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Abstract

The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes

to observe Cosmic Microwave Background (CMB) polarization in Chile. CLASS will

make large angular scale CMB polarization measurements in frequency bands at 40

GHz, 90 GHz, 150 GHz, and 220 GHz. The CLASS survey (started from 2016)

will constrain the tensor-to-scalar ratio from the first moments of the universe and

also provide critical data on cosmic reionization, the sum of neutrino masses, and

the Galactic interstellar medium. In this thesis, the CLASS strategy and design are

introduced. The optical filter system is described in details along with two testing

devices, including a Fourier Transform Spectrometer (FTS) and an optics test cryo-

stat. For the telescope mount system, a bottom-up introduction is provided focusing

on individual components. Preliminary data analysis from the first observing season

with the 40 GHz telescope is also described.

Primary Reader: Charles L. Bennett

Secondary Reader: Tobias A. Marriage
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Chapter 1

Cosmology

Although scientists have been seeking to understand our universe for thousands of

years, it was not until the 20th century that cosmology started to evolve into a robust

science. It was not until the last decades that different theories could be tested by

scientific experiments. We are living in an exciting era when our understanding of

the universe is rapidly improving.

1.1 Hubble’s Law

Astronomical observations have shown that at large scales (> 20 Mpc) the universe

is homogeneous and isotropic. This is called the cosmological principle. It is also

observed that the universe is expanding uniformly. Given these two observational

facts, we can introduce a scale factor a(t), which is only a function of time t.

1



CHAPTER 1. COSMOLOGY

The scale factor is defined to be a dimensionless parameter to scale the physical

distance between two far-away objects (say two galaxies in the following context) in

an expanding universe. This implies that we can assign “co-moving” coordinates that

do not change with time. These coordinates are fixed to the galaxies, in which the

distance between the galaxies at any given time is the coordinate difference Δx =

|x1 − x2| multiplied by the scale factor:

D = a(t)× |x1 − x2| = a(t)Δx. (1.1)

We set the scale factor at the current time, t0, to unity, a(t0) = 1. The relative

velocity between the two galaxies is the time derivative of the distance, Ḋ. According

to our previous definitions, only a(t) is a function of time. So we have the relative

velocity:

V = Ḋ = ȧ(t)Δx. (1.2)

Then combining Equation 1.1 and 1.2, we can eliminate the variable Δx and have the

relative velocity expression as V = (ȧ/a) D. If we define ȧ/a as H(t), we will have:

V (t0) = H(t)D(t0),

where H(t) is the Hubble parameter, which describes the expansion rate of the uni-

verse at large scales (> 20 Mpc). Its current value, H0, is called the Hubble constant.

2



CHAPTER1. COSMOLOGY

UsingtheHubbleconstant,thepreviousequationbecomesHubble’sLaw:

V=H0D. (1.3)

Hubble’sLawwasdiscoveredbyEdwinHubblein1929.24Thisrelationappliesto

alllocationsintheuniverse.Atlargescales,anytwogalaxiesaremovingawayfrom

eachother;therelativespeedisproportionaltothedistancebetweenthem. This

largescalerecedingmotionofalltheobjectssolelyfromtheexpansioniscalledthe

Hubbleflow. Becausethescalefactora(t)describestheexpansionoftheuniverse

andalsodefinestheHubbleparameter,itisakeytounderstandingthedynamical

evolutionoftheuniverse.

1.2 FriedmannEquations

ApplyingEinstein’sfieldequationstoahomogeneousandisotropicuniverse,the

time-timecomponentgivesusanequation

ȧ

a

2

+
kc2

a2
=
8πG

3

ε

c2
, (1.4)

wherecisthespeedoflightinvacuum,GisNewton’sgravitationalconstant,εis

theenergydensity,kisaconstantassociatedwiththecurvatureoftheuniverse.

Thescalefactoraandtheenergydensityεarefunctionsoftime. Thisisthefirst

3



CHAPTER1. COSMOLOGY

Friedmannequation,derivedbyAlexanderFriedmannin1922.17

Theparameterkcanbedefinedas

k=
K

R0
2,

whereR0istheradiusofcurvature,theconstantKdescribesthecurvatureofthe

universe.K =+1impliestheuniverseisclosedwithpositivecurvature;K =−1

impliestheuniverseisopenwithnegativecurvature.Betweentheopenandtheclosed

universe,thereisaboundarywhentheuniverseisneitheropennorclosed.Onthat

boundary,theuniverseisflat,Euclidean,withK=0.Currentobservationssupport

thattheuniverseisflat,22towithinmeasurementuncertainties.

With K=0,thefirstFriedmannequationcanbere-writtenas

H2=
ȧ

a

2

=
8πG

3

ε

c2
.

Thisequationprovidesthedensityforaflatuniverse,whichiscalledthecritical

densityεc:

εc=
3H2c2

8πG
. (1.5)

Theenergydensitycontainsdifferentcomponentsintheuniverse,includingradi-

ation(andrelativisticmatter)andnon-relativisticmatter.

ThefirstFriedmannequation(Equation1.4)relatescurvaturek,dynamicsa(t)

4



CHAPTER 1. COSMOLOGY

and the energy components of the universe ε(t). The energy density ε(t) and the

scale factor a(t) are both functions of time. We need to find a relation between ε and

a before we can proceed to solve for a(t).

If we consider one component in the universe within the volume of V , the second

law of thermodynamics can be written as

dQ = pdV + d(εV ), (1.6)

where p is the pressure from this component, and Q is the heat transferred into this

component. The CMB temperature uniformity across the super-horizon scale implies

no net energy exchange,22 meaning dQ = 0. Then Equation 1.6 can be rearranged as

V dε = −pdV − εdV. (1.7)

The volume V must be proportional to a3, which gives us the relation dV/V = 3da/a.

Then the time-derivative of Equation 1.7 can be rearranged as

ε̇+ 3
ȧ

a
(ε+ p) = 0. (1.8)

This is called the fluid equation. Now let’s multiply the first Friedmann equation

5



CHAPTER 1. COSMOLOGY

(Equation 1.4 with zero curvature) by a2 and then take the time derivative

2ȧä =
8πG

3c2
(ε̇a2 + 2aȧε).

Dividing the above equation by 2aȧ

ä

a
=

4πG

3c2
(
a

ȧ
ε̇+ 2ε)

and substituting ε̇ with the fluid equation 1.8, we have the second Friedmann equa-

tion, also know as the acceleration equation.

ä

a
= −4πG

3c2
(ε+ 3p) (1.9)

This equation describes the acceleration of the expansion. The expansion of the

universe accelerates when ä > 0; while the expansion decelerates when ä < 0.

1.3 Equation of State

The fluid equation (Equation 1.8) provides a promising way to solve ε as a function

of a. But there is still one quantity we need to know, the pressure p. The pressure is

closely connected to the energy density, as described by the equation of state,

p = wε, (1.10)

6



CHAPTER 1. COSMOLOGY

where the quantity w is the equation of state parameter.

With Equation 1.8 and 1.10, we obtain adε = −3ε(1 + w)da. And solving this

equation gives us,

ε = ε0a
−3(1+w), (1.11)

where ε0 is the current energy density for a = 1. The result shows that the energy

density follows a power law of the scale factor with the index determined by the

equation of state parameter w. For example, ρ = ρ0a
−3 if w = 0.

If we combine the equation of state (Equation 1.10) and the acceleration equation

(Equation 1.9), we get

ä

a
= −4πG

3
(1 + 3w)ρ.

This equation gives us the criterion that governs the acceleration of the universe. It

shows:

w > −1

3
⇒ ä < 0 ⇒ Decelerating universe,

w < −1

3
⇒ ä > 0 ⇒ Accelerating universe.

(1.12)

Now let’s take a look at the values of w for different components in the universe.

In thermodynamics, we know that pressure can be expressed as P = nkBT for an

ideal gas, where n is the number density of the particle, kB is the Boltzmann constant

and T is the temperature of thermal motion. If we assume the particles have mass of

μ, the mean square speed for non-relativistic massive particles can be estimated as,

7



CHAPTER1. COSMOLOGY

accordingtotheequipartitiontheorem,

3

2
kBT≈

1

2
µv2.

Withthisrelation,pressurefromthiscomponentcanbeestimatedas:

P=nkBT≈
ε

µc2
kBT=

v2

3c2
ρ

wherewecanhaveanestimationofw= v2/3c2.Themeansquarevelocityv2 for

non-relativisticparticlesismuchsmallerthanc2,sothatw≈0;whilev2 ≈c2for

relativisticparticles,wherew≈1/3.

Thisisnothardtounderstandqualitatively.Pressurecomesfromparticleshitting

animaginarysurface.Fornon-relativisticparticles,nearlyalloftheenergyisstoredin

theparticle’srestmass.Thethermalmotionoftheparticles,forthetemperaturesand

massesassumedhere,onlytakesanegligibleamountoftheenergydensity;therefore,

thepressurefromthethermalmotionisnegligible. Ontheotherhand,relativistic

particlescontainnearlyalloftheirenergyintheirthermalmotion.Thisamountof

thermalmotionshouldcontributetoasignificantamountofpressure,whichprovides

anon-zerow.

Inourcurrentuniverse,thenon-relativisticparticlesconsistofbaryons,dark

matterparticles,andnon-relativisticneutrinoswithw=0;whiletherelativistic

particles,madeupofphotons,actasradiation,withw=1/3. AsEquation1.12

8



CHAPTER 1. COSMOLOGY

shows, both of those components contribute towards a decelerating universe.

The universe was believed to be decelerating until acceleration was discovered in

1998.34 The fact that the universe is accelerating is rather counter-intuitive. The

components we previously knew all exert a gravitational attraction force. Although

the universe is currently expanding, gravity is decelerating the expansion. However,

the accelerating expansion implies that there must be one (or more) component that is

pushing the universe apart. Furthermore, this component must dominate; it not only

compensates for the gravitational matter attraction in the universe, but accelerates

the expansion of the universe. A name is assigned to this component: dark energy.

From Equation 1.12, we know that the equation of state parameter for the dark

energy must be less than −1/3 to accelerate the universe. Current observations

prefer w ≈ −1,22 which favors the dark energy being a cosmological constant Λ,

originally introduced by Einstein in 1917.12 For now we assume the dark energy is

the cosmological constant (implying no time evolution). A summary is presented in

Table 1.1.

Table 1.1: Equation of State Parameter for Different
Components

Component w ε(a) Acc/Dec
Radiation 1/3 a−4 Dec
Matter 0 a−3 Dec

Cosmological Constant −1 constant Acc

9



CHAPTER1. COSMOLOGY

1.4 EvolutionoftheUniverse

Nowwehavethefunctionofε(a)asshowninEquation1.11.Ifweassumethere

isonlyonecomponentintheuniverse(e.g.radiation, matter,andcosmological

constant),theFriedmannequation(Equation1.4)canbewrittenas

ȧ

a

2

+
k

a2
=
8πG

3c2
ε0a

−3(1+w). (1.13)

Weset k=0accordingtocurrentobservations.22Thentheequationabovecanbe

simplified:

ȧ

a

2

=
8πG

3c2
ε0a

−3(1+w)=H20a
−3(1+w). (1.14)

Thisequationcanbesolvedanalyticallyforeachsinglecomponentwithanequation

ofstateparameterw,whichgivesusthescalefactora(t)asafunctionoftimefora

flatuniverse:

a(t)=
3(1+w)H0

2

2
3(1+w)

×t
2

3(1+w), whenw=−1, (1.15)

a(t)=constant×eH0t, whenw=−1, (1.16)

10
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or

a(t)∝t
2

3(1+w), whenw=−1, (1.17)

a(t)∝eH0t, whenw=−1. (1.18)

Thesearesolutionsforasinglecomponentwithw.FromSection1.1,wecalculated

wfordifferentcomponentsasshowninTable1.1.Thenwehave:

Radiation-dominated, w=
1

3
, a(t)∝t

1
2, (1.19)

Matter-dominated, w=0, a(t)∝t
2
3, (1.20)

CosmologicalConstant-dominated, w=−1, a(t)∝eH0t. (1.21)

1.5 OurCurrentUnderstanding

Infact,ouruniversesimultaneouslycontainsthethreecomponents(radiationr,

matterm,anddarkenergy). AssumingthecosmologicalconstantΛisthedark

energy,Equation1.14canbere-writtenas:

ȧ

a

2

=
8πG

3c2
(εr,0a

−4+εm,0a
−3+εΛ,0) (1.22)

whereεr,0,εm,0,εΛ,0arethecurrentenergydensityforeachcomponent.Giventhe

currentcriticaldensityasεc,0,theratiosofeachenergydensitytothecriticaldensity

11
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εc,0(Equation1.5)aredefinedasΩr,0,Ωm,0,ΩΛ,0.ThenEquation1.22canbewritten

as:

ȧ

a

2

=
8πG

3c2
εc,0(Ωr,0a

−4+Ωm,0a
−3+ΩΛ,0). (1.23)

UsingEquation1.5andtherelationH=̇a/a,theaboveequationcanbesimplified:

1=Ωr,0a
−4+Ωm,0a

−3+ΩΛ,0.

Solvingthisequationwillgiveustheexpansionhistoryofouruniverse.However,it

cannotbesolvedanalyticallywithoutapproximations(itcouldbesolvednumerically).

Instead,wecansolveitinpieces.Thecomponentsevolvedifferentlywiththescale

factora.Formostvaluesofa,therewillbeonlyonedominantcomponent.Ifweonly

considerthedominatingcomponent,Equation1.23canbesolvedasEquation1.14

piecewisely.Sofar,wehavebeenassumingeachcomponentstaysasthesamekind

throughtheentirehistoryoftheuniverse,whichisavalidassumptionformostof

theconstituentsexceptforneutrinos. Theirsmallbutnon-zeromassesmakethem

relativisticinearlyuniversewhilenon-relativisticinlateuniverse. Therefore,the

sumofneutrinomassesaffectstheevolutionoftheuniversewhichmakescosmological

observationapowerfulprobetoconstrainthemasses.Forlatterdiscussions,neutrinos

aretreatedasradiationduringboththeearlyandlateuniverseforconsistency.
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Observations22 constrain the current density fractions Ωr,0, Ωm,0, ΩΛ,0:

Ωr,0 = 8.4× 10−5, Ωm,0 = 0.3, ΩΛ,0 = 0.7 (1.24)

whose evolution is shown in Figure 1.1.

Figure 1.1: Energy density evolution. The plot shows the universe went through
radiation-dominated (blue-shaded region), matter-dominated (yellow-shaded region)
and dark energy-dominated (green-shaded region). The red vertical line shows where
we are right now. The slope of Ωr (including photon energy density Ωγ and neutrino
energy density Ων) changes because the neutrinos turned from relativistic to non-
relativistic during the evolution of the universe, assuming the sum of neutrino masses
of 60 meV.

13
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In the very early times, the universe was radiation-dominated until the radiation-

matter energy density equality point. After the radiation-matter equality, the universe

became matter-dominated for a long time. Around the age of 8 billion years (a ≈

0.75), the universe passed the cosmological constant (Λ)-matter equality and became

Λ-dominated. Treating different eras separately, the evolution of the universe can be

described as:

• tinflation < t < 47, 000 yr, radiation-dominated, a(t) ∝ t
1
2

• 47, 000 yr < t < 9.8 Gyr, matter-dominated, a(t) ∝ t
2
3

• 9.8 Gyr < t < now (≈ 13.8 Gyr), dark energy-dominated, a(t) ∝ eH0t .

1.6 Cosmic Microwave Background

As the universe expands, its temperature decreased inversely with the scale factor,

T ∝ 1

a
.

When the universe was young and the scale factor a was small, the temperature of

the universe was high. Before the age ∼ 350, 000 years, the universe was hotter than

3000 K. Above this temperature, energetic photons were abundant enough to ionize

all the hydrogen atoms in the universe. The ionized hydrogen atoms constituted

∼ 90% of the baryons in the universe. Photons were strongly coupled to baryons

14



CHAPTER 1. COSMOLOGY

through Thomson Scattering. These couplings established the photons in equilibrium

with the baryons in a photon-baryon fluid. As time went on, when the temperature

dropped, the electrons and protons combined into electrically-neutral hydrogen atoms,

which were only loosely coupled with photons. The photons were released from the

baryons at t ≈ 350, 000 yr. This event is called “decoupling.” After decoupling, this

thermal distribution of photons free-streamed across the universe, observed today as

the Cosmic Microwave Background (CMB).

The CMB is the most powerful probe of our universe. It provides information

about the universe in its infancy. Because the CMB photons were in equilibrium

with the baryons before decoupling and free-streamed afterward, they provide direct

information about the early universe. Meanwhile, when the CMB was decoupled,

the whole universe was almost homogeneous with relatively simple physical processes

at ∼ 3000 K. These processes can be understood by well-established physics, which

enables the CMB to serve as a powerful probe of the early universe.

The CMB was predicted by Alpher, Bethe and Gamow in 19483 and discovered by

Penzias and Wilson in 1965.31 In 1991, the CMB blackbody spectrum (2.726±0.001K)

was confirmed by the COBE satellite.28 A blackbody spectrum results from matter in

thermal equilibrium with radiation. It is consistent only with an expanding universe,

where the early universe was once hot and dense.

Although the CMB was measured to be almost isotropic, small anisotropy (∼

10−4) was discovered across the sky by the COBE satellite.6 The anisotropy across
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Figure1.2: TheCMBspectrumas
measuredbytheCOBEsatellite.16The
spectrumiswell-fitbyablackbodyspec-
trumat2.723K.

Figure1.3: TheCMBanisotropypower
spectrum measured bythe WMAP
satellite.21Featuresinthepowerspec-
trumcontainrichinformationaboutthe
universe.

theskycanbedecomposedintosphericalharmonics:

∆T

T
=

∞

l=0

l

m=−l

almYlm(θ,φ) (1.25)

withthecoefficientsalmcalculatedby:

alm=

4π

∆T

T
(θ,φ)Y∗lmdΩ.

ThepowerspectrumClisthendefinedastheaverageofthea
2
lmunderthesamel

value:

Cl= |alm|
2 1

2l+1
m

a∗lmalm.

AnexampleoftheCMBanisotropypowerspectrumispresentedinFigure1.3

fromthe WMAPsatellite.Thispowerspectrumcontainsrichinformationaboutthe
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universe. The data in Figure 1.2 and 1.3, when combined with one or more other

measurements (such as the Hubble Constant and the optical depth to reionization),

can determine all of the fundamental parameters of the early universe. From the CMB

temperature measurement T ≈ 2.7K in Figure 1.2, the radiation energy density is

calculated as Ωr,0 ≈ 8×10−5, including 5×10−5 from CMB photons and 3×10−5 from

neutrinos. From CMB anisotropy measurement in Figure 1.3, position of the first peak

measures the curvature of the universe, now preferring a flat universe, k = 0 in the

Friedmann equation (Equation 1.4). The underlying amplitude and tilt of the power

spectrum measures the primordial fluctuation level As and the spectral index ns.

