Natural killer cells suppress cardiac inflammation and fibrosis by inhibiting eosinophil accumulation

By

SuFey Ong

A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
August 2014

© 2014 SuFey Ong
All Rights Reserved
ABSTRACT

Myocarditis is the inflammation of the cardiac muscle and a leading cause of sudden cardiac failure. Previously, our lab has shown that natural killer (NK) cells suppress group B coxsackievirus (CVB) and mouse cytomegalovirus (MCMV)-induced viral myocarditis severity by minimizing virus replication. We demonstrate that the protective capabilities of NK cells in myocarditis extend beyond controlling viral infection into directly controlling autoimmune-mediated inflammation. Experimental autoimmune myocarditis (EAM) is instigated in BALB/c mice by immunization with cardiac myosin peptide. NK cells accumulated in the heart through EAM, secreted IFNγ, perforin, and granzyme-B, and had upregulated levels of activation receptors compared to peripheral NK cells. Wildtype (WT) mice undergoing EAM showed significantly greater disease severity when NK cells were depleted using anti-asialo GM1 antibodies. This was accompanied by increased cardiac inflammation, collagen deposition, and a 10-fold increase in the proportion of infiltrating eosinophils. This increased influx of eosinophils was required for the effects of NK depletion in WT mice, indicating that NK cells control disease severity through the suppression of eosinophil infiltration. NK cells had the ability to control eosinophil-related chemokine expression from primary cardiac fibroblasts (CF) – levels of eotaxin 1 (CCL11), eotaxin 2 (CCL24), CXCL9, and CXCL10 were regulated by NK cells both in vivo and in vitro. Altogether, we show a new pathway of eosinophilic regulation through interactions with NK cells and open a new line of therapeutic research in the treatment of myocarditis.
PREFACE

Persistence, strategy, and good fortune are three major variables in the determination of success. While I cannot always speak to the former two elements, I have always had the incredible luck of being surrounded by amazing personal and academic communities. Without the efforts and support of the many people (below being an incomplete list) I have depended on and learned from in the past twenty-six years, my well of potential would be more of a puddle.

First and foremost, this dissertation would not exist without the unrelenting labors of my advisors Noel R Rose and Daniela Čiháková. I am indebted to them for their patience and wisdom, and for always pushing me to become a better scientist and colleague to my peers. Despite his undisputed leadership in the field of autoimmunity for over six decades, Dr. Rose has never made me feel small, silly or unimportant. He exemplifies both humility and genius, and I thank him for the endless support and enthusiasm that he gives his students. From Daniela, I have learned how to be fearless in the often difficult world that accompanies women in science. I thank her for her many kindnesses over the years, for her humor, and her willingness to personally engage her students. The science in this dissertation would not have been possible without her brilliant guidance. I am fully cognizant that I enter the post-doctoral world better equipped than most because of my two advisors and mentors.

Second, it takes a village to raise a child. The Rose Lab has been a wonderful place to have spent my scientific childhood. My thanks to Monica Vladut-Talor for managing the lab so excellently and for her willingness to help in my research. My sincerest appreciations to Jobert G Barin, to whom I owe nearly all my scientific training.
and obscure youtube video knowledge. You have been a wonderful friend and colleague. The same for Lei Wu, whom I need to thank for the unrelenting stream of questions, suggestions, and “small” favors that has elevated my research well beyond my own abilities. My thanks to Quan Nhu, Nicola Diny, Jillian Legault, Natalie Stickel, Elizabeth Gebremariam, and Ashley Cardamone for the friendship, laughter, and advice that has been so necessary in keeping my spirits and research afloat for the past five years. I’d also like to show my appreciation for the many summer students we’ve had in the lab for bringing their enthusiasm and joy to the simple procedures I sometimes take for granted.

My appreciation extends to all my neighbors on the sixth floor of the Ross Research Building, to whom I’ve borrowed plenty of emergency supplies due to lack of foresight on my part and for all the cups of coffee that have been shared. I’d particularly like to acknowledge Alessandra De Remigis and AeRyon Kim.

I also would like to thank David Kass and Djahida Bedja for her help with echocardiographies, Xiao Ling Zhang and Hao Zhang for kindnesses and the expertise in cell sorting, and Joan Evans, our grant officer, for all her help in the mysterious world of grant submission and paperwork. My thanks to Gail O’Connor, our academic coordinator, for answering endless questions and patiently giving me advice about work and life in general. I would also like to thank the National Institutes of Health (NIH) – National Heart Lung and Blood Institute (NHLBI) for their F31 fellowship support in the last two years of my PhD.

Third, there is a long list of people that have been crucial in my development as a scientist. My sincerest thanks to Douglas Capone at USC, who bravely took me into his marine microbiology lab for three years as a high school student, along with his
wonderful graduate students Juliette Finzi and Jill Sohm. I also need to thank my high
school science teachers Thomas Jett and Corinne Fiedler for believing in me. I am
grateful for my high school research support which was provided by the Southern
California Junior Academy of Sciences under Gloria Takahashi. My thanks to Moshe
Arditi (Cedars-Sinai Medical Center), Ling Meng (University of California (UC),
Berkeley), Peggy Lemaux (UC Berkeley), Margaret Torn (Lawrence Berkeley National
Laboratory (LBNL)), and Cristina Castanha (LBNL) for training and hiring me for
various research jobs throughout my college career. William Evan Secor at the Centers
for Disease Control and Prevention (CDC) mentored me after college, encouraged me to
apply for a PhD program in immunology, and has written endless numbers of
recommendation letters.

Also, my thanks for Fernando Pineda, Alan Scott and Ifeanyi Anidi, and Diane
Griffin, William Moss, and Allison Brown for taking me on as a rotation students and
training me. I thank my defense committee members DeLisa Fairweather, Alan Scott,
Mario Caturgeli, Jay Bream, and Marsha Wills-Karp for taking the time to guide and
review my thesis work and I thank the Department of Molecular Microbiology and
Immunology and the Bloomberg School of Public Health at Johns Hopkins University for
supporting my PhD.

Fourth, I thank my friends for always poking, prodding, and encouraging me to be
a better person. Andrea Hodgson, Stefanie Trop, and Kyle Metz have been together with
me from the beginning of our graduate program. We have weathered together through the
seemingly all-encompassing triumphs and failures that plague both PhD students and
young people trying to figure themselves out. Daniel Pham, Carrie Lam, and Naoko
Kozuki have always been available for adventures, mostly of the culinary kind. I need to thank Rachel Lee Thomas, Molly Lawrence Melander, Sharon Shue Hidey, and Anna Weichel for their prayers and encouragement in everything. Without these people, I would have never had the energy and motivation to tackle the obstacles in my professional life.

Last and most importantly, I thank my mom and dad for always believing in me, for always supporting me, and for always nurturing my curiosity. To them I owe everything.
Support

SuFey Ong is the recipient of the NIH Ruth L. Kirschstein National Research Service Award (NRSA) F31 HL112665-01A1. Daniela Čiháková was supported by the Michel Mirowski MD Discovery Foundation, the W.W. Smith Charitable Trust Heart Research Grant H1103 and the Children’s Cardiomyopathy Foundation. This work was further supported by NIH/NHLBI grants R01HL118183 (Daniela Čiháková), R01HL113008 (Noel R Rose).
TABLE OF CONTENTS

ABSTRACT .. ii

PREFACE .. iii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

CATALOGUE OF COMMONLY USED ABBREVIATIONS .. xv

CHAPTER I: INTRODUCTION TO MYOCARDITIS AND DILATED CARDIOMYOPATHY ... 1

 - Myocarditis: Definition and Diagnosis ... 2
 - Myocarditis Etiology .. 4
 - Myocarditis: Treatment .. 6
 - Dilated Cardiomyopathy (DCM) .. 8
 - Myocarditis and DCM: Animal Models ... 11

CHAPTER II: METHODS AND MATERIALS ... 19

CHAPTER III: NK CELLS ARE PROTECTIVE IN EAM .. 26

 - INTRODUCTION TO NK CELLS IN MYOCARDITIS ... 27

 - Biology of Natural Killer Cells ... 27
 - Development of Murine NK cells .. 28
Involvement of Natural Killer Cells in Autoimmunity ... 30

Role of Natural Killer Cells in Myocarditis .. 33

RATIONALE .. 35

RESULTS .. 36

NK cells accumulate in the heart during EAM ... 36

Cardiac NK cells secrete IFNγ and cytotoxic mediators 36

Cardiac NK cells upregulate certain activation markers 37

ASGM-1 treatment in naïve animals selectively depletes NK cells 37

ASGM-1 depletes NK, but not NKT cells during EAM 37

NK cells limit cardiac inflammation during EAM ... 38

ASGM-1 treated animals have increased fibrosis at day 21 of EAM 38

ASGM-1 treatment during EAM mildly decreases cardiac function 39

FIGURES AND TABLES ... 41

DISCUSSION ... 53

CHAPTER IV: EOSINOPHILS ARE REQUIRED FOR NK-MEDIATED
PROTECTION OF EAM .. 57

INTRODUCTION TO THE INTERPLAY OF EOSINOPHILS AND NK CELLS IN
EAM .. 58

Biology and Development of Eosinophils .. 58

Hypereosinophilic syndrome and secondary presentations 61
LIST OF TABLES

Table 1. Common Myocarditis Subtypes and Characteristics4,6,96 .. 14

Table 2. Common etiologies of myocarditis4,6,37,39,96 .. 15

Table 3. Susceptible strains of mice and their associated peptides in experimental autoimmune myocarditis84,94 ... 16

Table 4. Diagnosis of Hypereosinophilic Syndrome (HES)201,203,207 75
LIST OF FIGURES

Figure 1. Natural History of Heart-Passaged CVB-Myocarditis85,86 17
Figure 2. Progression of experimental autoimmune myocarditis84,94 18
Figure 3. Maturation stages and associated transcription factors of murine NK cells 41
Figure 4. NK cells accumulate in the heart during EAM .. 42
Figure 5. Cardiac NK cells secrete IFNγ and cytotoxic mediators 43
Figure 6. Cardiac NK cells upregulate certain activation markers 44
Figure 7. ASGM-1 treatment in naïve animals selectively depletes NK cells 45
Figure 8. ASGM-1 depletes NK, but not NKT cells during EAM 46
Figure 9. NK cells limit cardiac inflammation during EAM ... 47
Figure 10. ASGM-1 treated animals have increased fibrosis at day 21 of EAM 48
Figure 11. NK cells limit collagen deposition during EAM .. 49
Figure 12. ASGM-1 treatment during EAM mildly decreases cardiac function 50
Figure 13. Cardiac fibroblasts can be isolated from adult mice 51
Figure 14. Activated fibroblasts are not targeted for cytotoxic killing by NK cells in vitro ... 52
Figure 15. NK cells suppress cardiac eosinophilic accumulation during EAM 76
Figure 16. Increased eosinophils express high levels of MBP, SiglecF, and CD11b.... 77
Figure 17. Eosinophils in the heart of ASGM-1 treated mice have an activated profile .. 78
Figure 18. Mast cells, and mast cell mediators are not altered in the absence of NK cells ... 79
Figure 19. Myeloid populations are unaffected by NK depletion during EAM 80
Figure 20. B cell and T cell proportions are unaffected by NK depletion during EAM... 81
Figure 21. NK depletion increases Th2 and Th17 proportions at later stages of EAM.... 82
Figure 22. Day 21 cardiac cytokine levels reflect changes in Th profiles............... 83
Figure 23. Eosinophils are essential for increased myocarditis severity in the absence of
NK cells .. 84
Figure 24. Th-dysregulation in the absence of NK cells is independent of disease severity
... 85
Figure 25. NK cells alter levels of eosinophil-associated chemokines in vivo 86
Figure 26. NK cells alter levels of eosinophil-associated chemokines from CFs in vitro 87
Figure 27. NK cells alter levels of eosinophil-associated chemokines from CFs in vivo 88
Figure 28. Eotaxins are not required for NK-mediated eosinophil control 89
Figure 29. NK cells mediate CCL11, CXCL9 and CXCL10 production from CFs via IFNγ in vitro.. 90
Figure 30. IFNγ controls CXCL9 levels during EAM... 91
Figure 31. IFNγ is dispensable for NK-mediated control of eosinophil accumulation
during EAM .. 92
Figure 32. Summary of dissertation... 102
CATALOGUE OF COMMONLY USED ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ASGM-1</td>
<td>Anti-asialo GM-1 antibody</td>
</tr>
<tr>
<td>CBV</td>
<td>Group B coxsackievirus</td>
</tr>
<tr>
<td>CF</td>
<td>Cardiac fibroblasts</td>
</tr>
<tr>
<td>DCM</td>
<td>Dilated cardiomyopathy</td>
</tr>
<tr>
<td>DCMI</td>
<td>Inflammatory dilated cardiomyopathy</td>
</tr>
<tr>
<td>EAE</td>
<td>Experimental autoimmune encephalomyelitis</td>
</tr>
<tr>
<td>EAM</td>
<td>Experimental autoimmune myocarditis</td>
</tr>
<tr>
<td>EMB</td>
<td>Endomyocardial biopsy</td>
</tr>
<tr>
<td>HSC</td>
<td>Hematopoietic stem cell</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>LV</td>
<td>Left ventricle</td>
</tr>
<tr>
<td>MCMV</td>
<td>Murine cytomegalovirus</td>
</tr>
<tr>
<td>NK</td>
<td>Natural killer</td>
</tr>
<tr>
<td>OVA</td>
<td>Ovalbumin peptide</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
</tbody>
</table>
CHAPTER I: INTRODUCTION TO MYOCARDITIS AND DILATED CARDIOMYOPATHY
Myocarditis: Definition and Diagnosis

Myocarditis is the inflammation of the cardiac muscle\(^1\). Histopathologically, myocarditis is defined by the Dallas criteria to be the presence of inflammatory infiltrate associated with myocyte necrosis in the absence of ischemia\(^2-4\). Presence of cardiomyocytes necrosis with an inflammatory cellular infiltrate is characteristic for active myocarditis\(^5\). Several different subtypes of myocarditis exist depending on histological assessment. If there is inflammation in the absence of myocyte death, the disease is defined as borderline myocarditis. In the presence to necrosis, the major infiltrating cell-type will distinguish lymphocytic, giant cell, and eosinophilic myocarditis, though other cell types may also be present (Table 1)\(^6\).

Histological determination of disease requires tissue obtained by endomyocardial biopsy (EMB) or post-mortem autopsy. Immunohistochemistry may further delineate inflammatory cell populations based on surface markers such as MHCII and CD3\(^7-9\). EMB is widely used in Europe, but its use remains limited in the United States\(^10,11\). In the US, the view is that limited sampling results in EMB-based myocarditis diagnosis being prone to low sensitivity and difficulties in establishing a prognosis\(^12\). Perceived risks of patient endangerment, extensive costs, and limited accessibility to expert pathological interpretations underline the need for improved tools in the early diagnosis of myocarditis\(^10\). However, the European Society of Cardiology strongly supports EMB for all clinically suspected myocarditis patients. The complication rate is low and most importantly only EMB can confirm the myocarditis infection status, necessary for determining the patient treatment.

Clinical symptoms of myocarditis may range from mild chest pains to cardiac
shock and ventricular arrhythmias. Clinical myocarditis can be divided based on clinical and pathological criteria as fulminant, sub-acute, chronic active, and chronic persistent subtypes. Fulminant myocarditis is defined as active myocarditis accompanied by acute, severe cardiac failure. Immediate intervention may be necessary for cardiac survival. If diagnosed quickly and treated aggressively, however, the large majority of fulminant myocarditis patients will make a full recovery. Non-fulminant cases, despite not requiring immediate intervention, appear to have decreased long-term survival.

Several methods have been undertaken to improve diagnosis of myocarditis in a non-invasive manner. Studies have examined markers of cardiac injury, such as cardiac troponin I (cTnI), myosin or cTnI antibodies, and creatine-kinase MB, but these signs do not distinguish between different causes of cardiac myocyte injury and do not alone improve the determination of future therapy.

