A MONTE CARLO SIMULATION ANALYSIS OF THE BEHAVIOR
OF A FINANCIAL INSTITUTION’S RISK

by
Hannah Folz

A thesis submitted to Johns Hopkins University in conformity with the requirements for
the degree of Master of Science in Engineering

Baltimore, Maryland
April, 2017

© 2017 Hannah Folz
All Rights Reserved
Abstract

For this exploration, Monte Carlo simulations are performed on a time series model of a financial institution to make assessments about outcome probabilities. Three different scenarios are being explored, Baseline, Adverse and Severely Adverse; to compare the effect that increasingly severe macroeconomic conditions have on financial risk. These will be visualized through the Monte Carlo simulations.

The Monte Carlo simulations are performed on an AR(1) model, \(Y_t = \alpha Y_{t-1} + \beta_1 x_{1_{t-1}} + \beta_2 x_{2_{t-1}} + e_t \), which is fitted using linear regression. Past data of the net loss of loans and leases of Bank of America is used in conjunction with macroeconomic data to determine the best combination of macroeconomic variables in addition to their parameters.

The Monte Carlo simulations serve as a powerful tool for quantifying the risk of adverse outcomes and for making assessments about the behavior of the time series risk model under the three different scenarios.

Advisor: Daniel Naiman
Preface

With deepest gratitude and appreciation, I would like to thank the following people for their support of this Masters Thesis.

Daniel Naiman – for encouraging me to challenge myself with my thesis, and for his unrelenting guidance with this.

Donniell Fishkind – for his commitment to my personal and intellectual growth throughout my time at Hopkins.

Jason Dulnev – for his inspiration to pursue this topic.

Family and friends – for their love, support and faith in me.
Table of Contents

Abstract .. ii
Preface .. iii
Table of Contents ... iv
List of Tables ... vi
List of Figures .. vii
Introduction ... 1

 Goal .. 1
 Background ... 1
 Methodology .. 2
 Applications ... 4
Linear Regression based on Macroeconomic Data ... 6

 Approach ... 6
 Timeframe ... 6
 Determining Theoretical Values for Y_t and Y_{t-1} ... 7
 Determining the Macroeconomic Variables and Coefficient Values used in the Linear
 Regression ... 9
 Evaluation of Dependent and Independent Variables Selection 14
 Assumptions and limitations ... 16
Monte Carlo Simulations .. 18

 AR(1) Model .. 18
 Residual .. 19
 Data under the three Scenarios .. 20
 Realizations – 15 Quarters of Simulated Data ... 24
 10,000 Trials for the Monte Carlo Simulations .. 25
 Additional Considerations .. 25
What If Analysis ... 27

 Analyses ... 27
 Threshold Analysis ... 27
List of Tables

Table 1: The derivation of Y_t and Y_{t-1} ... 8

Table 2: Historic estimates for macroeconomic variables x_1 through x_9 10

Table 3: Historic estimates for macroeconomic variables x_{10} through x_{18} 11

Table 4: Positive and negative correlations of the macroeconomic variables 12

Table 5: Estimates, standard error and p-value of Y_{t-1} and macroeconomic variables ... 13

Table 6: Macroeconomic data under the three scenarios, primarily extracted from DFAST 2017 ... 21

Table 7: New dataset for macroeconomic data – based on data from DFAST 2017, but with a consistent starting value ... 23

Table 8: Expected values of the minimum and maximum values for each scenario 33
List of Figures

Figure 1: Estimated probability that the net loss value in at least one of the quarters falls below the percentage of the starting net loss value.................................28

Figure 2: Estimated probability that the net loss value exceeds a given percentage of the starting net loss value in at least one of the quarters..........................28

Figure 3: Estimated probability that the net loss value exceeds a given percentage of the starting net loss value in at least five of the fifteen quarters.........................29

Figure 4: Estimated probability that the net loss value exceeds a given percentage of the starting net loss value in at least ten of the fifteen quarters30

Figure 5: Estimated probability that the net loss values of the first five quarters exceeds the percentage of the starting net loss value...31

Figure 6: Estimated probability that the net loss values of the first ten quarters exceeds the percentage of the starting net loss value...32

Figure 7: The first quartile value of net loss in every quarter ..33

Figure 8: The third quartile value of net loss in every quarter..34

Figure 9: The mean value of net loss in every quarter..34

Figure 10: The mean change of net loss values that occurs between each of the quarters ..35
Figure 11: The cumulative net loss values under the Baseline scenario for all realizations
..36

Figure 12: The cumulative net loss values under the Adverse Scenario for all realizations
..37

Figure 13: The cumulative net loss values under the Severely Adverse Scenario for all realizations
..37

Figure 14: How changing the variance of the residuals affects the first and third quartiles under the Baseline scenario
..38

Figure 15: How changing the variance of the residuals affects the first and third quartiles under the Adverse scenario
..39

Figure 16: How changing the variance of the residuals affects the first and third quartiles under the Severely Adverse scenario
..39
Introduction

Goal

By performing Monte Carlo simulations on a time series risk model, synthetic datasets can be analyzed in depth, enabling one to project future expected behavior and quantify the chance of a extreme event.

Background

Pre Provision Net Revenue (PPNR) models are used to solve for the anticipated net revenue prior to removing the expected losses incurred. They are the net revenue generated before loss provisions are adjusted for, and for a bank, net revenue = net interest income + non-interest income – expenses\(^1\). Due to the financial crisis, banks are required to perform two types of stress tests – the Comprehensive Capital Analysis and Review (CCAR) and Dodd-Frank Act Stress Test (DFAST). These stress tests measure losses banks expect to incur under baseline macroeconomic conditions, in addition to adverse and severely adverse macroeconomic conditions\(^2\). These will be referred to as Baseline, Adverse and Severely Adverse scenarios respectively. The financial risk models created through stress testing often involve two to three macroeconomic

variables. PPNR models are created based on time series data, and fitted using least-squares regression. It is important to note that the time series regressions are not modeled at the granular level of individual accounts, but rather, by examining the expected revenue, losses or portfolio value of a large bank or several banks. For the purposes of this exploration, the dependent variable is the net losses to the loans and leases of Bank of America.

When creating these models, and using them to project the anticipated net losses, several conditions are assumed to hold true. These include order correlation, stationarity, homoscedasticity, collinearity, normality of residuals, independence of residuals, amongst others. It is possible to test whether these conditions actually hold true, to confirm that the assumptions of the model indeed hold. For the purposes of this paper, it will be assumed that these conditions hold, and limitations of this assumption will be discussed throughout, as the focus of the exploration is on using a fitted model to quantify risk under various scenarios. This endeavor involves the investigation of recurring patterns of datasets, so that conclusions about projected outcomes based on three different scenarios – the Baseline, Adverse and Severely Adverse scenarios – can be drawn.

Methodology

Monte Carlo simulations are performed to create realizations, which are datasets of 15 quarters. Through this, 10,000 trials of randomly simulated data are generated under three different scenarios.
The focus is on AR(1) processes, and thus the following notation will be used for the model: \(Y_t = \alpha Y_{t-1} + \beta_1 x_{1,t-1} + \beta_2 x_{2,t-1} + e_t \). The macroeconomic variables, \(x_{1,t-1} \) and \(x_{2,t-1} \), are the independent variables, while net loss, \(Y_{t-1} \), is the dependent variable. The coefficients \(\alpha \), \(\beta_1 \) and \(\beta_2 \) are constants that are fitted using historical data. Finally \(e_t \), is a random normal variable with mean \(= 0 \) and variance \(= \sigma^2 \).

In order to create as accurate a model as possible, the historical data of 18 quarters from March 2003 (Q1 2003) to June 2007 (Q2 2007) of net loss will be used, so that the best performing combination of macroeconomic variables, \(x_{1,t-1} \) and \(x_{2,t-1} \) can be identified. Most of the macroeconomic conditions are derived from the DFAST 2017 report by the Federal Reserve Bank of St. Louis, and the net loss data is derived from the Federal Deposit Insurance Corporation (FDIC). Using a linear regression, the respective weights, \(\beta_1 \) and \(\beta_2 \), and the weight \(\alpha \) of \(Y_{t-1} \) will be fitted. The standard deviation of \(e_t \) is also fitted, as it is the residual standard error. By performing a linear regression, the combination of two macroeconomic variables and \(Y_{t-1} \), which has the strongest fit to the 18 quarters of historic data, will be identified – in addition to the values of \(\alpha \), \(\beta_1 \) and \(\beta_2 \) and \(e_t \), which result in this strong fit.

Having found an AR(1) model with a good fit against the historic dataset of 18 quarters, 10,000 trials of randomly simulated data will be generated under three scenarios. In the Baseline, Adverse and Severely Adverse scenarios, the previously found values of \(\alpha \), \(\beta_1 \) and \(\beta_2 \) serve as constants – they are dynamic values, which are fixed.
The value of e_t will be randomly generated for every quarter in every realization under each scenario – as a random normal variable, where the mean is 0, but the standard deviation is the previously computed value for the residual standard error. For each of the scenarios, differing values for the macroeconomic variables will be used, since they are future projected values, ranging from September 2016 (Q3 2016) to March 2020 (Q1 2020). Thus the value of Y_{t-1} in the first quarter, September 2016, is fixed, and the future values will be changing, and calculated based on the previous Y_t results (in the $t+1$ quarter, Y_t becomes Y_{t-1}). The dynamics of the system describing the evolution of net loss (where net loss is taken as driven by the macroeconomic variables which take prescribed, forecasted values) are assumed to henceforth apply in the future. Further analysis will be conducted on each realization.

Applications

This exploration of time series models is important because a lack of estimating future projected net losses can impact financial institutions and therefore also their clients in a negative way. Being able to project expected net losses under a variety of differing macroeconomic scenarios creates feelings of security and safety, which are needed in today’s economy. Mandated stress testing, with DFAST and CCAR regulations, was implemented in response to the financial crisis – as creating financial risk models that take stress testing into consideration are seen as beneficial to both the financial institution and its clients. There are also significant outcomes for other stakeholders, such as investors or anyone working in the real estate domain.
Although the time series model created in this exploration applies to a particular bank and the specific Y_t variable of net losses on loans and leases, the methodology can be extracted and applied in other contexts as well. In particular, the occurrence analysis is a powerful tool for identifying how likely rare events are, as it involves measuring in how many realizations (which is one set of 15 quarters in the simulation) a certain threshold value is surpassed. Estimating values for the cumulative net loss, mean net loss and the first and third quartiles of the net loss under the three scenarios, is a powerful comparative tool to see what effect a change in the macroeconomic environment has. Other industries – such as the insurance, healthcare or tourism industry – could also benefit from analyzing how changes in the macroeconomic environment affect their clients’ behavior and therefore their net revenues.
Linear Regression based on Macroeconomic Data

Approach

To determine which combination of macroeconomic variables results in the best fit for the financial risk model, the LM function (Linear Model) in R will be applied, to find a linear regression of macroeconomic variables in combination with Y_{t-1}, which is the value of the net loss on loans and leases of a bank.

