REACTIONS OF HEME CATALYSTS AT
NANOCRYSTALLINE TiO₂ THIN FILM INTERFACES
WITH ORGANOHALIDE POLLUTANTS

by

Tamae Ito

A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
October, 2006
Abstract

Organohalide compounds are one of major pollutants on Environmental Protection Agency’s (EPA) contaminants candidate list (www.epa.gov.safewater). Chapter 1 represents the overview of environmental detoxification of groundwater contaminants, electron transfer mechanisms, and the advantages of surface modified nanocrystalline TiO$_2$ thin films. Chapter 2 describes the enhanced reactivity of heme/TiO$_2$ compared to heme in fluid solutions. The photoreduction of organohalides, CCl$_4$, CBr$_4$, and CHCl$_3$ and chloroacetanilides alachlor (2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide) and propachlor (2-chloro-N-isopropylacetanilide) by iron(II) protoporphyrin IX chloride (heme) in fluid solution and anchored to a mesoporous nanocrystalline (anatase) TiO$_2$ thin film immersed in solution is reported. The hemes were reacted with organic halides in the dark. Second-order kinetic rate constants of heme/TiO$_2$ were quantified and were found to be larger than the corresponding rate constants for heme in fluid solution. Chapter 3 explains that the synergy effect of heme/TiO$_2$ is partially due to the negative shifts in the formal reduction potentials of the catalysts upon surface binding. The spectroscopic and redox properties of iron(III) protoporphyrin chloride (hemin) and cobalt(III) meso-tetra(4-carboxyphenyl) porphyrin chloride (CoTCP) were quantified in fluid solution and when anchored to mesoporous nanocrystalline TiO$_2$ thin films. In acetonitrile and dimethyl sulfoxide electrolytes, TiO$_2$ binding was found to induce a substantial negative shift in the M$^{III/II}$ formal reduction potentials. In DMSO electrolyte, the Co$^{III/II}$ and Fe$^{III/II}$ potentials were -559 and -727 mV versus ferrocenium/ferrocene (Fc$^+/Fc$) and shifted to -782 and -1063 mV, respectively, after surface binding. For TiO$_2$
pretreated with aqueous solutions from pH 4-9, the Co$^{III/II}$ potential showed a -66 mV/pH unit change, while the Fe$^{III/II}$ potential of hemin changed by -40 mV/pH from pH 1 to 14. Spectroelectrochemical data gave isosbestic, reversible spectral changes in the visible region assigned to M$^{III/II}$ redox chemistry with $\lambda_{iso} = 410, 460, 530, 545, 568, \text{ and } 593 \text{ nm}$ for CoTCP/TiO$_2$ and $\lambda_{iso} = 408, 441, 500, 576, \text{ and } 643 \text{ nm}$ for hemin/TiO$_2$. In aqueous solution, the CoTCP reduction potentials were also found to be pH dependent upon surface binding, with CoTCP = -583 mV and CoTCP/TiO$_2$ = -685 mV versus Fe$^+/Fe$ at pH 6. For CoTCP/TiO$_2$, the aqueous pH dependence of the potentials was -52 mV/pH.

In Chapter 4, photodriven multi-electron transfer (MET) processes are described. Hemin (iron protoporphyrin IX) has been anchored to ~15 nm TiO$_2$ nanocrystallites (anatase) in ~8 μm thick mesoporous thin films. Band gap excitation of these materials in methanol or aqueous (pH 4 or 8) solutions leads to the reduction of hemin to heme (Fe$^{III} \rightarrow Fe^{II}$) and the production of TiO$_2(e^-)$, heme/TiO$_2(e^-)$. The mechanisms and second-order rate constants for the reduction of bromobenzene, chlorobenzene, dichlorobenzene, and trichloroethylene were quantified. In all cases, the concentration of TiO$_2(e^-)$ was found to decrease to near zero before the hemes were oxidized to hemin. Comparative studies with TiO$_2(e^-)$ that were not functionalized with hemes indicate that organohalide reduction is mediated by the hemes. Reactions of 6-bromo-1-hexene with heme/TiO$_2(e^-)$ demonstrate multi-electron transfer reactivity and show that heme/TiO$_2(e^-)$ nanocrystallites deliver two electrons to RX within 4.5μs. In Chapter 5, the reactions of heme/TiO$_2$ catalysts in aqueous solution, including reaction orders, MET processes, heme mediated mechanisms, and reaction products, were examined. Hemin was found to bind to mesoporous nanocrystalline (anatase) TiO$_2$ thin films from DMSO solution, $K_{eq} = 10^5$.

iii
M⁻¹ at 298 K. The reactions of heme/TiO₂ with CCl₄, CHCl₃, propachlor, and trichloroethylene were investigated in methanol, and pH 4 and 8 aqueous solution. The reactions were found to be first-order in heme/TiO₂ and in organohalide. Second-order rate constants measured in aqueous solution increased in the order CCl₄ > propachlor > trichloroethylene > CHCl₃. The Fe^{III/II} formal reduction potentials of heme/TiO₂ were estimated by cyclic voltammetry and found to be −340 mV at pH 4 and −600 mV at pH 8 versus Ag/AgCl. Reactions with CCl₄ and CHCl₃ were faster at pH 8 than pH 4 ($k_{obs} = 14.1 \pm 0.7$ and 0.63 ± 0.03 M⁻¹ s⁻¹ at pH 4 vs. $k = 69 \pm 3$ and 1.33 ± 0.07 M⁻¹ s⁻¹ at pH 8, respectively), which was attributed to the more negative formal Fe^{III/II} reduction potential at higher pH. The rate constants for propachlor reduction were similar at both pHs. Experiments were also performed with excess electrons trapped in TiO₂, TiO₂(e⁻), and heme/TiO₂(e⁻). The reaction of CCl₄ was 20 times faster with heme/TiO₂(e⁻) compared to TiO₂(e⁻) alone. In the case of trichloroethylene, no reaction was observed for TiO₂(e⁻), but rapid reactivity was observed for heme/TiO₂(e⁻), $k_{obs} = 1.0 \times 10^{-3}$ s⁻¹ suggestive of a multi-electron transfer reaction mechanism. Dechlorinated products of propachlor and CCl₄ were identified by GC/MS analysis. Chapter 6 describes the effects of axial ligand on the reactivity of heme catalysts. The reactivity of heme complexes anchored to nanocrystalline mesoporous TiO₂ thin films, Fe^{II}/TiO₂ and bis(pyr)Fe^{II}/TiO₂, toward organohalides pollutants was investigated in pH 4 aqueous solution. Pyridine were found to bind to iron center of the porphyrins with binding constants of $9.3 \pm 0.4 \times 10^{-4}$ M⁻². Spectroscopic data gave isosbestic points at $\lambda_{iso} = 392, 456$, and 570 nm upon addition of pyridine to Fe^{II}/TiO₂. Pyridine axial ligation affected the redox properties of iron porphyrin, the estimated Fe^{III/II}/TiO₂ and (pyr)Fe^{III/II}/TiO₂ formal reduction potentials.
were $E^\circ = -900$ mV and -160 mV versus ferrocene/ferrocenium (Fc+/Fc) in pH 4. The reaction rates of FeII/TiO$_2$ with halomethanes were consistently faster than bis(pyr)FeII/TiO$_2$ complexes, partly due to the more negative reduction potentials of Fe$^{III/II}$/TiO$_2$. Multi electron transfer (MET) reactions of bis(pyr)FeII/TiO$_2$(e$^-$) with CCl$_4$ in MeOH formed no carbene adducts, suggestive of the outer sphere electron transfer mechanism when two pyridine axial ligands were present. The detection of tetrachloroethylene as a product of multi-electron transfer supported two-electron reduction of CCl$_4$. The linear free energy relationships for the second-order rate constants, k, versus thermodynamics of the reactions, ΔG, indicated the correlation between the reaction rates and the reduction potentials of Fe$^{III/II}$ and organohalides.

Advisor/Readers: Gerald J. Meyer, Kenneth D. Karlin, and Howard D. Fairbrother
Acknowledgements

First, I would like to thank Professor Gerald J. Meyer for his guidance and support in past four years. His broad knowledge and passion for science helped my thesis work and I learned a great deal. He has always cared about the environment and had desire to make it better. It was encouraging to discuss about current environmental issues with him and gave me more desire to work on the environment. I am deeply grateful for his help in improving my English skills in writing and giving oral presentations.

I would also like to thank Professor Kenneth D. Karlin, and Professor Howard D. Fairbrother for being on my thesis committee. I appreciate their valuable guidance on science as well as friendly conversations.

I would like to thank Dr. Sherine O. Obar for her advice and expertise. It was exciting and enjoyable to work and discuss about the research with her in my first and second year of graduate school. Many thanks for former and present Meyer group members, Dr. Jovan Giaimo, Dr. Georg Hasselmann, Dr. David Watson, Dr. Brian Bergeron, Dr. Paul Hoertz, Dr. Nira Birenbaum, Dr. Feng Liu, Dr. Andras Marton, Gerard Higins, Rachael Carlisle, Diane Wong, Chris Clark, Jon Stromberg, Amanda Fond, Aaron Staniszewski, Hailong Xia, Josh Wnuk, James Gardner, Amanda Morris, Shane Ardo, Wei Chen, Ramya Srinivasan, and Rob Freundlich.

Lastly, I would like to thank my father, Mikio Ito, my sister, Misa Saito, my fiancé, Bob Heilen, and all of my relatives for their precious love and supports. I am also thankful to Migiwa Tanaka and all of my good friends for their amazing friendship. It has been an inspiring time in my life. Without any of these, I would not be able to accomplish the thesis work.
Table of Contents

Abstract ... ii
Acknowledgements .. vi
Table of Contents .. vii
List of Tables .. x
List of Figures ... xi
List of Schemes ... xv

Chapter 1: Introduction to Remediation of Organohalide Pollutants-Overview 1
 1.1 Organohalides in groundwater ... 1
 1.2 Environmental remediation of groundwater contaminants: Inorganic materials 5
 1.2.1 Fe⁰ remediation .. 5
 1.2.2 TiO₂ remediation ... 6
 1.2.3 Molecular catalysts .. 11
 1.3 Electron transfer mechanisms for reduction of organic compounds 14
 1.3.1 Stepwise and dissociative electron transfer mechanisms 14
 1.3.2 Inner- and outer-sphere electron transfer ... 20
 1.4 Surface modified nanocrystalline (anatase) TiO₂ thin films 22
 1.4.1 Characteristic of mesoporous nanocrystalline TiO₂ thin films 22
 1.4.2 Functionalizing FeP/TiO₂ ... 25
 1.4.3 Advantages of molecular catalysts/TiO₂ system .. 27
 1.5 Conclusions .. 30
 1.6 References .. 30

Chapter 2: Oxidation of heme by Organic Halides at Nanocrystalline TiO₂ Interfaces 41
 2.1 Introduction .. 41
 2.2 Experimental Section .. 42
 2.3 Results ... 44
 2.4 Discussion ... 49
 2.5 Conclusions .. 51
 2.6 References .. 52

Chapter 3: Controlling Reduction Potentials of Semiconductor-Supported Molecular Catalysts for Environmental Remediation of Organohalide Pollutants .. 55
 3.1 Introduction .. 55
A1.2 GC/MS spectra of substrate: propachlor and CCl₄ 178
A1.3 Products observed from the reactions of propachlor and CCl₄ 179

Appendix 2: Cyclic Voltammetry of Molecular Catalysts, TiO₂ 181
Thin Films, and Heme-Functionalized TiO₂
A2.1 Experimental protocol .. 181
A2.2 Cyclic Voltammetry of catalysts ... 183

Curriculum Vita ... 186
List of Tables

Table 1-1. EPA National Primary Drinking Water Standard…………………………….3
Table 1-2. Environmental half-lives of halogenated compounds in aqueous solution at 20 °C…………………………………………………………………………………4
Table 1-3. One- and two-electron reduction potentials of organohalide pollutants………9
Table 1-4. Reduction potentials for dissociative and stepwise electron transfer…………16
Table 1-5. Biotransformations of RX by microorganisms in anaerobic conditions………18
Table 2-1. Rate constants for RX reduction by heme in fluid solution and on TiO₂ surface. All measurements were made at room temperature in DMSO. The errors represent standard deviations from multiple trials……………………………………………………….48
Table 3-1. Spectroscopic and Redox Properties of Catalysts in DMSO at room temperature……………………………………………………………………………………61
Table 4-1. Rate constants for Organohalid Reduction by TiO₂(e⁻) and heme/TiO₂(e⁻) in Methanol…………………………………………………………………………………………88
Table 5-1. Second-order rate constants for reduction of organohalides reactions by heme/TiO₂ at room temperature…………………………………………………………116
Table 6-1. Spectroscopic and redox properties of heme complexes in pH 4 and MeOH at room temperature…………………………………………………………………….148
Table 6-2. Second-order rate constants and ∆G for bis(pyr)Fe²⁺P/TiO₂ and Fe²⁺P/TiO₂ reactions with halomethanes…………………………………………………………158
Table A.2.1. Redox properties of catalysts in solution and on TiO₂ thin films……….182
List of Figures

Figure 1-1. Nernstian behavior of TiO₂ conduction band edge, E_{CB}, with pH………………10
Figure 1-2. Structure of iron (II) protoporphyrin IX (heme)………………………………13
Figure 1-3. SEM image of a mesoporous nanocrystalline TiO₂ thin films………………24
Figure 1-4. Proposed binding modes of carboxylic acid molecules with TiO₂.
In a) a carboxylate linkage is shown which is expected in basic conditions, and
in b) a carboxylic acid linkage is shown which is expected in acidic conditions………26
Figure 1.5. A proposed mechanism for electron transfer from the conduction band of
TiO₂ to molecular catalysts, $M^{III/II}$. The process was initiated by band gap illumination
of TiO₂……………………………………………………………………………………………29
Figure 2-1. Steady-state actinometry measurement of hemin in DMSO solution. The
photochemical quantum yield was $2.3 \pm 0.6 \times 10^{-6}$…………………45
Figure 2-2. UV-visible absorbance spectra of (a) hemin (Fe(III)) on TiO₂ surface (-)
and (b) after 15 min of irradiation, producing heme, Fe(II) (- - -). Spectra (c) was
obtained after adding RX to the heme/TiO₂ (···). The inset shows time-resolved
absorption changes monitored at 400 nm and at 420 nm following the addition of RX.
Note that the S/N ratio is significantly low at $\lambda < 400$ nm because of the fundamental
TiO₂ absorption…………………………………………………………………………………………..47
Figure 2-3. The structures of a) propachlor (2-chloro-N-isopropylacetanilide) and b)
alachlor (2-chloro-2$'$5$'$-diethyl-N-(methoxymethyl)acetanilide)…………………..….48
Figure 2-4. Schematic representation of the proposed mechanism for hemin
photoreduction on TiO₂…………………………………………………………………..50
Figure 3-1. Iron (III) protoporphyrin chloride (hemin). Cobalt (III) meso-tetra (4-
carboxyphenyl) porphyrin chloride (CoTCP)…………………………………………………………57
Figure 3-2. Representative spectrotelectrochemical data of molecular catalysts bound to
TiO₂. The left-hand side (a) shows hemin reduction in a 50:50 CH₃CN/DMSO
electrolyte. The Soret band shifts from 400 nm (FeIII) to 420 nm with negative applied
potential. The potentials applied were -250, -350, -400, -500, -550, -600, -650, -700,
and -900 mV vs Ag/AgCl. The inset shows expanded absorption spectra from 450 to
700 nm. The arrow shows the direction of absorption change upon applying negative
potential. (b) A plot of FeIII/FeII concentrations vs. applied potential……………………………………64
Figure 3-3. Panel (a) shows the absorption spectra of Co$^{III/II}$TCP/TiO₂ reduction in the
CH₃CN electrolyte at the applied potential. Soret bands shift from 420 nm (CoIII) to
-400 nm with negative applied potential. The applied potentials were -100, -150, -200,
-250, -270, -300, -400, and -600 mV vs Ag/AgCl. The inset shows expanded absorption
spectra from 450 to 650 nm. The arrow shows the direction of absorption change
upon applying negative potential. (b) A plot of CoIII/CoII concentrations vs. applied
potential…………………………………………………………………………………………………65
Figure 3-4. (a) The UV-visible absorbance spectra of (1) — heme (2) — heme,
and (3) — the spectra recorded 2 days after the addition of CHCl₃ in DMSO
electrolyte. (b) The UV-visible absorbance spectra of (1) — heme/TiO₂, (2) — heme/TiO₂,
and (3) — the spectra observed in 30 min after the addition of CHCl₃
in DMSO electrolyte. ..67

Figure 3-5. Formal Fe$^{III/II}$ reduction potential (E°) vs Ag/AgCl of (a) hemin/TiO$_2$ in a 50:50 CH$_3$CN/DMSO electrolyte as a function of the pH surface pretreatment of TiO$_2$. The best-fit line has a slope of 40 mV per pH unit. (b) CoTCP/TiO$_2$ in a CH$_3$CN electrolyte as a function of the pH surface pretreatment of the TiO$_2$. The inset shows a linear fit to the data from pH 4 to 9 with a slope of 66 mV per pH unit.68

Figure 3-6. Representative spectroelectrochemical data of CoTCP/TiO$_2$ in pH 8 aqueous electrolyte as a function of applied potential (V_{appl} = -50, -100, -150, -200, and -270 mV). The inset shows a linear fit to the data from pH 4 to 9 with a slope of 52 mV per pH unit.70

Figure 3-7. Reaction of heme/TiO$_2$ with 0.2 mM CCl$_4$ in aqueous solutions at pH 4 and 8. Panel a shows the absorption changes after the addition of CCl$_4$ at 575 nm (FeII Q-band) and at 360 nm (FeIII Soret band) in pH 4. Panel b shows first-order kinetic analysis of data in panel a and corresponding data (not shown) at pH 8. Panel c shows the UV-vis spectra of (i) heme/TiO$_2$, (ii) heme/TiO$_2$, and (iii) the final product after the reaction of heme/TiO$_2$ with CCl$_4$ in pH 8 aqueous solution. The inset shows an expanded scale in the Q-band region.71

Figure 4-1. UV-visible absorbance spectra of hemin/TiO$_2$ (----), after photolysis: heme/TiO$_2$ (----), and after addition of (a)1,2-dichlorobenzene and (b) trichloroethylene to yield hemin/TiO$_2$ (----). The inset shows time-resolved concentration changes upon addition of RX. The first vertical line indicates the time of RX injection (75 s), and the second line corresponds to the time when >90% of the TiO$_2$ was consumed and heme oxidation begins. ..87

Figure 4-2 Absorbance at 1000 nm of heme/TiO$_2$ (----) and TiO$_2$ (----) as a function of time. The arrow indicates the point at which 1,2-dichlorobenzene was added to the external methanol solution. ..89

Figure 4-3. UV-vis absorption spectra of TCE reaction with a) TiO$_2$ (----) that shows no reactivity for 3 hours after addition of TCE and b) heme/TiO$_2$ (----) that shows the completion of the reaction in 1 hour after the addition of TCE. UV-visible absorbance spectra of hemin/TiO$_2$ (----), after photolysis, heme/TiO$_2$ (----), after addition of TCE to yield heme/TiO$_2$ (----), and the completion of the reaction to yield hemin/TiO$_2$ (----). ..90

Figure 4-4. The possible electron transfer processes of heme/TiO$_2$ (----) reaction with organohalide pollutants. ..96

Figure 5-1. Iron (II) protoporphyrin IX (heme). ..106

Figure 5-2. Equilibrium binding of hemin to nanocrystalline TiO$_2$ thin films in DMSO at room temperature, where θ in the fractional surface coverage. The inset shows a double-reciprocal plot of the data from which an equilibrium constant was abstracted, $K = 1 \times 10^5$ M$^{-1}$. ..109

Figure 5-3. a) UV-visible absorbance spectrum of hemin/TiO$_2$ (----), heme/TiO$_2$ (----), heme/TiO$_2$ (----), and heme/TiO$_2$ (----).
(→), and the final product after addition of TCE (→) in MeOH. b) The spectral changes observed after addition of 1.6 x 10^4 M TCE to heme/TiO2 in MeOH and c) pH 4 aqueous solution. The arrows show the direction of absorption change after TCE addition.

Figure 5-4. Cyclic voltammetry of hemin/TiO2 in aqueous solution in a) pH 4 KNO3/H2O and b) pH 8 NaOH/H2O electrolytes. The half-wave potentials were taken as the formal reduction potentials, and were estimated to be –340 mV and –600 mV vs. Ag/AgCl in pH 4 and 8, respectively.

Figure 5-5. a) Plots of heme/TiO2 (●) and hemin/ TiO2 (—) surface concentrations after the addition of 2.9 x 10^-4 M CCl4 in pH 8 aqueous solution. The surface concentrations were determined by standard addition of the observed spectra for 350 – 800 nm. b) Experimental and calculated data are shown before the addition of CCl4 (FeII), 200 sec after the addition of CCl4, and after the reaction was complete (FeIII). The times these spectra were recorded are indicated with arrows in a). The Q-band region is expanded in the inset of b).

Figure 5-6. The observed rate constant for reduction of 4.5 x 10^-4 M CCl4 in pH 8 aqueous solution as a function of the heme surface coverage.

Figure 5-7. Plots of the observed rate constants vs the indicated RX concentration in a) MeOH and b) in pH 8 acetate aqueous solution. The inset of b) shows and expanded plot for propachlor and TCE.

Figure 5-8. The durability of heme/TiO2 thin films was determined with 2.9 x 10^-4 M CCl4 at pH 8. After 31 cycles of washing, photoreduction, and CCl4 reactions, the material was no longer redox active.

Figure 5-9. a) The UV-visible absorption spectra observed after bandgap excitation of a TiO2 thin film immersed in pH 4 H2O. b) UV-visible absorption spectrum of (→) heme/TiO2, the spectrum after ultra band gap illumination assigned to (—) heme/TiO2(e-), and the final spectrum (→) after addition of CCl4 into the external pH 4 solution. The final CCl4 concentration was 1.4 x 10^-4 M. The inset shows time resolved concentration observed after the addition of CCl4. The arrow indicates the time of CCl4 injection (120 s).

Figure 5-10. a) The absorption at 800 nm of a TiO2(e-) and a heme/TiO2(e-) thin film recorded as a function of time. The arrow indicates the time at which CCl4 was injected (60 s) into the external pH 8 aqueous solution. The CCl4 concentration was 4.5 x 10^-4 M. b) Natural log plots of the data in a) from which observed rate constants were abstracted, $k_{obs} = 2.4 \times 10^{-3} \text{ s}^{-1}$ for TiO2(e-) and $k_{obs} = 2.5 \times 10^{-2} \text{ s}^{-1}$ for heme/TiO2(e-). c) Plot of the observed rate constants for CCl4 reduction as a function of TiO2(e-).

Figure 6-1. a) UV-visible absorbance spectrum of bis(pyr)FeIIIP/TiO2 in pyridine (→) and pH 4 acetic acid aqueous solution (—). b) UV-visible absorbance spectrum of ferric forms of heme complexes, FeIIIP/TiO2 (—) and bis(pyr)FeIIIP/TiO2 (→) in
pH 4 acetic acid aqueous solution. c) UV-visible absorbance spectrum of ferrous forms of heme complexes, FeIIIP/TiO₂ (—) and bis(pyr)FeIIIP/TiO₂ (—) in pH 4 acetic acid aqueous solution.

Figure 6-2. a) The spectral changes observed after addition of 1.1 x 10⁻² M pyridine to FeIIIP/TiO₂ in pH 4 aqueous solution. The arrows show the direction of absorption change after the addition. The inset shows the UV-visible absorbance spectrum of the final bis(pyr)FeIIIP/TiO₂ spectrum from a. (—) and bis(pyr)FeIIIP/TiO₂ prepared for RX reactions (—). b) The plot of log (A-A₀)/(A∞-A) vs. log [pyr]. The binding constant of pyridine to FeIIIP/TiO₂ estimated from the intercept of the fitted line was β₂ = 9.3 ± 0.4 x 10⁴ M⁻².

Figure 6-3. The spectroelectrochemical data of bis(pyr)FeP/TiO₂ in pH 4 acetic acid/KNO₃ electrolyte. The Soret band shifts from 398 nm (FeIII) to 414 nm (FeII) with negative applied potential. The arrow shows the direction of absorption change upon applying negative potential. Isosbestic points were observed at λiso = 398, 452, 474, 576, and 654 nm. The inset shows the plot of % concentration of FeIII and FeII vs. applied potential. The formal reduction potential of bis(pyr)FeP/TiO₂ in pH 4 was -160 mV vs. Fe⁺/Fe⁺₀.

Figure 6-4. The RX reactions of bis(pyr)FeIIIP/TiO₂ in pH 4 acetic acid solution. a) UV-visible absorbance spectra of bis(pyr)FeIIIP/TiO₂ (—), bis(pyr)FeIIIP/TiO₂ (—), and the final product after addition of 5.83 x 10⁻⁴ M CCl₄ (—). b) The spectral changes observed after addition of 5.83 x 10⁻⁴ M CCl₄ to bis(pyr)FeIIIP/TiO₂ in pH 4. The arrows show the direction of absorption change after the addition. c) The plot of bis(pyr)FeIIIP/TiO₂ (—) and bis(pyr)FeIIIP/TiO₂ (—) monitored by the Soret bands at 398 nm and 414 nm. d) Plots of the observed rate constants vs. the indicated RX concentration in pH 4.

