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Abstract 

In the mammalian cochlea, acoustic information is carried to the brain by the 

predominant (95%) large diameter, myelinated type I afferents, each of which is 

postsynaptic to a single inner hair cell.  The remaining thin, unmyelinated type II 

afferents extend hundreds of microns along the cochlear duct to contact many outer 

hair cells. Despite this extensive arbor, type II afferents are weakly activated by 

outer hair cell transmitter release, and are insensitive to sound.  Their function has 

been mysterious for decades due to their scarcity and lack of specific genetic 

markers. Intriguingly, type II afferents remain intact in damaged regions of the 

cochlea while outer hair cells and type I afferents are damaged by noise exposure.  

In this thesis, using whole-cell patch clamp recordings directly from the dendrites of 

type II afferents, we found that the weak synaptic transmission is mediated by 

GluA2 containing AMPA receptors. In contrast, ATP released from the damaged 

cochlea more potently activates type II afferents. We show that type II afferents are 

strongly depolarized when outer hair cells are damaged.  This response depends on 

both ionotropic (P2X) and metabotropic (P2Y) purinergic receptors, binding ATP 

released from nearby supporting cells in response to hair cell damage.  Selective 

activation of P2Y receptors increased type II afferent excitability by the closure of 

KCNQ-type potassium channels, a potential mechanism for the painful 

hypersensitivity that can accompany hearing loss.  Exposure to the KCNQ channel 

activator retigabine suppressed the type II fiber’s response to hair cell damage.  
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Type II afferents may be the cochlea’s nociceptors, prompting avoidance of further 

damage to the irreparable inner ear. 
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Background 

1. Morphology of type II cochlear afferents 

1.1 Basic structure of the auditory end organ 

The sense of hearing starts in the ear. Sound consists of compression and 

rarefaction of air, and travels in the form of pressure waves through the external ear canal.  

The resulting vibration of the tympanic membrane is transferred to the motion of fluids in 

the snail-shaped cochlea through the three middle ear bones. This fluid movement 

vibrates the basilar membrane in the inner ear, where the auditory sensory epithelium – 

the organ of Corti - is situated.  

The organ of Corti is the site of sound transduction in the cochlea, a beautiful and 

highly organized structure consisting of sensory cells and supporting cells. The organ of 

Corti contains one row of inner hair cells (IHCs) and three rows of outer hair cells 

(OHCs), serving as the receptors of the auditory system. These receptor cells are covered 

by a cantilevered gelatinous structure called the tectorial membrane. When sound strikes 

the eardrum and causes a traveling wave along the basilar membrane, a shearing force is 

created between the tectorial membrane and hair cells, bending hair cell bundles and 

gating the cation permeable mechanotransduction channels for sound transduction. 

Postsynaptic to the hair cells are the cochlear afferents that carry information from the 

auditory periphery to the brain. The mammalian cochlea is innervated by two classes of 

cochlear afferents – the majority population (~90 – 95 %) consists of type I afferents that 

contact IHCs and the minority population includes type II afferents that innervate the 

OHC region (Figure B1). Depolarization of IHCs triggers Ca
2+

-dependent release of 



2 

 

glutamate from a ribbon synapse, which in turn activates the postsynaptic type I afferents 

(Glowatzki and Fuchs, 2002; Goutman and Glowatzki, 2007; Grant et al., 2010),  Each 

type I afferent projects to a single IHC, whereas each IHC contacts on average 20-30 type 

I afferents. The IHC – type I synapse encodes the timing, intensity and frequency 

selectivity of sound information. Sound timing and intensity are encoded by the firing 

rates of type I afferents as a result of a related pattern of synaptic transmission from inner 

hair cells (Fuchs, 2005; Fuchs and Glowatzki, 2015; Moser et al., 2006). Frequency 

representation is determined by the position of the sensory neurons, as a consequence of 

‘tonotopy’ – that sound vibrates the basilar membrane in a frequency – specific manner. 

High frequency sound activates the sensory neurons at the base of the cochlea and low 

frequency sound activates the apical neurons. Type I afferents project directly to the hair 

cells corresponding to their characteristic frequency – a frequency to which they are most 

sensitive, thereby forming a tonotopic array along the cochlea (Liberman, 1982). 

The remaining 5 – 10 % of cochlear afferents are small-caliber, unmyelinated 

type II afferents. Each of them sends a long peripheral process and contacts multiple hair 

cells, receiving weak synaptic transmission. Current understanding about their 

morphology, synaptic transfer and functions is described in the following text. 
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Figure B1. Schematic illustration of afferent innervation in a cross section of the organ 

of Corti. RF: a radial fiber as an example of a type I afferent contacts a single IHC. OSF: 

an outer spiral fiber (type II afferent) travel on the floor of the tunnel of Corti, and then 

rise to contact OHCs. Efferents were not illustrated in this scheme (Simmons and 

Liberman, 1988a). 

 

1.2 Type II neurons in the spiral ganglion 

The somata of type I and type II cochlear afferents are named type I and type II 

spiral ganglion neurons (SGNs). They both reside in Rosenthal’s canal (also called the 

spiral canal) of the cochlea, a section of the bony labyrinth.  Compared to type I neurons, 

type II neurons are smaller in diameter and make up 5-10% of SGNs. Their somata were 

found in the more peripheral regions of the spiral ganglion (Berglund and Ryugo, 1987; 

Brown, 1987b). The cytoplasm of type II neurons was found to be more filamentous, 

showing fewer cytoplasmic organelles. This is reflected by basic stains and 

immunohistochemistry. With Nissl staining which primarily labels endoplasmic 

reticulum and the nucleus, type I neurons demonstrate denser intracellular Nissl bodies 



4 

 

than do type II afferents. On the other hand, when cytoskeletal elements were examined, 

type II afferents were more intensely stained, revealed by silver stains as well as 

antibodies against neurofilament 200 kDa (NF200) (Berglund and Ryugo, 1986; 

Berglund and Ryugo, 1991) and the intermediate filament protein peripherin (Hafidi, 

1998; Hafidi et al., 1993). Type II neurons are bipolar or pseudomonopolar, branched to 

send one peripheral process toward the organ of Corti and one central process to the 

cochlear nucleus in the brainstem. The peripheral and central processes of type II neurons 

are roughly equal in diameter, in contrast to the type I neurons where a thinner caliber 

peripheral branch is found in many species (Berglund and Ryugo, 1986; Kiang et al., 

1982). 

 

Figure B2. Somata of type I and type II neurons under light microscopy. Top: Cresyl 

violet staining showed more prominent Nissl substance in the slightly larger, type I 

neurons. Bottom: Protargol staining on the same cells after cresyl violet washed out. The 

cytosol of type II neurons was more heavily stained by neurofilaments. (Berglund and 

Ryugo, 1986) 
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1.3. Peripheral process of type II neurons 

Type II afferents are unmyelinated and have a smaller diameter than type I 

afferents (Bernard and Spoendlin, 1973; Perkins and Morest, 1975; Romand and Romand, 

1987; Romand and Romand, 1984; Spoendlin, 1971a). The radial processes of type II 

afferents project together with those of type I afferents toward the organ of Corti. Each 

type I projection terminates at the inner hair cell region, forming a synapse with a single 

inner hair cell. Type II afferents project past the inner hair cells, cross the tunnel of Corti 

and travel radially on its floor. After reaching the outer hair cell region, the fibers make a 

right angle turn towards the base of the cochlea, which represents higher frequencies. 

These are the spiral processes of type II afferents, also called outer spiral fibers (OSFs) 

according to their position in the cochlea. The spiral processes almost always turn toward 

the base and travel for hundreds of microns along the outer hair cell region (Berglund and 

Ryugo, 1987; Brown, 1987b; Ginzberg and Morest, 1983; Ginzberg and Morest, 1984; 

Perkins and Morest, 1975; Simmons and Liberman, 1988b), with the exception of the 

very apical fibers near the helicotrema which were identified as bi-directional and can 

project both apicalward and basalward (Perkins and Morest, 1975). The initial part of the 

spiral process usually stays far below the outer hair cells, and runs under the supporting 

cells (Deiters’ cells) for distances up to 0.5 mm. Then the process gradually risees to the 

base of the outer hair cells, extending a terminal portion commonly around 100 – 200 µm, 

which is characterized by 10 – 20 synaptic branches contacting the sides and bases of 

OHCs. Angular enlargements of the spiral fibers were also observed, possibly serving as 

en passant synapses (Brown, 1987a; Ginzberg and Morest, 1983; Perkins and Morest, 

1975; Simmons and Liberman, 1988b). The length of the entire spiral process reaches 
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670 µm in rat (Perkins and Morest, 1975) and up to 1200 µm in cat (Simmons and 

Liberman, 1988a; Spoendlin, 1969). Electron microscopic analysis revealed about 28 

afferent terminals innervating apical OHCs and about 7.75 terminals per OHC at the base 

in guinea pig (Hashimoto and Kimura, 1988). In cats, an average of 6-8 afferent terminals 

were found on each OHC base (Ginzberg and Morest, 1984). In some cases, the major 

shaft of the process could branch and contact multiple rows of outer hair cells. Only 3 out 

of 34 type II afferents in adult guinea pig were found to contact multiple rows (Brown, 

1987a), whereas 23 of 51 fibers contacted two rows and 8 of 51 fibers contacted three 

rows in young cats (Perkins and Morest, 1975), and 15 of 85 fibers contacted multiple 

rows in adult cats (Simmons and Liberman, 1988a). It is unknown if such differences 

arise from the age or species of the animals. Among the multiple-row type II afferents in 

adult cats, more than 50% of their synaptic branches innervate only to a single row of 

OHCs. It was also reported that basal type II afferents tend to innervate only one row of 

OHCs (Simmons and Liberman, 1988a). 
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Figure B3. Drawing of type I and type II afferents innervation in a whole-mount cochlea 

preparation. Showing the spiral ganglion, one row of IHCs and three row of 

OHCs.(Berglund and Ryugo, 1987) 

 

Certain morphological features of type II afferents might be related to the specific 

row of OHCs contacted. In cat cochlea, more type II afferents seem to contact the first 

row of OHCs (44% to 48% of reconstructed fibers examined in two samples), and similar 

numbers of afferents contact row-2 and row-3 (24% - 31%). Row-3 type II afferents have 

more synaptic branches and longer terminal regions (Simmons and Liberman, 1988a). 

Similar observations in guinea pig cochlea showed that row-3 type II afferents are longer 

in length, with larger terminal regions and more synaptic branches. The number of OHCs 

contacted by row-3 type II afferents could be 2 – 3 times more than that of row-1 type II 
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afferents, according to 34 fibers reconstructed from horseradish peroxidase (HRP) 

staining (Brown, 1987a). 

 

Figure B4. Difference of type II afferents’ morphology in the apical, middle, and basal 

turn of the cochlea. Schematic innervation of the three rows of OHCs were illustrated 

under the fibers, with the blackened dots representing OHC contacts. (Simmons and 

Liberman, 1988a) 

 

An apical-basal difference of type II afferents’ morphology was also reported 

(Figure B3). The length of type II afferents as well as the length of their terminal regions 

were found to be maximum in the apical portion of the middle turn, with decreasing 

length of both when moving to either apical or basal portions of cat cochlea. Apical type 

II afferents have larger diameters, about 0.8 µm, while those of basal type II afferents 

averaged about 0.2 µm.  The apical type II afferents seem to have both en passant and 
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terminal synapses whereas the basal type II afferents have more terminal branches and 

few en passant synapses (Simmons and Liberman, 1988a). Up to all three rows of OHCs 

can be innervated by a single apical type II afferent, which is rarely seen at the basal part 

of the cochlea. More elaborate patterns of innervation were observed in the apical but not 

the basal type II afferents (Brown, 1987a; Fechner et al., 2001; Simmons and Liberman, 

1988a). 

Besides outer hair cells, several morphological studies suggest that type II 

afferents may contact other cell types. Collaterals occasionally appeared in the portion of 

type II afferents that passes inner hair cells (Perkins and Morest, 1975). But it was not 

certain if these are definite and functional synaptic structures. Supporting cells in the 

outer hair cell region, including Deiters’ and Hensen’s cells, are proposed to form 

synapses with type II afferents. This is only observed in the apical half of the cochlea but 

not the basal half (Burgess et al., 1997; Fechner et al., 2001). Electron microscopic 

analysis showed synaptic specializations between these supporting cells and adjacent 

fibers presumed to be type II afferents, because these fibers were negative for 

acetylcholinesterase and densely stained for neurofilaments (Burgess et al., 1997). In the 

apical part of the guinea pig cochlea, type II afferents were found to send branches onto 

Deiters’ and Hensen’s cells (Fechner et al., 1998; Fechner et al., 2001). These putative 

supporting cell – type II synapses have not been functionally characterized. Additional 

ultrastructural studies also revealed efferent to type II afferent synapses (Nadol, 1983; 

Thiers et al., 2002) and reciprocal synapses between OHC and type II afferents (Francis 

and Nadol, 1993; Nadol, 1981; Thiers et al., 2002; Thiers et al., 2008). These synapses 

were identified through the observation of small numbers of vesicles accumulating close 
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to the afferent’s cell membrane, as well as some asymmetric membrane thickenings and a 

synaptic cistern in the hair cell. Whether these are functional synapses and what role they 

play is unknown. 

 

1.4. Central projections of type II neurons 

The central processes of cochlear afferents, including those of both type I and 

type II afferents, are bundled together to form the auditory nerve. They enter the cochlear 

nucleus as the root branch, and then the axons of both type I and type II afferents 

bifurcate (Figure B5) (Brown et al., 1988a; Fekete et al., 1984; Pillsbury, 1996). The 

position of the bifurcation is arranged in a tonotopic manner, which reflects the fiber’s 

position in the cochlea (Liberman, 1982). After bifurcation, the ascending branch of the 

axon projects to the anteroventral cochlear nucleus (AVCN), and the descending branch 

passes through the posteroventral cochlear nucleus (PVCN) and terminates in the dorsal 

cochlear nucleus (DCN). Similar to the position of bifurcation, the ascending and 

descending branches are also arranged tonotopically, with higher frequency fibers  

positioned more dorsally (Nayagam et al., 2011). A variety of postsynaptic targets of type 

I afferents have been identified in the magnocellular core of the cochlear nucleus which 

contains large neurons that project in turn to the higher centers of the auditory pathway 

(Brawer and Morest, 1975; Rouiller et al., 1986).  Collaterals from these axons form en 

passant swellings (which may or may not be synapses) and terminal branches which are 

characterized to be the sites of synapses (Fekete et al., 1984; Ryugo and Sento, 1991). 

These type I axon terminals were found to be restricted to the core of the cochlear 
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nucleus (Berglund and Brown, 1994; Brown et al., 1988a; Brown and Ledwith, 1990). In 

contrast, the ellipsoidal swellings present on type II afferents within the magnocellular 

regions do not seem to form synapses (Berglund et al., 1996; Ryugo and Sento, 1991). 

However, type II afferents extend their axon beyond the core regions of cochlear nucleus, 

with addition termination at a bordering region called the granule-cell lamina (Figure B5) 

(Benson and Brown, 2004; Berglund and Brown, 1994; Hurd et al., 1999). Postsynaptic 

targets of type II afferents were identified by serial-section electron microscopy with type 

II afferent terminals labeled by HRP. Most of the targets were small dendrites from the 

“small cells” at the edge of granule cell layer. Axosomatic synaptic contacts on large 

cells were also observed. These large cells were presumed to be multipolar or globular 

bushy cells, but their identity was not confirmed anatomically (Benson and Brown, 2004).  

Another study suggests that type II afferents contact local interneurons in the granule cell 

layer, including small stellate and mitt cells but perhaps not granule cells (Hurd et al., 

1999). In addition to the type II afferent innervation, the granule cell layer also receives a 

wide variety of auditory descending inputs and non-auditory projections, such as 

somatosensory input (Paloff and Usunoff, 1992; Shore and Zhou, 2006; Wright and 

Ryugo, 1996; Zhan and Ryugo, 2007) and collaterals from olivocochlear efferents that 

innervate OHCs (Benson and Brown, 1990; Brown et al., 1988b; Brown et al., 1991). 

Therefore, the granule cell layer is considered an integrative zone, where convergence of 

information from different sources including type II afferents might occur. The higher-

order targets of type II afferent following this “non-canonical” pathway remains to be 

determined. 
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Figure B5. Schematic drawing of central innervation patterns of type I and type II 

afferents. Modified from Brown et al., 1988. 

 

1.5 Labeling of type II afferents 

Besides their small population size and difficulty in recording type II afferents, 

the lack of specific genetic marker for type II afferents has also hindered progress to 

isolate the function of these neurons. Neurofilament proteins are present in both type I 

and type II afferents, proposed to have a role in maintaining the structural integrity and 

axon growth during development (Barclay et al., 2010; Barclay et al., 2011). These 

proteins have been examined for their potential as specific markers. An antibody (RT-97) 
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against the heavy (200 kDa) chain of neurofilament – NF-200 - seems to label type II 

neurons. Such labeling was found to be highly dependent on the phosphorylation state of 

the heavy neurofilament in type II neurons, and only the somata were labeled, without 

confirmation by dendritic projection pattern (Berglund and Ryugo, 1986; Berglund and 

Ryugo, 1991). Another study reported that a more general neurofilament antibody 

(polyclonal anti-NF200) could label both type I and type II afferents (McLean et al., 

2009). The same study showed that antibody against a sodium-potassium ATPase 

NKAα3 labels the type I afferents under the IHCs and medial olivocochlear efferents in 

the outer hair cell regions, but not type II afferents. So far the most recognized type II 

‘marker’ protein is the type III intermediate filament protein peripherin. However, 

peripherin is expressed in both type I and type II afferents in early development. During 

the embryonic days, peripherin expression was found throughout the spiral ganglion. 

After P3, peripherin immunoreactivity was reduced in most of the spiral ganglion 

neurons. In adulthood, only a small population (roughly 8% of total SGNs) of peripherin 

positive neurons was seen that correspond numerically to the type II afferents (Hafidi et 

al., 1993), and such labeling was also observed in their peripheral and central processes 

(Hafidi, 1998). Another study suggests that as early as P6, peripherin expression is 

restricted to type II afferents, whereas TMRD (tetramethylrhodamine-conjugated 

dextran) labels a separate population of neurons representing type I afferents (Huang et 

al., 2007a).  The innervation pattern of type II afferents has been examined in a 

peripherin knockout mouse line (Lariviere et al., 2002). In neonatal ages (P1 and P7), 

type II afferent innervation in the outer hair cell regions was found to be normal, as  

revealed by the immunofluorescence of β-tubulin in the cochlea of peripherin null mouse 
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(Barclay et al., 2010). In the adult cochlea though, type II afferents were found missing 

when the same mouse line was examined, reflected by the loss of NF200 positive fibers 

in the outer hair cell regions and the loss of type II afferents terminals by EM analysis of 

3 OHCs (Froud et al., 2015). Peripherin might therefore be a good candidate for type II 

specific labeling. However, a conditional peripherin-CreER mouse line is more desirable, 

in order to eliminate the possible developmental influence on type I afferents due to its 

transient expression on all SGNs in embryonic and early postnatal days. 

 

2. Synaptic transfer at OHC – type II afferent synapses 

Each type II afferent is postsynaptic to multiple OHCs. However, limited numbers 

of in vivo single unit recordings revealed that these fibers are mostly likely insensitive to 

sound. Among the 11 recorded type II neurons reported by three papers, only one of them 

responded to intense broad band sound and even it was not anatomically confirmed 

(Brown, 1994; Robertson, 1984; Robertson et al., 1999). A breakthrough on this question 

has been made by whole-cell patch clamp recording from spiral processes of type II 

afferents, showing that type II afferents are excitable and receive synaptic inputs from 

multiple outer hair cells (Weisz et al., 2009; Weisz et al., 2012). The synaptic transfer is 

rather weak (Weisz et al., 2012), consistent with the hypothesis that type II afferents may 

only respond to loudest or even traumatic levels of sound that activate large numbers of 

presynaptic OHCs. 

Hair cell synaptic transmission is mediated by the ribbon synapse. This highly 

specialized synaptic structure contains a pre-synaptic electron dense body – ribbon, a 
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halo of vesicles tethered to the ribbon and voltage-gated calcium channels clustered and 

forming patches under it. Ribbon synapses were found in mammalian cochlear and 

vestibular hair cells as well as retinal photoreceptors and bipolar cells, although there are 

differences in the size and the organization of vesicles. Similar to inner hair cells, outer 

hair cells also contain ribbons, but with a smaller number (2-5 ribbons per OHC versus 

20-30 ribbons per IHC). More ribbons were found in immature OHCs in young animals, 

and there appears to be a developmental change in the expression of synaptic proteins 

(Beurg et al., 2008; Fujikawa et al., 2014; Siegel and Brownell, 1981). Electron 

microscopy studies identified ribbons associated with type II afferents terminals in guinea 

pig and chinchilla OHCs (Siegel and Brownell, 1981; Smith and Sjostrand, 1961). 

Anatomical differences among ribbons were found when the OHC ribbons were 

compared with IHC ribbons by ultrastructural studies (Figure B6). OHC ribbons have a 

slightly higher height to width ratio so that they are taller and narrower. A big cloud of 

vesicles was observed in young IHCs that extended several micrometers away from the 

ribbon, but not in OHCs. Close to the synaptic site, IHC ribbons have 2-3 times more 

nearby, tethered, and docked vesicles than do OHC ribbons (Weisz et al., 2012). 

