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Abstract 

 Optogenetics and tandem-cell units are an important tool for studying cardiac 

electrophysiology, and this work explores a few of the exciting avenues of study they 

enable. In Chapters 2 and 3, myofibroblasts and fibroblasts are transduced with 

Channelrhodopsin-2 and co-cultured with cardiomyocytes to acutely demonstrate that 

both are electrically connected enough to cardiomyocytes to produce changes in 

cardiomyocyte electrophysiology, which has implications for treating conduction slowing 

after cardiac injury. In Chapter 4, a simple, scalable method to use tandem-cell units to 

point-pace cells in culture to mature them is developed, which has the potential to make 

them more useful for in vitro study, drug testing, and tissue engineering. Finally, in 

Chapter 5, an engineered tissue from decellularized extracellular matrix is developed 

that represents the next step for the applications in the previous chapters by providing 

important physiological cues, which should improve their relevance and accuracy. 
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Chapter 1: Introduction 

Cardiac optogenetics and tandem-cell units 

While the existence of proteins that could alter transmembrane ion flow in 

response to light has been known since at least bacteriorhodopsin was demonstrated to 

alter intracellular pH in response to light in 1973 [1], and the utility of such proteins in 

the spatio-temporal control of biological systems was well recognized, it was long 

assumed that such channels would be too slow, weak, or even toxic when exogenously 

expressed in mammalian systems (for review and discussion, see [2]). However, 

Channelrhodopsin-2 (ChR2), an opsin from the algae C. reinhardtii, was found to be 

functional in cells from a number of species, including human embryonic kidney cells, 

and have many properties ideal for light-based control of cells [3]. It is a light-gated 

cation channel, with insignificant proton pump activity [4], unlike like many other opsins, 

which means that using it to alter transmembrane voltage does not cause large 

corresponding changes in pH. Additionally, as an ion channel, it has a faster response 

time (�=~1 ms [5]) and a larger single-channel flux than proton pumps. Finally, it has 

very little dark current, and only partially inactivates upon continued exposure to light 

with �=~21 ms [5] (See [6] for further review of ChR2 biophysics). ChR2 was shown to 

be consistent and effective in generating spatiotemporally controlled neuron spiking in a 

seminal paper in 2005 [7]. Since then, many mutants have been developed to alter the 

kinetics, spectral sensitivity, and ion selectivity, including the H134R mutant used in this 

work, which was developed to yield reduced inactivation and a higher steady state 

current [5]. .  
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Application of ChR2 to cardiac cells began in 2010, when Breugmann, et al. 

transduced cardiac embryonic stem cells and used light flashes to point pace, as well as 

continuous application of light to increase spontaneous beating rate and intracellular 

calcium [8]. They also were able to generate a ChR2 mouse line and optically pace in 

vivo by opening the chest cavity to apply light. In 2011 Jia et al. developed a line of 

ChR2-transduced HEK cells, which they later called spark cells, and showed they could 

electrically couple with co-cultured cardiomyocytes (CMs) to form a tandem-cell unit, 

allowing for optical pacing without needing to transduce cardiac cells [9]. Nussinovitch, 

et. al. expanded on this work by transducing 3T3 fibroblasts with ChR2 and 

Archaerhodopsin-T, a hyperpolarizing proton pump, to pace CMs or block their 

conduction [10]. Yu, et. al. developed a method for transducing primary fibroblasts for 

formation of tandem-cell units and optical pacing [11]. Applications of optogenetics in 

cardiac tissue include basic science problems, as well as translational applications such 

as high-throughput drug screening, His bundle pacing, painless defibrillation, and 

temporary block to test ablation sites (See [12–14] for review). In this work we use 

tandem-cell units with different donor cells to work on a variety of problems in cardiac 

electrophysiology, including studying fibroblast-cardiomyocyte coupling and chronically 

pacing cardiomyocytes in vitro. 

Fibroblasts, cardiac injury, and myofibroblasts 

 Cardiac fibroblasts (CFBs) are mesenchymal cells primarily responsible for 

maintenance of cardiac extracellular matrix (ECM) [15], and release of paracrine factors 

[16, 17]. After cardiac injury, they are exposed to a number of signals that cause them 

to differentiate into myofibroblasts (MFBs), most prominently transforming growth factor 
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β (TGF-β1) and mechanical stress/substrate stiffness, but also angiotensin II and 

endothelin in the context of heart failure (See [18–24] for review). MFBs express smooth 

muscle actin (α-SMA), allowing them to contract the injured area, and produce large 

amounts of ECM, allowing them to mechanically stabilize the injury [20, 25]. They also 

produce TGF-β1 through their contraction, which releases and activates latent TGF-β1 

in the ECM [26]. While MFBs are essential to wound healing, in some cases they persist 

long after scar is formed [19, 27], and even induce MFB differentiation in healthy areas 

through their release of TGF-β1 and ECM (termed reactive fibrosis [28–30]), possibly 

due in part to continued elevated circulating angiotensin II as well as local release by 

stressed CMs in the context of heart failure [31],. Once fully differentiated, MFBs no 

longer proliferate and will not dedifferentiate into CFBs, even in the absence of MFB-

promoting signals [32]. MFBs and CFBs are best thought of as two ends of a spectrum, 

with at least one proto-MFB state in between [20, 23, 33, 34]. Exacerbating this difficulty 

in studying them, neither CFBs nor MFBs have specific markers [22, 31, 33, 34]. 

Cardiac fibroblast and myofibroblast electrophysiology 

CFB and MFB electrophysiology is much less well understood than that of CMs. 

Part of the reason is that for many years, their electrophysiology was overlooked since 

they are unexcitable [17], and their main function is the production of paracrine factors 

and ECM [20]. Because CFBs spontaneously differentiate into MFBs in culture, with at 

least one intermediate, proto-MFB state between them, there can be a mixed population 

with very different electrophysiology without treatment to keep them in one state or 

another [32, 35]. This can result in inconsistent gene and protein expression [35]. 

Obtaining functional data via patch clamp presents even more challenges. Because 
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CFBs in culture are so flat, they are much more difficult to patch than CMs. MFBs have 

significantly higher resting potential (RP) than CMs [36, 37], and recent data has 

conclusively shown that CFB RP is between that of MFBs and CMs [35]. MFBs also 

have lower membrane resistance and increased size and capacitance than CFBs in 

vitro [35]. CFBs cycle calcium with a period of 30-130 s, and MFBs cycle slightly faster 

[38], so electrophysiology depends significantly on when during this cycle it is 

measured. Furthermore, CFBs and MFBs are highly mechanosensitive, with large 

depolarizations in RP during stretch [39], which has been proposed to be a mechanism 

of pressure-induced increases in beating rate [40].  

While initially it was assumed CFBs had no relevant currents and simply acted to 

block conduction between CMs, with the discovery by Gaudesius that CFBs (likely 

MFBs) could conduct APs [41], computational models began to include CFB-CM 

conductance and passive membrane properties of CFBs, consisting of simply a 

capacitance, a net resting potential, and a total sarcolemmal conductance [42–45]. In 

the first example of this, Kohl, et. al. found that CFBs could increase spontaneous rate 

in the sinoatrial node, and further increase it during stretch, which they modelled as an 

increase in conductance of the CFB [46]. 

MacCannell, et. al. first created a model including active membrane currents [47]. 

They included a delayed rectifier potassium channel, based on patch clamp and 

western blot data from their lab [48], the inward rectifier channel IK1 based on strong 

expression of Kir2.1 [49], an assumed Na/K pump to maintain a cellular potassium 

gradient, as well as an assumed sodium leak to replace the sodium pumped out of the 

cell.  
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More recently, further rtPCR, RNAseq, and patch clamping have enabled the 

identification of a wide range of ion channels in CFBs and MFBs, including connexins 

[35], the delayed rectifiers Kcna6 (Kv1.6) [35, 48, 50] and Kcnh2 (Kv11.1, IKr) [35], 

inward rectifier Kcnj2 (Kir2.1, IK1) [35, 48, 50], a sodium leak channel, Nalcn [35], as well 

as the subunits for Na/K/ATPase [35], as suggested by the MacCannell model. In 

addition, Cacna1c (CaV1.2, ICaL ) [35], BKCa (KCa1.1) [50], many TRP channels [35, 51, 

52], a number of sodium channels, including the cardiac NaV1.5 [35], the sarcolemmal 

calcium pump, Atp2b1 [35], Kcnj8 with SUR2 (Kir6.1, KATP) [35, 48], and Kcnd3 

channels (Kv4.3, Ito) [35, 50] have been found.  

Modeling has shown that MFB electrical coupling can explain the increase 

followed by decrease in conduction velocity (CV) as a function of MFB density [53, 54] 

found experimentally [55]. It has also shown that elevation of CM RP is the likely reason 

for this slowing [36, 56], with MFBs acting as a current sink during depolarization as an 

additional reason for CV reduction [43, 54, 57].  

Despite these advances, and the ability to study wide ranges of parameters and 

systems, modeling of CFB electrophysiology remains hampered by the lack of 

consistent measurements in experiments. This is likely because whether cells are CFBs 

or MFBs or in between is often not well characterized in experimental studies. Indeed, 

Salvarani, et. al. treated CFB with either TGF-β1 to produce a MFB phenotype, or the 

TGF-β receptor I blocker SB431542 to maintain them in a CFB state, as defined by the 

presence or absence of α-SMA, respectively, and found significant and complex 

differences in levels of channel expression between CFBs and MFBs, demonstrating 

the importance of controlling the phenotype of cells in vitro [35]. 
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Mechanisms of myofibroblast arrhythmogenesis 

 Reentrant arrhythmia depends on two general factors – first, a substrate capable 

of supporting a reentrant circuit, and second, a trigger, in the form of unidirectional 

block, often caused by an ectopic beat [58]. After cardiac injury, including infarction, 

MFBs invade and secrete ECM, and arrhythmia risk is greatly increased [59, 60]. One 

mechanism by which this could occur is that MFB invasion and ECM production disrupts 

CM-CM connections, forcing conduction to move around the ECM and MFBs [36]. This 

increases the path length a wave can travel without running into repolarizing tissue. 

Since there is a minimum path length λ = θ ERP (path length = CV*effective refractory 

period) necessary to sustain reentry [58], this increases the arrhythmogenicity of the 

substrate. Furthermore, disruption of CM-CM connections creates variability in the path 

width, resulting in source-sink mismatches for the propagating wave [58]. This mismatch 

slows conduction, increasing arrhythmia risk by the formula above, and also increases 

the possibility of unidirectional block, a prerequisite for reentrant arrhythmia [58].  

Studies have shown conduction slowing [35, 55, 61–66], increased spontaneous 

beating [55, 63, 64, 67], and increased propensity for arrhythmia [61, 64, 68] for CMs 

co-cultured with MFBs in vitro, suggesting MFBs contribute to arrhythmogenicity in ways 

other than CM-CM disruption. In addition to secreting ECM, MFBs may electrically 

connect to CMs, as they have been shown to do in vitro [56, 69, 70]. This electrical 

connection results in depolarization of the CM, since MFBs are more depolarized than 

CMs [35]. The raised RP inactivates sodium channels, reducing inward current during 

the action potential (AP) upstroke, which then reduces CV, contributing to arrhythmia 

[36]. Furthermore, inward current from the relatively depolarized MFBs can cause 
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diastolic depolarization of the CMs to the point of initiating an ectopic beat, providing a 

trigger for arrhythmia [36]. If calcium concentration is higher in the MFB, calcium influx 

into the CM may also initiate spontaneous beating by increasing CM intracellular 

calcium, resulting in calcium sparks and spontaneous beating via the calcium clock [71]. 

During depolarization, once the potential of the CM becomes more positive than that of 

the MFB, the outward currents in the MFB provide a current sink for the depolarizing 

sodium current in the CM, shunting current away from depolarizing downstream cells 

and slowing conduction [43, 54, 57]. Additionally, Pedrotty, et al. found that even when 

MFBs were not in contact with CMs, they could cause a significant (60%) reduction in 

CV through paracrine effects alone [72], presumably by remodeling CM ion channels, 

similar in magnitude to the reported slowing caused by MFBs in contact with CMs. 

Vasquez, et. al. also found statistically significant slowing by MFB-cultured media, 

although to a much lesser degree (11%). Thompson et. al. found MFB-induced 

conduction slowing could be reversed by application of mechanosensitive channel 

blockers, suggesting that MFB contraction may open CM mechanosensitive channels to 

generate deleterious inward and outward currents with the same downstream effects as 

those that could be produced by electrical coupling [61]. These putative mechanisms 

are summarized in Figure 1. 
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Figure 1. Putative mechanisms of myofibroblast arrhythmogenicity. 
 

Teasing apart the relative importance of the various mechanisms by which MFBs 

slow CM conduction presents a difficult challenge. In vitro studies have plated MFBs on 

top of CMs, which should prevent MFBs or ECM from disrupting CM-CM connections, 

yet still find decreased CV and increased arrhythmia suggesting other mechanisms are 

also important [61, 63]. While MFBs produce many growth factors and other paracrine 

signals [73–75], the conflicting magnitudes of their effects on CMs when not in contact 

with them [62, 72] leaves significant contribution of paracrine signaling to MFB effects 

on CM in doubt.  

The first thing to examine in considering the plausibility of electrical coupling 

being an important factor in MFB-induced arrhythmia is the evidence MFBs are 

functionally electrically coupled. This was first demonstrated in dual-cell patch clamp by 

Rook, et al. in 1992 [76]. Since then, other groups have used dye-transfer studies to 

suggest electrical coupling in syncytia [62, 64, 77–79]. However, one study found that 

MFB could induce slowing in CMs within 30 minutes of being added [80], significantly 

faster than half life of turnover of Cx43 (1.3-2 h) [81], casting doubt on necessity of an 

electrical mechanism for slowing.  
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Further evidence for an electrical mechanism is that in most studies, knockdown 

of Cx43 at least partially ameliorated MFB-induced conduction slowing [64, 68, 82], 

although one conflicting study found Cx43-knockdown MFBs slowed conduction just as 

much as control MFBs [61]. Furthermore, decreasing Cx43 expression inhibits TGF-β 

signaling [83] and CFB differentiation to MFB [83, 84], so Cx43 knockdown alone could 

reduce the number of MFBs present, increasing CV independent of a decrease in CM-

MFB electrical connection. Another study found application of the KATP channel opener 

pinacidil improved CV in MFB-CM co-cultures, but had no effect on CM cultures, which 

presumably was because KATP channels were more abundant in MFB, and that opening 

them with pinacidil made their RP more similar to that of CMs [65]. This electrical 

mechanism is also bolstered by the fact that most, but not all, studies agree MFBs have 

more gap junction expression and function (See Table 10), as well as lower 

sarcolemmal resistance than CFBs [35], allowing these factors to explain why MFBs are 

arrhythmogenic and CFBs are not. 

Evidence for mechanical coupling starts with the observations that MFBs are 

mechanically connected to CMs, contract, and can pull on CMs [61, 80], and that MFBs 

express more α-SMA than CFBs [20]. Furthermore, a seminal study by Thompson, et. 

al. found that the excitation-contraction uncoupler blebbistatin, or the mechanosensitive 

channel blockers Gd3+ and streptomycin, could ameliorate MFB-induced conduction 

slowing [61]. Later Grand, et. al. confirmed that Gd3+ and streptomycin could ameliorate 

conduction block [66]. However, they found no effect of blebbistatin or thrombin 

(expected to stretch the cells), and concluded that MFBs electrically depolarize CMs, 

and that mechanosensitive channels in CMs and/or MFBs are constitutively active and 
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can be blocked by mechanosensitive channel blockers, but that MFB contraction does 

not contribute to their opening [66]. Furthermore, other studies found stretch caused 

slowing in healthy heart, presumably without MFBs, and that it was not ameliorated by 

application of Gd3+ [85, 86]. Thompson et. al. bolstered the argument for a mechanical 

mechanism by showing knockdown of N-Cadherin could also ameliorate MFB-induced 

conduction slowing [80]. However, knockdown of N-cadherin concomitantly knocks 

down Cx43 [87], making it difficult to tease out which is more important. They also 

showed MFB transduced with dominant-negative RhoA reduced conduction slowing, 

and Rosker, et. al. showed application of cytochalasin-C and jasplakinolide, which 

prevent actin polymerization, could also reduce MFB-induced conduction slowing. 

However, RhoA and actin polymerization are part of the MRTF-SRF signaling pathway, 

which can also cause MFB differentiation [88], so these interventions may have simply 

prevented CFB differentiation into MFBs or dedifferentiated proto-MFBs.  

In conclusion, while the weight of evidence remains in favor of electrical coupling 

between MFBs and CMs being the predominant mechanism of slowing, there is still 

conflicting data. Obviously, all of these mechanisms may work in parallel, and possibly 

even in tandem. For example, MFBs may stretch mechanosensitive channels in other 

MFBs, depolarizing them along with CMs to which they are electrically connected. This 

may be amplified by the nonlinearity of CV changes with respect to RP, as suggested 

by Grand, et. al. [66]. To address this, in Chapters 2 and 3, we develop a novel 

technique to use optogenetics to acutely evaluate the electrical mechanism, and 

determine if CFBs are connected enough to CMs to also cause slowing, provided 

enough inward current. Arguments for and against electrical and mechanical 
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mechanisms of slowing are summarized in Table 1. For additional reviews see [36, 45, 

67, 89]. 
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Question Electrical Argument 
Mechanical 
Argument 

Why is MFB-
induced CV 
slowing worse 
than CFB slowing? 

• Cx43 expression/ conductance 
increase by MFBs or after 
myocardial injury [62, 79, 90] 

• N-Cadherin is decreased in MFBs 
[91] 

• SMA expression increased 
in MFBs [20, 25] 

• N-Cadherin, shown to 
worsen slowing [80], 
slightly increased in MFBs 
[79] 

Are CMs and 
MFBs electrically 
connected? 

• Yes, as shown by dual patch 
clamp [35, 76] 

• Yes, as shown by dye transfer 
[62, 64, 77–79] 

• Yes, as shown by AP propagation 
through MFB [41, 76] 

• Dye transfer between 
MFBs and CMs is much 
slower than MFB-induced 
CV slowing (5 h vs. 0.5 h) 
[80] 

• Cx43 turnover much slower 
than MFB-induced CV 
slowing [81] 

Does Cx43 
knockdown 
abrogate MFB-
induced CV 
slowing? 

• Yes, knockdown of Cx43 at least 
partly ablates MF-induced CV 
slowing [64, 68, 82] 

• No, knockdown of Cx43 
does not ablate MFB-
induced CV slowing [61] 

• Knockdown of Cx43 
decreases α-SMA 
expression [84], meaning 
any recovery may be due 
to decreased contraction 

Does cadherin 
knockdown 
abrogate MFB-
induced CV 
slowing? 

• Knockdown of N-cadherin 
decreases gap junction 
expression and conductance [87] 

• Yes, knockdown of N-
cadherin (found to express 
at heterocellular junctions) 
abrogates MFB-induced 
CV slowing [80] 

Is it reasonable 
each mechanism 
causes slowing? 

• Yes, even HEK cells transduced 
with Cx43 slow conduction [78] 

• Yes, external stretch 
exacerbates MFB-induced 
CV slowing [66] 

Do appropriate ion 
channel drugs 
abrogate MFB-
induced CV 
slowing? 

• Yes, KATP channel openers 
hyperpolarize MFs and partially 
ablate MF-induced CV slowing 
[65] 

• No, mechanosensitive channel 
blockers Gd3+ [86] and Gs-Mtx-4 
do not prevent stretch-induced 
decrease in CV, and Gs-Mtx-4 
causes an increase in CV at 
baseline (while Gd3+ decreases 
CV at baseline) [85] 

• Yes, mechanosensitive 
channel blockers Gd3+ 
and streptomycin at least 
partially ablate MFB-
induced CV slowing [61, 
66] 
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Does changing 
contraction/ 
stretch change 
MFB-induced CV 
slowing? 

• Neither the contraction uncoupler 
blebbistatin nor contraction 
activator thrombin affects MFB-
induced CV slowing [66] 

• RhoA and SMA polymerization 
are important for MFB 
differentiation [88], meaning any 
changes may be due to MFB 
dedifferentiation 

• Yes, the contraction 
uncoupler blebbistatin 
ablates MFB-induced CV 
slowing [61] 

• Yes, dominant-negative 
RhoA ablates MFB-
induced CV slowing [80] 

• Yes, α-SMA-affecting 
drugs Cytochalasin D, 
latrunculin B and 
Jasplakinolide at least 
partially abrogate MFB-
induced CV slowing [63] 

Table 1. Evidence for electrical versus mechanical mechanisms of conduction slowing 
caused by myofibroblasts. 
Green shows arguments for the mechanism, red shows arguments against the alternative 
mechanism.  

Maturation of cultured cardiac cells by electromechanical stimulation 

Many studies have used electrical pacing and mechanical stimulation to attempt 

to mature cardiac cells [92, 93]. While early studies found differences between paced 

and unpaced tissues [94–98], the finding by Sathaye, et. al. that excitation-contraction 

uncoupling prevents pacing-related maintenance of longer APD in culture illustrated the 

importance of mechanical deformation [94]. More recently, important strides have been 

made by seeding cells on deformable substrates to allow them to contract during 

excitation. Radisic, et. al. found seeding neonatal rat CMs onto collagen sponges then 

stimulating at 1 Hz could increase maximum capture rate and sarcomere content, as 

well as produce intercalated discs that were almost absent in unstimulated constructs 

[99]. Lasher, et. al. found in fibrin-based engineered heart tissues (EHTs) that 1 Hz 

pacing increased the CM volume fraction and length/width ratio, as well as Cx43 

expression at the cell membrane, effectively matching the properties of an age-matched 

native phenotype [100]. Hirt, et. al. expanded these results in EHTs to human induced 
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pluripotent stem cell-derived CMs (hiPSC-CMs), finding similar results, as well as 

increased contractility per cross-sectional area [101]. Nunes et. al. seeded hiPSC-CMs 

into a collagen gel in an elongated mold around a suture, to create a removable 

“biowire” [102]. These biowires were electrically paced at 6 Hz and had improved 

calcium handling as well as faster conduction than unpaced biowires [102]. Godier-

Funemont, et. al. developed a method to allow for auxotonic contraction in neonatal rat 

ventricular myocyte (NRVM) EHTs, and found electrical pacing at 2-4 Hz upregulated 

RyR and SERCA, improving calcium handling, and increased t-tubule formation [103]. 

