TREATMENT OF CENTRAL NEUROPATHIC PAIN CAUSED BY NEUROMYELITIS OPTICA SPECTRUM DISORDER

by

Maureen A. Mealy

A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
March 2019

© Maureen A. Mealy
All Rights Reserved
Abstract

Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord, leading to paralysis, blindness and death. Severe pain is a disabling component of the disease with up to 91% of patients reporting pain that is classified as central neuropathic pain (CNP), which is often refractory to treatment commonly used for peripheral neuropathy. This dissertation is comprised of two parallel studies both meant to inform a large Phase III study.

The first part involves a Phase II randomized single blinded, sham-controlled study proposes to evaluate the acceptability, feasibility, safety and efficacy of a novel technique called Scrambler Therapy for CNP treatment in patients with NMOSD. Scrambler is a non-invasive pain modifying technique that utilizes transcutaneous electrical stimulation of nociceptive fibers with the intent of re-organizing maladaptive signaling pathways. It has been examined for treatment of peripheral neuropathy with favorable outcomes, but there exists little data for use in CNP. Twenty-two participants were recruited from the Johns Hopkins NMO Clinic and were eligible for inclusion if they had CNP rated at 4 or higher on an 11-point numeric rating scale (0-10). Participants were randomized 1:1 and blinded to undergo either Scrambler Therapy or sham daily for 10 days. The primary outcome was a significant reduction in pain following 10-day treatment in the Scrambler intervention versus sham arm. The secondary outcome was safety, acceptability and feasibility. Sustainability of effect was also be evaluated. As the first-ever interventional pain study in NMOSD, it sets the foundation for future work that focuses on alleviating the physical and emotional suffering of patients who have neuropathic pain. As the first known study to investigate use of Scrambler
for central neuropathic pain treatment, it further acts as a model for other diseases, including multiple sclerosis, spinal cord injury and stroke.

The second study involves a cross-sectional assessment of pain on co-occurring symptoms in patients with NMOSD, which include anxiety, depression and sleep disturbance, and the impact of pain on quality of life (QoL). This involves a convenience sampling of 72 patients diagnosed with NMOSD who completed each of the following surveys to determine pain, health-related QoL, anxiety, depression and sleep disturbance, respectively: Brief Pain Inventory (BPI), Short Form-36 Health Inventory (SF-36), Neuro-QoL [Quality of Life in Neurological Disorders] Short Form v1.0 – Anxiety, Neuro-QoL Short Form v1.0 – Depression, and Neuro-QoL Short Form v1.0 - Sleep Disturbance. This study broadens the understanding of how intervening on pain can enhance QoL.

Advisors:
Sharon Kozachik, PhD, RN, FAAN
Michael Levy, MD, PhD
Thomas J. Smith, MD
Jerilyn Allen, ScD, RN
Marie Nolan, PhD, RN, FAAN
Funding for this study was made possible through a research grant provided by the Johns Hopkins Blaustein Pain Research Committee.

This research was made possible in part through a training grant provided by the Johns Hopkins Institute for Clinical and Translational Research (ICTR) which is funded in part by Grant Number TL1 TR001078 from the National Center for Advancing Translational Sciences (NCATS) a component of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of the Johns Hopkins ICTR, NCATS or NIH.
I dedicate this dissertation to each of the following:

To my mentor, my boss, my champion and my friend, Michael Levy. You have believed in me and helped me to believe in myself so that I could confidently pursue this PhD, and so much more. I literally would not be the person I am today if anyone other than you were my boss over this past decade. Any success I’ve had, and any success I will have in the future, is due in no small part to you. It is through your dedication to research in NMOSD that my passion was born.

To my parents. Without you, I could not have gotten through this. Particularly over the last several months since my Ryan Patrick was born, I’ve leaned on you to pick up the slack and act as primary caregivers as I labored over a computer analyzing and writing… analyzing and writing… and analyzing and writing some more.

To my sister Melanie. Even though you are of this earth in spirit only, you supported me throughout my whole life. I learned perseverance and how to be methodical from you. Love you to the moon and back… I know you continue to dance with the angels!

And finally, to my Remarkable Ryan. Since the moment you were born, anything I do is for you, for us. I waited a long time for your soul to find mine, and boy, was it ever worth the wait! You have brought color to my world. You are my love and my life. You are my everything. I love who you are and I can’t wait to find out who you will become!
Acknowledgements:

This dissertation would not have been possible without the advice and mentoring of my dissertation committee: Sharon Kozachik, Jerilyn Allen, Thomas J. Smith, Marie Nolan, and, last but never least, Michael Levy. Their guidance and support have been instrumental to my success throughout this iterative process. I can see the influence of every single committee member on this final product and feel fortunate to have been able to bring together this expert committee.

Thanks to Thomas J. Smith for providing the training in Scrambler therapy, to Giuseppe Marineo and Stephen D’Amato for acting as advisors, DIS&L for supplying the GEOMC Pain Scrambler model MC-5A machine, to Lauren Totonis for being an exceptionally dedicated (and unpaid) study coordinator, to Larry Cook for statistical support, and to my classmates for their constant encouragement.

Thank you to my father, Hugh M. Mealy, for assembling and maintaining the sham device, even at 2 am when it needed repair before the next day’s treatments, and for driving my 9-month pregnant self all around the DMV to patients’ homes so that I did not have to lug around equipment on my own.

Finally, a special note of thanks to our patients. The grace, resilience and dedication they show every day in the face of adversity is truly inspiring.
Dissertation Organization

This dissertation contains five chapters. The first chapter provides background, theoretical underpinnings, significance, and specific aims. Chapter two (Manuscript 1) is a review of the current state of the science of central neuropathic pain treatment as it relates to quality of life outcomes. It is currently in press with *Pain Management Nursing*. Chapters three and four (Manuscripts 2 & 3) are data-based manuscripts. Chapter three has been submitted to *Neurology* and includes results and analyses from Aims 1 & 2 of the study. Chapter four has been submitted to *Journal of Neurological Sciences* and provides results and analyses from Aim 3. Chapter five summarizes findings and discusses implications for nursing practice and future research.
Table of Contents

Abstract .. ii
Funding ... iv
Dedication ... v
Acknowledgements ... vi
Dissertation Organization .. vii
Table of Contents .. viii

Chapter 1: Introduction to and Significance of Central Neuropathic Pain in Neuromyelitis Optica Spectrum Disorder (NMOSD) ... 1

- Epidemiology of Pain in NMOSD ... 2
- Etiology of Central Neuropathic Pain in NMOSD .. 3
- Current Treatment of Central Neuropathic Pain ... 3
- Scrambler Therapy: Potential Application to Central Neuropathic Pain 5
- Neuromyelitis Optica Spectrum Disorder as a Translational Model for Treatment of Central Neuropathic Pain from other Causes ... 7
- Specific Aims ... 7
- Innovation .. 9
- Preliminary Data .. 10
 - Scrambler therapy for central neuropathic pain .. 10
 - Symptom co-occurrence in NMOSD and the effect of quality of life 14
- Measuring Pain in NMOSD .. 15
- Figures ... 23
- Table ... 29

Chapter 2: Review of treatment for central spinal neuropathic pain and its effect on quality of life: implications for neuromyelitis optica spectrum disorder (Manuscript 1) ... 30

- Abstract ... 31
- Methods .. 35
- Results .. 36
 - Effect of Pharmacologic Interventions on QoL .. 36
 - Effect of Non-pharmacologic Interventions on QoL ... 39
Chapter 5: Synthesis/Discussion ... 118

Summary of Findings ... 119
Discussion .. 121

 Strengths and Limitations .. 121
 Implications for Nursing .. 124
 Recommendations for Future Research .. 125

References .. 127

Appendices .. 150

 Appendix A: Scrambler study inclusion & exclusion criteria 150
 Appendix B: Scrambler study patient event calendar 151
 Appendix C: Curriculum Vitae .. 152
Chapter 1: Introduction to and Significance of Central Neuropathic Pain in Neuromyelitis Optica Spectrum Disorder

Persistent pain is a common and often frustrating problem for patients and health care providers, affecting approximately 100 million U.S. adults and costing $500-635 billion annually, according to the Institute of Medicine Report from the Committee on Advancing Pain Research, Care, and Education (2011). While estimates are varied, central neuropathic pain (CNP) constitutes a large percentage of persistent pain, and is associated with worse health than is non-neuropathic pain (Cohen & Mao, 2014). Neuropathic pain from any etiology is characterized by agonizing burning, shooting or tingling sensation in the face, arms, torso and legs caused by nerve damage (Cohen & Mao, 2014; Dworkin et al., 2007). It is particularly difficult to treat with only 40-60% of people achieving even partial relief (Dworkin et al., 2007). CNP experienced by patients with neuromyelitis optica spectrum disorder (NMOSD) is particularly refractory to available treatments (Qian et al., 2012). NMOSD is a chronic relapsing autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord, leading to blindness, paralysis and death (Wingerchuk, Hogancamp, O'Brien, & Weinshenker, 1999). Pain is more prevalent in NMOSD than in most other neurological diseases with up to 91% of patients reporting CNP (Zhao, Mutch, Elsone, Nurmikko, & Jacob, 2014; Pellkofer et al., 2013; Kanamori et al., 2011; Borsook, 2012). Spinal CNP typically presents weeks to months after the cord damage has occurred, long after the acute injury, and may be the result of secondary changes due to reorganization of damaged circuits of the somatosensory system (Sjolund, 2002). CNP occurs at and below the spinal cord lesion level, and can persist for years, decades or throughout the patient’s life. The impact of CNP on quality of life (QoL) is profound. Research in NMOSD
CENTRAL NEURTOPATHIC PAIN AND NMOSD

has found that those patients with CNP experience depression, decreased enjoyment of life, and difficulty with ambulation (Zhao et al., 2014; Pellkofer et al., 2013; Mutch, Methley, Moore, & Jacob., 2014). NMOSD is a severely disabling disease and there remains a high unmet need for effective treatment of CNP, thus allowing for an opportunity for investigation.

Epidemiology of Pain in Neuromyelitis Optica Spectrum Disorder

NMOSD is a rare disease disproportionately affecting non-Caucasians and females that causes recurrent inflammatory attacks that preferentially target the optic nerves and spinal cord, leading to blindness, paralysis and death (Mealy, Wingerchuk, Greenberg, & Levy, 2012; Oh & Levy, 2012; Wingerchuk et al., 1999). It affects approximately 4,000-8,000 people in the United States, (Mealy et al., 2012) and has a worldwide prevalence estimated to be 0.52 to 4.4/100,000 (Marrie & Gryba, 2013). In contrast to multiple sclerosis (MS), a related CNS autoimmune disorder that primarily targets myelin, NMOSD causes irreparable neuronal cell death which leads to more severe disability and a poorer prognosis (Popescu & Lucchinetti, 2016). Historically, within 5 years of symptom onset, 60% of NMOSD patients were blind in at least one eye, 52% were weak in at least one limb requiring gait assistance and mortality was as high as 30% (Wingerchuk et al., 1999). These grim outcomes have improved since the discovery of the highly-specific anti-aquaporin-4 (AQP-4) biomarker for NMOSD in 2004 which allows clinicians to diagnose patients early and treat correctly, such that the mortality rate is now down to seven percent (Mealy et al., 2018). Even so, NMOSD continues to cause more severe permanent disability compared to MS (Wingerchuk, Lennon, Pittcock, Lucchetti, & Weinshenker, 2006; Mealy et al., 2012). Though a rare disease, NMOSD is devastating for those who have it.
Etiology of CNP in NMOSD

Despite these devastating consequences of the disease, patients have reported that pain is among the most prevalent and debilitating symptom, impacting mood, mobility and quality of life (QoL) (Qian et al., 2012; Zhao et al., 2014; Kanamori et al., 2011; Hollinger et al., 2016; Shi et al., 2016; Moore et al., 2016; Kong et al., 2016). In particular, central neuropathic pain (CNP) is pervasive, severe, intractable to treatment, and affects 62-91% of patients with NMOSD (Zhao et al., 2014; Pellkofer et al., 2013). CNP is described as distressing, persistent and incapacitating (Cohen & Mao, 2014; Dworkin et al., 2007). The presence of CNP in NMOSD is a direct consequence of targeted immune-mediated destruction of the spinal cord and may be influenced by lesion span and location: NMOSD lesions are generally transverse, involving both the central gray matter and dorsal horns (Figure 1). The dorsal horns are innervated by primary ascending fibers that convey sensory information to the brain (Zhao et al., 2014; Pellkofer et al., 2013; Bradl et al., 2014; Todd, 2010). Damage to the central gray matter in NMOSD leads to astrocytic damage and tissue necrosis, thus disrupting sensory pain tracts going to and from the brain (Qian et al., 2012; Kanamori et al., 2011). As a consequence of ongoing spontaneous activity arising in the periphery, surviving neurons develop increased background activity and increased responses to ascending nerve impulses, including normally harmless tactile stimulation (Centonze, 2014). An additional mechanism of CNP involves peripheral sensitization of non-myelinated ascending C fibers interpreted by the brain as persistent pain, a characteristic sign of an inflammatory process in the spinal cord (Pellkofer et al., 2013).

Current Treatment of CNP
Even with the increased awareness of the effects of persistent pain in patients with NMOSD, treatment is still lacking. Currently, there is no standard of care for CNP treatment. As with neuropathic pain from other etiologies, the most frequently-used medications for its treatment in NMOSD are anti-epileptics, antidepressants and non-steroidal anti-inflammatory agents. Descriptive studies in NMOSD recognized the inadequate effect of these medications, resulting in frequent breakthrough opioid use (Qian et al., 2012; Zhao et al., 2014). Consequently, doses and numbers of medications are often increased, causing side effects, particularly at higher doses, which are independently associated with fatigue (Pellkofer et al., 2013). With growing awareness of the dangers of polypharmacy, exploring non-pharmacologic interventions to use in combination with pharmacologic therapies broadens options for CNP treatment. Advancing alternative mechanisms for pain treatment, either in isolation or combined with pharmaceutical interventions, may allow for reduced medication dosing that does not exacerbate other symptoms with which the patient is already struggling.

Randomized controlled trials have demonstrated efficacy of non-pharmacologic interventions for other pain conditions, and this work has been extended to SCI and MS populations for the treatment of CNP with interventions such as nerve stimulation, acupuncture, exercise and massage therapy (Widerstrom-Noga & Turk, 2003; Boldt et al., 2014; Namjooyan, Ghanavati, Majdinasab, Jokari, & Janbozorgi, 2014). A novel technology called Scrambler therapy is a non-invasive pain modifying intervention that utilizes transcutaneous electrical stimulation of ascending C fibers with the intent of re-organizing maladaptive signaling pathways (Coyne, Wan, Dodson, Swaine, & Smith, 2013). This neuromodulatory therapy has been investigated for treatment of persistent peripheral neuropathic pain in several conditions including chemotherapy-induced neuropathy, post-
herpetic neuralgia and post-surgical neuropathic pain with promising results (Coyne et al., 2013; Majithia et al., 2016; Lee et al., 2016; Pachman et al., 2015; Smith, Coyne, Parker, Dodson, & Ramakrishnan, 2010; Ko, Lee, & Lee, 2013; Marineo, Iorno, Gandini, Moschini, & Smith 2012). Patients report sustained relief after undergoing daily treatment sessions for 10 consecutive weekdays (Majithia et al., 2016). The effect of Scrambler therapy on patients with persistent central neuropathic pain has not been systematically tested, despite anecdotal support for its use (D’Amato, Mealy, Erdek, Kozachik, & Smith, 2018; Mealy, Newsome, Kozachik, Levy, & Smith, 2018). Determining if Scrambler technology is an acceptable, feasible, and effective way to intervene on the pain experienced by those with NMOSD is the first step toward offering an enhanced QoL to functionally impaired patients (Zhao et al, 2014; Mutch et al., 2014; Moore et al., 2016). Improving functional status and QoL may afford patients with opportunities to engage in richer lives socially, personally and professionally in the context of significant pain reduction, and Scrambler potentially enables this in a non-invasive way. This research provides a unique opportunity to advocate for patients by recognizing the impact symptoms have on quality of life and exploring remediation.

Scrambler Therapy: potential application to central neuropathic pain

Scrambler therapy was granted approval by Food and Drug Administration (FDA) 510(k), "Scrambler ST 5 TENS Device," (K081255) in February 2009 for acute, chronic and post-operative pain (https://www.accessdata.fda.gov/cdrh_docs/pdf8/K081255.pdf, 2009). Scrambler is a type of transcutaneous electrostimulation (TENS) that uses peripheral nerve stimulation to modify ascending sensory responses in the spinal cord. Electrical impulses are transmitted via surface electrodes placed surrounding the pain area (Figure 2). Traditional
TENS units take advantage of the Gate Control Theory in which stimulation of surrounding A-delta fibers dampens incoming pain signals (Garrison & Foreman, 1994; Blivis, Haspel, Mannes, O'Donovan, & Iadarola, 2017). Scrambler therapy provides additional stimulation of ascending sensory C fibers that imitate normal nerve action potentials with the intent of re-organizing maladaptive signaling pathways (Coyne et al., 2013). The theory behind Scrambler treatment is that “scrambled” waveforms – instead of repetitive identical waveforms in traditional TENS – are dynamically assembled into strings of information that are interpreted by the brain to replace pain with “no-pain” information (Majithia et al., 2016; Ricci et al., 2012). In contrast to traditional TENS therapy that provides only short-term pain relief, studies with Scrambler therapy in peripheral neuropathy suggest that patients can have significantly reduced pain or be pain-free for up to 3 months following a series of treatments, and that follow-up treatments may require fewer sessions for continued relief (Majithia et al., 2016).

Use of Scrambler therapy for neuropathic pain management has been reported in 28 peer-reviewed articles in peripheral neuropathic pain syndromes (Majithia et al., 2016; Smith, Cheville, Loprinzi, & Longo-Schoberlein, 2017; Joo, Cho, Cho, Kym, & Seo, 2017; Park et al., 2017; Kim, Lee, & Lee, 2017; Kashyap, Joshi, Vig, Singh, & Bhatnagar, 2017; Smith, Auwaerter, Knowlton, Saylor, & McArthur, 2017). In the largest sample to date (n=226), 80% of patients had a greater than 50% reduction in pain in a prospective, open-label trial (Sabato, Marineo, & Gatti, 2005). The most studied condition has been chemotherapy-induced neuropathy and other cancer-related pain (Lee et al., 2016; Pachman et al., 2015; Coyne et al., 2013; Smith et al., 2010; Ricci et al., 2012; Park et al., 2013; Notaro et al., 2016), where Scrambler has provided significant pain reduction in all but one randomized
study which found no difference in a small sample size (n=14) (Campbell et al., 2013). The only other trial conducted with an equally rigorous prospective double-blinded placebo-controlled design was for the diagnosis of low back pain (n=30) where the treatment group was found to have a significant reduction in pain compared to the control group (Starkweather et al., 2015). No serious adverse events have been reported related to treatment with Scrambler therapy (Majithia et al., 2016). In central neuropathic pain, the damaged neurological circuits reside in the spinal cord rather than the peripheral nerve. However, the stimulation via electrodes is to dermatomes that correspond to intact spinal cord tissue, on which the Gate Control Theory and Scrambler mechanisms are thought to act.

NMOSD as a Translational Model for Treatment of CNP from other Causes

NMOSD is an ideal disease in which to test a proof-of-concept intervention for pain. First, there remains a significant unmet need for pain treatment in NMOSD as current medical and non-medical interventions have had little impact (Zhao et al., 2014). Second, the severe pain associated with NMOSD allows for even subtle improvements to be detectable. The damaged spinal cord circuits in NMOSD are similar to the pathologies in related CNP etiologies including traumatic spinal cord injury and MS. If a tested treatment is found to be effective at improving CNP in the NMOSD patient population, it may also be useful in these related conditions. CNP is associated with worse overall health in all diseases, and is difficult to treat (Cohen & Mao, 2014; Dworkin et al., 2007).

Specific Aims and Hypotheses

The aims for this study were as follows:
Aim #1: To examine the safety, feasibility, acceptability and effectiveness of Scrambler therapy in treating central neuropathic pain in NMOSD. Hypothesis 1: Scrambler therapy is a safe, feasible, acceptable and effective intervention.

- Sub-aim #1a: Feasibility of treatment was examined to determine whether the intervention was appropriate for this patient population, toward the effort of informing a larger, Phase III study. This was measured by assessing the following: 1) adherence to visit schedule and 2) response to the following question asked directly after completion of the 10-day treatment period: “Do you think you received treatment?” (Yes/No). Acceptability was measured by assessing response to the following question, also asked directly following the treatment course: “Would you want to continue treatment in clinic, if available?” (Yes/No).
- Sub-aim #1b: Safety was be measured based on a comparison of safety profiles in treatment versus sham arms.
- Sub-aim #1b: Effectiveness was evaluated based on degree of improvement of pain using an 11-point Numeric Rating Scale (NRS) score in the treatment group compared to sham, with the primary outcome focused on end-of-treatment time point, and the secondary outcomes examined sustainability of effect at 30- and 60-days following treatment.