Expression of the Cav1.3 L-type calcium channels has also been demonstrated in OHCs, 

responsible for the release of vesicles. They are found to co-localize with immunolabel 

for C-terminal binding protein 2 (CtBP2) – Ribeye, a protein component of the ribbon 

(Hafidi and Dulon, 2004; Knirsch et al., 2007; Michna et al., 2003). Although the calcium 

current in OHCs is smaller, the calcium current per ribbon is similar for OHC and IHC 

synapses (Knirsch et al., 2007). Calcium currents have been related to capacitance 

measurement of OHCs, providing evidence for synaptic vesicle exocytosis from likely 
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two distinctive vesicle pools (a readily releasable pool and a slowly releasable pool) in 

immature OHCs (Beurg et al., 2008). 

 

Figure B6. Ultrastructural image of ribbon synapses of IHC and OHC, from apical turn 

cochlea of P9 rats.(Fuchs and Glowatzki, 2015) 

 

These minor distinctions in ribbon structure and channel-coupling seem 

insufficient to explain the major differences in release efficiency between OHCs and 

IHCs. In young rats, each action potential in IHCs causes the release of 40-50 vesicles at 

a single synaptic contact (Beutner et al., 2001; Glowatzki and Fuchs, 2002). In sharp 

contrast, each action potential in OHCs has only one fourth probability to trigger single 

vesicular release at OHC synapses. Maybe the better organization of the IHC ribbon 

structure could account for more their effective transmission (Wittig and Parsons, 2008). 

Another possible explanation might be the smaller aggregation of calcium channels under 

outer hair cell ribbons – the patches thought to include voltage-gated calcium channels 
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are four times smaller in OHCs than in IHCs (Saito, 1990). Immunohistochemistry 

studies also found a lack of the vesicular glutamate transporter VGlut3 in OHC. VGlut3 

is used in IHC vesicles and is required for IHC synaptic transmission (Seal et al., 2008). 

It is unknown whether other vesicular glutamate transporter isoforms underlie OHC 

synaptic transmission.  

Like the IHC-type I synapse, synaptic transmission at the OHC – type II afferents 

synapse is also likely to be mediated by AMPA(α-amino-3-hydroxy-5-methyl-4-

isoxazole propionic acid)-type glutamate receptors. Whole-cell patch clamp recordings 

made directly from type II afferent spiral dendrites revealed typical fast excitatory 

postsynaptic currents (EPSCs) when OHCs were depolarized by high potassium solution. 

These EPSCs can be reversibly blocked by the AMPA receptor antagonist NBQX (Figure 

B7) (Weisz et al., 2009). However, this physiological evidence was not supported by the 

previous immunohistochemistry studies that examined the postsynaptic glutamate 

receptors expressed in the cochlea. Many studies have demonstrated puncta of GluA2/3 

antibody staining at the type I afferent terminals, but failed to label the postsynaptic 

receptor in type II afferents (Flores-Otero and Davis, 2011; Khimich et al., 2005; 

Liberman et al., 2011; Matsubara et al., 1999; Thiers et al., 2008). A recent study using 

antibody against only the GluA2 subunit revealed puncta of GluA2 receptors juxtaposed 

to Ribeye – a protein component of the ribbon. However the staining was observed in P8 

but not adult rat cochlea  (Huang et al., 2012). This immunohistochemistry study on 

mouse cochlea proposed development changes in synaptic markers expression, showing a 

synaptic refinement process. Excess CtBP2 and GluA2/3 puncta were found in the outer 

hair cell regions in newborn mice, from P0 to around P3/P6. After that, great reduction of 
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these immunostaining puncta was seen until the onset of hearing (P12). Although the 

study claimed the presence of GluA2/3 in adult mouse outer hair cell region, the labeling 

was rather weak and was found not associated with the presynaptic marker CtBP2, 

therefore it is still unclear if AMPARs participate in the OHC-type II synapse. 

 

Figure B7. Synaptic transmission from OHC to type II afferents is likely mediated by 

AMPA receptors. A. Receptive field map of OHC inputs onto eight different type II 

afferents. Red: functionally connected OHCs. Blue: OHCs showed no synaptic inputs to 

recorded type II afferents. White: OHCs have not been tested. Black: OHCs removed for 

type II afferents recordings. (Weisz et al., 2012). B. EPSCs triggered by OHC 

depolarization can be blocked by the AMPAR antagonist NBQX. (Weisz et al., 2009) 

 

On the other hand, two subtypes of kainate receptors – GluK2 and GluK5 have 

been shown to be consistently expressed in the OHC region in both young and adult rat 
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cochlea (Fujikawa et al., 2014). GluK2 was found juxtaposed to CtBP2 (the marker for 

presynaptic ribbon), whereas GluK5 was found associated with every puncta of the PSD-

93 (a postsynaptic density protein) that extends in a string – named “C-shape” in this 

work (Figure B8). Both GluK2 and GluK5 antibody labeling were also found in the 

medial efferent terminals and in the center of the OHC base (Fujikawa et al., 2014). 

Kainate receptor is another class of ionotropic glutamate receptor, less understood than 

AMPA and NMDA (N-methyl-D-aspartate) receptors. Current understandings about their 

function include that they could mediate some synaptic current at certain synapses; they 

potentially modulate synaptic transmission; and they support maturation of neural 

circuitry via an unconventional metabotropic pathway (Lerma and Marques, 2013). In 

native neurons, kainate receptor-mediated EPSCs are prominently slower in kinetics than 

AMPA receptor-mediated EPSCs (Castillo et al., 1997; Frerking et al., 1998; Vignes et 

al., 1998), due to the action of the auxiliary subunit Neto (Straub et al., 2011). The 

AMPA receptor antagonist NBQX used in the physiological study may also serve as 

competitive antagonist for kainate receptors (Kew and Kemp, 2005), leaving open the 

possibility for kainate receptor-mediated EPSCs in type II cochlear afferents. To resolve 

this discrepancy, a more optimized characterization of synaptic proteins by 

immunostaining, as well as pharmacological studies with more specific kainate or AMPA 

receptor antagonists are needed.  
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Figure B8. Kainate receptors GluK2 and GluK5 expression in OHC region of adult rat 

cochleae. Arrows in D and G point to postsynaptic densities thought to be on type II 

terminals, whereas the more bulky GluK2 or GluK5 labeled terminal are likely belong to 

the medial efferents. (Fujikawa et al., 2014) 

 

Intracellular recordings from type II afferents revealed weak synaptic activation 

of type II afferents by OHCs. Excitatory postsynaptic potentials (EPSPs) recorded from 

type II afferents were small (3.8±2.0 mV) compared with the depolarization needed to 

reach action potential threshold (~25 mV) (Weisz et al., 2009). Functional connections 

between OHC and type II afferents were mapped by recording from type II afferents 

while puffing high potassium solution to activate each individual OHC (Weisz et al., 

2012). Mapping of presynaptic OHCs yields an estimation of at least ten OHCs providing 

synaptic inputs to type II afferents. Taking into account the low release probability of 

OHC (average ~ 0.25) also measured in this set of experiments, it suggests that type II 
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afferents may fire action potentials only when the entire pool of presynaptic OHCs are 

activated and the EPSPs are able to summate. Dual electrode recordings from type II 

afferents demonstrated a length contact longer than the extent of their spiral process, 

therefore summation of EPSPs over the long synaptic input regions is possible (Weisz et 

al., 2014). In addition to the weak synaptic inputs onto type II afferents, large responses 

to ATP were recorded in type II afferents. ATP-induced responses include a synaptic 

component through activation of OHCs by ATP (Nakagawa et al., 1990), and a more 

prominent, slow current that seems to be a direct effect of ATP on type II afferents 

(Weisz et al., 2009). Therefore, ATP seems to be a more potent way to activate type II 

afferents than the weak synaptic transmission from OHCs. The types of ATP receptors 

and their functional implication remained to be determined. 

 

3. Purinergic signaling and function in the cochlea 

3.1 General properties of purinergic receptors 

Purinergic receptors are one of the most abundant receptors in the living organism. 

They are widely expressed in neurons and non-neural tissues, mediating cell-to-cell 

communication through synaptic transmission (as neurotransmitter or co-transmitter) or 

paracrine mechanisms (Abbracchio et al., 2009; Burnstock, 2009; Burnstock, 2013). 

They further divided in two families according to their endogenous agonists. A P1 

receptor family activated by adenosine is subdivided into four classes (A1, A2A, A2B and 

A3) and are all G-protein coupled receptors. A P2 receptor family (primarily sensing 

adenine and uracil tri- and dinucleotides) includes two classes of receptors – P2X and 
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P2Y receptors with distinctive molecular properties and agonist selectivity. All of these 

receptor subtypes were identified in the cochlea (Housley et al., 2009). 

The ionotropic P2X receptors are non-selective cation channels that open in 

response to extracellular ATP. Upon ATP binding the pore allows passage of Na
+
 and K

+
 

(equal permeability), with significant permeability to Ca
2+

 (Egan and Khakh, 2004). They 

include seven subtypes (designated as P2X1 – P2X7, according to historical order of 

cloning) forming homomeric (P2X1-P2X5, and P2X7) or heteromeric (P2X1/2, P2X1/4, 

P2X1/5, P2X2/3, P2X2/6, P2X4/6 and P2X4/7) trimers (Guo et al., 2007; Nicke et al., 1998; 

North, 2002; Roberts et al., 2006). Hydropathy analysis and crystallography studies 

revealed that each subunit possesses two hydrophobic transmembrane spanning regions 

(TMRs), a large extracellular loop and intracellular NH2 and COOH termini (Figure B9) 

(Gonzales et al., 2009; Hattori and Gouaux, 2012; Kawate et al., 2009).  The subunit 

stoichiometry determines their differential ligand affinity and ligand-induced receptor 

desensitization kinetics. In general, most P2X receptors have an EC50 of 1-10µM ATP 

activation, except for the homomeric P2X7 which is less sensitive and activated at 100-

1000µM ATP concentrations (Junger, 2011). Once opened by ATP, P2X receptors could 

serve as a significant source of Ca
2+

 entry, being able to regulate neurotransmitter release 

(Sperlagh et al., 2007) and interact with many channels through Ca
2+

 signaling, including 

nicotinic acetylcholine receptors, GABAA receptors and NMDA receptors (Khakh et al., 

2000; Pankratov et al., 2009). 
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Figure B9. Stereoview of the homotrimeric P2X4 receptor structure. Modified from 

(Kawate et al., 2009). 

 

The other class of P2 receptors includes P2Y receptors that are seven-

transmembrane-spanning G-protein coupled receptors (GPCRs), forming homodimers or 

heterodimers (Figure B10). Among the eight P2Y receptors, P2Y1, P2Y2, P2Y4, P2Y6 

and P2Y11 use Gq/G11 to activate phospholipase C (PLC), and therefore robustly trigger 

inositol lipid signaling responses, including the production of diacylglycerol (DAG) and 

inositol triphosphate (IP3) which could trigger IP3-mediated mobilization of internal Ca
2+

 

stores and increased activity of protein kinase C. Activated Gαq may also promote Rho 

signaling through a guanine nucleotide exchange factor (p64 RhoGEF) (Lutz et al., 2005). 

The other subgroup of P2Y receptors, including P2Y12, P2Y13 and P2Y14, activate Gi 

and lead to Gαi-dependent inhibition of adenylyl cyclase and decreased levels of cyclic 

adenosine monophosphate (cAMP), regulating channels and protein kinases (Abbracchio 

et al., 2006). Because of their difference in amino acid sequence and molecular properties, 
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each P2Y receptor has a distinct pharmacological profile and is activated by different sets 

of adenine and uracil tri- and dinucleotides (Table B1) (von Kugelgen and Harden, 2011). 

UTP was found to activate P2Y2, P2Y4 and P2Y6 receptors. ATP could activate P2Y2, 

P2Y11, P2Y13 as well as rodent P2Y4 receptors. The EC50 for ATP activation is in the 

nano-molar range for P2Y2 and P2Y13 receptors, and is higher for rodent P2Y4 receptors 

(around 2 µM) and is highest for P2Y 11 receptors (around 17 µM) (Junger, 2011). 

  

Figure B10. P2Y receptor subtypes and second messenger – mediated signaling pathways. 

(von Kugelgen and Harden, 2011). 

 

Table B1. Compounds acting as gonists for P2Y receptor subtypes. Modified from (von 

Kugelgen and Harden, 2011). 
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ATP can be released from neurons and glia through multiple mechanisms. ATP 

was found to accumulate in secretory and synaptic vesicles, can be co-released with other 

neurotransmitters (e.g. GABA, glutamate and noradrenaline), and some evidence 

suggests the existence of ATP-only vesicles in the cortex and medial habenula (Pankratov 

et al., 2006; Pankratov et al., 2007). Despite the compelling evidence of vesicular release 

of ATP, it had been assumed that ATP could be released only from damaged or dying 

cells. But more evidence suggests that ATP can be released even from healthy cells under 

stress conditions, including mechanical stress, osmotic changes as well as hypoxia and 

stimulation of certain agents. Such mechanisms involve ATP exit through large-pore 

channels – connexin or pannexin hemichannels, plasmalemmal voltage-dependent anion 

channels and P2X7 receptors (Bodin and Burnstock, 2001; Lazarowski, 2012). It is not 

clear though whether other nucleotides (e.g. UTP, ADP and UDP) are released by similar 

mechanisms under physiological or pathological conditions. Once released, ATP 

undergoes rapid enzymatic degradation by ectonucleosidases (Yegutkin, 2008). In this 

way the lifetime of ATP is controlled and the action of ATP sensitive receptors is 

decreased. The products of enzymatic reaction could serve as ligands for additional 

purinergic receptors. For example, ATP can be degraded to ADP and AMP, through the 

action of E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolases) and E-NPPs 

(ecto-nucleotide pyrophosphatase/phosphodiesterases), and further to adenosine by ecto-

5’-nucleotidases. Indeed, enzymatic breakdown generates the most recognized source of 

adenosine acting on the P1 receptors, although some subpopulations of neurons or 

astrocytes may directly release adenosine (Wall and Dale, 2007). 
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3.2 Purinergic receptor expression and function in the cochlea 

Purinergic components are widely expressed in the neural and non-neural 

structures in the young and adult cochlea. P2X receptor mediated currents have been 

recorded from isolated inner and outer hair cells of the adult guinea pig (Housley et al., 

1999; Sugasawa et al., 1996). P2X2 receptors are expressed in hair cells and its 

expression pattern has been both anatomically and functionally localized to the apical 

surface and stereocilia (Housley et al., 1992; Housley et al., 1999; Housley et al., 1998; 

Jarlebark et al., 2000; Mockett et al., 1994; Yan et al., 2013). P2X receptor-mediated 

currents were recorded in isolated OHCs (Glowatzki et al., 1997). The current only 

appeared upon puffing ATP onto the apical surface but not upon local application of ATP 

to the basolateral sides of OHCs (Housley et al., 1992). This is further supported by 

calcium imaging studies. Focal application of ATP triggers Ca
2+

 entry first from the 

apical surface of the OHCs, and then a second surge of Ca
2+ 

signal was observed at the 

base which is proposed to be mediated by IP3 receptors on a specialized ER structure 

(known as Hensen’s body) in the hair cell (Mammano et al., 1999b). The role for these 

ATP-induced currents in OHCs is not clear. It has been reported that direct application 

ATP affected the electromotility of OHCs and reduced the gain of the cochlear amplifier 

(Zhao et al., 2005). However, another study found that ATP responses did not interfere 

with the electromotility of OHCs (Mammano et al., 1999b). Another proposal is that the 

nonselective conductance of P2X receptors may shunt K
+
 out of the endolymphatic 

compartment, being a protective mechanism against acoustic stress (see discussion in part 

3.3 of this Introduction). P2X7 receptors are expressed transiently in hair cells before 

postnatal day 6 but their function is unknown (Nikolic et al., 2003). Expression of P2Y1, 
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P2Y2 and P2Y4 receptors was found in the outer hair cells of guinea pig by 

immunolabeling (Mammano et al., 1999a; Szucs et al., 2004). However, these findings 

are confounded by the lack of UTP induced current in guinea pig outer hair cells 

(Housley et al., 1999). 

In spiral ganglion neurons, immunohistochemistry and in situ RT-PCR 

experiments have identified a variety of P2 receptors, including P2X3 receptors in early 

postnatal days and P2X2 and P2X7 as sustained expression throughout life (Huang et al., 

2005; Huang et al., 2007b; Nikolic et al., 2003; Salih et al., 1998). It has been proposed 

that the transient expression of P2X2/P2X3 receptors regulates neurite outgrowth during 

development. In early postnatal days, type I and type II afferents form excess innervation 

on both inner and outer hair cells followed by pruning and refinement of the mis-matched 

fibers to reach specific synaptic innervation patterns. The expression of P2X2/P2X3 

receptors was detected by quantitative singe cell RT-PCR. Activation of these receptors 

was proposed to inhibit neurite extension elicited by the neurotrophin BDNF and to 

contribute to the withdrawal phase of pruning (Greenwood et al., 2007). P2X2 has been 

localized to the postsynaptic specialization of the afferents under inner and outer hair 

cells by immunogold labeling (Housley et al., 1999), and was found to be expressed in 

the somata of spiral ganglion neurons (Salih et al., 1998). P2X7 receptor expression has 

been detected in the embryonic (E14–E18 days) and postnatal (P0–adult) rat cochlea 

using immunohistochemistry. Immunolabeling for P2X7 was detected in the spiral 

ganglion, efferent and afferent bundle that cross the tunnel of Corti, and synaptic regions 

beneath inner and outer hair cells (Nikolic et al., 2003). The metabotropic P2Y receptors 

have also been found to express in the spiral ganglion by immunolabeling, although type 
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I and type II neurons were not distinguished (Huang et al., 2010). Despite the findings of 

various P2 receptor expression in SGNs of which 95% are type I neurons, their response 

to ATP is rather small, according to direct recording from type I afferent boutons in an ex 

vivo preparation of young rat cochlea (Tritsch et al., 2007). A contradictory result comes 

from recordings on the soma of isolated SGN in neonatal rats (Ito and Dulon, 2002). The 

response of SGNs to 100µM ATP is big but variable (760 ± 530 pA, Vhold = -50 mV, n 

= 135) and ~77% of the cells displayed two components – a faster P2X-like conductance 

with a response latency of less than 50 ms, and a slower response (occurred over 1 s) that 

was attributed to P2Y receptors and with a reversal potential at 0 mV. Such discrepancy 

could have arisen from the differential distribution of receptors in dendrites versus 

somata, or the effect of mechanical and enzymatic treatment on the receptors during the 

cell isolation process. 

On the other hand, it is clear that type II afferents respond to ATP robustly at least 

in early postnatal days. Direct recording from type II afferents’ dendrites revealed large 

depolarizations induced by ATP, and action potentials were elicited in extracellular 

recordings during ATP application. These action potentials could be blocked by 

pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), a P2X receptor 

antagonist that also partially blocks P2Y4 and P2Y6 receptors. After the onset of hearing, 

ATP responses of type II afferents persist but apparently become smaller (Weisz et al., 

2009). It is unknown whether both P2X and P2Y receptors mediate such responses and 

what might be the functional significance of P2 receptor mediated signaling in type II 

afferents. Only one study localized the P2X2 immunogold labeling at type II afferent 

terminals (Housley et al., 1999), providing a candidate receptor mediating the PPADS 
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sensitive response. P2Y2 receptors are expressed in a small subset of SGNs, labeling 

around 5% -10% of the total population and so consistent with type II afferents, but this 

study did not provide further evidence for the identity of these SGNs (Huang et al., 2010). 

Purinergic signaling is important for the development of synaptic connections in 

the auditory system. Before the onset of hearing, a transient pseudo-stratified epithelium, 

known as Kölliker’s organ is formed medial to the inner hair cells. The inner supporting 

cells of the Kölliker’s organ spontaneously release ATP and play a crucial role in 

generating periodic, high-frequency bursts of activity in the developing auditory pathway 

(Tritsch et al., 2010; Tritsch et al., 2007). This phenomenon involves ATP-induced ATP 

release, which activates the autoreceptor (P2Y receptor) on the inner supporting cells, 

thus triggering an increase in intracellular Ca
2+

. This in turn activates TMEM16A 

(transmembrane protein 16A), a Ca
2+

-activated Cl
−
 channel, which not only expels Cl

−
, 

but also triggers efflux of K
+
 (as counter ions) and water (Figure B11) (Wang et al., 

2015). The rise in extracellular K
+
 depolarizes IHCs to trigger glutamate release, 

generating repetitive firing of type I afferents. ATP is indispensable for this process, 

because such effects can be blocked by the application of apyrase, an enzyme that 

hydrolyzes ATP (Tritsch et al., 2007). The repetitive firing of type I afferents stopped 

around the onset of hearing (~ postnatal day 12) and at time when the Kölliker’s organ is 

degenerated. This neural activity in early development mediated by ATP is considered to 

promote targeting and refinement of neuronal projections and maturation of the auditory 

system.  
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Figure B11. Mechanism underlies spontaneous activity in developing cochlea before 

hearing onset. (Wang et al., 2015) 

 

3.3 Purinergic signaling involved in acoustic damage 

Acoustic overexposure damages structures and cells in the middle and inner ear 

and can cause permanent hearing deficits. At very high sound pressure levels (e.g. blasts), 

the eardrum and the cochlea can be ruptured immediately, leading to permanent deafness 

(Hamernik et al., 1984; Kerr and Byrne, 1975). At lesser sound pressure levels (usually 

below 140 decibels), such as a loud concert, noise progressively damages sensory 

neurons in the inner ear, resulting in the death of outer hair cells (Figure B12), as well as 

swelling and retraction of type I afferent terminals which carry sound information to the 

brain (Kujawa and Liberman, 2009; Liberman and Kiang, 1978; Wong and Ryan, 2015). 