Echocardiography, a first-line tool in the identification of cardiac abnormalities, is of limited use in the positive diagnosis of myocarditis. Myocarditis patients do not display any specific echocardiographic characteristics. While some parameters such as segmental wall abnormalities, LV wall thickness or ventricular thrombi showed some association with myocarditis, they are indistinguishable from other cardiac conditions such as myocardial infarction. Echocardiography is an excellent method for ruling out other causes of heart failure and to monitor patient progress, but cannot be relied on a sole diagnostic tool.

Electrocardiograms (EKG) may also be problematic in the positive diagnosis of myocarditis. Acute myocarditis patients may display non-specific ST-segment and T-wave abnormalities or present with elevated ST-segments that directly mirror an acute
myocardial infarction28,29. In one study of 42 histologically proven myocarditis patients, 58\% had normal P-waves, 49\% had normal QRS-complexes, and 64.5\% had no repolarization abnormalities. In summary, the predictive value of EKG was low, although all myocarditis patients displayed at least abnormality among the parameters measured. Of these, abnormal QRS complexes and left bundle branch block (LBBB) were most strongly correlated with poor clinical outcomes30.

Cardiac magnetic resonance imaging (MRI) has shown great promise among non-invasive techniques being used for diagnosis of acute myocarditis, especially in the earliest stages of disease4,31. T2-weighted images may show the presence of inflammation-associated edema in the myocardial tissue32. Myocardial global relative enhancement (gRE) studies to examine myocardial hyperemia and increased capillary permeability have sensitivities between 63\%-85\%33. Furthermore, the use of cardiac MRI-guided EMB to facilitate sampling of the abnormal regions of the LV is a powerful tool in improving the diagnosis of myocarditis34.

In conclusion, EMB remains the gold standard for myocarditis diagnosis. While the inclusion of multiple non-invasive tests such as serum inflammatory markers and cardiac MRI do not replace EMB, they serve as complement during the diagnostic process of myocarditis and subsequent patient monitoring.

\textbf{Myocarditis Etiology}

Multiple agents are associated with the induction of clinical myocarditis (Table 2)35. However, in most cases, no specific toxic agent or active pathogen can be
identified36. The causative event may have occurred well before the onset of clinical symptoms, leaving no trace in the patient. Difficulties in determining the etiology of myocarditis results in a large majority of cases being identified as idiopathic12.

Viruses are the most commonly identified causes of myocarditis37. Parvovirus B19 is the most commonly isolated viral pathogen in Europe, a recent shift from group B coxsackievirus (CVB) and adenovirus9,38. Studies done with hepatitis C found strong correlations between HCV antibodies and RNA in proven myocarditis patients39. Other associated viral pathogens include HIV, Epstein-Barr virus, cytomegalovirus (CMV), and herpesvirus40. There is, however, little evidence for an association between levels of virus and clinical severity of myocarditis41-44.

There is also increasing recognition of the myocarditis brought on by infection with \textit{Trypanosoma cruzi}, a growing public health concern as the disease spreads north from Central and South America. Infection with \textit{T. cruzi} results in Chagas disease. This flagellated parasite enters the bloodstream through the fecal matter of their vector, the triatomine bug. Upon scratching at the bite site, the fecal matter is smeared into the broken skin and the flagellates invade their new host45. While the course of disease is unpredictable, the acute phase is associated with transient, febrile myocarditis. Etiologically, it is thought to be associated with cross-reactions of the immune system between \textit{T. cruzi} proteins and cardiac muscle46. Afterwards, 30\% of patients will gradually develop severe chronic myocarditis despite a scarcity of parasites found in the heart47. Largely found in South America, cases and infected vectors have been found in the southern United States and there have been several reports of infection through transfusions from imported blood48,49.
Hypersensitivity reactions to drugs also constitute a significant percentage of myocarditis patients50,51. The list of drugs associated with myocarditis vary greatly, with Table 2 providing a limited list, and can occur in patients where they were previously well-tolerated52. Often, this hypersensitivity reaction responds to the withdrawal of the offending drug agent and the application of corticosteroids52-54.

Autoimmune mechanisms may play a role in the development of myocarditis. Viral invasion in the heart results acute cardiac damage and the release of multiple self-antigens into an inflammatory environment43. Also, individuals with well-established autoimmune disorders such as systemic lupus erythematosus (SLE), hyper IgE (Job’s) syndrome, celiac disease, and multiple sclerosis can present with secondary myocarditis55-58. 41-56\% of myocarditis patients produce autoantibodies against cardiac proteins, most commonly against cardiac myosin heavy chain, and additional proteins such as cTnI and skeletal myosin may also be targeted35,59,60. These cardiac autoantibodies are correlated with reduced LV function in chronic myocarditis, though whether they are directly responsible is unknown61,62. Additionally, CD4+ cells in the blood of myocarditis patients proliferate upon stimulation with cardiac myosin \textit{in vitro}, suggesting the development of an anti-cardiac humoral immune response63.

Myocarditis: Treatment

Management of clinical myocarditis is dependent on the patient presentation, suspected etiology, and disease stage. In cases of fulminant myocarditis presentation with cardiac shock and severe ventricular dysfunction, patients should first be managed in
intensive care units with hemodynamic monitoring. Some cases may require ventricular assist devices or extracorporeal membrane oxygenation (ECMO). In stable patients and those presenting with non-fulminant myocarditis, combination treatments are given, aimed at decreasing cardiac load and improving function in order to limit chances of a cardiopulmonary event. Suggested treatments include diuretics, common to prevent fluid overload and angiotensin-converting enzyme (ACE) inhibitors, which may limit maladaptive chronic remodeling if treatment is begun in the early stages of disease regardless of etiology.

Additionally, the use of beta-blockers results in increased ventricular function and better clinical outcomes in non-fulminant myocarditis. Despite this treatment and the recommended avoidance of exercise, patients may continue to develop persistent heart failure where treatments with aldosterone antagonists may be of benefit. Their mechanism of action is not well-defined, but may reduce cardiac remodeling through the suppression of fibrosis. These drugs resulted in a reduction of hospital admissions and increased survival in heart failure patients.

Current recommended therapies are aimed only at improving cardiac function as there are no effective specific treatments for myocarditis. The use of interferon-beta (IFN-β) to treat viral myocarditis in some studies resulted in the elimination or reduction of viral presence from the heart, the improvement in cardiac function, and an improved 10 year survival. Interferon-alpha 2 (IFN-α2) in animal models of viral myocarditis resulted in the removal of viral genome in the heart and decreased cardiac inflammation and injury.

Immunoadsorption (IA) to remove circulating IgG antibodies and intravenous
immunoglobulin treatment (IVIG) have both been utilized in clinical trials. The latter was associated with improved LV function in heart failure trials, but has not been tried in studies of histologically proven myocarditis\(^{72,73}\). IA, aimed at limiting autoantibody levels, has been shown to decrease myocardial inflammation, though this also was not done in for histologically proven myocarditis patients\(^{74}\).

Direct immunosuppression using steroids alone or in combination with azathioprine or cyclosporine has been a target of clinical trials. In RNA virus-negative and autoantibody-positive patients with EMB-positive myocarditis, treatment with prednisone and azathioprine improved LV function and decreased LV diastolic dimensions\(^{75}\). Other trials, however, that treated patients with unknown etiology did not show improvement when immunosuppressive strategies were added to symptomatic treatment plans\(^{35,59,60}\).

Approximately half of acute myocarditis patients will resolve within the first month of disease. In the remaining patients, 25-50% will experience deteriorating cardiac function despite being monitored and treated. Within this population, a secondary phenotype emerges known as inflammatory dilated cardiomyopathy (DCMI), described in the next section.

Dilated Cardiomyopathy (DCM)

Cardiomyopathies are a large and heterogeneous group of disorders associated with the morphologically abnormal appearance and failure of myocardial performance\(^{76}\). DCM is classified as a type of cardiomyopathy characterized by ventricular chamber
enlargement in the absence of hypertension or other abnormal loading conditions. Physiologically, patients may present with reduced cardiac function as seen by decreased ejection fraction due increased end-diastolic dimensions.

The age-adjusted prevalence of DCM in the United States is approximately 36 cases per 100,000 individuals76. DCM is the third most common cause of heart failure and the most common form of cardiomyopathy. 40\% of DCM cases are believed to be genetic in nature, meaning that the disease has occurred at least two closely related family members77,78. Around 30 genes have been identified as associated with the disease, though most familial cases are heterogeneous with private gene abnormalities78. It has been estimated that over 90\% of familial cases have been inherited in an autosomal dominant manner and show age-dependent penetrance along with variable expression77.

Guideline-directed medical therapy (GDMT), as approved by the American Heart Association (AHA) and the American College of Cardiology Foundation (ACCF), for DCM is first aimed at reducing pressure overload by limiting hypertension through the use of diuretics, beta-blockers, and angiotensin-targeting drugs such as ACE inhibitors or angiotensin II receptor blockers (ARBs). Patients are also recommended several behavioral changes including sodium limitation.

25\% of patients with recent onset of symptomatic DCM will rapidly improve even in the absence of correct GDMT. However, after 3 months of no improvements is associated with poor prognosis long-term. Some patients benefit from a left ventricular assist device (LVAD) and an implantable prophylactic fibrillator (IPD), but heart transplant remains the only curative treatment for end-stage DCM79,80. DCM patients constitute the majority of heart transplants in the United States, with DCM following
myocarditis making up 9% of all DCM-related heart transplants15.

Outcomes of DCM-related heart transplants are significantly worse among those from a primary diagnosis of myocarditis. In one study by Pietra \textit{et al}, of the 231 children awaiting cardiac transplant, 80\% received transplants during the study period with 86\% being UNOS Status 1. The 1, 5, and 10 year survival rates were 92\%, 80\%, and 72\%, respectively. The strongest indicators for negative clinical outcomes were a primary diagnosis of myocarditis, older age at transplantation, and lower LV end diastolic dimensions (LVEDD). Survival of myocarditis-based DCM patients, which were 11\% of the total transplants, were 83\% at 1 year and 65\% at 3 years, significantly lower than non-stratified survival rates69.

The poor clinical outcomes associated with myocarditis-based DCM raises the possibility that the etiological agent of myocarditis, whether viral or autoimmune, may persist after transplantation. This underscores the need for a specific and curative therapy for myocarditis in both chronic patients and those apparently resolved cases undergoing cardiac transplantation due to secondary DCM.

DCM may be primary or acquired. Primary DCM is considered genetic or familial in nature, whereas secondary DCM is associated with of an inflammatory or autoimmune disorder81. Secondary DCM is also known as inflammatory DCM (DCMI), if dilation was a result of proven cardiac inflammation or inflammation is still present in the cardiac tissue. In myocarditis-based DCMI, the inflammatory infiltrate and subsequent tissue damage begins a wound-healing cascade of events that ultimately leads to significant interstitial edema, myocyte necrosis, and replacement fibrosis and collagen deposition. In some cases, underlying low levels of viral pathogen may result in continual cardiac
myocyte damage and inflammation82,83. It has been postulated that the continual cardiac myocyte injury and subsequent fibrosis is driven by an autoimmune response against myocyte-associated proteins60.

Myocarditis and DCM: Animal Models

Animal models of myocarditis and DCM are necessary in order to better study the natural history of the disease. There are several accepted models of murine myocarditis. Viral myocarditis can be induced in susceptible mouse strains with CVB or murine cytomegalovirus (MCMV) (Figure 1). Following infection, mice develop a primary disseminated viral infection by day 4, but in surviving mice a secondary and tertiary phase disease progress occurs84-87.

Inoculation of mice with CVB, similar to MCMV, can induce a fatal acute viral myocarditis within the first week of disease with substantial damage to the cardiomyocytes and disseminated viral presence. However, the Nancy strain of CBV may be heart-passaged first in order to induce a milder disease more conductive to survival and progression to the secondary and tertiary stages84. In the surviving mice, an acute cardiac inflammatory stage occurs from day 7 and resolves by day 14 coinciding with the peak of infiltration. After day 14, the disease resolves with a tertiary chronic low-grade inflammation following day 28 onwards in susceptible mouse strains such as BALB/c or A/J. This low grade inflammation coincides with the development of DCMI. However, the genetic resistance to the inflammatory phase in C57B/6 and B10 strains can be reduced by administration of bacterial lipopolysaccharide (LPS), interleukin (IL) 1\textbeta or tumor necrosis factor alpha (TNF-\textalpha)85,87.

11
Active virus can be isolated from the heart only up to day 10 of infection, with detectable RNA being found until day 1485,88. Hence, the chronic phase of murine viral myocarditis is thought to be largely autoimmune-driven in nature, and suggests the possibility of the virus acting as an adjuvant. In both viral models, titers of anti-myosin IgG and IgM can be found in resistant and susceptible mice strains89,90. Furthermore, the antibodies found in susceptible strains are specific for cardiac myosin and are not cross-reactive with other forms of myosin90. Other autoantibodies found include troponin I, tropomyosin, and adenine nucleotide translocator (ANT)91. It is been shown that viral replication in the heart itself is needed to cause myocardial injury. The depletion or absence of either the CD4+ or CD8+ T-cell component results in a significant reduction of the subsequent post-viral myocarditis92,93. Taken together, it is likely the viral-mediated damage of the heart begins an immune cascade resulting in the development of anti-cardiac adaptive immunity.

Myocarditis can also be induced in the absence of an active pathogen. Experimental autoimmune myocarditis (EAM) is evoked by immunization of susceptible mouse strains, which are identical to the mouse strains susceptible to viral myocarditis. Mice are subcutaneously (s.c.) injected with 100\mu g of either whole cardiac myosin or a strain-specific myocarditogenic peptide fragment derived from \(\alpha\)-myosin heavy chain (Table 3) emulsified in complete Freund's adjuvant (CFA) at day 0 and day 7 of disease, along with 500ng of pertussis toxin intraperitoneally (i.p.) to further stimulate the immune system61,84,94. The different peptides used to induced EAM in various strains indicates that different epitopes of cardiac myosin are targeted by the immune system, as strains are generally not reactive to other peptides. A/J mice immunized with cardiac
troponin I instead of cardiac myosin develop similar disease. Importantly, EAM mimics the clinical myocarditis-based progression to a secondary disease phase, DCMI, in nearly all mice immunized.

