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Abstract 

Outer membrane protein (OMP) biogenesis in Gram-negative bacteria is a multi-step, complex 

process that spans several cellular compartments. OMPs are post-translationally secreted across 

the bacterial inner membrane and subsequently encounter the aqueous periplasm. In this milieu, 

nascent OMPs interact with chaperone proteins that prevent the formation of off-folding-

pathway species and deleterious aggregates. Here we investigate how two Escherichia coli 

periplasmic chaperones, FkpA and SurA, bind to unfolded OMP clients to facilitate trafficking. 

We find that FkpA populates both monomeric and dimeric species and these oligomers have 

differential affinities for unfolded OMP clients. We present the first structural model for a SurA-

OMP complex, in which the unfolded OMP is expanded and makes delocalized contacts with 

the SurA chaperone. Upon reaching the outer membrane, OMPs are assembled via interactions 

with the E. coli β-Barrel Assembly Machinery (BAM) multi-protein complex. We consider the 

functional mechanism for the OMP component of the BAM complex, BamA, and determine 

that this enzyme works via a catalytic cycle to facilitate the folding of OMPs with an activity 

similar to the entire BAM complex. Lastly, we interrogate this pathway in a holistic manner by 

constructing a computational model to simulate OMP flux through this pathway. Our modeling 

suggests that together the concentrations of periplasmic chaperones and the kinetic and 

thermodynamic parameters for chaperone-OMP binding are poised for this system to act as a 

reservoir for OMP flux towards the OM. Our studies highlight the importance of both 

chaperone-OMP and BAM-OMP interactions in the accurate and efficient process of OMP 

biogenesis. 

Thesis advisor: Dr. Karen Fleming 

Second reader: Dr. Doug Barrick 

Thesis committee: Dr. Bertrand Garcia-Moreno, Dr. Jungsan Sohn, & Dr. Vince Hilser 
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 2 

1.1 Overview of the membrane system of Gram-negative bacteria  

Annually 2 million people acquire antibiotic resistant infections in the United States. Of 

those infected 23,000 die each year. The most severe threats identified by the U.S. Center for 

Disease Control include antibiotic resistant forms of Escherichia coli and Neisseria gonorrhoeae (CDC 

2013). For both of these Gram-negative bacteria, it has been particularly challenging to deduce 

how antibiotic molecules permeate the barrier presented by the bacterial membrane system 

(Brown and Wright 2016). Understanding the mechanisms by which antibiotics enter Gram-

negative bacteria and how these cells subsequently acquire resistance are therefore pressing 

biomedical issues. Studies to elucidate these pathways are prerequisite to efficiently targeting 

these bacteria by therapeutic treatments.  

Gram-negative bacteria are surrounded by a double membrane system. 

Two membranes surround the bacterium cells of E. coli and N. gonorrhoeae, and drugs 

must traverse both to enter the cytoplasm (Figure 1.1). The innermost membrane is termed the 

inner membrane (IM), while the outermost one is termed the outer membrane (OM). Both 

membranes are lipid bilayer structures with a hydrophobic interior containing lipid acyl chains 

and more hydrated interfacial regions composed of lipid head groups. With regard to lipid 

composition, the inner membrane is composed of a symmetric phospholipid bilayer. The outer 

membrane is asymmetric in that the inner leaflet is made of phospholipids and the outer leaflet 

contains lipopolysaccharide.  

In addition to lipids, both the bacterial IM and OM contain membrane proteins (MPs). 

These two membranes contain distinct classes of MPs. The IM and OM primarily contain α-

helical and β-barrel MPs, respectively. Because these two classes of MPs reside in separate 

cellular membranes, they proceed through different biogenesis pathways. Briefly, α-helical IM 
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proteins are co-translationally inserted into the IM by the SecYEG translocase (Dalbey, Wang, 

and Kuhn 2011). However, β-barrel OM Proteins (OMPs) must bypass the IM in order to reach 

the OM, therefore they utilize a more complex assembly pathway. OMPs are translated with an 

N-terminal export sequence that signals for their export from the bacterial cytoplasm; therefore 

OMPs are post-translationally secreted across the IM through the SecYEG translocase (Ruiz, 

Kahne, and Silhavy 2006). As shown in Figure 1.1, an aqueous compartment termed the 

periplasm separates the bacterial IM and OM. This space contains soluble periplasmic proteins 

and peptidoglycan, which is a polymer of sugars and amino acids that forms a mesh in the 

periplasm and provides mechanical strength to the cell (Vollmer and Bertsche 2008). Little work 

on the interactions of peptidoglycan with periplasmic proteins has been published; therefore it is 

excluded from Figure 1.1 and further discussions. OMPs must traverse the bacterial IM and the 

periplasm to arrive at their native location – the OM. The accurate biogenesis and trafficking of 

both MP classes is a prerequisite to the formation of a functional membrane system and 

subsequent healthy bacterium. 

OMPs have similar topologies yet distinct functions.  

 OMPs typically exhibit a β-barrel topology composed of a closed cylinder of antiparallel 

β-strands. The β-strands of OMPs contain an alternating pattern of hydrophobic and 

hydrophilic residues; because of this geometry, the inside and outside of these β-barrel proteins 

possess hydrophilic and hydrophobic character, respectively (Fairman, Noinaj, and Buchanan 

2011). This yields a tertiary structure in which the interior of an OMP β-barrel is water-

accessible, while the exterior is lipid-exposed. Adjacent β-strands interact through hydrogen 

bonding and are covalently connected by short periplasmic turns and longer extracellular loops.  
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 Although OMPs have canonical secondary and tertiary structures, various OMPs exhibit 

a breadth of biologically relevant functions. Figure 1.2 illustrates this point by showing several E. 

coli OMPs with similar topologies yet unique functions. Three 8 stranded β-barrel OMPs are 

shown with their associated functions: PagP exhibits palmitoyltransferase activity (Bishop 2005); 

OmpX has been implicated in bacterial virulence (Vogt and Schulz 1999); OmpA plays a role in 

cell-cell adhesion (Ortiz-Suarez et al. 2016). Each of these OMPs is composed of a 

transmembrane (TM) β-barrel domain, yet OmpA additionally contains a soluble, periplasmic 

domain that is required for in vivo function. OMPs also exhibit different numbers of β-strands 

and can range in size from 8 β-strands to 26 β-strands. Figure 1.2 includes several larger OMPs, 

such as OmpT (protease with 10 β-strands), OmpLA (phospholipase with 12 β-strands), and 

BamA (OMP-folding enzyme with 16 β-strands). Each of these OMPs contains a β-barrel 

domain, yet exhibits distinctive functional properties. 
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1.2. The role of chaperones in outer membrane protein biogenesis 

Chaperones are critical to the maintenance of the membrane proteome.  

 Each unique OMP shown in Figure 1.2 utilizes the same OMP trafficking pathway in E. 

coli to traverse the periplasm. Biogenesis of OMPs is known to involve several periplasmic 

chaperone proteins that associate with OMPs en route to the OM. Through genetic experiments 

each of these chaperones has been implicated in functioning in this trafficking. These 

experiments suggest that when these chaperones are removed from the bacterial genome 

individually or in pairs, the integrity of the OM is compromised to varying extents (Arié, 

Sassoon, and Betton 2001; Sklar, Wu, Kahne, et al. 2007). Chaperones identified through these 

types of experiments are: Seventeen Kilodalton protein (Skp) (Schäfer, Beck, and Müller 1999), 

Survival protein A (SurA) (Tormo, Almirón, and Kolter 1990), FkpB binding protein A (FkpA) 

(Ge, Lyu, et al. 2014), and the protease DegP (Ge, Wang, et al. 2014a; Lipinska, Zylicz, and 

Georgopoulos 1990). SurA was identified as a particularly important chaperone through 

experiments of this nature, as removing SurA from the E. coli genome (i.e., ΔsurA) results in cells 

with compromised membrane systems as evidenced by sensitivity to detergents and antibiotics  

(Lazar et al. 1998; Lazar and Kolter 1996). Single deletions of Skp (Δskp), DegP (ΔdegP), or FkpA 

(ΔfkpA) have little effect on the integrity of the OM (Justice et al. 2005; Sklar, Wu, Kahne, et al. 

2007). 

 One may ask, why have E. coli evolved four seemingly redundant chaperones to manage 

the OMP biogenesis pathway? To address this question, Rizzitello et al. systematically depleted 

Skp, SurA, and DegP from the E. coli genome and assessed the phenotypes associated with these 

genotypes (Rizzitello, Harper, and Silhavy 2001). Here the authors constructed bacterial strains 

with depletions (δ) or deletions (Δ) of the chaperone genes of interest in pairs. The authors 
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present the first evidence that depletion/deletion combinations of either SurA and Skp (i.e., 

δsurAΔskp) or SurA and DegP (i.e., δsurAΔdegP) are lethal. Interestingly, the strain with a 

δdegPΔskp genotype exhibits no observable growth defects. These results lead to the realization 

that each of these proteins is likely redundant in possessing chaperone function, yet two distinct 

pathways for OMP biogenesis may exist: one involving both DegP and Skp, and SurA is 

involved in a separate “parallel pathway.” 

Redundancy in the chaperone network provides built-in stress response mechanism. 

 As mentioned above, ΔsurA bacterial cells have compromised membrane systems that 

leads to observable phenotypes (Lazar et al. 1998; Lazar and Kolter 1996). Under such 

conditions, E. coli are known to induce transcriptional stress responses, such as the sigma-E (σE) 

response (Danese and Silhavy 1997; De Las Peñas, Connolly, and Gross 1997; Onufryk et al. 

2005). This response involves the modulation of transcription of many genes, including the 

upregulation of the periplasmic chaperones and down-regulation of OMPs themselves 

(Dartigalongue, Missiakas, and Raina 2001). The observation that the ΔsurA genotype induces 

the σE response begs the question – what is it about the loss of SurA that signals a stress 

response? It has been proposed that the accumulation of unfolded OMP species in the 

periplasm signal the induction of the σE response; the loss of SurA must allow the unfolded 

OMP population to surpass the threshold level for bacterial stress induction (Lazar and Kolter 

1996; Sklar, Wu, Kahne, et al. 2007; Ureta et al. 2007). 

 OMP biogenesis has been suggested to proceed through varying routes that consist of 

distinct chaperones, termed “parallel pathways” (Ureta et al. 2007). This type of trafficking 

allows alternate avenues for OMPs to reach the OM under stress conditions, such as the genetic 

knockout of SurA and subsequent σE induction. Indeed, it was found that under these 
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conditions, OMPs are able to achieve their native conformations through interacting with 

Skp/DegP, albeit on a slower timescale than in the presence of SurA (Ureta et al. 2007). 

Furthermore, parallel pathways allows for differential flux through the various routes for OMP 

clients that preferentially interact with one chaperone over another (Chen and Henning 1996; 

Ureta et al. 2007; Vertommen et al. 2009).  

Overall, genetics studies have identified which periplasmic proteins are involved in OMP 

assembly, along with the associated phenotypes for their removal from E. coli. However, 

interpreting results from experiments of this nature is complex – phenotypes may arise for many 

reasons. For instance, the interpretation of a lethal phenotype is impossible. For more detailed 

insight into the functions of the periplasmic proteins SurA, Skp, FkpA, and DegP, we turn to in 

vitro biochemical and structural studies. 

Periplasmic chaperones bind to unfolded OMP ensembles. 

To explain the changes in OM integrity upon the loss of SurA or pairs of other 

chaperones, it was suggested that each of these proteins works as a chaperone in the periplasm 

for the trafficking of unfolded OMPs to the OM (Lazar and Kolter 1996; Rizzitello, Harper, and 

Silhavy 2001; Schäfer, Beck, and Müller 1999). This implies that each periplasmic protein (i.e., 

SurA, Skp, FkpA, and DegP) interacts with OMPs in the periplasm – indeed, reported 

phenotypes include a decrease in the amount of certain OMPs in the OM in ΔsurA (Sklar, Wu, 

Kahne, et al. 2007). Understanding this association between chaperones and OMPs involves 

identifying the conformation of each protein involved. This raises the question: what 

conformation of OMP is bound by these chaperones? In the periplasm, OMPs remain unfolded 

(i.e., uOMPs) until they reach the asymmetric outer membrane into which they fold (Figure 1.1). 

Because uOMPs require a lipid bilayer to fold into their native conformation, they must traverse 

the 165 Å aqueous periplasm in this unfolded, yet folding-competent state (Murakami et al. 
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2002). Herein lies a dilemma: uOMPs are prone to aggregate in aqueous environments (Danoff 

and Fleming 2015a; Ebie Tan et al. 2010). The thermodynamically favorable, yet kinetically slow 

process of uOMP aggregation directly competes with the productive folding pathway of 

uOMPs. This potential dead-end fate for an unfolded OMP is avoided in vivo by the association 

of uOMPs with periplasmic chaperones.  

The mechanism of chaperone activity and subsequent prevention of uOMP aggregation 

in the periplasm is complicated by the fact that the periplasm lacks ATP (Wülfing and Plückthun 

1994). Therefore, periplasmic chaperones must prevent uOMP aggregation and its associated 

cell stress (i.e., σE) in the absence of an external energy source. To accomplish this important 

cellular feat, the thermodynamics and kinetics of chaperone-uOMP interactions must be fine-

tuned to maintain uOMP proteostasis in the absence of ATP (Fleming 2015; Ge, Lyu, et al. 

2014; Moon et al. 2013; Wu et al. 2011). 

Skp and DegP form cavities to accommodate and safeguard uOMPs. 

 The periplasmic chaperones mentioned above have been expressed and purified for in 

vitro investigation by several research groups. Crystallographic structures of each chaperone have 

been solved and are presented in Figure 1.1 (Bitto and McKay 2002; Krojer, Sawa, et al. 2008; 

Saul et al. 2004; Walton and Sousa 2004). Additionally, structural characterization and modeling 

of chaperone-uOMP complexes have revealed various mechanisms that chaperones utilize to 

protect uOMPs from aggregation: one such mechanism periplasmic chaperones employ to 

prevent subsequent aggregation is to protect uOMPs by sequestering them within a defined 

internal uOMP-cavity. Skp and DegP are both oligomeric chaperones with defined internal 

binding cavities that accommodate uOMPs (Figure 1.1) (Krojer, Sawa, et al. 2008; Strauch, 

Johnson, and Beckwith 1989; Walton and Sousa 2004). Most structural studies have focused on 

uOMP-Skp interactions (Moon et al. 2013; Wu et al. 2011). In the apo (i.e., uOMP free) state, 



 

 9 

three α-helical Skp polypeptide chains associate to form a trimer with an internal cavity (Sandlin, 

Zaccai, and Fleming 2015; Walton et al. 2009). Nuclear Magnetic Resonance (NMR) analyses 

suggest that the uOMP inside of Skp is highly dynamic, makes many weak local interactions with 

the chaperone, and populates a “fluid globule” conformational ensemble (Burmann, Wang, and 

Hiller 2013).  

Small-angle Neutron Scattering (SANS) experiments have subsequently demonstrated 

that the α-helical arms of Skp are flexible to accommodate the unstructured uOMP (Zaccai et al. 

2015). Structural modeling of the uOMP bound to Skp revealed that the uOMP (i.e., OmpW) is 

not entirely encapsulated but protrudes from the Skp cavity (Figure 1.3). Also, modeling of Skp 

bound to OmpA, which contains a folded soluble domain (Figure 1.2), suggests this uOMP 

client binds to Skp as an ensemble with the soluble OMP domain in a variety of orientations 

outside of the Skp trimer. Overall, it seems that both the bound uOMP and Skp exist in multiple 

conformations in the complex, all of which shield the uOMP from the aqueous periplasm and 

prevent deleterious uOMP aggregation. This type of uOMP capturing mechanism has also been 

observed for the periplasmic chaperone/protease DegP, which binds uOMPs in an internal 

cavity as evidenced by cryo-electron microscopy (Krojer, Sawa, et al. 2008).  

It is currently unknown how SurA and FkpA interact with uOMPs. 

The second mechanism for safeguarding uOMPs from aggregation involves chaperones 

that are not known to form defined cages. The periplasmic proteins SurA and FkpA both lack 

internal cavities but are still known to bind uOMPs (Figure 1.1) (Arié, Sassoon, and Betton 2001; 

Bitto and McKay 2002; Rouviere and Gross 1996; Saul et al. 2004). It is unclear how these 

chaperones bind to uOMP clients to prevent their aggregation. Recent studies have suggested 

that both SurA and FkpA may exist in a variety of conformations that play a role in uOMP 
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binding. Crosslinking and genetic experiments suggest that SurA may explore several 

conformations and these structural changes mediate SurA activity by modulating populations of 

“open” and “closed” SurA states (Soltes et al. 2016). Flexibility in one of the N-terminal α-

helices of FkpA may allow this chaperone to exist in many uOMP-binding conformations (Hu, 

Galius, and Pervushin 2006). Structural information on these complexes would prove immensely 

valuable in understanding how these chaperones safeguard uOMPs via a mechanism distinct 

from that of Skp/DegP. 

SurA, FkpA, and DegP are bifunctional enzymes. 

A complicating feature to the periplasmic trafficking of OMPs is that several chaperones 

involved in this pathway are multi-functional. It has been reported that all cellular compartments 

contain peptidyl-prolyl cis-trans isomerase enzymes (PPIases) and the periplasm is no exception. 

Cis-trans isomerization of the peptide backbone is required for folding of some proteins and is 

often the rate-limiting step for this process; PPIase enzymes catalyze the conversion between 

these two states to facilitate protein folding (for a review, see Gothel and Marahiel, 1999). The 

periplasm contains four proteins with PPIase activity: FkpA. PpiA, PpiD, and SurA (Justice et al. 

2005). FkpA falls into the FKBP family of PPIases, while the other three periplasmic PPIases 

are classified as parvulin type PPIases. The PPIase activity of FkpA and SurA are additional 

factors for consideration of their activity in the periplasm. 

DegP also possesses an enzymatic activity distinct from its role as a chaperone: it is a 

processive endoprotease of the HtrA family that degrades misfolded proteins (Krojer, Pangerl, 

et al. 2008; Lipinska, Zylicz, and Georgopoulos 1990). DegP forms higher order oligomers, 

including hexamers that assemble to catalytically active 12-mer and 24mer states; it has been 

suggested that the oligomerization state is modulated to accommodate substrates for 

degradation of varying sizes (Krojer, Sawa, et al. 2008). Although the protease activity of DegP is 
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biologically important, expression of a protease-deficient variant of DegP (i.e., catalytic Ser-210 

mutated to Ala) rescues otherwise lethal phenotypes, highlighting the importance of the DegP 

chaperone activity (Castillo-Keller and Misra 2003; Misra, Castillo-Keller, and Deng 2000). 

While it is established that SurA, FkpA, and DegP are bifunctional, it is currently 

unknown how these various functions relate to the chaperone activity of SurA, FkpA, and DegP. 

It could be that clientele pool for PPIase activity for SurA and FkpA overlaps with their 

preferred OMP binding client pool; the same may be true for DegP protease/chaperone 

activities. Studies to define the relevant clients of each activity of these chaperones are lacking in 

the literature. Additionally, it is unknown if these proteins are constitutively active as enzymes 

and chaperones or if different cellular conditions modulate their activities. 

The relevant oligomerization states of the periplasmic chaperones are unknown. 

 Crystallographic evidence has traditionally been utilized to assign oligomerization states 

to proteins. As mentioned above, structures of DegP have been solved in a variety of 

oligomerization states, including hexamers, 12-mers, and 24-mers (Iwanczyk, Leong, and Ortega 

2011; Kim, Grant, and Sauer 2011; Kim and Sauer 2012; Krojer, Sawa, et al. 2008; Sassoon, Arié, 

and Betton 1999; Thompson et al. 2014). Skp has also been reported to form trimers both in the 

apo- and OMP-bound states (Walton and Sousa 2004; Zaccai et al. 2015). FkpA and SurA were 

crystalized in dimeric and monomeric conformations, respectively (Bitto and McKay 2002; Saul 

et al. 2004). One shortcoming of determining oligomerization by structural studies is that the 

oligomer present in a highly concentrated crystal lattice is not necessarily the one present in 

more dilute solution conditions. This type of incongruity was recently observed for Skp, as it was 

observed that the Skp monomer is significantly populated at biologically relevant protein 

concentrations (Sandlin, Zaccai, and Fleming 2015). This type of rigorous solution investigation 
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of oligomerization has not been performed for DegP, FkpA, or SurA; therefore, it is not 

definitively known which oligomeric species are populated in vivo for these proteins. 

Chaperones bind uOMPs with different rates and affinities. 

 Previous studies have additionally aimed to differentiate between the periplasmic 

chaperones based on the kinetics of their interactions with OMP clients. Stopped-flow 

fluorescence experiments have measured the extent of association of each chaperone with a 

client OMP by labeling each with a fluorescent dye and quantitating the FRET between the two 

fluorophores. The half-time for binding (i.e., t1/2) for binding of OmpC to FkpA, SurA, Skp, and 

DegP (S210A) were reported as: 6.6 ± 0.4 ms; 58.5 ± 0.7 ms; 18.8 ± 0.3 ms; and 28.3 ± 0.1 s, 

respectively (Ge, Lyu, et al. 2014; Wu et al. 2011). Although these values are not rigorously 

determined rate constants for chaperone-uOMP binding, trends from these data are telling – 

DegP binds to OmpC three orders of magnitude slower than FkpA, SurA, or Skp under these 

experimental conditions. These data suggest that different kinetics of binding may allow OMPs 

to preferentially interact with SurA, Skp, or FkpA over DegP, creating a kinetic partitioning 

mechanism to sort OMPs away from DegP. However the experimental conditions presented in 

this study do not allow for the definitive exclusion of OMP aggregation in this set-up; 

additionally, the oligomeric state of chaperones in these studies cannot be determined from the 

published protocol. 

Equilibrium dissociation constants (KD) for the binding reactions of OmpC to FkpA, 

SurA, Skp, and DegP (S210A) have also been reported as follows: 23.2 ± 3.5 nM; 106 ± 84 nM; 

15.9 ± 7.2 nM; and 8.6 ± 0.4 nM, respectively (Ge, Lyu, et al. 2014; Wu et al. 2011). These 

results suggest that SurA associates with this OMP client with the weakest KD. As with the 

previously published kinetics experiments, the oligomeric states of chaperones and uOMP in this 

study cannot be determined from the published protocol. Additionally, control experiments to 
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ensure these reported measurements were made on a system at equilibrium were not published; 

these reported KD values report on the apparent equilibrium constant for this system. Other 

studies have investigated the thermodynamics of uOMP-chaperone binding reactions as well. 

The KD of Skp binding to OmpLA was reported to be 10.8 ± 0.2 nM (Moon et al. 2013) – this 

KD is ten times tighter than the Skp-uOmpC affinity (Ge, Lyu, et al. 2014; Wu et al. 2011). SurA 

also binds weakly to peptides: the KD of SurA association with aromatic-rich peptides was 

determined by phage-display assays to be in the µM range (Bitto and McKay 2003, 2004; Xu et 

al. 2007). These experiments are non-equilibrium measurements and are therefore not thorough, 

quantitative descriptions of the SurA-OMP interaction energy. Overall, there are few reported 

measurements of the association energies for periplasmic chaperones and uOMPs, and certainly 

no rigorous comparisons between these energies under conditions in which the uOMP is 

monomeric and the chaperone oligomerization state is known. 

Many unanswered questions remain about the roles of periplasmic chaperones. 

 The E. coli periplasmic chaperone network has been studied for decades, yet many 

questions remain about the specific roles of FkpA, SurA, DegP, and Skp. These chaperones 

seem redundant but may form parallel pathways for OMP flux to proceed through the 

periplasm. Preferential bindings of uOMPs to each chaperone will depend on the specific kinetic 

and thermodynamic parameters for each association. To understand how uOMPs associate with 

the various periplasmic chaperones, we must first answer several questions: which oligomeric 

states are functionally relevant for each chaperone? How do these functional states 

accommodate an unstructured OMP binding partner? How do SurA and FkpA bind to uOMPs 

without forming an internal cavity? After the formation of chaperone-uOMP complexes, do 

these chaperones limit the population of OMP misfolded conformations or do they actively 



 

 14 

promote the formation of folded OMP? Do these chaperones work together to facilitate the 

assembly of OMPs or do they function independently? 

Key questions regarding the catalytic and chaperone activities of the bifunctional 

periplasmic proteins also remain unanswered: how do the enzymatic activities of FkpA, SurA, 

and DegP relate to their chaperone activities? Are the PPIase activities of FkpA and SurA 

relevant for OMP assembly? That is, does the clientele pool for PPIase and chaperone activity 

overlap? How is a balance between the DegP protease and chaperone activity maintained to 

ensure the OMPs are not degraded en route to the OM?  We currently do not understand how 

these bifunctional proteins work as both enzymes and chaperones. 
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1.3. The role of the BAM complex in OMP biogenesis 

The OM-localized BAM complex facilitates uOMP assembly into the OM. 

 Once OMPs reach the OM, they are assembled in their TM topology with the assistance 

of the OM-localized β-Barrel Assembly Machinery (BAM) multi-protein complex 

(BamABCDE). BAM protein A is itself a β-barrel OMP that is evolutionarily conserved from 

bacteria to eukaryotes and is known to play an essential role in uOMP assembly (Voulhoux, Bos, 

Geurtsen, Mols and Tommassen 2003). In E. coli, four periplasmic lipoproteins associate with 

BamA, BamBCDE, to form the BAM complex (Malinverni et al. 2006; Onufryk et al. 2005; 

Sklar, Wu, Gronenberg, et al. 2007; Wu et al. 2005). Each BAM component has been implicated 

in maintaining OM integrity, but only BamA and BamD are required for cell viability (Malinverni 

et al. 2006; Werner and Misra 2005). The essentiality of the BAM complex stems from its role in 

assembling uOMPs into the bacterial OM.   

The BAM complex facilitates OMP folding into the OM, which is an asymmetric bilayer 

composed of a phospholipid inner leaflet and outer leaflet made of lipopolysaccharide. The 

phospholipids in the inner leaflet have both phosphoethanolamine (PE) and phosphoglycerol 

(PG) head groups (Kamio and Nikaido 1976; Osborn, Gander, Parisi, Carson 1972). This is 

consequently similar to the head group composition of the bacterial IM lipids. It has been 

proposed that the presence of the BAM complex in the OM effectively targets OMPs for 

insertion into the OM – uOMP folding into the IM would certainly lead to dissipation of the 

proton gradient essential to sustain cell viability (Gessmann et al. 2014). Therefore OMP client 

recognition by the BAM complex and accurate assembly of OMPs into the OM is critical to 

both OM integrity and cell survival. 
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Recently published structures of the BAM complex highlight novel features of BamA. 

In the past 4 years, several structures have been presented for the BAM complex and 

functional mechanisms have been proposed (Gu et al. 2016; Han et al. 2016; Iadanza et al. 2016; 

Noinaj et al. 2013). In 2013, the first crystallographic structure of a full-length bacterial BamA 

homologue was presented (Noinaj et al. 2013). This structural model indicated that BamA is 

composed of two domains: one TM 16-stranded β-barrel domain and a series of five soluble 

POlypeptide-TRansport-Associated (POTRA) motifs (Figures 1.1 and 1.4). Each of these 

structural subunits has unique features that may contribute to the catalytic ability of BamA to 

accelerate uOMP folding (See Chapter 4). The structure of the BamA β-barrel domain structure 

revealed a surprising feature: instead of exhibiting a geometry that maximizes the number of 

hydrogen bonds between the N- and C-terminal β-strands, the crystal structure of the N. 

gonorrhoeae BamA revealed that the N- and C-terminal β-strands of the β-barrel interact with only 

two hydrogen bonds to close the β-barrel. Also, the C-terminal β-strand is twisted and bends 

into the β-barrel. This “open” β-barrel conformation has since been observed in crystallographic 

studies of E. coli BamA (Gu et al. 2016). Molecular dynamics (MD) simulations and biochemical 

analyses have been utilized to suggest that lateral opening or dynamic motion of these BamA 

seam β-strands may play a pivotal role in the function of BamA (i.e., “lateral gating”) (Noinaj et 

al. 2014). 

Because lipids in the OM surround OMPs, this lateral gating hypothesis for the 

functional mechanism of BamA seems contradictory to the basic principles of thermodynamics. 

The BamA β-barrel interior is large enough to accommodate hundreds of water molecules, 

which would be exposed to hydrophobic lipids as the BamA β-barrel laterally opens. This 

process should result in a large energetic penalty that must be overcome by another 
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compensating source of energy. Reconciling these thermodynamic considerations with the 

available structural information must be accomplished to elucidate the catalytic mechanism of 

BamA. 

The BamA POTRA domain mediates BamA contacts with BAM lipoproteins. 

Both in vitro and in vivo studies have indicated that the presence of the POTRA motifs are 

required for BamA acceleration of OMP folding and cell viability, respectively (Gessmann et al. 

2014; Kim et al. 2007). These POTRA motifs of BamA interact with the BamBCDE 

lipoproteins, as shown in Figure 1.4. Prior to the solution of the most recent crystallographic 

structures of the BAM complex, crystal structures of individual POTRA motifs fused to BAM 

lipoproteins revealed that BamB and BamD interact with POTRA motifs 3 and 5, respectively 

(Bergal et al. 2015; Jansen, Baker, and Sousa 2015). The recently solved crystal structures of 

BamACDE and the entire BAM complex suggest that the most extensive contacts between 

BamA and the BAM lipoproteins occurs between BamA POTRA 5 and BamD (Bakelar, 

Buchanon, and Noinaj 2016; Gu et al. 2016; Han et al. 2016). This interaction between BamA 

and BamD may be functionally important, because outcompeting this interaction with a BamD-

derived peptide inhibits BAM complex formation (Hagan, Wzorek, and Kahne 2015).   

One possible conformation of the BamA POTRA domain was elucidated in recent 

crystallographic studies of BamACDE and the BAM complex where it was observed that the 

BamA POTRA motifs encircle the periplasmic face of the BamA β-barrel and were suggested to 

create a funnel to direct the uOMP client to the β-barrel of BamA (Figure 1.4) (Bakelar, 

Buchanon, and Noinaj 2016; Gu et al. 2016; Han et al. 2016). However, the observed 

conformation of POTRA 5 is inconsistent with this hypothesis. POTRA 5 occludes the β-barrel 

of BamA from the periplasm, and the ~15 Å opening at the periplasmic face of the BamA β-
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barrel is too small to accommodate a uOMP client (Bakelar, Buchanon, and Noinaj 2016). 

Additionally, it is difficult to exclude the idea that the compactness of the POTRA domain in the 

crystal structure may result from crystal contacts between neighboring BAM proteins. Indeed, 

MD of BamABCDE suggests the BamA POTRA motifs sample a variety of less compact states 

(Gu et al. 2016). Although the reported conformation of the POTRA domain may have 

implications for the function of the BAM complex, structural studies that are non-

crystallographic in nature will be required to further understand the role of the POTRA domain 

and BAM lipoproteins in modulating the conformational states of BamA. 

How do the BamA POTRA motifs interact with uOMPs? 

 The POTRA motifs of BamA exhibit a conserved β1-α1-α2-β2-β3 architecture and 

have been suggested to interact with client uOMPs through exposed β sheets (Knowles et al. 

2008). NMR experiments have shown that the addition of peptide fragments from a 

representative OMP (i.e., PhoE) yield chemical shift perturbations in residues in the terminal β-

sheets of the POTRA motifs. Although these experiments may suggest the nascent OMPs 

interact with the POTRA motifs through “β-augmentation,” it is critical to point out that these 

NMR studies were completed on a soluble construct of the POTRA domain. Use of a soluble 

construct removes the POTRA domain from the biological context of full-length BamA; 

therefore it is unclear that the observed interactions would be recapitulated in an experimental 

setup that utilizes the full-length BamA protein.  

Interestingly, it has been shown by several groups that SurA crosslinks to the BamA 

POTRA motif 5 (Bennion et al. 2010; Sklar, Wu, Kahne, et al. 2007). It is unknown if SurA 

mediates contacts between the BamA POTRA motifs and OMP clients through ternary complex 
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formation. It is an ongoing endeavor in the field to understand how the BamA POTRA domain 

contacts uOMP clients in both the presence and absence of the chaperone SurA. 

OMPs spontaneously insert into bilayers in v i tro . 