Figure 6-5. The UV-vis absorption spectra of a) bis(pyr)FeIIIP/TiO₂ (—), bis(pyr)FeIIIP/TiO₂(e⁻) (—) after ultra band gap illumination, and the final spectrum after addition of CCl₄ assigned to bis(pyr)FeIIIP/TiO₂ (—) in MeOH, and b) FeIIIP/TiO₂ (—), FeIIIP/TiO₂(e⁻) (—) after ultra band gap illumination, and the final spectrum after addition of assigned to carbene adduct, (CCl₂)FeIIIP/TiO₂ (—) in MeOH.

Figure 6-6. Thermodynamic correlation of second-order reaction constants vs. ΔG calculated from the difference between FeIII/II formal reduction potentials and one-electron reduction potentials of halomethanes. The reactions for a) bis(pyr)FeIIIP/TiO₂, R² = 0.85, and b) FeIIIP/TiO₂, R² = 0.97, in pH 4 acetic acid aqueous solution.

Figure A1-1. Mass spectrum of propachlor and CCl₄ in pentane. The retention time for propachlor and CCl₄ were R.T. = 20.4 and 4.0 min.

Figure A.1-2. GC/MS spectra of the products formed after the reactions of heme/TiO₂(e⁻) by electrocatalysis in pH 8 aqueous solution. a) shows the product observed from the reactions with propachlor, assigned to be deschloropropachlor (m/z = 177, R.T. = 17 min). This product was also detected in the photocatalytic reactions. b) shows the main product observed from the reactions with CCl₄, assigned to be chloroform (m/z = 118, R.T. = 3.6). This product was also observed from the photocatalytic reactions. C) shows the product observed from the reactions with CCl₄, assigned to be tetrachloroethylene (m/z = 164, R.T. = 8.3). This product was not detected in the photocatalytic reactions.

Figure A.2-1. Cyclic voltammetry of a) hemin and b) CoTCP in 0.1 M
TBAH/DMSO electrolyte vs. Ag/AgCl. The concentration of molecular catalysts was 0.01 M and the scan rate was 100 mV/sec.

Figure A.2-2. Cyclic voltammetry of hemin (—), TiO$_2$ (—), and hemin/TiO$_2$ (—) in 0.1 M TBAH/DMSO electrolyte vs. Ag/AgCl. The scan rate was 100 mV/sec.

Figure A.2-3. Cyclic voltammetry of FTO (—), bis(pyr)Fe$^{III/II}$ (—), and bis(pyr)Fe$^{III/II}$/TiO$_2$ (—) in 0.1 M TBAH/Pyridine electrolyte vs. Ag/AgCl. The scan rate was 100 mV/sec.

List of Schemes

Scheme 4-1. The electron transfer pathways of the radical clock, 6-bromo-1-hexene that yields a) 1-hexene as a product of two-electron transfer process and b) 1-methylecyclopentane as a product of two single electron transfer processes.
Chapter 1. Introduction

1.1 Organohalides in Groundwater

The sustainability of a drinking water is a serious environmental concern (1-5). According to the Eurochloro Organization, 80% of diseases could come from what we drink (1). The World Health Organization (WHO) also reported that diseases associated with dirty water cause 25,000 deaths per day (2). Even though three-quarters of the Earth’s surface is water, only ~1% is available for drinking (1). Hence, maintaining clean drinking water is a worldwide necessity and organohalide pollutants and their toxicological properties have become a global concern in last few decades.

Organohalide pollutants present in wastewater and groundwater are a major environmental issue because of their impacts on human health (2-6). In fact, about 44% of pollutants on the Environmental Protection Agency’s contaminants candidate list are organohalides (5). Due to their widespread use in the pharmaceutical and chemical industries, organohalide chemicals (RX) continue to be introduced and found in a wide range of environments. It has been estimated that about 85% of all medicines either contain chlorine or use chlorine as part of the manufacturing processes (1). Organohalides are also commonly used as pesticides, such as dichloro-diphenyl-trichloroethane (DDT), adrin, heptachlor, and chlordane, some were banned in the 1970s because of their persistence in the environment and toxicity to non-target species as well as humans. Exposure to pesticides has been statistically linked to poor semen quality, nervous and blood system problems, as well as carcinogenicity (5). They have been
known to affect organs, such as the liver and kidney, and increase the risk of cancer (Table 1-1).

Organohalides including pesticides, that have been banned, are frequently found as contaminants throughout the world in the air, water, soil, food, and even in humans (7-10). Unfortunately, when organohalides enter the environment, they can cause damage for decades. Table 1-2 gives the time required for half-life the pollutant to react in water at 20 °C. Many organohalide pollutants have long half-lifes (Table 1-2), CCl₄ is 7000 years, for example (11). Therefore, many organohalides are inert in the environment. They are also widely distributed at the µg RX per 1 L H₂O level in rain water, water supplies, and oceans (12, 13). Concentrations of chlorinated hydrocarbons in the food chain have also been reported (14). In 1975, 33 µg/L chloroform and 5 µg/L carbon tetrachloride were found in cheshire cheese, for example.

New methods for remediation of organohalide (RX) pollutants are important for maintenance of underground aquifers and groundwater resources. It is a major environmental challenge to remove or detoxify pollutants present in the environment. Establishment of an effective detoxification technology for decreasing the high concentration of pollutants found in the environment is extremely important. Accordingly, the removal of organohalide contaminants either in situ or above ground treatment is an active research area (1-6, 11). Thus, many processes and technologies have been proposed over the years to clean up polluted water (5, 15).
<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCLG (mg/L)</th>
<th>MCL (mg/L)</th>
<th>Potential Health Effect</th>
<th>Common Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromate</td>
<td>Zero</td>
<td>0.010</td>
<td>Increased risk of cancer</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>Haloacetic- acids</td>
<td>N/a</td>
<td>0.06</td>
<td>Increased risk of cancer</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>None</td>
<td>0.10</td>
<td>Liver, kidney or central nervous system increased risk of cancer</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>Chlorine (as Cl₂)</td>
<td>4.0</td>
<td>4.0</td>
<td>Eye/nose irritation, stomach discomfort</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Alachlor</td>
<td>Zero</td>
<td>0.002</td>
<td>Nervous system or blood problems, increased risk of cancer</td>
<td>Added to water during sewage and wastewater treatment</td>
</tr>
<tr>
<td>Carbon- tetrachloride</td>
<td>Zero</td>
<td>0.005</td>
<td>Liver problems, increased risk of cancer</td>
<td>Discharge from chemical plants and other industrial activities</td>
</tr>
<tr>
<td>Dichloroethane</td>
<td>Zero</td>
<td>0.005</td>
<td>Liver problems, increased risk of cancer</td>
<td>Discharge from drug and chemical factories</td>
</tr>
<tr>
<td>1,2-Dichloro- ethane</td>
<td>Zero</td>
<td>0.005</td>
<td>Increased risk of cancer</td>
<td>Discharge from industrial chemical factories</td>
</tr>
<tr>
<td>Chloro-benzenes O-Dichloro-benzene</td>
<td>0.1</td>
<td>0.1</td>
<td>Liver or kidney problems, liver, kidney, or circulatory system problem</td>
<td>Discharge from chemical and agricultural chemical factories</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.003</td>
<td>0.005</td>
<td>Liver, nervous system, or circulatory problems</td>
<td>Discharge from industrial chemical factories</td>
</tr>
</tbody>
</table>

MCLG: Maximum Contaminant Level Goal, MCL: Maximum Contaminant Level, n/a: Individual MCLGs for individual contaminants.
Table 1-2 Environmental half-lives of halogenated compounds in aqueous solution at 20 °C.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Half-life (yrs)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichloroethene</td>
<td>2.5</td>
<td>Proc.R.Soc.London Ser. B. 1975, 189, 305-32</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>6</td>
<td>Proc.R.Soc.London Ser. B. 1975, 189, 305-32</td>
</tr>
</tbody>
</table>
1.2 Environmental remediation of groundwater contaminants: inorganic materials

Catalytic dehalogenation of organohalide pollutants with inorganic materials has been studied to a large extent (15-26). The common approaches reported in the literature include the use of 1) zero-valent iron (Fe\(^0\)), 2) semiconductor nanoparticles such as TiO\(_2\), and 3) molecular catalysts. The degradation of some organohalide pollutants by these inorganic solids and molecules, and their influence on the environment are discussed below.

1.2.1 Fe\(^0\) remediation

Zero-valent iron (Fe\(^0\)) has been extensively used for the remediation of organohalide pollutants in groundwater (15-18). In the environment, iron acts as an electron donor and reduces RX pollutants. For example, Pearson et. al., reported methylamine as a product of the reactions of halonitromethanes with Fe\(^0\)(18). Similarly, Eykholt and Davenport detected chloride and dechlorinated acetonilides after reactions with chloroacetanilide herbicides (19).

Fe\(^0\) is not a common component in the natural environment and it is a challenge to maintain the reactive redox state at the iron surface. In addition, the Fe\(^0\) catalysts sometimes generate a distribution of products that can be more toxic than the original organohalides. For example, the reaction of iron powders with highly
chlorinated hydrocarbons such as tetrachloroethene (PCE) and trichloroethene (TCE) has been observed to produce cis-1,2-dichloroethene (DCE) and vinyl chloride (VC) (21, 22). According to the U.S. Environmental Protection Agency, a drinking water limit for vinyl chloride is 0.002 mg/L, which are in fact, more toxic to humans than TCE that has a drinking water limit of 0.005 mg/L (1e, 22).

Iron particles have been found to be more reactive when coated with other metallic particles. This may be because the supporting metals prevent the oxidation of reactive iron surface sites (23-25). Wang and Zhang found that the reactions of TCE with Pd/Fe nano-particles reacted 6.8 times faster compared to Fe nanoparticles alone under the same conditions (23). Moreover, the products of the reactions with Pd/Fe yielded no DCE and VC whereas these toxic products were detected when only iron powders were reacted. Further studies are required to determine the mechanistic details and to establish a technique for organohalide remediation.

In most Fe0 reactions with organohalide pollutants, inner sphere surface mediated electron transfer processes have been proposed (19, 20). However, the chemical nature of the reactive surface states remains unknown.

1.2.2 TiO\textsubscript{2} remediation

Semiconductor nanomaterials are of growing interests in many fields of study. Some potential advantages of nanostructured semiconductor materials for detoxification of organohalide pollutants include 1) an enormous surface area for pollutant or catalysts activation, 2) redox and optical properties that can often be
systematically tuned with particle size and/or shape (26-28) and 3) surfaces that are easily functionalized for enhanced reactivity with organohalide pollutants (29, 30). Advantages of surface modification are discussed in section 1.4. A disadvantage of TiO₂ is that ultraviolet irradiation is required and this may limit some applications.

The TiO₂ semiconductor is a popular photocatalyst that has been extensively studied for oxidative and reductive remediation of organic contaminants in aqueous solution (31-37). The conduction band electron (e_CB⁻) and the valence band hole (h_VB⁺) produced after photo-excitation of TiO₂ are known to react with a wide range of environmental pollutants (31-37). Conduction band electrons react with variety of organohalides (such as PCBs, halogenated alkanes, and pesticides) through reductivedehalogenation pathways (31, 32). A proposed reductive dehalogenation mechanism that could be initiated by band gap illumination of TiO₂ is shown in Equations 1a-1c (38, 39).

\[
\text{TiO}_2 + h\nu \rightarrow e_{\text{CB}}^- + h_{\text{VB}}^+ \quad (1-a)
\]
\[
RX + TiO_2(e^-) \rightarrow R\cdot + X^- \quad (1-b)
\]
\[
or \quad RX + 2 TiO_2(e^-) \rightarrow R^- + X^- \quad (1-c)
\]

Photoreductive degradation of organohalide pollutants may occur by either one- or multi- electron transfer processes. These processes have previously been inferred by analysis of the organohalide pollutants (31, 32). For example, Choi and Hoffmann observed reaction products after the photoreduction of TiO₂ in the presence of CCl₄ that strongly suggested both one- and two-electron transfer
intermediates were present (31). They concluded that the two-electron transfer reduction of CCl₄ was thermodynamically more favorable compared to the one-electron transfer pathway.

The potential of the TiO₂ conduction band edge is known to follow a Nernstian shift with pH, i.e. 59 mV/pH (44-46), Figure 1-1. This behavior results in conduction band electrons that are stronger reductants at higher pHs. In fact, increased rate constants for RX photoreductions with TiO₂ at higher pH have been reported (31, 32).

Multi-electron transfer reduction of organohalide pollutants is one active area of research (31, 40-43). It has theoretically been predicted that two-electron transfer reduction potentials of many organohalide compounds (Equation 1c) are more positive than the one-electron transfer reduction potentials (Equation 1b) (40-42). Therefore, the two electron transfer pathways can occur at potentials where competitive O₂ or proton reduction are minimal. The one- and two-electron transfer reduction potentials for selected organohalides are shown in Table 1-3. We reported a 75 ~ 150 fold increase in the rate constants for aryl halides reduction when multiple electrons were present on heme functionalized TiO₂ nanoparticles (43). Details of this study are presented in Chapter 4.
Table 1-3: One- and two-electron reduction potentials of organohalide pollutants (40).

<table>
<thead>
<tr>
<th>Organohalide</th>
<th>1 e(^-) reduction (V) *</th>
<th>2 e(^-) reduction (V) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBr(_4)</td>
<td>+0.397</td>
<td>+0.659</td>
</tr>
<tr>
<td>CCl(_4)</td>
<td>+0.085</td>
<td>+0.673</td>
</tr>
<tr>
<td>CHBr(_3)</td>
<td>+0.035</td>
<td>+0.629</td>
</tr>
<tr>
<td>CHCl(_2)Br</td>
<td>-0.066</td>
<td>+0.599</td>
</tr>
<tr>
<td>CHCl(_3)</td>
<td>-0.145</td>
<td>+0.560</td>
</tr>
<tr>
<td>CH(_2)Cl(_2)</td>
<td>-0.428</td>
<td>+0.494</td>
</tr>
<tr>
<td>TCE**</td>
<td>-0.674</td>
<td>+0.537</td>
</tr>
</tbody>
</table>

* Reduction potentials vs. NHE (40).
** The one- and two-electron reduction potentials are dependent on the products formed. The values given are for cis-dichloroethylene radical, ▫CCI=CHCl (one-electron reducton) and cis-dichloroethylene, CIHC=CHCl (two-electron reduction).
Figure 1-1: Nernstian behavior of TiO$_2$ conduction band edge, E_{CB}, with pH.
Schmelling and co-workers demonstrated the CdS deposited on TiO₂ nanoparticles and showed enhanced reactivity of 2,4,6-trinitrotoluene (TNT) in alcoholic aqueous solution (47). They proposed that electron transfer from CdS to TiO₂ enhanced the lifetime of the valence band hole in CdS resulting in more efficient methanol oxidation. Thus the effects of the band edges can enhance the lifetime of photo-generated charges in the semiconductor that may lead to RX detoxification. Similarly, deposition of metallic particles on TiO₂ has also been shown to improve the quantum yields of some catalytic reactions (48-49).

1.2.3 Molecular catalysts

Organohalides can react with a variety of transition metal macrocycles, such as Fe^{II}, Fe^{I}, Co^{I} and Ni^{I} metallo porphyrins (50-68). The reaction mechanisms for organohalide reductions with macrocycles are thought to include both inner- or outer-sphere electron transfer mechanisms (50-68). Similar reactions are thought to occur in living organisms (69-76), but the detailed mechanisms remain clear.

Investigation of heme catalysts and halogenated compounds *in vitro* may be useful models of biological RX transformations. Heme is the main focus of the catalysis aspects of this thesis work, Fig 1-2. The heme catalysts in cytochrome P-450 is thought to mediate both oxidation and reduction of organohalide pollutants (11, 55, 62, 63, 69-83). In fact, practical applications of proteins for the biodegradation of RX in a natural environment had been proposed (73, 78). In my thesis work, a heme catalyst was employed to understand fundamental redox
reactions and electron transfer mechanisms with organohalide pollutants under mild conditions.
Figure 1-2: Structure of iron (II) protoporphyrin IX (heme)
1.3 Electron transfer mechanisms for reduction of organic compound

Electron transfer chemistry of organohalide pollutants is of considerable interest to environmental scientists (50, 52, 58, 84, 85). While the reduction of organic contaminants has been studied to a large extent, detailed molecular level descriptions of electron transfer mechanisms are lacking. A full understanding of electron transfer mechanisms allows one to predict and control organohalide redox reactions. We begin by discussing stepwise and dissociative transfer reactions.

1.3.1 Stepwise and dissociative electron transfer mechanisms

Under anaerobic conditions, two electron transfer mechanisms for the reduction of organohalides have been reported: stepwise and dissociative mechanisms (86, 87).

1) Stepwise mechanism

\[RX + e^- \rightarrow RX^- \] \hspace{1cm} (1-d)

\[RX^- \rightarrow R^* + X^- \] \hspace{1cm} (1-e)

2) Dissociative mechanism

\[RX + e^- \rightarrow R^* + X^- \] \hspace{1cm} (1-f)

In the stepwise electron transfer mechanism, a reduced organohalide (RX^-) intermediate is present, (40, 86). While in the dissociative mechanism, electron
transfer and C-X bond cleavage occur in a concerted process. The dissociative mechanism is generally thought to be irreversible (40) and was predicted to be more favorable than the stepwise mechanism for some organohalides, such as PCE, TCE, and some halomethanes (86, 87). Constantin and co-workers found more negative reduction potentials for the stepwise pathway (Equation 1-d) compared to the dissociative pathway (Equation 1-f) for perchloroethylene (PCE), $E^\circ(C_2Cl_4/C_2Cl_4^-) = -1.71$ V and $E^\circ(C_2Cl_4/C_2Cl_3^•+Cl^-) = -1.33$ V vs. NHE, respectively. In general, the dissociative electron transfer process was energetically more favorable than the stepwise process.

In principle, a stepwise process may occur when RX^- is a stable species (40, 88, 89). For example, Burrow et. al. found that the stability of RX^- anions increased when F was substituted for Cl (88). The stepwise process may also become more favorable than the dissociative process depending on the environment of the reaction (88-89).
Table 1-4: Reduction potentials for dissociative and stepwise electron transfer

<table>
<thead>
<tr>
<th>Compound</th>
<th>E° (V)</th>
<th>vs.</th>
<th>Solvent</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissociated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbontetrachloride</td>
<td>~ +0.25</td>
<td>NHE</td>
<td>water</td>
<td>42</td>
</tr>
<tr>
<td>*CCl₃/*CCl₂, Cl⁻</td>
<td>~ +0.8</td>
<td>NHE</td>
<td>water</td>
<td>42</td>
</tr>
<tr>
<td>Dichloroethylene</td>
<td>ClHC=CHCl/ *CH=CHCl, Cl⁻</td>
<td>-1.96</td>
<td>SCE</td>
<td>DMF 79</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>ClHC=CCl₂/ ClHC=CCl¹, Cl⁻</td>
<td>-1.728</td>
<td>SCE</td>
<td>DMF 79</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>Cl₂C=CCl₂/ Cl₂C=CCl¹, Cl⁻</td>
<td>-1.60</td>
<td>SCE</td>
<td>DMF 79</td>
</tr>
<tr>
<td>Stepwise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloroethylene</td>
<td>ClHC=CHCl/ ClHC=CHCl¹⁺</td>
<td>-2.33</td>
<td>SCE</td>
<td>DMF 79</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>ClHC=CCl₂/ ClHC=CCl²⁺</td>
<td>-2.21</td>
<td>SCE</td>
<td>DMF 79</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>Cl₂C=CCl₃/ Cl₂C=CCI⁺</td>
<td>-1.98</td>
<td>SCE</td>
<td>DMF 79</td>
</tr>
</tbody>
</table>
In the dissociative electron transfer mechanisms, the alkyl radical can undergo several reactions, such as scavenging a hydrogen atom, Equation 1-g (90), or dimerization of the radicals, Equation 1-i (90). In addition, the alkyl radical may undergo a second dissociative electron transfer reaction, Equation 1-h (32, 91). For example, in case of CCl₄:

\[
\begin{align*}
 \text{CCl}_3 + \text{e}^- & \rightarrow \text{HCCl}_3 \quad (1-g) \\
 \text{CCl}_4 + \text{e}^- & \rightarrow \text{CCl}_3 + \text{Cl}^- \\
 \text{CCl}_3 + \text{e}^- & \rightarrow [\cdot \text{CCl}_2] + \text{Cl}^- \quad (1-h) \\
 2 \cdot \text{CCl}_3 & \rightarrow \text{Cl}_3 \cdot \text{CCl}_3 \quad (1-i)
\end{align*}
\]

This shows that a single electron transfer reaction can lead to a distribution of products. The relative concentration of these products (i.e. HCCl₃, [\cdot \text{CCl}_2], and Cl₃C\cdot \text{CCl}_3) depend on a variety of factors such as the availability of H atoms, the CCl₄ concentration, the concentration of the reducing equivalent, and the thermodynamic driving force. Products consistent with these reduction mechanisms have been observed in mammalian systems and microorganisms (11, 73, 90, 91). Examples of biotransformations of halogenated compounds by microorganisms are shown in Table 1-5 (11, 92).
Table 1-5: Biotransformations of RX by microorganisms in anaerobic conditions (11).

<table>
<thead>
<tr>
<th>RX</th>
<th>System*</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon tetrachloride</td>
<td>Mixed culture</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td></td>
<td>Methanogenic culture</td>
<td>Chloroform</td>
</tr>
<tr>
<td></td>
<td>Mixed culture</td>
<td>Chloroform</td>
</tr>
<tr>
<td></td>
<td>Soil / aquifer</td>
<td>Chloroform</td>
</tr>
<tr>
<td>Chloroform</td>
<td>Mixed culture</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td></td>
<td>methanogenic culture</td>
<td>Chloroform</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>Mixed culture</td>
<td>Chloroethane</td>
</tr>
<tr>
<td></td>
<td>Methanogenic culture</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>Methanogenic culture</td>
<td>1,1-Dichloroethane</td>
</tr>
<tr>
<td></td>
<td>Soil / aquifer</td>
<td>1,1,2-Trichloroethane</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>Methanogenic culture</td>
<td>1,1,2-Trichloroethane</td>
</tr>
<tr>
<td></td>
<td>Soil / aquifer</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>Chloroethene</td>
<td>Mixed culture</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td></td>
<td>Methanogenic culture</td>
<td>Chloroethene</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>Mixed culture</td>
<td>Dichloroethene</td>
</tr>
<tr>
<td></td>
<td>Methanogenic culture</td>
<td>Chloroethene</td>
</tr>
<tr>
<td></td>
<td>Soil / aquifer</td>
<td>Trichloroethene</td>
</tr>
</tbody>
</table>

* Methanogenic culture; Xanthobacter, monooxygenase, Mycobacterium, or Pseudomonas.
 Mixed culture; mixture of microorganisms used in methanogenic culture.
An issue that arises relevant to the alkyl radical is whether it is more easily reduced than the parent organohalides (42, 87). Balko and Tratnyek calculated the formal reduction potential of \cdotCCl$_3$, $E^\circ(\cdot$CCl$_3$/CCl$_2$, Cl$^-)$ = +0.8 vs. NHE, Equation 1-h, that was more positive than that of E°(CCl$_4$/\cdotCCl$_3$, Cl$^-$) = +0.25 vs. NHE, Equation 1-f (42). In other words, the second electron transfer was more favorable than the first electron transfer. Costentin et. al. also reported that the formal reduction potentials of vinyl radicals formed from reduction of tetra-, tri-, and dichloroethylene were more positive than the reduction potentials of the parent olefins (87).

Most reductive RX reactions with nickel (57-60), iron (55, 60-64), chromium (65-66), and cobalt (67-68, 86) transition metal porphyrins were proposed to occur by a dissociative electron transfer mechanism to yield a halide, an alkyl radical, and an oxidized transition metal compound (11).

$$M^{\text{fed}} + RX \rightarrow M^{\text{ox}} + R^\cdot + X^- \quad (1-j)$$

Electron transfer processes are often thought to be the rate-limiting step in RX reduction mechanisms (87, 93). Therefore, one might anticipate that the rate constants for the reactions would correlate with the Gibbs free energy change (determined from standard reduction potentials) in a Marcus fashion (87). Indeed, the recent studies reported for organohalides reactions has shown that the rate constants correlates with the reduction potentials of catalysts (56, 85).
1.3.2 Inner- and outer-sphere electron transfer

The classical studies of the late Henry Taube established that redox reactions in fluid solution occur by two different mechanisms: inner- and outer-sphere. In an outer sphere mechanism, the coordination sphere of the electron donor and acceptor remain constant throughout the redox reaction. In an inner sphere mechanism, a ligand bridges the donor and acceptor during the electron transfer event. There has been much discussion of whether environmental RX redox reactions occur by inner sphere mechanisms (32, 50, 56, 58, 60, 62). Some two-electron transfer reaction products derived from organohalide pollutants have been observed and it was suggested to undergo inner sphere electron transfer (50, 58, 62). With TiO$_2$ or Fe0 catalysts, the mechanisms issue is very difficult to address as the reactive sites where a ligand might bridge have not been identified.