EAM is marked by a priming phase from day 0 to 10, where cardiac infiltrate is not evident yet, but immune responses are being initiated as shown by the rise in cardiac myosin-specific antibodies. Following day 10, CD45+ inflammatory cells begin infiltrating the cardiac space and peaks at day 21. This stage of disease mimics that of the secondary phase of CVB-induced myocarditis and is accompanied by anti-cardiac myosin antibodies and T-cells. Infiltration begins to resolve by day 35. The animal develops DCMI by day 45 as the inflammation is replaced by the deposition of collagen and other fibrotic mediators likely due to wound healing processes (Figure 2). EAM allows for the separation of the subsequent antigen-specific adaptive immune response independent of an active pathogen.
Figures and Tables

Table 1. Common Myocarditis Subtypes and Characteristics\(^4,\,6,\,96\)

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Myocyte Necrosis?</th>
<th>Diagnostic Infiltrate</th>
<th>Secondary Infiltrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytic</td>
<td>Y</td>
<td>Lymphocytes</td>
<td>Plasma cells, neutrophils, macrophages</td>
</tr>
<tr>
<td>Giant cell</td>
<td>Y</td>
<td>Giant cells</td>
<td>Lymphocytes, eosinophils</td>
</tr>
<tr>
<td>Eosinophilic</td>
<td>Y</td>
<td>Eosinophils</td>
<td>Lymphocytes</td>
</tr>
</tbody>
</table>
Table 2. Common etiologies of myocarditis4,6,37,39,96

<table>
<thead>
<tr>
<th>Infectious</th>
<th>Immune-mediated</th>
<th>Toxin-mediated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral</td>
<td>Autoimmune</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>Celiac disease</td>
<td>Arsenic</td>
</tr>
<tr>
<td>Coxsackievirus</td>
<td>Churg-Strauss syndrome</td>
<td>Copper</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>Hypereosinophilic syndrome</td>
<td>Thyreotoxicosis</td>
</tr>
<tr>
<td>HIV</td>
<td>Inflammatory bowel disease</td>
<td></td>
</tr>
<tr>
<td>Parvovirus</td>
<td>Kawasaki disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systemic lupus erythematous</td>
<td></td>
</tr>
<tr>
<td>Bacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus</td>
<td>Hypersensitivity reactions</td>
<td></td>
</tr>
<tr>
<td>Mycobacterium</td>
<td>Penicillin</td>
<td></td>
</tr>
<tr>
<td>Legionella</td>
<td>Tetracyclines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzodiazepines</td>
<td></td>
</tr>
<tr>
<td>Protozoan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trypanosoma cruzi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxoplasma gondii</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Susceptible strains of mice and their associated peptides in experimental autoimmune myocarditis84,94

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Strain</th>
<th>1° Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>cardiac myosin</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>MyHC\textsubscript{α334-352}</td>
<td>A/J, C3H (H\textsubscript{2k})</td>
<td>DSAFDVLSFTAEKAGVYK</td>
</tr>
<tr>
<td>MyHC\textsubscript{α614-629}</td>
<td>BALB/c (H\textsubscript{2d})</td>
<td>Ac-SLKLMATLFSTVASAD</td>
</tr>
<tr>
<td>MyHC\textsubscript{α406-425}</td>
<td>SWXJ (H\textsubscript{2s})</td>
<td>KVGNEYVTKGSVQQVYYSI</td>
</tr>
<tr>
<td>MyHC\textsubscript{α1631-1650}</td>
<td>SWXJ (H\textsubscript{2s})</td>
<td>LSQANRIASEAQKHLKNSQA</td>
</tr>
<tr>
<td>cardiac troponin I</td>
<td>A/J, BALB/c</td>
<td></td>
</tr>
<tr>
<td>cTnI\textsubscript{105-122}</td>
<td>A/J (H\textsubscript{2k})</td>
<td>VDKVDEERYDVEAUKTKN</td>
</tr>
</tbody>
</table>
Heart-passaged coxsackievirus B (CVB) (Nancy strain) evokes myocarditis in BALB/c mice. Inoculated mice develop a disseminated viral infection for the first seven days until the virus invades cardiac tissue, where viral titer will peak around the same time as the ensuing cardiac inflammation. This coincides with anti-cardiac myosin IgG titers in the serum of infected mice. Inflammation will subside by day 28 of infection, where the mice develop a moderate chronic inflammation. The development of inflammatory dilated cardiomyopathy (DCMI) begins around day 35.
Experimental autoimmune myocarditis (EAM) is instigated when susceptible strains of mice are immunized with cardiac myosin alpha heavy chain protein or peptide emulsified in complete Freund’s adjuvant (CFA) on days 0 and 7 of EAM. Mice undergo a priming phase from days 0-7, followed by the beginnings of cardiac inflammation which peaks at day 21. Finally, DCMI occurs from day 42 onwards.
CHAPTER II: METHODS AND MATERIALS
Mice

WT BALB/c, Rag1^{-/-}, C.Cg-Gata1^{m6Sho/J}, IFNγ^{-/-}, IFNγR1^{-/-}, and CCR3^{-/-} mice were purchased from the Jackson Laboratory and were bred and maintained in the conventional housing facilities at The Johns Hopkins University School of Medicine (Baltimore, Maryland). All protocols have been reviewed and approved by the Johns Hopkins Animal Care and Use Committee.

Immunization with MHC614-629

Male 6-8 week old BALB/c mice were subcutaneously injected with 100µg of myocarditogenic peptide of cardiac myosin heavy chain (MyHC) MyHC614-629, emulsified in an equal volume of complete Freund’s adjuvant (CFA) (Sigma Aldrich, St. Louis, Missouri), supplemented with 4mg/ml of H37Ra tuberculosis extract (Difco, Lawrence, Kansas) on days 0 and 7 for a total volume of 100µL per injection. 500ng of Pertussis toxin in 100µl of PBS (Sigma Aldrich, St. Louis, Missouri) was administrated intraperitoneally (i.p.) on day 0.

Assessment of EAM

Mice were sacrificed on day 14 or day 21 as required. Hearts were perfused with 1X phosphate buffered saline (PBS) for 3 minutes, removed and fixed. Longitudinal sections through the left ventricle were stained with hematoxylin and eosin (H&E). The degree of myocardial infiltration and fibrosis was determined blindly by at least two individuals by microscopy. Histology scored based on percentage of infiltrated tissue as follows: 0 = no infiltration, 1 = ≤10%, 2 = 10-30%, 3 = 30-50%, 4 = 50-90%, 5 ≥90%.
Assessment of collagen deposition

Hearts at day 21 of EAM were perfused with 1X PBS as in for the assessment of EAM. Cardiac sections were stained with Masson Trichome140,141,231,256. Images of whole cardiac sections were uploaded to ImageJ software (National Institutes of Health, Bethesda, Maryland) and using the loupe tool, the left ventricle was selected. Blue and red pixels within the selected area were enumerated and the degree of fibrosis represented as a percentage of blue pixels from the total number of pixels (red and blue).

Echocardiography

An Acuson Sequoia 256 high-resolution microimaging system with a 13 MHz transducer was used (Visualsonic, Toronto, Ontario, Canada). Any fur on the abdominal surface of the mice was removed using a depilatory cream, Nair (Church and Dwight, New Jersey, USA) 24 hours prior to imaging. In conscious mice, the heart was imaged in the 2D mode in the parasternal short-axis view. From the M-mode, the left ventricular wall thickness and chamber dimensions were measured. The M-mode cursor was positioned perpendicular to the interventricular septum (IVS) and the left ventricular posterior wall (LVPW) with three to five readings taken for each measurement. The left ventricular end diastolic dimension (LVEDd), end systolic dimension (LVEDs) and the interventricular septal wall thickness at end diastole (IVSD) were measured from a frozen M-mode tracing. Fractional shortening (FS), ejection fraction (EF) and relative wall thickness were calculated256.
Intracardiac and splenic flow cytometry

To create a cardiac single-cell suspension, the aorta was cannulated with a 23-gauge needle to perfuse hearts with 15mL of cold 1x PBS for 3 minutes to remove blood. To create cardiac single-cell suspensions, hearts were bisected, placed in C-tubes, and dissociated on the GentleMACS system (Miltenyi Biotech, Bergisch Gladbach, Germany) under program heart_01. Cells were shaken with 10mg of collagenase II and 1.5mg of DNase I (Worthington Biochemical, Lakewood, New Jersey) for 30 minutes at 37°C. Cells were dissociated again under program heart_02 and rinsed twice with 1x PBS with 0.05% bovine serum albumin (BSA) (Sigma-Aldrich, Saint Louis, Missouri) and 2mM ethylenediamine tetraacetic acid (EDTA) (Corning Cellgro, Corning, New York).

To create a splenic single-cell suspension, spleens were dissociated between two frosted glass slides and incubated with 2mL of ammonium-chloride-potassium (ACK) Lysing Buffer for 1 minute to remove red blood cells. The remaining cells were rinsed with 1x PBS and filtered through a 40uM mesh. 1-3x10^6 cells were incubated with 1uL of LIVE/DEAD Aqua (Invitrogen, Carlsbad, California) for 30 minutes in 1x PBS to stain dead cells. Cells were then incubated with 2 µg of αCD16/32 at 4°C for 10 minutes prior to the addition of fluorescent antibodies (CD3, CD4, CD8, CD45, Ly6G, SiglecF, NKp46, DX5, CD11b, CD11c, and F4/80) (eBioscience, San Diego, California) to prevent non-specific binding of fluorescent antibodies. Samples were incubated with fluorescent antibodies at 4°C for 10-20 minutes, washed in 1ml of 0.05% BSA and 2mM EDTA in 1x PBS and fixed in fixation and permeabilization buffer (BD Bioscience, Franklin Lakes, New Jersey) for 30 minutes.

For intracellular cytokine staining, suspensions were first incubated prior to staining for
4-6 hours with 20ng/mL PMA, 1ug/mL ionomycin, and Golgistop (BD Bioscience, Franklin Lakes, New Jersey) in complete Dulbecco’s Modified Eagle’s Medium (DMEM) (Corning Cellgro, Corning, New York). Cells were surface stained and then permeabilized with 1x permeabilization buffer (BD Bioscience, Franklin Lakes, New Jersey) overnight at 4°C. Cells were then incubated with anti-cytokine antibodies (eBioscience, San Diego, California) for 30 minutes at 4°C. Cells were washed in 1x permeabilization buffer and resuspended in 100-200µl of buffer.

Samples were acquired on the LSR II quad-laser cytometer running FACSDiva 6 (BD Immunocytometry, Franklin Lakes, New Jersey). Data were analyzed with FlowJo 7.6 (Treestar Software, Ashland, Oregon).

Depletion of NK cells with anti-asialo GM1 antibody

To deplete NK cells prior to immunization, 6 week old male BALB/c mice were injected intraperitoneally (i.p.) with 1mg of anti-asialo GM1 in 200uL of sterile 1x PBS (Wako Chemicals USA, Richmond, Virginia) antibody everyday six days prior to the first immunization (days -6 to day 0)\(^{128,257}\). To maintain decreased levels of NK cells after the first immunization (day 0), 1mg of anti-asialo GM1 antibody was administered every other day from day 1 until day 21 or sacrifice. Control mice received 1mg of rabbit IgG in 200uL of sterile PBS or 200uL of PBS alone (Sigma Aldrich, Saint Louis, Missouri) by the same schedule.

Isolation of primary adult mouse cardiac fibroblasts

Hearts dissected from 6-8 week old naïve BALB/c mice were perfused through the aorta
with warmed 37°C calcium-free buffer followed by collagenase type II (Worthington Biochemical, Lakewood, New Jersey) for 15 minutes. Tissue was dissolved into a single cell suspension and filtered through a 70uM mesh. Cells were seeded onto polystyrene plates at 37C and non-adherent cells washed off after 1 hour. Cells were either collected immediately in Trizol reagent (Invitrogen, Carlsbad, California) for *ex vivo* experiments or passaged twice before *in vitro* use in complete DMEM with 20% FBS (Hyclone Laboratories, Logan, Utah), 1x penicillin/streptomycin, 25mM HEPES, 1x Anti-Anti, and 1x non-essential amino acids. In killing experiments, fibroblasts were treated with 1uM of angiotensin II in complete DMEM for 1 hour. Cells were then washed prior to the next step of experiment.

Isolation of primary NK cells

NK cells were negatively isolated from naïve or polyI:C-treated (1mg for 24 hours) WT or Rag1^{−/−} BALB/c spleens by manual magnetic cell sorting using the Mouse NK Isolation Kit II (Miltenyi Biotech, Bergisch Gladbach, Germany) and cultured for 24 hours with IL12 (10ng/mL) and IL15 (5ng/mL).

mRNA

For qPCR, cells or tissues were homogenized in TRIzol reagent (Invitrogen, Carlsbad, California) and chloroform extracted. Samples were DNAse treated and cDNA libraries made using iScript Reverse Transcriptase Supermix (BioRad, Hercules, California). mRNA was amplified using Sybrgreen (Applied Biosystems, Foster City, California) and all values were calculated against HPRT mRNA. Values were controlled against isotype
control groups and shown as a function of fold induction using the formula $2^{\Delta \Delta CT}$.

ELISA

Samples were run using tissue homogenates in 1x PBS or cell culture supernatant using enzyme-linked immunosorbent assays (ELISA) kits for CCL11 (RND Biosystems, Minneapolis, Minnesota) or a multiplex LINCO kit (Millipore, Jaffery, New Hampshire).

Statistics

Multiple group comparisons were performed by ordinary one-way ANOVA, followed by the Tukey-Kramer post-test (if parametric), or Kruskal-Wallis, followed by Dunn’s post-test (if non-parametric) (Graphpad Prism, San Diego, California). All statistics of 2 groups were performed by student’s t-test. P-values less than 0.050 were considered statistically significant.
CHAPTER III: NK CELLS ARE PROTECTIVE IN EAM
INTRODUCTION TO NK CELLS IN MYOCARDITIS

Biology of Natural Killer Cells

Natural killer (NK) cells comprise part of the Type 1 compartment of the innate lymphoid cell (ILC) family. Other ILCs include Th2-associated Type 2 ILCs and the Rorγt+ ILCs. ILCs are morphologically lymphocytic in nature, but lack the somatic rearrangement of antigen receptors found in the more classical T-cells and B-cells of the adaptive immune system. ILCs are responsive to multiple immune signals, are required for defense against pathogens, and are necessary for the formation of lymphoid organs, for repair to damaged tissue, and in tissue homeostasis.

NK cells contain pre-formed cytotoxic granules that are released upon specific activation signals that do not require previous sensitization and were originally classified as innate cytotoxic effector lymphocytes due to their stochastically expressed activation and inhibitory receptors and lack of memory formation. Since then, they have been recognized for their ability to modulate the immune system well-beyond the innate response, but they are still the first line of defense against many intracellular pathogens. The absence of NK cells results in increased viral titer and dissemination in multiple animal models.

NK cells classically recognize virally infected or tumor cells by their abnormal presentation of MHCI. MHCI on healthy cells results in the ligation of an inhibition receptor on the surface of NK cells, preventing the release of perforin and granzyme. However, NK cells have hundreds of invariant receptors that are stochastically expressed on each cell’s surface during development that recognize a wide variety of self and foreign antigens. Certain viral proteins, such as influenza hemagglutinin (HA) and
Sendai HA-neuraminidase (HN), directly ligate NK activation receptors NKp46 and NKp44, respectively23.

Mouse and human NK cells are believed to have arisen through convergent evolution12. While many of the receptors expressed on murine and human NK cells recognize the same antigens and ligands, they have minimal sequence homologies100,101. Therefore, functional comparisons between mouse and human NK receptors are difficult, though better comparisons can be made in terms of cytokine release and cytotoxic ability12,96.

Development of Murine NK cells

NK cells and CD8+ T cells share similar development characteristics26. Both arise from the bone-marrow sourced common lymphoid progenitor (CLP) and require signaling through the common-γ chain for survival and homeostasis26. Unlike CD8+ T cells, however, NK cells do not require trafficking to the thymus for survival and activation. And while most NK cells arise and mature in the bone marrow, certain rare subsets of NK cells have been shown to finish maturing in the liver32,34.

Unlike the established development of T-cells in the acquisition and loss of CD4 and CD8 markers during positive and negative selection in the thymus, NK development is characterized by the acquisition of arbitrary surface markers and functional ability as there has been no consensus reached yet on what the distinct maturation stages are (Figure 3). The earliest NK progenitors are non-stromal bone marrow cells known as pre-NK progenitors (pre-NKP) that express surface makers CD117 and CD244, and the
transcription factor Id226,34,96,102.

From this stage, the cells acquire CD122, the \(\beta \)-receptor subunit of both IL2 and IL15, and CD132, the common-\(\gamma \) chain. IL15 is required for the development and maturation of fully functional NK cells35,38. At this time, it is unknown what signals control the shift from pre-NKPs to these NKPs, though transcription factors EOMES and T-bet are required103. NKPs are defined as cells that express CD122 and CD132, but lack the functional capacities of mature NK cells and do not express other lineage markers such as CD3, CD19, and CD14. These cells are considered NK-committed and do not develop into other cell types upon \textit{in vitro} stimulation52,104.