 Studies investigating the in vitro folding behavior of E. coli OMPs have been presented 

for over a decade (Bulieris et al. 2003; Burgess et al. 2008; Kleinschmidt 2015; Kleinschmidt and 

Tamm 2002). It has been established that OMPs will spontaneously insert into synthetic bilayers 

and folding is commonly assessed by the apparent electrophoretic mobility of OMPs. When not 

boiled, the folded and unfolded β-barrel species migrate differentially by SDS-PAGE, and this 

experimental tool has proven invaluable for monitoring the folding kinetics of various OMPs 

(Inouye and Yee 1973; Nakamura and Mizushima 1976). It was shown by Burgess et al. that 

OMPs fold with the fastest apparent kinetics into vesicles with shorter acyl chain lengths and 

phosphatidyl-choline (PC) head groups (Burgess et al. 2008). Importantly, because BamA is itself 

an OMP, it also exhibits this spontaneous insertion into synthetic bilayers in vitro. 

 Surprisingly, it was reported that incorporating lipids with PE head groups into vesicles 

used in folding assays significantly retards OMP folding (Burgess et al. 2008; Gessmann et al. 

2014). In fact, no folding was observed into lipid extract from E. coli. It has been suggested that 

PE head groups present a kinetic barrier for OMP folding. This interpretation raises the 

question: if OMPs cannot insert into vesicles with PE head groups, how do they fold into the E. 

coli OM which contains lipids with 75% PE head groups (Lugtenberg and Peters 1976; White, 

Lennarz, and Schnaitman 1972)? The presence of BamA in the OM to target OMP folding to 

this membrane provides an elegant solution to this apparent paradox. 
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BamA accelerates OMP folding in v i tro . 

Because the biologically functional E. coli BAM complex contains five proteins, in vitro 

experiments have aimed to deconvolute the effects of these components by studying the 

individual BAM proteins in isolation. In vitro studies have established that prefolding BamA into 

vesicles prior to the introduction of a client OMP accelerates the folding of the client OMP; 

therefore it was shown that BamA alone can accelerate uOMP folding, albeit to a lesser extent 

than the entire BAM complex (Gessmann et al. 2014; Hagan, Kim, and Kahne 2010).  Because 

uOMPs spontaneously insert into synthetic lipid bilayers in vitro and BamA accelerates this 

process, BamA exhibits properties of an enzyme in that it reduces the activation barrier to 

uOMP folding into biological membranes. The Km for this catalytic process was determined to 

be high (>20 µM) suggesting the possibility that thermodynamically weak interactions occur 

between BamA and the uOMP client (Fleming 2015; Gessmann et al. 2014).  

These results raise the question: how can BamA accelerate uOMP folding if it only 

weakly interacts with the uOMP? This conundrum can be addressed by realizing that these weak 

protein-protein interactions are only one facet of the role of BamA (Fleming 2015). BamA-

accelerated uOMP folding is in fact a multi-order process, as BamA may interact with both the 

uOMP client and the surrounding lipid membrane. It is entirely plausible that BamA promotes 

the formation of a membrane defect. Because such structures are known to accelerate uOMP 

folding, this has been suggested as one possible catalytic mechanism for uOMP-BAM mediated 

folding (Danoff and Fleming 2015b). Such a membrane defect is poorly defined structurally but 

may be represented by a hydrophobic mismatch between the surrounding lipid bilayer and the 

BamA β-barrel (Fleming 2015; Noinaj et al. 2013). This membrane defect functional mechanism 

for BamA is currently speculative, as there has been no compelling evidence presented that 

BamA specifically interacts with lipids as a part of its catalytic mechanism.  
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Interestingly, it was shown previously that the entire BAM complex facilitates multiple 

rounds of catalysis. The “turnover number” or OMPs folded per BAM complex was reported as 

1.5 OMPs/BAM. This finding led to the suggestion that the BamBCDE lipoproteins function to 

regenerate BamA upon client-OMP folding (Hagan and Kahne 2011). However, the turnover 

number of BamA alone has never previously been reported. This raises the question – can 

BamA itself catalyze the folding of more than one OMP client? By deconvoluting the roles of 

each BAM protein by modifying established biochemical assays, we can more precisely assign 

functions to each protein in this complex (Chapter 4). This allows for better understanding of 

the mechanism of BamA-mediated OMP folding in vitro, which likely parallels in vivo function. 

Unanswered questions abound on BAM complex function. 

 Overall, crystal structures of the BAM complex and its individual components provide 

valuable snapshots of the catalytic cycle of BAM-mediated uOMP folding. The crystallographic 

conformations observed likely represent stable reaction intermediates; if so, these 

crystallographic data inherently only provide insight into local energetic minima along the 

functional pathway of BAM. Complementary in vitro studies of OMP folding kinetics in the 

presence of BamA have enabled the classification of this OMP as a MP-folding enzyme. But 

many questions remain about the functional mechanism of this enzyme: how are the “open” and 

“closed” crystallographic conformations of BamA related to the catalytic mechanism? How do 

the BamA β-barrel and POTRA domains work together to recognize OMP clients and 

subsequently facilitate their folding? What is the role of the BamBCDE lipoproteins in this 

process? Lastly, are BAM-chaperone-uOMP ternary complexes formed as intermediates in the 

biogenesis pathway?  
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1.4. A holistic understanding of OMP partitioning through the biogenesis pathway is 

lacking. 

Thermodynamic partitioning may drive OMPs towards their folded state. 

 Figure 1.1 presents a series of possible reactions that a nascent uOMPs may make prior 

to reaching the OM for assembly by the BAM complex. It is currently unknown what is the 

biological driving force for productive OMP progression through this pathway. Consideration of 

the thermodynamics for all possible reactions has prompted a compelling suggestion – the 

thermodynamics of OMP folding may be the ultimate driving force towards to native state 

ensemble. Interestingly, the folding free energy for a representative OMP, OmpLA, was 

reported to be extremely favorable: 32.5 kcal mol-1 (Moon et al. 2013). This immense stability of 

the folded OMP is proposed to serve as an energy sink for the sorting of OMPs through the 

periplasm. In addition to a thermodynamic-driven pathway, kinetic partitioning mechanisms 

have also been suggested for promoting OMP flux through certain chaperone pathways (Wu et 

al. 2011). It is likely that both thermodynamic and kinetic constraints affect the biogenesis 

pathway of OMPs; currently, the complex interplay between these features is not well 

understood. 

The E. co l i  OMP biogenesis system is an ideal network for computational modeling. 

 One intrinsic limitation to in vitro studies is that they involve removing components of 

the OMP assembly system from their biological contexts to investigate their roles in isolation. 

These types of experiments are necessary for parsing out the details of the numerous protein-

protein interactions that occur in this complex pathway.  However, a holistic understanding of 

this trafficking system involves piecing information from all of these biochemical experiments 

back together to inspect the puzzle of OMP biogenesis in its entirety. Because this periplasmic 



 

 23 

network has been studied for more than 20 years, a wealth of information has been published on 

both genetic and biochemical investigations of the individual system components. We posit that 

this system is ideal for analysis by a holistic modeling approach. 

Network modeling has previously been utilized to investigate emergent properties of 

well-studied chaperone systems. The FoldEco model for protein folding in the E. coli cytoplasm 

was presented in 2012 (Powers, Powers, and Gierasch 2012). This model incorporates the 

known kinetic and thermodynamic parameters for reactions involving nascent protein 

interactions with the cytoplasmic quality control systems into a series of differential equations 

that quantitate the amount of nascent polypeptide that proceeds through different states, 

including: unfolded, native, misfolded, and aggregate protein ensembles. This type of modeling 

was pivotal in synthesizing decades of experimental work into a computational model to analyze 

the cytoplasmic chaperone network. This type of model has only been reported for the 

cytoplasmic proteostasis network, although we suggest that the amount of biochemical 

characterization presented in the literature on OMP biogenesis make this system a prime target 

for development of a model to describe E. coli membrane proteome maintenance. 

Outstanding questions on the OMP biogenesis pathway. 

 Although several thermodynamic and kinetic studies are presented in the literature, no 

one has previously synthesized these decades of data to understand the OMP biogenesis 

pathway holistically. This approach raises several questions – will a computational model 

constructed using the published thermodynamic and kinetic constants recapitulate previously 

published results? Will this model be capable of simulating the well-established genetics 

experiments? What types of information will a model of this nature yield to us about the kinetics 

and thermodynamics of OMP assembly? Can we gain insight into the functions of the 
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periplasmic chaperones and BAM complex? These questions highlight the exciting possibilities 

that computational modeling holds with regard to the OMP assembly pathway.  
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1.5. Outline of the data presented here. 

The OMP assembly pathway involves many protein-protein interactions that ensure the 

accurate assembly of these MPs. Understanding the intricacies of this process requires a detailed 

knowledge of both the kinetics and thermodynamics of the various interactions that occur prior 

to the folding of the bacterial OMPs. Here I have investigated the biogenesis pathway of OMPs 

from the Gram-negative bacteria E. coli in hopes to elucidate mechanistic details of this assembly 

process. 

I studied the role of the two prolyl-isomerases shown in Figure 1.1 in the biogenesis 

pathway of OMPs, FkpA and SurA. In Chapter 2, I have determined the relevant oligomeric 

states of FkpA at biological concentrations and discovered that the previously unidentified 

monomeric species is significantly populated under these conditions. I further assessed the 

ability of both of the FkpA monomer and dimer to bind uOMP and determine that the dimeric 

species associates with uOMPs with an affinity that is 1000-fold greater than the monomer. I 

suggest that the monomer and dimer species exhibit the distinct functions of PPIase and uOMP-

chaperone, respectively. The relative populations of these oligomers and subsequent functional 

states of this bifunctional protein are modulated by the σE stress response.  

In Chapter 3, I determined that oligomerization is likely not important for the function 

of SurA, as SurA dimerizes with a KD in the mM range. I have constructed a structural model for 

a complex between SurA and a representative uOMP client to explain how SurA accommodates 

these clients. SurA interacts with expanded uOMPs with a delocalized interface – this structural 

mechanism is quite distinct from the previously reported encapsulation motifs utilized by Skp 

and DegP. The discovery of this binding mechanism provides novel insight into the function of 

this chaperone and suggests how SurA may prime uOMP clients for interactions with the BAM 

complex. 
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I have also addressed the question – how does the catalytic activity of BamA compare to 

that of the whole BAM complex? To this end, I utilized in vitro folding assays to probe the 

mechanism of BamA-accelerated folding of OMPs to compare the activity of BamA to the 

previously determined BAM complex activity (Chapter 4) (Gessmann et al. 2014; Plummer and 

Fleming 2015; Plummer, Gessmann, and Fleming 2015). I found that BamA and the BAM 

complex have identical turnover numbers, suggesting that the BamBCDE lipoproteins are not 

required for regeneration of this OMP enzyme. These accessory proteins likely work to 

accelerate the intrinsic enzymatic function of BamA.  

For a holistic understanding of how the individual components play a role in the entire 

process of OMP biogenesis in E. coli, we created a computational model to simulate the flux of 

uOMP through the trafficking system presented in Figure 1.1 (Chapter 5) (Costello et al. 2016). 

Our computational model incorporates previously reported kinetic and thermodynamic data into 

differential equations to simulate the flux of different OMP/chaperone species over time. This 

model recapitulates previously reported experimental results of both wild type and mutant 

strains of E. coli. Our model construction and details of our findings are presented in Chapter 5. 

Briefly, these simulations suggest that OMPs are highly dynamic in that they make hundreds of 

complexes with different chaperones prior to folding into the OM. These findings highlight the 

importance of the dynamic exchange of chaperone-uOMP complexes. These results are in 

contrast with previous biochemical studies that suggest that chaperones may form ternary 

complexes to facilitate OMP trafficking through the periplasm (Wu et al. 2011). Our data 

indicate ternary complex formation is likely not required for accurate trafficking of OMPs. 

Instead our data suggest a paradigm shift toward focusing on the dynamic OMP species moving 

non-directionally across the periplasm, towards the OM for folding (Chapter 5). 
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The novel insight provided through our investigations indicates several points along this 

pathway that are likely to be promising antibacterial drug targets, such as the chaperone-OMP or 

BAM-OMP interactions, as these binding events are required for the accurate assembly of 

OMPs into the OM and subsequent bacterial viability and virulence. 
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Figure 1.1. The E. co l i  Outer Membrane Protein Trafficking Network. 

 

Depiction of Outer Membrane Protein biogenesis components in E. coli shown to scale. uOMPs 

enter the periplasm via the SecYEG translocase (light purple, PDB: 2CFQ), which is located in 

the bacterial inner membrane. Once in the periplasm, uOMPs interact with several chaperones, 

including: DegP (cyan, PDB: 3CSO), FkpA (yellow, PDB: 1Q6U), SurA (magenta, PDB: 1M5Y), 

and Skp (pale green, PDB: 1U2M). The outer-membrane localized BAM complex (BamABCDE 

shown in blue/green/magenta/pink/yellow respectively, PDB: 5D0O) facilitates uOMP folding 

into the OM (e.g., OmpLA; red, PDB: 1QD5). The multi-protein Acr complex (tan, PDBs: 

1EK9, 2F1M, 2DHH) was used to position the inner and outer membranes. The structures of 

these membranes were derived from MD simulations of smaller patches that were concatenated 

to make this image (Wu et al. 2014); phosphate atoms of lipid head groups are shown in orange 

spheres. Arrows indicate known interactions, although the exact sequence and mechanisms of 

these interactions are unknown. Note the peptidoglycan is omitted from this figure. This figure 

is reproduced from (Plummer and Fleming 2016).  
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Figure 1.2. Structures and biological activities of representative β-barrel OMPs. 

 

Six representative OMP structures are indicated: PagP (orange, PDB: 1THQ), OmpX (magenta, 

PDB: 1QJ8), OmpA (purple, PDBs: 2GE4 & 2MQE), OmpT (cyan, PDB: 1I78), OmpLA (grey, 

PDB: 1QD5), and BamA (blue, PDB: 5EKQ). The membrane in this figure is depicted as a 

gradient-shaded grey rectangle. The extracellular and periplasmic compartments are shown at the 

top and bottoms of the image, respectively. These OMPs range in size from 8 to 16 β-strands in 

the β-barrel TM domain and exhibit distinct functions; the number of β-strands and function of 

each OMP is listed above the respective PDB. Some OMPs, such as OmpA and BamA, contain 

soluble periplasmic domains. This figure is adapted from (Burgess et al. 2008). 
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Figure 1.3. Structural model showing uOMP encapsulated by Skp. 

 

The uOMP protrudes from the internal binding cavity of Skp. This model was constructed from 

SANS experiments of Skp bound to unfolded OmpW (Zaccai et al. 2015). Skp is depicted as 

green cartoon, while uOMP is shown as grey surface. This figure is reproduced from (Plummer 

and Fleming 2016). 
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Figure 1.4. BamBCDE lipoproteins contact BamA periplasmic POTRA motifs. 

 

(A) The crystallographic structure of the BAM complex (PDB: 5D0O) suggests how the BAM 

lipoproteins bind to the BamA POTRA motifs (Gu et al. 2016). BamD forms extensive contacts 

with BamA. BamABCDE are shown in blue, green, magenta, pink, and yellow respectively. (B) 

The BamA POTRA motifs encircle periplasmic face of β-barrel; the BAM lipoproteins are 

excluded from this view. POTRA motifs are colored red, orange, tan, green, and light blue (P1-

5). This figure is reproduced from (Plummer and Fleming 2016). 
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Chapter 2 – Chaperone FkpA Populates Oligomers that Exhibit Distinct 

Functions 
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2.1. Introduction 

Membranes play an essential role in cellular viability by separating intracellular molecules 

from extracellular ones and also mediating cellular responses to external stimuli. Intact 

membrane systems are composed of both lipid and membrane protein (MP) components. The 

accurate and efficient biogenesis of MPs is a prerequisite to the formation of the native, 

functionally active state of these MPs. MPs have a breadth of critical functions, including 

metabolite transport, various enzymatic activities, and stress sensing. Understanding how these 

MPs are trafficked is crucial to developing a holistic model of MP biogenesis and subsequent 

function.  

Periplasmic chaperone network assists OMP trafficking in Gram-negative bacteria. 

One MP biogenesis system that has received substantial attention is that of outer 

membrane proteins (OMPs) in Gram-negative bacteria. The OMP biogenesis and trafficking 

system has proven to be a promising target for antibacterial and virulence drug development 

(Hagan, Wzorek, and Kahne 2015). The biogenesis pathway of unfolded OMPs (uOMPs) is a 

multi-step and complex process that begins with uOMP secretion across the bacterial inner 

membrane. After translocation, uOMPs encounter the aqueous periplasm in an unfolded, yet 

folding-competent conformation. Binding of uOMPs to chaperones in the periplasm may 

prevent their misfolding prior to reaching the outer membrane for proper folding and assembly 

(Plummer and Fleming 2016). The periplasmic chaperone network is important for the efficient 

trafficking of uOMPs – it has been suggested that the thermodynamics of uOMP binding to 

chaperones and subsequent folding provides the biological driving force for uOMP partitioning 

through the periplasm, towards the bacterial outer membrane in the absence of an external 

chemical energy source (Moon et al. 2013). This seminal work was the first hint that nature likely 
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utilizes an intricate interplay between thermodynamics and biology to ensure accurate trafficking 

and assembly of MPs. 

One complicating feature of the E. coli chaperone network is that several of the involved 

chaperones function as oligomers. Recent work has indicated that some chaperone proteins may 

populate lower order oligomeric species that were previously not implicated in uOMP trafficking 

(Sandlin, Zaccai, and Fleming 2015). This surprising finding raised several questions about the 

biologically relevant oligomers of those periplasmic chaperones involved in uOMP trafficking. 

One such chaperone is FkpA – this chaperone has been proposed to be a dimeric prolyl-

isomerase with monomers composed of two domains (Horne and Young 1995; Missiakas, 

Betton, and Raina 1996). The structure of FkpA indicates that the N-terminal domain is 

predominantly α-helical and mediates dimerization (Figure 2.1). It has been suggested that the 

dimeric form of FkpA is the species involved as a chaperone for uOMPs (Ge, Lyu, et al. 2014; 

Saul et al. 2004). 

FkpA functions as a chaperone, prolyl-isomerase, and is a heat-shock protein. 

An additional facet of FkpA function is that the C-terminal domain is homologous to 

FK-506 binding proteins (FKBPs) and contains an active site for prolyl-isomerization (Saul et al. 

2004). This domain contains high sequence and structural homology to the human protein 

FKBP-12, which has been implicated in critical signaling cascades (Van Duyne et al. 1993; 

Horne and Young 1995; Trandinh, Pao, and Saier 1992). FkpA accelerates the cis/trans 

isomerization of the proline backbone bond with a catalytic efficiency 100 fold greater than 

other periplasmic prolyl-isomerases (Behrens et al. 2001; Ramm and Plückthun 2000). 

Interestingly, all known FkpA clients for prolyl isomerization are soluble proteins (Bothmann 

and Pluckthun 2000; Braun et al. 2015; Hullmann et al. 2008). As FkpA has also been implicated 

in interacting with clients lacking cis prolines, it has been suggested that the prolyl-isomerase 
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activity of FkpA is not the sole factor for promoting folding of client proteins (Bothmann and 

Pluckthun 2000; Braun et al. 2015; Cumby et al. 2015; Dwyer et al. 2014; Gunnarsen et al. 2010, 

2013; Hullmann et al. 2008; O’Reilly et al. 2014; Padiolleau-Lefèvre et al. 2006; Scholz et al. 

2005; Veiga, De Lorenzo, and Fernández 2004). Therefore a prolyl-isomerase independent 

chaperone activity of FkpA has been proposed. FkpA assists the folding of soluble proteins, in 

addition to interacting with uOMPs (Ge, Lyu, et al. 2014; Schwalm et al. 2013). Interestingly, 

typical OMPs also lack cis prolines, further suggesting that FkpA has two distinct functions: 

uOMP chaperone and prolyl-isomerase for other client proteins. 

Lastly, FkpA additionally plays a role in the stress response of E. coli (Arié, Sassoon, and 

Betton 2001).  As with other bacterial heat shock proteins (HSPs), FkpA may function as a 

chaperone to prevent the misfolding and aggregation of its binding partners under non-native 

folding conditions. This role of HSPs in cellular proteostasis under temperature stress has been 

suggested to stem from an activation of HSPs under non-native temperatures, however changes 

in HSP expression sometimes complicate interpretations of HSP activation (Georgopoulos and 

Welch 1993; Haslbeck et al. 2005). As HSPs are upregulated in human cancers and 

neurodegenerative diseases, there are clear biomedical implications for understanding the 

mechanisms underlying HSP function under stress conditions (Cao and Konsolaki 2011; Jolly 

and Morimoto 2000). 

 Here we deconvolute the complex relationships between FkpA chaperone function and 

oligomerization. We investigate how various biologically relevant states of FkpA are populated 

and conclude that significant populations of both monomer and dimer are present at 

physiological protein concentrations. To investigate the functional importance of the FkpA 

monomer, we isolated a monomeric FkpA variant and determine that this variant may interact 

with uOMP clients, albeit with an affinity that is 1000 fold weaker than the FkpA dimer. We 
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suggest that the FkpA dimer functions as a chaperone by binding to uOMPs clients, while the 

FkpA monomer likely functions solely as a prolyl-isomerase. The transcriptional upregulation 

associated with the σE stress response likely modulates the relative populations of these 

oligomers and therefore relevant functional states of FkpA. 
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2.2. Methods 

We introduced the gene of E. coli FkpA into the pET28b vector between the Nde I and 

Xho I restriction sites, following an N-terminal 6-Histidine tag and Tobacco Etch Virus (TEV) 

protease cleavage site. This construct lacks a signal sequence for export of protein to the 

periplasm. HMS E. coli cells from glycerol stocks containing this plasmid were used to inoculate 

3 mL LB growths containing 50 µg/mL kanamycin. These cultures were grown for 8 to 10 

hours at 37 ˚C. This growth was diluted 1:200 into a fresh 25 mL LB growth with antibiotics and 

grown overnight at 37 ˚C. This growth was diluted 1:40 into a fresh 500 mL of 2xYT with 

antibiotics in baffled flasks and grown at 37 ˚C to A600 ~ 0.8 prior to induction of FkpA 

overexpression by addition of IPTG (1 mM final concentration). After 6 additional hours of 

growth, cell pellets were collected by centrifugation at 5000 rpm (4410 x g) for 30 min in a 

Beckman J2-MI centrifuge in a JA-10 rotor. Cell pellets were frozen and stored at -20 °C. 

Histidine-tagged TEV protease was prepared as previously described (Sandlin, Zaccai, 

and Fleming 2015). For FkpA purification, previously frozen cell pellets were thawed and 

solubilized in 25 mL of 20 mM NaP04, 500 mM NaCl, 20 mM imidazole buffer (Buffer A) with 

Pierce EDTA-free protease inhibitor tablets (Thermo Prod # 88266). Cells were subsequently 

lysed using an Avestin Emulsiflex homogenizer. The lysate was then centrifuged at 5000 rpm 

(4410 x g) for 30 min in a Beckman J2-MI centrifuge in a JA-10 rotor to pellet cell debris. The 

supernatant was filtered through a 0.45 mm Millex filter prior to being loaded onto a Ni 

Sepharose High Performance bench-top column (GE Prod # 17-5286-01) pre-equilibrated in 

Buffer A. The column was then washed with Buffer A. Protein was eluted with 20 mM NaP04, 

500 mM NaCl, 300 mM imidazole buffer (Buffer B) and dialyzed with TEV-protease (1:25 

molar ratio) into 2 L 20 mM Tris (pH = 8.0) utilizing 10 kDA MWCO Snakeskin dialysis tubing 

(Thermo Prod # 68100) overnight. The recovered dialysate was reapplied to a Ni Sepharose 
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High Performance bench-top column pre-equilibrated in Buffer A. The column was then 

washed with Buffer A and the FkpA was eluted in these wash fractions. TEV protease was 

eluted with the application of Buffer B to the column. Recovered FkpA was then dialyzed into 2 

L 20 mM Tris (pH = 8.0) overnight with 10 kDA MWCO Snakeskin dialysis tubing. The 

recovered FkpA was then concentrated with an Amicon filter (Millipore) with a 10 kDa MWCO 

prior to use in experiments. Stock concentrations were determined with the theoretical 

extinction coefficient of 15930 M-1 cm-1 for the FkpA monomer (Gill and von Hippel 1989). 

 WT-FkpA was diluted into 20 mM Tris buffer (pH=8.0) and samples with A280 = 0.90, 

0.60, and 0.30 at a path length of 1.2 cm (corresponding to concentrations of 56, 38, and 19 µM 

FkpA monomer units; ε280 = 15930 M-1cm-1) were loaded into six-sector centerpieces and 

allowed to equilibrate at speeds of 20,000; 24,500; and 30,000 rpm in a Beckman Optima XL-A 

analytical ultracentrifuge with absorbance optics at each temperature. Data were collected at: 4, 

26, 37, and 40 °C. Radial scans at 280 nm were acquired with 0.001 cm radial steps with 10 

replicates. Equilibration was assessed with WinMatchv0.99 and data were subsequently trimmed 

to regions where Beer’s law applies in WinReEdit v.0999.0028 (Johnson et al. 1981). Global 

fitting was completed in WinNonLin v.1.06 (Johnson et al. 1981). For data analysis, we 

calculated reduced molecular weight values, partial specific values and buffer densities using 

Sednterp (Laue et al. 1992). All data were fit with single-ideal species (i.e., obligate dimer) and 

dimerization models. Fitting output and parameters are indicated in Table 2.1 with 

representative data fits shown in Figure 2.2. These same experimental conditions were used for 

data collection of WT-FkpA in 20 mM Tris (pH=8.0) and 1 M urea for the thermodynamic 

value reported in Figure 2.7. A summary of fitting output and parameters for data collected in 20 

mM Tris and 1 M urea are given in Table 2.2. 
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For analysis of a monomeric form of FkpA, site-directed mutagenesis was utilized to 

introduce the point mutation G28K into the WT-FkpA gene described above. Primers for 

cloning are given in Table 2.3.  Protein expression and purification protocols for FkpA-G28K 

were identical to those used for WT-FkpA. 

For apo-chaperone SV experiments, WT-FkpA and FkpA-G28K were diluted into 20 

mM Tris buffer (pH=8.0) and 1 M urea to a final monomer protein concentration of 40 µM and 

loaded into 1.2 cm double-sector SV centerpieces. For apo-uOMP SV experiments, unfolded 

OmpA171 was diluted into 20 mM Tris buffer (pH=8.0) and 1 M urea to a final protein 

concentration of 5 µM. For mixture SV experiments, either WT-FkpA or FkpA-G28K was 

diluted into 20 mM Tris buffer (pH=8.0) and 1 M urea to a final monomer protein 

concentration of 40 µM in the presence of 5 µM unfolded OmpA171. Prior to starting each run, 

cells were thermally equilibrated in the centrifuge for 90 minutes prior to rotor acceleration. 

Experiments were performed in an An-Ti60 rotor at 50,000 rpm with radial scans at 280 nm 

were acquired with 0.003 cm radial steps in continuous mode with zero time interval between 

scans. SV experiments were conducted at 20 °C with a Beckman Optima XL-A analytical 

ultracentrifuge using absorbance optics. All data were analyzed in DCDT+ v.2.4.2 (Philo 2006). 

All simulations for Figure 2.6 were performed in SEDANAL v6.01.6926 (Stafford and 

Sherwood 2004). 

For gel-filtration data presented in Figure 2.4B, 1 mL of WT-FkpA or FkpA-G28K with 

a protein concentration of 60 millimolar monomer units was injected onto a Superdex-200 

10/300 GL (GE Healthcare Life Sciences) gel-filtration column in 20 mM Tris, 200 mM NaCl 

with a flow rate of 0.6 mL/min. 

We estimated the sedimentation coefficient for the monomer-FkpA-uOmpA171 and 

dimer-FkpA-uOmpA171 by utilizing the previously published model of uOmpA171 bound to 
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another chaperone, Skp (Zaccai et al. 2015). We combined the previously published structures of 

the FkpA monomer and dimeric species (PDB: 1Q6H) and uOmpA171 with the uOMP placed in 

the proposed binding cavity of FkpA (Saul et al. 2004) (Figure 2.6 Panels A and D). The 

sedimentation coefficient of each complex was then calculated in HydroPro (García De La 

Torre, Huertas, and Carrasco 2000) for the buffer condition of 20 mM Tris, 1 M urea (ρ = 

1.01417 g mL-1, η = 0.01045 Poi) with appropriate molecular weights. Subsequent sedimentation 

velocity data was simulated in SEDANAL v6.01.6926 (Stafford and Sherwood 2004). Simulation 

input parameters are as follows:  For monomeric FkpA, MW = 26224 g mol-1, s = 1.70 

Svedbergs, ρ increment (defined as 1- 𝑣ρ)= 0.249, and εmass = 0.608 L cm-1 g-1. For uOmpA171, 

MW = 18875 g mol-1, s = 1.40 Svedbergs, ρ increment = 0.266, and εmass = 2.483 L cm-1 g-1. For 

monomer-FkpA-uOmpA171 complex, MW = 45099 g mol-1, s = 2.70 Svedbergs, ρ increment = 

0.256, and εmass = 1.393 L cm-1 g-1. For dimeric FkpA, MW =52448 g mol-1, s = 2.86 Svedbergs, 

ρ increment = 0.249, and εmass = 0.608 L cm-1 g-1. For dimer-FkpA-uOmpA171 complex, MW = 

71323 g mol-1, s = 4.10 Svedbergs, ρ increment = 0.256, and εmass = 1.104 L cm-1 g-1. 

Dimerization equilibrium association constants were varied from 1E+9 to 1E+1. Simulated data 

was then analyzed in DCDT+ v.2.4.2 (Philo 2006).  Distributions of simulated sedimentation 

profiles for the monomer-FkpA-uOmpA171 and dimer-FkpA-uOmpA171 are shown in Figure 2.6 

Panels B and E, respectively. Figure 2.6 Panels C and F indicate the weight average 

sedimentation coefficient of each complex as a function of simulated equilibrium dissociation 

constant. 
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2.3. Results 

FkpA populates both monomeric and dimeric states at physiological concentrations. 

In light of recent observations that previously unconsidered oligomeric states of 

periplasmic chaperones may be populated, we first investigate the dimerization equilibrium of 

FkpA. The crystallographic structure of FkpA was solved to be dimeric therefore it has been 

assumed that the solution state of FkpA is the dimeric form (Figure 2.1) (Saul et al. 2004). To 

probe the validity of that assumption, we utilized sedimentation equilibrium analytical 

centrifugation (SE) to determine the solution oligomerization state of FkpA. To our surprise, the 

SE data are not well described by a single ideal species fit, which would be expected if FkpA 

existed as an obligate dimer in solution (Figure 2.2). Rather, the SE data are best described by a 

monomer-dimer equilibrium model with an equilibrium dissociation constant (KD) of 7.7 ± 2.8 

µM at 37 ˚C (ΔG=7.4 kcal mol-1). Interestingly, this equilibrium constant for FkpA dimer 

dissociation is on the same order of magnitude as the reported physiological concentration of 

FkpA in the E. coli periplasm (i.e., 10-20 µM, Figure 2.3A) (Arike et al. 2012; Masuda et al. 2009). 

These findings suggest that both the monomer and dimer species of FkpA are significantly 

populated at 37 ˚C. 

In addition to discovering that the FkpA monomeric species is significantly populated at 

physiological concentrations and temperature, we utilized SE experiments to probe the 

thermodynamics of FkpA dimerization. For this analysis, we measured the equilibrium 

dissociation constant as a function of temperature (Figure 2.3B). This experimentally 

determined equilibrium constant increases slightly over the tested temperature range. To extract 

thermodynamic information from these data, we performed a Van’t Hoff analysis, as shown in 

Figure 2.3C. This linear fit yields two thermodynamic parameters – the slope and intercept are 
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related to the enthalpy and entropy of FkpA dimerization, respectively. Fitted values of 

enthalpy and entropy of dimerization are -4.57 ± 1.06 kcal mol-1 and 9.2E-3 ± 3.6E-3 kcal mol-1 

K-1. The individual contributions of each of these thermodynamic parameters to the free energy 

of dimerization can be calculated at any given temperature – for example, at 37 ˚C TΔS is 2.9 

kcal mol-1 and ΔH is -4.6 kcal mol-1. These values suggest that the FkpA dimerization 

equilibrium is driven by both the enthalpic and entropic components of the free energy. The 

enthalpic contribution may arise from favorable interactions at the FkpA dimer interface. 