These alterations resulted in a positive force-frequency relationship, a first for 

engineered cardiac tissue [103]. Ronaldson-Bouchard, et. al. ramped up electrical 

stimulation of auxotonically contracting EHTs to 6 Hz, finding more adult-like gene 

expression, mitochondria density, metabolism and calcium handling [104]. These results 

demonstrate the importance of electrical pacing for CM maturation. Therefore, in 

Chapter 4, we use spark cells in tandem cell units to chronically pace CMs.  

Cardiac extracellular matrix and decellularization 

A significant goal in cell culture is to provide cells with the same structural, 

mechanical, and chemical signals in vitro that they receive in vivo, so that they behave 

similarly. For cardiac cells, substrate patterning is used to recreate the anisotropic 

structure of the heart [105], while gels are used to recapitulate the compliance of the 

heart, as well as its three-dimensionality [106], and culture media, supplemented with 

various growth factors, as well as other proteins and macromolecules, are used to 

provide the same chemical cues cells receive in vivo [107]. While 3-D bioprinting holds 
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promise for recapitulating many of these signals simultaneously, it remains a challenge 

[108]. 

In the body, ECM, a network of proteins and other macromolecules, surround 

cells and provide these cues[109, 110]. Since the seminal work by Ott et al. 

demonstrating the decellularization and subsequent repopulation of a rat heart [111], 

the use of decellularized native tissues as natural scaffolds for engineered cardiac 

tissues has become widely investigated [112]. A common method to decellularize 

cardiac tissue is perfusion of the whole organ with detergents and/or enzymes, and has 

been successfully applied to rat [111, 113–115], pig [116], and mouse [117] hearts. 

However, recellularization of the decellularized heart, either through the coronary 

circulation or by direct injection, has not succeeded in repopulating the tissue evenly. 

The ability to provide cues from ECM in vitro would be beneficial for our other 

projects, since substrate stiffness [118–120] and composition [121, 122] affect CFB 

differentiation into MFB, and as noted in the previous section, a deformable substrate 

may be important in further maturing cells using our optical pacing system. In Chapter 5, 

we develop such a substrate using decellularized matrix from pig hearts. 

 

  



16 
 

Chapter 2: Inward current in myofibroblasts can cause 

electrophysiological changes in cardiomyocytes 

Introduction 

After myocardial injury, CFBs are activated by mechanical stiffness and paracrine 

factors, most prominently TGF-β1 [20]. These activated CFBs migrate to the injury and 

differentiate into MFBs, which contract in order to stabilize and shrink the injured area, 

and manufacture and secrete ECM to fill in areas where cells died [18, 20]. Although 

there is no clear boundary between CFBs and MFBs [123], a hallmark of fully 

differentiated MFBs is organized α-SMA fibers [20, 32].  

Arrhythmia risk is significantly increased after cardiac injury [36, 67]. There are 

many contributing factors to this, such as interruption of CM coupling by scar, resulting 

in zigzag propagation or electrical block, and electrical remodeling [36, 67]. However, an 

additional factor may be the effects of MFBs themselves on cardiac electrophysiology. 

In simplified in vitro systems, addition of MFBs to CMs has been shown to slow CM CV 

and increase spontaneous beating rate [35, 36, 61, 63, 67, 68, 70, 124, 125], which can 

produce both a substrate and trigger for arrhythmia. Indeed, in vitro studies have shown 

spiral wave formation is more common in MFB/CM co-cultures than in CM cultures 

alone [61, 63, 68, 125]. While most groups argue that electrical coupling between CMs 

and relatively depolarized and unexcitable MFBs is the major factor in conduction 

slowing [35, 55, 62–64, 66], alternative hypotheses include paracrine [72] and 

mechanical mechanisms [61, 80].  
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As outlined in Chapter 1, because of the possibility of paracrine signaling effects, as 

well as the extensive cross-talk between Cx43 expression and MFB differentiation [84], 

verifying the proposed electrical mechanism of MFB-induced conduction slowing 

remains challenging. Some studies have used FRAP as evidence of diffusional (and 

therefore presumably electrical) coupling between CMs and MFBs [62], but these 

cannot be translated to a value of electrical conductance [126] or show that the 

connection is strong enough to cause significant slowing in CMs. Dual-cell patch clamp 

has been used to quantify the electrical connection between CM and MFB pairs [35, 

76], but not in a syncytium, which can have differences in electrophysiology because of 

the difference in cell density [127], and allows for measurement of macroscopic CV. 

In this in vitro and in silico study, we transduced MFBs with the optogenetic protein 

ChR2, a relatively non-selective cation channel that opens in response to light [6], to 

acutely modulate their currents. In so doing, we were able to demonstrate acute 

changes in CM electrophysiology in response to changes in MFB currents, 

demonstrating MFBs are electrically coupled to CMs, and that this coupling can in fact 

acutely cause slowing and spontaneous beating in CM syncytia.  

Methods 

Cardiomyocyte isolation and culture 

All animal procedures were performed in compliance with guidelines set by the 

Johns Hopkins Committee on Animal Care and Use and all federal and state laws and 

regulations. Cell culture media consisted of Medium 199 (Gibco) supplemented with 1% 

HEPES buffer solution (Gibco), 1% MEM non-essential amino acids (Gibco), 20 µM 
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glucose (Millipore-Sigma), 2 mM L-glutamine (Life Technologies), 4 µg/mL vitamin B-12 

(Millipore-Sigma), 1% penicillin (Millipore-Sigma) and 10% fetal bovine serum (FBS, 

Millipore-Sigma). The hearts of 2-day-old Sprague-Dawley rats (Harlan, Indianapolis, 

IN) were excised, cut into 4-6 pieces, rinsed twice in HBSS, placed in 40 mL 0.25 

mg/mL filtered trypsin (Millipore-Sigma) in HBSS solution in a sealed glass container, 

and rotated at 110 rpm at 4°C overnight (13-16 h). The next day as much trypsin 

solution as possible (without removing cells) was pipetted out, and the remainder 

quenched by adding 25 mL 10% FBS media. The tissue was rotated at 150 rpm in a 

warm water bath for 3 min. Then, excess media was removed, and 9 mL of 1 mg/mL 

collagenase (Worthington, Lakewood, NJ) in HBSS was added before sealing the glass 

container holding the tissue and placing it back in the warm water bath for 3 min. After 

this, excess solution was removed and discarded and another 9 mL of collagenase 

solution was added, the glass container was sealed and rotated in the warm water bath 

again for 3 min, the cells were pipetted up and down three times, and the excess 

solution was removed and placed in a 15 mL centrifuge tube with 4 mL cold HBSS, 

which was placed in ice to quench the collagenase activity. This was done 3 more 

times. The tubes were centrifuged at 3,000 rpm for 8 min, excess solution was 

aspirated, and the cells were pipetted out into 10 mL of cold HBSS. They were then 

triturated by pipetting before being passed through a 40 µm nylon cell strainer (BD 

Falcon, Franklin Lakes, NJ). The cells were then centrifuged again for 5 min at 1,000 

rpm and 1 min at 3,000 rpm, HBSS was removed by aspiration, cells were resuspended 

in 15 mL 10% FBS media, and preplated for one hour in a 175 cm2 flask (Sarstedt, 

Newton, NC) to isolate CFBs. They were then preplated again in 25 mL 10% FBS 
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media in a 175 cm2 flask (Sarstedt) for one hour. The supernatant, consisting of purified 

CMs, was removed and cells were counted using a hemocytometer (Thermo Fisher 

Scientific, Hampton, NH). NRVMs were plated onto coverslips coated with 25 μg/mL 

fibronectin at 1 million per well for a 12-well plate or 500,000 per well for a 24-well plate. 

Myofibroblast transduction and culture 

MFBs used in experiments were produced by passaging cells from the first 

preplate twice (on day 4-5 and 11-12) and transducing them with ChR2-YFP fused 

adenovirus (plasmid pcDNA3.1/hChR2(H134R)-EYFP from Addgene (Cambridge, MA), 

pBR322 backbone adenovirus, CMV promoter) from the Entcheva group at 

approximately 2000 MOI as described previously [11] during the second passage, with 

media changed 4-6 hours later to remove virus. They were then were treated with 5 

ng/mL TGF-β1 (R+D Systems) four days after transduction to fully differentiate them 

into MFBs. These procedures were followed for pilot experiments except that MFBs 

were plated onto 0.1% gelatin-coated 24-well #0 glass-bottom plates (Cellvis) at 

200,000/well, and 0, 1000, 2000, or 5000 MOI of virus was added to some of the wells. 

Eight days after plating cells were fixed and stained for YFP (Invitrogen GFP Ab), 

α-SMA (Sigma), and DAPI using standard protocols. Cells were then imaged using a 

confocal microscope (LSM 710NLO-Meta, Zeiss).  

Optical stimulation and recording 

To optically stimulate and record voltage, a custom setup was created. Red 

(λ=655 nm) and blue (λ=448 nm) LED modules (Luxeon SinkPAD-II Rebel 7 LED 

Round Modules) were arranged perpendicularly, with a dichroic mirror (λ= 475 nm) 

between them at a 45° angle (Figure 2). The red LED was connected to a 15 V 
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regulator and powered at 18 V by a variable power supply (Tekpower TP3005). The 

blue LED was connected directly to the power supply. In early iterations a green LED 

(530 nm) was used instead of the red LED, or a 690/60 nm filter (Omega Optical) was 

placed in front of the red LED. The spectra of the LEDs were measured using a 

spectrometer (Ocean Optics, USB4000). For the green LED, a coverslip coated in 

PSCRed (Brewer Science, Rolla, Mo) was used as the base of the experimental 

chamber, as an emission filter. For the red LED, initially 715 nm or 760 nm long pass 

filters (Newport, catalog no. 20CGA-715 or 20CGA-760) made up the base of the 

experimental chamber, as emission filters, before being replaced with two 717 nm 

Wratten filters (Kodak, 717FWP7575) affixed to a 1 mm glass slide using clear packing 

tape (Scotch Heavy Duty) in the final iteration. In every iteration, the distance between 

the voltage-sensitive dye excitation LED and the fiber optics that led to the photodiode 

sensors was varied to give an optical signal just below saturation of the photodiodes to 

maximize signal-to-noise. 
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Figure 2. Optical stimulation and recording setup. 
 

Testing voltage-sensitive dye  

 di-4-ANBDQBS was dissolved at 17.5 mM in ethanol, before being diluted 1:500 

in Tyrode’s to achieve a final concentration of 35 µM before being added to CMs as 

done previously [128]. CMs were then imaged using confocal microscopy. Bleed-

through of red light through emission filters was determined by placing a spectrometer 

(Ocean Optics) under the two initial emission filters. Changes in exposure time were 

used to compensate for the limited dynamic range of the sensor. The fluorescence 

properties of the dye was compared to that of di-4-ANEPPS by dissolving both stocks 

(di-4-ANEPPS stock is 4mM in DMSO) in PBS at concentrations ranging from ¼ the 

recommended dose (1:500 dilution for di-4-ANBDQBS, 1:1000 dilution for di-

4-ANEPPS), up to 512x the recommended dose, increasing by factors of two (the 
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highest dose for di-4-ANBDQBS was actually 500x, the undiluted stock solution), and 

measuring fluorescence at different excitation frequencies in a plate reader. Some 

samples had only PBS for background subtraction. 

Co-culture, imaging, and optical mapping 

ChR2-transduced MFBs (ChR2-MFBs) or untransduced MFBs were added to 4-

5-day-old CM monolayers at 400,000/well in a 12-well plate or 200,000/well in a 24-well 

plate (approximately 100,000/cm2), giving an MFB:CM cell ratio of 0.4. On days 5-8, co-

cultures were imaged under phase contrast and fluorescence (Eclipse TE2000U, Nikon) 

to examine their morphology and continued expression of ChR2, then placed in a 

custom optical mapping system [129] and stained for 5 minutes with 35 μM of the 

voltage-sensitive dye di-4-ANBDQBS (from Dr. Leslie Loew, University of Connecticut). 

Tyrode’s solution (1.8 mM CaCl2, 5 mM glucose, 5 mM HEPES, 1 mM MgCl2, 5.4 mM 

KCl, 135 mM NaCl, and 0.33 mM NaH2PO4 in ddH2O pHed to 7.37 with NaOH, all 

chemicals from Sigma-Aldrich) at 35°C was then continuously flowed over the cells. The 

pacing threshold with 10 ms pulse width was determined to within 1 V, and the cells 

were point paced at 1.1x threshold for 5 min at 2 Hz to reach steady-state. A baseline 

optical recording was taken, then continuous blue light to open ChR2 channels was 

applied across the entire monolayer for about 2 seconds before and then during a 2 

second recording, after which the light was switched off, and a post-ChR2 activation 

recording was collected as soon as possible (within seconds). This allowed for 

recording at a steady state of ChR2 current, since the activation, inactivation and 

closing kinetics all have time constants <25 ms [5]. This was done for increasing light 

intensities. After optical mapping, monolayers were fixed and stained for α-actinin 



23 
 

(Sigma), α-SMA (DAKO), Cx43 (Sigma), YFP (Invitrogen GFP Ab), and/or DAPI before 

imaging (LSM 710NLO-Meta, Zeiss).  

Acute myofibroblast strain energy measurements  

MFBs were produced as described above, except after the second passage, 

10,000 cells were plated in a 35-mm dish onto force-sensing micropost arrays produced 

as described previously [130]. Cells were imaged 20 h after seeding via bright field 

using an inverted microscope (Nikon TE-2000), 60 s before application of 30 s high 

intensity (1.2 mW/mm2) blue light, as well as 60 s after. Micropost images were 

analyzed using Igor Pro (Wavemetrics) by a centroid-fitting method to track their 

positions x


 (Crocker et al 1996). Microposts’ undeflected positions 
undeflectedx


 were 

calculated by fitting to a hexagonal grid. Total strain energy, calculated as 

21
| |
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undeflectedE k x x 

 
, was used as the scalar metric to measure cellular static force, 

since vector sum of cellular force will be zero. These experiments were conducted by 

Yu Shi. 

Mathematical model  

Experimental data was modeled in MATLAB (The MathWorks, Natick, MA) using 

a modified version of the Korhonen model for NRVMs [131]. Currents for MFBs were 

modeled by a hyperbolic least squares fit of 

���� = (� tanh(���� + �)+ �)(���� + �)+ � to the I/V curve measured by Salvarani for 

TGF-β1-treated CFBs [35], then simplified to ���� =
�����

�������

��
�� �

��
(���� + 20) 
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(Figure 3). In addition to those endogenous currents, the Williams model for ChR2 

current (IChR2) [132] was added to the MFB (Figure 4).  

 

Figure 3. Myofibroblast current-voltage fit to experimental data. 
Hyperbola was fit to data from TGF-β1-treated cells in [35]. 

 
Figure 4. Model schematic. 
ChR2 channel (Gops, Eops) from Williams [132] was added to MFB model based on Salvarani 
data [35]. MFBs were electrically connected to CMs (GMFBCM), which were connected to each 
other (GCMCM) to form a 30 cell, 1.5 mm 1-D cable. The dashed lines show the outer boundaries 
of the CMs (red) and MFBs (green). Values and formulas for variable are listed in Table 2 and 
Table 3. 

Each CM was connected via a lumped gap junction to a MFB (Figure 4). MFBs 

were assumed to have approximately the same capacitance as CMs on a cellular basis, 
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as done previously [133]. Although the MFB:CM ratio was 0.4, to simplify modeling, we 

modeled one MFB connected to each CM, and simply multiplied its capacitance by 0.4. 

This was possible because on a scale on the order of tens of cells, the total membrane 

area of each cell type is the main determinant of CV, so a small number of large MFBs 

can be changed to a large number of smaller MFBs (See [133], which found only ~5% 

decrease in CV across a wide range of MFB densities when decreasing MFB size by a 

factor of 4 but keeping total MFB membrane area constant.) Each CM was 50 μm long, 

50 µm wide, and 5 µm thick, based on previous measurements [133], resulting in a CM 

capacitance of 60 pF, given ��=1 µF/cm2 (Table 2). Cell dimensions for calcium 

handling equations were not changed from the original model, since the calcium 

handling is highly dependent on them, and the original model was calibrated based on 

those specific dimensions. A 30-cell-long 1-D strand of ChR2-MFB/CM cell pairs was 

modeled (Figure 4). Neighboring CMs were connected by lumped gap junctions with a 

conductance GCMCM of 50 μm*7.74 nS/μm=385 nS, based on the measurements by 

Salvarani [35] (Figure 4 and Table 2-Table 4). Neighboring MFBs were not connected to 

each other to prevent them from having “double-sided” effects on CM [134], by creating 

an alternate current path. We investigated a wide range of GMFBCM, since this value is 

unknown in a syncytium, as well as a range of light intensities that includes those 

applied experimentally, to examine the effects on spontaneous beating and CV. 
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� = ��(2��+ 2� + 2� )= 1 (2 0.005 0.005+ 2 0.005 0.0005+ 2 0.005 0.0005)

= 0.00006 
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����� = � ����� = 0.005 0.0774= 0.000385 
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Table 2. Model equations for myofibroblasts and linking cells into a strand. 
Units are ms, mV, nA, µF, cm, mS. Sarcolemmal currents are normalized to cell capacitance, 
intercellular currents are not. Superscript i denotes which cell (i.e. 1-30) the variable refers to. 
While all variables may have a different value for each cell, the equations for each cell are the 

same, so the superscript is omitted for simplicity, except for in the equation for �����
� , in which 

neighboring CMs in the strand interact. 
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Parameter Description Value Reference 

l Cell length (cm) 0.005 [133] 

w Cell width (cm) 0.005 [133] 

h Cell height (cm) 0.0005 [133] 

������ Ratio of MFB number to CM number 0.4 
Plated ratio in 
experiments 

����� ChR2 conductance per area (mS/uF) 0.4 [132] 

γ 
Conductance ratio of ChR2 high 

(��) and low (��) conductance open-
states 

0.1 [132] 

����� ChR2 reversal potential (mV) 0 [132] 

������ MFB-CM conductance (µS) 
Varied from 
10-4.5 to 10-1  

�����  
CM-CM conductance per interfacial 

length (nS/µm) 
77.4 [35] 

Table 3. Myofibroblast, ChR2, and 1-D strand model parameters from Table 2. 
 



28 
 

Variable Description 

���� MFB transmembrane voltage (mV) 

���� MFB endogenous transmembrane current (pA/pF) 

����� ChR2 current (pA/pF) 

������ MFB-CM intercellular current (nA) 

� = ��� = ����  CM and MF capacitance (µF) 

�  voltage-dependent rectification function 

�� ChR2 high conductance open-state probability 

�� ChR2 low conductance open-state probability 

����� ChR2 reversal potential (mV) 

��� CM transmembrane voltage (mV) 

�� Membrane capacitance per area (µF/cm2) 

����  L-type calcium current (pA/pF) 

����  T-type Ca current (pA/pF) 

����  Sodium/Calcium exchanger current (pA/pF) 

����  Background calcium current (pA/pF) 

����  Background sodium current (pA/pF) 

����  Sodium/Potassium ATPase current (pA/pF) 

���  Fast sodium current (pA/pF) 

�� Hyperpolarization activated (funny) current (pA/pF) 

��� Time-independent potassium current (pA/pF) 

��� Transient outward potassium current (pA/pF) 

���  Slow delayed rectifier potassium current (pA/pF) 

���  Rapid delayed rectifier potassium current (pA/pF) 

����� External stimulus current (pA/pF) 

�����  CM-CM conductance (µS) 

�����  CM-CM intercellular current (nA) 

�����
�  CM-CM intercellular current for cell i in the strand (nA) 

���
�  CM transmembrane voltage for cell i in the strand (mV) 

Table 4. Model variable definitions from Table 2. 
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 Changes were made to make the model better match prior experimental data, 

and to enable the presence of spontaneous beating, which occurs at rates of up to 6 Hz 

in our experiments, but never exceeds 0.6 Hz in the baseline model. First, to speed 

simulations, sodium and potassium concentrations were fixed at initial levels (Table 5). 

L-type calcium channel calcium gates (���� ) were allowed to recover at voltages more 

depolarized than -60 mV (Table 5, see [131] for full model). This prevents a step change 

in recovery rate which isn’t justified physiologically. While this rule has almost no effect 

on control cells during normal pacing, in the original model, it almost completely 

prevents L-type calcium channel recovery when depolarized by MFBs. Also, the IKs αn 

and βn were multiplied by a factor of 18 so the maximum rates matched those found in 

guinea pig ventricle [135], and the IKs time constant was changed to the standard form 

���� =
�

�����
 instead of being set to a constant (Table 5 and Figure 5, see [131] for full 

model). 
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Original Modified 

Intracellular sodium concentration  

�[�� �]�
��

= ����� + ���� + ��� + 3���� + 3���� �
������

������ 10��
 

�[�� �]�
��

= 0 

Intracellular potassium concentration  

�[� �]�
��

= ���� + ��� + ��� + ��� + ��� 2���� + ������
������

������ 10��
 

�[� �]�
��

= 0 

L-type calcium current 

���� = ���������4
���

��

[����]������
���
�� 0.341[����]�

�
���
�� 1

 

Same 

����
��

= �

0 |  ���� > ��� & � > 60
���� ���

����
�� ������

 

����
��

= 
���� ���

����
 

���� =
���� + ���� + ����

1.46
 

Same 

���� = �1 + �
[����]�����
0.4875

�

�

�

��

 ���� = �1 + �
[����]�����
0.718

�

�

�

��

 

Slow delayed rectifier potassium current 

��� = ������
�(� ��) Same 

����
��

=
���� ���

����
 

Same 

���� =
��

�� + ��
 Same 

�� =
0.00000481333(� + 26.5)

1 ���.���(����.�)
 �� =

0.00008663994(� + 26.5)

1 ���.���(����.�)
 

�� = 0:0000953333���.���(����.�) �� = 0.0017159994���.���(����.�) 

���� = 750 
���� =

1

�� + ��
 

Table 5. Original and modified ion channel equations from Korhonen model. 
For simplicity, V=VCM in this table. Units are ms, mV, nA, µF, cm, and mS. 
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Figure 5. Original and modified ���� as a function of V. 

