THE JOHNS HOPKINS UNIVERSITY

Department of Mathematics

Baltimore 18, Maryland

Mathematics Sciences Directorate

Air Force Office of Scientific Research

Washington 25, D. C.

ON EXISTENCE IN THE LARGE OF SOLUTIONS OF HYPERBOLIC
PARTIAL DIFFERENTIAL EQUATIONS

by

John P. Shanahan

July 1960

Technical Note No. 18

prepared under

Contract No. AF 18(603)-41

Qualified requestors may obtain copies of this report from ASTIA Document Center, Arlington Hall Station, Arlington 12, Virginia. Department of Defense contractors must be established for ASTIA services or have their "need-to-know" certified by the cognizant military agency of their project or contract.
ABSTRACT

This note is concerned with existence in the large of solutions of
\[z_{xy} = f(x,y,z,p,q), \]
where \(z(x,0) \) and \(z(0,y) \) are prescribed. Theorems proved
are analogues of theorems in ordinary differential equations. For example,
a condition on \(f \) sufficient to ensure existence in the large is
\[|f(x,y,z,p,q)| \leq \varphi(|z| + |p| + |q|), \]
where \(\varphi(t) \) is a positive, non-decreasing,
continuous function, defined for \(t \geq 0 \), satisfying \(\int_0^\infty dt/\varphi(t) = \infty \). This is
an analogue of a theorem of Wintner in ordinary differential equations.
An analogue of another theorem of Wintner on the asymptotic behavior of
solutions is also proved.
ON EXISTENCE IN THE LARGE OF SOLUTIONS OF HYPERBOLIC
PARTIAL DIFFERENTIAL EQUATIONS

by

John P. Shanahan

1. Introduction. Many authors have discussed the existence of solutions of the initial value problem

\[z_{xy} = f(x,y,z,p,q), \ z(x,0) = \sigma(x), \ z(0,y) = \Upsilon(y), \]

where \(\sigma(0) = \Upsilon(0) = z_0 \), on a rectangle \(R_{ab} : 0 \leq x \leq a, \ 0 \leq y \leq b \). A \(C^1 \) solution of (1.1), which possesses a continuous second mixed derivative, will be said to be of class \(C^* \). If \(\sigma \) and \(\Upsilon \) are \(C^1 \) functions, then \(C^* \) solutions of (1.1) are equivalent to \(C^1 \) solutions of

\[z(x,y) = \sigma(x) + \Upsilon(y) - z_0 + \int_0^x \int_0^y f(s,t,z(s,t),z_x(s,t),z_y(s,t))dsdt. \]

In [1], for example, the vector analogue of the following theorem is proved.

\([\ast]\) Let \(D_{ab} = \{(x,y,z,p,q) : (x,y) \in R_{ab}, \ z,p,q \text{ arbitrary}\} \). Let \(f(x,y,z,p,q) \) be continuous and bounded on \(D_{ab} \), and let \(f \) satisfy a uniform Lipschitz condition with respect to \(p \) and \(q \) on \(D_{ab} \). Let \(\sigma(x), \ \Upsilon(y) \) be of class \(C^1 \) on the respective intervals \(0 \leq x \leq a, \ 0 \leq y \leq b \), and satisfy \(\sigma(0) = \Upsilon(0) \). Then there exists on \(D_{ab} \) a function \(z = z(x,y) \) of class \(C^* \) satisfying (1.1).

This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under contract No. AF 18(603)-41. Reproduction in whole or in part is permitted for any purpose of the United States Government.
For purposes below, the following consequence (cf. [1], p. 837), of the proof of (*) is most important: If \(f \) is not bounded, then it is possible to find a number \(d \), where \(0 < d \leq \min(a, b) \), such that a solution \(z = z(x, y) \) exists on the square \(R_{dd} \). If the absolute values of \(\sigma'(x), \sigma'(y), \sigma'(x), \sigma'(y) \) are bounded by \(M \) and if \(C \) is a bound for \(|f| \) on the product space of \(R_{ab} \times \mathbb{E}(z, p, q): |z|, |p|, |q| \leq \frac{4M}{3} \), then \(d \) can be chosen to be \(\min(a, b, \frac{3M}{C}, \frac{1}{M\sqrt{C^{1/3}}}) \).

Hence in the above theorem, in order to prove the existence of a solution on the entire rectangle \(R_{ab} \), one assumes the boundedness of \(|f| \) on \(D_{ab} \). For unbounded \(f \), the proof provides the existence of a solution on a sub-rectangle of \(R_{ab} \). (In what follows, a subrectangle of \(R_{ab} \) shall always mean a rectangle in \(R_{ab} \), which has two sides along \(x = 0 \) and \(y = 0 \), respectively.)