Inspection of the crystal structure reveals that extensive surface area is buried on each FkpA 

monomer upon dimerization (~ 2200 Å2 per monomer) (Saul et al. 2004). This thermodynamic 

data complements the previous structural investigation of FkpA by providing quantitative 

insight into the dimerization equilibrium. 

Monomeric FkpA binds uOMP with an affinity 1000 fold weaker than dimeric FkpA. 

Our observation that the equilibrium constant for FkpA is similar to the expected 

physiological concentration raises an interesting question: what is the functional relevance of 

monomeric FkpA? To understand the importance of this species, we designed a point mutation 

to FkpA that mutates a glycine centrally located at the FkpA dimer interface to a lysine (i.e., 

FkpA-G28K). We reasoned that this mutation would disrupt the dimer interface and favor the 

monomeric conformation of FkpA. We assessed the oligomerization state of FkpA-G28K using 

several methods and determined this variant is indeed monomeric (Figure 2.4).  

To investigate the functional relevance of the FkpA monomer, we developed a 

sedimentation velocity (SV) analytical ultracentrifugation assay to quantitate FkpA interactions 

with a uOMP client. This assay measures the sedimentation coefficient of both FkpA constructs 

in the presence and absence of a representative uOMP client to determine the extent of FkpA-
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uOMP binding. Initial measurements of the sedimentation coefficients of both WT-FkpA and 

FkpA-G28K in the absence of uOMP client yielded values of 2.86 ± 0.08 Svedbergs and 1.70 ± 

0.06 Svedbergs, respectively (Figure 2.4D). As expected, the sedimentation coefficient for FkpA-

G28K is significantly smaller than WT-FkpA; this agrees with the observation that FkpA-G28K 

is monomeric while WT-FkpA is primarily dimeric under these conditions. 

 To quantify FkpA-uOMP interactions, we then measured the sedimentation coefficient 

of each FkpA construct in the presence of uOMP client. The client uOMP utilized for these 

studies is unfolded-OmpA171 (uOmpA171). Under our experimental conditions, uOmpA171 is 

unfolded and monomeric (Danoff and Fleming 2011). This conformation of uOMP is likely the 

relevant one for binding to FkpA in vivo. The experimentally determined distributions of 

sedimentation coefficients for the WT-FkpA/uOmpA171 and FkpA-G28K/uOmpA171 mixtures 

are shown in Figure 2.5A (dark green) and Figure 2.5B (dark blue), respectively. Fitting these 

distributions yields average sedimentation coefficients for WT-FkpA/uOmpA171 and FkpA-

G28K/uOmpA171 mixes of 3.18 ± 0.11 and 1.60 ± 0.10 Svedbergs, respectively. In addition to 

the experimental curves, we have indicated calculated curves (dashed lines) for hypothetical non-

interacting mixtures of both FkpA proteins with uOmpA171. These curves were calculated as a 

sum of the individual experimental sedimentation coefficient distributions for the appropriate 

FkpA construct and uOmpA171. For WT-FkpA, calculated and experimental distributions for the 

mixture do not overlay, suggesting that WT-FkpA interacts with uOmpA171 client. For FkpA-

G28K, the calculated and experimental distributions overlay, suggesting that FkpA-G28K does 

not bind to the uOmpA171 client. These results indicate that the dimeric form of FkpA binds to 

uOMP clients, while we are unable to detect an interaction between the monomeric construct 

and uOMP. 
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Although the above analysis provides us significant insight into the ability of each FkpA 

oligomer to interact with a uOMP client, it does not provide thermodynamic insight into this 

binding event. To determine interaction energies, we simulated SV data for association reactions 

of both monomeric and dimeric FkpA with uOmpA171 with varying equilibrium dissociation 

constants (Figure 2.6). From these simulations, we determined a range of equilibrium constants 

that are consistent with our experimental observables. Despite the observation that there is no 

apparent shift in sedimentation coefficient upon mixing FkpA-G28K with uOmpA171, we cannot 

definitively conclude that binding does not occur – it may be the case that the population of the 

bound complex is simply too low for detection. Our simulations suggest that KD values in the 

millimolar range are consistent with our experimental findings for the FkpA-G28K/uOmpA171 

mixture. For WT-FkpA binding to uOmpA171, we estimate a KD in the micromolar range is 

consistent with our observed sedimentation coefficients. These observed and estimated 

interaction energies are incorporated into the thermodynamic cycle shown in Figure 2.7. 
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2.4. Discussion 

SE findings highlight the importance of the FkpA dimerization equilibrium. 

Although FkpA was initially identified as a component of the E. coli periplasmic 

chaperone network over 15 years ago (Arié, Sassoon, and Betton 2001), thermodynamic data on 

FkpA oligomerization and uOMP binding has been scarce. As shown in Figure 2.3, we 

determined that at physiological concentrations and temperature, FkpA likely exists as both 

monomeric and dimeric species. Interestingly, our experimentally determined micromolar KD 

agrees well with previous estimations of the KD for dimerization of the N-terminal domain of 

FkpA (Saul et al. 2004). In the context of these previous findings, our Van’t Hoff analysis likely 

indicates that the N-terminal domain of FkpA is a contributor to the enthalpic component of 

the dimerization free energy. This suggests the N-terminal domain of FkpA mediates 

dimerization and the C-terminal domain likely makes a negligible contribution to the energy of 

dimerization. 

 One consequence of the equilibrium dimerization constant being similar to the 

physiological concentration of FkpA is that this chaperone is poised for participation in stress 

response. Upon exposure to stress, E. coli bacteria induce the σE stress response, which consists 

of complex transcriptional regulation. It has been previously reported that FkpA is among the 

periplasmic chaperones that are upregulated upon induction of the σE stress response 

(Dartigalongue, Missiakas, and Raina 2001). Even a slight increase in the expression of FkpA will 

subsequently shift the equilibrium of oligomerization to increase the population of FkpA dimers 

under stress conditions. This increase in FkpA dimer population may assist in coping with the 

accumulation of uOMP in the periplasm, as our data suggest the FkpA dimer is the oligomer 

responsible for the uOMP-client binding. These findings are in line with the recent realization 
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that the periplasmic chaperones effectively form a reservoir to capture free uOMPs (Costello et 

al. 2016). Also, our results agree with previous findings that overexpression of FkpA, and 

subsequent increase in dimeric population of FkpA, rescues lethal phenotypes at 37 °C (Ge, Lyu, 

et al. 2014). 

FkpA monomer and dimer species exhibit distinct functions. 

 Emphasizing the thermodynamics of this system has allowed us to access information 

about the conformation states of FkpA that were previously undetected. We have summarized 

our observed and estimated free energies for the formation of various complexes in a 

thermodynamic cycle shown in Figure 2.7. We have measured the free energy of dimerization of 

FkpA to be -7.6 kcal mol-1 and estimated the binding free energies of monomeric and dimeric 

FkpA constructs to uOMP as -4 kcal mol-1 and -7 kcal mol-1, respectively. Although we cannot 

experimentally access the free energy of monomer-FkpA/uOMP recruiting an additional FkpA 

monomer, the power of thermodynamics allows us to calculate this parameter as ~-11 kcal mol-

1. This suggests that a monomer-FkpA/uOMP complex would associate with another FkpA 

monomer with nanomolar affinity. It is worth noting that all free energies reported in Figure 2.7 

were collected in experiments containing 1 M urea, which is required for measurements 

involving unfolded OMP clients. Therefore these values are likely upper bounds for energetic 

measurements made in the absence of denaturant. 

The detection of FkpA monomer at concentration levels consistent with physiological 

expression suggests that both oligomers of FkpA are functionally important under wild type 

growth conditions. We propose that the dimer and monomer species of FkpA have distinct 

functions. Dimer FkpA likely participates in OMP biogenesis by binding to uOMPs. Monomer 

FkpA association with uOMP is weak – this suggests that the monomeric FkpA likely does not 

function as a chaperone for uOMPs. This type of oligomer-specific chaperone function has been 
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previously reported for other bacterial small HSPs (Giese and Vierling 2002). This discovery 

begs the question: why would the oligomerization equilibrium of FkpA be tuned in such a way 

to populate a chaperone-incompetent monomer under physiological conditions? Each FkpA 

monomer houses an inherent function – a C-terminal domain with peptidyl-prolyl isomerase 

activity. We propose that the monomeric form of FkpA may function as a prolyl-isomerase on 

non-OMP clients. This agrees with the finding that both domains of FkpA are required in vivo 

(Saul et al. 2004). The N-terminal domain is required to mediate dimerization and subsequent 

chaperone activity, while the C-terminal domain is necessary for monomer function as a PPIase. 

Moving forward: HSP upregulation as a control mechanism for distinct oligomer 

functions. 

There are immediate implications for our findings regarding the chaperone networks of 

both bacteria and eukaryotes. Modulation of the populations of FkpA monomer and dimer may 

promote different functions under different cellular conditions. It has been reported that HSPs 

are upregulated in human cancers and neurodegenerative disorders (Dattilo et al. 2015; Jagadish 

et al. 2016; Li et al. 2014; S. Wang et al. 2016). Future work will be required to understand the 

consequences of thermodynamics for the relative populations of various chaperone oligomers 

and chaperone-client complexes for this plethora of biologically important systems. 
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2.5. Figures 

Figure 2.1. Crystal structure of FkpA. 

 

The FkpA α-helical N-terminal domain (blue) mediates dimerization, while the C-terminal 

domain (maroon) contains the catalytic site of prolyl-isomerization (Saul et al. 2004). PDB ID 

1Q6U and Pymol were utilized to make this figure.  
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Figure 2.2. Representative fits for FkpA SE data. 

A)       B) 

 

 

The sedimentation equilibrium data are not well described by single ideal species model (i.e., 

FkpA obligate dimer) as indicated by the non-random residuals shown in Panel A. A model 

accounting for monomer-dimer equilibrium better fit the data, as shown in Panel B. One 

representative dataset is shown with Channel A (A280 = 0.9), B (A280 = 0.6), and C (A280 = 0.3) 

shown in magenta, blue, and yellow respectively. 
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Figure 2.3. Species plot and Van’t Hoff analysis of FkpA dimerization reaction. 

 

Species plot indicates appreciable population of both FkpA monomer (blue) and dimer (green) 

at physiological protein concentrations and 37 °C, marked by vertical line (Panel A). Bolded 

regions indicate the concentration range accessed in the SE ultracentrifugation experiments. The 

equilibrium dissociation constant (Kdimerization) for FkpA dimerization changes slightly as a 

function of temperature (Panel B). A global analysis of these data with a linearized Van’t Hoff 

equation reveals that this dimerization equilibrium is driven by both the enthalpic and entropic 

terms (Panel C). Note Panel C plots equilibrium association constants (Ka) on the y-axis. At 37 

°C, TΔS is 2.9 ± 1.0 kcal mol-1, ΔH is -4.6 ± 1.0 kcal mol-1, and ΔG is -7.4 ± 0.2 kcal mol-1.   

B) 

C) 

A) 
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Figure 2.4. Characterization of FkpA-G28K variant 

 

(A) The position of G28 (orange sphere) on the FkpA monomer (PDB: 1Q6H). (B) Gel-

filtration profiles of FkpA-G28K (blue dashed line) and WT-FkpA (green solid line) are distinct 

and suggest that FkpA-G28K has a lower apparent molecular weight that WT-FkpA. The 

measured molecular weight of FkpA-G28K by SE is 26.3 ± 0.3 kDa, consistent with the 

expected molecular weight of monomeric FkpA (i.e., 26.7 kDa). (C) Representative SE dataset 

fit with a single ideal species model. (D) The distribution of sedimentation coefficients for both 

WT-FkpA (green solid line) and FkpA-G28K (blue dashed line) – as expected, the weight 

average sedimentation coefficient of FkpA-G28K is smaller than that of WT-FkpA. These 

profiles are reproduced in Figure 2.5.  
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Figure 2.5. SV data suggests FkpA dimer binds to uOMPs 1000-fold stronger than FkpA 

monomer. 

 

g(s*) distributions for 5 µM uOmpA171 (grey in Panel A and B) and 40  µM WT-FkpA (light 

green, Panel A) and G28K-FkpA (light blue, Panel B). s* values for WT-FkpA and G28K-FkpA 

are 2.86 ± 0.08 and 1.70 ± 0.06 Svedbergs, respectively. Calculated curves for FkpA-uOmpA171 

mixes are shown as dashed dark green (Panel A) and dark blue (Panel B) curves. Experimental 

curves for FkpA-uOmpA171 mixes are shown in solid dark green (Panel A) and dark blue (Panel 

B) curves. s* values for WT-FkpA-uOmpA171 and G28K-FkpA-uOmpA171 mixes are 3.18 ± 0.11 

and 1.60 ± 0.10 Svedbergs, respectively. For WT-FkpA, calculated and experimental g(s*) curves 

for mix do not overlay, suggesting that WT-FkpA interacts with uOmpA171 client. For G28K-

A
)

B
)
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FkpA, the calculated and experimental g(s*) curves do overlay, suggesting that G28K-FkpA does 

not interact with the uOmpA171 client. 
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Figure 2.6. Simulations suggest FkpA dimer and monomer bind to uOMP with µM and 

mM KD values, respectively.  

 

Panels A and D illustrate the structural models utilized for calculating the sedimentation 

coefficients of the monomer-FkpA-uOmpA171 and dimer-FkpA-uOmpA171 complexes, 

respectively. Panels B and E depict simulated sedimentation coefficient distributions for 

simulated data with the labeled range of equilibrium dissociation constants for the monomer-

FkpA and dimer-FkpA association reactions with uOmpA171 respectively. Panels C and F show 

the weight average sedimentation coefficients for the simulated data in Panels B and E as a 

function of equilibrium dissociation constant the monomer-FkpA and dimer-FkpA association 

reactions with uOmpA171 respectively. Black horizontal lines indicate the range of values 

consistent with the experimentally determined weight average s* for each dataset. 

  

A) B) C) 

D) E) F) 
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Figure 2.7. Thermodynamic cycle to summarize the new model for FkpA dimerization 

and uOMP binding reactions. 

 

We measure the free energy of dimerization of FkpA in the absence of uOMP client to be -7.7 ± 

0.2 kcal mol-1 (top horizontal reaction). The vertical arrows indicate the association of the FkpA 

monomer and dimer with uOmpA171 and these energies are estimated from SV simulations 

(Figure 2.6). The asterisk (*) on the monomer-FkpA binding to uOMP indicates that this 

experimental result was determined using the G28K variant of FkpA. Although this species may 

dimerize, we do not observe a G28K-FkpA dimer bound to uOMP in our SV experiments – this 

may be due to the low population of the G28K-FkpA/uOMP complex formed under these 

experimental conditions. Therefore the bottom horizontal reaction is not readily accessible in 

our experiments (#). Instead, I calculated this value due to the constraint that the thermodynamic 
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cycle must sum to zero; the estimated free energy of monomer-FkpA/uOMP recruiting an 

additional FkpA monomer to be < -10 kcal mol-1. This suggests that a monomer-FkpA/uOMP 

complex would associate with another FkpA monomer with nanomolar KD value. All values 

reported here are for experiments conducted in 1 M urea at 20 °C. Additionally, all numerical 

values are indicated as negative for reactions proceedings from left to right or top to bottom. 
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2.6. Tables 

Table 2.1. Summary of fitting for SE data on FkpA dimerization (20 mM Tris). 

 Obligate Dimer Model Monomer <-> Dimer Model 

Temperature 

(°C) Molecular Weight σ Kdim (µM) σ 

4 47830 ± 1370 5.26E-3 ± 5.5E-4 2.46 ± 1.46 5.62E-3 ± 6.0E-4 

26 47220 ± 980 5.92E-3 ± 9.2E-4 3.98 ± 1.51 6.11E-3 ± 9.8E-4 

37 46590 ± 690 5.40E-3 ± 9.1E-4 4.96 ± 1.49 5.80E-3 ± 9.9E-4 

40 45820 ± 410 5.14E-3 ± 5.2E-4 7.32 ± 1.23 5.50E-3 ± 4.7E-4 

 

Summary of fitting output from WinNonLin v.1.06 for global fitting of FkpA sedimentation 

equilibrium data collected in 20 mM Tris (shown in Figure 2.1) (Johnson et al. 1981). 

σ indicates the standard deviation or square root of the variance for each fit. The predicted 

molecular weight of the FkpA dimer is 52450 kDa; because the molecular weight obtained from 

fitting the experimental data to the obligate dimer model is inconsistent with this predicted 

molecular weight, we exclude this model.   
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Table 2.2. Summary of fitting for SE data on FkpA dimerization (20 mM Tris, 1 M urea). 

 Obligate Dimer Model Monomer <-> Dimer Model 

Temperature 

(°C) Molecular Weight σ Kdim (µM) σ 

20 48900 ± 580 5.26E-3 ± 6.9E-4 1.92 ± 0.64 5.15E-3 ± 6.7E-4 

37 41810 ± 1220 7.63E-3 ± 3.9E-4 24.9 ± 6.29 6.33E-3 ± 4.7E-4 

 

Summary of fitting output from WinNonLin v.1.06 for global fitting of FkpA sedimentation 

equilibrium data collected in 20 mM Tris and 1 M urea (values shown in Figure 2.7) (Johnson et 

al. 1981). σ indicates the standard deviation or square root of the variance for each fit. 
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Table 2.3. Primers for FkpA-G28K cloning. 

 Primer Sequence 

Forward primer GCTTATGCACTGAAAGCCTCGCTGGGTCGTTACATGG 

Reverse primer CCATGTAACGACCCAGCGAGGCTTTCAGTGCATAAGC 

 

Primers utilized for site-directed mutagenesis cloning of FkpA-G28K. Underlined codon 

highlights the site of the desired mutation. 

 

  



 

 60 

 

 

 

 

 

 

 

 

Chapter 3 – Novel Binding Mechanism for the Chaperone SurA and 

unfolded OMPs 
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3.1. Introduction 

Unfolded or disordered proteins play a variety of critical functions in biology (Dyson and 

Wright 2005; Iakoucheva et al. 2002). For these unstructured proteins to perform their 

functions, they must first undergo accurate trafficking to ensure they arrive in their appropriate 

cellular environment. Chaperones and quality control systems are present in all cellular 

compartments to promote the efficient trafficking of unfolded client proteins, in addition to 

facilitating the folding of soluble proteins. Without chaperone proteins that interact with 

unfolded protein ensembles, some client proteins are prone to populate misfolded states and 

subsequently form aggregates that are potentially toxic to the cell (Plummer and Fleming 2016). 

Understanding how chaperones interact with unfolded client proteins will provide insight into 

their critical function in maintaining cellular proteostasis. 

One example of chaperone-mediated biogenesis of unfolded proteins is the assembly 

pathway of unfolded outer membrane proteins (uOMPs) in Gram-negative bacteria. The 

Escherichia coli periplasmic chaperone system is an example of a chaperone network that 

specifically handles unfolded proteins to promote their folding and accurate biogenesis, which is 

a prerequisite for outer membrane integrity and consequent cellular survival. This network is 

composed of several periplasmic chaperones that interact with uOMPs to prevent misfolding 

and aggregation, while also promoting uOMP flux through productive folding pathways 

(Plummer and Fleming 2016). SurA is one of the chaperones involved this network and is 

known to play a critical role in uOMP trafficking, as it has been suggested to interact with the 

majority of OMP flux in the periplasm (Costello et al. 2016; Rizzitello, Harper, and Silhavy 2001; 

Sklar, Wu, Kahne, et al. 2007). 



 

 62 

Biochemical characterization of SurA suggests this chaperone is specific for uOMPs. 

 SurA was first identified as a protein required for E. coli survival under stationary phase 

growth (Tormo, Almirón, and Kolter 1990). It was later shown that the SurA polypeptide is 

exported to the periplasm where it is a chaperone for uOMP trafficking, although it additionally 

contains two peptidyl-prolyl isomerase (PPIase) domains of the parvulin family (Rouviere and 

Gross 1996). Binding studies to synthetic peptides indicated that SurA preferentially binds to 

aromatic-rich sequences (Behrens-Kneip 2010; Bitto and McKay 2003, 2004; Hennecke et al. 

2005). Interestingly, proline residues are not required for peptides to bind to SurA (Hennecke et 

al. 2005). Although these studies provide insight into the peptide sequences preferred for SurA 

binding, they do not give information about the interactions of SurA with its native, full-length 

uOMP clients.  

Binding studies of SurA to its bona fide clients (i.e., uOMPs) are scarce due to the 

experimental difficulties of measuring binding of unfolded client proteins to a folded chaperone. 

The high propensity of uOMPs to aggregate in aqueous solvents complicates binding studies 

(Ebie Tan et al. 2010). Here we have overcome these problems and present the first 

measurements of interaction energies of SurA to a relevant uOMP client (e.g., uOmpA171) under 

conditions that ensure the uOMP client is monomeric and the SurA chaperone is structurally 

intact. 

Crystallographic studies of SurA hint at mechanisms for uOMP chaperone function. 

 The crystal structure of SurA was presented in 2002 (Bitto and McKay 2002). The N-

terminal, PPIase-1, and C-terminal regions associate together to form a “core” domain; the 

PPIase-2 domain is connected to the “core” by two flexible linkers (25 Å in length; PDB: 

1M5Y). Inspection of this structure revealed that the N/PPIase-1/C region of SurA contains an 

“extended crevice” that may accommodate short regions of client peptide. Indeed, later crystal 
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structures of SurA fragments revealed that peptides bind to this “core” domain (Xu et al. 2007). 

The PPIase-1 domain alone was crystallized in the presence of two aromatic rich peptides (i.e., 

WEYIPNV in PDB: 2PV1 and NFTLKFWDIFRK in PDB: 2PV2); interestingly, in one of 

these structures this domain was observed to be dimeric. These structural studies provide an 

excellent source of knowledge on how SurA interacts with peptide clients in the context of a 

crystal lattice. We complement these results with solution studies to probe several previously 

unanswered questions, such as: what is the solution oligomerization, and likely functionally 

active, state of SurA? And how does SurA interact with full-length uOMP clients that are 

hundreds of amino acids longer than the crystallized peptides? We address these inquiries and 

incorporate our experimental constraints into a model that suggests how SurA binds to uOMPs 

and may facilitate their assembly via the OMP biogenesis pathway.  
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3.2. Methods  

Determination of proline content and c i s/trans  isomer classification. 

As SurA is known to contain two PPIase domains, we first inquired how important 

PPIase activity is for OMP biogenesis. To determine the extent to which OMPs require a prolyl-

isomerase enzyme for assembly, we examined the proline content of the most abundant OMPs, 

along with the most abundant periplasmic proteins. The most abundant proteins in these classes 

have been previously reported and the selection for our analysis is indicated in Table 3.1 (Han, 

Kim, and Kim 2014; Vertommen et al. 2008). We also included the OMPs previously identified 

as SurA clients in vivo (Hennecke et al. 2005; Vertommen et al. 2009). For each selected protein, 

we utilized a Python script to parse the listed PDB file and enumerate the amino acid 

composition of each protein. The number of prolines in each protein included in our analysis is 

indicated in Tables 3.1 and 3.2. We have additionally plotted these values in Figure 3.1. In this 

figure, the dashed line indicates the average proline content of all proteins in the UniProt 

database (4.7%; accessed in March, 2017). We then utilized the dihedral measurement tool in 

Pymol to measure the backbone omega (ω) dihedral angle for all proline residues identified in 

our analysis. Four atoms define the ω dihedral angle: the carbonyl O from residuePro-1, the 

backbone C from residuePro-1. the N from the proline, and the Cα from the proline. Proline 

residues with an ω angle of ± 180° ± 15° are classified as cis (Table 3.1). 

SurA protein was expressed and purified for analysis.  

We introduced the gene of E. coli SurA into the pET28b vector between the Nde I and 

BamHI restriction sites with a C-terminal 6-Histidine tag. This construct lacks a signal sequence 

for export of protein to the periplasm. SurA was expressed and cells were lysed as in Chapter 2. 

The Histidine-tagged protein was isolated from cell lysate using a Ni Sepharose column as in 
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Chapter 2. Stock concentrations were determined with the theoretical extinction coefficient of 

29450 M-1 cm-1 (Gill and von Hippel 1989). 

SE analysis was utilized to investigate SurA oligomerization. 

To determine the relevant oligomeric species of SurA, we completed analytical 

ultracentrifugation sedimentation equilibrium (SE) experiments (Figure 3.2). SurA was diluted 

into 20 mM Tris buffer (pH=8.0) and samples with A280 = 0.90, 0.60, and 0.30 at a path length 

of 1.2 cm (corresponding to concentrations of 25, 17, and 8 µM respectively) were loaded into 

six-sector centerpieces and allowed to equilibrate at speeds of 20,000; 24,500; and 30,000 rpm in 

a Beckman Optima XL-A analytical ultracentrifuge with absorbance optics. Data were collected 

at 37 °C with radial scans (λ=280 nm) acquired with 0.001 cm radial steps with 10 replicates. 

Equilibration was assessed with WinMatchv0.99 and data were subsequently trimmed using 

WinReEdit v.0999.0028 to regions where Beer’s law applies (Johnson et al. 1981). Global fitting 

was completed utilizing WinNonLin v.1.06 (Johnson et al. 1981). For data analysis, we calculated 

reduced molecular weight values (σTemperature), partial specific values and buffer densities using 

Sednterp v.20130813β (Laue et al. 1992).  The values used were as follows: 𝜈 = 0.7325 mL g-1, ρ 

= 0.9988 g mL-1, η = 1.0069 mPa; reduced molecular weight values were σ20°C = 2.26 and σ37°C = 

2.16 for monomeric SurA at a rotor angular velocity (ω) of 2094.4 rad s-1 (i.e., 20,000 rpm). 

Because it is known that the periplasmic concentration of SurA may be modulated by 

cellular exposure to stress, we next inquired if SurA may oligomerize at higher concentrations 

(Dartigalongue, Missiakas, and Raina 2001). To assess the oligomeric state of SurA over a greater 

range of protein concentrations, we repeated the above experiment with a modified SE set-up. 

SurA was diluted into 20 mM Tris buffer (pH=8.0) to a final A280 of 1.0 at a path length of 0.3 

mm (corresponding to concentration of 120 µM) and was loaded into a two-sector centerpiece 



 

 66 

and allowed to equilibrate at speeds of 20,000; 24,500; and 30,000 rpm in a Beckman Optima 

XL-A analytical ultracentrifuge with absorbance optics. SE data were collected and analyzed as 

described above. These data are summarized in Figure 3.2B. 

SANS analysis provides global structural information of macromolecules in solution. 

 The crystal structure of SurA suggests that the PPIase-2 domain is extended away from 

the core domain – we inquired if this conformation was populated in solution. To this end, we 

measured the radius of gyration (RG) of SurA in solution utilizing small-angle neutron scattering 

(SANS). RG is defined as the root-mean-squared distance of all atoms from the macromolecular 

center of mass (Jacques and Trewhella 2010); for proteins, this value will depend on the shape or 

distribution of atoms about the center of mass.  

In SANS experiments, neutrons are scattered by macromolecules in solution to yield a 

scattering pattern that provides structural information about the molecules. The ability of any 

particular atom to scatter neutrons is represented by its scattering length (b in 10-12 cm) and the 

scattering lengths of several common atoms are given in Table 3.3 (Harroun, Wignall, and 

Katsaras 2006). Importantly, the b values for hydrogen and deuterium are opposite in sign, 

which allows for differential scattering of macromolecules with varying deuterium composition. 

This is a unique feature of SANS experiments, as these two isotopes scatter x-rays identically 

(Table 2.3). The ability of an entire macromolecule to scatter neutrons, termed the scattering 

length density (i.e., ρ(r) in 1010 cm-2), is defined as the sum of coherent scattering lengths over all 

atoms within a given volume, V (cm3), normalized by δV: 

     ρ(r)δV = Σbi           (Equation 3.1) 

where: 

bneutron = Σbi + (nH – nHex)fdeut(bD – bH) + nHexfexchfD2O(bD-bH)            (Equation 3.2) 
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bi indicates a sum over all non-hydrogen and non-deuterium atoms. nH and nHex are the number 

of total hydrogens and exchangeable hydrogens in the macromolecule, respectively.  fdeut 

describes the deuterium content of the macromolecule; fexch is the fraction of exchangeable 

protons; and fD2O is the fraction of D2O in the solvent. The amplitude of the scattered wave, or 

structure factor (S), is given as: 

          S(Q) = Σbi*exp(iQ�r)                  (Equation 3.3) 

where this summation is over all atoms in a macromolecule and orientations, Q is the scattering 

vector, and r describes the location of the detector from a given atom. Measured intensity (I in 

cm-1) is related to structure factor squared: 

       I(Q) ∝ |S(Q)|2          (Equation 3.4) 

Another important parameter in SANS experiments is contrast (ρ in 1010 cm-2). Contrast  

(ρC ) is defined as the difference between the scattering length density of the macromolecule (𝜌m
) 

and the solvent (ρs): 

         ρC = 𝜌m-ρs          (Equation 3.5) 

An interesting consequence of the hydrogen/deuterium scattering lengths differing in sign is that 

the scattering length densities of H2O (-0.17x10-12 cm) and D2O (1.92x10-12 cm) are quite distinct. 

The scattering length density of D2O is larger than most biological molecules, while that of H2O 

is smaller than most biological molecules; therefore an appropriate mix of H2O and D2O can 

match the scattering length density of any biological molecule. This type of experiment is termed 

contrast matching and yields a scattering pattern with minimal contribution of the contrast 

matched (for a given component: ρC = 0, S(Q) = 0, I(Q) = 0). Although these types of 

experiments are not useful for analysis of single component systems (e.g., apo-SurA), we utilize 

them later to investigate two component systems (i.e., SurA in complex with uOMP). 
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All scattering experiments were collected in collaboration with Dr. Susan Kreuger at the 

National Institute of Standards and Technologies Center for Neutron Research (Gaithersburg, 

MD) as previously described (Zaccai et al. 2015). All scattering data presented here were 

collected on the NG3 30-m SANS Instrument (NIST). The λ = 6 Å (Δλ /λ = 0.15) neutron 

beam was utilized to collect scattering profiles from all samples described here on a 2D position-

sensitive detector (64 cm x 64 cm) with 128 x 128 pixels at resolution of 0.5 cm pixel-1. For data 

processing, raw counts were normalized to the common monitor count and normalized to the 

incident beam flux at every pixel for absolute scaling. Radial averaging was utilized to produce 

scattering profiles. Sample-to-detector distances of 5.0 m and 1.5 m were used to cover range of 

0.01 Å-1 < q < 0.4 Å-1.  

For SANS experiments on apo-SurA, we prepared the SurA construct described above 

with a slightly modified protocol. After expression and purification, we further purified SurA by 

gel-filtration in 20 mM Tris and 200 mM NaCl (pH=8.0, GF buffer). SurA (40 µM) was injected 

onto a Superdex-200 10/300 GL (GE Healthcare Life Sciences) gel-filtration column in GF 

buffer with a flow rate of 0.6 mL/min. Fractions containing SurA were pooled and buffer 

exchanged into GF buffer containing 98% D2O via centrifugation in an Amicon filter (Millipore) 

with a 10 kDa MWCO. For structural characterization of apo-SurA, we collected SANS datasets 

of protonated SurA in the presence of buffer containing 98% D2O. Under these conditions, we 

expect high contrast between SurA and buffer and therefore appreciable neutron scattering. We 

collected scattering profiles of apo-SurA at two concentrations (1 and 3 mg/mL, corresponding 

to concentrations of 20 and 60 µM respectively). Data sets are shown in Figure 3.3, and fitting is 

summarized in Table 3.4.  
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For analysis of SANS datasets, we utilize the Guinier approximation to obtain two fit 

parameters: the macromolecule RG (Å) and the intensity at a scattering distance of 0 (i.e., I(0) in 

cm-1). This approximation estimates the intensity in low q (Å-1) regions as follows: 

I(q) ~ I(0)*exp[-(1/3)*RG
2*q2)          (Equation 3.6) 

         ln[I(q)] ~ ln[I(0)] – (1/3)*RG
2*q2                 (Equation 3.7) 

Therefore, linear regression of ln[(I(q)] vs. q2 yields information in the slope (i.e., RG
2) and the 

intercept (i.e., I(0)). I(0) is also calculated due to its known dependence on macromolecular 

concentration (C in mg mL-1), contrast (Δρ in cm-2), specific volume (𝜈   in cm3 g-1), and 

molecular weight (M in kDa) (Sarachan, Curtis, and Krueger 2013): 

     I(0) = C*Δρ2*𝜈2*M*NA
-1

           (Equation 3.8) 

NA in the above formula is Avogadro’s number. For each Guinier fit, we compare the fitted 

value of I(0) from Equation 5.7 to the calculated value from Equation 5.8 for each experiment 

to ensure that samples contain homogeneous, monomeric species (Table 3.4). 

