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Section 1, Introduction.
Let G be a group of transformations on a topological space E. If peE
we denote by Gp the set of transformevions in G which keep p fixed. If

a subgroup of G, we denote by (H) the totality of subgroups of G of the form

Y’Y-l with x in G, We denote by L(G,E) the totality of (GD) as p varies over

E. The orbits Gp and Gq through poirnts p and g of E are called equivalent if
(Gp) = (Gq). Thus G has but a finite number of inequivalent orbits in E if and
only if L(G,E) is a finite sets, This is the case for example if E is a compact
differentiable manifold and G is a compact group of differentiable transform-
ations (cf. section 7).

The main results are the following,

THIOREM 6.1, Let G be a compact Lie group operating faithfully on a
separable metric n-dimensional space E, Assume G has only a finite number
of inequivalent orbits in E. Then there exists a homeomorphism ¢ of E into a
Euclidean space E™ and an isomorphism G of G into the unitary group on 5
such that ¢ is equivariant with respect to ©, il P @(gp) = 6(g) ¢(p) for
all pel, geG, Furthermore, if G has no fixed points on E, then @, may be
so chosen that ©(G) has no fixed points on E" except the origin,

THECREM 2,1. Let G be a compact Lie group of transfermations on a
completely regular space E. Then at cach point p of E there exists a pseudo=
section to the orbit through pe (See section 3 for definitions),

THEOREM lLe2. Let G be a compact Lie group of transformations a separable

o -

metric finite dimensional space E. Assume all the orbit ar= eaquivalent. Then
’ .

there exists a finite set of local cross-sections whose orbits cover E,




2.

Theorem 2.1 on pseudo-sections is a nore general version of a theorem
first proved by Montgomery and Yang for spaces satisfying suitable connect-
ivity conditions. The proof of Montgomery and Yang is strictly topological;
in contrast, our proof hinges essentially on producing a suitable representa-
tion of the transformation group.

From the point of view of transformation groups, one can obtain quite
directly some inforrmation about the conjugacy of subgroups of a compact Lie
groupe Thus we can obtain the result:

THEOREM 7.1. In a compact Lie group, any set of (connected) analytic

subgroups whose normalizers are mutually non-conjugate (under an inner autoe-

nmorphism) is finite, Any set oi semi-simple analytic subgrouns which are
rutually non-conjugate is finite,

This result is useful in finding conditions under which L(G,E)iasitinite,
This gquestion will be taken up in & future paper.

It is oi interest to note that Thecrem 2.1 yields as a consecuence the

result of Montgomery and Zippin thet nearly closed subgroups of a compact

Lie group are conjugate (see Gorollary 3.2 in seetion 3],




Section 2, Faithful representations of orbits

LEDMA 2,1. Let H be a closed subgroup of the compact Lie group G. Then
uhiere is representation a of G by unitary transformations on the finite dimen-—
sional complex Euclidean space E" and a noint peE™ such that a-l(a(G)h) = H.
If H 4 G, a can be so chosen that a(G) keeps only the origin fixed,

Proof. If G = H, the lemma is oLvicusly true. We assume therefore G + He
For auy compact Lie group F containing the closed subgroup H, tliere exists an
irreducible representation pF whose restriction to H contains the trivial unit
representation (cf. Chevalley "Theory of Lie Groups", vol. 1, Prop. Sriaorlen

211). Taking F to be a closed sukbgroup of G properly containing H, the

representation ﬁF is contained in the restriction to F of some representation
o6 dde), i WPron iy pe 191 )% Meideniote this representation of G by a
Let VT,EF denote the representatiron cpaces of @F,aF respectively., Select any

Duint: qiothier than rigin in each VF which is fixed under 3_(H) and set
A

1(aF(G)q). S e ‘F HF (a1l B W properly)s  Ther & 4

onpact subgroup of G containing He If K contains H properly, then B” is not
R

thie unit representation and thus B A) + 3 (h) Now H (DR =g (C) IR

K X i

totality of elements x of K wiﬁl a¢(~ =g and, sineelqeV ccln01des
i K

(G A ) ) s K Sl e o fx-7? X 4 @ that'is,
4

COI o 1@d A i Tene s H = K et (el
K R

is next to be observec that any (well-ordered) descerding
commact subgroups of a compact Lie group

onl;” & iinite number of subgroups of tie seame dimension can occur and  oniliy

-

a firiie muver of dimensions can occur. On the other hand, wo can clearly well

order a subset of the subgroups I' comeining H - say . F i e (o)

Y) s0 as'to obiain & strictly descending chain

(all & < ) i bl vite mroserty Hi= (] Ja (all ¢ < yo) Hence
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vilisea i iaiie fordiaal e Sl an it s W Set

F ®
N 1 o
;2 e hE S o e (direct sum), ard p = (qla"':

¢ . - Iy - ool X
ig ¢ non-zero element of VF (@ =" e s VL henic 1(a(G)_/

4+ o®e a
] n

A4

i

i
o . a"lF(aF(G)qi) = HF il fides d, as asserted in thc lemma.

1
TG + G, we could have selected tic aF in ithe construction above
H
se Le 1ot contain the trivial unit representation of G, For G beirg compact

e ic & wirect sum of irreducible ieniescntations; upon omitting from the sum

cie triviel representations, wc obiain a representation whose resiriction to

§ coutedins B out which does ot coateil. wie trivial represcutation, Selecting
Iﬂ

Huslieacl it suelian aF, Wwe obtail: an @ uhich does not coutair vhe trivial repre~

. 1

; : Y : NI i 11 . Sy S
Ueitbaciion oG, Henee the onl, | fitled poinl of a(G) ir B is the origine
DeFTAITION. Let G be « compac. grouwn operating on a Lopological space E.

4 Geequivariant map of G dinte a firnite dinensional compler or real lbuclicean

5 ﬁﬁI‘I . Aol e g WI\‘T $E -] L a b o
cpace B is ¢ continuous map ¢ of B inte E° together with a coiil inuous hLomo-

S gAY

. crphist. inte ithe unitary group o & such that S(gle(p) = ¢{gp) for all
es, geGe A Geequivariant map ie calicd a Geequivariant horeororphism if the

cosceclated @ is a homeomornilisii,

LA )

Yl

he associated © of a G-equivariant houeomorphism is a:: isonorphism if
o group G operates faithfull;- on E.
N
T o Pty SR Mo s L T 5 - e S . . ‘\ o = 2y T RS & S
e roaert that' a comblex Buclicdearn space B can be ddenuiiica 1l &
iy b : Sl =2N i iy Tan et N ;
Selaieal e i o e peal fuciii dean B i foaa Buclideass B cen e
viiycngedimarura by to a compler: fieuls deen i Thesc navural isomornliisns
cotvert Oeequivariant maps irte corplexn Euclidean space to G-equivariant maps
inte real Duclicdean space Al ViCC=VCi'Sde
The following is a fundamcrtel recull about extensions Hf Geequivariant

wEnE e w0 by Gleason (Broc. i or, Listhy Soe. wel L (219500 hps SR e
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GLEASCI 'S LigiA: Lel G te a comsoct croup operating on a completely

4.

