delays of rewards) individuals have an impaired perception of time. I then demonstrated that the error in perception of time is approximately scalar, with the deviation from exact Weber’s law depending on the past integration interval.

In this chapter, I extended the results of my prior work to consider the role of error in time perception on the perception of reward magnitudes and the subjective values of delayed rewards. I showed that the error in perception of the infinitesimally small delay to an immediate reward affects the perception of reward magnitude in accordance with Weber’s law. Since the sensory measurement of the reward must be carried out over time, I derived Weber’s law in the sensation of reward magnitude by assuming an accumulator model (for this sensory integration) with a Poisson feedback with balanced excitation/inhibition. This could be the underlying reason behind the observation of Weber’s law in the perception of reward magnitude by animals. Subsequently, I showed that in TIMERR, the combination of errors in both time and reward magnitude measurement on the subjective value change of a delayed reward also accords with Weber’s law. Crucially, the Weber fractions are predicted to depend on the reward history of the animal, thus providing a strong, falsifiable prediction of my theory, along
with the predicted correlation between errors in time perception and reward magnitude estimation.

Superficially, it might be assumed that since the perception of reward magnitude abides by Weber’s law, so should the subjective value of a delayed reward. In fact, such an assertion has previously been made (Cui, 2011) without the recognition that this requires a specific relation between subjective value, reward magnitude, delay to reward, and the perception of the delay. From the analytical derivation presented above, it is evident that Weber’s law in subjective value change is a consequence of the special forms of discounting function (subjective value of a delayed reward divided by the subjective value of that reward when presented immediately) and subjective time representation that result from my theory. In fact, if one were to make the standard assumptions of 1) Weber’s law in reward magnitude measurement, 2) a hyperbolic discounting function (G. W. Ainslie, 1974; Cui, 2011; Frederick et al., 2002; Kalenscher & Pennartz, 2008), and, 3) linear subjective representation of time that abides by Weber’s law (Gibbon et al., 1984; Gibbon, 1977), the resultant error in subjective value of a delayed reward is far from proportional to the subjective value, as I show in Appendix A3.

Recent experiments have shown that the representation of reward magnitude or value is not just dependent on the reward under consideration, but also on other available options (Bateson, Healy, & Hurly, 2003; Huber et al., 1982; Louie, Khaw, & Glimcher, 2013). A recent neuroeconomic model (Louie et al., 2013) employing a divisive normalization scheme wherein each individual reward is compared against the other available options can produce such context dependence. In light of these findings, one might question my
assumption of an absolute code for reward magnitude, i.e. my assumption that reward magnitude is represented based only on the magnitude of the reward of interest. It is thus important to point out that my theory predicts context dependent choices even under the assumption that the reward magnitude representation is independent of the other available options. This is because the subjective value of a reward (since every reward is effectively a delayed reward) is affected by the animal’s estimate of its past reward rate (Equation (4.1)). Thus, the presence of distracters affects the subjective value of a reward due to an effect on the past reward rate in experiments involving sequential choices. Additionally, the current options might affect one’s estimate of experienced reward rate (Namboodiri, Mihalas, & Hussain Shuler, 2014). Further, as shown in Equations (4.9) and (4.28), the larger the value of the past reward rate, the larger the error (Weber fraction) in representation of a reward. Thus, my theory predicts that the larger the value of the distracter (thereby making the past reward rate larger), the higher the errors in deciding between two rewards, in accordance with the experimental observations shown in (Louie et al., 2013). The key difference between my account and the divisive normalization account (Louie et al., 2013) is that in my account, the context dependence is due to the estimation of past reward rate, whereas in divisive normalization, the context dependence is based only on the currently available options.

There have been prior models of how Weber’s law in reward magnitude and time perception affects decisions of animals in the context of external variability along these two dimensions (see Kacelnik and Bateson, 1996; Kacelnik and Brito E Abreu, 1998). These models have been successful at explaining why animals tend to prefer variability in
time, but not in reward magnitude, in comparison with fixed options of the same mean (see Kacelnik and Bateson, 1996; Kacelnik and Brito E Abreu, 1998). However, they do not propose an origin of Weber’s law for reward magnitude or time, nor do they calculate the net error due to both sources of noise. Unique to my theory, I predict a systematic relationship between the reward history of animals and their perception of these quantities.