One might consider that a local uniform Lipschitz condition on \(f \) provides the existence of a solution on a subrectangle of \(R_{ab} \), (i.e., a "local solution") and that the boundedness of \(|f| \) is a condition which assures that the solution can be continued to the entire rectangle \(R_{ab} \).

In papers, published more recently, the Lipschitz condition of (*) is generalized, being replaced by analogues of conditions used in ordinary differential equations (cf. [3], for references). The conclusions are generally similar to those of (*); if \(|f| \) is bounded on \(D_{ab} \), then there exists a solution on the entire rectangle \(R_{ab} \), but existence is proved only on a subrectangle in the case where \(f \) is unbounded. Exceptions are, for example, [2] and [4] where conditions are investigated which assure the existence of solutions on the whole of \(R_{ab} \) and which replace the assumption of the boundedness of \(|f| \) essentially by the condition that \(|f| \) has a majorant linear in \(|z|, |p|, |q| \). It seems of interest, therefore, to consider
in some detail conditions on \(f \) which will insure that "local solutions" can be continued to the entire rectangle.

In the corollary to Theorem 1, we make use of an analogue of a condition Wintner used in ordinary differential equations (cf. [5], Appendix). Theorem 2 is also an analogue of a theorem of Winter [6] on the asymptotic behavior of solutions of ordinary differential equations.

In what follows, we shall assume the existence of a "local solution", without specifying particular smoothness assumption on \(f \) to assure this. Further, we assume the existence of a number "\(d \)" as in the remark following (*), without requiring that \(d \geq \min (a,b,3M/C,M^2/c^2) \). The meaning of the term "local solution" is made precise below (cf. Hypothesis A).

2. Statement of results: Let \(R_{ab} = \mathcal{Z}(x,y): 0 \leq x \leq a, 0 \leq y \leq b/2 \) and \(R = \mathcal{Z}(x,y): x \geq 0, y \geq 0/2 \). Let \(D_{ab} \) be the product set \(R_{ab} \times \mathcal{Z}_{\text{entire (z,p,q) - space}^1} \) and \(D = R \times \mathcal{Z}_{\text{entire (z,p,q) - space}^1} \).

Hypothesis A. \(f(x,y,z,p,q) \) is a continuous function of five variables on the set \(D_{ab} \). For any point \((\alpha, \beta) \), \(0 \leq \alpha < a, 0 \leq \beta < b \), \(\sigma(x) \) and \(\mathcal{T}(y) \) are any two \(C^1 \) - functions defined respectively on \(\alpha \leq x \leq \gamma \), \(\beta \leq y \leq \delta \), where \(\gamma \leq \alpha \) and \(\delta \leq \beta \), and \(\sigma(\alpha) = \mathcal{T}(\beta) = z_0 \). \(M \) is a bound for the functions \(|\sigma(x)|, |\mathcal{T}(y)|, |\sigma'(x)|, |\mathcal{T}'(y)| \) and \(C \) is a bound for \(|f| \) on the product space \(R_{ab} \times \mathcal{Z}_{(z,p,q)}: |z|, |p|, |q| \leq M^2/2 \). Then there exists a positive number \(d \) with the property that \(d = d(M,C) \) depends only on \(M \) and \(C \), but not on \(\sigma(x) \) and \(\mathcal{T}(y) \), and that a \(C^1 \) - solution \(z = z(x,y) \) of

\[
(2.1) \quad z(x,y) = \sigma(x) + \mathcal{T}(y) - z_0 + \int_{\alpha}^{\gamma} \int_{\beta}^{\delta} f(s,t,z(s,t),z_x(s,t),z_y(s,t)) \, ds \, dt.
\]

exists on the square \(\alpha \leq x \leq \alpha + d_0, \beta \leq y \leq \beta + d_0 \), where \(d_0 = \min (d, \gamma - \alpha, \delta - \beta) \).

Hypothesis B. For \((x,y,z,p,q) \in D_{ab} \),
where $\varphi(x, y, z, p, q)$ is a continuous, non-negative function defined for $(x, y) \in R_{ab}$ and $z, p, q \geq 0$, non-decreasing in each of the variables z, p and q. Furthermore, φ has the property that if $\sigma(x)$ and $\tau(y)$ are any two C^1-functions, defined respectively on $0 \leq x \leq a, 0 \leq y \leq b$, non-decreasing in x and y, and satisfying $\sigma(0) = \tau(0) = z_0$, then all C^1-solutions $z = z(x, y)$ of

$$ z(x, y) = \sigma(x) + \tau(y) - z_0 + \int_0^x \int_0^y \varphi(s, t, z(s, t), z_x(s, t), z_y(s, t)) \, ds \, dt, $$

which exist on subrectangles of R_{ab}, can be continued in at least one way to the entire rectangle R_{ab}.