A possible evidence for inner-sphere electron transfer may be an observation of metal-carbenes in the reductions of CCl$_4$ and DDT (94-96). UV-visible spectral studies of inner-sphere electron transfer of heme catalysts with CCl$_4$ and DDT and the formation of carbene adducts have been established in the past 30 years (94, 95). In 1977, Mansuy et. al. demonstrated formation of carbene products in the reactions of Fe porphyrins and DDT in the presence of Fe0 or other reductants. Recently, similar carbene formation with a heme catalyst anchored to TiO$_2$ was reported in MeOH (96). This produces some evidence for an inner-sphere electron transfer mechanism. However, one cannot fully rule out the possibility that the carbene is formed by an outer sphere mechanism which then coordinates to the iron center.
Some additional evidence suggests an outer-sphere electron transfer mechanism for the reduction of RX (56, 60). Perlinger et. al. utilized outer-sphere CoIIW$_{12}$O$_{40}$$^{7-}$ electron transfer to reduce organohalides (56). The CoIIW$_{12}$O$_{40}$$^{7-}$ complex is known to be an outer-sphere one-electron transfer reagent. They tabulated rate constants for the reduction of a variety of organohalides and constructed these with the rate constants measured for iron porphyrins, FeP. A log k_{FeP} vs. log k_{CoW} plot was linear with the slope of 1, which suggested that the iron porphyrin also reacted by an outer-sphere electron transfer mechanism.

Inner-sphere electron transfer mechanisms require the availability of an open coordination site. Therefore, organohalide reductions by hemes may depend on the axial ligands coordinated to the iron. Studies of this type are presented in Chapter 6. A good example of this is the reaction of heme/TiO$_2$ with CCl$_4$ in MeOH. A two-electron reduction of heme catalysts anchored to TiO$_2$ particle, heme/TiO$_2$(e$^-$), reacted with CCl$_4$ to produce carbene adducts (96). However, when axial ligand were replaced by pyridines, carbene-heme formation was not observed under the same experimental conditions.
1.4 Surface modified nanocrystalline TiO₂ thin films

In this thesis work, heme catalysts were anchored to mesoporous nanocrystalline (anatase) TiO₂ thin films. There are several potential advantages of nanocrystalline mesoporous TiO₂ thin films over the colloidal suspensions that have previously been used for environmental studies (31-37). The most obvious is that the nanocrystalline thin films can be introduced into and removed from a wide variety of environments including ground and ocean water. They do not suffer from aggregation or ‘salting out’ which is common in colloidal suspensions. In addition, the mesoporous structure allows facile diffusion of RX or other pollutants to catalytic sites in the film. Some preparations of the TiO₂ thin films are given below as background.

1.4.1 Characteristic of nanocrystalline mesoporous (anatase) TiO₂ thin films

The TiO₂ films consisting of anatase particles were prepared by the hydrolysis of Ti(iOPr)₄ using a sol-gel method (115). The reaction mixture had the consistency and appearance of white glue. Thin films are prepared by depositing a few milliliters of this mixture onto glass slides and spreading the material with a glass test tube. Sintering is then performed in air at 450 °C for 30 min.

An SEM image of this thin film is shown in Figure 1-3. The films are transparent in the visible region and the anatase particles are ~ 10 –15 nm in diameter. The film has a high surface area such that 800 ± 200 molecules can be anchored to a
nano particle (97). This also provides more active sites to react with organohalide pollutants. The TiO₂ thin films can also be useful for potential practical applications such as solar-energy conversion (98-102), environmental remediation (31, 103, 104), and chemical sensing (105, 106).
Figure 1-3: SEM image of a mesoporous nanocrystalline TiO$_2$ thin films
1.4.2 Functionarizing FeP/TiO₂

Molecular catalysts with functional groups, such as –CO₂H or –PO₃H, can be used for binding to semiconductor surfaces. It was previously found that the binding mode to the semiconductor surfaces depended on the interfacial pH (107-111). It has been suggested that the TiO₂ surface deprotonates the carboxylic acid or phosphonic acid groups and promotes surface binding. A low energy asymmetric CO₂⁻ stretch is observed that is consistent with carboxylate binding (111, 112). In acidic conditions, molecules anchor to surface with the uncomplexed carboxylic acid termed a “carboxylic acid” linkage, while in basic conditions, a “carboxylate” linkage have been observed (Fig 1-4). However, the exact nature of surface linkage remains a topic of investigation.
Figure 1-4: Proposed binding modes of carboxylic acid molecules with TiO$_2$. In a) a carboxylate linkage is shown which is expected in basic conditions, and in b) a carboxylic acid linkage is shown which is expected in acidic conditions.
1.4.3 Advantages of molecular catalysts/TiO$_2$ system

Organohalide dehalogenation by molecular catalysts anchored to semiconductor surfaces has not received much attention (29, 30). An advantage of binding catalysts to transparent semiconductor surfaces (i.e. large band gap) is that the RX redox chemistry can be monitored by electronic spectroscopy in a transmission mode with high signal-to-noise. It is beneficial that the catalysts/TiO$_2$ can electronically communicate with the outside world and the corresponding redox chemistry can be quantified spectroscopically in a transmission mode. It also has the advantage that the semiconductor can be used to maintain the desired oxidation state of the catalysts with applied potentials or light. This is beneficial because the reduced state of molecular catalysts is often reactive and formed by a strong chemical reducing agents in fluid solution. The introduction of additional chemical agents might complicate the reaction mechanisms. Another advantage of this molecular catalysts/TiO$_2$ is that it eliminates the use of chemical reducing agents that may cause further pollution in natural water.

The quantum yield for the photoreduction of CoIII and FeIII macrocycles can be improved by anchoring molecular catalysts to semiconductor surfaces (29). Steady-state actinometry measurements of hemin/TiO$_2$ showed that the photochemical quantum yields for the hemin/TiO$_2$ to heme/TiO$_2$ were $2.0 \pm 0.3 \times 10^{-3}$ and $1.6 \pm 0.3 \times 10^{-2}$ in acidic water and dimethyl sulfoxide (DMSO), respectively.
The value of the quantum yield for the photoreduction of hemin in DMSO fluid solution was $\sim 10^{-4}$ (113).

The results above show that TiO$_2$ conduction band electrons can be used to reduce molecular catalysts. A simplified mechanism for electron transfer from TiO$_2$ to a molecular catalyst ($M^{III/II}$) is shown in figure 1-5. Here, band gap excitation results in electron-hole pair formation. In the presence of a sacrificial electron donor, the valence band holes are consumed and electrons reduce the metal center. An energetic requirement for this mechanism is that the TiO$_2$ conduction band be more negative than the formal reduction potential of the catalyst.
Figure 1.5: A proposed mechanism for electron transfer from the conduction band of TiO$_2$ to molecular catalysts, M$_{III/II}$. The process was initiated by band gap illumination of TiO$_2$.

E_{CB}

E_{VB}

h^+

h_-

$M_{III/II}$

Solvent

Solvent$^+$

Products
The reactions were usually carried out under anaerobic conditions to avoid a competitive reduction of O_2. Indeed, Choi et al., showed that the rate of CCl_4 loss at irradiated TiO_2 interfaces was faster when O_2 was absent. This was due to the fact that the reduction of O_2 by $TiO_2(e^-)$ was competitive with CCl_4 reduction (114).

1.5 Conclusions

Understanding dehalogenation processes of organohalide pollutants is an active research area. Heme-functionalized TiO_2 thin films focused in this thesis may be beneficial to optimize the reactivity of the catalysts and study the electron transfer mechanisms. It may also be possible to control the redox properties of molecular catalysts anchored to TiO_2 ($Fe^{III/II}/TiO_2$) and therefore, the reactions of organohalides. The following chapters in this thesis describe the synergistic effects of molecular catalysts/TiO_2 system, effects of $M^{III/II}$ formal reduction potentials, single- and multi-electron transfer mechanisms, kinetics study of the reactions, as well as effects of axial ligation toward reduction of organohalide pollutants.

1.6 References

Chapter 2. Oxidation of Heme by Organohalides at Nanocrystalline TiO$_2$ Interfaces

2.1 Introduction

Organohalide (RX) pollutants can present serious health risks, and their prevalence in groundwater is of considerable environmental concern. Many organohalides were introduced into groundwater decades ago, but others, such as chloroacetanilide herbicides, continue to be introduced today.$^{1-3}$ The remediation of organic halide pollutants by inorganic solids and molecular compounds has been reported in the literature.$^{3-14}$ Inorganic solids, such as iron particles, are often reactive toward RX, but the reaction chemistry generally leads to distributions of products.$^{3-6}$ A potential advantage of molecular compounds is that they can be fine-tuned to react selectively with specific pollutants to yield desired environmentally benign products. However, molecular catalysts are generally active only in highly reduced$^{7-11}$ (or oxidized)$^{12-14}$ states, and it is unclear how these reactive states can be maintained in the environment. In principle, the oxidation state of molecular catalysts can be controlled electrochemically or photochemically when they are supported on an appropriate inorganic material. If the support material is also catalytic toward RX, one could potentially take advantage of the specificity of molecular catalysts and the redox stability of the solid-state material to produce hybrid molecular-material catalysts that are more active than the individual parts.
In this Chapter, we report the reduction of organohalides by heme (Fe(II)) anchored to nanocrystalline TiO$_2$ thin films. The ferrous state was generated through band gap illumination of the hemin-modified semiconductor. We indeed find that the reactivity of heme/TiO$_2$ exceeds that of heme or TiO$_2$ alone.

2.2 Experimental section

Materials. Organohalides, CCl$_4$, CBr$_4$, and CHCl$_3$ and chloroacetanilides alachlor (2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide) and propachlor (2-chloro-N-isopropylacetanilide) were used as received. Titanium(IV) isopropoxide and iron(III) protoporphyrin IX chloride (hemin) were obtained from Aldrich Chemical Co., and L-cysteine was obtained from Avocado Research Chemicals. All solvents were of HPLC grade and were obtained from Fisher Scientific. Deionized water was used for the measurements in aqueous solutions.

Nanocrystalline TiO$_2$ film preparation. Transparent TiO$_2$ films consisting of ~10-nm-diameter TiO$_2$ anatase particles were prepared by the hydrolysis of Ti(iOPr)$_4$ using a sol-gel technique as described previously in the literature. The TiO$_2$ particles were cast as mesoporous thin films (~10 µm) onto transparent microscope glass slides and heated at 420 °C for 30 min. The attachment of hemin to the TiO$_2$ surface was achieved by soaking the freshly prepared TiO$_2$ films for 24 h in an 8 µM hemin solution in DMSO at room temperature. The concentration of hemin adsorbed on the TiO$_2$ surface was typically ~2 µM. Once hemin was anchored to TiO$_2$
particles, it remained bound strongly. The hemin/TiO$_2$ films were rinsed with DMSO or pH 4 aqueous solutions prior to the reaction.

Photoreduction of hemin and kinetic measurements of organohalides reactivity. The nanocrystalline thin films, hemin/TiO$_2$, were placed diagonally in DMSO solution in a standard quartz cuvette. The cuvette was sealed with a rubber septum. The photoreduction from Fe$^{\text{III}}$ to Fe$^{\text{II}}$ was performed in N$_2$-saturated solutions with bandgap ($h\nu > 3.2$ eV) excitation of TiO$_2$. Bandgap excitation generates electron-hole pairs in the TiO$_2$ nanocrystallites. The conduction band electrons can reduce Fe$^{\text{III}}$ to Fe$^{\text{II}}$ and the valence-band hole can oxidize solvent or ions. Absorption spectra and steady-state kinetic data were acquired using a Cary 50 UV-visible spectrophotometer. Irradiations of hemin/TiO$_2$ films was carried out using a 1000-W Xe lamp with a KV 370 filter. In each case, samples were illuminated for 15 min.

A Varian Cary 50 UV-visible spectrophotometer was also used to acquire time-resolved spectra for the reaction of Fe$^{\text{II}}$/TiO$_2$ with RX. The experiments were performed in the dark to preclude secondary photocatalytic reactions. An aliquot of N$_2$ saturated RX in DMSO or acidic water was added to Fe$^{\text{II}}$/TiO$_2$ thin film immersed in the same solvent. The disappearance of Fe$^{\text{II}}$ Soret absorbance at 420 nm and the appearance of Fe$^{\text{III}}$ Soret at 400 nm were analyzed with a first-order kinetic model, where pseudo-first-order kinetic rate constants, k_{obs}, were obtained.
2.3 Results

The attachment of hemin to the nanocrystalline TiO$_2$ particles produced a dark-orange film with a UV-visible absorption spectrum that was within experimental error the same as that for free hemin in solution.$^{16-19}$ Band gap illumination in nitrogen-saturated DMSO (or H$_2$O pH 4) generated the absorption spectrum expected for heme (Fe(II)).19 The Fe(II) oxidation-state assignment was established on the basis of comparisons with the literature and the spectrum of hemin following chemical or photochemical reduction in fluid solution.

Steady-state actinometry measurements were used to calculate photochemical quantum yields of $(2.0 \pm 0.3) \times 10^{-3}$ and $(1.6 \pm 0.3) \times 10^{-2}$ in acidic water and dimethyl sulfoxide (DMSO), respectively (Figure 2-1). The quantum yield is defined as moles of Fe(III) consumed divided by moles of photons absorbed, Equation 2a. The photogenerated heme/TiO$_2$ (Fe(II)) was stable in the dark for days.

$$\phi = \frac{\text{[mole of reduced catalyst formed]}}{\text{[mole of photons absorbed]}} \quad (2a)$$
Figure 2-1. Steady-state actinometry measurement of hemin in DMSO solution. The photochemical quantum yield was $2.3 \pm 0.6 \times 10^{-6}$.
The reaction of heme (Fe(II)) with RX pollutants was examined both in solutions and on TiO$_2$. The addition of RX resulted in an exponential loss of the heme (Fe(II)) concentration and the formation of hemin (Fe(III)), Figure 2-2. The UV-visible absorbance spectrum of the ferric hemin produced after the addition of RX to ferrous hemin gave a Soret band identical to that of Fe(III) before photoreduction, but differences in the Q-band region were observed.

The reactivity was qualitatively the same for all of the RX compounds in aqueous solution and were quantitatively analyzed in DMSO. Second-order rate constants were abstracted for plots of k_{obs} versus [RX] for each organic halide and are compared to those for ferrous hemin generated by L-cysteine reduction in fluid DMSO solution (Table 2-1). In some cases, such as chloroform or alachlor, no reactivity was observed in solution for days, but the reaction proceeded to completion within minutes on the TiO$_2$ surface. For the other RX compounds, the kinetic rate constants for the heme/TiO$_2$ were found to be 1-4 times faster.
Figure 2-2. UV-visible absorbance spectra of (a) hemin (Fe(III)) on TiO₂ surface (-) and (b) after 15 min of irradiation, producing heme, Fe(II) (- - -). Spectra (c) was obtained after adding RX to the heme/TiO₂ (···). The inset shows time-resolved absorption changes monitored at 400 nm and at 420 nm following the addition of RX. Note that the S/N ratio is significantly low at λ< 400 nm because of the fundamental TiO₂ absorption.
Table 2-1. Rate constants for RX reduction by heme in fluid solution and on TiO₂ surface. All measurements were made at room temperature in DMSO. The errors represent standard deviations from multiple trials.

<table>
<thead>
<tr>
<th>RX</th>
<th>Heme in solution</th>
<th>Heme/TiO₂ (at surface)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k (M⁻¹s⁻¹)</td>
<td>k (M⁻¹s⁻¹)</td>
</tr>
<tr>
<td>CBr₄</td>
<td>50.31 ± 0.060</td>
<td>64.00 ± 2.000</td>
</tr>
<tr>
<td>CCl₄</td>
<td>0.031 ± 0.003</td>
<td>0.060 ± 0.010</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>> 4 days</td>
<td>0.009 ± 0.002</td>
</tr>
<tr>
<td>Propachlor</td>
<td>0.0100 ± 0.0003</td>
<td>0.400 ± 0.007</td>
</tr>
<tr>
<td>Alachlor</td>
<td>> 4 days</td>
<td>0.100 ± 0.003</td>
</tr>
</tbody>
</table>

Figure 2-3. The structures of a) propachlor (2-chloro-N-isopropylacetanilide) and b) alachlor (2-chloro-2’5=6’-diethyl-N-(methoxymethyl)acetanilide).

a. b.

Propachlor

Alachlor
2.4 Discussion

A proposed mechanism for the hemin photoreduction is shown in Figure 2-4. We note that similar mechanisms have been proposed in the literature for molecular compounds on TiO$_2$ interfaces$^{20-22}$ as well as Fe(III)-doped TiO$_2$.23,24 Band gap excitation produces an electron-hole pair. The conduction band electron reduces hemin (Fe(III)) to heme (Fe(II)), and the valence-band hole oxidizes solvent. Prolonged irradiation after the ferric hemin was quantitatively reduced to heme did not yield the well-known absorption of reduced TiO$_2$ in DMSO, and no further absorption changes were observed.25 This suggests that the heme mediates electron-hole pair recombination in TiO$_2$.

An alternative mechanism for photoreduction literature that had been proposed in the ligand-to-metal charge transfer involves excitation of ferric porphyrins that induces homolytic cleavage of the Fe-Cl bond, leading to ferrous porphyrins and the Cl$^-$ radical.$^{18,26-29}$ This mechanism is not favored on the basis of the relatively high quantum yields measured for hemin photoreduction on TiO$_2$. We and others have found that the photoreduction quantum yields for hemin in fluid solution are more than 2 orders of magnitude smaller.28,29 In fact, irradiation conditions sufficient to photoreduce all hemin/TiO$_2$ resulted in no measurable production of heme in DMSO. The quantum yield for hemin photoreduction in DMSO was determined to be $(2.3 \pm 0.6) \times 10^{-6}$.
Figure 2-4 Schematic representation of the proposed mechanism for hemin photoreduction on TiO$_2$.
The reactions were studied in the dark by the addition of RX to the external solvent after the photoreduction of hemin/TiO₂. This was done to eliminate possible contribution from the excited TiO₂ to the observed RX chemistry. The Q-band region after RX addition to heme/TiO₂ was different from that of hemin/TiO₂ before the photoreduction. These new spectral features are not well understood, however, it may be a result of Fe(III) binding to a new axial ligand such as the solvent (DMSO), for example.

The enhanced reactivity of heme catalysts on TiO₂ compared to that in fluid solution was observed for all RX measured in this study. In some cases, such as chloroform and alachlor, the reactivity was greatly increased, Table 2-1. For example, the reaction of chloroform with heme in DMSO solution was spectroscopically not observed for 4 days, but the reaction of heme/TiO₂ with the same concentration of chloroform was completed in 30 min. An explanation of the enhanced reactivity is unknown but may result from shifts in the Fe(III/II) reduction potential upon surface binding and/or the activation of R-X by the dark TiO₂ surface.

2.5 Conclusions

We have shown that hemin (Fe(III)) can be efficiently photoreduced on TiO₂. Band gap illumination also resulted in the reduction of Fe(III) to Fe(II) when the films were immersed in acidic water (pH4). The heme (Fe(II)) anchored to a mesoporous nanocrystalline (anatase) TiO₂ thin film reacts with organic halide pollutants. The
reactivity is rapid relative to that measured in fluid solution. The enhanced reactivity upon surface binding to TiO$_2$ is encouraging for future applications and studies. Future studies will focus on understanding these and other molecular details with a wider range of catalysts. We will also identify the RX reaction products. The observation of RX photoreactivity of heme supported on TiO$_2$ in water is particularly encouraging and suggests that the materials may be suitable for aqueous environmental photocatalysis.

2.6 References

Chapter 3: Controlling Reduction Potentials of Semiconductor-Supported Molecular Catalysts For Environmental Remediation of Organohalide Pollutants

3.1 Introduction

Heterogeneous catalysts, such as zero-valent iron, have widely been used for RX remediation (1-3). However, these and other heterogeneous catalysts generally yield a distribution of products, some of which can be more toxic than the initial RX compound. In principle, a homogeneous catalyst can be fine-tuned to selectively react with specific environmental pollutants to yield a desired reaction product (1-14). A potentially attractive approach for environmental remediation applications is to anchor molecular catalysts to heterogeneous catalysts supports (4, 15, 16). This could provide the specificity of a molecular catalyst with the stability and enhanced reactivity common to heterogeneous catalysts. An early example that utilized this approach was cobalt tetrasulfo-phthalo cyanine anchored to colloidal titanium dioxide particles in aqueous solution (17, 18). This was found to be an efficient electron-transfer system that photocatalyzed the reduction of dioxygen (17) and the oxidation of sulfur dioxide (18).

The environmental literature contains additional examples of molecular catalysts incorporated within solid-state materials such as sol-gels, clays, polymers, and insulating metal oxides (4, 15, 16, 19-23). It is generally found that the interface has a significant
influence on environmental reactivity. In this chapter, we report on the use of mesoporous nanocrystalline (anatase) thin films as solid-state supports for RX catalysts. We find that the semiconducting nature of these films can be utilized to maintain a desired oxidation state for environmental photocatalysis or electrocatalysis. In Chapter 2, we reported enhanced RX reactivity of iron(II) protoporphyrin (IX) (heme) anchored to such films relative to that measured in fluid solution (24). While a full explanation for the enhanced reactivity was still lacking, it was suggested that the heterogeneous interface altered the heme reduction potential. Surprisingly little is known about how surface immobilization alters the redox properties of molecular catalysts in the environment. Such an understanding is important because it enables one to predict reactivity and test electron transfer theories (25, 26). Here, we have quantified reduction potentials of iron(III) protoporphyrin chloride (hemin) and cobalt(III) meso-tetra(4-carboxyphenyl) porphyrin chloride (CoTCP) catalysts in fluid solution and when attached to nanocrystalline TiO₂. The compounds are shown in Figure 3-1. We find that surface binding and pH control the catalysts' formal reduction potentials and reactivity with CCl₄ and CHCl₃.
Figure 3-1: Iron (III) protoporphyrin chloride (hemin). Cobalt (III) meso-tetra(4-carboxyphenyl) porphyrine chloride (CoTCP).
3.2 Experimental Section

Materials. HPLC grade acetonitrile (CH₃CN), dimethyl sulfoxide (DMSO), concentrated sulfuric acid, acetic acid, and nitric acid were obtained from Fisher Scientific. Sodium acetate was obtained from J.T. Baker. Titanium (IV) isopropoxide (Aldrich), tetrabutylammonium hexafluorophosphate (TBAH) (Fluka), sodium hydroxide (Aldrich), iron (III) protoporphyrin chloride (Fluka), iron (III) meso-tetraphenyl porphyrin chloride (Frontier Scientific), and cobalt (III) meso-tetra(4-carboxyphenyl) porphyrin chloride (Frontier Scientific), were used as received. L-Cysteine was obtained from Research Chemicals Ltd. Deionized water was used in aqueous measurements and reactions.

Nanocrystalline TiO₂ Film Preparation. Transparent TiO₂ films consisting of ~10 nm diameter anatase particles were prepared by the hydrolysis of Ti(iOPr)₄ using a sol-gel technique previously described in the literature (22). The TiO₂ pastes were cast as mesoporous thin (~10µm) films onto transparent fluorine-doped tin oxide (FTO). Freshly prepared TiO₂ films on FTO were soaked in the aqueous solutions of known pH for at least 2 hrs and then allowed to air-dry for 2 hours. The pH values were measured using an Orion Model 420A pH meter before and after exposure to the metal oxide surface. The films were then soaked in 2-8 µM DMSO solutions of hemin or CoTCP overnight at room temperature. Once compounds were anchored, the catalysts
remained strongly bound to the surface in DMSO/CH$_3$CN solvent mixtures and aqueous solutions. Some desorption was observed in neat DMSO.

Spectroelectrochemistry/Electrochemistry. The TiO$_2$ thin films or a transparent FTO electrode were placed diagonally in a standard quartz cuvette. The cuvette was sealed with a rubber septum and then purged with N$_2$ gas for at least 30 min before applying a potential. A PAR™ Model 173 Potentiostat was used to apply the desired potentials in a standard three-electrode arrangement with a Pt gauze counter electrode and a Ag/AgCl reference electrode. A N$_2$ atmosphere was kept throughout the measurements. A Cary 50 spectrometer was used to measure absorbance spectra. Each potential was held until the UV-Vis spectrum became time-independent at which the equilibrium was assumed (30 min ~ 5 hours). As electrolytes, tetrabutyl ammonium hexafluorophosphate (TBAH) was used in non-aqueous solutions and KNO$_3$ was used in aqueous solutions.

Cyclic voltammetry was used to measure formal potentials of the molecular catalysts (50 mM) in 0.1 M TBAH/DMSO solutions. A BAS model CV-50 W potentiostat was used in a standard three-electrode arrangement consisting of a Glassy carbon working electrode, a Pt gauze counter electrode, and Ag/AgCl reference electrode.

Kinetic Analysis of Organohalide Reactivity. A Varian Cary 50 UV-visible spectrophotometer was used to acquire time-resolved spectra for the reaction of heme/TiO$_2$ with CCl$_4$. An aliquot of N$_2$ saturated CCl$_4$ in H$_2$O was added to heme/TiO$_2$
thin film immersed in an aqueous solution. The disappearance of heme Q-band absorbance at 575 nm and the appearance of hemin Soret band at 360 nm were analyzed with a first-order kinetic model. Pseudo-first-order kinetic rate constants, k_{obs}, were obtained by fitting to equation 1.

$$\ln A = \ln A_0 - k_{\text{obs}} t \quad (1)$$

3.3 Results

Both hemin and CoTCP bind to nanocrystalline TiO$_2$ thin films in DMSO. The concentration dependent binding was well described by the Langmuir adsorption isotherm model from which limiting surface coverages and adduct formation constants were abstracted, Table 3-1. The kinetics for binding were not studied in detail. However, equilibrium was achieved within 24 hours. Significantly, iron (III) meso-tetraphenyl porphyrin chloride, which lacks the carboxylic acid functional groups, did not bind to TiO$_2$ surfaces under these same conditions.

