Telomerase RNP: from core RNA structure to the short-telomere senescence response

By

Rachel O. Niederer

A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

July 2015

© 2015 Rachel O. Niederer

All Rights Reserved
Abstract

Telomerase is a ribonucleoprotein that extends the ends of linear chromosomes. The RNA component contributes to many important functions of the enzyme including providing the template for reverse transcription by TERT, presenting a flexible scaffold for accessory subunit binding and contributing to enzyme coordination during catalysis through a poorly understood mechanism. Despite these crucial roles, the structure-function relationships of the RNA have remained undefined due, in part, to the lack of detailed structural information available.

Here I present refined secondary-structure models for the central cores of both the human and yeast RNA, highlighting conserved regions of flexibility adjacent to the template that likely play a role in enzyme catalysis. I also show that disease-associated mutations in telomerase RNA alter the folding equilibrium to a degree that is likely sufficient to disrupt enzyme activity. Telomerase function is critical for maintaining genome stability within the cell. When telomerase is absent or has compromised function the result is progressive telomere shortening until a specific cell-cycle arrest known as senescence. The adaptive changes undergone by the cell during this process remain unclear. Using RNA-seq I have shown that senescence is a distinct state both phenotypically and transcriptionally, although it overlaps substantially with other related conditions such as slow growth and the DNA damage response. The senescence response is consistent with many pro-survival adaptations, including initiation of a starvation response and concurrent upregulation of autophagy. These findings
place senescence within a wider context of other stress responses, while also
highlighting the unique challenges faced by cells having to deal with
progressively shortening telomeres.

Thesis advisor: Dr. David Zappulla
Thesis committee: Dr. Sarah Woodson
 Dr. Karen Beemon
 Dr. Nickolas Papadoupolos
Acknowledgements

First, I would like to thank my thesis advisor, David Zappulla, for all of the support I have received during my time in the lab. He has given me a great deal of freedom to explore topics and techniques that interest me while providing extensive enthusiasm and encouragement.

I would also like to thank my thesis committee – Dr. Sarah Woodson, Dr. Karen Beemon, and Dr. Nickolas Papadoupolos – for the helpful advice I’ve received over the years. Each of them has made him or herself available to me to drop by and ask questions both about science and for career advice and I greatly appreciate it.

I also thank my lab mates: Dr. Melissa Mefford, Karen McMurdie, Evan Hass and Dr. Kevin Lebo. I have grown tremendously as a scientist during my time here due in large part to the help, discussions, advice, etc. I’ve received from my lab mates.

I want to thank my friends in the department, in particular Kevin DeLong for numerous thoughtful discussions and code troubleshooting. I’ve had a lot of fun during my time here thanks to my friends, and this has made graduate school much easier to manage.

Next I want to thank my family, mostly for not laughing at me when I said I wanted to go to graduate school when I was 10 years old, but also for always encouraging my curiosity about the world around me.
Finally, I'd like to thank my husband Andrew for all the love, support, discussions and late night dinners. Truly, I could not have done this without you.
Contents

Abstract ... ii

Acknowledgements ... iv

List of tables ... xi

List of figures ... xii

Introduction: The telomerase RNP and short-telomere induced senescence ... 1

1.1 Telomeres protect the ends of linear chromosomes ... 2

1.2 The telomerase ribonucleoprotein complex .. 3

1.3 Telomerase RNA structure .. 4

1.4 Loss of telomerase function leads to cell cycle arrest ... 9

1.5 The cellular response to telomerase deletion .. 12

1.6 Quiescence in yeast ... 13

1.7 Noncoding RNA expression during senescence ... 14

Refined secondary-structure models of the yeast and human telomerase

RNA cores .. 17

2.1 Structure-function analysis of yeast and human telomerase RNAs by chemical
probing ... 18

2.2 Materials and Methods .. 20

2.2.1 RNA preparation ... 20

vi
2.2.2 SHAPE chemical probing ... 22
2.2.3 Primer extension .. 22
2.2.4 SHAPE data analysis ... 23
2.2.5 Secondary-structure model generation .. 24
2.2.6 Telomerase Assays .. 24
2.2.7 Native gel analysis ... 25

2.3 Results ... 26
2.3.1 The yeast telomerase RNA core adopts its active conformation in vitro 26
2.3.2 The pseudoknot in the yeast telomerase RNA core forms in vitro 27
2.3.3 The yeast pseudoknot contains additional base-triples 33
2.3.4 Folding of the human telomerase RNA core requires high magnesium 38
2.3.5 The human telomerase RNA core adopts its active conformation in vitro ... 41
2.3.6 Mutations in the pseudoknot of the human telomerase RNA disrupt the folding equilibrium ... 45
2.3.7 A potentially structured element within the template of yeast and human telomerase RNA cores ... 45
2.3.8 The structure of the Est1-binding arm is important for SEED function 47

2.4 Discussion .. 49

Telomerase-negative cells express a specific set of novel IncRNAs53

3.1 Identification of novel IncRNAs in telomerase-negative yeast 54
3.2 Materials and methods ... 55
3.2.1 Growth and characterization of yeast strains ... 55
3.2.2 RNA isolation ... 56
3.2.3 RNA-seq data analysis .. 56
3.2.4 Telomere-length analysis ... 57

3.3 Results ... 58

3.3.1 Characterization of the senescence time course of telomerase-mutant yeast cells ... 58

3.3.2 Identification of 112 novel lncRNAs in yeast 63

3.3.3 Characterization of putative lncRNAs .. 66

3.3.4 Novel lncRNAs show altered expression in telomerase-negative cells 72

3.3.5 A subset of the novel lncRNAs show correlated expression with a neighboring gene ... 75

3.3.6 Genes showing correlated expression with adjacent lncRNA are enriched for membrane proteins .. 80

3.4 Discussion ... 81

Defining the distinct transcriptional response to short-telomere induced senescence ... 85

4.1 Senescence and quiescence in yeast ... 86

4.2 Materials and methods ... 87

4.2.1 Generation of telomerase negative yeast 87

4.2.2 RNA isolation ... 88

4.2.3 Library preparation and RNA sequencing 88

4.2.4 Data analysis ... 88

4.2.5 Glucose uptake assays ... 88

4.2.6 Stress resistance assays ... 89

4.2.7 Cell death staining ... 89

4.2.8 Monitoring GFP-ATG8 localization ... 89
4.3 Results .. 91

4.3.1 Transcriptional response to telomerase deletion ... 91

4.3.2 Many genes show phase-specific changes in gene expression 91

4.3.3 Telomerase-negative cells show decreased glucose uptake during senescence .. 96

4.3.4 Upregulation of autophagy during short-telomere induced senescence 101

4.3.5 The transcriptional response to telomerase deletion overlaps with the response to slow growth ... 104

4.3.6 The senescence response overlaps with DNA damage and G2/M arrest 106

4.3.6 The transcriptional response of senescing cells is dominated by dubious or putative ORFs ... 110

4.3.7 Translational machinery shows evidence of co-regulated expression 111

4.4 Discussion ... 114

5.1 Final conclusions ... 120

5.1.1 The yeast and human TR cores do not require protein binding to adopt active conformation ... 120

5.1.2 Human and yeast TR cores show a common SHAPE reactivity pattern 122

5.1.3 Reverse transcriptase-RNA interactions: unique features of telomerase...... 123

5.1.4 Loss of telomerase results in metabolic reprogramming in yeast 125

5.1.5 Telomerase-negative cells are incredibly sensitive to oxidative stress 126

5.1.6 Induction of lncRNAs in telomerase-negative cells 128

References: ... 130

Vita ... 139
List of tables

Table 3-1. Genomic coordinates of novel IncRNAs. .. 68

Table 3-2. Percent difference in the value of observed vs. expected correlated genes. .. 80
List of figures

Figure 1-1 The universal core model of telomerase RNA .. 7
Figure 1-2. Previously published yeast TR pseudoknot models ... 9
Figure 1-3. Loss of telomerase function leads to senescence .. 11
Figure 2-1 Addition of an RNA structure cassette to the 3’ end does not appear to greatly impact folding .. 21
Figure 2-2: SHAPE-directed secondary structure model of the core of S. cerevisiae telomerase RNA. .. 29
Figure 2-3. Pseudoknot-disrupting mutants increase reactivity in stem 1. 31
Figure 2-4. Additional base triples are supported by SHAPE and phylogenetic data .. 34
Figure 2-5. Mutagenesis of proposed base triples .. 36
Figure 2-6. Magnesium-dependent behaviour within hTR and hTRDKC 39
Figure 2-7. SHAPE-refined secondary structure model of the \textit{H. sapiens} core... 43
Figure 2-8. DMS reactivity within the yeast template .. 46
Figure 2-9. SHAPE reactivity within the Est1 arm ... 48
Figure 2-10. Models of the yeast and human TR cores .. 51
Figure 3-1. Phenotypic characterization of senescing and postsenescent \textit{tlc1\textDelta} cells. .. 60
Figure 3-2. Telomere Southern blot .. 62
Figure 3-3. Characterization of novel intergenic transcripts ... 64
Figure 3-4. Validation of IncRNA candidates ... 67
Figure 3-5. Many lncRNAs are differentially expressed in telomerase negative cells. ...73

Figure 3-6. The lncRNA candidates may regulate expression of nearby genes. 76

Figure 3-7. Correlation analysis of lncRNAs and adjacent genes.78

Figure 4-1. Replicates show good agreement at every time point........93

Figure 4-2. Telomerase-negative cells exhibit phase-specific differential expression. ..94

Figure 4-3. Functional enrichment analysis of phase-specific genes.97

Figure 4-4. Senescing cells consume less glucose and initiate a starvation response...99

Figure 4-5. Telomerase-negative cells show increased autophagic activity......102

Figure 4-6. An increase in cell death during senescence.104

Figure 4-7. Senescence is a distinct transcriptional state...............................107

Figure 4-8. Senescence is phenotypically distinct from other quiescent states. 109

Figure 4-9. Ribosomal proteins show anticorrelated expression from ribosomal processing machinery...112

Figure 4-10. Comparison of differentially expressed genes identified during senescence in two independent studies. ...116
Introduction: The telomerase RNP and short-telomere induced senescence
1.1 Telomeres protect the ends of linear chromosomes

Telomeres are protective elements at the ends of linear chromosomes that contain repetitive DNA sequences and specific DNA-binding proteins. Telomeres serve a protective function in eukaryotic cells by promoting genome stability and preventing DNA ends from being inappropriately recognized as double-stranded breaks (DSBs) (Putnam, et al., 2009). This is necessary as the natural ends of chromosomes are very similar to the structures generated by DSBs. When the DSB repair machinery mistakenly targets the chromosome ends, the result is often end-to-end chromosome fusions. These dicentric chromosomes present a challenge during mitosis and are frequently torn apart during cell division. This generates additional DSBs which must be repaired in a process termed the “breakage-fusion bridge cycle” (McClintock 1941). Thus, distinguishing the natural ends of chromosomes from DNA breaks is critical for maintaining genome stability.

Telomeres accomplish this task due to a combination of telomere-specific binding proteins and a unique structural arrangement known as a t-loop (Wei, et al., 2003). Telomere-specific binding proteins are able to recognize the chromosome end due to the unique nature of the repeated sequence tracts found only at the telomere. In fact, inserting telomeric sequence at or near the site of an induced DNA break results in the recruitment of telomere-binding proteins and
subsequent misidentification of the break as a natural end (Diede, et al., 1999). Telomeric sequence is not conserved, and as a result telomere-binding proteins vary extensively between species. However, these proteins serve to prevent the recruitment of DNA repair machinery to the chromosome end (Cervantes, et al., 2002).

Telomeres present an additional problem during DNA replication as the ends of linear chromosomes cannot be fully replicated by the canonical replication machinery, leading to what is known as the end replication problem (Levy, et al., 1992). To counteract this problem most eukaryotes maintain telomeres using the enzyme telomerase, which is a ribonucleoprotein (RNP) complex that extends the telomeres via sequence-directed reverse transcription. The newly extended strand is then copied by the DNA replication machinery (Chandra, et al., 2001; Fan, et al., 1997; Qi, et al., 2000). This process prevents progressive shortening, of the telomeres and promoted genome integrity.

1.2 The telomerase ribonucleoprotein complex

Telomerase is minimally composed of a catalytic reverse transcriptase (TERT) and an RNA component (TR), which is used as the template for reverse transcription. The complex binds to the chromosome end, where the RNA component base pairs with the single-stranded portion of the telomere. TERT then catalyzes the template-directed addition of nucleotides to the telomere.
Once TERT reaches the end of the template the added sequence is known as a single telomeric repeat. At this point the telomerase complex can either dissociate or begin synthesis of additional repeats through a process that is poorly understood. In addition to the core components (TERT, TR), telomerase contains a variety of often species-specific accessory proteins. These proteins are involved in different processes, ranging from enzyme function to recruitment to the telomere.

Telomere maintenance requires precise action by the enzyme telomerase, which can be regulated at multiple levels including (1) recruitment to the telomere, (2) assembly of RNP subunits and (3) appropriate folding of the RNA component into a catalytically capable conformation. For example, studies have shown that mutations that alter the folding equilibrium of TR are associated with the disease Dyskeratosis congenita (Hengesbach, et al., 2012; Theimer, et al., 2003; Vulliamy, et al., 2001).