NKPs undergo the maturation process into immature NK cells (iNK) upon stimulation with IL15, a process that can be amplified with the addition of other CD122 and CD132 ligands IL3, IL7, c-kit ligand (KL), and flt-3 ligand (FL). The latter cytokines are not required for NK maturation, but are actively expressed by bone marrow stromal cells62,103. iNK cells express high levels of CXCR4, a receptor for the highly expressed stromal-factor 1 in the bone marrow, and thus are retained until maturation65. They also begin to express other NK-associated markers such as NKp46, NK1.1 (in C57B/6 mice), CD94, and CD2726.

The exact mechanisms of NK maturation have not yet be well-delineated, though licensing of these cells through the ligation of MHCI with NK inhibitory receptors such as the Ly49 and KIR families is required105. Without MHCI contact, immature NK cells remain anergic and nonfunctional, explaining why MHCI-deficient mice do not undergo massive inflammation yet have normal numbers of NK cells105,106.

Mature NK cells acquire the expression of DX5 and CD11b, along with various
organ-specific chemokine receptors that may help egress from the bone marrow to specific sites in the body. These mature NK cells present with fluid organ-specific phenotypes through differential expression of chemokine receptors, cytokine secretions, and inherent cytotoxic abilities107,108. Transfer of NK cells into another organ results in the conversion into the local NK phenotype109.

Mature NK cells also acquire their canonical cytotoxicity functions, with preformed vesicles containing granzyme-B and perforin and can express cytotoxicity mediators Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL). Depending on the activation signals received, mature NK cells may also secrete various cytokines and inflammatory mediators, the most well-known by type I interferons, tumor necrosis factor alpha (TNF\textgreek{a}), IFN\textgreek{y}, and IL13.

Involvement of Natural Killer Cells in Autoimmunity

NK cells have been found to accumulate in specific inflammatory sites in autoimmune diseases – in the joints of rheumatoid arthritis (RA) patients, in the skin lesions of psoriasis, and in the brain lesions of multiple sclerosis110,111. Recently diagnosed type I diabetes patients were found to have NK cells localized around their pancreatic islets, though in post-mortem studies these pancreatic-infiltrating NK cells were not found. Similarly, RA patient joints contained higher proportions of activated CD56bright and IFN\textgreek{y} production compared to periphery NK cells in the same individuals111,112. When isolated and co-cultured with patient monocytes, these activated NK cells were able to induce differentiation of these monocytes into dendritic cells,
signifying an active role in the immune environment113. Furthermore, individuals with NK-lymphoproliferative disease of granular lymphocytes, a genetic condition resulting in the chronic accumulation of circulating NK cells, have increased risk of developing autoimmune manifestations114,115.

This data contradicts with the observation that patients with RA, Sjogren’s syndrome, and SLE have decreased circulating NK cell numbers and cytotoxicity potential112,116,117. NK cells isolated from the periphery of RA patients failed to induce apoptosis in MHCI- deficient K562 cells compared to NK cells from the periphery of healthy controls \textit{in vitro}. Additionally, MS patients in remission had higher proportions of activated NK cells in their periphery, as defined by increased Fas expression and Th2 cytokine secretions, than patients with active disease118. Altogether, it is not clear whether autoimmune diseases are exacerbated by the deficiency or excesses of NK cells, making animal studies necessary.

However, studies in animal models have also resulted in a plethora of conflicting data. Depending on the strain of mouse and method of NK manipulation, wildly different disease outcomes can be observed. This is perhaps most evident in the best known of autoimmune disease models – experimental autoimmune encephalomyelitis (EAE).

EAE is a model of multiple sclerosis and can be induced by immunization with myelin oligodendrocyte-glycoprotein (MOG), myelin basic protein (MBP), etc119. Depletion of NK cells from C57B/6 mice in whole protein MOG-induced EAE by NK1.1 antibodies resulted in aggravation of disease and increased Th1 infiltration into the CNS. Furthermore, transfer of NK cells into mice undergoing EAE reduced disease severity120. However, other studies in IL18 deficient mice noted that IFN\(\gamma\)-producing NK cells were
required for the progression of disease and that depletion of NK cells from MOG-peptide induced EAE using NK1.1 or anti-asialo GM1 depressed disease117,121.

Similar contradictions have been found in autoimmune animal models of insulin-independent diabetes-mellitus, colitis, and collagen-induced arthritis110,111,113. Diabetes can be prevented in non-obese diabetic (NOD) mice by subcutaneous administration of CFA, which induced NK trafficking and secretion of IFN\textgreek{g}. Depletion of NK cells rendered CFA administration inconsequential in protection against disease development122. However, in two other models of diabetes, BDC2.5/NOD and BDC2.5/B687, associations were found between NK cell numbers in the pancreas and levels of insulitis, and depletion of NK cells limited disease severity123,124.

In studies of NK cells both clinically and in animal models, some contradictory results could be attributed to difficulties in separating the NK and natural killer T-cell (NKT) populations. NKT cells share many of the same functions and mechanisms of NK cells, with the addition of a somatically rearranged T-cell receptor (TCR)125,126. NK1.1 antibody, a widely used method for NK depletion in C57Bl/6 mice, also depletes NKT populations126. Anti-asialo GM-1, on the other hand, used in BALB/c mice models, leaves the NKT component untouched127,128.

NK cells are distinct controllers of disease and dysregulation in their biology can dramatically shift clinical outcomes. Furthermore, the mechanisms by which NK cells alter disease are not limited to cytotoxicity. Cytokine release resulting in alteration of Th subtypes, direct contact-mediated lysis of auto-aggressive T cells, and accelerated maturation of monocytes and dendritic cells are all ways by which NK cells modulate the innate and adaptive immune system. Therefore, NK cells may in either protective or
pathogenic in progression of autoimmune disease. The lack of a consensus phenotype across autoimmune features may indicate that the role of NK cells may largely hinge on the target organ involved, as NK cells are phenotypically very diverse and are greatly influenced by their local microenvironment.

Role of Natural Killer Cells in Myocarditis

Similar to other autoimmune clinical studies, both idiopathic and viral myocarditis patients have severely decreased levels of natural killer (NK) cells and non-MHC restricted toxicity, pointing towards defects in both frequency and function129,130. The same was also found in DCM patients, though whether these DCM patients were secondary as a result of primary myocarditis is not stated131. Perforin-caused pores on the surface of virally-infected myocytes have been found in both clinical myocarditis patients and in animal viral myocarditis models132. In contradiction, heart biopsies of 18 early myocarditis patients did not reveal any NK cell infiltration, though it is unclear whether this is due to the sampling limitations133.

NK cells play an essential role in the defense against acute viral pathogens associated with clinical myocarditis. We and another groups have reported NK cells as protective against both CV3 and MCMV-induced myocarditis, though it must be said that these studies depleted both NK and NKT populations simultaneously85,134. The direct mediators of viral recognition are unknown in CBV and MCMV, though ligation of activating receptor Ly49H by the viral glycoprotein m157 and destabilization of inhibitory receptor Ly49C by abnormal MHCI expression is necessary in limiting
NK1.1 antibody treatment in normally chronic myocarditis-resistant strains C57BL/6 and BALB.B6-\textit{Cmv}^{1r} mice, which express NK1.1 on their NK cells, resulted in disease progression mimicking the natural progression of susceptible BALB/c MCMV- and CBV-induced viral myocarditis85. This indicates that NK cells play a large role in the determination of strain-dependent resistance to experimental myocarditis. It is unknown if NK cells act solely by limiting viral replication in myocarditis, reducing the autoimmune response, or both137,138

If NK cells control both viral load and inflammation in myocarditis, they would be an excellent candidate for targeted biologic therapy. Patients would no longer have to be stratified by the presence of virus in the heart and autoantibodies in the serum in order to determine their course of treatment as NK cells would be able to target both mechanisms, viral and autoimmune, simultaneously. In essence, NK cells or NK-derived products concurrently could serve as an anti-viral and an immunosuppressant.
RATIONALE

We undertook the research in this dissertation in order to determine if natural killer (NK) cells or their products could modulate the pathogenesis of myocarditis in the absence of virus. While the protective role of NK cells in the advent of CBV or MCMV-induced myocarditis was largely attributed to reduction of viral titer and prevention of inflammatory cascades, it is possible the NK cells may have limited the inflammation in a virus-independent manner85,93,139. EAM is a largely Th-driven disease and NK cells have been shown to affect polarization of Th subsets through secretion of IFNγ and by killing of activated antigen-specific T cells. Both of those actions would be protective in EAM, as IFNγ/- mice had significantly worse disease and that CD4 myosin-specific T cells are the driver of inflammation94,140,141. Therefore, we hypothesized the NK cells would be protective in EAM. Furthermore, given the ability of NK cells to control non-pathogenic models of liver fibrosis through the killing of activated fibroblasts, we expected that NK cells would limit collagen deposition in the heart121,123,124.
RESULTS

NK cells accumulate in the heart during EAM

To examine the kinetics of NK cell accumulation during cardiac inflammation, we induced EAM in male wild type (WT) BALB/c mice. Levels of NK cells in perfused hearts at day 21 of EAM by flow cytometry on days 0, 14, and 21 were assessed (Figure 4A). The numbers of CD5^−DX5^+NKp46^+ NK cells significantly increased from day 0 to days 14 and 21 during EAM in absolute counts, however the proportion of NK cells out of CD45^+ cells in the heart was stable (Figure 4B and 4C). Thus, NK cell comprised a distinct population in the heart that actively accumulated during EAM.

Cardiac NK cells secrete IFNγ and cytotoxic mediators

To determine NK cell phenotypes in the heart, we profiled cytokine and cytotoxicity mediators NK cells by flow cytometry at the peak of inflammation on day 21 of EAM and compared them against periphery NK cells from the spleen. There were 6-fold more cardiac NK cells secreting IFNγ compared to splenic NK cells (Figure 5A). The two populations had equivalent IL13 expression (Figure 5B) and neither expressed IL5 (data not shown). Compared to spleen NK cells, significantly greater proportions of cardiac NK cells expressed perforin and were positive for LAMP-1, a correlate for granzyme B secretion (Figure 5C and 5D). Cardiac NK cells had increased IFNγ and cytotoxicity potential when compared against peripheral NK cells at the same time.
Cardiac NK cells upregulate certain activation markers

We also assessed the expression of various activation and inhibitory surface markers on cardiac NK cells compared to peripheral splenic NK cells to determine if they had a distinct phenotype. Cardiac NK cells had upregulated levels of the activation markers CD27, TRAIL, and CD69 (Figure 6A, 6B, and 6C) with decreased levels of NKG2D (Figure 6D). Cardiac NK cells also upregulated levels of Ly49A/D and Ly49H (Figure 6E and 6F). Cardiac NK cells can be differentiated from peripheral NK cells by their surface marker profiles.

ASGM-1 treatment in naïve animals selectively depletes NK cells

To determine if NK cells could be depleted using anti-asialogangloside GM-1 (ASGM-1) polyclonal antibody treatment and how this treated affected other cellular populations in naïve BALB/c animals in vivo, mice were injected for 3 days with 1mg of ASGM-1 i.p. Mice were sacrificed at day 4 and lungs, hearts, livers, spleens, and blood were collected. Cell populations were measured by flow cytometry. ASGM-1 antibody treatment depleted CD3⁻DX5⁺NKp46⁺ NK, but did not affect CD3⁺DX5⁺NKp46⁺ NKT cells or Ly6G⁺SiglecF⁺ eosinophils (Figure 7A – 7C) in naïve animals.

ASGM-1 depletes NK, but not NKT cells during EAM

To determine whether NK cells could be depleted using ASGM1 throughout EAM, NK cells were depleted in vivo using 1mg of polyclonal antibody injected i.p. from day -6 to day 21 of EAM as described in the methods (Figure 8A). The ASGM-1 antibody treatment led to significant reductions in the number and proportion of CD3⁻
DX5⁺NKp46⁺ NK cells (Figure 8B) in the spleen and heart during EAM. This treatment schedule did not alter the frequency of the CD3⁺DX5⁺ NKT cell population. Therefore, ASGM-1 treatment, unlike NK1.1 antibody treatment in C57BL/6 mice, is specific for NK cells.

NK cells limit cardiac inflammation during EAM

We explored whether NK cells played a role in the progression of EAM by depleting NK cells throughout disease and sacrificing the animals at day 21 in order to examine levels of cardiac inflammation. ASGM-1 treatment resulted in significantly more severe myocarditis on day 21 as assessed by histology (Figure 9A). This was mirrored by increased CD45⁺ infiltration in the heart as measured by flow cytometry (Figure 9B). The more severe disease in NK-depleted animals was also accompanied by increased levels of circulating anti-MyHCA614-629-specific IgG antibodies (Figure 9C).

ASGM-1 treated animals have increased fibrosis at day 21 of EAM

We observed accelerated cardiac fibrosis on day 21 in NK-depleted animals using Masson’s Trichrome staining (Figure 10A). In order to assess fibrosis quantitatively, we processed all images of stained heart slides through ImageJ to enumerate the percentage of collagen-positive (blue) pixels versus non-fibrotic (red) pixels as described in the methods section. NK-depleted animals had increased levels of collagen deposition (Figure 10A), indicating that NK cells may protect against fibrosis.

We also quantified the active production of collagen in NK-depleted mice at day 21 of EAM, as this was early in the disease process and most likely, cessation of collagen
production often seen in late stages of DCMI had not occurred. Indeed, we found that NK depletion lead to increased production of collagen as seen by mRNA levels of collagen 1 and collagen 3 in the heart (Figure 11A – 11C).

ASGM-1 treatment during EAM mildly decreases cardiac function

To determine whether this increased collagen deposition in the heart had any functional consequences, we performed echocardiography on isotype control and ASGM-1 treated animals at day 21 of disease. NK-depletion worsened heart function as shown by significantly decreased cardiac ejection fraction (Figure 12A), which was attributed to changes in LV end systolic, but not diastolic, diameter (Figure 12B and 12C). This change was echoed in levels of fractional shortening (Figure 12D). No changes were seen in LV intraventricular septal thickness (Figure 12E). The deposition of collagen may have limited cardiac function by preventing heart contractility.

Activated fibroblasts are not targeted for cytotoxic killing by NK cells in vitro

We explored whether NK cells mediated protection against cardiac fibrosis by killing activated resident fibroblasts as reported in models of liver fibrosis123,124. We isolated adult mouse cardiac fibroblasts (CFs) from naïve BALB/c mice as described in the methods and passaged them twice to yield a pure population of CFs with positive staining for alpha smooth muscle actin (α-SMA), expression of fibroblast-associated markers fibroblast growth factor (FGF) and vimentin, and undetectable levels of myeloid or lymphocyte contamination as measured by CD11b and CD3 (Figure 13A – 13G).

Splenic NK cells were magnetically isolated in either naïve or activated states, the
latter being induced by polyI:C (1mg) treatment administered i.p. 24 hours prior as described in the methods. Activated NK cells had increased expression of NKG2D and CD69 compared to naïve cells (Figure 14A). CFs were first activated with angiotensin II (AngII) at 1uM for 1 hour, illustrated by increased vimentin mRNA (Figure 14B). CFs were then washed and NK cells were co-cultured with CFs for 48 hours in a 1:1 ratio. CFs were then stained green with calcein AM (live) and red with ethidium homodimer (dead) and examined using immunofluorescence microscopy. While NK cells induced cell death in CFs, no difference was seen between untreated and activated CFs (Figure 14C – 14E), indicating that NK-mediated killing of activated fibroblasts during EAM was not a likely mechanism of protection.
NK development is broken up to distinct stages based on surface marker expression, functional ability, and transcription factor expression. Common lymphoid progenitors in the bone marrow develop into NK-progenitors (NKP) though transcription factors EOMES and T-bet are required. NKP are committed and do not develop into other cell types. From this stage, NKP cells become immature NK cells (iNK) upon stimulation with IL15 under the control of T-bet and EOMES107,143,144.