Timeframe

The timeframe ranges from March 2003 (Q1 2003) to June 2007 (Q2 2007) inclusively. The data is computed quarterly, and thus involves 18 data points. The timeframe is restricted to this range of historic observations, as it is before the financial crisis and thus abides by normal, expected macroeconomic conditions. Both the dependent variable (the net loss incurred) and the independent variables (the macroeconomic conditions) perform and interact in an expected, understandable way. Data thereafter – of both the macroeconomic conditions, and therefore also of the dependent variable, net loss – is affected by the financial crisis of 2008. Thus the time period of 18 quarterly data points from Q1 2003 until Q2 2007 provides a reasonable environment from which to draw conclusions about expected macroeconomic conditions, which is the focus of this exploration.
Determining Theoretical Values for \(Y_t \) and \(Y_{t-1} \)

As mentioned previously, \(Y_{t-1} \) is defined as the value of the net loss on loans and leases at time \(t-1 \), which is used as part of the AR(1) model to find a value for \(Y_t \), the net loss at time \(t \). The values of \(Y_t \) are derived from the “Net Loss to Average Total Loans and Leases” for Bank of America from the Federal Financial Institutions Examination Council (FFIEC) report\(^3\). The value for “Net Loss to Average Total LN&LS” for Bank of America was extracted from FFIEC’s Summary Ratios’ page. For example, for March 2003 (Q1 2003), the value is 0.6%. This is “Net Loss as a percent of Average Total Loans and Leases”, and is defined as “Gross loan and lease charge-off, less gross recoveries (includes allocated transfer risk reserve charge-off and recoveries), divided by average total loans and leases”\(^4\). This percentage was converted to a decimal: 0.006. Next, the value of “Net Loans and Leases” was found via FDIC’s Balance Sheet $ page. This is defined as “Gross loans and leases, less allowance and reserve and unearned income”\(^5\). The value is $327,629,000 for Q1 2003, and to calculate \(Y_t \), the decimal value of “Net Loss to Average Total LN&LS” was multiplied by “Net Loans and

Leases”: \(0.006 \times 327,629,000 = 1,965,774\). These calculations were performed on the historic dataset to acquire the values of \(Y_t\) as Table 1 shows.

Table 1: The derivation of \(Y_t\) and \(Y_{t-1}\)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Net Loss to Average Total LN&LS (under summary ratios) (%)</th>
<th>Net Loss to Average Total LN&LS (under summary ratios) (decimal)</th>
<th>Net Loans and Leases (under balance sheet $)</th>
<th>(Y_{t-1})</th>
<th>(Y_t) (Net Loss to Average Total LN&LS * Net Loans and Leases) ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4 2002</td>
<td>0.8</td>
<td>0.008</td>
<td>327,191,000</td>
<td>–</td>
<td>2,617,528.00</td>
</tr>
<tr>
<td>Q1 2003</td>
<td>0.6</td>
<td>0.006</td>
<td>327,629,000</td>
<td>2,617,528.00</td>
<td>1,965,774.00</td>
</tr>
<tr>
<td>Q2 2003</td>
<td>0.52</td>
<td>0.0052</td>
<td>347,235,000</td>
<td>1,965,774.00</td>
<td>1,805,622.00</td>
</tr>
<tr>
<td>Q3 2003</td>
<td>0.49</td>
<td>0.0049</td>
<td>351,060,480</td>
<td>1,805,622.00</td>
<td>1,720,196.35</td>
</tr>
<tr>
<td>Q4 2003</td>
<td>0.44</td>
<td>0.0044</td>
<td>346,570,475</td>
<td>1,720,196.35</td>
<td>1,524,910.09</td>
</tr>
<tr>
<td>Q1 2004</td>
<td>0.3</td>
<td>0.003</td>
<td>350,268,428</td>
<td>1,524,910.09</td>
<td>1,050,805.28</td>
</tr>
<tr>
<td>Q2 2004</td>
<td>0.27</td>
<td>0.0027</td>
<td>349,841,443</td>
<td>1,050,805.28</td>
<td>944,571.90</td>
</tr>
<tr>
<td>Q3 2004</td>
<td>0.21</td>
<td>0.0021</td>
<td>362,183,994</td>
<td>944,571.90</td>
<td>760,586.39</td>
</tr>
<tr>
<td>Q4 2004</td>
<td>0.19</td>
<td>0.0019</td>
<td>378,758,837</td>
<td>760,586.39</td>
<td>719,641.79</td>
</tr>
<tr>
<td>Q1 2005</td>
<td>0.14</td>
<td>0.0014</td>
<td>393,749,701</td>
<td>719,641.79</td>
<td>551,249.58</td>
</tr>
<tr>
<td>Q2 2005</td>
<td>0.1</td>
<td>0.001</td>
<td>504,741,536</td>
<td>551,249.58</td>
<td>504,741.54</td>
</tr>
<tr>
<td>Q3 2005</td>
<td>0.16</td>
<td>0.0016</td>
<td>529,667,314</td>
<td>504,741.54</td>
<td>847,467.70</td>
</tr>
<tr>
<td>Q4 2005</td>
<td>0.16</td>
<td>0.0016</td>
<td>547,121,048</td>
<td>847,467.70</td>
<td>875,393.68</td>
</tr>
<tr>
<td>Q1 2006</td>
<td>0.1</td>
<td>0.001</td>
<td>572,299,422</td>
<td>875,393.68</td>
<td>572,299.42</td>
</tr>
<tr>
<td>Q2 2006</td>
<td>0.08</td>
<td>0.0008</td>
<td>613,023,947</td>
<td>572,299.42</td>
<td>490,419.16</td>
</tr>
<tr>
<td>Q3 2006</td>
<td>0.09</td>
<td>0.0009</td>
<td>618,253,460</td>
<td>490,419.16</td>
<td>556,428.11</td>
</tr>
<tr>
<td>Q4 2006</td>
<td>0.1</td>
<td>0.001</td>
<td>634,494,712</td>
<td>556,428.11</td>
<td>634,494.71</td>
</tr>
<tr>
<td>Q1 2007</td>
<td>0.13</td>
<td>0.0013</td>
<td>641,844,279</td>
<td>634,494.71</td>
<td>834,397.56</td>
</tr>
<tr>
<td>Q2 2007</td>
<td>0.13</td>
<td>0.0013</td>
<td>663,774,609</td>
<td>834,397.56</td>
<td>862,906.99</td>
</tr>
</tbody>
</table>

The values of \(Y_{t-1}\) are the values of net loss of the previous time period. A key modeling goal is to use the value of \(Y_{t-1}\) together with the macroeconomic variable values available at time \(t-1\) to predict the net loss at time \(t\).
Determining the Macroeconomic Variables and Coefficient Values used in the Linear Regression

The combination of macroeconomic variables to be used is determined by minimizing the Akaike Information Criterion (AIC), which is calculated using the residual sum of squares in a regression. It captures the trade-off between the accuracy of the fit and the complexity of the model creating this fit (with the goal of creating an accurate fit with little complexity). In this situation, the issue of how many variables to include in the model is avoided by forcing the number of macroeconomic variables included to be two. Hence, the AIC reduces to simply looking at a residual sum of squares.

The macroeconomic variables that are tested include Real GDP Growth (x_1), Nominal GDP Growth (x_2), Real Disposable Income Growth (x_3), Nominal Disposable Income Growth (x_4), Unemployment Rate (x_5), CPI Inflation Rate (x_6), 3-Month Treasury Rate (x_7), 5-Year Treasury Rate (x_8), 10-Year Treasury Rate (x_9), BBB Corporate Yield (x_{10}), Mortgage Rate (x_{11}), Prime Rate (x_{12}), Dow Jones Total Stock Market Index (x_{13}), House Price Index (x_{14}), Commercial Real Estate Price Index (x_{15}), Market Volatility Index (x_{16}), Gross National Product (x_{17}), and Effective Federal Funds Rate (x_{18}).

The Dow Jones Total Stock Market Index was derived from the 2016 DFAST report, since it was more precise (with five rather than four significant figures)\(^6\). Gross National Product and Effective Federal Funds Rate values were derived from the Federal

Reserve Bank of St. Louis (FRED)7,8. The remaining 15 macroeconomic variables were extracted from the DFAST 2017 report9. Tables 2 and 3 display the estimates used for each of the macroeconomic variables for determining the best combination and fit for the financial risk model.

Table 2: Historic estimates for macroeconomic variables \textit{x1} through \textit{x9}

<table>
<thead>
<tr>
<th>Time Period</th>
<th>\textit{x1}</th>
<th>\textit{x2}</th>
<th>\textit{x3}</th>
<th>\textit{x4}</th>
<th>\textit{x5}</th>
<th>\textit{x6}</th>
<th>\textit{x7}</th>
<th>\textit{x8}</th>
<th>\textit{x9}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4 2002</td>
<td>0.3</td>
<td>2.4</td>
<td>1.9</td>
<td>3.8</td>
<td>5.9</td>
<td>2.4</td>
<td>1.3</td>
<td>3.1</td>
<td>4.3</td>
</tr>
<tr>
<td>Q1 2003</td>
<td>2.1</td>
<td>4.6</td>
<td>1.1</td>
<td>4.0</td>
<td>5.9</td>
<td>4.2</td>
<td>1.2</td>
<td>2.9</td>
<td>4.2</td>
</tr>
<tr>
<td>Q2 2003</td>
<td>3.8</td>
<td>5.1</td>
<td>5.9</td>
<td>6.3</td>
<td>6.1</td>
<td>-0.7</td>
<td>1.0</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Q3 2003</td>
<td>6.9</td>
<td>9.3</td>
<td>6.7</td>
<td>9.3</td>
<td>6.1</td>
<td>3.0</td>
<td>0.9</td>
<td>3.1</td>
<td>4.4</td>
</tr>
<tr>
<td>Q4 2003</td>
<td>4.8</td>
<td>6.8</td>
<td>6.1</td>
<td>1.6</td>
<td>3.3</td>
<td>5.8</td>
<td>1.5</td>
<td>0.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Q1 2004</td>
<td>2.3</td>
<td>5.9</td>
<td>2.9</td>
<td>6.1</td>
<td>5.7</td>
<td>3.4</td>
<td>0.9</td>
<td>3.0</td>
<td>4.1</td>
</tr>
<tr>
<td>Q2 2004</td>
<td>3.0</td>
<td>6.6</td>
<td>4.0</td>
<td>7.0</td>
<td>5.6</td>
<td>3.2</td>
<td>1.1</td>
<td>3.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Q3 2004</td>
<td>3.7</td>
<td>6.3</td>
<td>4.1</td>
<td>2.1</td>
<td>4.5</td>
<td>5.4</td>
<td>2.6</td>
<td>1.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Q4 2004</td>
<td>3.5</td>
<td>6.4</td>
<td>5.1</td>
<td>8.5</td>
<td>5.4</td>
<td>4.4</td>
<td>2.0</td>
<td>3.5</td>
<td>4.3</td>
</tr>
<tr>
<td>Q1 2005</td>
<td>4.3</td>
<td>8.3</td>
<td>-3.8</td>
<td>-1.8</td>
<td>5.3</td>
<td>2.0</td>
<td>2.5</td>
<td>3.9</td>
<td>4.4</td>
</tr>
<tr>
<td>Q2 2005</td>
<td>2.1</td>
<td>5.1</td>
<td>3.2</td>
<td>6.0</td>
<td>5.1</td>
<td>2.7</td>
<td>2.9</td>
<td>3.9</td>
<td>4.2</td>
</tr>
<tr>
<td>Q3 2005</td>
<td>3.4</td>
<td>7.3</td>
<td>2.1</td>
<td>6.6</td>
<td>5.0</td>
<td>6.2</td>
<td>3.4</td>
<td>4.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Q4 2005</td>
<td>2.3</td>
<td>5.4</td>
<td>3.4</td>
<td>6.6</td>
<td>5.0</td>
<td>3.8</td>
<td>3.8</td>
<td>4.4</td>
<td>4.6</td>
</tr>
<tr>
<td>Q1 2006</td>
<td>4.9</td>
<td>8.2</td>
<td>9.5</td>
<td>11.5</td>
<td>4.7</td>
<td>2.1</td>
<td>4.4</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>Q2 2006</td>
<td>1.2</td>
<td>4.5</td>
<td>0.6</td>
<td>3.7</td>
<td>4.6</td>
<td>3.7</td>
<td>4.7</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>Q3 2006</td>
<td>0.4</td>
<td>3.2</td>
<td>1.2</td>
<td>4.1</td>
<td>4.6</td>
<td>3.8</td>
<td>4.9</td>
<td>4.8</td>
<td>5.0</td>
</tr>
<tr>
<td>Q4 2006</td>
<td>3.2</td>
<td>4.6</td>
<td>5.3</td>
<td>4.6</td>
<td>4.4</td>
<td>-1.6</td>
<td>4.9</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>Q1 2007</td>
<td>0.2</td>
<td>4.8</td>
<td>2.6</td>
<td>6.5</td>
<td>4.5</td>
<td>4.0</td>
<td>5.0</td>
<td>4.6</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Table 3: Historic estimates for macroeconomic variables x_{10} through x_{18}