Aim #2: To assess the relationship between improved pain in response to Scrambler therapy and other co-occurring symptoms, including anxiety, depression and sleep disturbance, in patients with NMOSD. Hypothesis 2: Impacting pain with Scrambler therapy will also improve some or all co-occurring symptoms.
Aim #3: To investigate components of the symptom cluster in patients with NMOSD and the influence of pain on co-occurring symptoms and QoL. Hypothesis 3.1: Pain will be associated with QoL and co-occurring symptoms including anxiety, depression and sleep disturbance, in patients with NMOSD.

Innovation

First study to investigate an intervention for pain in patients with NMOSD

Despite the significant unmet need in NMOSD, there have been no trials in this patient population investigating any pharmacologic or non-pharmacologic intervention for pain management in the United States. Given that most patients are currently on medications commonly used for peripheral neuropathic pain treatment, this proposal utilized a multimodal approach that combines a non-pharmacological intervention with more-established pharmacological agents. Targeting co-occurring symptoms using a multimodal approach (incorporating multiple interventions that have different mechanisms of action) may be more effective in improving symptoms, and consequently, QoL. A multimodal approach impacts QoL more robustly in comparison to a unimodal intervention in related autoimmune diseases of the central nervous system (Crayton & Rossman, 2006; Turcotte et al., 2015). The current proposal implements the multimodal use of Scrambler therapy added to a stable pharmacologic regimen to increase the likelihood of successfully treating pain and, in turn, positively impacting QoL.

Scrambler Therapy is a novel, non-invasive approach for treatment of central neuropathic pain from any cause
Despite the growing body of evidence to support efficacy of Scrambler, the utility of Scrambler therapy for treatment of CNP pain has never been systematically explored prior to this investigation. As in peripheral neuropathy, the expectation was that Scrambler therapy would act as a neuromodulator by providing new, non-painful sensory signals that replace the previous nociceptive signals, which get interpreted by the brain. Similar to how the brain interprets sensory impulses as pain after spinal cord damage occurs, neuroplasticity within the central nervous system enables retraining of that perception of pain so that the area of concern is no longer interpreted by the brain as painful. The Scrambler device has pre-market clearance through the FDA for acute, chronic and post-operative pain, and is not restricted to peripheral neuropathy (https://www.accessdata.fda.gov/cdrh_docs/pdf8/K081255.pdf, 2009).

Preliminary Data

Scrambler Therapy for Central Neuropathic Pain

We have recently treated and published results for two patients with central neuropathic pain with Scrambler: one with longstanding CNP as a consequence of a brainstem stroke (D’Amato et al., 2018), and the second with transverse myelitis (Mealy et al., in press). CNP in both patients was previously unresponsive to multiple neuropathic pain agents, and each underwent 10 days of Scrambler treatment. The patient with the brainstem stroke had a reduction in her pain from 9-10/10 to 0-0.5/10, and she was able to discontinue all pain medications. The patient with transverse myelitis is further described below in detail. In both cases, we started Scrambler treatment at Day 1 with electrodes placed above the affected dermatome (which corresponds to lesion level), and lowered channel-pairs daily as pain level declined down the body, corresponding to the spinal cord level. These two cases
offered proof-of-concept for the treatment of CNP through Scrambler therapy and have informed the current proposal.

Case presentation. A 65-year-old Caucasian woman with history of TM presented with long-standing central neuropathic pain. She was initially evaluated at an outside hospital in October 2013 for right hand paresthesias with accompanying neck pain followed by lower extremity weakness, right arm incoordination and weakness, urinary retention, torso band-like tightness, and impaired ambulation. Progression to nadir developed over approximately 24 hours. Neuroaxial imaging showed a C3-5 lesion on T2-weighted sagittal and axial sequences with mild ill-defined peripheral enhancement on post-gadolinium T1-weighted sequences (Figure 4). Mild stenosis and foraminal narrowing was noted, though flexion/extension X-rays indicated preserved cerebrospinal fluid signal surrounding the cord. No flow voids were noted. Given the MRI findings in the setting of symptoms attributable to the described lesion, presence of a sensory level, progression to nadir between 4 hours and 21 days, the presence of oligoclonal bands, and a thorough autoimmune evaluation to rule out other causes, the diagnosis of TM was made in concordance with the TM Consortium Working Group diagnostic criteria (2002). Muscle and nerve conduction studies were conducted and were unremarkable. The patient underwent 5 days of high-dose corticosteroids with modest improvement in her neurologic status.

She presented to the Johns Hopkins Transverse Myelitis Center in April 2014 for a second opinion due to persistent weakness and severe neuropathic pain. Neurologic exam demonstrated diffuse hyperreflexia, mild left hip flexion weakness, and gait dysfunction. In depth interview revealed that her neuropathic pain (in her bilateral legs, and right arm and torso) was the most disabling aspect of her condition. She was on hydrocodone-
acetaminophen (5-300 mg every 6 hours as needed) and tramadol (50 mg every 4 hours as needed) prior to presenting to us which was only partially beneficial. Subsequently, she tried several other therapies that were ineffective, only partially helpful or caused intolerable side effects, including duloxetine (120 mg daily), gabapentin (900 mg three times daily), pregabalin (50 mg twice daily), nortriptyline (50 mg daily), capsaicin, topical lidocaine, meditation and acupuncture. In early 2017, she was offered Scrambler therapy for refractory pain treatment. At the time of Scrambler treatment, she was on duloxetine (120 mg) daily and topical lidocaine as needed. The patient received Scrambler therapy for 45 minutes daily over a period of 10 consecutive weekdays, the typical administration as delivered for other types of pain (Calmare Technologies Inc., 2008). Prior to initiation of Scrambler treatment, the patient reported a pain level of 5 out of 10 using an 11-point (0-10) numeric rating scale (NRS) in the morning, which would increase to an NRS pain level of 10 out of 10 by nighttime, as well as with exertion and stress. She had developed activity intolerance secondary to pain. The neuropathic pain was located in the regions mentioned above and she reported severe allodynia in her right upper extremity that interfered with her grip. Moreover, the pain interfered with sleep.

The stated purpose of Scrambler Therapy is to provide “non-pain” information to replace continued pain-generation impulses. To do this requires capturing the surface receptors of the C fibers (and perhaps other fibers) in the dermatome of the affected nerves. The placement is done to also avoid putting an electrode directly on an area of damaged nerve sensation. This patient’s worst pain was in the C-6,7,8 distribution and involved the distal arm to the axilla; she also had pain in the T-1, and L5 distribution. To begin, we placed sets of electrodes (“channels”) in the C6 and C8 dermatomes in an area of normal sensation, about
8 inches apart, being careful to stay above the area of distal allodynia and pain (Figure 5). At end of Day 1 treatment, her NRS scale pain score decreased to 1 out of 10 and her allodynia was improved. By Day 2, the pain had returned to 3/10, but the pain/allodynia area had moved down the arm, such that we could treat with pairs of electrodes on C6, C7, T8 with the distal lead on the medial arm for C8, and L5 to L5. At end of Day 2 treatment, the score decreased to 1.5 out of 10, with resolution of banding sensation and shoulder/upper arm pain. On Day 3, her pain score started at 2 out of 10. All five channel-pairs of electrodes were used, each spanning across one of the following dermatomes: C6, C7, C8, T8 and L5. The patient continued with all five channel-pairs for the duration of treatment. Prior to beginning treatment on Day 4, her pain score was reported at 4 out of 10, and 0 out of 10 by end of treatment; of note, allodynia had completely resolved. Her pain continued to decline in severity and in location daily following each treatment, with the pain being nearly resolved by the end of Day 10 (Figure 6). The patient reported no adverse events.

In the 30 days following Scrambler intervention, the patient’s pain remained improved, with a pain score of 2.5 out of 10. Furthermore, her sleep and activity intolerance improved. Over 90-day follow-up, her pain began to increase to pre-treatment levels. However, the patient reported that Scrambler therapy helped in reducing her pain more than any previous therapy and expressed a desire to receive another course of treatment.

Our patient experienced persistent central neuropathic pain for 3.5 years prior to Scrambler therapy and reported that this treatment improved her pain considerably more than previous pharmacologic and non-pharmacologic interventions. The patient further recounted that this treatment was tolerable, and no safety concerns have emerged in our patient or others treated with Scrambler (Majithia et al., 2016). Our patient’s re-emergence of pain at
approximately 90 days, mirrors data from Scrambler use in peripheral neuropathic pain conditions. Observational research suggests that patients who receive subsequent treatments continue to respond to additional treatments, often with fewer treatments needed over time (Smith et al., 2017; Smith et al., 2017). Scrambler therapy is an emerging non-invasive treatment that may be safe and effective for central neuropathic pain. Notably, most reports of Scrambler use have been observational, in which the impact of placebo effect could not be accounted, including in the current report. Nonetheless, this open-label case report supports comprehensive, well-controlled investigation of Scrambler therapy in MS, NMOSD and other disorders that cause refractory central neuropathic pain.

Symptom co-occurrence in NMOSD and the effect on QoL

A symptom cluster is a group of interrelated co-occurring symptoms in a given chronic disease (Kim, Abraham, & Malone, 2013). Recent research investigating symptom clusters in other chronic diseases suggests that treating one symptom among a cluster does not sufficiently improve QoL (Kim, et al.; 2013). The implication for NMOSD is that treating CNP in isolation may not be sufficient to improve QoL in the context of other debilitating symptoms including anxiety, depression and sleep disturbance. In MS, which presents with similar symptoms as in NMOSD, the complexity and interconnectedness of symptoms seems apparent in the research: pain has been shown to affect anxiety and depression, as well as QoL (Archibald et al.,1994; Alschuler, Jensen, & Ehde, 2012); sleep is an independent predictor of QoL (Merlino et al., 2009) and sleep difficulties exacerbate other MS symptoms (Manocchia, Keller, & Ware, 2001); sleep disruption may contribute to the development of depression (Krupp, Alvarez, LaRocca, & Scheinberg, 1988; Manocchia et al. 2001); pain impacts depression and is mediated by anxiety, sleep quality and fatigue (Amtmann et al.)
This suggests that addressing one symptom may also impact other co-occurring symptoms. Drawing from the MS literature, if the presence of pain in NMOSD impacts depression, anxiety and sleep disturbance, then adequate treatment of pain could have an impact on these other symptoms. This may be particularly true in NMOSD, given that the pain is more severe than in MS and published data suggest that pain disproportionately impacts QoL in NMOSD as compared to other co-occurring symptoms (Mealy, Simpson, Levy, 2016; Mealy et al., 2017).

In NMOSD, pain correlates with anxiety, depression and disability, and is associated with poorer QoL (Moore et al., 2016). Interestingly, poor QoL does not correlate with disability, anxiety or depression. Taken together, these findings support our own findings which suggest that, while symptom co-occurrence exists in NMOSD, adequate pain treatment may improve these symptoms and, in turn, QoL (Table 1). The evidence for co-occurrence of symptoms provides preliminary evidence for the need to explore the presence of a symptom cluster. Exploring the presence of a symptom cluster and the impact of pain on co-occurring symptoms may influence approaches to treatment in the future. The Theory of Unpleasant Symptoms (TOUS) provides the theoretical underpinning for such an analysis (Figure 3). TOUS postulates that co-occurring symptoms are both influenced by and influence physiologic, psychologic, and situational factors, with a combined or synergistic effect on the outcome (Lenz, Pugh, Milligan, Gift, & Suppe 1997). Analyzing the effect of pain treatment on QoL will offer providers more information about how to approach symptom management in this population.

Measuring Pain in NMOSD
A number of measures that have been developed for pain assessment have been used for research in patients with neuroimmunologic disorders, particularly in MS, and include the Visual Analog Scale (Khan F, Amatya B, & Kesselring, 2013), Numeric Rating Scale (NRS; Svendsen, Jensen, & Bach, 2004), McGill Pain Questionnaire (MPQ; Silver, Blum, Grainger, Hammer, & Quessy, 2007) and the Brief Pain Inventory (BPI; Vollmer, Robinson, Risser, & Malcolm, 2014). However, the nature of the pain experienced by NMOSD patients is exceptional in its chronicity and intensity. Three pain instruments have been utilized to better elucidate our awareness of pain in NMOSD, the NRS (Qian et al., 2012; Pellkofer et al., 2013; Araki et al., 2014; Ringelstein et al., 2015), MPQ (Qian et al., 2012) and BPI (Kanamori et al., 2011; Zhao et al., 2014) none of which has yet been validated for use in this population.

Potential Application of Brief Pain Inventory in NMOSD

A synthesis of the literature was performed to investigate clinical and research utility of the BPI, as well as evidence for reliability and validity of the measurement tool. Specifically, this synthesis aimed to describe the inception, development, reliability and validity of the BPI across diseases, and its use in nursing literature, with the singular purpose of assessing its applicability in NMOSD. A PUBMED search was conducted that specified “Brief Pain Inventory,” AND “reliability,” “validity” and/or “validation” in the title/abstract. Eighty-one articles were found that addressed reliability and validity of the instrument. Because of the focus of the current synthesis on NMOSD, only those validation studies that were pivotal to the tool’s inception and development and/or pertinent to use in NMOSD were included. For its use in nursing research, a broad search of the Cumulative Index of Nursing and Allied Health Literature (CINAHL) Plus database was conducted using the search term
“Brief Pain Inventory” in all text and narrowing by “Nurse” as Any Author, which provided 27 articles for review. Articles were not limited by date for either search. The BPI User Guide was additionally used as a reference.

Description of BPI and current research. According to the Brief Pain Inventory User Guide, the BPI was originally conceptualized in the late 1970’s in response to the need for better capture of the severity and impact of cancer pain and as a way to quantify improvement in pain after changes to analgesic therapy were made (Cleeland 2009). This was an initiative of the National Cancer Institute (NCI) and World Health Organization (WHO), in response to growing awareness of the incapacitating pain associated with cancer. At the time, existing questionnaires including the MPQ mostly sought to assess nonmalignant pain and were thought to be too burdensome for patients suffering from severe intractable pain; they were lengthy, complex and included irrelevant items. Patients were asked what questions they felt were the most important for communicating their pain experience, and it became clear that no such tool existed. Supported by NCI and WHO, the Pain Research Group at the University of Wisconsin Medical School-Madison, under the direction of Charles S. Cleeland, PhD, planned a program to develop a self-report instrument that would be short, easily-understandable, could be self-administered, could be easily translated into other languages, and, importantly, would capture not only pain severity, but also the perception of how pain affected daily life. This group later became the Department of Symptom Research at The University of Texas MD Anderson Cancer Center (Cleeland., 2009).

Several iterations of this instrument were attempted over the years to ensure that the tool captured the data intended by the group, in the way they intended to capture it, as outlined above. According to Cleeland (2009), the working group eventually came up with
the BPI long form, followed by the short form. The BPI short form shortened the recall period from 7 days to 24 hours for question reference, and is generally the form that is being referenced when simply citing the “BPI”. It is comprised of front and back body diagrams, four pain severity items and seven pain interference items rated on 0–10 scales, and a question about percentage of pain relief by analgesics. Each section is first scored individually for the self-administered current version. The BPI assesses pain severity in four questions from pain at its “worst,” “least,” “average,” and “now” (current pain). Pain interference is measured among seven daily activities, including general activity, walking, work, mood, enjoyment of life, relations with others, and sleep. BPI pain interference is typically scored as the mean of the seven interference items. This mean can be used if more than 50%, or four of seven, of the total items have been completed on a given administration. While other items exist on this measurement tool, they are at this time supplemental and do not contribute to the scoring as they have not been validated or proven useful in the context of the tool as a whole. The fee for use is dependent on the intended use: unfunded academic research is able to obtain for free, $300 for funded academic research, and significantly more for commercial research at $2,000. Also, the language may influence price (Cleeland, 2009).

Evidence of BPI reliability and validity. The BPI was initially devised for cancer pain and initial reliability and validity testing was performed in this English-speaking population; Cronbach’s alpha reliability ranges from 0.77 to 0.91 and test-retest reliability for ratings of pain “worst” (0.93) and “usual” or “average” pain (0.78) in patients with cancer was high, which signals acceptable reliability (Daut, Cleeland, & Flanery, 1983; Cleeland et al., 1994). As expected, test-retest reliability for pain “now” severity ratings were lower (0.59) since pain intensity changes over time (Daut et al., 1983). Exact validity testing
performed in the initial English-speaking cancer pain patient sample could not be reported as only the abstract was available. However, the measurement tool has since been validated for use in peripheral neuropathy (Wu et al., 2007), chronic non-cancerous pain (Dworkin et al., 2008), post-herpetic neuralgia in herpes zoster (Coplan et al., 2004), spinal cord injury (Bryce et al., 2007), inguinal pain following hernia repair (Fanneby et al., 2008), osteoarthritis (Kapstad, Hanestad, Langeland, Rustoen, & Stavem, 2008), and cerebral palsy (Tyler, Jensen, Engel, & Schwartz 2002), to name several. Additionally, it has been validated psychometrically and linguistically in over 20 other languages and has been linguistically validated in another thirty (Cleeland, 2009). It has been proposed that the BPI should be utilized in all clinical trials involving chronic pain (Dworkin et al., 2008).

Many studies in MS have used the BPI over the years (Osborne, Raichle, Jensen, Ehde, & Kraft, 2006; Newland, Naismith, & Ullione, 2009; Newland, Riley, Fearing, Neath, Gibson, 2009). Osborne et al. specifically addressed reliability and validity of this instrument in MS patients with chronic pain and aimed to examine psychometric properties of interference measures only (Osborne et al., 2006). As such, only the interference component of the BPI was utilized and was administered to MS patients by mail. The modified BPI interference scale demonstrated excellent internal consistency ($\alpha=0.93$-0.96) as well as construct and concurrent validity, providing preliminary support for the reliability and validity of this modified scale for use in MS patients with chronic pain. Construct validity was assessed by factor analysis. The principal factor analysis examining the items from the modified 10-item version of the BPI Interference scale and the three pain intensity items also resulted in a two-factor solution that was rotated with direct oblimin. The first factor accounted for 64.6% of the variance and the second factor accounted for an additional 9.2%
All 10 interference items had high factor loadings on Factor 1 (range 0.59 to 0.94) assessed by correlation analyses to examine the associations between the pain interference items and scale scores and the measures of pain intensity and psychological functioning. Pearson correlation coefficients indicate that the first seven items from the BPI Interference scale were each significantly associated with average pain intensity, with correlations ranging from 0.42 to 0.69.

A study out of Turkey examined the psychometric properties of the BPI as well as its reliability, validity and discriminative utility for estimating the status of chronic pain in neuropathic and nociceptive pain (Erdemoglu & Koc, 2013). Patients with chronic pain were evaluated by a pain specialist and the etiology of their pain was determined to be either nociceptive or neuropathic. Test-retest was done for everyone, and no significant differences were found between the two tests within the nociceptive and neuropathic groups (Cronbach’s α for test=0.84 and retest=0.83). Cronbach’s α was performed for reliability testing of pain interference items, and the internal consistency between items was relatively high for all groups (7 items each for each of two groups, ranging from 0.61-0.81). Principal component analysis yielded three factors (severity scale, activity interference, and sleep and mood interference) which explained 70.68% of the variance for the nociceptive group and 66.48% for the neuropathic group. The component of the study, which utilized a composite score based on BPI and another pain measure, looked at differentiating pain. As nociceptive pain is not an important component of the pain syndrome found in NMOSD, this will not be reported for the purpose of this critique.

Use in nursing research. Twenty-seven articles were found that involved nursing research utilization of the BPI. Not surprisingly, the bulk of nursing research explored
different aspects of cancer pain (11 manuscripts). Another three manuscripts examined post-operative pain, two looked at fibromyalgia, two addressed MS and the remaining nine each had one article on a variety of topics. None of these addressed validation of the measure in the given population and instead utilized the BPI to measure pain in their cohorts. Given the relevance to the topic at hand, a closer look was taken at the two MS studies. The first assessed pain, fatigue, depression, sleep disturbance and quality of life in women with MS compared with healthy controls (Newland et al., 2009). The researchers utilized the BPI-long form, in addition to the MPQ. While the study does not explicitly discuss the rationale for choosing these two instruments, the authors state that the two instruments have been concurrently validated previously by Ehde, Nitsch, & Smiley (2015). These authors found that while pain interfered with fatigue, depression and sleep in both women with MS and healthy controls, those with MS had significantly more chronic pain characterized by severe intensity and significant pain-related interference with activities. The second study is a secondary analysis that examines relationships among pain and demographic variables in women with MS, such that demographic factors other than sex could be explored (Newland et al., 2009). It also utilizes both the MPQ and BPI-long form. The authors explain that they used the MPQ to investigate pain prevalence while the BPI-long form examines interference and intensity. Women with MS with higher education levels were found to have lower prevalence, interference and intensity, than those less educated. Furthermore, employment was positively associated with decreased pain prevalence in the MS group. These findings suggest that less educated and unemployed women with MS are at increased risk to experience pain, according to the authors.
Discussion. We found no evidence of reliability or validity testing of the BPI in NMOSD cohorts. The BPI addresses chronic pain in particular and includes items specific to pain severity as well as pain interference in a person’s life. Given the evidence to support that the quality of life in NMOSD patients is profoundly affected by pain, it seems advantageous to utilize a measure that recognizes and evaluates both of these aspects of pain. Like with cancer pain, being able to quickly and easily assess multidimensional features of pain is ideal in a population such as NMOSD because of the chronicity and severity of the pain that exists.