The surface bound complexes were found to be stable in aqueous solutions and DMSO/CH$_3$CN (v:v 1:1) for periods of days. The frequency of the Soret and lower energy absorption bands were unchanged upon surface binding, although some broadening was observed.
Table 3-1. Spectroscopic and Redox Properties of Catalysts in DMSO at room temperature.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Soret λ_{max} (nm) (ε, M$^{-1}$cm$^{-1}$)</th>
<th>K_{eq} (M$^{-1}$)</th>
<th>Γ_{max} b (mol)</th>
<th>E° (M$^{\text{III/II}}$) (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heme</td>
<td>423 (208,000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heme/TiO$_2$</td>
<td>422</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemin</td>
<td>402 (140,000)</td>
<td></td>
<td></td>
<td>-727a</td>
</tr>
<tr>
<td>Hemin/TiO$_2$</td>
<td>390</td>
<td>1×10^5</td>
<td>2.0×10^{-8}</td>
<td>-1063a</td>
</tr>
<tr>
<td>Co$^{\text{III}}$TCP</td>
<td>395 (130,000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co$^{\text{II}}$TCP/TiO$_2$</td>
<td>396</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co$^{\text{III}}$TCP</td>
<td>425 (120,000)</td>
<td>1×10^5</td>
<td>1.6×10^{-8}</td>
<td>-559a</td>
</tr>
<tr>
<td>Co$^{\text{III}}$TCP/TiO$_2$</td>
<td>423</td>
<td>1×10^5</td>
<td>1.6×10^{-8}</td>
<td>-782a</td>
</tr>
</tbody>
</table>

a Formal potentials measured vs ferrocenium/ferrocene (Fc70).

b Limiting surface coverage (mol/cm2) x surface area of TiO$_2$ (cm2).
Formal $M^{III/II}$ reduction potentials (E°) for hemin and CoTCP were measured in fluid solution and when anchored to TiO$_2$ surfaces (28-30). Cyclic voltammetry was used to measure formal potentials in DMSO electrolyte. The $M^{III/II}$ redox chemistry showed equivalent anodic and cathodic peak currents, $i_{pa}/i_{pc} \sim 1$, and a peak-to-peak separation of ~100 mV. Plots of the square root of the peak current versus scan rate were linear as expected for a diffusional process (28). Ferrocene added to the electrolyte demonstrated a one-electron process, and all potentials were referenced versus ferrocenium/ferrocene (Fc$^{+}/0$). The Fe$^{III/II}$ and Co$^{III/II}$ formal potentials were measured to be -727 and -559 mV versus Fc$^{+}/0$ in 0.1 M TBAH/DMSO electrolyte. The cyclic voltammetry of the catalysts bound to TiO$_2$ was very similar to those previously reported for unfunctionalized TiO$_2$ thin films (29). Superimposed on a background current from reduction of the TiO$_2$ were peaks attributable to reduction of the molecular catalysts. However, the lack of a corresponding oxidation precluded meaningful estimates of the formal reduction potentials.

Spectroelectrochemistry provided an appropriate method to measure the $M^{III/II}$ potentials of the catalysts bound to TiO$_2$. The absorption spectra of the reduced and oxidized compounds have previously been reported for hemin/heme related (30-33) and Co porphyrin (34-36) compounds, and this aided our analysis. The absorption spectra of the molecular catalysts on TiO$_2$ showed isosbestic changes as they were reduced or oxidized. Upon stepping the applied potential to a new value, the absorption spectra were recorded every few minutes until the steady-state concentrations did not change as a function of time. For hemin, isosbestic points were observed at $\lambda_{iso} = 408, 441, 500, 576, \text{ and } 643 \text{ nm and at } \lambda_{iso} = 410, 460, 530, 545, 568, \text{ and } 593 \text{ nm for CoTCP}$ (Figure
The formal reduction potential corresponded to the equilibrium potential where the concentration of reduced and oxidized compounds was equal \((28)\) (i.e., see Figure 3-2). When the bias was removed under anoxic conditions, the concentrations of the catalysts in the two oxidation states did not change. The reduction potentials of the compounds in DMSO electrolyte and when anchored to TiO_2 are given in Table 3-1.
Figure 3-2. Representative spectroelectrochemical data of molecular catalysts bound to TiO₂. The left-hand side (a) shows hemin reduction in a 50:50 CH₃CN/DMSO electrolyte. The Soret band shifts from 400 nm (Fe³⁺) to 420 nm with negative applied potential. The potentials applied were -250, -350, -400, -500, -550, -600, -650, -700, and -900 mV vs Ag/AgCl. The inset shows expanded absorption spectra from 450 to 700 nm. The arrow shows the direction of absorption change upon applying negative potential. (b) A plot of Fe³⁺/Fe²⁺ concentrations vs. applied potential.
Figure 3-3. Panel (a) shows the absorption spectra of $\text{Co}^{\text{III}}/\text{TCP/TiO}_2$ reduction in the CH_3CN electrolyte at the applied potential. Soret bands shift from 420 nm (Co^{III}) to 400 nm with negative applied potential. The applied potentials were -100, -150, -200, -250, -270, -300, -400, and -600 mV vs Ag/AgCl. The inset shows expanded absorption spectra from 450 to 650 nm. The arrow shows the direction of absorption change upon applying negative potential. (b) A plot of $\text{Co}^{\text{III}}/\text{Co}^{\text{II}}$ concentrations vs. applied potential.
Figure 3-4 shows visible absorbance spectra of hemin in the ferric and ferrous FeIII state (called heme) (37). Upon the addition of excess CHCl$_3$ to the heme solution, no change in absorbance was measured after 2 days. Figure 3-4b shows visible absorption data for the same reaction, except with hemin and heme bound to the TiO$_2$ surface. Upon addition of CHCl$_3$ to heme/TiO$_2$, the absorption spectra expected for hemin/TiO$_2$ were observed immediately and were complete within 30 min. In the case of CCl$_4$, the rate constants for heme and heme/TiO$_2$ were 0.031 ± 0.003 and 0.06 ± 0.01 M$^{-1}$ s$^{-1}$, respectively in DMSO solution (24).

Formal reduction potentials for both hemin and CoTCP anchored to TiO$_2$ surfaces that had been pretreated with aqueous solutions of known pH were also measured spectroelectrochemically in CH$_3$CN electrolytes (Figure 3-5). Plots of the M$^{III/II}$ potential versus pH used for surface pretreatment show a significant shift in formal potentials. The hemin Fe$^{III/II}$ potential varied linearly from pH 1-14 with a slope of 40 mV per pH unit. In the case of CoTCP, the M$^{III/II}$ reduction potential varied between pH 4-9 with an average slope of 66 mV per pH unit and was pH independent at higher and lower proton concentrations.
Figure 3-4. (a) The UV-visible absorbance spectra of (1) — hemin (2) — heme, and (3) — the spectra recorded 2 days after the addition of CHCl₃ in DMSO electrolyte. (b) The UV-visible absorbance spectra of (1) — hemin/TiO₂, (2) — heme/TiO₂, and (3) — the spectra observed in 30 min after the addition of CHCl₃ in DMSO electrolyte.
Figure 3-5. Formal Fe$^{III/II}$ reduction potential (E°) vs Ag/AgCl of (a) hemin/TiO$_2$ in a 50:50 CH$_3$CN/DMSO electrolyte as a function of the pH surface pretreatment of TiO$_2$. The best-fit line has a slope of 40 mV per pH unit. (b) CoTCP/TiO$_2$ in a CH$_3$CN electrolyte as a function of the pH surface pretreatment of the TiO$_2$. The inset shows a linear fit to the data from pH 4 to 9 with a slope of 66 mV per pH unit.
Measuring accurate hemin reduction potentials in aqueous solution was not feasible due to significant broadening of the absorption bands and poor solubility. However, it was possible for CoTCP. Typical spectroelectrochemical data for CoTCP/TiO$_2$ in aqueous electrolyte are shown in Figure 3-6. An increase in solution pH resulted in more negative formal potentials throughout the range of pH 1-10. The linear correlation was observed with an average slope of 52 mV ± 4 per pH unit (inset Figure 3-6). The Co$^{III/II}$/TCP formal potentials with no TiO$_2$ present were also measured by spectroelectrochemistry at pH 6 and 9 and -583 and -682 mV, respectively.

The heme/TiO$_2$ reactivity with CCl$_4$ was quantified at pH 4 and 8. Band gap illumination ($\lambda<390$ nm) of hemin/TiO$_2$ in the presence of acetate was found to reduce the metal center to yield heme/TiO$_2$ at both pH values. The dark addition of CCl$_4$ was found to generate the initial hemin/TiO$_2$ absorption spectrum. The kinetics was first-order as shown in Figure 3-7. The observed rate constants, k_{obs}, were $3.9 \pm 0.7 \times 10^{-4}$ and $2.0 \pm 0.1 \times 10^{-3}$ s$^{-1}$ at pH 4 and 8, respectively. The rate constants for heme loss and hemin formation were within the same experimental error.
Figure 3-6. Representative spectroelectrochemical data of CoTCP/TiO$_2$ in pH 8 aqueous electrolyte as a function of applied potential ($V_{\text{appl}} = -50$, -100, -150, -200, and -270 mV). The inset shows formal potentials of CoTCP/TiO$_2$ in aqueous solution as a function of pH. The best-fit line has a slope of 52 mV per pH unit.
Figure 3-7. Reaction of heme/TiO$_2$ with 0.2 mM CCl$_4$ in aqueous solutions at pH 4 and 8. Panel a shows the absorption changes after the addition of CCl$_4$ at 575 nm (FeII Q-band) and at 360 nm (FeIII Soret band) in pH 4. Panel b shows first-order kinetic analysis of data in panel a and corresponding data (not shown) at pH 8. Panel c shows the UV-vis spectra of (i) ■ hemin/TiO$_2$, (ii) ▲ heme/TiO$_2$, and (iii) ◯ the final product after the reaction of heme/TiO$_2$ with CCl$_4$ in pH 8 aqueous solution. The inset shows an expanded scale in the Q-band region.
3.4 Discussion

High surface area nanocrystalline (anatase) TiO$_2$ films were utilized as supports for hemin and CoTCP catalysts. These same TiO$_2$ films have been used extensively for solar cell applications and the high surface coverages (\sim10$^{-8}$ mol/cm2), and large adduct formation constants ($K \sim$105 M$^{-1}$) measured here were consistent with that literature(39, 40). There exist several potential advantages of these mesoporous films over the colloidal suspensions previously used for environmental studies (17-20). The most obvious is that the films can be introduced and removed from a wide variety of environments including ground and ocean water. They do not suffer from aggregation or salting out common in colloidal suspensions. In addition, the mesoporous structure allows facile diffusion of RX or other pollutants to catalytic sites in the film. Most significant for this study is that the catalysts can electronically communicate with the outside world for environmental photocatalysis and electrocatalysis applications.

We find that the reactivity of heme and CoIITCP with CCl$_4$ and CHCl$_3$ is greatly enhanced when they are immobilized on the surface of TiO$_2$. Such synergy between molecular and heterogeneous catalysts has previously been observed; however, the origins remain speculative (24, 38). The electrochemical, spectroscopic, and organohalide reactivity studies described herein have identified some of the factors that underlie this synergy. A significant shift in the formal reduction potential of the catalysts was observed upon surface binding, such that the catalysts bound to TiO$_2$ were always stronger reductants than the catalysts in fluid solution. This fortuitous change in potentials
underlies, at least in part, the enhanced organohalide reactivity on the TiO$_2$ surface. Next, we discuss the origins of this effect and of relevant literature data.

The mechanism by which the semiconductor bound catalysts can be reversibly oxidized and reduced is not obvious and deserves some discussion (41). The metal-based reduction potentials of these catalysts reside energetically within the forbidden energy gap of TiO$_2$ (Figure 3-8). Therefore, without band gap illumination, it is not possible for TiO$_2$ to directly reduce or oxidize these catalysts. We note that with a more negative applied bias, or band gap illumination, it is possible to mediate the reduction with TiO$_2$ conduction band electrons (24). More generally, the dark redox chemistry is initiated with catalysts bound to the tin oxide substrate and extends to the TiO$_2$ catalysts by intermolecular electron hopping. Complete oxidation of all the catalysts thus requires that there are no electronically isolated regions of the film and that a pathway for hopping to each catalyst is present. Bonhote and co-workers have indeed shown that a percolation threshold exists for oxidation of amines anchored to nanocrystalline TiO$_2$ thin films (42). In the present work, saturation surface coverages led to absorbances >2 in the Soret region (400-430 nm) due to the high extinction coefficients of porphyrins (Table 3-1). Therefore, spectroelectrochemical measurements were performed at about 1/3 the maximum surface coverage. This coverage was either above the percolation threshold or catalysts had sufficient translational mobility to undergo lateral intermolecular electron transfer.
Figure 3-8. Interfacial energetics at catalyst/TiO$_2$ interfaces at pH = 6. The conduction band edge position was taken from refs 23 and 51. The CoTCP data were measured herein. "Hemin/TiO$_2$ could not be measured in water, so the potential difference between Co$^{III/II}$ and Fe$^{III/II}$ in DMSO was assumed to be the same in water. While data are shown for pH = 6, the conduction band edge and the M$^{III/II}$ potentials show nearly Nernstian pH dependences, so the relative energetics are approximately correct at any pH.
The results of the spectroelectrochemical measurements show that surface binding has a profound affect on the formal potentials and RX reactivity of the catalysts (Table 3-1). The formal potentials measured in nonaqueous solution were dependent on the concentration of protons at the TiO$_2$ surface. The surface bound catalysts displayed nearly Nernstian shifts in the formal reduction potentials with pH. In aqueous solution, both environmental pH and interaction with the metal oxide surface contributed to the formal potential shifts of the transition metals catalysts. For example, at pH 6, the Co$^{III/II}$ formal potential shifted about 100 mV upon surface binding.

The near Nernstian shift with pH in aqueous solution has previously been observed for hemes and related macrocycles and is consistent with a proton coupled electron-transfer mechanism (43-46). Reduction of MIII-OH produces MII-H$_2$O; hence, one electron and one proton are transferred. Rusling and co-workers, for example, have reported a similar pH dependence of the Fe$^{III/II}$ potentials of hemoglobin and myoglobin modified electrodes (43, 45). The reduced form of hemin and CoTCP and related compounds is known to react with a wide variety of organohalides (8, 10, 20, 32, 33, 47-53). Here, we have shown a clear correlation between the M$^{III/II}$ potential and the reaction rate constants.

The shifts in formal potential with surface binding are more difficult to explain. In nonaqueous solution, the results reported herein clearly show that they originate at least in part from the interfacial proton concentration. This observation is important as TiO$_2$ is known to be hydroscopic, and the exact processing conditions can lead to different surface potentials and hence reactivity. In addition, Zaban and co-workers
have shown that molecular dyes with pH independent formal reduction potentials become pH dependent when attached to TiO$_2$ (54, 55). The mechanism for this behavior is not fully understood but is thought to result from the influence of the electrostatic field caused by the adsorption of H$^+$ and OH$^-$ ions on the semiconductor surface. This equilibrium also drives the well-known 59 mV/pH shifts of the conduction and valence band edge potentials. These same workers have shown that the distance between the dye and the semiconductor surface influenced the magnitude of the effect (26). Dyes within the Helmholtz layer showed a Nernstian shift, while those more distant showed a <59 mV/pH unit change (55). These observations could also explain why hemin/TiO$_2$ shows a weaker pH dependence than does CoTCP/TiO$_2$, as the former is separated from the surface by a flexible ethylene spacer.

3.5 Conclusions

We have shown that binding molecular catalysts to TiO$_2$ surfaces enhances their reactivity toward organohalide pollutants as compared with fluid solution. The increase in reactivity can be attributed to a negative shift in M$^{III/II}$ reduction potential (toward the vacuum level) upon surface binding. Interfacial as well as solution pH were shown to influence the thermodynamics and kinetics of RX reactivity. The results can be rationally understood on the basis of proton coupled electron transfer and the well-known Bronsted acid-base equilibrium of metal oxide surfaces. The ability to tune the reactivity of surface bound molecular catalysts by pH has profound impacts toward their reactivity with various RX pollutants.
3.6 References

Chapter 4: Multi-Electron Transfer from Heme-Functionalized Nanocrystalline TiO₂ to Organohalide Pollutants

4.1 Introduction

A significant challenge in the photochemical sciences is to identify assemblies that can store and transfer multiple electrons to a substrate when illuminated with light. Multi-electron transfer (MET) processes avoid high-energy free radical intermediates and can yield desired reaction products under mild conditions. The synthesis of chromophoric molecular compounds capable of MET is challenging, although some notable breakthroughs have recently been realized. Nanomaterials, on the other hand, that can harvest solar energy and store multiple electrons are easily synthesized but often lack the selectivity of molecular catalysts.

In this Chapter, we describe a new and broadly applicable approach for photodriven molecular MET catalysis. Hemin (iron protoporphyrin IX) has been anchored to ~15 nm TiO₂ nanocrystallites (anatase) in ~8 µm thick mesoporous thin films. Band gap excitation of these materials in methanol or aqueous (pH 4 or 8) solutions leads to the reduction of hemin to heme (Fe³⁺ → Fe²⁺) and the production of TiO₂(e⁻), heme/TiO₂(e⁻). Well-defined molecular catalysts (hemes) anchored to mesoporous nanocrystalline (anatase TiO₂) thin films were found to trap, store, and transfer multiple electrons to organohalide pollutants. The mechanisms and second-
order rate constants for the reduction of bromobenzene, chlorobenzene, dichlorobenzene, and trichloroethylene were quantified. The evidence of MET processes were supported with the reaction of heme/TiO$_2$(e$^-$) with 6-bromo-1-hexene as a radical clock.

4.2 Experimental section

Materials
Aryl halides (bromobenzene, chlorobenzene, and dichlorobenzene, and trichloroethylene) were used as received. Titanium(IV) isopropoxide was obtained from Aldrich Chemical Co. Iron(III) protoporphyrin IX chloride (hemin) was obtained from Fluka. All solvents were of HPLC grade and were obtained from Fisher Scientific. Deionized water was used for the measurements in aqueous solutions.

Nanocrystalline TiO$_2$ thin films and functionalization of heme catalysts
Mesoporous nanocrystalline TiO$_2$ films were prepared by the hydrolysis of Ti(i-OPr)$_4$ by a sol-gel method previously described in the literature7. Anatase TiO$_2$ nanoparticles prepared in this manner were ~15 nm in diameter, and the film thickness was ~10 µm. Hemin was attached to nanocrystalline TiO$_2$ films from micromolar DMSO solutions at room temperature.
Photoreduction from hemin/TiO$_2$ to heme/TiO$_2$(e$^-$)

TiO$_2$ films or hemin (protoporphyrin IX chloride)-functionalized TiO$_2$ films were immersed in solutions of neat methanol or, in some cases, aqueous solutions of 6.7×10^{-4} M acetic acid (pH = 4) or 0.1 M sodium citrate (pH = 8) and were purged for > 30 min with N$_2$. Band gap excitation resulted in the reduction of hemin to heme, and continued photolysis led to the appearance of the well-known absorption of TiO$_2$ electrons, TiO$_2$(e$^-$), that absorb light throughout the visible and into the infrared region, Figure 4-1.8

Kinetic Analysis of Organohalide Reactivity

A Varian Cary 50 UV-visible spectrophotometer was used to acquire time-resolved spectra for the reaction of TiO$_2$(e$^-$) and/or heme/TiO$_2$(e$^-$) with aryl halides and trichloroethylene. An aliquot of N$_2$ saturated RX in MeOH or H$_2$O was added to TiO$_2$(e$^-$) or heme/TiO$_2$(e$^-$) thin film immersed in MeOH or an aqueous solution. The disappearance of heme (FeII) Soret absorbance at 420 nm and TiO$_2$(e$^-$) absorption at 800 nm, and the appearance of hemin (FeIII) Soret band at 400 nm were analyzed with a first-order kinetic model where pseudo-first-order kinetic rate constants, k_{obs}, were obtained.

Gas chromatography mass spectrometry

The products formed by photocatalysis in THF were analyzed by a Shimadzu GC17A/QP5050A GC/MS (Shimadzu Columbia, MD). The GC17A is equipped with a
low polarity (5% phenyl-, 95% methyl-siloxane) capillary J & W DB5-MS column (30 m length, 0.25 mm ID, 0.25 µm film thickness). The products formed in THF solution was transfer to a 2 mL GC/MS vial. The reaction mixture was injected into the autosampler of the GC/MS. The injector temperature was 220 °C and the transfer interface was at 280 °C. The split ratio was 10 and the H₂ gas column flow rate was kept at 1.0 mL/min. An EI quadrupole based mass spectrometer served as the detector with a scan range of 40-900 amu and an ionizing electron energy of 70 eV.

4.3. Results

The catalysts were photoreduced from Fe³⁺/TiO₂ (or TiO₂) to Fe²⁺/TiO₂(e⁻) (or TiO₂(e⁻)) by band gap illumination in N₂ saturated MeOH or aqueous (pH 4 or 8) solution. Valence band holes are known to irreversibly oxidize methanol (or carboxylates) that allows the concentration of TiO₂(e⁻) to build up under steady-state photolysis.⁵ ⁹ Under the experimental conditions investigated, we estimate that each TiO₂ nanoparticle contains on average ~50 hemes and 600 TiO₂(e⁻).⁸ Concentrations of TiO₂(e⁻) could be controlled by photolysis time, and the heme surface coverage could be independently tuned through equilibrium binding.¹⁰

The photogenerated hemes and TiO₂(e⁻) were stable under anaerobic conditions for several days. Organohalide (RX) pollutants, trichloroethylene (TCE), 1,2-dichlorobenzene, 1-bromobenzene, and 1-chlorobenzene, introduced to the external
solutions were found to initiate redox reactivity. The experiments were performed in the dark to preclude secondary photolytic reactions. Figure 4-1 shows the changes in absorbance with time after 1,2-dichlorobenzene (4-1a) and trichloroethylene (4-1b) were added to the external solvent. The spectral changes observed were qualitatively similar for all the organohalides investigated. The concentration of TiO$_2$(e$^-$) decreased rapidly to less than 10% of the initial value, after which time the heme was oxidized to hemin (inset Figure 4-1). The first-order rate constants for the appearance of oxidized heme (hemin) and the loss of heme were, within experimental error, the same. At long reaction times, the initial hemin/TiO$_2$ absorption spectrum was observed, consistent with quantitative reactivity based on heme.
Figure 4-1. UV-visible absorbance spectra of hemin/TiO$_2$ (---), after photolysis: heme/TiO$_2$(e$^-$) (-----), and after addition of (a)1,2-dichlorobenzene and (b) trichloroethylene to yield hemin/TiO$_2$ (---). The inset shows time-resolved concentration changes upon addition of RX. The first vertical line indicates the time of RX injection (75 s), and the second line corresponds to the time when >90% of the TiO$_2$(e$^-$) was consumed and heme oxidation begins.
Comparative studies with titanium dioxide electrons in the absence of heme and heme alone were investigated. Heme is a naturally occurring porphyrin that is known to reduce a variety of alkyl halides but was unreactive toward TCE or the arylhalides in methanol. The TiO$_2$(e$^-$)s showed measurable reactivity with the arylhalides but none with TCE.

Figure 4-2 shows that the concentration of TiO$_2$(e$^-$) decreased to near zero within 20 s upon addition of 1,2'-dichlorobenzene when heme was anchored to the semiconductor surface. In contrast, under the same conditions, the TiO$_2$(e$^-$) decreased by only about half after 30 min in the absence of heme. Both reactions were found to be first-order in aryl halide. In general, the second-order rate constants for aryl halide reduction by TiO$_2$(e$^-$) was 80-150 times larger in the presence of heme (Table 4-1). Neither TiO$_2$(e$^-$) nor heme alone showed measurable reactivity with TCE after 3 days in both MeOH (Table 4-1) and pH 8 aqueous solution (Figure 4-3). However, the reaction proceeded rapidly for heme/TiO$_2$(e$^-$) in methanol (Table 4-1), and at pH 8 (Figure 4-3), $k = 0.22 \pm 0.02$ M$^{-1}$s$^{-1}$.