<table>
<thead>
<tr>
<th>Time Period</th>
<th>x_{10}</th>
<th>x_{11}</th>
<th>x_{12}</th>
<th>x_{13}</th>
<th>x_{14}</th>
<th>x_{15}</th>
<th>x_{16}</th>
<th>x_{17}</th>
<th>x_{18}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4 2002</td>
<td>7.0</td>
<td>6.1</td>
<td>4.5</td>
<td>8,343.0</td>
<td>129.0</td>
<td>42.6</td>
<td>11,280.2</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>Q1 2003</td>
<td>6.5</td>
<td>5.8</td>
<td>4.3</td>
<td>8,051.9</td>
<td>134.1</td>
<td>34.7</td>
<td>11,434.5</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>Q2 2003</td>
<td>5.7</td>
<td>5.5</td>
<td>4.2</td>
<td>9,342.4</td>
<td>137.0</td>
<td>29.1</td>
<td>11,689.1</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>Q3 2003</td>
<td>6.0</td>
<td>6.1</td>
<td>4.0</td>
<td>9,649.7</td>
<td>141.0</td>
<td>22.7</td>
<td>11,907.4</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Q4 2003</td>
<td>5.8</td>
<td>5.9</td>
<td>4.0</td>
<td>10,799.6</td>
<td>145.9</td>
<td>21.1</td>
<td>12,097.3</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Q1 2004</td>
<td>5.5</td>
<td>5.6</td>
<td>4.0</td>
<td>11,039.4</td>
<td>151.6</td>
<td>21.6</td>
<td>12,265.3</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Q2 2004</td>
<td>6.1</td>
<td>6.2</td>
<td>4.0</td>
<td>11,144.6</td>
<td>157.9</td>
<td>20.0</td>
<td>12,462.4</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>Q3 2004</td>
<td>5.8</td>
<td>5.9</td>
<td>4.4</td>
<td>10,893.8</td>
<td>163.2</td>
<td>19.3</td>
<td>12,631.2</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>Q4 2004</td>
<td>5.4</td>
<td>5.7</td>
<td>4.9</td>
<td>11,951.5</td>
<td>169.2</td>
<td>176.0</td>
<td>12,916.6</td>
<td>2.16</td>
<td></td>
</tr>
<tr>
<td>Q1 2005</td>
<td>5.4</td>
<td>5.8</td>
<td>5.4</td>
<td>11,637.3</td>
<td>177.1</td>
<td>176.0</td>
<td>13,065.8</td>
<td>2.63</td>
<td></td>
</tr>
<tr>
<td>Q2 2005</td>
<td>5.5</td>
<td>5.7</td>
<td>5.9</td>
<td>11,856.7</td>
<td>184.5</td>
<td>182.0</td>
<td>13,307.8</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>Q3 2005</td>
<td>5.5</td>
<td>5.8</td>
<td>6.4</td>
<td>12,282.9</td>
<td>190.2</td>
<td>187.0</td>
<td>13,454.9</td>
<td>3.62</td>
<td></td>
</tr>
<tr>
<td>Q4 2005</td>
<td>5.9</td>
<td>6.2</td>
<td>7.0</td>
<td>12,497.2</td>
<td>194.8</td>
<td>195.0</td>
<td>13,724.3</td>
<td>4.16</td>
<td></td>
</tr>
<tr>
<td>Q1 2006</td>
<td>6.0</td>
<td>6.3</td>
<td>7.4</td>
<td>13,121.6</td>
<td>198.0</td>
<td>200.0</td>
<td>13,870.2</td>
<td>4.59</td>
<td></td>
</tr>
<tr>
<td>Q2 2006</td>
<td>6.5</td>
<td>6.6</td>
<td>7.9</td>
<td>12,808.9</td>
<td>197.1</td>
<td>209.0</td>
<td>13,965.6</td>
<td>4.99</td>
<td></td>
</tr>
<tr>
<td>Q3 2006</td>
<td>6.4</td>
<td>6.5</td>
<td>8.3</td>
<td>13,322.5</td>
<td>195.8</td>
<td>219.0</td>
<td>14,133.9</td>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td>Q4 2006</td>
<td>6.1</td>
<td>6.2</td>
<td>8.3</td>
<td>14,215.8</td>
<td>195.8</td>
<td>217.0</td>
<td>14,301.9</td>
<td>5.24</td>
<td></td>
</tr>
<tr>
<td>Q1 2007</td>
<td>6.1</td>
<td>6.2</td>
<td>8.3</td>
<td>14,354.0</td>
<td>193.3</td>
<td>227.0</td>
<td>14,512.9</td>
<td>5.26</td>
<td></td>
</tr>
</tbody>
</table>

It is important to note that the time periods range from Q4 2002 to Q1 2007, rather than Q1 2003 to Q2 2007, since x_{1t-1} and x_{2t-1} are utilized in the model. Also, the data being tested for the best fit is not differenced. The benefit of not differencing the data is that none of the 18 data points is being forfeited, and the non-differenced data results in better fits, with lower AIC values.

All combinations of Y_{t-1} with two of the 18 different macroeconomic variables will be tested to obtain the lowest AIC value and therefore best fit. Two limitations are imposed: the model requires that Y_{t-1} will be used with exactly two macroeconomic variables. Secondly, by using constrained least squares, the approach requires some macroeconomic variables to have a positive correlation with net loss and others to have a negative correlation with net loss, which will ensure that the model has a meaningful fit.
since it is derived from only 18 data points. The decision about a positive or negative correlation is based on how the variables are expected to correlate with net loss, since economists predict how the market will react to changing macroeconomic factors based on historic happenings and trends. For each combination of macroeconomic variables under consideration, the best fit to the data is obtained using constrained least squares, where the constraint is imposed on the signs of the macroeconomic variables’ regression coefficients to ensure consistency with the signs of the assumed correlations. Table 4 captures whether a positive or negative correlation is mandated.

Table 4: Positive and negative correlations of the macroeconomic variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable Name</th>
<th>Correlation with Y_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Real GDP Growth</td>
<td>Negative</td>
</tr>
<tr>
<td>x_2</td>
<td>Nominal GDP Growth</td>
<td>Negative</td>
</tr>
<tr>
<td>x_3</td>
<td>Real Disposable Income Growth</td>
<td>Negative</td>
</tr>
<tr>
<td>x_4</td>
<td>Nominal Disposable Income Growth</td>
<td>Negative</td>
</tr>
<tr>
<td>x_5</td>
<td>Unemployment Rate</td>
<td>Positive</td>
</tr>
<tr>
<td>x_6</td>
<td>CPI Inflation Rate</td>
<td>Positive</td>
</tr>
<tr>
<td>x_7</td>
<td>Three Month Treasury Rate</td>
<td>Positive</td>
</tr>
<tr>
<td>x_8</td>
<td>Five Year Treasury Rate</td>
<td>Positive</td>
</tr>
<tr>
<td>x_9</td>
<td>Ten Year Treasury Rate</td>
<td>Positive</td>
</tr>
<tr>
<td>x_{10}</td>
<td>BBB Corporate Yield</td>
<td>Positive</td>
</tr>
<tr>
<td>x_{11}</td>
<td>Mortgage Rate</td>
<td>Positive</td>
</tr>
<tr>
<td>x_{12}</td>
<td>Prime Rate</td>
<td>Positive</td>
</tr>
<tr>
<td>x_{13}</td>
<td>Dow Jones Total Stock Market Index</td>
<td>Negative</td>
</tr>
<tr>
<td>x_{14}</td>
<td>House Price Index</td>
<td>Negative</td>
</tr>
<tr>
<td>x_{15}</td>
<td>Commercial Real Estate Price Index</td>
<td>Negative</td>
</tr>
<tr>
<td>x_{16}</td>
<td>Market Volatility Index</td>
<td>Negative</td>
</tr>
<tr>
<td>x_{17}</td>
<td>Gross National Product</td>
<td>Negative</td>
</tr>
<tr>
<td>x_{18}</td>
<td>Effective Federal Funds Rate</td>
<td>Positive</td>
</tr>
</tbody>
</table>

A negative correlation with Y indicates that as the value of the variable increases, the net loss on loans and leases for Bank of America is expected to decrease. Similarly,
an increase in the value of a variable with a positive correlation with Y results in an expected increase in the net loss on loans and leases for Bank of America.

The format of the AR(1) regression is inputted into R:

$$Y_t = \alpha Y_{t-1} + \beta_1 x_{1, t-1} + \beta_2 x_{2, t-1} + e_t.$$ No additional randomly generated variable should be added to this approximation of α, β_1 and β_2 – and thus $e_t = 0$ for this calculation, as the objectively best values for α, β_1 and β_2 are being solved for. Randomness should not interfere with what should be a purposeful selection of macroeconomic variables and values for the coefficients. A non-zero value of e_t will later be applied in the Monte Carlo simulations, which utilize these values of α, β_1 and β_2 to create the datasets.