The effect of noise exposure can be long-lasting, with degeneration of SGNs over months 
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after noise exposure (Kujawa and Liberman, 2009). Unlike non-mammalian vertebrates, 

the sensory neurons in mammalian cochlea do not regenerate. The resulting loss of 

sensory components and the hearing deficits are thus irreversible. The acoustic stapedius 

reflex in the middle ear (Brask, 1979) and efferent inhibition of hair cells (Guinan, 2006) 

can attenuate acoustic damage to some extent. However, a more effective way is to warn 

the animal of the damaging level of sound and trigger avoidance behavior by means of 

nociception. 

 

Figure B12. Noise exposure damages OHCs. A. control. B. OHC swells after 24 hours 

exposure to noise band at 116 dB (arrow). C. Selective loss of outer hair cells after over 

one week exposure to 116 dB noise. (Wang et al., 2002) 

 

Interestingly, the concentration of ATP is increased in the cochlea during stress 

conditions in vitro and acoustic damage in vivo, serving as a potential nociceptive signal 

as in the somatosensory system. ATP is kept at low concentrations (10 - 20 nM) in the 

endolymph and perilymph (Munoz et al., 1995), likely due to the basal activity of various 

types of ectonucleotidases in the cochlea (Vlajkovic et al., 1996). After noise exposure 

(15 min, 10 kHz, 110 dB SPL. broad band), ATP concentration in the cochlear fluid is 

increased 2-3 fold, measured by the luciferase – luciferin assay (Munoz et al., 2001). 

ATP release also can be induced in physiological conditions, such as hypotonic stress 

(275 mOsm external solutions) and mechanical stimulation (puffing micro glass beads), 
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tested by a whole-mount in vitro preparation of adult guinea pig cochlea (Zhao et al., 

2005).   

 

Figure B13. Cochlear structures that are prone to damage and death over acoustic 

overstimulation. Shown in red. (Wong and Ryan, 2015) 

 

The source of ATP release includes multiple structures that are prone to acoustic 

damage, including the stria vascularis and the organ of Corti (Figure B13). Vesicular 

storage of ATP was found in the marginal cells of stria vascularis (Munoz et al., 2001; 

White et al., 1995), serving as a possible source of ATP after acoustic damage. ATP 

release from the organ of Corti is mediated by the connexin hemichannels in outer 

supporting cells, including Deiters’ and Hensen’s cells of the outer hair cell region. 

Mechanical or focal damage of a single outer hair cell is enough to trigger a Ca
2+

 rise in 

the surrounding supporting cells, causing ATP release through connexin hemichannels. 

ATP could further act on purinergic receptors of the adjacent cells, activating the inositol 

lipid signaling and mobilizing internal Ca
2+

 stores (Piazza et al., 2007). With such 
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positive feedback, this process triggers a regenerative Ca
2+

 wave that spreads hundreds of 

microns along the cochlear spiral, releasing a great amount of ATP over tens of seconds 

upon each outer hair cell ablation (Figure B14). This process is highly dependent on ATP 

release through the connexin hemichannels, because the propagation of Ca
2+

 waves can 

be blocked by apyrase that hydrolyzes ATP (Gale et al., 2004) and by connexin 

hemichannel blockers (Anselmi et al., 2008). Lanthanum, a blocker for cell surface-

expressed connexin hemichannels that does not affect gap junction between cells, was 

enough to limit the propagation of the calcium wave, suggesting that such process is 

dependent on extracellular release of ATP acting on the neighboring cells (Anselmi et al., 

2008). This mechanism is highly sensitive to ATP.  Application of nano-molar 

concentrations of ATP is enough to trigger the regenerative Ca
2+

 waves (Gale et al., 

2004). In addition, a faster ATP-dependent Ca
2+

 wave in outer hair cell rows has been 

observed to be triggered by hair cell damage and might be mediated by P2X4 receptors 

(Lahne and Gale, 2010). The oscillatory Ca
2+

 wave in the outer supporting cell region 

reflects a characteristic damage signal in the cochlea, which could further contribute to 

the activation of extracellularly regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal 

kinase (JNK) (Gale et al., 2004; Lahne and Gale, 2008), leading to protective effects such 

as hair-cell engulfment and scarring of the reticular lamina. 
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Figure B14. A regenerative calcium wave triggered by ablation of a single hair cell. The 

calcium wave in control (A) can be blocked by apyrase, an enzyme that hydrolyzes ATP 

(B). (C) Calcium signal spreading from the site of damage can travel over a hundred 

microns. Grey: control; purple: in apyrase; gold: wash. (D) Comparison between 

measured wave speed (grey closed circle) and a diffusion model with varying coefficients 

(red) suggest an active mechanism for wave propagation. (Gale et al., 2004) 

 

Purinergic signaling has also been proposed as a protective mechanism against 

acoustic trauma by shunting K
+
 in the endolymph to reduce the endolymphatic potential. 

In the intact cochlea, the apical surface of outer hair cells is bathed in endolymph and the 

basolateral surface bathed in perilymph. In addition to this unique ionic composition, an 

endolymphatic potential (EP) of ~80 mV contributes significantly to the driving force and 

is essential for mechanotransduction in hair cells (Wangemann, 2006). The integrity of 

the endolymphatic compartment is ensured by the tight junctions of cells lining the scala 

media. It has been found that P2X2 receptors are expressed on the cell surfaces facing the 

endolymphatic compartment (Figure B15), including Reissner’s membrane, inner and 

outer sulcus cells and hair cells (Housley et al., 1999; Housley and Ryan, 1997; Jarlebark 

et al., 2000). It has been proposed that ATP released under stress conditions (e.g. acoustic 
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overstimulation) could activate P2X2 receptors. These non-selective cation channels 

surrounding the endolymphatic component allow ion flow and could shunt K
+
 out of 

endolymph, resulting in a measurable reduction of the EP. This mechanism is considered 

as neuroprotective because it reduces the responsiveness of hair cells through decreasing 

EP under stress conditions in the cochlea. This hypothesis was further tested in P2X2-null 

mice. Under noise exposure, lack of P2X2 receptors leads to enhanced activity of outer 

hair cells and in the inner hair cell – type I afferent pathway, measured by distortion 

product otoacoustic emission (DPOAE) and auditory brainstem response (ABR), and the 

P2X2-null mice were more vulnerable to noise-induced permanent hearing loss (Housley 

et al., 2013; Yan et al., 2013). A P2X2 mutation was shown to be associated with a 

dominantly inherited, progressive sensorineural hearing loss DFNA41 in human (Yan et 

al., 2013). Noise exposure might also dynamically regulate the expression of purinergic 

components in the cochlea, causing up-regulation of P2 receptors (Wang et al., 2003) and 

ectonucleotidases that hydrolyze ATP (Vlajkovic et al., 2004; Vlajkovic et al., 2006). 

 

Figure B15. P2X2 receptors are expressed in the cells lining the endolymphatic 

compartment in the mouse cochlea. P2X2 are expressed in the Reissner’s membrane 



36 

 

epithelial cells (RM), spiral limbus (sl), and organ of Corti (o/C), including IHCs and 

OHCs. sm, scala media; stv, stria vascularis; sv, scala vestibuli. (Housley et al., 2013) 

 

4. Hypersensitivity in pain and auditory pathologies 

4.1 Purinergic signaling and pain 

The hypothesis that ATP serves a nociceptive signal in the ear invites comparison 

with the canonical pain mechanism in the somatosensory system. ATP has been 

identified as an algogenic reagent through early studies demonstrating that injection of 

ATP into human skin blisters induces the sensation of pain (Bleehen and Keele, 1977; 

Collier et al., 1966). Animal models with sub- or intra-plantar injection of ATP could 

also induce nocifensive behavior, such as hindpaw lifting and licking (Bland-Ward and 

Humphrey, 1997; Hamilton et al., 1999). Homomeric P2X3 receptors and heteromeric 

P2X2/3 receptors were localized predominantly to the non-peptidergic small nociceptive 

sensory neurons in dorsal root ganglion (DRG). At L4/5 P2X3 positive neurons were 

found to constitute ~35% of the DRG neurons (Bradbury et al., 1998; Chen et al., 1995; 

Lewis et al., 1995). These pseudomonopolar neurons give off unmyelinated C-fibers, 

with central projections terminating at the inner lamina II of the dorsal horn and 

peripheral terminals targeting skin, oral cavity and visceral organs (Burnstock, 2009; 

Burnstock, 2013).  P2X receptor-expressing small diameter DRG neurons were found to 

largely overlap with the subpopulation that is labeled by the isolectin IB4 (Bradbury et al., 

1998). ATP responses have been extensively characterized using whole cell gigaohm 

recordings of dissociated DRG neurons. Most of the DRG neurons respond to ATP with a 

transient current, whereas other subpopulations of DRG neurons developed persistent or 
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biphasic responses to ATP. This discrepancy has been attributed to the different subtypes 

of P2X receptors expressed – P2X3 receptors mediated the fast desensitizing transient 

responses; P2X2 receptors mediating the slowly desensitizing responses; coexpression of 

P2X2/3 receptors demonstrating both features and the responses becoming biphasic 

(Burgard et al., 1999; Rae et al., 1998). This has been further confirmed in knockout mice 

that P2X3
-/-

 DRG has more sustained responses and P2X2
-/-

 has more transient responses 

(Cockayne et al., 2005; Zhong et al., 2001). Double mutants for both receptors eliminate 

DRG neurons’ responses to ATP and the animal had reduced pain-related behavior 

(Cockayne et al., 2005). As previously discussed, ATP can be released from many kinds 

of non-neuronal tissues during hypoxia or tissue stress, as well as from dying or damaged 

cells. In an in vitro preparation, it has been shown that nociceptive neurons could be 

activated when a nearby skin cell was damaged. The response was ATP and P2X receptor 

dependent and could trigger action potentials in these nociceptors (Cook and McCleskey, 

2002). ATP is thought to be involved in acute pain. It has also been shown that during 

inflammation or in the presence of other algogenic compounds, ATP may contribute to 

increased sensitivity to mildly painful stimuli (hyperalgesia) or to painful sensations to 

previously innocuous stimuli (allodynia). In carrageenan – inflamed skin, there was an 

increased number of ATP responsive neurons in the DRG, and the C-fibers’ responses 

were enhanced (Hamilton et al., 2001). Locally injected ATP could sensitize the 

mechanosensitive fibers, leading to elevated nociceptive responses to pressure or touch 

(Zhang et al., 2001). 

The role of P2Y receptors in pain was less studied compared to P2X receptors. In 

DRG neurons, mRNA of various P2Y receptors has been detected, including P2Y1, 
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P2Y2, P2Y4 and P2Y6 (Kobayashi et al., 2006). Among them, P2Y2 receptors have been 

proposed as the major form of DRG expressing P2Y receptor (Malin et al., 2008), and 

P2Y receptors have been found to localize with P2X3 receptors as well as the capsaicin-

sensitive transient receptor potential vanilloid 1(TRPV1) channels (Gerevich and Illes, 

2004; Ruan and Burnstock, 2003). Signaling through P2Y receptors in DRG neurons has 

been shown to cause release of Ca
2+

 from intracellular stores (Sanada et al., 2002), affect 

thermal nociception (Malin et al., 2008), and seems to potentiate pain induced 

mechanically or chemically via TRPV1 channels (Moriyama et al., 2003).  

 

4.2 KCNQ channels and neuronal excitability regulation 

As mentioned above, chronic pain could involve a decreased threshold to painful 

stimuli - hyperalgesia. Allodynia refers to the pain that occurs in response to normally 

innocuous stimuli. Chronic pain is usually associated with enhanced or abnormal 

excitability of neurons, for example the nociceptors or central neurons demonstrating 

enhanced responsiveness or lowered threshold for stimulation and synaptic inputs 

(Sandkuhler, 2009). Potassium channels play an important role in regulating neuronal 

excitability. All of the four major groups of potassium channels (i.e. voltage-gated, two-

pore, calcium-activated and inward rectifying potassium channels) have been examined 

in DRG neurons in pathologies related to pain. Opening of potassium channels was 

proposed to reduce excitability of the sensory neurons. This mechanism could counteract 

action potential generation at the peripheral terminals, decrease overall conduction 



39 

 

fidelity along the fibers and affect synaptic transmission onto the central neurons 

(Tsantoulas and McMahon, 2014).  

Among the potassium channels, some are known to be regulated by G-protein 

coupled second messenger pathways, so could be modulated by nucleotides (e.g. ATP).  

P2Y receptor regulated potassium channels include GIRK (G protein-coupled inward 

rectifiers K
+ 

channels) and KCNQ (potassium voltage-gated channel subfamily Q) 

channels. GIRK channels can be activated by Gi/o-coupled metabotropic receptors. 

Activation of Gq/11 pathway may also modulate GIRK channels, leading to decreased 

activity through activation of protein kinase C or depletion of PIP2 (phosphatidylinositol 

4,5-bisphosphate) (Luscher and Slesinger, 2010). A role for GIRK channels in 

hyperalgesia has been suggested in both peripheral and central neurons. Phosphorylation 

of GIRKs decreases channels activity and is thought to promote sensitization at dorsal 

horn of the spinal cord following neuropathy or inflammation (Ippolito et al., 2005). 

GIRKs are also found to be associated with the analgesic effect of opioids and 

endocannabinoids (Nockemann et al., 2013; Ocana et al., 2004). 

On the other hand, current findings suggest that KCNQ channel modulation by G 

protein-coupled pathways is solely by inhibition. KCNQ channels belong to the Kv7 

family voltage-gated potassium channels. They are also called ‘M-channels’ due to the 

first identification of these channels through muscarinic suppression (Brown and Adams, 

1980). The ‘M-currents’ recorded in bullfrog sympathetic neurons were found to be 

inhibited by the application of ATP and UTP in the early days (Adams et al., 1982; 

Akasu et al., 1983). Later studies suggest that the mechanism of KCNQ channel 
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inhibition is due to the reduction of PIP2 as a result of Gq/11 activation. It has been shown 

that PIP2 is crucial for keeping the KCNQ channels open (Robbins et al., 2006; Suh and 

Hille, 2002; Suh et al., 2006; Zhang et al., 2003) by binding to the C-terminus of the 

channels (Hernandez et al., 2008). Activation of metabotropic receptors that link to Gq/11 

(for example muscarinic acetylcholine receptors, P2Y receptors, histamine H1, mGluR1 

and mGluR5 glutamate receptors) leads to activation of phospholipase C that rapidly 

hydrolyzes PIP2, causing a great reduction (up to 90%) of membrane PIP2 within a few 

seconds (Suh et al., 2004; Winks et al., 2005). As a consequence, KCNQ channels are 

closed upon receptor activation (Brown and Passmore, 2009). 

 

Figure B16. Physiological properties of KCNQ channels. A. KCNQ channels are slow 

activating and do not inactivate. Right: the increase in whole-cell conductance as a 

function of voltage changes. B. KCNQ currents ‘clamps’ the membrane potential. 

(Delmas and Brown, 2005) 

 



41 

 

The voltage-gated KCNQ channels have some unique properties. They are 

activated slowly by depolarization (usually tens of milliseconds) and therefore do not 

contribute to individual action potentials (for example the repolarization phase) which 

occurs on a much faster time scale. KCNQ channels start to activate around the normal 

resting membrane potential (~ -60mV) but do not inactivate, generating a steady outward 

current at depolarizing voltages (Figure B16 A). Therefore KCNQ channels are important 

for neuronal excitability and could serve as a ‘brake’ on repetitive firing (Figure B16 B) 

(Brown and Passmore, 2009; Delmas and Brown, 2005). At more depolarized voltages 

when many KCNQ channels are opened, the effect of further depolarization could be 

counteracted by the shunting effect of opened KCNQ channels. For example the same 

current injection step at -46 mV (~30% opened KCNQ channels) induced a much smaller 

depolarization than at -90 mV (all closed). In this way KCNQ channels have a profound 

dampening effect on repetitive firing and when cells are depolarized (Brown, 1988). 

Consequently, activation of GPCRs or pharmacological manipulations that close these 

channels would lead to elevated neuronal excitability and in some cases an altered tonic 

firing pattern. In rat sympathetic neurons, retigabine (a KCNQ channel opener) enhanced 

the M current that hyperpolarized the neuron and stopped firing. XE991 (a KCNQ 

channel blocker) reduced the M current and made the neuron more excitable, changing 

from a phasic to tonic firing pattern (Figure B17) (Brown and Passmore, 2009). Among 

DRG neurons, KCNQ channels were found co-expressed with TRPV1 channels in small 

neurons (Passmore et al., 2003). Opening of KCNQ channels by retigabine was found to 

decrease the activity of Aδ and C fibers, and could exert analgesic effects on 
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somatosensory pain (Blackburn-Munro and Jensen, 2003; Dost et al., 2004; Lang et al., 

2008; Passmore et al., 2003; Rivera-Arconada and Lopez-Garcia, 2006) 

 

Figure B17. Enhancing or blocking KCNQ channels affect excitability of dissociated rat 

sympathetic neurons. Retigabine: KCNQ opener. XE991: KCNQ blocker. (Brown and 

Passmore, 2009) 

 

KCNQ channel dysfunction has been linked to human diseases. Among the five 

subtypes, KCNQ4 mutation leads to DFNA2 (autosomal dominant deafness locus 2), a 

nonsyndromic, dominant progressive hearing loss (Kharkovets et al., 2000; Kubisch et al., 

1999). KCNQ4 channels are expressed in OHCs and IHCs (Kubisch et al., 1999; 

Mammano and Ashmore, 1996; Marcotti and Kros, 1999), and were found to be 

important for IHC resting membrane potential and intracellular calcium levels (Oliver et 

al., 2003). Immunolabeling for KCNQ2 and KCNQ3 showed expression in spiral 

ganglion neurons (Jin et al., 2009). Expression of KCNQ4 was also detected in spiral 

ganglion neurons, and like their expression in the IHCs, there was a basal-to-apical 
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gradient such that expression was highest at the base of the cochlea (Beisel et al., 2000). 

Recordings from isolated SGNs revealed a corresponding gradient. A larger KCNQ 

channel current was recorded in basal SGNs.  Inhibition of these channels is thought to 

promote cell death through elevated intracellular calcium concentration (Lv et al., 2010).  

These studies on SGNs mostly represent the major population – type I neurons.  No 

report has determined if type II neurons express KCNQ channels or demonstrate KCNQ 

channel mediated currents. 

 

4.3 Hypersensitivity in tinnitus and hyperacusis 

Tinnitus – the phantom perception of sound, refers to conditions involve ringing 

or buzzing sensation in the ear in the absence of acoustic stimuli. It often co-occurs with 

hyperacusis, a hypersensitivity to moderate acoustic levels, which in severe cases can be 

debilitating due to the reduced tolerance and even painful perception in response to 

normal levels of sound (Andersson et al., 2002; Auerbach et al., 2014). Tinnitus is highly 

prevalent. One third of people have experienced tinnitus and 10 – 15% of general 

population had prolonged symptoms for which they seek medical attention (Heller, 2003). 

Although hyperacusis is less reported than tinnitus, it has been estimated that hyperacusis 

occurs in ~80% of tinnitus patents (Dauman and Bouscau-Faure, 2005). Despite the large 

population being affected, understanding of the pathophysiology of tinnitus and 

hyperacusis is very limited, and currently there is no effective treatment for these diseases. 

The induction of the two ‘hypersensitive’ conditions has been highly correlated 

with noise exposure. Damage to the cochlea is a known high risk factor for tinnitus and 
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hyperacusis, and patients often report a prior history of noise trauma (Anari et al., 1999; 

Auerbach et al., 2014; Ince et al., 1987; Kreuzer et al., 2012). However, noise damages 

the auditory periphery, reduces the cochlear output from the auditory nerves (mostly type 

I afferents) and leads to elevated hearing thresholds (Wang et al., 2002). After noise 

exposure, fusion of the stereocilia of hair cells or the damage to OHCs affects sound 

transduction as well as tuning and amplification of the signal, so that higher stimulation 

intensity is needed to drive the responses (Liberman, 1978; Liberman and Kiang, 1978). 

Some patients who have ‘normal’ clinical audiograms may also develop tinnitus and 

hyperacusis (Brandy and Lynn, 1995). Such phenomenon might be related to the 

damaged IHC-type I afferent synapses and loss of type I SGNs due to relatively mild 

noise stress (Kujawa and Liberman, 2009), and this noise-induced cochlear neuropathy 

has been linked to hyperacusis in animal models (Hickox and Liberman, 2014).  

The decreased activity of cochlear outputs after noise makes it hard to explain the 

hypersensitivity to sound in tinnitus and hyperacusis. So, instead of peripheral 

sensitization, several studies proposed a ‘central gain enhancement’ mechanism using 

animal models and human subjects.  At multiple levels of the central auditory pathway, 

including the cochlear nucleus, inferior colliculus and the auditory cortex, enhanced 

spontaneous and sound-evoked responses were recorded after the induction of tinnitus, 

which is in sharp contrast to the reduced activity of auditory nerves (Auerbach et al., 

2014; Eggermont, 2013). However, the activity of the two classes of auditory nerves – 

type I and type II afferents has never been examined separately and it is unknown how 

type II afferents respond to the noise paradigm that induces pathological conditions. 

What has been known for long time is that type II afferents are resistant to noise or 
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ototoxic damage to the cochlea. Unlike type I afferents that could retract from the site of 

damage, type II afferents remain in the cochlea even after the loss of OHCs (Ryan et al., 

1980; Spoendlin, 1971b). Whether type II afferents could be involved in pathological 

conditions would be an interesting question to pursue. 

 

5. Main objectives of this thesis 

As summarized above, the function of the unmyelinated type II afferents in the 

cochlea remained enigmatic for decades. Here, we provide evidence that type II cochlear 

afferents can report cochlear trauma, a potential trigger for nocifensive behavior. 