<table>
<thead>
<tr>
<th>Organohalide</th>
<th>TiO$_2$(e$^-$)</th>
<th>Heme/TiO$_2$(e$^-$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromobenzene</td>
<td>0.430 ± 0.040</td>
<td>36.47 ± 1.10</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>0.050 ± 0.006</td>
<td>3.780 ± 0.13</td>
</tr>
<tr>
<td>Dichlorobenzene</td>
<td>0.070 ± 0.002</td>
<td>10.42 ± 0.27</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>No Rxn.</td>
<td>0.760 ± 0.03</td>
</tr>
</tbody>
</table>

Table 4-1. Rate constants for Organohalid Reduction by TiO$_2$(e$^-$) and heme/TiO$_2$(e$^-$) in Methanol.
Figure 4-2 Absorbance at 1000 nm of heme/TiO$_2$(e') (···) and TiO$_2$(e') (-) as a function of time. The arrow indicates the point at which 1,2-dichlorobenzene was added to the external methanol solution.
Figure 4-3. UV-vis absorption spectra of TCE reaction with a) TiO$_2$(e$^-$) that shows no reactivity for 3 hours after addition of TCE and b) heme/TiO$_2$(e$^-$) that shows the competition of the reaction in 1 hour after the addition of TCE. UV-visible absorbance spectra of hemin/TiO$_2$ (——), after photolysis, heme/TiO$_2$(e$^-$) (——), after addition of TCE to yield heme/TiO$_2$ (——), and the completion of the reaction to yield hemin/TiO$_2$ (——).
The cooperative reactivity was further investigated with radical clocks that yield characteristic products from one- and two-electron transfer reactions. As shown in Scheme 4-1, 6-bromo-1-hexene yields 1-methylcyclopentane through two single-electron transfer reactions, while a rapid two-electron transfer produces 1-hexene. Reactions of 6-bromo-1-hexene with TiO$_2$(e$^-$) and heme/TiO$_2$(e$^-$) in THF were analyzed by GC-MS. 1-Methylcyclopentane was the sole product observed for TiO$_2$(e$^-$). For reactions of 6-bromo-1-hexene with heme/TiO$_2$(e$^-$), both 1-hexene and 1-methylcyclopentane were formed in relative yields of 69 ± 5 and 31 ± 5%, respectively.
Scheme 4-1. The electron transfer pathways of the radical clock, 6-bromo-1-hexene that yields a) 1-hexene as a product of two-electron transfer process and b) 1-methylcyclopentane as a product of two single electron transfer processes.
4.4 Discussion

Each heme functionalized TiO$_2$ nanoparticle was found to store >500 reducing equivalents upon illumination. A synergy effect between the molecular catalysts and the semiconductor was observed. We have quantified the kinetics for TCE and aryl halide reduction by hemes anchored to TiO$_2$(e$^-$), Table 4-1. It is noteworthy that these same reactions are not observed for hemes in fluid solution and do not occur, or are much slower, for TiO$_2$(e$^-$)s alone under otherwise similar conditions.

Similar spectroscopic changes were observed when all the organohalides were reacted with the heme/ TiO$_2$(e$^-$). In all cases, the concentration of TiO$_2$(e$^-$) was found to decrease to near zero before the hemes were oxidized to hemin, Figure 4-1. The spectral changes are consistent with at least two mechanistic pathways: (1) a heme-mediated reduction; or (2) reduction first by TiO$_2$(e$^-$) and then by heme/TiO$_2$. The first pathway requires that the TiO$_2$(e$^-$) \rightarrow Fe(III) charge transfer be faster than Fe(II) \rightarrow RX. The latter pathway requires rapid reduction of RX by the TiO$_2$(e$^-$).

(1) Mediated Mechanism:
Heme/TiO\(_2\)(ne\(^-\)) + RX \rightarrow Hemin/TiO\(_2\)(ne\(^-\)) + RX\(^-\) \quad \text{Slow} \quad (4-a)

Hemin/TiO\(_2\)(ne\(^-\)) \rightarrow Heme/TiO\(_2\)((n-1)e') \quad \text{Fast} \quad (4-b)

Heme/TiO\(_2\) + RX \rightarrow Hemin/TiO\(_2\) + RX\(^+\) \quad (4-c)

(2) Stepwise Mechanism:

Heme/TiO\(_2\)(ne\(^-\)) + RX \rightarrow Heme/TiO\(_2\)((n-1)e') + RX\(^-\) \quad (4-d)

Heme/TiO\(_2\)(e') + RX \rightarrow Heme/TiO\(_2\) + RX\(^+\) \quad (4-e)

Heme/TiO\(_2\) + RX \rightarrow Hemin/TiO\(_2\) + RX\(^+\) \quad (4-f)

Comparative studies with TiO\(_2\)(e') that were not functionalized with hemes were very slow or, in the case of TCE, did not react at all. The second-order rate constants by heme/TiO\(_2\)(e') were 80-150 times larger than TiO\(_2\)(e') in the absence of heme. Such data are most consistent with heme-mediated RX reduction and suggest cooperativity between hemes and the semiconductor conduction band electrons (Figure 4-4). We note that there was no spectroscopic evidence for RX adsorption to TiO\(_2\) or to hemin-functionalized TiO\(_2\) in the dark.

In the case of the reaction with TCE, TiO\(_2\)(e') or heme alone did not show measurable reactivity for 3 days. However, heme/TiO\(_2\)(e') in methanol and aqueous solution (pH 4 and 8) reacted rapidly with TCE. A possible explanation for this is that the first reduction potential of TCE is too negative, \(E^\circ = -0.69 \pm 0.01\) V, and the reduction occurs by the more thermodynamically favorable two-electron pathway, \(E^\circ = +0.52 \pm 0.01\) V vs NHE\(^{12}\).
Radical clock studies clearly demonstrate that rapid microsecond multi-electron transfer reduction occurs at the heme/TiO₂ interface. Reactions of 6-bromo-1-hexene with heme/TiO₂(e⁻) that produced 69% 1-hexene demonstrate multi-electron transfer. The formation of 1-hexene indicates that the second electron was transferred to RX at a rate faster than that of the free-radical cyclization reaction. In other words, the heme/TiO₂(e⁻) nanocrystallites delivered two electrons to RX within 4.5 µs. On the other hand, the only product of the reactions with TiO₂(e⁻) was 1-Methylcyclopentane. This indicates that the second electron was transferred slower, > 4.5 µs, in the absence of heme. The radical clock studies support the evidence of two-electron reduction pathway for heme/TiO₂(e⁻) with RX.
Figure 4-4. The possible multi-electron transfer processes of heme/TiO$_2$(e$^-$) reaction with organohalide pollutants.
4.5 Conclusions

We have quantified the kinetics for aryl halide and TCE reduction by heme anchored to TiO$_2$ particles. The reactions with heme/TiO$_2$(e$^-$) were much faster than TiO$_2$(e$^-$) or heme alone. The evidence for a multi-electron transfer process was supported by radical clock studies. The semiconducting nature of the mesoporous TiO$_2$ thin films allows the reactive states to be controlled with light and/or applied potential,10,14 behavior that is difficult, if not impossible, to achieve with colloidal solutions.15 In principle, the relative concentrations of conduction band electrons and hemes can be systematically tuned to yield desired reaction products. We emphasize also that the approach here is not limited to naturally occurring heme catalysts or to TiO$_2$ and can be extended to a wide variety of naturally occurring or synthetic catalysts and nanomaterials for other environmental or catalytic applications. Future studies of heme/TiO$_2$(e$^-$) will focus on the mechanistic details for multi-electron transfer as well as identification of the RX reduction products.

4.6 References

15. (a) Hong, A. P.; Bahnemann, D. W.; Hoffmann, M. R. Cobalt(II) tetrasulfophthalocyanine on titanium dioxide-A new efficient electron relay for the
Chapter 5: Heme Mediated Reduction of Organohalide Pollutants at Nanocrystalline TiO$_2$ Thin Film Interfaces

5.1 Introduction

Organohalide pollutants are commonly found in groundwater and have been linked to serious health problems (Tesfamichael and Kaluarachchi 2004; Simmons et al., 2002; Duran and Esposite 2000; U.S.EPA 2000a). In fact, seventeen of the fifty pollutants most commonly found in urban area groundwater are organohalides. About 44% of pollutants on the EPA’s contaminants candidate list are organohalides (U.S.EPA 1998b). Thus organohalide removal, or degradation to benign products, represents a major environmental challenge (U.S.EPA 2000c).

A common approach for organohalide remediation has been to use electron transfer reactions from semiconductors, metals, or transition metal compounds (Obare and Meyer 2004; McGuire et al., 2003; Lee and Batchelor 2003; Burris et al., 1996). Indeed both the oxidation and reduction of organohalide pollutants have been well documented in laboratory experiments. Reductive dechlorination with “zero valent” iron has been employed in the US and Canada for some time (Fernandez-Sanchez et al., 2004; Satapanajaru et al., 2003; Eykholt and Davenport 1998). A significant challenge for reductive dehalogenation with molecular catalysts is maintaining the active redox state of the catalyst in the environment. This is a particularly problematic in aerobic and acidic conditions.
environments where proton and dioxygen reduction is generally more facile than is the reduction of organohalide poisons such as trichloroethylene.

Recently we initiated experiments with molecular catalysts bound to semiconductor nanocrystallites dispersed in mesoporous thin films (Obare et al., 2003; Obare et al., 2005). The semiconducting nanoparticles allowed the active state of the catalysts to be maintained with light and/or an applied potential for applications in environmental photocatalysis and electrocatalysis. In addition, the enormous surface area of the thin films afforded high concentrations of catalysts (approaching one molar within the film) while still at monolayer or lower surface coverage. Furthermore, by interconnecting the nanoparticles in a mesoporous thin film, the common difficulty of colloidal precipitation or ‘salting out’ in high ionic strength environmental fluids was eliminated. The mesopores within the thin films (Barbe et al., 1997) extend to the substrate and allow pollutants to freely diffuse to the surface bound catalysts.

In the course of this work an unexpected synergy between the catalysts and the semiconductor nanoparticles was discovered (Obare et al., 2003). Organohalide reactivity was greater for catalyst/semiconductor materials than for the sum of the semiconductor and the catalyst alone. This behavior was explained, at least in part, by more favorable energetics for organohalide reduction at the semiconductor-catalyst interface (Obare et al., 2005). In addition, evidence for multi-electron transfer (MET) reactivity at the molecular-semiconductor interface was found (Obare et al., 2006). MET processes avoid high-energy free radical intermediates and can yield desired reaction products under environmentally significant conditions. A long term goal of this research is to utilize MET processes with molecular catalysts and semiconductor materials that are
highly turned to selectively react with specific pollutants to yield desired reaction products.

Herein, we describe our most recent studies of environmental redox catalysis at semiconductor-catalyst interfaces. Well-defined molecular catalysts (hemes) anchored to mesoporous nanocrystalline (anatase) TiO$_2$ thin films were reacted with organohalide pollutants (CCl$_4$, CHCl$_3$, propachlor, and trichloroethylene) in both water and methanol. Insights into the dechlorination reaction mechanisms were gained from electrochemical, spectroscopic, and mass spectroscopy studies. The reactions were found to be enhanced significantly when excess electrons were present in the TiO$_2$ nanoparticles.

5.2 Experimental Section

Materials

Dimethyl sulfoxide (DMSO), acetic acid, potassium nitrate, and nitric acid were obtained from Fisher Scientific. Sodium acetate was obtained from J.T. Baker. Titanium (IV) isopropoxide (Aldrich), methanol (Fisher), tetrabutylammonium hexafluorophosphate (TBAH) (Fluka), sodium hydroxide (Aldrich), iron(III) meso-tetraphenyl porphyrin chloride (Frontier Scientific), and iron(III) protoporphyrin chloride (Fluka), were used as received. Deionized water was used in aqueous measurements and reactions.
Nanocrystalline TiO$_2$ thin film preparation

Transparent TiO$_2$ films consisting of ~15 nm diameter anatase particles were prepared by the hydrolysis of Ti(iOPr)$_4$ using a sol-gel technique previously described in the literature (Heimer et al., 1996). The TiO$_2$ particles were cast as mesoporous thin (~10 µm) films onto transparent fluorine-doped tin oxide (FTO) or microscope glass slides and heated at 420 °C for 30 min. Freshly prepared TiO$_2$ films were soaked in 2-8 µM hemin/DMSO solutions overnight at room temperature. Hemin/TiO$_2$ films were rinsed with MeOH, pH 4 (6.7 x 10$^{-4}$ M acetic acid), or pH 8 (0.6 M sodium acetate) priories to the reaction. The pH values were measured using an Orion Model 420A pH meter.

The photoreduction from FeIII to FeII was performed in N$_2$-saturated solutions with bandgap (hv > 3.2 eV) excitation of TiO$_2$. Bandgap excitation generates electron-hole pairs in the TiO$_2$ nanocrystallites. The conduction band electrons can reduce FeIII to FeII and the valence-band hole can oxidize solvent or ions. If photolysis is continued after all the hemes are reduced, electrons in TiO$_2$ are generated, TiO$_2$(e$^{-}$). The RX pollutants were introduced in the dark after photoreduction.

Electrochemistry/electrocatalysis

Hemin/TiO$_2$ thin films deposited on transparent FTO electrodes were placed in NaOH/H$_2$O (pH 8) or acetic acid/H$_2$O (pH 4) electrolyte in a glass container. The ionic strength was increased to 1.0 M with KCl. The electrolyte was purged with N$_2$ gas for at least 30 min before the measurements. Cyclic voltammetry was used to measure formal potentials of the molecular catalysts. A BAS model CV-50 W potentiostat was used in a
standard three-electrode arrangement with a Pt gauze counter electrode, a Ag/AgCl reference electrode, and the TiO$_2$ thin film as the working electrode.

Hemin/TiO$_2$ thin films deposited onto FTO electrodes were placed in a standard quartz cuvette for the determination of electrocatalysis products. The cuvette was sealed with a rubber septum and then purged with N$_2$ gas for at least 30 min before applying a potential. A BAS model CV-50 W potentiostat was also used to apply -1.0 V potentials for 4 hours. A N$_2$ atmosphere was kept throughout the measurements.

Kinetic analysis of organohalide reactivity

A Varian Cary 50 UV-visible spectrophotometer was used to acquire time-resolved spectra for the reaction of heme/TiO$_2$, heme/TiO$_2$(e$^-$), and TiO$_2$(e$^-$) with RX. An aliquot of N$_2$ saturated RX in H$_2$O was added to heme/TiO$_2$ thin film immersed in MeOH or an aqueous solution (pH 4 or 8). The disappearance of heme Q-band absorbance at 575 nm and the appearance of hemin Q-band area at 500 nm were analyzed with a first-order kinetic model. Pseudo-first-order kinetic rate constants, k_{obs}, were obtained by fitting to Equation (5a).

$$\ln \left(\frac{\Delta A}{A_0} \right) = -k_{obs} t \quad (5a)$$

where $\Delta A = \text{initial absorption} - \text{absorption at time equal to } t$, and A_0 is the initial absorption.
Gas chromatography mass spectrometry

The products formed by electrocatalysis and photocatalysis at pH 8 aqueous solutions were analyzed by a Shimadzu GC17A/QP5050A GC/MS (Shimadzu Columbia, MD). The GC17A is equipped with a low polarity (5% phenyl-, 95% methyl-siloxane) capillary J & W DB5-MS column (30 m length, 0.25 mm ID, 0.25 µm film thickness). The products were extracted from the aqueous solution with pentane. Typically a ~2 mL aliquot of pentane was added to ~ 10 mL of RX reaction mixture. The solutions were mixed manually and allowed to separate. A syringe was used to extract the upper pentane layer and transfer it to a 2 mL GC/MS vial. The reaction mixture was injected into the autosampler of the GC/MS. The injector temperature was 220 °C and the transfer interface was at 280 °C. The split ratio was 10 and the H₂ gas column flow rate was kept at 1.0 mL/min. An EI quadrupole based mass spectrometer served as the detector with a scan range of 40-900 amu and an ionizing electron energy of 70 eV. For CCl₄, the oven temperature was ramped from 40 °C, held for 10 min, to 80 °C at a rate of 7.2 °C/min. The pressure program was 1.0 kPa, ramp 2.7 kPa/min to 16 kPa, and held for 5 min. For propachlor, the oven temperature was ramped from 40 °C, held for 2 min, to 170 °C at a rate of 7.3 °C/min. The pressure program was 48.9 kPa, ramp 3 kPa/min to 99 kPa, and held for 5 min.
Figure 5-1. Iron (II) protoporphyrin IX (heme)
5.3 Results

Hemin/TiO$_2$ adsorption isotherms

Mesoporous nanocrystalline TiO$_2$ thin films were prepared by a sol-gel technique that has been previously described (Heimer *et al.*, 1996). The films were comprised of anatase nanocrystallites (~15 nm diameter) interconnected in a mesoporous film approximately ~10 µm thick. The BET surface area was 120 ± 10 m2/g and the pore volume was 0.5 ± 0.1 cc/g for similarly prepared TiO$_2$ (Barbe *et al.*, 1997). Hemin (iron(III) protoporphyrin IX chloride) dissolved in DMSO was found to bind to the TiO$_2$ surface. Adsorption isotherms were constructed at 25 °C (Fig. 5-2). The concentration of hemin anchored to TiO$_2$ was determined spectroscopically with Beer’s Law. UV-visible absorption spectra of the hemin/TiO$_2$ and hemin in DMSO were within experimental error the same. Hemes (FeIII) have an intense Soret band ~400 nm and lower energy Q-bands between 450 – 650 nm, Fig. 5-3 (Tieman *et al.*, 1990; Larson and Cervini-Silva 2000).

The equilibrium binding was found to follow the Langmuir adsorption isotherm model, Equation 5b.

\[
\theta = \frac{K[A]}{1 + K[A]} \quad (5b)
\]

where θ is the fractional surface coverage, [A] is the hemin concentration, and K is the equilibrium constant. At hemin concentrations over ~15 µM, the surface coverage was found to saturate, $\theta = 1$. For a 1 cm2 geometric area, this corresponded to a surface
coverage of $\sim 10^{-8}$ moles, and approximately 500 hemes per particle. Double reciprocal plots, Equation 5c, allowed the equilibrium binding constants to be determined, $K = 1 \times 10^5$ M$^{-1}$ (Fig. 5-2 inset).

$$\frac{1}{\theta} = 1 + \frac{1}{K[A]} \quad (5c)$$

Hemin/TiO$_2$ thin films were stable with no desorption for periods of days in MeOH or pH 4 and 8 aqueous solutions. Iron(III) $meso$-tetraphenyl porphyrin chloride, which lacks the carboxylic acid functional groups, did not bind to TiO$_2$ surfaces under the same conditions.
Figure 5-2. Equilibrium binding of hemin to nanocrystalline TiO$_2$ thin films in DMSO at room temperature, where θ is the fractional surface coverage. The inset shows a double-reciprocal plot of the data from which an equilibrium constant was abstracted, $K = 1 \times 10^5$ M$^{-1}$.

$K_{eq} = 1.0 \times 10^6$ M$^{-1}$
Figure 5-3. a) UV-visible absorbance spectrum of hemin/TiO₂ (---), heme/TiO₂ (---), and the final product after addition of TCE (---) in MeOH. b) The spectral changes observed after addition of 1.6 x 10⁻⁴ M TCE to heme/TiO₂ in MeOH and c) pH 4 aqueous solution. The arrows show the direction of absorption change after TCE addition.
Electrochemical measurements of hemin/TiO$_2$ in aqueous solutions

Formal Fe$^{III/II}$ reduction potentials (E°) of hemin/TiO$_2$ was estimated in NaOH/H$_2$O (pH 8) and KNO$_3$/H$_2$O (pH 4) electrolyte by cyclic voltammetry. As the applied potential was ramped from 0.0 V to –1.2 V vs. Ag/AgCl at scan rates of 1–20 mV/s, two waves were observed, the first was assigned to Fe$^{III} \rightarrow$ FeII reduction and the second was due to TiO$_2$ reduction. Upon reversing the potential scan, the oxidation of TiO$_2$ and of FeII was observed. The Fe$^{III/II}$ redox chemistry is termed quasi-reversible as the peak-to-peak separation was > 60 mV and the peak oxidation current was typically less than the reduction (Bard and Faulkner 2001). The half-wave potentials were taken as the formal reduction potential, E°(Fe$^{III/II}$), and were -340 mV and –600 mV vs. Ag/AgCl in pH 4 and 8, respectively. Cyclic voltammetry measurements were also made in 0.1 M TBAH/MeOH electrolyte. However, the TiO$_2$ and Fe$^{III} \rightarrow$ FeII reductions were badly overlapped at all scan rates. From this data, we concluded that the E°(Fe$^{III/II}$) was more negative in methanol than in water.
Figure 5-4. Cyclic voltammetry of hemin/TiO$_2$ in aqueous solution in a) pH 4 KNO$_3$/H$_2$O and b) pH 8 NaOH/H$_2$O electrolytes. The half-wave potentials were taken as the formal reduction potentials, and were estimated to be -340 mV and -600 mV vs. Ag/AgCl in pH 4 and 8, respectively.
Reaction of heme/TiO$_2$ with organohalides

Hemin (FeIII) was photoreduced to heme (FeII) with bandgap illumination ($\lambda < 370$ nm) in N$_2$ saturated methanol or in pH 4 or 8 acetate aqueous solution (Linsebigler et al., 1995; Hoffman et al., 1995). Valence band holes are known to react with MeOH (Kawai and Sakata 1980; Tamaki et al., 2006) or carboxylate (Hoffman et al., 1994) that serve as sacrificial donors. The heme and hemin Soret and lower energy absorption bands were well separated in MeOH (Fig. 5-3a and b). However, broadened and overlapped absorption bands were observed in aqueous solutions (Fig. 5-3c). When hemin (FeIII) was reduced to heme (FeII) a red shift of the Soret band and an absorption increase \sim 570 nm were observed in both MeOH and aqueous solutions. The anaerobic dark addition of N$_2$ saturated RX/MeOH (or RX/H$_2$O) stock solutions resulted in oxidation of heme/TiO$_2$ to that of hemin/TiO$_2$ (Fig. 5-3a). The heme/TiO$_2$ to hemin/TiO$_2$ conversion shows isosbestic points at $\lambda_{iso} = 408, 447, 527, 586,$ and 650 nm in MeOH (Fig. 5-3b) and $\lambda_{iso} = 468, 530, 609,$ and 675 nm in aqueous solutions (Fig. 5-3c).

The loss of heme/TiO$_2$ and the concurrent formation of hemin/TiO$_2$ were found to be exponential (Fig. 5-5a). The surface concentrations were calculated spectroscopically by standard addition of the heme/TiO$_2$ and hemin/TiO$_2$ absorbance spectra at each observation time. Observed rate constants (k_{obs}) were abstracted from the absorption changes for the disappearance of heme/TiO$_2$ and the appearance of hemin/TiO$_2$. Figure 5-6 shows a plot of k_{obs} vs. [heme] for the reaction of $[\text{CCl}_4] = 4.5 \times 10^{-4}$ M at pH 8 acetate solution. The reactions were found to be first-order in heme at low surface coverages ($< 4 \times 10^{-9}$ mole/cm2). Similar results were observed with 1×10^{-2} M CHCl$_3$ and 1.7×10^{-4} M TCE.
Figure 5-5. a) Plots of heme/TiO₂ (-●-) and hemin/TiO₂ (―) surface concentrations after the addition of 2.9 × 10⁻⁴ M CCl₄ in pH 8 aqueous solution. The surface concentrations were determined by standard addition of the observed spectra for 350 – 800 nm. b) Experimental and calculated data are shown before the addition of CCl₄ (Fe⁺), 200 sec after the addition of CCl₄, and after the reaction was complete (Fe³⁺). The times these spectra were recorded are indicated with arrows in a). The Q-band region is expanded in the inset of b).
Figure 5-6. The observed rate constant for reduction of 4.5×10^{-4} M CCl$_4$ in pH 8 aqueous solution as a function of the heme surface coverage.
Second-order rate constants were determined from plots of k_{obs} vs. [RX] for each organohalide at the same heme surface coverage, 4×10^{-9} mole/cm2 (Fig. 5-7). Propachlor and TCE concentrations were low in aqueous solutions due to their limited solubility (Fig. 5-7b). Second-order rate constants increased in order of CCl$_4 \geq$ propachlor $> \text{CHCl}_3 > \text{TCE}$ in MeOH, and CCl$_4 > \text{propachlor} > \text{TCE} > \text{CHCl}_3$ in both pH 4 and 8 (Table 5-1). The reactions were faster in MeOH compared to aqueous solutions with the exception of CCl$_4$ that had similar rate constants in both media.

The durability of heme/TiO$_2$ thin films was tested by repeatedly using the same film in the reaction with 2.9×10^{-4} M CCl$_4$ at pH 8. After each RX reaction, the hemin/TiO$_2$ film was washed with H$_2$O and then pH 8 acetate solution before the anaerobic photo-reduction back to heme/TiO$_2$ and addition of CCl$_4$. After the first cycle, the k_{obs} decreased by $\sim 1/3$ but remained the same within an experimental error for the next 27 cycles. The k_{obs} values slowly decreased between the 28$^{\text{th}}$ and 30$^{\text{th}}$ cycles. After 31 cycles of washing, photo-reduction, and CCl$_4$ reactions, the material was no longer redox active.