In contrast to MS which predominantly affects Caucasians of northern European ancestry (Ontaneda, Hyland, & Cohen, 2012), NMOSD disproportionately affects non-whites, particularly those of Asian and African descent (Mealy et al., 2012). Exploring validation of this measure in other languages with a high prevalence of NMOSD would be of value. NMOSD also disproportionately affects women at very high rates (6.5-9:1) (Mealy et al., 2012; Jarius et al., 2012). No testing particular to any one gender or sex was discovered during the literature review of the BPI. Research suggests that perception of and responses to pain differ by sex (Bernardes, Keogh & Lima, 2008; Rahim-Williams et al., 2012). This discrepancy is supported by Zhao’s findings in NMOSD, where 72% of women compared to 27% of men reported pain (Zhao et al., 2014). Evaluating if responses differ by sex or whether the BPI is more sensitive in capturing pain in one sex versus the other would be of value. In conclusion, the BPI has excellent face validity for application in NMOSD and future research directed at establishing its reliability and validity in this population would prove useful.
Figure 1. Cross-section of the spinal cord depicting spinal tracts.

From: https://commons.wikimedia.org/w/index.php?curid=10909281.
Figure 2. A picture of the GEOMC Pain Scrambler model MC-5A with electrode placement.

Permission from Thomas Smith, MD
Figure 3. Theory of Unpleasant Symptoms (Lenz et al., 1997)
Figure 4.

MRI imaging showing C3-5 lesion following presentation of symptoms:

A. T2-weighted sagittal

B. T2-weighted axial

C. T1-weighted sagittal post- gadolinium
Figure 5.

A. Electrode placement for Day 1 targeting the C6 distribution, and a second pair spanning over the C8 distribution.

B. Due to decrease in the anatomic pain level, the electrode pairs were lowered to the dermatome that corresponded with C7 on Day 2. Two other electrode pairs were placed at C8-T1, and L5-L5.

Acknowledgement

The patient provided written permission to share her story and photographs for educational purposes.
Figure 6.
NRS pain scores, daily pre- and post-treatment and at indicated follow-up intervals.
Table 1: Preliminary research to support Aim 3.

<table>
<thead>
<tr>
<th>Type of investigation</th>
<th>Aim</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| Cross-sectional descriptive study (Mealy et al., in press) | To assess the prevalence and relationship among common symptoms in NMOSD | ➢ In a multivariate model that included measurement of pain, fatigue, depression, and functional disability, only pain was a significant predictor of the overall QoL, when controlling for all other variables ($p=0.0068$).
➢ Upon further exploration into the impacts on QoL, individual EQ5D items were examined, and high burdens were discovered among all five items; anxiety/depression (66.6% experienced at least some problems), pain/discomfort (75.0%), and mobility (65.2%) were the best predictors of poor QoL. |
| Cross-sectional exploratory descriptive study (Mealy, Simpson, Levy, 2016) | To contrast symptom presence and co-occurrence in NMOSD and MS | ➢ Patients with NMOSD had more disability and pain than did patients with MS via t-tests.
➢ Pain was the only symptom that was independently associated with all other symptoms via linear regression ($p<0.05$). |
Chapter 2: Review of treatment for central spinal neuropathic pain and its effect on quality of life: implications for neuromyelitis optica spectrum disorder (Manuscript 1)

Maureen A. Mealy, RN, PhD(c)

Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Sharon L. Kozachik, RN, PhD

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Michael Levy, MD, PhD

Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
Abstract

Neuromyelitis optica spectrum disorder (NMOSD) causes disabling and persistent central neuropathic pain (NP). Because the pain syndrome in NMOSD is severe and often intractable to analgesic treatment, it interferes with quality of life in patients. No interventional trials have been published looking at response to interventions for pain in NMOSD. This is a synthesis of the literature surveying the impact on quality of life of interventions in all mechanisms of central spinal NP. This review has important implications for management of pain in NMOSD. A systematic database search was conducted using Pubmed, Embase and CINAHL Plus with keywords including “spinal cord,” “quality of life” and “neuropathic pain” in an attempt to identify original research that targeted spinal NP treatment and used quality of life as an outcome measure. Both pharmacologic and non-pharmacologic treatments were sought out. Twenty-one studies meeting our eligibility criteria were identified and evaluated, 13 using pharmacologic treatments and 8 using non-pharmacologic interventions. Overall, sample sizes were modest, and effects on decreasing pain and/or improving quality of life were sub-optimal. This review provides researchers with a foundation from which to start a more thorough and thoughtful investigation into the management of NP in NMOSD and underscores the importance of including quality of life as a clinically meaningful outcome measure.

Keywords: neuromyelitis optica; neuropathic pain; quality of life, multiple sclerosis, spinal cord injury; chronic pain
Review of treatment for central spinal neuropathic pain and its effect on quality of life: implications for neuromyelitis optica spectrum disorder

Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing autoimmune disorder of the central nervous system (CNS) that preferentially targets the spinal cord and optic nerves, leading to blindness, paralysis and death. NMOSD disproportionately affects non-Caucasians and females (Mealy, Wingerchuk, Greenberg & Levy, 2012; Jarius et al, 2012), and has a worldwide prevalence estimated to be 0.52 to 4.4/100,000 (Marrie & Gryba, 2013), affects approximately 4,000-8,000 people in the US, with a wide range of disease age at onset from infancy through old age (Mealy, et al., 2012; Jarius et al, 2012). In contrast to multiple sclerosis (MS) which primarily targets myelin, NMOSD causes irreparable neuronal cell death which leads to more severe disability and a poorer prognosis (Popescu & Lucchinetti, 2016). Historically, within five years of symptom onset, 60% of NMOSD patients were blind in at least one eye, 52% were weak in at least one limb requiring gait assistance and mortality was as high as 30% (Wingerchuk, Hogancamp, O'Brien & Weinshenker, 1999), though those data have improved with the identification of the highly specific AQP4 antibody (Wingerchuk, Lennon, Pittock, Lucchinetti & Weinshenker, 2006; Mealy et al., 2018).

NMOSD causes severe, persistent pain which is more prevalent (83.8%-91%) than in MS (~47%) (Kanamori et al., 2011; Qian et al., 2012; Pellkofer et al., 2013) and most other neurological diseases (Borsook, 2012). The most common type of pain in NMOSD is central neuropathic pain (CNP), which is characterized as agonizing burning, shooting, tingling, lancinating, and squeezing sensations that are distressing, persistent and debilitating. Half of patients with NMOSD characterize their CNP as severe and two thirds report constant pain
CENTRAL NEUROTOPATHIC PAIN AND NMOSD

(Zhao, Mutch, Elsone, Nurmikko, & Jacob, 2014; Pellkofer et al., 2013). CNP typically presents weeks to months after the cord damage has occurred long after the acute injury, and may be a result of secondary changes due to reorganization of the damaged circuits of the somatosensory system (Sjolund, 2002). The pain can persist for years, decades or throughout the patient’s life. The presence and severity of pain in NMOSD may be influenced by lesion span and location: NMOSD lesions are generally transverse, involving both the central gray matter and dorsal horns. The dorsal horns are innervated by primary afferent fibers and contain a large number of excitatory (glutamatergic) and inhibitory (GABA (γ-aminobutyric acid)-ergic or glycinergic) interneurons, as well as projection neurons that convey sensory information to the brain (Todd, 2010; Bradl et al., 2014). Damage to the central gray matter in NMOSD leads to astrocytic damage and tissue necrosis, thus disrupting sensory pain tracts going to and from the brain (Qian et al., 2012; Kanamori et al., 2011). As a consequence of ongoing spontaneous activity arising in the periphery, surviving neurons develop increased background activity and increased responses to ascending nerve impulses, including normally harmless tactile stimulation (Centonze, 2014).

Because many provider visits are dedicated to assessment and treatment of the underlying neurological disease, treatment of CNP is lacking despite increasing awareness of its impact on quality of life (QoL). Table 1 shows a comprehensive overview that includes seven studies assessing pain and QoL in NMOSD to date, none of which focus on an intervention or treatment. However, three studies have found promising results when examining pain as a secondary outcome, two in patients receiving a humanized monoclonal antibody that targets interleukin(IL)-6 for disease suppression, (Araki et al., 2014; Ringelstein
et al., 2015) and one in patients receiving low-dose mycophenolate mofetil (Huang et al., 2018), though none of these studies investigated QoL outcomes.

Research on the impact of persistent pain on QoL in NMOSD has found that those patients with CNP experience more depression, less enjoyment of life, and more difficulty with ambulation (Mutch et al., 2014; Pellkofer et al., 2013; Zhao et al., 2014). CNP is particularly resistant to most currently available treatments (Qian et al., 2012; Zhao et al., 2014). The most common medication classes for the treatment of CNP, used off-label, are anti-epileptics, anti-depressants and non-steroidal anti-inflammatories, but many patients still require frequent opioid use (Qian et al., 2012; Zhao et al., 2014). Cannabinoids have been recently considered for CNP as they become more available for use, though no data specific to this population have been analyzed. Despite this analgesic armament, NMOSD patients continue to have pain, in contrast to nearly half of MS patients treated for their CNP who report being pain-free (Qian et al., 2012).

Another factor to consider is that the medications used for treatment of CNP have side effects, particularly at higher doses, and are independently associated with slower reaction times and fatigue (Qian et al., 2012). Acknowledging that randomized control trials have demonstrated efficacy of non-pharmacologic interventions for other pain conditions, researchers have sought to extend this work to SCI and MS populations for the treatment of CNP, with interventions such as nerve stimulation, acupuncture, exercise and massage therapy (Widerstrom-Noga and Turk, 2003; Boldt et al., 2014; Namjooyan et al., 2014). These studies are limited by small sample size and the potential bias of symptom self-report, and they often include therapies not generally covered by insurance.
Despite research of both pharmacologic and non-pharmacologic interventions in CNP, as well as research suggesting that CNP impacts QoL, few studies have specifically examined whether a given intervention that targets pain has any side benefit on QoL. This review sought to extract, evaluate, and synthesize the literature regarding the impact of CNP interventions on QoL. This review is subdivided by pharmacologic and non-pharmacologic interventions. As no such literature exists specifically in NMOSD, central spinal pain was sought out broadly and included related conditions including MS and spinal cord injury of multiple etiologies.

Methods

A research review was conducted by performing database searches of Pubmed, Embase, and CINAHL Plus. Search terms included “neuropathic pain” and “quality of life” for each search, and the terms “spinal cord,” “myelitis” and “multiple sclerosis” were each independently added to these terms in an effort to capture a comprehensive look at all causes for central NP of the spinal cord; this generated 975 citations (202 Pubmed, 721 Embase, 52 CINAHL). Results were further limited to articles and book chapters, human subjects, English language, by adding to the search “treatment” OR “intervention” OR “therapy” and by searching for “pain” specifically in article titles, which narrowed the search to 326 (114 Pubmed, 192 Embase, 20 CINAHL). Articles were not limited by date. Literature reviews that were not systematic, publications that were not peer-reviewed, and descriptive case reports were excluded. Duplicate articles were removed. Treatments directed to non-spinal cord etiologies or those that did not differentiate among location (spinal cord vs. supraspinal vs. peripheral) and/or types (neuropathic versus nociceptive) of pain were also excluded, and clinical judgment was exercised when interpretable based on description and location of the
pain, in an effort to be inclusive when appropriate. Articles were included only if QoL was considered as an outcome (primary or secondary) following an intervention for CNP treatment, leaving 153 abstracts/articles for analysis in this review.

Results

Twenty-one interventional studies met inclusion criteria and were reviewed (see Figure 1). Across all studies, 910 patients were analyzed (438 SCI, 290 MS, 182 other). There were no studies focused on patients with NMOSD.

Sex was described in all but one study (n=24). Of the remaining aggregate sample of 886, 53% of participants were female. Demographic characteristics of race/ethnicity were described only in the three U.S. studies (aggregate n=263). Among these, 236 were White/Caucasian descent (90%), 22 were Black/African descent (8%), three were Hispanic/Latino descent (1%), one was Native American and one was classified as “other.”

Effect of Pharmacologic Interventions on QoL

Thirteen studies examined the effect of a pharmacologic intervention or treatment on QoL as a primary or secondary outcome (Table 2). Five studies evaluated the benefit of anti-epileptic medications (AEDs) for first-line treatment for CNP (Finnerup et al., 2015) in MS (2 studies), SCI (2 studies) and one was in a heterogeneous group of patients with CNP, a subset of whom had an undifferentiated spinal etiology. The rationale for using this class of medication for treatment of CNP was similar to the rationale for use in seizures: the drugs decrease hyperexcitability in damaged areas of the CNS caused by a sustained depolarization and inhibit voltage-dependent sodium channels, reducing the capacity of neurons to generate high-frequency action potentials (Salinas et al., 2012). A randomized, double-blind, placebo-
controlled clinical trial using early AED intervention with carbamazepine to prevent the onset of CNP in SCI did not show a significant difference between the intervention and control groups (Salinas et al., 2012) suggesting that preemptive analgesia does not prevent the subsequent onset of CNP. The other four studies were conducted using patients after CNP onset, three of which found that reducing pain positively impacted QoL. Gabapentin, pregabalin and levetiracetam reduced pain by 50-100% on average and improved self-reported Visual Acuity Scale ratings through the course of treatment (Levendoglu, Ogun, Ozerbil, Ogun & Ugurlu, 2004; Vranken et al., 2008; Rossi et al., 2009) (Table 2). Overall, these findings support that use of AEDs for CNP treatment and improvement of QoL.

Two RCTs studied the effects of the serotonin noradrenaline reuptake inhibitor (SNRI) duloxetine use on pain (Vranken et al., 2011; Vollmer, Robinson, Risser & Malcolm, 2014), although SNRIs are not as commonly used for pain worldwide compared to tricyclic anti-depressants (Finnerup et al., 2015). The stated rationale for using duloxetine was to inhibit the reuptake of serotonin and noradrenaline to potentiate monoamine neurotransmission in the descending inhibitory spinal pathways. This results in reduced nociceptive afferent transmission in the ascending spinal pain pathways to decrease the sensation of pain. Potentiation of both serotonin and noradrenaline is required to produce effective analgesia (Lunn, Hughes & Wiffen, 2014). The smaller of these studies (n=40) examined the effects of duloxetine in SCI-induced pain showed improvements in QoL including in the area of pain, but no improvement in independent pain scales (Vranken et al., 2011). In the larger study (n=239) duloxetine in MS patients with CNP resulted in significant reductions in pain throughout the end of the extension phase, without effecting any change in QoL (Vollmer et al, 2014). These seemingly conflicting results may be because the studies
used different survey tools, highlighting the importance of using standardized, validated measures of pain and quality of life.

Cannabinoid agents were investigated in two small RCTs, both in MS (Svendsen et al., 2004; Turcotte et al., 2015). Cannabinoids are ligands that bind on the presynaptic cannabinoid receptor, resulting in reduced calcium influx from voltage-gated calcium channels and hyperpolarization, thus decreasing cellular excitability (Turcotte et al., 2015). Both of the cannabinoid agents used in these studies uncovered a significant impact on pain with the larger of the two additionally impacting QoL. The smaller, more recent study evaluated the use of nabilone, a synthetic tetrahydrocannabinol, in patients who were already on stable doses of gabapentin (Turcotte et al., 2015). As used this study, multimodal approaches to CNP treatment that target dual mechanisms of CNP treatment may be more effective at improving both pain and QoL.

Two opioids were assessed for treatment of CNP: tramadol and oxycodone. Opioids bind to an opioid receptor, causing inhibition of adenylyl-cyclase and hyperpolarization of neurons, and decreased excitability (Ordonez Gallego, Gonzalez Baron & Espinosa Arranz, 2007). One of the medications, tramadol, has a second mechanism of action similar to SNRIs, as described above (Norrbrink and Lundeberg, 2009). Both studies showed improvement in pain, though a limitation of the oxycodone study (Ordonez Gallego et al., 2007) is that it was an observational study and oxycodone dosing was not standardized by the study protocol.

Another study examined the effect of botulinum toxin type A (BTX-A) for CNP treatment in patients with SCI (n=40). The mechanism of action proposed in CNP is based on its mechanism in nociceptive pain, which suggests that BTX-A may inhibit neurogenic
inflammation and the peripheral sensitization of nerve fibers by inhibiting the release of local neuropeptides, thereby reducing pain. The study reported a significant reduction in pain, though only a marginal trend toward significance on QoL.

Intravenous immunoglobulin (IVIG) contains the pooled polyvalent IgG antibodies extracted from the plasma of thousands of blood donors and is generally used to decrease inflammation. The exact mechanism of action has not been well-elucidated, but it is theorized that a high load of exogenous antibodies leads to a robust antibody recycling process that turns over both exogenous and endogenous antibodies (Sapir & Shoenfeld, 2005). This therapy was examined in post-polio syndrome ($n=142$; 75 with CNP): polio causes acute inflammation of the spinal cord leading to weakness, fatigue and pain persisting long after the acute infection has resolved (Gonzalez et al., 2006). Ongoing denervation has been suggested to be the most important reason for progressive muscle weakness associated with poliomyelitis infection. Patients with post-polio syndrome have increased expression of messenger RNA for proinflammatory cytokines in cerebrospinal fluid, which may suggest an ongoing inflammatory process in the CNS (Gonzalez et al., 2006). As such, the researchers hypothesized that targeting inflammation with IVIG may improve weakness or stop its progression. Pain was a secondary study outcome, but notably it was reduced in this patient population. QoL was not significantly impacted.

Effect of Non-pharmacologic Interventions on QoL

Eight studies were identified that examined the effect of a non-pharmacologic intervention for CNP on QoL. Non-pharmacologic interventions included the use of physical therapy (PT) and exercise, transcutaneous electrical nerve stimulation (TENS), cognitive
behavioral therapy (CBT) and complementary and alternative medicine (CAM) approaches (Table 3).

In rats, regular moderate aerobic exercise reversed signs of CNP and increased endogenous opioid content in brainstem regions important in pain modulation (Stagg et al., 2011). This approach was translated to a small human study in SCI that showed significant improvements in both QoL and pain, suggesting that a larger study with PT and exercise is warranted (Norrbrink, Lindberg, Wahman, & Bjerkefors, 2012). Transcutaneous electrical nerve stimulation (TENS) uses electric current to stimulate denervated nerves through electrodes placed on the skin (Norrbrink, 2009). Effectiveness has been shown for use in peripheral neuropathy, but results in the treatment of central NP have been equivocal. Sites in the spinal cord and brainstem that utilize opioid, serotonin, and muscarinic receptors have been shown to be activated by peripheral nerve stimulation by TENS, but lack of standards on ideal frequency and stimulation amplitude needed to achieve pain reduction has hampered the use of TENS in clinical trials of CNP (Norrbrink, 2009; Sluka et al., 2013).

Psychological factors are believed to influence the maintenance and aggravation of CNP, suggesting that psychological interventions with traditional biomedical interventions may reduce the burden of CNP (Heutink et al., 2014). Four studies evaluated the effectiveness of Cognitive Behavioral Therapy (CBT) for CNP treatment, all in SCI (Norrbrink Budh, Kowalski, & Lundeberg, 2006; Nicholson Perry et al., 2009; Heutink et al., 2012; Heutink et al., 2014). CBT focuses on modifying an individual’s beliefs, expectations and coping abilities (Norrbrink Budh et al., 2006). One study reduced pain without improving QoL, two studies improved QoL only, and one had no impact on pain or QoL. CBT is aimed at modifying a patient’s response to pain rather than directed at the pain itself, explaining the
finding that three of the studies did not impact pain significantly. Interestingly, all four studies had some impact on anxiety and/or depression, adding strength to the argument that this intervention improves pain responses rather than the physical experience of pain itself.

Complementary and Alternative Medicine (CAM) refers to treatments that are outside of conventional medicine which have for the most part not been rigorously tested and often evolve from traditional Asian medicine. The American public's use of CAM therapeutic modalities has grown exponentially in recent years, including for CNP (Namjooyan et al., 2014). This may be a product of the fact that CNP is often not affected in a clinically meaningful way, leading patients to look for other options. Common examples of these are acupuncture and massage therapy. Acupuncture is the stimulation of specific points through which the life-energy flows along the skin of the body using thin needles, in an attempt to achieve balance. Healing Touch (HT) similarly aims to achieve balance in life-energy through touch. Progressive muscle relaxation (PMR) is a technique focused on controlling the state of muscular tension and involves learning to monitor tension in each specific muscle group in the body by deliberately inducing and releasing tension in each group. The study examining HT versus PMR was the only mixed methods study reviewed; no significant impact was found on pain and QoL differences favoring HT were captured in the qualitative component alone (Wardell, Rintala, Duan, & Tan, 2006). In the study investigating the effects of acupuncture versus massage therapy, no differences in amount of pain were found but the data suggest that acupuncture may have prevented worsening of pain compared to therapeutic massage (Norrbrink and Lundeberg, 2011).

The concept of integrative medicine combines evidence-based treatments with alternative and non-pharmacologic options, in an attempt to approach treatment in a more
holistic manner, and may be a promising next step in this arena. There are no trials or studies that systematically used a combination of pharmacologic and non-pharmacologic treatments for central spinal CNP using QoL as an outcome measure.