Theorem 1. Let f satisfy Hypotheses A and B. Let $\sigma(x)$ and $\tau(y)$ be two C^1-functions defined respectively on $0 \leq x \leq a, 0 \leq y \leq b$, and let $\sigma(0) = \tau(0) = z_0$. Then all C^1-solutions of (1.1), defined on subrectangles of R_{ab}, can be continued in at least one way to the entire rectangle R_{ab}.

Hypothesis B'. For $(x, y, z, p, q) \in D_{ab}$,

$$ |f(x, y, z, p, q)| \leq \varphi(|z| + |p| + |q|), $$

where $\varphi(t)$ is a positive, non-decreasing, continuous function defined for $t \geq 0$ satisfying

$$ \int_0^\infty dt / \varphi(t) = \infty. $$

We then have the following corollary to Theorem 1.

Corollary. If, in Theorem 1, Hypothesis B is replaced by Hypothesis B', then the assertion remains valid.

The hypothesis and theorem to follow concern the case where R_{ab} is replaced by R.

Hypothesis A'. The same as Hypothesis A except that f is defined on D and (a, b) is any point in R.

Hypothesis B''. For $(x, y, z, p, q) \in D$,
\[(2.6) \quad |f(x,y,z,p,q)| \leq \lambda(x+y)\varphi(|z| + |p| + |q|),\]

where \(\lambda(t)\) is a non-negative, continuous function defined for \(t \geq 0\), satisfying

\[(2.7) \quad \int_{0}^{\infty} t \lambda(t)dt < \infty,\]

and \(\varphi(t)\) is as in Hypothesis \(B\).

Theorem 2. Let \(f\) satisfy Hypotheses \(A\) and \(B\). Let \(\varpi(x)\) and \(\Upsilon(y)\) be two \(C^1\) functions defined for \(x \geq 0\) and \(y \geq 0\), respectively, satisfying

\(\varpi(0) = \Upsilon(0) = z_0\). Then any \(C^*\) solution \(z = z(x,y)\) of (1.1), defined on a subrectangle of \(R_{ab}\), can be continued, in at least one way to the quarter plane \(R: x \geq 0, y \geq 0\). Moreover if \(|\varpi(x)|, |\Upsilon(y)|, |\varpi'(x)|\) and \(|\Upsilon'(y)|\)

are bounded for \(x \geq 0, y \geq 0\), then there exist three \(C^1\) functions \(\varepsilon(x,y), \varepsilon_1(x)\) and \(\varepsilon_2(y)\) defined for \(x \geq 0, y \geq 0\), and a constant \(K\) such that

\[(2.8) \quad z(x,y) = \varpi(x) + \Upsilon(y) - z_0 + K + \varepsilon_1(x) + \varepsilon_2(y) + \varepsilon(x,y),\]

and also

\[(2.9) \quad z_x(x,y) = \varpi'(x) + \varepsilon_{1x}(x) + \varepsilon_x(x,y),\]

\[(2.10) \quad z_y(x,y) = \Upsilon'(y) + \varepsilon_{2y}(y) + \varepsilon_y(x,y),\]

where \(\varepsilon_1(x), \varepsilon_{1x}(x) \rightarrow 0\) as \(x \rightarrow \infty\); \(\varepsilon_2(y), \varepsilon_{2y}(y) \rightarrow 0\) as \(y \rightarrow \infty\) and \(\varepsilon(x,y), \varepsilon_x(x,y), \varepsilon_y(x,y) \rightarrow 0\) as \(x\) or \(y \rightarrow \infty\).

Remark 1. Analogues of Theorem 1 and its Corollary can be proved for the following Cauchy problem: Let \(\varpi(x)\) and \(\Upsilon(y)\) be functions of class \(C^1\) defined on \(0 \leq x \leq a\) and \(0 \leq y \leq b\) respectively. Let \(\Gamma: x = x(u), y = y(u)\), where \(0 \leq u \leq 1\), be an arc of class \(C^1\) joining \((0,b)\) and \((a,0)\). Let \(x'(u) > 0, y'(u) < 0\). Such a curve has no tangent parallel to either axis and is therefore non-characteristic. Consider solutions of the problem

\[(2.11) \quad z_{xy} = f(x,y,z,p,q), \quad z(x(u),y(u)) = \varpi(x(u)) + \Upsilon(y(u)).\]