Biochemical crosslinking was used to map the interaction interface between SurA and 

OMP clients. 

 We next studied how SurA interacts with its unstructured binding partners – unfolded 

OMP proteins. We utilized a biochemical approach to examine the interactions between uOMP 

clients and SurA. We incorporated an unnatural amino acid into the SurA polypeptide chain 

using amber suppression (Best 2009; Peeler and Mehl 2012). Briefly, we introduced the pDule2 

plasmid (gift from the Sondermann Lab at Cornell University) into a bacterial expression strain – 

this plasmid encodes for the tRNAUAG synthetase (under constitutive active expression) that 

incorporates p-azido-Phenylalanine (pAF) at the non-native TAG stop codon (Figure 3.4 and 

Figure 3.5). We also introduced a plasmid containing the SurA gene (pET28b) with a TAG stop 
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codon incorporated at a specific position (Table 3.5). Stop codons were cloned into the coding 

sequence of SurA either by site-directed mutagenesis or by the Berkeley QB3 MacroLab ‘Round-

the-Horn cloning method. After induction of the SurA gene by addition of IPTG to the growth 

media, pAF is incorporated into the growing polypeptide chain by the engineered synthetase. 

This unnatural amino acid contains a reactive azide group that nonspecifically crosslinks to 

atoms within 3 to 4 Å upon exposure to UV light (Hagan and Staros 1984; Reddington et al. 

2013). All SurApAF variants were expressed purified similarly to WT-SurA with slight 

modifications. One hour after inoculation of 500 mL bacterial cultures, pAF was added to a final 

concentration of 10 mM to the growth media. Full-length SurApAF variants were separated from 

truncation products by Ni Sepharose High Performance bench-top column as described above.  

We used this library of SurA-pAF variants to understand which structural regions of the 

SurA chaperone are involved with binding to uOMP clients. 25 µM of each SurA pAF variant 

was mixed with 5 µM uOmpA171 in 20 mM Tris (pH=8.0) and 1 M Urea in a 96-well plate. 

Mixtures were then irradiated with UV light (λ=254 nm) for 5 minutes using a Spectroline 

MiniMax UV Lamp (Fisher #11-992-662). Aliquots were taken for SDS-PAGE analysis both 

before and after exposure to UV light. These samples were subjected to electrophoresis using a 

12% precast gel (Mini-PROTEAN TGX, Bio-Rad) at a constant voltage of 150 mV for 55 

minutes at room-temperature (Figure 3.5B). Densitometry analysis on the loss of density of the 

uOmpA171 band was utilized to quantitate crosslinking efficiency as follows: 

     Efficiency = [(δpre
OMP – δpost

OMP)/ δpre
OMP]*100         (Equation 3.9) 

where δ indicates the band density of uOmpA171. Crosslinking experiments were repeated with 

another 8 stranded β-barrel OMP, uOmpX and a larger 12-stranded β-barrel, uOmpLA (Figure 
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3.6). We have mapped these efficiencies onto the structure of SurA in Figure 3.7 to illustrate 

crosslinking hot-spots. 

SANS was used to interogate a SurA-uOMP complex. 

Once we identified positions on SurA that have high crosslinking efficiencies to uOMP 

clients, we investigated the structural properties of this complex. We scaled up the crosslinking 

reaction for uOmpA171 and SurApAF
105 and purified this complex by gel-filtration, using the 

protocol described above for apo-SurA. We collected SANS on this complex in 98% D2O gel-

filtration buffer with experimental set-up similar to that described above for apo-SurA. Guinier 

fitting this scattering profile yields to RG of the entire complex (Figure 3.9A and 3.9D, Table 

3.4). 

To gain more structural insight into the conformation of the individual protein 

components in the complex, we utilized isotope labeling to modulate the contrast of the 

uOmpA171 client. In Figure 3.8A, we plot the calculated scattering length density of protonated 

SurA (green), deuterated-OmpA171 (gray dashed), and GF buffer (black dashed). Panel B shows 

the mass weighted contribution to total scattering of each component. Near the contrast match 

point of the protonated SurA (i.e., 43% D2O), the intensity of total scattering originates primarily 

from the uOmpA171 in the complex. This is only true for a complex composed of a protonated 

chaperone and deuterated uOMP client. Therefore deuterium was incorporated into the 

uOmpA171 protein as previously described (d-uOmpA171) (Zaccai et al. 2015). Briefly, we 

expressed d-uOmpA171 to inclusion bodies in minimal M9 growth media containing D2O and 

deuterated-glucose. To determine the extent of deuteration, which is a required parameter for 

contrast calculations, we utilized proton NMR (with the assistance of Dr. Ananya Majumdar and 

Henry J. Lessen). We collected NMR spectrum for preparations of both protonated and 

deuterated uOmpA171 and estimated the loss in intensity of methyl- and methylene- chemical 
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groups upon deuteration to be 80% of total peak area. Therefore, we assigned the extent of 

deuteration of d-uOmpA171 for SANS calculations as 80%. 

SANS datasets on the SurApAF
105 variant crosslinked to d-uOmpA171 were collected as 

described above in 0% and 30% D2O GF buffer (Figure 3.9A-3.9C). We attempted to collect 

scattering profiles in 80% and 98% D2O of this complex but the I(0) values from Guinier fitting 

indicated that these samples contained aggregates. It is known that exposure to high 

compositions of D2O may promote self-association and aggregation of particularly hydrophobic 

proteins (Lee and Berns 1968).  

Experimental RG values were integrated into a SurA-OMP complex model. 

We incorporated the RG information from the SurA-uOMP SANS experiments as 

constraints for the construction of a model for this complex. We initially used torsional angle 

MD (TAMD) to construct an ensemble of uOmpA171 conformations consistent with 

experimental RG values (Zhang et al. 2017). We began with previously published conformations 

of OmpA171 and constrained these conformations to states with an RG value of 43 Å (trajectories 

provided by S. Kreuger) (Zaccai et al. 2015). For computational treatment of SurA, we assume 

that the chaperone conformation does not change appreciably upon complex formation (i.e., RG 

= 33 Å). To form the complex, we manually aligned the extended conformation of uOmpA171 

with the crystal structure of SurA and performed constrained MD simulations. As above, we 

utilized CHARMM-GUI to construct this MD system of SurA with uOmpA171 in a 156 x 156 x 

156 Å box with 113,652 explicit waters and 200 mM NaCl. Constrained simulations were run for 

~ 100 ns after the implementation of constraints at 25 °C. We utilized the colvar package to 

implement harmonic potential constraints on the RG values of SurA and uOmpA171 as follows: 

for SurA, the well potential was defined as 1.0, with lower and upper boundaries defined as 28 

and 38 Å respectively. Lower and upper walls were defined as 32 and 34 Å respectively with 
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both wall constants set as 5.0. For uOmpA171, the well potential was defined as 1.0, with lower 

and upper boundaries defined as 38 and 48 Å respectively. Lower and upper walls were defined 

as 42 and 44 Å respectively with both wall constants set as 5.0. No constraints were placed on 

the entire complex RG value (Figure 3.10A). A representative complex conformer is shown in 

Figure 3.10B. To compare the structural properties of this conformation with our experimental 

scattering profiles, we calculated the theoretical scattering data for this complex under the 

experimental conditions, as described above using SasCalc (Sarachan, Curtis, and Krueger 2013; 

Watson and Curtis 2013). Comparisons of these theoretical scattering curves with our 

experimentally determined ones are shown in Figure 3.10C-E. 

SurA-OMP binding was quantitated by sedimentation velocity experiments. 

The above studies provide a structural model of a SurA-uOMP complex, but give us 

little quantitative understanding of the affinity for which these two proteins interact. To 

supplement our structural investigations, we examined the thermodynamics of binding between 

SurA and uOmpA171. Previous studies have utilized intrinsic tryptophan (W) fluorescence as an 

observable to monitor binding of uOMP clients to chaperones (Moon et al. 2013). However, 

both SurA and OmpA171 contain multiple Trp residues (4 and 5, respectively), which would 

complicate interpretation of fluorescence-detected binding. Instead, we used an absorbance-

based observable by monitoring association of SurA and uOmpA171 by sedimentation velocity 

(SV) analytical ultracentrifugation experiments. To reduce the relative contribution of SurA to 

the observed signal, we replaced all W residues in SurA with F (i.e., SurA-

W233F/W343F/W375F/W413F, or SurA-4W). We used site-directed mutagenesis and the 

primers outlined in Table 3.6 to clone this construct into the pET28b vector. 

We determined buffer conditions that would be conducive for experimentally analyzing 

the association between SurA-4W and uOmpA171. Because urea is required to maintain uOMPs in 
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their monomeric conformations, we determined the range of urea concentrations under which 

SurA-4W will retain its native conformation. To this end, we measured the degree of secondary 

structure of SurA-4W at varying concentrations of urea by circular dichroism (CD) (Figure 3.11A). 

All CD measurements were collected in an Aviv CD spectrometer, Model 410 (Aviv Biomedical) 

in Hellma cuvettes with a path length of 1 cm. SurA-4W was diluted to a final concentration of 1 

µM into 20 mM Tris (pH=8.0) with varying concentrations of urea. At each urea concentration 

after equilibration (i.e., ~ 1 week of incubation at room-temperature), we measured the CD 

signal at 220 nm of each sample using the kinetics experiment type. We monitored the signal for 

90 seconds using a 1 sec interval and 4-second time constant. We averaged the signal over this 

time course and reported values reflect this time-averaged signal. At every urea concentration, 

we also collected the CD signal from a buffer only sample and subtracted this from the protein 

sample signal for buffer corrected CD signals reported in Figure 3.11A. We also confirmed that 

uOmpA171 is monomeric under the buffer conditions for binding assays (i.e., 20 mM Tris and 1.5 

M urea) by sedimentation velocity (SV) analytical ultracentrifugation (Figure 3.11B); this finding 

agrees with previously reported results (Danoff and Fleming 2011; Ebie Tan et al. 2010). 

We used SV to determine the weight average sedimentation coefficient as an observable 

to monitor association of SurA-4W and uOmpA171 (Figure 3.11C). SurA-4W was diluted into 20 

mM Tris and 1.5 M urea to final concentrations ranging from 1 to 100 µM in the presence of 5 

µM uOmpA171. 400 µL of sample was then loaded into a two-sector SV cell. Experiments were 

performed in an An-Ti60 rotor at 50,000 rpm with radial scans at 280 nm were acquired with 

0.003 cm radial steps in continuous mode with zero time interval between scans. SV experiments 

were conducted at 20 °C with a Beckman Optima XL-A analytical ultracentrifuge using 

absorbance optics. All data were analyzed in DCDT+ v.2.4.2 (Philo 2006).  
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We also simulated SV data for this association reaction between SurA-4W and uOmpA171 

using SEDANAL v6.01.6926 (Figure 3.12) (Stafford and Sherwood 2004). For these simulations, 

we consider two mixtures of SurA-4W and uOmpA171: 1 µM SurA-4W/5 µM uOmpA171 and 10 µM 

SurA-4W/5 µM uOmpA171. For each mixture, our simulations yield a predicted weight average 

sedimentation coefficient as a function of input equilibrium dissociation constant. For these 

simulations, we used the following input parameters: for SurA-4W, MW = 46118 g mol-1, 

sedimentation coefficient = 2.70 Svedbergs (calculated from the crystal structure) (García De La 

Torre, Huertas, and Carrasco 2000; Ortega, Amorós, and García De La Torre 2011), ρ 

increment (defined as 1-𝑣ρ) = 0.251, εmass = 0.162 L cm-1 g-1. For uOmpA171, MW = 18875 g 

mol-1, sedimentation coefficient = 1.40 Svedbergs (Danoff and Fleming 2011), ρ increment = 

0.266, εmass = 2.483 L cm-1 g-1. For the SurA-4W-uOmpA171 complex, MW = 64993 g mol-1, 

sedimentation coefficient = 3.10 Svedbergs (calculated from structural model shown in Figure 

3.10B), ρ increment = 0.256, εmass = 0.836 L cm-1 g-1.   
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3.3. Results 

SurA is monomeric at physiological concentrations. 

 To begin our investigation into the function of SurA, we initially determined the 

oligomerization state of this uOMP chaperone using SE experiments. Other periplasmic 

chaperones are known to function as higher order oligomers (Plummer and Fleming 2016). For 

SurA, this question had been previously addressed with crystallography. It was determined that 

both the PPIase-1 domain of SurA and a SurA fragment lacking the PPIase-2 domain in 

complex with peptide crystallized in dimeric conformations (PDB: 2PV3) (Xu et al. 2007). This 

finding raised the possibility that the full-length SurA protein may exist in both monomeric and 

dimeric states. We found that in a concentration range of 10 to 30 µM, the SE profiles of SurA 

are well described by a single-ideal species model that correctly recapitulates the molecular 

weight of a SurA monomer (Figure 3.2A). Because this experimental concentration range 

corresponds with the anticipated concentration of SurA in the periplasm (20 µM) (Arike et al. 

2012; Masuda et al. 2009), we suggest that SurA is a monomer under biological conditions.  

SurA has additionally been implicated in the σE bacterial stress response and is one of 

the chaperone genes that is upregulated by this transcriptional response to handle stress 

conditions in E. coli (Dartigalongue, Missiakas, and Raina 2001). To determine whether SurA 

may form higher order oligomers at higher concentrations, we repeated our SE experiments at 

120 µM SurA. At this concentration, the single-ideal species model poorly fits the SE data (red 

dashed curves and red residuals in Figure 3.2B). Instead, these data are better fit with a 

monomer-dimer model and this fitting yields an equilibrium dissociation constant of 1160 ± 60 

µM at 37 °C. Figure 3.2B depicts the absorbance profiles of both the monomeric and dimeric 

species for this representative dataset in blue and green, respectively. This representation shows 
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that the population of SurA dimer under these conditions is small relative to the monomer 

population. 

We have incorporated the dimerization equilibrium data obtained from the experiment 

presented in Figure 3.2B into a species plot shown in Figure 3.2C. The monomer and dimer 

species populations are indicated as blue and green curves, respectively, with the experimentally 

observable concentration range shown in bold. The dashed vertical line indicates the anticipated 

periplasmic concentration of SurA under normal bacterial growth conditions. At 20 µM, the 

population of SurA monomer and dimer is expected to be 97% and 3% respectively. If SurA 

were upregulated 10-fold to a total concentration of 200 µM, this population should shift to 

78% monomer and 22% dimer. At 2 mM total SurA concentration, we anticipate SurA to exist 

as 40% monomer and 60% dimer.  

SurA monomer has solution properties similar to crystallized conformation. 

 We investigated the solution structure of the SurA monomer by SANS at two 

concentrations that are well below the concentrations at which dimer population is significant. 

From Guinier fitting the SANS profiles for apo-SurA presented in Figure 3.3A, we obtain an RG 

for the SurA monomer in solution of 33.3 ± 0.6 Å (Figures 3.3B-C, Table 3.4). This value is 

similar to the calculated value from the crystal structure using HydroPro (i.e., 32.6 Å) (García De 

La Torre, Huertas, and Carrasco 2000; Ortega, Amorós, and García De La Torre 2011). These 

results suggest that the solution SurA monomer behaves on average like the crystallized 

conformation. 

SurA interacts with uOMP clients with a delocalized interface. 

 Our findings suggest that crystal structure of SurA is similar to the ensemble present in 

solution – this finding is particularly puzzling as we know that SurA functions as a chaperone by 
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binding to unfolded OMP clients. There are no obvious binding sites for an unstructured 

partner on this expanded structure of SurA.  To determine which regions of SurA are involved 

in uOMP interactions, we incorporated a photoactivatable unnatural amino acid (pAF) at 36 

surface-exposed positions on SurA (Figure 3.4). We then mixed each of these SurApAF variants 

with a representative uOMP client, uOmpA171, and measured the efficiency of crosslinking for 

each variant to a uOMP client. OmpA is a known client of SurA in vivo and these interactions are 

exclusively between the transmembrane region of OmpA (i.e., OmpA171) and SurA (Hennecke et 

al. 2005; Vertommen et al. 2009), therefore use utilize uOmpA171 in our experiments. 

Crosslinking efficiencies are highest for tested sites in the N-terminal and PPIase-1 regions of 

SurA (Figures 3.5 and 3.6A). Residues 59, 105, 245, and 260 in particular exhibit high 

crosslinking efficiencies. Lower efficiencies are observed for tested sites in the PPIase-2 and C-

terminal regions. 

 Because SurA has been suggested to interact with clients of varying sequences and 

lengths (Hennecke et al. 2005; Vertommen et al. 2009), we repeated the above experiment with 

two other uOMP clients. OmpX and OmpLA are 8- and 12-stranded β-barrel OMPs, 

respectively, that behave as unfolded monomers under our experimental conditions (Ebie Tan et 

al. 2010). Binding efficiencies for OmpX are similar in magnitude to those of uOmpA171 (Figure 

3.6B), although those for uOmpLA are lower. This may indicate that OmpLA binds to SurA 

weaker than uOmpA171 and uOmpX.  

uOMP exists in an expanded conformation when in complex with SurA. 

 These crosslinking experiments provide novel insight into the binding interface on SurA, 

however they give little structural information on the conformation of the uOMP client in these 

complexes. To complement our crosslinking experiments, we collected SANS scattering profiles 

on a fully protonated SurA-uOMP complex in order to quantify the RG of the entire complex. 
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We purified a crosslinked complex composed of SurApAF
105 and uOmpA171 and collected the 

scattering profile of this complex in 98% D2O to maximize the contrast and subsequent intensity 

for complex scattering (Figure 3.9A, gold). Guinier fitting of this data yields an RG value of 38 Å 

for the entire complex. 

As discussed in the Methods section above, varying the deuterium composition of the 

uOMP client and buffer allows for selective visualization of individual components in the 

complex. In Figure 3.8, we highlight the importance of this; for a complex composed of 

protonated SurA and deuterated uOmpA171, the contribution of each protein to the total 

scattering will depend on the buffer D2O content. Under buffer conditions that contrast match 

the protonated chaperone, the scattering primarily originates from the deuterated OMP in the 

complex. We take advantage of this property of neutron scattering by collecting scattering 

profiles of a complex composed of protonated-SurApAF
105 crosslinked to deuterated-uOmpA171. 

We collected datasets under two buffer conditions: 0% and 30% D2O buffer. At each of these 

conditions, the individual complex components contribute differentially to the total scattering 

intensity. At 0% buffer, the chaperone and client OMP contribute equally to the total intensity 

(Figure 3.8B.) Under the latter experimental conditions, the total scattering intensity of a 

complex composed for SurApAF
105 - deuterated-uOmpA171 originates from the two components 

with 15% coming from the protonated-SurA and 85% due to the deuterated-uOmpA171 (Figure 

3.8B). Guinier fitting of data collected under these conditions yields an RG value of 40 Å. 

Because the scattering is dominated by the uOmpA171 component, we utilize this RG value as an 

estimate for the RG of uOmpA171 in complex with SurA. 
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Constrained MD simulations yield SurA-uOMP complex structures consistent with 

experimental results. 

 To construct a model for the SurA-uOmpA171 complex, we combined constrained 

TAMD and MD simulations. TAMD provides an efficient method to explore vast 

conformational space by using large time steps to sample backbone torsion angles, and we use 

this technique to produce conformational ensembles of uOmpA171 (Zhang et al. 2017). To better 

understand the molecular details of how this uOmpA171 interacts with SurA, we use traditional 

all-atom MD simulations. We simulated SurA in complex with uOmpA171 and implemented 

constraints on the RG values of SurA and uOmpA171. These simulations produced conformations 

that exhibit RG values consistent with those we have measured (Figure 3.10A). An example 

conformation is shown in Figure 3.10B. For the RG values of SurA and the uOmpA171 to be 33 

and 43 Å, respectively, the uOmpA171 must be expanded and extend away from SurA.  

We can further assess the validity of this SurA-uOmpA171 model by comparing its 

expected SANS curve to our experimental data. We utilized the NIST SasCalc server to predict 

the scattering curve of this example complex conformation under each condition that we have 

collected experimental SANS datasets (Figure 3.10C-E) (Sarachan, Curtis, and Krueger 2013). 

These predicted curves shown in Figure 3.10B are in black with the experimental data shown in 

purple, green, and gold in Panels C, D, and E respectively. These calculated curves agree well 

with the experimental results indicated for each panel. 

 We note that the conformation shown in Figure 3.10B represents one structural model 

that is consistent with our results. An inherent limitation to SANS is that we obtain low-

resolution constraints for structural modeling (i.e., component and complex RG values). While 

future work involves exploring other modeling techniques to sample conformational space to 
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yield complex structures compatible with our data, the representative model is the best model 

that reproduces our SANS dataset discovered to date.  

SurA binds to uOMP client with a KD in the micromolar range. 

 Previous studies have aimed to estimate the binding affinity of SurA to short peptides or 

OMP clients using non-equilibrium phage display assays (Bitto and McKay 2003, 2004). The use 

of non-native clients and non-equilibrium conditions precludes the interpretation of these 

measurements as true binding affinities. Here we quantify the binding of SurA to a native, 

monomeric uOMP client. One important consideration for using a native OMP client is that 

these experiments require the presence of urea to prevent the self-association of the uOMP; 

however, high concentrations of denaturant will cause unfolding of the chaperone protein. We 

have carefully chosen experimental conditions under which the chaperone is folded and the 

OMP client is unfolded and monomeric (Figure 3.11A-B). For these experiments, we use a 

variant of SurA (i.e., SurA-4W) to minimize the convolution of our observable with signal 

contributions from the free chaperone. This variant is likely still able to interact with uOMP 

clients in a native manner as our crosslinking studies indicate that all four native Trp residues in 

SurA crosslink to uOMP clients with low efficiencies (Figure 3.6).  

 The weight average sedimentation coefficient for mixtures of SurA-4W and uOmpA171 as a 

function of [SurA-4W] are shown for a representative binding experiment in Figure 3.11C. 

Globally fitting three experiments individually to a binding model yields a KD of 17 µM ± 4 µM. 

To complement these experimental data, we simulated SV data for association reactions of SurA-

4W and uOmpA171 with varying KD values (Figure 3.12). We performed simulations for two 

different reaction mixture concentrations (i.e., 1 µM SurA-4W and 5 µM uOmpA171 in Panels A/B 

and 10 µM SurA-4W and 5 µM uOmpA171 in Panels C/D).  These simulations require the 
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specification of the sedimentation coefficient of the SurA-4W- uOmpA171 complex. Due to our 

prior structural investigation and modeling, we are able to calculate that parameter for the 

complex presented in Figure 3.10B (i.e., 3.1 S). As shown in Figure 3.12, these simulations agree 

with our SV experimental data (Figure 3.11) and suggest that KD values in the low to mid 

micromolar range are consistent with our experimental results. 
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3.4. Discussion 

SurA is a dedicated chaperone for uOMP biogenesis.  

The periplasmic chaperone network of E. coli is composed of several chaperones that 

traffic uOMPs through this cellular compartment. Of these chaperones, several have been 

suggested to be bifunctional: DegP functions as both a protease and chaperone; and FkpA 

exhibits both prolyl-isomerase and chaperone activity (Bothmann and Pluckthun 2000; Ge, Lyu, 

et al. 2014; Ge, Wang, et al. 2014a; Misra, Castillokeller, and Deng 2000). In terms of PPIase 

activity, FkpA has a catalytic efficiency that is approximately 100-fold greater than that of SurA 

(Behrens et al. 2001). Coupled with the observation that OMPs rarely contain cis-prolines that 

require isomerization prior to uOMP folding, we suspect that SurA is unlikely to be the 

periplasmic workhorse for PPIase activity (Figure 3.1, Tables 3.1-3.2). Instead, SurA may 

function solely as a chaperone for uOMP trafficking in the periplasm. 

 This suggestion begs the question: what is the function of the two parvulin domains of 

SurA if they are not required for prolyl-isomerization of client proteins? One recent suggestion is 

that PPIase-2 is necessary to modulate the transition between the “open” and “closed” 

functionally-relevant conformations of SurA (Soltes et al. 2016). However, the importance of 

PPIase-2 is refuted by the finding that PPIase-2 is not required for in vivo complementation of 

ΔsurA phenotype; therefore, we suggest that this structural transition is likely not required for 

SurA function in vivo (Behrens  et al. 2001). Although PPIase-2 is dispensable for SurA function, 

PPIase-1 is likely required for structural integrity of the N/PPIase-1/C terminal region. This 

structural unit has been reported to be responsible for the chaperone function of SurA (Behrens  

et al. 2001). Our studies support this as we find that this domain exhibits high crosslinking 

efficiencies for uOMPs (Figure 3.6). 
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SurA exhibits unique oligomerization properties and uOMP binding mechanism. 

 Other periplasmic chaperones are known to function as higher order oligomers: FkpA as 

a dimer, Skp as a trimer, and DegP as a trimer/hexamer (Plummer and Fleming 2016). Unlike 

these chaperones, we have discovered that SurA is monomeric under our experimental 

conditions and under physiological concentrations (Figure 3.2). Although our SE experiments 

were completed in the absence of uOMP client, our crosslinking data additionally support the 

interpretation that SurA interacts with uOmpA171 in a 1 SurA: 1 uOMP stoichiometric manner 

(Figure 3.5B). Our results suggest that SurA is monomeric and does not utilize a mechanism for 

uOMP binding that involves oligomerization, at least for interactions with uOmpA171.  

 Another key difference between SurA-uOMP interactions and other chaperones is found 

in the varying strengths of these interactions. We find the SurA binds to uOmpA171 with a 

dissociation constant in the micromolar range (Figures 3.11 and 3.12). This KD is similar in 

magnitude to previously reported measurements for binding of SurA to aromatic-rich peptides 

or OmpF339 (Bitto and McKay 2003, 2004). This value is 1000-fold lower than the previously 

reported constants for binding of uOMP clients to DegP, Skp, or FkpA (Ge, Lyu, et al. 2014; S. 

Wu et al. 2011). Taken together, we suggest that SurA interacts with uOMP clients significantly 

weaker than other periplasmic chaperones. This seems paradoxical as SurA has been identified 

as the chaperone that handles most of the uOMP flux through the periplasm (Costello et al. 

2016; Sklar, Wu, Kahne, et al. 2007). However, computational studies have shown that the 

periplasmic concentrations of chaperones and uOMPs are poised to allow for significant 

population of SurA-uOMP complexes. This stems from the balance of kinetic and 

thermodynamic partitioning between various uOMP species in the periplasm and is discussed at 

length in Chapter 5 (Costello et al. 2016). 
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 The relatively weak binding of uOMPs to SurA compared to other chaperone-uOMP 

interactions may be a result of the difference in structural mechanism by which SurA interacts 

with uOMPs. Other chaperones are known to encapsulate uOMPs in internal cavities to 

physically shield them from the aqueous solvent or self-association reactions (Plummer and 

Fleming 2016) (Figure 3.13). In contrast, using SANS and biochemical crosslinking, we have 

discovered that SurA binds to expanded uOMP clients with a delocalized interface primarily 

located in the N-terminal and PPIase-1 regions. This type of delocalized interface between 

chaperones and unstructured binding partners has been recently reported for other chaperone 

systems (Horowitz et al. 2016; Huang et al. 2016). Taken together, our findings suggest that the 

uOMP client is expanded around SurA, essentially encapsulating SurA, whereas other 

chaperones enclose uOMP clients. 

Structural model of SurA-uOMP complex suggests how SurA may facilitate uOMP 

folding in coordination with the BAM complex. 

 Of the periplasmic chaperones, only SurA has been crosslinked with the OM-localized 

BAM complex in vivo. For this reason, SurA is thought to play an active role in the uOMP 

folding pathway (Sklar, Wu, Kahne, et al. 2007; Wang et al. 2016). Complementary in vitro studies 

have also demonstrated that SurA promotes OMP folding, whereas other chaperones simply 

limit the formation of off-folding-pathway species (Thoma et al. 2015). Our structural model of 

the SurA-uOMP complex may explain these findings. Because the uOMP is expanded when in 

complex with SurA, significant regions of this client are extended away from the SurA 

chaperone. This means that the uOMP client may interact with both SurA and the BAM 

complex simultaneously (Figure 3.14). In contrast, this type of ternary complex is unlikely to 

form between DegP-uOMP or Skp-uOMP complexes as the uOMP is encapsulated with the 

chaperone-oligomeric cage (Figure 3.13).  
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 One important point for consideration is that the uOMP modeled into our SurA-uOMP 

complex may differ only slightly from uOMP conformations that would be sampled in the 

absence of SurA. Indeed, it has been shown that uOMPs sample on-folding-pathway 

conformations and can fold into bilayers in the absence of chaperones (Burgess et al. 2008; 

Gessmann et al. 2014). Moreover, the presence of SurA accelerates this process in vitro (Hagan 

and Kahne 2011; Hagan, Kim, and Kahne 2010). Together these observations suggest that SurA 

interacts with uOMPs in a way that slightly modulates the conformational ensemble of uOMPs 

to promote uOMP in vitro folding. Interestingly, it was recently shown that SurA is only required 

to accelerate in vivo folding of uOMPs by a factor of 10 to reproduce previously published 

phenotypes (Costello et al. 2016). Such a modest acceleration may result from the slight 

conformational bias imparted by SurA both in vitro and in vivo on the uOMP conformational 

ensemble. 

Moving Forward: Expanding our understanding of how SurA accommodates uOMPs. 

We have presented data that SurA handles uOMP clients via weak binding and a 

delocalized interface to promote their assembly in vivo. We suggest the theme of delocalized 

interactions between chaperones and unfolded client proteins is likely a common mechanism 

that chaperones utilize to modulate the folding trajectories of unstructured clients, as it has been 

proposed for several chaperone complexes (Horowitz et al. 2016; Huang et al. 2016). Moving 

forward, we aim to expand upon this understanding of SurA-uOMP interactions by investigating 

how SurA binds to other uOMP clients, as it is known to interact with several uOMP clients in 

vivo (Vertommen et al. 2009). It will be interesting to see how chaperone promiscuity relates to 

binding affinity and structural accommodation of uOMP clients. 
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3.5. Figures 

Figure 3.1. Analysis of Proline content for abundant periplasmic proteins and OMPs. 

 
 

OMP sequences typically contain fewer prolines than periplasmic proteins and soluble proteins. 

Sequences of the most abundant OMP and periplasmic protein sequences were analyzed for 

proline content (Table 3.1) and are plotted above. The dashed horizontal line indicates the 

average proline content of all proteins in the UniProt database. 

  

Periplasmic 
Proteins 

OMPs 
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Figure 3.2. SE analysis of SurA at varying concentrations. 

 
 
 
SurA is predominantly monomeric in solution at physiological concentrations and dimerizes 

with a dissociation constant in the millimolar range. Panel A shows a representative SE dataset 

collected for SurA at a total concentration of 30 µM. These data are well described by a single-

ideal species model, which yields the molecular weight of SurA to be 43 ± 2 kDa, which agrees 

well with the calculated molecular weight of monomeric SurA (45 kDa). These values represent 

the average weight obtained from fitting three independent experiments and the standard 

deviation of fitting. The average number of degrees of freedom for individual fits is 850. Panel B 

indicates the SE results obtaining from repeating this experiment with a SurA concentration of 

120 µM. Fitting this dataset with a single ideal species model (red dashed curve) yields non-
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random residuals (in red). These data are better described by a model (black) that accounts for 

an equilibrium between monomeric (blue) and dimeric species (green). The KD obtained from 

fitting these data is 1160 ± 60 µM. The average number of degrees of freedom for individual fits 

is 600 for these datasets. Panel C indicates the population of both the monomeric and dimeric 

SurA species as a function of SurA total monomeric concentration. The vertical dashed line 

shows the physiological concentration of SurA, while the thicker regions depict the 

concentration range accessible in our SE experiments. All data presented here at collected at 37 

°C. 
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Figure 3.3. SANS data and structural model for apo-SurA. 