(resp. closed) subset

: : ! : o i N
isvariant under G, Then any G-equivariarw :ap of F into B cen be extenced

regular (resp. aormal) space b and let F te a corpact

N
tc a G-equivariant map of E into E

For the saxe of cornpleteness, o ropeat ithe proof or this leumna Let

™
4

¢ ve a coatinuous map of I into K, cuc let © bLe a homomorphis+ of G into the
b P R v hEs 7 i
nnitery group of B with ol(gp) = Otg) olp) for ell peF and geG, fatend

¢ to a coutimious wap “( of B into E  (Tictje Extension Lemmz). Set

$ G- el

o
Cznoension i sinee 3

-1

@ (glp)

=

fomy G et

~

3 Uil S el 6 G & compact Lic sroup of transfor:atichis on a com-

nibobeldsarcnn larispace (Bl Lt pl"..’ B be any finitc seuv of points off L,

gl tlere it a Geequivariamt nap (¢,8) of & with ¢ & homeouorpiisr on the

orbics tiroush pl,'° > P anc @(G) kezping only the 'origin Fised if G 2as no

i e oimsion il
- e S

L.

Hiw=0G ol By idlemrsg) 19 T a representation a. of G b
i 9,
’ - TN l o YL v .
vy hrensiormations on Buclidean space 1 poLIEE
: i

B0t be

L
Wil e ant

-9

H and a, (G) kecps only bhe origin fixed if Ki

: I L
Lev ¢ (gn ) = a_(g)p s litens ne dien ¢ is a homeomorphisk of tiic orbit
L i 3 .
N ’ \ : I
throuﬁlijf cot B = B (Ciirect ideitify B 1 viti: a sub-




I . g B\ 3 1 .
soace of b 1 vhe % R =lo i\ p)ofor o i tile orbit
L -

hoieonorphism of F into EN, Ly Glea-

tinrough p s o anoE S el =G
n

it
\ . 5 - 5
Then (0,8) ic clearl, a G-equivariant

I
{ 5 | . . ' sEN A .
son's lemna, (¢,0) can be extended to o G-couivariant map of E into E eLeich

ve Genote by (¢,8) also. If G has no fired points on I, then Hi + Giforall

!
o P o) el
enilvtheRerilad pioi BRI rcdy

i and hence ©(G) keeps




Section 3., Afxistence of Hseudo~secilons.
DEFIIITION,., Let G be a compact Lic group of transformations on a

logical space E, and let p € E. A pseudoscction to thc orbit Gp at p

closed subset K containing v satisfying: 1) E is invariant under the isotropy

group Gp; 2) there exists a continuous corss-scction map £ into G of a
neighborhood U of the coset Gp in G/G sud: that the mapping (u,q) —3 f(u)g
: D .

is a homeomorphism of the product space U x K onto a neighborhood of pj 3)

~

VK e cenpbyeif o le Gl Gy

P

L pseudo-section is closely related to a notion employed by Eoszul

(Colloques Intern, de CNNS, Strassbourg, 1953, pp. 137-41) and its existence
haa becn o 3 o o] -he caa £ ocorm + o 9 Pferontiabl 4 an
has beecn proved by him in the casc of compact groups of differentviable trans-
formations on a differentiable manifold,
In case all the orbits in E are equivaler

a "local cross-section at p',

K is a local cross—section at p to the orbit through p, vhen gk is
2 O Asdl) (&)

Gisioint from K for element g of G which: is not in the isotropy subgroup G .
>} i O A 0

%

Thus G €016 Eorlall g in K, 'Since inolcompact (lie proup | 1s eonjugale o a
o p

proper subgroup of itself, G =G _ for all q in K. As a result distinct

g D
poirts of K Lelong to distinet orbits., A local cross-section at can be
P

characterized as a closcd subset K suth that; 1) distinct poimts of K lie

in distinct orbits; 2) GD = Gq for each q in k; 3) GK is a neighborhood
> L

of pe Thus a local cross-section K at p is a local cross-section at all of
its points ihich are interior to the set GK, We define a "local cross-section'
to be a local cross-section at sore point,

a pscudo-section at p anc¢ g €& G, then gK is a pseudo-scction




8e
- - - = ' - ' - o i .
LEITIA 3,1s Let G, G be compact Lic groups of transformetions on the space
3t : . . 0 : 1 :
B, E rcsmectively. Let ¢ be a continuous map of E irto B, let @ be a

Lomomorphis:: of @ into G', and asswe ¢(gq) = ©(g)e(q) for all g & &, g & E.

A5

. e L t 5 . | . ~l ; -
Lot p e E, lct K be a nseudo~-section t¢ w.c orbit G ol(p) at ¢(p) and assume

—1(

g > L3S 5 - 0 ! giey e
¢ is 1l-1 on the orbit Gp. Then K = ¢ Ki)ds 2 iseuco=scelbion to tiic orbit

Iy

Eypolies 5 G ( >n = b and there exdists a continuous cross-
8]

B SO o il
onen ncighborkood U of G o

; R Ny o e
2 homeomorphism of U x K onto a ncighborhood ¥° of o(p).
8!

) in G'/G@(p) Silol el

rAL . - \ A ) . 1,
inzsmuch as @ is one-to-onec on tiec orlLit & G! ( )/ = GO and induccs a
i P\p it

1 1 e g S e r
nomeomorphisr of U/G onto G'/G Jiwel ddent i onaG/6l v ke G Ll
¢(p)’ 1 P ¢(p)
a pseudo-scction, we observe [irst that G K = Q”l(G' : @"1(K’)
1Y ﬁ?(p)

@"l(K') =gy llext, F: (u,() (u)q is clpa“l‘ e coniiauous

Lsos oriit Uy, U, ancd N oIElaTe

hkleo

distinct clements in U and K respectivel;, then @(f(ui)q;) = (f(ui)}@(qi) are
dL

map of U x K into E and it is onc~to-onc a

distiuct elcnents of i since Q(f(ui)) and ¢(q, ) (i = 1,2 )Jare distinet elcwents
; il
s ! .‘7! . - 5 ‘ T 7 !
of G and K' respectively, Finaliy, F is en open mapping of U i X onto