1.3 Telomerase RNA structure

Telomerase RNA is poorly conserved, and even varies dramatically in size between species ranging from ~150 nucleotides (nt) in ciliates to over 2000 nts in some yeasts. However, all TRs discovered to date do contain a shared set of structural features within a region known as the core (Lin, et al., 2004). The core can be thought of as the “central hub” of the telomerase complex as it is the
primary site of TERT binding and, therefore, contains both the active site and RNA template. The commonality of these shared structures and their location within the core suggests that all telomerase enzymes have similar structural requirements for the RNA component during catalysis. The common features consist of (1) a single-stranded template for reverse transcription, (2) a template boundary element that functions in template definition, (3) a core-enclosing helix, (4) a catalytically-important pseudoknot and (5) an Area of Required Connectivity spanning the region from the template to the pseudoknot where physical connections are required (shown in Figure 1-1) (Lin, et al. 2004; Mefford, et al., 2013).

Despite extensive structural conservation in the core, direct structural studies in differing species have been difficult. This is likely due to extensive sequence differences in regions outside of the core. For example, the yeast TR (TLC1) is over 1 kb and consists of three long stems surrounding the central core (Dandjinou, et al., 2004; Singer, et al., 1994; Zappulla, et al., 2004) while the human TR is 451 nts and consists of the core region and a box H/ACA domain at the 3’ end (Chen, et al., 2000; Ramakrishnan, et al., 1997; Theimer, et al., 2005). As a result, a variety of secondary-structures have been proposed within the telomerase RNA cores based on a combination of genetic and phylogenetic information. The lack of a consensus structure has made it difficult to investigate structure-function relationships within the core. In particular, the pseudoknot models vary dramatically (yeast shown in Figure 1-2). Appropriate folding of the
pseudoknot is known to be important for function, as mutations in this region compromise activity \textit{in vivo} in yeast, and are associated with short-telomere associated diseases in humans (Gilley, et al., 1999; Lin, et al. 2004; Ly, et al., 2003; Prescott, et al., 1997; Tzfati, et al., 2003). This underscores the need for more direct structural studies of the RNA.
Figure 1-1 The universal core model of telomerase RNA

The core of telomerase RNA contains several conserved structural elements (Lin, et al. 2004) including (1) the core enclosing helix, (2) the pseudoknot, (3) the template and (4) the template boundary element. The pseudoknot is important for catalysis and is thought to be the site of TERT-binding. The template is used to direct the sequence-specific addition of nucleotides to the telomere. The template boundary element defines the end of the template to prevent aberrant copying outside of the template. The core enclosing helix connects the neighboring elements within the ARC and may also contribute to TERT binding.
My research has focused on investigating RNA structure within the TR core. To identify any conserved features of this important region, I examined both the human and yeast TR core using chemical probing methods (discussed in Chapter 2). I have shown that both the human and yeast TR cores can adopt a catalytically-competent conformation including (1) a fully-formed pseudoknot, (2) a single-stranded template and (3) base triples in the absence of any protein binding. This is in contrast to the behavior of the ciliate TR, which requires TERT binding to form its active conformation (Mihalusova, et al., 2011). Additionally, I was able to refine the secondary structure models for both RNAs. In particular, I identified five additional base triple interactions within the yeast TR core that likely add previously unappreciated stability to the active conformation, and could play a role in positioning the template within the enzyme active site.

I also identified several shared features between the human and yeast TR cores that may play conserved roles in telomerase function. In both RNAs I observed flexible nucleotides 3’ of the template and between the pseudoknot and core-enclosing helix. These flexible regions could be acting as “hinge points” during catalysis to allow movement of the template through the active site. Together, these findings further our understanding of the structure-function relationships within the enzyme core.
1.4 Loss of telomerase function leads to cell cycle arrest

Compromised telomerase function, either due to inappropriate folding of TR, inefficient recruitment or other defects, results in progressive telomere shortening and eventually a specific cell-cycle arrest known as senescence (summarized in Figure 1-3) (Lundblad, et al., 1989; Weinert, et al., 1988). In yeast this arrest occurs in G2/M, although the arrest is not completely uniform and cells show variable, albeit elongated, cell cycle durations (Xie, et al., 2015). Presumably this is due to transient activation of a DNA damage checkpoint,
which is consistent with previous findings from global expression studies (Greenall, et al., 2008; Mandell, et al., 2005; Nautiyal, et al., 2002), that find evidence for initiation of a DNA damage response. However, the exact nature and extent of this response remain unclear.

This arrest is eventually alleviated in rare cells by a recombination-based telomere maintenance pathway known as Alternative Lengthening of Telomeres (ALT) (Lundblad, et al., 1993) in a process that is conserved in humans and plays a role in many cancers. Cells that initiate this type of telomere maintenance are known as survivors. In yeast, two types of survivors (I and II) have been found (Chen, et al., 2001). The types can be distinguished by their distinct telomere patterns and either is sufficient to escape senescence. If telomerase-negative cells are unable to initiate either of the survivor pathways the result is progressive telomere shortening and, eventually, cell death.
Figure 1-3. Loss of telomerase function leads to senescence.

In this highly simplified model (Adapted from (Campisi 2001)), telomere length dynamics are plotted against cell divisions. In cells where telomerase is active and functional, such as in wild type yeast or in stem cells, telomere length remains relatively constant (dark blue line). However, when telomerase is either absent or nonfunctional (light blue line), as is the case in mutant yeast and most somatic cells, telomeres progressively shorten until initiating a cell cycle arrest known as senescence (red box). Due to the heterogeneity of the arrest many cells will continue to divide, resulting in progressively shorter telomeres. Eventually these cells give rise to a subpopulation of cells known as survivors that maintain their telomeres using recombination-mediated lengthening (green line).
1.5 The cellular response to telomerase deletion

The adaptive changes that occur in telomerase-negative cells are poorly understood. Previous studies have examined the transcriptional response to telomere shortening using one of three approaches: (1) deletion of TR (Nautiyal, et al. 2002), resulting in a complete loss of telomerase activity, (2) deletion of TERT (Mandell, et al. 2005), which also abolishes telomerase function, or (3) promotion of telomere deprotection (Greenall, et al. 2008), which leads to resection of the chromosome end and progressive telomere shortening. Each study used microarrays to examine the expression response to telomere shortening. However, there was very little overlap in the findings of the three studies so the exact nature of the cellular response to senescence remains unclear.

In particular, the extent to which senescence represents a distinct cellular state is unknown. Senescent cells share many features with other, previously characterized cell states such as slow growth, DNA damage and G2/M arrest. Each of these states can be achieved in the absence of telomerase deletion, so it is possible that senescence is simply the overlap of these conditions. All three result in a general increase in expression of stress response genes (Fry, et al., 2006; Gasch, et al., 2001; Klosinska, et al., 2011; Spellman, et al., 1998),
something which has also been observed in senescing cells (Greenall, et al. 2008; Mandell, et al. 2005; Nautiyal, et al. 2002).

1.6 Quiescence in yeast

Quiescence is generally characterized as a state where viability is maintained during growth arrest and mitotic divisions can be resumed once the arrest is alleviated (Coller, et al., 2006). By this definition senescence can be considered to be a type of cellular quiescence. However, previous studies examining quiescence in yeast have focused on nutrient deprivation, either by examining stationary phase cells that have exhausted the available supply of glucose or by removing one or more nutrients from the media. While the quiescence state remains poorly defined several distinguishing features have been identified such as increased resistance to heat and oxidative stress, a thickened cell wall, reduced translation and a specific transcriptional profile (Gray, et al., 2004; Smets, et al., 2010). Much of the previously described “specific transcriptional profile” is, in fact, a direct response to slow growth (Klosinska, et al. 2011) rather than to the quiescence state. This more general response to slow growth appears to initiate expression of many of the stress response genes and likely prepares the cells to survive future insults.

My research has focused on determining what, if any, features of senescence are unique. Using RNA-seq data generated through a collaboration
with the Papadopoulos lab, I examined the transcriptional profile of telomerase-negative cells during and after senescence. The cells show substantial temporal changes in gene expression, with each “phase” exhibiting a specific group of differentially expressed genes. Additionally, a group of genes exhibited differential expression at every time point, consistent with a previously described telomerase deletion response. These genes included many stress and DNA damage response genes and seem to be involved in the general response to life without telomerase. By comparing our transcriptional profile with published datasets for other quiescence-like states I was also able to define senescence as a distinct state. Unique features of senescence include upregulation of various meiotic proteins involved in recombination and spore formation, compromised mitochondrial function and expression of many proteins with unannotated functions. These findings further our understanding of the specific cellular response to telomerase loss or dysfunction and highlight the unique challenges posed by rapid telomere loss.

1.7 Noncoding RNA expression during senescence

With the increased usage of high-throughput sequencing technologies the expression response to senescence can now be examined in more detail. Additionally, sequencing-based studies afford the opportunity to discover novel or previously unannotated transcripts. Recent studies have shown more extensive
transcription than was previously appreciated, even in yeast (Xu, et al., 2009) and many noncoding transcripts are associated with specific cellular states such as meiosis (Lardenois, et al., 2011) or growth in limiting metal ion conditions (Toesca, et al., 2011). In many cases, transcription of these noncoding RNAs modulates expression of neighboring genes either by blocking sense transcription through the production of antisense transcripts or by recruiting histone modification machinery to the promoter region (Guil, et al., 2012). Additionally, in human cells senescence is associated with an increase in the expression of many lncRNAs, known as SAL-RNAs (Senescence Associated LncRNAs), that mediate features of the aging process (Abdelmohsen, et al., 2013). Given the importance of noncoding RNAs under these conditions it is possible that the noncoding RNAs also play a role in the senescence response.

My approach to define the transcriptional response to senescence also allowed me to examine noncoding RNA transcription in more detail. Using a bioinformatics approach, I identified 112 novel transcripts that don’t overlap with any known protein-coding gene or noncoding RNA. A subset of these RNAs show correlated expression with a neighboring gene and likely represent a cis-regulatory element. Thus, like other cell states, senescence includes a specific noncoding RNA program.

Taken together, my work examining both the structure of telomerase RNA and the cellular response to senescence have underscored the importance of tightly regulated telomerase activity. Mutations that disrupt the folding equilibrium
within the core lead to senescence in yeast and can cause a diseased state in humans. This state is characterized by induction of a general stress response as well as many proteins involved in DNA recombination, likely priming the cells for survivorship. These findings further our understanding of the essential role telomerase plays in maintaining genome integrity and viability within the cell.
Refined secondary-structure models of the yeast and human telomerase RNA cores
2.1 Structure-function analysis of yeast and human telomerase RNAs by chemical probing

Despite extensive divergence of telomerase RNA in sequence and length (spanning from 147 nts in a ciliate species to >2 kb in some fungi), most telomerase RNAs share four common structural elements within the central catalytic core, including the template, a template-boundary element, a core-enclosing helix and a catalytically important pseudoknot (Lin, et al. 2004; Mefford, et al. 2013). In the core of TLC1, the elements are functionally linked by an Area of Required Connectivity (Mefford, et al. 2013). The high conservation of telomerase RNA core structures in spite of rapid evolution of the RNA overall suggests that the cores function similarly.

The pseudoknot of TLC1 and human telomerase RNA (hTR) are both large, unlike that of the small ciliate telomerase RNAs. In both S. cerevisiae and H. sapiens, the pseudoknot exists in an equilibrium in vitro with an alternate two-stem loop conformation (Liu, et al., 2012; Theimer, et al. 2003). Mutations that promote the stem-loop conformation are associated with the disease dyskeratosis congenita (Vulliamy, et al. 2001), which is characterized by defects in highly proliferative tissues (Dokal 2000), indicating a possible disruption of telomere maintenance. This underscores the importance of appropriate pseudoknot formation in vivo. Another important feature of both the human and yeast pseudoknots is a set of base triples, which have been shown to be in close
proximity to the template (Qiao, et al., 2008; Theimer, et al. 2005). In yeast, the base triples contribute directly to catalysis through an unknown mechanism (Qiao, et al. 2008). One difference between the TLC1 and hTR cores is that whereas TLC1 has both a template boundary-defining helix (Seto, et al., 2002; Tzfati, et al., 2000) and a core-enclosing helix (Dandjinou, et al. 2004; Lin, et al. 2004; Zappulla, et al. 2004), hTR has a single paired element that contributes to both of these functions (Chen, et al., 2003).

Despite the great interest in telomerase in biomedical research, the three-dimensional structure of the catalytic core of telomerase RNA remains unknown. Only the structures of isolated elements have been solved by NMR (Chen, et al., 2006; Kim, et al., 2010; Kim, et al., 2014; Kim, et al., 2008; Leeper, et al., 2003; Leeper, et al., 2005; Richards, et al., 2006; Richards, et al., 2006; Theimer, et al. 2005; Theimer, et al., 2007; Zhang, et al., 2011; Zhang, et al., 2010). Although there have been some previous chemical structure-probing analyses of telomerase RNAs (Antal, et al., 2002; Forstemann, et al., 2005), even secondary structure models have been difficult to validate or refine. In this study, I examine the entire catalytically competent core region of both the yeast and human telomerase RNA using Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE), which interrogates the flexibility of each nucleotide (Merino, et al., 2005; Wilkinson, et al., 2006). In this chapter, I use SHAPE to refine the secondary structure models for both the yeast and human telomerase RNA cores, as well as determine the structural consequences of several mutations in
the Est1-binding arm. In comparing the SHAPE-reactivity patterns of the yeast and human cores, I identified conserved patterns in reactivity with potential implications for enzyme coordination. Additionally, I was able to propose a new set of base triples in the yeast core which likely add substantial stability to the folded RNA. Using mutants in the Est1-binding arm generated by Kevin Lebo, I determined the structure rather than the sequence is important for its function.