4.4 Methods

The confirmatory simulations performed for Figure 32 and Figure 33 integrated Equations (4.11) and (4.22) respectively using the Euler-Maruyama method. Thus, the discrete time version of the equations used for Figure 32 and Figure 33 are respectively

\[r_{t+\Delta} = r_t + a\Delta t + \sqrt{\sigma^2 r_t + b^2} \sqrt{\Delta t} N(0,1) \]

\[r_{t+\Delta} = r_t + a\Delta t + \sigma b r_t \sqrt{\Delta t} N(0,1) \]

where \(N(0,1)\) is the standard normal distribution. The step size for integration, \(\Delta t\), was set to 0.001 units. The parameters were changed as shown in the figure legend. In each case, the same random seed was used to initialize the simulations.
4.5 Appendix

4.5.1 A1

In the chapter, I assumed that the sensory integration for the measurement of reward magnitude is carried out at a constant rate and that the net perceived magnitude is proportional to the time of integration. Instead, it is possible to assume that the sensory integration is carried out over a constant window and that the rate of accumulation is proportional to the reward magnitude. This may be more appropriate when the reward magnitude depends on the quality of the reward (juice vs. water) instead of the quantity (more water vs. less water). In this case, under the assumption of additive independent Poisson noise as used for the derivation of Equation (4.20), the coefficient of variation in the integration would be exactly as shown in Equation (4.20), with the only difference being that the perceived magnitude r would depend on a and that t_{sensory} would be a constant. Hence, in this case, the coefficient of variation would be inversely proportional to the square root of the reward magnitude, thus not obeying Weber’s law.

If instead the noises are multiplicative as assumed in Equation (4.22), the coefficient of variation will indeed be a constant as shown in Equation (4.23), independent of the rate of accumulation. Thus, we see that if the sensory and feedback noise were multiplicative, Weber’s law would be exact.
Here I derive the coefficient of variation for the case of multiplicative noise as expressed in Equation (4.22) (reproduced below).

\[dr_i = a dt + \sigma \sqrt{b^2 a_i} \, dW_i; \quad 0 \leq t \leq t_{sensory} \]

Taking the expectation values on both sides, we get

\[d \langle r_i \rangle = a dt; \quad 0 \leq t \leq t_{sensory} \]

where \(\langle r_i \rangle \) represents the expectation value of \(r_i \). Since \(\langle r_0 \rangle = 0 \), we can write the solution obtained by integrating from 0 to \(t \) as

\[\langle r_i \rangle = at \]

The time evolution equation for \(\langle r_i^2 \rangle \) can be calculated by applying Ito’s product rule

\[dr_i^2 = 2r_i dr_i + (dr_i)^2 = 2ar_i dt + 2r_i \sqrt{\sigma^2 r_i b^2 a} \, dW_i + (a dt + \sqrt{\sigma^2 r_i b^2 a} \, dW_i)^2; \quad 0 \leq t \leq t_{sensory} \]

Using \(dr^2 = 0 \), \(dW_i dt = 0 \) and \(dW_i^2 = dt \) and taking the expectations of both sides, we get

\[d \langle r_i^2 \rangle = (2 \langle ar_i \rangle + \langle \sqrt{\sigma^2 r_i b^2 a} \sqrt{\sigma^2 r_i b^2 a} >) dt; \quad 0 \leq t \leq t_{sensory} \]

Simplifying, we get

\[d \langle r_i^2 \rangle = (\sigma^2 b^2 a + 2a) \langle r_i \rangle dt; \quad 0 \leq t \leq t_{sensory} \]
Substituting $<r_t> = at$ and integrating from 0 to t with the boundary condition of $<r_t=0^2>=0$, we get

$$<r_t^2> = a^2(\sigma^2b^2 + 2)\frac{t^2}{2}; \quad 0 \leq t \leq t_{\text{sensory}}$$