FIGURES AND TABLES

Figure 3. Maturation stages and associated transcription factors of murine NK cells
Figure 4. NK cells accumulate in the heart during EAM

A) Representative gating strategy used for CD3⁻DX5⁺NKp46⁺ NK cells in the heart. B) Absolute numbers (ANOVA \(p=0.002 \)) and C) percentages (n.s.) of CD3⁻DX5⁺NKp46⁺ NK cells infiltrating the heart during days 0, 14, and 21 of EAM by flow cytometry. Percentages based on total CD45⁺ cells in the heart. Significance by ordinary one-way ANOVA with post-testing by Tukey’s multiple comparisons test.
To determine NK physiology, cardiac and splenic CD3^DX5^NKp46^ NK cells were stained at day 21 of EAM. Percentage of A) IFNγ (p<0.001), B) IL13 (n.s.), and C) perforin (p<0.001) positive cells were based on positive intracellular antibody staining after 4-6 hours of PMA/ionomycin stimulation and Golgistop in vitro. D) Percentage of LAMP1^, a marker for granzyme-B release, staining (p<0.001).
Figure 6. Cardiac NK cells upregulate certain activation markers

To determine the cell surface phenotype of cardiac and splenic NK cells at day 21 of EAM, NK cells were examined by flow cytometry. Percentage of NK cells positive for activation-associated markers A) CD27, B) TRAIL, C) CD69, and D) NKG2D. Percentage of NK cells positive for inhibitory receptors E) Ly49AD and F) Ly49G. Significance for A-F calculated by unpaired t-test.
Figure 7. ASGM-1 treatment in naïve animals selectively depletes NK cells

Percentage of A) CD3^+DX5^+NKp46^+ NK cells, B) CD3^+DX5^+NKp46^+ NKT cells (all n.s.), and C) Ly6G^loSiglecF^+ eosinophils (all n.s.) in the liver, heart, lung, and spleen of naïve WT mice after three days of rabbit IgG or ASGM-1 treatment of 1mg of antibody per day. All statistics calculated by unpaired t-tests.
Figure 8. ASGM-1 depletes NK, but not NKT cells during EAM

A) Schematic of rabbit IgG and ASGM-1 antibody treatment schedule throughout EAM. Percentage of B) CD3⁺DX5⁺NKp46⁺ NK cells in the heart (p<0.001) and spleen (p=0.002) and C) CD3⁺DX5⁺ NKT cells out of CD45⁺ cells (all n.s.) of rabbit IgG and ASGM-1 mAb treated WT mice at day 21 of EAM as assessed by flow cytometry

A) Schematic of rabbit IgG and ASGM-1 antibody treatment schedule throughout EAM. Percentage of B) CD3⁺DX5⁺NKp46⁺ NK cells in the heart (p<0.001) and spleen (p=0.002) and C) CD3⁺DX5⁺ NKT cells out of CD45⁺ cells (all n.s.) of rabbit IgG and ASGM-1 mAb treated WT mice at day 21 of EAM as assessed by flow cytometry.
Figure 9. NK cells limit cardiac inflammation during EAM

A) Histology scores and representative histology of H&E stained cardiac sections from PBS, rabbit IgG, and ASGM-1 antibody treated animals at day 21 of EAM (ANOVA p<0.001). B) Total CD45$^+$ cells infiltrating the hearts of isotype control and ASGM-1 treated animals at day 21 of EAM as assessed by flow cytometry (p<0.001). C) Levels of anti-MyHC$614-629$ total IgG antibodies in the serum of PBS, isotype control, and ASGM-1 treated animals at day 21 of EAM (ANOVA p<0.001).
Figure 10. ASGM-1 treated animals have increased fibrosis at day 21 of EAM

A) Representative histology of Masson's Trichrome stained cardiac sections from rabbit IgG, and ASGM-1 antibody treated animals at day 21 of EAM. B) Enumeration of fibrosis from Masson’s Trichrome slides by calculation of red versus blue pixels on ImageJ software (p=0.042). Statistics calculated by unpaired t-test.
Figure 11. NK cells limit collagen deposition during EAM

Collagen production as measured using qPCR for A) collagen 1a1 ($p=0.04$), B) collagen 1a2 ($p=0.03$), and C) collagen 3a1 ($p=0.02$) for mRNA in hearts of rabbit IgG and ASGM-1 treated animals at day 21 of EAM. Values calculated as a function of HPRT levels and compared against rabbit IgG. Statistics calculated by unpaired t-test.
Figure 12. ASGM-1 treatment during EAM mildly decreases cardiac function

Cardiac phenotypes of PBS, isotype control, and ASGM-1 treated animals at day 21 of EAM. A) Ejection fraction \((p=0.026)\) as calculated as from fractional shortening and left ventricular diastole and systole. B) Left ventricular end diastolic dimension (LVEDd) \((n.s.)\) and C) left ventricular end systolic dimension (LVEDs) \(p=0.03\). D) Fractional shortening \((p=0.04)\) and E) intraventricular septum diameter (IVS) \((n.s.)\) as measured by echocardiography. Statistics by ordinary one-way ANOVA with post-testing by Tukey’s multiple comparisons test.
Figure 13. Cardiac fibroblasts can be isolated from adult mice

A) Bright-field and B) immunofluorescence images of adult mouse cardiac fibroblasts (CFs) isolated and passaged twice, fixed with 4% paraformaldehyde and stained with 1:1000 anti-alpha smooth muscle primary rabbit antibody or rabbit IgG isotype antibody and 1:200 anti-rabbit rat FITC-conjugated antibody. Levels of C) fibroblast growth factor and D) vimentin mRNA as measured by qPCR relative to HPRT in untreated CFs and naïve BALB/c whole heart homogenates. Levels of D) vimentin, E) CD11b, and F) CD3 mRNA as measured by qPCR relative to HPRT in untreated CFs and bone marrow and M-CSF derived monocytes.
Figure 14. Activated fibroblasts are not targeted for cytotoxic killing by NK cells in vitro

A) Expression of NKG2D and CD69 in splenic NK cells isolated from naïve or polyI:C treated mice after 24 hours. B) Levels of vimentin mRNA measured by qPCR in isolated CFs after no treatment or angiotensin II (AngII) treatment (1uM) for 1 hour as controlled by HPRT (p=0.02). C) Representative images of live and dead no treatment and AngII treated CFs after 48 hours of 1:1 co-culture with naïve or polyI:C activated NK cells. Percentage of live CFs after 48 hours of co-culture with D) naïve and D) activated NK cells as determined by red versus green positive cells counted manually on ImageJ software. Statistics for B calculated by unpaired t-test and C and D by one way ANOVA with Tukey’s post-testing.
DISCUSSION

Given the role of NK cells in the mediation of viral myocarditis and their newly understood ability to mediate the adaptive immune system, we hypothesized that NK cells may play a role in the pathogenesis of EAM. Indeed, we provide the first examination of inflammatory cardiac NK cells and show that they represent a distinct and activated population compared to NK cells found in the spleen. Their accumulation in the heart suggests that they are recruited during EAM, though the mechanism of recruitment is unknown. It is postulated that their recruitment and trafficking is dependent on the target cell whether tumor, virally-infected, or MHCI-mismatched cells and the organ in which these cells reside. We did not explore the mechanism of NK trafficking in cardiac inflammation in this dissertation, and CFA may induce trafficking of NK cells to lymphoid nodes through the triggering of L-selection on NK cells. Any studies would be better served in T-cell adoptive transfer-induced EAM to separate out the confounding effects of CFA.

Cardiac NK cells upregulated levels of surface markers Ly49A/D and Ly49H, consistent with a mature and activated phenotype. Immature NK cells found in the bone marrow are largely Ly49 negative. A larger proportion of NK cells in the heart expressed CD27, expressed on a mature and cytotoxic NK subset thought to produce high levels of IFNγ, though in our model no difference was found between IFNγ production in CD27+ and CD27- subsets in the heart (data not shown). TRAIL, linked to the ability of NK cells to kill activated and virus-infected T cells, was also increased in the heart. Upregulation of TRAIL-death receptor (TRAIL-R2) on hepatitis virus B (HBV)-specific CD8+ T cells was required for NK mediated killing. CD69, along with
increased IFNγ production, is one of few phenotypic markers that can distinguish activated pancreatic NK cells from diabetic NOD mice compared to pancreatic NK cells from diabetes-free strains153.

NKG2D, surprisingly, was the only significantly downregulated marker queried on cardiac NK cells. NKG2D is a potent activation receptor also expressed on NKT, and δγ T-cells and recognizes a subset of stress-induced MHCI-like molecules104. Dysregulation of NKG2D has been implicated in the breakdown of self-tolerance in multiple autoimmunity models154,155. Prevention of diabetes in NOD mice is possible by administrating anti-NKG2D antibodies, preventing NK cells from recognizing the ligand Rae1 on pancreatic islet cells106. Expression of NKG2D on CD4+ cells is correlated with disease severity in Crohn’s patients and is enriched in the synovial fluid in RA. In all these studies, total NKG2D was targeted109,120. Therefore, the functional role of NKG2D on NK cells specifically has not been determined in autoimmune models, and in our model of EAM, the downregulation of their expression indicates it may play a minimal role.

Besides their cytotoxicity potential, NK cells modulate the immune environment by the secretion of cytokines. NK cells may be functionally polarized by the same cytokine profiles that alter T-cell phenotypes156,157. IFNγ is the prototypical cytokine produced by activated NK cells. IFNγ is induced largely by IL2, though secretion can also be triggered by IL1, IL12, IL18, and TNFα158. However, NK cells can be induced to express Th2 type cytokines IL5 and IL13 through IL4 and also by IL12 in IFNγ-deficient mice159,160. NK cells in the heart during the peak of EAM produced IFNγ as their principal cytokine.
In this dissertation, we depleted NK cells by the administration of ASGM-1 antibody which left the NKT population intact in both naïve and inflamed animals. Thus, unlike many studies targeting NK1.1 expressed on both NK and NKT cells, we do not attribute alterations in phenotype to changes in the NKT compartment, though they also have been shown to have immune-modulatory roles in autoimmunity and inflammation. ASGM-1 treatment did, however, affect basophil populations (see Chapter 3). Surprisingly, the multiple injections of polyclonal rabbit IgG, as evidenced by the rabbit isotype controls, did not have any effects on disease severity, whether in positive manner by mimicking IVIG treatment as seen in rat isotype control antibodies or in a negative manner through the development of anti-rabbit IgG antibody complexes.

The depletion of NK cells led to increased inflammation and collagen deposition in the heart during the inflammatory stages of EAM. As we did not examine the animals past day 21 of disease, the effects of NK cells on DCMI are unknown. ASGM-1 treated animals had decreased LV ejection fractions compared to control animals ultimately due to alterations in LV end systolic dimensions (LVEDs) with no changes in the LV end diastolic dimensions (LVEDd) seen of a dilated phenotype118,122. Furthermore, while there were significantly drops in the cardiac output, none of the animals had the drastic reduction see in mouse models of heart failure161-163. We attribute the changes in systolic dimensions to the increased inflammation and collagen levels limiting the ability of the heart to contract. It is certainly possible that NK cells play a role in the development of DCMI given the increased collagen seen this early timepoint, but assessment of the mice at day 42 or later after the peak of inflammation subsides would be necessary.
While the cardiac NK cells profiled had increased expression of perforin and granzyme-B, their absence in the heart led to increased collagen deposition in the heart during myocarditis. Studies have indicated that NK cells can protect against the development of liver fibrosis by the specific targeting of activated hepatic stellate cells (HSCs) in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), carbon tetrachloride and HCV models121,123,124. Therefore, we hypothesized that NK cells limited fibroblasts through the killing of activated fibroblasts before collagen could be deposited. However, in series of co-culture experiments, we did not find that the co-culture of NK cells with activated fibroblasts resulted in any increase in death when compared to untreated fibroblasts.

While it would be ideal to have used activated NK cells directly from the heart of animals undergoing EAM, this is not feasible given the relatively small number of NK cells found in the heart during disease compared to the numbers required for an in vitro culture. We instead used polyI:C activated NK cells, known to increase their cytotoxicity potential, as an alternative99. Both naïve and activated cells, though the latter population had upregulated expression of activation markers NKG2D and CD69, they also did not selectively target activated fibroblasts. Also, given the organ-specific properties of NK cells, it is likely that the mechanism of protection against fibrosis in the liver, associated with NKG2D expression, may widely differ from inflammatory cardiac NK cells107,108.
CHAPTER IV: EOSINOPHILS ARE REQUIRED FOR NK-MEDIATED PROTECTION OF EAM
INTRODUCTION TO THE INTERPLAY OF EOSINOPHILS AND NK CELLS IN EAM

Biology and Development of Eosinophils

Eosinophils are innate granulocytes that comprise 1-3% of circulating peripheral blood cells\(^\text{164}\). They are short-lived, with a lifespan of approximately 8 – 18 hours in the periphery. Upon migration into the tissue through diapedesis, eosinophils have a lifespan of 2-5 days depending on the inflammatory state of their microenvironment and up to 14 days \textit{in vitro}\(^\text{165}\). Most eosinophils will traffic to the digestive system, where they will line the lamina propria of the gastrointestinal tract under the control of eotaxin-1 (CCL11), though not eotaxin-2 (CCL24)\(^\text{166}\). Under steady stage conditions, eosinophils will also largely home to the mammary gland, thymus, and uterus, the latter being influenced of estrogen\(^\text{167}\).

Eosinophils develop in the bone marrow from common myeloid progenitor (CMP) cells derived from multi-potent hematopoietic stem cells (HSC). These CMP cells give rise to a myeloblast believed to be the common progenitor for both basophils and eosinophils. From there, development into an immature eosinophil is regulated by transcription factors PU.1, GATA-1, and C/EBP\(^\text{168}\). Mice lacking the GATA-1 promoter fail to develop mature eosinophils, though other cell lineages are unaffected\(^\text{169}\).

Maturation and trafficking from the bone marrow in the periphery is under the control of IL5, with additive effects from GM-CSF and IL3\(^\text{170,171}\). Intravenous injection of IL5 leads to high levels of peripheral eosinophils, a phenotype that is mirrored in multiple IL-5 transgenic models\(^\text{172,173}\). IL5-deficient mice have severely reduced numbers of eosinophils and limited response to allergic or asthmatic stimuli\(^\text{174}\).
Eosinophils are known for the tissue injury they can cause upon the release of their pre-formed granules of cationic and enzymatic proteins. Of these, major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil peroxidase (EPO), and eosinophil-derived neurotoxin (EDN) are the best characterized. Administration of purified MBP, EPO, and ECP to heart, brain, tumor, and epithelial tissue leads to cell damage and tissue death175-177. ECP has both cytotoxic effects by causing the formation of pores in target cells and non-cytotoxic effects in the suppression of T and B cells responses, degranulation of mast cells, and stimulation of mucus production in airway epithelium178. MBP induces mast cell and basophil degranulation while affecting smooth muscle contraction and nerve plasticity179,180.

Eosinophils can also secrete a number of cytokines such as IL2, IL4, IL13, and IL5, that can ultimately affect T-cell activation, differentiation, and proliferation181. They also can regulate Th1 differentiation through the release of indoleamine 2,3-dioxygenase (IDO), whose end-product, kyneurines (KYN), promotes the apoptosis of Th1 cells182. There have also been reports that eosinophils can serve as antigen-presenting cells (APCs) under certain disease conditions such as asthma183-185. Eosinophils have also been shown to be required for repair of muscle injury and in the development of certain adipose cells through the recruitment of progenitor populations186,187. Altogether, the mechanisms by which eosinophils modulate the immune system and local tissue environments, whether pathogenic or protective, can vary widely with each disease and should be determined on a case-by-case disease basis.

Eosinophils traffic to and infiltrate sites of injury and inflammation in response to a wide variety of signals. While IL5 appears to be the main controller of egress from the
bone marrow, the best known local positive chemotactic mediators include CCL11, CCL24, and CCL26 (human only), IL33, and prostaglandins168,170. Conversely, they are negatively regulated through chemokines CXCL9 and CXCL10, which are recognized through receptors CXCR9 and CCR3 188-190. Eosinophils pre-treated with CXCL9 and CXCL10 fail to respond to CCL11 and do not traffic to the lung when transferred into animals undergoing ovalbumin (OVA)-mediated models of asthma.