The heights of the collection of acoustic peaks determines the matter energy density

Ωm,0 ≈ 0.3, while the height of the odd peaks vs even peaks gives the baryon density

Ωb,0. Then the dark energy Λ density is calculated as ΩΛ,0 ≈ 1−Ωm,0 −Ωr,0 ≈ 0.7 in

a flat universe.

Beyond the temperature power spectrum, the CMB polarization ones contain

additional information to further constrain the fundamental parameters. Excitingly,

they could also tell us how the universe began.

1.7 Inflation

Although modern cosmology has achieved great triumphs, there are still questions

to be answered:
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• Horizon Problem. The CMB observations show homogeneity across the entire

sky. However, the universe should not have been able to reach any equilib-

rium beyond the causal horizon at decoupling, which corresponds ∼ 2 degrees

separation on the sky.

• Flatness Problem. The current universe is measured to be flat within a fraction

of a percent, which would be unexpected as the universe would evolve away

from flatness if there was any curvature at the very beginning. The fine tuning

needed at earlier times of the universe would be extraordinary and unnatural.

• Cosmic Defect Problem. Cosmic defects (including magnetic monopole, cosmic

string, and domain walls) are predicted to be observed within our observable

universe, whereas none of them have been observed.

• Initial Fluctuations. The anisotropy from the CMB reflects the initial fluctua-

tions . The origin of these fluctuations remains to be explained.

In 1980s, the inflation paradigm was proposed to answer these questions.19 The

inflation paradigm suggests the existence of a scalar quantum field (similar to the

recently discovered Higgs field) in the very early universe. We call it the inflaton field

φ. The field has its corresponding effective potential V (φ), which can reach the Grand

Unified Theory (GUT) energy level. The pressure and the total energy (kinetic and
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potentialenergy)ofthefieldcanbewrittenas:

p(φ)=
1

2
φ̇2/c3−V(φ), (1.26)

ε(φ)=
1

2
φ̇2/c3+V(φ). (1.27)

Fromtheequationofstatep=wε(Equation1.10),wforthisinflationfieldis:

w=
p(φ)

ε(φ)
=
1
2
φ̇2/c3−V(φ)
1
2
φ̇2/c3+V(φ)

. (1.28)

Ifthekineticenergyismuchsmallerthanthepotentialenergy,theso-called“Slow

Roll”model,

φ̇2 c3V(φ),

Equation1.28becomes

w≈−1.

Thisisthesameasthatofacosmologicalconstant(Section1.4),wherewecalculated

thattheuniverseexpandsexponentiallywhenw=−1.Thisinflationmodel,which

assumesasmallkineticenergy,iscalledslow-rollinflation.27,1Slow-rollinflationde-

scribesauniversethatwentthroughanexponentialexpansionwithinthefirst10−32

seconds,dramaticallyexpandingtheuniverse.

Theperiodofdramaticexpansionblewupcausally-connectedregionsbeyondthe

sizeofourobservableuniverse,whichsolvesthehorizonproblem.Theexpansionalso
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smooths any curvature to produce a nearly flat universe, which solves the flatness

problem. The expansion also dilutes the density of cosmic defects to less than one

in our observable universe, thereby explaining why these have not been observed.

Finally, the expansion stretches the inevitable quantum fluctuations of the inflaton

field to cosmic scales, explaining the origins of the observed CMB anisotropy. The

anisotropy became the density fluctuations that seed large scale structure.

The inflation paradigm seems to be a promising theory, since all the questions

above were naturally answered. In addition, the scalar fluctuation spectral index

ns is measured be to slightly smaller than unity,22 just as inflation would predict.

However, inflation has not yet been convincingly verified. Verifying inflation is one

fundamental goal in cosmology. Further, inflation is a general idea. Only specific

models of V (φ) make specific predictions. Inflation can even be extended to invoking

multiple fields. We need to know not just if the inflation paradigm is right, but what

kind of inflation happened in our universe.

If the inflation paradigm is right, it should have generated cosmic-scale gravita-

tional waves. The gravitational waves would have imprinted a divergence-free polar-

ization pattern on the CMB through Thomson scattering. The pattern is divergence-

free, know as B-mode analogous to the magnetic field. Measuring this inflationary

B-mode polarization is the most powerful remaining test of the inflation paradigm.

It is the only way to determine the amplitude of V (φ), which may be the first time a

GUT-energy-level phenomenon is observed.
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The CLASS Project

The Cosmology Large Angular Scale Surveyor (CLASS) is designed to make mea-

surements of large angular scale CMB polarization to measure the inflationary Cosmic

Microwave Background (CMB) B-mode polarization at large angular scales and also

to constrain the optical depth to reionization τ . To observe nearly the full sky and

minimize atmospheric loading, the CLASS telescopes are located in the Atacama

Desert, close to the equator at an altitude of 5,200 meter. To recover large angu-

lar scales on the sky, CLASS employs a novel polarization modulation device, the

variable-delay polarization modulator (VPM). To remove the galactic foreground,

the CLASS telescopes observe in four frequency bands: 40 GHz, 90 GHz, 150 GHz,

and 220 GHz. To achieve high sensitivity, the CLASS telescopes employ polarization-

sensitive high-efficiency transition-edge-sensor (TES) bolometers. The CLASS tele-

scopes are optimized to measure the CMB polarization signals at large angular scales
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with state-of-art technology.

2.1 Scientific Objective

The CLASS experiment is optimized to measure the large-angular-scale polar-

ization signal with high sensitivity. The results will help us understand cosmology,

fundamental physics, and our own galaxy. The primary scientific goals for CLASS

are to test the inflation paradigm, characterize inflation, determine the optical depth

to reionization τ , and constrain the sum of neutrino masses Σmν .

2.1.1 Inflation

If inflation happened, quantum fluctuations of the inflaton field would have gener-

ated scalar perturbations, while quantum fluctuations of the gravitational field would

have generated tensor perturbations. Perturbations polarize CMB photons through

Thomson scattering as shown in Figure 2.1 on the left. The polarization field can

be decomposed into curl-free and divergence-free components as E-mode polarization

and B-mode polarization, shown in Figure 2.1 on the right.

The B-mode polarization at the largest angular scales could only come from in-

flationary tensor perturbations. Therefore, measuring the large-angle B-mode polar-

ization is a powerful tool for testing and characterizing the inflation paradigm.

The amplitude of the CMB B-mode polarization anisotropy is represented by the
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Figure 2.1: CMB Polarization from Thomson Scattering and E/B-mode. On the left,
the Thomson scattering is shown.23 If an electron sits at the center of a quadrupole
perturbation, photons coming from different directions have different temperatures.
Assuming that the horizontal photons (shown in blue) have higher temperature than
the vertical photons (shown in red), the electron scatters more power vertically than
horizontally if observed perpendicularly to the paper; equivalently, a net vertical
polarization signal is generated. On the right, E-mode and B-mode in the CMB
polarization field are shown.25 The left part of this figure shows one local polarization
signal with one certain direction. If we zoom out to the whole sky, polarization will
form a vector field on the sky. Analogous to the electromagnetic field, this vector
field can be decomposed into curl-free and divergence-free components similar to the
electric field (E-mode) and the magnetic field (B-mode)

tensor perturbation amplitude At. It is often expressed in terms of the ratio to the

scalar perturbation amplitude As, whose value is measured from the CMB tempera-

ture anisotropy. The scalar perturbation amplitude As depends on scale, As = As(k)

using wavenumber k to describe scale. If the tensor perturbation amplitude also

depends on scale, the ratio r is defined as

rk =
At(k)

As(k)
,
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with the current upper limit as r < 0.12 at k = 0.05 Mpc−1 with 95% confidence.7

Figure 2.2: CMB B-mode Polarization Power Spectrum. The solid lines show the
inflationary B-mode power spectrum at different r values; as the r value decreases
from 0.1 to 0.001, the amplitude of the power spectrum decreases accordingly. The
dotted line shows the B-mode power leaked from the E-mode through gravitational
lensing. The dashed line shows the combination of the two components with r = 0.01
for the inflationary B-mode. Measurements from other experiments are also shown
in this figure. The red band shows the projected sensitivity per mode from CLASS.
Figure credits: Duncan Watts.

B-mode power spectra are shown in Figure 2.2 along with available measure-

ments and the projected CLASS sensitivity. There are two extragalactic sources that

generate B-mode power: one is the tensor perturbations from inflation; the other

one is gravitational lensing. The gravitational lensing transforms E-modes into B-
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modes. Because E-mode power is orders of magnitude larger than B-mode power,

E-to-B leakage could be significant. The inflationary B-mode power may dominate

at small l (large-scale) as shown in Figure 2.2. Lensing B-modes dominate at small

angular scales. As the inflationary B-mode power decreases, the cross-over from

lensed B-modes to inflationary B-modes moves to larger angular scales. Therefore,

the large angular scale CMB polarization should be measured for the inflationary

B-mode power. With the help from large-angular-scale observation, the details of the

inflationary B-mode power spectrum will be characterized to further understand the

very beginning of the universe.

As shown in Figure 2.2, the WMAP satellite was able to measure large angular

scales but it could only provide upper limits given its sensitivity. To measure the in-

flationary B-mode polarization signal, high sensitivity is required for the experiment.

The CLASS design is optimized to measure the large-angular-scale CMB polariza-

tion signal with high sensitivity. The projected sensitivity per mode in Figure 2.2 is

shown by the red band. The CLASS project aims at recovering the largest scale sig-

nals over most of the sky, with the sensitivity that is able to constrain the inflationary

B-mode power at the r ∼ 0.01 level.37

2.1.2 Reionization & Neutrino Masses

The epoch of reionization is a process (at redshift 6 < z < 20) when first-

generation stars and galaxies were ignited, after which the entire universe was ionized.
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Understanding the epoch of reionization is critical to understanding the formation of

first stars, first galaxies and eventually the details of the cosmic evolution. Currently,

the study of the epoch of reionization is still in its early stages. The CMB photons,

traveled from the early universe, were scattered and thus picked up information from

the epoch of reionization. The most basic information is summarized as the optical

depth to reionization τ , the attenuation of the CMB anisotropy since the surface of

last scattering. This optical depth helps us to understand the epoch of reionization.

Figure 2.3: Primordial scalar perturbation As and optical depth τ posterior distribu-
tions.20 The CMB temperature power spectrum measures Ase

−2τ as a whole, resulting
in a degeneracy between As and τ . From WMAP 9-year22 to Planck 2015,32 although
the sensitivity and resolution on the CMB temperature measurement have improved,
constraints on τ and As have not improved much due to the degeneracy. With the
large angular CMB polarization measurements from CLASS, the degeneracy will be
broken, and the measurement on both τ and As will be significantly improved. Figure
credits: Duncan Watts.
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The primordial scalar perturbation amplitude As combines with the optical depth

τ in the form Ase
−2τ to determine the amplitude of the measured CMB temperature

power spectrum, leading to a degeneracy between the two quantities, as shown in

Figure 2.3. However, the large angular scale CMB polarization can measure τ inde-

pendently. CLASS is designed to measure the τ value with a sensitivity at the cosmic

variance limit, which is the intrinsic variance because we only have one universe to

observe. So the CLASS polarization measurement at large angular scales will be the

best measurement possible short of making a full-sky measurement. Figure 2.3 shows

the constraining power at a cosmic-variance-limited level measurement from CLASS.

The τ and As degeneracy is broken. With a better measurement on τ , we can improve

the measured value of the primordial scalar perturbation As. This, in turn, will help

us to constrain the sum of neutrino masses.

The value of As is estimated from CMB large-scale (> 2◦) anisotropy measure-

ments. In practice, it is derived from a fit to the whole power spectrum, representing

the underlying level of initial perturbations. This perturbation can be regarded as

an initial state. After billions of years evolution, the perturbation amplitude has

evolved into a final state that can be observed by complementary observations, in-

cluding CMB lensing and galaxy cluster etc.. As we pin down the initial and final

states, the evolution of the universe during that period can be better understood.

Accordingly, the components governing the evolution can be constrained, including

neutrinos. Neutrinos have tiny but non-zero masses, they were relativistic in early
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Figure 2.4: Sum of neutrino masses Σmν and optical depth τ posterior distributions.20

This plot shows that an improved measurement on τ constrains the sum of neutrino
masses Σmν . The blue contour is generated from Planck 2015 Monte-Carlo chain,32

which weakly constrains the sum of neutrino mass. The polarization measurement
from CLASS, cosmic-variance limited, significantly improves the constraints on Σmν .
Figure credits: Duncan Watts.

universe and became non-relativistic in late universe. As we discussed in Section 1.4,

relativistic and non-relativistic matters determine the evolution of the universe dif-

ferently. The fraction of time when neutrinos were relativistic affected the evolution

of the universe, which eventually depends on neutrino masses. Therefore, the sum of

neutrino masses can be constrained by the evolution of the universe. Investigations

have been made to study the power of CMB in combination with next generation

CMB lensing and galaxy cluster studies.2 With a cosmic-variance-limited large scale

E-mode measurement, the constraint is forecast to be σ(Σmν) = 15 meV (compared
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with 103 meV without CMB polarization measurements).2

2.1.3 Galactic Sciences

CLASS is able to provide nearly all sky polarization maps over different frequency

bands with unprecedented sensitivity. Those maps will also provide valuable informa-

tion to study our own Galaxy. For example, the 40 GHz signal, containing synchrotron

radiation aside from CMB, is a probe of the large scale structure of the Galaxy. With

the sensitivity of CLASS, synchrotron emission will be mapped out across the entire

Galaxy. This will shed more light on the WMAP haze,5,15 Fermi bubble35 and the

E/B power imbalance.33,9 More generally, the deep maps at multiple frequencies will

provide more information to understand the structure and dynamics of the Galaxy

and the interstellar materials.

2.2 The CLASS Design

To achieve the scientific goals mentioned in section 2.1, the CLASS telescopes are

optimized to observe the CMB polarization signal at large angular scales with high

sensitivity.
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2.2.1 Site & Scan Strategy

Locations at different latitudes on the Earth provide different sky coverages. As-

suming scan elevations greater than 45◦, 70.7% of the sky is observable on the equator,

while only 14.6% of the sky is observable at the South and North poles. Therefore,

CLASS should locate near the equator. Besides maximizing sky coverage, the atmo-

spheric transparency and loading also drives the site selection. The ideal site would

have minimum in-band atmospheric emission and atmospheric loading, especially in

the CLASS observing frequency bands.

Figure 2.5: The CLASS site is located at the Atacama Desert, Chile. At an observing
elevation of 45◦, 65% of the sky is observable everyday at this low latitude location.
This figure first appeared in the Johns Hopkins University Summer 2014 issue of Arts
& Sciences Magazine†.

Combining these two factors, the CLASS site was selected to be in the Atacama

Desert, Chile, as shown in Figure 2.5. With a latitude of -23◦, 65% of the sky is

observable at an observing elevation of 45◦. With an elevation of 5200 meters, the

†website: http://krieger.jhu.edu/magazine/v11n2/a-class-by-itself/
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site stands above the thickest 5 km of the atmosphere. In a desert, the site is dry

with low precipitable water vapor (PWV). These two facts lead to reduced in-band

atmospheric emission (as shown in Figure 2.6) and reduced atmospheric loading.

Figure 2.6: Estimated atmospheric brightness temperature spectra from precipitable
water vapor (PWV) levels at 0.50 mm, 1.00 mm and 1.50 mm. Atmospheric emis-
sion only leaves several windows for microwave observations. Blue bands in the plot
are the four CLASS frequency bands, designed to avoid oxygen and water emission
lines. Even within those bands, PWV loading increases significantly as PWV rises,
especially at high frequency bands. Median PWV at CLASS site is around 1.3 mm§.
Figure credits: Thomas Essinger-Hileman.11

The scan strategy must be designed to recover the largest angular scales on the

sky. The CLASS telescopes point to the sky at 45◦ elevation angle and scan the sky

only with azimuthal rotation. The azimuthal rotation (spanning up to 720◦) measures

a 90◦ diameter circle on the sky in less than 10 minutes, a timescale on which the

§APEX weather monitor, website: www.apex-telescope.org/weather
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Figure 2.7: The CLASS scan strategy. CLASS telescopes stay at 45◦ elevation angle
and scan the sky with azimuthal rotation. The seven hexagons represent one 90 GHz
focal plane projected onto the sky. As the telescope scans azimuthally, the focal
plane scans the sky in a circle. The Earth spin moves the circle slowly on the sky. As
the Earth spins, the telescopes scan nearly two full rotations in one day. Daily sky
coverage is shown in the yellow band in Figure 2.5. Figure credits: David Larson.

CLASS measurement is designed to remain stable (Subsection 2.2.2). As the Earth

spins, the azimuthal circle moves across the sky as shown in Figure 2.7. As the Earth

spins one round everyday, the telescopes cover the entire survey area (the yellow band

in Figure 2.5) with nearly two full rotations. The resulting maps have cross-linked

scan circles to allow reconstruction of CMB polarization on the largest angular scales.

This scan strategy enables CLASS telescopes to observe 65% of the sky twice every

day. With thousands of detectors, each point on the sky is visited by multiple detec-

tors. To recover full polarization information and check systematic effects, CLASS
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telescopes have a boresight axis, which enables daily change of the instrument-sky

polarization angle. Finally, the entire survey will have data for each point on the sky

measured by thousands of detectors, hundreds of times each, with different polariza-

tion angles. Averaging over these data mitigates systematic effects associated with

different detectors and variations in responsivity at different times and with different

polarization angles.

2.2.2 Fast, Front-end Modulation

Although the CLASS site and scan strategy are optimized to observe large angular

scales, atmospheric loading drift and instrumental instability would hinder recovering

the extremely faint large-angular-scale structures from CMB polarization. Because

of the challenges, CLASS pioneers to be the first and only ground-based nearly all-

sky CMB polarization experiment, implementing a novel fast front-end modulation

technology.

The idea of modulation is shown in Figure 2.8. Although the atmospheric loading

drift can be orders of magnitude higher than the polarized signal, it is unpolarized.

If we can modulate only the polarized part, we can recover the polarized incoming

signal through the modulation frequency. If the modulation frequency is much higher

than the drift frequency, the polarized signal can be recovered with high-fidelity. If

the atmosphere is polarized, as long as it changes over time scales slower than the

modulation time scale it will not survive synchronously demodulated output averaged
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Figure 2.8: The idea of modulation. The modulated data (red) combine a fast-
modulated signal and a long-time-scale drift. The signal is “locked” in the amplitude
at the modulation frequency. If the modulation is fast enough so that its frequency
is much higher than the drift frequency, the signal can be recovered with high-fidelity
regardless of the drift. Figure credits: Toby Marriage.

over time to the permanent sky signal.

