ABSTRACT

Recent advances in biology, biochemistry, and medicine allow us to study – both qualitatively and quantitatively - the human body’s response to a variety of perturbations. So, for example, we know quantitatively what will happen to insulin levels when a person is eats a meal; in many cases, we also know qualitatively the genes and signaling molecules will be stimulated or suppressed. These qualitative and quantitative data can be curated for statistical meta-studies and/or building mathematical models. Such mathematical models are made based on Transport Phenomena, Thermodynamics, Kinetics and PKPD (Pharmacokinetics and Pharmacodynamics) principles. This research is concerned with building mathematical models at the organ level (e.g. liver and pancreas), combining such organ models into a whole-body model such that we can better understand metabolism (or both normal and diseased people) under different conditions such as homeostasis, postprandium, exercise and so on. In particular, we have made a detailed, yet not too complicated, whole-body model to the body’s response to glucose in normal people and in those with Type II Diabetes (T2D). Our results are presented in two parts. The other part is written by Yifei Li. In my M.S. Thesis, myocyte, adipose and brain organ models are explained using the mathematical tools such as Ordinary Differential Equations (ODEs), Flux Balance Analysis (FBA), optimization and sensitivity analysis. These models will show concentration and flux change of metabolites over time, parameter sensitivity and so on. Secondly, the current research on T2D will be explained and we will present our hypotheses on the causes of T2D. Ultimately, the goal is to understand and model the body as a complex system with respect of components and interactions. With this we hope to understand the essential qualitative and quantitative features of T2D with the hope of developing new strategies for treatment of this disease.
Primary Reader: Marc D. Donohue
Secondary Reader: Michael J. Betenbaugh
PREFACE

Spending two years at Johns Hopkins University for MSE degree has presented one of the best moments in my life. Not only did I learn a lot, but I also met good people.

I would especially like to thank two people whom I met at Johns Hopkins and will forever change my life. Professor Donohue and Yifei Li.

I thank Professor Marc D. Donohue, my advisor, for giving me instrumental advices on research and teaching me problem solving skills. Thanks to him, I learned a lot about making mathematical models and computational simulations. These hard-earned assets will always help me in my career as a researcher.

I thank Yifei Li, my collaborator, friend and love of my life who has been working with me on the same topic. Her amazing talents in designing mathematical models and finding appropriate study materials helpful for our research have proven worthwhile over and over again. Without her help, I would have run into more hurdles throughout the research.

Last but not least, I thank my family in Korea for giving me this amazing opportunity to study at Johns Hopkins. I especially give my greatest gratitude to my father and mother for supporting me no matter what.
13.4 Step 3: Express calculated flux with respect to metabolite concentration .. 78
13.5 Step 5: parameter optimization .. 83
13.6 Step 6: Performing sensitivity analysis on the parameters estimated ... 89
14. MODEL RESULTS ... 91
14.1 Brain ... 91
14.2 Muscle .. 97
14.3 Adipose tissues .. 109
15. INTERACTIVE APPLICATION ... 114
16. WHAT TO IMPROVE .. 116
17. BIBLIOGRAPHY .. 117
List of Tables

Table 4.1 1 Blood nutrients level in 6 days fasting ... 10

Table 4.2 1 Key enzymes and their regulators... 16

Table 6 1 Different organs’ glucose uptake and release rates .. 34

Table 6.2 1 Muscle macronutrient concentration at different exercise intensities 43
Table 6.2 2 RQ over time .. 43
Table 6.2 3 RQ of macronutrients ... 43
Table 6.2 4 Exercise intensities in terms of % VO2max ... 43

Table 8 1 Different diets’ macronutrient composition .. 48
Table 8 2 Different fatty acid types and associated biomarkers .. 48

Table 13.3 1 Macronutrient Uptake and release rates (mmol min-1) in each tissue/organ system........ 77

Table 13.5 1 Substrate concentrations (mM) in each tissue .. 87
List of Figures

Figure 4.3 1 GLUT4 translocation via insulin in/dependent pathways ... 17
Figure 4.3 2 GSV delivery mechanism ... 17

Figure 5 1 Blood/ECM/Organ compartments .. 32

Figure 6.1 1 Brain metabolic pathway .. 35

Figure 6.2 1 Muscle metabolic pathway ... 35
Figure 6.2 2 Plasma circulating versus intramuscular fuel usage ... 36
Figure 6.2 3 % of VO2max over exercise intensity ... 37
Figure 6.3 4 Lactate concentration over exercise intensity .. 37
Figure 6.2 5 Fuel usage at different exercise intensity .. 38

Figure 6.3 1 Adipose tissues metabolic pathway .. 44

Figure 13.1 1 Modeling method summary .. 63

Figure 13.2 1 Reaction system ... 65
Figure 13.2 2 Results from the original model all k=1 ... 66
Figure 13.2 3 Results from the model with fast glucose turnover rate ... 66
Figure 13.2 4 Results from the model with fast reversible conversion ... 67

Figure 13.3 1 Reaction system ... 68
Figure 13.3 2 S matrix ... 70
Figure 13.3 3 Null space .. 70
Figure 13.3 4 Comparison between equation form and matrix form ... 72
Figure 13.3 5 Glycolysis .. 73

Figure 13.4 1 Competitive inhibition ... 79
Figure 13.4 2 Uncompetitive inhibition ... 80
Figure 13.4 3 noncompetitive inhibition .. 81
Figure 13.4 4 Bi-bi mechanism ... 83

Figure 13.5 1 Different Vmax and Km combinations ... 85
Figure 13.5 2 Optimization with range ... 88

Figure 13.6 1 Sensititvity analysis ... 89
Figure 14.1 1 Brain metabolic pathway .. 91
Figure 14.1 2 Brain concentration Homeostatic steady state 91
Figure 14.1 3 Brain flux homeostatic steady state ... 92
Figure 14.1 4 Brain fasting condition 4.4mM glucose ... 92
Figure 14.1 5 Brain fasting condition 4.4mM glucose ... 93
Figure 14.1 6 Brain fasting condition 3.5mM glucose ... 93
Figure 14.1 7 Brain fasting condition 3.5mM glucose ... 94
Figure 14.1 8 Brain fasting condition 3mM glucose .. 94
Figure 14.1 9 Brain fasting condition 3mM glucose .. 95
Figure 14.1 10 Brain fasting condition 3mM glucose ... 95

Figure 14.2 1 Muscle metabolic pathway .. 97
Figure 14.2 2 Steady state in homeostasis at 4.4mM .. 97
Figure 14.2 3 Steady state in homeostasis at 4.4mM .. 98
Figure 14.2 4 Muscle metabolic profiles at 8mM .. 98
Figure 14.2 5 Muscle metabolic profiles at 8mM .. 99
Figure 14.2 6 Muscle metabolic profiles at 8mM with energy decoupling 99
Figure 14.2 7 Muscle metabolic profiles at 8mM with energy decoupling 100
Figure 14.2 8 Muscle metabolic profiles at 3mM .. 100
Figure 14.2 9 Muscle metabolic profiles at 3mM .. 101
Figure 14.2 10 Muscle metabolic profiles at 3mM with energy decoupling 101
Figure 14.2 11 Muscle metabolic profiles at 3mM with energy decoupling 102
Figure 14.2 12 Muscle metabolic profiles at 4.7% of TEE 102
Figure 14.2 13 Muscle metabolic profiles at 4.7% of TEE 103
Figure 14.2 14 Muscle metabolic profiles at 4.7% of TEE with energy decoupling 103
Figure 14.2 15 Muscle metabolic profiles at 4.7% of TEE with energy decoupling 104
Figure 14.2 16 Muscle metabolic profiles at 11% of TEE 104
Figure 14.2 17 Muscle metabolic profiles at 11% of TEE 105
Figure 14.2 18 Muscle metabolic profiles at 11% of TEE with energy decoupling 105
Figure 14.2 19 Muscle metabolic profiles at 11% of TEE with energy decoupling 106
Figure 14.2 20 Comparison of energy fuel source contribution between original and energy decoupled models at different exercise intensities ... 106
Figure 14.2 21 Muscle sensitivity analysis .. 107

Figure 14.3 1 Adipose tissues metabolic pathway .. 109
Figure 14.3 2 Adipose tissues metabolic profiles at 3mM 110
Figure 14.3 3 Adipose tissues metabolic profiles at 3mM 110
Figure 14.3 4 Adipose tissues metabolic profiles at 8mM 111
Figure 14.3 5 Adipose tissues metabolic profiles at 8mM 111
Figure 14.3 6 Adipose tissues sensitivity analysis .. 112
1. THE INTRODUCTION

This Masters Essay presents a comprehensive physiologic model of glucose uptake, metabolism, and storage in the human body. The purpose in building this model are:

(1) To organize the breadth of information on this topic into a coherent picture of glucose utilization; and

(2) To understand and model the complex behavior of glucose in the body with respect to all the key components and interactions involved in glucose utilization.

The goals of this research are to understand the essential qualitative features of glucose uptake, metabolism and storage, to correct errors in the conventional views of glucose behavior, as well as to develop new strategies for treating Type 2 Diabetes. The model developed covers the essential mechanisms that occur in the liver, brain, muscle, and adipose tissue. In addition to correcting errors in those models, it is hoped that the model presented here will expand on previous work by including physiological factors which, to best of knowledge, have not appeared in prior models of this system. In particular, in the model presented here differs in three ways from all prior models. They are: (1) Energy intake and expenditure are decoupled; fat intake leads to the production of ATP, but increased fat intake does not necessarily produce more ATP based on mass balance; instead, the amount of ATP a person consumes stays the same unless the person exercises. (2) Intracellular dissolvable and non-dissolvable metabolites (triglyceride and glycogen) are differentiated. Their dynamic behaviors are different; hence, it is necessary to devise separate equations instead of using the same equation. (3) Key enzyme interactions are determined using sensitivity analysis. Although a human body can convert one chemical into another as a chemical
reactor does, the actual process is much more complicated. One cannot build an in vivo model if only in vitro data are considered for each step due to enzyme interactions.

2. PREVIOUS EFFORTS IN BUILDING MODELS OF GLUCOSE UTILIZATION

2.1 Systems biology model

Systems biology is a biology-based interdisciplinary field that focuses on complex interactions within biological systems (Palsson, Bernhard 2015). It is a holistic approach to deciphering the complexity of biological systems. Systems biology uses mathematical models to help understand the dynamic process and reaction networks of living systems (Noguchi, R 2013).

E. coli is an organism that has been thoroughly studied. The reason most comprehensive modeling simulations have been done on E coli is that it is the best-characterized organism in the world. Feist (2008) and Palsson (2015) both did thorough information gathering on E coli systems biology modeling.

There is a process when it comes to building models for systems biology models like those for E. coli. It is based primarily on flux balance analysis, which includes: a) curating metabolic reactions, b) formulating the stoichiometric matrix (S matrix), c) applying mass balance constraints, d) defining the objective function(s), and e) optimizing the objective function using linear programming.

2.2 Human models

Over the past five decades, there has been considerable effort modeling glucose, fat and their regulatory hormones and these models have been used widely to help understand diabetes and related complications.

Combined circulatory and organ models of glucose and insulin interaction by Tiran (1980) have been developed based on a prior model of insulin and glucose by Tiran (1975). However, these
models do not show the detailed kinetics of how metabolites react and convert within an organ. In other words, they are not systems biology models. Sorensen (1985) developed an organ model for glucose metabolism by using features from different models, serving as a foundation for other models. Ajmera (2013) did a study of mathematical models of diabetes listing hundreds of models.

2.3 Human metabolite system biology model
The accomplishment of applying systems biology to bacteria like E. coli made it possible for researchers to develop detailed kinetics systems biology models for specific organs, and the liver has received the most attention. The liver, as the primary metabolic factory of the human body, is very important for storing and converting energy and for keeping the human body healthy.

Different hepatic models serve different functions and predict different trends in the role of hepatic glycogen regulation. Xu (2011) suggested a physiological model about glycogen metabolism in maintaining blood glucose homeostasis. Recently, Koenig (2012) presented a novel kinetic model of human hepatic glucose metabolism. This model includes glucose metabolic pathways in human liver along with the hormonal control of these pathways.

2.4 Discussion and what can be improved
There has been a significant increase in human systems biology modeling, particularly with respect to the increasing complexity of these models. However, there is still a huge gap between existing knowledge of physiology and the features of these mathematical models and there are deficiencies in all these models that can be improved. In particular, none of the existing models decouple energy (food) intake and energy consumption, many have errors in their physiology and enzyme kinetics, many lack optimization techniques and some even ignore conditions of homeostasis.
3. THE SCOPE OF THIS RESEARCH

The model presented here describes the relationships between glucose, fatty acid, amino acids, ketone bodies, intracellular metabolites such as G6P, F6P, glycogen, lactate, acetyl CoA and hormones such as insulin, glucagon and so on. To be more specific, the present model attempts to describe what happens to a normal human when the subject is fed, fasts, starves, is administered nutrients and exercises. The model also attempts to simulate how a patient with Type 2 Diabetes differs from someone without diabetes with the hope of elucidating the potential causes of T2D. To do this the model presented here must have a highly detailed whole-body model consisting of detailed organ/tissue/cell compartment models of a normal human with detailed systemic circulation, intracellular metabolism and signaling molecules. Depending on what the focus is, some of the details can be lumped or disregarded. In most cases, signal molecules such as AS160, Akt, PI3 etc are omitted and genes such as HIF may not be considered.

A human whole-body compartment model consists of brain, heart, adipose tissue, muscle, liver and peripheral (rest of the organs/tissues/cells) organs/tissues/cells, each having its own metabolism and all of which are connected by arteries and veins. Also, under different conditions (mainly postprandial, fasting, starvation, administration of nutrients and exercises), simulating what happens to concentrations and reaction fluxes of macronutrients and metabolites inside the system and organs/tissues/cells is tried.

The primary focus of model presented here effort is to make a model of human physiology that is more realistic than previous models by decoupling energy intake and expenditure. Why this is important and distinct from previous models is because certain energy storage metabolites (energy intake) and energy expenditure (Basal Metabolic Rate-BMR- or exercise) are decoupled. Think of a car filled with gasoline (energy input) and engine’s power (energy expenditure). In many
previous publications, the energy expenditure is dependent on the concentration of energy sources in the body; this would be the equivalent of a car’s velocity being dependent on how full the gas tank is rather than on the pressure on the gas pedal. However, physiologically (ie because of the decoupling of energy intake and energy expenditure) this is no more true in the human body than it is in an automobile. There are many mechanisms such as allosteric inhibition of enzymes or protein binding that stimulate or inhibit the metabolism of a species. While it may be true that storage of glycogen or TAG would accumulate as one consumes (energy intake) nutrients, it is wrong to say that TAG is used as an energy source because there is much TAG storage. In other words, just because one is obese, the obese person would not consume TAG at a higher rate.

To deal with this problem, in the model presented here, energy expenditure is decoupled from energy consumption. That is, to set TAG and glycogen energy expenditure to be independent of their concentration. Mathematically speaking, the energy expenditure of both species will be determined by basal metabolic rate and additional energy expenditure (i.e. exercise). The thermogenesis, digestive and miscellaneous energy expenditure are not considered here. Prior to this energy decoupling, stiffness was a major issue. That is, when ATP concentration, glycogen and TAG concentration were at extreme values, the model predicted that some of the metabolite concentrations became negative, reaction fluxes returned physiologically implausible values and optimized Km (Michaelis-Menten constant) and Vmax (maximum reaction rate constant) often returned unrealistic values.

When it comes to the physiology of energy decoupling, glycogen and TAG undergo reactions. Rather than being driven by glucose concentration, glycogen accumulates because of two major factors: first, the number of proteins called ‘glycogenin’ and second, the kinetics of glycogen accumulation (by insulin signaling, glucose and G6P) and degradation (by insulin signaling,
glucose and G6P as well). Previously, there has been considerable research describing glycogen metabolism with the latter reason only (kinetics). This may have been due to improper understanding of glycogen metabolism or knowing simplification of the equations. This model presented here simplifies glycogen metabolism but with a better understanding of this issue. The detailed explanation for glycogen metabolism is presented below.

Glycogen molecules have central proteins called glycogenin which exist in certain amount (may be due to thermodynamic equilibrium) and this is the reason why there are multiple glycogens detected in liver and muscle cells.

As for TAG, there are proteins called ‘perilipins’ which are on the surface of lipid droplets - primarily in adipose tissue cytoplasm. Lipid droplets are clusters of TAG. Once TAGs are absorbed into the white adipose tissues (WAT), they cluster together forming a large lipid droplet organelle which pushes the rest of the organelles such as endoplasmic reticulum, nucleus, ribosomes and so on to the side. Hence, WAT cells grow in size (hypertrophy) rather than growing in number (hyperplasia) as lipid droplets collect more TAGs and vice versa. The lipid droplets, however, are not under pressure to go through TAG releasing metabolism just because of its concentration. The perilipins hinder lipid droplets from degrading at high concentration. Perilipins undergo conformational change to release TAG from lipid droplets, only upon exercise, nutritional conditions (fasting etc.) or hormonal actions.
4. PHYSIOLOGICAL RESEARCH FOR WHOLE-BODY MODEL

Knowledge of human physiology is not yet developed to the point that one could create a model to treat all human physiology and its variation from organ to organ over the whole range of physiologic conditions. Therefore, innumerable assumptions and simplifications necessarily must be made. Depending on how detailed or broad one would like to make a whole-body, multi-compartment model, there are innumerable different possibilities of what the end model would look like. For example, there have been some previous attempts at making an endoplasmic reticulum (ER) subcompartment and a mitochondrial subcompartment within intracellular cytoplasm compartment (or organ/tissue compartment). The reason for having a mitochondrial subcompartment is that there are several metabolites whose concentrations in cytoplasm and mitochondrial matrix are quite different. For the ER, there is a concentration difference of calcium ions between the ER and cytoplasm due to calcium sequestration and release by the ER.