2.2 Materials and Methods

2.2.1 RNA preparation

To obtain data at the 3' end of the RNAs, templates were designed with an additional sequence cassette at the 3' end as previously described (Wilkinson, et al. 2006). The cassette had the following sequence: 5' -

gaacccgaccgaagcccgatttggatccggcgaaccggatcgagggaagttcag - 3'

The extension did not alter the SHAPE reactivity pattern (Figure 2-1). In vitro transcription templates of Micro-TLC1 and hTR were prepared by FokI digestion of the corresponding pUC19 plasmids, while templates containing the RNA structure cassette were generated by PCR amplification. RNAs were purified by excising them from denaturing polyacrylamide gels and isolated by phenol-chloroform extraction followed by ethanol precipitation.
Figure 2-1 Addition of an RNA structure cassette to the 3' end does not appear to greatly impact folding.

(a) An RNA cassette was added to obtain data at the 3' end as indicated (Wilkinson, et al. 2006). (b) The RNA cassette does not alter folding of Micro-TLC1 or hTR. **Folding was examined in RNAs with and without the cassette.** Here, assayed nucleotides in common to each construct are plotted for comparison.
2.2.2 SHAPE chemical probing

Two picomoles of Micro-TLC1 or hTR 33–191 constructs were suspended in 12 μL 0.5x TE pH 8.0 and subsequently denatured at 95°C for 2 minutes, then cooled on ice for 3 minutes. Micro-TLC1 constructs were folded by treatment on ice with 6 μL 3.3x folding buffer (333 mM HEPES pH 8.0, 333 mM NaCl, 20 mM MgCl₂). hTR 33–191 constructs were folded in the same manner but with a modified 3.3x folding buffer (333 mM HEPES pH 8.0, 333 mM NaCl, 33 mM MgCl₂). Folded RNAs were divided and treated with either 1 μL 65 mM N-methylisatoic anhydride (NMIA) (Sigma) in anhydrous DMSO or 1 μL DMSO. Modification reactions were carried out at 37°C for 22 minutes (Steen, et al., 2012). Reaction volumes were then adjusted to 100 μL with 0.2 M NaCl, 2 mM EDTA pH 8.0 and 0.2 mg/mL glycogen; the modified RNA was then ethanol precipitated and resuspended in 9 μL 0.5x TE pH 8.0.

2.2.3 Primer extension

Primer extension reactions were carried out as described in the SuperScript III reverse transcriptase protocol (Invitrogen) with the following modifications. 1 pmol of each RNA was denatured at 95°C for 1 minute and placed on ice for 2 minutes. 3 μL of [γ³²P]-end-labeled primer was added and the solution was incubated at 65°C for 2 minutes followed by annealing at 35°C for
10 minutes. 6 μL of the supplied SuperScript III buffer supplemented with 5 mM DTT (final concentration) and 1 mM dNTPs (final concentration) was added to the mixture, which was then pre-heated for 1 minute at 52°C. 100 units of SuperScript III were added to each reaction at room temperature. Reactions were then incubated at 52°C for 5 minutes prior to running on a 10% polyacrylamide/1x TBE/7 M urea gel at 90 W. Gel electrophoresis was performed for between 1.75 and 4 hours to obtain appropriate resolution of each given region of the RNAs in order to quantify reactivity of individual nucleotides to NMIA. Gels were exposed on a phosphorimager screen, and imaged using a Typhoon 9410 Variable Mode Imager.

2.2.4 SHAPE data analysis

Modification intensities were measured using SAFA software (Das, et al., 2005). Results were scaled by selecting the least-variable band across lanes, calculating lane-by-lane normalization factors to make the reference band equal across all lanes and scaling each lane accordingly. Normalized SHAPE reactivity was calculated by subtracting the intensity of the corresponding DMSO-only band from the NMIA band. To quantify the SHAPE reactivity, the average of the 10 most-reactive bands was set as 100% reactivity and all other bands were scaled accordingly (negative values were set to zero). Data were averaged from multiple experiments as indicated and were obtained using RNA from at least 3
independent transcription reactions. All RNAs were folded independently as described above.

2.2.5 Secondary-structure model generation

SHAPE-guided secondary-structure refinement was achieved by first mapping relative SHAPE-reactivities onto the most recent models. Inconsistencies between the SHAPE data and the model for the RNA were resolved using SHAPE-constrained secondary structure predictions by RNAstructure (Deigan, et al., 2009). In the event of a mismatch (e.g., one nucleotide of a predicted base-pair is reactive while the other is not) pairing status was left as described by current models.

2.2.6 Telomerase Assays

Telomerase assays were performed essentially as previously described (Zappulla, et al., 2005). Briefly, DNA template encoding Pro-A tagged Est2 (TERT) and telomerase RNA were added to the coupled rabbit reticulocyte lysate (RRL) transcription and translation system containing T7 RNA polymerase (Promega). Telomerase was immunopurified using IgG Sepharose beads (GE Healthcare). Telomerase activity was assayed by incubating 5 μl of bead-bound
enzyme with 1 μM telomeric DNA substrate primer (DZ427), ~ 1 nM [γ-\(^{32}\)P]-labeled primer DZ428 as a recovery and loading control, 3.3 μM [α-\(^{32}\)P]-dGTP, 1 μM each dATP, dCTP, and dTTP, in 38 mM Tris pH 8, 47 mM NaCl, 4.7% glycerol, 2.2 mM MgCl₂, 0.5 mM spermidine, and 0.5 mM DTT. Reactions were incubated for 10 minutes at 26°C and subsequently stopped by the addition of ammonium acetate. Products were then ethanol precipitated and resuspended in 1x formamide loading buffer. The products were run through a 10% polyacrylamide/1x TBE/7 M urea denaturing gel at 90 W for 1.25 hours, exposed on a phosphorimager screen, and imaged using a Typhoon 9410 Variable-Mode Imager.

2.2.7 Native gel analysis

Renatured RNAs were mixed with non-denaturing loading dye and run on a 5% polyacrylamide/1x TBE gel for 3 hours at 70 W at 4°C. Gels were stained using Gel Star (Lonza) and imaged using a Typhoon 9410 Variable-Mode Imager.
2.3 Results

2.3.1 The yeast telomerase RNA core adopts its active conformation \textit{in vitro}

The SHAPE results are consistent with formation of both the pseudoknot and a single-stranded template of the yeast telomerase RNA core \textit{in vitro}, even in the absence of TERT (Figure 2-2). This is in contrast to the reported behavior of the \textit{Tetrahymena} RNA and the full-length human RNA (Cole, et al., 2012; Mihalusova, et al. 2011; Yeoman, et al., 2010). The predicted stems of the template-boundary element and pseudoknot show reproducibly low reactivity, as expected for base-paired nucleotides, whereas there is higher reactivity in most junctions and loops. Overall, the SHAPE-supported secondary structure model is largely consistent with the previously observed DMS-reactivity pattern in the pseudoknot of full-length, protein-bound TLC1 (Forstemann, et al. 2005), and therefore protein binding may not influence the conformation of the yeast pseudoknot to a great extent.

The junctions within the yeast core are generally reactive, with every nucleotide in J3 and J4 being modified. These regions may introduce considerable physical flexibility in the core, particularly J3, which is 16 nucleotides long and tolerates a wide variety of mutations (Mefford, et al. 2013).
However, both J1 and J2 are comparatively less reactive (Figure 2-2).

Interestingly, while I observe reactivity within the template, nucleotides 44–46 (CCC) consistently did not show reactivity above background levels, suggesting they may be stacked or involved in tertiary interactions.

2.3.2 The pseudoknot in the yeast telomerase RNA core forms in vitro

Previous work has shown that pseudoknot formation in the ciliate telomerase RNA requires protein binding (Mihalusova, et al. 2011). To test the SHAPE-supported pseudoknot model, I designed two pseudoknot-disrupting mutants, dmPK-1 and dmPK-2. Each mutant has 7 nucleotides on each side of stem 1 changed to its Watson-Crick cognate, which is predicted to abolish base pairing with minimal disruption to proposed alternate conformations (Figure 2-3a) (Liu, et al. 2012; Zappulla, et al. 2004). Both mutants dmPK-1 and -2 showed severely reduced telomerase activity in vitro (Figure 2-3c) and an increase in SHAPE reactivity throughout stem 1, showing that the mutations disrupted pseudoknot formation (Figure 2-b). While both mutants disrupt pseudoknot formation, they do not appear to result in the same RNA conformation (Figure 2-b). In contrast, the double-mutant allele (dmPK-R) showed greater telomerase activity than either single mutant and NMIA-reactivity restored to that of wild type.
These results support the conclusion that the pseudoknot is forming *in vitro* and provide further evidence that it is important for activity.
Figure 2-2: SHAPE-directed secondary structure model of the core of *S. cerevisiae* telomerase RNA.

(a) The refined yeast telomerase RNA secondary structure model incorporating SHAPE results. GU wobble pairs indicated by open circles. Other non-Watson-Crick interactions are denoted with filled circles. Open triangles correspond to deletions relative to TLC1 and exogenous sequence is lowercase. (b) SHAPE reactivity at each position in the yeast telomerase RNA core. Values represent the average of between 5 and 18 independent trials with standard error shown.
Figure 2-3. Pseudoknot-disrupting mutants increase reactivity in stem 1.

(a) Design of pseudoknot-disrupting mutants. Seven nucleotides in stem 1 were mutated to their Watson-Crick cognate to abolish base pairing. The mutations are predicted to disrupt pseudoknot formation without affecting the alternately observed 2-stem loop conformation (Liu, et al. 2012) (right). Pseudoknot-disrupting mutants are indicated as dmPK-1 and dmPK-2. (b) SHAPE reactivity in WT and PK-disrupting mutants. SHAPE reactivity is plotted for WT (from Figure 2-2), both PK-disrupting mutants and the stem 1 restoring mutant dmPK-R. Reactivities for dmPK-1, dmPK-2 and dmPK-R correspond to the average value from between 3 and 9 independent trials with standard deviation shown. Mutated nucleotides are indicated by brackets. (c) Pseudoknot-disrupting mutants decrease telomerase activity in vitro. Telomerase assay testing activity of PK and compensatory mutants. Alignment of DNA primer with TLC1 is shown. TBE indicates template boundary element.
2.3.3 The yeast pseudoknot contains additional base-triples

My SHAPE results strongly support the formation of 5 additional base triples within the pseudoknot (nts 83–87, 108–112 and 135–139), which I named “stem 2a”. The structure is phylogenetically supported (Figure 2-4), however, mutations in this region in the context of larger yeast telomerase RNAs have resulted in only a slight decrease in activity \textit{in vivo} and \textit{in vitro} (Lin, et al. 2004; Qiao, et al. 2008; Shefer, et al., 2007). These base triples have been previously proposed based on thermodynamic characterization and were observed in \textit{K. lactis} (Cash, et al., 2013; Liu, et al. 2012) and their main function is likely to favor pseudoknot formation and stability without directly contributing to catalysis.
Figure 2-4. Additional base triples are supported by SHAPE and phylogenetic data.

SHAPE reactivities are mapped onto nucleotides for each model. The model proposed in this work is shown above with 100% conserved nucleotides within stem 2a enclosed in green circles while nucleotides with variants that maintain base-pairing are in blue circles.

![Diagram of nucleotides with SHAPE reactivities mapped]

To investigate the nature and importance of the 5 base triples, I first mutated the 3′-most and middle two strands to their Watson-Crick cognate. In both cases, the mutations greatly decreased telomerase activity (Figure 2-5c). Combining these changes in a compensatory mutant reduced telomerase activity further and did not return the wild-type SHAPE-reactivity pattern, indicating the base-compensatory Watson-Crick interaction had not formed (Figure 2-5c).

However, the low SHAPE reactivity of the 5′ and middle strands in the double mutant is consistent with these mutations simply lengthening stem 1 of the pseudoknot. Therefore, in the next mutation strategy, I instead changed the three U-A•U predicted triples to C-G•C, and vice versa for the other two triples to
generate the best structural mimic of the wild-type interactions. I also made the single- and double-mutant-strand combinations. Again, I observed decreased telomerase activity for many of the mutants, including for the triple-strand substitution allele (Figure 2-5c). I conclude from these results that the native sequence of each of these three strands is important for activity. X-ray crystallography and/or NMR studies on the *S. cerevisiae* pseudoknot region should help reveal the nature and geometry of these interactions more precisely. Finally, it appears that this structure is more important for telomerase function in the context of Micro-T RNA than it is in longer TLC1 alleles (Lin, et al. 2004; Qiao, et al. 2008).
Figure 2-5. Mutagenesis of proposed base triples.

(a) Mutated nucleotides are underlined. (b) SHAPE analysis of mutants. Mutants 1, 2, and the compensatory 1+2 mutant are shown. Each mutant was tested in triplicate. All mutants increase reactivity on the 3’ strand with the compensatory mutations failing to restore WT reactivity pattern. (c) Telomerase activity of base triples mutants. Mutations in this region disrupt telomerase activity. Compensatory mutants fail to restore telomerase activity to WT levels. Each mutant was tested in triplicate.
2.3.4 Folding of the human telomerase RNA core requires high magnesium

To examine the folding of the human telomerase RNA (hTR) core I focused on nucleotides 33–191, which reconstitute telomerase activity in vitro when expressed in a transcription-translation system with the CR4/5 domain and hTERT (Ly, et al. 2003). Pseudoknot formation in full-length hTR requires magnesium (Hengesbach, et al. 2012), so to investigate the structure of the core I next sought to identify and characterize elements that show magnesium-dependent folding. In the absence of magnesium, we observed two major RNA conformations by native gel (Figure 2-6a), suggesting the core of hTR RNA exists in an equilibrium between two folded states, consistent with previous work on the pseudoknot alone (Theimer, et al. 2003). This indicates the pseudoknot is the structural element primarily driving this equilibrium. I observe an overall decrease in reactivity in the P2b/P3 pseudoknot region as magnesium concentration increases, supporting the conclusion that Mg$^{+2}$ promotes pseudoknot formation (Figure 2-6b). The hTR does not fold uniformly in less than 10 mM magnesium (Figure 2-6a).
Figure 2-6. Magnesium-dependent behaviour within hTR and hTRDKC.