= 1

b Lt 1 3 . n Zioce (D
neighborhood ¢ 1(N Jito s ince F o ithusiiiiEisialoscudo-~seciion,
LA 542 Let G be a compact group of lincar transformations of the rcal
or complex finitc dimensional linear space V. For any veV, thorc exists a

pseudo-scction gt v to the orbit through v,

Proof. By the well~kmown unitary trick, an inner product w2y be introduced

wiich is preserved by the clements of & For any v & Ve tiel orbit VGV

B oG

subriens Bollate il c il deroticliia e subsvpace nerncadicular to the

bangenc plane to Gv at ve Clearily 1 is dvveriant wder 18y
A
denote the Lie algebra of G and the Lic sukbalsebr + Te8 tively,. let

bellabiascli tonithcllilng




Let € dencte the linear subspace spéeiined by‘xl,°", Xs’ lct y denote the

thl + see tnX ~-¢>b«plel oxptZXZ . Q:Itnxn ofifGiantio G and et W

be a seightorhood of zcro in G on which th: map ¥ is one~to-ciie anc rcgular,
Since G_ is & closcd subgroup of G, v(W) M G = v(W (1 G ) for W suitably

Y = e =
siall, Selecting such & small W, we deduce thot tiie projecuion w of G onto
G/Gv 1ens Y(W Y G) honieonorphically si-differentistly onue

gfivthe coseti @ in G/G L4 Sct
v e

n \ -~ T . . = s - 5
F{u,q) = f(u)g for u ¢ U, g € L. The nan F is differentiable and regular at

2 \ 3 . - £ JL, . AL A P
the point (Gv,v) of (G/ij x L and hence b the implicit functiow: theorem F

is a homeomorphnism of a neighborhood U iz K. of (Gv,v) onto a neightorhood of

il
v in V. Since G v = v and G prescrves cCistance, there is a neightorhoocd K
v v

of v in K, which is invariant undex Gv' Since F is a homeomorphism, gK2 bE K2

; : -1 . : : Lk el
Jsiemply forigicin (U} = Gv' Let ¢ ceiiote the minimum cistance bvetween v and

4 . -1 : ! N O . : :
gv for g € G = ot (U), and let K be closec pall in K with center v arnd radius
2

efli. Then gk <D K is empty.for all z &'0 - 6., Hence K is a pseudo-section
at Ve
TIEOREM 3.1, Let G Le a commact
completely rerular space E. Then at
section to the orbit through p.

Proof. lLet p € E, By Theorerm 2,1, liere is a G-equivariant map (@,0)
e B ; X i 5 o
of £ into sone E ith ¢ one-to-one on the orbit through pe By Lemma 3,2,

8 : : b i, Gl \ )
there exists & pseudo-section K av p) to the ortit throwh o(p). Set

_1 ,1\

E=0¢ (K)o By Lema 3.1, R is a pseudo-section &t p to ile orbit through pe.

Notg. The hypothesis that G e compact is not superfluous. It is easy

to fina examples of groups of linear transformations which do not admit

nseilco-sections,




Jele
CORCLLARY 3.1, Let G be a conpact Lie group of transformations on
2 conpletely reculer space E, let U be a neighborhood of the Slclenbriy a6

and let p ¢ Bs Then there is a neighvorhood N of » such that for each

oo ¢
@R Y O sy with Ei
1 D g

Proof, Let X be a pseudo-sectior tc the crbit Gp at p. Then gK is disjoint

i 6y < 3 g ; : : b b
crom ilireor g ot im! GG llence Gl GG |1 Foriaue N IiSHnce @ 1< sG gifssivhe
P g D €9 q

neighborhood UK has the desired propertye
llotes We could have taken for ii the neighborhood UL where L is

o alil tgue BRiwieh @ C e
q p

From the foregoing we deduce the following result ovaontgomery
Zippin ("A Theorem on Lie Groups", Bull. Amer. Math. Soc., v. L8

LL8-L52).

COROLLARY 3,2. Let G be a compact Lie group, let U be a neighlorhood of
the identity in G, and let E be a closed subgroup of G. There exists a
neighvornood V of the identity such tuat any subgroun in the subset VH is
conjugate to a subgroup of d by an element in U,

Proof., Let T be the set of all closed subsets of G topeclogized by the

Oy

™

netric d(4,B) = sup C(p,B) + sup c(4,q), where A ¢ &, B ¢ E, and c{pya) is

right invariant metric on the compact ;roup G. The group G operates on

i

iy e fi translation anc ibhe nap ( A) —> ghA of G x B into E is continuous.

o

1-

Clearly the isotropy subgroup of the woint H € E is tle subgroup il, ie€e,

GP s Honileb i libe the tseb'oft aldl points Alin B with TA i GF and set N = UL,
i 1

!

Then as remcrked above, I is a ueighborhcod of K ir & anc therefore coutailus
a ball with center H and radius d .
i o
>t V be a closed ball with center at the ldentity of

closed subset of VE which reets H, then




d(FH,H) = sup c(fh,H) + sup c(FH,h) SUD ) S sup c(g,H)
it {3 10 e j ' gl emiViH
kel

S sup c'g,H) Sd
gle W 2

ana consequently FH e N,

Hidls g fsmboroupia Wi, Wibince \Hidisiial cllosed isuberoup

is lost when we ascw:e thact F is closed, Then FH

follows irinediavely that gFg-l A Gl e HiHIEAIE

B

R

tac Corollary is now complete,

ObvilousilyiFic G

Iz their result, MHontgomery &cnd Zippin do not impose

the hypothesis
that G is compact; i.e., they assume that G is a Lie group and H a compact

subgroupa

Coroliary 3,1 anc hence the

two are ecquivalent,




Section L. Finite spanning set of cross-sections.
A covering of a topological space is called star-finite if each set of
the covering meets at most a finite number of others; the covering is called

star~bounded if there is a finite number L such that each set of the covering

meets at most b others. Such & number b is called a bound of the coveringe

We require the following fact.

THEOREM Lol. Any open covering of a [inite dimensional separable regular
space admits & star-bounded open refinemente

Inasmuch as an n-dimensional separable regular (and hence netric) space
can be embecded in a bounded portion of Euclidean 2n + 1 space, Theorem el

will follow irmediately from

THEOREM h.l'. Let O be a bounded open sct in Euclidean r-space B ens

be an open covering of O, Then there exists a star-bounded open refirement of
O

Proof, Inasruch as any open sebt iu EY is a union of disjoint connected ope

scts, there is no generality lost if we aad the hypothesis that O is connected.
Assunie therefore that O is connected as well as bounded and opens
let B =0 - 0, and let c(p) = 3d(p,B) where d(p,q) is the Euclidean metric
in Er. The function c(p) is continuous on the compact set O and therefore
attains its maximum at a point Dy = Oe Set a = G(po), anc we denote the set
consisting of p, by HO. Inductively, we cefire Hn+1 = Zp Bp,Clp)) i p & Hn)
where S(p,C) is the closed ball witl center p and radius c. We next define the
of sets H(t), 0 St < ©0 as follows: H(t + na) = Zp S(pytc(p))/a)(p ¢ H
Sne Cleayly Hina )i~ Hy {ni= 041 e e %) The ‘proofs of Theoren Ny
arranged in a series of remarks,
H(ﬁ) is compacts. We vprove Uiz for t between na and (n + 1l)a by induction

1 n. The assertion is true for n = 0, sAszsuming by induction that Jr = H(na)

i




e e

disiicompan b it ite HIE Jolina = = (nVe il L I Then i =41im qk with

>

q, € S(pkfi - na) c(pk)/a) where each p is in H_. H being compact, we

can assume without loss of gererality that lim ». = p where p € Hn' Hence

k

SDE @ s ic(p)/ 8,

el i c(pk) and therefore d(g,p) o

k

IO

Consequently q e H(t), H(t) is closec and therfore compact for

na 2t S (n + 1)a, Hence H(t) is compact for all t.