Hyperactivity of type II neurons could contribute as well to the paradoxical 

hypersensitivity to loud sound that can accompany hearing loss – hyperacusis, despite 

diminished type I afferent function. In the most severe cases, hyperacusis is described as 

debilitating “ear pain”. The response to trauma by type II afferents may relate most 

directly to such noxious hearing—“noxacusis,” to coin a term. In support of this 

hypothesis, sparse (~5% of all spiral ganglion neurons) unmyelinated type II afferents 

can survive cochlear damage, are insensitive to sound, but are activated by the algogenic 

ligand adenosine triphosphate (ATP). In contrast to the predominant type I afferents that 

contact IHCs to encode the information content of sound, type II afferents innervate 

OHCs, which are more sensitive to acoustic trauma. Here, we show that type II afferents 

are excited by ATP released from supporting cells around damaged OHCs, revealing 

cellular mechanisms and potential molecular pathways for inner ear pain. 
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In Chapter 1, we describe the general morphology, as well as the features of the 

synaptic region of type II afferents revealed by biocytin fills of these fibers during 

electrophysiological recordings. 

In Chapter 2, we examine the possible postsynaptic receptors at type II afferents. 

Using more specific pharmacological reagents as well as immunohistochemistry 

experiments, we were able to identify the GluA2-containing AMPA-type glutamate 

receptors on type II afferents, which had been controversial previously due to the 

nonspecific pharmacology used and failure in staining for any glutamate receptors in the 

OHC region. 

In Chapter 3, we showed that in contrast to the weak synaptic inputs, ATP 

potently activated type II afferents. The responses were mediated by two classes of 

purinergic receptors, ionotropic P2X receptors and metabotropic P2Y receptors. The P2X 

receptors are nonselective cation channels that depolarize type II afferents in the presence 

of their agonist ATP. The P2Y receptors are G-protein coupled receptors and signal 

through second messenger-mediated pathways. We found that KCNQ channels are closed 

in response to P2Y receptor activation. 

In Chapter 4, we demonstrated that type II afferents responded robustly to OHC 

damage. The mechanism involves ATP released from supporting cells triggered by 

damage, serving as the major source of ATP activating type II afferents in this process. 

Activation of the P2Y-KCNQ pathway might also lead to increase excitability of type II 

afferents, which may suggest heightened responses of type II afferents when acoustic 
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damage occurs and might explain the hypersensitivity associated with pathological 

conditions. 
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Methods 

Electrophysiological recordings from type II cochlear afferents 

The cochlea was dissected from Sprague Dawley rat pups (Postnatal day P7-P10) 

according to a protocol approved by the Johns Hopkins Institutional Animal Care and 

Use Committee. Each animal was put into deep anesthesia by inhalation of isoflurane 

(Vedco, Inc.), ensured by a foot pinch test. Then the animal was decapitated and the 

temporal bone was removed. The apical turn of the cochlea was dissected for ex vivo 

recording according to published procedures (Glowatzki and Fuchs, 2002). After 

removing bone and surrounding tissues, the apical turn of the cochlea was exposed and 

severed at the modiolus. The stria vascularis and tectorial membrane were removed. The 

dissected cochlear turn was flattened and secured with an inset pin glued to a coverslip 

for electrophysiological recordings. 

Electrophysiological recordings were done under a microscope (Carl Zeiss 

Examiner D1) using differential interference contrast (DIC) optics.  A cleaning pipette 

was made by breaking a regular patch pipette at the bottom of the recording chamber. 

The size of the tip was determined by the pressure against the chamber controlled by a 

micro-manipulator (Sutter Instruments) along z-axis and breaking of the pipette was 

visualized with a monitor. 4-to-6 OHCs in row 2 and 3 were removed by the cleaning 

pipette to expose the dendrites of type II cochlear afferents (Weisz et al., 2009). Very 

often the Deiters’ cells below the removed OHCs died within a few minutes due to the 

damage to their phalangeal processes that insert between OHC rows. The debris of these 
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supporting cells was also removed using the same cleaning pipette by gentle inhalation or 

exhalation. After removal of OHCs and Deiters’ cells, two layers of type II afferents 

could be identified, traveling parallel to the cochlear spiral. The first layer sits right under 

OHCs, and a second layer is situated deeper at the Deiters’ cell level and organized in 

wider bundles. Most of the recordings (tight-seal intracellular recordings or loose-patch 

extracellular recordings) were performed at the first layer around the terminal region of 

the fiber, where type II afferents rise to the base of outer hair cells and form synapses. 

Recording pipettes (resistances of 6-9 MΩ) were pulled from 1mm borosilicate glass 

(WPI Instruments). The series resistances of the recordings were less than 35MΩ 

(membrane test of the pCLAMP 10.3 software - Molecular Devices) and were not 

corrected. In loose patch recordings, the final seal resistance reaches around 3-4 times the 

pipette resistance.  

Solutions 

Extracellular solution contained (in mM): 5.8 KCl, 144 NaCl, 1.3 CaCl2, 

0.9 MgCl2, 0.7 NaH2PO4, 5 glucose, 10 HEPES, pH 7.4. The excised cochlear tissue was 

constantly perfused with the extracellular solution under a rate of two seconds/drop. 

Intracellular solution contained (in mM): 135 KCl, 0.1 CaCl2, 3.5 MgCl2, 5 K-EGTA, 

5 HEPES, 5 NaCl, pH 7.2 (4 mV junction potential, not corrected). During the voltage 

ramp protocol, 1µM tetrodotoxin was added to the bath to prevent action currents. In 

some experiments, a high potassium solution was used to depolarize neurons and trigger 

synaptic transmission, which contains 40 KCl, 110 NaCl, 1.3 CaCl2, 0.9 MgCl2, 

0.7 NaH2PO4, 5 glucose, 10 HEPES, pH 7.4. For cell ablation studies, in order to 
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improve stability,  recordings were made with intracellular solution containing organic 

anions in place of Cl (in mM): 110 K-methanesulfonate, 20 KCl, 0.1 CaCl2, 3.5 MgCl2, 

5 K-EGTA, 5 HEPES, 5 Na2phosphocreatine, 0.3 Tris-GTP, pH 7.2.  Membrane 

potentials were corrected for the 10 mV junction potential with this solution.  ATP was 

excluded from all intracellular solutions to prevent desensitization of ATP receptors. 

Pharmacological compounds 

Pharmacological compounds were applied with a gravity-driven, large bore 

application pipette placed to cover the spiral branch of the recorded afferent. In some 

experiments, drugs were loaded in a puffer pipette (with the same tip size as the patch 

pipette) and applied locally driven by a Picospritzer III (Parker-Hannifin, Irwin PA). All 

chemical and pharmacological reagents were obtained from Sigma, except for PPADS 

(Tocris), tetrodotoxin (Tocris), CNQX (Tocris), D-AP5 (Tocris), (RS)-MCPG (Tocris), 

retigabine (Sigma and Alomone labs), and FM 1-43FX (Life Technologies).  

Cell ablation strategy 

Cell ablation was performed mechanically, using a sharp needle pulled from 1mm 

borosilicate glass. The needle was placed parallel to the cochlear spiral, and was moved 

manually using a micro-manipulator. This ablation procedure started 15-20 outer hair 

cells apical to the recording site, to encompass the synaptic zone of the fiber. To visualize 

hair cell ablation, the cochlear tissue was preloaded (25-30 seconds, room temperature) 

with 5 µM FM1-43, a fluorescent dye that rapidly enters through mechanotransduction 

channels and partitions into the hair cell membrane. In each trial, one to three OHCs were 

ruptured by the movement of the needle through the lateral wall of the cell.  Rupture was 
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effected only when the needle was centered on the cell nucleus.  After ablation, the 

damaged outer hair cell swelled immediately and disappeared entirely within 3 – 5 

minutes, confirmed by the loss of FM1-43 from the hair cell membrane. There was 

minimal damage to the surrounding cochlear cells including the afferent neurites, Deiters’ 

cells and Hensen’s cells.  

Post hoc visualization of biocytin-filled type II afferents 

For post hoc visualization of the afferent, 0.25~0.3% biocytin was added to the 

intracellular solution. The tracer was detected using streptavidin-conjugated horseradish 

peroxidase, made visible by precipitation of diaminobenzidine (DAB) for light 

microscopy. After whole-cell patch clamp recording, tissue with biocytin-filled type II 

afferents was fixed in 4% PFA overnight at 4°C in a 12-well cell culture plate (Corning), 

and then washed in PBS and stored at 4°C for further batch processing within two weeks. 

In a new 12-well plate, each tissue was washed in PBS on a shaker (washed twice for 10 

min each, and the third time for 30 min) and then quenched in 10% H2O2 (with 10% 

methanol) for 10 minutes. Time has to be controlled precisely (count in seconds) for the 

critical quenching step. After that the tissue was washed three times in PBS for 10 min 

each, and permeabilized in 2% Triton in PBS (1 hour, room temperature). Then the tissue 

was incubated in avidin/biotin complex (Vectastain ABC kit, Vector) overnight at 4°C, 

washed in PBS (twice for 10 min each time and then 45-60 min for the third time) and 

reacted with a diaminobenzidine-based peroxide substrate (ImmPACT DAB, Vector) for 

10 minutes, until the cell and its arborization were visible under the microscope. The first 

rinse using PBS was done immediately to stop the reaction, followed by two additional 
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rounds of wash by PBS for 10 min each. Then the tissue was mounted on a microscope 

slide for imaging.  

Equipment and settings for digital images 

After the DAB reaction, the slides for cochlear turns were imaged on a Zeiss LSM 

510 Meta microscope. For cell ablation studies, the cochlea was viewed under 

a microscope (Carl Zeiss Examiner D1) using a 40× water-immersion objective with 

contrast enhancement (Hamamatsu C2400-62). Images were taken with a digital camera 

(SONY) attached to the microscope. 

Preparation for calcium imaging 

To examine the calcium responses of SGN afferents, Advillin-Cre mice were bred 

into a R26-lsl-GCaMP3 (GCaMP3) mouse line (Paukert et al., 2014) which expresses the 

genetically encoded calcium sensor GCaMP3 in the Cre recombinase positive cells. The 

Advillin-Cre mouse line was generated by knocking the transgene Cre into the Advillin 

gene locus (da Silva et al., 2011). This construct was found to sparsely label both type I 

and type II afferents, with increasing numbers of labeled neurons from apex to base 

(Zhang-Hooks et al., 2016). Although it has been suggested that only male Advillin-Cre 

mice could be used to achieve specific labeling of sensory neurons (da Silva et al., 2011), 

by the time for experiments only female Advillin-Cre mice were available for us to cross 

with the male GCaMP3 mice. Two thirds of the pups in the resulting litter demonstrate 

nonspecific expression of the Cre recombinase that drives expression in neurons and 

supporting cells. The rest of the pups have specific expression of the Cre recombinase in 

the sensory neurons. We found such difference in expression pattern could be easily 
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identified by looking at the basal fluorescence of GCaMP3 in the animals’ tail, where 

nonspecific vs. specific expression could be distinguished.  

The transgenic mice were dissected at postnatal day P5 – P7 and the cochlear 

explant was obtained as described previously. Segments of cochlea including apical and 

middle turns were put into culture. They were attached onto cover slips after coating with 

Cell-Tak (Corning) and incubated in a medium containing Dulbecco's modified Eagle's 

medium (DMEM), 1 % fetal bovine serum (FBS) and 0.1 % penicillin. After one day in 

culture, the cochlea with the cover slip was transferred under a laser scanning confocal 

microscope LSM 710 (Zeiss) for calcium imaging and was superfused with extracellular 

solution during the experiments. The microscope was equipped with a 20X water-

immersion objective, 488 nm laser illumination, and 500–530 nm bandpass filter. DIC 

images were simultaneously monitored to visualize the sharp needle for ablation studies. 

Images were collected for one frame/second.  

Data acquisition and analysis 

Membrane voltage and current were recorded with a MultiClamp 700B amplifier 

and a Digidata 1440A (Molecular Devices), controlled by pCLAMP 10.3 software 

(Molecular Devices), sampled at 25 kHz and low-pass filtered at 10 kHz. The data were 

analyzed in pCLAMP 10.3 (Molecular Devices) and Origin 9.0 (Origin Labs). Statistical 

analysis (paired or unpaired t-test as appropriate) was performed in Excel (Microsoft) and 

the results are given as mean ± SD. EPSCs were analyzed using MiniAnalysis software 

(Synaptosoft) with the criterion three times the root mean square of the noise, and further 
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accepted or rejected by eye according to their characteristic waveforms. Calcium imaging 

data and measurement of type II afferents’ morphology were done using ImageJ. 
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Results 

Chapter 1: Morphology of type II cochlear afferents 

The morphology of type II neurons, including their somata, peripheral innervation 

onto multiple OHCs and branching patterns as outer spiral fibers have been characterized 

by many studies (Berglund and Ryugo, 1987; Brown, 1987a; Echteler, 1992; Ginzberg 

and Morest, 1983; Ginzberg and Morest, 1984; Huang et al., 2007b; Koundakjian et al., 

2007; Liberman et al., 1990; Perkins and Morest, 1975; Simmons and Liberman, 1988a; 

Simmons and Liberman, 1988b). Among them, informative morphological understanding 

was gained through the sparse labeling that shows single fibers of type II afferents, using 

either Golgi staining (e.g. Perkins and Morest, 1975) or HRP fills into the central-going 

axons of SGNs near the cochlea nucleus.  With the latter method the marker has to travel 

long distance in order to reach the cochlea and label their peripheral processes in the 

organ or Corti (e.g. Simmons and Liberman, 1988a). In this thesis, we employed a 

different strategy. We included biocytin directly into the patch pipette. When whole-cell 

patch clamp recordings were established on type II afferents’ dendrite terminals, the 

biocytin entered through the closest site to the synaptic region and might be ideal for a 

more complete fill to visualize the finest structures. Combined with streptavidin-

conjugated fluorescent labeling, this method could further allow association of type II 

afferents labeling with immunolabeling for synaptic marker proteins (in Chapter 2), 

providing more information on the synaptic organization of OHC-type II afferents 

synapse. 
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1.1 General properties of peripheral innervation 

To label the peripheral type II fibers and to understand their specific connectivity 

with OHCs, giga-ohm-seal intracellular recording was used to fill  type II fibers with 

biocytin in excised apical turns of cochleae from young rats (postnatal days P7 to P9).  

Before each experiment, biocytin solution was made by mixing 0.0025 – 0.0030 g 

biocytin into 1 mL intracellular solution. The mixture was made in a 1.5 mL tube and was 

sonicated for at least 5 minutes, until biocytin was fully dissolved and clear solution was 

obtained. The biocytin-containing intracellular solution was then filled into the patch 

pipettes through a capillary attached to a syringe and a micro-filter.  

Once giga-ohm seal was established between the patch pipette and the type II 

afferents’ dendrite, a brief suction was applied to rupture the cell membrane and allow 

diffusion of biocytin into the cytosol of the recorded afferents. The identity of the 

recorded type II afferents was further confirmed by their characteristic voltage-gated 

currents elicited by voltage steps (Figure 1.1.1) (Weisz et al., 2009). Remarkably, we 

found that the dialysis process was fast and biocytin could travel a long distance within 

the cell. Only five to ten minutes of whole-cell patch clamp recording on a type II 

afferent was enough to label the entire neuron, including its distal dendrites (the 

recording site) and synaptic branches, its spiral process under OHCs and supporting cells, 

its radial process and turning point, their somata in the spiral ganglion and even part of 

their central-going axons. Because of the difficulty of the recordings on these thin 

dendrites, multiple trials were made trying to patch onto the type II afferents before a 

good whole-cell patch clamp recording was achieved. For the unsuccessful trials, 

sometimes the cell membrane was only partially ruptured that allows in small amount of 
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biocytin. Therefore, although from trial to trial recordings were made from the same site 

on the outer spiral bundle (composed of many type II afferents bundled together) in a 

cochlear tissue, in a few cases multiple type II afferents were labeled in the same tissue, 

which can be visualized after streptavidin-peroxidase processing. This may cause 

difficulty in resolving single fibers for quantitative analysis of their morphology. In other 

cases, the soma of the recorded fiber was severed during the initial dissection of the 

apical turn, so that the biocytin labeling yielded type II fibers filled until the cut edge of 

their radial branch without showing their soma.  

 
Figure 1.1.1. Currents evoked by voltage steps in type II afferents (10mV steps from -

90mV). Cell# A_CL_010913 

 

 

Among the 40 whole-mounts with filled type II afferents, we selected 15 of them 

using the criteria including (1) single fiber are clearly labeled in each tissue; (2) a good 

signal-to-noise ratio and high quality of the image, allowing identification of the fine 

synaptic branches under OHCs; (3) helicotrema (the very apex of the cochlea) is seen in 

the tissue in order to decide the tonotopic location of the labeled fiber. These 15 slides 

were used for quantitative morphological characterization. Important parameters of the 
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fiber including the length of their processes, their location along the cochlea’s tonopic 

map, and characters of their synaptic regions were measured and counted with the 

software ImageJ. The length measurement in ImageJ was made by drawing the lines 

faithfully following the shape of the fiber using a computer mouse. Some of the 

remaining slides that provide interesting information were also described in the later part 

of this chapter. Most of my recordings were made on type II afferents under row 3 OHCs 

in the apical turn of young rat (P7-P10), so this study only reflects the morphology of 

type II afferents under these specific conditions. 

 

1. ‘Single arbor’ fibers 

Among the 15 quantified type II neurons, 8 of them gave off a single peripheral 

process without any major branching. The peripheral neurite leaves the soma in the spiral 

ganglion to cross the floor of the tunnel of Corti and turns ~ 90 degrees to travel toward 

the cochlear base (representing higher frequency regions) along the outer spiral bundle  

(Figure 1.1.2 A). Close to its turning point, the fiber often switches between OHC rows.  

After traveling several hundred microns, the spiral process seems to innervate mostly one 

row of OHCs, rising from under the Deiters’ cells to the base of the OHCs. The single 

spiral process averaged 714 ± 229 (SD) µm (n=8 fibers, see Table 1.1.1) from the turning 

point to the basal-most tip. At the terminal region where the type II afferent rises to travel 

right under OHCs, an average of 17 ± 4 (SD) short branches off the spiral process formed 

en passant and terminal swellings (Figure 1.1.2. B), presumably the site of synaptic 

transmission. The somata of type II neurons can also be visualized with great detail 

(Figure 1.1.2. C), sending the radial process toward the organ of Corti and a central 



59 

 

process projecting to the cochlear nucleus. The recording site of the biocytin-containing 

patch pipette often can be identified by a darker surrounding region, likely caused by the 

leakage of biocytin before giga-ohm-seal was established (Figure 1.1.2.A arrowhead). 

This location was seen close to the distal (basal) end of the fiber usually within one third 

of the length of the entire spiral process. Figure 1.1.3 and Figure 1.1.4 shows two other 

examples of labeled type II afferents with varying length and synaptic features. The 

shorter afferents in Figure 1.1.3 have only one major synaptic input region and the 

morphological synaptic branches were more clustered. The longer afferents in Figure 

1.1.4 had a spiral process that averaged 1194.7 µm and a more dispersed synaptic input 

region. Among the 21 synaptic branches observed, 11 of them clustered to form a major 

synaptic input region and 3 clustered to form a secondary synaptic region. There were 

also some ‘orphan’ branches along its long spiral process. 
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Figure 1.1.2. A. Whole-mount view of a biocytin-filled type II spiral ganglion neuron in 

the apical turn of P8 rat cochlea. Recording site (arrowhead) was located on the 

terminal of the spiral branch, where type II afferent forms synaptic contacts with multiple 

outer hair cells. B. Confocal image of the type II afferent in A near recording site. 

Branches extend from the shaft onto the row of OHCs above it. C. The biocytin-filled 

soma of type II neuron, with a pseudo-unipolar morphology. (Cell# B CL 092412) 

 

 

 

 

 

 

 

 

 

 



 

 

 

Slide number  
Length of spiral 

process (µm) 

Distance from 
fiber turning 

point to cochlear 
apex (µm) 

Arbor 
Total synaptic 

branches 
Major synaptic area  synaptic area2 

    
Length 

from apex 
length 

No. of 
branches 

Length 
from apex 

length 
No. of 

boutons 

BCL 9-24-12 899.2 843 1 21 1532 97.3 13 1456.198 30.754 4 

A CL 040114 516.4 1121 1 13 1448.3 150.2 9 1416.496 48.409 4 

ACL 032714 1194.7 566.5 1 21 1618.3 165.2 11 1237.851 38.181 3 

ACL 012214 617.8 613.5 1 12 1082.2 160.5 12     - 

3-17-13 Cell B CL 585.5 997.8 1 15 1109 52.8 9     - 

9-9-13 Cell A 733.9 658.1 1 22 1108.3 161.3 12 1336.511 104.051 8 

ACL 03-28-14 549.1 608 1 17 920.3 224.8 17     - 

A CL 10-03-12 612.8 NA 1 13 NA 101.3 12     - 

Average ± STD 714±229     17±4   139±53 12±3       

 

Table 1.1.1. Morphological Analysis of eight single arbor type II afferents. 



 

 

Figure 1.1.3. A single arbor type II afferent in the apical turn of young rat cochlea. Cell# 

A-CL 012214. Spiral process length was 617.8 µm. This afferent has one single synaptic 

input area that gave off 12 synaptic branches. 



63 

 

 

Figure 1.1.4. A single arbor type II afferent in the apical turn of young rat cochlea. Cell 

# A CL 032714. Total length of the spiral process is 1194.7 µm. The major synaptic area 

has 11 synaptic branches and a secondary synaptic region has 3 branches. 

 

2. Multiple arbor fibers 

The spiral dendrite also could split into 2 (6/15 fibers) or 3 (1 fiber) major 

basally-projecting arbors.  More often, 5 out of 7 multiple arbor fibers showed major 

branched arbors on their basalward going spiral processes in the OHC region (e.g. Figure 

1.1.5). The two exceptions include one fiber with a branched arbor on its radial process 

(Figure 1.1.6), and one fiber with bifurcated arbors extending both basally and apically. 