Eosinophils in asthma models have perhaps been best studied due to the close association between Th2 pathways and eosinophilic processes, though no single mediator of trafficking and accumulation has been determined. CCL11 and CCL24, traditionally upregulated by Th2-related cytokines IL4 and IL13, are major mechanisms of eosinophilic trafficking – eotaxin receptor (CCR3)-deficient mice display severely depressed levels of eosinophils in the lung and bronchial tubes in response to respiratory challenge of OVA following subcutaneous OVA-sensitization191. Only a limited reduction was seen, however, when CCR3-deficient mice were sensitized systemically192. Other studies have shown vital roles for various adhesion factors expressed on the surface of eosinophils in their entry into inflammatory sites – very late activation antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) expression on eosinophils is required for their infiltration during antigen-induced bronchial hypersensitivity193-195.

Interactions between eosinophils and their closely-related counterparts, mast cells and basophils, have also been major mechanisms of eosinophil regulation during disease. Certainly, all three are major components of most allergic inflammatory processes and express many of the same receptors and cytokines, such as IgG (FcγRII/CD32) and IgA (FcaRI/CD89) receptors and IL4, IL5, and IL13196. All also express the IgE
receptor FceR1, although eosinophils express this to lesser extent. Furthermore, eosinophil MBP can trigger degranulation of mast cells and basophils that may, in turn, result in the release of eosinophilic activation signals.

It has recently been shown that ILC2 cells residing in peripheral tissues are required for the maintenance of eosinophils131,132. These cells are responsible for the maintenance of serum IL5 responsible for the egress of eosinophils out of the bone marrow. IL33 is a potent stimulator of ILC2s, and treatment of naïve mice with IL33 induces pericarditis163. Stimulation of ILC2s in lung helminth infections results in the upregulation of both IL5 and IL13, inducing the expression of eotaxins and adhesion molecules on endothelial cells. This ultimately results in the onset of eosinophilia in the lung tissue132.

Hypereosinophilic syndrome and secondary presentations

Eosinophilia is defined as the abnormal enrichment of eosinophils in the periphery blood197. This can be divided into two clinical subtypes: mild eosinophilia at less than 1.5x109 cells per mL but higher than normal blood eosinophilic counts and marked eosinophilia at greater than 1.5x109 cells per mL. Eosinophilia is a characteristic secondary feature of multiple disorders and infections and often occurs in selected tissues where inflammation is occurring197. Tissue eosinophilia is characterized by the heavy presence of infiltrating eosinophils and, oftentimes, the deposition of eosinophilic granule proteins such as MBP198,199.

Allergic reactions make up 80\% of patients presenting with eosinophilia in the western hemisphere, with helminth infections comprising the majority of the remaining
20%200. In both these cases, eosinophilia is attributed to the increased in Th2 cells and subsequent secretion of eosinophilic chemotaxis-associated cytokines IL4, IL5, and IL13201,202. In a small minority of cases, the underlying cause of elevated eosinophils are unknown, resulting in a diagnosis of idiopathic eosinophilia.

Hypereosinophilic syndrome (HES), a subset of idiopathic eosinophilic pathologies, is characterized by an eosinophil-dominant infiltration where eosinophils counts are higher than 1500/mm3 in tissue and/or persistent eosinophilia of 1.5×10^9/L blood for more than six months203. HES may or may not be associated with specific organ damage and patients should first be examined to ensure that this eosinophilia is not secondary to parasitic infections, chronic eosinophilic leukemia (CEL), allergic reactions, or collagen vascular diseases (Table 5). CEL remains the most difficult to distinguish from HES due to significant overlap in clinical presentations, though the presence of \textit{FIP1L1-PDGFR\textalpha} mutations associated with CEL can help differentiate diseases204,205.

Clinical presentations of HES vary widely. A subset of patients may go on to develop significant tissue injury mediated by the release of eosinophilic granules containing EPO, ECN, MBP, and ECP206,207. This is frequently seen in the heart, lungs, and skin. However, eosinophilic injury may also target the nervous system and the digestive tract. It is unknown what triggers the release of these granules in some patients, but not others208. Animal models of HES are limited, though HES may be induced by transgenic expression of IL5 under the CD2 or CD3 promoter209,210.

The first line of therapeutic intervention for symptomatic HES is corticosteroids. In non-symptomatic patients, no therapy is required and patients are closely monitored for signs of tissue injury. The majority of patients respond to steroid treatment and may
be slowly weaned off as eosinophil levels decrease. If unresponsive to corticosteroids, the addition of interferon-alpha has proven beneficial206-208. The use of an anti-IL5 antibody known as mepolizumab as an alternative to corticosteroids has been met with limited success211.

Eosinophils in Autoimmunity

The composition of local infiltration in inflammatory disorders often determines the prognosis of the patient212,213. In the case of eosinophils, a strong correlation between cellular frequency and poor clinical outcomes are reported frequently in both asthma/allergy and autoimmune models214-216. Thus, clinical necrotic eosinophilic myocarditis is strongly associated with the most severe pathology among the multiple myocarditis subsets. This subset is not associated with a peripheral eosinophilic disorder, but can develop unexpectedly from yet-identifiable triggers. Patients typically develop severe cardiac eosinophilic infiltration, elevated cardiomyocyte death, and intraventricular thrombi213,217-219.

Necrotizing eosinophilic myocarditis is characterized by extensive cardiac eosinophilic infiltration, pronounced cardiomyocyte death, formation of intraventricular thrombi, and a case fatality rate of 50\%213,218-222. Similar correlations between eosinophil frequency in the infiltrate and poor clinical outcomes have been reported in other chronic inflammatory disease models, including asthma, inflammatory bowel disease (IBD), and experimental autoimmune encephalomyelitis (EAE)215,216,223.

Recent studies have demonstrated that infiltrating eosinophils significantly
increased disease severity in CBV-induced myocarditis when mice were injected with IL33. Administration of soluble ST2, an IL33 receptor decoy, prevented eosinophilia and significantly reduced viral myocarditis without altering viral burden163. Similarly, IFN\textgamma-/- IL17A-/- mice display massively inflamed hearts and up to 50% fatality by day 21 of EAM, a phenotype that is reversed in the absence of eosinophils by crossing these animals to dblGATA1 mice224. Furthermore, eosinophilic infiltration in clinical myocarditis is strongly associated with negative clinical outcomes, supporting our findings217-220.

Interplay of Eosinophils and Natural Killer Cells

NK cells are not major producers of eosinophilic mediators, with the exception of IL5. IL5, as a major mediator of eosinophil egress from the bone marrow into the peripheral blood, is a potent eosinophil chemoattractant and has been shown to be secreted by NK cells in asthma225,226.

Depletion of NK cells using NK1.1 and ASGM-1 antibodies decreased eosinophils in the bronchoalveolar lavage fluid (BAL) prior to challenge with OVA, this being attributed the lack of IL5 from NK cells227. Another study showed that in mice were challenged with OVA, treatment of mice with NK1.1 resulted in the increased of eosinophils in the BAL, but further dissection of this using CD1d1-deficient mice indicated this was due to effects from the NKT compartment226,228.

Recently, studies have shown that NK cells may directly induce apoptosis in eosinophils. Awad \textit{et al} showed that NK cells isolated from human healthy PBMCs induced the activation and apoptosis of eosinophils as measured by CD62L and CD69.
when co-cultured together in vitro. Apoptosis was initiated due to increases in reactive oxygen species (ROS) in eosinophils and cell death could be mitigated through the use of mitochondrial inhibitors rotenone and antimycin229.

Barnig et al demonstrated that NK cells from asthmatic patients were increased and more highly activated in the blood than those from healthy donors. NK cells isolated from asthmatic patients expressed increased levels of CD69, NKG2D, and ALX/FPR2, a receptor for lipoxin A\textsubscript{4} (LXA\textsubscript{4}). LXA\textsubscript{4} is elevated in the lungs of asthmatics and administration limits bronchoconstriction. Furthermore, LXA\textsubscript{4} decreased eosinophilic trafficking and also limits NK cytotoxicity. The addition of LXA\textsubscript{4} to co-cultures of NK cells and eosinophils isolated from the blood of both healthy and asthmatic donors limited the level of eosinophilic apoptosis230.
RATIONALE

In the previous chapter, we delineated the ability of NK cells to alter the phenotype of EAM through the limitation of cardiac inflammation and reduction of cardiac output due to increased infiltration and collagen deposition in the myocardium. We determined that cardiac NK cells have high cytotoxicity potential through increased perforin and granzyme-B and expressed largely IFNγ, with limited utility of the Th2-associated cytokines IL5 and IL13. However, we showed that despite cytotoxic potential and indicators from liver fibrosis models, NK cells did not directly kill cardiac fibroblasts in vitro.

In this chapter, we aim to explore the mechanisms by which NK cells control disease pathogenesis. Given the broad range of cell types that NK cells could potentially alter, we expected that depletion of NK cells might have a variety of effects on the cardiac infiltrate. We hypothesize that the depletion of NK cells would result in the expansion of CD4 T cells in response to immunization, specifically in the Th2 and Th17 components, given the IFNγ production from NK cells. Furthermore, this expansion in Th2 and Th17 cells would be the driver of pathogenesis through the modulation of monocyte populations, similar to other findings in our lab.36,140,231,232.
RESULTS

Eosinophils are increased in the absence of NK cells during EAM

To determine the mechanism of NK-mediated suppression of cardiac inflammation, we performed comprehensive flow cytometry to examine cardiac infiltrate changes during EAM following NK depletion. NK-depleted animals had increased SSChiCD45+ granulocytic cells (Figure 15A). We analyzed which granulocyte population was responsible for the escalation and found that SSChiLy6GloSiglecF+ eosinophils increased 2-fold on day 14 and 10-fold on day 21 in NK-depleted animals compared to isotype control animals (Figure 15B – 15C). No changes were seen in SSChiLy6Ghi neutrophils on day 14 and 21 (Figure 15D – 15E).

Eosinophils in the heart of ASGM-1 treated mice have an activated profile

We examined the phenotype of these infiltrating eosinophils to determine their maturation and activation status. MBP is largely post-transcriptionally regulated and is released into the tissue upon activation. Therefore, we stained paraffin-embedded cardiac tissue section with rat anti-MBP primary antibody (1:500) followed by donkey anti-rat IgG secondary antibody conjugated to Texas Red and counterstained samples with 4',6-diamidino-2-phenylindole (DAPI) to distinguish cell nuclei. ASGM-1 treated animals showed positive staining for MBP presence (Figure 16A). SiglecF and CD11b are markers of eosinophilic activation. In order to determine whether eosinophils in the heart at day 21 of EAM in NK-depleted animals represented an activated and deliberate subset compared to those in the periphery, we examined SiglecF and CD11b mean fluorescence
intensity (MFI) on cardiac and splenic Ly6G^{hi}SiglecF⁺ eosinophils and found that cardiac eosinophils had upregulated levels of SiglecF and CD11b (Figure 16B and 16C).

We also profiled the mRNA transcriptome of heart-infiltrating eosinophils at day 21 of EAM compared to spleen eosinophils. Consistent with an activated and mature phenotype, cardiac eosinophils downregulated mRNA levels of *epx* and *prg2* (Figure 17A and 17B). They also expressed more activation associated mediators IL1β, CCL11, and IL6, and showed no changes in TGFβ, IL4, IL13, CCL24, or IL10 (Figures 17C – 17J) by qPCR, normalized to levels of HPRT. In summary, eosinophils infiltrating the heart at day 21 of ASGM-1 treated mice represent a distinct and activated subset population compared to cells in the periphery.

NK depletion has no effect on mast cells or myeloid cells during EAM

The proportions of FceRIα⁺cKit⁺ mast cells remained unchanged in response to ASGM-1 treatment (Figure 18A). Along with this, levels of IL33 and ST2, known mast cell-derived mediators of eosinophilic accumulation, also remained unaltered (Figure 18B and 18C). However, basophil populations, consistent with published literature, were depleted in response to ASGM-1 treatment during EAM (Figure 18D). Therefore, although mast cells may play an undeniable role in many models of allergy, asthma, and autoimmunity, it is unlikely that mast cells play a major role in the modulation of disease pathogenesis or eosinophilic accumulation in response to NK depletion in this model of myocarditis.

Myeloid–derived populations generally make up the bulk of infiltrating cells in the heart during EAM and are major players in the modulation of disease. We profiled
total CD11b+ monocytes from isotype control and ASGM-1 treated mice with EAM and saw that there was no alterations in proportions of total monocytes (Figure 19A). Furthermore, we examined monocyte subsets based on Ly6C expression and found no changes in inflammatory Ly6C_{hi} or resident-type Ly6C_{lo} monocyte proportions (Figure 19B – 19C). We also looked at levels of CD11c⁺ dendritic cells, as these cells are major mediators of autoimmunity through the presentation of self-antigen to T cells, but no changes were found (Figure 19D). It is unlikely that the shifts in disease severity due to NK depletion are from alterations in the myeloid compartment.

NK depletion increases Th2 and Th17 proportions at later stages of EAM

EAM is a T-cell mediated disease that can potentially be influenced by antibody deposition so we examined proportion of infiltrating B cells and T cells at day 21 of EAM in ASGM-1 treated and isotype control mice. We saw no shifts in the proportions of total CD19⁺ B cells or CD3⁺ T cells (Figure 20A and 20B). We further examined CD4⁺ and CD8⁺ T cell compartments and noted that these were also unaltered by NK depletion (Figure 20C and 20D).

As EAM severity can be influenced by shifts in the polarization of CD4 populations, we examined how depletion of NK cells affected Th1, Th2, and Th17 populations on days 14 and 21 of EAM in WT heart by flow cytometry. No changes in IFNγ⁺ Th1 cells were found (Figure 21A). However, IL13⁺ Th2 and IL17A⁺ Th17 cells as a fraction of total CD3⁺CD4⁺ cells significantly increased at day 21 of EAM (Figure 21B and 21C). It should be noted that due to known difficulties with IL4 antibody staining, IL13 was used as a surrogate marker for Th2 polarization.
The finding of elevated Th2 and Th17 populations at day 21 of EAM was supported by examining cardiac mRNA expression of Th-associated cytokines on day 21 of EAM. qPCR data showed significant increases in Th2-associated $il5$ and Th17-associated $il6$ in the hearts of ASGM-1 antibody treated mice (Figure 22A and 22E). Interestingly, we observed decreased IL17A in contrast to increased Th17 CD4$^+$ cells (Figure 22C). This likely reflects the loss of NK-sourced IL17A. We found no changes in levels of $ifng$, $il10$, $il13$, and $il12b$ (comprising both IL23 and IL12) (Figure 22B – 22G). Thus, NK depletion increased Th2 and Th17 associated cytokines on day 21 of EAM.

Eosinophils are essential for increased myocarditis severity in the absence of NK cells

To establish if the greater EAM severity in NK-depleted animals depended on the influx of eosinophils in the heart, we depleted NK cells from eosinophil-deficient $\Delta dblGATA1$ mice.169 We used the same protocol as described previously for NK cell depletion and sacrificed the mice on day 21. Due to the lack of eosinophils in $\Delta dblGATA1$ mice, NK depletion had no effect on eosinophil numbers (Figure 23A) in contrast to the WT phenotype (Figure 23C and 23D). This lack of eosinophils resulted in comparable EAM levels between NK depleted and isotype $\Delta dblGATA1$ groups (Figure 23B). Depletion of NK cells from $\Delta dblGATA1$ mice had no effect on heart function and cardiac fibrosis compared to WT animals undergoing EAM (Figure 23C and 23D). Our results demonstrate from the first time that the absence of NK cells leads to more severe pathology through increased eosinophilic infiltration.
Th-dysregulation in the absence of NK cells is independent of disease severity

To determine if the alterations in disease severity from eosinophils in ASGM-1 treated mice were primarily due to changes in Th compartments and their associated cytokines, we profiled the whole heart tissue homogenates of ΔdblGATA1 for their expression of IFNγ, IL4, IL6, and IL17A mRNA at day 21 of EAM after isotype control or ASGM-1 treatment as surrogate indicators for Th populations. We show that in the absence of eosinophils and changes in disease severity, increases of IL4 and IL6, the major effector cytokines of Th2 and Th17 cells, are still seen (Figure 24A – 24D). Thus, shifts in Th populations still occur in NK depleted animals with limited changes to clinical severity in the absence of eosinophils.