NGzl

o ! - i 5 ! S - A R 7

2 Ift <t’, then H(t) € int H(t ), This follows at once from the obser—
5 1 i s 3 3 < . i 5 - . 1

vation that if ¢ < c¢' then S{p,c¢) is in the interior of Slp.ch)a

Da ZtH(t> =0 {0r=iE = oo i By dthe nreceding remark, Zt H(t) is open, We

1

now prove that it is closed'in O. Clearly it equals Zn Hn' Suppose there-

fore that g is in the closure of Zan. Then there is a point p e Zn Hr wit

d(q,p) < c(g)e Say for definiteness oe Hn' Thenia e 8(p,clp)yic Hn+l’

therefore ZtH(t) is closed in O, But U being cornected, we infer Ztﬁ(t)

I STf s i< blandialic IR ihhen ‘el o) Hés)s t - s. Suppose first tuat na

< ( S A\ < Arey 17 (%) A > < -~ S BT S ./ o= )

= e g foriisone are T dlden it here Sisial moint 'p 6 o wathid pliag (U= (b =Tna ol
Let g_ be the point on the line segment pg at the distence (s - na)c(p)/a ifigley

De then q €eH(&) and d{g. ,q) = (t -~ s)e(p)/a St = s. Now let s and t be
il 4
arbitrary with O S s < t., Then there are integers k and h suvch that

sl Bmis Sk 1o S iess Siha = 0 = () )a. By the foregoiig result, there

a point ql in H(ha) with dla,a.) =6 eha, Trductively sre get a point g

il

in I{na) such that d(qn,qn 1) Sa(n=1, **« h - k), We then have

10}

d(g,Hy) = dla,q) + ees + dlg,; H) S (6 - ha) + (ha = (h-l)a + *=

+ ((k +1)a =-8) =t - 5. Proof is uow complete,
Let S be an open covering of O. For each integer n, we sclect a finite

covering R of the compact set Hn - int H] 1 by open sets in O each of which
=1 T :

lies in sorie set of S and in the open set int Hn+l - H. _5e Let R denote the

uniorn of Rr rortally net imy seter Rn meete at most the sets of R k= -2,

1 =n+k?




wl o0, 002" Hence R ic a star-ri. "te open refinement of Se
5. Given a posilive number t, vherc exists a positive number L satisfying
the condition: if A is a set in O of diameter less than L and A meets H(t )
then A lies in a set of Re W Fariiet Ll be the Lebesgue number of the finite
open covering of H(t + 2a) by Re Lect I = diHEC) O B (s o nd s €
L = min <L1’L2)' Clearly L satisfies the required condition., We define
the nuiber L(t) to be the mazdimum of the rmumbers satisfying the condition,
Clearly L(t) decreases to zero as © increcses Lo sl G~
G (el 2'L(t) - Se For let A be a2 set in O of diameter less than
L(t) - s and .eeting H(t + s), Then there is a Do Nt g A
d(qg,li(t)) S s by Remark || above, Let Al be a ball f diameter a meeting
both H(t) and A, and set A2 = A + Al. A2 has a dianeter less than L(t) and
ncets H(t); tlerefore it lies in sore set of R. Hence A lies in a sel of
Ryland thuel Lot b s 2 E(0)ia 5
I follows directly from hienark 6 that |'L(t + 5) - L(t)| =< |3 aird
hence L(t) is a conbinuous positive function of t, 0 St < o0, loreover
LlEeie WL e o0 SR o
denote by Du, u > C, the cecomposition of B Tormew by planes X, = nu/ (
e Bndicre Xps°®® X, forr ar ortnonormal base of linear functior

fach cube of the decomposition hac ciameter u. We Cefire the secuence

[Era
4+ %L(tn); u = L(tn)/z._ty >

e e e NG 2 O I = =
of muivers tr and u, ac follows: ty 0, tn+l %

where [tn] is the largest integer less than or equal to tn. In proving

1 e G : ; . !
Theorei: Lol  no geuerality‘is lost iu asguming & = 1 and we kenceforth assume

Thenti(E =g /lis =

/
ROl
n+1/ “n

Por civen g € dn+l’ there is a point p(q) in Hn

vith d(p(q), q) S 3d(p(q),B). Theresore a{qg,B) = 3d(p(q),B) = %d(Hn,B) so

il ) T 4 y a0 97 1 o i AT T n
that d(Hp47, E) %d(Hn, B)e ' Since agHoj B) = 1, we conclude Q(ﬂn,B) =il/oh




-1, 0, 1, 2. Hence R ic a star-ii: ‘te open refinement of S.

5. Given a positive number t, therc exists a positive number L satisfying
the condition: if A is a set in O of diameter less than L and A meets H(t),
then A llies 01 & set of K.\ Fan et Ll be the Lebesgue number of the finite
open covering of H(t + 2a) by Re Lect Lo da(H(t), O -~ H(+ + 2a)) and set

L = min <L1’L2>' Clearly L satisfies the required condition. We define
the number L(t) to be the madimum of the numbers satisfying the condition,
Clearly L(t) decreases to zero as t© increcses Lo infinity.

6o L(t + 5) ZL(t) - s. For let A be a set in O of diameter less than
L(t) - 5 and ieeting H(t + s)s Then there is a point g ir A with

d(q,h(t)) 3 s by Remark |, above, Let A, be a ball f diameter s meeting

&
Lotiv H(t) and A, and set A2 — A Al. A2 has a dianever lese than L(t) and
nicets H(t); tlierefore it lies in sone set of R. Hence A lies in a seu of
e = \

R, and thus L(t + 5) = L(t) - s.