(a) hTR and hTRDKC adopt two major conformations. Native gel analysis of hTR and hTRDKC RNAs in increasing magnesium. High magnesium conformations favor one conformation in hTR. SHAPE reactivity is shown for each magnesium concentration as indicated. (b) Previous and proposed model for J2a.1 region (c) SHAPE reactivity by nucleotide in increasing magnesium. (d) Differential SHAPE reactivity between hTR and hTRDKC. Differential SHAPE reactivity between hTR and hTRDKC in 10 mM magnesium highlights regions most likely to differ conformationally.
2.3.5 The human telomerase RNA core adopts its active conformation *in vitro*

Having determined the optimal magnesium concentration I performed SHAPE on the hTR core. The results are generally consistent with current structural models and suggest that the RNA alone is able to form a catalytically-competent structure with both a pseudoknot and a single-stranded template (Figure 2-7a) (Hengesbach, et al. 2012; Kim, et al. 2008; Theimer, et al. 2005; Zhang, et al. 2011). We observe high reactivity of nucleotides throughout J2a/3 and, reciprocally, generally low reactivity throughout each pseudoknot stem. Interestingly, the region surrounding the proposed catalytically important “hinge-point” at J2a/b (Zhang, et al. 2010) is reactive, suggesting this location may be particularly dynamic, or else held in a reactive conformation due to a unique, conserved local structure (Zhang, et al. 2010).

Additionally, the SHAPE data in optimized magnesium are consistent with a fully formed P2a.1 region leading into a surprisingly unreactive J2a.1. Here we propose three additional base pairs form, resulting in a 12-bp long P2a.1 and a smaller J2a.1, as shown in Figure 2-7a. Previous work has suggested J2a.1 can adopt alternate base-pairing conformations *in vitro*, though mutational and phylogenetic analyses indicate that any pairing is dispensable (Chen, et al. 2000; Martin-Rivera, et al., 2001; Zhang, et al. 2011).
The junctions in hTR show a similar reactivity pattern to the yeast core, with reactive nucleotides in the region 3' of the template and between P1b and P3 (J4 in yeast) (Figure 2-7a). Again, we see a region of low reactivity 5' of the template where it has been shown that length but not sequence is important for template boundary definition (Chen, et al. 2003), suggesting a potential structural role for these nucleotides in this process. Furthermore, we see nucleotides 50–52 (CCC) within the template are unreactive, which is consistent with previous work (Antal, et al. 2002) and the yeast RNA (see above and Figure 2-7).
Figure 2-7. SHAPE-refined secondary structure model of the *H. sapiens* core.

(A) hTR adopts its active structure *in vitro*. Non-Watson-Crick interactions indicated by circles with GU wobble pairs denoted by open circles. Hoogsteen-face interaction denoted with square. Dashed lines indicate reactive residues previously shown to pair *in vitro* (Zhang, et al. 2011). (B) SHAPE reactivity by nucleotide. Values represent the average of between 6 and 12 independent trials. Standard error is shown.
2.3.6 Mutations in the pseudoknot of the human telomerase RNA disrupt the folding equilibrium

Mutations that promote the stem-loop conformation are associated with the disease *Dyskeratosis congenita* (Vulliamy, et al. 2001), which is characterized by defects in highly proliferative tissues (Dokal 2000), indicating a possible disruption of telomere maintenance. To explore the structural consequences of these mutations we generated one disease-associated allele, hTRDKC (nts 108 and 109, CG→GA), in the context of the hTR core. Native gel analysis reveals two bands present like those in wild-type hTR, although equilibrium between the two appears unaffected by magnesium (Figure 2-6a).

2.3.7 A potentially structured element within the template of yeast and human telomerase RNA cores

My SHAPE results revealed a common region of low reactivity in the template of both the human and yeast TRs, consisting of a CCC motif. To determine if these nucleotides are involved in previously unknown base-pairing interactions I performed DMS probing, which preferentially modifies the watsonecrick face of unpaired C or A residues. I found that for both the human and yeast
RNA the nucleotides were reactive (Figure 2-8), suggesting they are likely unpaired but involved in some kind of tertiary interactions that limit flexibility.

Figure 2-8. DMS reactivity within the yeast template.

Every C or A nucleotide within the template appears to be highly DMS-reactive. Additionally, A residues within the GAAA tetraloop of the TBE are also reactive.
2.3.8 The structure of the Est1-binding arm is important for SEED function

Previous work in the lab identified a Second Essential function of the Est1-binding Domain (SEED) in the yeast telomerase RNA (Lebo, et al., 2015). To determine whether mutations in this region were disrupted due to structural or sequence changes I performed SHAPE analysis on the 108-nt Est1-arm fragments corresponding to both the WT arm and three mutant sequences.

In the WT arm, nucleotides predicted to comprise apical loops of the two hairpins and the 5-nt bulge in the secondary structure model were highly reactive, showing that they are flexible and suggesting that they are indeed unpaired (Figure 2-9). Correspondingly, nucleotides within predicted helices were nearly all unreactive. These data strongly support the secondary structure model for the Est1 arm, which was based on phylogenetic information as well as computational modeling that maximizes free energy (Dandjinou, et al. 2004; Seto, et al. 2002; Zappulla, et al. 2004). Interestingly, SHAPE reactivity revealed flexibility at every nucleotide in the internal loop of the Est1 arm, suggesting they are not paired and, therefore, that this conformation is favored.

I examined three mutants generated by Kevin Lebo (5-1, 5-2 and 5-3) within the internal loop region by SHAPE. All mutants target the internal loop region, and of the three only 5-1 maintains SEED function (Lebo, et al. 2015). Both 5-2 and 5-3 show considerable changes in reactivity within the internal loop.
(Figure 2-9) consistent with a structural disruption in this region. Since all three mutants have altered sequences relative to WT but only the structurally disruptions abolish SEED activity we concluded that the structure and not the sequence is essential for SEED function.

Figure 2-9. SHAPE reactivity within the Est1 arm.

(a) SHAPE reactivity in the WT Est1 arm. SHAPE reactivity is largely consistent with previous models, and supports a large internal loop. (b) SHAPE reactivity in SEED mutants. SHAPE analysis of internal loop nucleotide sequence substitution mutants shows that mutants 5-2 and 5-3 have altered internal loop structures. Left, graphs showing relative normalized SHAPE reactivity of TLC1 Est1-arm nucleotides. Blue text above indicates Est1 arm structural elements. Asterisks indicate non-wild-type nucleotides in the mutants. Orange arrow indicates residue U604, with high SHAPE reactivity in mutant 5-2. Dotted lines indicate base pairs predicted to form by Mfold in mutant 5-3.
2.4 Discussion

Comparing the reactivity patterns in hTR and Micro-TLC1, we note several similarities (Figure 2-10). Both RNAs exhibit comparatively low reactivity 5' of the template with higher reactivity 3' of the template and between the pseudoknot and core-enclosing helix. These elements could coordinate the positioning of the template near the catalytically important base triples with the reactive regions serving as flexible points while the potentially structured area 5' of the template acts as an anchored template-boundary element.

In summary, I have presented secondary-structure models refined by SHAPE analysis that include base-triple interactions in the yeast core in addition to those previously implicated in catalysis (Qiao, et al. 2008) and an alternate conformation within hTR J2a.1. In so doing, we have also shown that the cores of both yeast and human telomerase RNAs independently adopt their native conformation, as indicated by formation of the pseudoknot, base triples, and a single-stranded template. This is in contrast to the in vitro folding of the \textit{T. thermophila} telomerase RNA, which was shown to require TERT to adopt an active conformation. The ciliate pseudoknot is small and may lack stable base triples, potentially making it more protein-dependent (Cole, et al. 2012; Mihalusova, et al. 2011). Finally I also identified a conserved region of low reactivity within the template of telomerase RNAs suggesting a mechanism to
favor substrate binding and subsequent positioning near the catalytically important base triples within the TERT active site.
Figure 2-10. Models of the yeast and human TR cores.

(A) Micro-TLC1 and the hTR core show similar reactivity patterns. Summary diagram of general reactivity patterns for each core. Regions of low reactivity common to both hTR and Micro-TLC1 are shown in black, while common regions of high reactivity are colored red. (B) A general model for telomerase RNA core domain coordination with TERT. A generic telomerase RNA core with common structural elements is shown. Regions that may introduce physical flexibility based on SHAPE data are highlighted in red. The potential conserved structural element consisting of CCC nts in the template is drawn in proximity to the catalytically important base triples and ending in the active site, shown as an open oval. The template is indicated by a thick line. Telomeric DNA is shown in blue.
A) hTR and Micro-TLC1

1. Low reactivity 5' of the template
2. Low reactivity within template (also seen in T. thermophila)
3. High reactivity 3' of the template
4. High reactivity between pseudoknot and core-enclosing helix

B) TERT

- base triples
- telomerase RNA
- alignment
- CCC templating
- active site
- template boundary definition
- Telomeric DNA
Telomerase-negative cells express a specific set of novel IncRNAs
3.1 Identification of novel IncRNAs in telomerase-negative yeast

Upregulation of telomerase is associated with approximately 90% of cancers and is thought to be required for cells to undergo limitless divisions. In contrast, telomeres have been shown to shorten with aging in mammals as a result of telomerase being largely inactive in somatic cells. Long noncoding RNAs (IncRNAs) have been implicated in both aging and cancer development (Abdelmohsen, et al. 2013; Yang, et al., 2014) but a specific link between telomerase and changes in IncRNA expression has not been established. Previous work has examined the transcriptional response to both telomerase deletion and telomere decapping using microarray technologies (Greenall, et al. 2008; Nautiljal, et al. 2002), however these studies did not include examination of IncRNA expression.

High-throughput technologies have revealed pervasive transcription in *S. cerevisiae*, indicating that approximately 85% of the genome is transcribed (Jacquier 2009; Nagalakshmi, et al., 2008). Among the transcripts are several classes of noncoding RNAs (ncRNA) including Xrn1 Unstable Transcripts (XUTs), Cryptic Unstable Transcripts (CUTs), Nrd1-Unterminated Transcripts and Stable Unannotated Transcripts (SUTs) (reviewed in (Wu, et al., 2012)). In many cases, the function of these transcripts is unknown, although they can regulate gene expression by influencing histone modifications or by interfering
with transcription of nearby genes. There are additional classes of ncRNAs only expressed under specific circumstances, such as meiosis (MUTs) (Lardenois, et al. 2011), or in the absence of nonsense-mediated decay (CD-CUTs) (Toesca, et al. 2011), underscoring the potential importance of ncRNAs in regulating adaptive changes in *S. cerevisiae*.

To identify novel noncoding RNAs associated with telomerase-negative cells, we monitored the transcriptome of yeast cells after deleting the telomerase RNA gene. I identified 113 putative new IncRNAs, 40 of which are only upregulated in telomerase-negative cells and we have termed TMLs (Telomerase-Mutant LncRNA), whereas the remainder represent novel additional SUTs (Stable Unannotated Transcripts)(Xu, et al. 2009). Approximately half of the novel IncRNAs show strongly correlated expression with the adjacent genes, suggesting these IncRNAs may influence expression of neighboring genes.

3.2 Materials and methods

3.2.1 Growth and characterization of yeast strains

The TLC1/tlc1::kan’ heterozygote(Mozdy, et al., 2006) was sporulated and dissected to generate the WT and *tlc1Δ* strains (*MATa his3Δ1/his3Δ1*)
leu2Δ0/leu2Δ0 LYS2 MET15 ura3Δ0/ura3Δ0). Genotyping was confirmed by replica plating on appropriate media.

Cells were passaged every 12 hours in YPAD media to maintain constant logarithmic growth. Small aliquots were removed for bud indexing and CFU plating. The remaining cells were harvested by vacuum filtration and the filters subsequently frozen in liquid N$_2$ and then stored at -80°C.

3.2.2 RNA isolation

RNA isolation was carried out using hot-phenol method, as previously described (Kohrer, et al., 1991).

3.2.3 RNA-seq data analysis

Reads were aligned to the UCSC SacCer3 genome (April 2011) using Tophat (Trapnell, et al., 2012) with the following parameters “-G SacCer3_SGD.gtf -l 2000 -i 40 --no-coverage-search UCSC/sacCer3/Bowtie2Index-genome”. Transcript boundaries and quantification were determined using cufflinks (Roberts, et al., 2011; Trapnell, et al. 2012; Trapnell, et al., 2010). Data visualization was carried out in R Studio (http://www.R-project.org/)(Team 2014).
3.2.4 Telomere-length analysis

Southern blotting was used to evaluate telomere length, as previously described (Lebo, et al. 2015)
3.3 Results

3.3.1 Characterization of the senescence time course of telomerase-mutant yeast cells

To identify novel IncRNAs associated with telomerase-negative cells, I generated a strain lacking the telomerase RNA subunit (tlc1Δ) by sporulation and subsequent dissection of a TLC1/tlc1Δ heterozygote. Biological-replicate haploids were passaged every twelve hours to maintain logarithmic growth. To identify time points of interest, viability and budding index were examined at each passage. Additionally, DNA and RNA samples were collected to determine telomere length and perform RNA-seq, respectively. Consistent with the onset of senescence, cellular division potential decreased while the percent of G2/M-arrested cells increased early in the time course, reaching a maximum between 2–3 days after the start of culturing (Figure 3-1). After this point, both viability and doubling time began to return to wild-type levels, concurrent with the appearance of survivors. Analysis of the telomere Southern blot confirms the formation of type-II survivors, which is expected in liquid culture (Chen, et al. 2001; Teng, et al., 1999) (Figure 3-). Based on the phenotypic characterization, 5 time points were chosen for further analysis by RNA-seq corresponding to the following stages: (1) presenescence, (2) early senescence, (3) late senescence, (4) early
survivor and (5) survivor. Nutrient-matched wild-type *TLC1* cells were generated as controls to identify changes in transcription specific to telomerase-negative cells.
Figure 3-1. Phenotypic characterization of senescing and postsenescent tlc1 cells.