Having performed the regression, the lowest residual standard error is found when exactly two macroeconomic variables and Y_{t-1} are used. This approximation results in $Y \sim Y_{t-1} + x_2 + x_5 - 1$, where $Y_{t-1} = Y_{t-1}$, and $x_2 =$ Nominal GDP Growth at $t-1$, and $x_5 =$ Unemployment Rate at $t-1$. The second-lowest AIC value is $AIC = 639475.3$ for Y_{t-1}, Unemployment Rate at $t-1$ and Prime Rate at $t-1$, but there is no benefit to choosing these variables over those with the better fit. Table 5 details the specifics of the chosen variables.

Table 5: Estimates, standard error and p-value of Y_{t-1} and macroeconomic variables

| Variable | Variable Name | Estimate | Std. Error | t value | Pr(>|t|) |
|----------|-------------------------|-----------|-------------|---------|---------|
| Y_{t-1} | Net loss on loans and leases | 6.58×10^{-1} | 8.98×10^{-2} | 7.33 | 0.00000251 |
| x_2 | Nominal GDP Growth | -2.61×10^{4} | 2.68×10^{4} | 0.97 | 0.346 |
| x_5 | Unemployment Rate | 7.83×10^{4} | 4.30×10^{4} | 1.82 | 0.0888 |
Here, the residual standard error is 164,700 on 15 degrees of freedom. Thus the standard deviation of e_t is set to $\sigma = 164,700$. The multiple R-squared value is 0.9799, and the adjusted R-squared value is 0.9759. The F-statistic is 244.1 on 3 and 15 degrees of freedom, and the p-value is 5.98×10^{-13}. However, it is important to note that the p-value of $x2$ is high and insignificant. With this, there is a potential for future research: to explore whether using different macroeconomic variables would result in qualitatively different conclusions.

Table 5 demonstrates that $x1_{t-1} = \text{Nominal GDP Growth}$, and $\beta1 = -2.612 \times 10^4$. In addition, $x2_{t-1} = \text{Unemployment Rate}$, and $\beta2 = 7.834 \times 10^4$. Also, $\alpha = 6.580 \times 10^{-1}$ and $e_t = N\left(0, 164700\right)$. The model is $\text{Net Loss}_t = 6.580 \times 10^{-1} \times \text{Net Loss}_{t-1} - 2.612 \times 10^4 \times \text{Nominal GDP Growth}_{t-1} + 7.834 \times 10^4 \times \text{Unemployment Rate}_{t-1} + N\left(0, 164,700^2\right)$.

Evaluation of Dependent and Independent Variables Selection

The selection of Nominal GDP Growth and Unemployment Rate is reasonable because of the comparatively low AIC value and the historic trends. The 2017 DFAST report defines the U.S. Nominal GDP Growth as the “percent change in nominal gross domestic product, expressed at an annualized rate”, and the U.S. Unemployment Rate as the “quarterly average of seasonally-adjusted monthly data for the unemployment rate of the civilian, noninstitutional population of age 16 years and older”\(^{10}\). Nominal GDP

\(^{10}\) "2017 Supervisory Scenarios for Annual Stress Tests Required under the Dodd-Frank Act Stress Testing Rules and the Capital Plan Rule." DFAST. Board of Governors of the
Growth is assigned a negative correlation with Y_t, because when nominal GDP growth increases, the nation as a whole has more money to spend, which means that the average individual has more money to spend. This means that they are less likely to default on their loans, which results in a decrease in the net loss on loans and leases of Bank of America. Unlike Nominal GDP Growth, Unemployment Rate is assigned a positive correlation with Y_t, because when the unemployment rate increases, there are generally more people lacking an income, who are more likely to be taking out loans and defaulting on them. This means that an increase in unemployment rate results in the net loss on loans and leases of Bank of America increasing as well.

The selection of the product of Net Loss to Average Total LN & LS of Bank of America and Net Loans and Leases as a dependent variable is also beneficial as Y captures the product of the net loss of the loans and leases and the value of the portfolio. The values of the variable Y are historically negatively and positively correlated with Nominal GDP Growth and Unemployment Rate respectively. They are being used as possible definitions of default.

Furthermore, the focus is on the net loss value of a single large bank, rather than on a blended dataset of a group of banks, to avoid introducing unnecessary uncontrollable or immeasurable factors, such as ensuring that the net losses of all of those banks follow a similar enough trend that they can be aggregated into one dataset. Bank of America, in particular, is chosen, because it is one of the ten largest banks in terms of market capitalization (it is the fourth largest globally, and third largest in the US after JP Morgan

Chase & Co and Wells Fargo & Co) and in January 2017, its market capitalization is estimated to be $228.778 billion11.

Assumptions and limitations

It is important to recognize assumptions that are made in the model creation process. An important assumption being made is that net loss is not driving or affecting the macroeconomic variables. Rather, the assumption that the macroeconomic variables impact the net loss is being modeled.

Additionally, a limitation of this exploration is that combinations of macroeconomic variables shifted by one, two or even more quarterly time intervals are not being considered. The fit of the macroeconomic variables is based on how the Nominal GDP Growth at time $t-1$ and the Unemployment Rate at time $t-1$ interact with Y_{t-1} and with one another. It is possible that combining different macroeconomic variables at, for example, time $t-1$ and time $t-2$, could create a fit with a lower residual standard error. Yet such a shift would also result in the loss of one or more data points (similar to exploring AR(2) or AR(3) models), and perhaps result in over-fitting. Nonetheless, although the chosen macroeconomic variables may not result in the absolutely best combination (with the lowest AIC value), the focus of this exploration is on the application of the model in Monte Carlo simulations.

Additional assumptions are made regarding the historic dataset utilized in the creation of the model. The dataset consists of only 18 observations: 18 consecutive data points of quarterly data extracted primarily from the 2017 DFAST report (for the independent variables) and the FFIEC report (for the dependent variable). It is being assumed that this dataset accurately and comprehensively captures the relationships between the independent variables and dependent variable of future scenarios, and that over-fitting is not occurring. Furthermore, the dataset is assumed to capture expected, baseline data in an environment where the independent variables are predictable and normal, and the dependent variable also does not exhibit effects of an abnormal. These are significant assumptions, and, moving forward, assessing whether these assumptions are valid could be addressed by someone in future research. That said, the limitation on the size of the available dataset is challenging to overcome in any meaningful way.

Finally, it is also important to note that the macroeconomic data used when selecting the most favorable combination of macroeconomic variables is not identical to the macroeconomic data, which will be used in the Monte Carlo simulations. This is because the Monte Carlo simulations will be performed on future quarters with nonexistent net loss data. Nonetheless, the focus of the exploration is not the selection of the macroeconomic variables, but the Monte Carlo simulations performed on the AR(1) model built by using them.
Monte Carlo Simulations

AR(1) Model

An autoregressive model of order 1 (AR(1)) is a time series model in which the order refers to the number of time units into the past for which variables are used to predict one step into the future using a linear predictor. The general form of the AR(1) model being applied here is: $Y_t = \alpha Y_{t-1} + \beta_1 x_{1,t-1} + \beta_2 x_{2,t-1} + e_t$.

Although $x_{1,t-1}$ and $x_{2,t-1}$ involve indexes explaining that they too refer to the previous quarter’s value, both β_1 and β_2, and $x_{1,t-1}$ and $x_{2,t-1}$ serve as constants in this equation. After all, the fixed values for α, β_1 and β_2 for the Nominal GDP Growth and the Unemployment Rate have been determined. The values for the Nominal GDP Growth and Unemployment Rate under all three scenarios are deterministic values, as they are determined by the DFAST 2017 report. Their evolution is deterministic, rather than random, as it is based on real data and determined deliberately. The multiplication of the fixed coefficient values by the fixed macroeconomic variable values results in the term $\beta_1 x_{1,t-1} + \beta_2 x_{2,t-1}$ serving as a constant.
Residual

The final part of the AR(1) model, $Y_t = \alpha Y_{t-1} + \beta_1 x_{1,t-1} + \beta_2 x_{2,t-1} + e_t$, is the shock, which is taken to be a normally distributed random variable with a mean of 0 and standard deviation σ. For a fixed value of σ, the value of the innovation is stochastic and varies over realizations. It is important for the mathematical formulation, since it is the part that cannot be reasoned out and guessed in advance: it is the discrepancy between the expected, real-value results and the simulated values. Thus for the three different scenarios and therefore also differing values of the Nominal GDP Growth and the Unemployment Rate, there are varying, randomly generated values for the shock. The standard deviation is fixed at $\sigma = 164,700$. Therefore, while the evolution of the macroeconomic variables is deterministic, as the shock is a normally distributed random variable, σ is constant while the shock is not.

For smaller values of σ, the changes between Y_t values is estimated to be smaller, since there is less randomness involved with the generation of such Y_t values. This will be confirmed later using Monte Carlo simulations. Similarly, it is also expected that later quarters of Y_t that are simulated using Monte Carlo simulations show higher degrees of variability as the shocks accumulate. This is because later values involve both that quarter’s shock, in addition to the earlier quarters’ shocks. As established previously, $\beta_1 x_{1,t-1} + \beta_2 x_{2,t-1}$ serves as a predictable constant that can be calculated. Let $c_{t-1} = \beta_1 x_{1,t-1} + \beta_2 x_{2,t-1}$, and so the estimations of Y_1, Y_2 and Y_3 are:
\[Y_1 = \alpha Y_0 + c_0 + e_1 \]
\[Y_2 = \alpha Y_1 + c_1 + e_2 \]
\[Y_2 = \alpha (\alpha Y_0 + c_0 + e_1) + c_1 + e_2 \]
\[Y_2 = \alpha^2 Y_0 + \alpha c_0 + c_1 + \alpha e_1 + e_2 \]
\[Y_3 = \alpha Y_2 + c_2 + e_3 \]
\[Y_3 = \alpha \left(\alpha^2 Y_0 + \alpha c_0 + \alpha e_1 + c_1 + e_2 \right) + c_2 + e_3 \]
\[Y_3 = \alpha^2 Y_0 + \alpha^2 c_0 + \alpha c_1 + c_2 + \alpha^2 e_1 + \alpha e_2 + e_3 \]

Thus later quarters are expected to show the highest degrees of variability due to the addition of further residual terms.

Data under the three Scenarios

For the Monte Carlo simulation, three different scenarios will be explored – with fixed values of \(\alpha \), \(\beta_1 \) and \(\beta_2 \) according to the previous findings, in addition to the value of \(\sigma \), the standard deviation of the shock. The data of the Nominal GDP Growth and the Unemployment Rate to be used for the Monte Carlo simulations span September 2016 (Q3 2016) until March 2020 (Q1 2020) and are extracted from the DFAST 2017 report. The scenarios capture the values of the 2017 DFAST report’s estimated Baseline scenario, their Adverse scenario and their Severely Adverse scenario – which are labels given to the values of the macroeconomic variables based on their unlikeliness and the powerful negative impact they are assumed to have on the economy and therefore also on banks’ net losses. Thus this data for the Nominal GDP Growth and the Unemployment Rate can be used in combination with the actual data of \(Y_t \) and \(Y_{t-1} \) to create the Monte
Carlo simulations. The percentages for the Baseline, Adverse and Severely Adverse scenarios for Nominal GDP Growth and the Unemployment Rate are detailed in Table 6.