CLASS uses an instrument called the variable-delay polarization modulator

(VPM) to modulate the incoming signal. The VPM has a stationary wire grid in

front, backed by a movable mirror. Because the wire grid reflects one linear polariza-

tion and transmits the orthogonal one, the transmitted polarization is reflected back

by the mirror to merge back with the other polarization but with a phase delay as

shown in Figure 2.9. An optical path difference Δ is added during this process:
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Figure 2.9: The VPM schematic diagram.10 The VPM consists of a stationary wire
array and a movable mirror. The wire array reflects the polarization along the wires
while transmitting the orthogonal polarization. The transmitted polarization is re-
flected by the movable mirror and recombines with the orthogonal polarization. This
process adds an additional phase delay between the two orthogonal polarization di-
rections; the amplitude is proportional to the distance between the stationary wire
array and the movable mirror. The polarization state therefore changes as the mirror
moves. Figure credits: Joseph Eimer.

Δ = d1 + d2

=
d

cos(θ)
+

d cos(2θ)

cos(θ)

=
1 + [cos2(θ)− sin2(θ)]

cos(θ)
d

=
2 cos2(θ)

cos(θ)
d

= 2d cos(θ)

(2.1)
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where d1, d2, θ, d are defined in Figure 2.9. Equation 2.2.2 shows that the

optical path difference depends on the grid-mirror distance d and the incident angle

θ. Once θ is fixed, changing d (which is equivalent to moving the mirror) changes

the polarization state at the same frequency. With polarization sensitive detectors to

measure the change, the idea of modulation shown in Figure 2.8 is realized.

The VPM is the first optical element in the CLASS telescopes, performing front-

end modulation. The front-end modulation guarantees that only the polarization

signal from the sky is modulated. Instrumental polarization from optical components

is rejected because it is introduced after the modulator and thus is not modulated.

This again enables CLASS to constrain the systematic effects from the instrument to

provide a high-sensitivity measurement.

Comparing to other modulation technology, such as a rotating half-wave plate

(HWP), the VPM is unique in several key ways. The VPM technology uses only

reflective elements. This allows it to be used in ambient temperature as the front-

end modulator. HWP modulators are made of lossy dielectric materials, which emits

excess loading in ambient temperature. Further, front-end modulators need to be

large enough to achieve degree-scale resolution. At frequencies below 90 GHz, this

translates into meter-sized apertures. Apertures also grow with the size of the focal

plane (number of detectors). Further, the VPM design is scalable because all the

components are manufacturable to the required meter scale and perhaps beyond,

36



CHAPTER 2. THE CLASS PROJECT

Figure 2.10: Simulations on the VPM performance.29 The top map is the input map
for Stokes Q with some large angular scale structures. On the bottom, the left(right)
map represents the recovered map with(without) the VPM. With the VPM, the input
large-angular-scale structures are retained; without the VPM, the map is entirely
dominated by noise.

which makes the VPM technology a possible solution for next-generation experiments.

End-to-end simulations with realistic systematics were carried out to study the

VPM performance on the sky.29 Figure 2.10 shows that the input large-angular-scale

structures are recovered with the VPM, while the recovered map is dominated by

noise without the VPM. This study demonstrates that the VPM (or an equivalent

fast modulation scheme) is both effective and necessary to recover the large-angular-

scale CMB polarization structures on the sky.
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2.2.3 Multi-frequency Observation

Polarized galactic emission has proven to be a major contaminant for CMB po-

larization observations.7 Galactic emission has a different frequency spectrum than

the CMB anisotropy. Therefore, CLASS requires multi-frequency channels to sepa-

rate the CMB from galactic signals. CLASS was designed to remove the polarized

galactic emission by the use of multi-frequency observations, at 40 GHz, 90 GHz, 150

GHz, and 220 GHz; the polarized galactic emission consists of polarized synchrotron

radiation and polarized thermal dust emission, whose spectra can be described as

a power law as S ∝ να. At low frequency, the galactic emission is mainly from the

polarized synchrotron radiation with a negative spectral index α; at high frequency, it

is mainly from the polarized dust emission with a positive spectral index α. As shown

in Figure 2.11, the addition of the two components reaches its minimum at around

70 GHz, but it is still higher in amplitude than the inflationary B-mode polarization

power. The polarized galactic emission needs to be removed before the inflationary

B-mode power could emerge. Templates for polarized synchrotron and dust emission

can be established through low (40 GHz) and high (220 GHz) frequency maps respec-

tively. Those templates would, in return, be used to subtract the polarized galactic

emission to recover the inflationary B-mode polarization signal. Alternatively, all four

CLASS channels could be simultaneously fit for three components: CMB, synchrotron

emission, and dust emission.

As noted earlier, although polarized galactic emission is a contaminant for CMB
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polarizationstudies,thisradiationcontainsrichinformationforvariousGalacticstud-

ies(SeeSubsection2.1.3).

Figure2.11: CLASSmulti-frequencyobservations. Theplotshowsthespectrafor
theCMBB-modepolarizationfrominflationarygravitationalwaves(orange)and
theGalacticemission(green). ThefourverticalbandsrepresentthefourCLASS
frequencybands:40GHz,90GHz,150GHz,and220GHz.The40GHzmapcan
beusedtomakeapolarizedsynchrotrontemplate,while220GHzmapcanbeused
forapolarizeddusttemplate.Together,thesetemplateswillbeusedtosubtractthe
galacticemissioninthefinalCMBpolarizationmaps.Thisfigurefirstappearedin
theJohnsHopkinsUniversitySummer2014issueofArts&SciencesMagazine.

website:http://krieger.jhu.edu/magazine/v11n2/a-class-by-itself/
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2.3 The CLASS Telescopes

The CLASS experiment consists of four telescopes: one observes at 40 GHz, two

observe at 90 GHz, and one dichroic telescope covers 150 GHz and 220 GHz. This

design optimizes the sensitivity for a final CMB polarization map after subtracting

foreground components from 40 GHz and 220 GHz bands. Mechanically, two tele-

scopes share one mount pointing to the same direction on the sky. Overall, the

observatory has two mounts supporting four telescopes observing the sky at four

frequency bands, as shown in Figure 2.12.

The four CLASS telescopes share a common optical design as shown in Figure 2.13.

Incoming light encounters the VPM first at the front end. The modulated light is

then reflected by the primary mirror and the secondary mirror before it enters the

cryogenic receiver.

Details of the cryogenic receiver are shown in Figure 2.14. After the incoming

light is modulated and focused by the warm optics, it enters the cryogenic receiver

through a 46 cm-diameter ultra-high-molecular-weight polyethylene (UHMWPE)

window. The window must maintain the vacuum while being transparent to mi-

crowave. In the receiver, the radiation first passes through stages of optical filters,

which either reflect or absorb the infrared thermal loading before it enters a colder

stage. The radiation is then focused by two high-density polyethylene (HDPE) lenses

before it reaches the feedhorns on the focal plane.

CLASS implements feedhorn-coupled detectors to control beam systematics, with
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Figure 2.12: CLASS telescopes. CLASS is designed to have four telescopes: one
observes at 40 GHz frequency band, two observe at 90 GHz frequency band, and
one dichroic telescope observers at 150 GHz and 220 GHz frequency bands. Two
telescopes share one mount with co-pointing. This figure first appeared in the Johns
Hopkins University Summer 2014 issue of Arts & Sciences Magazine††.

easily-machined smooth-walled feedhorns developed.38 The feedhorns couple the ra-

diation to high-efficiency polarization-sensitive detectors.4,36 The radiation collected

by one feedhorn is sampled on one detector chip, as shown in the top photographs

††website: http://krieger.jhu.edu/magazine/v11n2/a-class-by-itself/
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Figure 2.13: CLASS 40 GHz telescope design. The 40 GHz telescope components are
shown in this figure, including the VPM, the primary mirror, the secondary mirror,
and the cryogenic receiver. Colored lines represent light rays converging onto four
feedhorns on the focal plane. The optics and receiver models are made by Joseph
Eimer.

in Figure 2.14. The two orthogonal sets of antennas separate the two orthogonal

polarization signals and directs each through a microstrip. After being guided by the

microstrip, the energy is dissipated on a TES island. The TES is maintained on its

super-conducting transition curve, so any change in temperature leads to a signifi-

cant change in resistance. Operating the detectors at low temperature (∼150 mK)

significantly reduces the noise. This cutting-edge detector technology enables CLASS

to measure the CMB polarization with high-sensitivity.
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Figure 2.14: CLASS 40 GHz receiver design. The 40 GHz receiver is presented in
a cross-section view. Critical optical components are pointed out. The top right
photograph shows the focal plane assembly. The top left one shows a detector chip
with a scanning-electron-microscope image of the Transition Edge Sensor (TES).
Photo credits: Dave Chuss, Kevin Denis, and David Larson.
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Optical Components

To implement the CLASS design, a suite of new optical components needed to

be developed and tested. A Fourier Transform spectrometer (FTS) and a Large

Aperture Bolometer were first developed for characterizing the optical properties of

CLASS components. Then I developed and tested an optical filter system and a

cryogenic window using these two instruments.

3.1 Fourier Transform Spectrometer (FTS)

A Fourier Transform Spectrometer (FTS) is an instrument developed to measure

spectral information for optical components (including the CLASS cryogenic window,

filter system components, and detectors) or an entire system. The FTS covers the

frequency range from 25 GHz to 1 THz. This frequency range covers the CLASS
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frequency bands and beyond, which enables us to check in-band and out-of-band

optical properties. It also measures spectra up to 1 THz, which helps characterize

thermal heating and loading on the focal plane. The FTS is designed to have an

aperture similar to the CLASS optical components (around 40 cm), which enables

the components to be tested in full scale.

Figure 3.1: Schematic diagram of the Fourier Transform Spectrometer (FTS). The
FTS contains two reflective mirrors, three polarizers, one fix rooftop mirror, and one
movable rooftop mirror. This figure was originally made by Tiffany Wei.

The schematic diagram of the FTS is shown in Figure 3.1 (Tiffany Wei, Senior

Thesis, Johns Hopkins University, 2012). Diverging radiation coming out of a ther-

mal source is first collimated by a parabolic reflective mirror (Mirror 1). Then the

45



CHAPTER 3. OPTICAL COMPONENTS

unpolarized radiation passes through a horizontal linear polarizer (Polarizer A). Af-

ter the horizontal polarization is selected, the radiation encounters another polarizer

(Polarizer B) whose polarization direction orients 45◦ from horizontal. This polar-

izer acts as a beam splitter. The incoming horizontally-polarized beam is split (re-

flected/transmitted) evenly. The split two beams propagate towards two separate

rooftop mirrors. One of the rooftop mirrors is fixed, while the other one is movable.

After reflection by the rooftop mirror, the two beams merge back at the beam splitter

(Polarizer B). The movable rooftop mirror can change the optical path difference be-

tween the two arms. When reflected by the rooftop mirrors, the polarization is flipped

about the rooftop mirror vertical spine, so that the arm that was initially reflected

is transmitted after the reflection, and vice versa. The merged beam then continues

in the other direction, with the polarization as a superposition of two orthogonal

linear polarizations with a phase difference. Then the final polarizer (Polarizer C)

selects the projection of the horizontal polarization again. When the two beams are

in phase, the merged beam after Polarizer B is horizontally polarized, and the power

after Polarizer C reaches the maximum. When the beams are exactly out of phase,

the radiation after Polarizer B is vertically polarized, the power after Polarizer C

is minimized. Finally, the collimated beam is focused by another reflective mirror

(Mirror 2) onto the detector.

The two parabolic mirrors and two rooftop mirrors were designed with the software
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Zemax∗andsenttoashopformanufacturing. Thepolarizersarebasedon Mylar

sheets†. Alayerofaluminum(300∼500Å)wasfirstsputteredona2×2Mylar

sheet(6.2µmthick). Thealuminumlayerwasthenetchedintopolarizinggrids,

whichare50µm-widelineswith50µmgapsbetweenthem,i.e.100µmgridspacing.

Thealuminumpolarizinggridsreflectthelinearpolarizationalongtheirdirectionand

transmittheorthogonalone,sotheycanbeusedaspolarizersatsub-mmwavelengths.

ThefabricationwasdonebyTech-Etch‡.Finally,thelinearstage(AerotechPRO115-

HS-150)§controlsthemotionofthemovablerooftopmirror.Itprovidesposition

accuracyof10µmacrossarangeof150mm.Theparallelismisconstrainedwithin

0.5mmacross150mm(∼0.2degrees).

Thesourceanddetectorhavetwocombinations.Oneisabroadbandconfiguration

witha700Kthermalsourceandafar-IR1.6KbolometersystemfromIR-lab¶.

Thisconfigurationprovidesspectralinformationfrom100GHzto1THz,limitedby

thebolometerfrequencyrange.Inthisconfiguration,intensitydataaretakenasa

functionofthelinearstagepositionbeforefurtheranalysis.Theotherconfigurationis

anarrowbandconfigurationwithcoherentsourcesanddetectorsthat,takentogether,

coverthein-bandfrequencies.Onesetcoversafrequencyrangefrom32GHzto44

GHz,whiletheothercoversfrom80GHzto100GHz. Millitech andHittite∗∗

∗ZemaxL.L.C.,website:http://www.zemax.com/
†MylarSheetdescription,website:http://www.grafixplastics.com/
‡Tech-EtchPhotoEtching,websitehttp://www.tech-etch.com/
§AerotechInc.,website:https://www.aerotech.com/
¶InfraredLaboratories,website:http://www.infraredlaboratories.com/Bolometers.html
Millitech,website:http://www.millitech.com/

∗∗HittiteMicrowave,website:http://www.analog.com/en/index.html
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providethecoherentmicrowaveparts.Inthecoherentconfiguration,thenarrow

sourcesweepsthefrequencyrangemuchfasterthanthemeasurementintegration

time,sothemeasurementisoverabandwidthcoveredbythefrequencysweep.The

restissimilartothebroadbandconfiguration.

TheinstrumentmeasuresintensityIfromthedetectorwithcorrespondinglinear

stagepositionx,thisgivesustheintensityIasafunctionofx:

I=I(x).

ItsFouriertransformationprovidesthepoweratwavenumberkspaceg(k):

g(k)=
L/2

−L/2

I(x)eik2xdx,

whereListhedistancerangecoveredbythelinearstage(150mm),kisthelight

wavenumber.Thephasedelayis2kx,wherexisthepositionofthemovablemirror.

Thefactortworesultsfromthelightrayinthatarmtransversingthedistancetwice.

Theradiationfrequencycanthenbecalculatedas:

ν=
k

2π
c,
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wherecisthespeedoflightinvacuum.Thefinalspectrumisgivenby:

f(ν)=g(
2πν

c
)=

L/2

−L/2

I(x)ei
2πν
c
2xdx.

Spatialinformationistransformedintofrequencyinformation.Thespatialrange

determinesthespectralresolutionwhilethespatialresolutiondeterminesthespectral

range. ThisFTSisdesignedtocoverthefrequencyrangefrom10GHzto1000

GHzwithspectralresolutionat1GHzlevel. Thisrequiresspatialinformationto

coverarangeof75mmwithpositionaccuracyof150µm,whichiswellwithinthe

specificationsofthelinearstage.

Figure3.2:FTSintrinsicspectrafromthebroadbandconfiguration.Fifteeninde-
pendentmeasurementsarepresentedinthisfigure. Theconsistencyshowsthere-
peatabilityoftheinstrumentfrom100GHzto1THz.Thelimitsareconstrainedby
thebolometer.Theprominentabsorptionlinesarefromatmosphericgasmolecules.

BeforeperformingadiscreteFastFourierTransform(FFT)onthedata,Iapodized
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the data to avoid the hard boundary at two ends (x = 0 and x = 150 mm). Details

can be seen in Appendix A. The broad-band and narrow-band configurations provide

similar results except they cover different frequency ranges. Figure 3.2 shows the

intrinsic spectra for the broad-band configuration. Fifteen independent measurements

are presented in this figure. The consistency between 100 GHz to 1 THz proves the

ability of the instrument to measure spectral properties within this region reliably in

the broad-band configuration.

With this instrument, different materials were tested at their full size (Section 3.3),

which provides invaluable information for implementing the CLASS optical design.

Finally, the FTS was used to calibrate the system spectral response during integration

tests.

3.2 Optics Test Cryostat

To test the 300 K and 60 K optics more conveniently, we built a reduced version of

the CLASS receiver. It has the same diameter with a truncated length and is cooled

down by a wet dewar with liquid nitrogen. The reduced cryostat is mainly used for

two purposes: the optical filters bolometric performance test and the large-aperture

(46 cm) vacuum window structural test.

The cryostat is around one meter tall and 60 cm in diameter. It has a chamber

half of its size within as a wet dewar. After the cryostat is pumped under vacuum,
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liquid nitrogen is transferred into the coolant chamber. The coolant chamber has a

cold plate as its top, which can reach temperature of 77 K when it is filled with liquid

nitrogen. The lid of the cryostat is 40 cm above the cold plate. The lid is used to

install the vacuum window. Therefore, beneath the vacuum window, the 300 K and

60 K filters can be placed on the cold plate. This setup mimics the configuration in

actual CLASS receivers.

The filters along with the vacuum window are designed to block infrared radiation,

since excessive infrared loading impedes cryostat cool down. The optical components

are also to be tested in their full sizes (around 40 cm in diameter). Thus, a special

large aperture bolometer was developed.

The incoming radiation loading is estimated around 75 W, while the residual

loading must be less than 1 W after 300K and 60K filter systems. So the bolometer

should measure a loading range from 0.1 W to 100 W.

Figure 3.3: The large aperture bolometer with a test filter stack. This assembly sits
within the test cryostat on the cold plate. The large aperture bolometer (consisting
of pyramidal absorber, baseplate, and Z-shape stands) is thermally coupled to the
cold plate. The filter stack is supported by an aluminum structure with good thermal
conduction to the cold plate.
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The design starts from a 40 cm diameter aluminum baseplate with good thermal

conductivity. The temperature difference across it is uniform to within 3 K during

operation. On the baseplate, pyramidal absorber tiles (Tessellating TeraHertz RAM

from Terahertz∗) are epoxied on with high-thermal-conductivity Emerson & Cuming

Stycast 2850†. Far-infrared reflection from the pyramidal absorbers is < −35 dB.