(a) Doubling time between passages. (b) Percent G2/M cells, monitored by cellular bud indexing. (c) Cell viability as measured by ability to form a colony per unit of cell density in culture (optical density based on absorbance of 600-nm light (A_{600})). *tlc1*Δ replicate A shown in red, replicate B shown in blue, nutrient-matched wild-type A and B replicates shown as grey circles or a black ‘x’ respectively.
Figure 3-2. Telomere Southern blot.

Representative telomere Southern blot of tlc1Δ cells. Increasing time is indicated by a black triangle. Samples are labeled according to the categorized time point used for sequencing.
3.3.2 Identification of 112 novel IncRNAs in yeast

RNA-seq reads from biological-replicate samples were mapped to the yeast genome and analyzed using the Tuxedo software suite (Langmead, et al., 2012; Roberts, et al. 2011; Trapnell, et al. 2012; Trapnell, et al. 2010). Briefly, aligned reads underwent \textit{de novo} assembly using Cufflinks prior to assembly into a consensus transcriptome using CuffMerge. In total, 161 intergenic transcripts were identified and then compared with previously annotated genes; any transcripts that overlapped with known genes or annotated untranslated regions (UTRs) were removed (Figure 3-3a). After this step, 112 potentially novel transcripts remained (Table 3-1). I also compared the results with previous transcriptome-profiling experiments and found that none of the candidates correspond to observed transcripts, although some were contained within larger unannotated transcripts (Kavanaugh, et al., 2009; Nagalakshmi, et al. 2008; Samanta, et al., 2006; Yassour, et al., 2009).

Widespread transcription of the yeast genome has been reported previously, with the majority of unannotated transcripts corresponding to several classes of unstable transcripts (XUTs, CUTs, NUTs) (Wu, et al. 2012). Often, the transcripts cannot be detected without depletion of either components of the exosome or stabilizing RNA-binding proteins. I did not observe any changes in Xrn1, Nrd1 or Rpp1 expression that could explain the novel transcripts in telomerase-negative cells (Figure 3-5a). Given that none of the candidates have
been previously reported and they are not associated with any known pathways that increase transcript levels, they represent a potentially novel group of noncoding RNAs in *S. cerevisiae*. In addition, 40 of the noncoding RNAs are only expressed in telomerase-negative yeast and are therefore a novel class of transcripts, which we termed TMLs (**Telomerase-Mutant LncRNAs**).

Figure 3-3. Characterization of novel intergenic transcripts.

(a) Experimental workflow and analysis for analyzing RNA-seq data from *tlc1Δ* and nutrient-matched wild-type cells. (b) Intergenic transcripts show low coding potential. Comparison of the coding potential of known protein coding and noncoding genes with the intergenic transcripts calculated using CPC software. (c) Intergenic transcripts show a distinct length distribution. Length distribution of intergenic transcripts as well as known protein-coding and noncoding genes (*P* < 0.0001). Intergenic transcripts have a median length of 467 nts. Data points above 5000 nt are not shown. *P* value calculated using the two sample t-test.
3.3.3 Characterization of putative IncRNAs

To examine whether our candidates are likely to encode proteins, we used the Coding-Potential Calculator (CPC) (Kong, et al., 2007) to measure the coding potential and ORF size in each transcript. The unannotated transcripts show similarly low coding potential to known noncoding RNAs in *S. cerevisiae* (Figure 3-3b); significantly lower than that of protein-coding genes (P < 0.0001). This strongly suggests that the candidates do not encode a protein. Since IncRNAs are generally defined as transcripts greater than 200 nt, we also examined the length distribution of the intergenic transcripts. They are longer than annotated ncRNAs (median length = 467 nts) (Figure 3-3c) and, therefore, we conclude that the candidates represent a group of novel IncRNAs.

To determine whether the candidates represented distinct transcripts rather than extensions of nearby genes, I selected a subset of the most highly expressed IncRNAs to examine by northern blot analysis (Figure 3-4a), but was still only able to detect one candidate in this manner. This IncRNA did appear as independent transcript and therefore does not represent extended transcription from neighboring genes. The expression of an additional 10 candidates was validated using RT-PCR (Figure 3-4b, Table 3-1) although we did not confirm whether these represented independent transcripts.
Figure 3-4. Validation of IncRNA candidates.

(a) Tested candidates appear as discrete transcripts. Northern-blot analysis of one IncRNA candidate. Transcript appears as a distinct band and therefore likely has well-defined boundaries. (b) All tested candidates can be detected by RT-PCR. RT-PCR analysis of one candidate. (c) Mapped RNA-seq reads for one IncRNA candidate. Reads shown were visualized with Integrative Genomics Viewer software. (a, b and c) correspond to different transcripts.
Table 0-1. Genomic coordinates of novel lncRNAs.

Expression levels are given as FPKM based on cufflinks output for each time point. Transcripts that have been validated by RT-PCR are indicated. SUTs indicate transcripts that appear at equal or greater levels in WT cells, while TMLs are primarily expressed in the telomerase mutant.
<table>
<thead>
<tr>
<th>Tracking ID</th>
<th>Category/name</th>
<th>X</th>
<th>Y</th>
<th>Width</th>
<th>Height</th>
<th>Area</th>
<th>Pixel</th>
<th>Classifications</th>
<th>Tentative Width</th>
<th>Tentative Height</th>
<th>Tentative Pixel</th>
<th>Confidence</th>
<th>Visitor ID</th>
<th>Visitor Name</th>
<th>Visitor Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMC0000004</td>
<td>SUIT</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td>23</td>
<td>529</td>
<td>1658</td>
<td>0.30552</td>
<td>2.85154</td>
<td>376</td>
<td>658</td>
<td>7962</td>
<td>1547</td>
<td>0.3536</td>
<td>0.3536</td>
</tr>
<tr>
<td>TMC0000005</td>
<td>SUIT</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td>23</td>
<td>529</td>
<td>1658</td>
<td>0.30552</td>
<td>2.85154</td>
<td>376</td>
<td>658</td>
<td>7962</td>
<td>1547</td>
<td>0.3536</td>
<td>0.3536</td>
</tr>
<tr>
<td>TMC0000006</td>
<td>SUIT</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td>23</td>
<td>529</td>
<td>1658</td>
<td>0.30552</td>
<td>2.85154</td>
<td>376</td>
<td>658</td>
<td>7962</td>
<td>1547</td>
<td>0.3536</td>
<td>0.3536</td>
</tr>
<tr>
<td>TMC0000007</td>
<td>SUIT</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td>23</td>
<td>529</td>
<td>1658</td>
<td>0.30552</td>
<td>2.85154</td>
<td>376</td>
<td>658</td>
<td>7962</td>
<td>1547</td>
<td>0.3536</td>
<td>0.3536</td>
</tr>
<tr>
<td>TMC0000008</td>
<td>SUIT</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td>23</td>
<td>529</td>
<td>1658</td>
<td>0.30552</td>
<td>2.85154</td>
<td>376</td>
<td>658</td>
<td>7962</td>
<td>1547</td>
<td>0.3536</td>
<td>0.3536</td>
</tr>
<tr>
<td>TMC0000009</td>
<td>SUIT</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td>23</td>
<td>529</td>
<td>1658</td>
<td>0.30552</td>
<td>2.85154</td>
<td>376</td>
<td>658</td>
<td>7962</td>
<td>1547</td>
<td>0.3536</td>
<td>0.3536</td>
</tr>
<tr>
<td>TMC0000010</td>
<td>SUIT</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td>23</td>
<td>529</td>
<td>1658</td>
<td>0.30552</td>
<td>2.85154</td>
<td>376</td>
<td>658</td>
<td>7962</td>
<td>1547</td>
<td>0.3536</td>
<td>0.3536</td>
</tr>
<tr>
<td>TMC0000011</td>
<td>SUIT</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td>23</td>
<td>529</td>
<td>1658</td>
<td>0.30552</td>
<td>2.85154</td>
<td>376</td>
<td>658</td>
<td>7962</td>
<td>1547</td>
<td>0.3536</td>
<td>0.3536</td>
</tr>
</tbody>
</table>

Additional Notes
- The table above represents tracked objects within a document, classified by their X and Y coordinates, width, height, area, and pixel values. The confidence level is noted for each classification.
3.3.4 Novel lncRNAs show altered expression in telomerase-negative cells

I first examined the expression pattern of the lncRNAs in \textit{tlc1Δ} cells relative to wild type. Over half of the novel lncRNAs are differentially expressed by two-fold or more in at least one of the time points tested (Figure 3-5a). The majority of the differentially expressed lncRNAs were upregulated relative to wild type and in many cases the transcripts were not even detectable in wild-type cells. Thus, many of the lncRNAs are specific to telomerase-negative cells, providing an explanation as to why they have not been identified as lncRNAs previously.

Next, to identify senescence or stage-specific lncRNAs, I compared the upregulated lncRNAs from each time point (Figure 3-5b). This analysis identified 12 transcripts found only in at least one of the senescence time points. Interestingly, the survivors exhibited even more stage-specific lncRNAs (17).

However, the expression level of the lncRNAs was generally quite low, with a median value of 19.9 FPKM (fragments per kilobase of transcript per million mapped reads), so despite the strong fold-change between the telomerase-negative and wild-type cells for many of the lncRNAs, only a small subset (between 5 and 22, depending on the time point) can be considered significantly differentially expressed without further analysis.
Figure 3-5. Many IncRNAs are differentially expressed in telomerase negative cells.

(a) Heatmap analysis of IncRNA candidate expression. Most IncRNAs are upregulated by two-fold or more (red). Any color (red or blue) indicates differential expression of at least two-fold. Differential expression of commonly mutated exosome and RNA-binding proteins is shown below black line. Differential expression is calculated by \(\log_2(\frac{\text{tlc1 exp}}{\text{WT exp}}) \)

(b) Comparison of upregulated IncRNAs at each time point. Most IncRNAs (58/86) are upregulated in more than one time point.
3.3.5 A subset of the novel IncRNAs show correlated expression with a neighboring gene

Since IncRNAs can regulate the expression of neighboring genes (Guil, et al. 2012), I examined correlation of each IncRNA differential expression with that of its adjacent genes at each time point (Figure 3-6a, 3-7). For most time points, approximately one-third of the IncRNAs show strong correlation (R^2 0.79 – 0.99) with at least one neighboring gene while, in the late-senescence samples, over half are correlated. Interestingly, the IncRNAs showing the largest differential expression relative to wild type show almost no correlation with either adjacent gene ($R^2 < 0.015$, Fig. 5a).

To determine whether these correlations may be significant I generated a random dataset for comparison. Using this dataset as my expected distribution, I calculated the probability of making these observations by random chance ($P < 0.001$). Deviations from expectation are summarized in table 3-2.

Of the correlated IncRNAs, we observe more positive relationships than negative, indicating expression of the IncRNAs may promote expression of the neighboring gene. It is also possible that the correlation is the result of gene-transcript extensions being misidentified as IncRNAs, but because of the low expression levels it was difficult to distinguish between these possibilities.
Figure 3-6. The lncRNA candidates may regulate expression of nearby genes.

(a) Highly differentially expressed candidates do not show correlated expression with neighboring genes. 2D plot showing differential expression of lncRNAs and each adjacent gene. Late senescence time point is shown. Candidates fall into two groups (1) low differential expression, correlated with one or more adjacent gene and (2) high differential expression, no correlation with adjacent genes. (b) Correlated expression between a subset of lncRNAs and adjacent genes. Differential expression of lncRNAs showing either positive (red, $R^2 = 0.91$) or negative (blue, $R^2 = 0.92$) correlation with an adjacent gene plotted against differential expression of the adjacent gene. Differential expression is calculated by $\log_2(\frac{nct1\Delta exp}{WTexp})$ (c) Correlated genes are enriched with extracellular proteins. Functional enrichment analysis performed using DAVID and plotted using qplot in the ggplot2 (Wickham 2009) package in R studio. Proteins with an extracellular domain are enriched at each time point.
Figure 3-7. Correlation analysis of IncRNAs and adjacent genes.

(a) Differential expression of IncRNAs plotted against differential expression of adjacent genes. (b) Subset of IncRNAs and corresponding adjacent genes showing correlated expression at each time point. Negatively correlated pairs shown in blue, positively correlated pairs shown in red.
Table 0-2. Percent difference in the value of observed vs. expected correlated genes.

5 independent random datasets were generated using the maximum and minimum observed differential expression values as limits. The described correlation analysis was performed on each generated dataset. The number of negatively or positively correlated values in each random dataset was averaged to generate the number of values “expected” by random chance. Percent difference in the value of observed vs. expected correlated genes (p < 0.001). Expected values calculated using a randomly generated dataset. P value calculated using Chi-squared test.

3.3.6 Genes showing correlated expression with adjacent IncRNA are enriched for membrane proteins

To further explore the potential relevance of the IncRNAs I tested if the correlated IncRNAs could be regulating genes with related functions. I analyzed the gene list using the Database for Annotation, Visualization and Integrated Discovery (DAVID) (Dennis, et al., 2003) functional annotation tool. I found a
strong enrichment for extracellular and membrane proteins in most time points (Figure 3-6b). These groups are also enriched among the differentially expressed genes more broadly (discussed in the next chapter) in every time point, suggesting lncRNAs may be contributing to the coordinated changes in expression of membrane and extracellular proteins in telomerase-negative cells.