<table>
<thead>
<tr>
<th>RX</th>
<th>k (M$^{-1}$s$^{-1}$) MeOH</th>
<th>k (M$^{-1}$s$^{-1}$) pH 4</th>
<th>k (M$^{-1}$s$^{-1}$) pH 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl$_4$</td>
<td>64 \pm 2</td>
<td>14.1 \pm 0.7</td>
<td>69 \pm 3</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>18.7 \pm 0.5</td>
<td>0.63 \pm 0.03</td>
<td>1.33 \pm 0.07</td>
</tr>
<tr>
<td>Propachlor</td>
<td>61 \pm 3</td>
<td>9.8 \pm 0.5</td>
<td>9.9 \pm 0.6</td>
</tr>
<tr>
<td>TCE</td>
<td>9.8 \pm 0.6</td>
<td>8.3 \pm 0.6</td>
<td>3.8 \pm 0.2</td>
</tr>
</tbody>
</table>

Table 5-1. Second-order rate constants for reduction of organohalides reactions by heme/TiO$_2$ at room temperaturea.

a All experiments were performed with a heme surface coverage of 4×10^{-9} mole/cm2.
Figure 5-7. Plots of the observed rate constants vs the indicated RX concentration in a) MeOH and b) in pH 8 acetate aqueous solution. The inset of b) shows and expanded plot for propachlor and TCE.
Figure 5-8. The durability of heme/TiO₂ thin films was determined with 2.9 x 10⁻⁴ M CCl₄ at pH 8. After 31 cycles of washing, photoreduction, and CCl₄ reactions, the material was no longer redox active.
Organohalide reaction with heme/TiO$_2$(e$^-$) and with TiO$_2$(e$^-$) alone

Bandgap irradiation of TiO$_2$ thin films in MeOH or acetate aqueous solution resulted in the appearance of the well-known UV-visible absorption spectrum of TiO$_2$ electrons, TiO$_2$(e$^-$), Fig. 5-9a (Fitzmaurice 1994; Rothenberger et al., 1992; Hirakawa and Kamat 2005). Similarly, bandgap irradiation of hemin/TiO$_2$ yielded first the spectrum of heme/TiO$_2$ and with continued photolysis, the absorption of TiO$_2$(e$^-$) throughout the visible and into the infrared region (Fig. 5-9b). Heme/TiO$_2$(e$^-$) thin films were stable for at least 3 days. No photodegradation or desorption of heme was observed for 1 hr of photolysis.

The visible absorption spectra of TiO$_2$(e$^-$), FeII, and FeIII allowed their concentrations to be quantified spectroscopically after the addition of RX. Experiments were performed for CCl$_4$, propachlor, and TCE in pH = 4 and 8 aqueous solutions. Typical data is shown in Fig. 5-9b inset for heme/TiO$_2$(e$^-$) reduction of 1.4 x 10$^{-4}$ M CCl$_4$. In all cases, it was found that the TiO$_2$(e$^-$) concentration decreased to near zero in the presence of heme, followed by the oxidation of FeII to FeIII.
Figure 5-9. a) The UV-visible absorption spectra observed after bandgap
excitation of a TiO₂ thin film immersed in pH 4 H₂O. b) UV-visible
absorption spectrum of (---) hemin/TiO₂, the spectrum after ultra band
gap illumination assigned to (—) heme/TiO₂(e⁻), and the final spectrum
(—) after addition of CCl₄ into the external pH 4 solution. The final
CCl₄ concentration was 1.4 x 10⁻⁴ M. The inset shows time-resolved
concentration observed after the addition of CCl₄. The arrow indicates
the time of CCl₄ injection (120 s).
Exposure of TiO$_2$(e$^-$) without heme to CCl$_4$, CHCl$_3$, and propachlor resulted in the slow and incomplete loss of TiO$_2$(e$^-$). The observed rate constants for CCl$_4$ in pH 8 aqueous solution increased linearly with the TiO$_2$(e$^-$) concentration (Fig. 5-10c). The reaction was first-order in TiO$_2$(e$^-$). On the other hand, the presence of heme on the surface had a profound effect on the reactivity. Heme/TiO$_2$(e$^-$) reacted 20 times faster with CCl$_4$ (Fig. 5-10a and b) and 10 times faster with propachlor than did TiO$_2$(e$^-$) under the same conditions. The concentration of TiO$_2$(e$^-$) was controlled with irradiation time and calculated by the extinction coefficient, $\varepsilon_{\text{TiO}_2(e^-)}$ at 800 nm = 1,300 M$^{-1}$cm$^{-1}$ (Kay et al., 1994).

Addition of TCE into the pH 8 external solution of TiO$_2$(e$^-$) showed no evidence for TCE reduction as the TiO$_2$(e$^-$) absorbance remained unchanged. However, a rapid decrease in the concentration of TiO$_2$ electrons ($k_{\text{obs}} = 1.0 \times 10^{-3}$ s$^{-1}$) was observed with heme/TiO$_2$(e$^-$) after TCE addition under the same conditions (Fig. 5-11b). Once most of TiO$_2$ electrons were consumed, heme/TiO$_2$ was oxidized to hemin/TiO$_2$, with an observed rate constant of $k_{\text{obs}} = 1.1 \times 10^{-3}$ s$^{-1}$. If one assumes that all the redox reactivity of TCE was heme mediated, a turnover for heme can be calculated by Equation (5d).

$$N = \frac{\text{heme} + \text{TiO}_2(e^-)}{\text{heme}} \quad (5d)$$

The highest turnover number measured was 82 with 2.36 x 10$^{-7}$ moles heme and 1.92 x 10$^{-5}$ moles TiO$_2$(e$^-$) at pH 8. The assumption that heme mediates TCE reduction was based on the observation that TiO$_2$(e$^-$) do not react with TCE under these same conditions.
Figure 5-10. a) The absorption at 800 nm of a TiO$_2$(e$^-$) and a heme/TiO$_2$(e$^-$) thin film recorded as a function of time. The arrow indicates the time at which CCl$_4$ was injected (60 s) into the external pH 8 aqueous solution. The CCl$_4$ concentration was 4.5 x 10$^{-4}$ M. b) Natural log plots of the data in a) from which observed rate constants were abstracted, $k_{obs} = 2.4 \times 10^{-3}$ s$^{-1}$ for TiO$_2$(e$^-$) and $k_{obs} = 2.5 \times 10^{-2}$ s$^{-1}$ for heme/TiO$_2$(e$^-$). c) Plot of the observed rate constants for CCl$_4$ reduction as a function of TiO$_2$(e$^-$).
Figure 5-11. a) The UV-vis absorption spectrum of hemin/TiO$_2$ (---), the spectrum after ultra band gap illumination assigned to heme/TiO$_2$(e$^-$) (---), and the final spectrum (-----) after addition of TCE into the external pH 8 aqueous solution. The final TCE concentration was 2.5 x 10$^{-4}$ M. b) Natural log plots of data from reactions of TiO$_2$(e$^-$) (□) and heme/TiO$_2$(e$^-$) (○). TiO$_2$(e$^-$) shows no reactivity with TCE. The reaction of heme/TiO$_2$(e$^-$) with TCE from which an observed rate constant was abstracted, $k_{obs} = 1.0 \times 10^{-3}$ s$^{-1}$.
Products analysis by GC/MS

The products of CCl₄ and propachlor reduction by heme/TiO₂(e⁻) in aqueous pH 8 solution were analyzed by GC/MS. Electrocatalysis was initially performed at an applied potential of -1.0 V (vs. Ag/AgCl). This potential reduced all hemin to heme and established a TiO₂(e⁻) concentration of 1.9 x 10⁻⁵ M. The RX of interest was then added to the external electrolyte and the potential was applied for 4 hours. The products from dark reactions of photochemically generated heme/TiO₂(e⁻) with RX, like those described for Fig. 5-9 and Fig. 5-10, were also analyzed. Control experiments performed with FTO electrodes without heme or TiO₂ showed no dechlorinated products. In all cases, the aqueous solutions were extracted with pentane as described in the experimental section.

Propachlor (m/z 211; Retention time 20.5 min): The major product of electrocatalysis was deschloropropachlor that appeared at a retention time (RT) of 17 min. The formation of this product as a function of electrocatalysis time was determined by analyzing an aliquot of the reaction mixture every 20 min. Deschloropropachlor (m/z 177) was the only product observed in the first 200 min. This product was also found in heme/TiO₂(e⁻) reactions prepared by bandgap excitation.

CCl₄ (m/z-Cl 117; Retention time 4.1 min): The major product of electrocatalysis was CHCl₃ (m/z 118) at RT = 3.5 min. Identification was confirmed by independent analysis of CHCl₃/pentane. CHCl₃ was also the main product from heme/TiO₂(e⁻) reactions prepared by bandgap excitation.
5.4 Discussion

Heme catalysts were found to bind to anatase TiO$_2$ nanocrystallites interconnected in mesoporous thin films. Adsorption isotherms were well described by the Langmuir model from which equilibrium constants of $K = 10^5$ M$^{-1}$ and saturation surface coverages of $\Gamma_{\text{max}} = 1.0 \times 10^{-8}$ mol/cm2 were abstracted. Although the error is somewhat large, we estimate that about 500-1000 hemes are anchored to each 15 nm anatase nanoparticle (Hoertz et al., 2002) at saturation surface coverages. The data reported herein was performed at about 1/5 saturation surface coverage or 150 hemes per particle. Although the nature of the hemin and heme binding to TiO$_2$ remain unknown, it almost certainly involves the carboxylic acid groups, Figure 1-1. In this regard we found no evidence for surface binding with an iron porphyrin that did not contain carboxylic acid functional groups, iron(III) meso-tetraphenyl porphyrin chloride.

Hemes were chosen as catalysts as they are known to react with a wide variety of organohalides in natural and synthetic systems. Indeed, reductive dehalogenation with heme porphyrins have been studied in a considerable detail (Brault 1985; Chiu and Reinhard 1995; Gantzer and Wackett 1991; Larson and Cervini-Silva 2000). The ability of many micro-organisms to dehalogenate pollutants is often linked to heme biochemistry in cytochrome P450 or in other heme containing proteins (Castro et al., 1985; Dawson and Sono 1987; Guengerich and Macdonald 1984). Heme modified electrodes have also been characterized for environmental remediation (Nassar et al., 1995).

Titanium dioxide (TiO$_2$) has also received much attention for the treatment of organohalide pollutants in water (Karches et al., 2002; Mora-Sero et al., 2005; Choi and
Hoffmann 1995). The anatase form of TiO\textsubscript{2} has a bandgap of 3.2 eV and is perhaps the most well studied semiconductor photocatalyst for environmental remediation (Pozzo \textit{et al.}, 2002; Hoffmann \textit{et al.}, 1995). Ultraviolet excitation of TiO\textsubscript{2} can initiate both reductive and oxidative dehalogenation reactions. A broad distribution of reaction products with little selectivity are often observed, even under tightly controlled laboratory conditions (Alonso \textit{et al.}, 2002; Adewuyi 2005). It was therefore anticipated that functionalizing the TiO\textsubscript{2} surface with hemes would improve the selectivity and reactivity of the semiconductor material.

The formal FeIII/II reduction potential for the hemes anchored to TiO\textsubscript{2} were measured by cyclic voltammetry in aqueous electrolyte. A quasi-reversible wave was observed prior to TiO\textsubscript{2} reduction that was reasonably assigned to FeIII/II redox chemistry. The half-wave potential measured was taken as an estimation of the formal FeIII/II reduction potentials that shifted -260 mV from pH 4 to 8. Similar shifts with pH have been reported at hemoglobin modified electrodes (Chen \textit{et al.}, 1999), functionalized TiO\textsubscript{2} (Zaban \textit{et al.}, 1997) and cytochrome oxidase (Blair \textit{et al.}, 1986). The observed behavior reported here is consistent with proton coupled electron transfer, Equation 5e, where P is the porphyrin ring.

\[
PFe^{III-OH} + e^- + H^+ \rightarrow PFe^{II-OH_2} \quad (5e)
\]

In methanol electrolytes we found that the direct reduction and re-oxidation of TiO\textsubscript{2} obscured this molecular redox process. The negative and gradual onset of the TiO\textsubscript{2}
reduction in methanol electrolyte suggests that heme/TiO$_2$ is a stronger reductant in methanol than in water at the pH values investigated.

The dark addition of organohalides pollutants after the photoreduction of hemin/TiO$_2$ to heme/TiO$_2$ was performed to prevent secondary photochemical reactions that could have complicated analysis. The TiO$_2$ thin films are transparent in the visible and near infra-red regions which allow the Fe$^{III/II}$ and TiO$_2$(e$^-$) redox chemistry to be characterized spectroscopically in a transmission mode with excellent signal-to-noise ratios. Below we present the results of mechanistic studies beginning first with heme/TiO$_2$ and concluding with materials where additional TiO$_2$ electrons were introduced with light or applied potentials.

Heme/TiO$_2$ and RX Reactions.

A rate law for the reactions was determined by independently varying the organohalide concentrations and the heme surface coverage and measuring the observed rates, Equation 5f.

$$r = k [RX]^1 [\text{heme}]^1$$

(5f)

The reactions were first-order in heme and in organohalide concentration. The same rate law was previously determined for related hemes and organohalides in homogeneous solution (Wade and Castro 1973). The second-order rate constants for heme/TiO$_2$ with CCl$_4$ and CHCl$_3$ increased in the order of MeOH \geq pH 8 $>$ pH 4, when the heme surface coverage was 4×10^{-9} mole/cm2. This trend follows the expected shift in the heme Fe$^{III/II}$
formal reduction potential and is consistent with faster reactions at larger driving forces (Obare et al., 2005). In addition, consistent with one electron reduction potentials, $E^\circ(CCl_4^{0/-}) = +85$ mV and $E^\circ(CHCl_3^{0/-}) = -145$ mV vs. NHE (Totten and Roberts 2001), the reactions with CCl$_4$ were consistently faster than those with CHCl$_3$.

In the case of propachlor reduction, the rate constants were within an experimental error the same at both pH 4 and 8, 9.8 ± 0.5 M$^{-1}$s$^{-1}$ and 9.9 ± 0.6 M$^{-1}$s$^{-1}$. Similar pH independent results have been previously reported for the hydrolysis of chloroacetamide herbicides in water (Liu et al., 2001). For example, the alachlor hydrolysis rate constants were 3.6×10^{-2} and 3.2×10^{-2} d$^{-1}$ at pH 5 and 8 respectively (Sharma 2002). The redox mechanism from heme/TiO$_2$ to propachlor are not fully understood but the lack of a pH dependence, where one would be anticipated, suggest a composite mechanism where electron transfer is not rate limiting.

The second-order rate constant for heme/TiO$_2$ with TCE decreased from 8.3 ± 0.6 M$^{-1}$s$^{-1}$ at pH 4 to 3.8 ± 0.2 M$^{-1}$s$^{-1}$ at pH 8. Similar pH dependence was previously reported for the reaction of TCE with Fe supported in slag (Kang et al., 2006). In the reaction of TCE with super-reduced corrinoids, the reaction products were also pH dependent (Glod et al., 1997). Acetylene was favored at higher pH and dichloroethylene at lower pH. Such competing reaction pathways in homogenous solution may also exist at TiO$_2$ interfaces and further studies with identification of the reaction products will be made in future research.
Heme/TiO$_2$(e$^-$) and RX Reactions.

The electrochemical, photochemical, or chemical reduction of TiO$_2$ is known to generate reducing equivalents in the solid (Hoffmann et al., 1995; Linsebigler et al., 1995; Fitzmaurice 1994). A blue-black color appears with characteristic spectroscopic properties that is quite stable under anaerobic conditions. A molecular description of these states is lacking and remains somewhat contentious. Literature references that describe this coloration as due to localized Ti(III) states or to free conduction band electrons can be found (Hoffmann et al., 1995; Linsebigler et al., 1995; Fitzmaurice 1994). Here we refer to them simply as TiO$_2$(e$^-$) or if heme is present on the surface, heme/TiO$_2$(e$^-$). In methanol we estimate that about 600 electrons can be stored in an individual TiO$_2$ nanoparticle while in water the value is about a factor of 3 less.

Our initial motivation for studying organohalide reactions with heme/TiO$_2$(e$^-$) was that the TiO$_2$(e$^-$) would regenerate the Fe(II) state after RX reactions and allow larger concentrations of reaction products to be isolated. Similar approaches have been used in the past wherein excess reductants were added to catalyst/RX solutions to regenerate the catalysts after reactions with RX (Chiu and Reinhard 1995; Larsen and Cervini-Silva 2000; Glod et al., 1997). We find however, that the presence of TiO$_2$(e$^-$) does far more than simply regenerate the Fe(II) state of the heme. In fact, it appears that the materials are capable of multi-electron transfer reaction mechanisms not available to the hemes (Obare et al., 2006).

For example, the observed rate constant for CCl$_4$ reduction was about 20 times faster for heme/TiO$_2$(e$^-$) than it was for TiO$_2$(e$^-$), $k_{obs} = 5.0 \times 10^{-2}$ s$^{-1}$ and $k_{obs} = 2.4 \times 10^{-3}$ s$^{-1}$. Furthermore, at this CCl$_4$ concentration the observed rate for heme/TiO$_2$ in the
absence of excess electrons was $k_{obs} = 3.2 \times 10^{-2}$ s$^{-1}$. For aqueous reactions with TCE, no reactivity was observed over several hours with TiO$_2$(e$^-$) but the reactions with heme/TiO$_2$(e$^-$) were quite rapid, $k_{obs} = 1.0 \times 10^{-3}$ s$^{-1}$. This is somewhat surprising from a thermodynamic point of view as it is clear that the TiO$_2$(e$^-$) are more potent reductants than are hemes under all conditions examined.

An advantage of the heme/TiO$_2$(e$^-$) and RX reactions is that the concentrations of heme, hemin, and TiO$_2$(e$^-$) can be quantified spectroscopically. This provides some insights into the mechanism for RX dechlorination. In all cases, the same general behavior was observed: the concentration of TiO$_2$(e$^-$) decreased until near zero at which time the oxidation of heme to hemin was observed. The rate constants for the disappearance of heme and the formation of hemin were within experimental error the same. This behavior is consistent with at least two separate mechanisms. One we call the “stepwise mechanism” in which the TiO$_2$(e$^-$) reacted first followed by the hemes. The second is termed the “mediated mechanism” wherein all the reactivity occurred through the hemes.

Stepwise Mechanism:

\begin{align*}
i) & \quad \text{Heme/TiO}_2(\text{n e}^-) + \text{RX} \rightarrow \text{Heme/TiO}_2((n-1)e^-) + \text{RX}^* \\
ii) & \quad \text{Heme/TiO}_2(\text{n e}^-) + \text{RX} \rightarrow \text{Heme/TiO}_2 + \text{RX}^* \\
iii) & \quad \text{Heme/TiO}_2 + \text{RX} \rightarrow \text{Hemin/TiO}_2 + \text{RX}^* \\
\end{align*}

Mediated Mechanism:

\begin{align*}
i) & \quad \text{Heme/TiO}_2(\text{n e}^-) + \text{RX} \rightarrow \text{Hemin/TiO}_2(\text{ne}^-) + \text{RX}^* \\
\text{Slow} & \end{align*}
The mediated mechanism requires that regeneration of heme be rapid relative to RX reduction such that hemin is not observed until all the TiO₂(e⁻) have reacted. The stepwise mechanism requires that the TiO₂(e⁻) rapidly react with RX. We tend to disfavor this latter mechanism in all cases as RX reactions with TiO₂(e⁻) were always sluggish and incomplete or, in the case of TCE, did not occur at all. However, the situation may be more complicated as the presence of hemes on the semiconductor surfaces may alter the reaction rate constants for TiO₂(e⁻) even when Fe³⁺/²⁺ redox chemistry is not directly involved.

A case where the mediated mechanism appeared to be present was identified in these studies, the reaction of heme/TiO₂(e⁻) with TCE at pH 8. No reaction was observed after the addition of TCE to TiO₂(e⁻) in the absence of heme under these conditions. Furthermore, the observed rate constant for the loss of the TiO₂ electrons was within experimental error the same as the rate constant for oxidation of heme to hemin, $k_{obs} = 1.1 \times 10^{-3}$ s⁻¹. This data is fully consistent with the mediated mechanism described above wherein heme reduction of TCE is the rate determining step. It is noteworthy that electron transfer from TiO₂(e⁻) to hemin never became rate limiting as has been previously suggested for outer-sphere mediators (Larsen and Cervini-Silva 2000; Glode et al., 1997). Therefore, binding catalysts to the electron source (i.e. TiO₂(e⁻)) provided more favorable electron transfer kinetics. Further studies are required to unambiguously identify the mechanisms for chloroform, propachlor and carbon tetrachloride reduction.
A product was identified after aqueous propachlor and CCl₄ reduction by both
electrocatalysis and photocatalysis. Propachlor reduction yielded deschloropropachlor,
Reaction 5g.

\[
\text{Cl}_2\text{C}^\text{=O} \rightarrow 2\text{e}^- + \text{H}^+ \\
\text{H} \text{C}^\text{=O} \\
\text{- Cl}^-
\]

The reduction of CCl₄ yielded CHCl₃, Reaction 4h. A dissociative electron transfer
pathway for the aerobic reduction of CCl₄ has previously been established (Pause \textit{et al.},

\[
\text{Cl}_2\text{C}^\text{=C} \rightarrow \text{Cl}^- \\
\text{Cl}^- \\
\text{e}^- + \text{H}^+ \\
\text{CHCl}_3
\]

Both reactions pathways 5g and 5h require reduction by two electrons or dissociative
electron transfer followed by protonation. The two electron transfer reduction potentials
of CCl₄ and TCE are favored by 500 mV over the one electron reduction (Totten and
Roberts 2001). Further studies are underway to identify these mechanistic steps and
include them in more detailed modeling of this interesting interfacial reactivity.
5.5 Conclusions

Heme (iron(II) protoporphyrin IX) bound to mesoporous nanocrystalline (anatase) TiO$_2$ thin films, heme/TiO$_2$, showed enhanced reactivity with CCl$_4$, CHCl$_3$, propachlor, and trichloroethylene in MeOH, and pH 4 and 8 aqueous solution. The reactions were found to be first-order in heme/TiO$_2$ and in organohalide. The heme Fe$^{III/II}$ reduction potential became more negative with increasing pH, behavior attributed to proton coupled electron transfer. The rate constants for reduction of CCl$_4$ and CHCl$_3$ increased with pH while propachlor and trichloroethylene did not. Reactions of organohalides with excess electrons trapped in TiO$_2$, TiO$_2$(e$^-$), and heme/TiO$_2$(e$^-$) were also quantified. Rate constants for the reactions of heme/TiO$_2$(e$^-$) with CCl$_4$, propachlor, and TCE were much larger than those without a surface bound heme catalyst. Rapid and efficient electron transfer from TiO$_2$(e$^-$) to hemin was observed under all conditions. Therefore, the strategy of utilizing light and/or applied potential to maintain the active redox state of catalysts anchored to semiconductor surfaces was successful. The synergetic enhancement of the organohalide reactivity was an additional benefit that may be exploited for practical environmental applications.

5.6 Acknowledgments

This work was supported by the National Science Foundation and Collaborative Research Activities for Environmental Molecular Science (CRAEMS) Program. We thank Dr. Phil Mortimer for discussions of the GC-MS product analysis.
5.7 References

MORA-SERO, I., VILLARREAL, T. L., BISQUERT, J., PITARCH, A., GOMEZ, R., and SALVADOR, P. (2005) Photoelectrochemical behavior of nanostructured TiO$_2$ thin-

Chapter 6: Effects of Axial Ligands on Heme/TiO$_2$

Reactivity: One- and Multi-Electron

Reduction of Organohalide Pollutants

6.1 Introduction

Remediation of organohalides (RX) in wastewater and groundwater is an important goal (1). Due to the prevalent of organohalides in the pharmaceutical and chemical industries, they will continue to be introduced into a wide range of environments. The removal of organohalides contaminants either \textit{in situ} or above ground treatment is the active research area, and many remediation processes have been proposed over the years (1-3).

Reductive dehalogenation has been extensively studied (4-17) and their degradation products have been isolated (9-12). A common material for reductive dehalogenation studies is zero-valent iron (4, 9-12, 14). Highly reduced molecular compounds, for example, Co$^\text{I}$ porphyrins (18, 19), are also reactive toward organohalides pollutants. Semiconductors (e.g., TiO$_2$, ZnO, and Fe$_2$O$_3$) illuminated with light have also been shown to reductivelydehalogenate organohalides, such as poly-halogenated biphenyls (PCBs), halogenated alkanes, and pesticides (8, 15-17). However, these materials often generate a distribution of products and sometimes produce secondary pollutants that can be more toxic than the original organohalides compounds. Therefore, maintaining the reduced state of the catalysts and controlling the RX reactions to produce desired products are a vital challenge in the environment.
Iron porphyrins, such as heme, are one of naturally occurring and play important roles in biological systems. They are known to be redox catalysts (4, 13, 20-21). The studies of living organisms in both biotic and abiotic condition for reductive bioremediation of organohalides have shown that the halogenated compounds can undergo biotransformations (11, 13, 22-28). The mechanism of how electrons are transferred from electron donors (heme catalysts) to electron acceptors (organohalides pollutants) is a great interest. For example, carbene complexes of P-450 hemes (23) have been reported that were suggestive of an inner-sphere electron transfer mechanism (29, 30). Investigating reductive dehalogenation by heme porphyrins may help determine the nature of complex microbial pathways.

In Chapter 2, we reported the enhanced reactivity of heme catalysts anchored to nanocrystalline mesoporous TiO$_2$ thin films relative to fluid solution (31). This synergistic effect was due, in part, to the shifts in Fe$^{III/II}$ formal reduction potentials upon surface binding (32). The reactive state of heme could be maintained with light or an applied potential. Furthermore, as described in Chapter 4, we recently found evidence of multi-electron transfer (MET) reactivity with these materials (33). The MET process is an efficient method for the degradation of pollutants that can be fine tuned with regard to selectivity and reactivity with specific organic compounds (33, 34).