The thermal baseplate is thermally coupled to the cold plate by four ‘Z’ shape

stands. To cover the required power range from 0.1 W to 100 W, two sets of Z stands

were built, one of aluminum and the other one of stainless steel. The aluminum one

has higher thermal conductivity and is used for a high power range (2 - 100 W), while

the stainless steel one, with its lower thermal conductivity, is used for a lower power

range (0.1 - 5 W).

Once the absorptive plate is in thermal equilibrium, the thermal energy flow re-

lation can be written as

Pincident = Pradiation + Pconduction, (3.1)

where Pincident is the incident radiation power, Pradiation is the power that the absorber

radiates out, and Pconduction is the power conducted down to the cold plate via the Z

stands.

∗Terahertz, website: http://www.terahertz.co.uk/
†Emerson&Cuming Adhesive, website: https://www.ellsworth.com/manufacturers/emerson-

cuming/
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Fifteen silicon diode∗ thermometers monitor the temperature at different posi-

tions. The temperature data not only reveal the temperature gradient but also help

estimate the powers in Equation 3.1. Using the temperature of the pyramidal ab-

sorbers, Pradiation is estimated assuming blackbody radiation. Using the temperature

of the baseplate and the cold plate, Pconduction can be estimated after calibration. Then

according to equation 3.1, the incident power Pincident can be estimated. Pincident is

an upper limit to loading incident on the bolometer from the outside, since loading

from the walls of the aluminum support structure also contributes to it.

The test filter stack in Figure 3.3 can be left open or replaced by any filter or

a combination of filters. The large aperture bolometer measures the loading, which

provides another piece of valuable information for optical filter design.

3.3 Optical Filters

The CLASS detectors require a base temperature < 100 mK to operate. It is

this low-temperature operation that guarantees CLASS high-sensitivity. However,

this low-temperature operation sets a strict criterion on thermal loading, given the

limited dilution refrigerator’s cooling power. According to this requirement, optical

loading on the focal plane should be limited to less than 100 μW. The large aperture

of CLASS receivers accepts around 75 W of power at the vacuum window. The

∗Lake Shore UT-670 Silicon Diode, website: http://www.lakeshore.com/products/Cryogenic-
Temperature-Sensors/Silicon-Diodes/DT-670/Pages/Overview.aspx
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majority of the power is carried by ∼ 100μm far-infrared radiation instead of our in-

band frequencies. So starting from the window to the focal plane, the optical loading

should be reduced from 75 W to 100 μW, almost six orders of magnitude. Meanwhile,

the in-band radiation should be transmitted with high efficiency.

With the FTS and the large aperture bolometer, spectral and bolometric prop-

erties of individual materials were tested. The information was used to design the

CLASS filter system. Finally, the spectral and bolometric properties of the assembled

filter system design were characterized in the same fashion.

3.3.1 Metal Mesh Filter

A metal mesh filter is a low-pass optical filter with tunable cutoff frequency. It is

reflective with minimal emission, so that it can be used at high temperature stages.

CLASS metal mesh filters are 45 cm in diameter. The filter film is made by Tech-Etch

and PhotoMachining∗ and assembled on tensioning rings at Johns Hopkins University.

As shown in Figure 3.4, CLASS metal mesh filters are thin plastic substrates with

two-dimensional grid aluminum squares on them. The square pattern has spatial pe-

riod g (g = 200 μm in Figure 3.4 left). This pattern strongly reflects radiation with

wavelength shorter than g; while it is transparent to radiation with wavelength longer

than g through diffraction according to Huygens’s Principle. The FTS (described

in Section 3.1) and the large aperture bolometer were used to measure the spectral

∗PhotoMachining Inc., website: http://www.photomachining.com/
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Figure 3.4: A CLASS metal mesh filter is shown on the left with a microscopic
photograph of the grid structure. On the right, a cartoon of the grid pattern is
presented with the spacial period g and grid spacing 2a marked. Figure on the right
is made by Thomas Essinger-Hileman.

and bolometric properties of these filters. High in-band transmission was character-

ized (Figure 3.5), and Figure 3.6 shows the residual transmitted power after a given

number of filters. After two layers, only marginal improvement was achieved by in-

creasing the number of filters. This can be understood qualitatively. Because metal

mesh filters are purely reflective, increasing layers increases the chance to trap radia-

tion between layers, leading to resonant transmission and reflection, which results in

marginal improvement in reflecting short wavelength radiation.

After full-size spectral and bolometric characterization, metal mesh filters were

selected to be used in CLASS 40 GHz filter system at different stages (see Section

3.5 for the entire optical filter system). At each stage, the metal mesh filters were

only stacked to the number of two..
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Figure 3.5: Metal mesh filter transmission spectrum measured by the FTS broad
band configuration. From 100 GHz to 1000 GHz, the metal mesh filter transmission
spectrum deviates further away from the reference, meaning it is cutting off higher
frequency signal while maintaining high in-band pass. Error bars were generated
among multiple measurements.

3.3.2 Polytetrafluoroethylene (PTFE) Filter

As shown in Figure 3.6, because metal mesh filters rely completely on reflection,

stacking more than two only gives marginal improvement. However, if infrared ab-

sorptive filters are placed within the “cavities”, together their performance can be

significantly improved. After spectral and bolometric characterization, the absorp-

tive filter material for CLASS 40 GHz telescope has selected as Polytetrafluoroethy-

lene (PTFE). It absorbs infrared radiation above one terahertz with high in-band

microwave transmission.
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Figure 3.6: Metal Mesh Filter Stacking Performance. The plot shows the transmitted
thermal loading after certain number of metal mesh filters. This measurement is made
with the large aperture bolometer described in Section 3.2.

Anti-reflective (AR) coating was also placed on the absorptive filter surfaces. Ideal

AR-coating requires two parameters to be controlled, the index of refraction n and

the coating thickness d:8

n =
√
n1n2, (3.2)

d =
λ

4n
, (3.3)

where n1 and n2 are the index of refraction for the two associated media and λ is the

AR-coating wavelength in vacuum. CLASS 40 GHz telescope filters use simulated

dielectric AR-coating. To make simulated dielectrics, a pattern of sub-wavelength
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holes is drilled into the dielectric surface. This lowers the effective density and hence

the dielectric constant, so it equivalently lowers the index of refraction. The index of

refraction is then tunable by controlling the pattern and drill size, while the thickness

of the AR-coating is controlled by the drill depth. This work was done by Katie

Harrington and Sumit Dahal.

The PTFE filters together with metal mesh filter pairs (see Subsection 3.3.1 for

details) form the basic filter assembly. Unlike the reflective metal mesh filters, ab-

sorptive filters also have intrinsic emission, which adds extra in-band loading. The

loading is proportional to the temperature, so only low-temperature absorptive filters

are allowed to be directly visible at lower-temperature stages.

The solution is that we use the basic filter assembly (containing metal mesh filters

pair and a PTFE filter) at different temperature stages to bring the incoming loading

down step by step. Different configurations were tested in the test cryostat with the

large aperture bolometer measuring the loading. The design finally settled on having

two basic filter assemblies (metal mesh filter pairs and a PTFE filter) at 60 K stage

and one at 4 K stage. The PTFE filter temperature settle around 110 K, 60 K, and

10 K respectively . Lower temperature stages are directly exposed to only the 10 K

stage. The 10 K stage also guards the lower-temperature stages from 110 K and 60

K filter emission.
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3.3.3 Nylon Filter

Nylon 6,6 is an absorptive material with stronger absorption than PTFE, which

was mentioned in Subsection 3.3.2. Its absorption increases steeply as frequency.

Therefore, by changing its thickness, its cutoff frequency is tuned. This property

gives it an advantage to cutoff the high-frequency power below 1 THz. However,

nylon has a slightly higher in-band loss. Spectral measurements were made with

samples at different thickness at 4 K, the measured optical properties of this material

at millimeter-wave are consistent with literature values.26

Figure 3.7: Nylon filter transmission spectrum measured by the FTS broad band
configuration. Spectral information of the CLASS 40 GHz nylon filter is measured at
ambient temperature, showing a cutoff frequency around 300 GHz. Error bars were
generated among multiple measurements.

After comprehensive calculation and characterization, a nylon filter was designed

to launch from 1 K stage to minimize its emission. The filter temperature settles
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around 4 K during operation. Two-sided simulated dielectric anti-reflective coating

was also machined on this filter. Its thickness is set to produce a cutoff frequency

below 1 THz. The task of this final filter is to absorb extra loading below 1 THz.

Figure 3.7 shows the spectral measurement from the FTS at ambient temperature.

3.3.4 Scattering Powder Filter

During the filter system development, many other kinds of filters were studied

and characterized. One of the most promising filters was scattering powder filters.

This kind of filter is designed to replace the PTFE absorptive filters. The idea is

to have silicon powder particles at a certain size loaded in a microwave transparent

medium. Radiation with wavelengths longer than the particle size would see an

effective dielectric and transmit through the material, while radiation with wavelength

shorter than that would be strongly scattered. The advantage is two-fold: the cutoff

frequency can be tuned by selecting the size of the particle, instead of relying on the

intrinsic property of PTFE; in-band transparency could also be increased by selecting

a transparent carrier material.

Initially, a kind of plastic, polymethylpentene, was selected because of its high

microwave transparency. A prototype scattering powder filter was fabricated using

this plastic, whose transmission spectrum is shown in Figure 3.8. This material

was not deployed in the first telescope because of immature AR-coating technology.

Currently, another material, aerogel, is actively being tested. Because aerogel is
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Figure 3.8: Scattering powder filter transmission spectrum measured by the FTS
broad band configuration. Higher frequency signals are less transmitted because of
scattering, while high in-band pass is maintained. Error bars were generated among
multiple measurements.

mostly air with an index of refraction of almost one, AR-coating is not required.

Further, in large parts of the far-IR aerogel is transparent so that the filter heats

up far less. Even if the filter stays at a higher temperature, aerogel has such a low

index of refraction that it doesn’t significantly load the detectors. The aerogel based

scattering powder filter is likely to be deployed in the coming CLASS telescopes.

3.4 Large Aperture Cryogenic Window

The CLASS optics design requires that the receiver have a window with an di-

ameter of 46 cm. The CLASS receiver is pumped under vacuum during operation;
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atmosphericforceexertedonthisareais:

F=PatmA≈1.0×10
5×π×

0.46

2

2

N≈17kN,

wherePatmisatmosphericpressureandAisthewindowarea.Supportingthealmost

two-tonforcerequiresastrongmechanicalstructure,suggestingthatitshouldbe

thick; meanwhilethewindowmaterialhastohavehighin-bandtransparencyto

transmitin-bandsignals,suggestingthatitshouldbethin.Thesetwodrivingfactors

areintension.

Aftertestingdifferent materialswithvarious mountingstructures,ultrahigh
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where W is the load on the plate, Patm is atmospheric pressure, R is the radius, t is

the thickness and E is the modulus of elasticity. The equations above are for simple

elastic deformation. Equation 3.4 and Equation 3.5 inform us that the maximum

tensile stress does not change as long as the radius to thickness ratio is fixed, but

by self-similar scaling it does proportionally increase the deformation as the radius

increases. Minimal thickness is preferred for optimal in-band transmission. Ideally the

window should be just thick enough to support the atmosphere. In this regime, the

window will certainly be driven beyond elastic deformation. The final determination

of the thickness came from a full-size test using the test cryostat.

The Acatama B-mode Search (ABS) experiment utilized a UHMWPE window

with a smaller aperture.13 The successful result provides an anchor point to estimate

the thickness at the CLASS aperture size by keeping the radius to thickness ratio fixed.

After rounds of long duration test using the test cryostat, the thickness was selected

to be 4.76 millimeter. A safety factor of more than a factor of two is guaranteed

because the site atmospheric pressure is only half of that at sea level.

The UHMWPE window is also AR-coated with porous PTFE sheets, i.e. PTFE

with pores in the material. Optically, its index of refraction n can be tuned by

changing the volume fraction of the pores in the material, and the thickness d can be

controlled by sheet thickness. The porous PTFE sheet is attached to the window by

melting a low density polyethylene (LDPE) film. During this process, the window,

the LDPE film and the porous PTFE sheet were pressed together and placed in a
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vacuum oven. The oven was heated just above the melting point of LDPE, which is

lower than that of both the window and AR-coating materials. The porous PTFE

sheet was then attached to the window after cool down. Both sides of the UHMWPE

window are AR-coated using this technique.

3.5 40 GHz Telescope Filter System

After introducing individual components in the filter system, the final system is

presented in Figure 3.9. The system was tested multiple times in the lab before it

was deployed to the field in 2016.

Figure 3.9 shows the layout of the fielded CLASS 40 GHz telescope filter system.

The aperture of the receiver accepts 75 W loading from ambient temperature. The

radiation first enters the cryogenic receiver through the 46 cm diameter AR-coated

UHMWPE window (see Section 3.4), then a majority of the loading is reflected out

by a pair of metal mesh filters (see Subsection 3.3.1) at 300 K. After the two 300 K

stage elements, the power is cut down to around 15 W. The radiation then encounters

the 110 K and 60 K stages sequentially. The two stages contain metal mesh filter

pairs and AR-coated PTFE filters (see Subsection 3.3.2). After these stages, the

loading is reduced to about 1.2 W and 0.1 W. To this stage, all the loading data were

measured by the large aperture bolometer in our test cryostat. The radiation then

passes through another stage at 10 K. This stage also contains a PTFE filter and a
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Figure 3.9: CLASS 40 GHz telescope optical filter system. The main part shows part
of the CLASS 40 GHz receiver which houses the filter system from 300 K window
to 4 K nylon filter. Different filters are pointed out at the bottom, and different
temperature stages are pointed out on the top. Loadings entering and leaving each
stages are also presented on the top.

metal mesh filter pair. The loading is estimated to be reduced to 1 mW. Finally, the

radiation comes to the 4 K nylon filter, which was estimated to cut the power further

down to around 15 μW.

The ultimate purpose of this optical filter system is to reduce thermal loading so

that the cryostat successfully keeps the detectors cold, while keeping efficient in-band
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transmission. Ultimate testing comes from the in-field performance. The CLASS 40

GHz telescope was deployed in 2016, and the telescope has been operating normally

for over one year. The window held steady, which demonstrates that the 4.8 mm-thick

UHMWPE window successfully supports atmospheric pressure over a long period of

time. Meanwhile, the detector bath temperature continuously stayed below 40 mK,

significantly lower than our goal of 100 mK. It is from this fact that we estimated the

actually thermal loading at the focal plane is around 15 μW, also significantly lower

than our goal 100 μW. More importantly, after initial calibration the efficiency of the

entire telescope was found to match expectation. This is a sufficient proof of the high

in-band transmission from all the optical components (including the window and the

filters).

We can confidently state that goals for the filter system (including the window)

were successfully accomplished.
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Mount System

According to the optical design introduced in Chapter 2, each CLASS telescope

contains a variable-delay polarization modulator (VPM), a primary mirror, a sec-

ondary mirror, and a cryogenic receiver (containing two cryogenic lenses and the

detectors). The cryogenic receiver also has associated cryogenic equipment, such as

a mechanical pump, a turbo pump, a pulse-tube cryocooler system, and a dilution

refrigerator system. In addition to these critical components, other auxiliary devices

and instruments are also required for operation. All of them must be supported by a

platform.

Further, an azimuth axis and an elevation axis are required for telescope pointing.

Additionally, a boresight axis is needed to allow sampling the sky in detector angle

more efficiently, which is important because the VPM only gives Stokes Q or U, but

not both simultaneously. This means that we need the boresight rotation to efficiently
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get both Q and U in a reasonable amount of time. The mount system must be able

to rotate the entire telescope and instruments about the three axes.

Figure 4.1: CLASS 40 GHz telescope on the first mount. This figure shows the CLASS
40 GHz telescope deployed in 2016 on the first mount. When the 90 GHz telescope
is deployed, the first mount will be fully equipped with two telescopes. The telescope
components (indicated in blue text) are supported by the mount system, which mainly
contains a pedestal, a boresight wedge and a warm-optics cage (indicated in black
text). As part of the mount system, a forebaffle is used to suppress the azimuth
synchronized signal from the ground. The telescope is pointing at 45◦ elevation with
45◦ boresight angle in the picture.

The warm optical components, including the VPM and the two mirrors, must

be accurately positioned within a required accuracy (1 mm for 40 GHz) to form a

sharp image on the focal plane. As the telescope rotates about the three axes, the

components would be rotated to different positions with various orientations. These
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optical components weigh at least 50 kg individually, so the mount system must be

rigid enough that the weight would only deform it within the required limit under all

conditions. The azimuth synchronized signal from the ground must be minimized.

For this purpose, a forebaffle along with its accessories was designed.

In the CLASS design, four telescopes share two mount systems. Each mount

system provides a platform for two telescopes to operate. Figure 4.1 shows the first

mount with the first-deployed 40 GHz telescope on-board. This chapter will intro-

duce the mount system, including a pedestal, a wedge, a warm-optics cage (with its

accessories) and a forebaffle. A mechanism and strategy to align the warm optical

components will also be covered from both hardware and software perspectives.

4.1 Pedestal

Two pedestals were designed by Antedo Inc.∗ and manufactured by COSPAL†.

After comprehensive modifications, the pedestals are being used to support CLASS

telescopes. Figure 4.2 shows the first CLASS pedestal. The pedestal is attached to

the ground by a bolt circle at the bottom of a foundation tube, which is the only

structure that is static relative to the ground. On top of the foundation tube sits

the azimuth platform. The azimuth platform carries all the other mount structures

and the on-board equipment, rotating azimuthally. Cables run up through inside of

∗Antedo Inc., http://www.antedo.com/
†COSPAL Composites, http://www.cospal.com/index.html
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the foundation tube, where they are carefully wrapped to facilitate azimuth platform

rotation. The azimuthal axis is indicated by a red dashed line in Figure 4.2. In

the center of the azimuth platform, a “fork-shaped” structure supports the elevation

platform by two pivot points. The elevation axis across the two pivot points is also

represented by a dashed red line in Figure 4.2. On the back, an elevation actuator

controls the orientation of the elevation platform by pulling or pushing. The two

rotation axes provide an azimuthal range over 720◦ and an elevation range from 20◦

to 90◦.

Figure 4.2: The pedestal and on-board equipment are shown in this figure. Structural
components of the pedestal are pointed out in black text. The azimuth and elevation
axis are presented in red. The on-board equipment is pointed out in blue text.