 
To optimize the model to increase spontaneous beating in the presence of 

inward currents, without significantly altering the parameters in the model or the 

functional outputs, a minimization function was run, wherein the maximimal 

conductances of all the sarcolemmal CM channels, as well as the calcium gating 

sensitivity of the L-type calcium channel (���� , see Table 5) and the calcium diffusion 

time constant between the uptake and release compartments of the SR (���, see Table 

6) were varied and tested in the model, to minimize the function 

� = ����
� + ���

� + ���� �
� + ����

� + ���� �
� + ���� �

� + ���� �
� + ����

+ ��� + ���  representing 

parametric and functional differences from the original model. 
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Parameter Definition Original Value Modified Value 

��� 
Time constant for transfer from the 

uptake region of sarcoplasmic 
reticulum to release region (ms) 

200 92 

GKs Maximum IKs conductance (mS/μF) 0.05 0.11 

GKr Maximum IKr conductance (mS/μF) 0.06 0.03 

GNa Maximum IKr conductance (mS/μF) 35 150 

Table 6. Original and modified parameters from the Korhonen cardiomyocyte model. 
 

Next the model of a single MFB-CM cell pair (i.e. MFB1 and CM1 only) was run 

under three different conditions (Figure 4). The first was CM only (i.e. ������ = 0, 

denoted by superscript O) and unpaced (denoted by subscript S for spontaneous) to 

determine the resting potential (���
� ) and spontaneous beating rate (��

� , see Table 7 for 

these and the other scoring equations). The squared difference between ���
�  and the 

original RP (-67 mV) divided by 15 mV (the chosen maximum acceptable difference) 

gave the RP component of the score (����
� ). Similarly, the score for spontaneous rate 

(���
� ) was calculated such that any rate between 0, the spontaneous rate of the model, 

and 0.7 Hz, the spontaneous rate we observed experimentally (0.7 Hz, See Figure 37A 

in Chapter 4), would yield a score of 0, and above that the score would be the squared 

difference between the spontaneous rate and 0.7 divided by 2 Hz, the maximal 

acceptable spontaneous rate that would allow us to overdrive pace at 2 Hz. For the 

second set of conditions, we paced (denoted by subscript P) the CMs to determine 

action potential amplitude (����
� ), APD80 (����

� ), maximum diastolic potential (���
� ), 

and afterdepolarization amplitude (��� �
�). As before, AP amplitude score ���� �

�  was the 

squared difference of ����
�  and that of the original model (85 mV) divided by 20 mV, 
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the chosen maximum acceptable difference. Similarly, maximum diastolic potential 

score (����
� ) was the squared difference in ���

�  between the modified and original 

model (-65 mV), divided by the maximum acceptable difference, 15 mV, and 

afterdepolarization amplitude score (���� �
� ) was the squared difference in ��� �

�  

between the modified and original model (0 mV), divided by 10 mV. Finally, APD80 score 

(���� �
� ) was calculated such that the range between 180 ms and 220 ms would result in 

a score of 0, since the APD of the original model (214 ms) and we found 184 ms APD 

experimentally. We used 50 ms as the maximum acceptable difference in the 

denominator. For the final condition, the model was run with ChR2-MFBs attached and 

strong (1 mW/mm2) light (denoted by M superscript). Spontaneous beating amplitude 

(����
�) and rate (��

�) were calculated under these conditions. The spontaneous beating 

amplitude formula assigned any amplitude above 50 mV a score (���� �
�) of 0, while 

using the usual squared difference between ����
� and 50 mV divided by 50 mV. The 

spontaneous rate score (����
) incorporated two elements. The first was to match the 

experimental maximum capture rate (6 Hz). The second was to account for the fact that 

the spontaneous rate needed to be greater than 2 Hz to be detected, since that was the 

external pacing rate. Therefore, at rates below 2.65 Hz a linear equation with a constant 

slope of 1.6 was used. Next, the ratio of spontaneous beating rate with ChR2-MFBs, 

��
�, divided by that without, ��

� , was scored (���) such that a ratio above 2 scored 0, 

while a ratio below 2 was scored as the squared difference between the ratio and 2. 

Finally, the changes to the model parameters were scored by the formula 

��� = ∑ ����max ���,
�

��
� 1��

�

�  , where �� is the factor by which each parameter was 
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multiplied. ��= 1 if the parameter is defined based on experimental data, which was the 

case for the expression level of ICaL, ICaT, If, IK1, and Ito, [131], and ��= 0.1 if it was 

defined empirically in the original model, which was the case for all the other variables. 

See Table 7 for all formulas. 

Model 
Conditions 

Score component Score formula 

CM only 
Unpaced 

Resting potential (mV) ����
� = �

���
� ( 67)

15
�

�

 

Spontaneous beating rate (Hz) ���
� = �

max �0, ��
� 0.7�

2
�

�

 

CM only 
Paced 

Action potential amplitude (mV) ���� �
� = �

����
� 85

20
�

�

 

Maximum diastolic potential (mV) ����
� = �

���
� ( 65)

15
�

�

 

Afterdepolarization amplitude (mV) ���� �
� = �

��� �
�

10
�

�

 

Action potential duration (ms) ���� �
� = �

max (���(����
� 200) 20

50
�

�

 

ChR2-MF 
and light 
Unpaced 

Spontaneous action potential 
amplitude (mV) ���� �

� = �����
50 ����

�

50
,0��

�

 

Spontaneous beating rate (Hz) ���
� = �

�
��
� 6

6
�

�

|  ��
� > 2.65

4.6 1.6��
� |  ��

� < 2.65 

 

Other 

Ratio of spontaneous rate with 
ChR2-MF and light vs. without ��� = �max �0, 2

��
�

��
� ��

�

 

Change in parameters ��� = � ����max ���,
1

��
� 1��

�

�

 

Table 7. Formulas for components of scores for optimization. 
 

Data processing and statistics 

Mapping data was processed by custom MATLAB software. Data was linearly 

detrended and low-pass filtered with a cutoff frequency of 32 Hz. A Fourier transform for 
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each channel was calculated and used to exclude channels which had a different 

dominant frequency than the pacing frequency, since in a captured, non-noisy channel, 

the dominant signal frequency should be the paced frequency (after blanking out 

frequencies < 0.5 Hz, since these can be large due to artifacts from the finite signal 

duration). A 5-point derivative was calculated, and channels with more than 6 signal 

direction changes (i.e. derivative zero-crossings) per pace were excluded, since an 

ideal signal will only have 2 per pace (at the peak and trough of the paced wave), and a 

noisy signal will have more. In some cases, these filters were supplemented by manual 

removal of channels with poor signal. Activation maps were constructed using the time 

of maximum upstroke rate (derivative) of the AP. Monolayers with initial CV below 10 

cm/s were excluded from analysis.  

ChR2 spectral efficiency (�) was calculated as the mean of the ChR2 current 

response (�) from [3] weighted by the spectral power (�) of each LED module, measured 

over all wavelengths (�): � =
∑ ���

∑ ��
. Confocal images were processed by FIJI [136] and 

Zen Black (Zeiss) software. Strain energy was processed using Igor Pro (Wavemetrics). 

All data are presented as mean±SD. Unpaired t-tests with unequal variances were used 

to determine statistical differences. Differences were considered statistically significant 

at p<0.05.  

Results 

Myofibroblast transduction 

More than 50% of MFBs were transduced at all the tested MOI (Figure 6A). By 

using a plate reader to quantitatively measure fluorescence, we found a statistically 
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significant increase in fluorescence between 1000 and 2000 MOI (28%, p=0.02), while 

we were unable to detect a significant increase between 2000 and 5000 MOI (Figure 

6B). Hence, we chose to use 2000 MOI in our experiments. 

 

Figure 6. Transduction of myofibroblasts with ChR2.  
A. Confocal images of MFBs transduced with varying multiplicity of infection (MOI) of ChR2 
adenovirus. Green shows YFP, which marks cells transduced with ChR2, and blue shows DAPI, 
showing cell nuclei. Higher doses of virus were associated with some cell death (rounded cells). 
All images were taken at the same scale and settings. B. YFP fluorescence increased in a 
dose-dependent manner following transduction. 

Co-culture of cardiomyocytes and ChR2-transduced myofibroblasts 

Next, we co-cultured our MFBs with CMs. Because we wanted to limit direct TGF-

β1 effects on CMs, we chose to not add TGF-β1 during co-culture. Confocal imaging of 

MFBs with CMs demonstrated continued expression of α-SMA by MFBs 2 days after 

plating on CMs and concomitant cessation of TGF-β1 treatment (Figure 7A-C). By 

imaging a wide field (~2 mm) of the co-culture, we found that the plated ChR2-MFBs 

formed a homogeneous, dense network over a wide area of CMs (Figure 7D). We also 

found continued expression of ChR2, as shown by fluorescence imaging of the YFP 

reporter (Figure 7E). Confocal imaging showed confluent CMs (Figure 7F) with ChR2-

MFBs resting on top of them (Figure 7G and H). We found Cx43 puncta in the MFB cell 

layer, suggesting expression of Cx43 by MFBs (Figure 7G).  
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Figure 7. Co-culture of cardiomyocytes and ChR2-transduced myofibroblasts.  
A-C. Confocal image of co-cultures of MFBs and CMs. Alpha-actinin (A, red) marks CMs, and 
smooth muscle actin (B, green) marks MFBs. C. Merge of A and B with DAPI (blue) to stain 
nuclei. D. Phase contrast image of CM co-cultured with ChR2-transduced MFB. E. 
Fluorescence image of same sample as D, with YFP marking transduced MFBs. F-H. Confocal 
image of transduced MFBs and CMs. YFP (green) marks transduced MFBs, alpha-actinin (red) 
marks CMs, and violet shows Cx43. F. CM layer of Z-stack showing gap junctions between 
CMs. G. Image from 4 μm above F showing MFB on top of CMs, as well as Cx43 puncta, 
apparently between CMs and MFBs. H. Maximum intensity projection of entire 18 μm-thick z-
stack sampled every 2 μm. 

Simultaneous optical mapping and voltage recording 

Because our lab has significant experience using green LEDs in tandem with 

di-4-ANEPPS to measure optical signals, we wanted to see if this would be possible 

without significantly exciting ChR2. To do so, we measured both the power and the 

spectra of our stimulation LEDs, to determine the amount of effective light cells would 

receive from the LED used to excite the dye (Figure 8). Based on the computational 

model for ChR2 [132], we wanted the effective brightness to be below 0.003 mW/mm2, 

to limit the ChR2 current due to the dye excitation light to less than 0.1 pA/pF (Figure 9), 

since that would be only ~10% of the baseline MF current at rest (Figure 3) and 
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modelling showed that level of brightness had basically no effect on CM 

electrophysiology (Figure 20). We found significant overlap between the green LED and 

ChR2 response that resulted in an effective brightness of 0.018 mW/mm2 (Figure 8, 

Table 8), making it clear we would need to use a different dye for these experiments to 

prevent optical cross-talk. We chose di-4-ANBDQBS, based off the published redshifted 

excitation [137] (Figure 10), and tested the spectral efficiency of red light off-target 

excitation of ChR2 (Figure 8). We found very little overlap, and an effective brightness 

of 0.0021 mW/mm2, which could be improved to 6.1x10-4 mW/mm2 when we added a 

bandpass filter to it (Table 8). Because the light met our design specifications without 

the filter, we did not use the filter in our final iteration. Finally, we tested the blue LED to 

ensure it could efficiently stimulate ChR2 (Figure 8), which it could with 74% efficiency 

(Table 8). 
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Figure 8. LED spectra versus ChR-2 responsiveness. 
ChR2 is relative current for a given wavelength, other lines are spectral intensity for LEDs of 
different wavelengths. 
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Figure 9. Current vs. brightness for modelled ChR2. 
Holding potential of -80 mV. Imax is peak current (blue), and Iss is steady-state current 
(orange).  

Color (wavelength) 
Brightness 
(mW/mm2) 

Efficiency 
Effective 

brightness 
(mW/mm2) 

Blue (448 nm) 0.001-0.1 0.74 0.00074-0.074 

Green (530 nm) 0.07 0.26 0.018 

Red with filter (655 nm) 0.8 0.00077 0.00061 

Red no filter (655 nm) 0.8 .0026 0.0021 

Table 8. Effective ChR2 stimulation by different wavelength LEDs. 
Blue light brightness could be varied across a wide range to generate varying amounts of ChR2 
current. Red and green LED brightness were set so that they delivered maximal light intensity 
without saturating the recording photodiodes, then intensity was measured in the sample 
chamber. Efficiency was calculated as described in the methods. 
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Figure 10. Excitation spectra of di-4-ANEPPS and di-4-ANBDQBS. 
Based off data from [138] and [137], respectively. 

Having found and characterized the proper LEDs for our study, we moved on to 

testing the di-4-ANBDQBS on cardiac monolayers. Initially, no voltage-dependent signal 

could be detected, despite proper dye fluorescence visible in confocal microscopic 

images (Figure 11). To determine why this occurred, we first tested the spectral filtering 

of our emission filter. To this we measured the intensity of the red LED with and without 

two different emission filters. We found that while the 715 nm filter allowed 1/5,000 of 

the light through, the 760 nm filter only allowed about 1/50,000 of the light through 

(Figure 12). In both cases, about half of the bleed-through was due to insufficient block 

where the LED was brightest (655 nm), and about half was due to some of the LED light 

having a wavelength long enough to be in the pass band. 
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Figure 11. Confocal imaging of cardiomyocytes stained with di-4-ANBDQBS. 
 

 

Figure 12. Quantifying optical bleedthrough. 
Optical bleedthrough was tested by measuring the unfiltered light intensity and spectrum of the 
red excitation LED (A), then measuring the spectrum after placing a 715 nm (B) or 760 nm (C) 
filter between the LED and spectrometer. The exposure time for the filtered spectra had to be 
increased by a factor of 1000 to gather enough light to make a precise measurement. 

Despite the high optical density of the 760 nm filter, we were still unable to record 

any voltage-sensitive signal. Therefore we compared the quantum yield of 

di-4-ANBDQBS to that of di-4-ANEPPS, which we knew could produce signal in our 

system. At the typical dye concentrations used for optical mapping, the plate reader we 

used could not detect the fluorescence of either dye, but we were able to detect it by 
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increasing the concentrations. When exciting at 582 nm, the previously found peak 

excitation wavelength for di-4-ANBDQBS ([137], Figure 10), we found that 

di-4-ANBDQBS fluorescence peaked near 800 nm as expected, but that its 

fluorescence intensity was almost a factor of 10 lower than that of di-4-ANEPPS under 

the same conditions (Figure 13), despite the excitation wavelength being 100 nm longer 

than the peak wavelength to excite di-4-ANEPPS (470 nm, [139]), resulting in less than 

5% of di-4-ANEPPS maximal fluorescence (Figure 10). At 655 nm, the wavelength we 

were using to maximally excite the voltage response of di-4-ANBDQBS, the 

fluorescence decreased by over half again, relative to that at 582 nm. The low quantum 

yield of di-4-ANBDQBS suggested that the reason we could not record voltage signals 

was because of insufficient emission filtering, despite our already powerful filters (See 

p.58 for discussion). Therefore, in our final iteration we used two stacked 717 nm long-

pass Wratten absorptive filters (see p.58 for discussion).  
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Figure 13. Fluorescence intensity of voltage-sensitive dyes.  
Fluorescence intensity of di-4-ANBDQBS (A,B), was compared to that of di-4-ANEPPS (C) at 
different wavelengths and concentrations, from 8.75 μM to 17.5 mM for di-4-ANBDQBS, and 
from 1μM to 2 mM for di-4-ANBDQBS. Lighter lines show lower concentrations of dye, heavier 
show higher, by factors of 2. Fluorescence monotonically increased with dye concentration. 
di-4-ANBDQBS was tested at its peak excitation wavelength of 582 nm (A), as well as at its 
most  voltage-sensitive wavelength of 655 nm (B). di-4-ANEPPS was tested at 582 nm, about 
100 nm longer than its peak excitation wavelength of 470 nm, for comparison (C). 

Myofibroblast currents can cause electrophysiological changes in 

cardiomyocytes 

To assess whether inward current in MFBs can affect CM electrophysiology, we 

recorded CM optical voltage signals in the absence or presence of blue light. We found 

that in ChR2-MFB/CM co-cultures paced at 2 Hz (Figure 14Ai), application of 

continuous blue light to open ChR2 channels (Figure 14Aii) could immediately induce 

ectopic beating at a rate higher than the 2 Hz paced rate. Cessation of light (and 
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therefore ChR2 current) caused ectopic beating to immediately stop (within seconds, 

Figure 14Aiii). Data across multiple monolayers showed that the ectopic cycle length 

decreased as the ChR2 current increased (Figure 14B). This dose-dependent ectopic 

beating occurred in almost all ChR2-MFB/CM co-cultures, but in none of the MFB/CM 

co-cultures (Figure 14B). The cycle length (CL) of ChR2-MFB/CM co-cultures under 

0.057 mW/mm2 light was significantly less than that without light, which was always at 

the paced 500 ms CL (338±99 vs. 500±1 ms, n=7, p<10-4, Figure 14B).  

 

Figure 14. Inward currents in myofibroblasts cause spontaneous beating in co-cultured 
cardiomyocyte syncytia.  
A. Voltage traces of a co-culture of ChR2-transduced MFB with CMs before (I, gold), during (ii, 
blue), and after (iii, orange) application of 0.017 mW/mm2 blue light to activate ChR2 current in 
MFB. Dashed lines show time of pacing. B. Cycle length before, during, and after application of 
light at different power during 2 Hz pacing, for co-cultures of CM with MFB or ChR2-transduced 
MFB. # shows p<0.005 before vs. during light application. 
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We also found that during 2 Hz pacing (Figure 15Ai), at light intensities less than 

those needed to cause ectopic beating, application of light immediately slowed CV of 

ChR2-MFB/CM co-cultures (Figure 15Aii). This slowing was immediately reversed when 

the light was turned off (Figure 15Aiii). CV decreased further as light intensity was 

increased, until the onset of spontaneous beating prevented further comparison of CV 

(since spontaneous beating will increase the beating rate, which on its own will slow 

CV) (Figure 15B). While the light intensity necessary to cause both detectable slowing 

and spontaneous beating varied somewhat between samples, slowing occurred 

specifically in ChR2-MFB/CM co-cultures in a dose-dependent manner across multiple 

samples (Figure 15B). There was significant slowing in ChR2-MFB/CM co-cultures at 

light levels as low as 0.006 mW/mm2 (p=0.03), and slowing was even more significant 

at 0.017 mW/mm2 (-3.7±1.8 cm/s, p=0.005, Figure 15B). The maximum slowing before 

induction of spontaneous beating was 6.6 cm/s. 
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Figure 15. Inward currents in myofibroblasts cause slowing in co-cultured cardiomyocyte 
syncytia.  
A. Activation maps of a co-culture of ChR2-transduced MFB with CMs before (I, gold 
background), during (ii, blue background), and after (iii, orange background) application of 0.017 
mW/mm2 blue light to activate ChR2 current in MFB. Color bar at right shows activation time 
scale. Isochrones are 10 ms apart. Red pacing marker illustrates location of pacing. B. Change 
in CV (vs. before light application) during and after application of light at different power during 2 
Hz pacing, for co-cultures of CM with MFB or with ChR2-transduced MFB. * shows p<0.05 
difference in before vs. during light application. 

Finally, we found that light-induced inward current decreased APD80, which also 

immediately reversed upon removal of light (Figure 16A). Looking over multiple 

monolayers, we found a dose-dependent response with a statistically significant 

decrease in APD80 at a light intensity of 0.017 mW/mm2 in ChR2-MFB/CM co-cultures 

(-23±14 ms, p=0.02, Figure 16B). P-values for these parameters calculated using other 

methods are provided in Table 9. 
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Figure 16. Inward currents in myofibroblasts change action potential morphology in co-
cultured cardiomyocyte syncytia.  
A. AP traces averaged over 2 s recording over the entire monolayer before (gold), during (blue), 
and after (orange) application of 0.017 mW/mm2 blue light to activate ChR2 current in MFB. B. 
Change in APD80 (vs. before light application) during and after application of light at different 
power during 2 Hz pacing, for co-cultures of CM with MFB or ChR2-transduced MFB. * shows 
p<0.05 difference in before vs. during light application. 
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Paired P 
(Δlight on ) 

Paired P 
(Δlight off ) 

Δlight on 
P(ChR2 vs. 
no ChR2) 

95% CI of during light (CL) or 
after light-before light 

Low High Low High Low High Low High 

MF 

CL <10-7 <10-4 <10-21 <10-18 0.079 0.002 499 501 499 500 

CV 0.025 0.005 0.013 0.009 0.017 0.003 -1.8 1.7 -0.6 0.07 

APD80 0.019 0.024 0.078 0.007 0.895 0.013 -11 8 -15 8 

CF 

CL <10-5 <10-3 <10-24 0.171 0.004 <10-3 500 500 149 635 

CV 0.036 N/A 0.123 N/A 0.055 N/A -0.9 -0.2 N/A N/A 

APD80 0.013 N/A 0.124 N/A 0.764 N/A -11 12 N/A N/A 

Table 9. Additional p-values and confidence intervals.  
For measured parameters for low (0.017 mW/mm2 for CL, and 0.006 mW/mm2 for others) and 
high (0.057 mW/mm2 for CL and 0.017 mW/mm2 for others) light levels for CFB and MFB. 
p<0.05 shaded. 

Acute force measurements exclude acute mechanical effects 

To exclude the possibility that inward currents in MFBs caused them to contract 

and potentially influence CMs by activating mechanosensitive channels, we seeded 

ChR2-MFBs on micropost arrays and were unable to detect changes in strain energy 

during application of light (Figure 17). 
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Figure 17. Acute strain energy response to light in ChR2-transduced myofibroblasts.  
Recordings of ChR2-MFB strain energy before, during (blue box), and after excitation. Near-
saturating 1.1 mW/mm2 blue light shows that opening of ChR2 channels does not acutely affect 
contractile strain energy. Each trace shows a different MFB. Data from Yu Shi. 

Mathematical model optimization 

Our optimization resulted in a more optimized waveform (Figure 18A) that could 

spontaneously beat at a higher rate (Figure 18B). To reduce the number of parameters 

that needed to be changed, a sensitivity analysis was performed, showing the improved 

score was the result of changing only 6 variables (Figure 18C). The remaining variables 

were reset, and the model was again run, using the optimal parameters of the first run 

as a starting point. By continuing to iterate in this fashion, the final model was 

developed, which only required changing 4 variables in order to produce more 

spontaneous beating, all of which were empirically defined in the original model: L-type 

calcium channel calcium gating was changed to ���� = �1 + �
������

�����

�.���
�
�

�

��

(See Table 

5), the calcium diffusion time constant between the uptake and release compartments of 
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the SR was decreased to 92 ms, and the IKs and IKr conductances, determined in the 

Korhonen model based on their effect on APD, were changed to 0.11 mS/µF and 0.03 

mS/μF, respectively, to facilitate spontaneous beating (See Table 6). While IKs and IKr 

conductances are difficult to measure [131], the ratio between them of ~3.7 is more 

similar to the ratio of ~2.5 found previously in cultured neonatal rat CMs [140] than the 

~0.8 in the original model.  
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Figure 18. Initial model optimization and sensitivity analysis. 
A. Waveform of wave optimized for spontaneous beating. Orange trace is original model, blue 
trace is optimized model. Numbers on right are ratios of how much each parameter was 
changed, sorted from most to least changed. B. Trace of optimized model in ChR2-MFB co-
culture with 1 mW/mm2 light shows spontaneous beating. C. Sensitivity analysis showing the 
effect of individually resetting each changed parameter to its initial value on each component of 
the score. 