Discussion

This is a comprehensive literature review examining the state of the science in spinal CNP treatment utilizing QoL as a primary or secondary measure. Hundreds of articles were found that examined the impact of a given intervention on CNP or the impact of CNP on QoL, but only these 21 could be identified that included an examination of the impact of a pain intervention on QoL. However, impacting pain alone may not be clinically meaningful to a patient if QoL is not also enhanced. Given that pain affects QoL (Newland et al., 2009; Kanamori, 2011), it seems reasonable that an objective of pain treatment should be aimed at improving QoL in patients as well. It is striking that so few studies have applied QoL measures as an outcome. In order to meet patient-centered goals of improving QoL, future studies should include measures of both pain and QoL.

Also notable is the seeming mismatch between reported effects on pain levels and QoL, such that improvement in pain did not necessarily translate to improvement in QoL: of the 21 studies examined, 6 were shown to positively impact both pain and QoL, 4 failed to impact either, 7 impacted pain only and 4 impacted QoL only. There are several possible explanations as to why half of the studies had a mismatch between effects on pain and effects on QoL. First, many of the studies were relatively small, with a median sample size of 29.5 (range 8-239). Thus, some studies may have been adequately powered to address the primary outcome, but not sufficiently powered to identify significant differences in secondary
outcomes, including QoL. Second, there was a wide array of both pain measures and QoL measures used, and while most have been validated in some populations, not all have been validated specifically in the populations that were investigated; see reviews of instruments for SCI, MS, and NP (Breivik et al., 2008; Stadhouder et al., 2010; Kuspinar and Mayo, 2014). Using validated measurement tools, or combining tools may draw out significant findings.

Another possible explanation for the mismatch between treatment of NP and its effect on QoL could be explained by recent research on symptom clusters. Symptom clusters consist of two or more related symptoms that co-occur and that may or may or may not share a common etiology (Kim, Abraham, & Malone, 2013). In chronic disorders, patients often present with multiple inter-related symptoms, which may explain why treating one symptom does not necessarily impact quality of life. While much of the research in symptom clusters has focused on cancer, the concept is applicable to a wide array of chronic conditions, including NMOSD, MS and SCI. The implication for NMOSD is that treating CNP in isolation may not impact QoL in a disease that causes other debilitating symptoms, including anxiety, depression, fatigue, sleep dysfunction and bladder dysfunction (Pan et al., 2015; Mutch et al., 2015; Hollinger et al., 2016; Shi et al., 2016; Mealy, Boscoe, Caro & Levy, M. 2018).

There was relative balance in the number of females to males represented overall (54%). SCI made up 39% of the total number of participants among trials, which has a high male-to-female ratio of 2.6-7:1 internationally (Singh, Tetreault, Kalsi-Ryan, Nouri & Fehlings, 2014). Counterbalancing this were the MS patients (42% of the total sample) where the female-to-male ratio is 2-3:1 (Koch-Henriksen & Sørensen, 2010). Only three studies reported on race/ethnicity, and all of these were from the United States and all predominantly
white. Although many of the countries represented are fairly homogenous groups, demographics continue to change worldwide and it is problematic to fail to report on social determinants of health and inequities between groups, especially among groups where health inequities are known to be present and where perceptions of pain differ (Bernardes, Keogh & Lima, 2008; Rahim-Williams et al., 2012). Some research suggests that biopsychosocial mechanisms may underlie these differences (Paller, Campbell, Edwards, & Dobs, 2009). Of interest would be a comparison of responses to non-pharmacologic interventions, and particularly to CBT which is guided by the biopsychosocial model (Nicholson Perry et al., 2009; Heutink et al., 2012; Heutink et al., 2014).

Conclusion

NMOSD causes damage to CNS pathways in the spinal cord as occurs in MS and SCI, suggesting that it is reasonable to extrapolate data from MS and SCI to guide therapy in NMOSD while also recognizing that different outcomes may result in part due to disparities in sex and race in NMOSD. CNP is difficult to treat and is pervasive in NMOSD. Treatments are ineffective and individual pain interventions are not sufficient to impact QoL. These factors only further underscore the need for broadening treatment options and using a multimodal approach in this population. It is important to focus attention on what symptoms form clusters and on comprehensive treatment regimens that address these clusters. A practical and potentially clinically meaningful trial for future research may examine a combination of an AED, anti-depressant, CBT and exercise program. This may highlight how the cluster of symptoms is impacted differently between the two groups, with emphasis on how this translates to improved quality of life.
References

Figure 1: Flowchart depicting study selection procedure

Inclusion criteria: search of databases for "neuropathic pain" AND "quality of life" PLUS "spinal cord" OR "myelitis" OR "multiple sclerosis"

Identified 975 articles
Pubmed: 202
Embase: 721
CINAHL Plus: 52

Identified 326 articles
Pubmed: 114
Embase: 192
CINAHL Plus: 20

Identified 153 articles

Identified 21 articles
• 13 Pharmacologic
• 8 Non-pharmacologic

Duplicates, reviews and non-peer reviewed articles excluded

Reviewed for content: quality of life as outcome measure following intervention or treatment included; case studies excluded, non-spinal cord pain, or no differentiation of pain by location or type excluded.

Search terms "pain" added to TITLE and "treatment" OR "intervention" OR "therapy" added. Limited to articles and book chapters, human subjects, English language.
Table 1: Studies evaluating pain in NMOSD patients (listed chronologically)

<table>
<thead>
<tr>
<th>Author (Year); Country</th>
<th>Patient Sample</th>
<th>Study Design</th>
<th>Pain Measure</th>
<th>QoL Measure</th>
<th>Findings & Comments*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Epileptics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanamori et al. (2011); Japan</td>
<td>37 NMOSD patients (35 AQP4+; 36 female); 51 MS patients as comparator (37 female)</td>
<td>Descriptive comparative</td>
<td>BPI</td>
<td>SF-36</td>
<td>This was the first study that explored pain in NMO. Pain in NMOSD (83.8%) was more common than in MS (47.1%), and also more severe. QoL was also significantly poorer in the NMOSD group in the areas of bodily pain, physical functioning and general health. Consecutive sampling was used for participant recruitment. While this study did not investigate or account for medication use and was limited in the number of variables assessed, this pivotal study shed light on the issue of pain in NMO.</td>
</tr>
<tr>
<td>Qian et al. (2012); US</td>
<td>29 NMOSD patients (24 AQP4+; 24 female; 14 White/Caucasian, 14 Black/African descent, 1 Asian descent); 66 MS patients as comparator (52 female; 56 White/Caucasian, 10 Black/African descent)</td>
<td>Descriptive comparative</td>
<td>MPQ; 10-point NRS</td>
<td>SF-36</td>
<td>This study assessed pain and other symptoms, neurological function, spinal cord damage, and QoL. Pain in NMOSD (86.2%) was more common than in MS (40.9%), and also more severe, even after controlling for disability and spinal cord damage. Pain correlated with worse physical and mental scores on SF-36. This was the first study to examine medication use: prescription pain medications were used significantly more frequently in NMOSD participants, more often required multiple medications and all treated patients experienced pain despite treatment.</td>
</tr>
<tr>
<td>Pellkofer et al. (2013); Germany</td>
<td>11 NMOSD patients (11 AQP4+; 9 female; all White/Caucasian)</td>
<td>Descriptive</td>
<td>10-point NRS</td>
<td>SF-36</td>
<td>This study aimed to investigate presence and clinical characteristics of pain, stress and depression, and evaluated endocannabinoid levels and abnormalities in</td>
</tr>
<tr>
<td>Authors</td>
<td>Study Population</td>
<td>Study Design</td>
<td>Measurement Tools</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Zhao et al. (2014); UK</td>
<td>50 NMOSD patients (41 AQP4+; 39 female; no race/ethnicity data made available)</td>
<td>Descriptive</td>
<td>BPI, SF-36</td>
<td>Somatosensory functioning. Recruitment was through consecutive sampling. 91% endorsed NP within previous 3 months and 72% reported ongoing NP; decreased QoL in 3 of 8 measures: physical functioning, general health and bodily pain. This study also aimed to explore the role of endogenous cannabinoids and found plasma levels of 2-AG to be significantly higher in NMOSD patients, suggesting that central sensitization is controlled by it.</td>
<td></td>
</tr>
<tr>
<td>Mutch et al. (2014); UK</td>
<td>15 NMOSD patients (9 AQP4+; 11 female; no race/ethnicity data made available)</td>
<td>Qualitative descriptive</td>
<td>Semi-structured interviews, Semi-structured interviews</td>
<td>First qualitative study to explore QoL, including pain. Poor vision, reduced mobility, bladder dysfunction and pain affected participants’ independence and experience of living with NMO. Expressed anxiety regarding unpredictability of disease and desire for normalcy.</td>
<td></td>
</tr>
</tbody>
</table>
Patients reported anxiety and low mood, particularly following diagnosis and after relapses. Twelve patients reported pain, and indicated that it considerably affected their daily activities, mood, walking ability, enjoyment of life and relationships.

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Methodology</th>
<th>Pain Measure</th>
<th>QoL Measure</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asseyer et al. (2018); Germany</td>
<td>49 NMOSD patients (29 AQP4+, 14 MOG+; 41 female; no race/ethnicity data made available)</td>
<td>Descriptive</td>
<td>painDETECT</td>
<td>SF-36</td>
<td>Eighty-six percent of patients reported pain, regardless of antibody status. Pain correlated with QoL, but treatment of pain was not effective at improving QoL.</td>
</tr>
<tr>
<td>Eaneff et al. (2017); US, UK, Sweden</td>
<td>522 NMOSD patients (self-reported; AQP4 status unknown; 283 female; race data available for 142 patients: 99 White/Caucasian, 22 Black/African descent, 15 Asian; 6 other)</td>
<td>Descriptive</td>
<td>Self-report</td>
<td>PLM quality of life survey</td>
<td>This study reports the patient perspective of those with NMOSD via an online community called PatientsLikeMe and found that 53% of NMOSD patients report moderate to severe pain. Fifty-nine percent reported that their health limited their work and activities all or most of the time. Physical and emotional health interfered with social activities.</td>
</tr>
</tbody>
</table>

*Values were considered significant at p<0.05, unless otherwise noted.

NMOSD=neuromyelitis optica spectrum disorder; MS=multiple sclerosis; NP=neuropathic pain; BPI=Brief Pain Inventory; SF-36=Short Form 36 health survey; AQP4+=aquaporin 4+; MPQ=McGill Pain Questionnaire; NRS=numeric rating scale; QoL=quality of life; 2-AG=2-Arachidonoylglycerol; ADLs=activities of daily living; PLM=PatientsLikeMe
Table 2: Trials examining the effect of pharmacologic interventions on QoL (grouped by mechanism)

<table>
<thead>
<tr>
<th>Author (Year); Country</th>
<th>Patient Sample</th>
<th>Study Design</th>
<th>Intervention</th>
<th>QoL Measure</th>
<th>Findings & Comments*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levendoglu et al. (2004); Turkey</td>
<td>SCI patients c/ NP; (n=20) (7 female; no race data made available)</td>
<td>RCT c/ crossover</td>
<td>Gabapentin, titrated up to 3600 mg/day</td>
<td>Modified Lattinen Test</td>
<td>Significant decrease in intensity and frequency of most descriptors of pain (sharp, hot, unpleasant, deep, and surface) and disability and sleep were significantly better in the GBP treatment group. This was the 1st RCT to include QoL measures, in one of the most commonly used medications for NP treatment, however another measure of QoL would be helpful to capture a fuller picture of effects on health status.</td>
</tr>
<tr>
<td>Breuer et al. (2007); US</td>
<td>MS patients c/ spinal NP; (n=12) (10 female; 8 white, 8 African descent)</td>
<td>RCT c/ crossover</td>
<td>Lamotrigine in addition to stable regimen, titrated up to 400 mg</td>
<td>MSQoL-54</td>
<td>Pilot study showed no significant difference in pain or QoL; did not support need for larger trial.</td>
</tr>
<tr>
<td>Vranken et al. (2008); Netherlands</td>
<td>Patients c/ NP; subset was spinal; (n=40) (19 female; 20 in treatment group; no race data made available); 21 patients with spinal cause</td>
<td>RCT</td>
<td>Pregabalin in addition to stable regimen, titrated up to 600 mg/day</td>
<td>EQ-5D; SF-36; PDI</td>
<td>There was significant decrease in mean pain score for pregabalin treatment group, compared with placebo. No difference in PDI between groups but treatment group showed significant improvement for the EQ-5D utility score and EQ-5D VAS score compared with the placebo group and SF-36 indicated that treatment led to a significant improvement in the bodily pain domain only.</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Study Design</td>
<td>Treatment Details</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Rossi et al. (2009); Italy</td>
<td>MS patients c/ spinal NP; n=20 (15 female; 12 in treatment group; no race data made available)</td>
<td>RCT</td>
<td>Levetiracetam, 500 mg/day</td>
<td>MSQoL-54</td>
<td>Significant reduction in pain for treatment group; no difference in reported QoL, except for the item, ‘overall rating of quality of life.’</td>
</tr>
<tr>
<td>Salinas et al. (2012); Colombia</td>
<td>SCI patients s/ NP; n=46 (4 female; 24 in treatment group; no race data made available)</td>
<td>RCT</td>
<td>Carbamazepine, titrated up to 600 mg/day</td>
<td>SF-36</td>
<td>This novel study looked at prevention of NP with early treatment, rather than treatment in those who already experience it. Early intervention did not decrease incidence of NP over time and there was no difference in QoL between groups, despite appropriate power.</td>
</tr>
<tr>
<td>Anti-Depressants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vranken et al. (2011); Netherlands</td>
<td>SCI and stroke patients c/ NP; n=48 (24 in treatment group; Table 1, demographics, is missing from manuscript)</td>
<td>RCT</td>
<td>Duloxetine in addition to stable regimen, titrated up to 60 mg/day</td>
<td>EQ-5D; SF-36; PDI</td>
<td>No difference in pain intensity with treatment. Treatment group showed a significant improvement for the bodily pain domain only of the SF-36. No significant differences were observed in other QoL indices. The distribution of spinal versus supraspinal NP is said to be in Table 1 (Demographics), but no such table was included in the manuscript and spinal NP could not be separately assessed.</td>
</tr>
<tr>
<td>Vollmer et al. (2013); US</td>
<td>MS patients c/ spinal NP; n=239 (189 female; 221 white, 15 African descent, 2 Hispanic, 1 Native American; 118 in treatment group); 209 in OLE</td>
<td>Multi-center RCT, c/ OLE</td>
<td>Duloxetine in addition to stable regimen, titrated up to 60 mg/day in RCT and up to 120 mg/day in OLE</td>
<td>MSQoL-54</td>
<td>This well-conceived, well-executed, international study showed significant pain reduction in treatment group; QoL was not impacted. In OLE, pain reduction was reported in patients in both groups, with greater improvement reported by patients who had received placebo during the acute phase.</td>
</tr>
<tr>
<td>Cannabinoids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svendsen et al. (2004); Denmark</td>
<td>MS patients c/ spinal NP; n=24 (14 female; no race data made available)</td>
<td>RCT c/ cross-over</td>
<td>Dronabinol, titrated up to 10 mg</td>
<td>SF-36</td>
<td>Pain intensity and reduction significantly improved on treatment; the only improvements</td>
</tr>
</tbody>
</table>
PAIN IN NMOSD

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients</th>
<th>Design</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turcotte et al. (2015); Canada</td>
<td>MS patients c/ NP refractory to GPB; n=15 (13 female; 8 in treatment group; no race data made available)</td>
<td>RCT</td>
<td>Nabilone, titrated up to 1 mg, in addition to stable GBP dose</td>
<td>VASimpact</td>
<td>This small but well-designed study explores the important need for combining medication therapies, and shows that combination of GBP with nabilone significantly reduces pain. No change in pain impact was noted, however, the use of a VAS to capture impact of pain may have been inadequate and a more comprehensive measure of QoL would have been prudent.</td>
</tr>
<tr>
<td>Norrbrink & Lundeberg (2009); Sweden</td>
<td>SCI patients c/ NP; n=35 (7 female; 23 in treatment group; no race data made available)</td>
<td>Multi-center RCT</td>
<td>Tramadol in addition to stable regimen, titrated up to 400 mg/day</td>
<td>LiSat-9</td>
<td>Decrease in pain intensity in treatment group compared with those on placebo. Global life satisfaction improved in placebo group only.</td>
</tr>
<tr>
<td>Barrera-Chacon et al. (2011); Spain</td>
<td>SCI patients c/ NP refractory to AED treatment; n=54 (10 female; no race data made available)</td>
<td>Multi-center observational descriptive</td>
<td>Oxycodone, usually in conjunction with AED use</td>
<td>Modified EQ-5D</td>
<td>Significant decrease in pain intensity, improved health-related QoL and diminished impact of pain on physical activity and sleep. As doses of oxycodone were not investigated, further research in controlled trials assessing appropriate dosing for NP treatment is warranted.</td>
</tr>
<tr>
<td>Han et al. (2016); Korea</td>
<td>SCI patients c/ NP; n=40 (14 female; 20 in treatment group; no race data made available)</td>
<td>Multi-center RCT</td>
<td>BTX-A, 200 U subcutaneous injection, in addition to stable regimen</td>
<td>WHOQOL-BREF</td>
<td>The BTX-A group showed significant reductions in pain score at 4 and 8 weeks following injection, compared to placebo. Trend towards significant impact in physical health domain of QoL only.</td>
</tr>
</tbody>
</table>
| Gonzalez et al. (2006); Sweden | Post-polio syndrome patients; subset had NP; \(n=142 \); 75 patients with NP (33 of whom are in treatment group; 92 females in total group, not differentiated by pain status; no race data made available) | RCT | IVIG, 90 g over 3 days c/ 2nd equal dose at 3 months | SF-36 | Pain assessment was a secondary end-point of this study that primarily assessed strength, and not all patients included had NP. In the subcohort of patients with significant pain, those receiving IVIG had a greater pain reduction. QoL did not differ between groups.