The azimuth platform carries multiple supporting equipment, indicated in blue
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text in Figure 4.2. A pulse-tube compressor enclosure is suspending in front of the

azimuth platform, which is designed to support two compressors, one for each of the

two telescopes. On the azimuth platform, a dilution refrigerator gas handling system

(GHS) is placed next to the main structure. The gas handling system is a system

purchased from BlueFors Cryogenics∗ as one accessory of the dilution refrigerator. It

directly connects to the cryogenic receiver via vacuum hoses, which cycle a He4/He3

mixture to cool the mixing chamber down. On the back, two racks are placed side by

side. They are used to control the mount motion. The servo driver rack houses drivers

for mount servos and other auxiliary electrical components, while the computer rack

stores the computers that perform on-board calculations required for mount motion

controls. The on-board equipment is placed close to the azimuth axis to minimize

the azimuthal moment of inertia.

4.2 Boresight Wedge Assembly

The main telescope assembly starts above the elevation platform of the pedestal.

Sitting directly on the elevation platform is the boresight wedge assembly which

enables boresight rotation, as shown in Figure 4.3.

A boresight bearing plate, made of one-inch-thick steel, is installed directly on the

elevation platform. A boresight bearing standoff and a boresight bearing are placed

∗BlueFors Cryogenics, http://www.bluefors.com/index.php/ld-series
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on the bearing plate, as shown in Figure 4.4. The boresight bearing∗ weighs 205 lbs

and is ∼ 35 inch in diameter. With a dynamic weight capacity at 45,000 lbs, the

boresight bearing supports a boresight wedge above and also provides the flexibility

to rotate it. A boresight actuator is installed within the gap between the bearing

plate and the boresight wedge. The actuator pushes or pulls the boresight wedge on

the side to change the boresight angle. This mechanism covers boresight angles from

-45◦ to 45◦, assuming a 0◦ orientation when the boresight wedge is in the symmetric

position, as shown in Figure 4.3.

The boresight wedge is a transition structure connecting the pedestal and the

telescope parts above, which sets the foundation for the telescope mounting sys-

tem. Structurally, its deformation at different orientations must be constrained to

be smaller than the required accuracy (1 mm for 40 GHz), otherwise any deforma-

tions would be amplified through the upper structures. Furthermore, given the load

capacity of the pedestal, the weight budget for the boresight wedge is limited to <

500 kg. The material was then selected to be 1/2-inch thick aluminum with mul-

tiple inner structural ribs and struts to strengthen the structure. Individual plates

were initially assembled by bolts and then welded together into a solid piece. The

aluminum material was selected because its density is only 1/3 of that of steel. Ad-

ditional material was cut out at non-structural regions of plates to further reduce the

weight. Finite element analysis (FEA) was performed for various designs with various

∗Kaydon Bearing Solutions, Part No.: KH-325E, website: http://www.kaydonbearings.com/

KH_turntable_bearings.htm
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Figure 4.3: The boresight wedge assembly on the pedestal is presented in the figure.
Some components visible from this perspective are pointed out in black text. The
boresight bearing locates between the boresight wedge and the bearing plate (see
Figure 4.4). The boresight wedge is at 0◦ boresight angle in this figure.

parameters (such as plate thickness, number of struts, size of cutouts etc.). Deniz

Augusto Nunes Valle significantly contributed to the design of the boresight wedge.

Finally, the optimized design, meeting both the structural and weight requirements,

was manufactured by Bikle Manufacturing Inc∗. Details can be found in Appendix

B.

The boresight wedge serves more than a structural role. When the telescope ro-

tates about the boresight axis, ideally it should not affect the telescope pointing.

∗Bikle Manufacturing Inc., http://www.biklemfg.com/
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Figure 4.4: The boresight wedge optical role is presented in this figure. Components
in the boresight wedge assembly are indicated in black text from another perspective.
The boresight bearing and standoff are visible in this figure. The boresight axis and
the outgoing light ray are also shown. They are designed to be parallel, which is
realized by the boresight wedge. The telescope is pointing at 90-degree elevation
with 0-degree boresight in this figure.

However, the CLASS optical design is not intrinsically convenient for this. The angle

between the incoming light ray and the cryogenic receiver mounting plane is an ar-

bitrary angle at ∼ 54.4◦ (Figure 4.4). Therefore, a structure is required to offset the

cryogenic receiver so that the boresight axis and the incoming light ray are parallel.

The boresight wedge angle is designed for this purpose, as shown in Figure 4.4. This

design disentangled the telescope pointing from the boresight angle, which provides

significant convenience for the telescope operation and further data analysis.
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A natural question to ask about Figure 4.4 is that, since the warm optics (including

the VPM and the two mirrors) are hanging far back in the figure, how are they

mounted accurately at the designed locations with the right orientations? This brings

us the the next two sections: warm-optics cage assembly and optical alignment.

4.3 Warm-optics Cage Assembly

Above the boresight wedge assembly, the warm optical components and other

auxiliary equipment must be supported. A warm-optics cage assembly was designed

and built accordingly.

The main structure in this assembly is the warm-optics cage, whose drawings can

be found in Appendix C. The design of this structure is also constrained by two

major factors: weight and deformation limitations. The weight budget for this 5-

meter-long 3-meter-tall structure is 250 kg. With this 250 kg, it must support the

three warm optical components with minimal deformations. When the telescope is at

+45◦/ −45◦ boresight angle (the boresight wedge rotates +45◦/−45◦ in Figure 4.4),

a significant component of the gravity pulls sideways to the optical plane, toward

opposite directions. Similarly, different pointings orient the telescope differently with

respect to the gravity direction. However, deformation must be controlled < 1 mm.

This requires the support structure to have adequate strength when gravity exerts

from different directions.
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Given the tight weight budget, aluminum square tubes were chosen as elements

of the structure. Different designs were explored with extensive amount of finite ele-

ment analysis (FEA) to assure that the maximum deformation is within the required

value. But the structurally sound designs usually exceed the weight budget. To fur-

ther reduce the weight, the stress on each square tube was carefully analyzed, which

led to adaptively choosing the size of the square tubes. This enabled us to use a

minimal amount of material without sacrificing the structural strength. Finally, a

combination of 2-inch, 3-inch and 4-inch aluminum square tubes (with 1/4-inch-thick

wall) were selected to form the entire structure. The structure was manufactured by

KLK Welding∗ with full-penetration welding at all joints.

The warm-optics cage, carrying the warm optical components, is fixed to the top

of the boresight wedge, as is the cryogenic receiver. The shaded area in Figure 4.5

is covered by aluminum honeycomb panels, manufactured by Pacific Panels†. These

panels are hollow inside with honeycomb structures, which provide both light weight

and high strength. The warm-optics cage assembly and the forebaffle interface (to

be discussed in Section 4.5) are both enclosed by these panels. On the back of the

cryogenic receiver (see Figure 4.5), a turbo station is mounted on the edge of the

boresight wedge. The turbo station houses several pieces of cryogenic equipment,

including a turbo pump, two pulse-tube chambers, and a pulse-tube motor. The

turbo station also serves as a middle ground for hoses and cables going out of the

∗KLK Welding Inc., http://klkwelding.com/
†Pacific Panels Inc., http://www.pacificpanels.com/
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Figure 4.5: The warm-optics cage assembly on the boresight wedge. Starting from
components presented in Figure 4.4, this figure shows structures fixed on top of the
boresight wedge. These structures support the warm optical components and other
accessories. The honeycomb panels were set to be transparent. A one-meter scale is
provided for reference.

cryogenic receiver. A cable wrap tray is designed to send hoses and cables down to

the cable wrap system. Details on the cable wrap system can be found in Appendix

D.

4.4 Optical Alignment

The warm-optics cage manufacturing process can only achieve an accuracy around

1/4 inches (∼6 mm), which is much larger than the required accuracy ∼ 1 mm.
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Thus, adjustment stages for the mirrors and the VPM were designed. A procedure

to accurately measure their positions and adjust them to the desired positions was

also developed.

4.4.1 Mirror Adjustment Stages

One rigid object has six degrees of freedom (DOF), in which five of them cannot

be precisely positioned with the warm-optics cage (see Section 4.3) for the primary

mirror and the secondary mirror. Therefore, the adjustment stages must be capable of

adjusting the five DOF. This sets one of the requirements. Furthermore, the tolerance

of the warm-optics cage is < 1/4 inch. The adjustment range must exceed this value.

Multiplying it by a factor of two as a safety factor, the range was designed from -1/2

inches to 1/2 inches, which sets the other requirement. The two mirrors share similar

designs, so the adjustment stages are similar. Therefore, only the primary mirror

adjustment stage is introduced in detail.

The adjustment stage design for the primary mirror is shown in Figure 4.6. Three

pairs of spring leaves (made of spring steel 1095) together with three ACME push

screws adjust the longitudinal distances. As shown in Figure 4.6, each spring-leaf

pair is fastened at the inner end and open at the other end. Two spring leaves in one

pair are tensioned with > 100 kg (compared to the mirror weight ∼ 50 kg) to provide

rigid connections. The dimensions of the spring leaves are also designed to cover a

> 1 inch range within its elastic limit. The front side of each pair is mounted to the
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Figure 4.6: Primary mirror adjustment stage. The front of the stage is presented
on the left, while the back is presented on the right with the primary mirror. The
majority of the bolts are excluded in this figure. The mirror model was provided by
Joseph Eimer.

mirror, while the back side connects to the rest of the adjustment stage. Adjusting

three push screws changes the mirror’s position and orientation. Three of the pairs

together provide one translational DOF perpendicular to the mirror surface and the

two rotational DOF within the mirror surface.

The vertical location is adjusted by three vertical push screws along with nine

one-inch-long vertical slots. Bolts through the nine slots are first loosened; then the

vertical push screws can be used to make the desired adjustments. The nine bolts

are then tightened once the correct position is reached.

The adjustment stage is mounted on the cage by a top mount bracket and a linear

stage, as shown in Figure 4.6. The top mount bracket has two one-inch-long horizontal
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slots, and the linear stage allows the adjustment stage to move horizontally. When

two bolts through the two slots are loose, the adjustment stage can be moved by

horizontal push screws. The two bolts are then tightened back down once the correct

position is found. Horizontal push screws are then tightened to lock the position.

This mirror adjustment stage meets the two requirements mentioned at the be-

ginning by adjusting five degrees of freedom with a range of at least one inch. This

design was used for both the primary mirror and the secondary mirror. Technical

drawings on the adjustment stages are available in Appendix E.

4.4.2 VPM Adjustment Stages

Optically, the variable-delay polarization modulator (VPM) is equivalent to a flat

mirror. Further, the illuminated area is smaller than the VPM size with a margin

of more than 4 inches in diameter. This means at the level of 1/4 inches, the VPM

transverse position (vertical and horizontal mentioned in Subsection 4.4.1) is not a

sensitive factor to the telescope’s optical performance. Therefore, only one transla-

tional DOF perpendicular to the VPM plane and the two rotational DOF within the

VPM plane need to be adjusted. Similarly, the adjustment range should be 1 inch.

The VPM is mounted on the warm-optics cage via three mount brackets, as shown

in Figure 4.7. The three mount brackets are installed on the warm-optics cage. Three

ACME lead screws launch from the VPM and are clamped on to the mount brackets

by two nuts. Positions of the mounting points can be adjusted by changing the
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Figure 4.7: The VPM adjustment stage. The VPM structure is mounted by three
brackets (green). One spherical bearing is also indicated. The VPM model was
provided by Joseph Eimer and Katie Harrington.

clamping nuts positions on the lead screws. The lead screws are designed to be

long enough to cover the one-inch adjustment range. The three lead screws can only

move forward and backward simultaneously if their connections to the VPM are rigid.

To avoid that, three spherical bearings are installed at the end of the lead screws.

These bearings allow the VPM to be adjusted to different angles. Therefore, the

VPM adjustment stage adjusts the three necessary DOF within the one inch range.

Drawings on the adjustment stages are available in Appendix E.
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4.4.3 Measurement & Adjustment

The adjustment stages provide a possibility to correctly align the warm optical

components, but it is not sufficient. A strategy to accurately measure the positions of

the components is also required. Furthermore, with the position information, correct

operations on the adjustment stages need to be provided.

Our strategy is to use the cryogenic receiver, whose position is difficult to adjust,

as an anchor, and then adjust other optical components with reference to it. This

means we need to locate and adjust the secondary mirror, the primary mirror, and

the VPM.

Assuming rigid bodies, each component needs at least three points (not in a line)

to define its location. As shown in Figure 4.8, the cryogenic receiver has five measuring

targets, the secondary mirror has three, the primary mirror has three and the VPM

has four. Meanwhile, each components has six degrees of freedom (three translational

ones, three rotational ones). Three components together have 18 degrees of freedom,

implying at least 18 constraints are required to position them.

Constraints here can be any distances between two measuring targets from two

different optical components. In our current target setup, there are 73 possible con-

straints. Theoretically, picking any 18 (or more) of them would be sufficient to locate

the three optical components. However, considering measurement uncertainties, long

baseline distances were preferred to minimize fractional uncertainties.
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Figure 4.8: This figure provides two views of the CLASS telescope from two sides.
Red dots represent measuring targets that are visible is each side view. The zoom-in
figure shows the measuring target. Four holes on the block are used for mounting.

After setting up measuring targets, a Starrett inside micrometer∗ was used to

measure the distances. Distances > 100 inch were measured with < 0.01 inch uncer-

tainties.

Software was then developed to analyze the measured distance data. This soft-

ware takes in the known optical components’ geometric information along with the

measured distances, and then outputs the coordinates of the center of mass along with

three rotation angles for each optical components. Least-squares fitting was applied

so that more than 18 constraints are not only allowed but preferred.

Additional software was also developed to take in the measured positions and

∗Starrett 128BZ Inside Micrometer Set, http://www.starrett.com/metrology/

product-detail/metrology/metrology-products/precision-measuring-tools/micrometers/

Inside-Micrometers/128BZ
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specify operations needed on each of the push screws to adjust the optical components

to the designed positions. Details can be found in Appendix F.

The alignment procedure relies on both this software and the implemented hard-

ware. After the cryogenic receiver and the warm optical components were installed,

with all the adjustment stages locked in the middle of their range, more than 18

distances were measured with the inner micrometer. These measurements were then

analyzed by the software that provided instructions of how to adjust each adjust-

ment stage. After the operations were performed, the warm optical components were

expected to be in the designed positions. An additional round of measurement was

performed to check the results. The alignment procedure could be iterated until the

next round of measurements gave the designed positions.

4.5 Forebaffle Assembly

The azimuth synchronous signal from the ground (ground pickup) is 300 K ground

emission leaked into the telescope via either reflection or diffraction. Since the ground

pickup naturally maps on to the sky via 360◦ telescope azimuthal motion, it can

imprint the largest modes on the sky. Therefore, ground pickup is a major potential

contaminant for the CLASS recovery of the largest modes.

A forebaffle was designed to mitigate ground pickup. A forebaffle interface was

also designed to connect the forebaffle to the warm-optics cage. Between the forebaffle
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and the interface, a closeout assembly was designed to house either a thin plastic film

to seal the opening or a rotational wire-grid for polarization angle calibration.

4.5.1 Forebaffle & Interface

Before the forebaffle was designed, a light cone enclosing at least 99.9% of the in-

beam power for every detector was generated according to the CLASS optical design

by Joseph Eimer. Following the light cone, the base of the forebaffle was selected

to be 184 cm away from the VPM wire-grid center. The bottom opening was then

determined by the cross-section of the light cone. Launching from the baseplate, the

forebaffle wall was designed with a half-angle greater than that from the light cone by

a margin of 2◦. This avoided the incoming radiation being parallel with the forebaffle

wall, which may have led to light along the surface creating an unwanted diffracted

signal. Finally, at the end of the forebaffle wall, a 3-inch diameter flare was designed

to soften the boundary condition at the edge, minimizing diffraction. The forebaffle

design is shown in Figure 4.9 on the left.

The forebaffle was designed to start from 184 cm away from the VPM wire-grid

center. Therefore, a structure, called the forebaffle interface, was designed to support

it. The interface sits on top of the warm-optics cage and locates the forebaffle into the

correct position. Figure 4.9 shows the forebaffle interface along with the honeycomb

panels to enclose it. Drawings on the forebaffle and its interface are presented in

Appendix G.
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Figure 4.9: A forebaffle and its interface. On the left, the forebaffle is presented with
the three components pointed out, including a baseplate, forebaffle wall and a flare.
On the right, the forebaffle is installed on its interface to the warm-optics cage. An
overall picture is shown in Figure 4.1. Honeycomb panels are also designed to enclose
the interface. The forebaffle interface and one honeycomb panel are pointed out.

4.5.2 Closeout Assembly

Between the forebaffle and its interface, a closeout assembly was designed. The

purpose of the assembly is twofold. During normal observation, the assembly has

an insert with a thin plastic film at the forebaffle bottom. The thin plastic film

environmentally seals the opening, protecting sensitive instruments inside from the

elements. The assembly can also house an insert with a rotational wire-grid. The

wire-grid emits linear polarization into the telescope so the telescope polarization

angle can be calibrated.

The closeout assembly contains a closeout box and several inserts. The closeout

box is a rectangular frame attached to the forebaffle on one side and to the interface
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Figure 4.10: Forebaffle closeout assembly. On the left, one closeout insert being
pushed into the closeout box is shown. On the right, the closeout assembly is presented
in its normal operation status. Some parts are indicated, including an arrow indicating
that the diameter of the opening is 52 inches.

on the other side. Two guide rails are installed for the rail carriages on the inserts,

as shown in Figure 4.10. Different inserts can be swapped in easily in this design.

Two kinds of inserts are used, shown in Figure 4.11. One has a 0.0007-inch

biaxially-oriented polypropylene (BOPP) film stretched across the opening. It basi-

cally closes out the opening to protect the inside instruments, and is therefore called

the closeout insert. Two of them were built to have one in operation and the other

one undergoing restoration.

The other is a wire-grid calibrator. Wires with 0.002-inch diameter are stretched

across a ring with 0.5-inch spacing (the wires were changed to 0.005-inch diameter

later). The wires emit linearly polarized signals along the wires, so the incoming signal

for the telescope is linearly polarized at a known angle. The ring can be rotated by a
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Figure 4.11: Two kinds of inserts are presented. The closeout insert is on the left
with plastic film stretched across the opening. The calibration closeout is on the
right with some of the parts pointed out. These inserts are designed by Thomas
Essinger-Hileman.

driving belt, which is controlled by a turning wheel, shown in Figure 4.11 on the right.

Once the calibrator insert is installed, rotating the turning wheel rotates the wire-

grid, which eventually rotates the linear polarization angle. With the injected linear

polarization direction known, the telescope polarization angle can be calibrated. The

VPM response function to input linear polarization is also calibrated.