In addition to these changes, INa conductance was increased to 150 mS/µF to 

match the CV found in control monolayers (18±7 cm/s, see Table 6). In the original 

model, it was chosen to result in the correct AP amplitude, but changes to INa 

conductance within a wide range had little effect on AP amplitude, and the final model 

A B

C
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had an amplitude at 2 Hz pacing of 86.7 mV compared to 85.9 mV in the original (Figure 

19A). Furthermore, APD80 at 2 Hz pacing was only slightly affected in the final model, 

decreasing from 214 ms to 184 ms (Figure 19A), which better matches our 

experimentally measured APD80 of 187±39 ms in control monolayers. These changes 

resulted in a maximum spontaneous beating rate of 2.8 Hz, instead of 0.6 Hz 

(������=1 µS, light intensity=1 mW/mm2, see Figure 19B), and also increased the 

maximum capture rate from 2.5 Hz to 3.5 Hz (�����=-80 pA/pF, 0.5 ms), both of which 

are closer to values found experimentally (6 Hz and ~7 Hz). 

 

Figure 19. Computational model.  
A. Voltage traces from original (blue) and modified (orange) Korhonen model [131] paced at 2 
Hz. B. Voltage traces from spontaneous beating of original (blue) and modified (orange) CMs 
connected to ChR2-MFBs and high light intensity (������=1 µS, light intensity=1 mW/mm2).  

Mathematical modeling results 

Our linear cable model of ChR2-MFBs electrically coupled to CMs (Figure 4) 

demonstrated similar behavior to our experiments, with increasing spontaneous beating 

in response to increased increasing light with sufficient ������, surpassing our 2 Hz 

paced rate at high light levels and high ������, as well as reduced CV in response to 

A B

GMFBCM=0, Oamp=0, paced at 2 Hz GMFBCM=1 µS, Oamp=1 mW/mm2, unpaced
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light over a range of ������ (Figure 20). Analysis of CV across a wide range of ������ 

and light intensities showed that if ������ is low, inward currents from light application 

have very little effect on CMs, since this current cannot pass to CMs. Conversely, if it is 

too high, it does not cause much additional slowing (Figure 20B).  

 

Figure 20. Modeling verifies experimental findings. 

MFB-CM coupling varies by half-log10 increments from 10
-4.5

 µS (dark) to 10
-1

 µS (light).) A. 
Spontaneous beating rate for CMs at different MFB-CM coupling and light intensities. B. CV for 
CMs at different amounts of MFB-CM coupling and light intensities. 

The model also showed that increased MFB-CM conductivity or light intensity 

shortened normalized APs and decreased APD80 as found experimentally (Figure 21A). 

This occurs because although the maximal repolarization rate is decreased, the AP 

amplitude is decreased more (Figure 21B), resulting in a decreased APD80, as can be 

seen in the normalized traces (Figure 21C), which is how experimental data is analyzed. 

A B
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Figure 21. Modeling explains why light-induced current reduces action potential duration. 
A. Effect of cell coupling and light intensity on APD

80
 (blue) and APD

30
 (red). B. AP traces for 

selected light intensities (Oamp), in mW/mm2, with ������ = 0.01 µS/CM  C. Normalized AP 
traces for selected parameters, as would be seen during optical mapping. 

Discussion 

Comparison with previous work 

Since the initial findings of Miragoli that addition of MFB to CM cultures causes RP 

elevation, conduction slowing, and spontaneous beating [55], a number of studies have 

attributed MFB-induced conduction slowing to electrical coupling between CMs and 

MFBs [35, 55, 62–64, 66]. Dual-cell patch clamp has been used to quantify the electrical 

connection between CM and MFB pairs [35, 76], but the conductance values provided 

by patch clamp studies are normalized to the length of the cell interface [35], and it is 

unlikely this can be simply be multiplied by the interface height to be translated to 

interfacial area for use in 3-D tissues. To more closely mimic a 3-D environment, in 

which there can be large areas of interaction between MFB and CMs without the MFBs 

physically blocking CM propagation, we seeded MFBs on top of our CM monolayers 

rather than seeding them simultaneously as a mixed population prior to monolayer 

formation.  
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Interventional experiments have knocked down Cx43 in MFBs [64, 68], and found 

that doing so increased CV in co-cultures, compared to CMs co-cultured with MFBs 

alone, suggesting an electrical mechanism for slowing by MFBs. However, a different 

study reported that MFBs with knocked-down Cx43 slowed CM conduction just as much 

as control MFBs [61]. Different results from this approach may stem from two potentially 

offsetting side effects. The first is that decreasing Cx43 expression inhibits TGF-β 

signaling [83] and CFB differentiation to MFB [83, 84], so that Cx43 knockdown alone 

could reduce the number of MFBs present, increasing CV independent of CM-CFB/MFB 

electrical connections. The second is that the interfering RNA used in these studies to 

knock down Cx43 can be transferred between cells [141], so that CV could slow due to 

off-target knockdown of Cx43 between CMs, increasing CV independent of CM-

CFB/MFB electrical connections. The second is that the interfering RNA used in these 

studies to knock down Cx43 can be transferred between cells [141], so that CV could 

slow due to off-target knockdown of Cx43 between CMs.  

Studies that acutely change MFB electrophysiology and monitor the subsequent 

changes in CM electrophysiology circumvent these limitations. A few previous studies 

have used this strategy. One seeded clusters of 3T3 fibroblasts transduced with Kv1.3, 

a potassium channel not found in cardiac cells, onto NRVMs, and then showed that a 

blocker specific to that channel reduced conduction block [142]. Another transduced 

3T3 fibroblasts with Kv1.3 and found that they decreased spontaneous beating rate of 

NRVMs with which they were co-cultured, and decreased the refractory period of rat 

and pig hearts to which they were grafted; and that these effects could be reversed by 

blocking Kv1.3 [143]. Finally, Nussinovitch, et. al. used ChR2-transduced 3T3 
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fibroblasts to pace NRVMs in culture [10]. However, 3T3 fibroblasts are an immortal cell 

line with many chromosomal abnormalities [144], and not a good model of either 

fibroblasts or myofibroblasts, let alone CFBs or MFBs. Another study used sphingosine-

1-phosphate to acutely modulate MFB RP, and found that it suppressed CM excitability 

in co-cultures with MFBs, but not CMs alone [77]. In our study, we applied light to 

produce an inward current in ChR2-MFBs and found that MFBs and CMs are sufficiently 

well connected electrically for this connection to produce ectopic beating (Figure 14) 

and conduction slowing (Figure 15) within seconds. The rapid time scale in which CV 

changes were observed (within seconds) eliminates the possibility that changes in 

cardiac ion channel expression in response to the presence of MFBs underlie the 

slowing effects. Additionally, the absence of changes in force generation with 

application of light to ChR2-MFBs (Figure 17) makes it unlikely that CV slowing occurs 

secondary to acute MFB contraction. The fact that light effects were quickly reversible 

within seconds (Figure 14E and Figure 15E) and had no effect on control MFB/CM co-

cultures (Figure 14F-G and Figure 15F-G) also support the notion that the effects were 

due to light-induced ChR2 currents and not to off-target effects such as heating or 

photochemical reactions, or changes in gene expression.  

Quinn et al. [145] argued for electrical connections between MFBs and CMs in vivo 

by creating genetically engineered mice that expressed an optogenetic voltage sensor 

specifically in non-myocytes, and found APs present specifically near cryoinjury, 

suggesting that non-myocytes can electrically connect to CMs in areas of injury. 

However, whether the promoter they used is truly selective for non-myocytes is unclear 

[146]. Furthermore, lower currents in non-myocytes could allow for even marginal 
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electrical connectivity to be recorded, since nonmyocytes have high sarcolemmal 

resistance, and are excellent voltage followers, as discussed in [126]. Furthermore, 

optogenetic sensing cannot demonstrate whether non-myocytes are sufficiently coupled 

to CMs for their currents to cause conductance slowing or spontaneous beating. While 

the lack of a confirmed promoter active in MFBs, but not in CMs remains a challenge, 

the current study suggests that using a similar design with an optogenetic actuator 

could verify whether MFBs are sufficiently connected to CMs to cause conduction 

slowing and spontaneous beating in vivo under conditions of activated, inward MFB 

current. 

Because our study allowed us to specifically modulate inward currents of the MFB, 

it showed experimentally that inward currents from MFBs are a sufficient mechanism to 

cause slowing in electrically coupled CM-MFBs. Whether other proposed mechanisms, 

such as the MFB being a current sink during CM depolarization due to MFB outward 

currents and capacitance, remains to be explored. Additionally, paracrine and 

mechanical effects of MFB may also contribute to slowing. 

Simultaneous optical mapping and voltage recording design 

Despite di-4-ANBDQBS having better voltage sensitivity than di-4-ANEPPS 

[137], we found that it has a significantly lower quantum yield (Figure 13). Low quantum 

yield isn’t a problem for most optical mapping systems because they use epi-

illumination, in which very little of the excitation light is reflected directly back to the 

fluorescence detector, and what little is reflected is further reduced by the dichroic 

mirror. However, our system uses transillumination, in which the excitation light shines 

directly onto the fluorescence detector, which means there can be significant bleed-
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through of the excitation light without excellent filtering. The signal (µ) of an optical 

mapping system at a given wavelength and voltage change can be written 

mathematically as µ = µ���������, where µ�� is excitation light intensity, �  is quantum 

yield of the dye, ��� is the fraction of emission light directed to the detector, and ��� is 

the relative change in quantum yield for a given change in voltage. Total noise (σ) is the 

root-mean-square of all the noise sources, � = �∑ � . For voltage mapping systems, the 

detected noise due to excitation light noise (���) is ��� = �������, where ��� is the 

fraction of excitation light that is directed to the detector, � is the fraction of excitation 

light that passes through the emission filter (and dichroic if present), and ��� is the 

fractional temporal noise in the excitation light. The detected noise due to emission light 

(���) is ��� = �������. Finally �� is a lumped term for other sources of noise not 

considered in this discussion. Therefore, total noise is 

� = � (�������)
� + (�������)

� + ��
�, and signal-to-noise ratio is 

µ

�
=

µ������ ���

� (�������)
��(���� ���)

����
�
. Rearranging the equation for �, if 

� ≫ �
(�������)

����
�

(��� ���)
� = � �

���

���
��

�
+ �

��

��� ���
�
�
, the other terms of the denominator may 

be ignored. In epi-illumination, since � < 1, and the excitation light is pointed directly 

away from the detector and must pass through a dichroic mirror to reach it, making 

��� ≫ ���, the first term may be ignored and this equation simplifies to � ≫
��

���� ���
. 

This is almost always the case, allowing us to neglect the other terms of the 

denominator, simplifying the equation to 
µ

�
=

���� ���

���� ���
, which further simplifies to 

µ

�
=

���

���
, 

illustrating why voltage sensitivity in these systems is so important to getting good 
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signal, while quantum yield is not. However, in transillumination, usually ��� ≫ ��� 

since almost all the excitation light is directed towards the sensor, while the emission 

light is directed equally in all directions. Therefore, the first term in the denominator 

cannot be neglected and creates an additional source of noise, making both high �  and 

high ��� important to maintaining high signal-to-noise, as well as low noise in the 

excitation intensity, and excellent emission filtering. Based on our measured data 

(Figure 13), as well as the published excitation spectrum of di-4-ANEPPS (Figure 10), 

we can calculate the ratio of quantum yield between di-4-ANEPPS and di-4-ANBDQBS 

to be 
������������  | ����

�������������  |����
=

������������ | ��� ��

�������������  | ����

������������ | ����

������������ | ��� ��
=

���

��

�

�.��
= 192. The 

fact that �  is important in signal to noise, combined with this result showing di-4-

ANEPPS had much higher �  than di-4-ANBDQBS (Figure 13), explains why our 

transillumination setup could have much better signal-to-noise when using di-4-

ANEPPS, even with lower quality filters, as well as a tenth of the excitation light intensity 

(Figure 12). Furthermore, these equations explain why other systems that use epi-

illumination have an increase in signal quality from using di-4-ANBDQBS (due to the 

higher ��� being an important determinant of signal-to-noise), while we saw a drastic 

decrease (due to the much lower �  being the main determinant of signal-to-noise). 

Having chosen the dye, we set about minimizing the other contributors to noise. 

To decrease noise in the excitation light intensity, we placed a voltage regulator 

between our LED and the power supply. Improving our emission filter was more difficult, 

because the sample had to be in close apposition with the fiber optics since the 

emission light is not focused, meaning the emission filter needed to be thin (~1 mm). 

Such powerful yet thin interferential filters are rare and expensive, but we developed a 
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solution by stacking absorptive filters, which are more fragile due to being water-soluble, 

do not have as sharp a transition between transmission and blocking, and have lower 

optical density, but may be stacked to effectively add their optical densities. Since we 

didn’t need a sharp transition, just good blocking in the stop-band, in our final iteration 

we stacked two 100 μm-thick 717 nm Wratten filters on a 1 mm-thick slide and covered 

them in 68 μm thick clear tape to protect them from the moisture in the chamber, and 

were able to successfully record APs, with a total distance between the sample and 

fiber optics of 1.27 mm.  

Mathematical modeling insights  

While previous models have suggested inward currents in MFBs can cause CM 

conduction slowing, most of them have focused on extrapolating in vitro data to in vivo, 

using models for guinea pig [53], canine [147], or human [43, 47, 148, 149] CMs, not 

modeling what is occurring in vitro. Only one previous work modelled MFBs co-cultured 

with CMs using a neonatal rat CM model [150], despite the vast majority of experiments 

to investigate effects of MFBs on CMs being conducted on neonatal rat CMs. That work 

simultaneously co-cultured CMs and MFBs, allowing the MFBs to interrupt CM-CM 

connections, and focused on how the resulting structural heterogeneity could produce 

wavebreaks and reentrant arrhythmia [150]. In this work we used a neonatal rat CM 

model as well as an MFB model parameterized directly from recent data from cultured 

MFBs [35] to model how MFs may affect cardiac tissue electrophysiology without 

disrupting CM-CM connections.  

Although MFB-CM conductance has been calculated previously using dual-cell 

patch experiments [35], in such experiments the cells are isolated from surrounding 
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cells, and interact along a small lateral boundary, with a height of <5 µm [133]. Because 

in our experimental model cells are densely seeded, with MFBs on top of CMs, the 

interface between MFB and CM occurs over a large area, and therefore we investigated 

a wide range of potential CM-MFB conductance values. Our model exhibits all the 

phenomena seen in our experiments, including conduction slowing and spontaneous 

beating at increasing light levels, although the light levels at which spontaneous beating 

occurs is much higher in the model than what is seen experimentally (~0.5 mW/mm2 vs. 

~0.05 mW/mm2, Figure 20A vs. Figure 14B). Our model suggests that appreciable 

slowing at baseline and by light-induced current occurs at MFB-CM coupling levels >10 

nS/CM (Figure 20B). Additionally, the model explained why, despite the fact that ChR2 

has a positive reversal potential near 10 mV, and therefore would be expected to slow 

repolarization and prolong APD, application of light decreased APD80 (Figure 21A). This 

occurred because it made RP more positive (Figure 21B), while reducing the maximum 

depolarization (Figure 21B) by suppressing sodium currents (Error! Reference source 

not found.B), decreasing AP amplitude. In this case, it decreased the amplitude more 

than it decreased the repolarization rate, resulting in a shorter APD. These offsetting 

effects can explain the mixed effects that inward currents from MFBs have been found 

to have on APD [61, 62, 64, 78]. 

Conclusion 

This study used MFBs in tandem with optogenetic actuation of ionic current to 

directly show in vitro and in silico that inward currents in MFBs can acutely cause 

ectopic beating and conduction slowing in CM syncytia.  
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Chapter 3: cardiac fibroblasts are sufficiently electrically 

connected to cardiomyocytes to cause electrophysiological 

changes in cardiomyocytes 

Introduction 

CFBs make up about 10% of the cells in the healthy mammalian heart [152]. While 

early work used dual-cell patch clamp to show CFBs were electrically connected to CMs 

near the sinoatrial node [153], and suggest CFBs could modulate spontaneous beating 

rate [40], this technique has not been applied successfully in the ventricle. Quinn et. al. 

used optogenetic sensing to argue that CFBs do not connect to CMs, since there was 

no detectable time-varying signal in optical voltage traces from CFBs in a beating intact 

heart, despite clear signal resembling APs from areas of injury where MFBs resided 

[145]. Given the slowing attributed to electrical connection of MFBs to CMs, electrical 

connection to CMs being a phenomenon unique to MFBs, which are not present in the 

healthy heart, is reasonable. However, in vitro studies have conflicting reports on 

whether Cx43 expression is increased or decreased in MFBs relative to CMs (Table 

10), with most studies finding an increase in Cx43 expression after MFB differentiation 

at the transcript [35, 154, 155], protein [62, 79, 155], and functional [35, 62, 79] levels, 

but others finding no change [84], or even a decrease [38, 61].  

The clearest evidence that CFBs are electrically connected to CMs comes from 

Salvarani et. al [35]. In order to maintain cells as CFBs, they treated CFBs with a TGF-β 

receptor I blocker, which has been found to prevent CFBs from differentiating into MFBs 
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in culture [32]. They found electrical connections between CFBs and CMs using dual-

cell patch clamp at a level about 1/5 that between MFBs and CMs. Despite this, they 

found that CFBs did not cause conduction slowing in CM syncytia. In this work, we use 

a similar TGF-β receptor I blocker to maintain CFBs in their fibroblastic state, and 

optogenetics to demonstrate CFBs are sufficiently electrically connected in syncytia to 

produce conduction slowing in CMs, if they have sufficient inward currents. 
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Paper 
MF Cx43/ 

CF Cx43 
Method model How MF were made 

Passage/ 

Day 

Vasquez 
2010 

2.34 Western 

adult rat infarction 

P1-3 up 
to 1 

month 1.81 FRAP 

1.35 Western 
Freshly 
isolated 

Zhang 
2010 

3 

Western 

Adult 
mouse 

infarction (infarct region) 

P1 day 4 

3 
infarction (away from 

infarct) 

1.75 
Dye transfer 

distance 

infarction (infarct region) 

1.59 
infarction (away from 

infarct) 

2.03 Western 24 h 10 ng/mL TGF-β P2 day 8 

Follonier 
2008 

~1/3 Staining 
Neonatal 

rat 
4 day 2ng/mL TGF- β P0 Day 4 

~1/4 
Dye transfer 

distance 

Salvarani 
2017 

1.77 rtPCR 
Neonatal 

rat 

24-48 h TGF- β 
(compared to same time 

SD-208) 

P1 Day 8 
(?) 5.7 nS/um 

Asazuma-
Nakamura 

2009 

No 
change 

Staining 
Neonatal 

rat 

5 ng/mL TGF- β up to 72 
h (compared to same 

time 10 μM SB-431542) 
P2 

Kofron 
2017 

2.5 

rtPCR 
Neonatal 

rat 

Transduction of GαQ 

Day 3 
5.1 

Transduction of GαQQL 
(constitutively active) 

Doble 
1994 

~10 mRNA 
Neonatal 

rat 
20 ng/mL bFGF P1 Day 4  ~2.2 Western 

Table 10. Reported changes in connexin expression and function after differentiation 
from cardiac fibroblast to myofibroblast. 
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Methods 

Unless otherwise noted, methods from Chapter 2 are applied in the same way to CFBs. 

Cell culture 

 CFBs were produced by adding the TGF-β receptor I blocker SD-208 (Sigma) 

one day after each passage at a concentration of 3 μM. For dedifferentiation 

experiments, MFBs were created as in Chapter 2, and added to a subset of CMs. 3 µM 

or 10 µM SD-208 was added to some CMs or MFB/CM co-cultures at the time of MFB 

plating. 

qPCR 

Instead of being plated onto CMs, some ChR2-CFBs or ChR2-MFBs were placed 

in RNAlater (Thermo) for mRNA analysis by Shoshana Das using standard methods. 
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Gene Forward Primer Reverse Primer 
GAPDH GCAAGAGAGAGGCCCTCAG TGTGAGGGAGATGCTCAGTG 

Actb CCCGCGAGTACAACCTTCTTG GTCATCCATGGCGAACTGGTG 

Rpl7 TCCGAGGTATCAATGGAGTGAGC ATGCAATGTAGGGCTCCACG 

Acta2 CCATCAGGAACCTCGAGAAGC AGCTGTCCTTTTGGCCCATT 

Col1a1 GAGAGGTGAACAAGGTCCCG AAACCTCTCTCGCCTCTTGC 

Col3a1 AGTGGCCATAATGGGGAACG CAGGGTTTCCATCCCTTCCG 

FN-EDA ACTCAAGCATCGGCCTGAGGTG TGATGTCATAGTCAATGCCGGGTTCCA 

Tgfb1 GGACCGCAACAACGCAATC TGCTTCCCGAATGTCTGACG 

Ccn2 CTAGCTGCCTACCGACTGGAA ATTGGTAACCCGGGTGGAGA 

Postn CTTGCAAAAAGACACACCTGCAA AACGGCCTTCTCTTGATCGC 

Tnc ACAACAGCCATGGGCTCTCC CTCCACCTGAGCAGTCGGT 

Fap CCGTGTATCGAAAGCTGGGT AACCTCCGTAGGACCATCCC 

Gja1 TTTCATTGGGGGAAAGGCGT GTCTGGGCACCTCTCTTTCAC 

Gjc1 CCTCCCCGCTTTTCGGATTAT CCCAAATTCTCTCTTGAGTTCCTCG 

Scn5a CAAGCCCTACGCCGAGC GCCTGGAAGGAAGCTGATG 

Kcnd3 CGAACCTCCACCATCAAGAACC TGCGTGGTCTTCTTGCTACG 

Nalcn CGCAACCTGAGTCAAGCAGT CAGACGCCATTGCCCAATCT 

Abcc9 TGGACGATCCATTCTCCGCT CTATGATCCAGTCCGCGTGC 

Kcnh2 AAGTTTGAGGGCCAGAGCCG CCATGCAGGAAATCGCAGGT 

Kcnk3 CGTCATCACCACAATCGGCTAT TGTTGATGCGTTCACCCAGG 

ChR2 ATACTGTGCCAAAGGGTCGG TGACCTACGGTGGAGCCATA 

Trpm7 TGTACCTCCACGAGGTGAGC GCTCTTCGTAAACCGCCTCC 

Trpc3 ACCAAGGTCAAGAAGTGCCG ATGTTGCCGTACTGCGTCG 

Trpc1 TGCGTAGATGTGCTTGGGAG CGTTCCATAAGTTTCTGACAACCG 

Trpc6 CTATCCCAGCTTCCGGGGTAA TGCATCCAGAAAGCGTTCCTC 

Trpv4 TCCCAAGCAGGCCGAGAAG CAGGGAAGAGAGGGGGAAG 

Cdh2 GGCCTTGCTTCAGGCATCTC GCACGTCCTTCGGTAAGACC 

Cdh11 GAATGGGACTGGGACTGG AGTAATTTCTGGGGCCCTTGC 

Table 11. Primers for qPCR. 
Primers chosen by Shoshana Das. 