On the other hand, apart from detailing the ‘compartments’, one also may consider the ‘level’ of variables. Components which are involved in metabolic network categorized. There are four categories one could think of: macronutrients, intracellular metabolites, signal molecules and transcription-level agents.

Macronutrients are, in simple definition, chemicals which can be detected in the system (i.e. blood circulation) as a result of administration into the body for energy use or secretion from the organs/tissues/cells. Examples include derivatives of carbohydrates, fats and proteins such as glucose, fructose, fatty acids, triacylglycerides, amino acids, pyruvate, lactate, glycerol, etc.

Metabolites, in simple definition, are chemicals which can be only detected in the cytoplasm which normally do not exit the organs/tissues/cells. They mostly appear inside the organs/tissues/cells
due to the organs/tissues/cells’ specific metabolism. For example, glycogen is present primarily in liver and muscle. Though it can also appear in adipose tissues as well, glycogen is not present in blood or plasma. Glucose-6-phosphate is another example of metabolite produced via glycolysis or gluconeogenesis but never leaves the cell. One should bear in mind that such intracellular metabolism is driven by (mostly protein) enzymes. The enzyme effect is indirectly expressed as V_{max} and directly as K_{m}.

Signaling molecules are non-metabolite nor non-enzyme molecules which are involved in transduction of signals to make cellular metabolism possible. Some examples are IRS, Akt, AS160 etc. IRS is an abbreviation for Insulin Receptor Substrate and is a protein which binds to the β (intracellular) portion of IR (Insulin Receptor). The β IR undergoes conformation change upon insulin binding to the α IR, then IRS binds to β IR. IRS binding to β IR will trigger and propagate numerous downstream reactions including PI3K reaction, phosphorylation, AS160 reaction etc. Akt is one of the downstream reaction protein involved in transduction and stimulation of other signal molecules. AS160 perhaps is responsible for and involved in GLUT4 translocation onto the surface of the cellular membrane (of muscle, usually). There will be more detailed explanations in later section in this chapter.

Lastly, transcription-level agents are chemicals involved in genetic level. They control long and short term changes of organs/tissues/cells and produce enzymes, signal molecules etc. DNA, mRNA and transcription factors are such examples.

In this model, for simplicity without losing much detailed complexity, macronutrients, metabolites and a few signaling molecules were included.
4.1 Blood macronutrient concentration

In this model, the following macronutrients are going to be considered. Glucose, Free Fatty Acids (palmitate is used to represent the wide variety of FFA), AA (alanine, gluconeogenic amino acid), KB (representing general group of ketone bodies, partially oxidized FFA and can only be used in cells containing mitochondria: i.e. erythrocyte cannot use KB such as β-hydroxybutyrate and acetoacetate), glycerol (stoichiometry with fatty acids is important), TAG, lactate and pyruvate. Detailed metabolism of these enumerated metabolites will be explained for different organs/tissues/cells in the later part of this chapter.

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Days of Fasting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0) 1 2 3 4 5 6</td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td>Glucose (mM)</td>
<td>3.67 4.67 4.05 3.78 3.61 3.67 3.44</td>
</tr>
<tr>
<td>Free Fatty Acids (mM)</td>
<td>0.53 0.42 0.82 1.04 1.15 1.27 1.18</td>
</tr>
<tr>
<td>Ketone Bodies (mM)</td>
<td>0.00 0.03 0.55 2.15 2.89 3.64 3.98</td>
</tr>
<tr>
<td>Glycerol (uM)</td>
<td>0.00 62.00 85.00 95.00 91.00 100.00 76.00</td>
</tr>
<tr>
<td>Insulin (pM)</td>
<td>458.33 583.33 506.94 472.22 451.39 458.33 430.55</td>
</tr>
</tbody>
</table>

Table 4.1 1 Blood nutrients level in 6 days fasting
4.2 Organ/Tissue/Cellular metabolites

For metabolites, the research considered the followings. G6P (glucose-6-phosphate), glycogen, F6P (fructose-6-phosphate), G3P (glycerol-3-phosphate), OAA (oxaloacetate), AcCoA (acetyl coA), NADH, NAD+ (Nicotinamide Adenine Dinucleotide), FADH2, FAD+ (Flavin adenine dinucleotide), GTP (Guanine Triphosphate) and GDP.

G6P is the very first metabolite in this model under glycolysis. Under gluconeogenesis (in liver and kidney only), G6P will convert to glucose. Glycogen is a polymer metabolite which stores glucose monomers. F6P is a metabolite converted from G6P and both G6P and F6p are in thermodynamic equilibrium by a single enzyme responsible for the reversible reaction. G3P is a metabolite which can be produced from F6P via multiple reactions, which are lumped in this model. In this case, multiple biochemical reactions are lumped into one simplified hypothetical reaction represented by ‘phenomenological’ Vmax and Km, rather than experimental values. G3P can also be produced from glycerol and be used to produced TAG with fatty acids (stoichiometry, G3P:FFA=1:3). Pyruvate is a metabolite produced from G3P via multiple reactions and in this model, such reactions are lumped into one reaction. Pyruvate can also be produced from lactate and vice versa due to an enzyme responsible for such reversible reaction. Pyruvate is a versatile metabolite because it can produce many important metabolites which can be used for TCA cycle, which is necessary for generating ATP under aerobic condition through electron transfer and proton gradient. Two pyruvate-produced metabolites which are thought to be important in this model are OAA and AcCoA. OAA is known as a metabolite which is used as an intermediate reactant alongside AcCoA to activate TCA cycle while OAA also can generate G3P. AcCoA is responsible for generating multiple ATPs in mitochondria due to its biochemical reaction where it
can break down up to 8 times. If for any reasons either OAA or AcCoA depletes, TCA cycle will be affected. KB can also be generated from AcCoA and vice versa in some organs/tissues/cells. One should keep in mind that some of the intracellular cytoplasmic metabolite also can exist in some of the organelles such as mitochondria, a subcompartment. In that case, the concentration of the coexisting metabolites may have different concentration in both places or it may be very hard to measure the subcompartmental concentration. In such cases, one can choose to disregard subcompartmental concentration or assume concentration based on educated guess. In this model, subcompartmental concentration is disregarded for simplicity and because it does not affect this model much because of the scale of this model. Likewise, due to less importance, pancreatic ER subcompartment where it introduces interesting Hodgkin Huxley-like calcium based electro-oscillation is omitted. It is important to mention that some of the organ specific models (Hodgkin Huxley being one of them), can be simplified so that oscillatory behaviors in this case, can be ruled out in the whole-body model. Order of magnitude analysis (OMA) says that oscillation is less important in oscillatory effect versus convection of blood effect.

When it comes to physiological (both clinical -in vivo- and experimental -in vitro-) data of macronutrients and certain metabolites, there are decades’ worth of studies (mathematical equations, plots, data points etc) accumulated in multiple journals, dissertations and books. Here are some of the study types identified which have repeatedly been shown throughout the literature search.

Macronutrient concentration over time under postprandial, fasting and exercise ‘conditions’ (denoted below as ‘conditions’) of healthy or diseased patients. This study type elaborates on macronutrients concentration change once an individual is administered (usually orally) macronutrients. For example, in the simplest case, if one is injected pure glucose in the system,
that person will experience sharp glucose concentration at the beginning (near time of administration, but not exactly \(t=0 \) due to blood circulation) and glucose concentration will decrease over time due to the body’s glucose utilization and clearance mechanisms.

Certainly, there are inter-individual variability of how much glucose can be distributed, utilized and cleared from the body due to gender, health, age etc. However, the goal of this model is to make an ideal healthy patient model and then generalize this model to better understand the development and evolution of T2D. Moreover, when a patient consumes a meal, the patient will experience that the concentrations of certain macronutrients change as time passes. However, one should keep in mind that in uncontrolled environments, no two meals a person eats are exactly the same. For instance, people do not eat exactly 40% glucose (carbohydrates), 30% palmitate (FFA) and 30% alanine (AA) of 200g of food in every meal, not to mention that there are numerous types of carbohydrates (fibers, sugar, lactose…), FFA (poly/moно/ (un)saturated FA), AA (leucine, histidine …) and additional nutrients consumed. In the publications studied, however, the patients were given controlled amounts of food so that the input was fixed (food administered) but the outputs (concentrations of macronutrients) necessarily were variable.

Using such controlled studies, the research also could simulate the input and output relationship as reported in the articles; moreover, the research also could simulate the food administration of different composition situations, not having been researched in any of the articles. Likewise, one can use different ‘conditions’ other than the postprandial state. There are studies conducted on individuals who exercise at different levels (expressed as percentage of VO2max) and duration (expressed as time) or those who fast for a certain amount of time. If this model can simulate every condition reported in the publications with certain confidence level, the prediction on what a human body model will go through will be even more accurate.
Blood flow change and flux (uptake and release rate) of macronutrients into and out from between blood vessel and organs/tissues/cells under different conditions. The fundamental principles in this study type are same as macronutrient concentration versus time study. For example, using a controlled meal plan like that mentioned in macronutrient concentration studies discussed above, one could also measure how much the blood flow of arterial/venous blood vessels and absorption/secretion rates of organs/tissues/cells change: e.g. to measure lactate secretion rate when fasting. Also, studies under different ‘conditions’ and blood flow and flux change are reported.

Hormonal level and flux (hormones such as insulin, glucagon, adrenaline etc.) change over time under different ‘conditions’. The fundamental principles in this study type are same as macronutrient concentration versus time study. This is usually done with the first type of study (macronutrient level and flux).

Specific organs/tissues/cells’ metabolism (concentration and flux of metabolites) under different ‘conditions’. The fundamental principles in this study type are same as macronutrient concentration versus time study. One example is to feed patient a designed meal to measure glycogen concentration in liver or muscle.

Concentration and flux change of macronutrients, metabolites and hormones under ‘controlled’ condition. This study type is slight different in that the focus in this research is to find relationship between controlled concentration or flux of macronutrients, metabolites and hormones and those uncontrolled. For example, hyperinsulinemia is a well performed and recorded study where the researchers maintained the level of insulin from basal level to manifolds higher and sought how glucose secretion rate is affected. Another example is to infuse glucose at different rate to measure insulin secretion rate. This type of research may be reported as concentration vs rate instead of
time as observed in the previous study types. This type of controlled study would give this model more robustness for parameter tuning.

Finally, different models have different purposes. There is a saying that all models are wrong but some are useful. The most basic (does not mean it is easy) type of model is to simulate concentration and flux over time without blood flow or hormonal levels being affected under different ‘conditions’. One should keep in mind that when one eats or exercises or in different health condition, not only would the basal concentration and flux of macronutrients and metabolites would be affected but also the hormonal level, blood flow or oxygen level (which is disregarded in this model) would also be affected. In other words, to make a more precise model, one should consider all of the factors mentioned. For example, when a person exercises, it will affect insulin/adrenaline/glucagon level, which will affect blood flow rate and concentration and absorption/secretion rate of macronutrients and metabolites. The effect of glucose on concentration/flux of glucagon can be expressed as constitutive equation for simplification or as part of ODEs for precise modeling.

<table>
<thead>
<tr>
<th>Reaction enzyme</th>
<th>Positive regulation</th>
<th>Negative regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucokinase</td>
<td></td>
<td>F6p</td>
</tr>
<tr>
<td>Phosphofructokinase</td>
<td>AMP</td>
<td>Citrate</td>
</tr>
<tr>
<td>Glycogen phosphorylase</td>
<td>AMP</td>
<td>Glucose</td>
</tr>
<tr>
<td>Ga3p dehydrogenase</td>
<td></td>
<td>Glucose</td>
</tr>
<tr>
<td>Pyruvate kinase</td>
<td>F16p</td>
<td>Amino acids</td>
</tr>
<tr>
<td>Enzyme</td>
<td>Regulator</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Pyruvate dehydrogenase</td>
<td>NADH, ACoA (Pi)</td>
<td></td>
</tr>
<tr>
<td>Citrate synthase</td>
<td>AMP</td>
<td></td>
</tr>
<tr>
<td>Isocitrate dehydrogenase</td>
<td>SCoA (Pi)</td>
<td></td>
</tr>
<tr>
<td>AKG dehydrogenase</td>
<td>AMP, SCoA (Pi)</td>
<td></td>
</tr>
<tr>
<td>Citrate shuttle103</td>
<td>PalCoA (Pi)</td>
<td></td>
</tr>
<tr>
<td>Cit_ACoA_OAA (ATP citrate lyase)</td>
<td>PalCoA (Pi)</td>
<td></td>
</tr>
<tr>
<td>ACoA_Mal-CoA (acetyl CoA carboxylase)</td>
<td>PalCoA (Pi)</td>
<td></td>
</tr>
<tr>
<td>FFA_PalCoA (acyl CoA synthase) (Saggerson, 2008)</td>
<td>Mal-CoA (Pi)</td>
<td></td>
</tr>
<tr>
<td>PalCoA_ACoA (β oxidation)</td>
<td>ACoA (Pi)</td>
<td></td>
</tr>
<tr>
<td>Carnitine shuttle (carnitine acyltransferase)</td>
<td>Mal-CoA</td>
<td></td>
</tr>
<tr>
<td>Gmt_AKG (glutamate dehydrogenase)</td>
<td>FFA</td>
<td></td>
</tr>
<tr>
<td>ACoA_Gmt_NAG (N-acetyl glutamate synthase)</td>
<td>Arginine</td>
<td></td>
</tr>
<tr>
<td>NH4_Crbphos (carbomyl phosphate synthase)</td>
<td>NAG</td>
<td></td>
</tr>
<tr>
<td>Citrulin_Arg (argininosuccinate lyse)</td>
<td>AMP</td>
<td></td>
</tr>
<tr>
<td>(Glucosamine 6 phosphate N-acetyl transferase)</td>
<td>FFA, Glnac (Pi)</td>
<td></td>
</tr>
<tr>
<td>(N-Acetyl glucosamine pyrophosphorylase)</td>
<td>Glucose</td>
<td></td>
</tr>
<tr>
<td>HMG-CoA_Mevl (HMG-CoA reductase)</td>
<td>Mevl (Pi)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 1 Key enzymes and their regulators
4.3 Signaling molecules

Figure 4.3 1 GLUT4 translocation via insulin in/dependent pathways

Figure 4.3 2 GSV delivery mechanism
There are multiple signal molecules involved in the cascade (transduction) of signals under different conditions. The one of the most widely studied cases involves insulin (controlled condition) vs physical exercise (different ‘conditions’) signaling effect of GLUT4 translocation (this is not part of concentration/flux study type enumerated above because GLUT4 is not a metabolite but the end product of signal molecules transduction). GLUT4 can, therefore, be thought as part of signal molecule ‘level’.

GLUT4 translocation is thought to be important because GLUT4 is one of the main transporters in a human body and is thought to be responsible for controlling blood sugar level. Transporter and channels are proteins which let macronutrients and other chemicals to enter or exit the cells so that metabolism can happen. When metabolism happens inside the cells, there are enzymes and signal molecules (with transcription ‘level’ activities) which are playing roles. GLUT4, lets glucose get in and out from the cell. MTC lets lactic acid to get in and out. However, the reason why there has been more study of GLUT4 is because glucose absorption and secretion are directly related to GLUT (1 and 4) transporters. Therefore, there are more studies regarding GLUT4 translocation than any other transporters in T2D studies. Whether GLUT transporters and especially GLUT4 are truly responsible for T2D are still open to debate. In this model, even though GLUT4’s activity matters in leading to T2D, the primary cause of T2D onset is thought to come from visceral adipose tissues. This will be explicated in chapter 12.

Here are a few more pieces of information on GLUT4. GLUT4 resides in 50-70nm GSV (majority, scattered throughout cytoplasm) and larger structures, being derived from trans-Golgi network and endosomes. In an effort to identify GSV specifically, insulin-regulated amino peptidase (IRAP) was devised. GLUT4 and IRAP are highly colocalized while v-SNARE VAMP2 not in GSV
(however, IRAP and VAMP2 are both abundant in GSV). GSV varies in GLUT4 content (heterogeneous). IRAP-pHluorin and VAMP2-pHluorin can be used (prior on GSV GLUT4 and latter on GSV (56nm) and larger structures (150nm)). Within 3-4 minutes after insulin stimulation (insulin burst) IRAP-pHluorin shows rapid fusion of GSV while VAMP2 shows two events (burst-GSV- and continuous-larger structures-).

Rate of entry of glucose into cells is regulated by transporters. Blood glucose level is 5mM. Basal Glucose transporter in most cells has Km of 1mM. Less than blood glucose and so glucose is taken up easily. But in liver and pancreas glucose transporters have Km of ~15mM (close to blood glucose levels). This allows pancreatic cells to monitor glucose levels and thereby regulate insulin secretion. In liver cells, glucose is only taken up when it is very abundant. Then liver cells acquire glucose and convert it to glycogen and fatty acids.

Putting the controversy concerning GLUT4 aside, two main ways in triggering GLUT4 translocation will be discussed: insulin and exercise.

Insulin is more obvious reason for GLUT4 translocation. Insulin is secreted from pancreas when glucose (mostly) or AA (low to moderately) sources are detected by the pancreas. Then the pancreas releases insulin, which will stimulate certain organs/tissues/cells to absorb glucose. This research is going to use an example of muscle and is not going to differentiate various muscles in favor of simplicity.

Muscle absorbs glucose using GLUT4 when insulin binds to its sarcolemmal membrane’s Insulin Receptor (IR) α component. This will change conformation of β component of IR, which is inside the cell. This will attract Insulin Receptor Substrate (IRS) which will activate PI3 Kinase (PI3K). PI3K will then affect PIP2 and PIP3. PIP3 will affect PDK, which will activate Akt. Akt will in the end activate AS160 (a.k.a. TBC1D4). AS160 will then affect GLUT4 vesicles to be
merged with inner cellular membrane so that GLUT4 can be translocated on the cellular membrane. This process is still not entirely known and this research will cite one publication to elaborate what are thought to happen during this process. AS160 protein and rest of the process taking place is important and interesting because exercise induced GLUT4 translocation happens to have the same process (before which the transduction process is different) once it reaches AS160.