Thus, the variance of r_t can be calculated as

$$\text{var}(r_t) = <r_t^2> - <r_t>^2 = \frac{a^2\sigma^2b^2t^2}{2}; \quad 0 \leq t \leq t_{\text{sensory}}$$

The coefficient of variation of r_t is thus

$$CV = \frac{b\sigma}{\sqrt{2}}$$

4.5.3 A3

Here, I calculate the effect of the noise in the measurement of reward magnitude and delay on the subjective value of a delayed reward that is discounted purely hyperbolically, with the time perception being linear and showing Weber’s law in error. This subjective value can be written as

$$SV(r,t) = \frac{r}{1 + kt}$$

Since this is not a polynomial function, the JND in $SV(r,t)$ will have to be approximated using a Taylor series.
If we only consider, for now, error in time measurement, the JND for $SV(r,t)$ can be written as

$$\delta SV(r,t) = -\frac{kr}{(1+kt)^2} \delta t + \frac{2k^2 r}{(1+kt)^3} \frac{\delta t^2}{2} + \ldots$$

Keeping only the first order term, we get

$$\delta SV(r,t) \approx -k \frac{SV(r,t)^2}{r} \delta t$$

Assuming Weber’s law in time perception, I can write $\delta t = c t$. Substituting into the above equation, we get

$$\delta SV(r,t) \approx -kc \frac{SV(r,t)^2}{r} \frac{(r - SV(r,t))}{kSV(r,t)}$$

Simplifying, we get

$$\delta SV(r,t) \approx \left| -c \frac{SV(r,t)}{r} (r - SV(r,t)) \right| = cSV(r,t) - c \frac{SV(r,t)^2}{r}$$

where the negative sign has been ignored since I am only interested in the magnitude of the noise. Thus, the error in subjective value of a hyperbolically-discounted reward in the presence of scalar timing is quadratic with respect to the subjective value, to the first order.

If I now also include the error in measurement of reward magnitude, the first order term for $\delta SV(r,t)$ can be written as
Here, the JND in time perception was decreased so as to maintain the same direction of change as increasing the reward magnitude by its JND. If $\delta r = lr$, this can be written as

$$\delta SV(r,t) = \frac{\delta r}{1+kt} + \frac{kr}{(1+kt)^2} \delta t$$

This is also quadratic with respect to the subjective value to the first order approximation.

Therefore, even if Weber’s law held in reward magnitude and time perception, under the common belief of hyperbolic discounting, the subjective value of a delayed reward does not abide by Weber’s law.
Chapter 5. General Discussion

In this thesis, I have attempted to shed light on how animals perceive time and how they include it in their decisions. To this end, I undertook both an experimental and a theoretical approach. In my experimental work, I showed that even a primary sensory area is capable of instructing the production of timed actions. This shows that the brain does not have exclusive areas involved in sensation, decision-making and motor production. My work also shows that individual neurons are capable of representing a temporal interval using sustained modulations during the interval. My collaborators showed that a model of spiking neuronal network can reproduce the essential features of our experimental observations.

In my theoretical work, I proposed a simple unifying conceptual framework that explains how animals make decisions about delayed rewards. It also proposes a simple model of how time is subjectively represented in the brain. The key finding of the theory is that the behavior of animals can be understood as the result of maximizing reward rates over limited temporal intervals. It also assumes that the time interval over which the past reward rate is calculated is directly related to the temporal interval over which the reward rate maximization is performed. Interestingly, the theory shows that the interval over which reward rate maximization is performed directly controls the “patience” (ability to tolerate delays to rewards) of an individual. Thus, it predicts that in different environments, the “patience” of an individual will reflect the reward statistics of the corresponding environment. I then propose that time must be subjectively represented by
an individual so that the subjective reward rate equals the objective change in reward rate. Using this postulate, I show that the subjective representation of time is non-linear with respect to real time. Importantly, the non-linearity of this map is controlled by the interval over which reward rate maximization is carried out. Thus, it predicts that there will be a strong correlation between the “patience” of an individual and the non-linearity of his/her time perception.

