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Abstract 

 Sudden cardiac arrest (SCA) is one of the leading causes of death in the 

United States. While several risk factors are observationally associated with SCA, 

the genetic architecture of SCA in the general population remains unknown.  

Furthermore, understanding which risk factors are causal may help target 

prevention strategies. Given that SCA is a complex disease with a heterogeneous 

makeup of risk factors and underlying causal diseases that may differ by both race 

and sex, studying the genetics of this disease has proved challenging. Here, we 

use genome-wide association studies (GWAS) to identify common genetic 

variants associated with SCA risk. We performed race-, sex-, and disease-

stratified GWASs in an attempt to create a more homogenous phenotype in order 

to identify variants associated with SCA risk. However, we were not able to 

identify any common genetic variants associated with SCA. 

We utilized Mendelian randomization to identify causal risk factors for 

SCA, identifying CAD status, BMI and QT interval as being causally associated.  

We further investigated the genetic association between prolonged QT interval 

and SCA risk in sex-stratified and disease-stratified (ischemic vs. non-ischemic 

disease) analyses. We tested for association between the top QT interval 

associated SNP, rs12143842 (in the NOS1AP locus), and SCA risk. We also 

tested for causal association of QT interval in the various subgroups. We found 

that non-ischemic individuals, particularly women with non-ischemic disease, 

showed the strongest association between rs12143842 and SCA risk and the 

strongest causal association. Ischemic SCA victims, irrespective of sex, did not 
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show an association between rs12143842 and SCA risk or a causal association for 

QT interval. 

This work sought to further our understanding of the genetics of SCA and 

its underlying etiology. While we were not able to identify any common genetic 

variants associated with SCA, we did identity several causal risk factors for SCA 

and found these causal risk factors may differ by both underlying disease and sex. 

Furthering our knowledge of the genetics of SCA, its etiology, and its causes will 

ultimately lead to better identification of higher risk individuals. 

 Advisor: Dan E. Arking, Ph.D. 

 Reader: Marc Halushka, M.D., Ph.D. 
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Chapter 1: Introduction 
 
 

Sudden cardiac arrest (SCA) is a major public health concern, affecting 
 

~300,000 individuals in the US every year.1 While there are many different 

definitions of SCA, the American Heart Association defines SCA as “unexpected 

cessation of cardiac mechanical activity, as confirmed by the absence of signs of 

circulation.”1 SCA is commonly the result of ventricular fibrillation and is often 

the first manifestation of heart disease.2,3 Currently, the biggest risk factor for 

SCA is reduced ejection fraction (EF). The ejection fraction is the percentage of 

blood that is pumped out of the left ventricle with each heartbeat. Normal EF 

ranges from 50-65% and reduced EF is generally considered to be less than 35%.4 

A meta-analysis of twenty different studies found that an EF <30% to <40% was 

associated with a relative risk of 4.3 for major arrhythmic events.5 However, 

given the majority of individuals who have an SCA event have a normal ejection 

fraction, the utility of EF as a predictor for SCA is highly limited. In addition, 

observational studies have identified numerous other clinical and subclinical risk 

factors for SCA; understanding which of these associations are causal will help 

target prevention strategies. Identifying individuals at increased risk for SCA, as 

well as finding preventative and therapeutic measures, is necessary to reduce the 

impact of this largely fatal disease. 

Several studies have identified family history of SCA as a strong predictor 

of SCA in the general population, suggesting that genetic variation may influence 

SCA risk. One study found that a family history of SCA (<65 years of age) was 

associated with 2.7-fold increased risk for SCA after adjusting for history of MI 
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and other CVD risk factors.6 The Paris Prospective study of ~7,000 individuals 

found a history of one parent with an SCA event was associated with a relative 

risk of 1.89 of developing SCA and a history of both parents with an SCA event 

was associated with a relative risk of 9.44 of developing SCA.7 Identifying 

genetic markers associated with SCA risk could provide additional risk 

stratification beyond the traditional risk factors mentioned above. 