3.4 Discussion

The close association of lncRNAs with both cancer and aging suggests they may also be involved in the cellular response to telomerase deletion and subsequent changes in telomere length. We have used RNA-seq to identify 112 putative novel lncRNAs in telomerase-negative yeast. The transcripts are unlikely to encode proteins and have a median length of 467 nt, which is well above the generally accepted 200-nt threshold for classification as a lncRNA. Most of the lncRNAs were upregulated in at least one time point in the telomerase-negative cells and, in fact, many were undetectable in wild-type cells, which may explain why they have not been observed previously. Previous approaches to identify novel lncRNAs have generally utilized RNA-degradation mutants to stabilize transcripts(Samanta, et al. 2006; van Dijk, et al., 2011; Wyers, et al., 2005). However, our work reveals that, despite extensive study, there are undiscovered lncRNAs in *S. cerevisiae* that may become expressed as part of cellular
responses to specific conditions, such as loss of telomerase and dysfunctional telomeres.

It is currently unclear what the functional role of these IncRNAs is or even if these RNA molecules themselves are important, as opposed to transcriptional activity at their gene locations. Transcription of the ncRNAs SRG1 and IME4 is sufficient to mediate silencing of nearby genes via an interference mechanism (Martens, et al., 2004). Alternatively, a noncoding RNA generated from the telomeric repeats, TERRA, has been shown to interact with the yeast telomerase RNA, and may facilitate recruitment of telomerase to critically short telomeres (Cusanelli, et al., 2013). Given the number of novel transcripts, we believe it is most likely that the IncRNAs are modulating the expression of genes involved in the adaptive response to telomerase deletion. We find many of the IncRNAs are strongly correlated with the expression of adjacent genes, suggesting they act as cis-regulatory elements. Further testing will be required to fully elucidate the exact mechanism of action.

The genes showing correlated expression with a neighboring IncRNA are strongly enriched for both extracellular and membrane proteins (Fig. 5c). It has previously been reported that telomerase-negative cells undergo mitochondrial proliferation (Nautiyal, et al. 2002; Xie, et al. 2015) and may require changes in expression of membrane proteins as a result. Also, approximately half of the membrane and extracellular proteins are present at the telomere or subtelomere. Silencing at the subtelomere decreases as telomeres shorten (Buck, et al., 1995;
Kyrion, et al., 1993), suggesting a potential link between telomere length and expression of novel IncRNAs from the subtelomeric DNA. Since these IncRNAs also show correlated expression with neighboring genes, it could indicate a programmed expression pathway that is initiated only when most telomeres are critically short, potentially mediated by Rap1 loss from subtelomeres during senescence (Platt, et al., 2013). Additionally, since these functional groups are enriched at every stage, this may represent an additional feature of the previously described telomerase-deletion response (Nautiyal, et al. 2002). The correlated genes involved in cell-wall maintenance overlap somewhat with genes regulated by MUTs in meiotic cells (Lardenois, et al. 2011), which may indicate some similarities between the telomerase-deletion response and the meiotic program in yeast.

Some of the IncRNAs we observe at the subtelomere may overlap or behave similarly to those described previously in cells deficient for nonsense-mediated decay (NMD)(Toesca, et al. 2011), referred to as Cytoplasmically Degraded Cryptic Unstable Transcripts (CD-CUTs). In particular, we see increased transcription 5’ of the zinc transporter, Zrt1. However we do not observe any changes in expression of the major components of the NMD pathway, suggesting the expression and stabilization of these transcripts may be the result of a parallel pathway in telomerase-negative cells. One possible explanation is that transcription at this locus is promoted in part by shortened telomeres. Cells lacking the central NMD component Upf1 do exhibit shortened
telomeres in addition to NMD defects (Askree, et al., 2004; Gatbonton, et al., 2006).

Interestingly, the most differently expressed IncRNAs did not show any correlation with neighboring genes that might be expected either due to cis-regulation or spurious transcription. Thus, this group represents the IncRNAs most likely to act functionally as RNAs with targets elsewhere in the cell. Further studies will be required to determine the function of this relatively small (<20 transcripts) group of IncRNAs, potentially beginning with localization studies to determine whether they remain in the nucleus or are exported to the cytoplasm.

Our analysis adds to the growing body of evidence that pervasive transcription of ncRNAs in yeast is an important component in the ability of the cell to adapt to both internal and external changes. In this case, telomerase-deletion initiates a series of adaptive changes from cell-cycle arrest to initiation of alternative methods of telomere lengthening and we observe changes in IncRNA expression at each of these stages.
Defining the distinct transcriptional response to short-telomere induced senescence
4.1 Senescence and quiescence in yeast

In the absence of function telomerase cells experience progressive telomere shortening and eventually experience a specific cell-cycle arrest, known as senescence. However, senescence is somewhat unique as it is not experienced as a uniform arrest (Xie, et al. 2015), and is instead characterized by transient activation of DNA damage checkpoints for variable amounts of time. Consequently, it is likely distinct from other quiescent or arrested states in ways that are poorly characterized.

In the previous chapter I discussed the identification of novel IncRNAs, many of which are only expressed in telomerase-negative yeast. These IncRNAs represent only a small portion of the transcriptional response to telomerase deletion. Previous studies have examined the global expression response to shortening telomeres (Greenall, et al. 2008; Mandell, et al. 2005; Nautiyal, et al. 2002), however the lack of a consensus from these analyses have made any kind of definitive description of altered gene expression during senescence difficult.

Part of this difficulty arises from the similarities between senescence and other quiescent-like states. For example, during senescence cells exhibit a substantially slowed growth rate. Many genes in yeast show growth-rate dependent expression (Airoldi, et al., 2009; Brauer, et al., 2008) so many features of senescence may, in fact, be byproducts of this slow growth rate.
Similarly, the transient activation of DNA damage checkpoints likely initiates a transcriptional response that largely overlaps with the DNA damage signature, rather than being specific to senescence.

In this chapter, I define the distinct transcriptional response to senescence using RNA-seq to monitor gene expression changes during and after senescence. I then subsequently compared my findings with well characterized transcriptomes from other quiescent-like states including G2/M arrest, DNA damage response and slow growth cells. I find that the senescence state is largely characterized by an increase the expression of putative proteins, suggesting these proteins may play an important role only during this specific condition. Additionally, senescence includes widespread metabolic reprogramming, including a decrease in glucose uptake and increase in autophagy. Likely, these features of senescence promote survival until a means to lengthen telomeres can be restored.

4.2 Materials and methods

4.2.1 Generation of telomerase negative yeast

Strains were generated and characterized as described in chapter 3.
4.2.2 RNA isolation

RNA isolation was carried out using hot-phenol method, as previously described (Kohrer, et al. 1991).

4.2.3 Library preparation and RNA sequencing

Library preparation and sequencing were performed as previously described.

4.2.4 Data analysis

Differentially expressed genes were identified using the edgeR package (Robinson, et al., 2010) with the Benjamini and Hochberg algorithm to control the false discover rate and \(p < 0.05 \). Heatmaps were generated as described in chapter 3.

4.2.5 Glucose uptake assays

Glucose levels were measured in the media before and after yeast growth as an indirect measure of glucose uptake. I measured glucose using the glucose GO assay kit from Sigma (cat# GAGO20-1KT). I then normalized the consumed glucose to the number of doublings resulting in “grams of glucose consumed per doubling.”
4.2.6 Stress resistance assays

Cells were resuspended in YPAD media to \(A_{600} = 1.0 \) prior to treatment. For the heat shock treatment, cells were incubated at 45°C or 30°C for five minutes prior to plating. Equal numbers of cells from each condition were plated onto YPAD media and colonies were allowed to form. Relative growth was determined by comparing the number of colonies resulting from the heat shock to those that were maintained at 30°C. Oxidative stress resistance was determined in the same manner, except the cells were treated with either 1 mM \(\text{H}_2\text{O}_2 \) or water for 45 minutes prior to plating.

To determine changes in cell wall integrity cells were resuspended in phosphate buffer prior to treatment with 10 U zymolyase or water for 30 minutes. \(A_{600} \) readings were then taken. Comparison of the zymolyase-treated cells to the no treatment control resulted in relative zymolyase resistance.

4.2.7 Cell death staining

An aliquot of each culture was resuspended in a solution containing 0.1 mg/mL propidium iodide (Sigma cat# 81845). A minimum of 100 cells were counted to obtain percent death.

4.2.8 Monitoring GFP-ATG8 localization
Autophagy measurements were carried out as previously described (Welter, et al., 2010).
4.3 Results

4.3.1 Transcriptional response to telomerase deletion

To characterize the transcriptional response to telomerase deletion we generated and characterized a strain lacking the telomerase RNA component (TLC1) as previously described in chapter 3. RNA was isolated from five time points representing (1) presenescence, (2) senescence (early), (3) senescence (late), (4) survivor (early) and (5) survivor samples. Total RNA was isolated, ribosomal RNA was depleted and the samples were sequenced. Differentially expressed genes were identified using the EdgeR package and read count data generated by our collaborator. The replicates showed good overall correlation, despite being harvested at different concentrations and the general heterogeneity of telomerase-negative cells (Xie, et al. 2015)(Figure4-1). 3525 genes were differentially expressed in at least one time point (Figure4-2a).

4.3.2 Many genes show phase-specific changes in gene expression

I was interested in examining any temporal differences in gene expression so I compared the differentially expressed genes from each time point. I identified
a group of 110 genes that are differentially expressed in every time point and belong to the general telomerase deletion response (Nautiyal, et al. 2002). Each time point has a characteristic set of genes that are only significantly differentially expressed during that phase (Figure 4-2b). Functional enrichment analysis using DAVID (Dennis, et al. 2003) revealed a variety of processes in the phase-specific responses (Figure 4-3). Interestingly, both the senescence and early survivor time points show enrichment for genes involved in response to temperature stimulus which is consistent with the previously described general stress response of senescent cells (Nautiyal, et al. 2002). The cells show surprisingly rapid changes in gene expression with little overlap otherwise, even between samples collected 12 hours apart.
Figure 4-1. Replicates show good agreement at every time point.

FPKM values for each biological replicate are plotted against one another. The time point is indicated on the left, cell type is above. The nutrient-matched WT samples are on the right.
Figure 4-2. Telomerase-negative cells exhibit phase-specific differential expression.

(a) Many genes are differentially expressed in at least one time point. Volcano plot showing the log2(Fold change) in expression relative to wild type against the –log10(P Value). Points in the upper corners show the greatest differential expression with the highest significance. Colored points indicate a gene that was determined to be significantly differentially expressed (P < 0.05, fold change > 2). Colors correspond to different time points. Red = presenescence, orange = early senescence, yellow = late senescence, blue = early survivor and purple = survivor. (b) Many genes are differentially expressed in a phase-specific manner. Heat map showing genes that are significantly differentially expressed in only one time point. Any color indicates a change in expression of two-fold or more.
4.3.3 Telomerase-negative cells show decreased glucose uptake during senescence

Since genes involved in carbohydrate metabolism were enriched during senescence we were interested in investigating glucose sensing and uptake more closely. Closer examination of the changes in glucose monitoring and metabolism genes revealed changes in the expression of hexose transport machinery consistent with a starvation response. (Figure 4-4a). Since the cells were grown in abundant glucose we tested glucose uptake by monitoring the amount of glucose present before and after growth at each time point. The cells consume glucose at WT levels in the presenescent and survivor time points but show a significant decrease in glucose consumption during the senescence time points (Figure 4-4b). This provides a potential explanation for the observed transcriptional starvation response.
Figure 4-3. Functional enrichment analysis of phase-specific genes.

Genes showing phase-specific expression were submitted to DAVID for functional analysis. The top 5 categories are shown for each time point as well as for genes that are differentially expressed in every time point (All).
Figure 4-4. Senescing cells consume less glucose and initiate a starvation response.

(a) Genes involved in carbohydrate metabolism show altered expression during senescence. Heat map showing differential expression of genes involved in carbohydrate metabolism at every time point. Most genes are differentially expressed during early senescence in a pattern consistent with a starvation response. (b) Senescing cells consume less glucose. Glucose uptake per cell division over a 12 hour time course. Glucose consumption drops during senescent time points while being largely unaffected in presenescent and survivor time points.
4.3.4 Upregulation of autophagy during short-telomere induced senescence

Since the senescing samples were not consuming glucose I examined the expression of autophagy genes as an alternative energy source. Approximately half of the genes involved in autophagy are upregulated during the early senescence time point (Figure 4-5a). Additionally, we qualitatively assayed autophagy by monitoring the localization of GFP-Atg8. Atg8 is the yeast homolog of human LC3 and is recruited to the phagophore assembly site (PAS) where it is incorporated into the autophagosome and transported to the vacuole (ref). Here, GFP-Atg8 is degraded; since GFP is resistant to degradation within the vacuole autophagy can be monitored by measuring the levels of free GFP (Welter, et al. 2010). We observe increased GFP localization to the vacuole during senescence, consistent with an increase in autophagy (Figure 4-5b). Interestingly, I also observed a sharp increase in cell death during senescence (Figure 4-6) although it is currently unclear whether this represents a programmed response.
Figure 4-5. Telomerase-negative cells show increased autophagic activity.

(a) Differential expression of autophagy-related genes during senescence.

(b) Fluorescence microscopy analysis of GFP-ATG8 vacuolar delivery.

Strains were transformed with the plasmid pRS313-GFP-ATG8 and monitored throughout the senescence time course. WT in complete and SC-N media is shown. Images were taken on an Axiovert 200 LM inverted scope with a 100x objective and an FITC filter. Scale bar represents 5 μM.
Figure 4-6. An increase in cell death during senescence.

Cell death, as measured by propidium iodide staining, peaks during senescence. A and B represent biological replicates.