In the second case, synaptic branches were only detected in the basal going arbor but not 
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the apical going arbor. The apical going arbor also showed a ‘ball-like’ structure at its 

terminal that seems to suggest some developmental defect during the neurite growth 

(Figure 1.1.7).  

Despite some morphological diversity, the overall length of the spiral process, the 

number of synaptic branches and terminal arborization zones were similar among single 

vs multiple arbor fibers. Multiple arbor fibers had a spiral process averaging 619 ± 208 

µm in length (Table 1.1.2, n=7 fibers), not significantly different from that of single arbor 

fibers (averaged 714 ± 229 µm, Table 1.1.1, n=8 fibers). Although the multiple arbor type 

II afferents have one or two more major processes, in 5 of 7 such cases, terminal branches 

arose from only one of the arbors, or prior to the branch point (Figure 1.1.5.Two 

exceptions in Figure 1.1.8). Morphological analysis revealed an average of 16±7 synaptic 

branches and a major synaptic region stretching 140±41 µm in multiple arbor type II 

afferents (Table 1.1.2), similar to these parameters quantified for single arbor type II 

afferents (Table 1.1.1). Therefore, all the analyzed fibers, whether possessing one or 

more major arbors, had similar numbers and distribution of terminal branches, and 

presumably equivalent numbers of synaptic inputs.    
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Figure 1.1.5. A multiple arbor type II afferent in the apical turn of young rat cochlea. 

Fiber branches and the distal terminal. Synaptic branches were found on the dendrite 

before the branching point. Cell # C_CL031113. 
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Figure 1.1.6. A multiple arbor type II afferent branched at the radial portion. Cell# 
A_CL012414 
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Figure 1.1.7. A cochlear tissue with two labeled fibers – one single arbor type II afferent 

and one multiple arbor type II afferent projecting bi-directionally. Cell# A CL 9-17-12. 

 

 

Figure 1.1.8.The only 2 out of 15 labeled fibers showing synaptic branches on multiple 

arbors.Cell# A_CL_092412 and B_CL082913. 



 

 

Slide number  
Length of spiral 
process (µm) 

Distance from 
fiber turning 
point to cochlear 
apex (µm) 

Arbor 
Total synaptic 
branches 

Major synaptic area  Other features 

    
Length 
from apex 

length 
No. of 
branches 

  

A Cl 012414 400.65 488.8 2 8 692 60.9 8 Synaptic area on one arbor 

3-11-13 Cell C 720.1 983 2 14 1243.4 168 11 Synaptic area on major shaft 

B CL 9-26-12 983 577 2 7 1255.2 139.6 7 
Synaptic area on one arbor, 

bidirectional 

9-9-13 Cell B 689.1 613 2 20 +/- 2 1095.4 135.2 15 +/-2 Synaptic area on both arbor 

A CL 9-24-12 413.5 479.5 3 24 700 130.245 18 Synaptic area on one arbor 

8-29-2013 Cell B 475.5 919 2 13 1107.8 149.5 13 Synaptic area on both arbor 

8-29-13 Cell A 
(branch at the 

end) 
649.7 924 2 23 1423.4 193.4 20 

Synaptic area on major shaft and one 
arbor 

Average ± STD 619±208     16±7   140±41 13±5   

 

Table 1.1.2. Morphological Analysis of seven multiple arbor type II afferents. 



 

3. Somata of type II neurons 

The biocytin fills also enable labeling of somata of type II neurons in the spiral 

ganglion. Examples of six type II neurons are shown in Figure 1.1.9. One of them 

showed a typical peudounipolar morphology, which has a bifurcating axon with branches 

going in opposite directions, one centrally and one peripherally. The rest of them (5 cells) 

seem to adopt a bipolar morphology, with one central and one peripheral branch directly 

linked with the soma. However, it is also possible that they could be peudounipolar cells 

viewed from different angles. The central and peripheral processes are similar in diameter, 

consistent with previous reports (Berglund and Ryugo, 1986; Kiang et al., 1982) 

 

Figure 1.1.9. Somata of six different type II neurons in the apical coil of young rats, 

showing peudounipolar or bipolar morphology. Scale bar: 50µm. 
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1.2 Synaptic regions of type II afferents 

Since morphological analysis showed no significant differences among any of the 

measurements between single and multiple arbor type II afferents, all the labeled 

afferents (8 single-arbor and 7 multiple-arbor fibers) were grouped together for a 

summary of their features. The number of synaptic branches within the terminal arbors of 

all fibers averaged 16 ± 5.5 (SD, n = 15). These synaptic branches had an average length 

of 10.88 ± 6.48 µm (SD). They tend to cluster (12 ± 4 (SD) branches, forming a major 

synaptic input region that spans a distance of 139 ± 46 (SD) µm (n=15) with smaller 

secondary clusters 100 µm or more distant in some cases.  The secondary synaptic region 

usually had fewer synaptic branches compared to the major region. In one special case of 

the eight ‘single arbor’ fibers, two synaptic zones 228 µm apart were nearly equal (12 

and 8 branches).  

When examining the detailed morphology using confocal microscopy, we found 

that each synaptic branch not only has a terminal bouton at the end (Figure 1.2.1, white 

arrowhead), but also contains en passant swellings along the thin synaptic branch (Figure 

1.2.1, red arrow). Each branch had an average of 2.04 ± 0.7 (SD) en passant swellings in 

addition to the terminal bouton. Each branch contacted 1-3 OHCs in the same row and 

the average number of OHCs contacted by each type II fiber was 23.71 ± 5.82 (SD). 

Some branches showed arching shapes (Figure 1.2.1, bottom images), that could 

correspond to the ‘pearl chain’ postsynaptic densities described in Chapter 2.  
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Figure 1.2.1. Higher magnification of synaptic branches. Bottom images are expanded 

boxed area. Red arrows indicate en passant swellings and white arrowhead shows the 

terminal bouton. 

 

The location of the major synaptic input zone ranged from 700 to 1600 µm 

(average 1167 ± 280 µm; SD, n = 15 fibers) from the cochlear apex, placing the synaptic 

area in a frequency range of ~ 9 kHz (Muller, 1991a; Muller, 1991b). On the other hand, 

the 90 degree turning point of the fibers was located at 500 to 1000 µm (average 742 ± 

213 µm; n = 15 fibers) from the apex, placing it in the frequency range of 7 kHz. Thus, as 

noted previously (Brown, 1987), type II afferents, if sufficiently sensitive, would report 

vibrations one quarter to one half an octave higher in frequency than type I afferents 

projecting in parallel to the same tonotopic zone of the cochlear nucleus.   

Besides the synaptic branches contacting OHCs, some small branches were also 

observed as type II afferents bypassed inner hair cells or traveled under the supporting 

cells (Deiters’ cells). These branches however looked very different from a typical 

synaptic branch seen in type II afferents. They were much shorter, and without any 

terminal or en passant swellings (Figure 1.2.2). Another interesting observation was 

made by accidentally labeling two neighboring type II afferents in the same tissue (Figure 
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1.2.3).  Radial processes of these two afferents seemed overlapping and projected 

together to the same tonotopic region of the cochlea. In the spiral ganglion, the two type 

II neurons were located close to each other. Their 90 degree turning points shared a 

similar location. Although they sometimes switched to different rows at the apical portion 

of the spiral process, they finally targeted the same row of OHCs at their terminal region. 

However, their synaptic input regions were neighboring but non-overlapping. One of 

them terminated more apically, forming a clustered synaptic region (Figure 1.2.3.B white 

arrowhead). The other fiber extended further and gave off synaptic branches in a wider 

region more basally (Figure 1.2.3.B black arrows). Although more repetition is needed, 

this suggests that type II afferents project to similar frequency regions and can form 

synaptic contacts with neighboring but non-overlapping sets of OHCs. 

 

Figure 1.2.2.A type II afferent gave off short branches as it crossed the tunnel of Corti. 

Cell# A_CL_092412 
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Figure 1.2.3. Differential synaptic regions of two neighboring type II afferents. A. Two 

neighboring type II afferents turn at a similar location. B. Higher magnification of the 

synaptic regions. White arrowhead: clustered synaptic region for one fiber. Black arrow: 

synaptic branches for the second fiber. Cell # AB_CL_031113 
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To associate the tonotopic location of type II afferents with their morphological 

features, I plotted the measured parameters in Table 1.1.1 and Table 1.1.2 against the 

distance from fiber turning point to apex (Figure 1.2.4). It seems that at more apical 

regions, the length of the spiral process was more variable (Figure 1.2.4 A). A similar 

observation was made for the number of total synaptic branches (Figure 1.2.4 B), in that 

apical fibers have a more variable number of morphological synapses. The location of the 

major synaptic area, measured by the distance from the cochlear apex to the most apical 

synaptic branch of the area, has a positive correlation with the tonotopic location (turning 

point) of the afferent (Figure 1.2.4 C). This reflects that the relative distance between the 

turning point and the major synaptic region is quite stable. There seems to be a weak 

positive correlation between the length of the major synaptic area and the location of the 

fiber for single-arbor afferents, but this trend was not observed in multiple-arbor afferents 

(Figure 1.2.3 D). 
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Figure 1.2.4. Morphological features plotted against the location of the type II afferents, 

measure by the distance from apex to their turning point. Data include seven single-arbor 

afferents and seven multiple-arbor afferents in Table 1.1.1 and Table 1.1.2. 

 

Discussion: 

Morphological characterization of type II afferents has been done by studies on 

young and adult animals of many species, including mouse, rat, cat and guinea pigs 

(Berglund and Ryugo, 1987; Brown, 1987a; Echteler, 1992; Ginzberg and Morest, 1983; 

Ginzberg and Morest, 1984; Huang et al., 2007b; Koundakjian et al., 2007; Liberman et 

al., 1990; Perkins and Morest, 1975; Simmons and Liberman, 1988a; Simmons and 
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Liberman, 1988b). The contact between type II afferent and OHC has been described as a 

discrete bouton in some studies ((Ginzberg and Morest, 1984; Nadol, 1983), but can be 

more extensive, forming en passant synapses as it travels past the OHC (Francis and 

Nadol, 1993; Nadol, 1988; Sobkowicz et al., 1993). We found that such en passant 

synapses likely occur in the form of en passant swelling on the fine synaptic branches, 

forming a chain of possible postsynaptic sites together with the terminal bouton.  The 

average number of OHCs contacted by each type II fiber was 23.71 ± 5.82 counted in our 

experiments. This number is similar to that predicted to be required for threshold 

stimulation of type II afferents (Weisz et al., 2012). 

Although we focused only on the apical coil of the cochlea, small differences of 

recording site revealed that type II afferents located more apically tended to be more 

variable in morphology compared with those closer to the middle turn. It has been 

reported that apical type II afferents have more elaborated patterns of innervation, 

whereas middle fibers are the longest and have larger synaptic areas. Synapses of the 

basal type II afferents were found to have more terminal bouton instead of en passant 

swellings (Brown, 1987a; Fechner et al., 2001; Simmons and Liberman, 1988a). It may 

be interesting to address such differences in synaptic transfer by recording type II 

afferents at varying cochlear locations.  

All the HRP stainings were done post-hoc, after the electrophysiological 

experiments described in later chapters. This enabled us to confirm the successful 

recording on type II afferents, and have a better understanding about the morphology of 

the recorded cells. The finding that the recording site is always located at the distal end of 
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the fiber helped us designing the experiments. For example, for cell ablation studies, 

OHCs apical to the recording sites should be situated right above the recorded fibers. And 

to record the synaptic inputs from OHCs to type II afferents, the location of recording 

should better move away from the terminal region to keep the synaptic input area intact. 
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Chapter 2: Postsynaptic receptors of type II afferents 

In the mammalian cochlea, inner hair cells release glutamate to excite AMPA-

type receptors (AMPARs) on the predominant (95%) type I afferents (Glowatzki and 

Fuchs, 2002; Ruel et al., 2000) that provide all acoustic input to the brain. The synaptic 

arrangement of type I afferents with IHCs has been well-characterized. In particular, the 

single dendrite of each type I afferent forms a compact bouton ending opposite to a 

presynaptic ribbon of the IHC (Ginzberg and Morest, 1984; Hafidi et al., 1990; Khimich 

et al., 2005; Kiang et al., 1982; Liberman et al., 2011; Wang and Green, 2011). In 

contrast, connections between individual type II afferents and OHCs remain to be fully 

elucidated. In particular, it is not known whether ribbon synapses comprise the main or 

the only sites of signaling, since non-ribbon-associated contacts between OHCs and type 

II afferents were reported (Dunn and Morest, 1975; Nadol, 1983).  Recently it has been 

suggested that AMPA receptors may also mediate outer hair cell transmission to the scant 

and enigmatic type II afferents (Glowatzki and Fuchs, 2002; Weisz et al., 2009). 

However, the pharmacology used was AMPA/kainate receptor antagonist – NBQX, and 

this could not rule out the role of kainate receptors present at this synapse found by 

immunolabel (Fujikawa et al., 2014). The physiological result also runs counter to the 

conclusion, based on immunolabeling of GluA2/GluA3 and GluA2 subunits, that OHC 

synapses are not AMPAR-dependent (Chen et al., 2009; Flores-Otero and Davis, 2011; 

Khimich et al., 2005; Liberman et al., 2011; Matsubara et al., 1999). More recently it has 

been reported that antibodies to GluA2 label type II contacts to OHCs in the immature 

but not adult rat cochlea (P8), and that the adult synapse may be mediated only by kainate 
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receptors (Fujikawa et al., 2014). Thus, the present study was undertaken to explore this 

issue further and to elucidate the relationship between ribbons, postsynaptic glutamate 

receptors and postsynaptic density markers in afferent fibers at the OHC synapses.  

 

2.1 Type II afferent innervation and synaptic markers 

Additional background 

Unpublished data from my colleague Dr. Rodrigo Martinez Monedero showed for 

the first time that among the 4 subunits of AMPA receptors (GluA1 – GluA4), only anti-

GluA2 produced localized, specific labeling at the OHC regions of excised adult rat 

cochlear whole-mounts. Double labeling with an antibody against CtBP2, a protein found 

in presynaptic ribbons (Lenzi and von Gersdorff, 2001; Wagner, 1997), was performed to 

relate postsynaptic GluA2 labeling to the location of presynaptic ribbons in hair cells 

(Figure 2.1.1). CtBP2 and GluA2 puncta were closely aligned in most cases (Figure 

2.1.1A, magnified inset. Quantification in Figure 2.1.1C). Assuming that the GluA2 

puncta represent functional synapses, this high level of juxtaposition suggests that 

AMPAR-mediated synaptic transmission occurs at ribbon synapses of OHCs, with 2-3 

such ribbon synapses per OHC. As a positive control, GluA2 antibody was also tested in 

the inner hair cell region. Many more presynaptic CtBP2-labeled ribbons and 

postsynaptic GluA2 receptor clusters were found among IHCs and they were consistently 

juxtaposed (Figure 2.1.1B. Quantification in Figure 2.1.1D), consistent with previous 

reports regarding the number of synapses per IHC and the close correspondence between 

CtBP2-labeled ribbons and GluA2/3 or GluA2 receptor clusters (Beutner and Moser, 
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2001; Brandt et al., 2003; Fuchs et al., 2003; Khimich et al., 2005; Liberman et al., 2011; 

Meyer et al., 2009; Neef et al., 2007).  

 

Figure 2.1.1. Maximum intensity projections of confocal z-stacks of the medial region of 

the organ of Corti from an adult rat viewed from the endolymphatic surface including 24 

adjacent OHCs and 5 IHCs.   

A. Immunolabel for the presynaptic ribbon marker (CtBP2: red channel). Immunolabel 

for the postsynaptic marker glutamate receptor A2 (GluA2: green channel). Magnified 

inserts: CtBP2  and GluA2 puncta were closely juxtaposed in the X-Y plane. Rotation to 

the Z-X or Z-Y planes reveals spatial displacement between pre- and postsynaptic 

markers.  B. Pre- and postsynaptic immunolabels IHCs as in A.   CtBP2  and GluA2 

immunopuncta were consistently juxtaposed at the IHCs.  Magnified insert in the X-Y 
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plane shows clear separation of pre- and postsynaptic labels. C. Quantification of the 

number and the percentage of juxtaposed CTBP2 and GluA2 puncta in OHCs. In a single 

OHC there was 2.28 ± 0.17 GluA2 puncta and 2.37 ± 0.08 CtBP2 puncta per OHC.  

85.52 ± 5.48% of CtBP2 puncta were juxtaposed to individual GluA2 puncta and 94.86 ± 

1.1% of GluA2 puncta were juxtaposed to CtBP2 puncta . D. Quantification of the 

number and the percentage of juxtaposed CtBP2 and GluA2 puncta in the IHCs. At 

individual IHCs there were 23.3 ± 0.6 GluA2 puncta and 22.4 ± 1.0 CtBP2 puncta. 96.84 

± 1% of CtBP2 puncta were juxtaposed to individual GluA2 puncta and 96.59 ± 1.1% of 

GluA2 puncta were juxtaposed to CtBP2 puncta. 1A-D: n=3-9 independent preparations; 

50 IHCs, 72 OHCs. There were no statistically significant differences in number or 

correlation among the immunolabels (one way-ANOVA test; p>0.05). Scale bar is 5 µm 

and 2.5 µm in magnifications. From Martinez-Monodero et al., in preparation.   

 

Further insight into the synaptic arrangements of type II afferent neurons was 

gained using antibodies directed against postsynaptic density proteins PSD95, Shank and 

Homer.  In the central nervous system, PSD95 participates in synaptic targeting of 

AMPA receptors (Colledge et al., 2000; El-Husseini et al., 2000; Harms and Craig, 2005; 

Hirbec et al., 2003; Ives et al., 2004; Naisbitt et al., 1997; Sheng, 1997). In contrast to the 

near membrane location of PSD95, Shank and Homer serve as postsynaptic density 

organizing proteins that extend further into the cytoplasm to link cytoskeletal components 

(Brandstatter et al., 2004).  Antibodies to these postsynaptic markers were applied to 

cochlear whole mounts and their labeling compared to that of GluA2 clusters and 

presynaptic ribbons at outer hair cell afferent contacts. 

Interestingly, PSD95, Shank and Homer revealed complex patterns that could 

extend several microns along the synaptic pole of the OHC. These postsynaptic structures 

appeared as an irregular cluster or as an interconnected series, like a short ‘pearl chain’ 

(Figure 2.1.2A, B, F, G). PSD95 and Shank immunolabels were closely colocalized 

(Figure 2.1.2A, insets). Homer showed the same clustered patterns as did PSD95 and 
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Shank (Figure 2.1.2D). The pattern of postsynaptic density markers had an especially 

interesting relationship to the CtBP2-labeled presynaptic ribbons, as shown here for 

Shank (Figure 2.1.2B, F).  Most CtBP2-positive ribbons were juxtaposed to Shank, 

PSD95 or Homer (Figure 2.1.2H). However, roughly half of the postsynaptic densities 

had no associated CtBP2 puncta. A similar relationship between GluA2 and postsynaptic 

density proteins were observed, reflecting the strong correspondence between GluA2 and 

CtBP2 immunolabeling (Figure 2.1.1). The number of postsynaptic density protein 

puncta (PSD95, Shank and Homer) was nearly twice the number of CtBP2 or GluA2 

puncta in the OHC area.  
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Figure 2.1.2. Confocal z-stack of the OHCs of the medial region of the organ of Corti 

from an adult rat viewed from the endolymphatic surface.  

A. Immunolabeling with the postsynaptic density proteins PSD95 (red channel) and 

Shank (green channel) show an interconnected series of puncta along the base of the 

OHCs. Both PSD95 and Shank puncta are closely coincident (magnification insert, X-Y 

plane).  

B, Immunolabeling with the presynaptic ribbon marker CtBP2 (red channel) and 
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postsynaptic markers Shank  

C. Immunolabel for CtBP2 and PSD95.  

D. Immunolabel for CtPB2 and Homer.  Magnified inserts  (X-Y plane) in each case 

show more extensive postsynaptic density distribution than presynaptic.  

E. Pre- and postsynaptic immunopuncta at the OHCs. The number of CtBP2 or GluA2 

puncta was significantly smaller than that of postsynaptic density markers (PSD95, 

Shank or Homer) (one way-ANOVA, p = 0.01; Bonferroni’s multiple comparison test; n 

= 3-7; 72-168 OHCs).  

F. Thumbnails of the base of individual OHCs immunolabeled for CtBP2 (red channel) 

and Shank (green channel). Many the Shank immunopuncta had no CtBP2 associated 

with them.  

G. Thumbnails of the base of individual OHCs immunolabeled for GluA2 (red channel) 

and Shank (green channel). Many of the Shank immunopuncta had no GluA2 associated 

with them.  

H. Percent Juxtaposition of the CtBP2 and postsynaptic density proteins. The ratio of 

PSD95, Shank or Homer puncta juxtaposed to CTBP2 was significantly from the ratio of 

CTBP2 puncta juxtaposed to the postsynaptic density proteins (one way-ANOVA test; p ≤ 

0.01; Bonferroni’s multiple comparison test). Scale bar is 5 µm or  2.5 µm in magnified 

inserts and thumbnails.   

I. Schematic drawing of OHC and IHC synapses. At the IHC afferent synapse 

CtBP2/GluA2 relates closely in number to postsynaptic density markers. At the OHC 

afferent synapse, only a subset of postsynaptic density proteins relate to CtBP2/GluA2 

synaptic markers. From Martinez-Monodero et al., in preparation.   