*values were considered significant at \(p<0.05 \), unless otherwise noted

SCI=spinal cord injury; MS=multiple sclerosis; NP=neuropathic pain; RCT=Randomized Controlled Trial; GBP=gabapentin; MSQoL=Multiple Sclerosis Quality of Life instrument; EQ-5D=EuroQoL-5 Dimensions instrument; VAS=Visual Analog Scale; WHOQOL-BREF=World Health Organization Quality of Life-abbreviated; PDI=Pain Disability Index; SF-36=Short Form 36 health survey; OLE=open-label extension; BTX-A=botulinum toxin type A; IVIG= Intravenous immunoglobulin
Table 3: Trials examining the effect of non-pharmacologic interventions on QoL (grouped by mechanism)

<table>
<thead>
<tr>
<th>Author (Year); Country</th>
<th>Patient Sample</th>
<th>Study Design</th>
<th>Intervention</th>
<th>QoL Measure</th>
<th>Findings & Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Medicine and Rehabilitation Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrbrink (2009); Sweden</td>
<td>SCI patients c/ NP; n=24 (4 female; no race data made available)</td>
<td>RCT c/ cross-over</td>
<td>Hi- versus low-frequency TENS</td>
<td>LiSat-9</td>
<td>In this study with high attrition and difficulty with enrollment, pain intensity was unchanged compared with baseline values on a group level and no differences were found between the two modes of stimulation, and no effect on secondary measures including life satisfaction was noted.</td>
</tr>
<tr>
<td>Norrbrink et al. (2012); Sweden</td>
<td>SCI patients c/ musculoskeletal and/or NP; n=8; 7 patients with NP pain (1 of whom is female; no race data made available)</td>
<td>Observational descriptive</td>
<td>10-week exercise program</td>
<td>SCI QoL dataset</td>
<td>Descriptive statistics were utilized alone since inferences could not be made in this small cohort. For those with neuropathic pain, median pain intensity ratings decreased from 5 on a 0–10 numerical rating scale at baseline to 3 at the end of study. All median ratings of QoL showed improvement. Results in this exploratory study are promising and need to be further explored in a larger controlled study.</td>
</tr>
<tr>
<td>Cognitive Behavioral Therapy Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrbrink Budh et al. (2006); Sweden</td>
<td>SCI patients c/ NP; n=38 (24 female; 27 in treatment group; no race data made available)</td>
<td>Quasi-experimental</td>
<td>CBT</td>
<td>NHP</td>
<td>In this non-randomized study, no difference from baseline in pain or QoL was found in treatment group, or between groups. Improvement in sleep quality and mood detected in treatment group, not affecting composite score.</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Group Characteristics</td>
<td>Interventions</td>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>---------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Nicholson-Perry et al. (2009); Australia</td>
<td>Quasi-experimental</td>
<td>SCI in patients c/ NP; n=36 (8 female; 19 in treatment group; no race data made available)</td>
<td>CBT</td>
<td>Modified SF-36 with physical and mental domains</td>
<td>No changes in pain intensity between or within groups over time, though there was significant improvement in pain-catastrophizing for the treatment group. QoL improved for mental but not physical status.</td>
</tr>
<tr>
<td>Heutink et al. (2012); Netherlands</td>
<td>Multi-center unblinded RCT</td>
<td>SCI patients c/ NP; n=61 (22 female; 31 in treatment group; no race data made available)</td>
<td>CBT</td>
<td>LiSat-9</td>
<td>In the first RCT of CBT, short-term decrease in pain was detected, but this was not sustained at 3-month follow-up. No change in life satisfaction was identified, but anxiety and depression decreased in the intervention group.</td>
</tr>
<tr>
<td>Heutink et al. (2014); Netherlands</td>
<td>Multi-center extension study of Heutink, 2012 (treatment group only)</td>
<td>SCI patients c/ NP; n=29 (9 female; no race data made available)</td>
<td>CBT</td>
<td>LiSat-9</td>
<td>Pain intensity was significantly decreased at 12-month follow-up; no changes in life satisfaction or depression over time, though significant decrease in anxiety was noted.</td>
</tr>
</tbody>
</table>

Complementary and Alternative Medicine

<table>
<thead>
<tr>
<th>Study</th>
<th>Type</th>
<th>Group Characteristics</th>
<th>Interventions</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wardell et al. (2006); US</td>
<td>Quasi-experimental; Convergent Mixed Methods</td>
<td>SCI patients c/ NP; n=12 (0 female; 4 white, 3 African descent, 1 Hispanic, 1 other; 7 in HT group)</td>
<td>Healing Touch (energy-based program) vs. Guided Progressive Relaxation</td>
<td>SWLS; unstructured focus groups & interviews, written responses</td>
</tr>
<tr>
<td>Norrbrink & Lundeberg (2011); Sweden</td>
<td>Quasi-experimental; Sequential Controlled-Trial</td>
<td>SCI patients c/ NP; n=30 (6 female; 15 in treatment group; no race data made available)</td>
<td>Acupuncture vs. Massage Therapy</td>
<td>LiSat-9</td>
</tr>
</tbody>
</table>

values were considered significant at p<0.05, unless otherwise noted
PAIN IN NMOSD

SCI = spinal cord injury; MS = multiple sclerosis; NP = neuropathic pain; RCT = Randomized Controlled Trial; GBP = gabapentin; SCI QoL = Spinal Cord Injury Quality of Life instrument; EQ-5D = EuroQoL-5 Dimensions instrument; HT = Healing Touch; SWLS = Satisfaction with Life Scale; LiSat-9 = Life Satisfaction-9; CBT = Cognitive Behavioral Therapy; NHP = Nottingham Health Profile extension
Chapter 3: Scrambler therapy is a safe and feasible intervention that improves neuropathic pain in patients with neuromyelitis optica spectrum disorder: a phase II randomized controlled trial

(Manuscript 2)

Maureen A. Mealy, RN, PhD

Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Sharon L. Kozachik, PhD, RN

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Lawrence J. Cook, PhD

University of Utah, Department of Pediatrics, Salt Lake City, UT, USA

Lauren Tottonis

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Ruth Andrea Salazar

Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA

Jerilyn K. Allen, PhD, RN

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Marie T. Nolan, PhD, RN

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Thomas J. Smith, MD

Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD, USA

Michael Levy, MD, PhD

Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
Abstract

The primary objective aimed to determine if Scrambler therapy is an effective, acceptable and feasible treatment of persistent central neuropathic pain in patients with neuromyelitis optica spectrum disorder (NMOSD). The secondary objective explored the effect of Scrambler therapy on co-occurring symptoms. We conducted a randomized single blind, sham-controlled trial in patients with NMOSD who have central neuropathic pain using Scrambler therapy for 10 consecutive weekdays. Pain severity, pain interference, anxiety, depression and sleep disturbance were assessed at baseline, end of treatment, and at 30- and 60-day follow-up. Twenty-two patients (11 per arm) were enrolled into and completed this trial. The median baseline NRS pain score decreased from 5.0 to 1.5 following 10 days of treatment with Scrambler therapy, whereas the median NRS score did not significantly decrease in the sham arm. Depression was also reduced in the treatment arm, and anxiety was decreased in a subset of patients who responded to treatment. These symptoms were not impacted in the sham arm. The safety profiles were similar between groups. Scrambler therapy is an effective, feasible and safe intervention for central neuropathic pain in patients with NMOSD. Decreasing pain with Scrambler therapy may additionally improve depression and anxiety.

Clinicaltrials.gov identifier

NCT03452176

Classification of Evidence

This study provides Class 1 evidence of Scrambler therapy use in patients diagnosed with NMOSD who have central neuropathic pain.
Scrambler therapy is a safe and feasible intervention that improves neuropathic pain in patients with neuromyelitis optica spectrum disorder: a phase II randomized controlled trial

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the central nervous system that causes recurrent inflammatory attacks of the optic nerves and spinal cord, leading to blindness, paralysis and death (Oh & Levy, 2012). Despite these devastating consequences of the disease, patients have reported that pain is among the most prevalent and debilitating symptom which impacts mood, mobility and quality of life (QoL) (Qian et al., 2012; Zhao et al., 2014; Kanamori et al., 2011; Hollinger et al., 2016; Shi et al., 2016; Moore et al., 2016; Kong et al., 2016). In particular, central neuropathic pain is pervasive, severe, intractable to treatment, and affects 62-91% of patients with NMOSD (Zhao et al., 2014; Pellkofer et al, 2013). Currently, there is no standard of care for central neuropathic pain treatment, and the most frequently-used medications for its treatment in NMOSD are anti-epileptics, antidepressants and non-steroidal anti-inflammatory agents. Descriptive studies in NMOSD acknowledge the inadequate effect of these medications, and effective treatment for central neuropathic pain in NMOSD is still lacking (Qian et al., 2012; Zhao et al., 2014).

Scrambler therapy is a new, non-invasive technology with Food and Drug Administration (FDA) 510(k) approval, "Scrambler ST 5 TENS Device," (K081255) granted in February 2009 for acute, chronic and post-operative pain (FDA, 2019). Scrambler is a type of transcutaneous electrical nerve stimulation (TENS) that uses peripheral nerve stimulation of ascending C fibers to modify nociceptive responses with the intent of re-organizing maladaptive signaling pathways in the sensory cortex (Majithia et al., 2016). This neuromodulatory therapy has been investigated for treatment of persistent peripheral neuropathic pain, largely in open-label observational trials, in several conditions including chemotherapy-induced neuropathy, post-herpetic neuralgia and
PAIN IN NMOSD

post-surgical neuropathic pain with promising results (Majithia et al., 2016; Smith et al., 2017; Joo et al., 2017; Park et al., 2017; Kim et al., 2017; Kashyap et al., 2017; Smith et al., 2017). Patients report sustained relief after undergoing daily treatment sessions for 10 consecutive weekdays (Majithia et al., 2016).

There is anecdotal evidence supporting Scrambler therapy for use in patients with persistent central neuropathic pain (D’Amato et al., 2018; Mealy et al., in press), but there are no rigorous studies that systematically tested the benefit or sustainability of Scrambler versus a placebo treatment. The aim of the current study investigates use of Scrambler for treatment of central neuropathic pain in patients with NMOSD, given the substantial unmet need and lack of investigation into pharmacologic or non-pharmacologic intervention for pain management in this patient population.

Methods

We conducted a randomized single blind, sham-controlled trial in patients with NMOSD who have central neuropathic pain using Scrambler therapy. The central hypothesis that guided this study was that Scrambler therapy is an acceptable and feasible treatment that significantly reduces pain and improves co-occurring symptoms in patients with NMOSD.

Standard protocol approvals, registrations, and patient consents

We enrolled 22 patients with NMOSD (11 per arm) at the Johns Hopkins Neuromyelitis Optica Clinic. Participants with severe limitations to mobility or sight due to their disease were given the option to have study visits conducted in their homes. The protocol was approved through the Johns Hopkins Institutional Review Board (IRB00115699) and launched on March 2, 2018. Written informed consent was obtained from each participant prior to study enrollment.
PAIN IN NMOSD

The study was registered through ClinicalTrials.gov (NCT03452176). The Food and Drug Administration granted Scrambler therapy (FDA) 510(k) approval for acute, chronic and post-operative pain, "Scrambler ST 5 TENS Device," (K081255) in February 2009 (FDA, 2009).

Participants

Participants with self-reported neuropathic pain caused by NMOSD were recruited through the Johns Hopkins Neuromyelitis Optica Clinic. For participation eligibility, patients were aged 18 years or older with an NMOSD diagnosis based on the 2015 international consensus diagnostic criteria (Wingerchuk et al., 2015), regardless of anti-aquaporin 4 (AQP4) serostatus (Wingerchuk et al., 2007; Ruiz-Gaviria et al., 2015). For inclusion, neuropathic pain needed to be attributable to an inflammatory spinal cord lesion, indicated by MRI from a previous clinical myelitis event. Persistent pain needed to be rated at a level of 4 or higher on an 11-point numeric rating scale (NRS), with persistent pain defined by presence for ≥3 months. Patients needed to be stable in their disease, such that they had no spinal cord relapses within 6 months prior to enrollment. Patients were eligible to use any combination of standard of care medications for pain treatment, including anti-epileptic, antidepressant, opioid or non-steroidal anti-inflammatory medications, with no adjustments to the regimen within 30 days of enrollment. Patients with a known or suspected concomitant diagnosis of peripheral neuropathy were excluded. Patients with an ongoing concomitant central neurologic disorder were excluded, as were those who used an investigational agent for pain control within 30 days of enrollment, were pregnant or breastfeeding, were cognitively or mentally incompetent, or had implantable pain management or arrhythmia devices.

Randomization and Masking
Following consent and screening, participants were randomly assigned to receive Scrambler treatment versus sham at a 1:1 ratio for 10 consecutive weekdays. Recruitment was batched using a randomized block design stratifying across medication class (anti-epileptic, antidepressant, opioid or none) and pain level at screening (moderate 4-6, or severe 7-10) using blocks of four patients to promote similar distributions across groups in this small study. The rationale was to increase homogeneity between groups due to limited data that suggest response to Scrambler therapy may differ due to interference of medications used for pain (Moon et al., 2015). Randomization assignments were assigned by a third-party utilizing www.randomizer.org.

Scrambler therapy was administered via the GEOMC Pain Scrambler, model MC-5A. Electrodes were placed on participants receiving treatment within the dermatome above and below the level of injury, in a sufficiently sensitive area closest to the pain. For instance, if the patient had pain in the back from C3 to C8, a set of electrodes would be placed at C2 (above the pain) and T1 (below the pain.) Stimulation intensity was increased until a maximum tolerable threshold was reached without being painful, per the established protocol (Calmare Technologies Inc., 2008). If the patient felt a constant burn, sting or feeling of discomfort, electrodes were repositioned. The exact electrode positioning depended on the demarcation of the surface pain area, and analgesic response of the patient. Once the channel was regulated to the patient’s maximum intensity, pain was assessed by asking the patient how s/he felt in the area of pain covered by the electrodes and adjusted for desired effect of reduced pain and/or analgesic response. Additional channel-pairs were similarly implemented as necessary based on size of pain area, up to 5 pairs in total. Electrodes remained in the established position and intensity for
35 minutes from the time of proper placement was instituted. As central pain is often more pervasive as compared with peripheral neuropathy, more than one area was often targeted.

For the sham group, small motors (<1 cm) which produce a vibratory sensation similar to a wearable activity tracker (i.e., FitBit) were connected to each electrode to simulate Scrambler stimulation but without electrical charge. Channel-pairs were similarly applied in a sufficiently sensitive dermatome closest to the pain, surrounding the level of spinal cord injury. The sham sensation was applied for 35 minutes.

For both groups, the Scrambler machine was kept behind a curtain to help preserve masking. The machine itself was turned on for all participants, though without emitting any stimulation in those receiving sham, so that the alert indicating termination of treatment would be heard by all participants regardless of treatment assignment. Because treatment effect has been shown to vary across technicians (Moon et al., 2015), one technician was trained in the proper delivery of Scrambler treatment and performed all interventions.

Study Objectives and Measures

Our primary objective was to determine if Scrambler therapy is an effective, acceptable, feasible and safe treatment of persistent central neuropathic pain. The primary outcome was effectiveness at the end of the 10-day treatment period. This was evaluated based on degree of improvement in pain, comparing the treatment group to sham. Prior to initiation of Scrambler therapy and at completion of treatment, patients were asked to rate their pain by the 11-point NRS score. Patients additionally reported NRS pain scores at 30- and 60- days following therapy completion to assess sustainability of treatment effect.
Feasibility of treatment was examined to determine whether the intervention was appropriate for this patient population, toward the effort of informing a larger, Phase III study. This was measured by assessing the following: 1) adherence to visit schedule and 2) response to the following question asked directly after completion of the 10-day treatment period: “Do you think you received treatment?” (Yes/No). Acceptability was measured by assessing response to the following question, also asked directly following the treatment course: “Would you want to continue treatment in clinic, if available?” (Yes/No).

Safety of the intervention was evaluated by comparing Adverse Events (AEs) and Serious Adverse Events (SAEs) in the treated versus sham groups. These were monitored and documented prior to initiation of each treatment daily, at termination of final treatment, and at 30- and 60-day follow-up.

Although not powered appropriately, an exploratory objective aimed to assess the relationship between improved pain and other co-occurring symptoms. Prior to initiation of Scrambler therapy, patients were asked to complete each of the following measurement tools to determine baseline pain severity and interference, anxiety, depression, and sleep disturbance, respectively: Brief Pain Inventory (BPI) (Cleeland, 2009), Neuro-QoL [Quality of Life in Neurological Disorders] Short Form v1.0 - Anxiety, Neuro-QoL Short Form v1.0 - Depression, and Neuro-QoL Short Form v1.0 - Sleep Disturbance (Cella et al., 2011). Measurement tools were accessed by participants via a secure online portal. Participants were provided with an alphanumeric code that enabled their responses to be linked to their demographic and clinical data in a confidential manner. Questionnaires were mailed to participants without internet access with a postage-paid envelope provided for return of questionnaires. Patients again completed all measurement tools at end of treatment, and at 30- and 60-days following end of treatment.
Statistical Analysis

Effectiveness was based on degree of improvement of pain and compared NRS pain scores in the treatment group and sham group using the Friedman One-Way Repeated Measure Analysis of Variance by Ranks test at baseline, following treatment, and at 30- and 60-day follow-up. Wilcoxon signed-rank testing was used to determine sustainability over time by comparing scores at baseline to those following treatment, at 30-day follow-up and at 60-day follow-up. A chi-squared analysis comparing the number of treated patients who thought they received treatment versus the number of sham patients who thought they received treatment was performed to determine if masking was effective.

The target sample size of 22 (11 per arm) was based on previous studies which suggest that the average pain value at baseline is at least 4 on the 0-10 NRS with a standard deviation of the original pain value expected to fall in the range of 1-1.5 in this patient population (Majithia et al., 2016; Park et al., 2017; Ricci et al., 2011; Pachman et al., 2015; Smith et al., 2010; Marineo et al., 2012). A conservative estimate of the standard deviation of the change across patients from Day 1 to Day 10 was approximately up to 2. With 11 patients in each arm and under these assumptions, we were able to detect a change of 2.5 points in the Scrambler group at 80% power, with a difference in proportions of 60% between the two groups.

As one measure of feasibility of treatment, adherence to visit schedule was ascertained. We report the number of patients in each group who were able to complete all treatments. Fisher’s exact test was performed to assess if adherence is independent of group assignment. For each of the two survey questions used to assess feasibility and acceptability, as described above, a 95% confidence interval for the proportion of participants answering “Yes” was calculated.
Given the small number of patients in the study, exact binomial confidence intervals were calculated since normal distribution could not be assumed.

Descriptive statistics were used to report AEs and SAEs. Incidence and severity were compared between groups.

To explore the impact on co-occurring symptoms when intervening on pain, scores were tabulated for each of the following based on measurement tool data: anxiety, depression, sleep disturbance and pain interference. Friedman One-Way Repeated Measure Analysis of Variance by Ranks was tabulated for each symptom, comparing the change at baseline, following treatment, and at 30- and 60-day follow-up timepoints in each arm. A subanalysis was similarly conducted in those patients who “responded” to Scrambler treatment versus sham. Based on a cohort of adult patients with spinal cord injury who reported clinically meaningful change in pain over time (Hanley et al., 2006), “response” was defined as patients with a decrease in NRS pain scores of 1.80 points between baseline and end of treatment.

Demographic and clinical characteristics were compared between Scrambler and sham groups using Mann-Whitney U and Chi-squared testing, as appropriate.

Data Availability

Public Law 110-85 (also known as the FDA Amendments Act of 2007) mandates registration and results reporting of "applicable clinical trials" in ClinicalTrials.gov. We support efforts to promote data sharing toward the advancement of science and registered this clinical trial, providing trial design, eligibility criteria and outcomes measures.

Classification of Evidence
This study provides Class 1 evidence of Scrambler therapy use in patients diagnosed with NMOSD who have central neuropathic pain.

Results

Twenty-two patients (11 per arm) who were deemed eligible for participation in this clinical trial were enrolled, treated and received follow-up between March and December 2018 (Figure 1). Participants were treated with Scrambler therapy or sham. Most patients were female (91%) and African American (59%). All participants were seropositive for AQP4 IgG. The median baseline NRS pain level was 5 points for both the treatment and sham groups (mean=5.6). The median Expanded Disability Status Scale (EDSS) score was 6.0 and 4.5 for the treatment and sham groups, respectively. Patient characteristics were similar between groups (Table 1).

Effectiveness Outcomes

The effectiveness of Scrambler therapy was determined by the impact on pain over time in the treatment group compared to the sham group, as measured by the NRS pain score. NRS pain scores were recorded at baseline, immediately following treatment versus sham, and at 30- and 60-days following treatment versus sham. Following the 10-day protocol, Scrambler therapy resulted in a reduction in median NRS pain scores from 5.0 to 1.5 ($p<0.001$), whereas the sham condition resulted in a reduction in median NRS pain scores from 5.0 to 4.0 ($p=0.4239$) (Figure 2). In the Scrambler therapy arm, eight of 11 participants had a clinically meaningful improvement in pain, with four participants experiencing complete pain eradication immediately following the protocol, (Figure 3). NRS pain scores remained significantly decreased at 30 days in the Scrambler-treated group ($p=0.0195$). However, the effect was not sustained at 60 days.
PAIN IN NMOSD

\(p=0.0518 \). Because of this, a post hoc power calculation was conducted based on current study data to determine the sample size needed to detect a change in this secondary endpoint for use in a larger Phase III trial. It was determined that 29 patients per arm would be necessary, given a mean 60-day score of 4.07 in the Scrambler treated arm and 5.32 in the sham arm with a standard deviation of 1.89.

Feasibility/Acceptability Outcomes

There was no difference between groups in the number of participants who completed all treatments \(p=0.22 \). All participants in the treatment arm completed all treatments, and two participants in the sham arm completed only 9 of 10 sessions: one patient experienced a family emergency and the other had a urinary tract infection that interfered with the trial. A chi-squared analysis revealed that masking of the intervention was adequate, as there was no difference found between those in the treated group who thought they received Scrambler therapy versus those in the sham group who thought they received therapy \(p=0.20; 95\% \, \text{CI} 0.91 \text{ to } 5.04 \).

Additionally, a chi-squared analysis also suggested that those who received the sham intervention were equally likely to want to continue treatments as those who received treatment \(p=0.67; 95\% \, \text{CI} 0.56 \text{ to } 3.61 \).

Safety Outcome

All AEs were logged daily prior to and following each treatment, as well as at 30- and 60-day follow-up (Table 2). There were no SAEs reported during the 10-day treatment period among participants in either study arm. During follow-up, two SAEs were reported within the same patient: Patient 3 (sham arm) developed a port and bloodstream infection 30 days after completion of the 10-day sham course requiring hospitalization for IV antibiotic treatment.
Because the infection was unresolved, the patient was re-hospitalized 30 days later for IV antibiotics. Given the temporal profile and fact that the patient did not receive Scrambler treatment, these infections were not thought to be related to the study. Neither Scrambler therapy nor the sham condition resulted in increased pain severity in these trial participants.

Exploratory Outcome

The median depression T score in the treatment arm significantly decreased following treatment with Scrambler therapy ($p=0.03$). There were no significant decreases in anxiety ($p=0.10$), sleep disturbance ($p=0.26$) or pain interference ($p=0.37$) following Scrambler intervention (Figure 4). In the Scrambler therapy arm, eight participants had a clinically meaningful improvement in pain, based on a decrease in NRS pain score of 1.80 or greater. When considering only these patients, the change in median anxiety T scores becomes significant ($p=0.02$), while sleep disturbance and pain interference remain unchanged ($p=0.64$ & $p=0.68$, respectively). Among those in the sham arm, the median anxiety, depression and sleep disturbance T scores did not change over time ($p=0.15$, $p=0.60$, $p=0.36$, respectively). Four participants had a clinically meaningful improvement in pain in the sham arm. When considering only these patients, all symptoms remain unchanged over time.