The forebaffle assembly is aligned similarly to the warm optical components. Four

measuring targets were set around the forebaffle bottom ring to measure the forebaffle

position. The entire assembly was adjusted on top of the warm-optics cage. Once

the correct position was found, holes on the forebaffle interface were transferred onto

the top of the warm-optics cage. The forebaffle assembly was then installed through

these holes.
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During the deployment of the 40 GHz telescope in 2016, the mount system was

assembled as designed. Figure 4.12 shows the mount system with the on-board 40 GHz

telescope. Over the past observing season, the mount system has been operating

stably and successfully. More calibration results are available in Chapter 5.

Figure 4.12: The mount system at the site. The mount system contains the pedestal,
the boresight wedge assembly, the warm-optics cage assembly, and the forebaffle as-
sembly introduced in this chapter. Photo credits: Matthew Petroff.
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Chapter 5

Observations & Data Analysis

The 40 GHz telescope was deployed in 2016. After all the components were

installed, an optical alignment was performed. After only one iteration, the warm

optical components were adjusted to within the required accuracy. Meanwhile, the

detectors started to function normally as the cryogenic receiver successfully cooled

down to < 40 mK. Finally, the telescope was ready to observe the sky. First light of

the 40 GHz telescope was in May of 2016. For cosmological observations, the CLASS

telescope scans the sky azimuthally at a single elevation angle. See Subsection 2.2.1

for more information on the scan strategy for the cosmological survey. Because of the

Earth’s rotation, the survey area is observed with nearly two full rotation every day

(minus a sun-avoidance region).

The Moon was observed for calibration of the telescope’s pointing and beam pat-

terns. Because we know the position and size of the Moon, these observations allow
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ustocalibrateboththepointingandthebeampattern(equivalenttothepoint

spreadfunction)ofeachdetector.Thesecalibrationsareacriticalcheckoftheopti-

caldesign(Chapter3,Eimeretal201211),oftheopticalalignment(Section4.4)and

deformationinthetelescopestructure(Chapter4). Moregenerally,forcosmological

studies,thepointingofeachdetectormustbeaccuratelycalibratedformapmaking

(theprocessbywhichtime-ordereddataformeachdetectorismappedtotheceles-

tialsphere). TheCMBisprocessedbythetelescopeintotheobservedCMBmap.

BecausetheCLASStelescopeisdiffractionlimitedwithabeamfullwidthathalf

maximum(FWHM)of∼1.5◦,theobservedCMBmapissmoothedonscalessmaller

thanthebeam.Therefore,toproperlymodeltheobservedCMBmap,abeamprofile

ofeachdetectormustbecalibrated.Equivalently,thepowerspectrumoftheobserved

CMBmapisreducedathigh- relativetotherealCMBpowerspectrumbyawindow

function,whichiscalibratedthroughtheMoonobservations.

TorecoverthelargestangularmodesintheCMB,wemustestimatelarge-angle

contaminationarisingfrompolarizedemissionfromtheground,so-called“ground

pickup.” Thegroundpickupnaturallymapsontothe360◦ofazimuthasthetele-

scopescansthesky,andsoitcanimprintlarge-angularcontaminatingmodesonthe

observedCMBmap.Toremovethegroundpickupcontamination,hardware(includ-

ingtheforebaffleassemblyinSection4.5)hasbeendesignedtosuppressit,butthe

finaltestcomesfromfieldperformance.

Iledtheefforttoperformspecialobservationsfortelescopepointingcalibration
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and beam calibration. I also comprehensively characterized the ground pickup signal.

The work presented in this chapter is ongoing, and will be published in final, expanded

form in a future paper characterizing the CLASS 40 GHz instrument.

5.1 Pointing Calibration

After first light, the array pointing was checked. The CLASS 40 GHz telescope

has a beam size of around 1.5◦ (Full Width at Half Maximum, FWHM). The Moon,

which spans 0.5◦ on the sky, is significantly smaller than the beam size. Therefore,

the Moon was used for pointing calibration.

Designated Moon scans were organized, during which the telescope is fixed to 45◦

elevation angle, same as that of CMB scans. When the Moon rises or sets across

the 45◦ elevation angle, the telescope scans ±13◦ in azimuth across the Moon field.

The array field-of-view is 20◦ across so that these ±13◦ scans give at least a 3◦ radius

observations even for the edge pixels.

The data analysis method is presented in Figure 5.1. The CLASS 40 GHz focal

plane contains 72 detectors coupled to 36 feedhorns. They are distributed across a

20-degree field-of-view on the sky, shown in Figure 5.1. During Moon scans, as the

Moon slowly rises or sets across the scan elevation, the telescope performs azimuthal

scans (1 degree/s) at this elevation with a set boresight angle. In the sky coordinate

system, both the Moon and the detectors are in motion. To simplify the problem,

92



CHAPTER 5. OBSERVATIONS & DATA ANALYSIS

Figure 5.1: The Moon scan analysis method. On the left, the detector array is
presented, centered at the scan elevation with a boresight rotation. The Moon slowly
rises or sets as the telescope scans ±13◦ in azimuth. Both the Moon and the array
center positions are described in the sky coordinate system. The Moon positions
were converted into the telescope coordinate system, where the array center is at 0
elevation with 0 boresight angle. In the telescope coordinate system, every detector
is fixed at a set azimuth and elevation angle while the Moon appears to zigzag across
the array.

quaternion rotations (a useful tool to perform rotations) were applied to convert the

Moon and the detectors into the telescope coordinate system, where the array center

is at its origin. During this process, a quaternion that rotates the array center to

the origin with 0 boresight angle was first generated; then this quaternion is used

to rotate each detector from the sky, which gives their coordinates in the telescope

coordinate system. In the telescope coordinate system, every detector is fixed at a

certain azimuth and elevation angle while the Moon appears to zigzag across the

array during each Moon scan. The telescope coordinate system is also the natural

coordinate system to describe every detector’s pointing and beam pattern, from which

the pointing and beam pattern can be conveniently converted to the sky via coordinate
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conversions.

In the telescope coordinate system, as the Moon travels across the array, beam

maps for each detector are sampled. For one certain detector, e.g. the one circled in

Figure 5.1, each position of the Moon relative to this detector has a corresponding

readout from this detector. As the detector samples the Moon, the beam map for

this detector is probed. Assuming a symmetric two-dimensional Gaussian beam, the

peak position was estimated via the sampled points, which determines the pointing

of this detector. The pointing direction of each detector is parametrized as X, and

Y . They are both measured relative to the array center in the telescope coordinate

system, with X along the azimuth direction and Y along the elevation direction.

Table 5.1: Moon Scan Numbers vs. Boresight Angles

Boresight Angle Moon Scan Number
−45◦ 19
−30◦ 11
−15◦ 10
0◦ 22
15◦ 10
30◦ 10
45◦ 22

Around 100 Moon scans were performed at different boresight angles for the

CLASS 40 GHz telescope from July to October in 2016, details can be found in

Table 5.1. The pointing is consistent with the optical design, as shown in Figure

5.2. Each detector points at the designed position in the telescope coordinate system.

Standard deviations, computed across the Moon scans, are within one arcmin. The
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Figure 5.2: CLASS 40 GHz telescope array pointing overview. Detectors sensitive to
horizontal (vertical) polarization are shown in blue (red) data points.. The displayed
standard deviations for each detector’s pointing are inflated by a factor of 60, i.e. one
degree in the error bar is actually one arcmin. The array center is indicated by a
black dot.

standard deviations shown in Figure 5.2 are inflated by a factor of 60. Given the

beam size of 1.5◦ FWHM, one arcmin is around 1% of the beam size. Pointing differ-

ences between paired detectors under one feedhorn are plotted in Figure 5.2. The pair

pointing differences are then exaggerated by 60 times and presented with the pointing

standard errors from individual detectors in Figure 5.3. The pair pointing differences
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Figure 5.3: Detector pairs pointing differences. Pointing differences and pointing
standard errors for individual detectors are exaggerated by 60 times. Eight pairs
are missing since these detectors were not operational at the time these data were
taken. The pointing differences are presented as vectors pointing from H detectors to
V detectors. The magnitude of the pointing differences (< 1 arcmin) are larger than
pointing errors.

are larger than the detector pointing standard errors. The differences increase as the

pairs are farther away from the center, but are still not significant compared to the

beam FWHM.

Histograms on four pointing parameters (pointings X, Y and pair pointing dif-

ferences ΔX , ΔY ) are presented in Figure 5.4. Standard deviations on X and Y are

both within 1 arcmin, centered around 0.8 arcmin. The pair pointing differences on
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Figure 5.4: Pointing parameter histogram. Standard deviations (denoted as σX and
σY ) are shown in top sub-figures, x scales of the two figures are the same. Pair pointing
difference (denoted as ΔX and ΔY ) are shown in bottom sub-figures, x scales are also
set to be the same.

X and Y are within 1.0 arcmin for most of the pair detectors, centering within 0.5

arcmin.

As noted in Section 4.3, the warm-optics cage reaches its maximum deformation

at ±45◦ boresight angle, which affects the positions of the optical components and

eventually leads to pointing offsets. The warm-optics cage was designed to constrain

the maximum deformation within 1 mm. From −45◦ to +45◦ boresight angles, the
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X pointing offset should follow a continuous rising trend over ∼ 1.2 arcmin; the Y

pointing offset should follow a flat trend.

With Moon scans at different boresight angles, the pointing’s dependence on bore-

sight angles can be characterized. Figure 5.5 shows the trend and the amplitude are

consistent with the estimation from the warm-optics mechanical design.

Figure 5.5: Pointing dependence on boresight angles for one detector. Blue (red)
points show pointing deviation from the overall mean along the X(Y ) direction. The
error bars are standard errors under the same boresight angles. The trend and am-
plitude (∼ 1 arcmin) of the azimuth deviation is consistent the estimation from our
mechanical design. The blue and red points are offset from the same boresight angles
for clarity.

Shifting attention from this one detector to the whole array, the ensemble results

are shown in Figure 5.6. The conclusions from Figure 5.5 hold across the array.

The trend and the amplitude of the azimuth and elevation pointing deviation are
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consistent with the design expectation. Now we can confidently say that the warm-

optics cage meets the deformation limit requirement (< 1 mm) across all boresight

angles.

Figure 5.6: Pointing dependence on boresight angles for the array. Each sub-plot
follows the same convention as in Figure 5.5. Plots for different detectors are orga-
nized according to their pointing on the sky. This array plot shows specific pointing
information for each detector. The detector in Figure 5.5 is the one in the red box
on top right.

Beyond the boresight angle dependence, there were also concerns about the warm-

optics cage and the adjustment stages deforming with time. With Moon scans taken
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at different times, pointing evolution was characterized in the same fashion.

Figure 5.7: Pointing dependence on time. This array plot shows the pointing depen-
dence on time for each detector. Azimuth and elevation deviations are shown by the
blue and red points respectively. Y scales are kept the same as those in Figure 5.6
from −1.5 to 1.5 arcmin. X ticks represent months in 2016. Relatively large error
bars in October are due to small number of Moon scans performed in that month.

Results are shown in Figure 5.7. Y scales are kept the same as in Figure 5.6

for comparison, which shows that deviations over time are smaller than those over

boresight angle. No deviation beyond 1 arcmin was observed. This result proves that

the warm-optics cage and the adjustment stages are stable over months.
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5.2 Beam Calibration

During the Moon scans, beam maps are also measured. Since the Moon radiation

is largely unpolarized, the unpolarized portion is used to characterize the overall

beam shape; while the small fraction of polarization in the Moon radiation is used

to characterize the instrument polarization response by making Moon polarization

maps.

5.2.1 Intensity Beam

Temperature of the Moon is measured to be∼ 200 K.40 The beam FHWM (∼ 1.5◦)

is three times the diameter of the Moon (∼ 0.5◦). With the dilution factor estimated

around 9, the beam-diluted signal is around ∼ 22 K. The high signal from the Moon

guarantees high signal-to-noise beam shape measurements, as shown in Figure 5.8 for

V detectors and Figure 5.9 for H detectors. Each detector beam map is generated

from stacking Moon scan data. Software was developed to reject bad Moon scans

(due to bad weather, detector glitches etc.) for each detector; only the accepted

Moon scans (∼150 for each detector) were used to generate the stacked beam map.

The accepted Moon scans were normalized to have a peak value of 1 before being

stacked.

Additionally, because the telescope scans ±13◦ during Moon scans, beam maps are

measured to 10◦ for most detectors. Boresight rotation further rotates the detector
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Figure 5.8: Intensity beam maps for V detectors. Intensity beam maps were obtained
after stacking Moon scan data, which cover 2◦ in radius. The beam maps were
normalized at their peaks.

array pattern on the sky, enabling detectors to sample the Moon at different angles.

These together provide high signal-to-noise beam maps out to 10-degree for intensity,

shown in Figure 5.10 for one detector. This beam map contains around four million

data points (400,000 seconds) from ∼ 150 different Moon scans. The beam map color

scale is set to be logarithmic from 10−1 to 10−4 (normalized at the peak); this color

scale should reveal potential side lobes in this beam map. However, no unexpected

side lobes are visible in the beam map. To measure radial profile, the data points were
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Figure 5.9: Intensity beam maps for H detectors. Intensity beam maps were obtained
after stacking Moon scan data, which cover 2◦ in radius. The beam maps were
normalized at peaks.

binned within annuli with 0.05◦ thickness. The profile is estimated from the medians

within each annulus, with uncertainties estimated as the standard errors. The radial

profile, along with its uncertainties, shows that the profile follows the optical model

for signals > −30 dB and is signal dominated to > 7◦. The noise level is at −50 dB

level except for the central region for two reasons. First, the steepness of the profile

in the central region leads to a significant gradient within a finite-thickness annulus;

and second, the ellipticity of the beam leads to data points within a circular annulus
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Figure 5.10: A beam map for one detector. A typical beam map is shown on the left.
The color scale is logarithmic from 10−1 to 10−4 (normalized to the peak). This scale
is selected to reveal any possible side lobes. On the right, the radial profile is measured
in 0.05◦ annuli from the beam map, shown in blue curve. Uncertainties, shown in red
curve, are estimated from the standard error of data points within each annulus. The
green-shaded area shows the signal-dominated region within > 7◦ radius.

having more scattered values. Once outside of the central region, the uncertainty is

at −50 dB level, providing a 50 dB measurement of the intensity beam map.

Although one detector is discussed here, the same conclusions hold over all the

detectors, which will not be discussed individually.

Once high-fidelity beam maps are available, characteristic parameters can be mea-

sured. Both the stacked beam maps and single-scan beam maps can be fit by a 2-D

Gaussian profile. Full width at half maximum (FWHM) is then measured along the

major-axis and minor-axis. Ellipticity is also calculated as (a − b)/a, where a and b

are the semi-major axis and semi-minor axis. Since FWHM measurements were made
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from many individual Moon scans, the precision of the combined FHWM estimate

can be estimated as the standard error of the mean. The major-axis FWHM and the

minor-axis FWHM are treated separately for each detector.

Figure 5.11: The histogram of beam parameters across all detectors. Histograms of
the major-axis and the minor-axis FWHM are shown on the top. The ellipticity is
shown on bottom left. Uncertainty of the FWHM measurement (calculated across
different Moon scans) is shown on bottom right.
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Figure 5.11 shows histograms of the major-axis FWHM, the minor-axis FWHM,

the ellipticity, and the uncertainty on FWHM measurement. Both the major-axis and

minor-axis FWHM are distributed within a 0.2◦ range, with the major-axis FWHM

centering around 1.58◦ and the minor-axis FWHM centering around 1.48◦. Since

the beam maps are convolved with the Moon; the measured FWHM is enlarged by

∼ 0.03◦. Therefore, the FWHM measurements across different detectors can be sum-

marized as 1.55◦ (major-axis) and 1.45◦ (minor-axis), with around 0.05◦ deviations

across the array. The average of the two FWHMs is 1.5◦, as expected from the op-

tical design. The ellipticity is then shown to be within 0.1, centered at around 0.07.

Although the FWHM across different detectors varies at the 0.1◦ level, the FWHM

measurement for a single detector is accurate to the 0.001◦ level. Figure 5.11 on the

bottom right shows the estimated uncertainties for different FWHM measurements.

The majority have < 0.001◦ error and the peak is at around 0.0005◦. The fractional

uncertainty on the ellipticity can then be easily be estimated as 0.08%, much smaller

than the ellipticity value scattering.

For cosmological analyses, beams on the sky will be averaged across boresight

angles. With even coverage across 90◦ boresight angles (rotating major axis to minor

axis), ellipticity is removed from the averaged cosmological beams.

106



CHAPTER 5. OBSERVATIONS & DATA ANALYSIS

5.2.2 Moon Polarization Maps

The regolith of the Moon is a dielectric material. Emission from the regolith is re-

fracted at the Moon surface and observed by the CLASS telescope. Using the Fresnel

equations,8 polarization of the refracted radiation is calculated assuming a uniform

dielectric constant. No net polarization is emitted perpendicular to the regolith sur-

face; a linear polarization is emitted to other directions, with the polarization direction

parallel to the regolith surface normal direction. The polarization fraction increases

as the angle to the normal direction increases. Therefore, the Moon’s emission is

unpolarized at the center, while its emission becomes increasingly polarized towards

the limb. Polarization emission reaches a maximum near the limb. The polarization

pattern has been measured at 1.4 GHz,39 shown in Figure 5.12 on the left.

From the measured Moon properties39 at 1.4 GHz, a simulation was performed to

estimate the polarization signal observed by the CLASS 40 GHz telescope, assuming

the polarization fraction at 40 GHz is the same. The Moon’s polarization emission

was simulated as a circularly symmetric annulus from 0.15◦ to 0.25◦ radius, with a

radial pattern. The polarization amplitude was estimated as 20 K (half of the peak

value ∼ 20% polarization fraction,39 equivalent to ∼ 40 K from the measured Moon

temperature40) in the annulus. The Stokes U map was then generated according

to the polarization emission before it was convolved with a 1.5◦ FWHM Gaussian

profile. The simulated Stokes U map is shown in Figure 5.12 on the right, with the U

amplitude (reduced by beam dilution) around 8 mK. The polarization signal seen by
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Figure 5.12: The Moon’s polarization map and simulation. On the left is shown the
distribution of the polarization intensity (grey and contours) and the polarization
direction (indicated by the orientation of the bars) of the Moon at 1.4 GHz. This
figure is Figure 6 in Zhang et al 2012.39 On the right, simulated Stokes parameter
U map, convolved with the CLASS 40 GHz beam, is presented, with the amplitude
around 8 mK.

the CLASS 40 GHz telescope is estimated to be more than three orders of magnitude

lower than the intensity, similar to the ratio of CMB temperature fluctuations to

polarization. Therefore, demonstrating polarization signal can be isolated at this

level indicates that the CMB polarization signal can also be isolated for cosmological

studies.