It folleows directly from lieuark 6 that | L{t + s) - L(t)]| < |s| ard
hence L(t) is a continuous positive function of t, 0 St < 00, lloreover

7 y = o

Llee s U () = /o sisiho)

Tal. i o 2l g i Sl P Tt S 1 S — '
{o We denote by Dy u> C, the cecomposition of B formew by planes x, = nu/

: : o

in =0, Ly "'), where Xl,"‘ X, forn ar ortnonormal base of Linear funectior

r s - 2 ] - s , e ; !
o 1 fbach cube of the GEeeonposIvionas MGl diicUer il JIlliclc e e the secuence

e
of mzabers t and u, as follows: t, = 0, t_ %L(tn); o= L(tn)/thiﬂ?

where [tn] is the largest integer lesg than o ual to tn. I proving

1 Sl e S : . St
Thecreii el no geuerality is lost iu assuming 2 and we kenceforth assume

e Do =il ang i/l sy =t

n+l’ “n
1 TR 1 » AL R LA : g
< gd(Hn,B). Hom' silvent g'e dn+l’ there is a point p(g) in Hn

itk dipla), a) = 2d(pla),B).  Thereiore a(q,B) = sd(plq),B) = %d(Hn,B) so

- 1 . 5 S o \ Sl (3 14l
that d(H, 4, B) = %Q(Hn, B). Since d(H_, B) = 1, we conclude d(H,,B) =i




13.
gt dH(E G~ a1 (s)) B s t)/2n+2 Qi S eisla =l a0 L Bor am B R (ED
contains all points within the distance 1/2 (t = [t] d(H[t], B) of H[L]. M e
v ‘

[s] = [t] then H(s) contains 11 points within 12l s =% d<H[t]’ Bliof HGE ).
HelEsli— e s iihen H[s] contairs all points within 1/2([s] - t)d(H[L],B)
y

of H(t) and H(s) contains all points iithin 1/2 ( s - [sj)d(H[S],B) of H[ i
S

Since ZOS(q,a) (all q & S(p,b) = S(p, a + b) for balls in EY, we infer that
H(s) cortains all points within 1/2(s - [s])d(H[ J,B) + 1/2([s] - t)d(H[t],B)
s

of H(t). Hence d(H(t), 0 - H(s)) T %( s - t)d(H _,B) = ( s - t)/2n+2.

LS T

L@ et Gh dencte the collection of closed cubes from the decomnosition Du
n

wvhich mect H(tn) - H(tn l)' Glals Mnite collection and the sct Gn =2 Q

o) ,
(211 Q ¢ Qh) is corpact. G C H(tn +1/2 L(tn) by Remark 9, and hence

G GO o Ehe lother hana [ a(HY
It

) e v = -
n nt+l /93 H(Ln—l>) (tn—l tn-Z)/

-2

plErcalitio o L(tn)/2[tn] * 3 aud therefore G does not meet H(t,_p), that is

i T = - e 3 stV i =
¢, <0 - h(tL )« As 8 result G VG . ds emply if lkli=i3,

-2 k

11. Let P be the collection of open cubes obtained by enlarging each cube
et 1) = S O

of Gn to an open cube with same center and side (1 + en)un where e, is positiv
ané satisfies

el (e 4. ! )
s GO i =3’ n+3/>'

Hhon, (Lut Gn>un/<l gl SinUs e o s eSS e 0

respectively. Hence cachh set of F ieets sets from only Fn+1 (k = =2, =1,
Gl s RIC

O nLEeeW a0 e En’ then Q nects no more than 3¥ scts from each of el En 12

iy
i

=Y

3,37 + 10T + 3T, and set F = e (ol ni= 8,1 yoee ) Thoni HUds  al shar

2 1 I : Loy h -
ane ne rore thanillOsiss it shifeoni i and 3l setg frop'k . et b =
~n+1 _ —n+2

- . ! o Y s » ity T i
bounded open refinement of S with bHound b, Proof of Tieoren lel 'is now
complete.

THEORII: Le2. Let G he a comvwact Lie group of trarsformations on a separa

netric fimite-dinensional space L, Asswie all the orbits are equivalent. The




Ly

tnere exists a finite set of local crossesections whose orbits cover Ee

Proof. Let X denote the space of orbits of 6 in E, and let m denote the
continuous map of E onto X which send each point of E into its orbit under G.
Clearly m is a homeomorphism on local cross-sections and therefore X is a fini:
dimensional separable regular space. A subset of X is called "liftable" if it
is the image under w of a subset of a local cross-section in E. Let S denote
the collection of open liftable subsets of X. Clearly S is an open covering o:
Xe Let El be a star-bounded open refinement of S with bound be. The space X i
normal and therefore the covering El is shrinkable to a covering F by closed
sets whose interiors cover X; ¥ is a fortieri star-bounded with bound b,

Now select from F a maximal subcollection of disjoint sets El. Induc-
tively, select in F - (El + eee 4 E_) a maximal subcollection of disjoint clos

izl :

sets and denote it by M o Then Ei=iM i tises it M Srith kiabicl " For other
ik = =K ' ;

wise, there is a set V ¢ Eb+2 which meets some set of Mi Gl T R R T T Y

Since no set of Mi is in M, for i 4 j, V meets more than b set ~~ a contra-
7 s

diction.

Now set L, = 2V (all V e _1\_ii) L=t e R R pod ntlan L, has a
neighborhoodvmeeting only a finite number of sets of Mi and thus Li is closed,
Shfe AN LR e

We assert that each Li dsilidtabie i el e LB Tniipeordnepbhd s iac e
sume for definiteness that i = 1, For each V ¢ Ml’ there corresponds a homeo-

morphismn of V into E such that n e Py identity and @V(V) is a local cross-

o
section in E, Eri ) e i
Let H denote the isotropy subgroup G for some definite point p in E. For eac
5y
an clement py € V and P

iie El select,an clement &y in G such that G -1 = H, Then set

= (@ =
by VRS ¥
Kl = ZV gv@v(V) (el & Ml). Tt is easily verified that Kl is closed, that




G = Eor
aq

il follqws

ay =_l:'.°J

154
el @ & Kl’ and that distinct points of Kl lie on distinct orbitse

at once that K1 is a local cross-section, and hence L, is liftable;
‘ 0

ke Let Kl’...’ Kk‘denote local cross-sections mapping onto

by m eve e =
N il Mlareyal GKl < + GLL E.