I then calculated the effect of noise in time perception and reward magnitude perception on the decisions about delayed rewards. I showed that the error in change (with respect to the subjective value when the delay was zero) of subjective value of a delayed reward is proportional to the change of subjective value, i.e. that Weber’s law applies to value perception. Interestingly, the magnitude of this error depends not only on the level of neuronal noise, but also on the reward statistics of the environment. Further, I demonstrated that accumulator models for reward magnitude perception will produce approximate Weber’s law if there is a balanced Poisson feedback in the accumulator.

As is often the case, my work asks more questions than it answers. My experimental work requires multiple follow-up studies to pinpoint the mechanisms behind V1’s ability to instruct temporal production. Specifically, it would be interesting to address the following questions:

1. Is the effect of the optogenetic stimulation dependent on the delay between the visual stimulus and the stimulation? For the recurrent network model of V1 presented here, it is likely that the effect of perturbation depends on its timing, even though this has not been rigorously tested. Thus, it would be interesting to repeat my optogenetic
experiment with different delays to stimulation to test out specific predictions generated by the model. Such experiments would represent additional tests of the neuronal model.

2. Is V1 the sole instructor of timing in the task? To answer this question, the activity in V1 will have to be suppressed in a temporally precise way. Currently, this experiment is technically infeasible to perform in rats. In mice, where the experiment is technically feasible, it has, however, not been shown that the visually-cued timing task can be learned. Nevertheless, it is interesting to hypothesize the results of such an experiment. Since it is technically possible to completely solve the timing task at the level of V1 (as shown by the neuronal model), it is possible that the sole instructor of timing in this task is V1. Such a solution would minimize metabolic costs since it would require fewer number of neurons to be active than if multiple brain regions were simultaneously controlling timing. However, such a result is inconsistent with the redundancy in processing that is routinely observed in the brain (Bullmore & Sporns, 2012). Thus, it is unclear how this trade-off between redundancy in processing and metabolic cost would be solved by the brain in this task.

3. What is the network mechanism by which timing is generated in V1? A solution to this problem is presented by the neuronal network model of V1 presented in this thesis. However, a rigorous experimental test of this model is yet to be undertaken. A direct test (though currently infeasible) of the model would be to test the strength of synaptic connections across learning and to show that its development over learning is as predicted by the model.
4. How do the decoder units interact with the intervalkeeper units? The exact network model for the connections between decoders and intervalkeepers is highly interesting to study. This is because it is interesting to know whether these connections are formed spontaneously or through selective learning algorithms. The answer to this question would indicate whether such network models can also be used more generally by the brain to solve timing tasks. Experimental access to these connections would also make it possible to selectively modulate these different network elements.

5. Is V1 also capable of learning new temporal intervals while instructing the production of temporal intervals? One possible mechanism of behavioral control in this task is that early in training, behavior is controlled by “higher” brain regions, whereas later in training when behavioral timing is stereotyped, behavioral control is transferred to V1 (and possibly other areas). If so, it is interesting to require the animal to learn a different temporal interval after the learning of a given interval. In this instance of learning, it would be interesting to test whether it is possible for V1 to learn the new temporal contingency while being involved in instructing the production of temporal intervals.

6. How is the output from V1 used to instruct the lick time? What downstream regions receive this information and how do they process it? The answer to this would clearly depend on whether or not V1 is the sole instructor of timing in this task. If so, it would be interesting to test how the connection between V1 and the lick controller develops over the course of learning. If not, it would be interesting to study how the different regions involved in behavioral control in this task communicate with one another and the downstream decoding area.
7. Are other regions in the brain capable of instructing temporal interval production in appropriate contexts? It would be unlikely that this ability to instruct timing of actions using sustained modulations of firing rate is special to V1. The recurrent network model presented here could easily be present in other brain regions. Thus, it would be interesting to test whether the results obtained here for V1 could also be obtained for other brain regions in appropriate contexts.