For this problem an existence theorem, corresponding to (*) , is proved in [1] (cf. p. 840). As in (*), \(f\) is assumed bounded on \(D_{ab}\). Consider the
case where \(f \) is unbounded. Let \(M \) be a bound for the functions \(|\sigma(x)|,
|\mathcal{U}(y)|, |\sigma'(x)|, |\mathcal{U}'(y)| \), and let \(C \) be a bound for \(|f|\) on the set \(R_{ab} \times \mathbb{S}(z,p,q) : |z|, |p|, |q| \leq M^2 \). Then the theorem provides the existence of a \(C^* \) - solution of (2.11), on the common part of the two \((x,y)\) - sets:

\[
\begin{align*}
(2.12) & \quad \max (0, x(u) - d) \leq x \leq \min (a, x(u) + d),
 y = y(u), \ 0 \leq u \leq 1, \\
(2.13) & \quad x = x(u), \ \max (0, y(u) - d) \leq y \leq \min (b, y(u) + d), \ 0 \leq u \leq 1,
\end{align*}
\]

where \(d = \min \left(\frac{M^2}{C^2}, 2M/C \right) \). Let \(L \) be the boundary of the common part of

(2.12) and (2.13). Let \(d_0 \) be the minimum distance between \(L \) and the curve \(\Gamma \). Then it is seen that the solution exists on

\[
(2.14) \quad \max (0, x(u) - d_0) \leq x \leq \min (a, x(u) + d_0), \ y = y(u), \ 0 \leq u \leq 1.
\]

The part of the boundary, that is disjoint from the boundary of \(R_{ab} \), consists of two non-characteristic arcs of class \(C^1 \). Sets like (2.14) will be called neighborhoods of \(\Gamma \).

The following hypotheses are analogous to Hypotheses A and B.

Hypothesis A. \(f(x,y,z,p,q) \) is a continuous function of five variables, on the set \(D_{ab} \). \(\Gamma : x = x(u), \ y = y(u), \ 0 \leq u \leq 1 \), is a non-characteristic arc of class \(C^1 \), joining \((\alpha,\beta)\) and \((\gamma,\delta)\), where either \(\alpha \) and \(\delta \) are zero, or \(\beta = \beta \) and \(\gamma = \gamma \). \(\sigma(x) \) and \(\mathcal{U}(y) \) are two \(C^1 \) - functions defined for \(\alpha \leq x \leq \gamma, \ \beta \leq y \leq \delta \) respectively. \(M \) is a bound for the function \(|\sigma(x)|,
|\mathcal{U}(y)|, |\sigma'(x)| \) and \(|\mathcal{U}'(y)|\) and \(C \) is a bound for \(|f|\) on the product space \(R_{ab} \times \mathbb{S}(z,p,q) : |z|, |p|, |q| \leq M^2 \). There exists a positive number \(d \), with the property that \(d = d(M, C) \) depends only on \(M \) and \(C \), but not on \(\sigma(x) \) and \(\mathcal{U}(y) \), and that a \(C^* \) - solution of (2.11) exists on the set

\[
\max (0, x(u) - d) \leq x \leq \min (a, x(u) + d), \ y = y(u), \ 0 \leq u \leq 1.
\]

Hypothesis B. For \((x, y, z, p, q) \in D_{ab},

\[
(2.15) \quad |f(x,y,z,p,q)| \leq \varphi(x,y,|z|,|p|,|q|),
\]
where \(\varphi(x,y,z,p,q) \) is a continuous, non-negative function defined for \((x,y) \in R_{ab}\) and \(z,p,q \geq 0\), non-decreasing in each of the variables \(z, p\) and \(q\). \(\Gamma' \):
\[x = x(u), \quad y = y(u), \quad 0 \leq u \leq 1, \]
is a non-characteristic arc of class \(C^1\), joining \((0,b)\) and \((a,0)\). \(\sigma(x) \) and \(\tau(y) \) are two \(C^1\) functions defined, respectively, on \(0 \leq x \leq a, 0 \leq y \leq b\), and non-decreasing in \(x\) and \(y\). Furthermore \(\varphi\) has the property that all \(C^*\) solutions of (2.11), existing on a neighborhood of \(\Gamma' \), can be continued to the entire rectangle \(R_{ab}\).

The following theorem and its corollary are analogues of Theorem 1 and its Corollary.

Theorem 3. Let \(f \) satisfy Hypotheses A" and B"." Let \(\sigma(x) \) and \(\tau(y) \) be two \(C^1\) functions defined on \(0 \leq x \leq a, 0 \leq y \leq b\) respectively. Let \(\Gamma' \):
\[x = x(u), \quad y = y(u), \quad 0 \leq u \leq 1, \]
be a non-characteristic arc of class \(C^1\), joining \((0,b)\) and \((a,0)\). Then all \(C^*\) solutions of (2.11) can be continued in at least one way to the entire rectangle \(R_{ab}\).

Corollary. If, in Theorem 3, Hypothesis B"" is replaced by Hypothesis B', the assertion remains valid.

The proofs are similar to those of Theorem 1 and its Corollary and are omitted.