In many of the articles, AS160 affecting GLUT4 delivery to membrane surface process is still unexplained. It is hypothesized based on [ref] and a publication regarding SNARE protein, that AS160 brings the GLUT4 vesicle to the SNARE complex, which is responsible for snatching the vesicle and fusing the vesicle with the cellular membrane (Sonntag, Annika G 2012).

SNARE complex is a protein structure consisting of multiple smaller proteins: VAMP2, Syntaxin-4 and Munc18-c. When these structures are assembled to form a SNARE complex, the complex is responsible for any type of exocytosis behaviors of cells. The reason why it is exocytosis-ish is because in GLUT4 translocation, GLUT4 vesicle is snatched by SNARE and the vesicle is fused in the membrane so that GLUT4 are placed in the middle of bilayer membrane proteins. That is, GLUT4 are not secreted. In case of pancreatic β cells, where SNARE complex snatch insulin containing vesicles and fuse them with the β cell membrane, the insulin is secreted. Therefore, this is exocytosis-like behavior.

The articles suggest that GLUT4 vesicle is transported by microtubule then it is transported to actin. GLUT4 vesicle has AS160 and VAMP2 imbedded in the vesicle layer alongside Rab and GLUT4 proteins, when it is moved to the inner cellular membrane during the transportation. Whether AS160 and VAMP2 allure the vesicle to formation of SNARE complex is unknown;
however, it is assumed so. After the GLUT4 vesicle approaches the membrane surface, SNARE complex is assembled which fuses the vesicle to the cellular membrane.

<table>
<thead>
<tr>
<th>Isoform</th>
<th>Tissue Distribution</th>
<th>Afinity for Glucose</th>
<th>Km (mmol/L)</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td>Brain microvessels</td>
<td></td>
<td></td>
<td>Ubiquitous</td>
</tr>
<tr>
<td></td>
<td>Erythrocyte</td>
<td></td>
<td></td>
<td>Basal transporter</td>
</tr>
<tr>
<td></td>
<td>Placenta</td>
<td>High</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All tissues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLUT2</td>
<td>Liver</td>
<td>Low</td>
<td>15-20</td>
<td>Insulin independent</td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>β cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small intestine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLUT3</td>
<td>Brain neurons</td>
<td>High</td>
<td><1</td>
<td>Found in glucose dependent tissues</td>
</tr>
<tr>
<td></td>
<td>placenta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foetal muscle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All tissues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLUT4</td>
<td>Muscle cells</td>
<td>Medium</td>
<td>2.5-5</td>
<td>Insulin dependent</td>
</tr>
<tr>
<td></td>
<td>Fat cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heart</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The signal molecules listed here have been known to play central role in insulin triggered GLUT4 translocation. The individual signal molecule’s exact role is still being studied and modified with additional proteins being discovered, disregarded and discarded in the transduction process meanwhile. There are many studies which say the disruption of certain metabolites, enzymes or signal molecules are the main reasons for onset of T2D (experimented by artificially encoding genes to be knock-out of certain chemical of interest or measuring the level of certain chemicals of interest etc.); however, the onset of T2D is still undetermined. Disruption/alteration in signal molecule’s activity/concentration (IR to SNARE complex) may not be because they are the cause of T2D but because they may be merely biomarkers of T2D (byproducts as part of the T2D process). In other words, there may or may not be correlation but necessarily causation between onset of T2D and signal molecule’s activity/concentration deviation (Sonntag, Annika G 2012).

Another main way for triggering GLUT4 translocation is exercise. The similarity between insulin induced translocation and exercise induced translocation, as mentioned briefly above, is that both mechanisms share downstream process after AS160 protein is activated. Before the activation of AS160, the signal molecules and reactions taking place are different from insulin induced translocation. There are a few factors which are thought to cause pre-AS160 process. AMP/ATP ratio, ROS (Reductive Oxidative Species), calcium ion, NO (Nitrogen Oxide), temperature etc. Unlike insulin induced GLUT4 translocation where multiple signal molecules being involved in a single long chain of reactions, exercise induced GLUT4 translocation has multiple (parallel)
starting points, hence many short chains of reactions until they reach common convergence, i.e. AS160. Everything except AMP/ATP ratio will be explained further in muscle part of this chapter.

AMP/ATP ratio plays the following role. When one exercises, there will be fluctuations of AMP, ADP and ATP concentration. Assuming exercising without consuming any food, at the beginning, the residual ATP will be used, then creatine/phosphocreatine (CR/PCR) will generate ATP for a short period of time. Afterwards, glycogen storage will release glucose which will be used for glycolysis for anaerobic exercise. The first three (residual, CR/PCR and glycolysis) are anaerobic by nature and do not need oxygen for production of ATP. As a result of anaerobic exercise, pyruvate turns into lactate (oxidation taking place in TCA cycle is not quickly able to utilize pyruvate so some pyruvate changes into lactate) and the lactate cannot be used in muscle so it has to be released and absorbed by liver. Once absorbed by liver, depending on the necessity, the lactate will convert back to pyruvate and can be stored into glycogen or undergo gluconeogenesis (especially when exercising) or be used for TCA. This will be explained in chapter 6. Under aerobic exercise and resting condition, TCA cycle will have enough time to produce extra 34 ATPs utilizing FFA or KB, which will convert to AcCoA and be incorporated into TCA. The definition of aerobic and anaerobic will be explained in chapter 6. Either way, ATP will be generated. When exercising, ATP will be used for BMR, thermogenesis and exercise. Such extra energy expenditure in the form of exercise is to fuel muscle’s movement such as stretch and contraction. Breaking homeostasis of AMP/ATP ratio, AMP will increase due to higher energy expenditure when exercising. This higher ratio will in turn activate AMPK (AMP Kinase), which is a protein responsible for numerous reactions, not just limited to muscle’s exercise induced GLUT4 translocation. AMPK will activate AS160 and probably the same process mentioned in insulin induced GLUT4 translocation will happen.
So far, the research has introduced what happen to GLUT4 translocation arising from insulin and exercise effects, to explain signal molecule ‘level’. There may be different signal molecule reactions happening for glucagon/adrenaline binding on muscle/other organ/tissue/cell receptors and under resting/exercise/fast/postprandial conditions. With limited resources and time, it would be challenging to incorporate all of such information into one thesis. However, such information is of absolute necessity to fully understand the signal molecule process.

<table>
<thead>
<tr>
<th>Signal Molecules</th>
<th>Positive regulation</th>
<th>Negative regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRS</td>
<td></td>
<td>PTP, PKC, S6K</td>
</tr>
<tr>
<td>AKT</td>
<td>mTORC2</td>
<td>Glnac, TRB3</td>
</tr>
<tr>
<td>PKC</td>
<td>DAG, Glnac, FFA</td>
<td></td>
</tr>
<tr>
<td>GSK3</td>
<td>PP1, Phk</td>
<td>Cal, PKA, FFA</td>
</tr>
<tr>
<td>mTOR</td>
<td>Amino acids</td>
<td></td>
</tr>
<tr>
<td>S6K</td>
<td>Amino acids</td>
<td>AMPK</td>
</tr>
<tr>
<td>TSC</td>
<td>AMPK</td>
<td>AKT</td>
</tr>
<tr>
<td>cAMP</td>
<td>Gprt</td>
<td>PDE3</td>
</tr>
<tr>
<td>PKA</td>
<td>cAMP</td>
<td></td>
</tr>
<tr>
<td>PDE3</td>
<td>AKT</td>
<td>PKA</td>
</tr>
</tbody>
</table>

Table 4.3 2 Signaling molecules and their regulators in GLUT4 transport pathway
4.4 Transcriptional level

In most of the models, transcription level or gene level are not usually described. It is usually because simpler models are easier to make and also transcription level are for the long term effect which could take up to a few hours. For the modelling purpose, transcription level is not necessary. In this model, however, one transcription factor and its gene out of many other transcription level chemicals, called Hypoxia Induced Factor (HIF-1) are introduced. Other transcription level chemicals and their corresponding genes often found in experimental data in T2D and related diseases (such as atherosclerosis, high cholesterol etc.) are FOXO (Forkhead Box Protein), SREBP (Sterol Regulatory Element Binding Protein) and CHERP (Calcium Homoeostasis Endoplasmic Reticulum Protein) etc. The main reason why such transcription level chemicals and genes are related to not only T2D but also other diseases is because many of transcription level chemicals and genes share same metabolic pathways for normal human beings. That is, for diseased humans, some parts of the transcription level processes in the same metabolic pathway malfunction while other processes may or may not function normally. Therefore, SREBP, which is responsible for high cholesterol disease due to its cholesterol controlling mechanism, play a role in leading to T2D because FFA concentration in T2D patients also change. However, the research would like to introduce a transcription factor (HIF-1) which is more unique and thought to be fundamental to T2D.

Two snippets of information regarding HIF-1 and T2D research are introduced here.

For the first part of the information, it has been long thought that T2D patients are obese and the obesity is the driving force for insulin resistance. To further explain how obesity induces insulin resistance, research on HIF-1 alteration in adipose tissues and the adipose tissues’ changed
metabolism somehow causing insulin resistance were introduced. However, a few weaknesses in this explanation pointed out.

First, the definition of obesity is not clear and there are different types of obesity. In many of the old to recent articles, the experiments performed on patients to measure their obesity has been surprisingly wrong. An individual is defined to be underweight/lean/overweight/obese depending on Body Mass Index (BMI). BMI is a function of height and weight. It is easy to think that for the given gender and age and height, if one’s weight is appreciably high, that person is thought to be obese. The usual image of obese people is those who have portending belly and with extra fat on limbs. This, however, is an image limited to subcutaneous fat. Subcutaneous fat are adipose tissues sitting under the skin and is the main reason why people become obese. This type of fat has less constriction in terms of how and where it can expand/shrink. However, there are people who look lean but in fact are more likely to have T2D and cholesterol related diseases. This group of people tend to have more visceral (around organ) fat. This type of fat is relatively more confined in terms of movement. Those who possess high visceral fat may have lower BMI. Therefore, it is necessary to measure subcutaneous/visceral fat when it comes to T2D studies.

Second, the conventionally defined obese people do not necessarily have T2D. There are group of people who have high BMI but are metabolically healthy. This group of people is called MHO (Metabolically Healthy Obese). They, indeed, will be less likely to have T2D or cardiovascular related diseases.

Third, the mechanism in HIF-1 expression altered adipose tissues’ metabolism causing ‘insulin resistance (probably muscle)’, ‘energy expenditure’ and ‘β cell glucose intolerance’ needs to be understood better (Gunton, Jenny E 2005). One should bear in mind that correlation is not causation. HIF-1 may or may not be the direct cause of the listed phenomena, so it is premature to
say that HIF-1 is cause. For example, if HIF-1 is the cause of insulin resistance, how the metabolism in insulin resistant organs/tissues/cells changes as a result of HIF-1 expression alteration in adipose tissues should be thoroughly explained.

For the second part of the information, there were a few different researches in vivo/in vitro experiments on humans and animals to measure HIF-1 level and the corresponding metabolism change in different organs/tissues/cells (Girgis, Christian M 2012). However, this also comes with a few weaknesses.

First, in vitro data may not be applicable to in vivo situations. This is well known but oft-disregarded fact. Up to these days, many researchers use in vitro data to fit their models’ parameters. There should be justification and study on how and when in vitro can be used for in vivo.

Second, how the HIF-1 level changes in different organs/tissues/cells under healthy or T2D condition is not well understood. HIF-1 level change in different cells extracted from different organs/tissues/cells are studied (Wang, Xiaohui L 2009). It is one thing to study individual cell’s HIF-1 expression change and its metabolism changes and it is another to study how different cells from different organs/tissues/cells affect each other which lead to HIF-1 change and T2D.

Third, in case of muscle and adipose tissues, the exact definition of them is required. Muscle can be categorized in different ways. White muscle and red muscle, active muscle and inactive muscle when exercising etc. In many researches, one of the thigh muscle is well studied due to its high involvement in motions. If one generalizes muscle, the model result may not be accurate. Same goes for the adipose tissues. Subcutaneous, visceral and ectopic fat, white adipose tissue (WAT)
or brown adipose tissue (BAT) are very different. Normally, WAT is what we refer to as fat in subcutaneous and visceral fats. BAT is near spine, shoulders, neck and back.

Fourth, adipose tissue acting as a master regulator of bodily metabolism is suggested in many articles. An explanation for this may give an answer T2D propagation, which is not available in any previous research. This is an extension of the second point of second snippet. Many articles point out that fat is the master regulator for body’s metabolism change in T2D and other conditions. It is necessary to prove how the adipose tissue plays this role.

There are several ideas revolving around the onset of T2D. This will be explained in later chapter 12. The thoughts on how HIF-1 is related to T2D is explained in chapter 12. However, this chapter will explain what HIF is first.

Hypoxia inducible factors (HIFs) are master-regulators of cellular responses to hypoxia, and thus are crucial for survival. HIFs also play a role in regulating cellular processes in β-cells, liver, muscle, and adipose tissue, have effects on the regulation of weight, and play a role in type 2 diabetes (T2D). HIF target genes, including genes encoding proteins involved in angiogenesis, apoptosis, cell cycle progression, glucose uptake, glycolysis, and lipid metabolism. Composed of two parts (α and β – β is called ARNT). Two major risk factors for T2D are insulin resistance and β cell dysfunction. Disturbances in HIF-1 signaling may play a detrimental role at several stages in diabetic pathogenesis, including the innate failure of β cells to secrete sufficient insulin, insulin resistance, adipocyte dysfunction etc (Pillai, Renjitha 2015).

In pancreas, islets isolated from people with T2D have a 90% decrease in ARNT expression. β cell ARNT KO (β ARNT) had reduced glucose tolerance and impaired in vivo and in vitro GSIS, and similar changes in gene expression to those seen in T2D islets, including decreased HNF4a, insulin
receptor, aldolase, phosphofructokinase and others. β cell culture models (MIN6) shows consistent result. Significantly impaired insulin secretion, reduced glycolytic enzyme expression, and dysregulation of metabolic pathways. Carbohydrate-responsive element-binding protein (ChREBP) as a negative regulator of ARNT and has suggested that ChREBP-mediated repression of the HIF complex might contribute to glucotoxicity induced β cell dysfunction. β-HIF-1α null mice had severely reduced glucose-stimulated ATP generation and therefore impaired insulin release. VHL is required for HIF proteolysis, and thus deletion or inactivating mutations increase HIF protein. Interestingly, mice with β cell deletion of VHL have markedly impaired insulin secretion and glucose; both depletion of ARNT or HIF-1α and excess of HIF-1α and HIF-2α (with are both increased with VHL deletion) impair β cell function, suggesting an ‘inverse U’ relation. Use of iron chelators resulted in improved insulin secretion and normalized ARNT mRNA and downstream gene expression in islets from people with T2D. Deletion of FIH, which causes relatively modest increases in HIFs, also results in improved glucose tolerance in mice challenged with high-fat diet (HFD). Human islets from people with T2D have decreased expression of both HIF-1α and ARNT, and increasing HIF-1α with iron chelation improved human islet function and gene expression (Yamaguchi, Miwa 2015).

In liver, liver dysfunction is a key component of T2D and is both affected by and contributes to the condition. Cardinal features include increased and inappropriate hepatic glucose production (HGP) and reduced hepatic insulin sensitivity. Non-alcoholic fatty liver diseases (NAFLD) are common in T2D and further exacerbate metabolic dysfunction. It has been shown that feeding mice with a high-fat/sucrose diet that causes fatty liver also causes upregulation of hepatic HIF-1α. When mice with a hepatocyte specific HIF-1α deletion were fed this diet, they exhibited more severe impairment of glucose tolerance and peripheral insulin resistance. Consistent with the
decrease in ARNT mRNA in T2D islets, ARNT mRNA and protein are also reduced in human T2D livers. Short-term hepatic ablation of ARNT in mice using adenovirus injection increased HGP and impaired glucose tolerance. Conversely, deletion of hepatocyte VHL substantially increased hepatic HIF-1α and HIF-2α proteins and caused life threatening hypoglycemia and reduced ketones (Yamaguchi, Miwa 2015).

In muscle, HIF-1 plays a role in this dynamic process by regulating glycolytic and oxidative pathways of energy production, mitochondrial respiration and muscle fiber composition. Its role is suggested by three observations: expression is higher in fast twitch muscles that rely on glycolysis and is upregulated during bursts of activity and in chronic hypoxia. HIF-1α upregulated GLUT4 mRNA after 10 min of electrically induced contraction of isolated soleus muscle; thus HIF-1α might facilitate glucose transport following contraction (Yamaguchi, Miwa 2015).