Discussion

Results of this sham-controlled trial in patients with NMOSD demonstrate that Scrambler therapy is an effective and safe intervention for central neuropathic pain. Participants who received Scrambler therapy had a significant reduction in pain, as compared to those who received sham. This was sustained at 30 days following the treatment course. Notably, there was no difference in the number of patients who thought they were assigned to the treatment versus
sham groups, which suggests that any placebo effect was controlled for through the established sham intervention. To date, most research investigating the effect of Scrambler therapy on pain has involved open label trials for peripheral neuropathic pain management (Smith et al., 2017; Joo et al., 2017; Park et al., 2017; Kim et al., 2017; Sabato et al., 2005; Notaro et al., 2016). Four studies have utilized a random controlled design, including two unblinded prospective randomized trials that tested Scrambler therapy against an active comparator (Loprinzi et al., 2018; Marineo et al., 2012), and two that have applied a blinded, randomized, sham-controlled design. One involved patients with chemotherapy-induced peripheral neuropathy, which found no difference, when compared to Scrambler therapy placed on the back near the spine \(n=14 \) (Campbell et al., 2013). In the second prospective, placebo-controlled trial, tested in patients diagnosed with low-back pain \(n=30 \), the treatment group was found to have a significant reduction in pain compared to the control group (Starkweather et al., 2015). The sham group received Scrambler therapy, at what was thought to be subtherapeutic doses.

Results suggest the trial is feasible and acceptable. Adherence with the full program comprising 10 sequential weekday visits was similar in both groups, and there was no difference in the number of participants who completed the trial and follow up in both groups. Both groups also reported an interest in continuing treatments beyond the trial period indicating a strong desire for pain relief using non-medical therapies. Because many of our NMOSD participants were severely disabled and unable to commute to the clinic on a regular basis, we offered home treatment in both arms. This likely improved feasibility and protocol adherence and suggests that a study that enables home treatments would make NMOSD participant enrollment and retention easier for a larger study.
This is the first prospective, interventional trial of a therapy to treat pain in patients with NMOSD to be reported, as well as the first to investigate Scrambler therapy specifically for central neuropathic pain. The rationale for Scrambler use in patients with NMOSD involves the peripheral sensitization of non-myelinated ascending C fibers, the slightest stimulation of which are interpreted by the brain as persistent pain (Pellkofer et al., 2013). In addition to evidence that Scrambler therapy improves pain from peripheral neuropathy, investigation into Scrambler therapy in patients with central neuropathic pain syndromes has been limited to two case studies (hemorrhagic brainstem cavernoma and transverse myelitis) prior to our study, both of which reported improvement in pain (D’Amato et al., 2018; Mealy et al., in press).

Opioids are frequently employed for breakthrough therapy in patients with NMOSD given the severity and intensity of pain in this population. Doses and numbers of medications are often increased due to opioid tolerance, causing side effects, particularly at higher doses, which are independently associated with fatigue (Qian et al., 2012). With growing awareness of the dangers of polypharmacy, Scrambler therapy provides a non-pharmacologic option for central neuropathic pain treatment. Advancing alternative mechanisms for pain treatment including Scrambler therapy may allow for reduced medication dosing such that other symptoms with which the patient is already struggling are not exacerbated.

Recent research in chronic disease suggests that treating one symptom in isolation of other co-occurring symptoms does not impact QoL (Kim et al., 2013). However, small studies specific to patients with NMOSD indicate that treating pain may have the greatest impact on improving QoL (Mealy et al., 2016; Mealy et al., in press). While the current study did not measure QoL, the findings suggest that among those who responded to Scrambler therapy, intervening on pain decreases depression and anxiety, which may, in turn, impact QoL.
This study was limited by several factors. First, the design of this study was single-blinded due to the fact that the technician knew if treatment or sham was being delivered by necessity. To mitigate the bias this potentially introduced, measurement tools and survey data were collected by an unrelated study coordinator. Second, though patients were recruited using a randomized block design to mitigate risk of confounding effects from pain medication class based on previous data which reported that the type of medication may be predictive of response to Scrambler therapy (Moon et al., 2015), our study was not powered to sufficiently compare efficacy results across classes of pain medications since patients were often on multiple medications. Lastly, this study was not powered to effectively examine sustainability of treatment, which was not sustained through the 60-day follow-up period. However, the trend toward significance at 60 days ($p=0.0518$) suggests that a larger study that includes 29 patients per arm may uncover sustained effect. The effect that modifying pain through Scrambler therapy had on co-occurring symptoms was also limited by the sample size. The effectiveness, feasibility and safety profiles we report support the need for a larger Phase III study to further examine the effect of Scrambler on pain, co-occurring symptoms and quality of life in a larger NMOSD patient cohort.

Author contributions

MAM contributed to the conceptualization and design of the study, data collection and analysis, interpretation of data, and drafting/revising manuscript content. SLK contributed to the conceptualization and design of the study, data analysis, interpretation of data, and revising manuscript content. LJC contributed to data analysis, interpretation of data, and revising manuscript content. LT and RAS contributed to data collection and revising manuscript content.
JKA and MTN contributed to study design and revising manuscript content. TJS contributed to study design, data collection, interpretation of data, and revising manuscript content. ML contributed to the conceptualization and design of the study, data collection and analysis, interpretation of data, and drafting/revising manuscript content.

Acknowledgments

The authors would like to thank Giuseppe Marineo, PhD, and Stephen D’Amato, MD, as our expert Scrambler advisors throughout the study, DIS&L for supplying the GEOMC Pain Scrambler model MC-5A machine, Hugh M. Mealy for assembling and maintaining the sham device, and our patients for their contributions to this study.
References

PAIN IN NMOSD

PAIN IN NMOSD

doi:10.1371/journal.pone.0071500 [doi]

Association of neuromyelitis optica with severe and intractable pain. *Archives of Neurology*,
69(11), 1482-1487. doi:10.1001/archneur.69.11.1482 [pii]

Managing chronic pain: Results from an open-label study using MC5-A calmare(R) device.
Supportive Care in Cancer : Official Journal of the Multinational Association of Supportive Care in Cancer, 20(2), 405-412. doi:10.1007/s00520-011-1128-6 [doi]

71(7-8), 479-482.

doi:10.1016/j.jneuroim.2016.02.011 [doi]
PAIN IN NMOSD

PAIN IN NMOSD

PAIN IN NMOSD

Figure 1: CONSORT flow diagram

Assessed for eligibility (n=23)
- Excluded (n=1; declined to participate)

Randomized (n=22)

Allocation
- Allocated to intervention (n=11)
 • Received Scrambler therapy (n=11)
- Allocated to sham (n=11)
 • Received sham (n=11)

Follow-up
- Lost to follow-up (n=0)
- Discontinued intervention (n=0)
- Lost to follow-up (n=0)
- Discontinued intervention (n=0)

Analysis
- Analyzed (n=11)
- Excluded from analysis (n=0)
- Analyzed (n=11)
- Excluded from analysis (n=0)
PAIN IN NMOSD

Figure 2: Box and whisker plots depicting median change in NRS pain scores across time points in A) Scrambler treated and B) sham arms.
PAIN IN NMOSD

Figure 3: Patient response by arm at end of 10-day treatment. Complete response (NRS=0), partial response (decrease in NRS >1.8 but not rated at 0), no response (decrease in NRS ≤1.8):

A) Scrambler therapy intervention. Median decrease in NRS was 4 points in “partial responders” and 1.5 points in “non-responders”.

B) Sham intervention. Median decrease in NRS was 3.5 points in “partial responders” and -0.5 point in “non-responders”.

95
Treatment:
- Complete response: 4 (36%)
- Partial response: 4 (36%)
- No response: 3 (27%)

Sham:
- Complete response (0)
- Partial response: 5 (45%)
- No response: 6 (55%)
Figure 4: Box and whisker plots depicting median change in A) depression, B) anxiety, C) sleep disturbance and D) pain interference scores for Scrambler treated and sham arms.
Table 1. Demographic and clinical characteristics of participants

<table>
<thead>
<tr>
<th></th>
<th>Treatment</th>
<th>Sham</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>11</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>Female sex</td>
<td>10 (91%)</td>
<td>10 (91%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>6 (55%)</td>
<td>7 (64%)</td>
<td>0.89</td>
</tr>
<tr>
<td>Caucasian American</td>
<td>3 (27%)</td>
<td>4 (36%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>2 (18%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>56.2 (7.2)</td>
<td>57.5 (13.8)</td>
<td>0.94</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>55.2 (9.6)</td>
<td>52.8 (14.9)</td>
<td></td>
</tr>
<tr>
<td>Disease duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>11.0 (12.8)</td>
<td>6.0 (7.6)</td>
<td>0.34</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>11.7 (8.8)</td>
<td>7.6 (5.6)</td>
<td></td>
</tr>
<tr>
<td>Delay in diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>0.5 (8.8)</td>
<td>0.3 (1.0)</td>
<td>0.29</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>4.3 (5.3)</td>
<td>1.0 (1.5)</td>
<td></td>
</tr>
<tr>
<td>AQP4 serostatus*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>11 (100%)</td>
<td>11 (100%)</td>
<td>1.0</td>
</tr>
<tr>
<td>EDSS Score*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>6.0 (3.0)</td>
<td>4.5 (3.0)</td>
<td>0.63</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>5.1 (2.3)</td>
<td>4.7 (2.0)</td>
<td></td>
</tr>
<tr>
<td>Baseline NRS pain rating*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>5.0 (2.8)</td>
<td>5.0 (3.2)</td>
<td>0.76</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>5.6 (1.7)</td>
<td>5.6 (1.8)</td>
<td></td>
</tr>
<tr>
<td>Pain medication regimen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>7 (64%)</td>
<td>8 (73%)</td>
<td>0.65</td>
</tr>
<tr>
<td>AEDs*</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Anti-depressants</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Opioids</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>4 (36%)</td>
<td>3 (27%)</td>
<td></td>
</tr>
</tbody>
</table>

*AQP4=aquaporin 4; EDSS=Expanded Disability Status Scale; NRS=numeric rating scale; AEDs=antiepileptic drugs
Table 2. Adverse events

<table>
<thead>
<tr>
<th>Pt #</th>
<th>Start of Treatment versus Sham</th>
<th>End of Treatment versus Sham</th>
<th>30-day Follow-up</th>
<th>60-day Follow-up</th>
<th>Event</th>
<th>AE Start Date</th>
<th>AE End Date</th>
<th>Severity</th>
<th>Action Taken</th>
<th>Related/Not related to treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>3/12/2018</td>
<td>3/26/2018</td>
<td>4/25/18</td>
<td>5/31/18</td>
<td>Charles Bonnet Syndrome 3/21/18 (during treatment phase)</td>
<td>ongoing</td>
<td>Moderate</td>
<td>None</td>
<td>Not related</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>4/2/2018</td>
<td>4/13/2018</td>
<td>5/14/18</td>
<td>6/10/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>05</td>
<td>6/4/2018</td>
<td>6/15/2018</td>
<td>7/14/18</td>
<td>8/11/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>06</td>
<td>6/11/2018</td>
<td>6/22/2018</td>
<td>7/23/18</td>
<td>8/17/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>07</td>
<td>7/9/2018</td>
<td>7/20/2018</td>
<td>8/24/18</td>
<td>9/20/18</td>
<td>Insomnia 7/10/18 (during treatment phase)</td>
<td>7/11/18</td>
<td>Mild</td>
<td>None</td>
<td>Not related</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>7/16/2018</td>
<td>7/27/2018</td>
<td>8/27/18</td>
<td>10/10/18</td>
<td>Sensitivity to electrode adhesive 7/16/18 (during treatment phase)</td>
<td>7/27/18</td>
<td>Moderate</td>
<td>None</td>
<td>Related</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7/23/2018</td>
<td>8/3/2018</td>
<td>8/30/18</td>
<td>9/28/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>8/6/2018</td>
<td>8/17/2018</td>
<td>9/27/18</td>
<td>10/15/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>17</td>
<td>9/10/2018</td>
<td>9/21/2018</td>
<td>10/23/18</td>
<td>12/1/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>Date</td>
<td>Date</td>
<td>Date</td>
<td>Event Description</td>
<td>Date</td>
<td>Severity</td>
<td>Cause of Admission</td>
<td>Relatedness</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9/24/18</td>
<td>10/5/18</td>
<td>11/10/18</td>
<td>12/4/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>10/8/18</td>
<td>10/19/18</td>
<td>11/28/18</td>
<td>12/20/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Sham</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bloodstream/port infection</td>
<td>6/10/18</td>
<td>Severe</td>
<td>Admission for IV ABX</td>
<td>Not related</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4/30/18</td>
<td>5/11/18</td>
<td>6/21/18</td>
<td>7/19/18</td>
<td>Bloodstream/port infection</td>
<td>6/17/18</td>
<td>Severe</td>
<td>Admission for IV ABX</td>
<td>Not related</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bloodstream infection</td>
<td>7/8/18</td>
<td>Severe</td>
<td>Admission for IV ABX</td>
<td>Not related</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5/7/18</td>
<td>5/18/18</td>
<td>6/18/18</td>
<td>7/13/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7/9/18</td>
<td>7/20/18</td>
<td>8/23/18</td>
<td>9/19/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7/23/18</td>
<td>8/3/18</td>
<td>9/10/18</td>
<td>10/16/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8/6/18</td>
<td>8/17/18</td>
<td>9/16/18</td>
<td>10/15/18</td>
<td>UTI</td>
<td>9/27/18</td>
<td>Moderate</td>
<td>Oral ABX</td>
<td>Not related</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bloodstream infection</td>
<td>10/1/18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8/20/18</td>
<td>8/31/18</td>
<td>10/15/18</td>
<td>11/7/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8/20/18</td>
<td>8/31/18</td>
<td>10/3/18</td>
<td>11/8/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9/3/18</td>
<td>9/19/18</td>
<td>10/18/18</td>
<td>11/19/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9/10/18</td>
<td>9/21/18</td>
<td>11/6/18</td>
<td>11/29/18</td>
<td>UTI</td>
<td>9/12/18</td>
<td>Moderate</td>
<td>Oral ABX</td>
<td>Not related</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bloodstream infection</td>
<td>9/14/18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9/24/18</td>
<td>10/5/18</td>
<td>11/8/18</td>
<td>12/3/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9/24/18</td>
<td>10/5/18</td>
<td>11/15/18</td>
<td>12/5/18</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

AE=adverse events; ABX=antibiotics; UTI=urinary tract infection
Chapter 4: Pain severity associates with poor quality of life in patients with neuromyelitis optica spectrum disorder (Manuscript 3)

Maureen A. Mealy, RN, PhD

Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Lauren Totonis

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Lawrence J. Cook, PhD

University of Utah, Department of Pediatrics, Salt Lake City, UT, USA

Ruth Andrea Salazar

Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA

Thomas J. Smith, MD

Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD, USA

Jerilyn K. Allen, PhD, RN

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Marie T. Nolan, PhD, RN

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Sharon L. Kozachik, PhD, RN

Johns Hopkins University School of Nursing, Baltimore, MD, USA

Michael Levy, MD, PhD

Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA

Massachusetts General Hospital and Harvard Medical School, Department of Neurology,

Boston, MA, USA
PAIN IN NMOSD

Abstract

Pain is a highly prevalent and severely disabling component of neuromyelitis optica spectrum disorder (NMOSD) that affects quality of life. The aim of this study was to determine the impact of pain on other co-occurring symptoms in persons with NMOSD. This cross-sectional analysis investigates the impact of pain on other symptoms that occur in patients with NMOSD, including anxiety, depression and sleep disturbance, as well as QoL. Seventy-two participants who were obtained through convenience sampling completed each of the following surveys to determine pain, health-related QoL, anxiety, depression and sleep disturbance, respectively: Brief Pain Inventory (BPI), Short Form-36 Health Inventory (SF-36), Neuro-QoL [Quality of Life in Neurological Disorders] Short Form v1.0 – Anxiety, Neuro-QoL Short Form v1.0 – Depression, and Neuro-QoL Short Form v1.0 - Sleep Disturbance. Pain was shown to correlate with physical components of QoL, fatigue, anxiety and sleep disturbance. However, degree of anxiety and sleep disturbance were similar in this patient cohort when compared to normative data. These data add to the body of evidence that pain may be the primary contributor of components that lead to poor QoL in patients with NMOSD.
PAIN IN NMOSD

Pain severity associates with poor quality of life in patients with neuromyelitis optica spectrum disorder

Neuromyelitis optica spectrum disorder (NMOSD) is a recurrent autoimmune disease that primarily targets the optic nerves and spinal cord, leading to blindness and immobility. Neuropathic pain due to inflammatory damage of the spinal cord is a highly prevalent and disabling component of the disease, with 83-91% of patients reporting its presence in descriptive studies (Kanamori et al., 2011; Qian et al., 2012; Pellkofer et al., 2013). Half of patients with NMOSD characterize their pain as severe and two thirds report being in constant pain (Zhao et al., 2014; Pellkofer et al., 2013). Research on the impact of persistent pain on quality of life (QoL) in NMOSD has found that pain is associated with depression, reduced enjoyment of life, and increased difficulty with ambulation (Mutch et al., 2014; Pellkofer et al., 2013; Zhao et al., 2014). Pain, mood, and mobility are the best predictors of poor QoL, and pain may be the strongest independent predictor (Kong et al., 2016; Mealy et al., 2018). In fact, pain predicts poor QoL better than disability, despite the profound impact NMOSD is known to have on neurologic function (Kong et al., 2016).

Treating multiple interrelated symptoms is more likely to improve QoL in chronic diseases (Kim et al., 2013). However, researchers are just beginning to understand the complexity of such relationships among symptoms and their effect on QoL in NMOSD. Preliminary evidence prompted the need to fully explore the interrelatedness of these frequently-occurring symptoms in NMOSD, and their effect on QoL. Because of its pervasiveness, investigating the impact of pain on these co-occurring symptoms, including anxiety, depression and sleep disturbance, as well as QoL, may offer health care providers a deeper understanding of how to approach comprehensive symptom management in this population.
Methods

This is a cross-sectional descriptive analysis of symptoms data collected from patients diagnosed with NMOSD. Participants were recruited through the Johns Hopkins NMO Clinic and through a social media support group for patients with NMOSD. All patients aged 18 years and older who fulfilled the 2015 International Panel for NMO Diagnosis (IPND) criteria were eligible for participation (Wingerchuk et al., 2015), regardless of pain status. The study was broadly presented to potential participants as an investigation into symptoms experienced by patients with NMOSD, so as to not deter data capture from patients who are pain-free. Following written informed consent, health records were obtained for review and data acquisition. A neurologist (ML) confirmed the diagnosis in those patients recruited through the social media site who were not evaluated in person at Johns Hopkins. Demographic and clinical data were extracted from all patient records. Participants were asked to access a secure online portal to complete a series of surveys and were provided with an alphanumeric code that enabled the study team to link participants’ data in a confidential manner. For this cross-sectional assessment, participants completed each of the following surveys to determine pain, health-related QoL, anxiety, depression and sleep disturbance, respectively: Brief Pain Inventory (BPI; Cleeland, 2009), Short Form-36 Health Inventory (SF-36; Ware, Snow, & Kosinski, 1994), Neuro-QoL [Quality of Life in Neurological Disorders] Short Form v1.0 – Anxiety, Neuro-QoL Short Form v1.0 – Depression, and Neuro-QoL Short Form v1.0 - Sleep Disturbance (Cella et al., 2011). The study was approved by Johns Hopkins Institutional Review Board (IRB00065696).

Measurement Tools
BPI was an initiative of the National Cancer Institute and the World Health Organization in response to the need for better capture of the severity and impact of cancer pain and as a way to quantify improvement in pain after changes to analgesic therapy were made (Cleeland, 2009). It has been validated in dozens of persistent pain conditions and is among the most widely used tools in NMOSD research to date (Zhao et al., 2014; Kanamori et al., 2011). Separate scores for pain severity, based on a patient-reported 11-point numeric rating scale (NRS), and pain interference can be tabulated. Pain interference measures the patient-reported consequences of pain on relevant aspects of one's life, including the extent to which pain has interfered with seven daily activities, including general activity, walking, work, mood, enjoyment of life, relations with others, and sleep (Cleeland, 2009). Both the pain severity and interference scales are scored from 0 to 10, where 0 indicates no pain/pain interference, and these dimensions grow increasingly worse as they approach ten.

The Medical Outcomes Study Short Form-36 Health Inventory (SF-36) is a patient-reported survey of overall patient health-related quality of life for which normative data are available (McHorney, Ware, Lu, & Sherbourne, 1994). It has been widely used for QoL assessment in chronic conditions, including in NMOSD research (Qian et al., 2012; Zhao et al., 2013; Pellkofer et al., 2014; Kanamori et al., 2011). Scores for eight sub-scales can be tabulated, and include physical components (physical function, physical role limitations, pain), mental components (emotional role limitations, emotional wellbeing, social function), and general components (energy/fatigue, general health) (Ware, 1994). Unlike with other measures, higher scores represent better functioning.

Neuro-QoL was established by the National Institutes of Health and is a measurement system that evaluates and monitors the physical, mental, and social effects experienced by adults
and children living with neurological conditions (Cella et al., 2011). For data analysis, raw scores are rescaled into T-score distributions in order to standardize scores with a mean of 50 and a standard deviation of 10 for data analysis. A higher T-score represents more of the concept being measured, i.e., worse anxiety, depression, sleep disturbance. Normative data for anxiety and depression were derived based on the general U.S. population, and sleep disturbance was derived based on clinical populations (Ware, 1994).