Section 5, Union of homeomorphisms.,

Let G be a compact Lie group of iransformations of a space E having no
fixed points, and let ¢ be a Gmequivariant map of I into Euclidean space with
associated heromorphism @, The map € is called an n.t. map if the represen-
tation © does not contain the trivial represerntation, i.e.,, if the origin is

e
only point fixed underA(G).
LEITMA 541. Let G be a compact Lie group of transformations of a space E,
! N
and let ¢ be a Geequivariant homeomorpnism of E into E°¢ Then there is a

! ! 1 Sl s 2N \

G-equivariant homeomorphism @1 eI it ol st mith lQl(p)[ elivdfor allypile Sl g

if @ is an ne.t, map, then ¢, car be chosel so as to be an Nete. mMape
Proof, We introduce the functions

afe) =1+ r2>/(h + r2>)i and p(r) = (1 - azﬁr)); on 0 Sr< 003

we define maps A and E of Euclidean space minus the origin into the bell of

radius 1/2 as follows: A(v) = a(lv[)[vl—lv and Biw )= ﬁ(v)]v}“lv for wile EN.

o

N
3} ) o o .
We form B x El, and set i’(p) = (@(=),w) where w is & fixed non-zero

vector in El. Set @l(p) =Y ()| Y ()| and set Ql C + ¢ (direct) where

A ! il e e )
Ob<G> cousists only of the identity transformation of Then ¢, 1s G-

equivariant,

g
7

If G has no fixed points on B, then ¢(E) does not contain the QUEANEIIBL ONE
Ny L STl N M 4 N INE e
E°, The map ¢_(v) = (A(v), B(v)) of E into the unit sphere of E' x E is equi
gt
variant with respect to @ + @ (direct) and is a homeomorphism, Clearly it is
an ne.t, map if ¢ is.

LEMMA 5,2, Let G be a compact Lie sroup of transformations on a metric

s 4 i be Amvariant subsets with B = T+ 1 Cand ' solosed,
it 2 1 2 2 4
: S ! ; : 1oz wdler
Assume there exists a G-equivariant homeomorphism ¢, of E into E 1 (i = 1,2).
4 i >

space E, and let T

Then there exists a G-equivariani homeomorphism ¢ of E into Euclidean space

aninete map ificach ©, 18 ‘an Nebe WaDs

il




17,
Proof, Ey lemma T.1 te may ascunme orat ‘@1(p)l = E g el Lo 6’Tl. By
Gleason's leima, ¢, can e exterded vo a Geequivariant wap of E into En2, which
we denote by @2 2lso.  Let dl(x,y) cenocte the mevric or. B, Then dlkgx,gy) re-

gard as a function on G x E x E 1is co.tinuous . Consequently d(x,y) = supgdl(g

V4

(all g € G) is continuous on E x E. Horeover ds,v) is 2 metricieniRoiitiic

7

5 s A \ 3 & $ S - 1 -
equivalent to dl(x,y} sineceieye iy id. all containrs a concentric d ball by defi-

-t

rition of 4, and every d ball cor e s aliconeentnilc dl pall by the continuity
efLbe Funchion do) lbiisicleanivoe tiat dlex,ay) = A(x,5)e

Set d(x) = inft (dizz,b) '+ l¢2(1) Al ¢2(t)l) - @2<t)[) Ual i taie TO}. The

M cuion dix) is continueows or &, Sero ol T03 anG non-zerc o Tw P D g

[, Al
add irion d(gx) =id(x) for all gl G, Define ¢ &s the map of E into

=N 0 :
mal 2 ziven by

(dia)p. (o), (0 alx e e ),

0 o

clearly continuous, G-cquivariant, and is 147 @l and @2 are

Neile + is clear toc that @ is ore-to-one, that it is a he.weomorphism on TO

[~

and on T] 1so. To complete the procf tizt @ is a homeomorpiisn, iv suffices

m

A4 . 1 . r 1 \ N 37
b aeronstrate that ifix el =T RaE N and 5% -3 (X then X
< n 1 23 2) (P( n) /('p( 78 a1 n

this end, we observe that d(x, ) — d(x) aund mq(xn) wﬁ>@2(x). Let tr be a point
1G5 i L
I annlaslat el (v ) = e, @ (5 - 2aiz ). () = O,
of T, with da( 0 tn) —fad( n) G o, ( n) mg(tn)i < d(xn) Sinceld(x) 0

v

Hm e, (t ) #.1in ¢,

x ) = o (x), Since ¢, is a lLomeomorphism on T,, lim t_ =
il 2 2 3 2 n

ant hence lim BT %o Proof of the Lemma is now completes




Section 6, The eubedding theoren.

Throughout this section E denotes a finite cimensional separable metric
spacc and G a compact Lie yroup of trancformatiorns on E with L(G,E) finite,
ie€e, wWith at most a finite manner of inequivalent orbits. Ly YEuclidean space

. A e Lo o et 34 Sl
Je understend finibte dimensional recl or complex Euclidean space wita & distin

e
guished origin, If Hl and H2 a-e closecd subgroups of G, we rean by Hl(—)H2

that Hl is conjugate in G to a subgroup of H2, and by Hl(<)H2 that H1 is con=

4 & 4 a2 Dol v asub Ea o 1 I X 3 ! S ! S0E H !

jugate to a proper subgroup of hz. 1P H1 (=) h2 then H, '( JH . for any d

in <Hl) and H' in (H ). The relation (S) is clearly transitive., Furthermore
2 2

if H (S)H H (=) thenH is jugate to H 3 for H. and H_ must have the
Tt dl( JH_ and dz\ )hl then nl is conjugate to H,; for lv.lc 5 ust

same dimension and the same number of connected components. Upon carrying Hl
ir ] i i Dby au inner aut hi find that H'_ and H
into a subgroup dl of H by an inner automorphism, we 1ind utnav 1 5
2
have the same Lie algebra, and therciore the same connected component cf the
!
identity. Since they have the sare number of cornected components, H SllE H2

and therefore Hl and H2 are conjugates

In the set L(G,E) we define (Hl) | ) iag H1(<)H ¢ Thisirelationiis
2 2
well defined and is a partial orderiig. We set E = the cet of all q ¢ E

p

with (6 ) = (G ), T = the set of all'q & E with (G.) = (G ) and S = the
p ofit e i : P ( g P

set of all g with (G.) < (G ); that is T_=E + S , According to a theorem
P Gt p p P

of Lontgomery and Zippin (Bull, Amer. Math. Soc., v. 48 (1542), pp. LLB=452)

(ety Ndlsc COROLEARY 3.1 above), qu &) Gq for all points g, is some

neighborhood of q. It follows immediately that Sp and Tp are closed

setsiof Be 1L is to be nobticed that Ep, Sp, and Tp are invariant under

G for any p €& E. Also, all orbits in E_ are equivalent,

P
LA 6,1, ket p e E, Then there is a Geequivariant nomsomorphism of

of Ep into Euclidean space,\which is nete if Gp%G.