69 
 

Fibroblast vs. myofibroblast size and strain energy measurements  

CFBs and MFBs were produced as described above and in Chapter 2, except after 

the second passage, 10,000 cells were plated in a 35-mm dish onto force-sensing 

micropost arrays produced as described previously [156]. Cells were imaged 20 h after 

seeding via bright field using an inverted microscope (Nikon TE-2000), and total strain 

energy for each cell type was calculated. These experiments were conducted by Yu Shi. 

Cell area (�) in was calculated as � =
√�

�
�(� 2), where � is the distance between the 

microposts (making 
√�

�
� the area of each equilateral triangle formed by the microposts), 

and � is the number of microposts covered (since the number of contiguous triangles 

covered is always 2 less than the number of vertices). For our micropost arrays, � =

16 ��. 

Mathematical modeling 

 Currents for CFBs were modeled by a hyperbolic least squares fit of 

���� = (� tanh(���� + �)+ �)(���� + �)+ � to the I/V curve measured by Salvarani for 

TGF-β1-treated CFBs [35], resulting in 

���� = (0.0081tanh(���� + 15)+ 0.0206)(���� + 15)+ 0.437, with ���� in nA, and ���� 

in mV (Figure 22).  
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Figure 22. Fibroblast current-voltage relationship of experimental data vs. model. 
 

Results 

Fibroblast transduction 

 We transduced CFBs with different amounts of virus to determine the proper viral 

dose. We found that unlike for MFBs, the highest dose of virus decreased ChR2 

expression, likely due to increased cell death (Figure 23). We choose to use 2,000 MOI 

for experiments to match the MFB dose and because it maximized the number of 

transduced cells. 
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Figure 23. Transduction of fibroblasts with ChR2.  
A. Confocal images of SD-208-treated CFBs transduced with varying multiplicity of infection of 
ChR2 adenovirus. Green shows YFP, which marks cells transduced with ChR2, and blue shows 
DAPI, labeling cell nuclei. Higher doses of virus were associated with significant cell death 
(rounded cells). All images are taken at the same scale and settings. B. YFP fluorescence at 
different MOI. 

 
Characterization of fibroblasts and myofibroblasts 

To ensure that cells treated with SD-208 were behaving as undifferentiated CFBs, 

and that cells differentiated into MFBs by TGF-β1 were behaving as differentiated 

MFBs, we performed qPCR for transcripts known to be upregulated in MFBs. We found 

increases in all of the transcripts, and all but one were significant (Figure 24). We also 

stained both cell types for α-SMA. We saw high expression of α-SMA in the TGF-β1-

treated cells, and very little expression in the SD-208-treated cells (Figure 25A). To 

demonstrate quantitatively the difference in α-SMA expression, we used a plate 

fluorescence reader to obtain an average fluorescence measurement from each well 

and found that TGF-β1-treated cells indeed expressed significantly more α-SMA than 

SD-208-treated cells (Figure 25B). We also seeded CFBs treated with SD-208 or TGF-

β1 onto micropost arrays at low density to measure the strain energy they produced 

(Figure 25C). CFBs treated with TGF-β1 were significantly larger (1350±620 vs. 
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370±600 μm2, Figure 25C-D) and had a greater strain energy per cell area 

(0.163±0.100 vs. 0.069±0.065 fJ/μm2, Figure 25E) than those treated with SD-208.  

 

Figure 24. qPCR of fibroblasts and myofibroblasts. 
qPCR showed increased expression of transcripts expected to be upregulated in MFBs relative 
to CFBs. n=2 technical replicates. * = p<0.05. Data from Shoshana Das. 

*
*

*

* *

*
*

(l
o
g

2
M

F
B

/C
F

B
)



73 
 

 

Figure 25. Comparison of fibroblasts and myofibroblasts  
A. Confocal images of CFBs treated with TGF-β1, and the TGF-β receptor I blocker SD-208. 
Smooth muscle actin (α-SMA, red) is a marker of differentiation into a MFB, and DAPI (blue) 
shows cell nuclei. All images are taken at the same scale and settings. B. α-SMA fluorescence 
in multiple wells for each treatment as measured by a plate reader. C-E. TGF-β1-treated and 
SD-208-treated CFBs were seeded at low density on microposts by Yu Shi to measure strain 
energy. C. Red dots show posts where a TGF-β1-treated (top) and a SD-208-treated (bottom) 
cell attached to posts, and arrows show force vectors. Figure modified from figures made by Yu 
Shi. D. Histograms of areas of cells treated with TGF-β1 (red, n=75) or SD-208 (blue, n=61). E. 
Histograms of strain energy, as calculated by Yu Shi, per area, of the same cells as in D.  

Fibroblast currents can also cause electrophysiological changes in 

cardiomyocytes 

Having demonstrated that MFBs were sufficiently electrically connected to CMs for 

inward currents in MFBs to cause electrophysiological changes in CMs (Chapter 2), we 

examined if the same was true for CFBs. We found that application of light to ChR2-

CFB/CM co-cultures caused statistically significant, reversible, dose-dependent 

spontaneous beating faster than the 2 Hz paced rate (CL at 0.057 mW/mm2 light = 

258±22 ms for ChR2-CFB/CM vs. 500±2 ms, p<.001, Figure 26A). We also found 
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application of light caused reversible conduction slowing in ChR2-CFB-CM co-cultures 

(ΔCV at 0.006 mW/mm2 = -1.2±1.5 cm/s, p=0.04, Figure 26B), although because of the 

high propensity for spontaneous beating, we were only able to measure one sample at 

the higher light intensity. Similarly, we found a significant decrease in APD80 (ΔAPD80 at 

0.006 mW/mm2 = -6±6 ms, p=0.01, Figure 26C). Other p-values are included in Table 9. 
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Figure 26. Effects of light induced currents in ChR2-transduced fibroblasts on co-
cultured cardiomyocytes.  
A. Cycle length before, during, and after application of light at different power during 2 Hz 
pacing, for co-cultures of CM with CFB or ChR2-transduced CFB. B. Change in CV (vs. before 
light application) during and after application of light at different power during 2 Hz pacing, for 
co-cultures of CM with CFB or ChR2-transduced CFB. C. Change in APD80 (vs. before light 
application) during and after application of light at different power during 2 Hz pacing, for co-
cultures of CM with CFB or ChR2-transduced CFB. * shows p<0.05 and # shows p<0.005 
difference in parameter before vs. during light application. 
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Blockade of TGF-β receptor I reduces effects of cardiac fibroblasts that have 

already differentiated into myofibroblasts 

To investigate if TGF-β receptor-I-blockade could reduce the effect MFBs had on 

CV by changing their electrophysiology to be more like CFBs, we added SD-208 to CMs 

as well as to MFB/CM co-cultures. We found that MFB significantly slowed CV, while 

SD-208 only had a non-significant negative effect on CV. However, SD-208 significantly 

reduced the slowing caused by MFBs. 

 

Figure 27. The TGF-β receptor blocker SD-208 partially reverses myofibroblast-induced 
conduction slowing. 
Conduction velocities were normalized to the mean of the control for each group. Colored 
circles indicate samples from different cell batches. Representative activation maps for each 
group displayed below bar graph (5 ms isochrones, 17 mm diameter). 

Comparison of experimental results to mathematical model 

 To understand the effects of ChR2-CFBs on CMs, we changed our current-

voltage formula to that of CFBs treated with the TGF-β-receptor I blocker SB431542 

[35] that maintained them in a CFB state (Figure 22). We found similar spontaneous 

p<10-5

Δ

p=0.02

p=0.02

Avg. control CV = 19 cm/s

Control Control+SD-208 MFB MFB+3 µM SD-208 MFB+10 µM SD-208
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beating and CV decreases, although spontaneous beating began at lower light intensity 

in ChR2-MFB co-cultures (Figure 28A vs. Figure 20A), while light caused more slowing 

in ChR2-CFB co-cultures (Figure 28B vs. Figure 20B). Unlike in ChR2-MFBs, where 

increased conductance between CMs and MFs always decreased APD80, in ChR2-

CFBs with low light levels, increasing CFB-CM conductivity actually increased APD80 

(Figure 28E vs. Figure 21A). To compare our optogenetic actuation method to 

optogenetic sensing, we plotted the voltage amplitude of CFB depolarizations caused 

by CM APs, which would be measured in optogenetic sensing, versus the change in CV 

caused by high intensity (1 mW/mm2) light applied to ChR2-CFBs, which would be 

measured using the optogenetic actuation method described in this work. We found that 

while both increase with increasing CFB-CM coupling, as expected, fluctuations in CFB 

voltage become measurable at levels of connectivity at which the CFB cannot influence 

CM CV (Figure 28F, 0.0001 μS/CM). 
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Figure 28. Modeling a strand of ChR2-transduced fibroblasts on top of a strand of 
cardiomyocytes.  
Some data missing due to spontaneous beating faster than paced 2 Hz rate or to block. A-E: 
MFB-CM coupling varies by half-log10 increments from 10-4.5 µS (dark) to 10-1 µS (light). A. 
Spontaneous beating rate for CMs at different CFB-CM coupling and light intensities. B. CV for 
CMs at different CFB-CM coupling and light intensities. C. RP of CFB (blue) and CM (red) at 
different coupling levels and light intensity. D. CV vs. RP for strands from B and C. E. Effect of 
cell coupling and light intensity on APD80 (blue) and APD30 (red). F. Comparison of optogenetic 
sensing and actuation. Blue line shows CFB voltage amplitude, which is measured using 
optogenetic sensing. Orange line shows CV reduction by application of high levels of light, 
which is measured during optogenetic actuation. 
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Discussion 

In vitro model and TGF-β receptor blockade 

While it is well-known that CFBs spontaneously differentiate into MFBs over time in 

culture [157], the fraction of differentiated CFBs ranges significantly between studies, 

from <0.01% after five days [78] to >90% after one day [63] for similar cell sources and 

culture conditions. Furthermore, CFB to MFB differentiation occurs along a spectrum, 

with at least one intermediate state of proliferating α-SMA-expressing cells, while fully 

differentiated MFBs do not proliferate [32]. In order to consistently produce fully 

undifferentiated CFBs we applied the TGF-β receptor I blocker SD-208 to our CFBs and 

demonstrated decreased expression of genes that are upregulated in MFBs [123, 158–

162] (Figure 24), as well as decreased α-SMA protein expression (Figure 25A-B), size 

(Figure 25C-D) and contractile energy (Figure 25E). This is in agreement with previous 

results showing TGF-β receptor I blockers prevent CFBs from differentiating to MFBs, 

as demonstrated at the message level by differences in gene expression [32, 35], 

structurally by the suppression of SMA [32, 35], vinculin [32], and collagen [32], as well 

as functionally by suppression of contractility [32]. Despite the finding by Driesen, et. al. 

that MF differentiation by high levels of TGF-β is irreversible, we were still able to 

improve CV in MFB/CM co-cultures by treatment with SD-208 (Figure 27), suggesting 

that SD-208 may change MFB electrical phenotype to be more similar to that of CFBs, 

while leaving the increased contractile and possibly even ECM production properties of 

MFBs intact. However, we have not ruled out SD-208-induced apoptosis of MFBs as a 

mechanism for this effect. 
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Fibroblasts are also sufficiently electrically connected to cardiomyocytes to 

cause slowing 

 While there is clear evidence that MFBs electrically couple to CMs, at least in 

vitro, fewer studies have shown CFB coupling in vitro, and many early studies are 

marred by the fact that CFBs spontaneously differentiate into MFBs over time in vitro 

[157]. The first suggestion of CFB-CM electrical coupling was by Rook, et. al. using 

dual-cell patch clamp [76]. They were able to conclusively show that CMs and non-CMs 

could electrically connect, and even demonstrated excitation passing through a CFB 

bridge to excite a distal CM. While they conducted their experiments within 24-48 hours 

of isolating the cells, they did not do any characterization of their CFBs to determine 

whether they had spontaneously differentiated in MFBs, as has been reported to occur 

within this timeframe, and so may have been working with MFBs [63]. Kohl, et. al. were 

able to use microelectrode recordings of adjacent cells in SAN to argue CFB could 

couple to CM [153], but as they pointed out, it is difficult to tell the difference between a 

recording of a CFB and that of a poorly impaled CM because CFB are expected to act 

as a voltage follower of CMs [70].  

Fahrenbach, et. al. found CFBs could cause slowing and spontaneous beating 

similar to that caused by MFBs, but they used CFBs up to passage 10, and did not 

confirm they were CFBs, so they were in fact almost certainly MFBs. Kizana, et. al. 

noted that CMs cultured on Cx43-KO mouse CFBs spontaneously beat at a higher rate 

than those cultured on WT CFBs, but did not explain their method for culturing CFBs 

and also may have been working with MFBs [163]. Vasquez, et. al. found that CFBs 

isolated from adult rat hearts could cause some slowing when they were plated on top 
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of CMs, although not as much as (likely MFBs) isolated from infarcted hearts [62], 

however these were cultured for up to a month, and were therefore likely proto-MFBs. 

McSpadden, et. al. also found CFBs could cause slowing, and used FRAP to argue that 

they were electrically connected to CMs [78]. While their CFBs were a week old, they 

found no expression of smooth muscle actin at day 5, suggesting that they were in fact 

still CFBs. Salvarani et al. found that unlike MFBs, fully undifferentiated CFBs do not 

cause slowing, despite dual-cell patch clamp showing CFBs were electrically connected 

to CMs [35]. They suggested the lack of slowing was due to reduced CFB-CM coupling 

(as suggested previously [62]) or reduced currents in CFBs relative to MFBs. This study 

expands on their results, demonstrating that CFB-CM coupling is present in syncytia, 

and that it is sufficient to cause slowing, given adequate inward currents in CFBs 

(Figure 26). In light of this, as well as the conflicting data about changes in gap junction 

expression in CFBs vs MFBs (See Table 10), changes in gap junction expression 

between CFBs and MFBs may not be a significant factor in their difference in 

arrhythmogenicity. Furthermore, CFBs may be relatively benign despite significant 

electrical connection to CMs because recent flow cytometry has shown CFBs make up 

a relatively small proportion of the healthy heart, with 30% of all cardiac cells being 

CMs, and only about 10% being CFBs [152]. Additionally, the smaller size of CFBs 

versus MFBs and CMs means that they have smaller currents on a per-cell basis, 

assuming the same current densities (per sarcolemmal area). 

Mathematical modeling 

We based our model off steady-state currents from Salvarani, et. al. [35], 

because we could find no other data source that maintained a CFB state using a TGF-β 



82 
 

receptor I blocker as we did. We found that ChR2-CFBs required more light to produce 

spontaneous beating than ChR2-MFBs (Figure 28A vs. Figure 20B). This is likely due to 

the elevated RP of MFBs contributing more inward current during diastole to initiate 

beating. However, we found that application of light produced less slowing in ChR2-

MFBs (Figure 28B vs. 17C). This is because the MFB currents cause more initial 

slowing at a given MFB-CM conductance, and eventually the slowing effect saturates at 

about 5 cm/s as all the sodium channels inactivate and conduction is calcium-mediated. 

Therefore, there is less room for light application to cause slowing in ChR2-MFBs 

compared to ChR2-CFBs. The level of electrical coupling required to produce slowing 

(0.3-1 nS, Figure 28B) is significantly less than that expected between MFBs and CMs, 

even considering our MFB to CM ratio of 0.4 (0.4 50 ��
�.� ��

��
= 56 �� ), as well as 

that expected between CFB-CM pairs (0.4 50 ��
�.� ��

��
= 10 ��) [35], supporting the 

hypothesis that electrical connection between even CFBs and CMs is sufficient to allow 

electrophysiological coupling effects in CMs, given adequate CFB currents, which is in 

agreement with our experimental findings (Figure 26B). 

Our model allowed us to compare optical sensing and actuation. We found that 

optogenetic sensing may be too sensitive, since at intermediate conductance levels, 

CFBs can be connected to CMs, but still be incapable of causing slowing in them 

(Figure 28F). This illustrates that there is a difference between the degree of coupling 

for CMs to drive CFBs, which can occur at low coupling due to the high resistance of 

CFBs, and for CFBs to alter CM electrophysiology, including CV, as has been 

discussed previously [70, 134]. 
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Future directions 

The current study suggests that using a design similar to the optogenetic sensing 

study by Quinn et. al. [145] but with an optogenetic actuator could directly determine 

whether MFBs or even CFBs are electrically connected enough to allow conduction 

slowing and spontaneous beating in CMs in vivo. Clinically, the suggestion that even 

CFBs are electrically connected enough to CMs to cause slowing, provided there is 

sufficient inward current, suggests that the important difference between innocuous 

CFBs and deleterious MFBs is not simply due to MFBs having increased electrical 

coupling, but instead their heterogeneous distribution, as well as increased size and 

sarcolemmal currents. Therefore, drugs that dedifferentiate MFBs or otherwise reduce 

their currents may be more useful than simply blocking MFB Cx43 in treating sudden 

cardiac death following cardiac injury, such as myocardial infarction. In fact, a series of 

studies has found application of Cx43-transduced MFBs or skeletal myoblasts, or direct 

injection of Cx43 lentivirus to an infarct reduced the risk of arrhythmia [59, 164], further 

suggesting reducing Cx43 expression in MFBs may not be helpful. Therefore, a 

component of the salutary effects of MFB dedifferentiation drugs may be improvement 

of MFB electrophysiology, specifically decreased inward currents and less depolarized 

RP, and this presents an interesting avenue of investigation, for which we have 

preliminary evidence (Figure 27). Indeed, a number of drugs shown clinically to reduce 

sudden cardiac death in the context of heart failure also may dedifferentiate MFBs, such 

as losartan [165], ramipril [166], and simvastatin [167], allowing the possibility of MFB 

dedifferentiation as a mechanism of action. Finally, the ability of continuous current, 

optogenetic or otherwise, to increase spontaneous beating rate (Figure 26A), while still 
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allowing for endogenous regulation of beating rate, may be applicable in the sinoatrial 

node to treat sick sinus syndrome.  

Conclusion 

This study used pharmacological promotion of a CFB phenotype in tandem with 

optogenetic actuation of ionic current to directly show that inward currents in CFBs can 

acutely cause ectopic beating and conduction slowing in CM syncytia.  
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Chapter 4: An optogenetic chronic point-pacing system for 

maturation of cardiomyocytes 

Introduction 

Many papers have shown the benefits of chronically pacing CMs (reviewed in 

[92, 93]), however, electrical pacing requires a specialized set-up, and in many cases 

increases the risk of contamination since electrodes or an agar bridge must be in direct 

contact with cell media. Furthermore, the electrodes generate ROS and metal ions in 

solution (depending on electrodes or presence of agar bridge) [168], which may stress 

cells. An optogenetic approach has the potential to eliminate these problems by 

allowing for contactless pacing. Systems for chronic optical field pacing have been 

made by individual labs [169], and commercially [170], but only one recent publication 

[171], used it to mature CMs, and all still had used a single LED per plate, necessitating 

special plates or other equipment to use. In this study, we use forced aggregation of 

HEK-293 cells stably transfected with ChR2 (“spark” cells) to create “spark” clusters, 

which we then add to CM monolayers and use with a large LED panel, allowing us to 

point pace them in a simple, contactless, and scalable way (Figure 29). 
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Figure 29. Planned optogenetic pacing system.  
(A) A cluster of ChR2-transduced HEK cells (spark cells) is placed on top of a CM monolayer 
and allowed to attach. (B) A spark cluster electrically connects to CMs, allowing for light-induced 
inward currents to spread to the CMs and stimulate them. (C) By simply adding a single cluster 
to each well, a global flash of light can simultaneously point stimulate multiple wells. Figure by 
Shivani Pandey. 

Methods 

Stimulator design and testing  

A commercially available LED panel (Yescom, 15x15 LED, 28.5 mm x 28.5 mm, 

1.7 cm between LEDs, 22W, 2475 lm) was stripped of its AC/DC converter and 

connected directly to a custom circuit (Figure 30) built with Dr. Renjun Zhu. This circuit 

employed a Darlington transistor pair to amplify the output of a waveform generator 

(Agilent 33229A). For use in conjunction with an in-incubator microscope, one side was 

cut down to 27 mm, and a 7 mm hole was punched out of the panel between four 

central LEDs, without damaging any LEDs. Under my supervision, Shivani Pandey 

constructed a brightness-voltage curve for the circuit by positioning the LED panel 4 cm 

away from an optical power sensor (Thorlabs PM100A), setting the voltage on a 

variable power supply (TekPower TP5003T) to 42 V, and moving it to different regions 

under the central region of the LED panel, recording the local maximum and minimum 
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brightness. She also made a current-voltage curve by recording the current at each 

voltage between 42 V and 50 V. Finally, she made a brightness-distance curve for the 

circuit by setting the voltage to 42 V and recording the maximum brightness at each 

distance. Based on this data, in the final iteration, a 54 V, 3.45 A power supply (Mean 

Well HLG-185H-54A) was used to power the LED panel. 

 

Figure 30. Schematic of optical stimulation control circuit 
A Darlington transistor pair was used to amplify the signal of a waveform generator. A test lead 
was included to measure current through the LED. 