 

 
Analysis of SANS data collected on apo-SurA indicates that SurA has an RG value in solution 

consistent with that of the crystallized SurA conformation. We collected scattering profiles of 

apo-SurA at two concentrations (1 mg mL-1, maroon; 3 mg mL-1, blue; Panel A). Guinier fitting 

for both the low and high concentration datasets are shown in Panels B and C, respectively; this 

analysis yields an RG value for SurA of 33.3 ± 0.6 Å. This value agrees well with the calculated 

RG value for the crystal structure of SurA (33 Å for PDB 1M5Y; Panel D) (García De La Torre, 

Huertas, and Carrasco 2000; Ortega, Amorós, and García De La Torre 2011). 
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Figure 3.4. Summary of the SurA sequence and sites of all mutations. 

 

 
 

 

Amino acid numbering begins at 20, as the signal sequence encoding for export of SurA to the 

periplasm has been excluded from our constructs. The first and second parvulin PPIase domains 

are indicated in yellow and green, respectively. All positions mutated for incorporation of pAF 

are underlined. SurA contains 4 tryptophans (i.e., W233, W343, W375, and W413) shown in 

bold which are mutated to phenylalanine in the SurA-4W construct. 

  



 

 92 

Figure 3.5. pAF structure and representative SDS-PAGE gel of crosslinking reaction.

 

 

Decrease in density of uOmpA171 SDS-PAGE band indicates crosslinking between SurA-pAF 

variants and uOMP. SurApAF variants are used for interrogation of binding with uOmpA171 by 

crosslinking and subsequent SDS-PAGE analysis. The unnatural amino acid, para-azido-

Phenylalanine (Panel A) was incorporated into SurA at 36 positions shown in Figure 3.4. This 

amino acid was chosen due to its ability to non-specifically crosslink to chemical moieties within 

3 to 5 Å. Each SurApAF variant (25 µM) was mixed with uOmpA171 (5 µM) and exposed to UV 

light (5 min). Samples were taken pre- and post- exposure to UV light and subjected to analysis 

by SDS-PAGE. As shown in Panel B, this experimental setup yields a higher apparent molecular 

weight species (“Complex”) for SurApAF variants (i.e., SurApAF
59). In addition to the formation of 

this band at ~ 70 kDa, we observe the loss in density of the uOmpA171 band at ~ 20 kDa. For 

other variants, the formation of this complex band is minimal (i.e., SurApAF
309). 
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Figure 3.6. Summary of crosslinking efficiencies for SurA-pAF variants and uOMPs. 

 
SurApAF variants with high crosslinking efficiency to uOMP clients are primarily located in the 

N-terminal and PPIase-1 regions. Panel A depicts the percentage of uOmpA171 crosslinked to 

each tested SurApAF variant with the SurA regions labeled as follows: N-terminus (blue), PPIase-1 

(purple), PPIase-2 (orange), and C-terminus (gray). Panel B includes the results from repeating 

the crosslinking experiments with two additional uOMP clients: uOmpX (tan) and uOmpLA 

(purple). We observe similar crosslinking efficiencies for uOmpA171 and uOmpX, both of which 

are unfolded 8-stranded β-barrel OMPs. Qualitatively, crosslinking uOmpLA (12 stranded β-

barrel) to our SurApAF variant library yields similar trends in that higher crosslinking efficiencies 

are observed for sites in the N-terminal and PPIase-1 regions; however, efficiencies for SurA 

crosslinking to uOmpLA are lower than uOmpA171 for all tested sites. 
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Figure 3.7. Map of SurApAF-uOmpA171 crosslinking results. 

 
 
Structural map of SurApAF-uOmpA171 crosslinking results suggests that SurA makes delocalized 

contacts centered on the N-terminus and PPIase-1 regions. Gradient shading was utilized to 

indicate high and low crosslinking results are colored in red and blue, respectively (PDB 1M5Y). 
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Figure 3.8. Scatter length density and contribution to total scattering calculations for 

protonated SurA and deuterated uOmpA171. 

 
Near the D2O buffer composition at which protonated SurA is contrast matched, scattering 

from a complex of protonated SurA and deuterated uOmpA171 will primarily originate from the 

uOMP. Panel A plots the scattering length density of protonated SurA (green), deuterated 

uOmpA171 (gray dashed line), and GF buffer (black dashed line). The buffer D2O content at 

which scattering length density of a protein component equals that of the buffer is termed the 

contrast match point; at this point, the protein component neutron scattering relative to the 

buffer is negligible and the component makes little to no contribution to the total sample 

scattering profile. For protonated SurA and deuterated uOmpA171, the contrast match points are 

43% and > 100 % D2O content. Panel B illustrates the mass-weighted contribution to the total 

complex scattering of the individual components – protonated SurA (green) and deuterated 
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uOmpA171 (gray, dashed). Near the contrast match point of SurA (~ 40% D2O), most of the 

scattering intensity originates from the uOMP in the complex. 
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Figure 3.9. Summary of SANS datasets and fitting for SurA-uOmpA171 complex. 

 

 
 
SANS datasets collected on complex of SurA crosslinked to uOmpA171 provide RG constraints 

for structural modeling. Scattering profiles of prot-SurApAF
105 crosslinked to deut-uOmpA171 in 

0% and 30% D2O GF buffer are shown in purple and green, respectively; data collected for the 

complex containing prot-SurApAF
105 crosslinked to prot-uOmpA171 in 98% D2O buffer are shown 

in orange (Panel A). Guinier fitting for these datasets are shown in Panels B through D and 

summarized in Table 3.4. 
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Figure 3.10. MD analysis and SANS calculations for SurA-uOmpA171 complex model. 

 

 
 
Structural model constructed from SANS RG constraints produces conformation that yields 

simulated scattering curves that agree with experimentally determined data. We monitored the 

RG of SurA (green), uOmpA171 (gray), and the entire complex (black) for our constrained MD 

simulation. A representative complex conformation is shown in Panel B. For this particular 

conformation, we calculated the expected scattering curves (black) for the experimental 

complexes and buffer compositions shown in Figure 3.9. 
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Figure 3.11. SV data for SurA-4W and uOmpA171 mixtures and controls. 

 

 
SurA-4W binds to uOmpA171 with a micromolar KD under experimental conditions in which 

SurA-4W is folded and uOmpA171 is an unfolded monomer. SurA-4W retains native secondary 

structures at urea concentrations lower than 2 M urea (Panel A). At 5 µM uOmpA171 

concentration and 1.5 M urea, uOmpA171 is monomeric as evidenced by the sedimentation 

coefficient distribution function being well described by a single species model (Panel B). Panel 

C shows the weight average sedimentation coefficient for mixtures of 5 µM uOmpA171 with 

varying concentrations of SurA-4W measured in 1.5 M urea and 20 mM Tris (pH=8.0). 
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Figure 3.12. Simulation of SV data for SurA-4W and uOmpA171 as a function of KD. 

 
 
Simulations of SV data suggest that a micromolar KD value is consistent with our experimental 

SV results for mixtures of SurA-4W and uOmpA171. Above, we plot the average weight average 

sedimentation coefficient obtained from simulations of two mixtures of SurA-4W and uOmpA171 

with varying equilibrium dissociation constants (KD). Simulations for a mixture of 1 µM SurA-4W 

and 5 µM uOmpA171 are shown in Panels A and B; simulations for a mixture of 10 µM SurA-4W 

and 5 µM uOmpA171 are shown in Panels C and D. Horizontal lines indicate the experimentally 

determined range of weight average sedimentation coefficients measured for these mixtures 

(Figure 3.11). 
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Figure 3.13. Summary of structures of chaperone bound uOMP complexes. 

 
 

Unlike other periplasmic chaperones that encapsulate uOMP clients, SurA binds to uOMPs in 

an expanded, external conformation. Panels A and B depict structural models for complexes of 

uOMP clients (i.e., uOmpC and uOmpW) with the oligomeric chaperones, DegP and Skp 

respectively (Malet et al. 2012; Zaccai et al. 2015). Panel C depicts the expanded uOmpA171 in 

our model of the SurA-uOmpA171 complex presented in Figure 3.10B. 
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Figure 3.14. Mechanistic insight into SurA-uOMP interactions with the BAM complex. 

 
 
The SurA-uOmpA171 complex may interact with the BAM proteins in a manner that promotes 

uOMP assembly into the membrane. SurA associates with the uOMP client, which maintains an 

expanded structure in the SurA-uOMP complex. In this structural model, regions of the uOMP 

are extended away from the SurA chaperone and therefore capable of interacting with the 

periplasmic domains of the BAM complex.  
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3.6. Tables 

Table 3.1. Summary of number of prolines in abundant OMPs and periplasmic proteins. 

 

  PDB 
Total 

Residues 

Total 

Prolines 

cis 

Prolines 

Most Abundant OMPs 

LamB 1MAL 421 8 1 

OmpA171 1QJP 169 8 0 

OmpC 2J1N 346 3 0 

OmpF 3K19 340 4 0 

OmpT I78 297 9 0 

OmpW 2F1V 191 6 0 

OmpX 1QJ9 148 4 1 

SurA Clients 

FhuA 2GRX 555 24 0 

LptD 4Q35 760 32 1 

OmpA 1QJP 169 8 0 

Most Abundant 

Periplasmic Proteins 

AgP 1NT4 391 24 0 

GlnH 1WDN 226 7 1 

HdeA 1DJ8 89 4 0 

HdeB 2XUV 79 5 0 

MalE 1ANF 370 21 0 

OppA 3TCH 517 32 1 

RbsB 1URP 271 9 0 

 

Most abundant OMPs have fewer total prolines and cis-prolines than the most abundant 

periplasmic proteins. The total number of prolines and cis-prolines are provided for the most 

abundant OMPs and periplasmic proteins, along with previously identified in vivo clients of SurA 

(Han, Kim, and Kim 2014; Vertommen et al. 2008, 2009). 
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Table 3.2. Percentage of proline content in abundant OMPs and periplasmic proteins. 

 
% Pro 

Composition 
% Cis 

Most Abundant OMPs 2.51 0.105 

SurA-preferred clients 3.90 0.080 

Most Abundant Periplasmic Proteins 5.04 1.96 

 

Few cis-Prolines occur in OMPs. The percentage of prolines total and cis-prolines for the 

proteins listed in Table 3.1 are shown above. For OMP sequences, we considered the 

transmembrane regions only (Bitto and McKay 2004; Hennecke et al. 2005). SurA-preferred 

clients only contain 1 cis-proline (i.e., LptD). 
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Table 3.3. Scattering lengths of common atoms. 

 
Atom Nucleus b  (10 -12 cm) fx-ray (10 -12 cm) 

Hydrogen 1H -0.374 0.28 

Deuterium 2H 0.667 0.28 

Carbon 12C 0.665 1.69 

Nitrogen 14N 0.930 1.97 

Oxygen 16O 0.580 2.25 

 

The scattering lengths of common atoms and isotopes are given for both neutron (b) and x-ray 

(fx-ray) scattering. Importantly, the neutron scattering length for hydrogen and deuterium are 

opposite in sign and this yields differential scattering for isotopically labeled macromolecules. 
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Table 3.4. Summary of SANS experiments and Guinier fitting parameters. 

 
   Guinier Fitting  

Protein 
Concentration 

(mg mL-1) 

Buffer 

Composition 

I(0) 

(cm-1) 

RG 

(Å) 

I(0) 

Ratio 

SurA 
1.0 98% D2O 4.49x10-2 ± 5.3x10-4 33.3 ± 0.6 1.04 

3.0 98% D2O 9.67x10-2 ± 6.0x10-4 34.5  ± 0.3 1.14 

SurApAF
105 

x p-uOmpA171 
1.2 98% D2O 6.29x10-2 ± 5.5x10-4 38.4 ± 0.5 0.97 

SurApAF
105 

x d-uOmpA171 

3.0 0% D2O 2.10x10-1 ± 1.8x10-3 41.6 ± 0.5 1.04 

3.0 30% D2O 4.92x10-2 ± 1.5x10-3 40.7 ± 1.3 0.94 

 

The ratio of the experimentally determined I(0) to the predicted value is calculated as described 

in the Methods section. I(0) ratios close to 1 indicate that samples contain monomeric species. 

For I(0) and RG values, errors indicate the standard deviations from fitting.  
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Table 3.5. Primers used for cloning SurA-pAF variants. 

Residue # Primer 

D 26 GCCCCCCAGGTAGTCTAGAAAGTCGCAGCCGTCGTC 

Q 47 GCGACGTTGATGGATTAATGTAGTCGGTAAAACTGAACGCTGC 

Q 59 GCTCAGGCAAGGCAGTAGCTTCCTGATGACGCGAC 

E 72 GCGCCACCAAATCATGTAGCGTTTGATCATGGATCAAATC 

K 86 ATCCTGCAGATGGGGCAGTAGATGGGAGTGAAAATCTC 

E 94 GTGAAAATCTCCGATTAGCAGCTGGATCAGGCGATTG 

K 105 GCGATTGCTAACATCGCGTAGCAGAACAACATGACGCTGGATC 

Y 120 ATGCGGAGTCGTCTGGCTTAGGATGGACTGAACTACAAC 

N 126 GCTTACGATGGACTGAACTACTAGACCTATCGTAACCAGATCCGC 

N 144 ATCTCTGAAGTGCGTAACTAGGAGGTGCGTCGTC 

T 151 GTGCGTCGTCGCATCTAGATCCTGCCGCAAGAAGTCGAATC 

Q 162 GTCGAATCCCTGGCGTAGCAGGTGGGTAACCAAAACGAC 

D 190 CCGGAAAACCCGACCTCTTAGCAGGTGAACGAAGCG 

R 200 GCGGAAAGCCAGGCGTAGGCCATTGTCGATCAGG 

H 219 AAGCTGGCGATTGCTTAGTCTGCCGACCAGCAG 

Q 223 ATTGCTCATTCTGCCGACTAGCAAGCGCTGAACGGCG 

M 231 CTGAACGGCGGCCAGTAGGGCTGGGGCCGTATTCAGG 

W 233 CTGAACGGCGGCCAGATGGGCTAGGGCCGTATTCAGGAG 

Q 245 CCCGGGATCTTCGCCTAGGCATTAAGCACCGCG 

K 251 CAGGCATTAAGCACCGCGTAGAAAGGAGACATTGTTG 

R 260 GACATTGTTGGCCCGATTTAGTCCGGCGTTGGCTTCC 

K 278 GCGCGGCGAAAGCTAGAATATCTCGGTGACCG 

Q 302 CCGATCATGACTGACGAATAGGCCCGTGTGAAACTGG 

Q 309 GCCCGTGTGAAACTGGAATAGATTGCTGCTGATATC 

K 326 ACTTTTGCTGCCGCAGCGTAGGAGTTCTCTCAGGATCC 

D 350 GCTACACCAGATATTTTCTAGCCGGCCTTCCGTGACGC 

R 359 TTCCGTGACGCCCTGACTTAGCTGAACAAAGGTCAAATG 

D 382 TGGCATTTAATCGAACTGCTGTAGACCCGTAATGTCG 

Y 398 CAGAAAGATCGTGCATAGCGCATGCTGATGAACCGTAAGTTCTCG 
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E 408 AACCGTAAGTTCTCGTAGGAGGCAGCAAGCTGGATG 

M 414 GAAGAAGCAGCAAGCTGGTAGCAGGAACAACGTGCCAG 

Y 422 CAACGTGCCAGCGCCTAGGTTAAAATCCTGAGC 

 

Mutations to the SurA gene are underlined. 
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Table 3.6. Primers used for cloning SurA-4W. 

 
 Primer 

W233F Forward: CCAGATGGGTTTTGGCCGTATTCAGGAGTTGC 

Reverse: GCAACTCCTGAATACGGCCAAAACCCATCTGG 

W343F Forward: CGATCTCGGCTTTGCTACACCAGATATTTTCGATCCGG 

Reverse: CGAAAATATCTGGTGTAGCAAAGCCGAGATCGCCG 

W375F Forward: GGTTCACTCTTCATTCGGCTTTCATTTAATCGAACTGCTGG 

Reverse: CGATTAAATGAAAGCCGAATGAAGAGTGAACCGGTGC 

W413F Forward: GGAAGAAGCAGCAAGCTTTATGCAGGAACAACGTGCCAGC 

Reverse: CGTTGTTCCTGCATAAAGCTTGCTGCTTCTTCCGAGAACTTACG 

 
Mutations to the SurA gene are underlines. 
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Chapter 4 – BamA Alone Accelerates OMP Folding in v i t ro  through a 

Catalytic Mechanism 

 

 

 

 

 

 

 

 

 

Excerpts published as: Plummer, A. M., Fleming, K. G., (2015) Biochemistry, 54(39): 6009-6011 

and 

Plummer, A. M., Fleming, K.G., (2016) Trends in Biochemical Sciences, 41(10): 872-882. 
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4.1. Introduction 

The functionally active, native conformations of Outer Membrane Proteins (OMPs) are 

folded into the Outer Membranes (OM) of Gram-negative bacteria. The assembly of OMPs is 

known to depend on the OMP BamA – this OM-localized β-barrel protein is evolutionary 

conserved from bacteria to eukaryotes and is known to play an essential role in uOMP assembly 

(Voulhoux, Bos, Geurtsen, Mols and Tommassen 2003). In E. coli, BamA associates with four 

lipoproteins: BamBCDE to form the β-Barrel Assembly Machinery (BAM) complex (Malinverni 

et al. 2006; Onufryk et al. 2005; Sklar, Wu, Gronenberg, et al. 2007; Wu et al. 2005). While each 

of these accessory lipoproteins has been implicated in maintaining OM integrity, only BamA and 

BamD are required for cell viability (Malinverni et al. 2006; Werner and Misra 2005). The 

essentiality of the BAM complex stems from its role in assembling uOMPs into the bacterial 

OM.  

Recently solved crystal structures reveal that the BamA β-barrel has a unique seam. 

 In 2013, the first crystallographic structure of a full-length bacterial BamA was solved 

(Noinaj et al. 2013). This structural model contains the two domains of BamA: one 

transmembrane 16-stranded β-barrel domain and a series of five soluble POlypeptide-

TRansport-Associated (POTRA) motifs. Each of these structural subunits has features that may 

contribute to the ability of BamA to assemble uOMPs into the OM of Gram-negative bacteria. 

In particular, this first structure of the β-barrel domain of BamA revealed a surprising result: 

instead of exhibiting a geometry that maximizes the number of hydrogen bonds between the N- 

and C-terminal β-strands, the crystal structure of the Neisseria gonorrhoeae BamA revealed that the 

N- and C-terminal β-strands of the β-barrel interact with only two hydrogen bonds to close the 

β-barrel, and the C-terminal β-strand is twisted and bends into the β-barrel. This “open” β-
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barrel conformation has since been observed in crystallographic studies of E. coli BamA (Figure 

4.1A and 4.1C) (Gu et al. 2016). 

The non-canonical β-barrel seam of the N. gonorrhoeae BamA prompted the investigation 

of the role of movement of the N- and C-terminal β-strands in the function of this BamA 

homologue. Indeed, molecular dynamics (MD) simulations of the N. gonorrhoeae BamA in 

dimyristoyl-glycero-3-phosphatidylethanolamine gel-phase lipids suggest that β-strands 1 and 16 

laterally open in the absence of uOMP client (Noinaj et al. 2013). Crosslinking experiments that 

covalently link β−1 to β−16 of E. coli BamA were found to be detrimental to cell viability, 

suggesting that lateral opening of these β-strands may play a pivotal role in the function of 

BamA (Noinaj et al. 2014).  

 Mechanisms involving lateral opening have been previously reported for other OMPs – 

this type of motion was first suggested to play a role in the function of the OMP PagP over 10 

years ago (Ahn et al. 2004). Since then, several OMPs have been suggested to laterally open  

(e.g., TamA, PagP, FadL, OmpW, LptD) (Ahn et al. 2004; Dong et al. 2014; Gruss et al. 2013; 

Hearn et al. 2009; Hong et al. 2006). These β-barrels range in size from 8 to 16 β-strands and 

have a variety of substrates, including phospholipids and lipopolysaccharide (LPS). The unique 

crystallographic evidence for the open conformation of BamA β-barrel differs from the previous 

structural and biochemical data for other OMPs that have functional mechanisms involving 

lateral opening. Interestingly, the potential similarities for insertion of LPS and OMPs by lateral 

opening of LptD and BamA, respectively, suggests the two major components of the OM may 

be assembled by similar mechanisms.  
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How do the soluble POTRA motifs contribute to BamA function? 

 The POTRA motifs of BamA have a conserved β1-α1-α2-β2-β3 architecture and may 

interact with client uOMPs through exposed β−sheets (Knowles et al. 2008). Genetic 

experiments suggest that the three POTRA motifs closest to the β-barrel (POTRAs 3-5) are 

required for BAM function in vivo (Kim et al. 2007). Recent studies have indicated that the 

presence of all five BamA POTRA motifs accelerates uOMP folding in vitro to a greater extent 

than the presence of only one POTRA motif (Gessmann et al. 2014). Together, these findings 

imply that at least some of the POTRA motifs play a role in facilitating uOMP folding or these 

motifs are important for folding of BamA itself. Crystallographic, NMR, and small-angle x-ray 

scattering analyses of truncations of the POTRA motifs (e.g., POTRA 1-2) in the absence of the 

BamA β-barrel suggest that the five POTRA motifs may be divided into two rigid bodies 

(POTRAs 1-2 and 3-5) connected by a flexible linker (Gatzeva-Topalova, Walton, and Sousa 

2008; Gatzeva-Topalova et al. 2010). Rotational and lateral flexibility of these POTRA motifs 

may allow BamA to explore conformational space and populate conformations that promote 

uOMP folding, thereby playing a role in the assembly of uOMPs by the BAM complex. 

The POTRA motifs of BamA also interact with the BamBCDE lipoproteins (Figure 

4.1B). Crystal structures of individual POTRA motifs fused to BAM lipoproteins revealed that 

BamB and BamD interact with POTRA motifs 3 and 5, respectively (Bergal et al. 2015; Jansen, 

Baker, and Sousa 2015). The recently solved crystal and cryo-electron microscopy structures of 

BamACDE and the entire BAM complex suggest that the most extensive contacts between 

BamA and the BAM lipoproteins occurs between BamA POTRA 5 and BamD (Bakelar, 

Buchanon, and Noinaj 2016; Gu et al. 2016; Han et al. 2016; Iadanza et al. 2016). This 

interaction between BamA and BamD may be functionally important, because outcompeting 

this interaction with a BamD-derived peptide inhibits BAM complex formation (Hagan, 
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Wzorek, and Kahne 2015).  Although it is not known how the entire BAM complex works 

together to facilitate OMP folding, it has been suggested that BamA functions in vivo via a 

functional mechanism involving recycling of BamA by BamD and BamE (Hagan and Kahne 

2011; Rigel, Ricci, and Silhavy 2013). In this type of mechanism the BamA protein would be 

modified in some manner that is reversed by the presence of the lipoproteins BamD and BamE. 

In vi tro  folding studies complement structural investigations of BamA function. 

 Crystal structures of the BAM complex and its individual components provide valuable 

snapshots of the catalytic cycle of BAM-mediated uOMP folding. These crystallographic 

conformations likely represent stable reaction intermediates; if so, these structural data 

inherently only provide insight into local energetic minima along the functional pathway of 

BAM. To better understand the entire mechanistic picture of BAM-mediated OMP assembly, we 

have performed in vitro studies to reveal novel insight into the role of BamA in the BAM 

complex. 
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4.2. Methods 

Expression and purification of denatured OMPs was performed according to previously 

published protocols (Burgess et al. 2008; Gessmann et al. 2014; Plummer, Gessmann, and 

Fleming 2015). Briefly, OMPs are expressed to inclusion bodies, which are recovered and 

denatured OMPs are resolubilized in 8 M urea (Figure 4.2A). OMPs are then diluted into 1 M 

urea in the presence of Large Unilamellar Vesicles (LUVs). For experiments reported in Figure 

4.4, final component concentrations were: [OmpA] = 4 µM, [Urea] = 1 M, [EDTA] = 2 mM, 

[Borate] = 20 mM, and [Lipid] = 3.2 mM. Under these conditions, OMPs spontaneously insert 

into LUVs. All folding reactions presented here are completed with stirring at 37 °C (10 Sample 

Thermoelectric Temperature Incubator, Model T-10, Aviv Biomedical). At appropriate time 

points, aliquots of the reaction were removed and quenched with SDS gel loading buffer as 

described previously (Gessmann et al. 2014). Quenched samples were subjected to 

electrophoresis immediately on 10% precast gels (Mini-PROTEAN TGX, Bio-Rad) at a 

constant voltage of 150 mV for 55 minutes at room temperature. Densitometry analyses were 

performed as previously described (Gessmann et al. 2014; Plummer, Gessmann, and Fleming 

2015). We analyze OMP folding kinetics by SDS-PAGE, as OMPs exhibit characteristic shifts in 

apparent molecular weight between the folded and unfolded species, as shown in Figure 4.3 

(Gessmann et al. 2014; Inouye and Yee 1973; Nakamura and Mizushima 1976).  

All LUVs utilized in studies shown here are composed of mixtures of the synthetic 

lipids: 1,2-didecanoyl-sn-glycero-3-phosphoethanolamine (DiC10-PE) and 1,2-didecanoyl-sn-

glycero-3-phosphocholine (DiC10-PC) (Avanti Polar Lipids) in given ratios. All LUVs were 

extruded to have 100 nm diameter and a final stock concentration of 10 mM in 20 mM borate 

(pH=10).  
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The protocol above monitors the spontaneous insertion of OMPs into LUVs – to 

investigate the effect of BamA on OMP folding kinetics, this protocol can be modified to 

incorporate BamA (Gessmann et al. 2014; Plummer, Gessmann, and Fleming 2015). For these 

experiments, 2 µM BamA was prefolded into LUVs prior to the introduction of the unfolded 

OMP folding client, as shown in Figure 4.2B). For experiments reported in Figures 4.4, final 

component concentrations were: [BamA] = 2 µM, [OmpA] = 2 µM, [Urea] = 1 M, [EDTA] = 2 

mM, [Borate] = 20 mM, and [Lipid] = 3.2 mM. It has been previously reported that varying 

protein:lipid ratios affect the kinetics of OMP folding (Gessmann et al. 2014; Kleinschmidt and 

Tamm 2002). To avoid the convolution of these effects, we introduce a negative control where 

OmpX is prefolded into LUVs prior to the introduction of the client OMP (i.e., OmpA). OmpX 

is not known to accelerate the folding of OmpA. Final component concentrations for this 

control are: [OmpX] = 2 µM, [OmpA] = 2 µM, [Urea] = 1 M, [EDTA] = 2 mM, [Borate] = 20 

mM, and [Lipid] = 3.2 mM. Analysis of these folding reactions by SDS-PAGE was carried out as 

previously described; BamA migrates at a higher molecular weight than most OMP clients and 

therefore does not interfere with the detection of client OMP folding (Figure 4.3B). 

Additionally, OmpX migrates at a lower molecular weight than the OmpA client OMP and also 

does not interfere with monitoring client OMP folding (Figure 4.5). 

To investigate the catalytic mechanism of BamA, we further modified the above 

protocol for BamA-mediated OMP folding. For BamA-mediated folding experiments presented 

in Figures 4.5 through 4.8, 1 µM BamA was prefolded into LUVs with stirring at 37 °C for 3 h. 

The average concentration of BamA prefolded was 0.85 ± 0.06 µM (average ± standard 

deviation, n=5). For the negative control included in Figures 4.5 through 4.7, 1 µM OmpX was 

prefolded into LUVs to maintain a constant protein: lipid (mole: mole) ratio when comparing 
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OmpA folding in the presence and absence of BamA. The average concentration of OmpX 

prefolded was 0.85 ± 0.05 µM (average ± standard deviation, n=5). 8 µM of OmpA was then 

added to the LUVs containing BamA or OmpX and folded with stirring at 37 °C. For 

experiments reported in Figures 4.5 through 4.8, final component concentrations were: [BamA] 

or [OmpX] = 1 µM, [OmpA] = 8 µM, [Urea] = 1 M, [EDTA] = 2 mM, and [Lipid] = 1.6 mM. 

Aliquots of the OmpA folding reactions were taken: 10 m, 20 m, 40 m, 1 h, and 2 h after folding 

initiation. These samples were immediately quenched with SDS gel loading buffer, as described 

previously (Gessmann et al. 2014). Quenched samples were subjected to electrophoresis 

immediately on 12% precast gels (Mini-PROTEAN TGX, Bio-Rad) at a constant voltage of 150 

mV for 55 minutes at room temperature. Densitometry analyses were performed as previously 

described (Gessmann et al. 2014; Plummer, Gessmann, and Fleming 2015).  
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4.3. Results 

 Because the functional E. coli BAM complex contains five proteins, our in vitro 

experiments deconvolute the effects of these components by studying the individual BAM 

proteins in isolation. To better understand how the essential BamA protein facilitates uOMP 

assembly, we investigated the role of BamA in the process of in vitro uOMP folding (Burgess et 

al. 2008; Gessmann et al. 2014; Plummer, Gessmann, and Fleming 2015). 

BamA acts as an enzyme to accelerate uOMP folding in v i tro . 

 The composition of the OM of E. coli plays a crucial role in BAM-mediated uOMP 

folding. In vivo uOMP folding occurs into the inner leaflet of the outer membrane, which 

contains both phosphoethanolamine (PE) and phosphoglycerol (PG) head groups (Kamio and 

Nikaido 1976; Osborn, Gander, Parisi, Carson 1972). This is coincidentally similar to the 

composition of the bacterial IM. Paradoxically, these biological head groups retard uOMP 

folding in vitro, creating a pronounced kinetic barrier for unassisted uOMP folding (Gessmann et 

al. 2014). This kinetic barrier effectively prohibits uOMP folding into the IM because such an 

event would certainly lead to dissipation of the proton gradient essential to sustain cell viability. 

Yet for uOMP folding into the OM, the BAM complex must overcome this same kinetic barrier 

– another remarkable feat that must be completed in the absence of an external energy source.   

 Because it has been previously shown that BamA accelerates uOMP folding into LUVs 

composed of synthetic lipids with PE head groups (Gessmann et al. 2014), we aimed to further 

understand these effects. Figure 4.4 shows kinetic traces for the folding of a representative 

uOMP (i.e., OmpA) into LUVs composed of 20% DiC10-PE and 80% DiC10-PC in the absence 

of any prefolded OMP (blue diamonds) and in the presence of prefolded OmpX (gray triangles) 

and BamA (black triangles). The presence of prefolded OmpX does not affect the folding 

trajectory of OmpA compared to OmpA folding in the absence of a prefolded OMP; however 
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the presence of BamA accelerates the folding of OmpA. This acceleration of OmpA is 

evidenced by that lack of lag phase in the folding kinetics of OmpA (i.e., increase in folding rate) 

– this kinetic effect translates into a greater fraction of OmpA folded at all time points in the 

presence of BamA than in the presence of OmpX. For example: at 300 s, no OmpA is folded in 

the presence of OmpX or absence of prefolded OMP; at this same time point in the presence of 

BamA, 30% of OmpA has attained its native structure. This analysis suggests that BamA 

accelerates the initial rate for process of uOMP folding into LUVs in vitro. Because uOMPs 

spontaneously insert into synthetic lipid bilayers in vitro and BamA accelerates this process, 

BamA exhibits properties of an enzyme in that it reduces the activation barrier to uOMP folding 

into biological membranes. 

BamA accelerates uOMP folding through a catalytic mechanism. 

The observation that BamA alone accelerates OMP folding in vitro raises the questions: 

can BamA alone repeatedly catalyze the folding of OMPs? Or is BamA irreversibly consumed by 

a stoichiometric interaction with OMPs and subsequently requires regeneration by the additional 

BAM subunits? To test this, we developed an experimental assay to determine if BamA is 

consumed during the acceleration of OMP folding. Our approach allows for differentiation 

between a stoichiometric and a catalytic mechanism of BamA function. Briefly, BamA is folded 

to completion into LUVs composed of synthetic lipids. The folded BamA is then presented with 

a high concentration of an OMP client of interest (i.e., 8 µM OMP client: 1 µM BamA). A 

stoichiometric mechanism would be characterized by consumption of BamA upon interaction 

with this client OMP – therefore, the maximal amount of client OMP that could be folded by 

BamA is limited to the amount of BamA folded. In contrast, if the ability of BamA to accelerate 

the folding of a client OMP involves a catalytic mechanism, BamA would not be consumed by 
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interacting with the OMP client and could productively interact with a greater amount of client 

OMP than the amount of folded BamA. 