In adipose tissues, obesity is the strongest acquired risk factor for T2D: it gives a 10-fold higher risk in men and 30-fold higher risk in women. Adipose tissue hypoxia, and this appears to drive an inflammatory response. In obese humans, reduced oxygen pressures within abdominal fat associate with greater macrophage infiltration. Collectively, these observations suggest that (i) adipose tissue hypoxia is deleterious and (ii) that defects in the adipocyte response to hypoxia may contribute to the pathogenesis of insulin resistance and diabetes. Adipocyte-specific HIF-1α and adipocyte-specific ARNT knockout mice report the protection of these mice from the consequences of HFD. Specifically, these mice were resistant to weight gain, and had substantially better glucose tolerance and insulin sensitivity. Increased insulin-stimulated Akt phosphorylation was seen in WAT, liver and muscle in adipocyte specific HIF-1α knockout mice, suggesting crosstalk between adipose tissue and other sites. These mice also displayed central effects with an increase in core temperature and energy expenditure (Yamaguchi, Miwa 2015).
<table>
<thead>
<tr>
<th>Transcription factors</th>
<th>Positive regulation</th>
<th>Negative regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SREBP</td>
<td>S6K, AKT, PKC</td>
<td>cAMP, FOXO, AMPK</td>
</tr>
<tr>
<td>ChREBP</td>
<td>Glucose</td>
<td>PKA, AMPK</td>
</tr>
<tr>
<td>PPARg</td>
<td>AKT, FFA</td>
<td>AMPK</td>
</tr>
<tr>
<td>PPARa</td>
<td>PKA, FFA, PGC</td>
<td></td>
</tr>
<tr>
<td>CREB</td>
<td>PKA</td>
<td>AKT</td>
</tr>
<tr>
<td>CEBPa</td>
<td>cAMP</td>
<td>PKC</td>
</tr>
<tr>
<td>TRB3</td>
<td>PI3K, PKC, PPAR, PGC1</td>
<td></td>
</tr>
<tr>
<td>PGC1</td>
<td>FOXO, CREB</td>
<td>AKT</td>
</tr>
<tr>
<td>FOXO</td>
<td>Glnac, AMPK</td>
<td>AKT, PPARg</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP</td>
<td>AKT, PKA, ATP</td>
</tr>
</tbody>
</table>

Table 4.3.3 Transcription factors and their regulators
Before going on to organ models and metabolism, how the blood- organs/tissues/cells macronutrient/hormone transport is done will be shown. Since metabolites/signal molecule/transcription factors are inside the cells of organs/tissues, they are not part of this chapter’s discussion. Arterial blood enters organs/tissues and venous blood exits organs/tissues. In between the two regimes of blood, there is a cluster of organ cells, capillary and extracellular matrix (ECM). In many organ/tissue/cell models, including this research’s, the ‘cluster’ disregards ECM, for convenience and it does not cause big errors and most macronutrients in ECM have the same concentration to either capillaries or organ cells in different organs/tissues. The capillaries inside the ‘cluster’ carry hormones and macronutrients which will be exchanged/react with between capillaries and organs’ cells (epithelial cell is the surface cells of the organ). These organ cells’ and capillaries altogether are ‘organs’, to be specific, in this model and others, for practical
purposes. The concentration of macronutrients inside capillaries are thought to be in thermodynamic equilibrium with organ cells at homeostasis. That is, the homeostatic concentration of macronutrients in organ cells and capillaries would have constant concentrations. Both capillaries and either arterial or venous concentration are assumed to have same concentration for simplicity. Postulating that capillary and either arterial/venous concentrations are the same is accomplished by assuming tissue to be ideal CSTR (Constantly Stirred Tank Reactor, sudden concentration change) rather than ideal PFR (Plug Flow Reactor, axial concentration difference). Otherwise, it will be necessary to consider varying concentration inside capillaries spanning from the entrance (arterial) to exit (venous) side of organs/tissues. It is true that arterial and venous concentration change alongside the axial direction would not matter due to convection where capillaries would have less effect in terms of convection, i.e. diffusion and reaction would matter more; however, for both simplicity and insignificant errors, one can assume the CSTR condition in capillaries (and in fact, organ cells as well). This research, however, further simplifies the ‘cluster’. The capillaries and the organ cells are altogether forming hypothetical organ compartment. This, however, can cause confusion in what concentration of macronutrient one should use caused by thermodynamic equilibrium.

To summarize, one can simplify ‘Arterial Blood → Capillaries, ECM, Organ Cells → Venous Blood’ to ‘Arterial Blood → Capillaries, Organ Cells → Venous Blood’ to ‘Arterial Blood → Hypothetical Organ → Venous Blood’. In this model, capillaries and organ cells without ECM taken into account. This way, this research can differentiate different concentrations in organ cells and capillaries without ambiguity of the concept of ‘hypothetical organ’.
6. DIFFERENT ORGANS/TISSUES/CELLS (BRAIN, LIVER, MUSCLE, ADIPOSE TISSUES, PANCREAS, ERYTHROCYTE) AND BLOOD CIRCULATION FOR WHOLE-BODY MODELING

<table>
<thead>
<tr>
<th></th>
<th>Rate (μmol/sec, 70kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic Glucose Production</td>
<td>14.35185185</td>
</tr>
<tr>
<td>Total Glucose Uptake</td>
<td>14.35185185</td>
</tr>
<tr>
<td>Brain</td>
<td>6.481481481</td>
</tr>
<tr>
<td>Peripheral (Muscle and Adipose Tissues)</td>
<td>3.240740741</td>
</tr>
<tr>
<td>Liver</td>
<td>1.851851852</td>
</tr>
<tr>
<td>Gut</td>
<td>1.851851852</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>0.925925926</td>
</tr>
</tbody>
</table>

Table 6.1 Different organs’ glucose uptake and release rates

6.1 Brain
Brain cells are hard to characterize into one type of cell. In many articles, astrocytes and neurons seem to be the most popular choices due to their abundance and characteristic metabolism. The brain in this model does not play a big role in T2D compared to liver, muscle, adipose tissue and pancreas. Therefore, only the basic brain metabolism representing an arbitrary hypothetical brain cell will be modelled. Above is brain metabolism schematics found in both astrocytes and neurons. Liver normally uses glucose for its fuel but under fasting conditions, it can switch to KBs. Other sources of fuels are not able to cross BBB (Brain Blood Barrier); therefore, unlike other organs outside the barrier, brain cannot use FFA or AA freely. For absorption of glucose, brain uses GLUT2 transporter (no GLUT4 present), which is responsible for facilitated diffusion (transporter needed) of glucose. The Km for GLUT2 is lower than GLUT4 so glucose is more easily absorbed into the organ (Gjedde, A 1981).
6.2 Muscle

Here are some of the issues to keep in mind: Insulin independent translocation of GLUT4 - Pathway (Exercise and Muscle). Exercise stimulates GLUT4 translocation in muscle. Exercise modality matters (duration and intensity). Both insulin and exercise can increase GLUT4 (recycle) and translocation rate (exo- and endo-). Exercise effect can last up to 48 hours (GLUT4 increase vs mRNA). Facts and Thoughts: Higher demand for energy during exercise increases AMPK (AMP:ATP) which increases GLUT4 translocation. Dilated blood vessel has an increased surface area which increases transport of glucose. Given that insulin level will remain the same, insulin will impinge synergic effect on increased glucose transport (by dilation) where GLUT4 galore are present on sarcolemma due to AMPK level. This may have something to do with GLUCOSE SHUNT model (or why does exercise absorb glucose a lot suddenly?) (Kim, Jaeyeon 2006).

To answer insulin independent translocation of GLUT4 pathway, which was explained briefly above as well,

Figure 6.2 2 Plasma circulating versus intramuscular fuel usage
Figure 6.2 3 % of VO2max over exercise intensity

Figure 6.3 4 Lactate concentration over exercise intensity
more detailed explanations are given here. There are multiple factors:

AMPK. During exercise, cellular ATP resynthesis may become insufficient due to lowered levels of CP and glucose (what about glycogen and FA?), which increases AMP:ATP. Increase in AMP:ATP ratio promotes phosphorylation of LKB1 (aka STK11), which phosphorylates and activates AMPK, which phosphorylates AS160. Similar to IDTG, IITG by exercise involves Rab-GTP protein and TUG. AMPK also phosphorylates HDAC5, promoting the activation of MEF2 and GEF. These transcription factors are related to GLUT4 expression. In short, AMPK can regulate translocation and expression (Xu, Hongyang 2015).

Calcium. Calcium from sarcoplasmic reticulum via calcium ion pumps will increase energy demand and ATP consumption, which increases AMPK and triggers previously mentioned cascades (indirect effect). Exercise increasing calcium level vs increasing E demand (order?). There is a hypothesis that calcium can directly activate AMPK via CaMKK, independent of energy demand (not proven) (Browning, Jeffrey D 2011).
ROS. Reactive Oxygen Species (ROS) may be involved in glucose uptake. Administration of vitamin E (antioxidants) after exercise on T1D patients attenuated glucose uptake (Chasiotis, D 1982).

NO. Nitric Oxide (NO) comes from three NO synthase: iNOS, eNOS, nNOS. NO is related to vasodilation of endothelium for nutrient distributions to active muscles, chemical removals and homeostasis. Infusion of L-NAME (NOS inhibitor) in exercising humans with 60% VO2max (moderate intensity, not low) shows decreased glucose uptake in both healthy and T2D patients (no blood flow, insulin and glucose concentration change). However, excessive NO can induce insulin resistance via S-nitrosation on β IR, and NO biding on IRS-1 and AKT. Exercise may also reduce effect of iNOS (which causes stress and inflammation) (Bolinder, J 2000).

Muscle temperature. In animals, increase in skeletal muscle temperature stimulated AMPK and Akt even after these proteins were inhibited by agents. Exercise induced ROS + NO -> RNS provokes a stimulus for translocation. Thoughts. GLUT4 translocation in muscle can be controlled by insulin, FFA (lipotoxicity) and exercise etc. Exercise effect on GLUT4 may be by hormones (adrenaline…), nerves (sympathetic vs parasympathetic) or mechanics (motions…). Mechanical effect of exercise may be due to temperature rise arising from motions and E demand which leads to exothermic reactions (Bolinder, J 2000).

Actin filament. In actin filament (cytoskeleton), there are Rac1 (GTPase) and Myo1c. Exercise induces GTP increase which activates Rac1 which is responsible for exocytosis rate (Rab or TUG). Myo1c along with numerous other may be involved in translocation (Browning, Jeffrey D 2011).

Here is some information relevant to exercise.
Light, moderate and vigorous activity: One MET, or metabolic equivalent, is the amount of oxygen consumed while sitting at rest. Light intensity: < 3 METS. Moderate intensity: $3 - < 6$ METS. Vigorous intensity: ≥ 6 METS. Glucose utilization and production can be increased more than 3–4 times without perturbing the arterial glucose concentration. Highly coordinated interaction between muscle and liver works to prevent hypoglycemia during exercise.

‘Glucose Shunt’ concept, most of the increased glucose utilization is shunted to the essential organs/tissues/cells during exercise (i.e., skeletal muscle) making glucose uptake by skeletal muscle increase by 10-fold. Thus, the plasma glucose utilization in other organs/tissues/cells is kept almost constant.

At rest, liver and heart are primary consumers of blood lactate, while skeletal muscle, adipose tissue and “other organs/tissues/cells” produce lactate. Pyruvate exchange occurs primarily between skeletal muscle (uptake) and “other organs/tissues/cells” (release) due to its small arterial concentration; elsewhere, its effect is negligible. During exercise, lactate release keeps increasing in skeletal muscle, while the pyruvate flux changes from net uptake to net release. Only liver consumes alanine for gluconeogenesis, while inactive muscles in “other organs/tissues” are the main sources in addition to skeletal muscle. Whole-body lipolysis rate is about 2 times greater than the whole-body fatty acid oxidation rate, which means that 50% of fatty acids are re-esterified to TG. About 15% of re-esterification occurs in adipose tissue and liver takes up the extra fatty acids from the blood. Liver utilizes fatty acids as a main fuel. About half of the fatty acids taken up by liver are oxidized and half re-esterified to TG. Since adipose tissue lacks glycerol phosphorylase, glycerol produced from lipolysis cannot be directly utilized in adipose tissue for triglyceride synthesis. Therefore, liver takes up all glycerol produced in adipose tissue, and utilizes it as a gluconeogenic precursor and a substrate for TG synthesis. While whole-body lipolysis rate is
increased 2–3 fold during exercise, whole-body fatty acid oxidation is increased 3–4 fold. Thus, the fraction of fatty acids being re-esterified into TG decreases.

Besides hormonal activation/deactivation, there are neural activation of metabolic fluxes during exercise. For skeletal muscle and heart, calcium is the one of the main activators for metabolic reaction fluxes such as glycolysis, glycogenolysis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation.

Glucagon–insulin ratio affects glycogenolysis and all gluconeogenesis steps in liver. Heart and skeletal muscles have no receptor for glucagon, but they can respond to an epinephrine signal during exercise. Therefore, the same can be assumed for metabolic flux i (viz., glycogenolysis, glucose phosphorylation by hexokinase, lipolysis, and fatty acid oxidation). Lipolysis in adipose and GI organs/tissues is modulated by both epinephrine and insulin levels. Secretion of glucagon and insulin from the pancreas is affected by blood glucose levels, but during moderate and short duration exercise, a direct neural stimulation and blood epinephrine levels are more significant because the arterial glucose concentration is almost constant. Blood epinephrine level changes with a step increase in work rate according to an empirical relation. In response to a step increase in work rate, blood flows in heart (H) and skeletal muscle (SM) increase, while blood flows in the gastrointestinal (GI) and liver (LI) organs/tissues decrease. For skeletal muscle, ATP hydrolysis rate depends on a work rate (WR) (Kim, Jaeyeon 2006).

On the other hand, at maximal intensity exercise, the oxygen consumption in heart increases up to 4 times its resting level. ATP hydrolysis rate applied in each organ/tissue, skeletal muscle consumed more than 85% of total ATP production during exercise. Indeed at exercise onset the ATP turnover rate in skeletal muscle increased by about 40-fold. Since glycogen is more readily available for utilization than fatty acids, the contribution from carbohydrates went up to 95% at 5
min from 30% at rest. Shown that exercise activates glucose transport in skeletal muscle by stimulating translocation of glucose transporters (GLUT-4) possibly via AMP kinase or calcium signaling. It was hypothesized that exercise increases glucose phosphorylation by making hexokinase (HK) enzyme bind to mitochondria where HK has an abundant access to ATP and becomes less sensitive to product inhibition by glucose-6-phosphate. Carbohydrate utilization increases with exercise intensity. While fatty acids utilization is increased for the mild and moderate intensity exercise, it is down-regulated at higher intensity (over 65% VO2 max.) (Kim, Jaeyeon 2006).

In human skeletal muscle, a single exercise bout results in increased skeletal muscle GLUT4 mRNA immediately after exercise (173, 174, 201), and it remains elevated for several hours after exercise (173, 174), but appears to return to preexercise levels within 24 h(173). The transport of glucose stimulated by insulin or muscle contraction is increased in proportion to the increase of GLUT-4, as well as their translocation rate to the cell membranes. This effect may remain for up to 48 hours after physical activity, suggesting the need of practice in a chronic manner. Also, exercise is critical in the treatment and prevention of type 2 diabetes. Acute exercise activates alternative molecular signals that can bypass defects in insulin signaling in skeletal muscle, resulting in an insulin-independent increase in glucose uptake. Exercise training results in increased skeletal muscle mitochondria and GLUT4 protein expression (Kim, Jaeyeon 2006).

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>% of VO2max and Corresponding Rest (30 Minutes)</th>
<th>40% of VO2max</th>
<th>55% of VO2max</th>
<th>75% of VO2max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrients</td>
<td>% of VO2max and Corresponding Rest (30 Minutes)</td>
<td>40% of VO2max</td>
<td>55% of VO2max</td>
<td>75% of VO2max</td>
</tr>
<tr>
<td>Nutrients</td>
<td>% of VO2max and Corresponding Rest (30 Minutes)</td>
<td>40% of VO2max</td>
<td>55% of VO2max</td>
<td>75% of VO2max</td>
</tr>
</tbody>
</table>
Table 6.2.1 Muscle macronutrient concentration at different exercise intensities

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>15 Minutes</th>
<th>30 Minutes</th>
<th>45 Minutes</th>
<th>60 Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Proteins</td>
<td>0.8-0.9</td>
<td>0.8-0.9</td>
<td>0.8-0.9</td>
<td>0.8-0.9</td>
</tr>
<tr>
<td>Ketones</td>
<td>0.66-0.67</td>
<td>0.66-0.67</td>
<td>0.66-0.67</td>
<td>0.66-0.67</td>
</tr>
<tr>
<td>Fatty Acid</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Table 6.2.2 RQ over time

<table>
<thead>
<tr>
<th>Time</th>
<th>15 Minutes</th>
<th>30 Minutes</th>
<th>45 Minutes</th>
<th>60 Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental RQ at 59% of VO2max</td>
<td>0.96</td>
<td>0.92</td>
<td>0.91</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table 6.2.3 RQ of macronutrients

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>RQ</th>
<th>% VO2max Range</th>
<th>Exercise Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>1</td>
<td>90-100% of VO2max</td>
<td>Highest Intensity (VO2max)</td>
</tr>
<tr>
<td>Proteins</td>
<td>0.8-0.9</td>
<td>80-90% of VO2max</td>
<td>High Intensity (Anaerobic)</td>
</tr>
<tr>
<td>Ketones</td>
<td>0.66-0.73</td>
<td>70-80% of VO2max</td>
<td>High Intensity (Aerobic/Cardio, Probable LT)</td>
</tr>
<tr>
<td>Fatty Acid</td>
<td>0.7</td>
<td>60-70% of VO2max</td>
<td>Moderate Intensity (Fat Burning)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>RQ</th>
<th>% VO2max Range</th>
<th>Exercise Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>1</td>
<td>90-100% of VO2max</td>
<td>Highest Intensity (VO2max)</td>
</tr>
<tr>
<td>Proteins</td>
<td>0.8-0.9</td>
<td>80-90% of VO2max</td>
<td>High Intensity (Anaerobic)</td>
</tr>
<tr>
<td>Ketones</td>
<td>0.66-0.73</td>
<td>70-80% of VO2max</td>
<td>High Intensity (Aerobic/Cardio, Probable LT)</td>
</tr>
<tr>
<td>Fatty Acid</td>
<td>0.7</td>
<td>60-70% of VO2max</td>
<td>Moderate Intensity (Fat Burning)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>RQ</th>
<th>% VO2max Range</th>
<th>Exercise Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>1</td>
<td>90-100% of VO2max</td>
<td>Highest Intensity (VO2max)</td>
</tr>
<tr>
<td>Proteins</td>
<td>0.8-0.9</td>
<td>80-90% of VO2max</td>
<td>High Intensity (Anaerobic)</td>
</tr>
<tr>
<td>Ketones</td>
<td>0.66-0.73</td>
<td>70-80% of VO2max</td>
<td>High Intensity (Aerobic/Cardio, Probable LT)</td>
</tr>
<tr>
<td>Fatty Acid</td>
<td>0.7</td>
<td>60-70% of VO2max</td>
<td>Moderate Intensity (Fat Burning)</td>
</tr>
</tbody>
</table>

Table 6.2.4 Exercise intensities in terms of % VO2max
6.3 Adipose Tissues

The nutritional trend book named Big Fat Surprise gist is followed. Despite many attempts to reach a conclusion on which diet is best for heart/vascular health, a consensus is not made. The US diet trend has been the following: Low fat (Total fat consumption being low –caloric content--; food pyramid; middle-aged-male-centric; focused on cholesterol level; obesity and T2D increased). Transfat (Solidified unsaturated fat; heart health; cholesterol, obesity and T2D increased). Mediterranean (Unsaturated fat should being high—olive oil—caloric content--; obesity and T2D unaffected). Atkins (Low carb diet; UNFAO 2008 findings show no correlation between dietary fat and heart disease or cancer) (Bolinder, J 2000).

