
Evidence-based methods in studies of
biology and data analysis

by

Leslie Myint

A dissertation submitted to The Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

February 2018



Abstract

When scientists use familiar data analysis methods out of comfort or conve-

nience, disciplines can suffer in their scientific inferences if these methods are

not appropriate for their ultimate goals. Older fields experience this when

long-standing methods are used simply for their longevity. Newer fields

experience this when scientists transfer methods from other areas without

evaluating their performance in these new domains. This work represents a

collection of methods and results that contribute to evidence-based analytical

practice in three different domains: mass spectrometry-based metabolomics,

massively parallel reporter assays, and data science training. In the first two

domains, we present new methods that improve current practice for compara-

tive (differential) analysis in those fields. Specifically these methods are shown

to be statistically calibrated and powerful compared to existing alternatives.

In the third domain, we present experimental results regarding the actions

and perceptions in data analysis practice. These results have implications for

data analysis training and education. Broadly, in these three domains, we

provide tools and discuss findings that enable higher quality work in applied

research.
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Chapter 1

Introduction

How should I analyze this data? This is the eternal question facing scien-

tists once data have been collected. For even modestly complex situations,

this question is not straightforward. There are a myriad of statistical tools,

approaches, and software packages that can be used over the course of an

analysis. Different tools are accompanied by different assumptions, theoretical

properties, and real-data performance. In well-established fields that have

close ties to computational disciplines, choices can reasonably be guided by a

body of applied and theoretical literature. In newer fields and in fields sepa-

rated from widespread computational ties, it can be daunting to knowledge-

ably consider different analysis choices because their perceived differences

are influenced very strongly by speculation.

The work in this dissertation represents an attempt to create tools and

increase analytic understanding for three different areas that, in some form

or another, are in their nascency: metabolomics, massively parallel reporter

assays (MPRAs), and data analysis/data science as a whole. A key part of this

work is an emphasis on evidence-based recommendations. All methods and
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conclusions that we present are based on evaluations based on real, publicly-

available data.

Metabolomics is a branch of basic science that studies the small molecules

that are present in biological systems. One of the main technologies that is

used to collect measurements of these small molecule metabolites is mass

spectrometry. Although mass spectrometry has been in widespread use for

decades, existing tools that perform fundamental data processing have not

been tailored to popular goals of the field, namely, comparative analysis.

Mass spectrometry generates complex data that must be preprocessed to be

amenable for statistical analysis. In this dissertation, we show that existing

methods for preprocessing are ill-suited for the comparative analyses that

practitioners are most often interested in. We develop a preprocessing method

that facilitates comparisons by considering all samples simultaneously as

opposed to individually. By evaluating our method on several real datasets,

we show that our approach reduces unnecessary variability in preprocessing

output and increases statistical power in differential analysis.

Massively parallel reporter assays (MPRAs) are newer assays that are

emerging in popularity as a means of assessing the potential of a piece of

DNA to regulate the transcription of a nearby gene. The main goals in these

assays are to compare the regulatory activity of slightly different sequences

and to explain variation in regulatory activity across sequences with genomic

and biological features. Because the field is relatively new, the literature is

replete with ad hoc statistical analyses. In this dissertation, we propose a

unifying linear model analysis framework that draws upon established work

2



from RNA-sequencing literature. Using multiple publicly-available datasets,

we show that our approach is well-calibrated and powerful in comparative

analyses. We also formulate a mathematical model of data in this assay and

use this model to provide practical advice regarding experimental design.

With reproducibility and replicability taking a more central role in sci-

entific discourse, the research community has increasingly scrutinized the

numerous stages of the scientific process, ranging from study design, to data

analysis, to publication. Critiques of the data analysis stage tend to focus on

specific methodology. By comparison, there has been little investigation of

the cognitive aspects of data analysis. A data analysis involves numerous

decisions that can be considerably subjective, and the cumulative impact of

these decisions on an analyst’s conclusions is likely substantial. In the final

part of this dissertation, we present results from randomized experiments of

human behavior and perception in data analysis situations.

Throughout this work, we place an emphasis on evidence-based decision

making. In the context of methodological development in for biological

studies, this consists of evaluation using real data in lieu of simulations. In the

context of understanding human behavior in data analysis situations, we carry

out experiments to supplement hypotheses that have been based primarily on

conjecture.
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Chapter 2

Metabolomics

Reproduced with permission from Myint, Leslie, Andre Kleensang, Liang

Zhao, Thomas Hartung, and Kasper D. Hansen. 2017. “Joint Bound-

ing of Peaks Across Samples Improves Differential Analysis in Mass

Spectrometry-Based Metabolomics.” Analytical Chemistry 89 (6):3517-23.

https://doi.org/10.1021/acs.analchem.6b04719.

Copyright 2017 American Chemical Society

2.1 Introduction

As mass spectrometry-based metabolomics becomes a more mature and pop-

ular means of scientific investigation (Bouhifd et al., 2013; Bouhifd et al., 2015;

Ramirez et al., 2013), it is important to revisit existing data analysis paradigms.

Existing approaches to preprocessing metabolomics data focus on a two-step

approach which starts by extracting features (peaks) separately from each

sample, followed by a subsequent attempt to group features across samples to

facilitate comparisons (Aberg, Alm, and Torgrip, 2009). In particular, there has
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been considerable attention in the literature on individual stages of preprocess-

ing, including peak detection (Hastings, Norton, and Roy, 2002; Vivó-Truyols

et al., 2005; Du, Kibbe, and Lin, 2006; Noy and Fasulo, 2007; Tautenhahn,

Böttcher, and Neumann, 2008; Chen et al., 2009; Nguyen et al., 2010; Shalliker

et al., 2010; Vivó-Truyols, 2012; Fu et al., 2016) and alignment (Tomasi, Berg,

and Andersson, 2004; Podwojski et al., 2009; Hoffmann et al., 2012; Jeong et al.,

2012). Additional work has been done on specific issues with downstream

differential analysis such as missing information or dependence structures

(Tekwe, Carroll, and Dabney, 2012; Zhan, Patterson, and Ghosh, 2015; Taylor

et al., 2017). Single sample processing methods tend to focus on reducing bias.

The bias-variance tradeoff (Hastie, Tibshirani, and Friedman, 2011) shows

that the overall performance of a method also depends on its noise, and expe-

rience from gene expression studies suggests that noise can be removed by

processing samples jointly.

In this work, we investigate the consequences of traditional sample-specific

preprocessing on the quality of differential analysis. We show that the reten-

tion time (RT) bounds that arise from preprocessing samples individually

cause unnecessary variability in peak quantifications (based on integrated

peak area) which leads to under-powered differential analysis. We propose a

relative quantification method, called bakedpi, which addresses this shortcom-

ing by jointly detecting and bounding peaks in the two-dimensional m/z-RT

space, across all samples simultaneously. The backbone of our method is an

intensity-weighted bivariate kernel density estimation that is computed on a

5



pooling of all samples. We show that this approach reduces unnecessary quan-

tification variability and increases power in downstream differential analysis.

Our method is open source and freely available as part of the yamss package

through the Bioconductor project under Artistic License 2.0.

2.2 Results

2.2.1 Excess variability with sample-specific processing

To demonstrate issues with sample specific detection and bounding of peaks,

we consider the widely used software packages XCMS (Smith et al., 2006) and

MZmine2 (Pluskal et al., 2010). Output for one peak from a QTOF dataset

with two sample groups is shown in Figure 2.1 (additional examples from

other datasets in Supplementary Figures S1 and S2). The shape, width, and

location of this peak do not appear to vary across samples. Despite this,

the XCMS and MZmine2 RT bounds for this peak, indicated by blue and

purple rectangles respectively, are highly heterogeneous between samples

(Figure 2.1c). To a first approximation, the retention time (RT) bounds can be

grouped into narrow and wide bounds; this grouping is not associated with

the two sample groups (light and dark rectangles). As a consequence, the

integrated peak area is completely determined by whether the RT bounds are

narrow or wide (Figure 2.1d,e), and this leads to high variability in the peak

quantifications (Figure 2.1f). If instead, we use the same RT bound across all

samples (Figure 2.1c, orange rectangle), we substantially reduce the between-

sample variability in the peak quantifications (Figure 2.1f). Excess variability

results in loss of power in a differential analysis.
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Figure 2.1: Problems with sample-specific processing in XCMS and MZmine2.
Peak detection and bounding for a single peak in the MTBLS2_rep1 dataset. (a)
The m/z-RT space surrounding this peak for a single sample, color is used to depict
intensity (red is high). (b) Overlaid extracted ion chromatograms from all 8 samples
in the experiment. Different colors denote different samples. (c) The peak bounds for
all samples for XCMS (blue), MZmine2 (purple) and bakedpi (orange; all samples
have same bounds). This experiment compares two groups of samples indicated with
different color shades. (d) XCMS peak quantification vs. peak width. (e) Like (d) but
for MZmine. (f) Distribution of peak quantifications, based on the peak bounds in (c).
Substantial heterogeneity in the sample-specific bounds leads to excess variability in
the quantifications; this is addressed by using the same RT bound for all samples.

2.2.2 Joint sample processing with bakedpi

To address the problem of excess variability, we propose a method which

jointly detects and bounds peaks across all samples in an experiment (see

Methods); an important feature of our method is the use of homogeneous

RT bounds across all samples. We pool the data from all samples into a
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single metasample, on which we detect and bound peaks (Figure 2.2a,b).

To do this, we use intensity-weighted bivariate kernel density estimation in

the two-dimensional m/z-RT space. By using the intensities as weights, we

differentiate between groups of detected m/z values (data points) with high

and low intensities. The output is a smooth density in the m/z-RT space,

where peaks in the density correspond to clusters of high-intensity points

(Figure 2.2c). To detect and bound peaks, we slice the density using a single

global threshold, and form a set of contiguous regions based on the density

slices. By performing this procedure on a single metasample, we ensure the

same peak bounds across all samples. Like XCMS and MZmine2, we quantify

the peaks by integrating the extracted ion chromatogram (EIC) for each sample

across the peak’s RT bounds. We can optionally perform RT alignment prior

to density estimation. Our method has 3 parameters: 2 of these parameters

control the bandwidth in the m/z and RT domains and are easy to set based

on the resolution of the instrument. The last parameter, the only significant

tuning parameter, is the global density threshold. We call our method bakedpi,

for bivariate approximate kernel density estimation for peak identification.

2.2.3 Joint sample processing reduces excess variability

We applied bakedpi to 10 different datasets from 7 different experiments. Fea-

tures of these datasets are summarized in Table 2.1. All datasets were subset

(if necessary) to only contain two sample groups, to keep the experimental

design simple and constant. For the Orbitrap dataset (MTLS216) we expect

little to no differences between the sample groups, based on the design of the

8
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Figure 2.2: Weighted bivariate kernel density estimation. We depict a selected
rectangle in m/z-RT space for (a) one sample and (b) the pooled metasample. m/z
values with higher intensity are shown in red, lower with blue. (c) The weighted
bivariate density estimate.

experiment (Murakami et al., 2014). We ran XCMS, MZmine2, and bakedpi

on the 10 datasets. XCMS parameters were optimized using the IPO package

available on Bioconductor (Libiseller et al., 2015) using recommended starting

values for most datasets (Methods). MZmine2 parameters were set based

on optimized XCMS parameters where possible (Methods). When running

bakedpi, we use the higher of a fixed quantile cutoff and a data-driven cutoff

to set the global tuning parameter (Methods).

To compare the quantification variability between bakedpi and XCMS and

between bakedpi and MZmine2, we first identified peaks which overlapped

between bakedpi and XCMS and between bakedpi and MZmine2. We will

call these shared peaks. The number of peaks detected by both methods

as well as the percentage of peaks that are common to both methods are

shown in Supplemental Figure S3; for many datasets the overlap is around

60-80% of the peaks. On these overlapping peaks, we computed the residual

standard deviation of the log-abundances to assess their variability. We used

9



Name (Source) MS instrument # samples
Column (group 1, 2)

ASD_hirisk (C) QTOF
HPLC - HILIC 20, 20

timecourse_4hr (C) QTOF
HPLC - HILIC 6, 6

timecourse_24hr (C) QTOF
HPLC - HILIC 6, 6

MTBLS2_rep1 (M) QTOF
UPLC - reverse phase 4, 4

MTBLS2_rep2 (M) QTOF
UPLC - reverse phase 4, 4

CAMERA_pos (M) QTOF
UPLC - reverse phase 3, 3

CAMERA_neg (M) QTOF
UPLC - reverse phase 3, 3

MTBLS103 (M) QTOF
UPLC - HILIC 14, 12

MTBLS213 (M) QTOF
UPLC - reverse phase 6, 6

MTBLS126 (M) Orbitrap
HPLC - HILIC 3, 3

Table 2.1: Characteristics of evaluation datasets. C = CAAT, M = Metabolights

residual standard deviation to avoid being influenced by changes in the log-

abundances between the two sample groups in the different experiments.