 

Additional Methods 

0.3% biocytin (3.0mg/mL) was added to the intracellular solution of the patch 

pipettes for delivery into the spiral branch of type II afferents via whole-cell gigaohm-

seal recordings. The tracer was detected using streptavidin-conjugated horseradish 

peroxidase, or streptavidin-conjugated fluorescent labeling. In some experiments, the 

cochlear tissue was preloaded (30 second, room temperature) with 5µM FM1-43FX 

(Invitrogen), a fluorescent dye that rapidly enters through mechanotransduction channels 

and partitions into the hair cell membrane. HRP staining was done as previously 

described. In a second set of experiments we combined fluorescent labeling of the fiber 

(biocytin – streptavidin conjugated AF488) with immunofluorescent labeling of synaptic 
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markers in OHCs. The tissue with the filled type II afferent fiber was fixed in 4 % PFA 

for 10-60 minutes at 4°C. Then the tissue was exposed to 1% BSA and 10% heat 

inactivated goat serum in PBS for 1 hour at RT to reduce non-specific labeling. 

Streptavidin-Alexa Fluor 488 conjugate was applied overnight at 4°C in 5% heat 

inactivated goat serum and 1% BSA. Streptavidin-Alexa Fluor 488 conjugate and CtBP2 

or PSD95 antibodies were applied overnight at 4°C in 5% heat inactivated goat serum 

and 1% BSA. Samples were washed and incubated for 1 hour at RT with the secondary 

antibodies (that had been centrifuged at high speed and diluted at 1:1000 in 1xPBS). 

Alexa Fluor 568 goat anti-rabbit and Alexa Fluor 633 goat anti-mouse (Invitrogen) were 

used as secondary antibodies. Samples were rinsed three times for 10 min each in PBS at 

RT before mounting and viewing.   

 

Results 

In order to further relate the synaptic marker proteins with postsynaptic terminals 

on type II afferents, we combined fluorescently labeled biocytin fills of type II afferents 

with immunolabel for pre- and postsynaptic markers CtBP2 and PSD95. Tissue with 

biocytin-filled fibers was treated with streptavidin conjugated Alexa Fluor 488 as 

described in the additional method of this session. Similar to the HRP label shown in 

Chapter 1 (Figure 2.1.3A and B), morphology of fluorescently labeled type II afferents 

was revealed in great detail, clearly showing the structure of the fine synaptic branches 

including a terminal bouton and en passant swellings (Figure 2.1.3C, D, E, F). These 

experiments were done in young rat cochleas (~P8) due to the difficulty of biocytin 

injection in adult cochlea. 
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To locate type II terminals on individual OHCs, we tried two methods to label 

OHCs. In one set of experiments, OHC nuclei were counterstained with DAPI (Figure 

2.1.3C). In a second set of experiments, the tissue was perfused with 5µM FM1-43 for 30 

seconds, a fluorescent dye that is taken up by hair cells through the transduction channel 

(Nishikawa and Sasaki, 1996) (Figure 2.1.3D). The main terminal zone of a filled fiber 

was investigated with confocal microscopy. Again, synaptic branches with bouton 

endings and en passant swellings were visible and branches appeared to arc around the 

synaptic pole of the OHC (Figure 2.1.3C and D, insets). Interestingly, en passant 

swellings and bouton endings together form a structure that resembles the ‘pearl chain’ 

pattern observed for postsynaptic maker proteins (PSD95, Shank and Homer, Figure 

2.1.2). Most of the synaptic branches innervate a single OHC. Occasionally small 

processes could branch or extend to contact multiple OHCs. In this dataset, the number of 

OHCs contacted by one fiber was 23 ± 6.48 (SD, n = 9), identical to the result in 

preparations with unlabeled OHCs counted in the HRP fills (Chapter 1).     

Combination of pre- or postsynaptic immunolabel with fiber filling was only 

occasionally successful.  This may be a result of tissue condition after the time required 

for the intracellular recording protocol, and/or a reflection of less robust expression of 

synaptic proteins in the 8-10 day-old animals needed for successful fiber recording.  In 

any event even this low success rate provides qualitative, if not quantitative description.  

CtBP2 immunopuncta were located near to some, but not all terminal branches as well as 

en passant swellings of a filled fiber (Figure 2.1.3E). One or two CtBP2 puncta were 

associated with multiple swellings on each synaptic branch. The small ratio between 

CtBP2 and the morphological swellings resemble that between CtBP2 and the ‘pearl 
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chain’-like postsynaptic markers (e.g. Shank in Figure 2.1.2F), suggesting these 

morphological swellings may correspond to the postsynaptic structures, and are likely the 

sites for functional synapses. However, when antibody for PSD95 was tested in this 

young age (~P8), not every swelling was colocalized with the postsynaptic marker, 

suggesting the possibility that type II synapses were still under development. Some, but 

not every, terminal branch of a filled fiber could be found in near proximity to juxtaposed 

immunopuncta for CtBP2 and PSD-95 (Figure 2.1.3F), suggesting that more than one 

type II afferent may innervate the same OHC so that the ‘orphan’ CtBP2/PSD-95 cluster 

may be attributed to a different type II afferent that was not filled. Since immunolabel 

proved extremely difficult for filled fiber tissue and this method only allowed fiber filled 

at younger age limited by the recording technique, further immunolabeling was carried 

out on young cochlear whole-mounts (~P8) that were processed similarly to the adult 

tissues to examine possible developmental differences.  Double-immunolabel for CtBP2 

and PSD-95 gave an intermittent ‘pearl chain’ association like that of the adult OHC 

(Figure 2.1.3G), suggesting that some adult features are already present in the cochlear 

synapses of young rats.  Therefore these results may still partially reflect the organization 

of OHC-type II afferent synapses in adult cochlea. 
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Figure 2.1.3. Single type II fibers with intracellular labeling.   

A.  Apical turn of a young (P8) rat organ of Corti with biocytin filled type II fiber after 

Streptavidin-peroxidase reaction. Scale bar  125 µm.   

B. Higher magnification of boxed areas in A – showing trajectory and terminal branches.  

C. Biocytin-filled type II fiber reacted with streptavidin-AlexaFluor488 (green). OHC 

nuclei labeled with DAPI (blue).  Magnifications show en passant (red arrows) and 

terminals (white arrowheads) of branches from boxed regions.   

D. Biocytin-streptavidin-AlexaFluor488 filled fiber combined with FM1-43-labelled 

OHCs (red). Magnifications show terminal branches enwrapping the base of outer hair 

cells.   

E.  Biocytin-streptavidin-AlexaFluor488 filled fiber combined with CtPB2 immunolabel 

(red).  Magnifications show approximation of some terminal branches to CtBP2 puncta.    

F. Biocytin-streptavidin-AlexaFluor488 filled fiber combined with immunolabel for 

CtBP2 (red) and PSD95 (blue).  Magnifications show approximation of some (but not all) 

terminal boutons to juxtaposed pre- and postsynaptic immunopuncta.   
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G. Combined immunolabel for PSD95 (green) and CtBP2 (red) among OHCs of young 

rat cochlea.  Magnification shows ‘pearl chain’ pattern found in adult cochlea.  Scale 

bar 5µm in B, C, D, E, F, G. From Martinez-Monodero et al., in preparation.   

 

 

2.2 AMPA receptors mediate OHC-type II synaptic transmission 

The identity of neurotransmitter and receptors at the OHC to type II contact has 

been debated for some years.  The absence of GluR2/3 immunoreactivity led to the 

conclusion that some mechanism other than AMPAR-mediated transmission operated 

there (Matsubara et al., 1996a; Thiers et al., 2008).  Initial studies of synaptic currents in 

type II afferents showed that these were blocked by the AMPA/kainate antagonist NBQX, 

leaving open the possibility that postsynaptic kainate receptors shown by 

immunohistochemistry study (Fujikawa et al., 2014) might mediate the response to 

glutamate release from OHCs.  On the other hand, our work described here revealed that 

the AMPA receptor subunit GluA2 were present in the outer hair cell region, juxtaposed 

with the CtBP2-labeled ribbons and co-localized with around half of the more extensive 

postsynaptic markers (Martinez-Monedero et al.; in preparation).  

Further support for the involvement of GluA2 AMPA receptors was obtained by 

intracellular recording from type II afferents in excised apical turns of young rat cochlea 

(P7-P9).  The highly potent AMPA-specific noncompetitive antagonist CP-465022 was 

applied while recording potassium-evoked excitatory post-synaptic currents (EPSCs).  

CP-465022 shares a similar binding site on AMPARs with its earlier precedent GYKI, 

but is much more potent on AMPA receptors (Lazzaro et al., 2002; Menniti et al., 2000) 

and highly selective for AMPA over kainite receptors (Lazzaro et al., 2002; Paternain et 
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al., 1995). At 100 µM (2 fibers) and 10 µM (3 fibers) CP-465022 completely eliminated 

EPSCs induced by the elevated external potassium (40 mM) that depolarized OHCs, 

suggesting AMPA receptors mediate the synaptic transmission between OHC and type II 

afferents (Figure 2.2.1A and B).  To further support this observation, CP465022 was 

applied at a lower concentration (1 µM) that partially blocked EPSCs recorded in type II 

afferents (Figure 2.2.1B).  The distribution of EPSC amplitudes was shifted to smaller 

numbers in 1 µM CP465022 (Figure 2.2.1D) compared with control condition (Figure 

2.2.1C). Average EPSC amplitude was reduced to 64.3% and a cumulative plot is shown 

in Figure 2.1.4E (n=2 afferents).  To further probe for kainate or other non-AMPA 

receptors, the residual current in CP-465022 was normalized and its waveform compared 

to that before block. Interestingly, no difference in EPSC kinetics was found before and 

during block by CP-465022 (Figure 2.2.1F). Given the known kinetics differences 

between AMPA and kainite receptors (Lerma and Marques, 2013), our result suggests 

that a single kinetically homogenous population of glutamate receptors is functional at 

this synapse. The relatively fast deactivation kinetics of EPSCs suggests a role for AMPA 

receptors, rather than the normally much slower kainite receptors. 

Inclusion of the GluA2 subunit renders AMPARs impermeable to calcium 

(Hollmann et al., 1991; Mishina et al., 1991), suggesting that synaptic currents in type II 

afferents flow through calcium-impermeant channels. This finding was further supported 

by data from the doctoral thesis of Catherine Weisz. Cat showed that intracellular 

spermine did not cause rectification of the current-voltage relation of EPSCs, indicating 

the presence of the calcium impermeant GluA2 subunit. She also showed that the 

compounds philanthotoxin and Naspm, which cause conductance block of GluA2-lacking 
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AMPA receptors had no effect on EPSCs recorded in type II afferents. Taken together, 

these results suggest that GluA2-containing AMPARs most likely mediate rapid 

glutamatergic excitation at the OHC to type II afferent synapse in the rat cochlea.  

 

Figure 2.2.1. AMPA receptors mediate the synaptic transmission from OHC to type II 

afferents.  

A. Representative trace showing the complete block of EPSCs by 100µM CP465022. Blue 

star indicate an action current occasionally recorded in this fiber. Recordings were made 

in 40mM external potassium to increase EPSC frequency. 

B. Diary plot of EPSCs showing a complete block by 100µM CP465022 and partial block 

by 1µM CP465022.  

C. Distribution of EPSC amplitude in control (n=3 afferents). 
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D. Distribution of EPSC amplitude in 1µM CP465022 (n=3 afferents).  

E. Representative cumulative plot of EPSCs. EPSC amplitudes decreased in the presence 

of 1µM CP465022 (red).  

F. Scaled EPSC waveforms in control (black) and in 1µM CP465022 (red) showing 

similar kinetics  Modified from Martinez-Monodero et al, in preparation. 

 

2.3 Acetylcholine responses of type II afferents 

Besides the OHC to type II afferent synapse, it has been proposed that type II 

afferents may serve as the postsynaptic targets for cholinergic medial olivocochlear 

efferents that innervate the cochlea. Ultrastructural studies suggested that axodendritic 

efferent to type II afferent synapses may be possible (Nadol, 1983; Thiers et al., 2002). 

Although terminal endings of both medial olivocochlear efferents (MOC efferents) and 

type II afferents were clustered at the base of OHCs, morphological synapses between 

MOC efferents and type II afferents were identified on the dendritic ‘shaft’ of outer spiral 

bundle fibers that were further away from their OHC contacts. Evidence for such 

morphological synapses was the appearance of a few vesicles found close to the cell 

membrane on the efferent side. Since the major transmitter released from MOC efferent 

is acetylcholine (ACh) (Eybalin, 1993), we tried to probe if this axodendritic synapse is 

functional by testing ACh responses in type II afferents.  

Whole-cell voltage clamp recordings were made in 5 type II afferents from young 

rat (P7-P10) cochlea. Applying 1 mM ACh consistently induced very small responses (1-

4pA) which were hardly measurable.  When I switched to current clamp recordings, a 

small depolarization by 1 mM ACh was recorded, averaged 2.9 ± 1.7 mV (n=7 cells). 

Figure 2.3.1 shows the biggest ACh induced response recorded in a type II afferents. No 

correlation was found between the response amplitude and the age (within the range of 
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P7-P10) of the animal. Because of the insignificant ACh response at the young ages 

limited by our preparation, this question was not pursued further in this thesis. 

 

Figure 2.3.1. Small ACh responses recorded in a type II afferent from a P9 rat. 

 

Discussion 

The synaptic organization of OHC-type II afferents was poorly understood. 

Although EPSCs triggered by OHC depolarization were recorded in type II afferents, this 

finding was confounded by the lack of immunolabel of GluA2/3 AMPA receptors at this 

synapse (Eybalin et al., 2004; Fujikawa et al., 2014; Knipper et al., 1997b; Liberman et 

al., 2011; Matsubara et al., 1996b; Meyer et al., 2009). Only one study localized very 

weak GluA2/3 puncta in outer hair cells but they were not associated with the presynaptic 

ribbon labeled by CtBP2 (Huang et al., 2012). Non-ribbon-associated contacts between 

OHCs and type II afferents were also reported (Dunn and Morest, 1975; Nadol, 1983). 

Therefore, the type of postsynaptic receptors, as well as whether ribbons serve as the 

major site of synaptic transmission was still controversial. The present work shows that 
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postsynaptic GluA2 expression corresponded highly with the presynaptic ribbons labeled 

by CtBP2, with a nearly 1:1 ratio. Although the PSD-95, Shank and Homer antibodies 

revealed extensive ‘pearl chain’-like postsynaptic densities, the AMPA receptor subunit 

GluA2 was expressed specifically at only two or three spots in the ‘pearl chain’ where a 

presynaptic ribbon was juxtaposed, forming discrete sites of synaptic contacts. The ‘pearl 

chain’-like postsynaptic structures were related to the morphological swellings on type II 

dendrites through biocytin fills. On each synaptic branch of type II afferents, the en 

passant and terminal swellings were also arranged in a chain structure, and the distances 

between these swellings were similar to the distances between puncta of the postsynaptic 

markers. CtBP2 immunolabeling was further found juxtaposed to the swellings on type II 

dendrites, suggesting these are the sites for GluA2-containing AMPA receptor mediated 

synaptic transmission. These findings not only confirmed the previous observation of 

discrete boutons (Ginzberg and Morest, 1984; Nadol, 1983) or more extensive, en passant 

synapses between OHC and type II afferents (Francis and Nadol, 1993; Nadol, 1988; 

Sobkowicz et al., 1993), but also associated these morphological features with a highly 

specialized organization of pre- and postsynaptic proteins. 

Our electrophysiological experiments suggest that synaptic transmission is most 

likely mediated by GluA2-containing AMPA receptors. CP-465022 has been shown to 

serve as a selective antagonist for AMPA over kainate or NMDA receptors (Lazzaro et 

al., 2002). The concentration used in our experiments (1, 10, 100 µM) has a minimal 

effect on GluK2 receptors tested by heterologous expression in Xenopus oocytes 

(Balannik et al., 2005). Analysis of EPSC waveforms before and after partial blocks 

(Figure 2.2.1F) suggests that synaptic currents were contributed by a single kinetic group, 
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which is faster than the typical kainate receptor mediated EPSCs identified in other native 

neurons (Lerma and Marques, 2013). Together with the pharmacological experiments on 

calcium permeant and impermeant AMPARs, this evidence further supports the presence 

and function of GluA2-containing AMPARs at OHC-type II afferent synapses. 

It was intriguing to identify ‘empty slots’ on the extensive postsynaptic densities 

on type II afferents. These slots were revealed by antibodies to postsynaptic proteins, but 

were negative for ribbon (CtBP2) and AMPA receptors (all of the subunits GluA1-A4 

were tested). One possibility is that these ‘empty slots’ are not completely free of 

receptors, but can be occupied by postsynaptic receptors other than the AMPARs. 

Kainate receptors had been colocalized to a similar postsynaptic density structure (named 

‘C shape’) identified in type II afferents (Fujikawa et al., 2014) and immunogold labeling 

of P2X2 receptors was found at the OHC-type II synapse (Housley et al., 1999). It is 

unclear if NMDA receptors and metabotropic glutamate receptors are present at this 

synapse. However, our physiological studies showed that EPSCs recorded in type II 

afferents were most likely mediated by GluA2-containing AMPARs. These results did 

not reveal any residual components of EPSCs that might be mediated by other receptors. 

Therefore even if other receptors coexist at the same synapse, they might be playing a 

modulatory role instead of directly contributing to the synaptic currents. A second 

possibility is that such ‘empty slots’ may be sites of silent synapses that allows plasticity 

to occur. It would be interesting to examine this hypothesis and investigate what kind of 

stimulation could induce changes of synaptic strength at the OHC-type II afferent 

contacts. 
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Chapter 3: Purinergic signaling in type II afferents 

Although synaptic inputs from OHCs have been recorded and carefully 

characterized (Weisz et al., 2009; Weisz et al., 2012), whether acoustic stimulation of 

outer hair cells could serve as the adequate stimulus for type II afferents is still a 

remaining question. Sound drives OHCs and the depolarization could reach ~0mV 

(Johnson et al., 2011). However, tested in vivo, broad band sound could not activate type 

II afferents, whereas the same condition faithfully triggered responses of type I afferents 

(Brown, 1994; Robertson, 1984; Robertson et al., 1999). The lack of sound-driven 

responses of type II afferents may be explained by the weak synaptic transfer function. 

Release probability of OHCs was low so that each action potential has ~1/4 chance to 

trigger single vesicular release,  which causes a small EPSP (3.8±2.0 mV) compared to 

the action potential threshold (~25 mV from the resting membrane potential). Even 

though each type II afferent connects with over ten OHCs and summation of EPSPs is 

likely, by calculation, synaptic activation of type II afferents is difficult, unless loud or 

even traumatic level of sound maximally activates all the presynaptic OHCs (Weisz et al., 

2009; Weisz et al., 2014; Weisz et al., 2012). 

Another phenomenon accompanying loud sound stimulation is the increased 

concentration of ATP in the cochlear fluid (Munoz et al., 1995). ATP strongly 

depolarized type II afferents and elicited action potentials in extracellular recordings. 

Although some EPSCs were also recorded, the large slow component of the ATP-

triggered responses in type II afferents was unchanged when synaptic transmission was 

blocked, suggesting that such response was intrinsic to the type II afferents and was 
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independent of synaptic transmission (Weisz et al., 2009). It was speculated that the 

sensitivity to ATP might enable robust responses of type II afferents during acoustic 

damage. However, purinergic signaling in type II afferents was poorly understood and it 

was unclear which receptors mediated the responses. In this chapter, we investigated the 

types of purinergic receptors expressed in type II neurons, and revealed both ionotropic 

and metabotropic components of ATP and UTP induced responses. 

 

3.1 Characterization of the ionotropic P2X receptors 

In order to examine the presence of the ionotropic P2X receptors, 50 µM ATP 

was applied using a large-bore gravity-driven application pipette. For all the experiments, 

the application pipette was positioned parallel to the cochlear spiral so that perfusion 

could cover a longer distance of the type II afferents’ spiral dendrites. Inward current was 

induced in type II afferents by ATP, averaging 55.3±17.7 pA at peak (voltage clamp at -

60 mV, 10 experiments in 7 afferents) and a large depolarization could also be recorded 

in current clamp recordings (Figure 3.1.1 A and B). The ATP evoked response was 

significantly reduced by the P2X antagonist, PPADS (Fig. 3.1.1 A, 3.5±3.4 pA, p < 0.05, 

compared to controls, 4 experiments in 4 afferents) and could be partially recovered. 
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Figure 3.1.1. ATP evoked inward current and depolarization in type II afferents.  

A. ATP induced current can be blocked significantly by the P2X receptor antagonist 

PPADS (red trace), with partial recovery (blue trace). 

B. 50 µM ATP induced a large depolarization in type II afferents. 

 

PPADS is a known P2X receptor antagonist, but it also partially blocks P2Y4 and 

P2Y6 receptors. To further test the contribution of P2X receptors to the ATP-induced 

responses in type II afferents, a voltage ramp protocol was employed to unveil the ionic 

mechanism. Holding potential was ramped from -90mV to +30mV in normal external 

solution or after 50 µM ATP was applied (Figure 3.1.2 A and B).  Ramp current in the 

absence of ATP (Figure 3.1.2 B, black) was subtracted from that in its presence (Figure 

3.1.2 B, red) to obtain the ATP-dependent ramp current (Figure 3.1.2 C). After 

subtraction, the resulting ATP-dependent current showed an inward current upon ATP 

application, and went outward when voltage was ramped to positive values (Figure 3.1.2 

C). The ATP-dependent current–voltage (I-V) relation had a positive slope at its reversal 

near 0 mV (Figure 3.1.2D, representative of 5 experiments in 3 cells), consistent with the 

activation of non-selective cation channels (P2X receptors). This non-selective 

conductance induced by 50 µM ATP further supports the presence of P2X receptors in 

type II afferents. 
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Figure 3.1.2. I-V relation of ATP response revealed by voltage ramp in voltage clamp 

recordings. A. Voltage command. 

B. Overlay of responses from a type II afferent when the holding potential was ramped 

from -90mV to +30mV in normal external solution (black), or after ATP was applied 

(red). Inset: expanded trace during voltage ramp with (red) and without (black) ATP 

application.  