Here are adipose tissue relevant information. There are concepts of hypertrophy vs hyperplasia. Hypertrophy means adipose cells grow in volume as a result of lipid droplet growth while hyperplasia means count of adipose cells increase. In humans, hypertrophy is usually a reason for
gaining weight. Obese individuals may have hyperplasia too. In some of the hypertrophic cases, due to hypoxia, angiogenesis will be induced. However, angiogenesis may not be able to supply enough O2 due to large demand of O2 by adipose cells. This may lead to hypoxic fibrosis. MHO (Metabolically Health Obese) have less fibrosis, inflammation and visceral fat and improved glucose and lipid homeostasis and smaller adipose tissues (compared to non-MHO obese). Increased expandability-less fibrosis- vs increased adiposity-smaller adipose tissues-. Paradox is, whichever the cause for MHO phenomenon is, MHO may get healthier as they get more obese.

Adipose tissues are master communicator with other organs/tissues/cells. Nutritional, Neural pathways, Adipokines are methods adipose tissues use to communicate. Nutritional. This is because of lipid metabolism during fasting/postabsorption. Neural pathways. This is because of sympathetic-lipolysis- and parasympathetic, communication to brain for leptin sensitivity (in mice) via afferent nerves. Adipokines. These include autocrine, paracrine, endocrine such as TNF-a and leptin.

Insulin effects fat to be stored in WAT and BAT to reduce energy expenditure by 50%. When the body goes through ketogenesis due to fasting, more BAT could be produced (beige). Ceramides and sphingolipids may be more responsible for IR progression, not TAG.

There are multiple lipases and proteins involved in adipose tissue metabolism. ATGL (Adipose Triacylglyceride Lipase). This is related to transcriptional level regulation (-2hr) by insulin and post-transcriptional level regulation by perilipin-1, which is also regulated by insulin- via cAMP. HSL (Hormone Sensitive Lipase). This lipase is acutely affected by insulin via cAMP. MSL (Monoglyceride Sensitive Lipase). This is acutely affected by insulin via cAMP. LPL (Lipoprotein Lipase). This is affected by insulin as well. Perilipin. This is acutely affected by insulin via cAMP (Bolinder, J 2000).
7. RELEVANT DATA

Here is science of fasting and weight loss. Ghrelin-hunger hormone. HGH-sparing protein, mobilizing FA. Insulin-dependent lipolysis. Ketone Bodies-fasting. Leucine-protein synthesis. When low carb diet: metabolism down, muscle loss. When fasting: metabolism up, fat loss. Resting energy expenditure increases in early starvation, accompanied by an increase in plasma norepinephrine. This increase in norepinephrine seems to be due to a decline in serum glucose and may be the initial signal for metabolic changes in early starvation.

Energy requirement per day is calculated in this research. $1\text{TAG} \rightarrow 3\text{FA} + \text{Glycerol}$ is assumed. Assuming that a human body needs fat as the only external food source for daily BMR, the following calculation can be done. BMR: 1500 [kcal/day], FFA energy content: 9 [kcal/g], palmitic molecular weight: 256.42 [g/mol]. A daily BMR FFA uptake requirement is assumed 1500/9 [g/day] = 166 [g/day]. Then one can change the aforementioned requirement to moles for ratio comparison: 1500/9/256.42 [mol-FA/day]. Assuming 2 glycerols become 1 glucose (GNG), TAG breakdown can be thought to produce 6FA and 1 glucose. 1500/9/256.42*(1/3)*(1/2) [mol-glucose/day]. By reverting to weight scale for understanding: 180 [g-glucose/mol] * 1500/9/256.42*(1/3)*(1/2) = 19[g-glucose/day], can be obtained. As a daily glucose requirement by organs/tissues/cells, especially for erythrocytes is 14.4 [g/day], maybe rest of the glucose is used for other organs/tissues/cells. The remaining glucose can be possible cause of dawn phenomena in IR patients.
8. FATTY ACID TYPES AND METABOLISM

NAFLD (non-alcoholic fatty liver disease). Serum FFA profiles of NAFLD patients were significantly higher compared with HC, and obese NAFLD patients presented the poorest FFA profiles. Furthermore, 14:0 (myristic acid) and 16:1 (palmitoleic acid) are of promising diagnostic value in the early diagnosis of NAFLD especially among normal weight individuals.

Elevated serum 16:1 profile is also significantly related to abdominal adiposity and fatty liver disease (FLD). A rich source of 14:0 has been reported to acutely raise LDL levels. Beneficial effect of Mediterranean diet in improving cardio-metabolic health and plummeting cardiovascular related morbidities and mortalities has been reported. (Presumably) Down-regulating the action of 7α-hydroxylase (a rate limiting enzyme in bile synthesis and cholesterol regulation), thereby increasing fecal excretion of cholesterol. Both 14:0 and 16:1 can be derived from diets and whether their dietary intakes were associated with serum levels were not studied (Bolinder, J 2000).

Here are lipoprotein miscelle studies regarding consumption of nutrients: Higher intakes of saturated fatty acids leads to higher LDL cholesterol, higher HDL cholesterol, lower triglycerides, lower total cholesterol-to-HDL cholesterol ratio. Whereas increased carbohydrate intake causes lower LDL cholesterol, lower HDL cholesterol, higher triglycerides, higher total cholesterol-to-HDL cholesterol ratio (Bolinder, J 2000).
<table>
<thead>
<tr>
<th>Diet</th>
<th>Total Calories/Day</th>
<th>Carbohydrate Grams/Day (cal %)</th>
<th>Protein Grams/Day (cal%)</th>
<th>Fat Grams/Day (cal %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard American Diet (SAD)</td>
<td>2200</td>
<td>275 (50)</td>
<td>82.5 (15)</td>
<td>85 (35)</td>
</tr>
<tr>
<td>Paleolithic Diet</td>
<td>1388</td>
<td>129 (39)</td>
<td>92 (27)</td>
<td>46 (28)</td>
</tr>
<tr>
<td>Mediterranean Diet</td>
<td>1823</td>
<td>211 (47)</td>
<td>88 (20)</td>
<td>59 (28)</td>
</tr>
<tr>
<td>Ketogenic Diet (Similar to Early Atkins Diet, Low Carb)</td>
<td>Variable</td>
<td>13 (5)</td>
<td>52 (20)</td>
<td>87 (75)</td>
</tr>
</tbody>
</table>

Table 8.1 Different diets’ macronutrient composition

<table>
<thead>
<tr>
<th></th>
<th>14:0</th>
<th>16:1</th>
<th>Total Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Body Fat</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fasting Insulin</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>TAG</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HDL</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>LDL</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 8.2 Different fatty acid types and associated biomarkers
9. GLUCOSE AND FFA CORRELATION WITH MORBIDITY AND CARDIAC HEALTH

The research will introduce some literature where ‘what is believed to be true of a relationship between certain macronutrient and certain disease’ contradicts to ‘what the real correlation is’. These revelations are instrumental and insightful in understanding T2D and many other diseases of interest because they tell us that one should aim for finding out the root cause rather than superficial correlations. In Lancet paper, there was a study on total mortality and major cardiovascular disease depending on consumption of two types of energy source/nutrients: fat and carbohydrate. In ‘Food Pyramid’ and many of the worldwide food guidelines say that high carbohydrate diet is more desirable so that cutting down fat’s content in food as much as possible would be good for preventing diseases such as stroke, atherosclerosis, cardiac arrest, high cholesterol, high pressure etc. According to ‘Big Fat Surprise’, the high carbohydrate diet and high carbohydrate based Food Pyramid has not done a good job in reducing mortality, T2D and cardiovascular diseases. It says that Mediterranean diet (berries and nuts) did not improve nor exacerbate the mortality, T2D and cardiovascular diseases. On the other hand, Atkins and ketogenic diet (low carbohydrate and high fat) reduce T2D and cardiovascular disease risk. The book concludes that dietary fat consumption does not lead to cardiovascular diseases and having less carbohydrate helps to reduce the risk. Likewise, the Lancet paper concludes from its meta-studies that any kinds of fat including saturated and mono/polyunsaturated fat are positively correlated with decreasing both mortality and cardiovascular disease risk while carbohydrate is negatively correlated. Both the book and the article indicate that if one is to consume same amount of calorie for everyday activity (BMR + digestion + optional exercise), reducing the percentage of carbohydrate contribution of energy % (not weight %) is good for health. The increase in fat energy
contribution % is not only enough for survival (to live) but also maintaining health without major health risks (to live healthy).

This is counterintuitive to a widely held belief that high fat related diseases such as high cholesterol (non-HDL) and atherosclerosis. According to Big Fat Surprise, to treat high cholesterol, people used drugs to lower the cholesterol level regardless of density; this brought about declining health for women and children. Atherosclerosis has been thought to be caused by fat consumption due to the white sticky plague narrowing and hardening the blood vessel without fully understanding the mechanism. T2D, likewise, has been blaming obesity as the main reason of T2D progression. In this case visceral fat depot around organs, not dietary fat nor high BMI due to subcutaneous fat, may be responsible for the onset.

In a nutshell, it is needed to figure out the causation not correlation when it comes to disease. Shown are the examples of T2D, high cholesterol and atherosclerosis (Beller, Mathias 2010).
10. EFFECTS OF HORMONES

There are different insulin increase effects on glucose.

1. Insulin sensitive organs/tissues/cells by direct action.

This increases glucose transport in muscle, adipose tissues but not in liver. Muscle and adipose tissues glucose transport = non-equilibrium (kinetic). liver glucose transport = near equilibrium (thermodynamic). Muscle and adipose tissues deploy more GLUT4 onto the surface (perhaps by SNARE).

Increases glycolysis by increasing activities of HK (to G6P), 6PFK (to F6P) in muscle and adipose tissues. HK by perhaps by signal pathway, 6PFK perhaps by signal pathway + F-2,6-P. Increases glycogenesis in adipose tissues (direct), muscle and liver (direct? + indirect). If glycogen in adipose tissues is replete, excessive carbon is stored as lactate and delivered to liver for indirect glycogenesis. Glycogenolysis may be more sensitive than glycogenesis (Marchand, I 2002).

2. Insulin sensitive organs/tissues/cells by indirect action.

Mobilization of adipose tissues affects intestines and brain metabolism indirectly.

There is insulin increase effects on FA. Decreases FA lipolysis in adipose tissues, hence, lower plasma FA. Increases FA and TAG synthesis in T. Increases VLDL synthesis in liver. Increases TAG uptake in muscle and adipose tissues. Decreases HSL (TAG breakdown) activity and increases LPL activity (TAG absorption) + plus.

There is insulin increase effects on glucose and FA. β oxidation of FA inhibits glucose transport and glycolysis. If insulin increases, HSL activity is inhibited as a result of cAMP activity decrease (signal pathway) in adipose tissues, plasma FA decreases and less FA into muscle at the same time
when malonyl-CoA inhibits FA oxidation. HSL activity decreases in adipose tissues so less FA into muscle and Malonyl-CoA inhibits β oxidation. Here is the reaction of malonyl-CoA production.

\[\text{AcCoA + ATP + CO}_2 \rightarrow \text{malonyl-CoA + ADP + Pi} \]

However, now it is suggested that it may not be β oxidation that inhibits glucose transport but excess FA in muscle may interfere with signal pathway of insulin (PI3K activity decreases as a result of IRS-1 interference), to be explained. Lipotoxicity in pathogenesis of T2D and glucose intolerance. HSL and LPL becoming less sensitive to insulin may cause lipotoxicity. Perhaps this may lead to excess FA in muscle. In the end, higher organ/tissue/cell and plasma FA will impact muscle, liver and pancreas.

Blood flow increases as a result of endothelium derived nitric oxide (perhaps glucose transport increases as well). It can be secreted by cholinergic (vagus nerve stimulation) when fed, a non-nutrient secretagogue. AA promotes both insulin (proteogenesis) and glucagon.

Acute exercise may lead to more GLUT 4 on sarcolemmal membrane, while chronic exercise may lead to higher GLUT 4 mRNA expression, higher insulin sensitive signaling (talk of mechanistic, hormonal, nervous). Also, glycemic index (GI) for different carbohydrates may be important for insulin secretion profiles.

Carbohydrate metabolism: It increases the rate of glucose transport across the cell membrane in muscle and adipose tissue. It increases the rate of glycolysis in muscle and adipose tissue by stimulating hexokinase and 6-phosphofructokinase activity. It stimulates the rate of glycogen synthesis in a number of organs/tissues, including muscle, adipose tissue and liver. It also decreases the rate of glycogen breakdown in muscle and liver. It inhibits the rate of glycogenolysis and gluconeogenesis in the liver.
Lipid metabolism: It decreases the rate of lipolysis in adipose tissue and hence lowers the plasma fatty acid level. It stimulates fatty acid and triacylglycerol synthesis in organs/tissues/cells. It increases the rate of very-low-density lipoprotein formation in the liver. It increases the uptake of triglyceride from the blood into adipose tissue and muscle. It decreases the rate of fatty acid oxidation in muscle and liver. It increases the rate of cholesterol synthesis in the liver.

Protein metabolism: It increases the rate of transport of some amino acids into organs/tissues/cells. It increases the rate of protein synthesis in muscle, adipose tissue, liver and other organs/tissues/cells. It decreases the rate of protein degradation in muscle. (and perhaps other organs/tissues/cells). It decreases the rate of urea formation.

There are glucagon effects on glucose as well.

Glucagon signals that blood glucose concentration is low and organs/tissues/cells respond by mobilizing stored energy via glycogenolysis, mobilization of FA and gluconeogenesis; inhibits glycogen synthesis and glycolysis and binds to receptors in adipose tissues activating lipase which mobilizes FFA and glycogen.

Epinephrine does the following.

When released into blood to prepare the organs/tissues/cells for fight or flight response; binds to receptors that are found primarily found in muscle, adipose tissues and liver. In liver, epinephrine activates gluconeogenesis and glycogen phosphorylase and simultaneously inactivates glycogen synthase by cAMP phosphorylation cascade. Glycogen stores are mobilized increasing blood glucose concentration; promotes glycolysis and FA from adipose tissues.

Cortisol does the following. It is asteriod hormone that signals long term stress such as fear, pain or low blood glucose levels; acts on liver, muscle and adipose tissues; slow acting hormone that
alters metabolism by changing metabolic enzyme gene expression; especially good at stimulating adipose tissues to release FFA from TAG (cortisol passes through the gene for it is lipophilic). It stimulates the breakdown of muscle proteins and increases the rate of export of AA to the liver for gluconeogenesis by increasing pyruvate carboxylase in the liver (Matthews, D. R 1985).
11. DIFFERENCE BETWEEN HEALTHY AND T2D PEOPLE

In this section, the difference between healthy and T2D people is addressed. One of the biggest differences is gluconeogenesis rate. In healthy people, gluconeogenesis rate always is kept constant. However, in T2D people, twofold increase in rates of glucose production attributed to an increased rate of gluconeogenesis.

When characterizing T2D, one normally thinks of insulin resistance (IR). The definition, mechanism and characteristics of IR is explained in the next section. In this research, it is thought that sugar production being another characteristic of T2D, in addition to IR. T2D revolving around IR concept says that glucose level is high due to incapability of normal pancreas to release excessive insulin to compensate for hyperglycemia. IR people who can secrete excessive insulin to compensate for hyperglycemia will be NGT (Normal Glucose Tolerant) people, not T2D. However, given the facts that T2D people experience dawn phenomena, one also needs to think about sugar production being another characteristic of T2D. Dawn phenomena is defined as overproduction of glucose between the midnight and 8am (overnight sleep). This raises blood glucose level in T2D and some healthy people without food consumption without apparent reasons. The glucose level decreases to T2D baseline once breakfast is consumed as insulin is released. This phenomenon cannot be explained by merely IR. Eventually, one can think of following questions. For NGT IR patients, does insulin increase accordingly to glucose level, above normal level (excessively) for compensation? If so, β cells may have very high capacity to compensate for sugar overproduction (proven in in vitro β cell glucose infusion experiment). For T2D people, can normal pancreas release excessive insulin but still has hyperglycemia? If so, T2D patients may have both IR and sugar overproduction, although their contribution may be different in different people (Matthews, D. R 1985).
Here are more facts and comparison regarding healthy and T2D people.

In liver, the following happens. Increased free fatty acid delivery, and reduced VLDL catabolism by insulin resistant adipocytes, results in increased hepatic triglyceride content and VLDL secretion (Hetherington, J 2011). This may lead to NAFLD.

In muscles, the following happens. Muscle develop insulin resistance 10 years before type 2 diabetes kicks in. Muscle glycogen synthase dysfunction is thought to be responsible for IR more than any factors. Gulli et al. (32) were the first to demonstrate that the NGT offspring of two type 2 diabetic parents demonstrated marked muscle insulin resistance but normal sensitivity to the suppressive effect of insulin on hepatic glucose production. However, a normal basal rate of HGP in the face of fasting hyperinsulinemia could be construed to indicate the presence of hepatic insulin resistance. The development of hyperglycemia further stimulates β cell secretion of insulin, and the resultant hyperinsulinemia causes a downregulation of insulin receptor number and of the intracellular events involved in insulin action, thus exacerbating the insulin resistance. In some individuals, the persistent stimulus to the β cell to oversecrete insulin leads to a progressive loss of β cell function. After 72 hr of sustained physiologic hyperinsulinemia, insulin stimulated muscle glycogen synthase activity, total body glucose uptake, and nonoxidative glucose disposal (primarily reflects glycogen synthesis in muscle) were significantly reduced in health people. Taken together, these findings indicate that hyperinsulinemia is not only a compensatory response to insulin resistance, but also a self-perpetuating cause of the defect in muscle insulin action (Matthews, D. R 1985).