Figure 2.3 shows the distribution of differences in residual standard deviation

(XCMS or MZmine2 minus bakedpi) for each dataset. Values greater than

zero indicate that bakedpi has smaller variability than the other method. For

all datasets examined, more than half of the peaks detected by both methods

had lower variability when quantified by bakedpi; for some datasets it was

substantially higher.

2.2.4 Joint processing improves power in a differential anal-
ysis

We next sought to determine if the decrease in residual standard deviation

of the peak quantifications leads to increased power in a differential analysis.

We used the limma (Smyth, 2004) differential analysis pipeline as it has been

10
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Figure 2.3: Variability comparison of peak quantifications. (a) For peaks that are
detected both by bakedpi and XCMS, the distribution of the differences in residual
standard deviation for all datasets are shown as violin plots. Each violin is a mirrored
density plot; the median is indicated by a horizontal red line. (b) Like (a) but for
MZmine. For all datasets, the majority of peaks detected by both methods have
quantifications that are less variable when quantified with bakedpi.

shown to provide robust and powerful inference for proteomics data (Kam-

mers et al., 2015). This method was originally developed to analyze microar-

ray expression studies and uses empirical Bayes techniques to shrink feature

(adduct)-wise variances towards a common underlying value to provide more

stable inference. The resulting p-value distributions for the shared peaks in

the timecourse_4hr dataset are shown in Figure 2.4a (additional datasets in

Supplementary Figure S4). For the majority of the datasets, bakedpi has a p-

value distribution that is more peaked around zero than XCMS and MZmine2,

indicating that bakedpi detects more significant peaks among the overlapping

peaks. When comparing with XCMS, the timecourse_24hr dataset is the only
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one in which XCMS has a taller peak arount zero. When comparing with

MZmine2, only for the CAMERA_pos dataset does MZmine2 have a taller

peak around zero.

Higher detection rates alone do not necessarily indicate an increase in

power. To assess power, we also evaluated the type I error control of the

methods. We performed a permutation experiment in which we shuffled

the sample group labels so that each of the new comparison groups were

composed half of cases and half of controls. For example, in an experiment

with eight cases and eight controls, the new permuted “case” group would

include four true cases and four true controls, as would the new permuted

“control” group. In this way, we created null datasets in which no abundance

differences are expected. With datasets containing a sufficient number of

samples, we performed 1000 permutations. Otherwise we enumerated all

permutations satisfying the balancing characteristic just described. We again

used limma to perform differential testing. Results of the permutation ex-

periment for the timecourse_4hr dataset are shown in Figure 2.4c (additional

datasets in Supplementary Figure S5). For a range of nominal type I error

rates, we computed the median observed error rate over all permutations.

For all ten datasets, all methods are quite conservative, showing a markedly

lower error rate than the nominal value for the entire range. For most of

the datasets, bakedpi is the most conservative of the three methods. The

combination of more conservative type I error control and a higher detection

rate indicates that bakedpi has higher power to detect differences than the

sample-by-sample processing procedures of XCMS and MZmine2.
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Figure 2.4: Comparison of differential analysis quality and type I error control in
the timecourse_4hr dataset. (a) Distribution of p-values for peaks detected by both
bakedpi and XCMS, (b) Like (a) but for MZmine, (c) Median error rate over null
permutations as a function of the nominal error rate.

2.2.5 Retention time alignment

It is well established that RT deviations between experimental runs can com-

plicate the matching of peaks across samples. We investigated the impact

of correcting RT drift on the variability improvements of our method using

multiple strategies. First, we used the RT warping function computed by

XCMS to align the raw data before computing the density estimate. Second,

we computed local sample-specific RT shifts that maximized the correlation

of the chromatograms between samples and used these shifts to align the

raw data. Third, we used correlation-optimal shifts to align peaks already

detected from the density estimate before quantification. None of these RT

alignment strategies had a large impact on the variability of detected features.

The proportion of peaks detected by both bakedpi and XCMS or MZmine2

that had lower variability with bakedpi did not change appreciably with these

RT corrections (Supplementary Figure S6).
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2.2.6 Parameter choices

Because the detection of peaks and their bounds depend on the cutoff applied

to the density estimate, it is important to investigate the sensitivity of method

performance to this cutoff. We performed a sensitivity analysis by varying

the density cutoff and examining the p-value distribution resulting from the

detected peaks (Supplementary Figures S7 and S8). Raising the cutoff to be

more stringent or lowering the cutoff to be more inclusive generally does not

have a substantial impact on the global pattern of inference as assessed by

p-value distributions.

2.2.7 Method-specific peaks

There are a number of peaks that are detected only by one method (Supple-

mentary Figure S3). As comprehensive gold standard information on the

true peaks corresponding to compounds was not available, we examined the

characteristics of these method-specific peaks to assess their quality (Supple-

mentary Figures S9-S12). For more than half of the datasets, XCMS-specific

peaks tend to have more extreme t-statistics and lower p-values. For half

the datasets, MZmine2 peaks have higher p-values than bakedpi. For nearly

all datasets, bakedpi-specific peaks have greater peak heights than XCMS-

and MZmine2-specific peaks with comparable peak widths. Peaks specific

to bakedpi are also more likely to be supported by all samples in the experi-

ment. The last two observations are sensible given that bakedpi relies on an

intensity-weighted density estimation; a peak is more likely to be detected

when a large number of high-intensity points are close together. Based on
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observations about t-statistics and p-values, it is not clear that one of the

two sets of methods-specific peaks is best. If peaks with greater heights or

greater numbers of samples supporting them are more likely to be of scientific

interest, then bakedpi-specific peaks seem to be of higher quality than XCMS-

or MZmine2-specific peaks. Given the lack of gold standard data on peak

identities, evaluation of method-specific peaks is less clear than evaluation

of peaks common to multiple methods. On peaks common to both bakedpi

and MZmine2 or XCMS, bakedpi shows a clear reduction in quantification

variability and an increase in statistical power.

2.3 Conclusions

We have proposed a method for the joint processing of metabolomics data

across samples, which reduces variability in peak quantification across sam-

ples, leading to increased power in a differential analysis. We take the position

that the most important task in metabolomics is the identification of differ-

entially abundant peaks, in contrast to eg. identifying all peaks in a sample.

Our method compares favorably to XCMS and MZmine2 across ten datasets,

and will be useful for drawing better and more substantiated inferences from

untargeted metabolomics studies. We do note that the commercial software

Progenesis CoMet also uses the idea of pooling samples into a metasample

for processing. However, details on CoMet method are not available, making

it impossible to comment further on differences between the two approaches.

A limitation of our approach is that peaks that are only truly present in a

small fraction of the samples are unlikely to be detected. Such metabolites
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may be of interest, but are by definition less well supported by the observed

data. In developing bakedpi, we have chosen to focus on peaks with sufficient

information across all samples and on obtaining for those peaks the best

quality quantifications for the purposes of differential analysis.

It is important to note that the benefit of our method is dependent on

using peak areas for quantification rather than peak height. As we show,

the variability in quantification of a particular peak across samples is driven

entirely by the variability in peak width. If peak height is used instead of peak

area, our method will show the same quantification as XCMS and MZMine2,

provided the sample-specific RT bounds contain the mode of the peak; this is

true for two of our three examples.

In our evaluation of bakedpi, we have used both centroid-mode and profile-

mode datasets with fairly stable chromatography. The RT drift we observe in

these datasets is not so large that corresponding peaks from different samples

do not overlap. However, stable chromatography is not required for bakedpi

to work because we do implement RT alignment procedures. Our evaluation

datasets also come from mass spectrometers with a range of mass accuracies

from 5 ppm on Q-TOF instruments to less than 1 ppm on the Orbitrap, so

bakedpi is able to handle data from a representative range of instruments. We

expect lower mass accuracy to make peak merging more likely and to cause

peak m/z bounds to be wider than necessary, but this is mostly a feature of

low mass accuracy in general. Currently, our method is implemented as the

standalone yamss package as part of the Bioconductor project.
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2.4 Methods

2.4.1 Data

Also see Table 2.1.

ASD_hirisk: Prenatal serum samples from 40 mothers participating in the

EARLI study whose infants had the highest (n=20) and lowest (n=20) Autism

Observation Scale for Infants (AOSI) at the time of experiment (Newschaffer

et al., 2012).

timecourse_4h, timecourse_24hr: Six MCF-7 cell line samples exposed to

estradiol (E2) and six control samples unexposed to E2 for up to 72 hours

(Kleensang et al., 2016).

MTBLS2: Four wild-type and four cyp79b2 cyp79b3 knockout Arabidopsis

thaliana leaves exposed to silver nitrate (Böttcher et al., 2009; Neumann, Thum,

and Böttcher, 2012).

CAMERA: Spike-ins of 39 known compounds at varying concentrations

on methanolic extracts of Arabidopsis thaliana leaves (Kuhl et al., 2012). Three

samples with a spike-in concentration of 20 µM were compared to three

samples with a spike-in concentration of 5 µM in both positive and negative

ion mode.

MTBLS103: Serum profiling of 12 adolescent girls with hyperinsulinaemic

androgen excess and 14 healthy controls matched on age, weight, and ethnicity

(Samino et al., 2015).

MTBLS213: Human retinal pigment epithelium cell line (ARPE-19)

batches grown labeled and unlabeled glucose media (Capellades et al., 2016).
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MTBLS126: Liver concentrations of resveratrol (RESV) metabolites after

application of a mixture of RESV in hydrophilic ointment to mouse skin (3

samples) compared to liver concentrations of resveratrol (RESV) metabolites

after application of hydrophilic ointment without RESV to mouse skin (3

samples) (Murakami et al., 2014).

2.4.2 Processing with XCMS and MZmine2

XCMS parameters were optimized using the IPO package available on Bio-

conductor (Libiseller et al., 2015) using recommended starting values for

most datasets. Because optimization for the MTBLS2 and MTBLS213 datasets

required significant computational time (we terminated the optimization af-

ter 11 days), we either fixed parameters that could be reasonably inferred

beforehand (such as ppm) or set a smaller range of values over which to

optimize. MZmine2 parameters were set based on optimized XCMS param-

eters where possible. In particular, the “prefilter”, “mzdiff”, minimum and

maximum peakwidth, and ppm parameters from XCMS had near equivalents

in MZmine2 parameters. For XCMS, we used the “centWave” algorithm (Taut-

enhahn, Böttcher, and Neumann, 2008) for the nine centroid-mode datasets

and the “matchedFilter” algorithm (Smith et al., 2006) for the profile-mode

MTBLS126 dataset. We used the density method for peak grouping, the obi-

warp method for retention time alignment, and the fillPeaks method to fill in

information for peaks missing from certain samples. For MZmine2, we used

the GridMass module for peak detection (Treviño et al., 2015), the join aligner

for retention time alignment, and the same-range gap filler module. Details
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on optimization and parameter settings for XCMS and MZmine2 are provided

in the Supplemental Information.

2.4.3 Processing workflow

Our processing procedure consists of three steps. First is background cor-

rection which increases the signal to noise ratio of true peaks. Second is RT

alignment which aligns the raw data to correct for drifts in compound elution

times between samples; this is optional. Third is density estimation to detect

peaks.

2.4.4 Background correction

Background correction is performed on each sample separately. We divide

the m/z-RT space into bins and estimate background separately for each bin;

this is arbitrarily done for bins of width 10 m/z units and 40 scans in the RT

domain. We observe that each grid region exhibits a multi-modal intensity

distribution with 2 or more modes (Supplementary Figure S13), and reason

that the lowest mode is background. We estimate the location of the mode

with the first peak of the kernel density estimate of the intensity distribution

and subtract this value from all observations in the grid region.

2.4.5 Retention time alignment

We investigated two RT alignment procedures that could be applied to the

raw data before peak detection and one procedure that could be applied after
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peak detection. The first pre-peak detection approach was to use the sample-

specific corrected RTs reported by XCMS to define a RT warping function

that could be applied to the raw data to yield aligned RTs. In the second

approach, we found tentative m/z regions containing peaks using univariate

kernel density estimation and computed EICs in these regions for all samples.

For each region and sample, we then found the shift that would maximize

the correlation between the EICs in each sample and a reference sample (the

sample with the largest area beneath the EIC). These local and sample-specific

shifts were applied to the raw data to yield aligned RTs. We also investigated

a correction procedure that could be applied to peaks that had already been

detected. For each detected peak, we computed the sample-specific shifts

that would maximize the correlation between the EICs in each sample and a

reference sample (the sample with the largest area beneath the EIC). We then

recomputed the peak quantifications using the original RT bounds and shifted

EICs.