4.3.5 The transcriptional response to telomerase deletion overlaps with the response to slow growth

I wanted to identify any other conditions that might result in an increase in autophagy and a decrease in glucose uptake so I compared our transcriptional profile with previous studies. The transcriptional response of senescing cells overlaps substantially with cells slowly growing cells (Figure 4-7a), which also

Senescing cells have increased doubling time so this overlap is not surprising. So I was next interested in examining whether the senescent samples were phenotypically distinct from slowly growing cells. Low growth rate is correlated with increased resistance to a variety of stress conditions including heat shock, oxidative stress, and cell wall integrity (Klosinska, et al. 2011). I subjected the cells to each condition at every time point (Figure 4-8). Senescing cells showed increased resistance to both heat shock and cell wall stress, but were particularly sensitive to oxidative stress. This shows that despite substantial overlap with the response to slow growth, senescence is unique both transcriptionally and phenotypically. Previous studies have reported abnormal mitochondrial morphology in telomerase negative cells (Nautiyal, et al. 2002) but mutations in mitochondrial machinery do not appear to impact senescence or the senescence timeline. These data suggest mitochondrial function is compromised, and the cells may be relying on autophagy or fermentation rather than respiration.
4.3.6 The senescence response overlaps with DNA damage and G2/M arrest

Since the senescence response has been reported to also overlap with the DNA damage response and G2/M arrested cells we compared our results with previous studies examining these conditions. While the senescing cells did show significant overlap with each condition 572 genes were only differentially expressed during early senescence with 563 genes differentially expressed during late senescence, supporting the conclusion that senescence is a distinct quiescence-like state (Figure 4-7a). Interestingly, only 271 genes overlap between the two senescence time points (Figure 4-7d) and the majority of the common genes are dubious ORFs or Ty elements.
Figure 4-7. Senescence is a distinct transcriptional state.

(a) The transcriptional response to senescence overlaps with other stress-induced or quiescent states while having its own distinct signature.

Comparison of differentially expressed genes in short-telomere induced senescence, G2/M arrested cells (Spellman, et al. 1998), starvation-induced quiescence (Klosinska, et al. 2011), slow growth (Airoldi, et al. 2009; Brauer, et al. 2008), and DNA damage (Fry, et al. 2006; Gasch, et al. 2001). The early senescence time point is shown. Despite some overlap with other conditions senescence has a distinct transcriptional signature, which includes 572 genes.

(b) Most of the uniquely differentially expressed genes in senescence are putative proteins. Comparison of the top groups of differentially expressed genes within the 572 senescence-specific gene signature. Approximately 40% are dubious/putative ORFs (blue) with the next highest groups corresponding to sexual reproduction (red) and transcription regulation (purple). All other groups (yellow) comprised <5% of the total list. (c) Genes involved in sexual reproduction are enriched in the senescence-state. Functional enrichment analysis of the senescence-specific genes using DAVID (Dennis, et al. 2003). Groups are ordered according to significance based on P value. (d) Comparison of early- and late-senescence specific genes. Approximately half of the genes overlap between these two time points. Functional enrichment analysis of the unique early senescence, common, and unique late senescence genes (e,f,g respectively) revealed that sexual reproduction is overrepresented in both time
points suggesting this is likely an important feature of short-telomere induced senescence.
Figure 4-8. Senescence is phenotypically distinct from other quiescent states.

(a) Telomerase-negative cells show increased resistance to zymolyase treatment. Cells were treated with either 0 or 20 units of zymolyase for one hour at 30°C followed by an absorbance measurement (A_{600}). Telomerase-negative cells were assayed in biological triplicate every 12 hours, time-points corresponding to specific phases are shown. Standard deviations are shown. Telomerase-negative cells are more resistant to zymolyase treatment than WT at every time point, with maximum resistance coinciding with senescence. (b) Telomerase-negative cells are more resistant to heat shock. Cells were incubated at either 30°C or 45°C for 5 minutes prior to plating for single colonies. Resistance to heat shock was determined based on the growth relative to the 30°C culture. Cells were assayed in biological triplicate, standard deviation shown. (c) Telomerase-negative cells are sensitive to oxidative stress. Cells were treated with either 0 or 1mM H_2O_2 for one hour at 30°C followed by plating for single colonies on YPAD media. Sensitivity to oxidative stress was determined using the growth relative to the no treatment control sample. Biological triplicates tested, standard deviations shown.
4.3.6 The transcriptional response of senescing cells is dominated by dubious or putative ORFs

I next wanted to characterize the unique transcriptional state of senescing cells so I performed a functional enrichment analysis of the genes only differentially expressed in the senescing cells (Figure 4-7e,f,g). Almost 40% of the differentially expressed genes were either dubious ORFs or putative proteins with unknown functions (Figure 4-7b). This was also true in the late senescent
time point (Figure 4-7d). This could reflect a general increase in transcription in senescing cells or simply further highlight how little is known about the response to telomerase deletion. The other time points also show enrichment for dubious ORFs although to a lesser extent than the senescing time points (~25%). Genes involved in sexual reproduction and meiosis comprised the next most significant category, and were enriched in both the early and late senescent time points (Fig 4-7b,f). This suggests there is some overlap between meiotic reprogramming and senescence.

4.3.7 Translational machinery shows evidence of co-regulated expression

To identify any coordinated changes in gene expression in response to telomerase deletion I calculated the Pearson correlation coefficient for each pair of genes and then performed hierarchical clustering (Figure 4-9). Clustering revealed two groups with strong positive correlation (1) ribosomal proteins, tRNAs and mitochondrial components and (2) Ribosome biogenesis, rRNA processing and proteins involved in polarized growth. The two groups are anticorrelated with one another, which is somewhat surprising since ribosomal proteins appear in a separate group from ribosome biogenesis factors.
Figure 4-9. Ribosomal proteins show anticorrelated expression from ribosomal processing machinery.

Pearson correlation coefficients were calculated between each gene pair and the resulting matrix was used for k-means clustering analysis. The clustered matrix is shown as a heat map with red corresponding to positive correlation in expression and blue indicating anticorrelation. Functional enrichment analysis of the two largest clusters (indicated by a red and blue line on the left) revealed anticorrelated expression between ribosomal proteins, tRNAs (red) and ribosomal biogenesis and processing machinery (blue).
4.4 Discussion

Short-telomere induced senescence shares many features both transcriptionally and phenotypically with previously described stress-states in yeast, such as DNA damage, heat stress and glucose starvation. Previous work identified a telomerase-deletion response that was separable from other stress responses (Nautiyal, et al. 2002), in this chapter I described work that has further refined this signature specifically to the state of senescence. The senescence-state is characterized by a marked decrease in glucose consumption in addition to an increase in resistance to zymolyase treatment. Interestingly, while slow-growing cells are generally more resistant to zymolyase treatment glucose-starved cells are surprisingly sensitive to this stress (Klosinska, et al. 2011). This underscores my conclusion that senescence is a unique state, sharing features with other stress-response states while not completely overlapping with any.

The telomerase-negative cells showed remarkable sensitivity to oxidative stress at every time point tested, indicating compromised mitochondrial function is a feature of the general telomerase deletion response. Previous work has shown that starvation survival is correlated with resistance to oxidative stress (Petti, et al., 2011) so the increase in cell death during senescence may be attributable in part to compromised mitochondrial function. Morphologically the mitochondria in senescing cells have been shown to appear fragmented (Nautiyal, et al. 2002) as though the fusion-fission balance has shifted towards
fission. This is consistent with mitochondrial behavior during times of stress, and could explain the extreme sensitivity of telomerase-negative cells to oxidative stress.

The anti-correlated expression of ribosomal proteins and ribosome biogenesis machinery may be an additional unique feature of telomerase-negative cells. Interestingly, most ribosomal genes are downregulated in presenescence, early senescent and survivor cells while the specific subset of positively correlated translation machinery is upregulated during both senescence time points (Figure 4-8). Previous studies in yeast have shown that translational machinery undergoes alternative targeting during starvation through an as-yet undetermined mechanism. The differing patterns of expression between ribosomal modification and processing machinery and the components themselves could be due to apparent specialization of ribosomes under these conditions, where a both composition and modification status are altered.

A previous study using a similar experimental design but monitoring differential expression by microarray also identified changes in ribosome and mitochondrial biogenesis gene expression (Nautiyal, et al. 2002). Our analysis results in an overlap with half of the genes previously identified during senescence (Figure 4-10), although we identify a larger total amount of differentially expressed genes. Potentially this is due to the greater statistical power of RNA-seq relative to microarray for low and high expression genes. Alternatively, given the large percentage of dubious ORFs that are differentially
expressed it is also possible that early microarrays weren’t as well suited to examining the expression of poorly characterized genes.

Figure 4-10. Comparison of differentially expressed genes identified during senescence in two independent studies.

(a) Venn diagram comparison of differentially expressed genes.
Differentially expressed genes identified in the early senescence time point from this study (left) and differentially expressed genes identified from the equivalent time point (as determined by telomere Southern blot) in the Nautiyal et al. study. Shown (b) Functional enrichment analysis of common genes identified in both studies as determined by DAVID. Groups are ordered by significance and are enriched for stress response and mitochondrial proteins.
The transcriptional response to short-telomere induced senescence is predominantly characterized by changes in the expression of dubious ORFs. This could point to some undiscovered functions for the dubious ORFs, but may be more likely the result of broadly increased transcription in telomerase negative cells. In the previous chapter I described my identification of novel lncRNAs in telomerase-negative cells and noted a concurrent general increase in transcription. Increased transcription has been noted during meiosis as well as in the absence of RNA processing machinery such as exosome or nonsense
mediated decay components. Additionally, I noted a putative overlap between noncoding RNAs expressed during meiosis and the lncRNAs expressed in telomerase-negative cells. We also observe a functional enrichment of meiosis-related protein coding genes in senescing cells further strengthening the connection between these two conditions. Potentially the functional glucose starvation is enough to induce expression of the meiosis machinery in telomerase-negative cells, but it could also indicate a functional overlap between the processes. For example, it is interesting to speculate that expression of meiotic recombination machinery could prime survivor formation in yeast. Similarly, appropriate expression of meiotic proteins has been speculated to require downregulation of ribosomal proteins (Munding, et al., 2013) due to competition for splicing machinery. We do observe altered expression of both ribosomal proteins and ribosome modification components suggesting these processes may be occurring in senescing cells. This process could have been co-opted by cells as a survival strategy for dealing with life without telomerase.
5.1 Final conclusions

The telomerase RNP maintains the ends of linear chromosomes in most eukaryotes, protecting the ends from progressive shortening and thereby promoting genome integrity. Telomerase RNA plays a critical role in this process by not only providing the template for reverse transcription, but also by binding accessory proteins and likely coordinating catalysis within the core. Defects in either the folding or function of telomerase RNA are associated with a variety of diseases (Armanios 2009; Dokal, et al., 2008; Wong, et al., 2006). This is due to either a partial or complete loss of telomerase activity in the affected cells, which then have to respond and adapt to increasingly short telomeres resulting in either arrest, cell death or, in many cases, cancer (Blasco 2005).

My thesis focused on two aspects of telomerase biology: (1) the structure of telomerase RNA and its role in enzyme function and (2) the cellular response to telomerase dysfunction or absence.

5.1.1 The yeast and human TR cores do not require protein binding to adopt active conformations

In Chapter 2 I showed that unlike ciliate TR (Mihalusova, et al. 2011), both the human and yeast TR cores can adopt catalytically competent conformations
without TERT binding. SHAPE analysis suggests that both RNAs form a stable pseudoknot, a single-stranded template and the catalytically important base triples (Figures 2-2, 2-3). The human RNA requires slightly more Magnesium than the yeast, potentially due to more intricate tertiary interactions surrounding the hTR base triples. Alternatively, this could be the result of the different orientation or lack of a *bona fide* TBE in the human core.

I hypothesize that the reduced requirement for protein binding relative to the ciliate TR, is due to increased thermodynamic stability resulting from more extensive base-triples and larger pseudoknots. The ciliate pseudoknot is relatively small, with one stem only consisting of four base pairs (Cole, et al. 2012; Jiang, et al., 2013; Richards, et al. 2006; Theimer, et al., 2006). The ciliate RNA also binds more proteins in the core (Jiang, et al. 2013) than the larger TRs, potentially indicating a more intimate relationship between protein binding and RNA folding than is necessary in the larger RNAs.

Additionally, the ciliate RNA includes fewer base triples than either the yeast or human RNA. I have shown that the yeast RNA, in fact, forms an additional five base triples that had not appeared in previous models. This set of base triples is phylogenetically conserved, and likely adds substantial stability to the pseudoknot. They may also play a role in substrate positioning, as they are located adjacent to the catalytically important base-triples within stem 2 of the pseudoknot. My working model (shown in Figure 2-10) is that these triples interact with the CCC residues showing low SHAPE reactivity within the template.
This as yet uncharacterized interaction could position the template within the active site for nucleotide addition.

5.1.2 Human and yeast TR cores show a common SHAPE reactivity pattern

Structural conservation within the telomerase core suggests enzyme coordination within the core is also conserved (Lin, et al. 2004). However, without accurate secondary structure predictions it has been difficult to examine structure-function relationships in detail. Using SHAPE, I have shown that in addition to generally conserved structural elements the yeast and human TR cores also show common reactivity patterns. Notably, both cores show high reactivity between the pseudoknot and core-enclosing helix as well as 3' of the template. Additionally, both RNAs show low reactivity 5' of the template (Figure 2-10).