Table 6: Macroeconomic data under the three scenarios, primarily extracted from DFAST 2017

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Nominal GDP Growth Baseline</th>
<th>Unemployment Rate Baseline</th>
<th>Nominal GDP Growth Adverse</th>
<th>Unemployment Rate Adverse</th>
<th>Nominal GDP Growth Severely Adverse</th>
<th>Unemployment Rate Severely Adverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3 2016</td>
<td>4.1</td>
<td>4.7</td>
<td>1.1</td>
<td>4.0</td>
<td>-3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Q4 2016</td>
<td>4.1</td>
<td>4.7</td>
<td>-0.9</td>
<td>4.6</td>
<td>-5.4</td>
<td>4.3</td>
</tr>
<tr>
<td>Q1 2017</td>
<td>4.3</td>
<td>4.7</td>
<td>0.9</td>
<td>5.2</td>
<td>-2.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Q2 2017</td>
<td>4.3</td>
<td>4.6</td>
<td>-0.7</td>
<td>5.8</td>
<td>-5.5</td>
<td>6.9</td>
</tr>
<tr>
<td>Q3 2017</td>
<td>4.5</td>
<td>4.6</td>
<td>0.0</td>
<td>6.3</td>
<td>-4.1</td>
<td>8.0</td>
</tr>
<tr>
<td>Q4 2017</td>
<td>4.5</td>
<td>4.5</td>
<td>0.5</td>
<td>6.8</td>
<td>-3.3</td>
<td>8.9</td>
</tr>
<tr>
<td>Q1 2018</td>
<td>4.6</td>
<td>4.5</td>
<td>1.4</td>
<td>7.1</td>
<td>-1.4</td>
<td>9.6</td>
</tr>
<tr>
<td>Q2 2018</td>
<td>4.7</td>
<td>4.5</td>
<td>3.0</td>
<td>7.3</td>
<td>1.6</td>
<td>9.8</td>
</tr>
<tr>
<td>Q3 2018</td>
<td>4.6</td>
<td>4.4</td>
<td>3.3</td>
<td>7.4</td>
<td>2.3</td>
<td>10.0</td>
</tr>
<tr>
<td>Q4 2018</td>
<td>4.5</td>
<td>4.4</td>
<td>4.4</td>
<td>7.3</td>
<td>4.5</td>
<td>9.9</td>
</tr>
<tr>
<td>Q1 2019</td>
<td>4.2</td>
<td>4.5</td>
<td>4.3</td>
<td>7.2</td>
<td>4.4</td>
<td>9.8</td>
</tr>
<tr>
<td>Q2 2019</td>
<td>4.2</td>
<td>4.6</td>
<td>4.6</td>
<td>7.1</td>
<td>5.1</td>
<td>9.6</td>
</tr>
<tr>
<td>Q3 2019</td>
<td>4.1</td>
<td>4.6</td>
<td>4.5</td>
<td>7.0</td>
<td>5.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Q4 2019</td>
<td>4.1</td>
<td>4.7</td>
<td>4.5</td>
<td>6.9</td>
<td>4.9</td>
<td>9.1</td>
</tr>
<tr>
<td>Q1 2020</td>
<td>4.0</td>
<td>4.7</td>
<td>4.5</td>
<td>6.8</td>
<td>4.8</td>
<td>8.9</td>
</tr>
</tbody>
</table>

As the table above shows, the Nominal GDP Growth values under the Adverse and Severely Adverse scenarios tend to be lower than those under the Baseline scenario, with significantly lower starting values, and they also fluctuate more throughout the 15 quarters. In contrast, although the Unemployment Rate values are highest under the Baseline scenario, they change at such a slow rate (with slight increases and decreases over time) compared with values under the Adverse and Severely Adverse scenario values, that the latter two quickly surpass the values under the Baseline scenario.
An important assumption that is made with the creation of this table is that it is acceptable to integrate Q3 2016 and Q4 2016 into this dataset. These values are derived based on the trends observed throughout the later 13 quarters. They are being added for two reasons: firstly, so that 15 quarters are being computed for the Nominal GDP Growth and the Unemployment Rate values, as a proportion out of 15 quarters provides more information than one out of 13 quarters. Secondly and more significantly, they are added so that the Y_{t-1} value for June 2016 can be used as the starting value, since this is the latest value available through the FFIEC. After all, the DFAST 2017 report, released in February 2017, only begins with projected values for Q1 2017, yet the latest approximation of Y_{t-1} is for Q3 2016. When comparing the projections for Q1 2017 of the DFAST 2016 report with the Q1 2017 projections of the DFAST 2017 report, it becomes apparent that the old projections from DFAST 2016 for Q3 2016 and Q4 2016 cannot be utilized to supplement the dataset, since they do not align with the predictions of the DFAST 2017 report as there are significant discrepancies between the values. For example, the DFAST 2016 report’s Adverse scenario values are -2.1 and -1.1 for Q3 2016 and Q4 2017 for the Nominal GDP Growth and 6.7 and 7.1 for Q3 2016 and Q4 2017 for the Unemployment Rate.

However, it is also worth noting that even when examining the data beginning Q1 2017, the three scenarios do not begin with the same starting values. This too is problematic, since the scenarios should allow for deviation from the starting value, but begin from the same point. For this purpose, three new scenarios are created – the values are derived from the Baseline scenario, Adverse scenario and Severely Adverse scenario from the DFAST 2017 report. Although the values are based on the previous table,
several modifications are made so that the starting values are the same, and both the same trend over time and the extremity of the values is maintained. The growth rate of earlier quarters is adjusted, so that the original values are obtained by Q1 2018, and maintained going forward. When possible, the maximum and minimum values from the DFAST 2017 report for every variable under every scenario are also preserved (this does not include Q3 2016 and Q4 2016 from Table 6 since those are derived from observed trends). According to the DFAST 2017 report, the actual, historic value of June 2016 (Q2 2016) is 3.7 for Nominal GDP Growth, and 4.9 for Unemployment Rate. These will be used as the starting values for Q2 2016. However, when applying the new dataset, only Q3 2016 to Q1 2020 will be utilized. Table 7 shows the new dataset.

Table 7: New dataset for macroeconomic data – based on data from DFAST 2017, but with a consistent starting value

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Nominal GDP Growth Baseline</th>
<th>Unemployment Rate Baseline</th>
<th>Nominal GDP Growth Adverse</th>
<th>Unemployment Rate Adverse</th>
<th>Nominal GDP Growth Severely Adverse</th>
<th>Unemployment Rate Severely Adverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2 2016</td>
<td>3.7</td>
<td>4.9</td>
<td>3.7</td>
<td>4.9</td>
<td>3.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Q3 2016</td>
<td>3.9</td>
<td>4.8</td>
<td>2.5</td>
<td>5.5</td>
<td>2.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Q4 2016</td>
<td>4.0</td>
<td>4.8</td>
<td>1.1</td>
<td>5.7</td>
<td>0.5</td>
<td>6.8</td>
</tr>
<tr>
<td>Q1 2017</td>
<td>4.1</td>
<td>4.7</td>
<td>-0.7</td>
<td>6.1</td>
<td>-1.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Q2 2017</td>
<td>4.3</td>
<td>4.7</td>
<td>0.9</td>
<td>6.4</td>
<td>-3.2</td>
<td>8.3</td>
</tr>
<tr>
<td>Q3 2017</td>
<td>4.4</td>
<td>4.6</td>
<td>-0.3</td>
<td>6.6</td>
<td>-5.5</td>
<td>8.8</td>
</tr>
<tr>
<td>Q4 2017</td>
<td>4.5</td>
<td>4.6</td>
<td>0.5</td>
<td>6.9</td>
<td>-3.8</td>
<td>9.3</td>
</tr>
<tr>
<td>Q1 2018</td>
<td>4.6</td>
<td>4.5</td>
<td>1.4</td>
<td>7.1</td>
<td>-1.4</td>
<td>9.6</td>
</tr>
<tr>
<td>Q2 2018</td>
<td>4.7</td>
<td>4.5</td>
<td>3.0</td>
<td>7.3</td>
<td>1.6</td>
<td>9.8</td>
</tr>
<tr>
<td>Q3 2018</td>
<td>4.6</td>
<td>4.4</td>
<td>3.3</td>
<td>7.4</td>
<td>2.3</td>
<td>10.0</td>
</tr>
<tr>
<td>Q4 2018</td>
<td>4.5</td>
<td>4.4</td>
<td>4.4</td>
<td>7.3</td>
<td>4.5</td>
<td>9.9</td>
</tr>
<tr>
<td>Q1 2019</td>
<td>4.2</td>
<td>4.5</td>
<td>4.3</td>
<td>7.2</td>
<td>4.4</td>
<td>9.8</td>
</tr>
<tr>
<td>Q2 2019</td>
<td>4.2</td>
<td>4.6</td>
<td>4.6</td>
<td>7.1</td>
<td>5.1</td>
<td>9.6</td>
</tr>
<tr>
<td>Q3 2019</td>
<td>4.1</td>
<td>4.6</td>
<td>4.5</td>
<td>7.0</td>
<td>5.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Q4 2019</td>
<td>4.1</td>
<td>4.7</td>
<td>4.5</td>
<td>6.9</td>
<td>4.9</td>
<td>9.1</td>
</tr>
<tr>
<td>Q1 2020</td>
<td>4.0</td>
<td>4.7</td>
<td>4.5</td>
<td>6.8</td>
<td>4.8</td>
<td>8.9</td>
</tr>
</tbody>
</table>
Going forward, this new dataset, which is based on the previous dataset with modifications made to account for having the same Q2 2016 value, will be used in the Monte Carlo simulations.

Realizations – 15 Quarters of Simulated Data

Rather than calculating the value of Y for 18 quarters from Q1 2003 until Q2 2007, for this simulation, 15 future quarters are being evaluated. This covers the range of data from Q3 2016 until Q1 2020. This means that calculations for the combination of the Nominal GDP Growth values, the Unemployment Rate values and the values of the shock’s standard deviation σ, actually occur 15 times, because 15 quarters are projected. However, as datasets are created through the simulation, only one actual value of Y_{t-1} is needed – the starting value of September 2016, as each future quarters’ values of Y_{t-1} are taken from the previous quarters’ Y result.