NK cells prevent production of eosinophilic chemokines in the heart during EAM

To investigate the mechanism of eosinophil accumulation in the heart, we assessed the relative cardiac versus splenic expression of eosinophil-related chemokines in NK-depleted and isotype control animals during EAM. mRNA levels of ccl11 (eotaxin-1) and ccl24 (eotaxin-2), chemoattractants for eosinophils, were comparable on day 14 (Figure 25A and 25B); however, CCL11 was significantly greater in NK-depleted animals by day 21 (Figure 25C).

Chemokines CXCL9 (MIG) and CXCL10 (IP10) are known negative regulators of eosinophil trafficking. On day 14, cxcl9 was significantly decreased in the NK-depleted group with cxcl10 trending (Figure 25D and 25E). Therefore, NK cells can control the expression of positive and negative regulators of eosinophilic trafficking in the heart during EAM.
NK cells control eosinophil-related chemokine expression in cardiac fibroblasts

NK cells themselves are not major producers of eosinophilic chemokines and with the exception of eosinophils, there were no changes in inflammatory populations during EAM. We have found recently that cardiac fibroblasts (CFs) are a major source of chemokines and cytokines during EAM. Therefore, we investigated the ability of NK cells to control chemokine production from CFs. CFs and NK cells added (1:2 ratio) for 96 hours with IL4 (10ng/mL) to mimic an environment favorable for eosinophilic accumulation.

NK cells suppressed IL4-mediated CCL11 production from CFs (Figure 26A). Additionally, NK cells significantly increased expression of CXCL9 and CXCL10, two negative regulators of eosinophil trafficking (Figure 26B and 26C). This pattern was seen for other chemokines that promote trafficking of myeloid cells, T cells, and neutrophils including CCL2 (MIP-1α), CCL4 (MIP-1β), CCL5 (RANTES), and CXCL1 (KC), although these chemokines are associated with the positive regulation of eosinophil trafficking (Figure 26D–26G). IL5, a potent eosinophilic growth factor and chemoattractant, was produced by CFs in the presence of IL4, although levels did not change upon addition of NK cells (Figure 26H).

We further confirmed the ability of NK cells to downregulate CCL11 and CCL24 from resident fibroblasts in vivo by isolating CFs from NK-depleted and isotype control hearts on day 21 of EAM. mRNA expression of ccl11 and ccl24 were increased in the fibroblasts isolated from NK depleted animals when compared to rabbit IgG treatment (Figure 27A and 27B). Thus, NK cells directly control eosinophil-related chemokine
expression in cardiac fibroblasts *in vitro* and *in vivo*.

CCL11 and CCL24 are not required for NK-mediation of eosinophils

These chemokine data presented us with two non-exclusive mechanisms by which NK cells regulate eosinophil trafficking: a) suppressing CCL11/CCL24-mediated recruitment or b) increasing CXCL9/CXCL10-mediated inhibition of trafficking. We investigated these mechanisms independently. To address the hypothesis that NK cells downregulate eosinophil accumulation by suppression of eotaxins, we employed mice deficient in CCR3, the sole receptor of CCL11 and CCL24. Depletion of NK cells in CCR3−/− mice still resulted in the influx of eosinophils into the heart during EAM (Figure 28A and 28B), indicating that NK cells do not mediate eosinophil accumulation in the heart only through the eotaxin/CCR3 pathway.

IFNγ is not required for NK-mediation of eosinophils

To investigate our secondary hypothesis that NK cells suppress eosinophils by upregulating negative chemokines CXCL9 and CXCL10, we employed IFNγ−/− mice, as both chemokines are dependent on IFNγ. NK cells were unable to downregulate CCL11 and upregulate levels of CXCL9, and CXCL10 from IFNyR1−/− CFs *in vitro*, suggesting IFNγ as the major mediator (Figure 29A – 29C).

Furthermore, we compared levels of CCL11, CXCL9, and CXCL10 in WT and IFNγ−/− mice at day 21 of EAM. We saw significant decreases in the protein levels of CXCL9, though there were no changes in levels of CCL11 or CXCL10 in the hearts of IFNγ−/− animals, suggesting other regulators may be at play *in vivo* for CCL11 and
Finally, using IFNγ−/− mice to model the effects of diminished CXCL9, we depleted NK cells in IFNγ−/− mice and examined eosinophilic accumulation in the heart on day 21. Similar to the CCR3−/− mice, IFNγ−/− mice still continued to accumulate significantly more eosinophils in the heart in the absence of NK cells (Figure 31A). From our data employing the CCR3−/− and IFNγ−/− models, we conclude that neither mechanism is sufficient to mediate NK-mediated control of eosinophil in isolation. Overall, these results demonstrate that there may be multiple redundant chemokines responsible for cardiac eosinophilic accumulation during EAM.
FIGURES AND TABLES

Table 4. Diagnosis of Hypereosinophilic Syndrome (HES)201,203,207

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exclude patients with eosinophilia secondary to allergy, parasitic disease, infectious disease, and pulmonary diseases such as Loeffler’s or hypersensitivity pneumonitis</td>
</tr>
<tr>
<td>2</td>
<td>Exclude patients with neoplastic disorders with secondary eosinophilia</td>
</tr>
<tr>
<td>3</td>
<td>Exclude patients with neoplastic disorders involving eosinophils</td>
</tr>
<tr>
<td>4</td>
<td>Exclude patients presenting with abnormal T-cell phenotypes</td>
</tr>
</tbody>
</table>
| CEL | Conditions 1-4 have been met
Myeloid compartment demonstrates clonal abnormalities
Myeloblasts are > 2% in peripheral blood and between 5 and 19% in bone marrow |
| HES | Conditions 1-4 have been met and there are no myeloid abnormalities |
Figure 15. NK cells suppress cardiac eosinophilic accumulation during EAM

A) Representative side scatter histograms of isotype and ASGM-1 antibody treated animals at day 21. B) Representative Ly6G versus SiglecF bivariate plots at day 21 from viable CD45+ cells. C) Percentage of Ly6GloSiglecF+ eosinophils from cardiac CD45+ cells on D) day 14 (\(p = 0.043\)) and E) day 21 (\(p < 0.001\)) of EAM. Percentage of SiglecF-Ly6Ghi neutrophils at F) day 14 (\(n.s\)) and G) day 21 (\(n.s\)). Significance calculated by unpaired \(t\)-test.
Figure 16. Increased eosinophils express high levels of MBP, SiglecF, and CD11b

A) Immunofluorescence staining of paraffin embedded cardiac sections from isotype control and ASGM-1 treated mice on day 21 of EAM. Sections were stained with 1:500 rat anti-MBP primary or rat IgG antibody, 1:200 anti-rat donkey PE-Texas Red antibody, and DAPI. Relative mean fluorescence intensity (MFI) of B) SiglecF (p<0.001) and C) CD11b (p<0.001) expression on Ly6GloSiglecF+ eosinophils from the heart and spleen of isotype control and ASGM-1 treated animals at day 21 of EAM by flow cytometry. Statistics calculated by unpaired t-test.
Figure 17. Eosinophils in the heart of ASGM-1 treated mice have an activated profile

Levels of A) epx (p=0.05), B) prg2 (p=0.05), C) il1b (p=0.04), D) tgfβ (n.s.), E) ccl11 (p=0.03), F) ccl24 (n.s.), G) il4 (n.s.), H) il13 (n.s.), I) il6 (n.s.), and J) il10 (n.s.) mRNA isolated from facs sorted Ly6GloSiglecFhi eosinophils from ASGM-1 treated mice at day 21 of EAM. Values shown as fold induction compared to spleen and controlled against HPRT levels. Significance calculated by student’s t-test.
Figure 18. Mast cells, and mast cell mediators are not altered in the absence of NK cells

A) FcεRIα⁺cKit⁺ mast cells (n.s.) as a percentage of total CD45⁺ cardiac cells at da 14 of EAM in isotype and ASGM-1 treated WT animals. Relative mRNA levels of mast cell-associated mediators B) IL33 (n.s.) and C) ST2 (n.s.) in total heart homogenates at day 14 of EAM by qPCR normalized to levels of HPRT. D) FcεRIα⁻DX5⁻cKit⁻ basophils (p=0.032) as a percentage of total CD45⁺ cardiac cells at day 14 of EAM in isotype control and ASGM-1 treated animals. Significance determined by unpaired t-test.
Figure 19. Myeloid populations are unaffected by NK depletion during EAM

A) CD11b+ monocytes (n.s.) as a percentage of total CD45+ cardiac cells at day 14 of EAM in isotype and ASGM-1 treated WT animals. B) Ly6Chi inflammatory (n.s.) and C) Ly6Clow resident (n.s.) subsets as a percentage of total CD11b+ cardiac monocytes. D) CD11c+ dendritic cells (n.s.) as a percentage of total CD45+ cardiac cells at day 21 of EAM in isotype control and ASGM-1 treated animals. Significance determined by unpaired t-test.
Figure 20. B cell and T cell proportions are unaffected by NK depletion during EAM

Lymphocyte percentages of A) B220+ B-cells \((n.s.)\), B) CD3+ T cells \((n.s.)\), C) CD3+CD4+ helper T cells \((n.s.)\) and D) CD3+CD8+ cytotoxic T cells \((n.s.)\) as a percentage of total CD45+ cardiac cells as a percentage of total CD45+ cardiac cells at day 21 of EAM in isotype control and ASGM-1 treated animals. Significance determined by unpaired t-test.
Figure 21. NK depletion increases Th2 and Th17 proportions at later stages of EAM

T-cell subset examination by intracellular cytokine staining for A) IFNγ (Th1), B) IL13 (Th2), and C) IL17A (Th17), as a proportion of cardiac CD3⁺CD4⁺ cells at day 14 (all n.s.) and day 21 of EAM following 4-6 hours of PMA and ionomycin stimulation with Golgistop. Significance calculated by unpaired t-test.
Figure 22. Day 21 cardiac cytokine levels reflect changes in Th profiles

Protein analysis of cardiac tissue by LINCO at day 21 of EAM in isotype control and ASGM-1 treated animals of A) IFNγ (n.s.), B) IL5 (p<0.001), C) IL13 (n.s.), D) IL17A (p=0.030), E) IL6 (p=0.030), F) IL12p40 (n.s.), and G) IL10 (n.s.). Significance determined by student’s t-test.
Figure 23. Eosinophils are essential for increased myocarditis severity in the absence of NK cells

A) Percent of cardiac SiglecF⁺ eosinophils in WT and ΔdblGATA1 groups during EAM at day 21 (ANOVA p<0.001) B) Histology scores of PBS, rabbit IgG, and ASGM-1 antibody treated ΔdblGATA1 animals at day 21 of EAM (n.s.). C) Ejection fraction (n.s.) measured by echocardiography at day 21. D) Percentage of fibrosis (n.s.) as measured by Masson's Trichrome staining of cardiac sections at day 21. Significance by ordinary one-way ANOVA with post-testing by Tukey’s multiple comparisons test.
Figure 24. Th-dysregulation in the absence of NK cells is independent of disease severity

T-cell subset examination by qPCR for A) IFNγ (Th1) \((n.s.)\), B) IL4 (Th2) \((p=0.004)\), C) IL6 (Th17) \((p=0.052)\), and D) IL17A (Th17) \((n.s.)\) mRNA in whole heart tissue homogenates normalized against HPRT mRNA levels and shown as a function of fold induction against isotype control levels. Significance calculated by unpaired \(t\)-test.
Figure 25. NK cells alter levels of eosinophil-associated chemokines in vivo

Levels of A) *ccl11* (n.s.) and B) *ccl24* (n.s.) mRNA at day 14 of EAM. C) CCL11 (*p* = 0.035) at day 21 of EAM. D) *cxcl9* (*p* = 0.004), and E) *cxcl10* (*p* = 0.077) mRNA at day 14 of EAM in ASGM1- and rabbit IgG-treated animals measured by qPCR of cardiac tissue. Significance calculated by unpaired t-test.
CFs were cultured with either IL4 or both IL4 and magnetically sorted NK cells (1:2 ratio) for 94 hours. Levels of A) CCL11 (p<0.001), B) CXCL9 (p<0.001), C) CXCL10 (p<0.001), D) CCL2 (p<0.001), E) CCL4 (p<0.001), F) CCL5 (p=0.002), G) CXCL1 (p<0.001), and H) IL5 (p<0.001) protein in supernatant were measured by ELISA. Significance by ordinary one-way ANOVA with post-testing by Tukey’s multiple comparisons test.
Figure 27. NK cells alter levels of eosinophil-associated chemokines from CFs in vivo

A) ccl11 ($p = 0.064$) and B) ccl24 ($p = 0.020$) mRNA were measured \textit{ex vivo} by qPCR in cardiac fibroblasts isolated at day 21 of disease. Significance calculated by unpaired t-test.
Figure 28. Eotaxins are not required for NK-mediated eosinophil control

A) Representative bivariate plots of Ly6G versus SiglecF CD45⁺-gated cells at day 21 of EAM in isotype and ASGM-1 antibody treated eotaxin receptor (CCR3)⁻/⁻ animals. B) Percentage of Ly6G⁺SiglecF⁺ eosinophils (p=0.001) from total cardiac CD45⁺ cells. Statistics calculated by unpaired t-test.
Figure 29. NK cells mediate CCL11, CXCL9 and CXCL10 production from CFs via IFNγ in vitro

A) CCL11 (p<0.001), B) CXCL9 (p<0.001) and C) CXCL10 (p<0.001) of in the supernatant of magnetically isolated NK cells cultured with either WT or IFNγRI-/- CFs for 96 hours as measured by ELISA. Significance of C-E by ordinary one-way ANOVA with post-testing by Tukey’s multiple comparisons test.
Figure 30. IFNγ controls CXCL9 levels during EAM

A) CCL11 \((p=0.798) \), B) CXCL9 \((p=0.050) \) and C) CXCL10 \((p=0.369) \) protein levels at day 21 of EAM in the hearts WT and IFNγ\(^{-/-}\) mice as measured by LINCO. Statistics calculated by unpaired t-tests.
Figure 31. IFNγ is dispensable for NK-mediated control of eosinophil accumulation during EAM

A) Percentage of Ly6G^{lo}SiglecF⁺ eosinophils ($p=0.018$) from total cardiac CD45⁺ cells at day 21 of EAM in isotype and ASGM-1 antibody treated IFNγ^{-/-} animals.
The absence of NK cells from WT mice undergoing myocarditis lead to a specific and significant increase of in the proportion of eosinophils infiltrating the cardiac muscle. While WT isotype control animals had limited numbers of these cells averaging between 0.5 – 2.0% of cardiac CD45+ cells, ASGM-1 treatment increased Ly6GloSiglecFhi numbers ten-fold to approximately 10 – 15% of all infiltrating cells. We hypothesized that this increase in eosinophils was heavily involved in the increase of disease severity seen in the absence of NK cells, as eosinophils are known for their tissue damage potential and role in fibrosis. Furthermore, patients with necrotizing eosinophilic myocarditis have poor prognosis compared to other myocarditis subtypes, indicating that eosinophils are correlated with poor disease outcome in myocarditis.