2.4.6 Bivariate density estimation

To detect peaks, we pool all samples into a single metasample by concatenating

the spectral information from all of the samples. For example, the spectral

information for the first scan of the metasample is formed by concatenating

the first scan’s spectral information from the individual samples. We use this

metasample to estimate a two-dimensional density in the m/z-RT space. We

represent the input data as a set of datapoints (Mj, Tj, Ij) where Mj is the mass

over charge (m/z) of the j’th datapoint (all samples are pooled), Tj is the scan
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number (RT in seconds divided by number of scans per second) and Ij is the

intensity. Per sample, T typically has up to a few thousand unique values

depending on the scan rate of the mass spectrometer and the duration of the

experiment, and M has on the order of one hundred observations per scan in

centroid-mode data and several hundred in profile-mode data. Thus the data

consists of tens of thousands of datapoints such triples for each sample.

The bivariate intensity-weighted density estimator using a Gaussian kernel

at a point (m, t) in m/z-RT space is given by

f̂ (m, t) =
1

hMhT ∑n
j=1 Ij

n

∑
j=1

Ijϕ2

(
m − Mj

hM
,

t − Tj

hT

)
where j = 1, . . . , n indexes the n datapoints, hM and hT are the bandwidths

in m/z and RT space respectively, and ϕ2 is a bivariate Gaussian density. The

density estimate is not highly sensitive to the RT bandwidth, and a default of

bandwidth of 10 scans is recommended. The m/z bandwidth should be set

based on the type of mass spectrometer used and is recommended to be 0.005

for TOF and 0.002 for Orbitrap instruments. Because the density estimate

involves a sum over all n datapoints at each value of (m, t), we use various

approaches to make this computationally tractable. First, we use a diagonal

covariance matrix for the bivariate kernel; this implies the factorization

ϕ2

(
m − Mj

hM
,

t − Tj

hT

)
= ϕ1

(
m − Mj

hM

)
ϕ1

(
t − Tj

hT

)
We do this because our focus is on identifying regions of interest rather than

on highly exact estimation of the density (Duong, 2007). Second, we use a

simple binning strategy (Wand, 1994) where the m/z-RT space is binned and
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a single representative value for each bin is chosen. In the RT domain, the

default bin width is 1 scan, and in the m/z domain the default bin width is

set to be equal to the bandwidth (0.005 for TOF and 0.002 for Orbitrap). Third,

we use a Gaussian kernel truncated at ±3, effectively only including points

close to (m, t) in the summation (Wand, 1994). Fourth, in our implementation,

we make use of sparse linear algebra as well as efficient data structures for

selecting points close to (m, t) as implemented in the data.table package

(Dowle et al., 2015).

After obtaining the density estimate, we select a cutoff using information

from the strongest (most intense) features in the data. The m/z domain is

divided into bins of a default width of 2 m/z. Within each bin, the most

intense data point is selected. We assume that this data point belongs to a true

feature and use local univariate density estimation in the m/z and RT domains

to define a m/z and RT window for this feature. We compute quantiles of

the density estimate values in these regions and compute the mode of this

quantile distribution for various quantile values. For example, we compute

the 99th percentile for each of the approximately 500 strong feature regions

and compute the mode of this distribution. We repeat this for a wide range of

percentiles. We then order these modes and select the first mode substantially

different from zero as a cutoff. To ensure reasonable peak bounds, we enforce

that this cutoff should be greater than or equal to the 99th percentile of nonzero

density values. Applying the cutoff to the density estimate matrix yields a

binary matrix that denotes peak and non-peak regions. In order to obtain

m/z and RT bounds for these peak regions, we use a connected components
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labeling algorithm (Pau et al., 2010).

2.4.7 Software availability

Our method is implemented in the yamss package, available from the Biocon-

ductor project at https://www.bioconductor.org/packages/yamss.
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2.5 Supplemental Information

2.5.1 Supplementary Methods

2.5.1.1 XCMS parameters

Data available in centroid mode was processed with the xcmsSet command

with the “centWave” method. Profile mode data was processed with the

“matchedFilter” method. Parameter optimization was performed with the IPO

package availabe on Bioconductor. Optimization was performed on a subset of

two samples for each dataset. These two samples were chosen to be the one in

each sample group that had the largest total intensity (integrated area beneath

the total ion chromatogram) because these were expected to have the richest

set of peak information. In most cases we used the default starting parameters

for the optimizations (obtained with the getDefaultXcmsSetStartingParams

and getDefaultRetGroupStartingParams functions). The signal-to-noise

threshold value is not optimized by default, but we optimized it by setting

the starting parameters with

snthresh = c(3,8)

We also optimized the prefilter values with the following starting parameters

prefilter = c(2,3)

prefilter_value = c(200,300)

We used the default starting parameters for retention time alignment and

grouping optimization with the exception of the MTBLS2 and MTBLS213

datasets.
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Due to optimization running times in excess of 11 days, we modified the

starting parameters for the two MTBLS2 datasets as follows to match the

parameters given in the original paper.

min_peakwidth = c(5,12)

max_peakwidth = c(12,35)

prefilter = 3

prefilter_value = 200

snthresh = 5

ppm = 25

minfrac = 0.75

For the same reason, we modified the starting parameters for the MTBLS213

dataset as follows to match the parameters given in the original paper.

min_peakwidth = c(5,12)

max_peakwidth = c(20,35)

ppm = 30

minfrac = 0.5

After obtaining optimized parameters, we ran the xcmsSet command

followed by group using the “density” method, retcor with the “obiwarp”

method, and finally fillPeaks.

2.5.1.2 MZmine2 parameters

We ran MZmine2 version 2.21 with the GridMass - 2D peak detection pro-

cedure, the join aligner for retention time alignment and grouping, and the
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same-range gap filler module. To the best of our knowledge, there is no auto-

mated method for obtaining optimized MZmine parameters, so we translated

optimized XCMS parameters to MZmine parameters as follows.

GridMass peak detection

• Minimum height: use optimized prefilter value from XCMS

• M/Z Tolerance: use optimized mzdiff from XCMS unless negative. If

negative, use 100*optimized XCMS ppm/1e6.

• Min-max width time (in minutes): use optimized minimum and maxi-

mum peak width from XCMS multiplied by 60 to convert to minutes

• Smoothing M/Z: use 0.5*M/Z tolerance as this parameters is recom-

mended to be smaller than the m/z tolerance

• Intensity similarity ratio: the default 0.5 was used

• Ignore times: the default of no times ignored was used

Join aligner

• m/z tolerance: We used 0.005 m/z for the absolute tolerance and the

optimized XCMS ppm for the ppm tolerance.

• RT tolerance: We used the maximum peak width from XCMS

• Weight for M/Z and RT: We set these both to 1

Same-range gap filler

26



• m/z tolerance: We used 0.005 m/z for the absolute tolerance and the

optimized XCMS ppm for the ppm tolerance.
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2.5.2 Supplementary Figures
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Supplementary Figure S1: Problems with XCMS and MZmine2 processing. Like
Figure 1, but from the ASD_hirisk dataset. (a) The m/z-RT space surrounding this
peak in a single sample, color is used to indicate intensity (red is high). (b) Over-
laid extracted ion chromatograms from all 40 samples in the experiment. Different
colors denote different samples. (c) The peak bounds for all samples for XCMS
(blue), MZmine2 (purple) and bakedpi (orange; all samples have same bounds).
This experiment compares two groups of samples indicated with different color
shades. (d) XCMS peak quantification vs. peak width. (e) Like (d) but for MZmine.
(f) Distribution of peak quantifications, based on the peak bounds in (c). Substan-
tial heterogeneity in the sample-specific bounds leads to excess variability in the
quantifications; this is addressed by using the same RT bound for all samples.
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Supplementary Figure S2: Problems with XCMS and MZmine2 processing. As
Supplemental Figure S1, depicting an example from the timecourse_4hr dataset.
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Supplementary Figure S3: Number of peaks called and overlap between methods.
(a) The peaks detected by bakedpi are split into two groups: those that are only
detected by bakedpi and those that are also detected by XCMS (orange and black
circles). XCMS peaks are split similarly (blue and black triangles). (b) The number
of peaks detected by bakedpi and XCMS. (c), (d) Like (a), (b) but for the bakedpi-
MZmine2 comparison. In most datasets, bakedpi and the comparison method detect
a similar number of peaks, a large percentage of which are found by both methods.
Still for nearly all datasets, there is a sizable number of peaks which are only detected
by one method.
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Supplementary Figure S4: Comparison of differential analysis quality in peaks
detected by both bakedpi and either XCMS or MZmine2. The limma package was
used to perform differential abundance analysis on quantifications from bakedpi and
XCMS. Shown here are the distributions of the moderated t-statistics and associated
p-values for the peaks detected by both bakedpi and XCMS (solid lines) and for the
peaks detected by both bakedpi and MZmine2 (dotted lines).
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Supplementary Figure S5: bakedpi has more conservative type I error control than
XCMS and MZmine2. For each dataset, sample labels were permuted to create null
comparisons in which the new permuted groups both had an equal mix of original
case and control samples. The median error rate over these null permutations is
shown as a function of the nominal error rate. For all datasets, both bakedpi and
XCMS are conservative, and for most datasets, bakedpi is as or more conservative
than XCMS and MZmine2.
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Supplementary Figure S6: Impact of RT alignment. (a) Percentage of peaks over-
lapping between bakedpi and MZmine2 for which quantification variability is higher
in MZmine2 for various RT alignment strategies. (b) Like (a) but for XCMS.
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Supplementary Figure S7: Sensitivity of results to density cutoff. (a) Number
of peaks detected by bakedpi as a function of the density cutoff. (b) The p-value
distributions corresponding to the range of cutoffs. Shown in red is the cutoff actually
picked by bakedpi. Shown in green and purple are slightly lower and slightly higher
cutoffs.
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Supplementary Figure S8: Sensitivity of results to density cutoff. As Supplemental
Figure S7, but for 5 additional datasets.
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Supplementary Figure S9: Characteristics of peaks that are detected only by one
method: bakedpi-XCMS comparison. Columns 1-4 show, respectively, the distri-
bution of t-statistics, p-values, intensity ranges (log2), and number of samples rep-
resented for peaks detected only by bakedpi (orange) and only detected by XCMS
(blue). The intensity range within a peak is a measure of peak height and is shown as
a function of peak width.
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Supplementary Figure S10: Characteristics of peaks that are detected only by one
method: bakedpi-XCMS comparison. As Supplementary Figure S9, but for 5 addi-
tional datasets.
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Supplementary Figure S11: Characteristics of peaks that are detected only by one
method: bakedpi-MZmine2 comparison. As with the bakedpi-XCMS comparisons
(Supplementary Figures S9 and S10), with the first 5 datasets.
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Supplementary Figure S12: Characteristics of peaks that are detected only by one
method: bakedpi-MZmine2 comparison. As Supplementary Figure S11, but for 5
additional datasets.
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Supplementary Figure S13: Region-specific intensity distributions. Each plot de-
picts the intensity distribution over a single grid region in the m/z-RT space, for the
ASD_hirisk dataset. Each line corresponds to a single sample.
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Chapter 3

Massively parallel reporter assays

3.1 Introduction

Noncoding regions in the human genome represent the overwhelming major-

ity of genomic sequence, but their function remains largely uncharacterized.

Better understanding of the functional consequences of these regions has the

potential to greatly enrich our understanding of biology. It is well understood

that some noncoding regions are regulatory in nature. It has been straightfor-

ward to experimentally test the regulatory ability of a given DNA sequence

with standard reporter assays, but these assays are low throughout and do not

scale to the testing of large numbers of sequences. Massively parallel reporter

assays (MPRA) have emerged as a high-throughput means of measuring the

ability of sequences to drive expression (White, 2015; Melnikov et al., 2014).

These assays build on the traditional reporter assay framework by coupling

each putative regulatory sequence with several short DNA tags, or barcodes,

that are incorporated into the RNA output. These tags are counted in the

RNA reads and the input DNA, and the resulting counts are used to quantify
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the activity of a given putative regulatory sequence, typically involving the

ratio of RNA counts to DNA counts (Figure 3.1). The applications of MPRA

have been diverse, and there have been correspondingly diverse and ad hoc

methods used in statistical analysis. There are three broad categories of MPRA

applications: characterization studies, saturation mutagenesis, and differential

analysis.

Characterization studies examine thousands of different putative regula-

tory elements that have a wide variety of sequence features and try to correlate

these sequence features with measured activity levels (Grossman et al., 2017;

Guo et al., 2017; Safra et al., 2017; Levo et al., 2017; Maricque, Dougherty, and

Cohen, 2017; Groff et al., 2016; Ernst et al., 2016; White et al., 2016; Ferreira

et al., 2016; Fiore and Cohen, 2016; Farley et al., 2015; Kamps-Hughes et al.,

2015; Dickel et al., 2014; Kwasnieski et al., 2014; Mogno, Kwasnieski, and

Cohen, 2013; Gisselbrecht et al., 2013; White et al., 2013; Smith et al., 2013).