The client OMP utilized in this study is OmpA because it has previously been shown to 

undergo BamA-accelerated folding in vitro (D. Gessmann et al. 2014). Additionally, OmpA folds 

slowly through the always accessible intrinsic folding (i.e., BamA-independent) pathway under 

certain conditions. The unique folding profile of OmpA – limited intrinsic folding and known 

acceleration of folding by BamA – makes this client OMP ideal for this experimental setup. 

Figure 4.5 shows a representative SDS-PAGE gel for this modified experimental protocol. The 

quantity of BamA-catalyzed folded OmpA is defined as the difference at a given time point 

between the concentration of OmpA folded in the presence of BamA and the concentration of 

OmpA folded through the intrinsic pathway (Figure 4.6). Because the volumes of all 

experiments are identical, the concentrations of all species can serve as a proxy for their 

amounts. Figure 4.7 indicates that the concentration of OmpA folded by BamA into LUVs 

composed of 20% DiC10-PE and 80% DiC10-PC reaches 1.5 µM after 1 hour. Densitometric 

analyses reveal that total amount of folded BamA under these conditions is approximately 0.9 

µM. Therefore the concentration of OmpA that interacts productively with BamA is greater 

than the concentration of folded BamA. This result suggests that BamA alone is able to 

repeatedly interact with client OMPs in vitro to accelerate their folding via a catalytic 

mechanism. 

Hagan et al. previously reported that the reconstituted multi-protein BAM complex 

(BamABCDE) facilitates OMP folding with a turnover of approximately 1.6 OMPs per BAM  

(Hagan and Kahne 2011). Our findings suggest that BamA alone is responsible for the catalytic 

nature of the assembly cycle, as the measured turnover for BamA-catalyzed folding in our 
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experiments equals 1.7 OMPs per BamA. We therefore conclude that BamA itself is responsible 

for folding activity.  
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4.4. Discussion 

BamA function involves two substrates: uOMPs and lipids. 

Figure 4.4 indicates that BamA accelerates the folding of OMP clients, suggesting that 

BamA is an enzyme that reduces the activation barrier to uOMP folding. Prior studies have 

attempted to use the Michaelis-Menten kinetic model to determine the Km for this enzymatic 

process, but conditions under which BamA was saturated were unattainable (Gessmann et al. 

2014). We were able to estimate the Km for this catalytic process to be high (>20 µM) suggesting 

the possibility that thermodynamically weak interactions occur between BamA and the uOMP 

client (Fleming 2015; Gessmann et al. 2014). These results raise the question: how can BamA 

accelerate uOMP folding if it only weakly interacts with the uOMP? This conundrum can be 

addressed by realizing that these weak protein-protein interactions are only one facet of the role 

of BamA. BamA-accelerated uOMP folding involves BamA interacting with two distinct 

substrates: the uOMP client and the surrounding lipid membrane.  

It is entirely plausible that BamA promotes the formation of a membrane defect. 

Because such structures are known to accelerate uOMP folding, this has been suggested as one 

possible catalytic mechanism for uOMP-BAM mediated folding (Danoff and Fleming 2015b; 

Fleming 2015). Such a membrane defect is poorly defined structurally but may be represented by 

a hydrophobic mismatch between the surrounding lipid bilayer and the BamA β-barrel (Figure 

4.9) (Fleming 2015; Noinaj et al. 2013). This type of hydrophobic mismatch has indeed been 

previously reported by computational studies that investigate BamA-lipid interactions. Together, 

biochemical, structural, and computational findings suggest that BamA and the surrounding lipid 

bilayer work together to facilitate uOMP folding. 

Recent structural studies of BamA and the entire BAM complex have allowed for further 

speculation on BamA-lipid interactions (Bakelar, Buchanon, and Noinaj 2016; Iadanza et al. 
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2016; Noinaj et al. 2013). These studies have suggested that incomplete closure of the BamA β-

barrel may play a role in a mechanism by which BamA laterally opens to facilitate OMP folding. 

Because lipids in the OM surround OMPs, this lateral gating hypothesis for the functional 

mechanism of BamA seems contradictory to the basic principles of thermodynamics, as the 

exposure of backbone hydrogen bonds is energetically costly. The BamA β-barrel interior is 

large enough to accommodate hundreds of water molecules, which would be exposed to 

hydrophobic lipids as the BamA β-barrel laterally opens. This process should result in a large 

energetic penalty that must be overcome by another compensating source of energy. Reconciling 

these thermodynamic considerations with the available structural information must be 

accomplished to elucidate the catalytic mechanism of BamA.  

In vi tro  studies offer insight into function of BAM lipoproteins. 

It has previously been reported that BamDE are strictly required for regeneration of 

BamA upon interacting with an OMP client (Hagan and Kahne 2011; Rigel, Ricci, and Silhavy 

2013). However, comparisons between the activity of BamA alone and the BAM complex have 

yielded similarities in the catalytic activity: both BamA and the entire BAM complex have been 

shown to facilitate multiple rounds of catalysis with turnover numbers in both cases equal to 

approximately 1.5 uOMPs/BamA or uOMPs/BAM, respectively (Hagan and Kahne 2011; 

Plummer and Fleming 2015). These findings suggest that BamA itself undergoes a cyclic catalytic 

mechanism that is accelerated in vivo by the additional lipoproteins BamBCDE.  

Our data suggest that BamA alone possesses intrinsic regeneration ability. We speculate 

that BamDE must function to accelerate this basal regeneration of BamA in vivo, as the 

timescales of OMP folding measured in our in vitro assay are likely too slow to support bacterial 

growth (Ureta et al. 2007). This will enable OMP folding on a biologically relevant time scale. 
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Current studies are focusing on understanding how the different components of the BAM 

complex collaborate to facilitate uOMP folding in vitro and biogenesis in vivo.  

Moving Forward: Mechanistic insight into BamA-catalyzed OMP folding. 

Our data suggest that BamA may repetitively and independently interact with uOMP 

clients. Proposed mechanisms for BamA-assisted OMP folding should be consistent with these 

findings. Potential BamA-assisted OMP folding mechanisms in the literature include: lateral 

opening of β-strands 1 and 16 to accommodate the uOMP client (Noinaj et al. 2013), local 

BamA-facilitated lipid deformations (Danoff and Fleming 2015b; Fleming 2015; Gessmann et al. 

2014; Noinaj et al. 2013), and partial OMP folding inside of the BamA barrel (Albrecht et al. 

2014). All of these potential mechanistic pathways may be compatible with a catalytic cycle 

pending no irreversible modification of BamA. 

Here we have presented findings that BamA acts catalytically in vitro to independently 

and repetitively accelerate the folding of OMPs. These findings agree with the catalytic 

mechanism of BamA in vivo (Rigel, Ricci, and Silhavy 2013) and further validate in vitro OMP 

folding studies. Interestingly these complementary studies utilize different OMP clients, 

suggesting the ability of BamA to turnover is independent of OMP client identity. Conserved 

architecture and structural motifs between E. coli BamA and homologues in both prokaryotes 

(Maier et al. 2015) and eukaryotes (Kozjak et al. 2003) hint that uOMP folding mechanisms by 

these BamA homologues may also be catalytic. The molecular basis of this catalytic mechanism 

of BamA warrants further experimental investigation. Understanding the BamA role in 

acceleration of OMP folding aids in a more complete understanding of OMP biogenesis and 

provides insight into the function of the BAM complex. 
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4.5. Figures 

Figure 4.1. Crystallographic studies suggest BamA ββ-barrel contains two domains and 

has unique seam.  

A)      B) 

  

C)  

 

A) Two structural regions of E. coli BamA are indicated, with the β-barrel domain shown in blue 

and the soluble periplasmic POTRA motifs shown in red, orange, tan, green, and dark blue 
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(POTRA 1 through 5, respectively). The membrane is indicated as a gray rectangle. The portion 

of the BamA β-barrel highlighted in Panel C is indicated with a box. B) BAM lipoproteins are 

shown as surfaces as indicated: BamB in green, BamC in purple, BamD in pink, and BamE in 

yellow. In this representation, the entire BamA protein is shown in blue. C) β-strands 1 and 16 

of the E. coli BamA β-barrel are indicated. This β-barrel has a non-canonical seam because these 

two strands only interact via 3 hydrogen bonds, which are shown as gray dashed lines. PDB 

5D0O and Pymol were utilized to make this figure. 
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Figure 4.2. Established protocols for intrinsic and BamA-mediated OMP folding in 

v i tro . 

A) 

 

B) 

 

 

In vitro experimental set-up for intrinsic OMP folding into LUVs (A). OMPs are expressed to 

inclusion bodies and resolubilized into 8 M urea. The OMP is then diluted into 1 M urea in the 
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presence of LUVs. OMPs spontaneously insert into LUVs under these conditions. B) In vitro 

experimental set-up for BamA-mediated OMP folding into LUVs. BamA is folded into LUVs as 

shown in Panel A and is indicated at OMP1 in Panel B. A second OMP (i.e., OMP2) is then 

diluted from 8 M urea into 1 M urea in the presence of LUVs containing BamA. OMP2 is 

termed the client OMP and this set-up is referred to as BamA-mediated OMP folding when 

OMP1 is BamA.  



 

 129 

Figure 4.3.  Unfolded and folded OMP species are distinguished by their distinct 

migration via SDS-PAGE.  

 

A representative SDS-PAGE gel is shown for intrinsic folding (i.e., Figure 4.2A) of a 

representative uOMP into LUVs composed of 100% DiC10-PC (i.e., OmpLA) (Panel A). Over 

time, the appearance of the band corresponding to folded OMP is observed – this species 

migrates with an apparent molecular weight of ~25 kDa. The disappearance of the band 

corresponding to the unfolded OMP species is also observed. This species migrates with an 

apparent molecular weight of ~32 kDa. A sample collected at the beginning of this experiment 

that was boiled is shown in the last lane. The density of this band is utilized to determine the 
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fraction folded of OmpLA at each time point. B) A representative SDS-PAGE gel is shown for 

BamA-mediated folding (i.e., Figure 4.2B) for a client uOMP into 100% DiC10-PC LUVs (i.e., 

OmpLA). BamA is folded to completion prior to the addition of the client OMP and its extent 

of folding is constant throughout all experiments. The folded and unfolded BamA species 

migrate with apparent molecular weights of approximately 70 and 100 kDa, respectively.  



 

 131 

Figure 4.4. BamA functions as an enzyme to accelerate OMP folding into LUVs. 

 

 

OmpA folds faster in the presence of BamA than in the presence of OmpX or absence of 

prefolded OMP. OmpA folding in the presence of prefolded BamA (black, filled triangles), 

OmpX (gray, open triangles), and no prefolded OMP (blue, open diamonds) into LUVs 

composed of 20% DiC10-PE and 80% DiC10-PC is shown above. This figure is reproduced from 

(Gessmann et al. 2014).  
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Figure 4.5. Under modified setup, OmpA folds in the presence of prefolded BamA than 

OmpX. 

              A)              B) 

 

BamA folds more OmpA in 20% DiC10-PE and 80% DiC10-PC (A) than is folded through the 

intrinsic folding pathway (B) in modified experimental setup. A typical SDS-PAGE gel is shown. 

Experiment B is a negative control with OmpX prefolded to maintain a constant protein:lipid 

ratio when comparing folding in the presence and absence of BamA. OmpX does not accelerate 

the folding of other OMPs. Time points are 10 m, 20 m, 40 m, 1 h, 2 h, and 4 h. This figure is 

reproduced from (Plummer and Fleming 2015). 
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Figure 4.6. Kinetic trace of OmpA folding in the presence of BamA and OmpX. 

  

The folding profile of OmpA makes this client OMP ideal for this experimental setup. A 

representative kinetic trace of OmpA folding in the presence and absence of BamA is shown in 

dashed and solid lines respectively. The fraction of OmpA folded is plotted over time with filled 

or empty triangles indicating folding in the presence of BamA or OmpX, respectively.  Double 

exponential fits are shown to guide the eye. The black vertical arrow indicates the amount of 

OmpA that is folded by BamA, which is defined as the difference between the concentration of 

OmpA folded in the presence and absence of BamA at a given time point. This figure is 

reproduced from (Plummer and Fleming 2015). 
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Figure 4.7. Concentration of OmpA folded by BamA exceeds the concentration of folded 

BamA. 

 

The amount of OmpA folded by BamA at each time point shown in Figures 4.5 and 4.6 is 

indicated. The horizontal line indicates the amount of BamA folded (0.85 ± 0.06 µM). These 

reported concentrations are averages with standard deviations from multiple independent 

experiments (n=5) and are provided in Table 4.1. Asterisks indicate a significance of p < 0.005 as 

a result of a Student’s t test. Statistical analyses were completed using Microsoft Excel. This 

figure is reproduced from (Plummer and Fleming 2015). 
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Figure 4.8. Linear range for concentration determination of OmpA by SDS-PAGE. 

 

 

The experimental setup shown in Figures 4.5 through 4.7 remains in the linear range for 

concentration determination of OmpA by SDS-PAGE. Densitometry analyses reveal the linear 

range for concentration determination of OmpA ends at ~ 3 µg. SDS-PAGE samples for 

experiments presented here corresponds to OmpA mass amounts of ~0.5 µg. Previous work 

demonstrates OmpA is monomeric the concentrations ranges used here (Danoff and Fleming 

2011). This figure is reproduced from (Plummer and Fleming 2015). 
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Figure 4.9. The BamA β-barrel may create defects in neighboring bilayer. 

 

Lipid defects, such as hydrophobic mismatch, have been previously reported in molecular 

dynamics simulations of the BamA β-barrel (Noinaj et al. 2013). The BamA β-barrel is shown as 

a blue cartoon and the phospholipid phosphorus atoms are shown as orange spheres. This 

simulation was completed in a 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (i.e., DiC14-

PE) lipid bilayer and the difference in hydrophobic thickness on the left and right sides of the β-

barrel in this representation is ~ 16 Å. The BamA POTRA motifs have been excluded for 

clarity. VMD was utilized to create this figure. Dr. J.C. Gumbart graciously provided the MD 

trajectory. This figure is reproduced from (Plummer and Fleming 2016). 
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4.6. Tables 

Table 4.1. Summary of BamA-catalyzed folded OmpA concentrations 

Time (m) [BamA-catalyzed folded OmpA] (µM) 

10 0.22 ± 0.06 

20 0.51 ± 0.11 

40 1.24 ± 0.17 

60 1.56 ± 0.31 

120 1.36 ± 0.34 

 

Concentrations of OmpA folded by BamA exceed the concentration of folded BamA (0.85 ± 

0.06 µM). These reported concentrations are averages with standard deviations from multiple 

independent experiments (n=5). This table is reproduced from (Plummer and Fleming 2015). 
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5.1. Introduction 

The cellular envelope of Gram-negative bacteria is comprised of two membranes 

separated by an aqueous compartment termed the periplasm. The outer membrane of the 

cellular envelope contain integral β-barrel membrane proteins referred to as outer membrane 

proteins (OMPs) (Tamm, Hong, and Liang 2004; Walther, Rapaport, and Tommassen 2009). 

The outer membrane and OMPs provide the first barrier between bacteria and the environment 

and are essential to many important cellular processes including metabolic transport, bacterial 

virulence and antibiotic resistance (Bajaj et al. 2012; Nikaido 1989; Wimley 2003). Understanding 

the pathway by which OMPs traverse the periplasm and attain their native functional state is 

essential to an ability to manipulate this element of the bacterial cell.  

The OMP biogenesis process is distinct from the folding of cytosolic proteins because it 

involves a unique collection of obstacles. First, OMPs do not adopt their folded conformations 

while in an aqueous environment (Ebie Tan et al. 2010). Rather, unfolded OMPs (uOMPs) must 

be transported across the periplasm to reach their native membrane. Because of their marginal 

solubility in water, this process must be tightly controlled to avoid aggregation. Second, 

structures of folded OMPs (fOMPs) show that these proteins contain water solvated residues in 

loops on the outer surfaces of bacteria. The desolvation and transport of these polar and 

ionizable side chains across the outer membrane represent significant kinetic barriers to OMP 

folding (Burgess et al. 2008a). Third, Gram-negative bacteria maintain a high density of fOMP in 

the expanding outer membrane (Jarosławski et al. 2009) that requires a considerable flux of 

uOMP transport across the periplasm followed by folding to replace OMP lost to dilution 

during growth (Rassam et al. 2015). Finally, all periplasmic chaperones, proteases, and folding 

machinery must operate without the free energy provided by ATP hydrolysis, unlike cytosolic 

proteins with similar roles (Wülfing and Plückthun 1994). 
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Due to the important cellular functions and the unique biogenesis pathway of OMPs, 

considerable effort has been applied to understanding the process of OMP folding and 

assembly. Many in vitro and in vivo studies have investigated various components involved in this 

pathway (Bitto and McKay 2004; Dartigalongue, Missiakas, and Raina 2001; Ge, Lyu, et al. 2014; 

Gessmann et al. 2014; Lazar and Kolter 1996; Moon et al. 2013; Plummer and Fleming 2015; 

Rouviere and Gross 1996; Sklar, Wu, Kahne, et al. 2007; Thoma et al. 2015; Vuong et al. 2008; 

Wu et al. 2005). However, in vitro experiments typically characterize individual components in 

isolation while in vivo studies are often incapable of deciphering how specific components are 

responsible for observed phenomena. Computational techniques can overcome these limitations 

by combining orthogonal sets of information and allowing for unique system-wide studies of 

multi-protein networks. This holistic approach is especially important when multiple competing 

reactions occur, as in the transit of uOMPs through the periplasm of Gram-negative bacteria. In 

this cellular compartment, at least four distinct complexes between uOMPs and chaperones can 

form (i.e., uOMP binding to Skp, SurA, FkpA or DegP), and the emergent properties of 

periplasmic proteostasis cannot be evaluated without a consideration of this linkage. To date, no 

computational study has investigated OMP biogenesis in this comprehensive manner, yet this 

biological system is ideal for this type of analysis because many of the relevant protein species 

have been well studied in isolation (Walther, Rapaport, and Tommassen 2009).  

Towards this end, we created a comprehensive mathematical framework, Outer 

Membrane Protein Biogenesis Model (OMPBioM), which incorporates known kinetic and 

thermodynamic parameters for many of the reactions related to uOMP transport across the 

periplasm. We used both deterministic and stochastic methods to calculate the time-dependent 

trajectories of uOMPs in the periplasm, to simulate and reproduce several single and double null 

strain phenotypes as well as the σE stress response, to gain insight into periplasmic dynamics 
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between uOMPs and chaperones, and to predict limits for the effective rate of β-Barrel 

Assembly Machinery (BAM)-assisted OMP folding. We discovered that OMP biogenesis 

involves timescales that are much longer than that of chaperone-uOMP complexes. Hundreds of 

chaperone–uOMP binding and unbinding events take place prior to uOMP folding, suggesting 

that chaperone–uOMP binding reactions are near equilibrium in the periplasm. Moreover, we 

find that periplasmic chaperones have distinct roles that complement each other, resulting in 

preferential flux to folding through a SurA-BAM catalyzed folding pathway. Finally, intricate 

mechanisms for OMP transport and folding that involve higher order complexes that span the 

width of the periplasm or that contain parallel chaperone folding pathways with comparable flux 

are not required to reproduce current experimental observations.  
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5.2. Methods 

 OMPBioM is composed of a series of ordinary differential equations that describe the 

flux of OMPs into and across the periplasm during the process of OMP biogenesis (Figure 5.1, 

Table 5.1-5.2). This model aims to capture biological phenomena by incorporating known 

kinetic and thermodynamic parameters. Deterministic simulations were used to solve the system 

of equations numerically using Matlab R2014b on a Macbook Pro running OS X Yosemite with 

a 2.5 GHz Intel Core i5 processor and 8 GB of RAM. The stochastic treatment utilized a system 

built in COPASI, where all simulations were performed using the Gibson Bruck method 

(Gibson and Bruck 2000). 

OMPBioM Treatment: uOMP Synthesis 

 uOMP enters the periplasm by post-translational secretion across the inner membrane 

through the Sec translocon (Ruiz, Kahne, and Silhavy 2006). The rate of secretion of uOMP into 

the periplasm has a lower limit defined by the product of the minimum allowed steady state 

concentration of fOMP (copy number of 8,000 (Masuda et al. 2009), concentration within the 

model of 1.48 x10-4 M) and the rate of dilution due to cellular replication . This estimated 

lower bound is 2.85 x10-8 M/s. Additionally, a maximum synthesis rate can be estimated by the 

copy number of the Sec translocon complex (500 (Matsuyama et al. 1992)), as well as the rate of 

translocation (~20 amino acids per second (Tomkiewicz et al. 2006)) and the average length of a 

uOMP (400 amino acids), assuming complete occupancy of cellular translocons with uOMP 

substrate. This estimated upper bound is 4.61x10-7 M/s. The WT synthesis rate ( , Figure 5.2, 

Table 5.1) is between these two limits. 
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OMPBioM Treatment: Chaperone Synthesis and Oligomerization 

 Upon translocation into the periplasm uOMP can interact with the chaperones Skp and 

FkpA, the chaperone/protease DegP, or the chaperone/folding catalyst SurA. Skp is a trimer 

that binds to and prevents the aggregation of uOMP (Schäfer, Beck, and Müller 1999; Walton 

and Sousa 2004). FkpA is a dimeric prolyl isomerase that is essential to the cellular response to 

heat shock (Arié, Sassoon, and Betton 2001; Ge, Lyu, et al. 2014; Ramm and Plückthun 2001). 

Due to temperature sensitivity and heat shock not being addressed in this work, the activity of 

FkpA is not assessed in detail except as described below. DegP is a serine endoprotease with 

several oligomeric states that has been reported to have both protease and chaperone activities 

(Ge, Wang, et al. 2014a; Iwanczyk, Leong, and Ortega 2011; Krojer, Sawa, et al. 2008). SurA is a 

monomeric prolyl isomerase that has been shown to bind to uOMP as well as interact with 

the β−Barrel Assembly Machinery (BAM) (Bitto and McKay 2004; Lazar et al. 1996; Sklar, Wu, 

Kahne, et al. 2007; Vuong et al. 2008). The mechanistic consideration in this model treats all 

nascent chaperones as monomeric in agreement with monomeric chaperone synthesis. 

Chaperone synthesis rates  are set to maintain known chaperone concentrations by 

replacing chaperones lost due to dilution (Table 5.3). Following synthesis, chaperones can 

undergo sequential reversible bimolecular oligomerization steps  until reaching the 

native apo-oligomerization state. Oligomerization rates have not been measured in vitro. 

However, fast oligomerization reactions with geometric constraints are typically on the order of 

2x106 M-1 s-1 (Northrup and Erickson 1992). For simplicity, all oligomerization steps are reduced 

to bimolecular reactions with rate constants equal to that of a typical fast protein-protein 

association reaction. Oligomerization is assumed to be favorable. Equilibrium dissociation 

constants for very favorable protein-protein association reactions as low as 10 fM have been 

observed, and we assume each bimolecular oligomerization step to be this favorable (Schreiber, 
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Buckle, and Fersht 1994). This treatment is consistent with intermediate and lower order 

oligomeric states not being observed in vivo. 

OMPBioM Treatment: Chaperone Binding of uOMP 

 Binding of chaperones to uOMP occurs only from the relevant oligomerization state 

(i.e., SurA binds to uOMP as a monomer (Xu et al. 2007), Skp as a trimer (Qu et al. 2007), and 

FkpA as a dimer (Ramm and Plückthun 2000)). A simplified DegP mechanism was utilized in 

which DegP oligomerizes from a monomer, to a dimer, to a trimer, and then to a hexameric 

state. Although intermediate oligomerization states have not been observed, this treatment is 

used so that all oligomerization reactions between monomer and the binding active state are 

second order reactions. DegP binds to uOMP in hexamer units, ultimately forming dodecamers 

in a highly cooperative two-step mechanism.  

 Our mechanistic treatment of chaperone-uOMP binding is representative of the current 

understanding of expression levels and association reactions in the literature (Ishihama et al. 

2008; Masuda et al. 2009; Moon et al. 2013; Sklar, Wu, Kahne, et al. 2007; Wu et al. 2011). Each 

of these proteins has been shown to bind uOMP in vitro. Reversible chaperone-uOMP binding 

rate constants  were determined using the binding half-times and equilibrium binding 

constants observed in vitro (Dlugosz, Bojarska, and Antosiewicz 2002; Wu et al. 2011). As 

binding rates and equilibrium constants have not been determined for all OMPs present in E. 

coli, the binding parameters available were used to describe a hypothetical, generic and 

representative OMP.   

OMPBioM Treatment: OMP Folding 

 BAM is an outer membrane-localized protein complex that is essential for the folding 

and assembly of OMPs in vivo (Albrecht et al. 2014; Malinverni et al. 2006; Noinaj et al. 2013; 
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Onufryk et al. 2005; Werner and Misra 2005). Folding of uOMP can occur from unbound 

uOMP or from a chaperone-uOMP complex  (Gessmann et al. 2014; McMorran et 

al. 2013; Rouviere and Gross 1996). Only the unbound uOMP and SurA-catalyzed pathway 

depend on BAM  (Gessmann et al. 2014; Sklar, Wu, Kahne, et al. 2007; Vuong et al. 

2008). Many details of either BAM pathway have yet to be elucidated, and we therefore allow 

folding through the SurA-BAM pathway at a faster rate than that of the BAM pathway without 

invoking a specific folding mechanism. This assumption results in physiologically consistent 

phenotype simulations (Figures 5.3 and 5.4). uOMP folding through the BAM pathway is 

assumed to be first order. This assumption is valid, as the concentration of the BAM complex 

does not limit folding in vivo (Malinverni et al. 2006). The rate of fOMP unfolding  is 

determined using the rate constant for folding  and the experimentally observed fOMP 

folding stability (Moon et al. 2013). We included all possible folding pathways, including BAM-

independent folding catalyzed by Skp, DegP, SurA or FkpA, in our model  (Table 5.1). 

Of these chaperones only Skp has been shown to assist uOMP folding in vitro with an observed 

apparent first order rate constant of 1x10-4 s-1  However, this rate was measured in non-

biological lipid composition in high curvature vesicles that are likely to result in a much greater 

rate than what occurs in vivo. Additionally, chaperone catalyzed BAM-independent folding would 

face a targeting problem, with the possibility of uOMPs folding into either the inner or outer 

membrane (Grabowicz, Koren, and Silhavy 2016). We therefore set the chaperone catalyzed 

BAM-independent folding rates in the model  to a low enough value to ensure that no 

uOMP folding into the inner membrane would occur. Folding rates have not been determined 

for folding through DegP, FkpA or SurA so the rates are assumed to be maximally equal to that 

of Skp-uOMP folding. 
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OMPBioM Treatment: uOMP Aggregation, Degradation and Dilution 

 uOMP aggregation and degradation reactions are also included within the model. 

Aggregation consists of a third order nucleation step followed by second order linear 

polymerization with rates representative of literature values  (Danoff and Fleming 

2011). uOMP bound to DegP may be degraded, as DegP is a known processive protease 

 (Krojer, Sawa, et al. 2008). To capture the processive behavior of DegP we incorporate 

a simplified two-step degradation mechanism that does not require the explicit description of 

each possible partially degraded uOMP state. The mechanism of degradation consists of an 

initial peptide hydrolysis reaction that results in a folding incompetent substrate that is 

committed to degradation. The subsequent proteolysis rate constant represents the average 

amount of time DegP takes to degrade its substrate before dissociating. The primary mechanism 

for the replacement of fOMP is dilution (Lugtenberg and Alphen 1983; Rassam et al. 2015). This 

rate of dilution was calculated by assuming a half-time equal to a typical replication time for E. 

Coli (Pierucci 1972). 

Kinetic Simulations 

 The rate of change of any species ( ) is defined as the sum of the rates of all reactions 

that result in that species formation minus the sum of the rates of all reactions that consume that 

species: 

(Equation 5.1) 

 

where  equals the number of reactions resulting in species formation and  equals the 

number of reactions that result in the species being consumed. 
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The product of the concentration of all reactants for a given reaction and a rate constant  

equals the rate of that reaction: 

(Equation 5.2) 

 

where  equals the number of reactants in reaction . Applying this procedure on the 

mechanistic treatment shown in Figure 5.1 results in the set of ordinary differential equations 

shown in Table 5.2. 

 As a simplification, all species are considered to be in the periplasm, as the outer 

membrane is not defined as a separate compartment. Therefore, fOMP concentration 

corresponds to the theoretical concentration if all fOMP were in the periplasm and not in the 

outer membrane. This treatment is appropriate, as within the model fOMP does not interact 

with any periplasmic species and concentrations can be converted to outer membrane copy 

number using the periplasmic volume. Stochastic simulations require the compartment volume 

to be defined so concentrations can be converted to compartment copy numbers. Cellular copy 

numbers for all species are calculated by assuming a periplasmic volume of 9x10-17 L (Stock, 

Rauch, and Roseman 1977). 

 WT and phenotype simulations were performed using the deterministic method outlined 

above. Initial conditions contained only free monomeric chaperones and synthesis rates that 

maintained the total concentrations defined by parameters in the literature. In the case of 

phenotype experiments, we set the initial concentration and synthesis rate of the appropriate 

chaperone (e.g., Skp in Δskp or SurA and Skp in ΔsurAΔskp) to zero. Phenotypes with a 

significant accumulation of uOMP required further parameterization of synthesis rate and 
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doubling time (Figure 5.2). Simulations were performed at timescales such that the system 

reached steady state (Figure 5.5).  

 The σE response was implemented where necessary by increasing the chaperone 

synthesis rates to reflect known chaperone concentrations under stress conditions (Table 5.4) 

(Dartigalongue, Missiakas, and Raina 2001). Additionally, the σE response involves the down 

regulation of uOMP synthesis (Mecsas et al. 1993; Onufryk et al. 2005). 

Calculation of uOMP Periplasmic Lifetimes 

 To determine the average lifetime of a uOMP in the periplasm, a generic uOMP 

(uOMPa) was synthesized at levels characteristic for a given phenotype. At t=0, expression of 

uOMPa was set to zero and expression of a distinguishable uOMP with identical behavior 

(uOMPb) was set to the initial expression level of uOMPa. Subsequently, the fraction of total 

periplasmic uOMP that consists of uOMPa was tracked over time. The decay of uOMPa species 

was well described by a fit to an exponential decay, which resulted in a time constant 

representing the average uOMP lifetime. During the lifetime of a uOMP, it samples all forms, 

including free uOMP and chaperone-bound uOMP. 

 While computationally efficient, deterministic simulations do not explicitly account for 

each molecule in a system. Therefore, in addition to the deterministic simulations detailed above, 

we performed stochastic simulations to determine the average number of binding events 

experienced by a uOMP in the periplasm. The stochastic treatment utilized a system built in 

COPASI, with all simulations utilizing the Gibson Bruck algorithm (Gibson and Bruck 2000). A 

generic uOMP (uOMPa) was synthesized at levels normal for that phenotype. At t=0 a single 

uOMPa was replaced by an identical but distinguishable uOMP (uOMPb). Each binding reaction 
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resulted in the creation of a species used only for the enumeration of binding events for a given 

uOMP (Figure 5.6, Table 5.5).  

 Stochastic simulations can occasionally reveal behavior that cannot be observed in the 

deterministic model. To ensure that the conclusions resulting from the deterministic simulations 

were not invalid due to unobservable stochastic behavior, the genetic and lifetime experiments 

were completed using both the deterministic and stochastic models. These were shown to agree 

(Figure 5.6). The agreement between the stochastic and deterministic simulations indicates that 

stochastic behavior does not significantly affect the conclusions reached by the deterministic 

model. Because of the outstanding efficiency of the deterministic model, this approach was 

utilized unless stochastic trajectories were specifically required.  

Model Assumptions 

During the creation of this model we made several simplifying assumptions: (1) because 

parameters have not been determined for all OMPs present in E. coli, we assume a generic and 

representative OMP behavior; (2) we consider only the major players in OMP biogenesis (e.g., 

BAM, SurA, DegP, Skp); (3) we consider E. coli under a limited set of growth conditions; and (4) 

we assume a constant rate of growth and rate of expression. Future work could expand the 

model to address all of these biological complexities: (1) this model has the potential to 

incorporate OMP heterogeneity when it comes to expression rate, folding, misfolding, binding, 

and aggregation and address the effect of mutations in both uOMP and quality control proteins 

on OMP biogenesis; (2) the complexity of the model could be increased to accommodate other 

cellular systems (e.g., DegS/RseA and disulfide bond formation); (3) modifications could be 

made to include other β-barrel assembly processes in other organisms as well as a greater degree 

of biological conditions including heat and pH stress; and (4) future work could include variation 

in parameters throughout the cell cycle. 
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5.3. Results 

OmpBioM reproduces experimentally observed folded OMP levels and lifetimes. 