Spark cluster fabrication 

Spark cells were provided by the lab of Dr. Emilia Entcheva. They were seeded 

at 2x104-1x105 per well in either a 0.5% 96-well V-bottom plate (ThermoScientific Nunc) 

coated with agarose (Sigma) or a 96-well Corning® Spheroid Plate (Sigma Aldrich, 

CLS4520), in approximately 200 µL CM culture media. In some cases, the plates were 

centrifuged at 800g for 10 minutes to concentrate cells in the bottom of the plate to try to 

improve aggregation, before being placed in an incubator overnight. Spark cells were 

produced and maintained by either Shivani Pandey or Renjun Zhu. 
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Cardiomyocyte isolation 

NRVMs were isolated and plated as described in Chapter 2. Monolayers were 

kept in culture for 1-4 days to allow formation of a syncytium as well as resumption of 

spontaneous beating before spark clusters were introduced.  

An arrhythmogenic right ventricular dysplasia 25.8 hiPSC line with a 

heterozygous PKP2 mutation c.971_921InsT [6] was a kind gift from Dr. Lior Gepstein. 

hiPSC-CMs were produced using a monolayer-based protocol [7], dissociating at day 

40 after initiating differentiation and plating onto coverslips (Nunc, Thermanox, Thermo) 

coated with 1:150 Geltrex (Thermo) at a density of 240,000 CMs/cm2. The resultant 

hiPSC-CM monolayers were maintained in culture for 3 days prior to adding spark 

clusters. hiPSC-CMs were produced and maintained by Dr. Adriana Blazeski. 

Optical mapping 

NRVM monolayers with spark clusters were stained with di-4-ANBDQBS as 

described and mapped in Tyrode’s solution using a MiCam Ultima system. Optical 

voltage recordings were collected with Dr. Renjun Zhu using a 655 nm excitation LED 

module (Luxeon SinkPAD-II Rebel 7 LED Round Module), and a 760 nm long-pass 

excitation filter (Newport, 20CGA-760). Spark clusters were excited with a 470 nm LED 

module (Luxeon SinkPAD-II Rebel 7 LED Round Module). 

Chronic pacing and immunostaining 

Spark cells were given twelve hours to electrically couple to CMs prior to 

beginning pacing experiments. Then, with Shivani Pandey, the cells were placed on a 

microscope system with an automated stage (Etaluma Lumascope 720) in an incubator, 

and the LED panel was positioned 4.5 cm away from the cells to chronically pace them 
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in culture, using square light pulses at a constant pulse width of 20 ms and brightness of 

0.2 mW/mm2. 30-second videos of cell beating at 35-50 fps (as limited by data transfer 

rate) were recorded every 15 minutes for up to 10 hours. After pacing experiments, cells 

were fixed, permeabilized, and immunostained by Shivani Pandey with rabbit anti-GFP 

(Invitrogen), and mouse IgG1 anti-α-actinin (Sigma Aldrich) using standard procedures. 

Contraction and beating rate measurement 

Videos of cell contraction were analyzed using custom MATLAB software. Light 

flashes were identified by saturated signal in a vertical line scan, and video images 

during light flashes were replaced with neighboring frames. A contraction surrogate at 

each frame (��) was calculated as �� = ∑ ∑ ����� �����
�

��  where ���� is the brightness 

of an individual pixel, and ���� is the brightness of the same pixel during the reference or 

“key” frame. The first 5 frames of a video were tested as the key frame, with the one 

leading to the highest variance of �� being used, to prevent the key frame from 

occurring in the middle of contraction, which led to two smaller deflections for each beat, 

rather than a single larger deflection. �� was then linearly dedrifted, and a 3 or 5 point 

derivative calculated. Capture was identified by the peak of the signal derivative 

exceeding a threshold, which was defined manually for each CM sample to properly 

record visible beats. 

Spark cell transduction with Cx43 and sorting 

Under my guidance, Shivani Pandey plated spark cells and HEK-293 cells in a 6 

well plate and transduced subsets with Cx43-GFP lentivirus (a kind gift from Dr. Gordon 

Tomaselli) at 10 MOI. Cells were trypsinized and collected for fluorescence-activated 

cell sorting by the Ross Flow Cytometry Core at the Johns Hopkins School of Medicine 
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to separate out ChR2/Cx43 positive cells (as indicated by YFP andGFP fluorescence, 

respectively), by using YFP+ only, GFP+ only, and double-negative cells as controls. 

qPCR on spark cells 

1 mL Trizol (Life Technologies) was added to wells containing spark cells and 

Cx43-transduced spark cells, and cell lysate was transferred to 1.5 mL tubes. Five 

minutes later, 200 μL chloroform was added to each tube, and they were shaken for 

15 s. Three minutes later they were centrifuged at 12,000g for 15 min at 4°C. After this 

the upper layer was carefully transferred to new tubes. 500 µL isopropyl alcohol was 

added, and the tubes were shaken vigorously. Ten minutes later the tubes were 

centrifuged for 10 min at 12,000g at 4°C, after which the supernatant was discarded. 

The remaining RNA pellets were resuspended in 1 mL 75% ethanol, before being 

centrifuged for 5 min at 7000g at 4°C and discarding the supernatant. The previous step 

was repeated to further rinse the RNA, then the tubes were placed upside-down on 

Kimwipes (Kimberly-Clark) for 5-15 min to remove the rest of the ethanol. Finally, the 

RNA was suspended in 50 µL DEPC water (Invitrogen), before being quantified using a 

Nanodrop spectrophotometer (Thermo-Fisher). RNA was converted to cDNA using the 

PCR Master Mix kit (Thermo Fisher Scientific, Waltham, MA), with the MyGo Mini PCR 

system (IT-IS Life Science Ltd., Republic of Ireland). Four replicates of qPCR were 

performed on GAPDH in Cx43-transduced and untransduced cells, using the forward 

and reverse primers GGCCTTCTTGCTGATCCAGT and 

TCTTCATGCTGGTGGTGTCC for Cx43, and CCCACTCCTCCACCTTTGAC and 

CCACCACCCTGTTGCTGTAG for GAPDH. The PCR program run for each sample 

consisted of 120 seconds hold at 95°C, 40 cycles of amplification that alternated 
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between 90°C and 65°C, 10 seconds pre-melt hold at 95°C, and a melting step that 

increased from 60°C to 97°C at 0.1°C/second. CT values were obtained using MyGo 

Mini PCR Software (IT-IS Life Science Ltd., Republic of Ireland) 

Statistics 

All data are reported as mean±SD. Paired or unequal variance t-test was used to 

determine statistical significance as appropriate. 

Results 

Optogenetic stimulator design 

To choose a power supply, brightness-voltage, current-voltage, and brightness-

distance curves for the panel were constructed (Figure 31). The brightness-distance 

curve showed that light intensity varied significantly depending on whether a sample 

was directly under or in between LEDs for separation distances <4 cm (Figure 31A). 

Therefore, in our final iteration, this distance was set at 4.5 cm. To limit light exposure, 

we wanted to choose a pulse duration that could stimulate with the least energy. Based 

on previously published work examining stimulation threshold for an island of spark cells 

surrounded by NRVMs, we expected ~20 ms light duration would allow the lowest 

pacing power, with a stimulation threshold of ~0.04 mW/mm2 [172]. Brightness-voltage 

curves showed that we could achieve 0.15 mW/mm2 at 50 V and 4 cm, and current-

voltage curves showed 2.3 A current at 50V, so we chose a power supply that could 

output 54V and 3.45A. We attempted to measure brightness and current draw from this 

power supply directly, but our circuit could not output enough current long enough for us 

to measure it in the system. Instead, we extrapolated our current-voltage and voltage-



92 
 

brightness curves, to conclude this supply is current-limited (See Figure 31B) and 

outputs 0.2 mW/mm2 at 4 cm (Figure 31C), which based on our brightness-distance 

measurements is a minimum of 0.16 mW/mm2 at the 4.5 cm we used in our final 

iteration (Figure 31). This gives us a safety factor of ~4, which is important since some 

light will be absorbed or reflected by the tissue culture plates.  

 

Figure 31. Design curves for optogenetic stimulation 
A. Light brightness vs. distance at 42 V. Sensor was moved laterally to find maximum and 
minimum brightness at each distance due to spacing of LEDs. B. Current vs. voltage for LED. 
Variable power supply could only output 50 V, so currents at higher voltages are extrapolated. 
C. Brightness vs. voltage for LED, measured at 4 cm. Variable power supply could only output 
50 V, so brightness at higher voltages are extrapolated. From Shivani Pandey. 

Cluster fabrication and characterization 

Spark cells plated into low-attachment 96 well plates and centrifuged formed 

clusters within 24 hours (Figure 32). In one batch, HEK-293 cells formed clusters in 21 

out of 24 agarose-coated wells. Confocal imaging of a cluster on CMs demonstrated 

continued expression and proper trafficking to cell membranes of ChR2-YFP in situ. The 

clear boundary of the cluster demonstrated that the cells remain grouped together and 

did not diffuse into the CM substrate (Figure 33). 
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Figure 32. Time lapse images of cluster formation.  
Scale bar is 100 µm. From Dr. Renjun Zhu. 

 

Figure 33. Confocal image of cluster on cardiomyocytes.  
A. α-actinin B. ChR2 C. DAPI D. Superimposed stains. 

Acute pacing experiments 

Phase contrast imaging during acute pacing showed that we could pace-capture 

the CMs at up to 2 Hz. To test if the optically initiated activation could point-pace the 

entire monolayer, we optically recorded APs across the monolayer. While a 

spontaneous AP originated from the edge of the monolayer (Figure 34Aa, 946 ms), the 

optically-triggered AP originated from the location of the spark cluster (Figure 34Aa, 

2640 ms), as identified by the bright background fluorescence signal (Figure 34B). The 

AP then propagated from the spark throughout the entire monolayer, as shown by the 

activation map (Figure 34C).  
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Figure 34. Optical mapping of optically-paced cardiomyocytes.  
A a. Membrane potential across the NRVM monolayer at different time points. Red indicates 
depolarized cells; blue and green indicate cells at rest. b. Optical APs recorded from the center 
of the field of view (purple box in Aa). Orange lines correspond to the time points where the 
snapshots in Aa were taken. c. Recording of the stimulating light. B. Background fluorescence 
image of the NRVM monolayer. Arrow points to spark cluster (seen as white dot, due to 
clustering of fluorescing cells). C. Activation map and isochrones (20 ms spacing) of an optically 
paced AP. From Dr. Renjun Zhu. 
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Chronic pacing experiments 

Using our in-incubator microscope and optical pacing system, we took baseline 

recordings before optical pacing and found a mean beating rate of 43 BPM, with 

extensive CL variability sample to sample, and sometimes even within single samples 

over a 30 s interval (Figure 35). However, we found we were able to pace-capture our 

cells inside an incubator using our optical pacing system (Figure 36). Time lapse 

imaging of coverslips before and during pacing allowed us to determine capture over 

30 s intervals over 6 hours (Figure 37A). Capture at 60 bpm with optical pacing was 

achieved in 3 of 5 NRVM cultures, with a fourth capturing intermittently. The three 

captured samples maintained capture for at least 4 hours (Figure 37A). Well-to-well 

variability (SD) of beating rate increased from 3.3 BPM before pacing to 8.0 BPM after, 

since only some samples captured. Histograms of cycle length before and during pacing 

showed significant variability in inter-beat interval (IBI), while the captured samples beat 

both faster, at 1 Hz, and more regularly (Figure 37B). This is clearly demonstrated by 

plots of mean CL and standard deviation of cycle length before and during beating 

(Figure 37C and D). Furthermore, even the coefficient of variation is reduced in the 

captured samples, despite the shorter IBI (Figure 37E). Interestingly, in the case where 

capture was intermittent, the SD and COV of IBI was higher than it was before pacing 

(Figure 37E and F). To isolate the effects of pacing capture, we only included samples 

during pacing before any significant dropout of previously capturing samples, as marked 

by an orange bar in Figure 37A. 
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Figure 35. Beating variability in unpaced NRVMs. 
Two examples of beating in unpaced NRVMs. The blue trace shows contraction surrogate and 
the orange is its derivative. Along the top of the plot, yellow asterisks indicate a detected beat. 

0                                                                                          15                                30
seconds

30 beats

0                                                                                          15                                30
seconds

C
o

n
tr

a
c
ti
o
n
 s

u
rr

o
g

a
te

 
a
n

d
 d

e
ri

va
ti
ve

 (
a

.u
.)

C
o

n
tr

a
c
ti
o
n
 s

u
rr

o
g

a
te

 
a
n

d
 d

e
ri

va
ti
ve

 (
a

.u
.)

46 beats



97 
 

 

Figure 36. Optical capture of NRVMs. 
Traces of contraction before (A), and during (B) 1 Hz optical pacing. The black trace shows 
contraction and the orange is its derivative. Along the top of the plot, blue markings indicate 
each light pulse and yellow markings indicate capture. 
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Figure 37. Chronic optical pacing of NRVMs.  
A. Beating rate over time for multiple samples. Blue rectangle shows optical pacing. Orange 
rectangle shows times analyzed for during pacing group in B-E. Black dashed line is paced rate. 
B. Histograms of beating rate show distribution of inter-beat intervals (IBI) before and during 
pacing. Axes colors correspond to the samples in A and C-E. C-E. Mean of IBI (C) SD of IBI (D) 
and COV of IBI (E) before and during pacing. Solid lines denote electrically captured samples, 
dashed shows intermittent capture, and dotted shows no capture. Colors correspond to the 
samples in A and B.  

To see if our spark cluster method could pace a more clinically relevant cell type, 

we attempted to use them to pace hiPSC-CMs with a mutation for arrhythmogenic right 

ventricular dysplasia. Baseline recordings before optical pacing showed a mean beating 

rate of 37 BPM. All four samples could be paced at 60 BPM, but unlike NRVMs lost 

capture after approximately an hour (Figure 38A). Histograms revealed less consistent 
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IBI than NRVMs even while cells were nominally capturing, indicating some level of 

continued missed or early spontaneous beats (Figure 38B). As expected, pacing 

significantly reduced IBI to 1 Hz (Figure 38C). Because every well was successfully 

captured, well-to-well standard deviation of beating rate decreased from 4.1 BPM before 

pacing to 1.5 BPM after. Pacing also reduced SD and COV of IBI, as seen in captured 

NRVMs (Figure 38D and E). As with NRVMs, we only included samples during pacing 

before any significant dropout of previously capturing samples, as marked by an orange 

bar in Figure 38A. 
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Figure 38. Chronic optical pacing of hiPSC-CMs.  
A. Beating rate over time for multiple samples. Blue rectangle shows optical pacing. Orange 
rectangle shows times analyzed for during pacing group in B-E. Black dashed line is paced rate. 
B. Histograms of beating rate show distribution of beating rates before and during pacing. C. 
Mean cycle length before and during pacing. D. Mean standard deviation of cycle length during 
each 30 second recording before and during pacing. E. Mean coefficient of variation before and 
during pacing. 

Cx43-transduced spark cells 

 To try to improve pacing consistency, we transduced spark cells with GFP-Cx43. 

Using fluorescence-assisted cell sorting, we found that although GFP+ only cells had 

bleed-through into the YFP channel (Figure 39C), there was almost no bleed-through of 

YFP into the GFP channel (Figure 39B). Since we knew that almost all our cells were 
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YFP (ChR2) positive, since they were a stably transfected cell line, we only had to be 

able to differentiate cells that were also GFP (Cx43) positive, making the GFP bleed-

through into the YFP channel irrelevant. Therefore, we were able to identify spark cells 

that were transduced with Cx43 by GFP signal (Figure 39D) in excess of YFP-only cells 

(Figure 39B) and collected the highly doubly-transduced (Hi DP) population for further 

analysis. qPCR confirmed increased expression of Cx43 by a factor of 23 (95%CI = 5.6-

98). However, live cell imaging of Cx43-transduced spark cells showed decreased 

GFP/YFP (the signals can’t be separated since the wavelengths are similar) compared 

to spark cells, suggesting interference with ChR2 expression, possibly due to cell stress 

(Figure 40), so these cells were not used for further study. 
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Figure 39. Fluorescence-activated cell sorting of Cx43/ChR2 positive cells.  
YFP fluorescence along y-axis shows ChR2 transduction, while GFP fluorescence along x-axis 
shows Cx43 transduction. Boxes show YFP+, GFP- cells, YFP+, low GFP+ cells, and YFP+, 
high GFP+ cells. A. Naïve HEK-293 cells (YFP/GFP negative). B. spark cells (YFP-positive) C. 
Cx43-transduced HEK-293 cells. D. Cx43-transduced spark cells. From the Johns Hopkins Flow 
Cytometry Core. YFP box corresponds to cells considered to express YFP only (brown). Lo DP 
refers to cells expressing YFP and a low amount of GFP fluorescence (green). Hi DP refers to 
cells expressing YFP and a high amount of GFP fluorescence (purple). Hi DP cells were 
collected and used for further analysis. 
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Figure 40. Fluorescence images of transduced and untransduced spark clusters.  
A. Control spark cluster B. Cx43-transduced spark cluster. From Shivani Pandey. 

Discussion: 

While a number of groups have used optogenetics to pace cardiac tissue [128], 

including for up to 2 hours in vivo [8], only recently has an opsin been used to pace CMs 

chronically in vitro, where it may be used to mature cells [171]. That study found that 

pacing for one week starting at day 7 in hiPSCs increased spontaneous beating rate, 

maximum capture rate, and rate of force development, while reducing force drop-off at 

higher pacing rates. However, they used custom-made culture plates that required an 

LED for each well, while we used a single commercially available LED panel, with the 

capability to stimulate multiple off-the-shelf plates. Also, while they, as well as many 

others using electrical stimulation, used field pacing to mature cells, this creates the 

unnatural condition of forcing all cells in the tissue to contract simultaneously against 

each other, preventing them from undergoing physiological length changes that are 

likely important for mechano-electric feedback [173]. While deformable membranes on 

deformable anchors have mitigated this issue somewhat by allowing for length changes 
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during contraction and led to improved maturation by pacing ([102, 104, 174, 175], see 

Chapter 1 for more detail), the fact remains that the heart itself is not field paced, and 

instead contracts sequentially, resulting in stretching before and after an individual cell 

has an action potential, which may be important for proper gene expression and 

function. This is supported by data studying cardiac resynchronization therapy 

mechanisms that found marked “reverse remodeling” in hearts from dogs treated with 

resynchronization therapy (which alters the timing of activation) after artery ligation and 

rapid pacing to mimic heart failure, even in the absence of significant improvement in 

ejection fraction, suggesting the activation timing itself may play an important role [176]. 

A number of studies have attempted to create electromechanical bioreactors, in which 

cultured cells are both electrically paced and cyclically stretched, with the hope of 

investigating the effects of combined electrical and mechanical stimulation [177–180]. 

More recently, some studies have varied the timing of electrical and mechanical stimuli 

to investigate how electromechanical delay affects cellular function, and shown that this 

changes gene expression [181, 182]. One study attempted to mimic the pre-stretch that 

occurs in vivo by combining mechanical stretching and electrical pacing and found 

increased SERCA2 and cTnT versus other groups, including synchronous electrical and 

mechanical stimulation providing further evidence that timing of contraction affects gene 

expression and proper cardiac function [183]. Chronic point pacing may provide the 

same effect more simply, but has only been attempted in one pilot study [184]. 

Therefore, we chose to use clusters of spark cells, rather than “sprinkling” them 

onto or directly transducing CMs, as has been done previously [9], because it allows us 

to, with a simple global application of light, point pace cells, which is more similar to 
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what occurs in vivo in a way that may be important for maturation [10], and is difficult to 

do electrically at scale [11]. Furthermore, it is an improvement over other optogenetic 

stimulation methods because it only perturbs the CMs in a small region (Figure 34B), 

while the paced AP can propagate across and activate the entire tissue (Figure 34C). 

While others have narrowly focused light to optogenetically point pace acutely [185, 

186], none of them have done so chronically for maturation, and this method requires 

direct transduction of CMs and is less scalable. Our technique should make chronic in 

vitro point pacing of CMs simpler, since pacing requires no contact or manipulation once 

the cluster is placed, the clusters are straightforward to manufacture, and a single 

commercially available LED panel may be used to stimulate entire plates of cells.  

We chose our pulse width to be that which required the minimum power to 

stimulate, and the brightness to exceed the pacing threshold (~0.04 mW/mm2 at 20 ms), 

based on previously published measurements [9]. In addition to increasing the beating 

rate to help mature CMs (Figure 37 and Figure 38), we also hoped to reduce both well-

to-well and temporal variability in beating rate to create more reproducible results. While 

we were able to do this in hiPSC-CMs since all wells captured (Figure 38), in NRVMs, 

where some wells only captured intermittently or not at all (Figure 37B-C), well to well 

(Figure 37B) and temporal (Figure 37E-F) variability actually increased, demonstrating 

the importance of further work to attain more consistent capture. Furthermore, in our 

hiPSC-CM experiments, we lost capture after only an hour. Whether this was caused by 

metabolic insufficiency, calcium dysregulation, or changes in protein phosphorylation or 

gene expression, and whether these are due to the disease phenotype of our cells, or 

the immaturity of our hiPSC-CMs remains to be studied in future experiments. 
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Conclusion 

 We have developed a straightforward method to leverage optogenetics to 

chronically pace CMs in vitro. While much work remains to be done, this technique 

holds the promise of increasing maturation and reducing variability of CMs, and the 

ability be easily implemented and scaled up to stimulate many samples in parallel.  
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Chapter 5: Engineered heart slices for electrophysiological and 

contractile studies 

Introduction 

The applications of tandem cell units described in the previous chapters use 

monolayers of CMs, but the results would be stronger if they were performed on a 

system that better represented the properties of the intact heart. For example CFB 

differentiation is significantly affected by ECM stiffness [118–120] and composition [121, 

122]. Various strategies have been employed in the fabrication of functional cardiac 

preparations that mimic native myocardium [188, 189]. However, significant challenges 

remain in the ability of present engineered tissues to recapitulate the complex 

biochemical and biomechanical environment in native myocardium. Decellularization of 

whole organs can provide a natural scaffold that can be repopulated with a variety of 

cell types. Decellularized myocardial matrix has been successfully obtained by whole-

heart perfusion [111, 116] or through treatment of mm-thick sections of myocardium 

[190], and shown to provide a biocompatible substrate for cellular attachment while 

largely preserving matrix composition, organization, and mechanical properties. CMs 

cultured on this native matrix survive [114, 191], contract [190], and respond to electrical 

stimulation [111, 115, 117]. Thus, decellularized myocardium is proving advantageous 

for the maintenance of CMs and is receiving increasing attention as a scaffolding 

material for cardiac tissue engineering. Despite this progress, recellularization of three-

dimensional native tissue remains a challenging proposition, particularly in the whole 

organ. On the other hand, recellularization of smaller and thinner tissues should be 
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easier to achieve. With this approach in mind, our objective was to develop a 

physiological tissue system that supports CM survival and organization at confluent 

densities, contracts, and exhibits electrical conduction, anisotropic properties, and 

tissue-level arrhythmias. 