Typical statistical analyses use regression to study the impact of multiple

features simultaneously. They also compare continuous activity measures

or categorized (high/low) activity measures across groups using paired and

unpaired t-, rank, Fisher’s exact, and chi-squared tests.

Saturation mutagenesis studies look at only a few established enhancers

and examine the impact on activity of every possible mutation at each base as

well as interactions between these mutations (Patwardhan et al., 2009; Mel-

nikov et al., 2012; Patwardhan et al., 2012; Kwasnieski et al., 2012; Kheradpour

et al., 2013; Birnbaum et al., 2014; Zhao et al., 2014). Analyses have uniformly

used linear regression where each position in the enhancer sequence is a
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predictor.

Differential analysis studies look at thousands of different elements, each

of which has two or more versions. Versions can correspond to allelic versions

of a sequence (Ulirsch et al., 2016; Tewhey et al., 2016; Vockley et al., 2015)

or different environmental contexts (Inoue et al., 2017), such as different cell

or tissue types (Shen et al., 2016). These studies have compared different

sequence versions using paired t-tests, rank sum tests, and Fisher’s exact test

(by pooling counts over biological replicates).

Despite the increasing popularity of this assay, guiding principles for sta-

tistical analysis have not been put forth. Researchers use a large variety of ad

hoc methods for analysis. For example, there has been considerable diversity

in the earlier stages of summarization of information over barcodes. Barcodes

are viewed as technical replicates of the regulatory element sequences, and

groups have considered numerous methods for summarizing barcode-level

information into one activity measure per enhancer. On top of this, a large

variety of statistical tests are used to make comparisons.

Recently, a method called QuASAR-MPRA was developed to identify

regulatory sequences that have allele-specific activity (Kalita et al., 2017). This

method uses a beta-binomial model to model RNA counts as a function of

DNA counts, and it provides a means for identifying sequences that show

a significant difference in regulatory activity between two alleles. While it

provides a framework for two group differential analysis within MPRAs,

QuASAR-MPRA is limited in this regard because experiments might have

several conditions and involve arbitrary comparisons.
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To our knowledge, no method has been developed that provides tools for

general purpose differential analysis of activity measures from MPRA. General

purpose methods are ones that can flexibly analyze data from a range of study

designs. We present mpralm, a method for testing for differential activity in

MPRA experiments. Our method uses linear models as opposed to count-

based models to identify differential activity. This approach provides desired

analytic flexibility for more complicated experimental designs that necessitate

more complex models. It also builds on an established method that has a solid

theoretical and computational framework (Law et al., 2014). We show that

mpralm can be applied to a wide variety of MPRA datasets and has good

statistical properties related to type I error control and power. Furthermore,

we examine proper techniques for combining information over barcodes and

provide guidelines for choosing sample sizes and sequencing depth when

considering power. Our method is open source and freely available in the

mpra package for R on the Bioconductor repository: https://bioconductor.

org/packages/mpra.

3.2 Results

3.2.1 The structure of MPRA data and experiments

MPRA data consists of measuring the activity of some putative regulatory

sequences, henceforth referred to as “elements”. First a plasmid library of

oligos is constructed, where each element is coupled with a number of short

DNA tags, or barcodes. This plasmid library is then transfected into one

or more cellular contexts, either as free-floating plasmids or integrated into
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the genome (Inoue et al., 2017). Next, RNA output is measured using RNA

sequencing, and DNA output as a proxy for element copy number is measured

using DNA sequencing (occasionally, element copy number is unmeasured),

giving the data structure shown in Figure 3.1. The log-ratio of RNA to DNA

counts is commonly used as an activity outcome measure.

Since each element is measured across a number of barcodes, it is useful to

summarize this data into a single activity measure a for a single element in a

single sample. Multiple approaches have been proposed for this summariza-

tion step. We consider two approaches. First is averaging, where a log-ratio

is computed for each barcode, then averaged across barcodes. This treats the

different barcodes as technical replicates. The second approach is aggregation,

where RNA and DNA counts are each summed across barcodes, followed by

formation of a log-ratio. This approach effectively uses the barcodes to simply

increase the sequencing counts for that element.

In our investigation of the characteristics of MPRA data we use a number

of datasets listed in Table 3.1. We have divided them into 3 categories. Two

categories are focused on differential analysis: one on comparing different

alleles and one on comparing the same element in different conditions (retina

vs. cortex and episomal vs. chromosomal integration). The two allelic studies

naturally involve paired comparisons in that the two elements being compared

are always measured together in a single sample (which is replicated). We

also use two saturation mutagenesis experiments.
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3.2.2 The variability of MPRA data depends on element copy
number

It is well established that count data from RNA sequencing studies exhibit a

mean-variance relationship (McCarthy, Chen, and Smyth, 2012). On the log

scale, low counts are more variable across replicates than high counts, at least

partly due to inherent Poisson variation in the sequencing process (Marioni

et al., 2008; Bullard et al., 2010). This relationship has been leveraged in both

count-based analysis methods (Robinson, McCarthy, and Smyth, 2010; Love,

Huber, and Anders, 2014) and, more recently, linear model-based methods

(Law et al., 2014). For count-based methods, this mean-variance relationship

helps improve dispersion estimates, and for linear model-based methods, the

relationship allows for estimation of weights reflecting inherent differences in

variability for count observations in different samples and genes.

Because MPRAs are fundamentally sequencing assays, it is useful to know

whether similar variance relationships hold in these experiments. Due to the

construction of MPRA libraries, each element is present in a different (random)

copy number, and this copy number ought to impact both background and sig-

nal measurements from the element. We are therefore specifically interested in

the functional relationship between element copy number and the variability

of the activity outcome measure. As outcome measure we use the log-ratio

of RNA counts to DNA counts (aggregate estimator), and we use aggregated

DNA counts, averaged across samples, as an estimate of DNA copy num-

ber. We compute empirical standard deviations of the library size-corrected

outcome measure across samples. In Figure 3.2 we depict this relationship
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across the previously discussed publicly available datasets (Table 3.1). For

all datasets, with one exception, there is higher variation associated with

lower copy number. The functional form is reminiscent of the mean-variance

relationship in RNA sequencing data (Law et al., 2014), despite that we here

show variance of a log-ratio of sequencing counts.

3.2.3 Statistical modeling of MPRA data

To model MPRA data we propose to use a simple variant of the voom method-

ology (Law et al., 2014), proposed for analysis of RNA sequencing data. This

methodology is based on standard linear models, which are coupled with

inverse variance weights representing the mean-variance relationship inher-

ent in RNA sequencing data. The weights are derived from smoothing an

empirical mean-variance plot. Similar to voom, we propose to use linear

models to model log-ratio activity data from MPRAs, but we estimate weights

by smoothing the relationship between empirical variance of the log-ratios

and log-DNA copy number, as depicted in Figure 3.2. This approach has a

number of advantages. (1) It is flexible to different functional forms of the

variance-copy number relationship. (2) It allows for a unified approach to

modeling many different types of MPRA design using the power of design

matrices. (3) It allows for borrowing of information across elements using

empirical Bayes techniques. (4) It allows for different levels of correlation

between elements using random effects. We call this approach mpralm.

The current literature on analysis of MPRA experiments contains many

variant methods (see Introduction). To evaluate mpralm, we compare the
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method to the following variants used in the literature: QuASAR-MPRA, t-

tests, and Fisher’s exact test. QuASAR-MPRA is a recently developed method

that is targeted for the differential analysis of MPRA data (Kalita et al., 2017). It

specifically addresses a two group differential analysis where the two groups

are elements with two alleles and uses base-calling error rate in the model

formulation. It collapses count information across samples to create three

pieces of information for each element: one count for RNA reads for the

reference allele, one count for RNA reads for the alternate allele, and one

proportion that gives the fraction of DNA reads corresponding to the reference

allele. Fisher’s exact test similarly collapses count information across samples.

To test for differential activity, a 2-by-G table is formed with RNA and DNA

designation forming one dimension and condition designation (with G groups)

in the second dimension. The t-test operates on the log ratio outcomes directly;

we use the aggregate estimator to summarize over barcodes. Either a paired

or unpaired t-test is used based on experimental design.

Both edgeR and DESeq2 are popular methods for analysis of RNA-

sequencing data represented as counts. The two methods are both built

on negative binomial models, and both attempt to borrow information across

genes. These methods allow for the inclusion of an offset. Because both meth-

ods use a logarithmic link function, including log-DNA as an offset allows for

the modeling of log-ratios of RNA to DNA. This makes these methods readily

applicable to the analysis of MPRA data, and they carry many of the same

advantages as mpralm. In addition to QuASAR, t-tests, and Fisher’s exact test,

we examine the performance of edgeR and DESeq2 for differential activity
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analysis in our evaluations.

3.2.4 Simulations shed light on permutation strategies for as-
sessing error rates

Because comparison of type I error rates forms an important part of our

methods evaluation (next section), we first present simulation study results

regarding the accuracy of permutation procedures for estimating type I error

rates. These procedures consist of creating curated null permutations in which

the comparison groups are composed of half of the samples from the two

original groups. The error rate at different nominal levels is estimated with

the median error rate over permutations.

Figure 3.3 shows how permutation-estimated error rates compare to true

type I error rates in a simulation setting with increasing prevalence of dif-

ferential activity. For all methods we show error estimates resulting from

permuting the raw data. For mpralm and the t-test, which operate on the

continuous log-ratios, we explore the permutation of residuals proposed in

Jiang (2017). We uniformly see that permuting residuals results in substantial

overestimation of the error for both methods. Permuting the raw data results

in accurate estimation of the error rates in most situations. For this reason, we

choose to estimate error rates in real datasets (Table 3.1) with raw data per-

mutations. We note, however, that permutation of the raw data consistently

results in overestimation of QuASAR’s error rates and underestimation of er-

ror rates for mpralm for 30% and 50% differential activity. The degree of over-

and underestimation increases with the proportion (p) of differential elements,

with the effect being more dramatic for QuASAR than for mpralm. We draw
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on these results when comparing method performance on real datasets in the

next section.

3.2.5 mpralm is a powerful method for differential analysis

First, we focus on evaluating the performance of mpralm for differential

analysis. We compare to QuASAR-MPRA, t-tests, Fisher’s exact test, edgeR,

and DESeq2. We use four of the previously discussed studies, specifically

the Tewhey, Inoue, Ulirsch, and Shen studies. Two of these studies (Tewhey,

Ulirsch) focus on comparing the activity of elements with two alleles, whereas

the other two (Inoue, Shen) compare the activity of each element in two

different conditions. For the allelic studies, we use a random effects model for

mpralm and paired t-tests. Both Tewhey et al. (2016) and Ulirsch et al. (2016)

compare alleles in different cellular contexts; we observe similar behavior of

all evaluations in all contexts (data not shown) and have therefore chosen to

depict results from one cellular context for both of these studies. For Tewhey

et al. (2016) we depict results both from a large pool of elements used for

initial screening and a smaller, targeted pool.

Figure 3.4 shows p-value distributions that result from running all methods.

Across these datasets, all methods except for QuASAR show a well-behaved

p-value distribution; high p-values appear uniformly distributed, and there

is a peak at low p-values. QuASAR-MPRA consistently shows conservative

p-value distributions. We were unable to run QuASAR-MPRA for the Shen

dataset. Fisher’s exact test has a very high peak around zero, likely due to the

extreme sensitivity of the test with high counts. We examine mpralm using
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both an average estimator and an aggregation estimator for summarizing

across barcodes; this cannot be done for the Tewhey dataset where we do not

have access to barcode-level data. To fully interpret these p-value distributions,

we need to assess error rates.

To estimate empirical type I error rates, we performed null permutations

as described in the previous section. Figure 3.5 shows estimated error rates

(median error rate over the permutations). We observe that Fisher’s exact test

has wildly inflated type I error, presumably because the data is overdispersed.

QuASAR-MPRA appears well calibrated across datasets, but these error rates

might be overestimated. mpralm, t-tests, edgeR, and DESeq2 control the type

I error rate but tend to be conservative.

To investigate the trade-off between observed power (number of rejected

tests) and type I error rates, we combine these quantities in two ways: (1) we

look at the number of rejections as a function of observed type I error rates

and (2) we look at estimated FDR as a function of the number of rejections.

In Figure 3.6 we display the number of rejections as a function of observed

type I error rates. In this display, we have essentially used the observed type

I error rate displayed in Figure 3.5 to calibrate the nominal alpha-level. For

a fixed error rate, we interpret a high number of rejections to suggest high

power. Both Fisher’s exact test and QuASAR-MPRA show poor performance.