In this Chapter, we investigated the effect of axial ligands on heme-modified semiconductor reactivity (Fe$^{II/II}$P/TiO$_2$ and bis(pyr)Fe$^{II/II}$P/TiO$_2$) with halomethanes in pH 4 aqueous solutions. Axial ligation to iron is one of the critical variables in heme catalysis. Pyridines are often used (35-38) because of the sharp characteristic α and β
bands obtained by absorption spectroscopy. Pyridine ligation to iron porphyrin is also known to autoreduce the ferric state to the ferrous state (39-46). Although explanations for autoreduction by pyridine are still lacking, we also found that hemin (FeIII) autoreduced on the surface of TiO$_2$ in the presence of pyridine. The results reported herein describe the equilibrium constant of pyridine binding to heme catalysts on TiO$_2$ (FeIIP/TiO$_2$), the reactivity of the catalysts at nanocrystalline TiO$_2$ interfaces, the electron transfer mechanism of bis(pyr)FeIIP/TiO$_2$ reactions, as well as the thermodynamic correlation between formal Fe$^{III/II}$ reduction potentials of catalysts (FeP/TiO$_2$ and bis(pyr)FeP/TiO$_2$) and the second-order rate constants for the reduction of halomethanes.

6.2 Experimental Section

Materials. Dimethyl sulfoxide (DMSO), pyridine, acetic acid, potassium nitrate, and nitric acid were obtained from Fisher Scientific. Sodium acetate was obtained from J.T. Baker. Titanium (IV) isopropoxide (Aldrich), methanol (Fisher), sodium hydroxide (Aldrich), iron(III) meso-tetraphenyl porphyrin chloride (Frontier Scientific), tetrabutylammonium hexafluorophosphate (TBAH) (Fluka), and iron(III) protoporphyrin chloride (Fluka), were used as received. Deionized water was used in aqueous measurements and reactions.

Preparation of FeP/TiO$_2$ and (pyr)FeP/TiO$_2$ nanocrystalline thin films. Transparent TiO$_2$ films consisting of ~ 10 nm diameter anatase particles were prepared by the hydrolysis of Ti(iOPr)$_4$ using a sol-gel technique previously described in the literature.
The TiO$_2$ particles were cast as mesoporous thin (~10 µm) films onto transparent fluorine-doped tin oxide (FTO) or microscope glass slides and heated at 420 °C for 30 min.

Freshly prepared TiO$_2$ films were soaked in 2-8 µM hemin/DMSO solutions overnight at room temperature. Once iron porphyrins were anchored, they remained strongly bound to the surface in aqueous solutions. For the preparation of FeP/TiO$_2$, hemin/TiO$_2$ films were rinsed with pH 4 aqueous solution (6.7 x 10$^{-4}$ M acetic acid) priories to the reaction. The pH values were measured using an Orion Model 420A pH meter. For the preparation of (pyr)FeP/TiO$_2$, hemin/TiO$_2$ films were placed diagonally in a standard quartz cuvette containing pyridine solution. The cuvette was sealed with a rubber septum and then purged with N$_2$ gas for at least 30 min. The photoreduction from FeIII to FeII was performed with band gap (hv > 3.2 eV) excitation of TiO$_2$ to produce bis(pyr)FeIIP/TiO$_2$. Band gap excitation generates electron-hole pairs in the TiO$_2$ nanocrystallites. The conduction band electrons can reduce FeIII to FeII and the valence-band hole can oxidize solvent or ions. In pyridine solution, FeII porphyrins were known to have two pyridine axial ligands (48). The bis(pyr)FeP/TiO$_2$ films were then rinsed with pH 4 acetic acid solution to wash the excess pyridine priories to the reaction. When bis(pyr)FeIIP/TiO$_2$ films were exposed to air, the iron complexes were oxidized to ferric forms, (pyr)FeIIIP/TiO$_2$.

Binding constants of pyridine to FeIIP/TiO$_2$ in pH 4 aqueous solution. Binding constants were typically measured from the absorbances of 4 x 10$^{-9}$ mole/cm2 surface coverage of FeP/TiO$_2$. A slide coated with FeIIIP/TiO$_2$ was placed in a quartz cuvette.
The photoreduction of $\text{Fe}^{\text{III}}/\text{TiO}_2$ was performed in N_2-saturated pH 4 acetic acid aqueous solution by band gap excitation of TiO$_2$ ($\lambda < 370$ nm). After a few minutes of the illumination, $\text{Fe}^{\text{III}}/\text{TiO}_2$ was reduced to $\text{Fe}^{\text{II}}/\text{TiO}_2$. Various concentrations of deoxygenated pyridine/pH 4 solutions were added to $\text{Fe}^{\text{II}}/\text{TiO}_2$ into the external pH 4 aqueous solution. Spectroscopic measurements were made on a Varian Cary 50 UV-visible spectrophotometer. A N_2 atmosphere was kept throughout the measurements.

Spectroelectrochemistry. A (pyr)FeP/TiO_2 functionalized FTO electrode was placed in a standard quartz cuvette. As electrolytes, acetic acid/KNO$_3$ (0.1M) was used in aqueous solution and tetrabutylammonium hexafluorophosphate (TBAH) was used in methanol. The cuvette was sealed with a rubber septum and then purged with N_2 gas for at least 30 min before applying a potential. A PAR$^\text{TM}$ Model 173 Potentiostat was used to apply the desired potentials in a standard three-electrode arrangement with a Pt gauze counter electrode and a Ag/AgCl reference electrode. A N_2 atmosphere was kept throughout the measurements. A Cary 50 spectrometer was used to measure absorbance spectral changes. Each potential was held until the UV-vis spectrum became time-independent at which the equilibrium was assumed.

Kinetic analysis of heme complexes reactivity with organohalides. A Varian Cary 50 UV-visible spectrophotometer was used to acquire time-resolved spectra for the reactions of $\text{Fe}^{\text{II}}/\text{TiO}_2$ and bis(pyr)$\text{Fe}^{\text{II}}\text{P}/\text{TiO}_2$ with halogenated methanes. The $\text{Fe}^{\text{III}}/\text{TiO}_2$ or (pyr)$\text{Fe}^{\text{III}}\text{P}/\text{TiO}_2$ thin film immersed in pH 4 aqueous solution was purged with N_2. Band gap excitation resulted in the reduction of ferric iron to ferrous
iron. The photogenerated FeIII/TiO$_2$ and bis(pyr)FeII/TiO$_2$ complexes were stable at least for 3 days under anaerobic conditions. An aliquot of N$_2$ saturated RX in H$_2$O was added to FeII/TiO$_2$ or bis(pyr)FeII/TiO$_2$ thin film immersed in pH 4 aqueous solution. The experiments were performed in the dark to preclude secondary photocatalytic reactions. The disappearance of FeII and the appearance of FeIII Soret absorbance were analyzed with a first-order kinetic model. Pseudo-first-order kinetic rate constants, k_{obs}, were obtained by fitting to Equation (6a).

\[
\ln \left(\frac{\Delta A}{A_0} \right) = -k_{obs} t \tag{6a}
\]

where $\Delta A =$ initial absorption – absorption at time equal to t, and A_0 is the initial absorption.

Multi-electron transfer (MET) of bis(pyr)FeII/TiO$_2$(e$^-$) with CCl$_4$ in MeOH. The films of bis(pyr)FeII/TiO$_2$ was prepared as described above. If photolysis is continued after all the catalysts are reduced, electrons in TiO$_2$, TiO$_2$(e$^-$), are generated to form bis(pyr)FeII/TiO$_2$(e$^-$). An aliquot of CCl$_4$/MeOH solution was added to the external solution of MeOH under N$_2$ atmosphere.

Gas chromatography mass spectrometry. The products formed by electrocatalysis and photocatalysis at pH 8 aqueous solutions were analyzed by a Shimadzu GC17A/QP5050A GC/MS (Shimadzu Columbia, MD). The GC17A is equipped with a low polarity (5% phenyl-, 95% methyl-siloxane) capillary J & W DB5-MS column (30
m length, 0.25 mm ID, 0.25 µm film thickness). The products were extracted from the aqueous solution with pentane. Typically a ~2 mL aliquot of pentane was added to ~10 mL of RX reaction mixture. The solutions were mixed manually and allowed to separate. A syringe was used to extract the upper pentane layer and transfer it to a 2 mL GC/MS vial. The reaction mixture was injected into the autosampler of the GC/MS. The injector temperature was 220 °C and the transfer interface was at 280 °C. The split ratio was 10 and the H₂ gas column flow rate was kept at 1.0 mL/min. An EI quadrupole based mass spectrometer served as the detector with a scan range of 40-900 amu and an ionizing electron energy of 70 eV. The oven temperature was ramped from 40 °C, held for 10 min, to 80 °C at a rate of 7.2 °C/min. The pressure program was 1.0 kPa, ramp 2.7 kPa/min to 16 kPa, and held for 5 min.

6.3 Results

UV-vis spectra of heme complexes. The UV-vis absorption spectra of FeP in aqueous solution (20, 49) and bis(pyr)FeP in benzene (48, 50) and aqueous solution (51) were previously reported and aided our analysis. The UV-vis absorption spectra of bis(pyr)Fe^{II}P in pyridine solution (data not shown) and bis(pyr)Fe^{II}P on nanocrystalline TiO₂ surface, bis(pyr)Fe^{II}P/TiO₂ in pyridine (Figure 6-1a), were the same within the experimental error (Soret = 416 nm, Qₐ = 526 nm, Qₜ = 556 nm). Similarly, the UV-vis absorption spectra of bis(pyr)Fe^{II}P/TiO₂ in pyridine and pH 4 acetic acid aqueous solution were, within the experimental error, the same (Figure 6-1a). Soret region of bis(pyr)Fe^{II}P/TiO₂ in pH 4 broadened compared to in pyridine solution but the Q-band
region stayed the same in both solvents. In MeOH solution, λ_{max} of bis(pyr)FeIIP/TiO$_2$ were similar to pH 4 solution, however, extinction coefficient became larger (table 6-1).

Figure 6-1a and b show the normalized absorption spectra of ferric and ferrous forms of FeP/TiO$_2$ and (pyr)FeP/TiO$_2$ in pH 4. The two axial pyridine ligands shifted the Soret band toward the red (lower energy) for both ferric and ferrous forms. A similar result has been shown previously with heme proteins where red shifts of spectral absorption changes were observed when pyridine was added (51, 52). For heme complexes on nanocrystalline anatase TiO$_2$ surface in pH 4, $\Delta\lambda_{\text{max}}$ for ferric and ferrous forms between FeP/TiO$_2$ and (pyr)FeP/TiO$_2$ were 30 nm and 32 nm, respectively (Figure 6-1b and c). Table 6-1 is the summary of absorption spectra for ferric and ferrous forms of FeP/TiO$_2$ and (pyr)FeP/TiO$_2$. There was no clear Q-band absorption of ferric forms for both FeP/TiO$_2$ and (pyr)FeP/TiO$_2$, and therefore, the λ_{max} of Soret bands were used to determine whether complexes had the pyridine axial ligands (Figure 6-1b). Ferrous forms of heme complexes have unique and distinct absorption spectra (Figure 6-1c). Both Soret bands and the Q-band region were well separated and easily detected when pyridine ligands were bound to heme. FeIIP/TiO$_2$ has a broad Q-band at $\lambda_{\text{max}} = 575$ nm, and bis(pyr)FeIIP/TiO$_2$ has two sharp Q-bands at $Q_\alpha = 556$ nm and $Q_\beta = 526$ nm.
Figure 6-1. a) UV-visible absorbance spectrum of bis(pyr)FeIIP/TiO$_2$ in pyridine (—) and pH 4 acetic acid aqueous solution(—). b) UV-visible absorbance spectrum of ferric forms of heme complexes, FeIIIP/TiO$_2$ (—) and (pyr)FeIIIP/TiO$_2$ (—) in pH 4 acetic acid aqueous solution. c) UV-visible absorbance spectrum of ferrous forms of heme complexes, FeIIP/TiO$_2$ (—) and bis(pyr)FeIIP/TiO$_2$ (—) in pH 4 acetic acid aqueous solution.
Table 6-1. Spectroscopic and redox properties of heme complexes in pH 4 and MeOH at room temperature.

<table>
<thead>
<tr>
<th></th>
<th>Soret (nm)</th>
<th>ε (cm$^{-1}$ M$^{-1}$)</th>
<th>Q (nm)</th>
<th>ε (cm$^{-1}$ M$^{-1}$)</th>
<th>E° (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$^{3+}$P/TiO$_2$</td>
<td>pH 4</td>
<td>368</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe$^{2+}$P/TiO$_2$</td>
<td>pH 4</td>
<td>382</td>
<td>575</td>
<td>10,000</td>
<td>-900</td>
</tr>
<tr>
<td>(pyr)Fe$^{3+}$P/TiO$_2$</td>
<td>pH 4</td>
<td>398</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MeOH</td>
<td>398</td>
<td></td>
<td>142,000</td>
<td></td>
</tr>
<tr>
<td>bis(pyr)Fe$^{2+}$P/TiO$_2$</td>
<td>pH 4</td>
<td>414</td>
<td>556; 526</td>
<td>30,000; 20,000</td>
<td>-160</td>
</tr>
<tr>
<td></td>
<td>MeOH</td>
<td>414</td>
<td>554, 522</td>
<td>50,000; 30,000</td>
<td>-140</td>
</tr>
</tbody>
</table>

* Formal reduction potential was measured vs. Fe$^{2+/0}$.
Autoreduction of hemin/TiO$_2$ (FeIII) to (pyr)FeIIP/TiO$_2$. Autoreduction of FeIIIP to FeIIP by pyridine has been reported previously (39-46). In this study, we placed the films of hemin/TiO$_2$ (FeIII) in a standard quartz cuvette containing pyridine solution. The absorption at 418 nm, 526 nm, and 558 nm for bis(pyr)FeIIP/TiO$_2$ (Data not shown) increased slowly as the absorption of hemin/TiO$_2$ decreased. Isosbestic points were observed at 409, 442, 508, 568, and 560 nm.

Addition of pyridine to FeIIP/TiO$_2$ in pH 4. Binding constants of pyridine to FeIIP/TiO$_2$ was determined in N_2 saturated pH 4 acetic acid solution. After reducing FeIIIP/TiO$_2$ by bandgap illumination of TiO$_2$ to form FeIIP/TiO$_2$, various concentrations of pyridine/pH 4 solution was added. Figure 6-2a. shows the typical spectroscopic changes after the addition of excess pyridine/pH 4 solution to the external aqueous solution. Isosbestic points were observed at $\lambda_{iso} = 392$, 456, and 570 nm. The addition of $> 1.0 \times 10^{-2}$ M pyridine resulted in over 90 % conversion from FeIIP/TiO$_2$ to bis(pyr)FeIIP/TiO$_2$. The final spectrum after the addition of pyridine to FeIIP/TiO$_2$ was overlapped with an absorption spectrum of bis(pyr)FeIIP/TiO$_2$ prepared for RX reactions (Fig 6-2a. inset). The λ_{max} of the spectra were within the experimental error the same ($\lambda_{max} = 414$ nm, 526 nm, and 556 nm).

The axial ligation reactions of iron porphyrins have been reported previously with pyridine (40, 41, 52) and imidazole molecules (35, 53). Two steps of axial ligand addition to iron porphyrins have been suggested (40, 41). The first step is the intermediate formation of the mono pyridine complexes ((pyr)FeIIP/TiO$_2$).
The product of the first step is not usually detectable since the equilibrium constant of
the second step, \(K_2 \), is in general larger than \(K_1 \). The second step of axial ligand
addition can be written as:

\[
(\text{pyr})\text{Fe}^{II}\text{P/TiO}_2 + \text{pyr} \rightleftharpoons \text{bis(pyr)Fe}^{II}\text{P/TiO}_2 \tag{6c}
\]

Since \(K_2 \gg K_1 \), the equilibrium constant of two pyridine ligation to Fe\(^{II}\)P/TiO\(_2\) is the
sum of equations (6b) and (6c), and can be expressed as a single step:

\[
\text{Fe}^{II}\text{P/TiO}_2 + 2 \text{pyr} \rightleftharpoons \beta_2 \text{bis(pyr)Fe}^{II}\text{P/TiO}_2 \tag{6d}
\]

Where \(\beta_2 \) is the sum of two stepwise constants, \(K_1 \ast K_2 \). Therefore, equilibrium constant
of two axial ligation for the formation of bis(pyr)Fe\(^{II}\)P/TiO\(_2\) \((\beta_2) \) can be determined by
following Equations:

\[
\beta_2 = \frac{[\text{bis(pyr)Fe}^{II}\text{P/TiO}_2]}{[\text{Fe}^{II}\text{P/TiO}_2]} \times [\text{pyr}]^2 \tag{6e}
\]

\[
[\text{bis(pyr)Fe}^{II}\text{P/TiO}_2]/[\text{Fe}^{II}\text{P/TiO}_2] = \beta_2 \ast [\text{pyr}]^2 \tag{6f}
\]

\[
\log [\text{bis(pyr)Fe}^{II}\text{P/TiO}_2]/[\text{Fe}^{II}\text{P/TiO}_2] = \log \beta_2 + 2 \ast \log [\text{pyr}] \tag{6g}
\]

The ratio between the products, bis(pyr)Fe\(^{II}\)P/TiO\(_2\), and the precursor heme, Fe\(^{II}\)P/TiO\(_2\),
can be given by the spectral changes upon addition of pyridine at wavelengths of
interest. The calculations were typically done by the Equations (6h). (40, 41, 52)
[bis(pyr)FeIIP/TiO$_2$] / [FeIIP/TiO$_2$] = (A – A$_0$) / (A$_\infty$ – A) \hspace{1cm} (6h)

where A is the absorbance of interest, A$_0$ is the absorbance of FeIIP/TiO$_2$, and A$_\infty$ is the absorbance in the large excess of pyridine to form > 95 % bis(pyr)FeIIP/TiO$_2$ (Fig 6-2). Then the equation (6g) can be written in the form of Equation (6i).

$$\log \frac{(A - A_0)}{(A_\infty - A)} = \log \beta_2 + 2 \log [\text{pyr}] \hspace{1cm} (6i)$$

The total pyridine concentration is experimentally known. The plots of log (A-A$_0$ / A$_\infty$-A) vs. log [pyr] were constructed. The equilibrium constant, β_2, was estimated from the intercept of the graph which yields a slope of 2. Figure 6-2b. shows the experimental points fitted by a straight line that gave a slope of 2.0 ± 0.1. The intercept of the graph in Figure 6-2b was 4.97 that yielded the binding constant of 9.3 ± 0.4 x 104 M$^{-2}$.
Fig 6-2. a) The spectral changes observed after addition of 1.1 x 10^{-2} M pyridine to Fe^{II}P/TiO_{2} in pH 4 aqueous solution. The arrows show the direction of absorption change after the addition. The inset shows the UV-visible absorbance spectrum of the final bis(pyr)Fe^{II}P/TiO_{2} spectrum from a. (—) and bis(pyr)Fe^{II}P/TiO_{2} prepared for RX reactions (—). b) The plot of log (A-A_0)/(A_\infty-A) vs. log [pyr]. The binding constant of pyridine to Fe^{II}P/TiO_{2} estimated from the intercept of the fitted line was β_2 = 9.3 ± 0.4 x 10^{4} M^{-2}.
Formal reduction potential of (pyr)Fe^{III/II}P/TiO₂ in pH4 and MeOH. Formal Fe^{III/II} reduction potential (E°) of hemin anchored to nanocrystalline anatase TiO₂ surface, Fe^{III/II}P/TiO₂, in pH 4 aqueous solution was estimated in our previous study (34). Spectroelectrochemistry measurements were used to estimate the formal reduction potential (E°) of (pyr)Fe^{III/II}P/TiO₂ in pH 4 acetic acid/KNO₃ and MeOH/TBAH electrolytes. Upon stepping the applied potential to a new value, the absorption spectra were taken every 3-5 min until the steady-state concentration did not change as a function of time. The absorption spectra of the catalysts, (pyr)Fe^{III/II}P/TiO₂, showed isosbestic points as they were reduced or oxidized (Figure 6-3). Isosbestic points were observed at $\lambda_{iso} = 398, 452, 474, 576, \text{ and } 654 \text{ nm in pH 4 and } \lambda_{iso} = 406, 447, 511, \text{ and } 579 \text{ nm in MeOH.}$ The formal reduction potential of the catalysts corresponded to the equilibrium potential where the concentrations of ferric and ferrous forms were equal (Figure 6-3 inset). The reduction potential of (pyr)Fe^{III/II}P/TiO₂ in pH 4 and MeOH electrolytes were -160 mV and -140 mV vs. Fe^{+/0}, respectively (Table 6-1).
Figure 6-3. The spectroelectrochemical data of (pyr)FeP/TiO2 in pH 4 acetic acid/KNO3 electrolyte. The Soret band shifts from 398 nm (FeIII) to 414 nm (FeII) with negative applied potential. The arrow shows the direction of absorption change upon applying negative potential. Isosbestic points were observed at λiso = 398, 452, 474, 576, and 654 nm. The inset shows the plot of % concentration of FeIII and FeII vs. applied potential. The formal reduction potential of (pyr)FeP/TiO2 in pH 4 was -160 mV vs. Fc+/0.
Reaction of FeIIP/TiO$_2$ and bis(pyr)FeIIP/TiO$_2$ toward organohalide pollutants.

The reactivity of FeIIP/TiO$_2$ and bis(pyr)FeIIP/TiO$_2$ with halogenated methanes were quantified in pH 4 acetic acid aqueous solution. The catalysts were photoreduced to ferrous forms with bandgap illumination ($\lambda > 370$ nm) in N$_2$ saturated pH 4 aqueous solution. The anaerobic dark addition of RX/H$_2$O stock solutions resulted in oxidation of FeIIP/TiO$_2$ to FeIIIP/TiO$_2$ (or bis(pyr)FeIIP/TiO$_2$ to (pyr)FeIIIP/TiO$_2$). The typical data is shown in Figure 6-4. The final spectra after the addition of RX was found to generate the initial ferric absorption spectra (Figure 6-4a). The disappearance of reduced forms and the appearance of oxidized forms of heme complexes were monitored to measure k_{obs} rate constants. The observed rate constants for the loss of ferrous forms and the formation of ferric forms were the same within the experimental error. The bis(pyr)FeIIP/TiO$_2$ to (pyr)FeIIIP/TiO$_2$ conversion showed isosbestic points at $\lambda_{iso} = 396, 454, 472,$ and 577 nm (Figure 6-4b) that were similar to spectroelectrochemistry measurements (Figure 6-3). For the conversion of FeIIP/TiO$_2$ to FeIIIP/TiO$_2$ after addition of RX/H$_2$O, isosbestic points were observed at $\lambda_{iso} = 468, 530, 609,$ and 675 nm (data not shown) (34).

The loss of FeIIP/TiO$_2$ (or bis(pyr)FeIIP/TiO$_2$) and the concurrent formation of FeIIIP/TiO$_2$ (or (pyr)FeIIIP/TiO$_2$) were found to be exponential (Figure 6-4c). The surface concentrations were calculated spectroscopically by standard addition of the ferrous and ferric forms absorbance spectra at each observation time. Observed rate constants, k_{obs}, were abstracted from the absorption changes for the disappearance of ferrous and the appearance of ferric forms. Second-order rate constants were determined from plots of k_{obs} vs. [RX] for each organohalides (Figure 6-4d) at the same
heme surface coverage, 4×10^{-9} mole/cm2. At this surface coverage, the reactions were found to be first-order in heme and organohalides in our previous studies (34). Second-order rate constants increased in order of $\text{CCl}_4 > \text{CHBr}_3 > \text{CHCl}_2\text{Br} > \text{CHCl}_3$ for both $\text{Fe}^{II}\text{P/TiO}_2$ and bis(pyr)$\text{Fe}^{II}\text{P/TiO}_2$ heme complexes (Table 6-2). The reactions were faster with $\text{Fe}^{II}\text{P/TiO}_2$ compared to bis(pyr)$\text{Fe}^{II}\text{P/TiO}_2$ for the halogenated methanes investigated in this study.
Figure 6-4. The RX reactions of bis(pyr)FeIIP/TiO$_2$ in pH 4 acetic acid solution. a) UV-visible absorbance spectra of (pyr)FeIIIP/TiO$_2$ (—), bis(pyr)FeIIP/TiO$_2$ (—), and the final product after addition of 5.83 x 10$^{-4}$ M CCl$_4$ (—). b) The spectral changes observed after addition of 5.83 x 10$^{-4}$ M CCl$_4$ to bis(pyr)FeIIP/TiO$_2$ in pH 4. The arrows show the direction of absorption change after the addition. c) The plot of (pyr)FeIIIP/TiO$_2$ (—) and bis(pyr)FeIIP/TiO$_2$ (—) monitored by the Soret bands at 398 nm and 414 nm. d) Plots of the observed rate constants vs. the indicated RX concentration in pH 4.
Table 6-2. Second-order rate constants and ΔG for bis(pyr)FeII/TiO$_2$ and FeII/TiO$_2$ reactions with halomethanes.

	E (RX$^{0/-}$)a (V vs. NHE)	ΔGb (V vs. NHE)	bis(pyr)FeII/TiO$_2$ k (M$^{-1}$ s$^{-1}$)	ΔGb (V vs. NHE)	FeII/TiO$_2$ k (M$^{-1}$ s$^{-1}$)
CCl$_4$	+0.085	-0.206	2.3 ± 0.1	+0.535	14.1 ± 0.7
CHBr$_3$	+0.035	-0.156	0.63 ± 0.03	+0.585	13.0 ± 1.0
CHCl$_2$Br	-0.066	-0.055	0.28 ± 0.02	+0.686	2.9 ± 0.2
CHCl$_3$	-0.145	+0.024	0.022 ± 0.001	+0.765	0.63 ± 0.03

a taken from the reference (54)

b ΔG was calculated by the potential difference: $\Delta G = E^\circ (\text{Fe}^{III/II}) - E^\circ (\text{RX}^{0/-})$
Multi-electron transfer (MET) of bis(pyr)Fe^{II}P/TiO_{2}(e^{-}) with CCl\textsubscript{4} in MeOH.