Methods  

Preparation of decellularized slices  

Cylindrical plugs of myocardial tissue were punched out of the excised left 

ventricle of hearts from slaughterhouse pigs using a 14 mm or a 16 mm-diameter hollow 

metal punch (Mayhew, Turner Falls, MA). Plugs were stored at -80°C until sectioning, 

for a minimum of 16 h. To obtain sections for decellularization, plugs were partially 

thawed, and an epicardial portion ~1 cm thick was cut out, embedded in agarose, and 

glued to the cutting stage with cyanoacrylate. Slices 300 μm thick were then sectioned 

using a vibratome equipped with a ceramic blade vibrating at a rate of 100 Hz, 

amplitude of 1 mm, and advancing at a speed of 0.01 to 0.03 mm/sec. The cutting 

solution was UltraPure water (Invitrogen, Carlsbad, CA) chilled to 4°C (Specimen Bath 

Cooler 7610, Campden Instruments), with 1% antibiotic-antimycotic (Gibco, 

Gaithersburg, MD) and 1% penicillin/streptomycin (Life Technologies, Grand Island, 

NY). All tools in contact with the tissue or solutions were sterile. Slices were stored at 

4°C in PBS or HBSS overnight prior to decellularization. In this report, "native" slices 

refer to tissue slices prepared in this way and remaining in PBS instead of undergoing 

decellularization. 

Slices were decellularized by a procedure modified from Ott et al [111]. Slices 

were placed in wells of a standard 12-well culture plate and treated with 1 mL of each of 
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the following solutions (diluted in UltraPure water, where applicable) while being rotated 

at 150 rpm on an orbital shaker: 2 washes of 1% SDS (Life Technologies) for 1.5 h 

each, 1 wash of water for 15 min, 1 wash of 1% Triton X-100 (Sigma-Aldrich) for 7 min, 

and 3 washes of PBS or HBSS for 15 min each. Afterwards, decellularized slices were 

left in PBS or HBSS to rotate at 110 rpm on an orbital shaker overnight. All detergents, 

wash, and storage solutions were supplemented with identical concentrations of 

antibiotics and antimycotic as in the cutting solution. Plastic coverslips 14 mm in 

diameter were sterilized by rinsing in 70% ethanol and exposing to UV for 10 min. The 

decellularized slices were then carefully spread on the coverslips with the outer 

perimeter of the slice hooked around the edges of the coverslip. Coverslips with affixed 

slices were placed in 15 mm-diameter wells of standard 24-well culture plates and kept 

in sterile PBS or HBSS until use.  

Seeding of decellularized slices with neonatal rat ventricular cells 

All animal procedures were performed in compliance with guidelines set by the 

Johns Hopkins Committee on Animal Care and Use and all federal and state laws and 

regulations. Cell culture media consisted of Medium 199 (Gibco) supplemented with 1% 

HEPES buffer solution (Gibco), 1% MEM non-essential amino acids (Gibco), 20 µM 

glucose (Sigma-Aldrich), 2 mM L-glutamine (Life Technologies), 4 µg/mL vitamin B-12 

(Sigma-Aldrich), 1% penicillin/streptomycin (Life Technologies), and a variable amount 

of FBS (Life Technologies). The hearts of 2-day-old Sprague-Dawley rats (Harlan, 

Indianapolis, IN) were excised, cut into 4-6 pieces, rinsed twice in HBSS, placed in 40 

mL 0.25 mg/mL filtered trypsin (Affymetrix, Cleveland, OH) in HBSS solution in a sealed 

glass container, and rotated at 110 rpm at 4°C overnight (13-16 h). The next day as 
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much trypsin solution as possible (without removing cells) was pipetted out, and the 

remainder quenched by adding 25 mL 10% FBS media. The tissue was rotated at 150 

rpm in a warm water bath for 3 min. Then, excess media was removed, and 9 mL of 1 

mg/mL collagenase (Worthington, Lakewood, NJ) in HBSS was added before sealing 

the glass container holding the tissue and placing it back in the warm water bath for 3 

min. After this, excess solution was removed and discarded. Another 9 mL of 

collagenase solution was added, the glass container was sealed and rotated in the 

warm water bath again for 3 min, the cells were pipetted up and down three times, and 

the excess solution was removed and placed in a 15 mL centrifuge tube with 4 mL cold 

HBSS, which was placed in ice to quench the collagenase activity. This was done 3 

more times. The tubes were centrifuged at 3,000 rpm for 8 min, excess solution was 

aspirated, and the cells were pipetted out into 10 mL of cold HBSS. They were then 

triturated by pipetting before being passed through a 40 µm nylon cell strainer (BD 

Falcon, Franklin Lakes, NJ). The cells were then centrifuged again for 5 min at 1,000 

rpm and 1 min at 3,000 rpm, before aspirating out the HBSS, resuspending in 15 mL 

10% FBS media with 1% antibiotic-antimycotic, and preplating for one hour in a 75 cm2 

flask (Sarstedt, Newton, NC) to remove CFBs. They were then preplated again in 25 mL 

10% FBS media in a 175 cm2 flask (Sarstedt) without antibiotic-antimyoctic for one hour, 

before being counted using a hemocytometer (Thermo Fisher Scientific, Hampton, NH). 

Two million NRVMs were added to each slice to form an EHS. Day 0 of culture was 

defined to begin at the time of NRVM plating. After 18 h, EHS were washed with warm 

PBS, and fresh media with 10% FBS was added. On day 2, serum in the culture 
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medium was reduced to 2% to inhibit non-CM proliferation, and cells were fed with 2% 

serum every other day thereafter. 

DNA isolation and quantification 

Native and decellularized slices were dried in a dessicator and weighed. Since 

the decellularized slices weighed much less than the native slices, ten decellularized 

slices were combined for more accurate weighing and DNA quantification. They were 

digested in 500 µL Tris EDTA containing 1% SDS and 1% Proteinase K (Qiagen, Venlo, 

Netherlands) by volume at 52°C overnight. 500 µL of phenol/chloroform/isoamyl alcohol 

(Sigma-Aldrich) was added, and the sample was shaken and centrifuged 10 min at 

15,000 rpm. The supernatant was removed and placed in a new tube to which 50 µL 3M 

sodium acetate (Ambion, Life Technologies) and 1000 µL of 100% ethanol were added. 

This was frozen overnight at -20°C to precipitate the DNA, thawed, and centrifuged 10 

min again to pellet the DNA. The liquid was removed, and the tube was washed with 

70% ethanol and centrifuged 5 min. Finally the ethanol was removed, and the remaining 

DNA pellet was suspended in 50 µL Tris EDTA. DNA content was quantified by 

measuring absorbance in a spectrophotometer (NanoDrop 1000, NanoDrop Products, 

Wilmington, DE). 

Tissue characterization 

Native and decellularized slices were frozen at -20°C in optimal cutting 

temperature media (Sakura, Torrance, CA), and 10 µm-thick cross-sections were cut 

every millimeter with a cryostat (CM3050S, Leica, Wetzlar, Germany). These sections 

were imaged using a CCD camera (SensiCAM, Cooke Corporation, Romulus, MI) under 

a phase contrast microscope. Multiple images were taken of each slice and stitched 
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together manually to image a large field of view with detail by undergraduate Jourdan 

Ewoldt. The cross-sectional thickness was measured using a custom MATLAB script. 

Only sections from each slice that were straight, with little bunching or breaks, were 

used for thickness analysis.  

Slices of native and decellularized ECM were imaged using second harmonic 

generation (SHG) by a multiphoton microscope (model 710NLO, Zeiss, Oberkochen, 

Germany) with excitation at 880 nm, and emission acceptance at 415-450 nm. 

To image cell survival in EHS, a viability/cytotoxicity kit (Invitrogen) was used to 

stain live and dead cells in the EHS seven days after plating. After removal of culture 

medium, EHS were rinsed with PBS and incubated in 1.4 μM calcein-AM and 4 μM 

ethidium homodimer-1 (EtD) in PBS for 25 min at 37°C and imaged using a 

fluorescence microscope. 

Live/dead staining was also done in combination with SHG microscopy to image 

collagen organization relative to cells. Calcein was imaged by excitation at 488 nm and 

emission at 490-540 nm, and EtD was imaged using 543 nm excitation with 600-650 nm 

emission. In some experiments, the cells were incubated in the cell-permeable nuclear 

dye DRAQ5 for 5 min instead of EtD to image nuclei of live cells. A z-stack of images 

was created, and the intensity of above-background signal for calcein, DRAQ5 and 

SHG at each z-level was normalized to the overall peak intensity for each stain and 

plotted using a custom MATLAB script. Additionally, the z-stack was thresholded and 

colored according to depth using ZEN blue edition (Zeiss) to visualize cellular overlap. 
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Immunostaining 

Immunostaining and imaging were performed by Dr. Adriana Blazeski. EHS 

samples were fixed in 4% paraformaldehyde, sometimes immediately after optical 

mapping. EHS samples were permeabilized by applying 0.2% Triton X-100 (Sigma-

Aldrich) for 5 min and blocked using 10% goat serum (Life Technologies) in PBS for 25 

min at room temperature. Primary antibodies against cardiac troponin I (US Biological, 

Salem, MA), α-actinin (Sigma-Aldrich), vimentin (Dako), and connexin 43 (Sigma-

Aldrich) were diluted in Antibody Diluent (Dako). 

EHS were incubated in primary antibodies overnight at 4°C, then washed three 

times with TBS-T (10% TBS and 0.05% Tween 20 in ddH2O) for 5 min each. Samples 

were subsequently incubated with a 1:200 dilution of Alexa Fluor-conjugated goat 

secondary antibodies in antibody diluent (Invitrogen) for 1 hour at room temperature, 

followed by DAPI (30 µM in PBS) for 25 min. Finally, samples were washed again three 

times with either DPBS (ECM) or TBS-T (EHS) and mounted on microscope slides 

using ProLong Gold Antifade (Invitrogen). Immunofluorescence images were obtained 

using a confocal microscope (LSM 510 Meta, Zeiss). A similar protocol was performed 

(without secondary antibody incubation or wash) on slices of native and decellularized 

ECM, with staining using DAPI and phalloidin. 

Calculation of nuclear elongation and alignment  

 Confocal images of EHS stained with DAPI were thresholded above the noise 

level, and overlapping nuclei were segmented using a previously described method 

[192], with some changes. First, the concavity points were searched for recursively, 

such that when a concavity point was found, the outline between it and the convex hull 
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were searched for additional concavities. Second, the case where non-adjoining 

sections of outline were part of the same nucleus was allowed. Ellipses were fit using a 

previously described method [193]. Additional checks, such as a minimum area of 25 

µm2, overlap with other nuclei of no more than 40%, and minimum area in fitted ellipse 

that is above threshold of 70% were employed. The closest fit matching these 

parameters was used, and the mean angular orientation and standard deviation was 

calculated using a previously described method [194].  

Contraction measurement  

To characterize spontaneous contraction in EHS over time, EHS were removed 

from the incubator daily (before feeding on days they were fed) and immediately placed 

on an inverted microscope for viewing. It was then recorded whether each EHS 

contracted at least once within a 10 second period. If it did contract, it was recorded 

whether the entire 0.55 mm2 field of view contracted simultaneously, or if there were 

patches beating asynchronously. To characterize the amount of contraction, EHS were 

placed on a 37°C heated stage (Warner Instruments, Hamden, CT) in a 35 mm dish 

filled with the Tyrode’s solution. A section of the EHS was unhooked from the coverslip 

so that it could move freely. The EHS was paced at 1-5 Hz, and the free region was 

imaged by a CCD camera (Swiftcam, Swift, Schertz, TX) at a frame rate of 25-125 fps 

with 600x480 pixel resolution and a 3.07 mm2 field of view, such that the free edge of 

the slice was approximately vertical in the rectangular field of view. A custom MATLAB 

script was used to segment the image and calculate the mean displacement of the EHS 

over time by dividing the change in slice area by the height of the field of view. The 

mean displacement during each contraction at each pacing rate was calculated and 



115 
 

used as a surrogate for contractility to measure the force-frequency relationship of the 

EHS. Although in some cases the EHS would beat spontaneously or not be captured by 

an electrical stimulus, only the amplitudes of beats with a previous beat preceding it by 

the set pacing interval were used in analysis.  

Electrophysiological studies 

 Most EHS were optically mapped 5 to 8 days after seeding. Some EHS were 

mapped 21 days after seeding. EHS were optically mapped using a custom-built 256 

channel photodiode array and protocol described previously [129]. Briefly, EHS were 

placed in the mapping chamber and treated with 20 µM di-4-ANEPPS and 10 µM 

blebbistatin in Tyrode’s solution for 10 min. Tyrode’s solution (35±1°C) containing 10 µM 

blebbistatin was continuously recirculated through the chamber for the duration of each 

experiment to inhibit motion artifacts. The stimulus voltage threshold was determined at 

2 Hz, and a voltage 10% higher was used for experiments. Each EHS was recorded 

during pacing at increasing rates (1 to 5 Hz, and then decreasing the cycle length 

(period) by 20 ms, then 20 ms, and then 10 ms steps thereafter) until it lost capture, had 

significant wavebreaks, or created a reentrant wave. Before each recording, at least 25 

stimulus pulses were applied to allow the tissue to reach steady state at the new pacing 

rate. 

For drug studies, 90 μM, 180 μM, and 360 μM solutions of lidocaine were made 

and superfused over the EHS for at least 15 minutes before measurements were taken 

as described above. They were paced at 2 Hz during the last 5 minutes of solution flow 

(600 beats), which has been shown to be long enough to allow lidocaine binding to 
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reach steady state [195]. Lidocaine, di-4-ANNEPPS and blebbistatin were all dissolved 

in DMSO. The concentration of DMSO in the bath never exceeded 0.5%.  

 Optical mapping signals were preprocessed using a custom Matlab script as 

described in Chapter 2. The isochronal activation map of a perfectly homogeneous 

anisotropic tissue that has been point stimulated should be a series of equally spaced 

ellipses (disregarding nonlinearities due to rapid changes of wavefront curvature near 

the pacing site) [58]. In x-y-t space this forms a right ellipsoidal cone, which we fit to our 

data by iteratively optimizing the ellipsoidal cone parameters to minimize the sum of the 

squared distance between each data point and the cone [196]. CV in the longitudinal 

and transverse directions were calculated as vectors (position, direction, and 

magnitude) starting at the vertex of the cone with directions along the major and minor 

axes of the ellipsoid and magnitudes equal to the reciprocal slope of the cone along the 

major and minor axes, respectively (Figure 41). APD at 30 and 80 percent repolarization 

(APD30 and APD80) were also calculated from the optical voltage signal. 
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Figure 41. Calculation of conduction velocity.  
A. CV was calculated by plotting activation maps in x-y-t space and fitting the activation times to 
an elliptical cone. Data shown here is for the activation map in Figure 47. B. Parameters of an 
ellipsoidal cone were iteratively optimized to minimize the total squared distance between each 
data point and the cone (blue line). The reciprocal of the slope of the cone along the major and 
minor axes was used to determine CV along the fast (longitudinal) and slow (transverse) axes 
(green and red lines, respectively). The vector directions for CV were taken to be along the 
major and minor axes of the cone, and their origin to be at the vertex of the cone.  

Statistics 

All data are presented as mean±SD, except when stated otherwise. Anisotropy 

ratio and nuclear elongation (length-to-width ratio) were log transformed to make them 

more normally distributed since they were right-tailed. They were expressed as the log-

transformed mean as well as the interval of the log-transformed mean plus or minus one 

SD, after inverse transformation back into linear space, as discussed in [197]. Paired t-

test was used for statistical significance between experimental groups, except when 

data were normalized and then compared to control (Figure 46D, Figure 47C,D), in 

which case an unequal variance t-test was used to compare them to 1. Differences 

were considered statistically significant at p<0.05. 
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Results 

Preparation of thin decellularized slices of extracellular matrix 

Slices of ECM were prepared from left ventricles of pig hearts (Figure 42A). The 

tissue was frozen, cut as 14 or 16 mm-diameter plugs, and a 1 cm-deep epicardial 

portion was cut out and embedded in agarose in a 35 mm dish (Figure 42B). These 

tissue plugs were then sectioned into 300 μm-thick slices (Figure 42C) and 

decellularized by SDS and Triton X-100, becoming nearly transparent (Figure 42D). 

Slices of decellularized ECM did not maintain their shape when lifted out of liquid. To 

allow for easy handling and cell seeding, each slice was carefully spread over a plastic 

coverslip and hooked onto the edges of the coverslip (Figure 42D).  

 

Figure 42. Preparation of engineered heart slices.  
A. Left ventricles were excised from pig hearts. B. A 1 cm-thick epicardial plug was punched out 
and embedded in agarose. C. Tissue was sectioned into 300 μm-thick slices using a vibratome. 
D. Slices were decellularized by SDS and Triton X-100. And spread on 14 mm-diameter 
coverslips. C and D have the same scale.  

Because the slices were only 300 μm-thick, they were decellularized after only 

3.5 h in detergents, and then washed overnight in PBS or HBSS. Imaging of collagen 

using SHG showed that fiber alignment and structure was maintained after 

decellularization (Figure 43A,B). Images of phalloidin staining for F-actin and DAPI 
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counterstaining for nuclei showed cells were present in native tissue slices (Figure 43C) 

and absent in decellularized slices (Figure 43D). Cryosections of the ECM were 

visualized before and after decellularization using phase contrast imaging (Figure 

43E,F) and showed that the thickness of the ECM decreased from 301±36 μm (n=4) 

prior to decellularization to 61±17 μm (n=3) post-decellularization. DNA content 

decreased from 2.0±0.6 (n=8) to 0.12±0.10 (n=4) µg/mg initial dry weight, and dry 

weight decreased from 10.2±3.5 (n=8) to 0.9±0.2 mg (n=4).  
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Figure 43. Characterization of decellularized slices.  
A-B. SHG imaging showed similar collagen structure and alignment before (A), and after (B), 
decellularization. A and B have the same scale. C-D. Confocal images of native (C) and 
decellularized (D) ECM stained for nuclei (DAPI) and F-actin (phalloidin) showed a virtual 
absence of cellular material after decellularization. C and D have the same scale and imaging 
settings, and were produced by Dr. Adriana Blazeski. E-F.Ten µm-thick cross-sections of slices 
of ECM before (E) and after (F) decellularization are shown using phase contrast microscopy. E 
and F have the same scale. 
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Location and orientation of cells seeded on thin slices of decellularized 

extracellular matrix 

Freshly isolated NRVMs were seeded on ECM to form EHS. ECM slices that 

were not tethered to coverslips compacted into a ball after cell seeding, making them 

unsuitable for microscopy or experimentation. EHS were imaged with calcein and 

DRAQ5 for live cells and SHG for collagen so that cell location and orientation could be 

visualized relative to the collagen matrix in a z-stack (Figure 44). During the first 3-4 

days in culture, the cells elongated from their initial rounded shape and by 5-7 days 

aligned along the direction of the ECM fibers (Figure 44A). The half-maximum of the 

SHG signal was used to define the surface of the ECM. Three μm below the surface of 

the ECM, cells were still densely packed (Figure 44A), while 30 µm below the surface 

some cells could still be found, but were sparse (Figure 44B). Measurements of calcein 

and SHG intensity as a function of depth (Figure 44C,D), as well as depth-coded 

images of calcein staining (Figure 44E), showed that the cells were located primarily on 

the surface of the collagen matrix, but with some penetration into the depth. There were 

some areas where cells at different depths overlap suggesting that some cells reside 

below the surface of the main cell layer of the EHS. 
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Figure 44. Survival and location of cells in engineered heart slices.  
Calcein-AM (live cells), second-harmonic generation (SHG), and DRAQ5 (nuclei) were imaged 
7 days after plating to create a z-stack of confocal images. A-B. x-y (en face) images from 
different depths, with zero depth defined to be at the half maximum of the rising edge of the 
SHG signal (see D). C. The intensity of calcein-AM, SHG, and DRAQ5 were averaged in the y-
direction and plotted in the x-z plane. D. These intensities were then averaged in the x-direction 
and plotted as a function of z (normalized to maximum for each channel), and show a layer of 
cells residing mostly on top of the ECM. E. The calcein signal from the z-stack was thresholded 
and colored according to the depth. 

Live/dead staining showed few dead cells in EHS at day 7 (Figure 45A). CMs had 

well-formed sarcomeric structure (Figure 45B) and expressed punctate patterns of the 

gap junctional protein connexin 43 (Figure 45B). Staining with cTnI and vimentin 

revealed the presence of mostly CMs and some non-CMs (Figure 45C). In general, cells 

were elongated and aligned (Figure 45B,C). Elongation (length-to-width ratio) and 
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alignment were quantified by the shape of the cells’ nuclei, which had a mean 

elongation of 2.1 (1.5-2.9) and angular standard deviation of 20° (n=176 nuclei, 

respectively, Figure 45D). 

 

Figure 45. Characterization of cells in engineered heart slices.  
A. Staining of live cells with calcein-AM (green) and dead cells with EtD (EthD, red) reveals few 
dead cells in the EHS 7 days after plating. B. α-actinin staining (green) shows alignment and 
elongation of cells, and distinct sarcomeric striations (insets show portions of the images at 10 
times magnification). Connexin 43 (Cx43, red) staining suggests cells are electrically coupled. 
C. Staining with vimentin (violet) for non-CMs, α-actinin (green) for CMs, and DAPI (blue) for 
nuclei showed mostly CMs and some non-CMs in EHS made from both types of ECM. D. 
Automated analysis of nuclear shapes showed they were elongated and aligned. White ellipses 
in C show fits of nuclei. Radial distances in D show elongation (long axis/short axis) of nuclei in 
C, while the angles show the orientation of the long axes of the nuclei. The mean orientation 
and elongation are marked by solid radial and circumferential lines, respectively. Images in B 
and C from Dr. Adriana Blazeski. 