Because our simulations suggest that the type I error rate of QuASAR can be

overestimated with permutations, we expect that it should have better perfor-

mance than depicted. However, given that its largest number of detections

(Figure 3.6 bottom row) is nearly always as low as the smallest number of
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detections from other methods, we expect that QuASAR still has poor perfor-

mance in this regard. Across these datasets, mpralm tends to have the best

performance, but edgeR and DESeq2 are competitive. Because our simulations

suggest an underestimation of the type I error rate for mpralm, we expect

these methods to be closely comparable for this metric.

If we know the proportion of true null hypotheses, π0, we can estimate

false discovery rates (FDR). This proportion is an unknown quantity, but we

estimate it using a method developed by Phipson (2013) and thereby compute

an estimated FDR. In Figure 3.7 the estimated FDR (for a given π0) is displayed

as a function of the number of rejections. QuASAR-MPRA, t-tests, and Fisher’s

exact test tend to have the highest false discovery rates. mpralm tends to have

the lowest FDRs. For the Inoue dataset, all methods except for QuASAR

have very low FDR, presumably because a very high fraction of elements are

expected to be differential given the extreme expected differences between the

comparison groups. For this metric, we again expect that QuASAR has better

performance than depicted due to error rate overestimation but not enough

to be comparable to the other methods. We also expect mpralm to be more

comparable to edgeR and DESeq2 given its error rate underestimation.

In conclusion, we observe that Fisher’s exact test has too high of an error

rate and that QuASAR-MPRA is underpowered; based on these results we

cannot recommend either method. T-tests perform better than these two

methods but are still outperformed by mpralm, edgeR, and DESeq2, which all

have similar performance.
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3.2.6 Comparison of element rankings between methods

While power and error calibration are important evaluation metrics for a

differential analysis method, they do not have a direct relation with element

rankings, which is often of practical importance. We observe fairly different

rankings between mpralm and the t-test and examine drivers of these differ-

ences in Figure 3.8. For each dataset, we find the MPRA elements that appear

in the top 200 elements with one method but not the other. We will call these

uniquely top ranking elements, and they make up 24% to 64% of the top 200

depending on dataset. For most datasets, DNA, RNA, and log-ratio activity

measures are higher in uniquely top ranking mpralm elements (top three

rows of Figure 3.8). It is desirable for top ranking elements to have higher

values for all three quantities because higher DNA levels increase confidence

in the activity measure estimation, and higher RNA and log-ratio values give

a stronger indication that a particular MPRA element has regulatory activity.

In the last two rows of Figure 3.8, we compare effect sizes and variability

measures (residual standard deviations). The t-test uniformly shows lower

variability but also lower effect sizes for its uniquely top ranking elements.

This follows experience from gene-expression studies where standard t-tests

tend to underestimate the variance and thereby exhibit t-statistics which are

too large, leading to false positives. In MPRA studies, as with most other

high-throughput studies, it is typically more useful to have elements with

high effect sizes at the top of the list. Such elements are able to picked out in

mpralm due to its information sharing and weighting framework.

We similarly compare mpralm rankings with edgeR and DESeq2 rankings
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in Figures 3.9 amd 3.10. The ranking concordance between mpralm and these

two methods is much higher than with the t-test. Generally, uniquely top

ranking mpralm elements have higher DNA and RNA levels, but lower log-

ratio activity measures. Uniquely top ranking mpralm elements also tend to

have larger effect sizes. The variability of activity measures (residual SD) is

similar among the methods.

3.2.7 mpralm enables modeling for complex comparisons

While many comparisons of interest in MPRA studies can be posed as a

two group comparison (e.g. major allele vs. minor allele), more complicated

experimental designs are also of interest. For example, in the allelic study

conducted by Ulirsch et al. (2016), putative biallelic enhancer sequences are

compared in two cellular contexts. The first is a standard culture of K562 cells,

and the second is a K562 culture that induces over-expression of GATA1 for

a more terminally-differentiated phenotype. A straightforward question is

whether an allele’s effect on enhancer activity differs between cellular contexts.

Let yeia be the enhancer activity measure (log ratio of RNA over DNA counts)

for element e, in sample i for allele a. Let x1eia be a binary indicator of the

mutant allele. Let x2eia be a binary indicator of the GATA1 over-expression

condition. Then the following model

Yeia = β0e + β1ex1eia + β2ex2eia + β3ex1eiax2eia + bi + ϵeia

is a linear mixed effects model for activity measures, where bi is a random

effect that induces correlation between the two alleles measured within the
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same sample. We can perform inference on the β3e parameters to determine

differential allelic effects. Such a model is easy to fit within the mpralm frame-

work, since our framework supports model specifications by general design

matrices. In contrast, this question cannot be formulated in the QuASAR,

t-test, and Fisher’s exact test frameworks. Neither edgeR nor DESeq2 support

the fitting of mixed effects models.

3.2.8 Accuracy of activity measures and power of differential
analysis depends on summarization technique over bar-
codes

MPRA data initially contain count information at the barcode level, but we

typically desire information summarized at the element level for the analysis

stage. We examine the theoretical properties of two summarization meth-

ods: averaging and aggregation. Under the assumption that DNA and RNA

counts follow a count distribution with a mean-variance relationship, we first

show that averaging results in activity estimates with more bias. Second, we

examine real data performance of these summarization techniques.

Let Rb and Db denote the RNA and DNA count, respectively, for barcode

b = 1, . . . , B for a putative regulatory element in a given sample. We sup-

press the dependency of these counts on sample and element. Typically, B

is approximately 10 to 15 (for examples, see Table 3.1). We assume that Rb

has mean µr and variance krµr and that Db has mean µd and variance kdµd.

Typically the constants kd and kr are greater than 1, modeling overdispersion.

Negative binomial models are a particular case with k = 1 + ϕµ, where ϕ is

an overdispersion parameter. Also let Nd and Nr indicate the library size for
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DNA and RNA, respectively, in a given sample. Let pd and pr indicate the

fraction of reads mapping to element e for DNA and RNA, respectively, in a

given sample so that µr = Nr pr and µd = Nd pd. Let a be the true activity mea-

sure for element e defined as a := log(pr/pd). When performing total count

normalization, the RNA and DNA counts are typically scaled to a common

library size L.

The average estimator of a is an average of barcode-specific log activity

measures:

âAV =
1
B

B

∑
b=1

log
(

RbL/Nr + 1
DbL/Nd + 1

)
Using a second order Taylor expansion (Methods), it can be shown that

this estimator has bias approximately equal to

biasAV ≈ 1
2

(
kd
µd

− kr

µr

)
=

1
2

(
kd

Nd pd
− kr

Nr pr

)
The aggregate estimator of a first aggregates counts over barcodes:

âAGG = log

(
1 + (L/Nr)∑B

b=1 Rb

1 + (L/Nd)∑B
b=1 Db

)
Using an analogous Taylor series argument, we can show that this estima-

tor has bias approximately equal to

biasAGG ≈ 1
B

biasAV
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The aggregate estimator has considerably less bias than the average es-

timator for most MPRA experiments because most experiments use at least

10 barcodes per element. Bias magnitude depends on count levels and the

true activity measure a. Further, the direction of bias depends on the relative

variability of RNA and DNA counts. Similar Taylor series arguments show

that the variance of the two estimators is approximately the same.

The choice of estimator can impact the estimated log fold-changes (changes

in activity) in a differential analysis. In Figure 3.11 we compare the log fold-

changes inferred using the two different estimators. For the Inoue dataset,

these effect sizes are very similar, but there are larger differences for the Ulirsch

and Shen datasets.

Aggregation technique affects power in a differential analysis. In the last

three columns of Figures 3.4, 3.5, 3.6, and 3.7, we compare aggregation to

averaging using mpralm. The two estimators have similar type I error rates

but very different detection rates between datasets. The average estimator is

more favorable for the Ulirsch and Shen datasets, and the aggregate estimator

is more favorable in the Inoue dataset.

3.2.9 Recommendations for sequencing depth and sample
size

To aid in the design of future MPRA experiments, we used the above mathe-

matical model to inform power calculations. Power curves are displayed in

Figure 3.12. We observe that the variance of the aggregate estimator depends

minimally on the true unknown activity measure but is greatly impacted by
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sequencing depth. We fix one of the two true activity measures to be 0.8 as

this is common in many datasets. We use a nominal type I error rate of 0.05

that has been Bonferroni adjusted for 5000 tests to obtain conservative power

estimates. We also use ten barcodes per element as this is typical of many

studies.

Our model suggests different impacts of sample size, and a marked impact

of increasing the number of replicates, especially between 2 and 6 samples.

From Figure 3.13, we can see that large effect sizes (effect sizes of 1 or greater)

are typical for top ranking elements in many MPRA studies. In this situation

it is advisable to do 4 or more replicates per group.

3.3 Discussion

The field of MPRA data analysis has been fragmented and consists of a large

collection of study-specific ad hoc methods. Our objective in this work has

been to provide a unified framework for the analysis of MPRA data. Our

contributions can be divided into three areas. First, we have investigated

techniques for summarizing information over barcodes. In the literature,

these choices have always been made without justification and have varied

considerably between studies. Second, we have developed a linear model

framework, mpralm, for powerful and flexible differential analysis. To our

knowledge, this is the second manuscript evaluating for statistical analysis

in MPRA studies. The first proposed the QuASAR-MPRA method (Kalita

et al., 2017), which we show to have worse performance than mpralm. In our

comparisons, we provide the largest and most comprehensive comparison of
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analysis methods so far; earlier work used only two datasets for comparisons.

Third, we have analyzed the impact of sequencing depth and number of

replicates on power. To our knowledge, this is the first mathematically-based

power investigation, and we expect this information to be useful in the design

of MPRA studies.

The activity of a regulatory element can be quantified with the log ratio of

RNA counts to DNA counts. In the literature, groups have generally taken

two approaches to summarizing barcode information to obtain one such

activity measure per element per sample. One approach is to add RNA and

DNA counts from all barcodes to effectively increase sequencing depth for

an element. This is termed the aggregate estimator. Another approach is to

compute the log ratio measure for each barcode and use an average of these

measures as the activity score for an element. This is termed the average

estimator, and we have shown that it is more biased than the aggregate

estimator. Because of this bias, we caution against the use of the average

estimator when comparing activity scores in enhancer groups (often defined

by sequence features). However, it is unclear which of the two estimators is

more appropriate for differential analysis.

In addition to barcode summarization recommendations, we have pro-

posed a linear model framework, mpralm, for the differential analysis of

MPRA data. Our evaluations show that it produces calibrated p-values and is

as or more powerful than existing methods being used in the literature. Its

type I error rates appear conservative, so in practice, we recommend perform-

ing permutations to estimate error rates.
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While the count-based tools, edgeR and DESeq2, would seem like natural

methods to use for the analysis of MPRA data, they have not been used for

differential analysis of MPRA activity measures. There has been some use

of DESeq2 to identify (filter) elements with regulatory activity (differential

expression of RNA relative to DNA) (Tewhey et al., 2016; Gisselbrecht et al.,

2013). However, these tools have not been used for comparisons of activity

measures between groups. In this work we propose the use of log-DNA

offsets as potential sensible uses of these software for differential analysis. In

our evaluations, we see that this approach is most competitive with mpralm.

For the allelic studies (Tewhey et al., 2016; Ulirsch et al., 2016), we observe

that the degree of within-sample correlation affects the power of mpralm

relative to comparison methods. In particular, there is little difference in

the performance of the different methods for the large pool experiment of

Tewhey et al. (2016), and this experiment had overall low within-sample

correlation. Both the targeted pool experiment of Tewhey et al. (2016) and the

Ulirsch experiment had larger within-sample correlations, and we observe

that mpralm has increased power over the comparison methods for these

datasets. We expect that mpralm will generally be more powerful for paired

designs with high within-pair correlations.

In terms of element rankings, mpralm, edgeR, and DESeq2 are similar.

However, we observe a substantial difference in ranking between t-tests and

mpralm and believe top ranked mpralm elements exhibit better properties

compared to those from t-tests.
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Linear models come with analytic flexibility that is necessary to handle di-

verse MPRA designs. Paired designs involving alleles, for example, are easily

handled with linear mixed effects models due to computational tractability.

The studies we have analyzed here only consider two alleles per locus. It is

possible to have more than two alleles at a locus, and such a situation cannot

be addressed with paired t-tests, but is easily analyzed using mpralm. This is

important because we believe such studies will eventually become routine for

understanding results from genome-wide association studies.

While we have focused on characterizing the mpralm linear model frame-

work for differential analysis, it is possible to include variance weights in

the multivariate models used in saturation mutagenesis and characterization

studies. We expect that modeling the copy number-variance relationship will

improve the performance of these models.