C. Subtracted response in B, showing the ATP-dependent component.  

D. Plot of I-V relation of ATP response. Reversal potential was around 0 mV (n=3 

afferents). 
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3.2 Characterization of the metabotropic P2Y receptors 

Next we examined the presence of the other class of purinergic receptor – the 

metabotropic P2Y receptor. UTP (100 µM), an agonist of P2Y2, P2Y4 and P2Y6 

receptors, evoked a small inward current in voltage-clamp at -60 mV (8.9 ± 4.7 pA, 12 

experiments in 8 cells, Figure 3.2.1A). Similarly, in current clamp recordings, 100µM 

UTP caused a much smaller depolarization (6.8 ± 4.4 mV, n=11 afferents, Figure 3.2.1B) 

than that induced by 50 µM ATP. The difference in the size of the responses implied that 

UTP might trigger a distinct ionic mechanism. 

 

Figure 3.2.1. UTP (agonist for P2Y2, P2Y4 and P2Y6 receptor) induced inward current 

and depolarization in type II afferents.   

A. UTP-evoked inward current in voltage clamp recordings at -60mV. EPSCs (the 

downward ‘spikes’) were occasionally recorded, but their frequency was not changed 

significantly during UTP application. 

B. UTP-evoked depolarization was smaller on average than that due to ATP. 

 

The I-V relation of UTP-evoked current revealed a decrease in potassium 

conductance by P2Y receptor activation. Tested by a similar voltage ramp protocol 

(Figure 3.2.2 A and B), the UTP-dependent ramp current was distinct from the ATP-

dependent ramp current, with an opposite direction during the voltage ramp (Figure 3.2.2 
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C). The UTP-dependent current was entirely inward, activating positive to -70 mV (Fig. 

3.2.2 D, representative of 6 experiments in 6 cells), and the reversal potential can be 

extrapolated to near EK, suggesting the closure of voltage-dependent potassium channels 

by P2Y receptors signaling through second messenger pathways (Lechner and Boehm, 

2004). 
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Figure 3.2.2. I-V relation of UTP response revealed by voltage ramp in voltage clamp 

recordings. 

A. Voltage command. 

B. Overlay of responses from a type II afferent when the holding potential was ramped 

from -110mV to +30mV in normal external solution (black), or after UTP was applied 

(blue). Inset: expanded trace during voltage ramp with (blue) and without (black) UTP 

application.  

C. subtracted responses in B, showing the UTP-dependent component.  

D. Plot of I-V relation of UTP response. Reversal potential around -70 mV (n=6 

afferents). 
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Responses to UTP in type II afferents suggest the involvement of P2Y2, P2Y4 or 

P2Y6 subunits. Among them, P2Y2 and P2Y4 receptors could also be activated by ATP. 

However, the I-V relation of 50 µM ATP induced current only reflected a P2X receptor-

mediated nonselective cation conductance (Figure 3.1.2 D). We found that this may be 

explained by the differential affinity of P2X and P2Y receptors for ATP. I-V relation of 

ATP responses in type II afferents showed a transition from ‘P2X-like’ to ‘P2Y-like’ 

behavior when ATP concentration was gradually lowered (Figure 3.2.3). With the lowest 

concentration tested (1µM), the ATP-dependent ramp current was inward at positive 

voltages (i.e., reduced outward current) and resembled the I-V relation of UTP responses, 

suggesting that P2Y receptors may be preferentially activated. With increasing 

concentration, the ATP-evoked current became more inward at negative voltages, and 

less so at positive voltages, suggesting the P2X response (increased cation conductance) 

overwhelms the P2Y response in higher concentrations of ATP (n=2 afferents). Therefore, 

it seems that the relative contribution of P2X and P2Y-KCNQ pathways depends on the 

local ATP concentration on type II afferents. At sub micro-molar ATP, the higher-affinity 

P2Y-KCNQ pathway is preferentially activated.  At higher concentrations of ATP the 

ionotropic P2X receptors predominate.   
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Figure 3.2.3. Low concentrations of ATP preferentially activate ‘P2Y-like’ ramp currents.   

A voltage-ramp protocol (as in Fig. 3.2.2) was used to examine membrane currents 

evoked in type II fibers by lower concentrations of ATP (1 µM, 5 µM and 10 µM) that 

might differentially activate lower (P2X) and higher affinity (P2Y) receptors.  As ATP 

concentration was decreased the evoked ramp current changed from ‘P2X-like’ to ‘P2Y-

like’. With the lowest concentration tested (1 µM), the ATP-dependent current was 

inward at positive voltages (i.e., reduced outward current), suggesting that P2Y receptors 

may be preferentially activated. With increasing concentration the ATP-evoked current 

became more inward at negative voltages, and less inward at positive voltages, 

suggesting the P2X response (increased cation conductance) overwhelms the P2Y 

response in higher concentrations of ATP (2 experiments in 2 cells). 

 

3.3 P2Y receptor activation closes KCNQ potassium channels 

The potassium conductance closed by UTP reflected voltage dependency at 

positive voltages (Figure 3.2.2 D), suggesting that the signaling pathway involved 

voltage-gated potassium channels inhibited by metabotropic receptors. A good candidate 

is the KCNQ (Kv7) family potassium channels that can be regulated by the Gq-PLC 

pathway. The KCNQ channel antagonist XE-991 reversibly eliminated the UTP-

dependent ramp current in type II afferents (Figure 3.3.1A, from 92.7±20.8 to 3.8±4.5 pA, 

at +40 mV, 4 experiments in 4 cells, p<0.01), and the KCNQ channel opener retigabine 

reliably activated outward currents (Figure 3.3.1B, 37.9±3.0 pA at -60 mV, 4 experiments 



105 

 

in 4 cells).  These effects suggest that P2Y receptor activation depolarized type II 

afferents through the closure of KCNQ channels. This is consistent with the small effect 

of UTP at -60mV (Figure 3.2.1A) where few voltage-dependent KCNQ channels are 

open.   

The closure of KCNQ channels by P2Y receptors increased type II fiber 

excitability. In UTP, the current threshold for type II afferent action potentials was 

reduced to 78.2 ± 3.5% of the level required in normal conditions (four experiments in 

four cells; P < 0.01) (Figure 3.3.1C). Thus, UTP caused a small, but significant increase 

in excitability, despite the fact that these measurements were made at rest where only few 

KCNQ channels are open (Figure 3.2.2 D). The effect of P2Y-mediated KCNQ closure 

will be greater still when type II afferents are depolarized as during acoustic trauma. Thus, 

KCNQ channels serve as a promising target to modulate the damage-sensitive type II 

afferents. 
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Figure 3.3.1. KCNQ channels were closed upon P2Y receptor activation and regulated 

excitability of type II afferents.  

A. XE-991 (KCNQ blocker) reversibly eliminated the UTP-evoked ramp current. I–V 

relation of UTP before (black), during (red), and after (gray) XE-991 application.  

B. Retigabine (KCNQ opener) induced outward current at −60 mV in type II cochlear 

afferents. 

C. Current step protocol (1pA steps) to evoke action potentials (Ci). In UTP, from the 

same resting membrane potential, action potentials were evoked by smaller current steps 

(Cii). 

 

Discussion 

These results suggest the presence of two distinct purinergic responses mediated 

by ligand gated P2X receptors and G protein-coupled P2Y receptors, respectively. Both 

our pharmacological experiments and the I-V relation studies reflected the P2X receptor 

mediated responses in type II afferents, consistent with the previous finding that PPADS 
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blocked ATP induced spikes (Weisz et al., 2009). The subtype of P2X receptor expressed 

in type II afferents was not further characterized. However, based on the slowly-

desensitizing nature of the ATP responses (Figure 3.1.1 A and Figure 3.1.2 C), the 

subtypes involved might be P2X2, P2X4 or P2X7 receptors, according to a similar slow 

desensitization kinetics of these receptors in heterologous systems (North, 2002) and 

DRG neurons (Burgard et al., 1999; Rae et al., 1998). P2X2 were found to express at the 

postsynaptic terminals of type II afferents by immunogold study (Housley et al., 1999) 

and P2X7 immunolabel was found in SGNs as well as fiber bundles crossing the tunnel 

of Corti (Nikolic et al., 2003). P2X2/P2X3 heteromeric receptors were expressed in 

neonatal rat SGNs confirmed by pharmacology (Greenwood et al., 2007). It is unknown 

if type II and type I afferents express a different set of P2X receptors that may explain 

their difference under physiological and pathological conditions.  Recordings from type I 

terminals revealed quite small ATP induced responses (Tritsch et al., 2007) compared to 

the large depolarization induced by ATP in type II afferents (Figure 3.1.1B). Type I 

afferents were more susceptible to acoustic damage, with swollen terminals and soma 

degeneration after noise exposure (Kujawa and Liberman, 2009), whereas type II 

afferents remained in the damaged cochlea even after the loss of OHCs (Ryan et al., 

1980; Spoendlin, 1971a). Among the purinergic receptors, P2X7 receptor has been 

repeatedly suggested to mediate apoptosis due to its calcium permeability (Ferrari et al., 

1999; Kong et al., 2005) and it might be interesting to examine if this receptor is 

differentially expressed in type I vs type II afferents. 

This was the first demonstration of P2Y receptor mediated responses in type II 

afferents (Figure 3.2.1). Like somatosensory pain fibers, type II afferents rarely fired 
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spontaneous action potentials at rest when tested in vivo (Brown, 1994; Robertson, 1984; 

Robertson et al., 1999). However, when ATP was released during acoustic trauma, P2Y 

receptor closes the KCNQ channels and enhanced neuronal excitability in a similar way 

characterized in many other neuronal types (Brown and Passmore, 2009). This 

mechanism was preferentially activated when the ATP concentration was low (Figure 

3.2.3), consistent with a high affinity of P2Y receptors to ATP (Junger, 2011). The high 

sensitivity of the P2Y-KCNQ mechanism is meaningful considering the long spiral 

dendrites of type II afferents. The closure of potassium channels may make the fiber 

electrically more compact. Even a moderate elevation of ATP concentration might be 

enough to ‘sensitize’ type II afferents and enable them to respond more effectively to 

other stimulation, for example a potentiated synaptic transfer from OHCs, to warn the 

animals of the nociceptive sound that may cause damage to their hearing. 
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Chapter 4: Damage induced responses in type II 

afferents 

Having established the ATP receptors and signaling pathways in type II afferents, 

we next examined whether type II afferents respond to cell damage using an ex vivo 

preparation. After loud noise exposure, the endolymphatic concentration of ATP rises 2-3 

fold (Munoz et al.; 2001), presumably as a result of damaged cells (e.g. stria vascularis, 

hair cells) and the active release of ATP by supporting cells in the damaged outer hair 

cell region. ATP release also can be induced by mechanical perturbation or hypotonic 

stress without cell damage in vitro (Zhao et al., 2005). In this chapter, we developed a 

method that allows us to record from type II afferents while outer hair cells were ablated 

with a sharp glass probe. We dissected the different components that may contribute to 

the cell damage – induced responses in type II afferents, and tried to address the 

excitability changes after damage. 

 

4.1 Outer hair cell damage activates type II afferents 

To monitor type II afferents, intracellular and extracellular recordings were made 

from their spiral dendrites under OHCs in the apical turn of the cochlea excised from 

young rats [postnatal day 7 (P7) to P10]. As a proxy for cochlear trauma, individual 

OHCs were ruptured with a glass microneedle positioned nearer the cochlear apex than 

the recording electrode. By rapidly advancing the needle, one to three OHCs were 

ruptured (Figure 4.1.1A), visualized by the loss of preloaded FM1-43 fluorescence 
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specifically taken up through hair cells' transduction channels (Meyers et al., 2003) 

(Figure 4.1.1B). The damaged hair cells became round and swollen, and disintegrated 

within a few minutes after rupture. Equivalent but off-center punctures failed to rupture 

hair cells and no change was recorded in type II membrane current or potential, ruling out 

direct mechanical effects of the needle on the type II afferent (Figure 4.1.2B). 

 

Figure 4.1.1. The experimental preparation to study type II afferents’ response to 

damage.  

A. Electrode (Right) recording from a type II afferent (out of focus) under OHC rows 

(stars). The glass needle (arrow) poised to ablate one to three OHCs per trial.  

B. Two FM1-43–loaded OHCs [arrowheads (Bi)] were ruptured and lost fluorescence 

(Bii). 

 

Upon OHC rupture, a large depolarization (23.8 ± 4.5 mV; 14 trials in seven 

afferents) was recorded from type II afferents (Figure 4.1.2A). The depolarization had an 

initial fast phase (rise time 1.36±0.41s), followed by a slow component that lasted tens of 

seconds. Action potentials were triggered on the rising phase of the depolarization 

(Figure 4.1.2A, inset). In voltage-clamp recordings, a long-lasting inward current was 

observed (peak current, 111.9 ± 16.4 pA at −70 mV; 10 trials in six fibers) with a 90% 

decay time of 58.0 ± 9.5 s (Figure 4.1.2B). OHC ablation also faithfully elicited action 
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potentials in loose-patch extracellular recordings (Figure 4.1.2C, n=7 fibers, 23 of 24 

trials induced spikes). The spike trains always appeared within 1s after OHC ablation, 

consistent with the intracellular recording showing action potentials on the rising phase of 

the depolarization (Figure 4.1.2A). 

 

Figure 4.1.2. The cell damage-induced response of type II afferents. Arrow indicates 

OHC damage by the sharp needle. 

A. OHC ablation depolarized type II afferents and triggered action potentials on the 

rising phase (Inset).  

B. Representative traces of damage-induced currents (at −70 mV) from five different type 

II afferents (gray) and the average (black). Identical needle movement that failed to 

ablate OHCs induced no current (magenta).  

C. Loose-patch extracellular recording of type II afferent when OHCs were ablated 

(arrow). Action potentials were reliably generated by hair cell ablation (n=7 fibers, 23 of 

24 trials induced spikes). 
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4.2 ATP from supporting cells contributes to the damage induced response 

A role for ATP in this response was shown by the application of 

pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) (50 µM), the P2X 

receptor antagonist that also partially blocks P2Y4 and P2Y6 receptors. The damage-

induced current was greatly abbreviated in PPADS (Figure 4.2.1) (90% decay time, 13.3 

± 7.9 s; P < 0.001 compared with control), and charge transfer significantly decreased 

(from 2.5 ± 0.4 nC in control to 0.8 ± 0.2 nC; P < 0.001). Therefore, ATP mediated the 

slow component of OHC damage induced response in the type II cochlear afferent.  

 

Figure 4.2.1. OHC damage induced response was blocked by PPADS. Average ablation-

induced current in PPADS (red, three trials in three afferents) compared with average 

control current. 90% decay time and charge transfer were significantly decreased. 

 

The prolonged damage-induced response (tens of seconds) is similar in its time 

course to ATP-dependent calcium waves observed in cochlear supporting cells after hair 

cell rupture. These minutes-long waves trigger regenerative ATP release through 

connexin hemichannels on the outer supporting cells, contributing to the rise of ATP 

concentration in the cochlear fluid after damage (Anselmi et al., 2008; Gale et al., 2004; 

Lahne and Gale, 2010; Piazza et al., 2007). Accordingly, when the connexin hemichannel 
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blocker carbenoxolone (CBX) was applied to block ATP release from supporting cells, 

the type II afferent response to hair cell damage was significantly shortened, with a 90% 

decay time of 13.8 ± 2.8 s and charge transfer of 0.8 ± 0.1 nC (Figure 4.2.2; P < 0.001 for 

both measures compared with control), suggesting supporting cells as a major source of 

ATP acting on type II afferents.  

 

Figure 4.2.2. Connexin hemichannel blocker reduced the slow component of damage 

induced response. Average ablation-induced current in CBX(blue, five trials in three 

afferents) compared with average control current. 90% decay time and charge transfer 

were significantly decreased. 

 

4.3 Characterization of other components mediating type II afferent responses to 

damage 

In these experiments, the peak current amplitude in PPADS and CBX was not 

significantly different from that of control responses (Figure 4.2.1 and 4.2.2). This 

residual early peak was responsible for the damage induced action potentials recorded in 

loose-patch extracellular recordings (Figure 4.1.2C), due to the short latency (spikes 

appeared within 1s after OHC damage) and that the spikes were not blocked by PPADS 

(n=2 afferents). To test the possibility that glutamate released from damaged hair cells 
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might contribute to the early peak, a cocktail of glutamate receptor blockers, including 

50µM APV, 50µM CNQX and 1mM MCPG to block AMPA, NMDA, kainate and 

metabotropic glutamate receptors, was perfused into the bath solution prior to outer hair 

cell ablation. However, the cell damage induced responses, reflected by the spike trains in 

extracellular recordings, was not affected by glutamate receptor block (Figure 4.3.1; n=4 

afferents). The average number of spikes produced was 6.94±3.58 per OHC ablation in 

the blocker mixture, not significantly different from 5.53±0.58 spikes per OHC ablation 

in control (p = 0.415). 

 

Figure 4.3.1. Damage-induced responses of type II afferents were insensitive to block of 

glutamate receptors.  

A. Loose-patch extracellular recording of action potentials from a type II afferent 

following OHC ablation (at arrow).  

B. A mixture of glutamate receptor blockers, including 50 µM APV, 50 µM CNQX, and 1 

mM MCPG to block NMDA, AMPA/kainate, and metabotropic glutamate receptors had 

no effect (n = 4 afferents).  

C.Type II response to OHC ablation after removal of glutamate receptor blockers. 

 

A second possibility is that the remaining fast component is caused by the release 

of cytoplasmic potassium from the damaged hair cells. We have taken two approaches to 

test this hypothesis. First, we used ion substitution to change the driving force on 

potassium current. External potassium was elevated from 5.8 to 40 mM by substitution 
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with sodium, shifting the potassium equilibrium (EK) potential from −80 to −31 mV. 

Thus, the effect of any additional potassium released by hair cell damage will be reduced 

in this condition. In normal saline, hair cell rupture might expose nearby tissue to ~150 

mM K
+
, producing an inward current due to the change in EK from −80 to 0 mV. In the 

presence of 40 mM potassium, the same bolus of high potassium will change the driving 

force from −31 to 0 mV. Assuming the induced inward current is purely due to K
+
, the 

evoked current should be 2.6-fold smaller. The peak amplitude of the fast component was 

reversibly decreased 1.7-fold (from 94.1 ± 14.1 to 54.5 ± 5.9 pA; three experiments in 

three afferents) by prior exposure to 40 mM K
+
. Given that the actual changes in 

potassium concentration are unknown, this result supports the suggestion that the early 

inward current is carried at least in part by potassium ions.   

A second approach we took was to puff 150 mM K
+
 saline (110 K-

methanesulfonate, 20 KCl, 0.1 CaCl2, 3.5 MgCl2, 5 K-EGTA, 5 HEPES, 5 

Na2phosphocreatine, 0.3 Tris-GTP, pH 7.2) that does not contain ATP but mimics other 

ionic composition inside of a neuron. In 10 trials in 3 afferents, the maximum response 

induced by puffing internal solution averaged 97.4±6.7 pA (Figure 4.3.2), not 

significantly different from the peak current induced by OHC ablation (Figure 4.1.2 B; 

p=0.103). Taken together, the fast early peak of the cell ablation induced responses might 

due to a rapid potassium depolarization when cells were ruptured, which is probably a 

feature unique to this experimental paradigm, but less likely to happen in vivo because 

sound progressively damages OHCs over a longer time course.   
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Figure 4.3.2. Potassium ions contribute to the peak damage-induced current.  

A. Damage induced responses were decreased in amplitude when the driving force for 

potassium ions was reduced. 

B. Superfusion with “internal solution” (150 mM K-methanesulfonate, buffered calcium, 

no ATP) induced large inward currents in type II afferents.  

 

4.4 Hypersensitivity of type II afferents during damage 

In Chapter 3 we showed that the excitability of type II afferents can be regulated 

by P2Y-KCNQ pathway. During OHC cell ablation, ATP released from supporting cells 

could act on type II afferents for tens of seconds. To address if excitability changes 

during cell ablation, we delivered a series of current injection pulses to test the firing 

threshold of type II afferents at different time points during cell ablation (Figure 4.4.1). In 
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two afferent recordings, the firing thresholds (measured by the minimum current to 

induce action potentials) were lowered during or even after the cell ablation responses, 

from 10 pA to 5 pA, and from 17pA to 13 pA, respectively. However, due to the 

movement of the sharp needle, the recordings became less stable after cell ablation, 

making the result difficult to repeat when tested in another six type II afferents.   

 

Figure 4.4.1. Type II afferents might become more excitable during OHC damage. The 

same series of current injection steps were delivered before, during and after OHC 

ablation at 100s, to test the excitability changes of type II afferents. 

 

We next tried to assess the role of KCNQ channels directly by pharmacological 

manipulation. The KCNQ activator retigabine (10µM) was applied to the tissue during 

extracellular recordings from type II afferents. OHC damage was used as a means to 

trigger action potentials in type II afferents (Figure 4.4.2 Control). Repeated hair cell 

ablation in the presence of retigabine (KCNQ channel opener) failed to elicit any action 

potentials in five type II fibers (Figure 4.4.2; n=5 afferents), echoing the analgesic effect 
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of retigabine on somatic pain pathways (Brown and Passmore, 2009).

 

Figure 4.4.2. The KCNQ channel activator retigabine reversibly prevented the response 

of type II afferents to OHC ablation (n = 5 afferents).  