Meanwhile for adipose tissues, the following happens. In insulin resistance the effects on adipose tissue are similar, but in the liver the increased free fatty acid flux tends to promote hepatic very low density lipoprotein (VLDL) production whilst ketogenesis typically remains suppressed by
the compensatory hyperinsulinemia. Furthermore, since lipoprotein lipase activity is insulin-dependent and impaired by insulin resistance, peripheral uptake of triglycerides from VLDL is also diminished. These mechanisms contribute to the observed hypertriglyceridemia of insulin resistance. In addition to free fatty acids, adipose tissue secretes a number of cytokines which have systemic effects on insulin resistance. Adipocytes from diabetic and insulin resistant individuals have reduced GLUT 4 translocation, impaired intracellular signalling via reduced IRS-1 gene and protein expression, impaired insulin-stimulated PIP-3 kinase and Akt (protein kinase B) (Sonntag, Annika G 2012).

In general, the following is known. The majority of type 2 diabetic subjects are obese, they also have daylong elevation of the plasma free fatty acid (FFA) concentration and increased circulating levels of inflammatory cytokines. Because elevated plasma glucose, FFA, and cytokine concentrations all can induce insulin resistance, it is extremely difficult to separate the contribution of each of these metabolic defects in the pathogenesis of type 2 diabetes. Initially, it was assumed the mechanism was a competition between fatty acid and glucose oxidation, the so-called Randle cycle, but a much more complex effect of fatty acids on insulin signaling has evolved. One concept is excess fatty acids interfering with insulin signaling via PKC induced serine phosphorylation of IRS-1 with support for that idea that PKC-theta knockout mice are resistant to fat-induced insulin resistance. The elevated fasting plasma FFA concentration in the presence of fasting hyperinsulinemia and the impaired suppression of plasma FFA during the euglycemic insulin clamp. These findings indicate the presence of marked adipocyte resistance to the antilipolytic effect of insulin. Impaired insulin-mediated suppression of whole-body lipid oxidation also was present in the NGT offspring (Bolinder, J 2000).
12. RECAP ON T2D PROGRESSION WITH THOUGHTS ON HIF

Before starting this section, some terms and relationships need to be defined clearly. Lean and obese. NGT (Normal Glucose Tolerant), IGT (Impaired Glucose Tolerant) and T2D. Nondiabetic, prediabetic and diabetic. Insulin resistant (IR) and insulin sensitive. First, lean and obese are determined by several measures including BMR, waistline etc. Second, NGT, IGT and T2D indicate how high the blood glucose level is. NGT people will have normal glucose level while T2D will have fully developed hyperglycemia. IGT people have higher glucose level than NGT people but lower glucose level than T2D. Third, nondiabetic, prediabetic and diabetic are interchangeable terms with NGT, IGT and T2D respectively. Last but not least, insulin resistant means for the same glucose to be absorbed, higher insulin level is needed. Healthy people are usually insulin sensitive (normal insulin level lets glucose to be absorbed without hyperglycemia) (Bolinder, J 2000).

One thing to keep in mind is that prediabetic/T2D people do not necessarily have β cell dysfunction [ref]. β cell still can release more insulin to compensate for higher glucose level up to a certain point in insulin resistant people. Hyperinsulinemia is another feature of prediabetic and T2D. Hyperinsulinemia, in turn, may reduce insulin receptors in different organs/tissues/cells which can further exacerbate glucose intolerance (Sonntag, Annika G 2012). This may cause β cell dysfunction in the final stage, but not necessarily.

Given the information, this research concluded that there are several possibilities of disease states. By categorizing three groups, lean/obese (1st), NGT/IGT/T2D (2nd) and IR/non-IR (3rd), one can hypothesize and test what may happen to people of different health conditions. In one experiment, a group of patients, who were offspring of T2D parents, were lean, NGT and IR. This means, genetically T2D disposed offspring did not have high BMR and had normal glucose level but had
IR. Their pancreas secretes more insulin, as a result, to compensate for IR to keep glucose level desirable. This also corroborates the fact that β cell is not necessarily broken down (Sonntag, Annika G 2012).

Recent research suggests that the possible cause of insulin resistance (IR)/T2D initiates from the muscle. However, there are two competing ideas on which may be the exact starting point: One suggests T2D starting from mitochondria in muscle and the other suggests that it starts from lipotoxicity in myocytes’ cytoplasm (Sonntag, Annika G 2012). The explanations regarding these are followed below.

First, an idea that IR/T2D is caused by muscle’s mitochondrial genes for prediabetic and T2D people suggest the following. Mitochondrial energy generation related genes are underexpressed causing malfunction in β oxidation in mitochondria. Genes involved in TCA, oxidative phosphorylation and glycolysis are suppressed. β oxidation is a reaction where FFA absorbed into muscle cells producing 8 AcCoA as products, where AcCoA can be used as a substrate for TCA. This leads to less oxidized FFA and then higher lipid level in muscle leading to lipotoxicity. The difference in energy generation between non-prediabetic (genetically not predisposed) and prediabetic (showing IR but not T2D, genetically predisposed) is 90% : 5% (Bolinder, J 2000).

Second, there is an idea that IR/T2D is cause in muscle by lipotoxicity in prediabetic and T2D people. Lipotoxicity causes serine phosphorylation which downregulates tyrosine phosphorylation on IRS-1 alongside PI3-K and Akt somehow being affected as well. Glucose transfer and nonoxidative glucose disposal (i.e. glycogenesis) are downregulated. Plasma glucose and FFA is higher in prediabetic NGT (Normal Glucose Tolerance) IR and T2D people. Such high levels of FFA will be absorbed into muscle more readily. FFA, its derivatives and other types of fat such as palmitoyl carnitine (a product of CAT reaction and precursor for mitochondrial β oxidation) or
DAG (diacylglyceride) may cause disruption in muscle cells. It is thought that lipotoxicity may cause downregulation of mitochondrial energy generation genes in the end. Chronic lipid exposure in healthy people correlated with decline in insulin dependent glucose uptake and tyrosine phosphorylation. It may be due to less GLUT 4 deployment (Bolinder, J 2000).

Here is a recap on signal molecular cascade. Insulin binds to insulin receptor (IR) α portion. Then β IR site undergoes conformational alteration due to autophosphorylation on tyrosine. Then the phosphorylation of IRS (IR substrate) -1 and IRS-2 follow. Then IRS-1 and IRS-2 activate PI3K. Then PI3K catalyzes phosphorylation of membrane phosphoinositides to produce phosphatidylinositol-3,4,5-phosphate. Phosphatidylinositol-3,4,5-phosphate regulates the activity of PDK-1. PDK-1 phosphorylates protein kinase B/Akt at Ser/Thr. Akt activates AS160. AS160 has two significant ways on GLUT4 translocation. First, AS160 reduces the tethering of the GSV by acting on TUG protein (pull), releasing GSV to the periphery. Second, AS160 increases the activity of Rab proteins which will stimulate (push) translocation of GSV. Previously described insulin dependent signal pathway involves microtubules which may be caused by Rab. Then the microtubules approach actin filaments, tossing the GSV. By tethering, the GSV is navigated towards plasma membrane. By docking and fusion by SNARE complex, the GSV is finally fused on the membrane. This last process caused by AS160, in short, translocate GLUT4 onto the membrane by 5-30 folds by following possible mechanisms: GLUT4 GSV exocytosis rate constant increases (maybe Rab), GLUT4 endocytosis rate constant decreases (maybe TUG). Some also suggest that GLUT4 in the cell surface recycling pool increases (due to endosome and Golgi complex). T2D patients tend to have dysfunction in one of the molecular reactions (Bolinder, J 2000).

Combining muscle IR/T2D onset idea and signal molecular cascade, one can conclude the following. Various lipid metabolites, including ceramide, DAG, and long-chain acyl-CoA species,
are believed to induce insulin resistance (48) secondary to activating Ser/Thr kinases (e.g., JNK, mTORC1, IKK) that catalyze site-selective Ser phosphorylation of the insulin receptor and IRS-1, resulting in attenuated insulin signaling via IRS-1/PI3K, Akt, and other key steps (Sonntag, Annika G 2012).

In addition to the aforementioned possible causes of IR/T2D, the following is suggested. It is thought that there is even more fundamental cause of IR/T2D, which arise from visceral adipose tissues. From NAFLD study, it was found out that high levels of FFA (14:0 and 16:1) are relevant to having NAFLD no matter they are lean or obese. When a person has NAFLD, they also tend to have high level of visceral adipose tissues. Also, high level of adipose tissues is known to be associated with T2D. High level of hypertrophic adipose tissues has several characteristics including fibrosis, inflammation, higher FFA release and hypoxia. Hypoxia causes HIF molecules to increase in visceral adipose tissue which increase adipokine secretion, FFA secretion and cause inflammation in adipose tissues. This unique feature is distinguished from subcutaneous fat where hypoxia is not of much issues. The diet which causes 14:0 and 16:1 level to increase are not yet known. It is thought that lower BMR, lack of exercise and diet may cause visceral adipose tissues to build up (Bolinder, J 2000).
13 MATHEMATICAL SETTINGS AND METHODS FOR WHOLE-BODY MODEL

13.1 Introduction

(1) The pathway for specific organ is defined.

Also known as network reconstruction. Each organ has different metabolite profile. How to build metabolite pathway model for different organs and how to connect them will be explained.

(2) The flux balance analysis is conducted.

Flux Balance Analysis (FBA) is a linear algebraic calculation with linear constraints considered. Usually one can set an objective function and adjust reaction fluxes within constraints using linear programming. This can be achieved in many different programming languages.

How to build stoichiometric matrix and how to calculate steady state flux is explained. Why matrix form is informative is discussed.

(3) Detailed kinetic for each enzyme is written down.

Flux is the rate of chemical reaction so for each flux one can rewrite as it a reaction rate equation depending on metabolite’s concentration.

The form of equation depends on the enzyme kinetics. Different kinds of enzyme kinetics and cofactor or hormone that will affect the enzyme will be explained.

(4) The simulation with random parameters which satisfy the steady state is performed.

The condition of this model is changed. For instance, the initial condition of the model is changed and whether the model still make sense is observed.
(5) The parameters are optimized.

Here, a strategy to optimize the parameters is developed.

(6) The model is validated and sensitivity analysis is performed.

Once the optimization process is over, validation should follow. The data set used for optimization for parameter estimation must be different from the data set used for validation. If the same data set are used for both optimization and validation, overfitting can happen. Validation is needed to see if the estimated parameters are working properly. If optimized parameters are fairly correct, the error between simulated plots and the real validation data would be minimal. In this model, since there are a plenty of different types of data set, the data sets can be split 50/50 for optimization and validation purposes.

(7) Different organ model will be combined to make a whole body-model.
13.2 Step 1: Reconstruct the metabolite pathway

The metabolic patterns of the brain, muscle, adipose tissue, and liver are very different. This is fundamentally caused by different organs having different metabolites as well as different pathways.

Metabolites and enzymes involved in a reaction has been found in databases such as KEGG and Reactome (Rolfsson, Ottar 2011).

General human metabolic pathway has been developed by using a lot of mathematical approaches to reconstruct the complete metabolic states in humans. The most widely referred and cited one is Recon 1 (2002, Palsson et al).

Step for defining a human specific organ model:

1 draft reconstruction (bottom-up). There are now many different reconstructions published. From the very complicated and comprehensive generic information about metabolic function human model, special reaction is manually identified.

2 Manual curations for target organism. Examination of the ‘standard’ reaction and tailoring it into specific organs. Then, curation process for different organs is conducted. Obtaining the details of co-factor and physiological data that are available for the enzyme.

3 Some steps are needed to be lumped and this model is simplified because a good compromise between biological complexity and the simplicity needed for understanding and practical use should be found. For this model, all the rate determining steps and all the important choke points are kept. Quasi-Steady-State and Quasi Equilibrium Approximations (fast equilibrium will disappear) are used to simplify this model.
How these two approximations applied to this simple system are shown in figure 14.2.1 (Sa stands for ATP)

![Reaction system diagram](image)

Figure 13.2.1 Reaction system

The differential equation can be written as:

\[
\frac{ds_1}{dt} = v_0 - k_1 * s_A * s_1
\]

\[
\frac{ds_2}{dt} = k_1 * s_A * s_1 - k + 2 * s_2 + k - 2 * s_3
\]

\[
\frac{ds_3}{dt} = k + 2 * s_2 - k - 2 * s_3 - k_3 * s_A * s_3
\]

\[
\frac{ds_4}{dt} = k_3 * s_A * s_3 - k_4 * s_4
\]

Equation 13.2.1

That all reactions happen on a similar time scale is assumed, meaning that all the reaction rate constants (k) are on the same orders of magnitude.

Set \(k+2= k-2 = 2 \) and all other rate constants and the ATP concentration (sA) to values of 1 (arbitrary units). For time 0-5, system input flux should be \(v_0 = 2 \); then, the flux drops to \(v_0 = 1 \). The simulation result is shown in figure 13.2.2.
Quasi-steady-state approximation: If the k1 increased to 5, glucose will be rapidly converted to g6p. Thus, it will adapt to the input flux change almost instantaneously. The glucose concentration at each time point is replaced by the steady-state value \(s_1 = \frac{v_0}{(k_1*s_0)} \), substituting the differential equation of \(s_1 \). Then all \(s_1 \) concentrations appear in the following differential equations in equation 13.2.1. Here’s the simulation result with (dash like) and without (solid) the assumption.
Quasi-equilibrium approximation: A rapid and reversible conversion between the G6P and F6P is considered. Keeping their ratio $\text{Keq} = \frac{k+2}{k-2}$. In the simulation, the ratio of F6P to G6P levels rapidly approaches the equilibrium constant $[\text{F6P}]/[\text{G6P}] = s_3/s_2 = \text{Keq}$. Thus,

$$\frac{ds_2 + 3}{dt} = \frac{d(s_2 + s_3)}{dt} = k_1 * s_A * s_1 - k_3 * s_A * s_3$$

equation 13.2.2

Given $s_2 + 3$ and Keq, now $s_3 = s_2 + 3 * \text{Keq}/(1 + \text{Keq})$ is substituted in

$$\frac{ds_4}{dt} = k_3 * s_A * s_3 - k_4 * s_4$$

equation 13.2.3

and a simplified differential equation system in which the fast reaction has disappeared is obtained. The two differential equations for s_2 or s_3 are replaced by a single differential equation. Here is the simulation result with (dash line) and without (solid) the assumption.

![Graph showing results from the model with fast reversible conversion](image_url)

Figure 13.2.4 Results from the model with fast reversible conversion

G6P F6P (solid lines), parameters $k+2 = 10$; $k-2 = 5$, and the quasi-equilibrium approximation (dash lines)
13.3 Step 2: Flux Balance Analysis

For one very simple system.

\[\begin{align*}
 \frac{b_1}{\rightarrow} x_1 & \quad \overset{\nu_1}{\rightarrow} x_2 & \quad \frac{b_2}{\rightarrow} \\
 v_{-1} & \end{align*} \]

Figure 13.3 1 Reaction system

\[\begin{align*}
 \frac{dx_1}{dt} &= b_1 - \nu_1 + \nu_{-1} \\
 \frac{dx_2}{dt} &= \nu_1 - \nu_{-1} - b_2 \\
\end{align*} \]

equation 13.3.1

When this system reaches steady state, the concentration of x1 and x2 does not change any more. Thus, there are 2 steady state equations with 4 unknowns. Determining two of the unknowns will make it possible to solve the other two unknowns.

\[\begin{align*}
 0 &= b_1 - \nu_1 + \nu_{-1} \\
 0 &= \nu_1 - \nu_{-1} - b_2 \\
\end{align*} \]

equation 13.3.2
Due to the simplicity of the system, one can easily see that \(b_1 = v_1 - v - 1 = b_2 \). This suggests us if one of the \(b_1, b_2 \) or \(v_1 + v - 1 \) is known, one can get the rest two. Then by knowing one of the \(v_1 \) or \(v - 1 \), one can know the other.

By determining one of \(b_1, b_2 \) or \(v_1 + v - 1 \), and one of \(v_1 \) or \(v - 1 \) the whole system can be solved.

The equations above are linear algebra. A stoichiometric matrix \(S \) can be formed based on these chemical equations. For differential equation for the same system equation 13.3.1 can be reformed as:

\[
\frac{dx}{dt} = S \cdot v(x) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} b_1 \\ v_1 \\ v - 1 \\ b_2 \end{pmatrix} = \begin{pmatrix} b_1 - v_1 + v - 1 \\ v_1 - v - 1 - b_2 \end{pmatrix}
\]

\[\text{equation 13.3.3}\]

The \(S \) is called stoichiometric matrix.

The quantities \(n_{ij} \) are the stoichiometric coefficients of the \(i \)th metabolite in the \(j \)th reaction.
Figure 13.3 2 S matrix

For this specific system (figure 13.3.1), S is a 2-by-4 matrix (m*n matrix), meaning that it has 2 metabolites and 4 unknown fluxes. S with a rank r = 2, standing for the 2 linear independent equations can be written down because of 2 (m = 2) metabolite chemical reactions (equation 13.3.1).

There are 4 (n = 4) columns in S indicating 4 unknown fluxes. In steady state, $\frac{dx}{dt} = S * vss = 0$. vss resides in the null space of S. Dimension of Dim(Null(S)) = n - r = 2 revealing that there are two free parameters for the steady state solutions of equation 14.3.1. The result of Null space of S:

$$Null(S) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

equation 13.3.4

All steady state flux states of the system are a non-negative combination of these two vectors:

Figure 13.3 3 Null space
It is not hard to find that this is another form of equation 13.3.2. One can substitute \(b_1 = a, v_1 = a + b, v - 1 = b, b_2 = a \), in equation 13.3.2 and get that

\[
b_1 - v_1 + v - 1 = a - (a + b) + b = 0
\]

\[
v_1 - v - 1 - b_2 = (a + b) - a - b = 0
\]

Proving that matrix offering the same solution as equation 13.3.2.