For power, we find a substantial impact of even small increases in sample

size. This is an important observation because many MPRA studies use 2 or 3

replicates per group, and our results suggest that power can be substantially

increased with even a modest increase in sample size. We caution that using

less than 4 replicates can be quite underpowered.

In short, the tools and ideas set forth here will aid in making rigorous

conclusions from a large variety of future MPRA studies.
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3.4 Methods

3.4.1 Data

See Table 1. Dataset labels used in figures are accompanied by short descrip-

tions below.

Melnikov: Study of the base-level impact of mutations in two inducible

enhancers in humans (Melnikov et al., 2012): a synthetic cAMP-regulated

enhancer (CRE) and a virus-inducible interferon-beta enhancer (IFNB). We do

not look at the IFNB data because it contains only one sample. We consider 3

datasets:

Melnikov: CRE, single-hit, induced state: Synthetic cAMP-regulated

enhancer, single-hit scanning, induced state.

Melnikov: CRE, multi-hit, uninduced state: Synthetic cAMP-regulated

enhancer, multi-hit sampling, uninduced state.

Melnikov: CRE, multi-hit, induced state: Synthetic cAMP-regulated en-

hancer, multi-hit sampling, induced state.

Kheradpour: Study of the base-level impact of mutations in various motifs

(Kheradpour et al., 2013). Transfection into HepG2 and K562 cells.

Tewhey: Study of allelic effects in eQTLs (Tewhey et al., 2016). Transfection

into two lymphoblastoid cell lines (NA12878 and NA19239) as well as HepG2.

In addition two pools of plasmids are considered: a large screening pool and

a smaller, targeted pool, designed based on the results of the large pool. We

use data from both the large and the targeted pool in NA12878.

Inoue: chromosomal vs. episomal: Comparison of episomal and
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chromosomally-integrated constructs (Inoue et al., 2017). This study uses

a wild-type and mutant integrase to study the activity of a fixed set of putative

regulatory elements in an episomal and a chromosomally-integrated setting,

respectively.

Ulirsch: Study of allelic effects in GWAS to understand red blood cell traits

(Ulirsch et al., 2016). Transfection into K562 cells as well as K562 with GATA1

overexpressed. We use the data from K562.

Shen: mouse retina vs. cortex: Comparison of cis-regulatory elements

in-vivo in mouse retina and cerebral cortex (Shen et al., 2016). Candidate CREs

that tile targeted regions are assayed in-vivo in these two mouse tissues with

adeno-associated virus delivery.

3.4.2 Count preprocessing

We use total count normalization to account for differences in library size for

both DNA and RNA. Specifically, each count in a sample is divided by that

sample’s library size and scaled so that the library size in all samples is the

same. We perform minimal filtering on the counts to remove elements from

the analysis that have low counts across all samples. Specifically, we require

that DNA counts must be at least 10 in all samples to avoid instability of the

log-ratio activity measures. We also remove elements in which these log-ratios

are identical across all samples. This is necessary for sensible differential

analysis. In practice, log-ratios are only identical across all samples if RNA

counts are zero across all samples. Both steps also improve the estimation

of the copy number-variance relationship used in subsequent modeling by
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removing clear outliers.

3.4.3 Estimating the copy number-variance relationship

After preprocessing the first step is to estimate the copy number-variance

relationship that will allow for the estimation of element-specific reliability

weights. These weights are ultimately used in element-specific weighted

regressions. The square root of the standard deviation of the log-ratios over

samples are taken as a function of average log DNA levels over samples, and

this relationship is fit with a lowess curve. Predicted variances are inverted to

form observation-level precision weights.

3.4.4 Modeling

Once the observation-specific weights are calculated, the log-ratios and

weights are used in the voom analysis pipeline. If, as in allele-specific activity

studies, the different versions of the elements being compared are correlated

due to being measured in the same sample, a mixed model is fit for each

element using the duplicateCorrelation module in the limma Bioconductor

package (Smyth, Michaud, and Scott, 2005).

3.4.5 Running mpralm, QuASAR, t-test, Fisher’s exact test

For all methods, DNA and RNA counts were first corrected for library size

with total count normalization. For edgeR and DESeq2, DNA counts were

included as offset terms on the log scale before standard analysis. For the t-test

we computed the aggregate estimator of the log-ratio as the outcome measure.
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For Fisher’s exact test, we summed DNA and RNA counts in the two condi-

tions to form a 2-by-2 table as input to the procedure. For QuASAR-MPRA,

we summed RNA counts in each condition to get one reference condition

count and one alternative condition count per element. We also summed

DNA counts in all samples and in the reference condition to get one DNA

proportion for each element. These were direct inputs to the method.

3.4.6 Permutation tests

We performed null permutation experiments to estimate empirical type I

error rates (denoted by α) at different nominal levels. Specifically, we created

permuted sample groups that each were composed half of group 1 samples

and half of group 2 samples. For example, in a six versus six comparison, we

would select three samples from group 1 and three samples from group 2 to be

in the first comparison group. The remaining samples would be in the second

comparison group. In this way, we expect no differences in activity measures

between the comparison groups. In paired experiments, we maintained the

linking between samples but swapped group labels to create null comparisons.

3.4.7 Estimation of π0

The proportion of truly null hypotheses for each dataset was estimated using

the “lfdr” method in the propTrueNull function within limma (Phipson, 2013).

This proportion was estimated for mpralm, t-test, QuASAR, edgeR, and DE-

Seq2, and the median of these estimates was used as the estimate for π0 for

that dataset. Fisher’s exact test was excluded from this estimate because it
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gave an estimate of π0 that was considerably smaller than the other methods,

and which was dubious in light of its uncontrolled type I error rate. These π0

estimates are used in the FDR calculations of Figure 3.7.

3.4.8 Simulation studies to assess accuracy of permutations
for error rate estimation

To model MPRA data, we simulated negative binomial data for both DNA

and RNA with a range of means and dispersion parameters, and we fix a

proportion p to have differential activity between conditions. We simulated

both paired and unpaired data to respectively model allelic and environmental

studies.

3.4.9 Bias and variance of estimators

We use Taylor series arguments to approximate the bias and variance of the

aggregate and average estimators. The following summarizes our parametric

assumptions:

E[Rb] = µr = Nr pr Var(Rb) = krµr

E[Db] = µd = Nd pd Var(Db) = kdµd

We suppress the dependency of these parameters on sample and element.

Library sizes are given by N. The fraction of reads coming from a given

element is given by p. Dispersion parameters are given by k. The common

library size resulting from total count normalization is given by L. The true
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activity measure of a given element is given by a := log(pr/pd).

3.4.10 Average estimator

The “average estimator” of a is an average of barcode-specific log activity

measures and is written as:

âAV =
1
B

B

∑
b=1

log
(

RbL/Nr + 1
DbL/Nd + 1

)
The second-order Taylor expansion of the function

f (Rb, Db) = log(RbL/Nr + 1)− log(DbL/Nd + 1)

about the point (E[Rb], E[Db]) = (µr, µd) is:

log
(

RbL/Nr + 1
DbL/Nd + 1

)
≈ log (µrL/Nr + 1)− log (µdL/Nd + 1)

+ (Rb − µr)
L/Nr

µrL/Nr + 1
− (Db − µd)

L/Nd
µdL/Nd + 1

− (L/Nr)2

2(µrL/Nr + 1)2 (Rb − µr)
2 +

(L/Nd)
2

2(µdL/Nd + 1)2 (Db − µd)
2

We use the expansion above to approximate the expectation of the average

estimator:
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E
[

âAV
]
≈ log

(
µrL/Nr + 1
µdL/Nd + 1

)
+

(L/Nd)
2kdµd

2(µdL/Nd + 1)2 − (L/Nr)2krµr

2(µrL/Nr + 1)2

≈ log
(

pr

pd

)
+

kd
2µd

− kr

2µr

= a +
kd

2µd
− kr

2µr

We can also approximate the variance under the assumption that the

barcode-specific log-ratios are uncorrelated:

Var(âAV) =
1
B

Var
(

log
(

RbL/Nr + 1
DbL/Nd + 1

))

≈ (L/Nr)2krµr

B(µrL/Nr + 1)2 +
(L/Nd)

2kdµd
B(µdL/Nd + 1)2 − 2(L/Nr)(L/Nd)Cov(Rb, Db)

B(µrL/Nr + 1)(µdL/Nd + 1)

3.4.11 Aggregate estimator

The “aggregate estimator” of a first aggregates counts over barcodes and is

written as:

âAGG = log

(
1 + (L/Nr)∑B

b=1 Rb

1 + (L/Nd)∑B
b=1 Db

)
= log

(
1 + (L/Nr)RAGG

1 + (L/Nd)DAGG

)

The second-order Taylor expansion of the function

f (RAGG, DAGG) = log((L/Nr)RAGG + 1)− log((L/Nd)DAGG + 1)
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about the point (E[RAGG], E[DAGG]) = (Bµr, Bµd) is:

log
(

1 + (L/Nr)RAGG

1 + (L/Nd)DAGG

)
≈ log (BµrL/Nr + 1)− log (BµdL/Nd + 1)

+ (RAGG − Bµr)
L/Nr

BµrL/Nr + 1
− (DAGG − Bµd)

L/Nd
BµdL/Nd + 1

− (L/Nr)2

2(BµrL/Nr + 1)2 (RAGG − Bµr)
2 +

(L/Nd)
2

2(BµdL/Nd + 1)2 (DAGG − Bµd)
2

We use the expansion above to approximate the expectation:

E
[

âAGG
]
≈ log

(
BµrL/Nr + 1
BµdL/Nd + 1

)
+

Bkdµd(L/Nd)
2

2(BµdL/Nd + 1)2 − Bkrµr(L/Nr)2

2(BµrL/Nr + 1)2

≈ log
(

pr

pd

)
+

kd
2Bµd

− kr

2Bµr

= a +
kd

2Bµd
− kr

2Bµr

We can also approximate the variance:

Var(âAGG) ≈

(L/Nr)2Bkrµr

(BµrL/Nr + 1)2 +
(L/Nd)

2Bkdµd
(BµdL/Nd + 1)2 − 2(L/Nr)(L/Nd)Cov(RAGG, DAGG)

(BµrL/Nr + 1)(BµdL/Nd + 1)
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3.5 Tables and Figures

Dataset Description Cell culture Replicates Barcodes

Differential analysis: alleles
Tewhey Study of 39,479 oligos coming from 29,173 variants

to follow up on prior eQTL results.
Large initial oligo pool: 79k. Second pool: 7.5k.

NA12878 (LCL)
NA19239 (LCL)
HepG2

NA12878: 5
NA19239: 3
HepG2: 5

79k pool: ∼73
7.5k pool: ∼350

Ulirsch Study of 2756 variants in strong LD with 75 main
variants to identify loci that affect RBC traits.

K562, K562 with
GATA1 over-expr.

K562: 6
K562+GATA1: 4

14

Differential analysis: conditions
Inoue Comparison of episomal and lentiviral MPRA. HepG2 3 Max: 99.
Shen Study of tissue specificity of cis-regulatory elements

in-vivo in mouse.
Mouse retina and
cerebral cortex

3 ∼8

Saturation mutagenesis
Melnikov Two inducible enhancers:

(1) a synthetic cAMP-regulated enhancer and
(2) the virus-inducible interferon-beta enhancer.
Single-hit scanning alters one base at a time.
Multi-hit sampling alters several bases at a time.

HEK293T Single: 2
Multi: 2

Single: 13
Multi: 1

Kheradpour Study of 2104 wild-type sequences and 3314 variant
sequences containing targeted motif disruptions to
understand base-level effects in motifs.

K562, HepG2 2 10

Table 3.1: Datasets used for investigations in this paper. All datasets are publicly
available.
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10   10    6    8    9   13
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10    7    9    6   10    5

DNA

11    7   12   10    8   14
9    9    7    9   12   11
8   11   11   13    8   13

9    8    8   16    8    9
8    4   11   12    8    8

11   12    6   13   14   10

RNA

.
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.

Element 1:   Barcode 1
Barcode 2
Barcode 3

Element 2:   Barcode 1
Barcode 2
Barcode 3

Element E:   Barcode 1
Barcode 2
Barcode 3

19   11   13   10   13   15
14   16   14   16   13   17
14   12   20   13   15   11

20    9   22   16   16   10
13   11   23   12   21   16
19   13   21   14   12    5

13   19   12   14   12   15
16   14   12   18   14   12
16   16   17   19   16   17

.

.

.

Samples Samples

32   32   21   25   25   28

28   27   30   32   28   38

28 24 25 41  30 27

.

.

.

Element 1
Element 2

Element E 47   39   47   39   41   43

52   33   66   42   49   31

45   49   41   51   42   44

.