Each realization is a set of 15 quarters beginning with the starting Y_{t-1} value for Q3 2016 and ending with a computed result for Y_t for Q1 2020 for each combination of the Nominal GDP Growth, the Unemployment Rate and σ. Several tests will be performed on each realization as a whole in later sections – documenting whether a certain outcome occurred throughout the realization. This will be elaborated upon in the following section, but for the time being, it is important to recognize that this exploration results in the creation of datasets utilizing constants for independent variables derived from real data in an attempt to accurately predict the net loss for future quarters.
10,000 Trials for the Monte Carlo Simulations

The above calculations for every combination of the Nominal GDP Growth, the Unemployment Rate and σ are repeated for a total of 10,000 trials for each under the three scenarios. This means that every realization, in addition to how its outcome in specific tests performed on it, is computed 10,000 times under the three scenarios and combinations of the Nominal GDP Growth, the Unemployment Rate and σ.

Applying this time series model to create datasets is the logic behind Monte Carlo simulations. Monte Carlo simulations involve an iterative process of repeating a computation, which includes randomness, thousands of times and then estimating the probabilities associated with outcomes. It results in a pseudo-random independent and identically distributed sequence of realizations of Bernoulli trials representing whether a certain outcome occurred in a given realization. Monte Carlo simulations are being used to address questions about the probabilities of success of Bernoulli trials and the probabilities of outcomes, which are explored through the analysis in the following section.

Additional Considerations

Throughout the building of the financial risk model and the Monte Carlo simulations, simplifying assumptions are made, as the focus of this exploration is on the application of the model in the Monte Carlo simulations. Such assumptions include that Y_t can be determined from the Nominal GDP Growth and Unemployment Rate.
Several assumptions are made with regard to determining the type of model: an AR(1) model, which depends on two macroeconomic variables (in addition to the shocks and Y_{t-1}, as implied by the AR(1) structure). Perhaps an AR(2) model could provide an alternative fit, but this is not explored, as an additional one out of the 18 historic data points would be forfeited for this. A combination of exactly two macroeconomic variables, with predetermined signs, is selected; and thus an assumption is that these limiting factors still result in an accurate prediction without over-fitting the model. An additional assumption implied through the choice of the AR(1) model is that the coefficients of the macroeconomic variables (β_1 and β_2) and standard deviation of stocks do not change over time. The shocks are also assumed to be independent random shocks, which follow a normal distribution, and it is assumed that there is no autocorrelation among them. Additionally, residuals are assumed to have stationarity, which means that they are assumed to have a constant mean and variance.
What If Analysis

Analyses

Having explored the creation of the simulated dataset, a variety of analyses can be performed on it. Through the Threshold Analysis, it is being documented whether, in any of the trials, a certain anticipated outcome occurs, regardless of how many quarters the outcome occurs in. There are also specific analyses capturing whether a certain outcome occurs more than five or ten times, or within the first five or ten quarters. In the Statistical Analysis, a variety of statistics are being calculated from the dataset, and the results are captured in charts or tables. All of the charts are color-coded in the same way: blue represents the outcome under the Baseline scenario, green captures the outcome under the Adverse scenario and red shows the outcome under the Severely Adverse scenario. It would be a simple matter to provide confidence intervals for the probabilities in the figures that follow. However, these intervals would be so narrow as to not be of much interest.

Threshold Analysis

Through six distinct net loss outcomes, it is measured in how many realizations a certain outcome occurs for each of the scenarios. Several thresholds, which are percentages of the starting Y_{t-1} value of $4,039,752.2$, are used to compare the scenarios.
Figure 1: Estimated probability that the net loss value falls below a given percentage of the starting net loss value in at least one of the quarters.

Figure 2: Estimated probability that the net loss value exceeds a given percentage of the starting net loss value in at least one of the quarters.
Figure 1 shows that the minimum values of net loss under the Baseline scenario are lower than those of the Adverse scenario, and significantly lower than under the Severely Adverse scenario. Figure 2 demonstrates a similar outcome: the maximum values under the Baseline scenario tend to surpass a higher threshold value compared with the values under the Adverse and Severely Adverse scenarios. However, the discrepancy between the values under the Baseline and Severely Adverse scenarios is more drastic in Figure 1 compared with Figure 2. Figure 2 has more significant impacts in the real world, as it captures when the net loss exceeds particular high thresholds, which is very important for stakeholders to know (compared with instances when the net loss is particularly low). For this reason, further exploration is conducted on the ways in which high thresholds are exceeded.

Figure 3: Estimated probability that the net loss value exceeds a given percentage of the starting net loss value in at least five of the fifteen quarters
Figures 3 and 4 show that the chance of at least five quarters’ values exceeding particular thresholds involves greater discrepancies between the scenarios; compared with documenting at least one value surpassing the threshold with Figure 3. This suggests that while the Baseline scenario involves between one and four high values (defined as over 50% times the starting net loss value) in every realization, they are the outliers, and the rest of the data is significantly lower; therefore the high thresholds are not surpassed when it is mandated that five or more values must pass it. The graphs suggest that this is not the case under the Severely Adverse scenario: it involves values that are similarly high to the outliers of the Baseline scenario; but they are not outliers, as at least ten of the values surpass the higher thresholds.
Additionally, in Figure 2, the change is less immediate; it covers a range of about 25% for the values to change from surpassing the thresholds to not surpassing the thresholds. The shock accounts for a lot of fluctuation in whether or not the condition is met. By comparison, in both Figures 3 and 4, the change occurs over a span of about 15%; it is more clear-cut whether five or ten of the fifteen quarters exceed a certain threshold, and less dependent on the residual.

Figure 5: Estimated probability that the net loss values of the first five quarters exceeds the percentage of the starting net loss value
Figures 5 and 6 illustrate a similar trend to Figures 3 and 4: higher values occur frequently under the Severely Adverse scenario (and a little less frequently under the Adverse scenario), but are outliers under the Baseline scenario.

Statistical Analysis

Through six statistical analyses (performed under all three scenarios), the relationship between the three scenarios is explored. Table 8 first captures the expected values of every scenario for the maximum and minimum values.
Table 8: Expected values of the minimum and maximum values under each scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Baseline Scenario ($)</th>
<th>Adverse Scenario ($)</th>
<th>Severely Adverse Scenario ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Value of Minimum</td>
<td>504,546</td>
<td>1,125,670</td>
<td>1,681,405</td>
</tr>
<tr>
<td>Expected Value of Maximum</td>
<td>2,933,024</td>
<td>3,019,828</td>
<td>3,066,457</td>
</tr>
</tbody>
</table>

As Table 8 shows, the discrepancy between the minimum values under the scenarios is drastic: the minimum value under the Adverse scenario is more than 220% of the minimum value under the Baseline scenario (a difference of $621,124). By contrast, the difference between the expected value of the maximum under the Baseline scenario compared with the minimum value under the Adverse scenario is less than 103% of the value, with a difference of only $86,804. A similar pattern is also observed with values under the Severely Adverse scenario.

Figure 7: The first quartile value of net loss in every quarter
Figure 8: The third quartile value of net loss in every quarter

Figure 9: The mean value of net loss in every quarter
Figures 7, 8 and 9 capture how the 25th percentile value, the 75th percentile value and the mean value change for every quarter. One expects that the discrepancy between the later quarters increases most dramatically because of the additional residuals affecting later quarters. However, this is not entirely true, as the greatest discrepancy for the first and third quartiles and the means under the three scenarios occurs in the median quarters, between quarters seven and nine. Looking back at the macroeconomic data of Table 7, one can speculate that this is because for later quarters, there tends to be a smaller change between quarters of net loss values. This is visualized in Figure 10.

Figure 10: The mean change of net loss values that occurs between each of the quarters
Figure 10 captures the change of net loss between the quarters. It is important to note that the net loss tends to decrease over the time periods, and thus the graph demonstrates quarter$_t$ – quarter$_{t+1}$, rather than quarter$_{t+1}$ – quarter$_t$. Also, in early quarters, the change is greatest for values under the Baseline scenario, as the net loss value decreases. Yet by the later quarters, the change is greatest for values under the Severely Adverse scenario.

Figure 11: The cumulative net loss values under the Baseline scenario for all realizations
Figure 12: The cumulative net loss values under the Adverse scenario for all realizations

Figure 13: The cumulative net loss values under the Severely Adverse scenario for all realizations
Figures 11, 12 and 13 demonstrate the cumulative net loss values for all realizations of the Monte Carlo simulation under each of the scenarios. The x-axes of the histograms are kept constant to demonstrate the discrepancy between the cumulative net losses under the three scenarios. Although the expected value of the cumulative net loss under each of the scenarios is very different, there is some overlap between the cumulative net loss values under the Adverse scenario with values under the Severely Adverse scenario and under the Baseline scenario. This demonstrates the impact of the randomness of the residuals, as there is still a probabilistic chance that, under Adverse macroeconomic conditions, the cumulative net loss could behave as though it is under the Baseline scenario or under the Severely Adverse scenario. The following figures further explore the impact of the randomness of the residuals by using different variances.

Figure 14: How changing the variance of the residuals affects the first and third quartiles under the Baseline scenario
Figure 15: How changing the variance of the residuals affects the first and third quartiles under the Adverse scenario

Figure 16: How changing the variance of the residuals affects the first and third quartiles under the Severely Adverse scenario
Figures 14, 15 and 16 capture the impact that changing the variance of the residuals has on the first and third quartile values for each of the quarters under the three scenarios. In terms of color-coding, red indicates the 25th and 75th percentile values for $\sigma = 0$. As one might predict, for $\sigma = 80,000$, the 25th and 75th percentiles are green, for $\sigma = 164,700$, the 25th and 75th percentiles are blue, and for $\sigma = 250,000$, the 25th and 75th percentiles are brown. As the variance increases, the discrepancy between the 25th and 75th percentiles under each of the scenarios also increases. The change in discrepancy between the 25th and 75th percentiles caused by the increase in the variance is slightly more apparent under the Severely Adverse scenario – as the increased randomness has the greatest impact on higher net loss values. Finally, when comparing the effect of changing the variance under the three scenarios, it is clear that the trend of the net loss throughout the fifteen quarters remains the same for all of the variance values.
Conclusion

Summary

In this exploration, the patterns observed under the Baseline, Adverse and Severely Adverse scenarios are investigated through the Monte Carlo simulations. The cumulative net loss experiences great variation under the three scenarios, although there is still some probabilistic overlap between the Adverse and Baseline scenarios, and Adverse and Severely Adverse scenarios. While it is expected that the residuals result in the mean net loss of the latest quarters having the greatest discrepancy between the three scenarios, the greatest discrepancy occurs with median quarters. Furthermore, the three scenarios result in very similar outcomes when documenting whether any one of the fifteen quarters per realization surpasses a specific threshold. Yet when assessing whether at least five of the fifteen quarters per realization surpass a given threshold, there is a significant discrepancy between the three curves as the high net loss values occur more frequently under the Severely Adverse scenario, but are outliers under the Baseline scenario.