19.
Proef. By Theorem li.¢ therc exists in Ep a finite set of local cross-
sections to the orbits K1,°‘°5 i istehithat B O SUGK Lkt se sl £ GR o By i Lemma
< p 1 k
241, there exists a representaiion a of G into the unitary group on the
: n g L n !
fuclidean space B and a point v other than the origin of E such that
i) a“l(a(O)v) =G and 2) o does not contain the triviel representation of
Y
G if G_ ¢ G. Let V denote tlie one-dimensional subspace spanned by v and
18,
the origin. Let r, be an inveper such that K, can be embedded homeomorph-
il i i
A e ) LA L
=R A ke i He icentify B L with the subspace
k ) o) Ll : : § :
V + ese + V of B + eee &+ E" = g1 an¢ obtain thereby a homeomorphism

Y o i nr, el O 2R = e Ca)
P, of K, into E 1 with the jroperty that ﬁi(Gp)Qi(q) @i(q) or all g ¢ K,

where Balsig iy sse t g (ri Cines Lo e e em o) DAS e irepnll the map

5i:(ng,q) ~—9(Bi(g) sila) e,y where\gie G g £ K; is a well-defined

continuous one-to-one map of (G/Gp) x Ki into En(ri+l) (s Ay emmnibic) 1o T8

is clear too that the inverse i.ap.iig is continuous,

Let . denote the map (ng,q) — gq of (G/Gp) X Ki onto GK,. FEach m,
is well-cefined since Gq Gp Lol ol Ki' iy is & homeonorphism in a
set U x Ki where U is a neighborhood in G/Gp by definition of a pseudo=-
section and hence m; is a homeomorphism throughout (G/Gp) Ot 4 kil
Set @i = 5i ° w'l. Then @i is a Geequivariant homeomorphism of GKi which
18 'nebie it Gp $ G, Since cach GKi is clesed in E, we can construct a G-

equivariant homeomorphism ¢ of E in Buclidean space by repcated applicaw

tions of lLemma 5.2, The map ¢ ic nate if Gp + G,

THEOREM 6.1'. Let G be a compeact Lie group operatins on a separable
metric finite dimensional snace E. Assume L(G,E) is finite. Then there
exists a Geequivariant homeomorphism of E into a Buclidean spice E" which

s el i iGiInasine 1 ted points din B

Proof. The set of conjugacy classes L(G,E) is partially ordered by the




205
relation S introduced above, We derine the length of L(G,E) as the maximm
number of elements appearing in a linearly ordered subset, The theorem is
proved by induction on the length of L(G,E).

If the length of L(G,E) is 1, then Ep = T_ for any p € E, and therefore

P
Boiisielosed anil, Now there e:ists a finite set of peints pl,"-, 2] in E

such that E = Epl AR Epr. By Lemma 0.1 there is a G-equivariant homeo-
morshism of E - dnto Euclidean space which is n.te if G $G. 5 = geee ding
By repeated ap%lications of Lemna 52, there exists a Guiquivariant homeo -
morphism of E into Euclidean space which is nete if Gp_ + @ifer all plech,

i
that is, if G has no fixed points in E,

Assume inductively that the theorem is truc whenever the length if less

th.n L(G,E), There obviously exists in E a finite set of points Pys®**s P,

such that E = T + see b TG BachiiT L = BT S fand heliee derigtlh
Py Pos s L P;
L(G, Sp ) S length L(G,E) - 1, i = 1,es+, r, By the induction hypothesis
- T
there is a G-equivariant homeoworphism of S_ which is nete if G has no
3
fired »noint on Sp and 2 similar assertion holds for Eo s LS R U
2l et
Lerma 5,2, a similar assertion holds for each T and also for
ol
hi s e et Tp = E, Proof of the theorem is now complete.
T
Theorem 6,1 mentioned in the introduction is simply a restatement of -

Theoren 6.1' coupled with the observation that the unitary representation
which is associated with a G-equivariant map is faithful if G operated
faithiully on E,

I£ G is a compact group operating faithfully on a space E and there
is a G—equivariant homeomorphis: ol E into Eculidean space, then E is
separable,. metric, and finite dimensional; also G i a Lie group. We show
in Section 7 that L(G,E) is fiaite. Thus the hypotheses on E of Theorem 6ol
are necessary and sufficient ifor the eoxistence of a G-equivariant homeo-

morphism into Fuclidean space.




Section 7. Groups acting differentiably, Applications,

We collect first several remerks about compact Lie groups of differ-
entiable transformations. Numbers 1, 2, and 3 below are noted independently
by ilontgomery and Yang. We include them here for the sake of completeness.

Throughowt this section G denotes a compact Lie group of differentiable

: 2 v : i o gl
transformations, 1li denotes a Cifferentiable manifold, and E= denotes a real

Buclidean n=-space with distinguished origin and n finite.
le Let G operate on i, and let p & M, There is a pseudo-section to
the orbit through p which is & closed ball submanifold (of lower dimension
in general).
Proof, The isotropy subgroupn Gp is a compact groun of differentiable

transformations keeping the point p fixed. Hence by a result of Lochner

adnissible coordinates may be introduced in a reighborhood of » with respect

to which Gp is a group of ortihogonal transformations, Since Gp keeps
invariant the tangent space at p to the orbit Gp, it keeps invariant a com-
plementary subspace K in the new coordinates. With the help of the implicit
function theorem one can see that the mapping (g,q) -->gq is a homeomorphism
of \U i Kl onto a neighborhood cf p, where U is a differentiable local
cross-section to the coset Gp in G and Kl is a ball neighborhood of p in K,
Select a ball K2 sl Kl With center » so that gK2 i K2 is empty for
g &G = Gp (see Lemma 342)e It follows that the ball submanifold K2 is
a pseudo-section,

2. If M is compact, then L(G,l1) is finite,

Egggg. We use induction on c¢im M. Let P(n) denote the assertion that
L(G,l) is finite if dim M S n, Let Q(n) denote the assertion that LG B
is firite if G is a compact girouw cf lirear transformations of En. The well-

known "unitary trick" tells us uhat a compact group of linear transformations

n
of E is equivalent to a comwvact group of orthogonal transformetions. Since
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the latter lkeeps the nit sphere Sﬁ"l invariant and sends rays into rays,
e see that Q(n) is equivalent to F(n = 1) if i = Sn—l. Also, no generality
is lost in assuming G operates faithiully for the subgroup of G operating
trivially is in every isotropy suvgroup.

The assertion P(0) is true, for then G is simply a firite group
of permutations of a finite set.

Assume row Gim i = n and P(n - 1, is true. ilence Q(n) is true. Jow
gince 1. ic¢ compact, there is a fiudve number of ball-submanifold pseudo-
secvions K

s KS throleh TpointsE 80 respectively such that

1,... l)

eles EEIC IO o Ol is cquivalent' to, a linear group on Ko If'g
S P i
il :
is not andG ' ithen gk, does noviieetiK . so that! GG G Wt foe ad L eik. o
J0) 2e a P; it
lience (Gq) = (Gp JiiForiall of G GKi, and therefore the number of eliments

.

in L(G,GKi) is no greater than the number of elements in L(G_,K.) the latter

T
Dy
beirns finite by Q(n). Hence L(G,E), which has no nore elements than

& & ]

Z; L(G, GKi) igi 8 finibe sot,

Ir. view of © he.equivalence between Q(n) and P(n - 1) when Li = Sn'l,

we conclude

AL g En) is finite if G is a compact group of linear transformations
on B,

e If L(G, M) is finite, onec can follow through our construction of
the G-equivariant embedding of I: in Buelidean space and obtain after slight
swodifications a differentiable G—cquivariant embedcing, 1f M is & compact
¢ifferentiable manifold, a short proof can be given based on the icllowing
method,.