.

.

Aggregation

Figure 3.1: Structure of MPRA data. Thousands of putative regulatory
elements can be assayed at a time in an MPRA experiment. Each element is
linked to multiple barcodes. A plasmid library containing these barcoded
elements is transfected into several cell populations (samples). Cellular DNA
and RNA can be isolated and sequenced. The barcodes associated with each
putative regulatory element can be counted to obtain relative abundances
of each element in DNA and RNA. The process of aggregation sums counts
over barcodes for element in each sample. Aggregation is one method for
summarizing barcode level data into element level data.
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Figure 3.2: Variability of MPRA activity measures depends on element
copy number. For multiple publicly available datasets we compute activity
measures of putative regulatory element as the log2 ratio of aggregated RNA
counts over aggregated DNA counts. Each panel shows the relationship be-
tween variability (across samples) of these activity measures and the average
log2 DNA levels (across samples). Smoothed relationships are lowess curves
representing the local average variability. The last plot shows all lowess
curves on the same figure.

77



edgeR (raw)
0.

01
0.

02
0.

03 DESeq2 (raw)

0.
01

0.
02

0.
03 QuASAR (raw)

0.
01

0.
03

0.
05 mpralm (residuals)

0.
01

0
0.

04
5

0.
08

0

mpralm (raw)

Nominal error

Ty
pe

 I 
er

ro
r r

at
e

0.01 0.03 0.05

0.
01

0.
03

FET (raw)

0.01 0.03 0.05

0.
01

0
0.

18
5

0.
36

0

t−test (raw)

0.01 0.03 0.05

0.
01

0.
03

0.
05 t−test (residuals)

0.01 0.03 0.05

0.
01

0
0.

04
5

0.
08

0

edgeR (raw)

0.
01

0.
02

DESeq2 (raw)

0.
01

0.
02

0.
03 QuASAR (raw)

0.
01

0.
03

0.
05 mpralm (residuals)

0.
01

0
0.

04
5

0.
08

0

mpralm (raw)

Nominal error

Ty
pe

 I 
er

ro
r r

at
e

0.01 0.03 0.05

0.
01

0.
03

FET (raw)

0.01 0.03 0.05

0.
01

0.
18

0.
35 t−test (raw)

0.01 0.03 0.05

0.
01

0.
03

0.
05 t−test (residuals)

0.01 0.03 0.05
0.

01
0

0.
04

5
0.

08
0

edgeR (raw)

0.
01

0.
02

DESeq2 (raw)

0.
01

0.
02

0.
03

QuASAR (raw)

0.
01

0.
03

0.
05 mpralm (residuals)

0.
01

0
0.

04
5

0.
08

0

mpralm (raw)

Nominal error

Ty
pe

 I 
er

ro
r r

at
e

0.01 0.03 0.05

0.
01

0.
03

FET (raw)

0.01 0.03 0.05

0.
01

0
0.

18
5

0.
36

0

t−test (raw)

0.01 0.03 0.05

0.
01

0.
03

t−test (residuals)

0.01 0.03 0.05

0.
01

0
0.

04
5

0.
08

0

Permutations
Truth

(a)

(b)

(c)

Figure 3.3: Estimation accuracy of type I error rates using permutations
on simulated data. The three sets of panels vary the true proportion (p) of
elements with differential activity. (a) p = 0.1, (b) p = 0.3, (c) p = 0.5. Each
panel shows one method used for differential analysis and compares the
true type I error rate to that estimated from null permutations. For mpralm
and the t-test, we show error rates from permuting both the raw data and
residuals.
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Figure 3.4: Comparison of detection rates and p-value calibration over
datasets. The distribution of p-values for all datasets, including a zoom of
the [0, 0.1] interval for some datasets. Over all datasets, most methods show
p-values that closely follow the classic mixture of uniformly distributed p-
values with an enrichment of low p-values for differential elements. For the
datasets which had barcode level counts (Inoue, Ulirsch, and Shen), we used
two types of estimators of the activity measure (log ratio of RNA/DNA) with
mpralm, shown in light and dark blue. We were not able to run QuASAR on
the Shen mouse dataset.
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Figure 3.5: Empirical type I error rates. Type I error rates were estimated for
all methods at different nominal levels with null permutation experiments
(Methods). For the datasets which had barcode level counts (Inoue, Ulirsch,
and Shen), we used two types of estimators of the activity measure (aggregate
and average estimator) with mpralm, shown in dark and light blue.
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Figure 3.6: Number of rejections as a function of observed error rate. To
compare the detection (rejection) rates of the methods fairly, we compare
them at the same observed type I error rates, estimated in Figure 3.5. The
bottom row is a zoomed-in version of the top row. We see that mpralm,
edgeR, and DESeq2 consistently have the highest detection rates.
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82



Tewhey
large pool

D
N

A
pe

rc
en

til
es

Fraction unique:
121 / 200 = 0.605

0.
25

0.
75

R
N

A
pe

rc
en

til
es

0.
25

0.
75

Lo
g−

ra
tio

pe
rc

en
til

es
0.

25
0.

75
Ef

fe
ct

 s
ize

s
1.

09
3.

88

mpralm t−test

R
es

id
ua

l S
D

s
0.

66
2.

45

Tewhey
targeted pool

Fraction unique:
48 / 200 = 0.24

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
14

0.
42

mpralm t−test

0.
05

0.
13

Inoue
chromosom vs. episom

Fraction unique:
128 / 200 = 0.64

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
44

1.
35

mpralm t−test

0.
05

0.
17

Ulirsch
K562

Fraction unique:
90 / 200 = 0.45

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
57

1.
98

mpralm t−test

0.
44

1.
47

Shen
retina vs. cortex
Fraction unique:
88 / 200 = 0.44

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

3.
73

10
.3

0

mpralm t−test

0.
42

1.
48

Figure 3.8: Distribution of quantities related to statistical inference in top
ranked elements with mpralm and t-test. MPRA elements that appear in
the top 200 elements with one method but not the other are examined here.
For these uniquely top ranking elements, the DNA, RNA, and log-ratio
percentiles are shown in the first three rows. The effect sizes (difference in
mean log-ratios) and residual standard deviations are shown in the last two
rows. Overall, uniquely top ranking elements for the t-test tend to have lower
log-ratio activity measures, effect sizes, and residual standard deviations.
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Figure 3.9: Distribution of quantities related to statistical inference in top
ranked elements with mpralm and edgeR. Similar to Figure 3.8.
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Figure 3.10: Distribution of quantities related to statistical inference in
top ranked elements with mpralm and DESeq2. Similar to Figure 3.8.
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Figure 3.12: Power analysis. Variance and power calculated based on our
theoretical model. (a) Variance of the aggregate estimator depends on library
size and the true unknown activity level but not considerably on the latter.
(b)-(f) Power curves as a function of library size for different effect sizes and
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Chapter 4

Evidence-based data analysis

4.1 Introduction

Data analysis is a multistage process that begins with the statement of a

question; spans iterative phases of cleaning, exploration, and modeling; and

ends with the communication of results. At each of these stages, analysts

must interact with data and their beliefs to make judgments about what to do

next. Understanding the factors that influence these judgments is important

for improving the general practice of data analysis and the training of data

analysts. In this chapter, we describe in detail one randomized experiment

that examines the impact of explanation on perception of causality. We also

briefly review results from another randomized experiment that studies the

qualities of plots made in two different R graphics systems.
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4.2 Explanation and causal interpretation

4.2.1 Introduction

Facebook could raise your risk of cancer (How using Facebook could raise your

risk of cancer), drinking too much tea causes prostate cancer (PTI, 2016), eating

chocolate helps people stay thin (Eating lots of chocolate helps people stay thin,

study finds). We all know that correlation does not imply causation, but

we have also all seen exaggerated headlines in the media that fall short in

capturing the true results of a scientific study. A recent report in the British

Medical Journal found the fault may not lie entirely with the media (Sumner

et al., 2014), but may be aided by exaggerated press releases from universities

themselves. In fact, in their study of 462 press releases, the study authors

found that 33% (26% to 40%) contained exaggerated causal claims. Regardless,

of where the exaggeration happens, a result seems more realistic if you can

explain why you think it is happening.

Most researchers do not deliberately claim causal results in an observa-

tional study. But do we lead our readers to draw a causal conclusion unin-

tentionally by explaining why significant correlations and relationships may

exist? Once we discover that an association exists, it is natural to want to

explain why it does. We may describe potential mechanisms, make connec-

tions to previous literature, or put an observation in context. Despite these

explanations, causal relationships are not proven in a single observational

study and are only increasingly substantiated over the course of many such

studies. There is observational evidence suggesting a noticeable prevalence
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of inappropriate causal language in both nutritional (Cofield, Corona, and

Allison, 2010) and educational (Robinson et al., 2007) research studies.

The distinction between correlational and causal evidence is not merely

a pedantic formality. Because causal statements carry moral underpinnings,

they can have dangerous consequences for societal perceptions of certain

groups, products, or practices when consumed and interpreted by the general

public (Lombrozo, 2017). For example, researchers of developmental origins

of health and disease published a cautionary commentary in response to a

collection of headlines (Mother’s diet during pregnancy alters baby’s DNA,

Pregnant 9/11 survivors transmitted trauma to their children) that seemed to

vilify mothers for developmental outcomes in babies (Richardson et al., 2014).

In research areas dealing with human subjects, mistakes in perceptions about

evidence can be harmful, and reporters must use great care in the language

they use to describe scientific findings. The danger in these headlines and in

related causal language (e.g. explanatory statements, jargon) lies not in the

words themselves but in their interpretation by the public.

In this work, we investigate how interpretation of scientific evidence is

affected by a specific area of causal language: explanation. We report the

results of a randomized experiment performed on an online educational

platform that suggest a strong effect of explanatory language on students’

perception of whether a study is correlational or causal.
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Type of analysis Goal of analysis
Descriptive Summarizing the data without interpretation

Exploratory Summarizing the data with interpretation, but without generalization
beyond the original sample

Inferential Generalizing beyond the original sample, with the goal of describing
an association in a larger population

Predictive Generalizing beyond the original sample, with the goal of predicting
a measurement for a new individual

Causal
Generalizing beyond the original sample, with the goal of learning
how changing the average of one measurement affects, on average,
another measurement

Mechanistic
Generalizing beyond the original sample, with the goal of learning
how changing one measurement deterministically affects another
variable’s measurement

Table 4.1: Goals for different analysis types. These analysis types form the set of
possible answer choices in our randomized experiment and were taught to students
before the experiment was performed.

4.2.2 Study Design

Different types of studies have different analysis goals (Table 4.1) (Leek and

Peng, 2015). We were interested in whether people can distinguish between a

study whose goal was inferential and one whose goal was actually causal, as

this is a common error often termed "correlation does not equal causation".

We wanted to know whether including language explaining an observed asso-

ciation leads people to believe that an inferential study is causal. To test this

hypothesis, we ran an experiment in a large online open-access data analysis

course. This introductory-level course covered basic data analytic concepts.

Our experiment involved a single randomized quiz question administered

during the course. We originally ran the experiment in January 2013, but

later independently replicated our experiment in a separate offering of the

course in October 2013. Between these two replications, over 22,000 students

completed versions of our experimental question.

98



Early in the course, students were presented with the definitions of six

possible types of data analysis (descriptive, exploratory, inferential, predictive,

causal, and mechanistic) consistent with those shown in Table 4.1. In the

subsequent course quiz, we provided students with an description of an

inferential study - from which we can only infer correlation:

We take a random sample of individuals in a population and identify

whether they smoke and if they have cancer. We observe that there is a

strong relationship between whether a person in the sample smoked or

not and whether they have lung cancer. We claim that the smoking is

related to lung cancer in the larger population.

We randomized students to see or not see an explanatory interpretation

accompanying this description. Students in this explanatory interpretation

group saw an additional sentence:

We explain we think that the reason for this relationship is because

cigarette smoke contains known carcinogens such as arsenic and benzene,

which make cells in the lungs become cancerous.

All students were then asked to identify the type of analysis for these re-

sults. In addition to the correct answer (inferential), students were presented

at random with three of four possible incorrect answer choices (descriptive,

causal, predictive, mechanistic). That is, approximately 25% of students made

their choice from inferential, descriptive, causal, and predictive, approxi-

mately 25% from inferential, descriptive, causal, and mechanistic, and so on.
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Although the described analysis is inferential in nature, we hypothesized that

students who saw the explanatory language would be more likely to identify

the analysis as causal if given that choice. Because students were able to retake

this quiz multiple times in order to achieve a passing grade, we collected

answers from each student’s first attempt (Table 4.3).