Future opportunities for research

In terms of future opportunities for research, it is important to remember that there are other threshold analyses and statistical estimations, which can be performed on the datasets.
Similarly, there are also other questions to be explored regarding the stakeholders, such as: What happens if the stock markets plummet by 50%, and how does this affect the macroeconomic variables, and by extension, net loss, over time? How are individuals affected by abrupt increases in net loss – and who is most likely to be affected? As macroeconomic factors change, how does a specific individual’s probability of default change?

Verifying some of the assumptions made in the model creation process – such as autocorrelation or stationarity – could also be fruitful.

Applications

In terms of further applications, an additional consideration is the economic background beyond the dependent variable and the two chosen macroeconomic variables. Another financial risk model could be constructed based on a different combination of macroeconomic variables, perhaps expanding beyond the current selection of 18. This model need not be applied to calculating net loss on loans and leases of Bank of America; other dependent variables and institutions could be explored. For example the sizes of portfolios, various types of revenues, or various types of expenses could also be investigated and estimated through a time series model and Monte Carlo simulations.
Variables and Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Scenario of normal, expected macroeconomic conditions</td>
</tr>
<tr>
<td>Adverse</td>
<td>Scenario of abnormal macroeconomic conditions</td>
</tr>
<tr>
<td>Severely Adverse</td>
<td>Scenario of very abnormal, unexpected macroeconomic conditions</td>
</tr>
<tr>
<td>AR(1)</td>
<td>First-order autoregressive model</td>
</tr>
<tr>
<td>Y_t</td>
<td>Net loss on loans and leases for Bank of America</td>
</tr>
<tr>
<td>α</td>
<td>Alpha, the coefficient of Y_{t-1}</td>
</tr>
<tr>
<td>Y_{t-1}</td>
<td>Net loss on loans and leases for Bank of America, of the previous quarter</td>
</tr>
<tr>
<td>β_1</td>
<td>Coefficient of $x_{1_{t-1}}$</td>
</tr>
<tr>
<td>$x_{1_{t-1}}$</td>
<td>First macroeconomic variable, of the previous quarter</td>
</tr>
<tr>
<td>β_2</td>
<td>Coefficient of $x_{2_{t-1}}$</td>
</tr>
<tr>
<td>$x_{2_{t-1}}$</td>
<td>Second macroeconomic variable, of the previous quarter</td>
</tr>
<tr>
<td>e_t</td>
<td>Residual</td>
</tr>
<tr>
<td>PPNR</td>
<td>Pre Provision Net Revenue</td>
</tr>
<tr>
<td>CCAR</td>
<td>Comprehensive Capital Analysis and Review</td>
</tr>
<tr>
<td>DFAST</td>
<td>Dodd-Frank Act Stress Test</td>
</tr>
<tr>
<td>Realization</td>
<td>Set of 15 quarters of simulated data</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation of the residual</td>
</tr>
<tr>
<td>Q</td>
<td>Quarter</td>
</tr>
<tr>
<td>FDIC</td>
<td>Federal Deposit Insurance Corporation</td>
</tr>
<tr>
<td>FFIEC</td>
<td>Federal Financial Institutions Examination Council</td>
</tr>
</tbody>
</table>
Appendices

Appendix 1: Macroeconomic Variable Analysis

In this section, the code used to evaluate the optimal combination of the 18 macroeconomic variables with the lowest residual sum of squares is provided.

library(nnls)

Yt_1 <- c(2617528, 1965774, 1805622, 1720196.352, 1524910.09, 1050805.284, 944571.8961, 760586.3874, 719641.7903, 551249.5814, 504741.536, 847467.7024, 875393.6768, 572299.422, 490419.1576, 634494.712, 834397.5627)

RealGDPGrowth <- c(0.3, 2.1, 3.8, 6.9, 4.8, 2.3, 3, 3.7, 3.5, 4.3, 2.1, 3.4, 2.3, 4.9, 1.2, 0.4, 3.2, 0.2)
NominalGDPGrowth <- c(2.4, 4.6, 5.1, 9.3, 6.8, 5.9, 6.6, 6.3, 6.4, 8.3, 5.1, 7.3, 5.4, 8.2, 4.5, 3.2, 4.6, 4.8)

RealDisposableIncomeGrowth <- c(1.9, 1.1, 5.9, 6.7, 1.6, 2.9, 4, 2.1, 5.1, -3.8, 3.2, 2.1, 3.4, 9.5, 0.6, 1.2, 5.3, 2.6)
NominalDisposableIncomeGrowth <- c(3.8, 4, 6.3, 9.3, 3.3, 6.1, 7, 4.5, 8.5, -1.8, 6, 6.6, 6.6, 11.5, 3.7, 4.1, 4.6, 6.5)

UnemploymentRate <- c(5.9, 5.9, 6.1, 6.1, 5.8, 5.7, 5.6, 5.4, 5.3, 5.1, 5, 5, 4.7, 4.6, 4.6, 4.4, 4.5)
CPIInflationRate <- c(2.4, 4.2, -0.7, 3, 1.5, 3.4, 3.2, 2.6, 4.4, 2, 2.7, 6.2, 3.8, 2.1, 3.7, 3.8, -1.6, 4)
ThreeMonthTreasuryRate <- c(1.3, 1.2, 1, 0.9, 0.9, 0.9, 1.1, 1.5, 2, 2.5, 2.9, 3.4, 3.8, 4.4, 4.7, 4.9, 4.9, 5)
FiveYearTreasuryRate <- c(3.1, 2.9, 2.6, 3.1, 3.2, 3, 3.7, 3.5, 3.5, 3.9, 3.9, 4, 4.4, 4.6, 5, 4.8, 4.6, 4.6)
TenYearTreasuryRate <- c(4.3, 4.2, 3.8, 4.4, 4.4, 4.1, 4.7, 4.4, 4.3, 4.4, 4.2, 4.3, 4.6, 4.7, 5.2, 5, 4.7, 4.8)

BBBCorporateYield <- c(7, 6.5, 5.7, 6, 5.8, 5.5, 6.1, 5.8, 5.4, 5.4, 5.5, 5.5, 5.9, 6, 6.5, 6.4, 6.1, 6.1)

MortgageRate <- c(6.1, 5.8, 5.5, 6.1, 5.9, 5.6, 6.2, 5.9, 5.7, 5.8, 5.7, 5.8, 6.2, 6.3, 6.6, 6.5, 6.2, 6.2)
PrimeRate <- c(4.5, 4.3, 4.2, 4, 4, 4.4, 4.4, 4.9, 5.4, 5.9, 6.4, 7.7, 4.7, 8.3, 8.3, 8.3)
DowJonesTotalStockMarketIndex <- c(8343.2, 8051.90, 9342.40, 9649.70, 10799.60, 11039.40, 11144.60, 10893.80, 11951.50, 11637.30, 11856.70, 12282.90, 12497.20, 13121.60, 12808.90, 13322.50, 14215.80, 14354.00)

HousePriceIndex <- c(129, 134.1, 137, 141, 145.9, 151.6, 157.9, 163.2, 169.2, 177.1, 184.5, 190.2, 194.8, 198, 197.1, 195.8, 195.8, 193.3)
MarketVolatilityIndex <- c(42.6, 34.7, 29.1, 22.7, 21.1, 21.6, 20, 19.3, 16.6, 14.6, 17.7, 14.2, 16.5, 14.6, 23.8, 18.6, 12.7, 19.6)
GrossNationalProduct <- c(11280.2, 11434.5, 11689.1, 11907.4, 12097.3, 12265.3, 12462.4, 12631.2, 12916.6, 13065.8, 13307.8, 13454.9, 13724.3, 13870.2, 13965.6, 14133.9, 14301.9, 14512.9)
EffectiveFederalFundsRate <- c(1.24, 1.25, 1.22, 1.01, 0.98, 1.00, 1.03, 1.61, 2.16, 2.63, 3.04, 3.62, 4.16, 4.59, 4.99, 5.25, 5.24, 5.26)
Yt <- c(1965774, 1805622, 1724910.09, 1524910.09, 1050805.284, 944571.8961, 760586.3874, 719641.7903, 551249.5814, 504741.536, 847467.7024, 875393.6768, 572299.422, 490419.1576, 556428.114, 634494.712, 834397.5627, 862906.9917)
ones <- c(rep(0,18))

Creating dataframe for macroeconomic variables
df<-data.frame(Y=Yt,x0=Yt_1, x1=-RealGDPGrowth,x2=-NominalGDPGrowth,x3=-RealDisposableIncomeGrowth,
 x4=-NominalDisposableIncomeGrowth,x5=UnemploymentRate,
 x6=CPIInflationRate,x7=ThreeMonthTreasuryRate, x8=FiveYearTreasuryRate,
 x9=TenYearTreasuryRate, x10=BBBCorporateYield, x11=MortgageRate,
 x12=PrimeRate, x13=DowJonesTotalStockMarketIndex,
 x14=HousePriceIndex, x15=CommercialRealEstatePriceIndex, x16=MarketVolatilityIndex, x17=GrossNationalProduct, x18=EffectiveFederalFundsRate)

nm<-c("Yt","Yt_1", "RealGDPGrowth", "NominalGDPGrowth", "RealDisposableIncomeGrowth", "NominalDisposableIncomeGrowth", "UnemploymentRate", "CPIInflationRate", "ThreeMonthTreasuryRate", "FiveYearTreasuryRate", "TenYearTreasuryRate", "BBBCorporateYield", "MortgageRate", "PrimeRate", "DowJonesTotalStockMarketIndex", "HousePriceIndex", "CommercialRealEstatePriceIndex", "MarketVolatilityIndex", "GrossNationalProduct", "EffectiveFederalFundsRate")

A<-matrix(c(df$x0,df$x1,df$x2),byrow=FALSE,ncol=3)
A<-matrix(c(df[,2], df[,3],df[,4]),byrow=FALSE,ncol=3)
b<-df$Y

minrtssq<-99999999999999
for (i1 in 2)
{
 for (i2 in (i1+1):20)
 {
 for (i3 in (i2+1):20)
 {
 if ((i1!=i2)&&(i2!=i3)&&(i2<=20)&&(i3<=20))
 {
 print(c(i1,i2,i3))
 }
 }
 }
}
A<-matrix(c(df[,i1], df[,i2],df[,i3]),byrow=FALSE,ncol=3)
b<-df$Y
NNLS<-nnls(A,b)
beta<-NNLS$x
nnz<-sum(beta>.000000001)
if (nnz==3)
{
 print(c(i1,i2,i3))
 print(nm[c(i1,i2,i3)])
 rtssq<-sqrt(sum(NNLS$res^2))
 print(rtssq)
 print(NNLS$x)
 if (rtssq<minrtssq)
 {
 minrtssq<-rtssq
 m1<-i1
 m2<-i2
 m3<i3
 }
}
}
}
}
print(c(m1,m2,m3))

LM1<-lm(Y~0+x0+x2+x5,data=df)
summary(LM1)

Appendix 2: Setting up the Baseline Scenario

The code used to produce the Monte Carlo datasets under the Baseline scenario is provided in this section. For brevity, only the code for the creation of datasets under the Baseline scenario is provided, but the same methodology applies for the creation of the datasets under the Adverse and Severely Adverse scenario.