Remark 2. It will be clear, from the proofs, that the above theorems remain valid if \(f, \varphi, \sigma, \tau, u\) are \(n\)-vectors (say with norm \(|z| = \sum_{k=1}^{n} |z^k| \) or \(|z| = \max(|z^1|, \ldots, |z^n|)\) if \(z = (z^1, \ldots, z^n)\)). Of course \(\varphi\) will still be a function of five variables in Theorems 1 and 3, and of one variable in the corollaries. \(f\) will be a function of \((3n + 2)\) variables. In Theorem 2, \(\epsilon_1(x)\), \(\epsilon_2(y)\) and \(\epsilon(x, y)\) will be \(n\)-vectors.

These results answer some questions suggested by Professor P. Hartman.

I also wish to acknowledge helpful discussions with him.
3. Proof of Theorem 1. (i) First, let \(\sigma(x) \) and \(\tau(y) \) be two non-negative, non-decreasing \(C^1 \) - functions defined respectively on \(0 \leq x \leq a \), and \(0 \leq y \leq b \), with \(\sigma(0) = \tau(0) = z_0 \). Then there exists a solution of (2.3) on \(R_{ab} \). To see this, let \(M \) be a bound for the functions \(\sigma(x), \tau(y), \sigma'(x) \) and \(\tau'(y) \) and let \(C \) be a bound for \(\varphi \) on the product space \(R_{ab} \times \mathfrak{C}(z,p,q) : |z|, |p|, |q| \leq 4M \). Define \(\varphi^*(x,y,z,p,q) \) to be \(\varphi(x,y,z,p,q) \) or \(C \) according as \(\varphi \) does not or does exceed \(C \). Then a solution \(z = z(x,y) \) of

\[
z(x,y) = \sigma(x) + \tau(y) - z_0 + \int_0^x \int_0^y \varphi^*(s,t,z(s,t),z_x(s,t),z_y(s,t)) ds dt
\]

exists on \(R_{ab} \), and is the limit of the successive approximations defined by \(z_0(x,y) = \sigma(x) + \tau(y) - z_0 \),

\[
z_n(x,y) = z_0(x,y) + \int_0^x \int_0^y \varphi^*(s,t,z_{n-1}(s,t),z_n(s,t),z_{n-1}(s,t),z_n(s,t)) ds dt
\]

(cf. [3], p. 4). For \((x,y) \in R_{a\alpha} \), where \(\alpha = \min(a/b, M/C, M^2/C^2) \), it is easily seen that the non-negative functions \(z(x,y), z_x(x,y), z_y(x,y) \), do not exceed \(4M \). Therefore if \((x,y) \in R_{a\alpha} \), we may replace \(\varphi^* \) in (3.1) by \(\varphi \).

So a solution of (3.1) is a solution of (2.3) on \(R_{a\alpha} \). Under Hypothesis B, this solution can be continued, as a solution of (2.3), to the entire rectangle \(R_{ab} \).

(ii) Let \(\sigma(x) \) and \(\tau(y) \) be as in the statement of the theorem and let \(z = z(x,y) \) be a solution of (1.1), defined on a subrectangle \(R_{a\beta} \) of \(R_{ab} \).

Let \(M \) be a bound for \(|\sigma'(x)|, |\tau'(y)|, |\sigma''(x)| \) and \(|\tau''(y)| \) on \(0 \leq x \leq a \) and \(0 \leq y \leq b \). Let \(z = u(x,y) \) be a \(C^1 \) - solution of (2.3) on \(R_{ab} \), with

\[
\sigma(x) = 3Me^x \quad \text{and} \quad \tau(y) = 3Me^y.
\]

Then for all \((x,y) \in R_{a\beta} \),

\[
u(x,y) > |z(x,y)|, u_x(x,y) > |z_x(x,y)|, u_y(x,y) > |z_y(x,y)|.
\]

Obviously these inequalities hold for \(x = 0 \) and \(y = 0 \). Suppose they do not hold for all \((x,y) \in R_{a\beta} \). Let \((x_0,y_0) \), \(x_0 \neq 0 \), \(y_0 \neq 0 \) be the nearest point to \((0,0) \) for which at least one inequality in (3.2) becomes an equality.
First suppose \(u(x_0, y_0) = |z(x_0, y_0)| \). Then (3.2) holds, for all \((x, y) \in \mathbb{R} \setminus \{0\} \) with the exception \((x, y) = (x_0, y_0) \). Then

\[
u(x_0, y_0) = |z(x_0, y_0)| \leq |\nabla(x_0) + \nabla_y(y_0) - z_0| + \int_0^{x_0} \int_0^{y_0} |f(s, t, z(s, t), z_x(s, t), z_y(s, t))| \, ds \, dt \]

\[
\leq 3M + \int_0^{x_0} \int_0^{y_0} \phi(s, t, u(s, t), u_x(s, t), u_y(s, t)) \, ds \, dt.
\]

This last inequality follows from (2.2), (3.2) and the monotony of \(\phi \). Finally

\[
u(x_0, y_0) < 3Me^x + 3Me^y - 3M + \int_0^{x_0} \int_0^{y_0} \phi(s, t, u(s, t), u_x(s, t), u_y(s, t)) \, ds \, dt.
\]

Strict inequality holds in this case because \(x_0, y_0 \neq 0 \) and hence \(e^{x_0}, e^{y_0} > 1 \).