124 
 

Contraction of EHS 

During culture, the beating rate of EHS was recorded daily. Two days after cell 

plating, approximately 40% of the EHS exhibited small asynchronous areas of 

contraction, 40% showed coordinated contraction across a 0.55 mm2 field of view, and 

20% were quiescent. Over the next 4 days, the fraction of EHS with asynchronous 

contraction decreased to zero, while the fraction of quiescent EHS increased. By 7 

days, about 60% of the EHS were quiescent, while the remainder contracted 

synchronously and intermittently. Almost all the EHS that were electrically stimulated on 

days 7-8 after characterization of spontaneous beating exhibited either synchronous 

contraction across the EHS if assayed for contractility, or activation across the entire 

EHS if optically mapped, demonstrating that EHS quiescence was not due to cell death. 

To quantitate contraction, one corner of an EHS was unhooked from the coverslip so 

that shortening could be observed during electrical pacing (Figure 46A-C). Using 

displacement as a surrogate for contractile force, we measured the force-frequency 

relationship of the EHS, and found a statistically significant decrease in contractile force 

at pacing rates of 4 and 5 Hz relative to 2 Hz (Figure 46D, n=4-6 EHS).  
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Figure 46. Contraction of engineered heart slices.  
A-B. Representative images of EHS while relaxed (A), and at the peak of contraction (B) show 
shortening of day 5 EHS with 2 Hz pacing. The edge of the slice is outlined during rest (red line) 
and at peak contraction (blue line). C. The average slice displacement during each frame of the 
video recording was calculated over a 38 s recording interval. D. Using these recordings, the 
average force-frequency relationship across multiple EHS (n=4-6 for each rate) could be 
determined. Each EHS was normalized to its 2 Hz peak displacement. * indicates significant 
decrease (p<0.05) in contraction amplitude from that at 2 Hz. 

Anisotropic electrical conduction, response to lidocaine, and reentrant activity in 

EHS 

EHS were stimulated at their center by a point electrode. Optical maps enabled the 

characterization of AP propagation and morphology (Figure 47A,B). At 2 Hz, EHS 

(n=17) had a normal AP profile with an APD80 of 157±39 ms, similar to that reported in 

NRVM monolayers (137±13 ms on day 6) [94], and an APD30 of 69±15 ms. Longitudinal 

CV was 14.4±5.5 cm/s, transverse CV was 7.5±3.4 cm/s, and the anisotropy ratio of 

conduction velocities (AR) was 2.0 (1.4-2.8). For pacing rates increasing from 1 to 5 Hz, 
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APD (Figure 47C) and conduction velocities in the longitudinal and transverse directions 

(Figure 47D) all had negative rate-dependencies, while AR remained approximately 

constant at 2.0. Some EHS were kept in culture for 21 days and could be paced and 

optically mapped (Figure 48). Of four EHS kept until day 21, three could be paced 

across the entire EHS and had average CVs of 9.7±1.1 and 5.9±0.9 cm/s in the 

longitudinal and transverse directions, respectively, and APD30s and APD80s of 64±23 

and 127±29 ms, respectively, at 2 Hz pacing.  

 

Figure 47. Optical recordings of transmembrane voltage in engineered heart slices. 
EHS were optically mapped with voltage-sensitive dye after 5-7 days in culture. A. Activation 
map for EHS showed anisotropic propagation during 2 Hz point stimulation. Isochrones are 10 
ms. White pulse symbol indicates site of the stimulus electrode. The white dot marks location of 
recording in B. The arrows and values show the calculated longitudinal and transverse CV 
vectors. B. Optical voltage signals in EHS showed normal action potential morphology. C. 
APD80 and APD30 were measured at different pacing rates. D. CVs in the longitudinal and 
transverse directions were measured at different pacing rates. In C-D, the number of EHS 
recorded was 17,15,13 and 7 at pacing rates 2 to 5 Hz, respectively, with fewer samples at 
faster rates due to loss of 1:1 capture. * in C and D indicates significant change (p<0.05) from 
values at 2 Hz. 
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Figure 48. Electrophysiology of engineered heart slice on culture day 21.  
A. Activation map. Isochrones are 10 ms. White pulse symbol indicates site of the stimulus 
electrode. White dot marks location of recording in B. White lines and values show the 
calculated longitudinal and transverse CV vectors. B. Optical voltage trace. 

Adding increasing doses of lidocaine to EHS (n=4-5) resulted in a statistically 

significant dose-dependent decrease in CV (Figure 49A-C) and maximum capture rate 

(Figure 49D) that was largely reversed after washout. Fractional conduction slowing 

was more pronounced in the longitudinal than transverse direction (Figure 49A-C).  
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Figure 49. Response of engineered heart slices to lidocaine.  
A-B. Activation maps in the absence (A) and presence (B) of 360 μM lidocaine at 2 Hz pacing 
rate showed lidocaine caused conduction slowing in EHS. Activation maps in A and B have 20 
ms isochrones and the same color scale. White pulse symbol indicates site of the stimulus 
electrode. White lines and values show the calculated longitudinal and transverse CV vectors. 
C.-D. Over multiple samples, when normalized to lidocaine-free control (longitudinal 
CV=10.3±3.1 cm/s, transverse CV=4.0±0.8 cm/s, and max. capture rate=4.1±1.2 Hz), lidocaine 
decreased transverse and especially longitudinal CV (2Hz pacing shown) (C) and maximum 
capture rate (D) in a dose-dependent manner that was largely reversed after at least 15 min 
washout. * indicates significant difference (p<0.05) from control. † indicates significant 
difference (p<0.05) from relative CV in longitudinal direction. n=4-5 EHS; one EHS in C lost 
capture in 360 μM lidocaine. 

Reentrant activity could be induced in EHS by pacing at progressively faster rates. 

At slow pacing rates, EHS exhibited approximately elliptical wavefronts spreading from 

a point stimulus (Figure 50A), but as pacing rates increased, a reentrant spiral wave 

sometimes formed (Figure 50B-G,K), which could be terminated by a high-intensity 

electrical field pulse (Figure 50H-K). In 17 EHS that were rapidly paced, 8 had one or 
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more pace-inducible spiral waves, which were induced at a pacing rate of 6.3±1.4 Hz. 

All the spiral waves could be terminated by field stimulation of 6-24 V/cm. 

 

Figure 50. Reentrant activity in engineered heart slices.  
A.-J. Snapshots of transmembrane voltage over time. Red shows depolarization, blue shows 
rest. A. EHS produced uniform anisotropic conduction at 2 Hz pacing rate. Pulse symbol 
indicates site of the stimulus electrode. B-G. A counterclockwise spiral wave was induced after 
pacing at 8.3 Hz. Voltage maps taken 25 ms apart show reentry (B-G). Four 24 V/cm electrical 
shocks were applied 500 ms apart, and the second (H, gray background) terminated the spiral 
wave (I-J). Small arrows show movement of AP wavefront. Thick curved arrows show 
propagation around the central rotation of the spiral wave. K. Trace of the entire sequence of 
applied shocks (gray lines) and the optical voltage recording from the location marked by the 
small black dot in B-J. Small black tick marks indicate when the snapshots in B-J were taken. 

Discussion 

Recellularization of the decellularized heart, either through the coronary circulation 

or by direct injection, has not succeeded in repopulating the tissue evenly. The study of 

recellularized hearts has focused primarily on mechanical function, with only two 

electrophysiological reports to date. Those reports used calcium indicator dyes in hearts 

recellularized by coronary perfusion. In one, electrical activity was shown to propagate 
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over a 150 μm-square area of a recellularized mouse ventricle [117], while in the other, 

cells in recellularized rat ventricles formed patches that were either well synchronized, 

unsynchronized but organized, or disorganized [115]. 

Alternatively, global recellularization of isolated slices of myocardium is a much 

simpler proposition because cells can be seeded directly onto the exposed surface, 

although penetration of cells into the interior is limited. Two to 10 mm-thick slices of 

dissected porcine heart have been decellularized by mechanical agitation [190], 

sonication [198], or perfusion through a blood vessel [199], but these procedures used 

long treatment times (10 days, 2.5 weeks, and 5 days, respectively), which run the risk 

of excessive degradation of constituents of the ECM [200]. 

Our strategy is to plate CMs onto very thin sections of decellularized ECM. By 

cutting the tissue chunks into 300 μm-thick sections (Figure 42), decellularization time 

by orbital agitation is greatly reduced to around 3.5 h. Godier-Furnemont et al. [201] and 

Oberwallner et al. [191] also used orbital agitation to decellularize 300 μm-thick slices 

obtained from human heart, but over a period of 8 h and 1 week, respectively. Following 

decellularization, our ECM slices thin down to around 60 μm (Figure 43F), but can still 

be handled manually. By using tissue plugs from porcine hearts, we can obtain 10-20 

sections per plug. Cells can be directly plated on top of the ECM, and the recellularized 

tissue is more homogeneous than that made by perfusion mediated recellularization of 

whole hearts. Other advantages of this approach are that EHS are relatively transparent 

and can be easily monitored during culture using bright-field microscopy and that cell 

shape, orientation, density and connectivity can be visualized more easily than when 

the cells are fully embedded in a 3-D tissue matrix.  
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Myocytes in engineered heart slices experience important physiological cues 

from 3-D matrix 

Fully 3-D engineered cardiac tissues have been achieved by culturing CMs in 

hydrogels or on synthetic scaffolds [189]. This approach has the advantage of control of 

the scaffold composition and shape, and has been successfully utilized to produce 

physiologically functional cardiac tissue constructs [189]. Uniformity of cell density and 

connectivity through the depth of the tissue remains a challenge, although recent 

advances appear to have largely addressed this problem for certain types of constructs 

[188]. However, these systems lack many of the instructive cues offered by the ECM 

[202].  

Following decellularization, the thickness of the sliced ECM reduces from 300 μm 

to around 60 μm (Figure 43E,F). Similarly, Ott, et al. [111] also found a significant 

decrease in thickness (from an average of 3.59 to 0.24 mm) after perfusion 

decellularization of whole hearts. We found that cells in EHS lie mostly at the surface of 

the slice and experience important biochemical, structural, and mechanical signals from 

the underlying 3-D ECM, a situation referred to as "2.5-D" [203]. If left untethered, the 

EHS would compact and ball up, making them unsuitable for further experimentation. 

However, attachment of the decellularized slices to coverslips (Figure 42D) maintains 

the distance between ECM fibers in the x-y plane. Cells can settle into small openings 

and valleys of the ECM matrix, and may extend to a limited degree into the matrix 

(Figure 44).  

Native ECM contains a complex mixture of structural proteins that interact with the 

CMs and influence their adhesion, growth, and contractile function [202]. For example, 
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the ECM can retain growth factors and mediate the availability of these and other 

signaling molecules [110], including latent TGF-β, which is important for MFB 

differentiation [204]. Additionally, cell function is affected by integrin-matrix binding and 

other biomechanical pathways [110, 205]. Although the degree of retention of different 

ECM constituents varies with the decellularization method [113], the complex protein 

composition of native ECM is largely retained following decellularization, which is an 

advantage over scaffolds that provide only one or a small number of ECM proteins, 

since cell growth depends on a variety of ECM proteins [114, 206].  

A special advantage of native ECM is that it is a natural scaffold that contains a 

fine collagen weave that is aligned along the myocardial cells. This alignment is retained 

following decellularization (Figure 44A-B, Figure 45) [111, 191]. Because structural cues 

on the micro- and nano-scale are sufficient to cause CM alignment [207], the ECM 

promotes alignment of the engrafted CMs. Additionally, this scaffold is sufficiently 

compliant to be substantially deformed by cell contraction (Figure 46). 

Thus, important physiological cues that have beneficial effects on CM function are 

still present in EHS. Indeed, we found that NRVMs in our EHS remained electrically 

connected and active for at least 21 days in culture (Figure 48), a period of time that is 

much longer than in NRVM monolayers, which have a maximal culture period of about 

ten days in our lab [208]. Additionally, Oberwallner and co-workers seeded neonatal 

mouse CMs or hiPSC-CMs onto 300 μm-thick slices obtained from decellularized 

human heart, and reported cell attachment and survival, visible contraction of the 

matrix, and increased cellular metabolic activity compared with cells cultured on tissue 

culture plastic [191]. 



133 
 

Myocytes are elongated and aligned in engineered heart slices 

In native atrial and ventricular myocardium, cardiac cells have an elongated rod 

shape and are aligned along fiber directions, which is important for efficient force 

production. When CMs are cultured on chemically or topologically defined anisotropic 

substrates, they have an elongated shape and align along a preferred direction, with 

better ultrastructural organization and higher contractile force than when cultured on 

uniform surfaces [209]. Cell elongation and alignment have also been shown to affect 

the intracellular handling of calcium [209, 210], which is vital to excitation-contraction 

coupling in the heart and, when disturbed, is a mechanism for many cardiac arrhythmias 

[211]. We measured nuclear elongation as a surrogate for cellular elongation because 

nuclear deformation parallels cellular deformation and anisotropy [194], and because 

the functional consequences of cell shape are mediated by changes in gene expression 

arising from deformation of the nucleus by microtubules and intermediate filaments and 

subsequent mechanotransduction events in CFBs and CMs [119, 120].  

Another important functional consequence of cell elongation and alignment is 

anisotropic AP propagation [212], a property of native tissue which, under pathological 

conditions, can cause propagation to locally fail and create arrhythmic, reentrant circuits 

[213]. Fiber alignment and anisotropy can vary with location in the heart, and while 

sophisticated microprinting techniques can be used to recapitulate a DT-MRI image as 

a two-dimensional pattern of cells [214], our approach is to use the ECM as a template 

for cellular patterning. EHS can be prepared from any region of the heart to study the 

effects of the local structure. For example, cells grown on the endocardial surface of 

decellularized hearts do not align [116], while cells in our slices, taken from near the 
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epicardium, do. To our knowledge, our study is the first demonstration of anisotropic 

conduction of electrical activity in recellularized ECM. In EHS, the fibrillar structure of 

the ECM leads to cell elongation and alignment (Figure 44 and Figure 45), which then 

results in anisotropic conduction (Figure 47). AR is around 2.0, which falls within the 

range of 1.4-3.7 that can be achieved with NRVM monolayers cultured on anisotropic 

2-D substrates [215] but is somewhat lower than the AR of ~2.7 found in adult 

ventricular muscle [216].  

Cardiomyocytes in engineered heart slices are mechanically active and contract 

synchronously 

CMs in EHS form a confluent, contractile, syncytium (Figure 44-Figure 46) that is 

electrically coupled by gap junctions (Figure 45B). The CMs produce enough force to 

overcome the stiffness of the ECM, resulting in EHS shortening during contraction 

(Figure 46). Optical mapping showed that during spontaneous activity or electrical 

pacing, APs propagate through the entire surface of the EHS (Figure 47A), which act to 

initiate and synchronize contraction throughout the EHS. Measurements of the force-

frequency relation (Figure 46D) show a monotonic decrease in contraction from 1 to 5 

Hz pacing rate, consistent with measurements in other NRVM-based engineered 

cardiac tissues [217] and native rat myocardium [218]. 

Engineered heart slices exhibit physiological response to lidocaine  

 The fact that EHS form an anisotropic syncytium allowed us to study the effect of 

drugs on longitudinal and transverse conduction velocities, which is not possible in 

simpler systems. To demonstrate this, we applied increasing doses of lidocaine, a 

sodium channel blocker that is clinically used as an antiarrhythmic agent [195], and 
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measured its effect on CV and maximum capture rate. We found a 19% and 14% 

decrease in CV at 2 Hz by 90 μM lidocaine in the longitudinal and transverse directions, 

respectively (Figure 49C), which is similar to the reported ~19% increase in conduction 

time at 1 Hz by 100 μM lidocaine in Langendorff-perfused rabbit hearts [219], although 

direct comparison of these values is complicated by the different models and pacing 

rates. Additionally, we found more fractional slowing in the longitudinal direction (Figure 

49C) which is consistent with findings in Langendorff-perfused dog hearts [220]. We 

also found a dose-dependent decrease in maximum capture rate by lidocaine (Figure 

49D), which is expected due to its sodium channel blocking activity [195]. These 

findings demonstrate the applicability of EHS to studying drug effects on cardiac tissue. 

Potential applications of engineered heart slices 

EHS are an attractive model for physiological and pathophysiological studies 

because of their contractile and electrophysiological function at a tissue level. Their 

macroscopic 2.5-dimensional nature represents a step up in structural and functional 

complexity from one-dimensional tissue constructs (strips, strands, fiber bundles), 

opening the door to studies involving biaxial stretch or two-dimensional tissue 

electrophysiology. EHS can be maintained in culture for at least 21 days (Figure 48), 

raising the possibility of their use for long-term drug studies. The ECM scaffold is an 

aligned substrate that is inexpensive and does not require specialized facilities to 

produce. Although we used NRVMs as the cardiac cell type, other cell types, such as 

hiPSC-CMs, can be substituted. 

Although other investigators have recellularized whole-heart ECM with CMs, the 

distribution of cells is generally patchy and not well-coupled electrically, making them 
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prone to arrhythmia [115]. In EHS, CMs are electrophysiologically active throughout, 

behave as an electrically coupled syncytium, and exhibit contraction and anisotropic 

conduction similar to that in native tissue, with physiological (for rat) negative rate-

dependencies of contractility (Figure 46D), APD (Figure 47C), CV (Figure 47D), as well 

as physiological drug response (Figure 49). Unlike single cells or 1-D tissue constructs, 

EHS allow 2-D wave propagation and are large enough in area to support reentrant 

arrhythmias (Figure 50), which are the more life-threatening forms of arrhythmia (like 

fibrillation). Cell monolayers also support reentrant arrhythmias and have been used for 

mechanistic studies [221], but they are cultured in a less physiological 

microenvironment consisting of a rigid flat surface typically coated with a single ECM 

protein.  

The anisotropy of EHS may prove to be especially useful in studying MFB-CM or 

CFB-CM connections, since CMs in vivo are highly anisotropic and preferentially 

express connexins at their ends [222], while cells cultured on unpatterned plastic are 

less anisotropic and express Cx43 fairly uniformly over any place they contact other 

CMs (see Figure 7F). This Cx43 remodeling may increase heterocellular coupling. 

Additionally, the softer substrate of EHS may prevent spontaneous differentiation of 

CFBs into MFBs, allowing us to study MFBs without having to block TGF-β. This may 

help resolve the difference between the findings of Quinn, at. al., in whole hearts that 

electrical coupling in injured regions occurs between MFB and CM, but not between 

CFB and CM in healthy regions [145], and our finding and others [35, 78] that both CFB 

and MFB electrically couple to CMs in vitro. While we extensively characterized our 

CFBs to ensure they were behaving as undifferentiated CFBs, we cannot exclude that 
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they and CMs are coupling due to the unphysiological conditions of culture, so any 

steps towards a better engineered model may help resolve this. 

For in vitro pacing of cells, a key advantage of our spark cluster system is the 

fact that that we can point pace. Point activation, and the resulting pre- and post- 

activation stretch of cells may be important for proper maturation. Unfortunately, in our 

study, the cells were on relatively stiff plastic, and so could not be significantly pre- or 

post- stretched by neighboring cells. A substrate such as EHS that could be deformed 

by cells and allow them to transfer their contraction force to their neighbors may be key 

to deriving the putative benefits of point pacing. While improvements in cell maturity 

have been made by using electrical pacing with a deformable substrate, as outlined in 

Chapter 1, these have all field paced, potentially limiting their efficacy, as described in 

Chapter 4. Point pacing in conjunction with a deformable substrate such as EHS may 

prove to be more efficacious in maturing CMs.  

EHS may also prove to be valuable for studies of myocardial contraction. With the 

proper interface, they can be stretched to different resting lengths. By changing the 

thickness of the EHS, the mechanical load presented to the cells can be varied [223, 

224]. Additionally, EHS may be superior to adherent cells or cell monolayers for 

metabolic studies, because of their ability to perform mechanical work. 

EHS will undoubtedly be useful for a better understanding of the physiological and 

pathophysiological roles of the ECM. For example, they can be formed using 

decellularized slices from different regions of the heart, from old vs. young hearts, and 

from healthy vs. diseased hearts, all of which can have differing compositions and 

structure of ECM [114, 225, 226], which will be especially useful for uncovering the 
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effect of ECM on heterocellular coupling, combined with the method discussed in 

Chapters 2 and 3. By obtaining sequential ECM slices from the same tissue plug, our 

approach readily yields multiple EHS with similar characteristics, making them effective 

as a tool for in vitro investigations. 

Finally, in terms of clinical applications, EHS may be an attractive alternative to the 

method of forming myocardial patches by stacking individual sheets of CMs grown on 

flat surfaces [227]. EHS may also be useful as a preclinical model for drug testing, much 

as native cardiac slices are being used [228]. Additionally, this may allow for insight into 

the mechanism of cardiac resynchronization therapy, which still has a paucity of 

mechanistic data, due to the difficulty and low-throughput of studies that varied the 

timing of electrical and mechanical stimuli to investigate how electromechanical delay 

affects cellular function [181, 182]. The pacing system described in Chapter 4 as well as 

the EHS described here could be used to compare point and field pacing to see if a 

propagating wave alters gene expression and electrophysiology. This would 

demonstrate the importance of proper pre- and post-stretch produced by a propagating 

contractile wave, demonstrating a mechanism of CRT beyond improving pump function. 

However, functional variability between EHS remains a present limitation, and improved 

protocols for their production are be needed.  

Conclusion 

 Engineered heart slices are essentially 2.5-dimensional tissues that retain 

important biochemical, structural and mechanical aspects of the ECM. CMs grown in 

EHS are aligned and can be maintained in culture, resulting in a tissue that has 
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anisotropic properties similar to native tissue. EHS contract synchronously throughout 

and are electrophysiologically active, behaving as an integrated, functional tissue. Thus, 

they can serve as a model system for studies of physiological and pathophysiological 

myocardial function "in a dish." 
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Conclusion 

 The novel uses of tandem-cell units outlined in this work have the potential to 

lead to important scientific and clinical progress. Chapters 2 and 3 point the way to a 

method to conclusively know whether MFBs and CFBs are connected enough to CMs to 

influence their electrophysiology, which can guide drug design strategies for treating 

heart failure. Chapter 4 points the way towards a relatively simple, scalable method of 

contactless pacing that should make it easier to mature cells for basic science studies 

or tissue engineering applications. Finally, Chapter 5 complements the previous projects 

by developing an ECM-based scaffold that should present more physiological cues to 

CMs, as well as CFBs and MFBs, increasing the physiological relevance of our work. 

This, coupled with the fact that it produces an aligned, deformable substrate may prove 

to allow further maturation of CMs. 
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