Statistical Analysis

For this analysis, patients were binned into three categories based on their BPI pain severity score, mild (0-2), moderate (3-6) and severe (7-10). Non-parametric descriptive statistics were utilized to report demographic and clinical characteristics of the cohort. Each of the eight sub-scales of the SF-36 and all measures of co-occurring symptoms, as described above, were converted into a quantifiable score (Ware, 1994; Cleeland et al., 2009; NINDS User Manual Neuro-QoL, 2015). Patients were compared across the pain severity categories (mild, moderate and severe) for impact on QoL functionality and degree of anxiety, depression, sleep disturbance and pain interference using Kruskal-Wallis One-Way Analysis of Variance. Mean scores for the Neuro-QoL measurements of anxiety, depression and sleep disturbance in this cohort of patients with NMOSD were additionally compared with established normative data from general or clinical populations using two-sample t-tests. A global SF-36 score averaged the eight sub-scales and was used for a post hoc analysis to compare functioning across pain severity categories. Once a difference between two or more pain severity categories was established via Kruskal-Wallis testing, a Dunn’s multiple comparisons test uncovered where these differences existed.

Results
Seventy-two patients met study criteria and provided complete data sets. Ten additional patients were screened but were ineligible for participation due to failure to meet the 2015 IPND criteria. As expected, most participants were female (90.3%). Median age at the time of data capture was 56.1 years. Ninety percent of this cohort was seropositive for the highly specific aquaporin 4 (AQP4) antibody associated with NMOSD. Disease duration was a median 6.0 years and delay in diagnosis was a median 6 months. Eighty-nine percent of patients reported some degree of pain, with 22 (31%) participants binned into the category containing patients with no to low pain, 23 (32%) participants in the moderate pain severity category and 27 (37%) participants in the high pain severity category. The degree of pain was independent of a history of myelitis, duration of disease, AQP4 serostatus and delay in diagnosis. Demographic and clinical profiles were similar across categories (Table 1).

Among the SF-36 sub-scales, those in the higher pain severity category were more likely to endorse lower functioning for all three physical components: physical mobility ($p=0.01$), physical role limitations ($p=0.008$), and, as expected, pain ($p=0.0005$) (Table 2). The effect of pain severity on SF-36 sub-scales that measure general components of functionality were split, such that those with higher pain severity endorsed low functioning due to energy/fatigue ($p=0.008$), but this was not the case for general health ($p=0.058$). Although the mental components of the SF-36 subscales did not significantly vary across different pain severity categories, there was a trend towards worsening emotional role limitations, wellbeing and social function with increasing pain severity. Given that there was a difference in functioning across pain severity categories, a post hoc analysis was conducted using a global SF-36 score. A significant difference in functioning was found between 2 or more pain severity categories ($p=0.00143$). Specifically, the difference was observed between low and moderate pain severity.
categories \((p=0.048)\) as well as low and high \((p=0.0006)\), but not between moderate and high pain categories \((p=0.413)\).

Patients in the moderate and high pain severity categories also reported more anxiety \((p=0.05)\) and sleep disturbance \((p=0.001)\) on the Neuro-QoL assessment, and pain interference increased with pain severity as well \((p<0.0001)\). Depression was similar across pain severity categories \((p=0.115)\) (Table 3). While pain severity worsens the physical impact, patients with NMOSD do not have higher rates of depression, anxiety or sleep disturbance compared with available normative data (Ware et al., 1994) (Table 4).

Discussion

Our study, in a cohort of patients with a median duration of disease of 6 years, is among the largest descriptive studies to assess the relationship of pain with co-occurring symptoms and components of quality of life in NMOSD. Results indicate that pain is present in the vast majority of patients with NMOSD, 89%, which concurs with previous investigations (Qian et al., 2012; Pellkofer et al., 2013). Patients with more severe pain have decreased functionality in SF-36 components of physical health and energy/fatigue. Low pain is associated with better quality of life function, whereas moderate and severe pain appear to equally impact functioning. Likewise, those in the low pain severity category endorse better anxiety and sleep outcomes among patients with NMOSD, whereas moderate and severe pain appear to equally affect these outcomes, as measured by Neuro-QoL. This suggests that both moderate and severe pain are equally impactful on QoL and co-occurring symptoms. Reducing pain may contribute to the treatment of other co-occurring symptoms, including anxiety, depression and sleep disturbance. As depression in the NMOSD population is under-recognized and undertreated with higher
levels of suicidality (Chavarro, et al., 2016), addressing pain in these patients may enable better emotional wellbeing functioning.

This is the first study to compare the amount of depression, anxiety and sleep disturbances in patients with NMOSD to normative data and found no differences. This interesting finding in a population that experiences persistent pain may suggest remarkable resiliency, particularly when coupled with the finding that mental and social functioning was not significantly impacted by pain within patients with NMOSD. Because some patients were recruited through an online social media support group, self-perceptions of functionality may be influenced by access to communal support in this rare disease and may contribute to enhanced resiliency. While the current study cannot address this finding, it deserves further exploration in future analyses of patients with NMOSD, particularly given that other research in NMOSD has reported a reduction in mental and social functioning due to pain (Zhao et al., 2014).

Collectively, our results implicate pain as a possible to many components that interfere with QoL, as characterized by declines in physical and general health. Supporting this contention is the finding that quality of life significantly differs in patients with NMOSD based on their pain severity. These data add to the body of evidence that pain may be the primary driver of many components that collectively contribute to poor QoL in patients with NMOSD, though longitudinal studies are needed to confirm this. It is worth noting that pain severity correlates highly with pain interference. This is important since pain severity can be quickly captured in the course of a busy clinic day, but it is only of value if it appropriately reflects how pain is affecting a patient on a daily basis outside of the clinic. This study suggests that acquiring a simple NRS pain score may act as a reliable surrogate of overall QoL in NMOSD patients.
There are three important limitations to this study worth noting. First was the inability to collect disability data. Because not all patients were seen in person, a disability score could not be ascertained uniformly across all participants. As disability accumulates in NMOSD with each attack, delay in diagnosis and delay in initiation of preventive therapy has been shown to act as a surrogate for disability in patients with NMOSD (Mealy et al., 2018). While there was no difference in diagnostic delay across pain severity categories, a more direct capture of disability would be beneficial in future investigations. A second limitation regards the sample evaluated. While all patients seen at the Johns Hopkins NMO Clinic or who belong to the social media support group were invited for inclusion into this study, participation bias may influence those who chose to participate, thus affecting the representativeness of the NMOSD population as a whole. Lastly, while the cross-sectional study design enabled data collection in a relatively large number of patients for this rare disease, it does not define the direction of relationships. While other disease states report a bidirectional relationship (Amtmann et al., 2015), it is yet unknown whether patients with increased anxiety and/or poor sleep quality are more likely to report higher levels of pain, or whether pain severity increases anxiety and sleep disruption in this population. A comprehensive longitudinal investigation into the degree of change in co-occurring symptoms reported by patients in response to a pain intervention may be necessary to further clarify the complexity of these relationships in patients with NMOSD.
PAIN IN NMOSD

References

PAIN IN NMOSD

Table 1: Demographic and clinical characteristics of participants

<table>
<thead>
<tr>
<th></th>
<th>Low pain severity (0-2)</th>
<th>Moderate pain severity (3-6)</th>
<th>High pain severity (7-10)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants (n=72)</td>
<td>22</td>
<td>23</td>
<td>27</td>
<td>N/A</td>
</tr>
<tr>
<td>Female sex</td>
<td>20 (91%)</td>
<td>21 (91%)</td>
<td>24 (89%)</td>
<td>0.95</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian American</td>
<td>17 (77%)</td>
<td>19 (83%)</td>
<td>14 (52%)</td>
<td>0.16</td>
</tr>
<tr>
<td>African American</td>
<td>4 (18%)</td>
<td>3 (13%)</td>
<td>11 (41%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1 (5%)</td>
<td>1 (4%)</td>
<td>2 (7%)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>57.3 (10.1)</td>
<td>49.1 (16.2)</td>
<td>57.6 (20.3)</td>
<td>0.14</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>55.9 (10.7)</td>
<td>50.0 (12.0)</td>
<td>57.7 (11.3)</td>
<td></td>
</tr>
<tr>
<td>Disease duration (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>5.8 (7.5)</td>
<td>5.0 (5.3)</td>
<td>8.3 (12.0)</td>
<td>0.31</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>9.7 (8.2)</td>
<td>8.3 (8.6)</td>
<td>11.2 (8.9)</td>
<td></td>
</tr>
<tr>
<td>Delay in diagnosis (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>0.6 (2.6)</td>
<td>0.3 (1.0)</td>
<td>0.6 (5.3)</td>
<td>0.06</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>3.7 (6.6)</td>
<td>2.4 (6.4)</td>
<td>3.8 (5.8)</td>
<td></td>
</tr>
<tr>
<td>AQP4 seropositive</td>
<td>18 (82%)</td>
<td>20 (87%)</td>
<td>27 (100%)</td>
<td>0.13</td>
</tr>
<tr>
<td>History of myelitis</td>
<td>18 (82%)</td>
<td>21 (91%)</td>
<td>26 (96%)</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Table 2: Effect of pain severity category on health-related QoL, measured by SF-36 sub-scales

<table>
<thead>
<tr>
<th></th>
<th>Low pain (0-2)</th>
<th>Moderate pain (3-6)</th>
<th>High pain (7-10)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>80.0 (60.0)</td>
<td>65.0 (60.0)</td>
<td>20.0 (60.0)</td>
<td>0.010</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>63.6 (34.4)</td>
<td>56.1 (30.5)</td>
<td>36.1 (32.9)</td>
<td></td>
</tr>
<tr>
<td>Physical role limitations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>50.0 (75.0)</td>
<td>25 (50.0)</td>
<td>0 (50.0)</td>
<td>0.008</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>53.4 (40.0)</td>
<td>28.3 (35.6)</td>
<td>21.3 (31.5)</td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>80.0 (22.5)</td>
<td>57.5 (22.5)</td>
<td>45.0 (25.0)</td>
<td>0.0005</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>73.4 (27.4)</td>
<td>55.7 (20.7)</td>
<td>46.0 (22.6)</td>
<td></td>
</tr>
<tr>
<td>Emotional role limitations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>72.7 (39.4)</td>
<td>56.5 (44.3)</td>
<td>48.1 (39.6)</td>
<td>0.087</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>100 (66.7)</td>
<td>66.7 (100)</td>
<td>33.3 (100)</td>
<td></td>
</tr>
<tr>
<td>Emotional wellbeing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>45.0 (15.0)</td>
<td>50.0 (20.0)</td>
<td>45.0 (10.0)</td>
<td>0.286</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>43.9 (11.2)</td>
<td>48.0 (10.4)</td>
<td>48.0 (8.9)</td>
<td></td>
</tr>
<tr>
<td>Social function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>100 (37.5)</td>
<td>75.0 (37.5)</td>
<td>75.0 (25.0)</td>
<td>0.061</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>82.4 (25.5)</td>
<td>70.1 (23.5)</td>
<td>69.9 (26.2)</td>
<td></td>
</tr>
<tr>
<td>Energy/fatigue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>52.0 (25.0)</td>
<td>40.0 (10.0)</td>
<td>40.0 (15.0)</td>
<td>0.008</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>50.9 (14.4)</td>
<td>42.2 (12.7)</td>
<td>39.1 (10.3)</td>
<td></td>
</tr>
<tr>
<td>General health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>52.7 (24.3)</td>
<td>41.3 (15.6)</td>
<td>38.5 (16.1)</td>
<td>0.058</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>52.5 (40.0)</td>
<td>45.0 (20.0)</td>
<td>35.0 (25.0)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Effect of pain severity category on co-occurring symptoms, measured by Neuro-QoL anxiety, depression, sleep disturbance scales, and BPI pain interference

<table>
<thead>
<tr>
<th></th>
<th>Low (0-2)</th>
<th>Moderate (3-6)</th>
<th>High (7-10)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxiety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>41.6 (8.8)</td>
<td>50.4 (14.1)</td>
<td>50.4 (14.1)</td>
<td>0.050</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>46.3 (5.6)</td>
<td>51.0 (8.1)</td>
<td>51.4 (8.2)</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>46.4 (7.9)</td>
<td>50.1 (8.4)</td>
<td>50.6 (9.9)</td>
<td>0.115</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>47.5 (8.1)</td>
<td>48.7 (5.4)</td>
<td>50.9 (6.8)</td>
<td></td>
</tr>
<tr>
<td>Sleep disturbance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>49.0 (8.8)</td>
<td>57.7 (7.4)</td>
<td>56.5 (12.8)</td>
<td>0.001</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>49.2 (7.0)</td>
<td>57.5 (8.1)</td>
<td>56.8 (9.3)</td>
<td></td>
</tr>
<tr>
<td>Pain interference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>0.2 (0.7)</td>
<td>4.3 (2.8)</td>
<td>6.1 (2.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>0.7 (1.3)</td>
<td>4.0 (2.1)</td>
<td>5.8 (1.8)</td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Comparing Neuro-QoL anxiety, depression, sleep disturbance scales in patients with NMOSD to normative U.S. data

<table>
<thead>
<tr>
<th></th>
<th>NMOSD</th>
<th>US norms</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxiety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>50.9 (34.3)</td>
<td>50 (10)</td>
<td>0.8</td>
<td>-21.0, 1.6</td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>49.2 (6.9)</td>
<td>50 (10)</td>
<td>0.5</td>
<td>-2.5, 0.9</td>
</tr>
<tr>
<td>Sleep interference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>54.6 (25.9)</td>
<td>50 (10)</td>
<td>0.5</td>
<td>-3.0, 1.4</td>
</tr>
</tbody>
</table>
Chapter 5: Synthesis/Discussion

The studies herein examined pain in patients with neuromyelitis optica spectrum disorder (NMOSD). Specifically, we investigated the use of Scrambler therapy for treatment of central neuropathic pain and explored whether reducing pain in this population could improve co-occurring symptoms and quality of life (QoL). Given the interrelatedness of symptoms, as outlined by the Theory of Unpleasant Symptoms (TOUS; Lenz et al., 1997), pain reduction and improvement in co-occurring symptoms may have a clinically meaningful impact to patients’ physical, social and emotional functioning.

Pain has been shown to interfere with QoL and may be the best independent predictor of poor QoL in NMOSD (Kong et al., 2016; Mealy et al., 2018). Central neuropathic pain (CNP) is particularly severe, pervasive and intractable to available treatments (Zhao et al., 2014). This is the first interventional pain trial in the United States to be conducted in patients with NMOSD, and the first to announce results worldwide. It is also the first trial to examine Scrambler use in patients with CNP. Results from this study may guide health care providers with non-pharmacologic approaches for comprehensive symptom management in this population.

Furthermore, while treatment of severe pain was a particular unmet need in the NMOSD patient population, the knowledge gained from this investigation may be applicable to other more common conditions that cause CNP, including multiple sclerosis, spinal cord injury and stroke.

Summary of Findings

Two studies were conducted in parallel. The synthesis of results from these will help to implement a well-informed Phase III randomized sham-controlled trial where the results are more likely to decrease pain in patients with NMOSD. Importantly, the data captured suggests
that reduction in pain will meaningfully impact the quality of lives in the target population. Targeting pain without considering the effect on QoL may yield a statistically significant reduction in pain without translating into enhanced QoL. This is especially true in light of chronic disease research that suggests that improving a single symptom in diseases where other symptoms are common without considering these co-occurring symptoms may not impact QoL (Kim et al., 2013). As such, the rationale for this two-pronged approach was to gain insights for future studies that are more likely to yield clinically meaningful results.

The first two aims of the dissertation utilized a cohort of 22 patients with NMOSD who have CNP and were recruited from the Johns Hopkins NMOSD Clinic. Patients were randomized 1:1 and blinded to undergo either Scrambler or sham therapy daily for 10 consecutive weekdays.

Aim 1

The goal of Aim 1 was to investigate the effectiveness, safety, acceptability and feasibility of Scrambler therapy when compared to sham.

Sub-aim 1. Feasibility and acceptability were measured based on response to a brief patient survey presented to patients following treatment, as follows, comparing Scrambler-treated patients to those in the sham arm: “Do you think you received treatment?” (Yes/No), and “Would you want to continue treatment in clinic, if available?” (Yes/No). Feasibility was further measured based on patient adherence to the study visit schedule, comparing those in the Scrambler arm to the sham arm. Results from this aim found no difference between groups in patients who thought they received treatment, as well as no difference in whether they would want to continue such treatment. Most patients completed all treatments, with no difference found between arms.
Sub-aim 2. Safety of the intervention was evaluated by comparing Adverse Events (AEs) and Serious Adverse Events (SAEs) in the treated versus sham groups. Safety profiles were similar between the Scrambler-treated arm and the sham arm, with one participant in the sham arm experiencing SAEs related to infections during the follow-up period. Pain did not increase in either group.

Sub-aim 3. Effectiveness of Scrambler therapy was evaluated by comparing change in numeric rating scale (NRS) pain scores from baseline to end of treatment between the Scrambler treated and sham arms. The median baseline NRS pain score decreased from 5.0 to 1.5 following 10 days of treatment with Scrambler therapy, whereas the median NRS score did not significantly decrease in the sham arm. This effect was sustained at 30 days following treatment, though not at 60 days.

Aim 2

The goal of Aim 2 was to explore the effect of Scrambler therapy on co-occurring symptoms, including pain interference, anxiety, depression and sleep disturbances, comparing patients in the Scrambler-treated arm to those in the sham arm. Prior to initiation of Scrambler therapy, patients were asked to complete each of the following measurement tools to determine baseline pain severity and interference, anxiety, depression, and sleep disturbance, respectively: Brief Pain Inventory (BPI), Neuro-QoL [Quality of Life in Neurological Disorders] Short Form v1.0 - Anxiety, Neuro-QoL Short Form v1.0 - Depression, and Neuro-QoL Short Form v1.0 - Sleep Disturbance (Cleeland, 2009; Cella et al., 2007). Non-parametric testing revealed that depression scores were reduced from baseline in the Scrambler-treated group only. A subanalysis that only considered patients who responded to treatment found a decline from baseline in
PAIN IN NMOSD

anxiety in Scrambler-treated patients as well. Symptoms were unchanged in patients receiving sham treatment.

In parallel with this aim, a third aim of this dissertation involved a cross-sectional investigation in 72 patients diagnosed with NMOSD who were recruited via convenience sampling through the Johns Hopkins NMO Clinic and an online social media patient support group. This included data from the 22 patients in the Scrambler study at their baseline timepoint.

Aim 3

The goal of Aim 3 was to assess the impact of pain on other symptoms that co-occur in patients with NMOSD, including anxiety, depression and sleep disturbance, as well as QoL. Patients accessed Brief Pain Inventory (BPI; Cleeland, 2009), Neuro-QoL [Quality of Life in Neurological Disorders] Short Form v1.0 - Anxiety, Neuro-QoL Short Form v1.0 - Depression, Neuro-QoL Short Form v1.0 - Sleep Disturbance (Cella et al., 2007) and Short Form-36 Health Inventory (SF-36; Ware et al., 1994) via a secure online portal. While on average patients with NMOSD do not have higher amounts of depression, anxiety or sleep disturbance compared with available normative data, our data revealed that patients with moderate and high pain severity were more likely to endorse lower functioning and higher anxiety and sleep disturbance than those patients with low or no pain.

Discussion

Strengths and Limitations

This study was innovative in three crucial ways, as discussed below:

1. It addressed the important and severe problem of pain in an undertreated population.
2. It provided proof-of-concept for treatment of CNP that may be applicable to other etiologies, in addition to NMOSD.

3. It added to the body of knowledge for conducting sham-controlled studies using Scrambler therapy.

Although NMOSD is a rare disease, it is devastating for those who have it. The pain experienced by this population of patients is particularly refractory to available treatments (Qian et al., 2012). Nonetheless, no interventional trials that target pain have been conducted in patients with NMOSD. The most significant strength of this study is that it addresses the high unmet need of these patients. The controlled study design used to determine efficacy of Scrambler therapy allows for specific questions to be answered which will guide future research. Because Scrambler therapy has never been rigorously tested for CNP treatment, it would have been impractical to test its use in a larger trial without first ascertaining if it is a feasible, safe and potentially effective option. We also conducted a parallel study to provide additional context to the basis of targeting pain to improve QoL in NMOSD. In a larger cohort of NMOSD, we assessed cross-sectional evidence that pain severity impacts components of quality of life, the purpose of which was to explore if pain severity may contribute to components that lead to poor QoL in patients with NMOSD. The results of these innovative studies provide a strong foundation of evidence to support further investigation of Scrambler therapy use for NMOSD, as well as other etiologies of CNP.

Published evidence for the use of Scrambler therapy is limited. Most research thus far involved open label, observational studies (Majithia et al., 2016). Only two previously reported studies utilized a blinded, randomized sham-controlled design (Campbell et al., 2013; Starkweather et al., 2015). Assessing the feasibility of the sham procedure further informs a
larger trial. The current study provides deeper insight into a pragmatic way to provide patients with sham intervention, through which patients reported being adequately masked. The sham protocol used in this investigation can be adapted for use in any randomized Scrambler trial, regardless of the population being studied.