Matrix is another form of setting up equations fundamentally, which helps us keep track of meaningful information of the system. The summary of equation form and matrix form is in the picture.
The strength is not obvious in this simple system. However, one can explore more complex system and see how stoichiometric matrix help us understand the relation in glycolysis pathway (Bernhard O. Palsson, system biology).

Figure 13.3 4 Comparison between equation form and matrix form
Figure 13.3 5 Glycolysis

Here’s the Mathematica simulation for solving steady state flux using matrix form

(1) Define stoichiometric matrix. There are m=20 compounds and n=21 reactions. S is a 20*21 matrix. (In real system, there are always more reactions than equations.)
variables = {glu, g6p, f6p, fbp, dhap, gap, pg13, pg3, pg2, pep, pyr, lac, nad, nadh, amp, adp, atp, phos, h, h2o};

varnames = {"glu", "g6p", "f6p", "fbp", "dhap", "gap", "pg13", "pg3", "pg2", "pep",
"pyr", "lac", "nad", "nadh", "amp", "adp", "atp", "phos", "h", "h2o"};

fluxes = {vhk, vpgi, vpfk, vtpi, vald, vgapdh, vpgk, vpglm, veno, vpk, vldh, vamp,
vapk, vpyr, vlac, vatp, vnadh, vgluin, vampin, vh, vh2o};

fluxnames = {"vhk", "vpgi", "vpfk", "vtpi", "vald", "vgapdh", "vpgk", "vpglm",
"veno", "vpk", "vldh", "vamp", "vapk", "vpyr", "vlac", "vatp", "vnadh",
"vgluin", "vampin", "vh", "vh2o"};

MatrixForm[

\[-1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \]
\[1 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \]
\[0 \ 1 \ -1 \ 0 \]
\[0 \ 0 \ 1 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 1 \ 1 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \]
\[1 \ 0 \ 1 \ 0 \ 0 \ 0 \ -1 \ 0 \ 0 \ -1 \ 0 \ 0 \ -2 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \]
\[-1 \ 0 \ -1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \]
\[1 \ 0 \ 1 \ 0 \ 0 \ 0 \ -1 \ 0 \ 0 \ -1 \ 0 \ 0 \ -1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ -1 \ 0 \]
\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ -1 \ 0 \ 0 \ 0 \ -1 \]

];

MatrixForm[stoich, TableHeadings -> {varnames, fluxnames}]

dim = Dimensions[stoich, 2];
rank = MatrixRank[stoich];
(2) Get the null space of S, the rank of S is $r=18$, so one can expect that the Null space is 3,

$$\text{Dim}[\text{Null}(S)] = n - r = 21 - 18 = 3.$$
result from step3

\[
\begin{bmatrix}
\text{vkh, vgfi, vpk, vtpi, vald, vgadph, vpgk, vpglm, veno, vpk, vldh, vampl, vpk, vpyr, vlac, vatp, vnadh, vgluin, vampln, vnh, vh2o}
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 2 & 0
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 2 & 0
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}
\]

Take human red blood cell as an example. The uptake rate of the red blood cell of glucose is about 1.12 mM/h (That will be 1.12*p1). The input of AMP is measured to be 0.014 mM/h. (That will be 0.014*p3). The steady state load on NADH is 0.224 mM/h. (So 0.224*p2).

\[
vss = 1.12*p3 + 0.224*p2 + 0.014*p3
\]

In this model – for a bunch of complex pathways for each organ, matrix is going to give us useful information to help to solve the steady state.

Above all the flux balance, the whole body has another layer of balance. The balance between different organs. For example, the total amount of glucose each organ uses to keep it functional should equate the total amount of glucose that liver produces.

This should be true for all the macronutrient which can go into and out of the cell. (Including glucose, pyruvate, lactate, amino acid, glycerol, triglyceride).
Gathered are data for human overnight (typically 10 hours after dinner) macronutrient uptake and release rate. Adjust them within the physiology range to make sure one can get a balance between the organs that are about to be simulated.

<table>
<thead>
<tr>
<th></th>
<th>GLC</th>
<th>PYR</th>
<th>LAC</th>
<th>ALA</th>
<th>FFA</th>
<th>GLR</th>
<th>TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>0.38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heart</td>
<td>0.04</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0.035</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Liver</td>
<td>-0.731</td>
<td>0</td>
<td>0.27</td>
<td>0.32</td>
<td>0.21</td>
<td>0.14</td>
<td>-0.029</td>
</tr>
<tr>
<td>GI_track</td>
<td>0.076</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.12</td>
<td>-0.04</td>
<td>0.006</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.165</td>
<td>0.005</td>
<td>-0.112</td>
<td>-0.04</td>
<td>0.046</td>
<td>-0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>Adipose</td>
<td>0.038</td>
<td>0</td>
<td>-0.056</td>
<td>0</td>
<td>-0.211</td>
<td>-0.097</td>
<td>0.02</td>
</tr>
<tr>
<td>Others</td>
<td>0.032</td>
<td>-0.005</td>
<td>-0.142</td>
<td>-0.28</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 13.3 1 Macronutrient Uptake and release rates (mmol min\(^{-1}\)) in each tissue/organ system

This will make sure that one can have a steady state for the whole body when later on the models are connected.
13.4 Step 3: Express calculated flux with respect to metabolite concentration

Enzymatic activity’s IRFE (Intracellular Reaction Flux Expression) involves several physiologically-based mathematical terms: In general, they are concentration of substrate (glucose etc.), phosphorylation state (ATP, ADP, AMP, ATP/ADP etc.), redox state (NAD, NADH, NAD/NADH etc.), product or third party allosteric stimulation and/or inhibition (AcCoA etc.). The IRFE assumes random sequential reaction.

Hormonal actions (insulin/glucagon) can be expressed to directly affect enzymatic Vmax for each IRFE: Physiologically, insulin/glucagon do not go inside the cells but rather bind to ‘insulin receptor’ and ‘glucagon receptor’ which can stimulate/inhibit downstream signal processes. These signals (ie. PCK, FOXO etc., which were not considered at all in IRFE) affect IRFE; however, this problem can be temporarily circumvented if one assumes and expresses IRFE being stimulated/inhibited directly by hormonal actions.

Two major parameters of interest are Km and Vmax for each IRFE.

Km may be easier to get values than Vmax. They can be obtained from literature (most preferable and most widely used in research), optimized with multiple data points with manual adjustment (second most widely used), or assumed to be steady-state concentration of corresponding substrate/product.

Hormones (insulin/glucagon/adrenaline etc.) and oxygen level (exercise etc.) can affect IRFE of glycolysis, TCA and other reactions via signaling. Blood flow rate can be also affected.

Enzyme kinetics is the study of chemical reactions that are catalyzed by enzyme. As enzyme-catalysed reactions are saturable, their rate of catalysis does not show a linear response to
increasing substrate (do not show the same pattern like first order reaction). Here several enzyme kinetics and their rate equations in term of substrate concentration are introduced.

Competitive inhibition.

Competitive inhibitors compete for the substrate-binding site of the enzyme with the substrate as illustrated in figure 13.4.1

![Figure 13.4.1 Competitive inhibition](image)

There are

\[E + S \rightleftharpoons ES \rightleftharpoons E + P \]

\[E + I \rightleftharpoons EI \]

Thus the Michaelis-Menten equation for this becomes:
Uncompetitive inhibition

Some inhibitors bind only to the ES complex without binding to the free enzyme. This interaction scheme is illustrated in figure 13.4.2

There are

\[E+S\rightleftharpoons ES\rightleftharpoons E+P \]

\[ES+I\rightleftharpoons EIS \]

Thus the Michaelis-Menten equation for this becomes:

\[v = v_{max} \frac{[S]}{k_m \left(1 + \frac{[I]}{k_I} \right) + [S]} \]
Noncompetitive inhibition

In noncompetitive inhibition, the inhibitor binds to the enzyme at a location other than the active site in such a way that the inhibitor and substrate can simultaneously be attached to the enzyme.

Figure 13.4 3 noncompetitive inhibition

so there are
Thus the Michaelis-Menten equation for this becomes:

\[
 v = \frac{v_{max} \cdot [S]}{k_m \left(1 + \frac{[I]}{k_I}\right) + [S] \left(1 + \frac{[I]}{k_I}\right)}
\]

Ping pong (bi-bi) mechanism

Ping-pong mechanism, also called a double-displacement reaction, or bi-bi reaction is characterized by the change of the enzyme into an intermediate form when the first substrate to product reaction occurs. It is important to note the term intermediate indicating that this form is only temporary. At the end of the reaction the enzyme MUST be found in its original form. An enzyme is defined by the fact that it is involved in the reaction and is not consumed. Another key characteristic of the ping-pong mechanism is that one product is formed and released before the second substrate binds. The figure below explains the Ping Pong mechanism through an enzymatic reaction.
The Michaelis-Menten equation for this can be written as:

$$ v = \frac{v_{max} \cdot [A] \cdot [B]}{k_{ia} \cdot kb + k_{b} \cdot [A] + k_{a} \cdot [B] + [A] \cdot [B]} $$

The four enzyme kinetics above are the most frequently used ones in this research’s system. Other enzyme kinetic equations that include but limit to activation, reversible catalysis also are part of the equations.

13.5 Step 5: parameter optimization

For this research’s differential system, one can use time vs. concentration to fit the parameters.

However, there are always more than ten parameters. Using one group of concentration vs time data may not be valid enough. Therefore, the research came up with using metabolite concentration range, which is the easiest type of parameter to obtain, to optimize the parameters.
The number of metabolite concentration range should be similar or larger than number of unknown parameters.

\[\frac{dC}{dt} = b - v \]

\[= b - V_{max} \cdot \frac{C}{K_m + C} \]

steady state bss, Css

\[0 = b_{ss} - V_{max} \cdot \frac{C_{ss}}{K_m + C_{ss}} \]

Thus,

\[V_{max} = b_{ss} \cdot \frac{K_m + C_{ss}}{C_{ss}} \]

\[\frac{dC}{dt} = b - \left(b_{ss} \cdot \frac{K_m + C_{ss}}{C_{ss}} \right) \cdot \frac{C}{K_m + C} \]

Let's assume bss = 1, Css = 1

\[\frac{dC}{dt} = b - (1 + K_m) \cdot \frac{C}{K_m + C} \]

plot \(v = (1 + K_m) \cdot \frac{C}{K_m + C} \) with different Km value. Because of the steady state, Vmax depends on Km, all those different lines intersect at (1, 1)
Enlarging the part within the green box, and if one perturbs the steady state, a new steady state is obtained. New steady state flux range is 0.995 to 1.005.

And if the concentration range is 0.98 to 1.03 as shown in the figure below, those Km falling out of the black line (new steady state range) are not valid Km.

<table>
<thead>
<tr>
<th>Intracellular Metabolite Concentration In Each Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate\Tissues</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
</tbody>
</table>

85
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GLC</td>
<td>1.12</td>
<td>1</td>
<td>0.48</td>
<td>1</td>
<td>8</td>
<td>2.54</td>
</tr>
<tr>
<td>PYR</td>
<td>0.15</td>
<td>0.2</td>
<td>0.048</td>
<td>0.2</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>LAC</td>
<td>1.45</td>
<td>3.88</td>
<td>1.44</td>
<td>3.88</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>ALA</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>0</td>
<td>0.23</td>
<td>0</td>
</tr>
<tr>
<td>GLR</td>
<td>0</td>
<td>0.015</td>
<td>0.064</td>
<td>0.015</td>
<td>0.07</td>
<td>0.22</td>
</tr>
<tr>
<td>FFA</td>
<td>0</td>
<td>0.021</td>
<td>0.53</td>
<td>0.021</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>TG</td>
<td>0</td>
<td>3.12</td>
<td>14.8</td>
<td>450</td>
<td>2.93</td>
<td>990</td>
</tr>
<tr>
<td>O2</td>
<td>0.027</td>
<td>0.96</td>
<td>0.49</td>
<td>0.49</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>CO2</td>
<td>15.43</td>
<td>20</td>
<td>15.43</td>
<td>15.43</td>
<td>15.43</td>
<td>15.43</td>
</tr>
<tr>
<td>G6P</td>
<td>0.16</td>
<td>0.17</td>
<td>0.24</td>
<td>0.17</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>GLY</td>
<td>2</td>
<td>33</td>
<td>95</td>
<td>33</td>
<td>417</td>
<td>0</td>
</tr>
<tr>
<td>GAP</td>
<td>0.15</td>
<td>0.01</td>
<td>0.08</td>
<td>0.01</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>GRP</td>
<td>0</td>
<td>0.29</td>
<td>0.15</td>
<td>0.29</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>ACoA</td>
<td>0.068</td>
<td>0.0012</td>
<td>0.0022</td>
<td>0.0012</td>
<td>0.035</td>
<td>0.035</td>
</tr>
<tr>
<td>CoA</td>
<td>0.06</td>
<td>0.012</td>
<td>0.018</td>
<td>0.012</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>NAD</td>
<td>0.064</td>
<td>0.4</td>
<td>0.45</td>
<td>0.4</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>NADH</td>
<td>0.026</td>
<td>0.045</td>
<td>0.05</td>
<td>0.045</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>ATP</td>
<td>2.45</td>
<td>3.4</td>
<td>6.15</td>
<td>3.4</td>
<td>2.74</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td>ADP</td>
<td>0.54</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>1.22</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Pi</td>
<td></td>
<td>2.4</td>
<td>1.66</td>
<td>2.7</td>
<td>1.66</td>
<td>4.6</td>
</tr>
<tr>
<td>PCR</td>
<td></td>
<td>4.6</td>
<td>8.3</td>
<td>20.1</td>
<td>8.3</td>
<td>0</td>
</tr>
<tr>
<td>CR</td>
<td></td>
<td>5.6</td>
<td>3.5</td>
<td>10.45</td>
<td>3.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 13.5 1 Substrate concentrations (mM) in each tissue
Figure 13.5 2 Optimization with range
13.6 Step 6: Performing sensitivity analysis on the parameters estimated

Sensitivity analysis is measurement of body’s exposure to a drug, nutrient or metabolite as a result of a parameter change, under different conditions (postprandial, fasting etc). The parameter change can be marginal or big. The degree of body’s exposure can be defined as Area Under the Curve.
(AUC) which computes time integral between initial and end concentration or flux. Sensitivity analysis can be performed at a fixed time or be transient.

In this research’s case, there are more than 100 parameters which have to be obtained through literature search, educated guess based on diffusion or convection, or computational optimization against clinical and experimental data. Out of these parameters, there may be some parameter changes that change AUC more severely than others. The sensitive parameters can be further optimized to better fit the simulated plots against real physiological data while less sensitive parameters can be either lumped and optimized or disregarded for further optimization.

The chosen sensitive parameters then can be used for analysis to figure out which reaction is more responsible for the change of AUC in both healthy and T2D patients. In case of T2D patients, such information can be used to develop drug which target a reaction of a certain organs/tissues/cells. For example, if one figures out which reaction in gluconeogenesis is more responsible, one can further fine tune already existing drugs such as metformin or even further ‘cure’ T2D.
14. MODEL RESULTS

14.1 Brain

Figure 14.1 1 Brain metabolic pathway

Figure 14.1 2 Brain concentration Homeostatic steady state
Figure 14.1 3 Brain flux homeostatic steady state

Figure 14.1 4 Brain fasting condition 4.4mM glucose
Figure 14.1 5 Brain fasting condition 4.4mM glucose

Figure 14.1 6 Brain fasting condition 3.5mM glucose
Figure 14.1 7 Brain fasting condition 3.5mM glucose

Figure 14.1 8 Brain fasting condition 3mM glucose
Figure 14.1.9 Brain fasting condition 3mM glucose

Figure 14.1.10 Brain fasting condition 3mM glucose

Figure 14.1.1 is schematics of brain metabolism. As stated in previous chapters, brain has two in/out fluxes for glucose and ketone bodies.

Both figure 14.1.2 and figure 14.1.3 show what happen to intracellular concentration of metabolites and fluxes during homeostasis. Every concentration and flux stays the same at its steady state value. This is an expected behavior because the blood macronutrient concentration is kept constant by infusion.

Both figure 14.1.4 and 14.1.5 show what happen to the brain’s metabolite concentrations and fluxes during the first day of fasting. During the first day of fasting, as shown in previous chapter,
the concentration of blood macronutrient changes. Glucose and ketone bodies respectively will be 4.4mM and 58μM concentration. Then the change in intracellular fluxes and concentrations are observed. The most important information one can pull from the simulation are those related to glucose and ketone body reactions. Especially, the ratio of \(\text{vpyrcoa} \) and \(\text{vkbeoa} \) indicate flux contribution of pyruvate and ketone bodies to produce acetyl co-A. This ratio in different days of fasting are summarized in figure 14.1.10. The intracellular ketone body concentration also increases due to brain absorbing more ketone bodies via facilitated diffusion.

Rest of the figures 14.1.6 to 14.1.9 show extended fasting days with changing blood macronutrient (glucose and ketone bodies) concentration.