Let B denote the set of diifere.tiable functions on .

3

iinite covering of li Ly coordiuate neighborhoods and let ‘EVa § be an open

covering with each Va 5l Ua‘ For eachi f e Bidefine [[fl[ & supp(!f(p)|+




23,
|8 £/3%% (p)]) (a1l o i p e V., all ¢ € l). B is 2 Banach space with
a a
’[fl[ &s norme. If g € G anw f is & function on M (resne on G) we define

gf to tne function f e g‘l. We say « function f on H (resp. on G) is a

representation function if tie linear swan of the set of fuuctions Gilas

finite dirensional., The renrcsentation functions on G are coutinuous
and b the Peter-Wey theorenm approxiuate uniforrly any continuous function
on G,

Ve assert noW'tnat tue represcrwation functions in B form a dense
subset of B, For givern any f & B and any positive nw.er e, there is a

neighborhood U of the identity in G such that l}gf - f]l = e/0 foriallis el

beuiisi= supgllgf[[ (alidie & @)e il Zeti v be a non—negative'continuous function

T Siry ‘\ - -7 ~ .
on G vanishing outside U with J v(g)dg = 1, the daar neasure of G being
- G

one, For any continuous function w on G, we set f . = g‘ wlgigf dvs fhe fumcti.

r\‘vG
fW igian B Mow | £o = £l = {IjﬁGV(g)gf dg - £} = [l} qvig)(gf - £lag)] =
&'G v(g) e/2 dg = e/2. vext select a represemtation function u on G such
J

that |v(g) - u(g)] < e/2s for all 5 € G. Then || f - fu{{ Slir - fvll +

{{fv - fuil S o, lioreover £ is a representstion function on M for

(*3

)
o
u(g)g,gf dg = u( Jg ot d
g (g)g,ef dg JG g, ggleefde

i

N
U

jiG u(g)gt dg = j

3 ¥ |
u( g eftido =iy
> & gl gk 5 glu

Siince fu depends lingarly on u, it follows that Gfu lies in a rinite dimen-
sional subspace of B, Thus fu is a representation function on M lying on
an e-neighborhood of f, anc thercfore the representation fuuctions in B
are cense in B,

Let fl,"', fn Le the component functions of & difforentiablc emvedding
¢ of i. into E?., We can acswie ti.at ii 1s & metric space. Tlien select approx-

imating representation functions hl"..’ h vhose functioral matrix has the




2l
same rank &s tue iuncceiongl .airix of f1,°'°, fn i.,84, dim M, Bach point
lies in a neighborhood on whici: the ..apping $q ¢ p-—$’(hl(p),"‘, hn(p))
is one~to-one and regular. Taic a finite covering by such neighborhoods
and let b denote the Lebesgue number of this covering. Then we select

representation functions kl,"', k

which are seo close to f. ,¢*s, f ‘Tes=
¢! - 1 n

pectively, that if k (p) = ki(q), i = 1,°**, n then d(p,q) < be Select from
il
the linear span in L of each Gh, and ij 8 base with first basc vegtor hy

and hj respectively, and with respect to which the operations ofsGrare

orthogonal, | Let h u.yseeih v tand e b yee e, ke o denote ithe bases for
1)1 .LSi J,l Jds j i

the linear spans of Ghi ard ij respectively. Then p ~->(hl l(p),"’,
9

kn % (p)) is & differentiable, rcrular G-equivariant houeoiordhism of
2
n

i. into a Euclidean space.

The foregoing proofioi tic existence of a G-equivariant c:bedding in
Huclidean space applies witia a slight modification to conpact subsets of a
diffcrentiable manifolc. However it camot be geieralized to arbitrary
differcntiable manifolds ior & comnact Liec group of transformations can
Lhave an infinite number of ireguivalent orbits.

5, If thc transformetion group G is not compact, then L(G, E) can be
infinite cven if E is Euclidean space end G is an algcbreic Lic group of
linear transformetions. For let G be the algebraic lirear group in B>
whose lie algebra is the set & of :abiices ii{a,b) of the form

A
C
\ 0
“he Lic algebra A is abelizn. Lot B(u) be the set of all .ia,t) with
& + bu = 0, and let H(u) be the analytic subgroup co.respornoily to B(u)e

Then Ii{u) is the isobropy subgroun of the vector (0,1,m).  Thus Gilas ian
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infinite number of distirct isotropy subgroups and being abelian, L(G,EB)
is infinite.

THEOREM 7.1, Let G bc a compact Lie group. Then therc exist at most
a finite number of mutually non-~conjugate subgroups which are normalizers
of analytic subgroups. Morcover, tnere exist at most a finite number of
mutually non-conjugate semi-simple analytic subgroups.

Proof. Llet A denote the Lic algebra of G, let E cenote the exterior
algebra of A, and let P denotc the projective space of onc dimensional
lineur subspaces of E, Fach linear subspace b of A determines a point in
P by the Grassman éorr sporidance; ti:is point we denote by Bl The adjoint
representation of G on A induces a representation m of G had by projective
transformations of P and clearly a subgroup N of G keeps a lincar subspace
B invariant if and only if nw(ll) kecps the point B¥ fixed, If H is an
anal;tic subgroup of G and B is its Lie algebra, then et if anad
ordy if Adx(B) = B, and therefore if and only if w{x)(B¥) Cohsequently

a subgroup N is a normalizer oi some analytic subgroup of G if and only if

Juwith B a Lie subalgebra of A, Since L(n(G), P) is finite,

o4
ray

N = 1™ w(c)
B
G has at most a finitc number of mutually non-conjugate normalizers of

analytic subgroups.

In order vo prove the secoud part of the theorem, it suffices to prove
r iy £

tuat there are only a finite nwiler of distinct semi-simple analytic sub-
groups which have the same nori:alizer, Upon considering the correspoi:ding
Lic algebra, it suffices to prove that a Lie algebra contairs only a finite
sumber of distinct semi-simple ideals. This follows in turn from the fact
that (1) the 1iuear span of the seri-simple ideals in a Lic algebra is semi-

simple and (2) a semi-simple Lic algebra is the direct sum of all is minimal




ideals and thercforc has vubt & Jinite number of idecalse

The Johns nopkins University
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