 

4.5. Calcium imaging on type II afferents using a cultured preparation. 

The electrophysiological experiments examined the response of one single type II 

afferents at a time. In order to study population responses to cell damage, preliminary 

calcium imaging experiments were conducted on both type I and type II cochlear 

afferents. A Cre line for advillin, an actin regulatory protein of the gelsolin/villin family 

that is expressed almost exclusively in peripheral sensory neurons, was bred into a 

conditional GCaMP3 mouse line, causing expression of the genetically encoded calcium 

sensor in type I and type II neurons. Cochlear explants were dissected out at P5-P7 then 

kept an additional day in culture. Due to the limited availability of the transgenic mice, in 

the initial experiments, female Advillin-Cre mice was crossed with male GCaMP3 mice, 

causing 2/3 of their progeny to express GCaMP3 nonspecifically in all cells. These 

nonspecific expression tissues served as a control to test the cell ablation paradigm. A 

characteristic, long-lasting calcium wave was induced by outer hair cell damage (Figure 

4.5.1A), which propagated in a regenerative way (Figure 4.5.1A; arrow at 70s). The rest 
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of the progeny showed specific labeling of type I and type II afferents as reported 

(Zhang-Hooks et al., 2016). With specific expression of GCaMP3, a type II afferent fiber 

and a type I afferent terminal was found to respond to high potassium stimulation (Figure 

4.5.1B). This “proof of principle” experiment could inform further experiments to 

monitor type II afferents’ activity on a longer time scale, to combine with hair cell 

damage strategies in culture (e.g. ototoxins that kills hair cells), and to address whether 

hypersensitivity occurs after damage. 

 

Figure 4.5.1. Calcium imaging on type II afferents. 

A. Non-selective expression of GCaMP3 in all cells. A sharp needle was targeted on a 
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row-3 OHC (pre). After the OHC was ablated, a regenerative calcium wave was 

observed in outer supporting cells. The wave shrank back the ablation site at 70s, 

indicated by black arrow. 

B. GCaMP3was specifically expressed in type I and type II neurons. High potassium 

solution triggered increased calcium signals in a type II afferent fiber and a type I 

terminal (indicated by the white arrow). Image on the right shows overlay of the 

activated cells with DIC image. 

 

Discussion 

Here we demonstrated that OHC damage could depolarize type II afferents. OHCs 

are among the most sensitive structures in the cochlea that could be damaged by sound 

(Wong and Ryan, 2015). Here cell ablation by a sharp needle was used as a proxy for the 

in vivo damage of OHCs. After the penetration of the sharp needle, OHCs immediately 

became swollen and ultimately ruptured, characteristic for a necrotic death pathway. 

Necrotic death of OHCs was also observed in the noise exposed cochlea (Hu and Zheng, 

2008). Membrane leakage was found 5 minutes after noise exposure, allowing the 

passage of 3kDa and 40kDa membrane tracers (FITC-dextrans). The different aspect of 

noise-induced OHC death is that apoptosis could also occur (Hu et al., 2006; Hu and 

Zheng, 2008; Yang et al., 2004). Following membrane leakage, some OHC nuclei 

became swollen, but other OHCs might have condensed nuclei and their apoptotic death 

was confirmed by TUNEL assay and caspase staining. 

The leakage of OHCs boosted a secondary mechanism that actively released ATP 

from outer supporting cells, making the effect last tens of seconds for each single OHC 

ablation in vitro (Anselmi et al., 2008; Gale et al., 2004; Lahne and Gale, 2010; Piazza et 

al., 2007). Our experiments revealed a similar time course of damage induced responses 
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of type II afferents. ATP contributed up to ~70% of the total charge transfer and elicited a 

long lasting slow response in type II afferents as a result of  only 1-3 OHCs ablation. This 

effect might be greater with noise damage to a large area of the organ of Corti. Tested in 

vivo, ATP concentration was found increased after acoustic damage (Munoz et al., 1995). 

Our study also suggested a role for potassium ions in the damage induced responses of 

type II afferents. In other studies, OHC membrane leakage was observed 5 min after 

noise exposure (Hu and Zheng, 2008) that may lead to potassium ion exit from the cell. 

The endolymphatic potential, maintained by high K
+
 in the endolymph, was also found to 

decrease after noise exposure as a result of a shunting effect (Housley et al., 2013). 

Whether the K
+
 concentration could increase in the perilymph to affect type II afferents is 

unclear. The potassium mechanism may contribute to type II afferents’ response to cell 

damage, but whether this could happen in vivo still needs more investigation.  

Our experiments showed some possible excitability changes of type II afferents 

during cell ablation. In Figure 4.4.1, current steps revealed lowered firing threshold not 

only during the depolarization, but also lasted for tens of seconds after the damage 

induced response. Because of the difficulty of the experiments, this was found in only 2 

out of 8 afferents and needs more experiments to confirm. Retigabine blocked action 

potentials induced by cell damage. However, this may not reflect the excitability changes 

produced by ATP, since the spikes appeared in the early peak whereas the ATP effect 

appeared later as a slow component. To address this effect, a similar experiment applying 

the KCNQ channel blocker XE991 may be more informative to determine the 

physiological influence of the P2Y-KCNQ pathway. 
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Chapter 5: Discussion and Future Work 

This work provides direct evidence that type II afferents, in addition to sensing 

glutamate release from outer hair cells, are activated by cochlear damage in the young 

rat’s cochlea.  This observation may help to resolve the decades-long conundrum that 

type II afferents in vivo are very insensitive to sound (Brown, 1994; Robertson, 1984) and 

yet presumably carry some information to the auditory brainstem.  Likewise, measured ex 

vivo, synaptic excitation is weak and could activate type II afferents only if all the 

presynaptic outer hair cells were maximally stimulated (Weisz et al., 2012).  

Alternatively, ATP potently activates type II afferents (Weisz et al., 2009) and serves as a 

major contributor to the damage-induced response.  Possible enhancement of excitability 

may also lead to robust responses of type II afferents to acoustic stress or cell damage. 

 

5.1 Synaptic structure of OHC-type II afferent synapses 

Although it has been established that OHCs and type II afferents form functional 

glutamatergic synapses (Weisz et al., 2009; Weisz et al., 2012), the identity of the 

postsynaptic glutamate receptor in type II afferents was still controversial. Using 

antibodies against AMPA receptor subunits GluA2/GluA3 or GluA2 alone, most of the 

previous studies failed to reveal immunolabel of AMPA receptors at this synapse 

(Knipper et al., 1997a; Liberman et al., 2011; Matsubara et al., 1996a; Meyer et al., 2009). 

Two recent publications successfully demonstrated GluA2 subunit expression in the OHC 

region (Fujikawa et al., 2014; Huang et al., 2012). However, their results did not suggest 
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a functional synapse mediated by GluA2 receptors. In one study, the GluA2 subunit was 

found associated with presynaptic ribbons in the P8 rat cochlea. However, this is only 

seen in the apical portion but not often in the basal portion, and the labeling was 

completely missing in the adult cochlea (Fujikawa et al., 2014). The basal cochlea is 

known to be more advanced than the apical portion in developmental maturation 

(Waguespack et al., 2007). Therefore, GluA2 expression was interpreted as a transient 

developmental effect since it was only detected in apical cochlea of neonatal rats. A 

second study in mouse cochlea revealed GluA2/GluA3 puncta in OHC region only in 

early postnatal days, however, the expression was permanently lost after P6, also 

revealing a developmental effect (Huang et al., 2012). Using two different antibodies to 

the GluA2 subunit and an improved immunostaining protocol, work from Rodrigo 

Martinez-Monedero in the lab demonstrated juxtaposition of GluA2 and presynaptic 

ribbon marker (CtBP2) in the OHC region, not only in young rat cochlea as previously 

reported, but also in the mature adult cochlea. The labeling was highly correlated with a 

~1:1 ratio, and our work further found CtBP2 puncta were associated with the swellings 

on type II afferents, revealing the site for synaptic transmission at this ribbon synapse. 

The organization of en passant and terminal swellings on the synaptic branches of type II 

afferents corresponded well with the ‘pearl-chain’ like structure of postsynaptic density 

proteins, discovered in this work (Martinez-Monedero et al., unpublished) and previously 

(Fujikawa et al., 2014). AMPA receptor mediated synaptic transmission was further 

supported by the blocking effect of the AMPA specific antagonist CP-465,022, as well as 

the fast kinetics observed for EPSCs, since kainate receptor mediated synaptic currents 
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are normally slow and have a time constant of decay similar to that of NMDA receptors 

(Lerma and Marques, 2013). 

The ‘empty-slot’ on postsynaptic densities of type II afferents leads to an 

interesting hypothesis that plasticity may occur at this normally weak synapse. Within the 

‘pearl-chain’ postsynaptic structure, nearly half of the slots were found without GluA2 or 

CtBP2. The extensive postsynaptic structure with weaker GluA2 immunolabeling, as well 

as less well-organized presynaptic vesicles surrounding the ribbons (Fuchs and Glowatzki, 

2015; Weisz et al., 2012) may explain the much weaker synaptic transmission at OHC-

type II afferents synapse, compared to the efficient IHC-type I afferents synaptic 

transmission (Glowatzki and Fuchs, 2002). The weak synaptic transmission is normally 

insufficient to activate type II afferents, and it may be interesting to study if the empty 

slots provide sites of receptor insertion, enabling experience-dependent changes of 

synaptic strength (for example, before and after acoustic damage). Tightly regulated 

AMPA receptor trafficking in and out of synaptic regions is crucial for synaptic plasticity 

in central neurons, and this process is NMDAR and calcium/calmodulin dependent 

(Anggono and Huganir, 2012; Kerchner and Nicoll, 2008). Currently there is no evidence 

for a role of NMDA receptors in type II afferents, but this may be worth exploring. On 

the other hand, our work demonstrated large responses of type II afferents mediated by 

P2X receptors, and such responses might occur during acoustic trauma. P2X receptors 

could account for substantial calcium entry into the cell upon activation. P2X receptor 

calcium permeability is comparable with that for NMDA receptors and is much higher 

than that for AMPA and kainate receptors (Pankratov et al., 2009). P2X receptors might 

regulate synaptic strength upon brain injury when ATP was released in a pathological 
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condition. The effect is still controversial due to other factors that may play a role in the 

process (Fujii, 2004; Yamazaki et al., 2003; Zhang et al., 2006). Some studies showed in 

central neurons that ATP could promote LTP probably due to the calcium permeability of 

P2X receptors (Sim et al., 2006; Wang et al., 2004), but other studies showed a negative 

effect of P2X receptor activation on LTP (Pankratov et al., 2002). The precise mechanism 

of P2X receptor mediated plasticity change is still elusive. 

 

5.2 Type II afferents as nociceptive fibers 

While synaptic transmission from each OHC triggers single vesicular release and 

causes an average EPSP of only ~4mV (Weisz et al., 2012), direct application of ATP 

strongly depolarized type II afferents (~30mV) that made the fiber cross the firing 

threshold (Weisz et al., 2009). ATP can be released into cochlear fluid after mechanical 

or hypotonic stress (even without outer hair cell ablation) in vitro (Zhao et al., 2005) or 

noise exposure in vivo (Munoz et al., 2001).  ATP concentration increase in the cochlea is 

not only caused by the damage to neural and non-neural structures (Wong and Ryan, 

2015), but also triggers active release of ATP in the organ of Corti by supporting cells. 

Experimental ablation of OHCs was shown to initiate ATP-dependent calcium waves in 

nearby Hensen’s cells that further triggers release of ATP through their connexin hemi-

channels, which lasts for tens of seconds (Anselmi et al., 2008; Gale et al., 2004; Lahne 

and Gale, 2010; Piazza et al., 2007). This enabled a large and long-lasting response 

caused by ATP recorded in type II afferents. Our work is the first to show the coexistence 

of the ionotropic P2X mechanism and the metabotropic P2Y pathway in type II cochlear 
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afferents. P2X2 receptors have been located to the postsynaptic junction in the OHC 

region in adult guinea pig (Housley et al., 1999), and P2Y2 receptors have been identified 

in a small population of spiral ganglion neurons but their identity was not confirmed 

anatomically (Huang et al., 2010).  It may be interesting to further investigate the 

subcellular localization of purinergic receptors in type II afferents. The distribution of 

these receptors may define a ‘nociceptive receptive field’ of type II afferents, that is, the 

frequency range of the cochlea spiral that is monitored by each type II afferent fiber. In 

our experiments, sequential cell ablation started from the 15
th

 OHC apical to the 

recording site which is usually located at the terminal of type II afferents’ spiral dendrite. 

Ablation of these OHCs almost never failed to induce responses in type II afferents, 

indicating that the ‘nociceptive receptive field’ at least covers 15 OHCs from the end of 

the fiber. In one study though, ablation of the 20
th

 OHC failed to induce responses but as 

the sharp needle advanced closer to the recording site, the damage induced responses 

were faithfully recorded from ~15
th

 to 1
st
 OHC ablation. It is known that apical to the 

synaptic region, type II afferents traveled at lower levels below the supporting cells with 

distance up to 0.5mm away from the OHC base (Berglund and Ryugo, 1987; Ginzberg 

and Morest, 1983; Perkins and Morest, 1975; Simmons and Liberman, 1988a). This part 

of fiber may not be close enough to sense the damage-induced ATP release or may not 

express the purinergic receptors. Most of the recordings in this study were made on type 

II afferents under row 3 OHCs. It is also unknown if type II afferents under different 

OHC rows may have varying size of damage induced responses, since row 3 is closer to 

the Hensen’s cells region which contains numerous supporting cells with damage induced 
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calcium waves and the potential to release great amounts of ATP (Anselmi et al., 2008; 

Gale et al., 2004; Lahne and Gale, 2010; Piazza et al., 2007). 

Before hearing onset, type I afferents also can be activated by periodic ATP 

released from inner supporting cells of Kolliker’s organ, generating spontaneous activity 

that is crucial for cochlear maturation (Tritsch et al., 2010; Tritsch et al., 2007; Wang et 

al., 2015). This process differs from the ATP-dependent activation of type II afferents in 

many aspects. First, purinergic signaling between inner supporting cells and the sensory 

neurons was only observed during a limited period in the immature cochlea. After the 

onset of hearing (around P12), Kolliker’s organ degenerated and the ATP-driven firing of 

auditory nerves ceased. Second, direct response to ATP was small and insufficent to 

activate type I afferents. Action potentials in type I afferents were triggered indirectly 

through synaptic transmission from activated IHCs (Tritsch et al., 2007; Wang et al., 

2015). In contrast, type II afferents are insensitive to synaptic transmission from OHCs 

but strongly activated by direct effects of ATP. These distinctions suggest that type I and 

type II afferents serve different functional roles. Type I afferents receive inputs from the 

auditory receptor neurons (IHCs) and convey acoustic information, whereas type II 

afferents detect trauma via purinergic sensitivity along more extensive dendrites. This is 

analogous to the somatosensory system that large-diameter, myelinated mechanosensory 

fibers provide analytical sensation, while small-caliber, unmyelinated C-fibers transmit 

pain. Similar to the purinergic C-fibers, type II afferents express P2X receptors and can 

be excited by ATP released during tissue damage (Cook and McCleskey, 2002). Type II 

afferents have low basal activity at normal conditions (Brown, 1994; Robertson, 1984), a 

property shared by nociceptors to respond promptly when algogenic agents are present. 
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Finally, KCNQ channels can serve as a potential target for silencing both type II afferents 

and somatosensory pain fibers (Brown and Passmore, 2009). 

To further strengthen this proposal, it is important to know if type I afferents also 

respond to cell damage, since P2X receptors are expressed in IHCs (Housley et al., 1999; 

Sugasawa et al., 1996) so that ATP released during cell damage might activate type I 

afferents by synaptic transmission from IHCs. However, based on current observations, 

cell-damage induced regenerative calcium wave spread in the OHC region along the 

cochlear spiral, but barely reached the IHC region (Lahne and Gale, 2010). This might be 

due to the separation by the tunnel of Corti that may serve as fluid buffer to attenuate the 

spreading of ATP. This question can be examined by the calcium imaging preparation 

described in Chapter 4. What is certain at this point is that the normally ‘silent’ type II 

afferents (Brown, 1994; Robertson, 1984) may have an increased activity during acoustic 

damage. This imbalance of type II vs type I inputs to the brainstem may underlie 

induction of central plasticity changes in pathological conditions such as tinnitus or 

hyperacusis. 

The activation of P2Y-KCNQ pathway may enhance excitability of type II 

afferents. UTP application reduced the current threshold for spikes to 78.2 ± 3.5% of that 

in normal conditions, therefore the effect was mild under these conditions. This is also 

true for somatosensory fibers. The KCNQ channel blocker XE991 itself did not change 

the membrane potential of primary afferents, showing a minimal effect when the 

afferents were at rest (Rivera-Arconada and Lopez-Garcia, 2006). However, the KCNQ 

effect is greater when cells are depolarized, as when Aδ fibers were activated by thermal 
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or mechanical stimulation (Brown and Passmore, 2009). Therefore the regulation of 

excitability may be manifested when type II afferents are activated during acoustic 

damage or under pathological conditions. Previous studies also reported that sensitivity to 

ATP is reduced in type II afferents after the onset of hearing (Weisz et al., 2009), 

consistent with the fact that loud sound is not usually painful to normal ears.  However, 

purinergic signaling in the cochlea is upregulated after noise exposure (Wang et al., 

2003), raising the possibility that type II afferents become more sensitive after damage, in 

part by increased sensitivity to ATP.   

 

5.3 Function of type II afferents 

Our results demonstrated that type II afferents can be activated by acoustic 

damage. In support of this finding, recent work has shown that damaging sound increased 

activity-dependent c-Fos expression in the granule cell region of the cochlear nucleus 

(Flores et al., 2015), the presumed target of type II afferents in the auditory brainstem 

identified by morphological studies (Benson and Brown, 2004; Brown et al., 1988a; 

Brown and Ledwith, 1990; Brown et al., 1988b; Hurd et al., 1999). In this study, a 

Vglut3-/- mouse line was used to silence the IHC-type I pathway whereas the type II 

afferents pathway may be preserved. However, these mice did not show avoidance to 

noise even with high sound pressure levels that damaged OHCs, therefore inconclusive 

for a role of type II afferents in sensing acoustic trauma (Flores et al., 2015). A previous 

study also showed lack of startle reflexes to sound in Vglut3-/- mice (Seal et al., 2008). 

More effort is needed to find out the proper behavioral paradigm that reveals the function 
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of type II afferent pathway. It also has been suggested that activation of type II afferents 

by noise could drive medial olivocochlear efferents to suppress cochlear sensitivity 

(Froud et al., 2015); although that hypothesis is difficult to reconcile with the fact that 

medial olivocochlear efferents have acoustic tuning and sensitivity similar to those of 

type I afferents (Liberman and Brown, 1986). This conclusion was controversial also 

because the peripherin-/- mice used in this study may affect both type II and type I 

afferents, at least found in early development (Hafidi et al., 1993). A more specific 

marker is desired to isolate the function of type II afferents. 

If type II afferents are nociceptors then that information should reach central 

targets mediating withdrawal, or nocifensive behavior, distinct from the standard auditory 

pathways through inferior colliculus to medial geniculate that serve cognitive hearing.  

Type I and type II axons arborize in parallel to the dorsal and ventral cochlear nuclei in 

the brainstem; but only type II endings are found within the small cell cap and granule 

cell layers that envelope the principal nuclei (Benson and Brown, 2004; Brown et al., 

1988a; Brown and Ledwith, 1990; Brown et al., 1988b; Hurd et al., 1999). Postsynaptic 

targets of type II afferents in this area were identified morphologically but without 

functional evidence. The granule cell domain is thought to be a site for multi-modal 

integration as well as the target of collaterals from olivocochlear efferents (Benson and 

Brown, 1990; Benson and Brown, 2004; Brown et al., 1988b; Brown et al., 1991; Paloff 

and Usunoff, 1992; Shore and Zhou, 2006; Wright and Ryugo, 1996; Zhan and Ryugo, 

2007).  Whether components of the small cell cap or granule cell layers project to central 

pain pathways remains to be determined.  The central pathway for type II afferents could 

be determined by the Cre-dependent virus tracing experiments, using a specific mouse 
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line recently discovered in the lab that labels type II afferents. Such mouse lines also 

enable selective manipulation of type II afferents, either by channel rhodopsin to examine 

their postsynaptic target in the auditory brainstem by electrophysiological recordings, or 

by the chemogenetic tools such as DREADDs (Designer Receptors Exclusively Activated 

by Designer Drugs) to study the behavioral consequence of activating or silencing the 

type II afferent pathway. 

Noise causes cochlear neuropathy and cell death, reducing cochlear output to the 

central auditory pathway (Hickox and Liberman, 2014; Wang et al., 2002). Paradoxically, 

noise exposure has been highly correlated with the ‘gain of function’ auditory pathologies 

(Anari et al., 1999; Auerbach et al., 2014; Ince et al., 1987; Kreuzer et al., 2012), such as 

tinnitus and hyperacusis, where phantom sound is perceived, or loud sound becomes 

painful despite acoustic responses of the auditory periphery is reduced. The elevated 

activity of damage-resistant type II afferents (Ryan et al., 1980; Spoendlin, 1971b), like 

the peripheral sensitization of somatic nociceptors in hyperalgesia(Treede et al., 1992), 

may contribute to the painful perception in hyperacusis or may be responsible for the 

induction of central hyperactivity in tinnitus (Auerbach et al., 2014; Eggermont, 2013). A 

reduction in KCNQ channel activity in central neurons has been shown to be important 

for tinnitus induction (Li et al., 2013), and systematic administration of KCNQ activators 

were found to prevent the development of tinnitus in mice (Kalappa et al., 2015; Li et al., 

2013) where type II afferents might be silenced among other targets.  It will be of interest 

to examine type II fibers in the adult cochlea to determine if synaptic connections, KCNQ 

channel expression, purinergic sensitivity, or other aspects of excitability undergo long-
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term changes after acoustic trauma, which may provide insights for therapeutic targets to 

treat hyperacusis and other sequelae of hearing loss.    
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