But this inequality contradicts the fact that \(u(x, y) \) is a solution of (2.3) on \(\mathbb{R}^{ab} \) with \(\nabla(x) = 3Me^x \) and \(\nabla_y(y) = 3Me^y \). Hence \(u(x_0, y_0) \neq |z(x_0, y_0)| \). An analogous argument establishes the fact that \(u_x(x_0, y_0) \neq |z_x(x_0, y_0)| \) and \(u_y(x_0, y_0) \neq |z_y(x_0, y_0)| \). Hence (3.2) holds for all \((x, y) \in \mathbb{R}^{ab} \).

This means that \(z(x, y) \), its derivatives, any of its continuations and their derivatives, are majorized respectively by \(u(x, y) \), \(u_x(x, y) \) and \(u_y(x, y) \).

Let \(N \) be a bound for \(u(x, y) \), \(u_x(x, y) \), \(u_y(x, y) \) and let \(M_0 = \max(M, N) \). Let \(C_0 \) be a bound for \(|z| \) on the product space \(\mathbb{R}^{ab} \times \mathcal{F}(z, p, q) \): \(|z|, |p|, |q| \leq 4M_0 \).

We may consider \(\nabla(x) \) and the value of \(z \) on \(x = a \) as the initial data for a solution of \(z_{xy} = f(x, y, z, p, q) \), on the rectangle \(a \leq x \leq a + d_0, 0 \leq y \leq \beta \). Under Hypothesis A, and because of the choice of \(M_0 \), a solution exists on a square of side \(d_0 = \min(d(M_0, C_0), a - \alpha, \beta) \). This solution together with the given one serves to define \(z(x, y) \) on the square \(a \leq x \leq a + d_0, 0 \leq y \leq d_0 \). If \(a + d_0 \neq a \), then the value of \(z \) on the side \(x = a + d_0 \) together with \(\nabla(x) \) are initial data for a further solution of \(z_{xy} = f(x, y, z, p, q) \). As has been shown above, this initial data and its derivatives are majorized by \(M_0 \).

Hence under Hypothesis A, we get a solution on another square with specified side. We can repeat the argument, until \(\mathbb{R}^{ab} \) has been covered by a finite
number of squares on each of which \(z(x,y) \) is defined to be a solution of
\[z_{xy} = f(x,y,z,p,q). \]
Obviously the function \(z(x,y) \), so defined on \(R_{ab} \), is a solution of (1.1), and this is a continuation of the solution as stated in the theorem.

4. Proof of Corollary. We wish to show that Hypothesis B is a particular case of Hypothesis B. To do this, it only remains to show that if \(z(x,y) \) is a \(C^1 \)-solution of
\[(4.1) \quad z(x,y) = \sigma(x) + \mathcal{U}(y) - z_0 + \int_0^x \int_0^y \varphi(z(s,t) + z_x(s,t) + z_y(s,t)) \, ds \, dt, \]
existing on a subrectangle of \(R_{ab} \), it can be continued, in at least one way, to the whole of \(R_{ab} \). In (4.1) it is assumed that \(\sigma(x) \) and \(\mathcal{U}(y) \) are non-negative, non-decreasing \(C^1 \)-functions as in Hypothesis B. The method of proof is similar to that used in Theorem 1. First, we obtain a "local existence" statement for (4.1), and then the existence of a priori bounds for the solution and its derivatives.

Let \(\sigma(x) \), \(\mathcal{U}(y) \), \(M \) and \(C \) be as in part (i) of the proof of Theorem 1. It was pointed out there, that there exists a solution of (4.1) on \(R_{dd} \), where \(d = \min \left(a, b, \frac{3M}{C}, \frac{3M}{C^2} \right) \).

We now show that there exists a constant \(K = K(M, a, b) \), depending only on \(M, a \) and \(b \), and not on \(\sigma(x) \) and \(\mathcal{U}(y) \), such that if \(z(x,y) \) is a \(C^1 \)-solution of (4.1) defined on \(R_{ab} \), or on a subrectangle of it, then the non-negative functions \(z(x,y), z_x(x,y) \) and \(z_y(x,y) \) are bounded by \(K \). To see this, let \(r(x,y) = z(x,y) + \int_0^x \int_0^y \varphi(r(s,t)) \, ds \, dt \).