The variable-delay polarization modulator (VPM) modulates incoming polariza-

tion signal, another step is taken to extract the modulated polarization signal from

raw data, which is called demodulation. After the Moon scan data were demodulated

(via the demodulation package developed by Joseph Eimer and Katie Harrington),
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beam maps were generated from the demodulated data. Beam maps from one detec-

tor pair were added together, equivalent to taking pair differences. Before performing

pair differencing, different gains between paired detectors were balanced to remove

temperature-to-polarization leakage. Finally, Moon scan intensity data were used as a

template to subtract possible temperature-to-polarization leakage. These procedures

were all performed in time-ordered data (TOD) space. Initially, a spurious polariza-

tion signal was observed for edge detectors. The forebaffle was then blackened (Figure

5.13), which removed the spurious signal.

Figure 5.13: Forebaffle blackening. The forebaffle was blackened with ECCOSORB
HR-10 sheets in bags, which were firmly fixed to the forebaffle. The blackening
increases detector loading by < 0.1 pW.

Quadrupole patterns emerged across the array, as shown in Figure 5.14. Polar-

ization amplitude is 10 ∼ 20 mK, more than three orders of magnitude lower than

the intensity amplitude, consistent with our simulation based on 1.4 GHz polar-
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ization measurements39 and intensity measurements40 (Figure 5.12). The results in

Figure 5.14 are from one moon scan, roughly 1,000 seconds for each detector. Stack-

ing the maps provides higher signal-to-noise results. When the data in Figure 5.14

were taken, the Moon was halfway into the first quarter after the new Moon (∼ 13%

illuminated), therefore the upper left part of the maps have more power.

Figure 5.14: Polarization Moon maps. Quadrupole patterns are visible even for one
moon scan, with amplitudes of 10 ∼ 20 mK. The imbalanced power is due to the
phase of the Moon. The Moon was half way into the first quarter after the new Moon
(∼ 13% illuminated) when the data were taken, so that the upper left parts of the
patterns have more power. Some detectors show unexpected patterns due to detector
glitches during this moon scan. This moon scan was taken around 16:46 UTC on
July 27th, 2017.
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5.2.3 PolarizationAngleDetermination

Assumingthe Moonpolarizationiscircularlysymmetric,theorientationof

quadrupolepatternsinpolarization Moon mapscanbeusedtodeterminethe

telescopefar-fieldpolarizationangle. Aneffectivewaytoextractthequadrupole

componentsinthepolarizationbeammapsisneeded.Gauss-Hermitefunctionsform

acompleteandorthogonalbasisfora2-Dspace,14withananalyticalexpression

fi,j(θ,φ)=
exp[−θ2/(2σ2)]

2i+ji!j!πσ2
×Hi

θcosφ

σ
Hj

θsinφ

σ
, (5.1)

whereθandφdescribethemapinpolarcoordinatesystem,HiandHjareHermite

polynomials,andσ=FWHM/
√
8ln2istheGaussianwidthofthebeam.

PatternsfordifferentGauss-HermitefunctioncombinationsareshowninFig-

ure5.15. Thetwoorthogonalquadrupolepatternsarepresentedrotated45◦from

eachother. Differentratiosofthetwopatternscoverallpossibleorientationsof

quadrupolepatterns. OrthogonalitybetweenGauss-Hermitefunctionsguarantees

thatallquadrupoleinformationisstoredwithinthesetwopatterns.

EachpolarizationbeammapwasfittedwiththeGauss-Hermitepatternsupto

orderof10,meaningi+j≤10.Anycorrectionsbeyondorder10providemarginal

improvement.Thequadrupolepatternswerethenrecoveredwithfittedcoefficientson

thetwoorthogonalGauss-Hermitequadrupolepatterns.Thepolarizationangleswere

thencalculatedfromthetwocoefficients.Therefore,thefar-fieldpolarizationangle
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Figure 5.15: Patterns from some Gauss-Hermite function combinations. Patterns
with different combinations from Gauss-Hermite functions are shown, with fi,j defined
in Equation 5.1. The two quadrupole components are pointed out with red boxes.
i+ j is defined as the order of the function.

of each detector is calibrated, as shown in Figure 5.16. A measurement for one corner

feedhorn on the array is shown here. A quadrupole pattern (rotated slightly over 45◦,

as expected) is recovered from the measured map, determining the polarization angle

of the detectors.

Together with near-field polarization angle calibration from the wire-grid insert

(see Subsection 4.5.2), a comprehensive calibration of the polarization angle for each

detector is obtained.
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Figure 5.16: Polarization angle determination. A measured Moon polarization map
is shown at left, with the extracted quadrupole component shown on the right. The
polarization angle is determined as 47.6◦ from the Gauss-Hermite separation method.

5.3 Ground Pickup

Because ground pickup could be a major contaminant for CLASS, a forebaffle

assembly was designed to mitigate it in hardware. Then, once the data were available,

systematic ground pickup analyses were conducted to characterize the ground pickup

signals.

The CLASS site horizon elevation is shown in Figure 5.17. The peak of Cerro

Toco rises to 15◦ elevation. The measured horizon elevation curve is plotted over the

photo. The horizon elevation curve will be used to determine whether the azimuth

synchronized signal is from the ground emission throughout this section.

113



CHAPTER 5. OBSERVATIONS & DATA ANALYSIS

Figure 5.17: A panorama is taken on top of the boresight wedge (see Section 4.2)
with the measured horizon elevation curve overplotted on the photo. The horizon
elevation rises to around 15◦ at the peak of Cerro Toco. The yellow gantry in the
photo was pushed away and is below horizon when viewed from the telescope. Figure
credits: Matthew Petroff.

Since the observation configuration (e.g., boresight angle) stays unchanged within

one day, data were analyzed in one-day units. During CMB scans, the telescope

mechanically stays at constant elevation 45◦ and scans azimuthally at a constant

speed (1 deg/s) before it turns around. One single azimuthal scan could span up to

720◦ depending on whether the Sun needs to be avoided. CMB scans were analyzed

in the unit of single scan, separated by the turnarounds. A small fraction (< 1%) of

data were also cut out around turnarounds to reject data when the detectors may be

unstable. Within one day, each 720◦ CMB scan data were analyzed separately. After

some initial processing, CMB scan data were binned by azimuth position. Then

results from all CMB scans within one day were averaged within each bin, which

became the ground pickup signal for this day.
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Intensity ground pickup was first characterized. When the demodulation data

analysis package was available, polarization ground pickup was studied. Finally, spe-

cial CMB scans at different elevations were performed to characterize the ground

pickup signals at different observation elevation angles.

5.3.1 Intensity Ground Pickup

Intensity ground pickup was first analyzed following the analysis procedure de-

scribed earlier. Initially, the azimuth synchronized signal is coherent with the ground

profile, with the amplitude around 150 mK, with initial power calibration by John

Appel. Given the ground is at ∼ 300 K, the amplitude 150 mK is < 0.1%, which is

consistent with the forebaffle design.

To further suppress the intensity of the ground pickup, hardware modifications

were considered. It was noticed that detectors from the top row saw a similar amount

of (or even more) ground pickup as those on the bottom row. Since the elevations of

the top and bottom rows are different by almost 20◦, they should not be seeing even

the same amount of ground pickup. After reviewing the telescope design, I determined

that the top panel of the forebaffle interface is a possible source of reflecting ground

emission into the telescope, which loads the top row detector more than the bottom

ones, as shown in Figure 5.18 on the bottom left. After blackening the panel with

ECCOSORB HR-10 absorptive sheets, the intensity ground pickup was significantly

reduced. Following the same idea, side panels of the forebaffle interface were also
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Figure 5.18: Intensity ground pickup improvement by hardware modifications. The
improvement of intensity ground pickup for one feedhorn is shown from left to right
on the top. The most efficient hardware modification is also presented from left to
right on the bottom. On the top plots, V and H detectors are plotted, together with
a dark SQUID (tracing the terrestrial magnetic pickup) through the same readout
system. Two detectors are calibrated by power and counts, while the dark SQUID
is only calibrated by counts. Two plots are set at the same scale for comparison.
Horizon elevation is also shown as a red dashed line (not to scale). On the bottom,
views of the forebaffle from 15◦ elevation (Cerro Toco peak) are presented. On the
left, a reflective metal surface could reflect ground emission into the telescope. On
the right, the metal surface is blackened with ECCOSORB HR-10 absorptive sheets,
which significantly reduces the intensity of the ground pickup.

blackened, and a wooden cover of the warm-optics cage was backed with metal sheets

to make it electromagnetically isolating, which yielded further improvement. The

final results are shown in Figure 5.18. After three rounds of hardware modifications,

116



CHAPTER 5. OBSERVATIONS & DATA ANALYSIS

Figure 5.19: Intensity ground pickup after hardware modifications. V detectors and
H detectors are represented by green and blue curves respectively. Red dashed lines
are the horizon elevation as shown in Figure 5.17. Background colors distinguish
detectors read out from same columns, implying that they are sharing the same
magnetic pickup. One subplot for each background color has data plotted (in dots)
from dark detector or dark SQUID, which traces the magnetic pickup for detectors
read out through the same column. Both the ground profile and the magnetic pickup
curves are not to scale; only their shapes are informative. On the bottom right part
of the array, the magnetic pickup reaches its bottom when the ground profile rises to
its peak. The signal clearly follows the magnetic pickup trend, indicating that the
magnetic pickup is the dominant source of emission after the hardware modifications.
The subplot used as an example in Figure 5.18 is pointed out in a red box on the top
right. Some feedhorns have abnormal results due to detector glitches. The data were
taken on December 6th, 2016.

117



CHAPTER 5. OBSERVATIONS & DATA ANALYSIS

the azimuth synchronized signal was reduced from 150 mK to around 40 mK, whose

shape implies that the magnetic pickup became the dominant component after the

hardware modifications.

After the hardware modifications, intensity signal for all detectors is presented in

Figure 5.19. The azimuth synchronized signal was reduced at around 40 mK level

across the array. The shape of magnetic pickup measured by dark detectors and dark

SQUIDs is sinusoidal, because projection of fixed terrestrial magnetic field on rotating

SQUIDs is sinusoidal. Some detectors have the magnetic pickup exactly out of phase

with the ground profile. The fact that the azimuth synchronized signal is coherent

with the magnetic pickup at these detectors clearly shows that the dominant source

for the signal has become the magnetic pickup. The azimuth synchronized signal is

around 40 mK. Templates of the azimuth synchronized signal are being generated to

subtract from the CMB data, which will reduce the signal to a even lower level.

5.3.2 Towards Polarization

After the demodulation analysis packaged was developed by Joseph Eimer and

Kathleen Harrington, the azimuth synchronized signal analysis was extended from

intensity to polarization. Figure 5.20 shows the intensity signal along with the po-

larization signal plotted together, where the polarization signal is basically a flat line

under this scale implying the polarization signal is much smaller than that from in-

tensity (three orders of magnitude below). Polarization ground pickup analysis is still
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ongoing, complete results will be published in a paper later.

Figure 5.20: Azimuth synchronized signal containing both intensity and polarization
signals. The temperature signal for detector 14 is shown in Figure 5.19. Horizon
elevation is also indicated by the red dashed line. Polarization signal from the same
data set is presented (almost a flat line in this scale), meaning its amplitude is much
smaller than that of intensity.

The dependence of ground pickup signals (both intensity and polarization) on

elevation angle was investigated with special CMB scans at 30◦, 40◦, 45◦, 50◦, and 55◦

elevation angles. After comprehensive analysis, 45◦ elevation is proved to be the

optimized value, as designed.
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Summary

CLASS is a project to measure the largest-scale polarization patterns on the sky

via frequency bands across 40 GHz, 90 GHz, 150 GHz, and 220 GHz. This unique

measurement will answer fundamental questions in physics and cosmology, includ-

ing but not limited to the origin of the universe (inflation paradigm), cosmic dawn

(reionization), the sum of neutrino masses, and various Galactic sciences.

The first CLASS telescope, at 40 GHz, was deployed in 2016 and has been ob-

serving for more than one year. The following three telescopes will be deployed in

the coming two years. As a five-year survey, the CLASS survey will observe through

at least 2021 with ground-breaking scientific results to be expected.
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Appendix A

Fourier Transform Spectrometer

(FTS)

In recent years, Fourier Transform Spectrometers (FTS) have been widely used

in instrument development and as instruments on telescopes, since they have several

advantages over conventional spectrometers. First of all, FTS is slit-free, which means

all the radiation entering the field of view (FoV) is accepted, so the efficiency is high.

Secondly, FTS provides spectra of all pixels in the FoV.18

For the CLASS project, it is essential to determine the frequency response of the

detector and the spectral transmission of the different materials used in the optical

system. The FTS constructed and tested in our lab is used for this measurement.

In the broad band configuration, there are roughly three main parts in the entire

system (see Figure A.1): optical components, a thermal source, and a bolometer.
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The bolomoter measures the radiation intensity while a linear stage carrying the

Figure A.1: Schematic layout of the Fourier Transform Spectrometer, which contains
two reflective mirrors, three polarizers, one fixed rooftop mirror, one movable rooftop
mirror, a source, and a detector.

movable mirror records its position from 0 to 150 mm. Therefore, the raw data are

an interferogram (see Figure A.2). A sharp peak is in the center, which means the

source is broadband as we expected. A long-scale trend is also visible in the plot.

To remove the trend, the data are fitted with a degree-4 polynomial (considering the

simplicity of the background, this should be more than enough). After de-trending,

Fourier transforming the data should, in principle, provide the spectrum. However,

some other techniques were applied to better interpret the data due to the noise and
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the boundary condition.

Figure A.2: Left: Raw interferogram (blue line) and quartic polynomial fitted back-
ground (green line); Right: interferogram after subtracting the trend.

Theoretically, the interferogram should be perfectly symmetric about the peak,

which is not the case in reality, especially at large scales. We can see in Figure A.2 that

the interferogram becomes more symmetric closer to the peak, however, symmetry

weakens when observing farther away from the peak. On the other hand, asymmetry

implies that the data contain noise instead of signal. Thus the farther away from the

peak we observe, the more the signal is dominated by noise. Therefore, data points

should be weighted differently.

The most straightforward idea would be simply to accept one part of the inter-

ferogram, say 25 mm – 125 mm, and then perform a Fourier transform. However,

the sharp edge of a top-hat window function results in a sinc function, implying that

apodization should be used. A Gaussian profile is selected since its Fourier transform

is itself (ripple-free), so we applied a Gaussian window function to the middle of the

interferogram. There is always a trade-off between the resolution and contamination.
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The resolution of the spectrum is directly related to the length of the interferogram,

so if too small a patch is used, the spectrum resolution would be too low. On the other

hand, the more of the interferogram is used the more contamination would leak into

the final spectrum. Results in all cases depend on only one parameter, the standard

deviation σ in the Gaussian window function. By trying different values of σ, we got

the optimized number as σ = 25 mm, as shown in Figure A.3.

Figure A.3: Apodized data patch (blue line) and unapodized data patch (green line).
The two data sets fit well around the center while the apodized data go flat faster
than the unapodized data as well as going farther from the center.

A Fourier transform was applied to the data with the apodization. The results

are shown in Figure A.4. In the upper graph, spectra from 15 different independent

measurements are exhibited. All these spectra are consistent with each other in the
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range between 100 GHz – 1000 GHz. The range is limited by the bolometer. The

lower graph shows the average of the 15 measurements shown in the upper graph. The

averaged spectrum shown in the bottom of Figure A.4 is trustworthy and repeatable

within the frequency range from 100 GHz to 1000 GHz. Prominent features in the

spectra are three absorption lines, which come from gaseous molecules in the air.

Figure A.4: Upper graph shows the 15 different spectra taken from 15 different mea-
surement; lower graph shows the average of all the measurements. Molecular absorp-
tion lines from the air are easily seen.

The Fourier Transform Spectrometer has shown its capability of detecting spec-
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trum at frequency between 100 GHz – 1000 GHz in its broadband configuration. In its

narrow band configuration, frequency ranges around 40 GHz and 90 GHz are covered

similarly to the above discussion. With the FTS, different optical materials can be

characterized. The system frequency response is calibrated during integration tests.
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Boresight Wedge Drawings

Two wedges for CLASS telescopes have been made. They are deliberately made

identically for compatibility, except for bolt patterns on the top plates (where the

cryogenic receivers and the warm-optics cages sit).

The first wedge has a bolt pattern for two cryogenic receivers, assuming the 40

GHz telescope design. Some auxiliary bolt patterns were also designed for future

use. The second wedge does not have bolt patterns for the receivers, nor does it have

auxiliary bolt patterns, which are planned to be placed when needed. However, the

two wedges share an identical bolt patterns for the warm-optics cages, which can be

used as a reliable anchor for optical alignment.

Drawings of the two wedges are attached, which were generated by John Karakla.
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Drawings for the First Wedge
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Drawings for the Second Wedge
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Appendix C

Warm-optics Cage Drawings

One warm-optics cage was first manufactured in 2014. Once the cage was fully

tested and equipped with necessary components, it was deployed with the 40 GHz

telescope in 2016. During the observations, valuable feedback on the design was

obtained. Modifications are then made according to the on-field feedback.

Two additional warm-optics cages were manufactured in late 2016 according to

the updated design. One is for the deployed 40 GHz telescope, while the other one is

for the first 90 GHz telescope to be deployed. They both incorporated modifications

learned from the first cage, therefore they will be easier to work with. With both

of them in North America, their compatibility on one mount can be checked before

being deployed.

The drawings attached are for the two warm-optics cages built in 2016, and are

referred to as the ‘cage port’ and ‘cage starboard’. The definition of ‘port’ and
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‘starboard’ assumes the observer is looking out through the forebaffle. Also attached

are honeycomb panel drawings.
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Appendix D

Cable Wraps

As introduced in Chapter 4, the CLASS telescopes have three rotation axes. The

cryogenic receiver rotates about the three axes while its auxiliary equipment (such

as pulse-tube compressor, gas handling system, etc.) sits on the azimuth platform,

which only rotates about the azimuth axis. Therefore, a cable wrap system needs to

be designed to safely guide the vacuum hoses through rotations about another two

axes (elevation and boresight). This work was mainly done by Joseph Eimer and

Lucas Parker.

The cable wrap system is separated into two parts: a boresight cable wrap and

an elevation cable wrap. Each of them handles a rotation about one axis.

The schematic diagram of boresight cable wrap is presented in Figure D.1. The

traveling end is connected to the cable wrap tray introduced in Section 4.3. The cable

tray is installed on the turbo station that rotates with the cryogenic receiver about the
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APPENDIX D. CABLE WRAPS

boresight axis. The fixed end is installed to the boresight bearing plate which does not

have boresight rotation. As the traveling end moves, the boresight cable wrap bundles

the cables and hoses. They extend or retreat in a guided configuration. The cable

wrap shape transformation during boresight rotation is controlled by other auxiliary

structures. During rotation, the cable wrap keeps a large enough turning radius so

that even the 2-inch diameter metal vacuum hoses have no difficulty wrapping around.