However, identifying genetic variation associated with SCA risk has 

proven to be difficult and the findings have been mixed. Studies first utilized 

candidate gene approaches, investigating SNPs within genes that are known to be 

associated with SCA in individuals with different inherited arrhythmia conditions 

such as Long QT Syndrome and Brugada Syndrome. Smaller studies have found 

both rare and common variants within these genes associated with SCA risk in the 

general population.8–11 However, we recently published a large study (3,939 cases 

and 25,989 controls) in which we did not find evidence that common variation in 

Mendelian arrhythmia genes is associated with SCA risk in the general 

population.12
 

To expand the search for common genetic variants associated with SCA 

outside of known arrhythmia genes, our lab previously published the first 

genome-wide association study (GWAS) of individuals of European descent 

consisting of 1,283 SCA cases and >20,000 controls.8 One SNP within the BAZ2B 

gene reached the genome-wide significance threshold (5x10-8). However, we 

recently published a larger GWAS of European descent individuals, consisting of 

3,939 SCA cases and 25,989 controls, which did not replicate this finding.12
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Further, we failed to identify any variant that reached the genome-wide 

significance threshold (P<5x10-8). In addition to the lack of power, the 

heterogeneity of the SCA phenotype may also cause the failure to replicate the 

previous findings and lead to the lack of additional findings. 

SCA occurs as a result of multiple underlying disease pathologies, 

including heart diseases such as coronary artery disease (CAD) and 

cardiomyopathies, as well as primary electrical defects.13 Men have a higher risk 

of SCA than women14,15, and furthermore, the underlying cardiac pathology 
 

differs between the sexes. CAD, the common underlying cause of SCA, is more 

common in men than women. By contrast, non-ischemic pathology, such as 

primary myocardial fibrosis, valvular heart disease, and arrhythmogenic right 

ventricular cardiomyopathy, occurs more commonly in women with SCA 

compared to men with SCA.16–18 Given these known differences, it can be 

hypothesized that risk factors, in addition to genomic markers, associated with 

SCA may differ between both the underlying causal disease and sex. 

The results of our two genome-wide association studies may provide 

evidence for this hypothesis. The first GWAS for SCA of 1,283 cases and 

>20,000 controls included almost exclusively SCA individuals with underlying 

CAD from 5 different studies, given the majority of the studies explicitly  

excluded SCA cases with non-ischemic underlying disease. The second GWAS of 

3,939 cases and 25,989 controls included SCA individuals from 9 different  

studies in which studies did not exclude cases with non-ischemic disease, such as 

valvular heart disease and cardiomyopathy. While the second GWAS had a larger 
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sample size, the additional cases of different underlying disease may be 

contributing to lack of findings if the associated genetic variation with SCA risk 

differs by underlying disease. Previously, stratifying cases in genome-wide 

analyses of complex diseases by subtype or risk factor have been successful in 

identifying genetic variants specific to the subgroups. Some of these stratified 

analyses include: ischemic stroke stratified by cases with different pathologies 

(cardioembolic, small vessel and large vessel)19; migraine stratified by cases with 
 

and without aura20; type 2 diabetes stratified by BMI of cases21; and rheumatoid 

arthritis stratified by the presence or absence of antibodies to citrullinated peptide 

antigens (ACPA)22. Therefore, we hypothesize that stratifying SCA cases by 

underlying disease may create a more homogenous SCA phenotype and increase 

our ability to detect genetic variants associated with SCA risk in these subgroups 

and the associated genetic variants may differ between the subgroups. 

In addition to underlying disease and sex, SCA risk also differs by race. 