The theoretical work also raises several important questions that need to be addressed. Below is a list of such questions. This list is, by no means, exhaustive.

1. Is the time interval over which reward rate is maximized directly related to the interval over which past reward rate is calculated? This is the direct falsifiable test of TIMERR. Even though TIMERR is capable of explaining numerous behavioral observations in intertemporal decision-making, whether or not it stands the test of time will be determined by the verification of this core postulate of TIMERR.

2. Is the decision-making of animals fully described by the TIMERR algorithm?

3. What is the optimal interval over which past reward rate is estimated? How does this depend on the statistics of the environment? Addressing this question would require solving a much more general optimization problem than has been treated by this thesis. It would require solving for the optimal T_{ine} that maximizes reward rate for a given environment.

4. Is the experimentally-measured past integration interval consistent with the above calculations?
5. Is the representation of subjective time non-linear? Does this non-linearity change within a subject?

6. Is the correlation between the steepness of temporal discounting and the non-linearity of time perception quantitatively explained by TIMERR?

7. What is the mechanism by which animal brains solve the intertemporal decision-making problem? It would be interesting to test how the different computations incorporated by TIMERR are solved by different regions of the brain.

8. How is subjective time neurally represented?

As can be seen, the list of unanswered questions is long. I finish this thesis with the sincere hope that my work has at least contributed (if minimally) to our understanding of how animals perceive time and use it in their decision-making.

228

Buetti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. *Philosophical Transactions of the Royal Society of

doi:10.1038/nrn1764

234

doi:10.1152/jn.90592.2008

doi:10.1016/j.beproc.2009.06.002

doi:10.1016/j.lmot.2008.05.004

doi:10.3758/PBR.16.6.1071

basal ganglia circuits. *Proceedings of the National Academy of Sciences of the
United States of America, 106*, 19156–19161. doi:10.1073/pnas.0909881106

cortical networks reflects experienced temporal patterns. *Nature Neuroscience,
13*(8), 917–9. doi:10.1038/nn.2579

Kacelnik, A., & Bateson, M. (1996). Risky Theories—The Effects of Variance on
doi:10.1093/icb/36.4.402

Kalenscher, T., & Pennartz, C. M. A. (2008). Is a bird in the hand worth two in the
future? The neuroeconomics of intertemporal decision-making. *Progress in
Neurobiology, 84*(3), 284–315. doi:10.1016/j.pneurobio.2007.11.004

timing of reward-prediction errors in models of the dopamine system. *Neural

dissociation of delay and uncertainty in intertemporal choice. *The Journal of
Neuroscience, 28*(53), 14459–66. doi:10.1523/JNEUROSCI.5058-08.2008

Luzardo, A., Ludvig, E. a, & Rivest, F. (2013). An adaptive drift-diffusion model of
doi:10.1016/j.beproc.2013.02.003

American Naturalist, 100*(916), 603–09.

MacDonald, C. J., Carrow, S., Place, R., & Eichenbaum, H. (2013). Distinct hippocampal
time cell sequences represent odor memories in immobilized rats. *The Journal of
Neuroscience : The Official Journal of the Society for Neuroscience, 33*(36), 14607–

104*(2), 241–65.

Time Preference for Health Gains vs. Health Losses. *Pharmacoeconomics, 3*(5),
374–386.

of the Society for Neuroscience, 28(33), 8161–8. doi:10.1523/JNEUROSCI.1093-08.2008

doi:10.1016/j.neuron.2011.08.010
Curriculum Vitae

VIJAY MOHAN K NAMBOODIRI

The Johns Hopkins University School of Medicine

725 N. Wolfe Street, WBSB 914

Baltimore, MD 21205

vknambo1@jhu.edu

Education

2008-present
The Johns Hopkins University School of Medicine; Baltimore MD
Predoctoral Candidate; Expected graduation 2015