4.2.3 Results

In our original experiment (January 2013), 20,257 students completed our

experimental quiz question. These students were randomly assigned to one

of four arms, where each arm contained the correct answer choice (inferential)

and three incorrect answer choices (from among causal, descriptive, predic-

tive, and mechanistic). Sample sizes are given in Table 4.2. We present detailed

results for two arms: (1) students who chose between inferential, causal, pre-

dictive, and mechanistic analyses and (2) students who were not given causal

as a choice, but instead chose between inferential, descriptive, predictive, and

mechanistic analyses. Table 4.2 shows summary results for the four groups of

students corresponding to the four sets of answer choices seen.

Among students selecting from inferential, causal, predictive, and mecha-

nistic answer choices, the majority (68.5%) correctly answered that the descrip-

tion referred to an inferential data analysis (Table 4.3). However, a significantly

higher percentage of students who were shown the explanatory language

claimed it was a causal analysis compared to students who did not see the

additional language: 31.8% compared to 16.6%. These results indicate that
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Difference in percentage choosing "causal" when seeing explanatory
language vs. not seeing explanatory language (95% CI)

Answer choices seen January 2013 course October 2013 course
inferential, causal,
descriptive, predictive

14.5% (12.2%, 16.8%)
N = 5061

14.3% (6.4%, 22.2%)
N = 447

inferential, causal,
descriptive, mechanistic

15.8% (13.4%, 18.1%)
N = 5092

14.8% (6.6%, 23.0%)
N = 463

inferential, causal,
predictive, mechanistic

15.2% (12.8%, 17.5%)
N = 5088

19.9% (11.5%, 28.3%)
N = 437

Difference in percentage choosing "inferential" when seeing explanatory
language vs. not seeing explanatory language (95% CI)

inferential, descriptive,
predictive, mechanistic

-7.3% (-9.3%, -5.2%)
N = 5016

-4.9% (-12.6%, 2.9%)
N = 416

Table 4.2: Effect of explanatory language on student responses. Students were ran-
domized to one of four arms containing different sets of answer choices. Differences
in the percentage choosing the “causal” and “inferential” answer choices are given,
as well as 95% confidence intervals for the differences and sample sizes.

explanatory language increases the chance a student will mistake an inferen-

tial result as causal. In this case, students who saw the additional explanation

were almost twice as likely to claim the results as causal.

This increase in the choice of a causal analysis when faced with explanatory

language corresponded to a decrease in choice of an inferential analysis. The

percentages of students who chose either a predictive or descriptive analysis

were similar between the two treatment groups. However, there was an

increase in the percentage of students who claimed the result was mechanistic

in the explanatory language group: 3.5% compared to 1.2%. This is not

surprising since a mechanistic result is similar to a causal result in that it

describes a deterministic process by which one variable affects another.

Among students who were not given the option to select “causal” as an

answer (selecting instead from inferential, predictive, descriptive, and mech-

anistic analyses), a higher percentage (84.6%) correctly answered that the

description referred to an inferential data analysis (Table 4). In this case, a
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January 2013 course
N = 5088

October 2013 course
N = 437

This is an example of a/an
_________ data analysis.

Saw explanatory
language
N = 2516

No explanatory
language
N = 2572

Saw explanatory
language
N = 199

No explanatory
language
N = 238

inferential 1508 (59.9%) 1977 (76.9%) 116 (58.3%) 190 (79.8%)
causal 799 (31.8%) 427 (16.6%) 68 (34.2%) 34 (14.3%)
predictive 120 (4.8%) 138 (5.4%) 8 (4.0%) 11 (4.6%)
mechanistic 89 (3.5%) 30 (1.2%) 7 (3.5%) 3 (1.3%)

Table 4.3: Detailed results for the arm with answer choices: inferential, causal,
predictive, and mechanistic. Results for randomized controlled experiment ask-
ing students to identify the type of data analysis in a scenario. The quiz question
described an inferential analysis. Students were randomized to see or not see ex-
planatory language that hypothesized why the association occurred. In the presence
of explanatory language, nearly twice as many students selected “causal” as the
answer. The presence of explanatory language also corresponds to a decrease the in
the percentage of students correctly selecting “inferential” as the answer.

January 2013 course
N = 5016

October 2013 course
N = 416

This is an example of a/an
_________ data analysis.

Saw explanatory
language
N = 2485

No explanatory
language
N = 2531

Saw explanatory
language
N = 199

No explanatory
language
N = 217

inferential 2011 (80.9%) 2232 (88.2%) 160 (80.4%) 185 (85.3%)
predictive 196 (7.9%) 181 (7.2%) 10 (5.0%) 12 (5.5%)
descriptive 138 (5.6%) 82 (3.2%) 14 (7.0%) 14 (6.5%)
mechanistic 140 (5.6%) 36 (1.4%) 15 (7.5%) 6 (2.8%)

Table 4.4: Detailed results for the arm with answer choices: inferential, descrip-
tive, predictive, and mechanistic (no causal). In the presence of explanatory lan-
guage, a lower percentage of students correctly selected “inferential” as the answer
and a higher percentage of students incorrectly selected “mechanistic” as the answer.

significantly higher percentage of students correctly claimed the analysis was

inferential when not shown the explanatory language: 88.2% compared to

80.9% These results indicate that, even without the ability to identify the anal-

ysis as causal, students had a harder time correctly identifying an inferential

study when given hypothesized information about the reason for a correlation.

The size of the effect is much smaller than with the causal answer option,

however. The decrease in correct answers again corresponded to an increase

in choice of a mechanistic analysis.
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To confirm our results, we performed an independent replication of our ex-

periment in a later offering of the same data analysis course. In the replication

(October 2013), 1762 students completed our experimental quiz question. The

results of this replication were consistent with those in the original experiment

(Tables 4.2, 4.3, 4.4). Differences in percentages for the causal and inferential

answer choices were always of the same sign between the two courses, and

the magnitudes of the differences were also similar (Table 4.2). While the

sample size in this course is much smaller, the concordance of results and

the maintenance of experimental procedures between courses align with a

statistical definition of replicability that has been put forth (Patil, Peng, and

Leek, 2016).

4.2.4 Discussion

We know that the way data is visualized can affect how well people derive

information from graphs (Cleveland and McGill, 1985). The results of this

experiment suggest that the way we write about a data analysis is also critical.

By performing a randomized controlled trial, we have shown a clear effect

of explanatory statements on perceptions of research results, and we have

replicated this effect in a second experiment. The nature of our study design

justifies the use of causal language to describe the precise effect of explanatory

language on categorical perceptions of research findings, but it is important to

keep in mind that these effects are specific to a certain population of learners

and to our specific quiz question. In the remainder of this section, we discuss

these limitations and avenues for further research.
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One limitation of our study is the population used. We performed this

randomized trial in a population of learners in a massive open online course

(MOOC) as opposed to a representative sample of the general population.

While we do not have demographic information on the learners in our trial,

surveys of various MOOCs indicate that these learners are slightly more

likely to be male, often have bachelor’s degrees, and typically have some

level of employment (Bayeck, 2016). Learners in these online courses report a

variety of motivations for taking the courses, suggesting at least some lifestyle

diversity.

A second limitation of our study was the choice to use smoking as the study

example. A well-studied phenomenon in cognitive science, the availability

heuristic, describes how people often unduly use readily available examples

to guide their thinking. The causal link between smoking and lung cancer

has been firmly established over time with the accumulation of studies, so

although the wording of our quiz question does not describe a causal study,

the availability heuristic likely nudges learners to think otherwise. Had we

used a different example, the effect of the explanatory text would likely have

been smaller.

The scope of our findings is also limited in that we have not investigated

any strategies for combating causal misinterpretations arising from expla-

nation. We recognize that is quite difficult to avoid any explanation when

communicating scientific results because explanation is a key means of inter-

preting research findings. Interpretation is essential for combining different

sources of information and advancing our understanding. In both academic
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and mainstream scientific writing, there is a desire to put results into context,

including hypothesized mechanistic explanations to enhance the narrative

around a set of empirical results. Nearly every study includes this type of

explanation in the discussion section. However, our results suggest that such

efforts may actually cause a certain population of readers to be misled about

the strength of the scientific evidence. The misinterpretation may be exac-

erbated by the phenomenon that readers are swayed to believe a statement

when they are told scientists understand it (Sloman and Rabb, 2016). Because

interpretation, and thus explanation, is an essential aspect of science com-

munication, we should not aim to avoid explanation but to understand how

certain characteristics of explanation help or hinder perception.

We hypothesize that it may be beneficial for readers’ perceptions to fol-

low up any explanations with warnings against interpreting results causally.

Further research is needed to determine if this could counteract the effect of

explanations on causal perceptions. It will also be important in further work

to try to generalize the findings we present here in a population that is more

representative of the general public and to dissect the nature of misinterpreta-

tion. In this study, we focused on categorical perception of knowledge, but it

is also worthwhile to allow more flexibility in responses to understand how

subjects’ actions are affected.

The code and data used to perform this analysis are available at: https:

//github.com/leekgroup/explanatory_language.
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4.3 Learner perceptions of plotting systems

One of the more commonly debated aspects of data science education within

the R community is the plotting system used to introduce learners to statistical

graphics. There has been some online and informal debate about the general

strengths and weaknesses of the base and ggplot2 (Wickham, 2009) plotting

systems within R for both research and teaching (Leek, 2016; Robinson, 2016).

More recently there has been discussion of the relative merits of the two plot-

ting systems in teaching the specific student population of beginner analysts

(Robinson, 2016) and some investigation of learning outcomes when using

base R and ggplot2 in the classroom (Stander and Dalla Valle, 2017). In the

latter investigation, Stander et al provide instruction in both plotting systems

in the classroom but do not compare the systems in terms of student learning

outcomes.

We conducted a randomized experiment within the Coursera platform to

better understand student perceptions of statistical graphics created in the

two plotting systems. Students were randomly assigned to a peer-graded as-

signment in which they had to make two plots using only the base R graphics

system or only the ggplot2 graphics system. The first of these plots was a sim-

ple scatterplot between two continuous variables. The second of these plots

was more complex, asking for a grid of scatterplots resulting from stratification

along two factor variables.

Students were asked to grade their classmates’ submissions using a rubric.

Results for the simple plot are shown in Figure 4.1, and results for the complex

plot are shown in Figure 4.2. Generally, positive characteristics were more
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Figure 4.1: Peer review responses for the simple plot. Generally, reviews
indicated that ggplot2 graphics were slightly more likely to contain desirable
aesthetic qualities than base R graphics but that the two plotting systems
were overall similar in these attributes. Plots made with ggplot2 were more
likely to clearly show the intended relationship.

likely to be seen in figures made with ggplot2. In particular, students found

ggplot2 figures to more clearly show the intended relationship, and this clarity

seemed to be more pronounced for the complicated plot.
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Figure 4.2: Peer review responses for the complex plot. As with the simple
plot, reviews indicated that ggplot2 graphics were generally more likely
to contain desirable aesthetic qualities than base R graphics but that the
two plotting systems were overall similar in these attributes. For this more
complex plot, the increased clarity in ggplot2 graphics was more pronounced.
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Chapter 5

Discussion and Conclusion

The work in this dissertation constitutes a push towards evidence-based

decision making in three different areas. The intentions for using the phrase

“evidence-based” are rooted in its contrast to what has been traditionally done

in these areas.

In computational biology, methodological work frequently relies solely on

results from simulations. Authors simulate biological assay data from models

with a range of complexity and argue for the superiority of their methods

based on their belief in the plausibility of their simulated data. Evidence-

based decision making in computational biology, as presented in this disserta-

tion, relies on real data as opposed to simulated data for method evaluation.

Simulations can certainly be useful for verifying theoretical properties, but

evaluations derived from real data provide more compelling justification for

the use of methods in the wild.

For mass spectrometry-based metabolomics, we developed a preprocess-

ing method that outperforms existing alternatives in terms of measurement
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variability and statistical power on several real datasets. Similarly, for mas-

sively parallel reporter assay analysis, we show that our proposed methods

have good error rate calibration and competitive statistical power. Our heavy

use of real data evaluations in this area is noteworthy because many compu-

tational methods in the closely related sequencing literature rely strongly on

simulated data for evaluation.

The act of studying the process of data analysis from a behavioral stand-

point would seem natural to psychologists or cognitive scientists but is novel

for statisticians. That statistics is rooted in mathematics and theory likely

explains why the role of human behavior has been underappreciated. For this

reason, data analysis practice that is informed by real data on behavior will be

useful to the community. In this dissertation, we make inquiries about certain

aspects of human behavior and judgment in learner populations. Through

randomized experiments we learn about the effects of explanation in observa-

tional settings and about the differences in two popular statistical graphics

systems. Further research is needed to understand the generalizability of these

results, but for now we have some intuition regarding how we communicate

scientific results and teach beginners certain skills.
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