Heme-carbene formation at nanocrystalline TiO\textsubscript{2} interfaces after the reaction of Fe^{II}P/TiO_{2}(e^{-}) with CCl\textsubscript{4} in MeOH was recently reported (56). In this study, MET of bis(pyr)Fe^{II}P/TiO_{2}(e^{-}) with CCl\textsubscript{4} was also investigated. The concentration of TiO_{2}(e^{-}) was varied while the surface coverage of bis(pyr)Fe^{II}P was kept the same. In all cases, the final spectrum after the addition of CCl\textsubscript{4}/MeOH was (pyr)Fe^{III}P/TiO\textsubscript{2} (Figure 6-5a). There was no spectroscopic evidence of carbene formation (Figure 6-5b) during the reactions (55).

Product analysis by GC/MS. The products of CCl\textsubscript{4} reduction by heme/TiO\textsubscript{2}(e^{-}) in aqueous pH 4 solution were analyzed by GC/MS. Electrocatalysis was initially performed at an applied potential of -1.0 V (vs. Ag/AgCl). This potential reduced all hemin to heme and established a TiO_{2}(e^{-}) concentration of 1.9 \times 10^{-5} M. The excess CCl\textsubscript{4} was then added to the external electrolyte and the potential was applied for 4 hours. Control experiments performed with FTO electrodes without heme or TiO\textsubscript{2} showed no dechlorinated products. The aqueous solutions were extracted with pentane as described in the experimental section.

\textit{CCl\textsubscript{4} (m/z-Cl 117; Retention time 4.1 min):} The major product of electrocatalysis was CHCl\textsubscript{3} (m/z 118) at RT = 3.5 min. Identification was confirmed by independent analysis of CHCl\textsubscript{3}/pentane. A minor amount of a product was observed at RT = 8.3 min. The mass spectrum of this product was identical to that of tetrachloroethylene, Cl\textsubscript{2}C=CCl\textsubscript{2} (m/z 164).
Figure 6-5. The UV-vis absorption spectra of a) (pyr)FeIII/TiO$_2$ (——), bis(pyr)FeII/TiO$_2$(e$^-$)(——) after ultra band gap illumination, and the final spectrum after addition of CCl$_4$ assigned to (pyr)FeIII/TiO$_2$ (——) in MeOH, and b) FeIII/TiO$_2$ (——), FeII/TiO$_2$(e$^-$)(——) after ultra band gap illumination, and the final spectrum after addition of assigned to carbene adduct, (CCl$_2$)FeII/TiO$_2$ (——) in MeOH.
Linear free energy relationship. Correlation between thermodynamics of the reactions (ΔG) and the second-order rate constants was investigated. The reactions without the excess electrons in TiO$_2$ were assumed to occur in single electron transfer steps by one electron transfer from an electron donor (heme complex) to an electron acceptor (halogenated methane). The observed rate constants of such reactions were thought to be related to the free energy of the reactions (56-60). Therefore, in this study, the overall free energy of the reactions was assumed to be proportional to the formal reduction potentials of the catalysts (E°). ΔG was calculated by the difference between E° of the catalysts and one electron reduction of halogenated methanes as expressed in Equation 6j.

$$\Delta G \propto E^\circ (\text{Fe}^{\text{III}/\text{II}}) - E^\circ (\text{RX}^{0/-}) \quad (6j)$$

The ΔG calculations using the measured formal reduction potentials of Fe$^{\text{III}/\text{II}}$/P/TiO$_2$ (-340 mV vs. Ag/AgCl) (34) and (pyr)Fe$^{\text{III}/\text{II}}$/P/TiO$_2$ (+400 mV vs. Ag/AgCl) and the calculated one-electron reduction potentials (E_1) of RX in aqueous solution (54) were summarized in Table 6-2. The plots of the second-order rate constants vs. the estimated overall free energy (ΔG) showed the trend that the reactions were faster when ΔGs were more negative (Figure 6-6). The correlation coefficient (R^2) for Fe$^{\text{III}/\text{II}}$/P/TiO$_2$ and (pyr)Fe$^{\text{III}/\text{II}}$/P/TiO$_2$ reactions were 0.97 (Figure 6-6) and 0.85 (Figure 6-6a), respectively.
Figure 6-6. Thermodynamic correlation of second-order reaction constants vs. ΔG calculated from the difference between Fe$^{III/II}$ formal reduction potentials and one-electron reduction potentials of halomethanes. The reactions for a) bis(pyr)Fe$^{II/III}$P/TiO$_2$, $R^2 = 0.85$, and b) Fe$^{II/III}$P/TiO$_2$, $R^2 = 0.97$, in pH 4 acetic acid aqueous solution.
6.4 Discussion

Hemoproteins are a great interest for many researchers because of their important role in biology as electron carriers. Understanding the relationship between structures and functions that associates with 5th and 6th coordination sites and the functional role of the axial ligands are essential (46, 61). The substituted pyridines are the most widely used natural axial ligands (62). Pyridine has been known to bind to the heme iron and cause properties of heme reactivity (37, 38). For example, Fujii and co-workers reported the effect of ligand on heme environment and the activity (37), where pyridine induced a structural modification in cytochrome b558 and decreased the O2− generation activity.

Autoreduction of iron(III) porphyrins has been known to occur in the presence of some ligands such as cyanide, pyridine and its derivatives (39-46). The iron-ligand bond making and breaking processes and the mechanisms of these reactions are also important for the intramolecular electron transfer in biological systems. Autoreduction mechanisms at room temperature remain unclear due to the fast autoreduction rate (39), however, some possibilities were suggested (39, 42-43, 46, 50, 61, 63-65). For example, some researchers proposed the base-catalyzed intramolecular electron transfer via hemolytic cleavage of Fe-L bond as a general mechanism for the autoreduction of FeIII porphyrins in the presence of coordinating bases (39, 63). Others suggested an electron migration through the axial ligands involving radicals (64). The overall autoreduction of FeIII P/TiO2 in pyridine solution can be written as:

XFeIII P/TiO2 + 2 pyridine → bis(pyr)FeII P/TiO2 + X• \hspace{1cm} (6k)
FeIII iron with an axial Cl ligand has been assigned to be high spin (S=5/2) (42). When hemin (Cl-FeIIIP or Cl-FeIIIP/TiO\textsubscript{2}) was dissolved in pyridine solution, autoreduction of iron may occur due to the stable low spin (S=0) six-coordinate bis(pyr)FeIIP (50, 61, 65). It is also suggested that the ease of autoreduction of FeIIIP is a result of their increased Lewis acidity (42, 43). In this work, the possible pathway for autoreduction from FeIIIP/TiO\textsubscript{2} by pyridine to form bis(pyr)FeIIP/TiO\textsubscript{2} complexes, can be a formation of six-coordinated iron complex first followed by the reduction through intramolecular electron transfer by free ligands (39):

\text{i}) \quad Cl-FeIIIP/TiO\textsubscript{2} + 2 pyridine \Rightarrow [\text{bis(pyr)Fe}IIIP/TiO\textsubscript{2}]^+ + Cl^- \quad (6l)

\text{ii}) \quad [\text{bis(pyr)Fe}IIIP/TiO\textsubscript{2}]^+ \Rightarrow \text{bis(pyr)Fe}IIP/TiO\textsubscript{2} + \bullet \text{pyr} \quad (6m)

\text{iii}) \quad \text{bis(pyr)Fe}IIP/TiO\textsubscript{2} + \text{pyr} \Rightarrow \text{bis(pyr)Fe}IIP/TiO\textsubscript{2} \quad (6n)

where the steps of autoreduction are i) the formation of low spin iron(III) complexes (Equation 6l), ii) the autoreduction (Equation 6m), and iii) the intramolecular electron transfer by the free pyridine ligand (Equation 6n). Kadish and Bottomley (46) reported the observation of [L\textsubscript{2}FeIIIP]+Cl- because the pyridine ligands were strongly complexed with FeIII. Cyclic voltammograms of pyridines in the range of 3.0 < pKa < 5.4 yielded two reduction waves but only one oxidation wave. They concluded that both FeIIIPCl and [L\textsubscript{2}FeIIIP]+Cl- were present when pKa of a ligand was in this range and both reactants may be reduced to form L\textsubscript{2}FeIIP (46). Since pKa of pyridine lays in this region, Equation 6l can be the suggestive first step. The observation of isosbestic
points for the reaction A can be explained the rapid reaction of Equation 6n (39). The half-wave potential for (TPP)Fe(pyr)$_2^+/(TPP)Fe(pyr)_2$ was reported to be $+0.06$ V vs. SCE (46), indicating that the reduction of FeIIIP to bis(pyr)FeIIP is thermodynamically favorable once FeIIIP forms bis(pyr)FeIIIP.

The spectra of bis(pyr)FeIIP in pyridine solution and bis(pyr)FeIIP/TiO$_2$ in pH 4 solution were the same within the experimental error (Figure 6-1a). This indicates that the two pyridine ligands stay bound to iron center of heme porphyrins and form stable 6-coordinate bis(pyr)FeP. In fact, when (pyr)FeP/TiO$_2$ was reduced and oxidized repeatedly by TiO$_2$ band gap excitation ($\lambda > 370$ nm) in pH 4, the spectra of bis(pyr)FeIIP/TiO$_2$ were the same, $\lambda_{max} = 414, 526, 556$ nm. The bis(pyr)FeIIP/TiO$_2$ was stable over 3 days in anaerobic condition. The literature has shown the stability of FeII porphyrin when pyridines were bound to iron (50, 61). Although the spin state of FeII porphyrins can vary with axial ligands, it is known that pyridine gives a diamagnetic state ($S = 0$). (66). The stability can be explained with electron withdrawal at the periphery of the FeII porphyrin system that facilitates sigma or pi acceptance by FeII and stabilizes the low spin dipyridine species (50). This is associated with the fully filled t_{2g} orbitals in the low spin d^6 electronic configuration. The red shift of Soret band and blue shift of Q-band area due to pyridine ligation has reported previously in the literature (37).

The binding constant of pyridine ligation to FeIIP/TiO$_2$ measured here, $\beta_2 = 9.3 \pm 0.4 \times 10^{-4}$ M$^{-2}$, was expected (Figure 6-2). Compared to the literature value (40), e.g. $1.3 \pm 0.2 \times 10^{-8}$ M$^{-2}$, our binding constant seems to be small. This could be due to the fact that the measurements were carried out on TiO$_2$ surface. There might be a
diffusion limit at TiO$_2$ interfaces that heme catalysts were not freely solvated by pyridine solution. The appearance of Soret band at 414 nm, and Q-band region at 526 nm and 556 nm shows the evidence of pyridine binding to iron to form bis(pyr)FeIIP/TiO$_2$. The isosbestic points at $\lambda_{iso} = 392, 456,$ and 570 nm indicate that there were only two detectable complexes, FeIIP/TiO$_2$ and bis(pyr)FeIIP/TiO$_2$, present. This result confirms that the second equilibrium constant, K_2, is much larger than K_1 and mono(pyr)FeIIP is difficult to observe spectroscopically.

The mechanisms of pyridine binding was not investigated in detail in this study, however, it is proposed that, in biology, enzymes interact with ligands by π-bonding (67). The affinity of iron porphyrin for ligands partly explained in terms of π-back bounding occurring by back-donation of electrons from the metal atom to the π system of ligands. K_2 is typically larger than K_1 that can be understood in terms of the ligand field stabilization energy for the t_{2g} low spin six-coordinate species.

The reduction of halogenated methanes with FeIIP/TiO$_2$ and bis(pyr)FeIIP/TiO$_2$ in pH 4 aqueous solution was determined under the condition that the reactions were first-order in heme and in organohalides concentration (34). The second-order rate constants for both FeIIP/TiO$_2$ and bis(pyr)FeIIP/TiO$_2$ increased in the order of CCl$_4$ > CHBr$_3$ > CHCl$_2$Br > CHCl$_3$. This trend is expected based on the one electron reduction potentials of organohalides in water as indicated in Table 6-2 (54). The reactions of FeIIP/TiO$_2$ were consistently faster compared to bis(pyr)FeIIP/TiO$_2$ for all organohalides investigated in this study. This indicates that axial ligands are critical variables on heme reactivity. The ligand changes the arrangement of orbitals and can affect the environment of heme porphyrins. As a result, the reactivity of heme...
complexes can be influenced. The larger reactivity with Fe^{II}P/TiO_2 can be partially explained with the heme Fe^{III/II} formal reduction potentials, e.g. E^o (Fe^{III/II}P/TiO_2) = -900 mV and E^o ((pyr)Fe^{III/II}P/TiO_2) = -160 mV vs. Fc^+/0 (32, 34). Effects of axial ligands on reduction potentials have been reported in the literature (63, 68). This shows that heme reactivity is influenced by axial ligands that can change the redox potentials of catalysts.

The inner and outer sphere electron transfer mechanisms are of interests for phorphyrins and metalloporphyrins (62). In this study, the multi-electron transfer reactions of bis(pyr)Fe^{II}P/TiO_2(e^-) with CCl_4 in MeOH showed no evidence of carbene formation (Figure 6-5). In outer sphere redox reactions, electrons are transferred between the species (reductant \rightarrow oxidant) without changes in their coordination spheres and ligands are ideally unable to bridge and are π-acceptors. The MET reactions of bis(pyr)Fe^{II}P/TiO_2(e^-) complexes is consistent with this predictions. From the results, we can conclude that the mechanism for the reduction of halomethanes by bis(pyr)Fe^{II}P/TiO_2(e^-) as well as bis(pyr)Fe^{II}P/TiO_2 is outer sphere electron transfer. It is interesting to note that pyridine ligands have capable to change the mechanisms to outer sphere electron transfer.

The observation of tetrachloroethylene product by GC/MS analysis after the CCl_4 reduction indicated a net two-electron transfer process that produced dichlorocarbene intermediate during the reaction. The dimerization of this intermediate resulted in tetrachloroethylene has been reported previously (69). Whether the electron transfer mechanism for the formation of dichlorocarbene was a two-electron reduction or two single-electron transfers was not clear. Since the main product was CHCl_3, the electron
transfer mechanism for this reaction may be assumed to be two single electron transfer processes (Equation 1-g and –h).

i) First electron transfer \[\text{CCl}_4 + e^- \rightarrow \cdot \text{CCl}_3 + \text{Cl}^- \quad (6o) \]

ii) Second electron transfer \[\cdot \text{CCl}_3 + e^- + H^+ \rightarrow \text{HCCl}_3 \quad (6p) \]

or \[\cdot \text{CCl}_3 + e^- \rightarrow :\text{CCl}_2 + \text{Cl}^- \quad (6q) \]

In fact, the estimated reduction potentials of Equations 6q was more positive than Equation 6p (14). If the formation carbene was predominant, the main product would be expected to be dichloroethylene rather than chloroform. Therefore, we can conclude that the reaction of Fe^{II}/TiO_2(e^-) with CCl_4 in aqueous solution was more like to be dissociative electron transfer mechanism.

Understanding the relationship between reaction rate constants of organohalides pollutants and reduction potentials of organohalides and catalysts can be a useful tool to predict the dehalogenation processes in the environment. Some researchers have shown the strong correlations between thermondynamic values of the first electron transfer process and the degradation rate (56, 70). In our previous study, we have shown that the main product of the Fe^{II}/TiO_2 reaction with CCl_4 in aqueous solution was CHCl_3 (34). This result indicates that dehalogenation of Organohalides with Fe^{II}/P can also undergo hydrogenolysis at nanocrystalline TiO_2 surface. Hydrogenolysis of organohalides in water is proposed to be one-electron transfer and is assumed to be initiated by dissociative electron transfer, Equatio 6r (14, 56). Bylaska and co-workers showed that, of four possible pathways for the first one-electron reductive steps, the
dissociative electron transfer to from Cl\(^{-}\) was thermodynamically the most favorable pathway \((59)\). Costentin and others also reported the more negative reduction potentials for the stepwise pathway \((\text{RX} / \text{RX}^{*})\) compared to the concerted pathway \((60)\).

\[
\text{RX}_a + 1 \text{e}^{-} \rightarrow \cdot \text{RX}_{a-1} + \text{X}^{-}
\] \hspace{1cm} (6r)

We assumed that this was the case in our system. For the reactions of Fe\(^{II}\)/TiO\(_2\) and bis(pyr)Fe\(^{II}\)/TiO\(_2\), without excess electrons in the conduction band of TiO\(_2\), undergo the pathway Equation 6r. Accordingly, to determine the relationship between the reaction rate constants and \(\Delta G\), one-electron reduction potentials of organohalides \((54)\) and Fe\(^{III/II}\)/TiO\(_2\) formal reduction potentials (table 6-2) were used.

\[
\Delta G \propto E^{\circ} (\text{Fe}^{\text{III/II}}) - E^{\circ} (\text{RX}^{0/-})
\] \hspace{1cm} (6s)

The second-order rate constants decrease as \(\Delta G\) for the complex increases. The correlation coefficients, \(R^2\), between the reaction rate constants and \(\Delta G\) for Fe\(^{III/II}\)/TiO\(_2\) and (pyr)Fe\(^{III/II}\)/TiO\(_2\) were reasonably high, 0.97 and 0.85. The similar correlation coefficients has been reported previously with zero-valent iron \((56, 57)\). This suggest that the reaction rate of halogenated methanes investigated here are relatively associated with Fe\(^{III/II}\) formal reduction potentials and one-electron reductions of organohalides. This study demonstrates that thermodynamics of reactions, \(\Delta G\), can be used to predict reduction rates of organohalides in aqueous solution.
6.5 Conclusions

This study described the influence of axial pyridine ligands on the redox properties and RX reactivity of heme catalysts. Axial ligation of pyridine to heme caused the +740 mV shifts in the Fe^{III}/P/TiO_2 formal reduction potentials in pH 4 aqueous solution. Probably for this reason, the second order rate constants for RX reduction with bis(pyr)Fe^{II}/P/TiO_2 were less than that measured in the absence of pyridine ligands. Multi electron transfer reaction of bis(pyr)Fe^{II}/P/TiO_2(e^-) with CCl_4 demonstrated that pyridine ligands can alter the reaction products. This study may contribute to understanding and predicting the redox reaction processes that involve electron transfer. In addition, molecular catalysts bound to mesoporous nanocrystalline TiO_2 thin films eliminate many of the difficulties encountered with colloidal solutions.

6.6 References

Appendix 1: Mass Spectra Methods and Data for Organohalides and Products in Water

A1.1 Analytical method

The products formed by electrocatalysis and photocatalysis in aqueous solutions were analyzed by a Shimadzu GC17A/QP5050A GC/MS (Shimadzu Columbia, MD). The products were extracted from the aqueous solution with pentane. Typically a ~2 mL aliquot of pentane was added to ~ 10 mL of RX reaction mixture. The pentane reaction mixture was injected into the autosampler of the GC/MS. The injector temperature was 220 °C and the transfer interface was at 280 °C. An EI quadrupole based mass spectrometer served as the detector with an ionizing electron energy of 70 eV.
A1.2 GC/MS spectra of substrate: Propachlor and CCl₄

For CCl₄, the oven temperature was ramped from 40 °C, held for 10 min, to 80 °C at a rate of 7.2 °C/min. The pressure program was 1.0 kPa, ramp 2.7 kPa/min to 16 kPa, and held for 5 min. For propachlor, the oven temperature was ramped from 40 °C, held for 2 min, to 170 °C at a rate of 7.3 °C/min. The pressure program was 48.9 kPa, ramp 3 kPa/min to 99 kPa, and held for 5 min.

![Mass spectrum of propachlor and CCl₄ in pentane. The retention time for propachlor and CCl₄ were R.T. = 20.4 and 4.0 min.](image)

Figure A1-1.
A1.3 Products observed from the reactions of Propahlor and CCl₄

The products of CCl₄ and propachlor reduction by heme/TiO₂(e⁻) in aqueous pH 8 solution were analyzed by GC/MS. Electrocatalysis was initially performed at an applied potential of -1.0 V (vs. Ag/AgCl). This potential reduced all hemin to heme and established a TiO₂(e⁻) concentration of 1.9 x 10⁻⁵ M. The CCl₄ (or propachlor) was added to the external electrolyte and the potential was maintained for an additional 4 hours. Control experiments performed with FTO electrodes without heme or TiO₂ showed no dechlorinated products. Products observed from photocatalytic reactions were also analyzed. In all cases, the aqueous solutions were extracted with pentane.
Figure A.1-2. GC/MS spectra of the products formed after the reactions of heme/TiO$_2$(e$^-$) by electrocatalysis in pH 8 aqueous solution. a) shows the product observed from the reactions with propachlor, assigned to be deschloropropachlor (m/z = 177, R.T. = 17 min). This product was also detected in the photocatalytic reactions. b) shows the main product observed from the reactions with CCl$_4$, assigned to be chloroform (m/z = 118, R.T. = 3.6). This product was also observed from the photocatalytic reactions. C) shows the product observed from the reactions with CCl$_4$, assigned to be tetrachloroethylene (m/z = 164, R.T. = 8.3). This product was not detected in the photocatalytic reactions.
Appendix 2: Cyclic Voltammetry of Molecular Catalysts,
TiO₂ Thin Films, and Heme-Functionarized TiO₂

A2.1 Experimental protocol

Cyclic voltammetry was used to estimate formal reduction potentials of the molecular catalysts in fluid solutions as well as on nanocrystallin TiO₂ thin films. Typically, tetrabutylammonium hexafluorophosphate (TBAH) was used in organic electrolytes and the concentration was 0.1 M. A BAS model CV-50 W potentiostat was used in a standard three-electrode arrangement consisting of a Glassy carbon working electrode, a Pt gauze counter electrode, and Ag/AgCl reference electrode. For TiO₂ surface studies, the TiO₂ pastes were cast as mesoporous thin (~10 µm) films onto transparent fluorine-doped tin oxide (FTO) and used as a working electrode.

The M^{III/II} redox chemistry showed equivalent anodic and cathodic peak currents, \(i_{pa}/i_{pc} \sim 1 \), and a peak-to-peak separation of ~100 mV in fluid solution, Figure A.2-1. Plots of the square root of the peak current versus scan rate were linear as expected for a diffusional process.

The cyclic voltammetry of the catalysts bound to TiO₂ was also measured. In most cases, at potentials more negative than −1 V vs. Ag/AgCl, a background current due to the reduction of TiO₂ was superimposed on a peaks attributable to Fe^{III→II}/TiO₂ reduction of the heme catalyst, Fig A.2-2. The corresponding
oxidation of Fe$^{II/III}$/TiO$_2$ was not observed, which may be due to the oxidation of TiO$_2$ (Ti$^{III/IV}$) background. The formal reduction potentials of (pyr)Fe$^{III/II}$ were more positive and therefore, equivalent cathodic and anodic peak currents were observed, Figure A.2-3.

Table A.2.1. Redox properties of catalysts in solution and on TiO$_2$ thin films.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Electrolyte</th>
<th>E° (mV) vs. Fe$^{+/0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$^{III/II}$</td>
<td>DMSO</td>
<td>-727</td>
</tr>
<tr>
<td>Fe$^{III/II}$/TiO$_2$</td>
<td>DMSO</td>
<td>-1063</td>
</tr>
<tr>
<td>(pyr)Fe$^{III/II}$</td>
<td>Pyridine</td>
<td>-463</td>
</tr>
<tr>
<td>(pyr)Fe$^{III/II}$/TiO$_2$</td>
<td>Pyridine</td>
<td>-403</td>
</tr>
</tbody>
</table>
A2.2 Cyclic voltammetry of catalysts

Figure A.2-1. Cyclic voltammetry of a) hemin and b) CoTCP in 0.1 M TBAH/DMSO electrolyte vs. Ag/AgCl. The concentration of molecular catalysts was 0.01 M and the scan rate was 100 mV/sec.
Figure A.2-2. Cyclic voltammetry of hemin (—), TiO₂ (—), and hemin/TiO₂ (—) in 0.1 M TBAH/DMSO electrolyte vs. Ag/AgCl. The scan rate was 100 mV/sec.
Figure A.2-3. Cyclic voltammetry of FTO (—), (pyr)\textit{Fe}^{III/II} (——), and (pyr)\textit{Fe}^{II/III}/\textit{TiO}_2 (—) in 0.1 M TBAH/Pyridine electrolyte vs. Ag/AgCl. The scan rate was 100 mV/sec.
Curriculum Vita

Tamae Ito was born in Kanagawa, Japan on September 7th, 1969. She received a Bachelors of Art in Chemistry from Case Western Reserve University in Cleveland, OH. She worked with Dr. Malcolm E. Kenney as a research assistant after receiving BA. In September, 2002, she began her graduate work in the Department of Chemistry at the Johns Hopkins University in Baltimore, MD. She pursued her doctoral degree under the guidance of Professor Gerald J. Meyer. Her primary aim is to research organohalide contaminants in groundwater and establish an efficient method to clean contaminated water. She completed her Ph.D work in October, 2006.