 Figure 5.1 shows the set of linked reactions involved in OMP biogenesis that we 

incorporated for this mechanistic investigation. OMPBioM deterministically simulates the 

biogenesis of a representative uOMP using parameters derived from direct observations of E. 

coli or from in vitro experiments of E. coli proteins. Tables 5.1 and 5.2 list the relevant rate 

constants and kinetic equations. We used cellular concentrations of known species (Masuda et al. 

2009) to reproduce key experimental observables: genetic phenotypes, OMP copy number per 

cell and uOMP periplasmic lifetime.  

 Under wild-type (WT) conditions, the area density of fOMP in the outer membrane has 

been reported to be high, with a copy number per cell between 8,000 and 80,000 (Ishihama et al. 

2008; Masuda et al. 2009). Others have shown that the periplasmic lifetime of a representative 

uOMP (i.e., LamB) is approximately two minutes (Ureta et al. 2007). We used these fOMP levels 

and periplasmic uOMP lifetime to assess the validity of our treatment of this system. Figure 5.3 

shows the WT phenotype in which we obtain a fOMP copy number equal to 28,000, which 

agrees well with the known experimental values. Similarly, quantitation of periplasmic uOMP 

lifetime yields an average of one minute in WT cells (Figure 5.6 and Table 5.5), also in excellent 

agreement with the magnitude observed in vivo. 

Single chaperone null mutant phenotypes reveal the importance of SurA activity and σE 

response. 

 We used the reaction scheme outlined in Figure 5.1 to simulate genetic mutants lacking 

specific chaperones. Four distinct single chaperone null strain simulations (∆degP, ∆skp, ∆fkpA 

or ∆surA) were independently performed and compared to the WT simulations and to known 
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biological phenotypes (Dartigalongue, Missiakas, and Raina 2001; Ge, Lyu, et al. 2014; Rouviere 

and Gross 1996). Figure 5.3 shows the individual ∆degP, ∆skp and ∆fkpA simulations display 

fOMP, free and aggregated uOMP concentration profiles that are similar to WT under normal 

growth conditions. These results are consistent with modest phenotypic effects observed in 

genetic studies of the null strains for each corresponding chaperone (Ge, Lyu, et al. 2014).  

 In contrast, SurA is the only single periplasmic chaperone that is known to cause a 

significant change in fOMP density when depleted (Ge, Lyu, et al. 2014; Rouviere and Gross 

1996). Our simulations capture this genetic finding (Figure 5.3). The importance of SurA in 

OMP biogenesis arises from its dual functions, both of which are incorporated in OMPBioM: (i) 

SurA can bind to uOMP, thereby preventing aggregation; and (ii) SurA can facilitate the folding 

of uOMP (Bitto and McKay 2004; Lazar and Kolter 1996; Rouviere and Gross 1996; Sklar, Wu, 

Kahne, et al. 2007; Thoma et al. 2015; Vuong et al. 2008). Because SurA plays a prominent role 

in OMP folding, the loss of SurA in vivo results in the induction of the σE stress response (Ge, 

Lyu, et al. 2014; Rouviere and Gross 1996), a regulatory mechanism caused by accumulation of 

unfolded protein in the periplasm. For ∆surA, activation of this envelope stress response results 

in an increase in chaperone expression and a reduction in uOMP expression; these experimental 

observations are incorporated into our ∆surA simulation (Table 5.4) (Onufryk et al. 2005; 

Rhodius et al. 2006).  

 To further investigate the role of the σE response in managing cellular fitness, we 

performed surA null simulations both in the absence (∆surA*) and presence (∆surA) of a 

computational treatment of σE (Figure 5.7). The hypothetical ∆surA* mutant has not been 

observed in vivo. Therefore, a computational comparison between the WT and ∆surA* 

phenotypes is an opportunity to observe the molecular damage that may stimulate an E. coli 

envelope stress response. Figures 5.7 and 5.8 show that the virtual ∆surA* results in a reduction 
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in fOMP and a 290 fold increase in the sum of free and aggregated uOMP compared to WT, 

consistent with suggestions that the accumulation of periplasmic uOMPs stimulates induction of 

σE (Mecsas et al. 1993).  

To mimic the consequences of the stress response in the biologically relevant ∆surA 

phenotype, we parameterized OMP synthesis rates and chaperone levels to return fOMP 

amounts equivalent to those observed in vivo. Figure 5.7 shows this reduction in fOMP in ∆surA 

compared to WT, which agrees with experiments (13, 15). In addition, Figure 5.8 shows the 

incorporation of a stress response relieves the nearly 300-fold increase the sum of free and 

aggregated uOMP populations predicted by ∆surA*. Moreover, although these populations are 

lower with the stress response, they are not completely eradicated and are still ~10-fold higher 

than WT levels. This, too, is consistent with the biologically observed ∆surA phenotype in which 

uOMP accumulates in the periplasm yet the conditions are still conducive to growth (Ge, Lyu, et 

al. 2014; Rouviere and Gross 1996). In addition, the average periplasmic lifetime of an OMP in 

vivo is 10-fold longer in ∆surA than in WT (Ureta et al. 2007), consistent with our observation 

that the average periplasmic lifetime in simulated ∆surA is 15-fold greater than that predicted for 

WT (Table 5.5). In sum, the agreement between the trends observed in vivo and in simulations 

for the implementation of ∆surA incorporating a σE response further validates the mechanism 

and parameters used for SurA function and our simulated σE response. 

Simulations of double null chaperone strains suggest distinct roles for Skp and DegP. 

Double null strains obtained by either gene deletion or depletion of periplasmic 

chaperones have documented phenotypes that can be more severe than single null mutants 

(Rizzitello, Harper, and Silhavy 2001; Sklar, Wu, Kahne, et al. 2007). In vivo, the absence of either 

DegP or Skp concurrent with the absence of SurA (e.g., ∆surA∆degP or ∆surA∆skp) results in a 
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phenotype more severe than the phenotypes for either ∆surA, ∆degP, ∆skp, or ∆skp∆degP. This 

implies that the activities of Skp and DegP are more important in a ∆surA genetic background 

than in a WT cell and has been interpreted as evidence of parallel folding pathways in OMP 

biogenesis (Rizzitello, Harper, and Silhavy 2001; Sklar, Wu, Kahne, et al. 2007). To investigate 

the roles of these chaperones we simulated and compared the phenotypes of the double null 

mutants ∆skp∆degP, ∆surA∆degP, and ∆surA∆skp with a simulated σE stress response and 

appropriate doubling times (Figure 5.3, Table 5.4). Overall we find phenotypes consistent with in 

vivo observations. Similar to each of the single null mutants, Figure 5.3 shows that ∆skp∆degP is 

viable with minimal phenotypic consequences (Dartigalongue, Missiakas, and Raina 2001; Ge, 

Lyu, et al. 2014) whereas ∆surA∆skp and ∆surA∆degP mutants (both incorporating σE) show 

either an increase in free and aggregated uOMP or a decrease in the concentration of fOMP 

relative to the single ∆surA mutant (Figure 5.3 and 5.8), consistent with experimental results 

(Rouviere and Gross 1996; Sklar, Wu, Kahne, et al. 2007).  

In addition, we observe a large fraction of protein degraded in the ∆surA∆skp simulation 

(~85%, Figure 5.3 hatched and Figure 5.9). This is attributed to not only the presence of the 

protease DegP (Ge et al. 2013; Krojer, Sawa, et al. 2008; Strauch, Johnson, and Beckwith 1989) 

but also the large population of free uOMP available for proteolysis. In contrast, free uOMP 

cannot be degraded in the ∆surA∆degP simulation because DegP is absent, and OMP can only 

fold independently of SurA, aggregate, or dilute away. As a consequence, ∆surA∆degP displays an 

increase in the fOMP population compared to either ∆surA or ∆surA∆skp, consistent with in vivo 

findings (Sklar, Wu, Kahne, et al. 2007).  



 

 154 

DegP functions primarily as a protease and is under kinetic control. 

 Although DegP has been suggested to function as both a chaperone and a protease 

(Castillo-Keller and Misra 2003; Ge et al. 2013; Krojer, Sawa, et al. 2008), our results from 

double null simulations suggest that the chaperone activity of DegP is not a significant 

contributor to OMP biogenesis. This conclusion is further supported by results from stochastic 

simulations that allow enumeration of chaperone-uOMP binding events. DegP is involved in 

<0.02% of the binding events under WT conditions and <0.4% of uOMP binding events under 

∆surA conditions (Table 5.5). These low percentages suggest that the chaperone activity of DegP 

may be negligible under all tested conditions.  

 In what may seem like a contradiction, a significant fraction of uOMP is degraded under 

stressful conditions, with 71% and 85% of secreted uOMP degraded in the ∆surA and 

∆surA∆skp simulations respectively (Figure 5.9). This phenomenon is a testament to the kinetic 

partitioning present in this system, with the relatively slow binding of DegP to uOMP substrate 

and the even slower dissociation of DegP being equally important (Table 5.1). The low 

population of uOMP, presence of other chaperones, and slow binding together prevent DegP 

from binding to and degrading uOMP under WT conditions, as evidenced by the low fraction 

bound and infrequent binding events observed (Table 5.5, Figure 5.10). However, under stress 

conditions the high population of free periplasmic uOMP (a 10 fold increase in ∆surA, Figure 

5.8) and prolonged periplasmic OMP lifetime (Table 5.5) allows a small but significant number 

of DegP binding events to occur. A high fraction of these binding events result in the 

degradation of the uOMP substrate because the timescales for DegP dissociation and 

degradation are similar. Therefore the binding, dissociation and degradation rates for DegP 

measured in vitro are capable of preventing the unnecessary degradation of uOMP under WT 
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conditions while also allowing for the degradation of substrate and alleviation of uOMP 

accumulation under stress conditions. 

Skp-uOMP complexes are highly populated and display dynamic behavior. 

 Skp is thought to act as a “holdase” by binding to and preventing the aggregation of 

uOMP in vitro (McMorran et al. 2013; Walton and Sousa 2004; Wu et al. 2011). The binding of 

Skp to uOMP is thermodynamically favorable and kinetically fast (Table 5.1). The favorable 

binding results in a large population of Skp-uOMP complex at steady state (Figure 5.10).  

However, the association rate of Skp to uOMP is near diffusion limited, and the dissociation rate 

is on the millisecond time scale (Table 5.1). This dissociation time scale is several orders of 

magnitude shorter than the average periplasmic OMP lifetime under WT conditions, resulting in 

a large number of association and dissociation events for each OMP client (Table 5.5). 

Therefore, to the extent that the term “holdase” implies a long-lived Skp-uOMP complex, its 

usage is misleading. In contrast, the Skp-uOMP interactions are fleeting but populated to a 

significant extent. A consideration should be made for this dynamic nature of Skp binding when 

discussing the “holdase” activity. This specific binding kinetic behavior may play a unique role in 

controlling uOMP conformational populations. The unfolded client may explore a large 

configurational space, with certain conformations likely favoring either the folding or self-

association reactions. We speculate that the fast binding to and dissociation from Skp may help 

to promote folding-competent or aggregation-incompetent conformations.   

The folding rate enhancement provided by SurA is necessary but modest. 

 SurA is the only soluble chaperone implicated in the in vivo folding of uOMP; therefore 

we investigated this reported “foldase” activity (Lazar et al. 1998). OMPBioM treats the folding 

of a uOMP through SurA-BAM as faster than the BAM-only pathway. This is expressed using 
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the term “rate enhancement”, and this parameter is defined as the OMP folding rate through 

SurA-BAM divided by the OMP folding rate through BAM alone. To investigate the necessary 

magnitude of the rate enhancement provided by SurA we concurrently varied this parameter 

with the BAM folding rate (kfold). Figure 5.4 shows this space (cyan) bounded by the known 

range of OMP periplasmic lifetimes (green) and further constrained by the summed 

concentration of free and aggregated uOMP (red) and the previously reported phenotype range 

for ∆surA (grey). The value of the rate enhancement must be between 3 and 100 to satisfy these 

constraints, with a WT value of 10. Interestingly, for this physiological range of folding rates and 

rate enhancements, the majority (between 80 and >99%) of uOMP folds through the SurA-

BAM pathway, providing further evidence that SurA plays a key role in OMP biogenesis (Figure 

5.11). 

 It is worth noting that a 10-fold rate enhancement is modest relative to common folding 

catalyst rate enhancements (Rothman 1989). This observation may provide insight into the 

“foldase” mechanism of SurA. We speculate that the previously observed binding of SurA to 

uOMP and interaction of SurA and the BAM complex (Bitto and McKay 2004; Sklar, Wu, 

Kahne, et al. 2007; Vuong et al. 2008; Wu et al. 2011) simply increase local concentrations, 

which could be sufficient to provide the modest rate enhancement needed to reproduce 

phenotypes. For this reason, we propose that the experimentally observed folding catalytic 

ability of SurA is not necessarily indicative of an intricate folding catalytic mechanism. The 

details of SurA-BAM mediated OMP folding merit further biophysical investigation. 

The estimated effective rate of uOMP folding by BAM is faster than in v i tro  

observations. 

 The mechanistic details for how the BAM complex catalyzes uOMP folding are not well 

understood (Bakelar, Buchanon, and Noinaj 2016; Danoff and Fleming 2015b; Fleming 2015; 
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Noinaj et al. 2013, 2014; Plummer and Fleming 2015; Voulhoux, Bos, Geurtsen, Mols and 

Tommassen 2003). Even lacking this information, we can use OMPBioM to estimate the 

effective rate necessary for BAM-assisted OMP folding. This parameter must be large enough to 

prevent an accumulation of periplasmic uOMP but maintain a sufficient amount of fOMP under 

physiological uOMP synthesis and cellular replication rates. Under WT conditions, the BAM 

concentration is not rate limiting, as evidenced by no phenotypic effect if BamA levels are 

reduced 10-fold (Malinverni et al. 2006), therefore we do not explicitly consider BAM 

concentration effects. Figure 5.12 shows multiple simulation outputs as a function of both the 

uOMP synthesis rate and BAM-mediated OMP folding rate (i.e., kin and kfold, respectively). 

Contour lines indicate physiological upper and lower bounds for OMP periplasmic lifetime 

(green), fOMP copy number per cell (blue), and an upper bound of free and aggregated uOMP 

(red). Given these limitations, the effective OMP folding rate through the BAM pathway under 

WT conditions should range from 0.3-6 x 10-2 s-1.  

 This value is consistent with the copy numbers for BamA and total OMP and the 

replication time for E. coli. For a cell containing 200 BamA molecules (Masuda et al. 2009) and 

~28000 fOMPS, the calculated turnover number for BamA would be 140 per cell generation. 

Assuming a generation time of one hour this results in an expected rate of 3.9 x 10-2 s-1. This 

calculated first order rate constant is in excellent agreement with the predicted range shown in 

Figure 5.12. 

 It is noteworthy that this effective rate constant is currently not attainable in vitro. The 

predicted lower limit (i.e., 0.3 x 10-2 s-1) is an order of magnitude faster than the rate observed for 

BAM protein A (BamA)-mediated OMP folding in non-native lipid conditions (Plummer and 

Fleming 2015) and the rate observed for SurA-BAM assisted in vitro folding in near native lipid 

conditions (Hagan and Kahne 2011). This indicates either that current in vitro analysis may be 
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incapable of capturing all of the details of SurA-BAM mediated folding or that additional factors 

are necessary for proper folding in vivo. 
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5.4. Discussion 

Chaperones are dynamic uOMP periplasmic reservoirs. 

Because uOMPs are essentially insoluble in monomeric forms in the aqueous milieu of 

the periplasm (Ebie Tan et al. 2010), periplasmic chaperones are essential for preventing 

accumulation of unfolded and aggregated species (Dartigalongue, Missiakas, and Raina 2001; 

Onufryk et al. 2005; Rhodius et al. 2006). Our simulations suggest that WT cells maintain a large 

reservoir of free chaperones while simultaneously creating a situation where essentially all 

periplasmic uOMP is bound (Figure 5.3 and 5.10). This is accomplished because the apparent 

total concentration of each chaperone is tuned to be above its respective equilibrium 

dissociation constant. This thermodynamic finding is complemented by the fact that kinetic rate 

constants for folding, binding and unbinding result in chaperone-bound uOMP lifetimes that are 

orders of magnitude shorter than OMP periplasmic lifetimes. Stated another way: periplasmic 

chaperones bind their client uOMPs stoichiometrically, are not saturated, and the rates of 

binding to and dissociating from chaperones are fast (e.g., msec) relative to folding (Wu et al. 

2011) (Figure 5.10). This robust chaperone buffering capacity under WT conditions equips the 

cell with an ability to cope with mild stress quickly without the need to wait for a transcriptional 

regulatory response. More severe stress conditions will cause the population of free uOMP to 

increase, thus saturating the available chaperone network. Such a condition requires a 

consequent increase in the concentration of periplasmic chaperones and protease to maintain 

cell viability – this is exactly what the σE envelope regulatory response is known to accomplish 

(Rhodius et al. 2006). Interestingly, the modulation of only three parameters (chaperone 

concentration, uOMP synthesis rate, and rate of dilution) within OMPBioM is capable of 

capturing the expected phenotype of a genetic knockout that induces σE. 
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A strictly ordered set of reactions is not required to accurately represent OMP 

biogenesis. 

 There are known examples of escort mechanisms that shuttle molecules across the 

periplasm via consecutive protein-protein interactions in which the transported molecule is 

never free in solution (May et al. 2015). Some of these mechanisms involve stable interactions 

between soluble proteins with binding partners that are embedded in the inner and outer 

membranes, essentially forming a physical bridge spanning the periplasm. Accordingly, models 

for OMP biogenesis have been presented in the literature that include a similar highly ordered 

mechanism that involves periplasmic chaperones handing uOMP from the Sec translocon to the 

BAM machinery (Lyu and Zhao 2014). Evidence for these models includes the in vivo 

observation of chaperones binding to partially translocated uOMP as well as chaperones 

interacting with the BAM folding machinery (Harms et al. 2001; Ureta et al. 2007). Our model 

considers neither a sequential set of reactions nor the formation of a multi-protein complex that 

spans the periplasm. Yet OMPBioM still reproduces biological observations. Therefore, these 

intricate escort mechanisms are not required to explain the process of OMP biogenesis.  

 Rather, our findings suggest that these biological observations are simply a consequence 

of the conditions in the periplasm and distinct time scales for key reactions. The abundance of 

unbound chaperone (Figure 5.10) coupled with the fast rates of chaperone binding (e.g., msec) 

and the slow rate of translocation (e.g., sec), could explain the experimental observation of 

chaperones binding to uOMP translocation intermediates. Additionally, OMP lifetimes are at 

least an order of magnitude longer than the timescales necessary for dissociation of a chaperone-

uOMP complex. Therefore, the data to date for OMP maturation can be modeled by simple 

consideration of thermodynamic and kinetic parameters. This results in a stochastic non-directed 

process that ends with OMP folding and accurately describes known observables. 
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 One disadvantage of a deterministic treatment is that this methodology cannot track 

single uOMP trajectories. We therefore complemented these with stochastic simulations to 

enumerate the binding events per uOMP. Stochastic simulations result in an average of 348 

binding (and unbinding) events per uOMP before folding occurs (Figure 5.13A, Table 5.5). 

Figure 5.13B shows a representative binding trajectory of a single uOMP highlighting the 

stochastic nature of its interactions. Taken together with the prolonged OMP lifetimes (i.e., 59 

sec, Table 5.5), this abundance of chaperone binding events is not consistent with a continuous 

physical pathway across the periplasm. Although we recognize that neither computational nor 

experimental kinetic experiments can disprove a more complex model, the lack of evidence 

supporting a linear physical pathway for OMP biogenesis along with the ability to explain all 

available data with a simpler mechanism suggests the treatment presented in this model is the 

most parsimonious at this time.  

Skp and DegP may not form a productive parallel folding pathway.  

Depletion of either Skp or DegP alone results in a similar phenotype compared to WT, 

but ∆surA∆skp or ∆surA∆degP result in a phenotype where either fOMP is depleted from the 

outer membrane or uOMP is accumulated in the periplasm compared to the single null mutant 

∆surA (Figure 5.3) (Rizzitello, Harper, and Silhavy 2001; Sklar, Wu, Kahne, et al. 2007). This 

observation has been used as evidence that Skp and DegP form a folding pathway that is parallel 

to the SurA-BAM pathway and is essential when SurA is removed from the periplasm 

(Rizzitello, Harper, and Silhavy 2001; Sklar, Wu, Kahne, et al. 2007). Indeed, folding can 

formally occur in our model from a complex with any chaperone or from free uOMP (Figure 

5.1). However, we observe negligible folding flux through Skp and DegP because the rate 

constants employed in this mathematical model are relatively low, and neither Skp nor DegP 

have been shown to interact with the BAM folding machinery.  
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 Nevertheless, to further investigate the role of Skp in catalyzing OMP folding we 

increased the folding catalytic activity of Skp to be equal to that of SurA. Figure 5.14 shows that 

the phenotypes resulting from this implementation are not consistent with biological 

observations. In this hypothetical scenario, none of the ∆surA mutants show perturbations in 

OMP profiles except the double null ∆surA∆skp. Therefore, not only is physiologically relevant 

folding from Skp or DegP not required, including it in OMPBioM yields phenotypes that are in 

conflict with experimental results (Dartigalongue, Missiakas, and Raina 2001; Ge, Lyu, et al. 

2014; Rouviere and Gross 1996).  

 Instead of folding catalytic activity, we suggest the main role of Skp and DegP is quality 

control under stress conditions. The loss of the folding ability of SurA results in the 

accumulation of free and aggregated uOMP in the periplasm in which free uOMP is still able to 

fold through the BAM pathway but at a slower rate. This results in the increased levels of uOMP 

in the periplasm that requires the quality control mechanisms – provided by Skp and DegP – to 

manage this accumulation. Our results suggest that the loss of these quality control mechanisms 

is the origin of the importance of these two periplasmic proteins under stress conditions. 

Kinetic partitioning prevents uOMP aggregation and degradation under WT conditions. 

 The kinetic and thermodynamic parameters for the intermediate processes in OMP 

biogenesis are of special interest due to the lack of an external energy source (i.e., ATP) in the 

periplasm (Wülfing and Plückthun 1994). Previous work has suggested that the thermodynamic 

stability of fOMP drives partitioning of uOMP from the relatively stable chaperone complexes 

to the even more stable native state (Moon et al. 2013). The fact that BamA is essential to 

cellular viability provides evidence that the kinetics of OMP folding is of the utmost importance 

as well (Voulhoux, Bos, Geurtsen, Mols and Tommassen 2003). When known thermodynamic 

and kinetic parameters are implemented into this model, additional relationships between these 
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two different classes of parameters and this biogenesis pathway are revealed. The relatively slow 

kinetics of OMP folding result in long periplasmic lifetimes for OMPs, leading to uOMP-

chaperone binding reactions poised near equilibrium. Therefore, the populations of free uOMP 

and chaperone-bound OMP are essentially defined by their binding energies. Under these steady 

state conditions, the combination of low free uOMP concentrations and 

aggregation/degradation rate constants that are even slower than folding rate constants prevents 

aggregated and degraded species from populating to a significant extent. In essence, such states 

are kinetically inaccessible despite being thermodynamically favorable. We conclude that a finely 

tuned balance between thermodynamic and kinetic effects maximizes OMP folding and 

minimizes aggregation and unnecessary degradation.  

Periplasmic conditions provide simple solutions to challenges faced by OMP biogenesis. 

 OMP biogenesis is subject to obstacles that are not present in cytoplasmic protein 

folding systems. OMPBioM simulations indicate that the cell is able to overcome all of these 

barriers simply by regulating the presence of periplasmic chaperones, proteases and folding 

catalysts. The folding catalytic ability of BAM and SurA in combination with the chaperone 

ability of Skp and FkpA and the protease activity of DegP are sufficient to (i) prevent an 

accumulation of free uOMP and therefore aggregated uOMP, (ii) overcome the kinetic barriers 

to folding, (iii) maintain fOMP concentrations at sufficient levels, and (iv) accomplish all this in 

the absence of mechanisms that use ATP. The remedy to the many challenges OMPs face 

during biogenesis is remarkably simple. The inclusion of chaperones and folding catalysts at 

biologically observed concentrations with binding, aggregation and degradation rates observed in 

vitro and in vivo results in cellular conditions that promote efficient folding of OMP and prevent 

an accumulation of free and aggregated uOMP in the periplasm. Overall, OMPBioM provides a 

holistic window into understanding how OMP populations are determined by periplasmic 
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processes. This system can be easily modified in the future to incorporate new thermodynamic 

and kinetic information to further investigate any future mechanistic hypotheses for OMP 

biogenesis. 
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5.5. Figures 

Figure 5.1. Diagram of mechanistic treatment used in OMPBioM. 

 

The downward vertical arrow at the top of the figure indicates uOMP synthesis and 

translocation. Nascent uOMP (U) can either interact with itself through the aggregation pathway 

(purple), bind to chaperone (red) prior to folding into its native state (N), or be degraded 

(orange). Chaperones enter the system as monomers before undergoing oligomerization into a 

binding competent oligomerization state indicated by subscript (blue). All species are subject to a 

rate of dilution (gray). Chaperones are regenerated upon uOMP folding or unbinding. Folding 

pathways that are accelerated by BAM implicitly are shown (green). This figure is reproduced 

from (Costello et al. 2016). 
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Figure 5.2. Phenotype construction in OMPBioM. 

 

Contour lines showing synthesis and dilution parameterization for WT (A), ∆surA (B), 

∆surA∆degP  (C) and ∆surA∆skp (D). (A) The fOMP concentration at steady state as a function 

of uOMP synthesis rate under WT conditions. A uOMP synthesis rate of 1x10-7 M s-1 returns a 

fOMP concentration indicated by the filled circle of 509.34x10-6 M (or 5.1x10-4) (copy number 
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27605 assuming a envelope volume of 9x10-17 L) consistent with the expected WT copy number. 

(B) The fOMP concentration at steady state as a function of uOMP synthesis rate under ∆surA 

conditions. To achieve a 90% reduction in the steady state fOMP concentration compared to 

WT (as indicated by the biological phenotype), the uOMP synthesis rate must be reduced by 

50% (5x10-8 M s-1). (C) The contour line representing a fOMP concentration equal to 90% that 

of WT as a function of both uOMP synthesis and the rate of dilution under ∆surA∆degP 

conditions. Assuming the rate of dilution decreases (replication time increases) by a factor of 2.5, 

the synthesis rate would need to be 4x10-8 M s-1. (D) The contour line representing a fOMP 

concentration equal to 4% that of WT as a function of both uOMP synthesis and the rate of 

dilution under ∆surA∆skp conditions. Assuming the rate of dilution decreases (replication time 

increases) by a factor of 2.5, the synthesis rate would need to be 2.3x10-8 M s-1. This 

parameterization yields OMP profiles consistent with those reported in the literature (32). This 

figure is reproduced from (Costello et al. 2016). 

 

 

  



 

 168 

Figure 5.3. Simulated phenotypes in OMPBioM. 

 

The steady state concentrations of each OMP species in the simulations for the WT and 

indicated chaperone single and double null mutants are shown. Species include fOMP (dark 

green), free monomeric uOMP (blue), aggregated uOMP (grey), bound uOMP (light green), and 

degraded uOMP (hatched lines). Bound uOMP is the sum of uOMP bound to all chaperones, 

including SurA, Skp, FkpA, and DegP. The x-axis indicates simulated phenotypes. Simulations 

indicate minimal populations of free and aggregated uOMP are present under WT and mild 

phenotype conditions. Simulated σE responses are included for ∆surA, ∆surA∆degP, and 

∆surA∆skp. Data are provided in tabular form in Table 5.6. This figure is reproduced from 

(Costello et al. 2016). 
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Figure 5.4. Summary of simulations to investigate folding rate enhancement provided by 

SurA. 

 

The rate enhancement provided by SurA is defined as the folding rate constant for SurA-BAM 

divided by the folding rate constant for BAM-only. Shown are contour lines for OMP 

periplasmic lifetime (green), and summed concentration of free and aggregated uOMP (red). The 

concentration of fOMP in the ∆surA simulation and WT simulation are related, where the ∆surA 

simulation is expected to return a concentration of fOMP ~10% that of the WT simulation (13). 

The limits defining where the fOMP concentration in the ∆surA simulation is 5% or 15% of the 

WT simulation are shown as grey contour lines. If this value is less than 5% SurA is more 

essential than expected, and if the value is greater than 15% SurA is more inconsequential than 

expected. The cyan shaded area indicates the parameter space that results in lifetimes, free and 

aggregated uOMP concentrations, and fOMP concentrations that agree with experimental 

observations. This reveals a mild rate enhancement (3-100) is required to recapitulate 

experimental observations. This figure is reproduced from (Costello et al. 2016).  
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Figure 5.5. Representative steady state simulation. 

 

 

 

The fOMP concentration over time for a typical WT simulation is shown. Starting from a 

concentration of zero, [fOMP] reaches steady state in less than 100,000 seconds. Simulations are 

run for 500,000 seconds to ensure steady state is approached. This figure is reproduced from 

(Costello et al. 2016). 
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Figure 5.6. Lifetime measurements by stochastic and deterministic modeling methods.  

 

 

 (A) WT periplasmic uOMP lifetime for the deterministic model; (B) Plotted is the distribution 

of lifetimes for the stochastic model. (C) Correlation between the stochastic and deterministic 

lifetimes for each null strain phenotype. A line of agreement (Slope=1 y-int=0) is shown for 

reference. This figure is reproduced from (Costello et al. 2016). 



 

 172 

Figure 5.7. OMP populations for simulations with varying σE treatments. 

 

Induction of a model σE response alleviates uOMP accumulation at the cost of fOMP depletion. 

Species include fOMP (dark green), free monomeric uOMP (blue), aggregated uOMP (grey), 

bound uOMP (light green), and degraded uOMP (hatched lines). Asterisk indicates the deletion 

was executed without any additional change in uOMP expression or chaperone expression. This 

figure is reproduced from (Costello et al. 2016). 

 

  



 

 173 

Figure 5.8. Change in [uOMP] + [Agg] for various phenotypes treatments. 

  

The loss of SurA increases aggregated and free uOMP species in the periplasm. Strains lacking 

SurA show increases in the sum of their free and aggregated OMP species in the periplasm. The 

fold increases in the sum of the free and aggregated OMP are referenced to the WT sum and are 

indicated by the left axis scaling. Asterisks indicate the knockout was executed without any 

additional change in uOMP expression or chaperone expression. This figure is reproduced from 

(Costello et al. 2016). 

 

  



 

 174 

Figure 5.9. Fraction of degraded OMP for phenotype simulations. 

 

The fraction of secreted uOMP that is degraded by DegP under each relevant genetic condition 

is shown. The loss of SurA and increase in DegP concentration result in an increase in the 

fraction of secreted uOMP that is degraded. Asterisks indicate the virtual null phenotype that 

was executed without any additional change in uOMP expression or chaperone expression. This 

figure is reproduced from (Costello et al. 2016). 
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Figure 5.10. Concentrations of free and bound chaperone species in WT simulations. 

 

 

There is a large chaperone reservoir of unbound chaperones. Although >98% of uOMP is 

bound to chaperone, a significant amount of chaperone is unbound under WT conditions. The 

simulated concentrations of periplasmic species under WT conditions are plotted. Chaperone 

species represent the binding competent oligomerization states (i.e., DegP hexamer, Skp trimer, 

FkpA dimer, SurA monomer). The concentrations of total chaperone are above each of their 

respective dissociation constants and no chaperone is saturated with uOMP, indicating a 

reservoir capable of stoichiometric binding of additional uOMP. This figure is reproduced from 

(Costello et al. 2016). 
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Figure 5.11. Summary of simulations to determine SurA rate-enhancement for OMP 

folding. 

 

 

OMPs travel through the SurA-BAM folding pathway, irrespective of the folding rate 

enhancement provided by SurA. The fraction of OMP folded through SurA for different 

combinations of BAM folding rates and SurA rate enhancement is plotted. The rate 

enhancement provided by SurA is defined as the folding rate constant for SurA-BAM divided by 

the folding rate constant for BAM. This graph shows that greater than 99% of OMP folds 

through SurA for the WT parameter combination. This figure is reproduced from (Costello et al. 