To determine if the eosinophils seen in the hearts of ASGM-1 animals had the potential for immune modulation and tissue damage, we profiled these cells by surface expression and mRNA levels for activation and maturation markers. Infiltrating eosinophils displayed an activated profile consistent with eosinophils isolated from lungs of mice infected with *Nippostrongylus brasiliensis* with upregulated SiglecF and CD11b237. As eosinophils aggressively participate in the clearance of *N. brasiliensis* infection, we postulate that similar profiles indicate activate immune modulation by eosinophils of their local environment. Also altered were mRNA levels of MBP and EPX, as mature and activated eosinophils contain granules that were formed during the maturation stages and no longer require synthesis of these proteins237.

IL6, also upregulated in cardiac eosinophils, has been shown to be induced by IFNγ to co-localize to intercellular granules prior to secretion along with the granule
proteins238,239. Also increased were mRNA levels of TGF\(\beta\), mirroring the activated population seen in asthmatic airway inflammation models237,240. TGF\(\beta\) also stimulates the development of fibrosis, which along with the deposition of MBP seen in ASGM-1 treated hearts, might be responsible for increase of collagen in NK depleted mice241,242. Therefore, NK depletion likely has limited effects on eosinophils in the periphery, as cardiac eosinophils had distinctly different transcriptional profiles that those found in the spleen.

Eosinophils have recently been shown to regulate muscle repair through the recruitment of fibroblast progenitors in striated muscle by IL4 and IL13187. It was possible that the increased fibrosis coinciding with the influx of eosinophils during EAM was due to dysregulation of this response mechanism after inflammation-mediated cardiac muscle damage. However, we saw no increase of IL4 and IL13 mRNA in cardiac eosinophils during EAM, signifying this is an unlikely mechanism.

The increase of eosinophils in the heart during EAM in response to NK depletion in no way mirrors the huge influx of eosinophils seen in the tissue of patients with clinical eosinophilic myocarditis or in animal models of eosinophilic myocarditis. In those cases, dysregulation of eosinophils is likely due to more potent regulators of eosinophils, such as Th2-mediated mechanisms as demonstrated in IFN\(\gamma\)/IL17A-deficient mice with eosinophils comprising more than 30\% of infiltrating cells after EAM induction. However, we show that even moderate increases in eosinophils can have significant effects on disease outcome. Therefore, the presence of eosinophils in EMB samples, even in moderate numbers, might be considered a risk factor for poor prognosis.
Furthermore, this data opens a new mechanism in the basic regulation of eosinophils. We indicate for the first time, the ability of NK cells in vivo to directly suppress eosinophils during inflammation. Th2-associated NK cells have previously been implicated asthma and allergy models to positive regulate eosinophil accumulation through the secretion of IL5. Here, we show that Th1-associated IFNγ producing NK cells can downregulate eosinophil infiltration through communications with cardiac resident cells. Our data support the concept of NK cells as a multifactorial cellular population comprised of heterogeneous and fluid subsets that are highly responsive to their local environment. However, it should be pointed out that NK cells are likely not required in the control of eosinophil trafficking and merely represent one of many mechanisms of regulation.

An alternative hypothesis in the regulation of disease severity by NK cells involves alterations in monocyte populations. NK cells can induce macrophage and dendritic maturation and activation, leading to changes in antigen-specific T cell populations. Furthermore, monocytes as the majority of the cells infiltrating the myocardium during EAM have been shown to influence myocarditis severity in EAM. However, the increased disease severity in the absence of NK cells were not accompanied by changes in levels of CD11b-positive populations or expression of inflammatory monocyte marker Ly6C. Recently, we have published that monocyte control of inflammation in the heart was ultimately due to shifts in the Th cytokine secretion and cell populations, making monocytes the effector population. Here, despite late changes in Th populations, no changes were observed in the monocyte
compartment, making the case that neither they nor Th2 and Th17 populations were responsible for increased disease severity.

The lack of Th involvement as the ultimate mechanism of increased inflammation and collagen deposition in the absence of NK cells was emphasized by the continued increase of Th2 and Th17-associated cytokines in ΔdoubleGATA mice. NK depletion in ΔdoubleGATA resulted in increases in total cardiac IL4 and IL6, a surrogate for Th2 and Th17 populations. Despite this increase, no phenotypical changes in disease severity or collagen deposition were seen in the absence of eosinophils during EAM. Therefore, NK cells directly downregulate eosinophilic accumulation along with levels of Th2 and Th17 populations. As the infiltrating cardiac NK cells were largely IFNγ producing, this is consistent with the reported ability of NK cells to downregulate Th2 and Th17 responses through inhibition of anti-specific T cells expressing Rorc and GATA3245,246.

We did note limited decreases of basophils due to ASGM-1 treatment corresponding with reports in literature127. We expect that this diminution has limited effect as proportions of Th2 cells were elevated after ASGM-1 antibody treatment, the opposite of what would be expected if basophils were involved mechanistically.1 Mast cells, also implicated in the control of eosinophils in myocarditis, were not different proportionally in the absence of NK cells and likely were not the major regulator of eosinophil infiltration. This was supported by unchanged levels of IL33 and ST2, associated with mast cell activation and ILC2 proliferations. Other than eosinophils, the alterations in basophils were the only significant difference in cardiac infiltrating populations during EAM after NK cell depletion.
We hypothesized that NK cells mediated eosinophilic accumulation in EAM through cardiac resident cells, as our lab recently determined that CFs are a primary mediator in IL17A-mediated EAM232. Furthermore, NK cell and fibroblast interactions have been well-established. Tumor fibroblasts can interfere with NK cytokine production and cytotoxicity via PGE\textsubscript{2}247 and synoviocytes in RA can express NK-receptor ligands that result in NK activation by direct contact248. Also, there has been increasing awareness that resident cells play a large role in the determination of cardiac fate during inflammation249.

In our non-exclusive list of chemokines analyzed, both positive and negative mediators of eosinophils were shifted towards a pro-eosinophilic environment in the absence of NK cells. Consistent with our reports of CFs as major mediators of disease, our results demonstrate that NK cells alter eosinophilic chemokine expression \textit{in vivo}, \textit{in vitro}, and \textit{ex vivo} from CFs. Of these, eotaxins, major controllers of eosinophilic trafficking in asthma and allergy, were the most dysregulated250-253. However, chemokines are notorious for functional redundancy and it is difficult to obtain phenotypic evidence for their role in disease254,255. This was supported in EAM by the failure of CCR3-/- and IFN\gamma-/- mice to show any changes in eosinophilic accumulation in the absence of NK cells.
CHAPTER V: CONCLUSION
Conclusions

In this study, we demonstrated that the protective qualities of NK cells extend well beyond viral inhibition in myocarditis. By depleting NK cells, but not NKT cells, using treatment with ASGM-1 antibodies, we found that NK cells directly downregulated cardiac inflammation and collagen deposition during EAM, a pathogen-free model of autoimmune myocarditis, by limiting cardiac eosinophil accumulation though interactions with cardiac resident cells (Figure 4).

These data opens the possibility for using NK cells or their products as a biologic therapy for myocarditis. Developments in the treatment for clinical myocarditis is constricted by the opposing needs in the viral and autoimmune components of disease. Ideally, an intervention could be designed that would target both needs simultaneously. Our lab has now shown that NK cells are clearly protective in both viral and autoimmune-mediated driven forms of myocarditis. NK-related therapies are an area of avid cancer research and the same resources could be used to treat autoimmune disorders.\(^{258-260}\)
Future Directions

Like in all scientific research, the work begun in this dissertation is far from complete. While we were able to clearly define a protective role for NK cells in the pathogenesis of myocarditis and deposition of collagen in the heart, we only showed circumstantial evidence for the specific mechanisms by which NK cells control eosinophilic accumulation. The removal of specific trafficking mediators CCR3 and IFNγ did not restore eosinophils to isotype control levels when NK cells were depleted, signifying our inability to provide hard evidence for the regulation of eosinophils through chemokines. Part of this failure is inherent to the redundant nature of chemokines.

The depletion of NK cells using ASGM-1 is also less than ideal. While we did show that no major alterations in other cell populations occurred, with the exception of basophils, it would be better to confirm these results in an genetically specific NK-deficient BALB/c model, which currently does not exist.

Two major foci remain in the future directions of this research. Firstly, while we investigated the ability of NK cells to modulate disease through resident cells, we did not explore the ability of NK cells to directly interact with eosinophils. In order to do this, we are currently pursuing co-culture experiments between naïve splenic NK cells and mature eosinophils isolated from the blood of IL-5 transgenic animals. As reviewed in the introduction to Chapter III, NK cells have been recently implicated in the activation and subsequent apoptosis of eosinophils *in vitro*. After co-culture, eosinophils will be examined for annexin V and Live/Dead staining in order to determine if the presence of NK cells resulted in increased apoptosis. If this is indicated in the results, it is possible that NK cells in the cardiac environment may directly control eosinophil accumulation by
cell-mediated apoptosis.

Lastly, the pressing question of the role of eosinophils in the pathogenesis of myocarditis and DCMI itself remains. We showed that influx of eosinophils in the heart resulted in overall increased inflammation and collagen deposition, possibly linked to increased TGFβ and IL6 secretion and the deposition of MBP in the tissue, but the specifics of eosinophil-mediated damage are unknown in EAM. Certainly, the model of NK depletion in EAM provides a tantalizing glimpse of what pathogenic role eosinophils may play in the heart. Ultimately however, depletion of NK cells only resulted in at most 10% of the cardiac infiltrate being eosinophilic, and thus cannot be considered a model of clinical eosinophilic myocarditis, where the vast majority of cells are eosinophils. We are currently exploring models of eosinophilic myocarditis, either through the use of IL5-transgenic mice or through Th2 deviated myocarditis model that are deficient in both IL17A and IFNγ224.
Activated NK cells accumulate in the heart during EAM and suppress eosinophilic infiltration through mechanisms that may involve the expression of chemokines from cardiac resident cells. The release of MBP, TGFβ, and IL6 from the infiltrating eosinophils into the cardiac environment may be responsible for the resulting increase in cardiac inflammation and fibrosis seen in the absence of NK cells. NK and cardiac fibroblasts interactions in vitro led to the release of IFNγ from NK cells in a cell contact-dependent manner. This IFNγ directly modulated the expression of CCL11, CCL24, CXCL9, and CXCL10, chemokines that have direct trafficking effects on eosinophils. Therefore, NK cells may control eosinophil infiltration directly or indirectly through resident cell mediators.
REFERENCES

25. Arnon TI, Markel G, Mandelboim O. Tumor and viral recognition by natural

42. Chen F, Shannon K, Ding S, et al. HIV type 1 glycoprotein 120 inhibits cardiac
myocyte contraction. AIDS research and human retroviruses. Jul 20

43. Andreoletti L, Leveque N, Boulaignon C, Brasselet C, Fornes P. Viral causes of
human myocarditis. Archives of cardiovascular diseases. Jun-Jul 2009;102(6-
7):559-568.

44. Yajima T, Knowlton KU. Viral myocarditis: from the perspective of the virus.

45. Andrade LO, Andrews NW. The Trypanosoma cruzi-host-cell interplay: location,

46. Acosta AM, Santos-Buch CA. Autoimmune myocarditis induced by Trypanosoma

47. Rossi MA. Pathogenesis of chronic Chagas' myocarditis. Sao Paulo medical

disease acquired in the United States. Annals of internal medicine. Nov 15

49. Leiby DA, Lenes BA, Tibbals MA, Tames-Olmedo MT. Prospective evaluation of a
patient with Trypanosoma cruzi infection transmitted by transfusion. The New

50. Kanai-Yoshizawa S, Sugiyama Kato T, Mancini D, Marboe CC. Hypersensitivity
myocarditis and outcome after heart transplantation. The Journal of heart and
lung transplantation : the official publication of the International Society for

72. Yong PL, Boyle J, Ballow M, et al. Use of intravenous immunoglobulin and adjunctive therapies in the treatment of primary immunodeficiencies: A working group report of and study by the Primary Immunodeficiency Committee of the

87. Huber SA. Coxsackievirus-induced myocarditis is dependent on distinct immunopathogenic responses in different strains of mice. Laboratory investigation; a journal of technical methods and pathology. May 1997;76(5):691-701.

93. Horwitz MS, La Cava A, Fine C, Rodriguez E, Ilic A, Sarvetnick N. Pancreatic expression of interferon-gamma protects mice from lethal coxsackievirus B3

110. Santiago-Schwarz F, Kay C, Panagiotopoulos C, Carsons SE. Rheumatoid arthritis serum or synovial fluid and interleukin 2 abnormally expand natural killer-like cells that are potent stimulators of IgM rheumatoid factor. The Journal

141. Barin JG, Talor MV, Baldeviano GC, Kimura M, Rose NR, Cihakova D. Mechanisms of IFN-gamma regulation of autoimmune myocarditis. Experimental

150. Vossen MT, Matmati M, Hertoghs KM, et al. CD27 defines phenotypically and

156. Agaugue S, Marcenaro E, Ferranti B, Moretta L, Moretta A. Human natural killer cells exposed to IL-2, IL-12, IL-18, or IL-4 differently modulate priming of naive T cells by monocyte-derived dendritic cells. Blood. Sep 1 2008;112(5):1776-1783.

196. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils.

205. Gotlib J. World Health Organization-defined eosinophilic disorders: 2012 update

222. Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the

254. Mantovani A. The chemokine system: redundancy for robust outputs. Immunology

SUFEY ONG
Curriculum Vitae: August 2014
720 Rutland Avenue
Ross Research Building 648
Baltimore, Maryland 21215
Citizenship: USA

song4@jhmi.edu
(310)308-2188

Education

2014 PhD
Department of Molecular Microbiology and Immunology
Johns Hopkins School of Public Health, Baltimore, Maryland
Advisor(s): Noel R Rose, MD, PhD; Daniela Cihakova, MD, PhD

2008 BA, Public Health
University of California - Berkeley, Berkeley, California

Thesis Work

Natural killer (NK) cells control cardiac eosinophilia in experimental autoimmune myocarditis (EAM)
Explores the protective role of NK cells in EAM. Determined that the increased cardiac inflammation, fibrosis, and cardiac dysfunction upon depletion of NK cells in wildtype mice undergoing EAM is directly mediated by increased eosinophil accumulation in the heart due to global changes in both Th profiles and eosinophil-related chemokine production by cardiac resident cells both in vitro and in vivo.
The autoimmune regulator gene (AIRE) is required for peripheral Th17 responses
Examines the mechanism behind spontaneous candidiasis in clinical patients with genetic defects in the AIRE gene by determining whether Th17 cytokines are AIRE-dependent antigens. Used clonal expansion and single cell sequencing techniques to examine the sequence of T-cell receptors in CD3+CD4+ cells to identify T-cells reactive against Th17 cytokines.

Relevant Work Experience

2008-2009 Emerging Infectious Disease Fellow
Department of Parasitic Disease, Centers for Disease Control and Prevention
Atlanta, Georgia
Principal Investigator: W. Evan Secor
Project: Increased SHIV susceptibility in rhesus macaques infected with schistosomiasis

Grants and Fellowships

2011-2015 Ruth L. Kirschstein National Research Service Award (NIH)
F31 HL112665-01A1: Role of natural killer cells in myocarditis
Principal Investigator: SuFey Ong

2010-2011 Otis and Calista Causey Fellow of Immunology
2008-2009 Emerging Infectious Disease Fellowship, American Public Health Laboratories

Publications

Poster Presentations and Scientific Abstracts

Teaching Experience

2010-2013
Teaching Assistant
Public Health Biology, Johns Hopkins School of Public Health
Graduate level class for incoming MPH students comprising of MD and PhD holders. Led student and faculty discussions, graded exams and homework, and answered student questions regarding coursework and logistics.
Skills and Techniques

12+ color flow cytometry analysis
Advanced and basic mouse skills
Basic histopathology skills
CFA-driven immunization models
ELISA
Grant writing (NIH, AHA, etc.)
Immunofluorescent microscopy
Primary cell isolation and culture
qPCR and RT-PCR
Single cell TCR sequencing