By differentiating (4.1), with respect to \(x \) and \(y \) respectively, we get
\[(4.3) \quad z_x(x,y) \leq M + \int_0^y \varphi(r(x,t)) \, dt, \]
\[(4.4) \quad z_y(x,y) \leq M + \int_0^x \varphi(r(s,y)) \, ds. \]
The addition of (4.2), (4.3) and (4.4) results in

\[(4.5) \quad r(x, y) \leq 5M + \int_0^x \int_0^y \varphi(r(s, t))dsdt + \int_0^x \varphi(r(s, y))ds + \int_0^y \varphi(r(x, t))dt.\]

Let \(R(t) = \max \{r(u, v) \mid (u, v) \in R_{ab}\} \), where the maximum is taken over all \((u, v)\) such that \((u, v) \in R_{ab}\), \(z(u, v)\) exists and \(u + v \leq t\). \(R(t)\) is a continuous, non-negative, non-decreasing function defined for \(0 \leq t \leq a + b\). Also \(r(x, y) \leq R(x + y)\).

From (4.5) and the monotony of \(\varphi\) it is seen that

\[(4.6) \quad r(x, y) \leq 5M + \int_0^x \int_0^y \varphi(R(s + t))dsdt + \int_0^x \varphi(R(s + y))ds + \int_0^y \varphi(R(x + t))dt.\]

The double integral over \(R_{xy}\), is not greater than the double integral over the triangle bounded by \(x = 0\), \(y = 0\) and the line through \((x, y)\) with slope \(-1\).

Hence on making the change of variables \(s + t = u\), \(s - t = v\), it is seen that the double integral on the right side of (4.6) is not greater than \(\int_0^{x+y} u \varphi(R(u))du\). An obvious change of variable, in the single integrals, reduces them to \(\int_0^{x+y} \varphi(R(u))du\) and \(\int_0^{x+y} \varphi(R(u))du\). Replacing the lower limits, in the single integrals, by zero does not decrease their values, and so (4.6) implies

\[(4.7) \quad r(x, y) \leq 5M + \int_0^{x+y} (u + 2) \varphi(R(u))du.\]

Hence

\[(4.8) \quad R(t) \leq 5M + \int_0^t (u + 2) \varphi(R(u))du.\]

Let

\[H(t) = 5M + \int_0^t (u + 2) \varphi(R(u))du, \text{ so that } R(t) \leq H(t).\]

Then \(H'(t) = (t + 2) \varphi(R(t))\). Since \(\varphi\) is non-decreasing \(H'(t) \leq (t + 2) \varphi(H(t))\), and so

\[(4.9) \quad \int_0^{a+b} H'(t)dt/\varphi(H(t)) \leq \int_0^{a+b} (t + 2)dt = \frac{3}{2}(a + b)^2 + 2(a + b).\]

Letting \(H(t) = u\), (4.9) becomes

\[(4.10) \quad \int_{5M}^{H(a + b)} du/\varphi(u) \leq \frac{3}{2}(a + b)^2 + 2(a + b).\]

In view of (2.5), it is clear that there is a constant \(K = K(M, a, b)\) such that
\(H(a + b) \leq K. \)

The continuation can now be proved in a manner exactly analogous to the proof of Theorem 1. One can cover \(R_{ab} \), successively, by squares of side \(d \), on each of which a solution exists. The details are omitted.

5. **Proof of Theorem 2.** Suppose that the \(C^1 \) - solution \(z = z(x,y) \) of (1.1) exists on \(R_{ab} \), and consider \(R_{ab} \), where \(R_{ab} \supset R_{ab}^\prime \). We may replace \(\lambda(x+y) \) in (2.6) by the constant which is the max \(\lambda(x+y) \) for all \((x,y) \in R_{ab} \). Absorbing this constant in the function \(\varphi \), we get condition (2.4). Hence the proof of a continuation of the solution to \(R_{ab} \) is contained in the Corollary to Theorem 1. Since \(R_{ab} \) is any rectangle, the continuation assertion of Theorem 2 is proved.

Let \(r(x,y) = |z(x,y)| + |z_x(x,y)| + |z_y(x,y)| \). Let \(|\sigma(x)|, |\mathcal{T}(y)|, |\mathcal{U}'(x)| \) and \(|\mathcal{U}'(y)| \) not exceed \(M \), for \(x \geq 0 \) and \(y \geq 0 \), where \(M \) is a constant.