This observation has led to a model where the regions of high reactivity may serve as flexible “hinge points” allowing the substrate to move through the active site as telomerase adds nucleotides to the end of the substrate. The region of low reactivity 5' of the template would then serve as a fixed element to guide the template through the core. Taken together these regions would support the “accordion model” for template positioning, which was recently proposed based on FRET data in the ciliate TR (Berman, et al., 2011).
Alternatively, the less flexible nucleotides 5' of the template could play a role in template-boundary definition, which would be consistent with previous studies in hTR (Box, et al., 2008; Chen, et al. 2003). Disruption mutants in the TBE allow copying past the template by a few nucleotides, but do not completely abolish template definition (Seto, et al., 2003). This could be because of the additional boundary element provided by the low reactivity nucleotides. If this is the case I would expect that modulating physical flexibility in this region using nucleoside analogs would alter template boundary definition. Specifically, in the absence of the TBE I would expect increasing flexibility to reduce boundary definition while a decrease in flexibility should improve fidelity.

5.1.3 Reverse transcriptase-RNA interactions: unique features of telomerase

Among reverse transcriptases, TERT may be unique in its interactions with its RNA template. Specifically, in contrast to other reverse transcriptases like the HIV-1 RT, TERT only copies a small portion of the RNA template and must do so iteratively. Most viral reverse transcriptases must copy an RNA genome in its entirety, so the template boundary definition achieved by the telomerase enzyme is unnecessary.

However, TERT is structurally very similar to a viral reverse transcriptase (Gillis, et al., 2008). TERT is broadly organized into two subdomains, known as the fingers and palm domains. These subdomains are well known and also
commonly observed in RNA and DNA polymerases as well as retroviral reverse transcriptases. One notable difference is the TERT-specific IFD (Insertion in Fingers Domain) motif, which, as the name suggests, is located within the fingers domain (Lue, et al., 2003). However, this motif appears to be involved in processivity rather than template boundary definition.

With no obvious TERT domains that could be involved in template definition, the RNA is the most likely component to step into this role. While the TBD helix is clearly important in providing a steric block to end reverse transcription, it is unlikely that this alone is sufficient for boundary definition given that these kinds of short hairpins are probably common in viral RNA genomes without blocking reverse transcription. Indeed, as previously stated, when this helix is disrupted TERT is still only able to copy a few nucleotides past the end of the template (Seto, et al. 2003). Additionally, the TBE in human telomerase is located 8 nts away from the end of the template (Figure 2-7). Based on my SHAPE data I have suggested that the unreactive and therefore likely conformationally-constrained nts 5' of the template are contributing to template boundary definition. If this model is correct reducing flexibility 5' of any short hairpins in a viral RNA genome should prevent further copying. Consistent with this model, the majority of the short hairpins in the HIV-1 genome have unstructured and highly reactive nts 5' (Watts, et al., 2009).
5.1.4 Loss of telomerase results in metabolic reprogramming in yeast

Loss of telomerase results in increased genome instability due to progressive telomere shortening. Here I’ve shown that this state also results in widespread metabolic reprogramming including a decrease in glucose uptake and concurrent increase in autophagy (Figures 4-4, 4-5). The decrease in glucose consumption is particularly striking, as it was observed exclusively in the senescence time points (Figure 4-4). This likely represents a survival strategy for the arrested yeast. In previous studies under conditions where a particular amino acid was limiting, the rate of glucose consumption after biomass accumulation had ceased was correlated with survival (Boer, et al., 2008; Brauer, et al. 2008; Petti, et al. 2011). This could also provide an explanation for the marked increase in cell death observed during senescence (Figure 4-6), as the majority of the PI-positive cells appeared swollen. It’s possible these cells somehow continued to consume glucose and gain biomass despite the cell cycle arrest and eventually died.

Currently it is unclear what initiates the decrease in glucose uptake, but the most likely candidate is the slow growth rate itself. Many of the starvation-associated glucose transporters, such as HXT5 (Verwaal, et al., 2002), are also induced by a decrease in growth rate. This is consistent with a model where the transient cell-cycle arrests associated with senescence manifest as slow growth,
which decreases glucose uptake, this, in turn, upregulates autophagy to maintain the energy requirements of the cell without increasing the biomass. Cells that are unable to initiate this starvation response, therefore, are unlikely to survive senescence.

5.1.5 Telomerase-negative cells are incredibly sensitive to oxidative stress

Consistent with induction of a general “survival” response, telomerase-negative cells upregulate many genes involved in environmental stress response and show increased resistance to both heat shock and cell wall digestion (Figure 4-8). However, unlike the other stress conditions, telomerase-negative cells showed increased sensitivity to oxidative stress (Figure 4-8). One potential explanation is that the cells may already have saturated levels of reactive oxygen species (ROS), due to alterations in cellular metabolism. However, a previous study found that ROS levels are not significantly altered in telomerase-negative cells, irrespective of telomere length (Xie, et al. 2015).

Another possibility is that mitochondrial function has been compromised. Yeast strains lacking mitochondrial function are also sensitive to oxidative stress (Grant, et al., 1997). In many ways this seems counterintuitive, as mitochondria are one of the major sources of ROS in the cell. However, it appears that the process of respiration may also induce the expression of many antioxidants, and
it is the loss of these components that render cells unable to withstand oxidative stress without functioning mitochondria. Interestingly, the Blackburn lab had previously noted gross abnormalities in mitochondrial morphology in telomerase-negative cells (Nautiyal, et al. 2002). Dysfunctional mitochondria would explain the low levels of ROS, the extreme sensitivity to oxidative stress as well as the shift away from growth and accumulation of biomass to quiescence. However, mitochondrial function has also been correlated with survival during nutrient deprivation (Petti, et al. 2011), so it is difficult to fully reconcile these observations.

Future studies examining mitochondrial function in more detail would help to fully elucidate the metabolic changes that occur during senescence. For example, mitochondrial function during senescence has yet to be directly measured. Additionally, it would be interesting to examine the senescence timeline for cells grown on non-fermentable carbon sources, which would force the cells to respire. If respiration is promoting survival during the induced starvation response, cells grown under this condition should show a decrease in cell death during this time. Conversely, if mitochondrial function is compromised or absent during this time we should observe little to no effect.
5.1.6 Induction of IncRNAs in telomerase-negative cells

In yeast, expression of specific IncRNAs has been associated with a variety of specific cell states, such as meiosis or growth in the absence of metal ions (Lardenois, et al. 2011; Toesca, et al. 2011); while in humans IncRNA expression has been associated with a variety of diseases from aging to cancer (Abdelmohsen, et al. 2013; Guil, et al. 2012; Yang, et al. 2014). In chapter 3, I used RNA-seq to identify 112 novel IncRNAs. I did not observe any changes in the expression of any components of the exosome, or termination machinery suggesting that these are stable transcripts not RNAs that have simply escaped degradation.

Of the 112, 40 are exclusively expressed in telomerase-negative cells. Like the IncRNAs expressed during meiosis, it is likely that these represent the programmed expression of specific IncRNAs in response to the lack of telomerase function. A subset of this group shows correlated expression with a neighboring gene, suggesting these IncRNAs may be cis-regulators of nearby gene expression (Figure 3-6, 3-7). Functional enrichment analysis of the correlated protein-coding genes revealed than many are involved in cell wall synthesis. This represents a potential link between the observed increase in resistance to cell wall digestion and expression of these IncRNAs.

The remaining IncRNAs did not show correlated expression with a neighboring gene and their current functions remain unknown. It will be
interesting to examine the sequence of these RNAs in more detail to try and identify any sequence motifs to predict protein binding. Some clues may also be found by examining the localization of these IncRNAs in more detail, do they remain in the nucleus or are they exported to the cytoplasm? Do they associate with other RNA partners or ribosomes? There are not many well-characterized IncRNAs in yeast so this represents an exciting area for future study.
References:

Lebo KJ, et al. 2015. A second essential function of the Est1-binding arm of yeast telomerase RNA. RNA,

Mefford MA, et al. 2013. RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. *EMBO* **32**, 2980-93

135

Shefer K, et al. 2007. A triple helix within a pseudoknot is a conserved and essential element of telomerase RNA. *Mol Cell Biol* 27, 2130-43

Theimer CA, et al. 2003. Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. *Proc Natl Acad Sci U S A* 100, 449-54

Welter E, et al. 2010. Quantification of nonselective bulk autophagy in *S. cerevisiae* using Pglk1-GFP. *Autophagy* 6, 794-7

Wilkinson KA, et al. 2006. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. *Nat Protoc* 1, 1610-6

Vita

Rachel O. Niederer
rnieder1@jhu.edu
Department of Biology
Johns Hopkins University
Baltimore, MD 21218-2685
(410) 516-7316 (lab)

Education

PhD 2015 Johns Hopkins University, Program in Cell, Molecular, Developmental Biology, and Biophysics
BS 2009 University of Maryland, College Park, Cell biology and molecular genetics (with high honors)
BS 2009 University of Maryland, College Park, Biochemistry

Research experience

2009 – present Johns Hopkins University, Department of biology
PhD research
Research focus: Structure-function relationships in telomerase RNA
Transcriptional response to telomerase deletion in yeast
Faculty mentor: Dr. David Zappulla

2007 – 2009 University of Maryland, Department of cell biology and molecular genetics
Undergraduate honors research
Research focus: Protein and rRNA modification in ribosome assembly and function
Faculty Mentor: Dr. Jonathan Dinman

2006 – 2007 University of Virginia, Department of biochemistry and molecular genetics
Research focus: Regulatory mechanisms of RNA polymerase I
Faculty Mentor: Dr. Jeffrey Smith
Publications

Niederer, R.O., Papadopoulos, N., Zappulla, D.C. Identification of novel IncRNAs in telomerase-negative yeast by RNA-seq (Under review at Scientific Reports)

Manuscripts in preparation

Niederer, R.O., Gelsinger, D.R., Papadopoulos, N., Zappulla, D.C. Defining the distinct transcriptional response to short telomere-induced senescence

Posters and Presentations

2015 Telomeres and Telomerase, Cold Spring Harbor, NY
Niederer, R.O., Wang, Y., Papadopoulos, N., Zappulla, D.C. Defining the distinct transcriptional response to short telomere-induced senescence (Poster)

2015 RNA Biology, NIH, Bethesda, MD
Niederer, R.O., Wang, Y., Papadopoulos, N., Zappulla, D.C. Global changes in transcription and rna processing during short telomere-induced senescence in yeast identified by RNA-seq (Poster)

2013 RNA Society meeting, Davos, Switzerland
Niederer, R.O., Zappulla, D.C. Investigating the structures of the yeast and human telomerase RNAs by SHAPE (Poster)
2008 Bioscience Day, University of Maryland, College Park
Niederer, R.O., Dinman, J.D. Genetic Characterization of CBF5 mutants: implications with regard to Dyskeratosis congenita (Poster)

2007 Summer Research Symposium, University of Virginia
Niederer, R.O., Smith, J.S. A Role for DNA replication in the inheritance of rDNA silencing (Talk)

2006 Summer Research Symposium, University of Virginia
Niederer, R.O., Smith, J.S. Regulatory mechanisms of RNA Polymerase I (Talk)

Teaching experience

2015 Intersession instructor, RNA in disease
Johns Hopkins University
Proposed and developed the course covering:
- Molecular mechanisms underlying RNA-based diseases
- Practical, hands on experience processing gene expression datasets using Tuxedo suite tools and R

2014 Guest lecturer, Eukaryotic molecular biology
Professor: Van Moudrianakis
Johns Hopkins University
Designed and taught 5 lectures covering
- DNA replication and repair
- Transcription
- RNA processing & nuclear export
- Translation and mRNA decay
- Methods in molecular biology including high-throughput sequencing technologies

2012 - 2014 Participant
Symposium on Excellence in Teaching and Learning in the Sciences,
Johns Hopkins University

2014 Teaching assistant, lecture
Cell biology, Johns Hopkins University
Duties: grading problem sets & exams, led 4 recitation sessions

2013 Teaching assistant, lab
Genetics, Johns Hopkins University
Duties: Introduced weekly lab concepts and techniques, supervised experimental procedures, graded lab reports, held office hours

2011
Teaching assistant, lab
Cell biology, Johns Hopkins University
Duties: Introduced weekly concepts and techniques, supervised experimental procedures, graded weekly lab reports, held optional review for final exam

2010
Teaching assistant, lab
Biochemistry, Johns Hopkins University
Duties: Introduced weekly concepts and techniques, supervised experimental procedures, graded weekly lab reports

2005
Teaching assistant, lab and lecture
General biology, Cabrillo College, Aptos, CA
Duties: Held weekly office hours, graded lab reports, problem sets and weekly quizzes, supervised experimental procedures

Mentoring experience

2009 – present
Johns Hopkins University
Graduate students: Michael Bemben, Josh Spurrier, Justin Brodie-Kommit, Jessica Winger, Diego Gelsinger

Undergraduate students: Jeffrey Nelson, Praneeth Sadda, Michael Setteducato, Eduardo Urias (BioREU participant)

Awards and honors

2013 RNA society travel fellowship
2008 – 2009 HHMI Undergraduate Research Fellow
University of Maryland, College Park
2008 Tau Sigma Honor Society
University of Maryland, College Park
2008 Primmanum Honor Society
University of Maryland, College Park
2007 – 2009 Cell Biology and Molecular Genetics Honors Program
University of Maryland, College Park
2006 – 2007 SRIP undergraduate research fellowship
University of Virginia, Charlottesville, VA
2004 – 2006 **Deans List**
Cabrillo College, Aptos, CA

2005 **Cornelia Ackley Memorial Biology Scholarship**
Cabrillo College, Aptos, CA

2003 – 2004 **Founders Scholarship Level II**
Tulane University, New Orleans, LA

2003 – 2004 **St. Johns Hospital Scholarship**
Tulane University, New Orleans, LA

Professional memberships

2014 – present American Society of Cell Biology (ASCB)

2013 – present RNA society