2004-2008
Indian Institute of Technology-Bombay; Mumbai, India
B.Tech in Engineering Physics
Cumulative Performance Index: 9.22/10

Research Experience

2009-present
The Johns Hopkins University School of Medicine; Baltimore MD
Thesis project: “Time: perception and decision-making”
Advisor: Marshall Hussain Shuler

May-June 2009
The Johns Hopkins University School of Medicine; Baltimore MD
“Persistence of Border-Ownership responses in primate area V2”
Advisor: Rudiger von der Heydt

Aug’-Dec’ 2008 The Johns Hopkins University School of Medicine; Baltimore MD
“Theoretical modeling of Local Field Potentials”
Advisor: Ernst Niebur

2007-2008 Indian Institute of Technology-Bombay; Mumbai, India
“Computational modeling of amygdala neurons”
Advisor: Rohit Manchanda

May-July 2007 The International School for Advanced Studies; Trieste, Italy
“Free association transitions in cortical latching dynamics”
Advisor: Alessandro Treves

May-July 2006 Raman Research Institute; Bangalore, India
“Comptonization and the shaping of X-ray source spectra”
Advisor: Dipankar Bhattacharya

Jan’-April 2006 Indian Institute of Technology-Bombay; Mumbai, India
“A study of neutrino oscillations”
Advisor: Uma Sankar

Peer-reviewed Research Publications

1. Namboodiri, V.M.K., Huertas, M., Monk, K.J., Shouval, H.Z., Hussain Shuler, M.G.,
Visually-cued action timing in the primary visual cortex, *Neuron*, in press

3. **Namboodiri, V.M.K.**, Mihalas, S.M, Hussain Shuler, M.G., A temporal basis for Weber’s law in value perception, *Frontiers in Integrative Neuroscience*, Vol 8, Article 79, 2014 (this is not a review and is an original theoretical article)

Non-peer reviewed publications

Published Abstracts

2. **Neuroscience (SfN) 2013 856.13** Namboodiri, V.M.K., Mihalas, S.M., Marton, T., Hussain Shuler, M.G., A General Theory of Intertemporal Decision-making and the Perception of Time

Invited Talks

1. “The role of time in decision-making”, **47th WCBR 2014**, Panel 34 “It’s all in the timing”, invited by Dr. Matthew Matell

2. “Primary visual cortex engenders timed actions”, **Neuroscience 2014**, SfN, Session 119

272
Teaching Experience

<table>
<thead>
<tr>
<th>Role</th>
<th>Course Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Assistant</td>
<td>Neuroscience and Cognition II (Graduate course, Spring 2010)</td>
</tr>
<tr>
<td></td>
<td>Nervous System I (JHU undergraduate course, Fall 2010)</td>
</tr>
</tbody>
</table>

Awards and Honors

1. Stood **third in India** in the CBSE Board Examination in the twelfth grade with total marks of 485/500 including all five subjects.

2. Was **one among twenty selected candidates in India** for the National Astronomy Olympiad Camp in the year 2003 held in Mumbai, India, to select the Indian contingent of three members for the International Astronomy Olympiad, 2003. Finished fourth in the nation (not officially declared).

3. Attended an **Astronomy Nurture Camp** in December 2005, meant to bring together members of the Indian contingents to the International Physics Olympiad and the International Astronomy Olympiad.

4. Finished college as **second** in the class of 2008, Engineering Physics, at a Cumulative Performance Index of 9.22.

5. Secured the **seventy third rank (top 0.01%)** in the All India Engineering Entrance Examination, 2004.

6. Was a **member of the panel that set** and judged the questions for the IIT-Bombay Physics Olympiad in the years 2007 and 2008.

Skills

- Single-unit recordings in awake behaving rodents, including building custom recording devices and performing surgeries
- Training in in-vivo optogenetics, including instrumentation and viral infection surgeries.
- Proficient in MATLAB and C++. Experience with NEURON for multi-compartment modeling.
- Strong quantitative/theory background.
- Histology.