Initializations
trials <- 10000
q <- 15
size <- trials*q
Macro1 = Nominal GDP Growth and Macro2 = Unemployment Rate
Macro1baseline <- c(3.9, 4.0, 4.1, 4.3, 4.4, 4.5, 4.6, 4.7, 4.6, 4.5, 4.2, 4.2, 4.1, 4.1, 4.0)
Macro1baseline <- c(rep(Macro1baseline, trials))
Macro2baseline <- c(4.8, 4.8, 4.7, 4.7, 4.6, 4.6, 4.5, 4.5, 4.4, 4.4, 4.5, 4.6, 4.6, 4.7, 4.7)
Macro2baseline <- c(rep(Macro2baseline, trials))

Variable Values
s <- 164700
s <- c(rep(s, size))
a <- 6.580e-01
a <- c(rep(a, size))
b1 <- -2.612e+04
b1 <- c(rep(b1, size))
b2 <- 7.834e+04
b2 <- c(rep(b2, size))
NewYt_1 <- c(4039752.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) #value for Yt-1 for September 2016 (Q3)
NewYt_1 <- c(rep(NewYt_1, trials))
epsilon <- c(rep(0, size))
epsilon <- c(rnorm((size),0,s))
Trial <- 1:trials
input <- data.frame(a = a, NewYt_1=NewYt_1, b1 = b1,
Macro1baseline=Macro1baseline, b2 = b2, Macro2baseline=Macro2baseline, s=s,
epsilon=epsilon, NewYt=NA)
data <- data.frame(Trial_For_Baseline = Trial, Y1=NA, Y2=NA, Y3=NA, Y4=NA,
Y5=NA, Y6=NA, Y7=NA, Y8=NA, Y9=NA, Y10=NA, Y11=NA, Y12=NA,
Y13=NA, Y14=NA, Y15=NA)

for (i in 1:(size))
{
 if (i %% 15)
 {
 input[i,9]=(input[i,1]*input[i,2])+(input[i,3]*input[i,4])+(input[i,5]*input[i,6])+(input[i,8]) #Formula: Yt = a*NewYt-1 + b1*Macro1 + b2*Macro2 + epsilon
 input[(i+1),2]=input[i,9]
 }
 else
 {
 input[i,9]=(input[i,1]*input[i,2])+(input[i,3]*input[i,4])+(input[i,5]*input[i,6])+(input[i,8]) #Formula: Yt = a*NewYt-1 + b1*Macro1 + b2*Macro2 + epsilon
 }
}
for (j in 1:(trials))
{
\[\text{data}[j,2] = \text{input}[15(j-1)+1,9] \]
\[\text{data}[j,3] = \text{input}[15(j-1)+2,9] \]
\[\text{data}[j,4] = \text{input}[15(j-1)+3,9] \]
\[\text{data}[j,5] = \text{input}[15(j-1)+4,9] \]
\[\text{data}[j,6] = \text{input}[15(j-1)+5,9] \]
\[\text{data}[j,7] = \text{input}[15(j-1)+6,9] \]
\[\text{data}[j,8] = \text{input}[15(j-1)+7,9] \]
\[\text{data}[j,9] = \text{input}[15(j-1)+8,9] \]
\[\text{data}[j,10] = \text{input}[15(j-1)+9,9] \]
\[\text{data}[j,11] = \text{input}[15(j-1)+10,9] \]
\[\text{data}[j,12] = \text{input}[15(j-1)+11,9] \]
\[\text{data}[j,13] = \text{input}[15(j-1)+12,9] \]
\[\text{data}[j,14] = \text{input}[15(j-1)+13,9] \]
\[\text{data}[j,15] = \text{input}[15(j-1)+14,9] \]
\[\text{data}[j,16] = \text{input}[15(j-1)+15,9] \]

```r
# Saving as matrix
BaselineDataMatrix <- as.matrix(data)
save(BaselineDataMatrix, file="BaselineDataMatrix")
```

```r
# Testing Matrix
testing <- data.frame(Trial=Trial, MinYValue= NA, MaxYValue= NA)
for (i in 1:(trials))
{
    testing[i,2] <- min(data[i,2], data[i,3], data[i,4], data[i,5], data[i,6], data[i,7], data[i,8],
                        data[i,9], data[i,10], data[i,11], data[i,12], data[i,13], data[i,14], data[i,15],
                        data[i,16])
}
for (i in 1:(trials))
{
    testing[i,3] <- max(data[i,2], data[i,3], data[i,4], data[i,5], data[i,6], data[i,7], data[i,8],
                        data[i,9], data[i,10], data[i,11], data[i,12], data[i,13], data[i,14], data[i,15],
                        data[i,16])
}
```

Appendix 3: Sample Analysis

In this section, the code used to produce some of the figures, including Figures 2, 3, 6, 7 and 11, is provided. For brevity, some of the code used in the What If Analysis is omitted, but can easily be obtained by making modifications to the code that is provided.
Figure 2
Maximization threshold
Baseline scenario
threshold <- c(1:100)
v <- 4039752.2*(1:100)/100
f <- function (v)
{
 sum(testing[,3]> v) / (trials)
}
maxoccurrences <- sapply(v,f)
plot(col="blue", x=threshold, y=maxoccurrences, type="l", xlim=c(60,90),
 xlab="Percentage of starting net loss value (%)",
 ylab="Proportion of realizations exceeding the threshold")
Adverse scenario
f2 <- function (v)
{
 sum(testing2[,3]> v) / (trials)
}
maxoccurrences2 <- sapply(v,f2)
lines(col="green", x=threshold, y=maxoccurrences2)
Severely Adverse scenario
f3 <- function (v)
{
 sum(testing3[,3]> v) / (trials)
}
maxoccurrences3 <- sapply(v,f3)
lines(col="red", x=threshold, y=maxoccurrences3)

Figure 3
Maximization threshold - any five exceeding the threshold
Baseline scenario
threshold <- c(1:100)
v <- 4039752.2*(1:100)/100
outvec <- c(rep(0,100))
for (i in 1:100)
{
 thresholdbarrier <- v[i]
 f <- function(value)
 {
 ct <- sum(value > thresholdbarrier)
 ct >= 5
 }
 outvec[i] <- sum(apply(data,1,f)) / trials
}
plot(col="blue", x=threshold, y=outvec, type="l", xlim=c(10,75),
 xlab="Percentage of starting net loss value (%)",
ylab="Proportion of realizations exceeding the threshold")

Adverse scenario
outvec2 <- c(rep(0,100))
for (i in 1:100)
{
 thresholdbarrier <- v[i]
f2 <- function(value)
 {
 ct <- sum(value > thresholdbarrier)
 ct >= 5
 }
 outvec2[i] <- sum(apply(data2,1,f2)) / trials
}
lines(col="green", x=threshold, y=outvec2)

Severe Adverse scenario
outvec3 <- c(rep(0,100))
for (i in 1:100)
{
 thresholdbarrier <- v[i]
f3 <- function(value)
 {
 ct <- sum(value > thresholdbarrier)
 ct >= 5
 }
 outvec3[i] <- sum(apply(data3,1,f3)) / trials
}
lines(col="red", x=threshold, y=outvec3)

Figure 6
Maximization threshold - first ten exceeding the threshold
Baseline scenario
threshold <- c(1:100)
v <- 4039752.2*(1:100)/100
f <- function (v)
{
}
maxoccurrences <- sapply(v,f)
plot(col="blue", x=threshold, y=maxoccurrences, type="l", xlim=c(0,70),
 xlab="Percentage of starting value (%)",
 ylab="Proportion of realizations exceeding the threshold")
ylab="Proportion of realizations exceeding the threshold")
Adverse scenario
f2 <- function(v)
{
 (data2[,11]> v)) / (trials)
}
maxoccurrences2 <- sapply(v,f2)
lines(col="green", x=threshold, y=maxoccurrences2)
Severely Adverse scenario
f3 <- function(v)
{
 (data3[,11]> v)) / (trials)
}
maxoccurrences3 <- sapply(v,f3)
lines(col="red", x=threshold, y=maxoccurrences3)

Figure 7
First Quartile
Baseline scenario
Quarter = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
apply(data, 2, quantile,.25)
TwentyfifthPercentile <- c(2823417.87, 2068815.22, 1564829.41, 1234486.55,
 1001875.97, 856735.49, 745969.04, 669664.83, 613680.57, 580760.81,
 575391.27, 584599.51, 587573.51, 595768.27, 602933.16)
plot(col="blue", x = Quarter, y = TwentyfifthPercentile, type="l",
 xlab="Quarter",
 ylab="25th Percentile of Net Loss")
Adverse scenario
apply(data2, 2, quantile,.25)
TwentyfifthPercentile2 <- c(2907191.50, 2274786.19, 1938761.29, 1705450.74,
 1593400.03, 1526540.88, 1471302.23, 1414210.67, 1370268.64, 1307796.72,
 1263760.79, 1222805.79, 1188417.48, 1156754.62, 1125066.42)
lines(col="green", x = Quarter, y = TwentyfifthPercentile2)
Severely Adverse scenario
apply(data3, 2, quantile,.25)
TwentyfifthPercentile3 <- c(2955091.12, 2396380.19, 2170275.71, 2105009.06,
 2171486.95, 2202220.04, 2188584.76, 2115629.29, 2063693.02, 1964874.98,
 1896808.42, 1817234.87, 1751594.89, 1682041.87, 1627902.58)
lines(col="red", x = Quarter, y = TwentyfifthPercentile3)
Figure 11: The cumulative net loss values for the Baseline scenario for every trial

```r
Percent <- 1:23000000
CumulativeNetLoss <- data.frame(CumulativeNetLoss=NA)
for (i in 1:(trials)) {
  CumulativeNetLoss[i,1] <- sum(data[i,2], data[i,3], data[i,4], data[i,5], data[i,6],
                              data[i,7], data[i,8], data[i,9], data[i,10], data[i,11], data[i,12], data[i,13],
                              data[i,14], data[i,15], data[i,16])
}
CumulativeNetLoss <- t(CumulativeNetLoss)
par(mfrow = c(1,1))
hist(CumulativeNetLoss, col="blue", breaks=20, freq = FALSE,
     xlim=c(10000000,40000000),
     xlab="Cumulative Net Loss",
     ylab="Frequency of Cumulative Net Loss")
```
Bibliography

Curriculum Vitae

Hannah Folz was born in London, UK, and grew up in Munich, Germany. She attended Munich International School, and graduated with the International Baccalaureate in May 2013. At Johns Hopkins University, she will complete a double-major in Applied Mathematics and Statistics, and English, in addition to earning her Masters Degree in Applied Mathematics and Statistics in May 2017. Hannah also enjoyed serving as a mentor through the Office of Multicultural Affairs, being a Course Assistant at the Center for Leadership Education; and interning at Deutsche Bank AG and Audi AG in Germany. She looks forward to working in Risk Consulting in the Financial Services Industry at PricewaterhouseCoopers next fall.