Finally, the figure 14.1.10 compares the ratio of pyruvate and ketone bodies contribution to produce acetyl co-A. The contribution of each flux ratio is studied because by doing so, one can see how the brain’s ATP generation changes from glucose driven (glycolysis and TCA) to ketone bodies driven TCA. As expected, the ratio goes down as fasting days are extended. It indicates that brain uses more ketone bodies as fasting days last for ATP generation. This shows that this research’s brain mathematics are acceptable.
14.2 Muscle

Muscle Pathway

![Muscle metabolic pathway](image1)

Figure 14.2 1 Muscle metabolic pathway

![Steady state in homeostasis at 4.4mM](image2)

Figure 14.2 2 Steady state in homeostasis at 4.4mM
Figure 14.2 3 Steady state in homeostasis at 4.4mM

Figure 14.2 4 Muscle metabolic profiles at 8mM
Figure 14.2.5 Muscle metabolic profiles at 8mM

Figure 14.2.6 Muscle metabolic profiles at 8mM with energy decoupling
Figure 14.2 7 Muscle metabolic profiles at 8mM with energy decoupling

Figure 14.2 8 Muscle metabolic profiles at 3mM
Figure 14.2 9 Muscle metabolic profiles at 3mM

Figure 14.2 10 Muscle metabolic profiles at 3mM with energy decoupling
Figure 14.2 11 Muscle metabolic profiles at 3mM with energy decoupling

Figure 14.2 12 Muscle metabolic profiles at 4.7% of TEE
Figure 14.2 13 Muscle metabolic profiles at 4.7% of TEE

Figure 14.2 14 Muscle metabolic profiles at 4.7% of TEE with energy decoupling
Figure 14.2 15 Muscle metabolic profiles at 4.7% of TEE with energy decoupling

Figure 14.2 16 Muscle metabolic profiles at 11% of TEE
Figure 14.2 17 Muscle metabolic profiles at 11% of TEE

Figure 14.2 18 Muscle metabolic profiles at 11% of TEE with energy decoupling
Figure 14.2 19 Muscle metabolic profiles at 11% of TEE with energy decoupling

Figure 14.2 20 Comparison of energy fuel source contribution between original and energy decoupled models at different exercise intensities
Figure 14.2.1 shows schematics of muscle. Unlike brain, there are more macronutrients going into and out of the organ. As mentioned in previous chapters, muscle can use different substrates under different conditions. The goal of this muscle simulation, therefore, is to see if this research is able to predict what happens to a human body in terms of concentration and flux as demonstrated in brain section.

Both figure 14.2.2 and 14.2.3 show the intracellular concentrations and fluxes are at homeostatic steady state values.

Figure 14.2.4 to 14.2.7 show what happen to intracellular metabolism during hyperglycemia while other macronutrient concentrations are kept constant. However, there is a difference between
figure 14.2.4, 14.2.5 (first group) and 14.2.6, 14.2.7 (second group). As mentioned in previous chapter, the energy expenditure is decoupled from energy input. Triacylglycerides (TAG) expenditure (vtagbreak) is assumed to be only dependent on energy demand which can be expressed in terms of basal metabolic rate (BMR) and other energy use being derived from exercise, thermogenesis etc. The first group and second group under hyperglycemic condition show somewhat different concentration and flux profiles over time (12 hours). The difference is not obvious in this condition but the difference becomes obvious under exercise condition in terms of contribution of each flux ratio as demonstrated in brain section. However, with detailed studies such as TAG or glycogen depletion rate over time, one can conclude that energy decoupled (modified) figures are more accurate. This energy decoupling also removes some of the inherent stiffness of ordinary differential equations (ODEs).

Likewise, figure 14.2.8 to 14.2.11 show concentration dependent versus energy decoupled (modified) simulations under hypoglycemic condition. The decrease in TAG and glycogen concentration and rate changes are somewhat different as well.

Figure 14.2.12 to 14.2.19 show concentration dependent versus energy decoupled profiles under two different exercise intensity regimes (4.7% of total energy expenditure and 11% of total energy expenditure). Both intensities are part of light exercises. The profiles are different not just when comparing unmodified versus modified profiles but also when exercise intensities change. The depletion in glycogen and TAG are steeper in as exercise gets more demanding.

Figure 14.2.20 shows the ratio of contribution of two fluxes: vpyrcoa and vfacoa. It should be noted that muscle measures the ratio between pyruvate to acetyl co-A flux and fatty acid to acetyl co-A flux instead of ketone bodies to acetyl co-A flux. It is because the muscle will switch the macronutrient usage proportions between glucose or fatty acid under different exercise intensities.
The simulations show two strikingly different profiles of the ratios at different exercise intensities for unmodified and modified cases. What is expected physiologically is the increase in fatty acid contribution as exercise intensity increases within light intensity regime. The modified profile clearly shows that as exercise intensity increases from 4.7% to 9% to 11%, the fatty acid contribution to production of acetyl co-A increases. The unmodified case simulations, however, fail to show such trends. This shows that this research’s muscle mathematics are acceptable.

Lastly, figure 14.2.21 shows sensitivity analysis. 20% change in parameters (vertical) lead to both positive and negative exposure of metabolites (area under the curve, AUC) to a human body (horizontal). The redder the color is, the exposure becomes positively larger while the bluer it is, the exposure becomes negatively larger. The sensitivity values are normalized so that the maximum absolute value of both positive and negative values should be 1.

14.3 Adipose tissues

![Adipose Tissues Pathway](image)

Figure 14.3 1 Adipose tissues metabolic pathway
Figure 14.3 2 Adipose tissues metabolic profiles at 3mM

Figure 14.3 3 Adipose tissues metabolic profiles at 3mM
Figure 14.3 4 Adipose tissues metabolic profiles at 8mM

Figure 14.3 5 Adipose tissues metabolic profiles at 8mM
Figure 14.3.1 shows schematics of adipose tissues. The most important metabolite in adipose tissues is TAG. TAG is stored in lipid droplet and its release is dependent on the energy demand (decoupled).
Figure 14.3.2 to 14.3.5 show adipose tissue metabolism under hyperglycemic and hypoglycemic conditions. Under former case, the storage of small of amount of glycogen and TAG lipid droplet increase. TAG concentration increases due to glucose contribution where glucose turns into G3P ($\text{vG6P} \rightarrow \text{G3P}$) and reacts with 3 FFA molecules to form a TAG molecule. Therefore, the physiological data that glucose is a precursor for G3P for TAG synthesis is demonstrated in hyperglycemic condition in this simulation. On the other hand, the latter case shows the glycogen and TAG lipid droplet decreasing in concentration. It is because the glycogen and TAG have to be mobilized to compensate for lower blood concentration. While it is BMR that drives TAG to break down (constant rate), the net TAG synthesis decreases due to lower blood concentration, hence lower TAG synthesis precursors (G3P), which leads to decrease in vtagsyn rate. Therefore, what this research’s simulations predict against the physiological data is acceptable and shows a good profile trend.

Lastly, sensitivity analysis shows the exposure of metabolites to a human body due to 20% change in parameters. Just like muscle’s case, there are both positive and negative exposures as a result of parameter change.
15. INTERACTIVE APPLICATION

Figure 15.1 Interactive application codes

After previous steps are done, one may want to make an application where one can dynamically interact with the graphs, charts etc. With different data of the user’s choice fed as input, the output will be accordingly recalculated and show the updated graphs, charts, numbers etc. This can be realized by using any of the interactive functions of some programming languages of choice. In python there are bokeh or dash libraries, in Wolfram Mathematica, there is animate function and in R, there is shiny library.

The given example is R shiny library’s example codes. The shiny app can be executed by writing two separate files: ui.R and server.R files, albeit now both ui and server can be incorporated into a single file. ui.R file allows the users to feed input data. Examples of input data could be numbers or item which the users can enter by sliders, radio buttons, dropdown bar etc. server.R file does all the computation of information which ui.R sent. The codes to generate graphs, bars, charts and so on are in server.R file. The difference between merely executing such codes and server.R is better
interactivity between users and the program, a.k.a. application. Making a shiny app once the full body model is complete is being considered.
16. WHAT TO IMPROVE

To further improve our model, we need to add and/or modify the following.

First, we need to add additional hormonal effects such as adrenaline. Adrenaline will introduce extra glucose release effect during exercise.

Second, blood flow rate change should be considered during exercise and hormonal exposure. This way, more precise physiological change can be represented.

Third, exercise effects should be more clear. Exercise effect does not just release hormones but stimulate different nerves for different organs. Moreover, energy decoupling equation should include exercise terms in terms of work rate or % of VO2max.

Fourth, oxygen levels should be added. According to Ashworth (2016), different oxygen level can bring about differentiated enzyme expressions within the same organ (periportal vs pericentral). The oxygen concentration effect may also be used to better explain TCA and exercise.

Fifth, signaling molecules and transcription factors can be added to our ODEs to further make our model accurate. This way, we can better show molecular etiology and long term effects.

Sixth, all the organs models have to be connected with arterial and venous blood flow. This is to achieve this research's goal of making a comprehensive physiological model.

Lastly, make T2D models based on the whole-body model.
17. BIBLIOGRAPHY

Palsson, Bernhard Ø. *Systems Biology: Constraint-Based Reconstruction and Analysis*. Cambridge Univ. Pr., 2015.

Teicholz, Nina. The Big Fat Surprise.

Hyun “Henry” Park
116 W. University Pkwy, Apt. 901,
Baltimore, MD, USA
hpark85@jhu.edu
443-854-9695
LinkedIn Account: www.linkedin.com/in/hyun-park-08196a148
Date of Birth: November 23rd, 1991
Birthplace: Mokpo, Republic of Korea

Education
Masters of Science in Engineering (Thesis) in Chemical and Biomolecular Engineering
Johns Hopkins University (GPA 3.8/4.0)
Bachelors of Science in Chemical and Biomolecular Engineering
*4.0-scale Adjusted Overall GPA (GPA 3.61/4.0)
*4.0-scale Adjusted Upper Class (Junior-Senior) Major GPA (GPA 3.74/4.0)
Yonsei University, BS in Chemical and Biomolecular Engineering, 2014
(2010-2011, 2013) (GPA 3.67/4.3)
(Certified in ABEEK, Korean Equivalence of ABET)
University of California Davis (2012-Exchange Student Program) (GPA 3.61/4.0)

Research Experiences
Johns Hopkins University
Lab (Project): <Pharmacokinetics and Pharmacodynamics (PKPD)
Mathematical Modeling and Computational Simulations Lab
(Type 2 Diabetes Pathology Quantification, Modeling and Simulation)>
[SEP 2016 ~ Present]
(Professor Marc D. Donohue) Johns Hopkins University, Baltimore, MD
Independent Graduate Research with Guidance of Advisor
Professor Marc D. Donohue for Master’s Research

- PHYSIOLOGICAL (Intensive literature research such as medical,
 biochemistry, mathematical and biomodelling journals):
 1. Built a <Whole Body Model> of different organs
 2. Built details of organs such as venous/arterial blood flow, uptake/release rate,
 energy consumption etc using VANTED

- MATHEMATICAL:
 1. Set ODEs/PDEs of the detailed whole-body model comprising multiple
 tissues/organs
 2. Set mathematical matrices for computational analysis using FBA (Flux
 Balance Analysis) to display metabolic network pathway

- COMPUTATIONAL (Wolfram Mathematica/MATLAB/R):
 1. Performed FBA/MCA (Metabolic Control Analysis) etc using MATLAB
 2. Optimized parameters of ODEs/PDEs and performed Sensitivity Analysis
 using Wolfram Mathematica against physiological/clinical data sets
 3. Analyzed plots/values of metabolite concentrations, fluxes etc using Wolfram
 Mathematica
 4. Linked mathematical models and predicted organ/tissue/cell's behaviors under
different conditions using Wolfram Mathematica
5. Built interactive applications using R Shiny

➢ **Accomplished/Ongoing Process**
1. Built pancreatic alpha and beta cell computational mathematical models
2. Built hepatocytes/myocytes/adipocytes computational mathematical models
3. Collected data on intracellular signal pathway with transcription factors considered
4. Collected data on which factors play parts in T2D advancement

➢ **Preparing Publication (Working on a draft)**
 <Computational Detailed Whole-body Model with Energy Consumption and Expenditure Decoupled Under Different Health Conditions>

➢ **Numerous Mini PKPD Modeling Projects**
Cancer and Methotrexate; Cholesterol and Atorvastatin and New Drugs; Hypertension; Nonsteroidal Anti-Inflammatory Drugs (NSAID); Antibiotics

Yonsei University

Lab (Project): <Environmental Engineering Lab
(Capstone Design -- Cosmetics Toxicology)**
[SEP 2013 ~ DEC 2013]

(Professor Taegyu Lee) Yonsei University, Seoul, South Korea

➢ Collaborated on researching effectiveness of different types of preservatives as part of cosmetics
➢ Collected data on how to measure the effectiveness of preservatives
➢ Manipulated microscope and toxin analysis tool
➢ Manipulated Excel to compute and visualize the test results
➢ Delegated tasks to team members and organized meetings as a leader
➢ Reported the result and science exhibition booth experience and was critically acclaimed

Lab (Project): <Alternative Energy Lab in Collaboration with a Solar Panel R&D and Manufacturing Company (Capstone Design -- Pragmatic Industrial Research)>
[MAR 2013 ~ JUN 2013]

(Professor Il Moon) OCI & Yonsei University, Seoul, South Korea

➢ Collaborated with OCI (a chemical engineering company specializing in solar panels and green energy) on how carbon fiber could replace steel in conventional windmills and how to increase the energy production
➢ Collected data on fluid dynamics properties of conventional windmill blade materials and carbon fiber from dissertations and patents
➢ Collected data on efficient locales to install new windmill blades from dissertations and patents
➢ Manipulated Excel and MATLAB to compute energy savings efficiency and visualize corresponding efficiency depending on weather and terrains
➢ Delegated tasks to team members and organized meetings as a leader
➢ Reported the result and science exhibition booth experience
University of California Davis (One Year Exchange Program)

Lab (Project): <Process and Control Computational Analysis Lab>
(Exchange Student Program -- Data Analysis)>
[SEP 2012 ~ DEC 2012]

(Professor Ahmet Palazoglu) University of California Davis, CA, USA

➢ Worked on a single project on data clustering from “Big Data”
➢ Manipulated MATLAB, Excel and Google Scholar for relevant dissertations
➢ Presented on progress biweekly

Lab (Project): <Environmental and Energy Engineering Lab>
(Exchange Student Program -- Energy Efficiency and Recycling Research)>
[JAN 2012 ~ JUN 2012]

(Professor Julie Schoenung) University of California Davis, CA, USA

➢ Collaborated with PhD Qingbo Xu and other lab members under Professor Julie Schoenung’s supervision for data collection and computation
➢ Collected data on energy savings cost depending on distances between processing sites which employ hydrometallurgy or other CRT processes
➢ Collected data on LCA (Life Cycle Assessment), HTP (Human Toxicity Potential) and GWP (Global Warming Potential) for each CRT process
➢ Manipulated Excel to compute energy consumption and savings depending on distances for each CRT process, and Google Scholar for relevant dissertations
➢ Visited Sacramento Municipal Landfill for research and for advice from hands-on personnel
➢ Presented on progress at weekly team meetings
➢Acknowledged in a dissertation publication on “Environmental and economic evaluation of cathode ray tube (CRT) funnel glass waste management options in the United States” by Qingbo Xu et al.

Programming Knowledge

[High] Wolfram Mathematica (optimization, simulation etc.), Maple,
MATLAB
[High Low] C, Python (pandas, bokeh, numpy, pyrosetta, sqlite3 etc.), R (shiny etc.), Excel

Academic Achievements

ChemBE Master’s Scholarship
[SEP 2017 ~ MAY 2018]

Johns Hopkins University, Baltimore, MD, USA

English Proficiency (Honors) Common European Framework (CEF) C1 Level
[FEB 2014]

Yonsei University, Seoul, South Korea

Outstanding Academic Performance Award (Honors)
[FEB 2014]

Yonsei University, Seoul, South Korea

‘Jilli’ Outstanding Academic Scholarship & Academic Performan Award (Honors)
[MAR 2013]

Yonsei University, Seoul, South Korea

Named on Dean’s List for Outstanding Academic Performance
University of California Davis, CA, USA
➢ Achieved outstanding academic record (4.0/4.0) in Spring quarter at UC Davis
‘Jilli’ Outstanding Academic Scholarship

Yonsei University, Seoul, South Korea

Relevant Activities

Grader for Thermodynamics Course at Johns Hopkins University
[AUG 2017 ~ DEC 2017]
Johns Hopkins University, Baltimore, MD, USA

Bristol-Meyers Squibb Field Trip
[OCT 2016]
Bristol-Meyers Squibb Pharmaceuticals, Princeton Pike, NJ, USA

National Chemical Engineering Qualification Certification (License, South Korea)
[MAY 2015]
➢ Passed National Chemical Engineering Qualification Exam and acquired certification and license during military service
WIPO (World Intellectual Property Organization by the United Nations)
Trainee on Intellectual Properties
[JUL 2013]

Intellectual Property and Patent Training Center, Daejeon, South Korea
➢ Took many courses and gave presentations to WIPO delegates and professors on Intellectual Properties and protection of them

Miscellaneous Experiences

Military Service
[MAR 2014 ~ MAR 2016 (Honorable Discharge)]

Ministry of Health and Education Child Care Center, Suwon, South Korea

Bom Bit (Volunteer Teaching Organization)
[MAR 2010 ~ FEB 2014]
Keumjang Temple
➢ Educated students from economically challenged families in Math and English
➢ Counselled students on personal and educational matters
➢ Conducted weekly meetings to assess students’ progress as a leader
➢ Trained teachers on curriculum, methods and logistics for Bom Bit as a leader

Many English Communication and Presentation Courses Taken
[MAR 2010 ~ DEC 2013]

Yonsei University, Seoul, South Korea

Language Skills

Korean Native Speaker
English Fluent:
C1(advance high-fluent) Level of Common European Framework (CEF)
TOEFL 112/120
New GRE 159/168/4.0
Others Basic knowledge in German, French, Spanish
Traditional Chinese Intermediate knowledge in Traditional Chinese (as used in Korea and Taiwan)
References

1) Marc D. Donohue, Ph.D.
[Professor; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD; Tel: 410-516-7761, E-mail: mdd@jhu.edu]

2) Zachary R. Gagnon, Ph.D.
[Assistant Professor; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD; E-mail: zgagnon@gmail.com, zgagnon1@jhmi.edu]

3) Chao Wang, Ph.D.
[Assistant Professor; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD; E-mail: chaowang@jhu.edu]