Figure D.1: Boresight cable wrap schematic diagram. Looking from the top, two
colored curves shown the cable wrap configuration at two extreme boresight angles:
-45◦ and 45◦. The fixed end is installed at the boresight bearing plate while the
traveling end travels with the above telescope. Some dimensions (in inches) are also
pointed out in this figure. Figure credits: Joseph Eimer.

Renderings of the boresight cable wrap at different angles are presented in Figure
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D.2. The boresight cable wrap handles the boresight rotation. Starting from the

boresight cable wrap fixed end, the elevation cable wrap starts again repeating the

same philosophy.

Figure D.2: Boresight cable wrap at different boresight angles. Each picture shows
the boresight cable wrap in one configuration from a certain perspective. Figure
credits: Joseph Eimer

The elevation cable wrap picks up where the boresight cable wrap ends. A

schematic side view is presented in Figure D.3. Two extreme configurations are shown

in the figure. One is at 90◦ elevation angle when the elevation platform is horizontal,

while the other one is at 20◦ elevation angle when the elevation platform is rotated

70◦ counterclockwise. At these two positions, the elevation cable wrap configuration

is shown in two curves. This cable wrap bundles the hoses and cables together and
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bends them in a controlled way so that the rotation can be safely performed across

the designed range.

Figure D.3: Elevation cable wrap schematic diagram. Looking from the side, two
colored curves shown the cable wrap configuration at two extreme boresight angles:
20◦ and 90◦. The fixed end is installed at the azimuth platform while the traveling
end travels with the boresight bearing plate. Some dimensions (in inches) are also
pointed out in this figure. Figure credits: Joseph Eimer

The elevation cable wrap is presented at two extreme elevation angles with differ-

ent perspectives in Figure D.4. The elevation cable wrap further handles the rotation

about the elevation axis. Thanks to the boresight cable wrap and the elevation cable

wrap, equipment on the azimuth platform can be safely connected to the cryogenic

receiver.
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Since the boresight cable wrap is also shown in Figure D.4, this figure provides an

overall picture of the two-step CLASS cable wrap system.

Figure D.4: Elevation cable wrap at different elevation angles. Top two figures show
the elevation cable (pointed out by red texts) wrap at 90◦ elevation angle from two
perspectives; bottom two figures show that at 20◦ elevation angle from two perspec-
tives. The boresight cable wrap (pointed out in blue texts) is also shown in the figures
at 0 boresight angle. Figure credits: Joseph Eimer

The cable wrap system has been successfully operating for more than one year.

It provides automatic smooth transitions between different telescope configurations.
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Appendix E

Adjustment Stages

Drawings for the adjustment stages for both mirrors and the VPM are presented

here. The drawings are the ‘vanilla’ version. Assuming the warm-optics cage man-

ufacturing is exactly accurate, the ‘vanilla’ version adjustment stages put the optics

right in place at the middle of the adjustment range.

In reality, warm-optics cage manufacturing cannot be exactly accurate. The ad-

justment stages are designed to absorb twice the allowed warm-optics cage tolerance.

Therefore, as long as the tolerance on the warm-optics cages is held, the adjustment

stages can put the optical components back into position. If the tolerance is not held

and is exceeded by more than twice the nominal value, modifications can be made on

the adjustment stage hardware to shift the adjustment range.

The attached drawings are organized in the order of the primary mirror adjustment

stage, the secondary mirror adjustment stage, and the VPM adjustment stage.
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Appendix F

Optical Alignment Strategy

General Strategy

The general strategy is to have the cryogenic receiver fixed and adjust the other

components (the secondary mirror, the primary mirror, and the VPM). The overview

of the optical component layout is shown in Figure F.1. Five targets are installed

around the cryogenic receiver (C1, C2, C3, C4, C5), three targets are installed on the

primary and secondary mirror respectively (P1, P2, P3, S1, S2, S3), four targets are

also installed on the VPM (V1, V2, V3, V4). Details are shown in Figure F.2.

Coordinate System

The coordinate system is set up following these rules:
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APPENDIX F. OPTICS ALIGNMENT STRATEGY

Figure F.1: Overview of CLASS 40 GHz telescope and measuring targets. The cube
is used as an anchor to adjust the secondary mirror, the primary mirror, and the
VPM.

• Origin: the midpoint of the segment connecting C1 and C5

• X-axis: parallel to the tube and pointing from the cube to the window

• Y-axis: along the segment connecting C1 and C5, pointing to C1

• Z-axis: pointing vertically up

In this coordinate system, all the targets are given in Table F.1:
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APPENDIX F. OPTICS ALIGNMENT STRATEGY

Figure F.2: Targets on different components: Top left: Looking from the window side,
the cryogenic receiver and its five targets denoted as C1, C2, C3, C4, C5. Top right:
Looking from the front, the secondary mirror and its three targets denoted as S1, S2,
S3. Bottom left: Looking from the front, the primary mirror and its three targets
denoted as P1, P2, P3, which are named mirror imaged to those on the secondary
mirror. Bottom right: Looking from the front, the VPM and its four targets denoted
as V1, V2, V3, V4.

VPM Targets

The VPM does not have any slots designed for the solid body targets, so we

needed to apply some target tape at certain spots, whose positions were known. On
228



APPENDIX F. OPTICS ALIGNMENT STRATEGY

Table F.1: Target Coordinates

Target Name X (inch) Y (inch) Z (inch)
C1 0 14.6039 0
C2 -0.1982 12.0276 26.6315
C3 -0.1982 10.7776 25.8315
C4 -0.1982 -12.0276 26.6315
C5 0 -14.6039 0
S1 100.9508 21.9570 -0.0272
S2 115.1136 0 35.6604
S3 100.9508 -21.9570 -0.0272
P1 36.9666 21.5212 60.2113
P2 53.9586 0 91.6348
P3 36.9666 -21.5212 60.2113
V1 103.4134 14.1579 42.2077
V2 117.7702 14.1425 63.6123
V3 117.7705 -14.1167 63.6121
V4 103.3227 -14.1171 42.2604

the VPM grid, we knew the positions of four screw holes for the shield, so we placed

the tape target in reference to them. V1 and V4 are 0.5 inches vertically above the

corresponding bolt holes; V2 and V3 are 0.5 inches vertically below the corresponding

bolt holes, see Figure F.2 bottom right. Naturally, one may argue that we cannot

control the tolerance to 0.5 inches by hand taping, but as long as the VPM is in

the designed plane, some transverse offsets are forgiving. The plane is given by the

following equation:

1.48433x− 0.00330y − z = 111.19829. (F.1)
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APPENDIX F. OPTICS ALIGNMENT STRATEGY

Actuator Points

The secondary mirror, primary mirror and VPM each have three actuator points,

defined similarly to the targets. Their coordinates are shown in the following table:

Table F.2: Actuator Coordinates

Actuator Name X (inch) Y (inch) Z (inch)
S1 106.04 10.20 4.66
S2 112.55 0.01 21.08
S3 106.04 -10.19 4.67
P1 36.86 10.60 66.32
P2 45.61 0.01 82.49
P3 36.87 -10.61 66.33

V1(Left Bottom) 117.32 10.30 42.11
V2(Top) 126.10 0.00 55.06

V3(Right Bottom) 117.32 -10.30 42.11

Note: These data are for the 40 GHz telescope adjustment stages deployed in 2016.
Updated adjustment stages have different parameters.
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Appendix G

Forebaffle Assembly

When the first CLASS telescope was deployed in 2016, the forebaffle was designed

solely for the single 40 GHz telescope. Drawings on the forebaffle structure, the

forebaffle interface, and the interface panels are attached here.

Soon the second CLASS telescope will be deployed, and a dual-forebaffle system

is actively being designed and manufactured to accommodate the 40 GHz and new

90 GHz telescopes. The dual-forebaffle system is more than just doubling one single

forebaffle design, because they would interfere between the two telescopes.
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[17] A. Friedmann. “Über die Krümmung des Raumes”. In: Zeitschrift fur Physik

10 (1922), pp. 377–386. doi: 10.1007/BF01332580.

246

http://dx.doi.org/10.1117/12.925464
http://arxiv.org/abs/1211.0041
http://dx.doi.org/10.1063/1.4962023
http://arxiv.org/abs/1601.05901
http://arxiv.org/abs/1601.05901
http://dx.doi.org/10.1086/423482
astro-ph/0311547
http://dx.doi.org/10.1086/178173
http://dx.doi.org/10.1086/178173
astro-ph/9605054
http://dx.doi.org/10.1007/BF01332580


BIBLIOGRAPHY

[18] J. R. Graham et al. “The Performance and Scientific Rationale for an Infrared

Imaging Fourier Transform Spectrograph on a Large Space Telescope”. In:

PASP 110 (Oct. 1998), pp. 1205–1215. doi: 10.1086/316237. eprint: astro-

ph/9803163.

[19] A. H. Guth. “Inflationary universe: A possible solution to the horizon and flat-

ness problems”. In: Phys. Rev. D 23 (Jan. 1981), pp. 347–356. doi: 10.1103/

PhysRevD.23.347.

[20] K. Harrington et al. “The Cosmology Large Angular Scale Surveyor”. In: Mil-

limeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for As-

tronomy VIII. Vol. 9914. Proc. SPIE. July 2016, 99141K. doi: 10.1117/12.

2233125. arXiv: 1608.08234 [astro-ph.IM].

[21] G. Hinshaw et al. “Five-Year Wilkinson Microwave Anisotropy Probe Obser-

vations: Data Processing, Sky Maps, and Basic Results”. In: ApJS 180 (Feb.

2009), pp. 225–245. doi: 10.1088/0067-0049/180/2/225. arXiv: 0803.0732.

[22] G. Hinshaw et al. “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Cosmological Parameter Results”. In: ApJS 208, 19 (Oct. 2013),

p. 19. doi: 10.1088/0067-0049/208/2/19. arXiv: 1212.5226.

[23] W. Hu and M. White. “A CMB polarization primer”. In: New A 2 (Oct. 1997),

pp. 323–344. doi: 10.1016/S1384- 1076(97)00022- 5. eprint: astro- ph/

9706147.

247

http://dx.doi.org/10.1086/316237
astro-ph/9803163
astro-ph/9803163
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1117/12.2233125
http://dx.doi.org/10.1117/12.2233125
http://arxiv.org/abs/1608.08234
http://dx.doi.org/10.1088/0067-0049/180/2/225
http://arxiv.org/abs/0803.0732
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://dx.doi.org/10.1016/S1384-1076(97)00022-5
astro-ph/9706147
astro-ph/9706147


BIBLIOGRAPHY

[24] E. Hubble. “A Relation between Distance and Radial Velocity among Extra-

Galactic Nebulae”. In: Proceedings of the National Academy of Science 15 (Mar.

1929), pp. 168–173. doi: 10.1073/pnas.15.3.168.

[25] L. M. Krauss, S. Dodelson, and S. Meyer. “Primordial Gravitational Waves

and Cosmology”. In: Science 328 (May 2010), p. 989. doi: 10.1126/science.

1179541. arXiv: 1004.2504 [astro-ph.CO].

[26] James W. Lamb. “Miscellaneous data on materials for millimetre and submil-

limetre optics”. In: International Journal of Infrared and Millimeter Waves

17.12 (1996), pp. 1997–2034. issn: 1572-9559. doi: 10.1007/BF02069487. url:

https://doi.org/10.1007/BF02069487.

[27] A. D. Linde. “A new inflationary universe scenario: A possible solution of the

horizon, flatness, homogeneity, isotropy and primordial monopole problems”.

In: Physics Letters B 108 (Feb. 1982), pp. 389–393. doi: 10 . 1016 / 0370 -

2693(82)91219-9.

[28] J. C. Mather et al. “Measurement of the cosmic microwave background spec-

trum by the COBE FIRAS instrument”. In: ApJ 420 (Jan. 1994), pp. 439–444.

doi: 10.1086/173574.

[29] N. J. Miller et al. “Recovery of Large Angular Scale CMB Polarization for

Instruments Employing Variable-delay Polarization Modulators”. In: ApJ 818,

248

http://dx.doi.org/10.1073/pnas.15.3.168
http://dx.doi.org/10.1126/science.1179541
http://dx.doi.org/10.1126/science.1179541
http://arxiv.org/abs/1004.2504
http://dx.doi.org/10.1007/BF02069487
https://doi.org/10.1007/BF02069487
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1086/173574


BIBLIOGRAPHY

151 (Feb. 2016), p. 151. doi: 10.3847/0004-637X/818/2/151. arXiv: 1509.

04628 [astro-ph.IM].

[30] Erik Oberg et al. Machinery’s handbook. Vol. 200. Industrial Press New York,

2004.

[31] A. A. Penzias and R. W. Wilson. “A Measurement of Excess Antenna Tem-

perature at 4080 Mc/s.” In: ApJ 142 (July 1965), pp. 419–421. doi: 10.1086/

148307.

[32] Planck Collaboration et al. “Planck 2015 results. XIII. Cosmological param-

eters”. In: A&A 594, A13 (Sept. 2016), A13. doi: 10 . 1051 / 0004 - 6361 /

201525830. arXiv: 1502.01589.

[33] Planck Collaboration et al. “Planck intermediate results. XXX. The angular

power spectrum of polarized dust emission at intermediate and high Galactic

latitudes”. In: A&A 586, A133 (Feb. 2016), A133. doi: 10.1051/0004-6361/

201425034. arXiv: 1409.5738.

[34] A. G. Riess et al. “Observational Evidence from Supernovae for an Accelerating

Universe and a Cosmological Constant”. In: AJ 116 (Sept. 1998), pp. 1009–1038.

doi: 10.1086/300499. eprint: astro-ph/9805201.

[35] M. Su, T. R. Slatyer, and D. P. Finkbeiner. “Giant Gamma-ray Bubbles from

Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind?” In:

249

http://dx.doi.org/10.3847/0004-637X/818/2/151
http://arxiv.org/abs/1509.04628
http://arxiv.org/abs/1509.04628
http://dx.doi.org/10.1086/148307
http://dx.doi.org/10.1086/148307
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1051/0004-6361/201425034
http://dx.doi.org/10.1051/0004-6361/201425034
http://arxiv.org/abs/1409.5738
http://dx.doi.org/10.1086/300499
astro-ph/9805201


BIBLIOGRAPHY

ApJ 724 (Dec. 2010), pp. 1044–1082. doi: 10.1088/0004-637X/724/2/1044.

arXiv: 1005.5480 [astro-ph.HE].

[36] K. U-Yen et al. “A Broadband Planar Magic-T Using Microstrip-Slotline Transi-

tions”. In: IEEE Transactions on Microwave Theory Techniques 56 (Jan. 2008),

pp. 172–177. doi: 10.1109/TMTT.2007.912213.

[37] D. J. Watts et al. “Measuring the Largest Angular Scale CMB B-mode Polar-

ization with Galactic Foregrounds on a Cut Sky”. In: ApJ 814, 103 (Dec. 2015),

p. 103. doi: 10.1088/0004-637X/814/2/103. arXiv: 1508.00017.

[38] L. Zeng et al. “A Low Cross-Polarization Smooth-Walled Horn With Improved

Bandwidth”. In: IEEE Transactions on Antennas and Propagation 58.4 (Apr.

2010), pp. 1383–1387. issn: 0018-926X. doi: 10.1109/TAP.2010.2041318.

[39] X.-Z. Zhang et al. “New radio observations of the Moon at L band”. In: Research

in Astronomy and Astrophysics 12 (Sept. 2012), pp. 1297–1312. doi: 10.1088/

1674-4527/12/9/010.

[40] Y. C. Zheng et al. “First microwave map of the Moon with Chang’E-1 data: The

role of local time in global imaging”. In: Icarus 219 (May 2012), pp. 194–210.

doi: 10.1016/j.icarus.2012.02.017.

250

http://dx.doi.org/10.1088/0004-637X/724/2/1044
http://arxiv.org/abs/1005.5480
http://dx.doi.org/10.1109/TMTT.2007.912213
http://dx.doi.org/10.1088/0004-637X/814/2/103
http://arxiv.org/abs/1508.00017
http://dx.doi.org/10.1109/TAP.2010.2041318
http://dx.doi.org/10.1088/1674-4527/12/9/010
http://dx.doi.org/10.1088/1674-4527/12/9/010
http://dx.doi.org/10.1016/j.icarus.2012.02.017


Vita

Zhilei Xu received his Sc. B. degree in physics from the University of Science and

Technology of China (USTC) in 2011, and enrolled in the Physics Ph.D. program

at Johns Hopkins University in 2011. He received the highest honor (Guo Moruo

Scholoarship) in 2011 from the USTC. His research focuses on experimental cosmol-

ogy. As a member of the Cosmology Large Angular Scale Surveyor (CLASS) group, he

works with other team members to build a telescope to study the very early universe.

Starting in September 2017, Zhilei will work on the Simons Observatory at the

University of Pennsylvania, where he will focus on designing the next-generation

telescope to study the universe.

251


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Cosmology
	Hubble's Law
	Friedmann Equations
	Equation of State
	Evolution of the Universe
	Our Current Understanding
	Cosmic Microwave Background
	Inflation

	The CLASS Project
	Scientific Objective
	Inflation
	Reionization & Neutrino Masses
	Galactic Sciences

	The CLASS Design
	Site & Scan Strategy
	Fast, Front-end Modulation
	Multi-frequency Observation

	The CLASS Telescopes

	Optical Components
	Fourier Transform Spectrometer (FTS)
	Optics Test Cryostat
	Optical Filters
	Metal Mesh Filter
	Polytetrafluoroethylene (PTFE) Filter
	Nylon Filter
	Scattering Powder Filter

	Large Aperture Cryogenic Window
	40 GHz Telescope Filter System

	Mount System
	Pedestal
	Boresight Wedge Assembly
	Warm-optics Cage Assembly
	Optical Alignment
	Mirror Adjustment Stages
	VPM Adjustment Stages
	Measurement & Adjustment

	Forebaffle Assembly
	Forebaffle & Interface
	Closeout Assembly


	Observations & Data Analysis
	Pointing Calibration
	Beam Calibration
	Intensity Beam
	Moon Polarization Maps
	Polarization Angle Determination

	Ground Pickup
	Intensity Ground Pickup
	Towards Polarization


	Summary
	Fourier Transform Spectrometer (FTS)
	Boresight Wedge Drawings
	Warm-optics Cage Drawings
	Cable Wraps
	Adjustment Stages
	Optics Alignment Strategy
	Forebaffle Assembly
	Vita