This study is not without its limitations. Due to inadequate resources, a third party could not be recruited to receive training in and provide Scrambler therapy for this trial. As such, the primary investigator served as the Scrambler technician, and was therefore unblinded. To mitigate the risk associated with a single-blinded study design, patient-reported outcomes data were collected by an independent study coordinator. To further promote study integrity, randomization was additionally performed by an independent party. In the future, the data from the current study may provide sufficient evidence to facilitate the procurement of resources that will enhance the scientific rigor of a larger Phase III trial.

Secondly, the Scrambler component of this dissertation was powered for effect at the end of the 10-day treatment based on peripheral neuropathy data. While it was encouraging to find that this allowed for an adequately powered study to detect a difference between the Scrambler treated and sham arms at this time point, the practicality of using Scrambler increases if the effect is sustained. In this study, the effect was sustained at the 30-day time point, but not at the 60-day time point. Re-emergence of pain has been described in open-label, observational studies, in treatment of both peripheral and central pain conditions (Smith et al., 2017; Mealy et al., in press). Data suggest that pain continues to be amenable to subsequent treatment, often with fewer Scrambler treatment sessions needed (Smith et al., 2017). Nonetheless, powering a larger Phase III study with a primary endpoint for effect at 60 days rather than at end of treatment would increase the study rigor, practicality and appeal of Scrambler treatment. A post hoc calculation
PAIN IN NMOSD

was conducted to determine how to power a Phase III trial with this change in primary outcome and indicated that 29 patients per arm would be sufficient to show such an effect.

Implications for Nursing

A primary purpose of nursing research is to provide evidence-based research that promotes quality health outcomes for patients. Despite being one of the most common medical complaints, pain is often unrelieved and undertreated (McCarberg, Nicholson, Todd, Palmer, & Penles, 2008). With its physical, psychological, and economic impact, it is well-documented that pain affects QoL. Alleviating suffering and enhancing QoL is in direct alignment with nursing research. As such, the implications of the current study for nursing research are clear.

The current study was informed by TOUS (Lenz et al., 1997), which postulates that co-occurring symptoms are both influenced by and influence physiologic, psychologic, and situational factors, and that the interaction among these factors impacts performance. The discovery that patients who report moderate to severe pain were more likely to endorse lower functioning, more anxiety and more sleep disturbance supports the underpinning of this theory. This adds credence to the practicality of this model for use in nursing research that involves symptom co-occurrence and helps to refine its application. Although only pain was directly intervened on, the indication that there are indirect effects on other symptoms may make this intervention more clinically meaningful to patients. This concept is supported by research involving activation of the HPA axis, which shows that pain results in increased cortisol levels, which is associated with mood disorders (Gerrits et al. 2014). Improving functional status and QoL may afford patients with opportunities to engage in richer lives socially, personally and professionally in the context of significant pain reduction, and Scrambler may enable that in a non-invasive way. To date, medical research in NMOSD has primarily focused on disease
suppression and cure. Nursing research provides the unique opportunity to advocate for patients by recognizing the impact symptoms have on QoL and exploring remediation.

From a practical standpoint, the suggestion based on these data that a simple numeric rating of pain may act as an adequate surrogate of pain interference and components of QoL is a valuable finding that merits further validation. This can be easily captured by health care providers, even in the course of a busy day, but is only of value if targeting this number might translate into a clinically meaningful change in the function of patients with NMOSD.

Recommendations for Future Research

The primary focus of this dissertation was to capture data that can inform a larger trial toward the effort of alleviating pain in this severely affected population. The data obtained from this study establish an exciting foundation for future evaluation of Scrambler use in this population. The evidence suggests that 1) targeting pain may impact QoL, and 2) Scrambler therapy is an effective and safe non-invasive treatment for pain in patients with NMOSD. As such, a Phase III trial that is better powered to address sustainability of treatment and effect on co-occurring symptoms and QoL over time is warranted, particularly given that effects on sleep may emerge due to activation of the HPA axis, but may be delayed. Because of the subjectivity of patient-reported outcomes, such a study would benefit from combining patient-reported outcomes with objective measures such as changes in serum and salivary biomarkers of inflammation and pain in response to Scrambler therapy. Lastly, a larger trial would provide an opportunity to implement a study design that clarifies how to protocolize treatment of re-emergence of pain with subsequent treatments for sustained effect. Because of the rarity of the diagnosis, engaging multiple sites for patient recruitment in a larger trial may be warranted.
Given that response can vary based on the technician delivering treatment (Moon et al., 2015), it would be important to implement systematic and consistent training across all sites.

Another area of future research could be aimed at instrument development specific to this population, as well as validation of instruments that currently exist. At this time, no instruments have been developed and/or validated for use in patients with NMOSD. Because the symptoms themselves, as well as the psychosocial impact of these symptoms on QoL, are unique to any disease, ensuring that instruments adequately capture the patient experience is necessary.

Lastly, this research suggests that patients with NMOSD are no more anxious or depressed than general U.S. populations. This suggests that these patients display remarkable resiliency despite being faced with terrible disability and uncertain futures. Developing a deeper understanding of whether this signal of resiliency is accurate and what contributes to this resiliency would be an interesting topic for future research. Given that NMOSD is a rare disease, there tends to be an active community of patients who are involved in advocacy groups and online support groups. Recruitment for Aim 3 involved soliciting patients in such a group, though only 12 of the 72 were recruited from this source. Nonetheless, many others who were recruited through the Hopkins NMO Clinic are also involved in such organizations. Investigating how engagement with these types of resources impacts symptoms and QoL would be of future interest.
References

PAIN IN NMOSD

Definition of classes of evidence (CoE) and overall strength of evidence (SoE). (2014).

PAIN IN NMOSD

Manocchia, M., Keller, S., & Ware, J. E. (2001). Sleep problems, health-related quality of life, work functioning and health care utilization among the chronically ill. *Quality of Life*
Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 10(4), 331-345.

PAIN IN NMOSD

doi:10.1097/AJP.0000000000000155 [doi]

PAIN IN NMOSD

doi:10.1155/2012/460825 [doi]

PAIN IN NMOSD

PAIN IN NMOSD

doi:S0304-3959(07)00369-7 [pii]

Dijkgraaf, M. G. (2011). Duloxetine in patients with central neuropathic pain caused by

progressive relaxation for chronic neuropathic pain in persons with spinal cord injury.

Boston, MA: The Health Institute, New England Medical Center Hospitals.

Widerstrom-Noga, E. G., & Turk, D. C. (2003). Types and effectiveness of treatments used by
people with chronic pain associated with spinal cord injuries: Influence of pain and
psychosocial characteristics. *Spinal Cord, 41*(11), 600-609. doi:10.1038/sj.sc.3101511 [doi]

Appendix A

Scrambler study inclusion & exclusion criteria

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis of NMOSD</td>
<td>Relapse within 6 months prior to enrollment</td>
</tr>
<tr>
<td>AQP-4 seropositivity</td>
<td>Diagnosis of peripheral neuropathy</td>
</tr>
<tr>
<td>≥18 years of age</td>
<td>Ongoing concomitant CNS disorder</td>
</tr>
<tr>
<td>Persistent pain (>3 months) rated at ≥4 on NRS pain scale</td>
<td>Patients who have used investigational agents or treatments for pain control within 30 days</td>
</tr>
<tr>
<td>CNP referable to lesion starting at or below C4</td>
<td>Pregnant or breastfeeding women</td>
</tr>
<tr>
<td>Stable medication regimen for ≥ 30 days prior to enrollment</td>
<td>Cognitive or mental incompetence</td>
</tr>
<tr>
<td>Able to read and understand English</td>
<td>Patients with implantable devices</td>
</tr>
</tbody>
</table>
Appendix B

Scrambler study patient event calendar

<table>
<thead>
<tr>
<th>Phase</th>
<th>Screening/Consent</th>
<th>Scrambler Therapy or Sham Treatment (Treatment Phase)</th>
<th>Follow-up (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Point (days)</td>
<td>Within 2 weeks</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>30 days following end of treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 days following end of treatment</td>
</tr>
<tr>
<td>Exam/Tests*</td>
<td>Neurologic Exam, MRI review, Q#</td>
<td>AE and daily NRS pain score assessment during treatment phase (days 1-10)</td>
<td>Q#</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRS pain score, Q#</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRS pain score, Q#</td>
</tr>
</tbody>
</table>

*Q: Questionnaires (BPI; Neuro-QoL SF, – anxiety, – depression,– sleep disturbance)
Curriculum Vitae for Academic Promotion
The Johns Hopkins University School of Medicine

[Signature, Maureen A. Mealy, PhD(c), RN, MSCN]

3/3/2019

DEMOGRAPHIC AND PERSONAL INFORMATION

Current Appointments

2015 – present
PhD Candidate
Johns Hopkins University

2010 – present
Clinical Research Program Manager
Neuromyelitis Optica Clinic
Johns Hopkins University School of Medicine

2010 – present
Senior Research Nurse, Multiple Sclerosis and Transverse Myelitis Centers
Division of Neuroimmunology
Department of Neurology
Johns Hopkins University School of Medicine

Personal Data
Maureen A. Mealy, PhD(c), RN, MSCN
600 North Wolfe Street
Pathology 627
Baltimore, MD 21287
Phone: 410-502-8672
FAX: 410-502-6736
email: mmealy1@jhmi.edu

Education and Training

1992 – 1996
Bachelor of Science, Psychology
University of Maryland (College Park, MD)

1997 – 1999
Bachelor of Science, Nursing
Johns Hopkins University (Baltimore, MD)

2015 – present
Doctor of Philosophy, Nursing
Johns Hopkins University (Baltimore, MD)

Professional Experience

2010 – present
Neuromyelitis Optica Clinical Research Program Manager
Department of Neurology
Johns Hopkins University School of Medicine (Baltimore, MD)
PAIN IN NMOSD

2010 – 2015 Clinical Program Manager
Transverse Myelitis Center, Department of Neurology
Johns Hopkins University School of Medicine (Baltimore, MD)

2010 – 2011 Neuromyelitis Optica Consortium Administrative Director
Department of Neurology
Johns Hopkins University School of Medicine (Baltimore, MD)

2009 – 2010 Clinical Research Manager, Transverse Myelitis & Neuromyelitis Optica Clinic
Department of Neurology
University of Texas Southwestern (Dallas, TX)

2009 – 2010 Clinical Research Manager, Pediatric Demyelinating Disease Center
Department of Neurology
Children's Health (Dallas, TX)

2007 – 2008 Senior Research Nurse, Multiple Sclerosis, Transverse Myelitis, and Encephalitis Centers
Department of Neurology
Johns Hopkins University School of Medicine (Baltimore, MD)

2005 – 2007 Neurosciences Clinical Nurse Coordinator
Departments of Neurology and Neurosurgery
Johns Hopkins Hospital (Baltimore, MD)

2000 – 2007 Nurse Clinician III
Neurosciences Critical and Progressive Care Units, Departments of Neurology and Neurosurgery
Johns Hopkins Hospital (Baltimore, MD)

RESEARCH ACTIVITIES

Peer-Reviewed Publications

Original Science Research

Editorials

2. Levy M, **Mealy MA**, Kimbrough DJ, Simpson A. Impact of Vitamin D in Recurrent Transverse Myelitis. *Neurol Neuroimmunol Neuroinflamm.* Published online April 24, 2014 1:e4
Reviews

Abstracts and Professional Presentations

PAIN IN NMOSD

presentation at the annual conference of the American Academy of Neurology (AAN). Washington, DC.

Extramural Sponsorship
Research Coordination

2007 – 2014
Novartis CFTY720D2309, multi-center Phase III study of fingolimod for daily management of multiple sclerosis

2007 – 2014
Accelerated Cure Project, multi-center longitudinal epidemiologic study looking into the causes of demyelinating diseases

2009 – 2010
Multiple Sclerosis Cognition Study, single-center longitudinal study of cognitive dysfunction in multiple sclerosis patients

2010 – 2011
Multiple Sclerosis Vitamin D Study, single-center pilot study examining the safety and effects on immune profile of cholecalciferol on patients with multiple sclerosis

2010 – 2011
Guthy-Jackson Charitable Foundation NMO Consortium, multi-center cohort study aimed at characterizing epidemiologic factors in NMO

2012 – 2015
Dalfampridine in transverse myelitis study in collaboration with Acorda Therapeutics, single-center study to test the efficacy of sustained release oral dalfampridine in TM

2013 – 2014
CINRYZE® (C1 esterase inhibitor [human]) for the treatment of acute optic neuritis and/or transverse myelitis in neuromyelitis optica and neuromyelitis optica spectrum disorder, single-center open-label pilot study to examine the safety and efficacy of Cinryze for acute management of neuromyelitis optica

2013 – 2015
Bevacizumab (Avastin) for the treatment of acute NMO exacerbations in collaboration with Genentech and Guthy-Jackson Charitable Foundation, single center open-label pilot study to examine the safety and efficacy of bevacizumab for the treatment of acute optic neuritis and/or transverse myelitis in neuromyelitis optica and neuromyelitis optica spectrum disorder

2015 – 2017
Ublituximab for the treatment of acute neuromyelitis optica spectrum disorder exacerbations in collaboration with TG Therapeutics, single-center open-label pilot study to examine the safety and efficacy of ublituximab for acute management of neuromyelitis optica exacerbations

2017 – present
Phase II Randomized, Single Blind Sham-Controlled Research Study Investigating Scrambler Therapy for Neuropathic Pain caused by Neuromyelitis Optica Spectrum Disorder

EDUCATIONAL ACTIVITIES

Teaching

May 2007
Reviewer, CME/CNE course: Mastering Multiple Sclerosis: Practical Strategies for Challenging Cases (Washington, DC)
PAIN IN NMOSD

2007 – 2008 Instructor, *Clinical Topics in Neuroscience Nursing: Multiple Sclerosis Workshop*, Department of Neurology and Neurosurgery, Johns Hopkins Hospital (Baltimore, MD)

2009 – 2010 Instructor, *National Multiple Sclerosis Society Nurse and Physician Extender Training Program: Pediatric Multiple Sclerosis*, Department of Neurology, University of Texas Southwestern Medical Center (Dallas, TX)

2011 – 2012 Instructor, *NeuroAcademy: Patient Care Management, Transverse Myelitis Workshop*, Department of Neurology and Neurosurgery, Johns Hopkins Hospital (Baltimore, MD)

Mentoring

2009 – 2010 Ana Arenivas, pre-doctoral fellow at University of Texas Southwestern, mentored in Pediatric Demyelinating Disease Clinic. Dr. Arenivas is currently a PhD neuropsychologist at TIRR Memorial Hermann Institute for Rehabilitation and Research in Houston.

2015 – 2016 Anusha Yeshokumar, Neurology resident at Johns Hopkins University, mentored on a project involving disability in NMO. Dr. Yeshokumar is currently a faculty pediatric neurologist at Mount Sinai Health System in New York.

2015 – 2017 Jennifer Ng, Master’s in Nursing at Johns Hopkins University, mentoring for Research Honors Program with NMOSD project, for which results were presented at the American Academy of Neurology. Ms. Ng is currently employed in the Neonatal ICU in Children’s Memorial Hermann Hospital.

2016 – 2017 Juan Pablo Ospina, Medical Student at Universidad el Bosque, mentored during clinical rotation at Johns Hopkins University Department of Neurology on a project involving disability and treatment in NMO.

2016 – present Kate Schwartz, Licensed Practical Nurse at Johns Hopkins University, act as her direct supervisor for clinical trials including Dalfampridine in Transverse Myelitis and Eculizumab in NMO.

2018 – present Lauren Totonis, Master’s in Nursing at Johns Hopkins University, mentoring for Research Honors Program with NMOSD project involving symptom co-occurrence and effect on quality of life.

CLINICAL ACTIVITIES

Certification

1999 – present Nursing License, State of Maryland, license #: R145581

2003 – 2009 Certified Neurologic Registered Nurse (CNRN)

2009 – present Multiple Sclerosis Nurses International Certification (MSCN)

2014 – present Rare Neuroimmunologic Disorders Certification (CRND)
PAIN IN NMOSD

Community Service

July 2007 Medical Advisor, Transverse Myelitis Association Family Camp, Victory Junction Gang Camp (Randleman, NC)

July 2013 Medical Advisor, Transverse Myelitis Association Family Camp, the Center for Courageous Kids (Scottsville, KY)

August 2014 Medical Advisor, Johns Hopkins Transverse Myelitis Center Adventure Camp, Adaptive Sports Center (Crested Butte, CO)

ORGANIZATIONAL ACTIVITIES

Editorial Activities

Journal Peer Review activities:

Annals of Neurology, 2015

JAMA Neurology, 2017

Journal of the Neurological Sciences, 2017 – 2018

Multiple Sclerosis and Related Disorders, 2018

International Journal of Multiple Sclerosis Care, 2018 – 2019

Elected and Appointed Board and Committees Memberships

2014 – present Inaugural Board Member, Certified Rare Neuroimmunologic Diseases, Consortium of Multiple Sclerosis Centers

2016 – present Focus Group Member, Continuing Professional Education Committee, Consortium of Multiple Sclerosis Centers

2016 – present Research Committee Member, International Organization of Multiple Sclerosis Nurses

2017 – present Board of Directors, International Organization of Multiple Sclerosis Nurses

2018 – present NMO International Clinical Consortium Member, Guthy Jackson Charitable Foundation

2018 – present Research Committee Co-Chair, International Organization of Multiple Sclerosis Nurses

Professional Societies

1994 – 1996 Order of Omega Leadership Fraternity

1999 – present Sigma Theta Tau International Honor Society of Nursing

2007 – present International Organization of Multiple Sclerosis Nurses
2008 – present Consortium of Multiple Sclerosis Centers
2010 – present American Academy of Neurology

Conference Organizer/Session Chair

June 2013 Johns Hopkins Transverse Myelitis Center Patient Symposium, Organizer
June 2014 Johns Hopkins Transverse Myelitis Center Patient Symposium, Organizer
October 2014 Johns Hopkins Neuromyelitis Optica Patient Day, Organizer
June 2015 Johns Hopkins Transverse Myelitis Center Patient Symposium, Organizer
August 2015 Johns Hopkins Neuromyelitis Optica Patient Day, Organizer

RECOGNITION Awards

May 2010 Consortium of Multiple Sclerosis Centers Scholarship
May 2017 Sigma Theta Tau International Honor Society of Nursing Research Award
September 2017 TL1 Trainee Award through the Johns Hopkins Institute for Clinical and Translational Research Predoctoral Clinical Research Training Program (PCRTP), funded by the National Institutes of Health
April 2018 Burroughs Wellcome Fund Trainee Award on behalf of the Translational Science 2018 Program Committee
April 2018 TL1 Blue Ribbon Poster Award at Translational Science 2018 Annual Meeting

Invited Talks

September 2010 Invited Speaker, *Rare Neuroimmunologic Disorder Symposium*, University of Texas Southwestern Medical Center (Dallas, TX)
February 2011 Journal Club Facilitator, “Freedom From Disease Activity in Multiple Sclerosis”, Multiple Sclerosis Association of America (New Orleans, LA)
April 2011 Invited Speaker, *Multiple Sclerosis 101*, Multiple Sclerosis Association of America (Springfield, MO)
November 2013 Invited Speaker, *Updates on Neuromyelitis Optica*, International Organization of Multiple Sclerosis Nurses (online webinar)
May 2015 Invited Speaker, *Neuromyelitis Optica: Diagnosis and Treatment*, Consortium of Multiple Sclerosis Centers Annual Meeting (Indianapolis, IN)

August 2015 Invited Speaker, *Pain in NMO*, Johns Hopkins Neuromyelitis Optica Patient Day (Baltimore, MD)

June 2016 Invited Speaker, *Neuromyelitis Optica Spectrum Disorder: Diagnosis, Epidemiology and Management*, Consortium of Multiple Sclerosis Centers Annual Meeting (National Harbor, MD)

June 2016 Invited Speaker, *How to Navigate the Healthcare Team*, Johns Hopkins Transverse Myelitis Center Patient Symposium (Baltimore, MD)

December 2016 Invited Speaker, *Pain in Neuromyelitis Optica Spectrum Disorder*, Harvard Medical School Neuromyelitis Optica Patient Day (Boston, MA)

October 2017 Invited Speaker, *Neuromyelitis Optica Spectrum Disorder and Optic Neuritis*, Transverse Myelitis Association Rare Neuro-Immune Disorders Symposium (Columbus, OH)

October 2017 Invited Speaker, *Recognizing and Treating Neuropathic Pain*, Transverse Myelitis Association Rare Neuro-Immune Disorders Symposium (Columbus, OH)

October 2017 Invited Panelist, *Neuropathic Pain*, Transverse Myelitis Association Rare Neuro-Immune Disorders Symposium (Columbus, OH)

October 2017 Invited Speaker, *Are New Drugs on the Horizon for NMOSD?*, Transverse Myelitis Association Rare Neuro-Immune Disorders Symposium (Columbus, OH)

March 2018 Invited Panelist, *Ask the Expert*, Guthy Jackson Charitable Foundation Neuromyelitis Optica Patient Day (Los Angeles, CA)

April 2018 Invited Speaker, *Improving NMO Patient Quality of Life*, Guthy Jackson Charitable Foundation Academic Neuromyelitis Optica Roundtable Meeting (Los Angeles, CA)