2016). 
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Figure 5.12. Assessment of in v ivo  BAM folding rates. 

 

Shown are the contour lines for OMP periplasmic lifetimes (green) and copy number per cell 

(CN) (blue) as a function of co-variation of the periplasmic input rate (kin) and the effective 

BAM folding rate (kfold). The parameter space allowed by the known values for OMP lifetimes 

and CN is indicated in cyan. The dashed red line indicates the boundary where the concentration 

of free and aggregated uOMP in the periplasm equals 1 µM; this is a viable parameter space. The 

solid red line is the uOMP + Aggregate = 10 µM boundary; this concentration would be 

expected to induce the envelope stress response. The increasing red shading in the bottom right 

corner indicates increasing accumulation of uOMP in the periplasm; these levels would be 

expected to lead to cell death. This figure is reproduced from (Costello et al. 2016). 
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Figure 5.13. Summary of stochastic simulations of uOMP flux. 

 

OMP biogenesis is highly dynamic with many binding events occurring in between uOMP 

synthesis and folding. Panel A shows the number of binding events for each synthesized uOMP 

under WT conditions. Fitting this data to an exponential decay results in an average number of 

binding events of 348. Panel B shows a representative trajectory (600,000 steps) of binding 

events for a single (representative) uOMP over its periplasmic lifetime; between every binding 

event, the OMP is released to form free uOMP before it is bound by another chaperone. This 

particular OMP has a periplasmic lifetime of 54 seconds. Table 5.5 shows the number of binding 

events and lifetime for simulated phenotypes. This figure is reproduced from (Costello et al. 

2016). 
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Figure 5.14. Summary of phenotypes with hypothetical folding mechanism. 

 

Increasing the Skp catalyzed folding rate to be equal to the SurA-BAM catalyzed folding rate 

results in OMP populations that are inconsistent with experimentally observed phenotypes. 

Phenotypes generated from simulation with WT parameters except that the Skp folding rate 

( ) was set equal to that of SurA-BAM ( ). This shows that the fOMP copy numbers are not 

consistent with the phenotypes of most mutants. In particular, if Skp could catalyze folding to 

the same extent as SurA, the ΔsurA phenotype would show no change in fOMP concentration, 

which is inconsistent with experiments. This figure is reproduced from (Costello et al. 2016). 
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5.6. Tables 

Table 5.1. Summary of reactions and WT rate constants within the model. 

Reaction 

Rate 

Constant Value Units Citations 

  1.00x10-7 M s-1 

(Koebnik, 

Locher, and 

Van Gelder 

2000; 

Lugtenberg 

and Alphen 

1983; 

Matsuyama et 

al. 1992; 

Rassam et al. 

2015; Stock, 

Rauch, and 

Roseman 

1977; 

Tomkiewicz 

et al. 2006) 

Synthesis rate determined by estimated total fOMP concentration under WT conditions (Figure 

5.2). A lower bound can be calculated from the rate of dilution due to replication , 1.93x10-4 

s-1) and an estimate of the lowest allowed concentration of fOMP under WT conditions (copy 

number of 8,000 (Masuda et al. 2009), concentration within the model of 1.48x10-4 M). This 

results in a lower bound of 2.85x10-8 M s-1. An estimate of the upper bound can be calculated by 

assuming a translocon copy number of 500 (Matsuyama et al. 1992), and average uOMP length 

of 400 amino acids and a rate of translocation of 20 amino acids per second (Tomkiewicz et al. 

2006). Assuming maximum translocon occupancy, this would result in an upper bound on the 

rate of uOMP periplasmic entry of 4.61x10-7 M s-1. Our parameter falls between these two 
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Reaction 

Rate 

Constant Value Units Citations 

bounds. 

  4.00x10-10 M s-1 

(Masuda et al. 

2009; Stock, 

Rauch, and 

Roseman 

1977) 

  1.18 x10-9 M s-1 

(Masuda et al. 

2009; Stock, 

Rauch, and 

Roseman 

1977) 

  1.42 x10-9 M s-1 

(Masuda et al. 

2009; Stock, 

Rauch, and 

Roseman 

1977) 

  7.47x10-10 M s-1 

(Masuda et al. 

2009; Stock, 

Rauch, and 

Roseman 

1977) 

Chaperone synthesis rates  set to the rate necessary to maintain a desired steady state 

concentration with the determined rate of dilution . The desired steady state concentration 

was determined using the copy numbers observed in (Masuda et al. 2009) (Table 5.3) and a 

periplasmic volume of 9x10-17 L (Stock, Rauch, and Roseman 1977). 

  2.00x106 M-1 s-1 (Northrup 
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Reaction 

Rate 

Constant Value Units Citations 

and Erickson 

1992)  

  2.00x10-8 s-1 

(Schreiber, 

Buckle, and 

Fersht 1994)  

  2.00x106 M-1 s-1 

(Northrup 

and Erickson 

1992) 

  2.00x10-8 s-1 

(Schreiber, 

Buckle, and 

Fersht 1994)  

  2.00x106 M-1 s-1 

(Northrup 

and Erickson 

1992)  

  2.00x10-8 s-1 

(Schreiber, 

Buckle, and 

Fersht 1994)  

  2.00x106 M-1 s-1 

(Northrup 

and Erickson 

1992)  

  2.00x10-8 s-1 

(Schreiber, 

Buckle, and 

Fersht 1994)  

  2.00x106 M-1 s-1 
(Northrup 

and Erickson 
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Reaction 

Rate 

Constant Value Units Citations 

1992)  

  2.00x10-8 s-1 

(Schreiber, 

Buckle, and 

Fersht 1994)  

  2.00x106 M-1 s-1 

(Northrup 

and Erickson 

1992)  

  2.00x10-8 s-1 

(Schreiber, 

Buckle, and 

Fersht 1994)  

All chaperone oligomerization reactions are assumed to be bimolecular, fast (Northrup and 

Erickson 1992) and favorable (Schreiber, Buckle, and Fersht 1994). Fast oligomerization 

reactions with geometric constraints are typically on the order of 2x106 M-1 s-1 (Northrup and 

Erickson 1992), and equilibrium dissociation constants for very favorable protein-protein 

association reactions as low as 10 fM (Schreiber, Buckle, and Fersht 1994). The product of these 

two values returns a dissociation rate constant of 2x10-8 s-1. 

  1.05x108 M-1 s-1 

(Dlugosz, 

Bojarska, 

Antosiewicz 

2002; Wu et 

al. 2011; Xu 

et al. 2007) 

  1.11x101 s-1 

( Dlugosz, 

Bojarska, 

Antosiewicz 

2002; Wu et 
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Reaction 

Rate 

Constant Value Units Citations 

al. 2011; Xu 

et al. 2007) 

  1.75x108 M-1 s-1 

(Dlugosz, 

Bojarska, 

Antosiewicz 

2002; Qu et 

al. 2007; Wu 

et al. 2011) 

  2.80x100 s-1 

(Dlugosz, 

Bojarska, 

Antosiewicz 

2002; Qu et 

al. 2007; Wu 

et al. 2011) 

  2.39x108 M-1 s-1 

(Dlugosz, 

Bojarska, 

Antosiewicz 

2002; Ge, 

Lyu, et al. 

2014; Ramm 

and 

Plückthun 

2001; Wu et 

al. 2011) 

  5.98x100 s-1 

(Dlugosz, 

Bojarska, 

Antosiewicz 
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Reaction 

Rate 

Constant Value Units Citations 

2002; Ge, 

Lyu, et al. 

2014; Ramm 

and 

Plückthun 

2001; Wu et 

al. 2011) 

  1.14x105 M-1 s-1 

(Dlugosz, 

Bojarska, 

Antosiewicz 

2002; Kim, 

Grant, and 

Sauer 2011; 

Krojer, Sawa, 

et al. 2008; 

Wu et al. 

2011) 

  1.02x101 s-1 

(Dlugosz, 

Bojarska, 

Antosiewicz 

2002; Kim, 

Grant, and 

Sauer 2011; 

Krojer, Sawa, 

et al. 2008; 

Wu et al. 

2011) 
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Reaction 

Rate 

Constant Value Units Citations 

 
 1.00x108 M-1 s-1 

(Dlugosz, 

Bojarska, 

Antosiewicz 

2002; Kim, 

Grant, and 

Sauer 2011; 

Krojer, Sawa, 

et al. 2008; 

Wu et al. 

2011) 

 
 8.94x103 s-1 

(Dlugosz, 

Bojarska, 

Antosiewicz 

2002; Kim, 

Grant, and 

Sauer 2011; 

Krojer, Sawa, 

et al. 2008; 

Wu et al. 

2011) 

Chaperone-uOMP binding half times and equilibrium constants were reported in (Wu et al. 

2011) and converted to rate constants using (Dlugosz, Bojarska, Antosiewicz 2002). Binding of 

chaperones to uOMP occurs only from the relevant oligomerization state (i.e., SurA binds to 

uOMP as a monomer (Xu et al. 2007), Skp as a trimer (Qu et al. 2007), and FkpA as a dimer 

(Ramm and Plückthun 2000)). DegP binds to uOMP in hexamer units, ultimately forming 

dodecamers in a highly cooperative two-step mechanism, consistent with the structures observed 

in (Krojer, Sawa, et al. 2008). 
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Reaction 

Rate 

Constant Value Units Citations 

  1.00x100 s-1 

(Hedstrom 

2002; Kim, 

Grant, and 

Sauer 2011; 

Krojer, Sawa, 

et al. 2008) 

  1.00x100 s-1 

(Hedstrom 

2002; Kim, 

Grant, and 

Sauer 2011; 

Krojer, Sawa, 

et al. 2008) 

 
 1.00x108 M-1 s-1 

(Hedstrom 

2002; Kim, 

Grant, and 

Sauer 2011; 

Krojer, Sawa, 

et al. 2008) 

 

 8.94x103 s-1 

(Hedstrom 

2002; Kim, 

Grant, and 

Sauer 2011; 

Krojer, Sawa, 

et al. 2008) 

  3.00x10-2 s-1 

(Hedstrom 

2002; Kim, 

Grant, and 
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Reaction 

Rate 

Constant Value Units Citations 

Sauer 2011; 

Krojer, Sawa, 

et al. 2008) 

  3.00x10-2 s-1 

(Hedstrom 

2002; Kim, 

Grant, and 

Sauer 2011; 

Krojer, Sawa, 

et al. 2008) 

Proteolysis by DegP is modeled as a processive reaction. uOMP bound to either the hexameric 

form or the dodecameric form of DegP can undergo a hydrolysis step with a rate defined by the 

. This rate constant  is representative of values observed in serine proteases 

(Hedstrom 2002). Following initial hydrolysis, the partially degraded uOMP is then committed 

to degradation and DegP is regenerated at a rate that is representative of the typical  and the 

average number of peptide bonds in a typical uOMP (~400) . 

 

(BAM-only) 
 1.00x10-2 s-1 

(Gessmann 

et al. 2014; 

Ureta et al. 

2007) 

  1.00x10-17 s-1 
(Moon et al. 

2013) 

 

(SurA-BAM) 
 1.00x10-1 s-1 

(Bennion et 

al. 2010; 

Gessmann et 

al. 2014; 

Sklar, Wu, 
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Reaction 

Rate 

Constant Value Units Citations 

Kahne, et al. 

2007; Ureta 

et al. 2007; 

Vuong et al. 

2008) 

  1.00x10-9 s-1  

  1.00x10-9 s-1 
(Patel et al. 

2009) 

  1.00x10-9 s-1  

  1.00x10-9 s-1  

  1.00x10-9 s-1  

OMP folding rates through BAM are representative of what has been observed in vivo 

(Ureta et al. 2007).  

fOMP unfolding rate is determined using the folding rate and folding stabilities observed in vitro 

(Moon et al. 2013).  

Chaperone-uOMP folding is assumed to be slow enough that flux is negligible, as BAM-

independent folding would face a targeting problem allowing uOMP to fold into both the inner 

and outer membranes. Less than 0.001 copies of a uOMP can fold through this pathway per 

generation. 

  3.50x102 M-2 s-1 

(Collins et al. 

2004; Danoff 

and Fleming 

2011; García-

Fruitós et al. 

2011; 
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Reaction 

Rate 

Constant Value Units Citations 

Hortschansky 

et al. 2005; 

Lin et al. 

2008; Usui et 

al. 2009) 

 

 5.00x105 M-1 s-1 

(Collins et al. 

2004; Danoff 

and Fleming 

2011; García-

Fruitós et al. 

2011; 

Hortschansky 

et al. 2005; 

Lin et al. 

2008; Usui et 

al. 2009) 

Aggregation consists of a third order nucleation step followed by second order linear 

polymerization with rates representative of literature values 

  1.93x10-4 s-1 

(Lugtenberg 

and Alphen 

1983; 

Pierucci 

1972; Rassam 

et al. 2015) 

This rate of dilution ( ) was calculated by assuming a half-time equal to a typical replication 

time for E. coli (Pierucci 1972) 
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The speed of any given reaction is defined by the reaction stoichiometry, rate constant, and 

reactant concentrations. Citations and notes for each of the obtained values are listed. This table 

is reproduced from (Costello et al. 2016). 
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Table 5.2. Ordinary Differential Equations for each species within the model. 

Eqn 

# 
Equation 

1  = 

 

2  = 

 

3  = 

 

4  = 
 

5 
 

= 
 

6  = 
 

7 
 

= 

 

8 
 

= 
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Eqn 

# 
Equation 

9  =  

10  = 

 

11  = 
 

12  = 
 

13  = 
 

14  = 
 

15  = 
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Eqn 

# 
Equation 

16  = 

 

17  = 

 

18  =  

19 
 

=  

20  = 

 

21  = 

 

22 
 

= 
 

 

This table is reproduced from (Costello et al. 2016). 
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Table 5.3. Chaperone concentrations determined by proteomics studies. 

 

	  

(Masuda et al. 2009) 

Protein Copy Number Concentration (M) 

SurA 112 2.07x10-6 

Skp 328 6.05x10-6 

FkpA 398 7.34x10-6 

DegP 208 3.84x10-6 

 

Observed monomeric chaperone copy numbers from proteomic data. Concentrations are 

determined by assuming a periplasmic volume of 9x10-17 L. This table is reproduced from 

(Costello et al. 2016). 
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Table 5.4. Rate constant values implemented in the σσE response. 

Simulated Null 

Phenotype 
Reaction 

Rate 

Constant 
Value Units 

Citations and 

Notes 

ΔsurA   5.00x10-8 M s-1 

(Koebnik, 

Locher, and 

Van Gelder 

2000; 

Lugtenberg 

and Alphen 

1983; 

Matsuyama et 

al. 1992; 

Rassam et al. 

2015) 

ΔsurAΔdegP   4.00x10-8 M s-1 

(Koebnik, 

Locher, and 

Van Gelder 

2000; 

Lugtenberg 

and Alphen 

1983; 

Matsuyama et 

al. 1992; 

Rassam et al. 

2015) 

ΔsurAΔskp   2.30x10-8 M s-1 

(Koebnik, 

Locher, and 

Van Gelder 

2000; 

Lugtenberg 
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and Alphen 

1983; 

Matsuyama et 

al. 1992; 

Rassam et al. 

2015) 

ΔsurA, 

ΔsurAΔdegP 
  4.71x10-9 M s-1 

(Dartigalongue, 

Missiakas, and 

Raina 2001; 

Masuda et al. 

2009) 

ΔsurA, ΔsurAΔdegP, 

ΔsurAΔskp 
  4.27x10-9 M s-1 

(Dartigalongue, 

Missiakas, and 

Raina 2001; 

Masuda et al. 

2009) 

ΔsurA, 

ΔsurAΔskp 
  5.23x10-9 M s-1 

(Dartigalongue, 

Missiakas, and 

Raina 2001; 

Masuda et al. 

2009) 

ΔsurAΔdegP, ΔsurAΔskp   7.7x10-5 s-1 

(Lugtenberg 

and Alphen 

1983; Rassam 

et al. 2015) 

 

Values for uOMP synthesis determined using known change in fOMP concentration (see Figure 

5.2). Chaperone expression levels were determined by multiplying the WT synthesis levels by the 
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fold increase in expression observed in (Dartigalongue, Missiakas, and Raina 2001). This table is 

reproduced from (Costello et al. 2016). 
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Table 5.5. Enumeration of binding events and lifetimes from stochastic simulations. 

 Average Number of Binding Events    

Simulated Null 

Phenotype 
SurA Skp FkpA DegP Total 

Lifetime 

(s) 

  

Wild Type 110±1.4 51.3±1.0 183±4.9 0.06 348±6.7 58.8±1.2   

ΔdegP 101±4.8 42.3±2.0 158.9±7.4 N/A 308±9.6 51.7±2.2   

Δskp 107±2.6 N/A 170±5.0 0.07 279±6.7 38.8±0.8   

ΔfkpA 106±5.5 45.2±2.0 N/A 0.07 150±7.5 25.4±1.4   

Δskp 

ΔdegP 
111±3.3 N/A 180±3.4 N/A 294±9.4 41.1±1.6 

  

ΔsurA N/A 541±26 1528±93 8.5±1 2742±389 464±18   

ΔsurA 

ΔdegP 
N/A 1215±99 3518±326 N/A 4663±440 1172±134 

  

ΔsurA 

Δskp 
N/A N/A 6625±221 9.5±1 8678±471 1159±38.8 

  

 

Hundreds of binding events between chaperones and a uOMP occur during the uOMP 

periplasmic lifetime. Shown are the average number of binding events and lifetimes measured 

for the WT and mutant strains. All binding event data, other than that for DegP (because the 

numbers are small), are well described by a single exponential distribution as expected. Values 

are the mean of the distribution determined by fitting to a single exponential followed by the 

associated error from the fit. The distribution for DegP binding events was not well described 
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by an exponential decay. Instead the average number of binding events is reported (the sum of 

observed binding events over the number of simulations). N/A indicates chaperone species is 

not present in a given simulation. Data were collected by analyzing 1000 uOMP trajectories 

(2000 for WT). This table is reproduced from (Costello et al. 2016). 
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Table 5.6. Tabular form of Figure 5.3. 

Simulated Null 

Phenotype 
[fOMP] 

Free 

uOMP 

Aggregated 

uOMP 

Degraded 

uOMP 

Bound 

uOMP 

  

Wild Type 
509.34 

x10-6 
9.47 x10-8 3.83 x10-13 3.07 x10-6 5.63 x10-6 

  

ΔdegP 
512.41 

x10-6 
9.58 x10-8 4.00 x10-13 0 5.61 x10-6 

  

Δskp 
511.04 

x10-6 
9.53 x10-8 3.92 x10-13 3.09 x10-6 3.91 x10-6 

  

ΔfkpA 
512.21 

x10-6 
9.57 x10-8 3.99 x10-13 3.10 x10-6 2.73 x10-6 

  

Δskp 

ΔdegP 

514.13 

x10-6 
9.64 x10-8 4.11 x10-13 0 3.90 x10-6 

  

ΔsurA 
54.40 

x10-6 
1.05 x10-6 5.71 x10-9 1.84 x10-4 2.00 x10-5 

  

ΔsurA 

ΔdegP 

462.22 

x10-6 
3.56 x10-6 4.74 x10-6 0 4.90 x10-5 

  

ΔsurA 

Δskp 

20.69 

x10-6 
1.59 x10-7 1.91 x10-11 2.53 x10-4 2.52 x10-5 

  

 

All concentrations are in Molar units. This table is reproduced from (Costello et al. 2016). 
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Concluding Remarks 
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Prior to the studies presented here, many questions remained unanswered about the 

molecular details of the assembly pathways of OMPs in E. coli. It has been established that the 

chaperones SurA, FkpA, Skp, and DegP facilitate OMP trafficking by associating with unfolded 

OMPs in the periplasm (Bothmann and Pluckthun 2000; Ge, Lyu, et al. 2014; Lazar and Kolter 

1996; Schäfer, Beck, and Müller 1999; Sklar, Wu, Kahne, et al. 2007; Strauch, Johnson, and 

Beckwith 1989). However, it is unclear how SurA and FkpA bind to uOMP clients to prevent 

their self-association without forming oligomeric cages like Skp and DegP. It is also unknown 

which oligomeric species are relevant for uOMP binding for the chaperones SurA, FkpA, and 

DegP. A complicating feature for consideration of the in vivo function of these three chaperones 

is that they each exhibit a chaperone-independent enzymatic function; yet the relationship 

between the enzymatic and chaperone activities of these bifunctional chaperone proteins is 

undetermined.  

In addition to these open questions about chaperone-uOMP interactions, it is also 

unclear how BamA works in collaboration with the BAM lipoproteins to facilitate the folding of 

OMPs into the bacterial OM. Recent structural work has provided atomistic details of the BAM 

protein interactions in the absence of OMP clients (Bakelar, Buchanon, and Noinaj 2016; Han et 

al. 2016; Iadanza et al. 2016; Noinaj et al. 2013). Complementary in vitro studies are just 

beginning to probe the catalytic mechanism of BamA (Gessmann et al. 2014). Still many 

questions remain, such as: how does BamA interact with uOMP clients? What are the functions 

of the BamBCDE lipoproteins in this process? What is the role of the BamA β-barrel seam and 

the lipid bilayer in this process? 

Lastly, decades of biochemical characterization of this system have provided a wealth of 

literature that makes the OMP biogenesis pathway a prime target for computational modeling. 

Holistic modeling for this pathway had not been completed to parse out the complex interplay 
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between the proposed kinetic and thermodynamic partitioning mechanisms for OMP flux 

through the periplasm. It was previously undetermined if such as computational model could 

recapitulate the immense amount of genetic and biochemical data reported on the components 

of this pathway. 

Our findings provide invaluable insight into the roles of FkpA, SurA, and the OMP-

folding enzyme BamA, along with a holistic model for the entire OMP biogenesis pathway in E. 

coli. For our investigation of periplasmic chaperones, we have focused our experimental work on 

two prolyl-isomerases that are known to participate in OMP assembly: FkpA and SurA 

(Chapters 2 and 3). These two chaperones have not been as well-characterized structurally or 

biochemically as the chaperone Skp (Sandlin, Zaccai, and Fleming 2015; Schäfer, Beck, and 

Müller 1999; Sklar, Wu, Kahne, et al. 2007; Thoma et al. 2015; Walton et al. 2009; Walton and 

Sousa 2004; Zaccai et al. 2015) and the details of how these proteins interact with uOMPs are 

previously unreported. 

FkpA populates monomeric and dimeric species, which exhibit distinct functions. 

We have presented evidence that the oligomerization of FkpA is a critical reaction for 

consideration of the function of this chaperone, as FkpA populates both monomeric and 

dimeric states. Further, we discover that these two oligomers have distinct affinities for uOMP 

clients, with the dimer binding uOMPs 1000-fold tighter than the monomer. These findings raise 

the question – why is the dimerization equilibrium for FkpA poised to populate both oligomeric 

species if only one of them is capable of interacting with uOMPs? We propose that the FkpA 

monomer and dimer function as a PPIase and uOMP-chaperone, respectively, and both of these 

activities are critical for in vivo maintenance of the periplasmic and OM proteomes. 

These results highlight the varying importance of the two functions of a bifunctional 

chaperone under various growth conditions. It is known that FkpA is one of the genes 
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upregulated upon cell stress (i.e., σE) (Dartigalongue, Missiakas, and Raina 2001) and we suggest 

that this shift in FkpA concentration will increase the amount of FkpA dimer/chaperone in the 

periplasm. This allows the periplasmic chaperone system to better handle increased 

concentrations of misfolding OMPs under these stress conditions. Overall, our findings 

highlight the modulation of relative populations of various oligomers of FkpA under normal and 

stress bacterial growth conditions and may explain the importance of FkpA under σE stress 

conditions.  

The isolation of FkpA oligomers and assignment of distinct functions to these species 

raises exciting prospects for better understanding the activities of bifunctional 

enzymes/chaperones. Moving forward, an interesting new avenue for chaperone studies 

involves identifying the in vivo clientele pools for each of these functional states of FkpA; that is, 

which periplasmic proteins or OMPs require prolyl-isomerization by the FkpA monomer prior 

to folding? Also, in vivo OMP binding partners for the FkpA dimeric chaperone have not been 

ascertained. In addition to determining the clients of various chaperone functional states, it will 

be interesting to evaluate this type of relationship for other bifunctional chaperones, such as 

DegP.  

Proposed model of SurA-uOMP complex raises exciting prospects. 

We find that oligomerization is likely not relevant for the binding of SurA to uOMP 

clients. This raised the question of how SurA structurally accommodates unfolded OMP binding 

partners. Modeling of a SurA-uOMP complex has not previously been reported likely due to the 

short-lived nature of this complex and aggregation-prone uOMP. By combining biochemical 

crosslinking with neutron scattering experiments, we show that the uOMP populates an 
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expanded conformation in this complex, and we suggest this is significant for the ability of SurA 

to promote folding of uOMPs both in vitro and in vivo in coordination with the BAM complex.  

SurA is different from the periplasmic chaperones Skp and DegP, because it lacks an 

internal cavity to accommodate uOMPs. Our structural model for the SurA-uOMP complex 

adds insight into the field of OMP biogenesis by presenting an apparent paradox: SurA is known 

to play a pivotal role in OMP biogenesis, which requires protection of uOMP from aggregation. 

Yet our model suggests that SurA binds to uOMPs in a manner that leaves regions of the client 

OMP exposed and likely able to associate with other free uOMPs or SurA-uOMP complexes, in 

addition to productive interactions with the BAM complex for folding. OMPBioM simulations 

suggest that the concentration of free uOMP in the periplasm is likely negligible (Costello et al. 

2016), therefore we exclude the possibility that uOMP bound to SurA may form aggregates with 

free uOMP in a biologically relevant context. However, further structural investigations and 

modeling will be required to understand if uOMP bound to SurA may associate with other 

SurA-uOMP complexes. 

Additionally, our work raises several further questions about how SurA associates with 

uOMP clients. As shown in Figure 1.2, many unique OMPs are present in the OM and SurA is 

known to interact with several OMP clients (Vertommen et al. 2009). Our discovery that SurA 

binds to uOMPs with a delocalized interface suggests a promiscuous binding mechanism for 

these interactions; however, it is unclear how SurA may accommodate uOMPs with soluble 

periplasmic domains (i.e., full-length OmpA, Figure 1.2). It was shown that Skp interacts with 

these types of clients with the folded OMP domain in several orientations (Zaccai et al. 2015). It 

will be exciting to see if SurA exhibits a similar plasticity in bound uOMP conformation and 

soluble domain orientation. Our protocols for combining unnatural amino acid incorporation, 

biochemical crosslinking, and SANS allow for future studies of complexes formed between SurA 
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and a variety of uOMP clients. These methods are also likely applicable for studies with other 

chaperones of interest, including FkpA. 

In vi tro  analysis of BamA function complement structural studies. 

 BamA is required for E. coli viability and is known to facilitate OMP folding in vivo and in 

vitro, although details of its functional mechanism were previously unreported (Gessmann et al. 

2014; Voulhoux, Bos, Geurtsen, Mols and Tommassen 2003). Many structural studies have been 

recently reported on the BAM complex; these studies allow for visualization of static protein 

conformations but are limited in their insight into the mechanism of protein function. Our in 

vitro investigation of BamA-accelerated OMP folding allows for a controlled assessment of how 

BamA affects OMP folding. This established protocol allows for experimental manipulation of 

the client OMP identity and concentration, denaturant concentration, and lipid composition. By 

utilizing this assay, we can deconvolute the effects of these parameters on BamA function in vitro 

and ask specific questions about how this enzyme works. 

 In Chapter 4, we have modified previous protocols to present BamA with a relatively 

high concentration (i.e., 8 µM OmpA, 1 µM BamA) of client OMP to determine the turnover 

number of this enzyme. Comparisons between the activity of BamA alone and the BAM 

complex have yielded similarities in the catalytic activity: both BamA and the entire BAM 

complex have been shown to facilitate multiple rounds of catalysis with turnover numbers in 

both cases equal to approximately 1.5 (Hagan and Kahne 2011; Plummer and Fleming 2015). 

These findings suggest that BamA itself undergoes a cyclic catalytic mechanism that is 

accelerated in vivo by the additional lipoproteins BamBCDE.  

 Future modifications of this in vitro assay will allow for further probing of the BamA-

accelerated OMP folding mechanism. Here we highlight two future directions for this work that 

incorporate the plethora of structural information recently reported on the BAM complex. 
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Moving forward, it will be interesting to systematically incorporate the BamBCDE lipoproteins 

into this in vitro assay to determine their contribution to BAM-mediated OMP folding. We 

hypothesize that these lipoproteins will further accelerate OMP folding, yet their differential 

importance reported through genetics experiments suggests they may do so to varying extents. 

Additionally, we suggest that this assay should be utilized to investigate the importance of 

residues identified as functionally critical through crystallographic analyses. Figure 4.1 highlights 

the non-canonical seam of the E. coli BamA protein: it has been suggested that this geometry of 

β-sheet and intra-strand hydrogen bonding is important for BAM complex function (Noinaj et 

al. 2014). Our experimental assay is the ideal set-up for testing this idea: mutations to lock the β1 

and β16 strands of BamA in a closed conformation (i.e., Cysteine residues on these adjacent 

strands that are covalently linked by a disulfide bond) could be incorporated into this enzyme to 

construct a variant with limited seam dynamics. The enzymatic activity of variants of this nature 

could be tested to further probe the importance of the BamA seam in accelerating OMP folding 

in vitro. 

OMPBioM is the first computational model of OMP biogenesis. 

Most biochemical and biophysical investigations study protein-protein interactions under 

experimental conditions that are far removed from the relevant biological conditions. Our above 

experiments all fall into this classification. Although we aim to emulate biologically relevant 

parameters by utilizing native uOMPs as chaperone binding clients and native E. coli head 

groups for kinetics assays, we are inherently simplifying our experimental conditions to 

understand how the individual components of the OMP biogenesis work in isolation. To better 

understand how the entire trafficking system manages OMP flux through the periplasm, we have 

incorporated previously published thermodynamic and kinetic information into the first 
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computational model of OMP biogenesis (Chapter 5). Our model provides novel insight into the 

functions of the periplasmic chaperones, kinetic partitioning of uOMP species, and estimation of 

in vivo OMP folding rates. These types of parameters are challenging, if not impossible, to 

determine experimentally. We additionally have redefined current models for OMP biogenesis 

by suggesting that OMPs dynamically bind to the periplasmic chaperone reservoir and non-

directionally partition toward the OM (Costello et al. 2016). These findings reinforce the 

previously proposed idea that the thermodynamics of uOMP-chaperone binding and folding 

may drive the biological process of OMP trafficking and assembly (Moon et al. 2013).  

This computational study has been pivotal to the current understanding of this network 

and we greatly look forward to future applications of this model to probe various aspects of this 

system. It has recently come to our attention that the introduction of slow-folding OMP variants 

into the E. coli periplasm presents particular challenges to the OMP assembly machinery 

(Peterson, J.H.; Plummer, A. M.; Fleming, K. G.; Bernstein, H. D; in preparation) (Wzorek et al. 

2017). Some slow-folding OMPs saturate the chaperone network and lead to lethal phenotypes, 

while other OMPs stall on the BAM complex. This type of experimental data allows us to ask – 

which parameters incorporated into OMPBioM must be changed to reproduce this distinct in 

vivo behavior (Tables 5.1 and 5.2)? Our current version of OMPBioM incorporates a 

representative OMP client, which we recognize is an oversimplification of the OMP biogenesis 

system that handles many unique OMPs (Figure 1.2). As experimental in vivo information 

becomes readily available on how the periplasmic chaperones and BAM complex interact with 

distinct OMPs, we will use this data to further develop our OMPBioM simulations. Additionally, 

as in vitro biochemical investigations as those presented in Chapters 2 and 3 are published, we 

hope to incorporate the most up-to-date in vitro data into our model as well.  
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 Overall, the experimental and computational studies presented here provide essential 

details for understanding the trafficking and assembly of OMPs. This process is a prerequisite 

for the formation of an intact membrane system in Gram-negative bacteria and subsequent 

virulence and antibiotic permeation of cells. We highlight the importance of chaperone-uOMP 

and BAM-uOMP binding interactions as promising targets for anti-virulence drugs and 

important factors for consideration with regard to antibiotic resistance in E. coli. 
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