From (2.6), it is seen that

\[
|z(x,y)| \leq 3M + \int_0^x \int_0^y \lambda(s + t) \varphi(r(s,t)) ds dt.
\]

Differentiating (1.2), with respect to \(x \) and \(y \), respectively, we get

\[
|z_x(x,y)| \leq M + \int_0^y \lambda(x + t) \varphi(r(x,t)) dt,
\]

\[
|z_y(x,y)| \leq M + \int_0^x \lambda(s + y) \varphi(r(s,y)) ds.
\]

Adding (5.1), (5.2) and (5.3),

\[
|z(x,y)| \leq 5M + \int_0^x \int_0^y \lambda(s + t) \varphi(r(s,t)) ds dt + \int_0^x \lambda(s + y) \varphi(r(s,y)) ds + \int_0^y \lambda(x + t) \varphi(r(x,t)) dt.
\]

Let \(R(t) = \max r(u,v) \), where the maximum is taken over all \((u,v) \in R \) satisfying \(u + v \leq t \). \(R(t) \) is a continuous, non-decreasing function defined for \(t \geq 0 \).

Also \(r(x,y) \leq R(x+y) \). Proceeding exactly as in the argument following (4.6) above, one easily derives the inequality

\[
R(t) \leq 5M + \int_0^t (u + 2) \lambda(u) \varphi(R(u)) du.
\]
Letting $H(t)$ be the expression on the right of this inequality, and proceeding as above one easily sees that

$$\int_{\mathbb{S}^2}^{H(t)} \frac{du}{\varphi(u)} \leq \int_0^t (u + 2) \lambda(u) du. \quad (5.6)$$

Because of (2.7), the right side of (5.6) is bounded as $t \to \infty$, and therefore

$$\lim_{t \to \infty} \int_{\mathbb{S}^2}^{H(t)} \frac{du}{\varphi(u)} < \infty. \quad (5.7)$$

Hence, noting (2.5), we conclude that $\lim_{t \to \infty} H(t) < \infty$ and therefore $\lim_{t \to \infty} R(t) < \infty$.

Hence $r(x,y)$ is uniformly bounded in the quarter plane \mathbb{R} by a constant N, say.

This, together with (2.6), implies

$$\int_0^x \int_0^y |f(s,t,z(s,t),z_x(s,t),z_y(s,t))| ds dt \leq N \int_0^x \int_0^y \lambda(s + t) ds dt. \quad (5.8)$$

The double integral on the right of (5.8) is not greater than the corresponding integral taken over the triangle bounded by $x = 0$, $y = 0$ and the line through (x,y) of slope -1. On making the change of variables $s + t = u$, $s - t = v$, we see that the integral on the right of (5.8) is not greater than $\int_0^{x+y} \lambda(u) du$, and so (2.7) implies that this integral converges absolutely as x or $y \to \infty$. Hence $f(x,y,z(x,y),z_x(x,y),z_y(x,y))$ is absolutely integrable over the quarter-plane \mathbb{R}. Write

$$\int_0^x \int_0^y f(s,t,z(s,t),z_x(s,t),z_y(s,t)) ds dt =$$

$$\left\{ \int_0^\infty \int_0^\infty \int_0^\infty \int_0^\infty \int_0^\infty \int_0^\infty f(s,t,z(s,t),z_x(s,t),z_y(s,t)) ds dt \right\}$$

Let the integrals on the right side of (5.9) be K, $\varepsilon_1(x)$, $\varepsilon_2(y)$ and $\varepsilon(x,y)$ respectively. Then (5.9) and (2.2) imply (2.8). The limit assertions of Theorem 2 for $\varepsilon_1(x)$, $\varepsilon_2(y)$ and $\varepsilon(x,y)$, are obvious since the variables tending to infinity occur as limits in the integrals. Differentiation of (2.8), with respect to x and y respectively, gives (2.9) and (2.10). In these cases the variable which tends to infinity may occur in the integrand. Then we proceed
as follows: Consider the case of

\[\varepsilon_x(x,y) = - \int_y^\infty f(x,t,z(x,t),z_x(x,t),z_y(x,t))dt. \]

Because of the uniform boundedness of \(r(x,y) \) in \(R \) and (2.6), it follows that

\[\int_y^\infty \left| f(x,t,z(x,t),z_x(x,t),z_y(x,t))dt \right| \leq \varphi(N) \int_y^\infty \lambda(x+t)dt. \]

By a simple change of variable, this last integral becomes \(\int_x^\infty \lambda(t)dt \)

which \(\to 0 \) as \(x \) or \(y \to \infty \). Hence \(\varepsilon_x(x,y) \to 0 \) as \(x \) or \(y \to \infty \). Similar considerations apply to the other limits. This concludes the proof of Theorem 2.

THE JOHNS HOPKINS UNIVERSITY

References