Studies have found African Americans are disproportionately affected by SCA in 

every age group.23–25 There are likely several factors contributing to this increased 

risk. African American individuals have higher rates of traditional cardiac risk 

factors, including hypertension26, left ventricular hypertrophy27, heart failure, 

obesity and type 2 diabetes.28 These higher rates of cardiac risk factors and SCA 

may also be a result of large racial disparities in health care; one study found that 

African Americans are more likely to not survive an in-hospital cardiac arrest 

compared to Caucasians, indicating the lower survival rate among African 

Americans may be due to the quality of care they receive at a specific medical 
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center.29 African American individuals are also less likely to receive an 

implantable cardioverter defibrillator (ICD) for primary prevention of SCA.30 

While these factors all likely contribute to the racial differences in SCA risk, we 

wanted to examine whether genetics plays a role in the differences as well. Given 

no GWAS for SCA has ever been performed in African American individuals, it 

is unknown whether the genetic markers associated with SCA risk would differ 

between races. 

All of these factors, race, sex and underlying disease, have contributed to 

the difficulty in studying the genetics of SCA. Given our null results from a 

GWAS of relatively large sample size, there is evidence that there are no common 

genetic variants of large effect associated with overall SCA risk in the European 

population. However, we hope to identify genetic variants of moderate or lower 

effect on SCA risk by increasing the sample size of the European ancestry  

GWAS. We also performed sex-stratified GWAS for individuals of European 

descent. In addition, we performed a GWAS for SCA in African American 

individuals for the first time, to identify any genetic markers associated with SCA. 

Finally, we utilized a large Finnish study of SCA individuals with post-mortem 

autopsy-confirmed underlying disease to study the disease-specific (ischemic vs. 

non-ischemic disease) genetic variants associated with SCA risk. 

To identify causal traits of SCA, we performed Mendelian randomization, 
 

a method utilizing associated genetic variants with known SCA risk factors. 

Lastly, we utilized our large Finnish study of post-mortem autopsy-confirmed 

SCA individuals to stratify by underlying causal disease (ischemic vs. non- 
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ischemic disease) and sex to study the differences in causal risk factors with SCA 

between these different groups. Overall, our goal was to further our knowledge of 

the genetics of SCA and better understand it’s underlying etiology. 
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Chapter 2: Using GWAS to identify loci associated with Sudden 

Cardiac Arrest 

2.1 Introduction 
 

Race appears to play a significant role in the development of SCA; studies 

have found individuals of African descent have a higher risk of SCA than 

individuals of European descent.28,31 There are also large racial disparities in 

cardiac health care and higher rates of traditional cardiac risk factors among 

African Americans that could also lend to the observed increased rates of SCA. 

While these health disparities do lead to the increased risk of SCA 

observed in the African American population, there is also some evidence that 

genetic variation may also lead to increased risk. Studies have found differences 

between ethnicities in allele frequency for encoding sodium and potassium 

channels which are associated with J-point elevation, Brugada syndrome, and 

Long QT syndrome.28 However, there is also evidence that the specific genetic 

variants associated with SCA risk may be shared among the different ethnicities, 

although the allele frequency and effect size may differ. For example, a QT 

interval GWAS in African American individuals found the NOS1AP locus SNP 

rs12143842, a SNP also previously found to be associated with SCA risk, as the 

top QT interval-associated SNP.32 This is the same top QT interval-associated 

SNP found in the QT interval GWAS in European individuals.33 It is likely that 

there is both race-specific and non-race specific genetic variation associated with 

SCA risk. 
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Given that men have a higher risk of SCA than women14,15 and the 

underlying causal disease differ by sex, in addition to race, genetic variation 

associated with SCA risk may also differ by underlying disease pathology and 

sex. Genome-wide association studies (GWAS) are a useful tool to identify 

common genetic variation associated with SCA risk. Identifying genomic risk 

markers for SCA will help classify those individuals at high risk in the general 

population. Previously, we performed a GWAS for SCA in European-descent 

individuals using 3,939 SCA cases and 25,989 controls to identify potential 

genetic variation associated with SCA risk.12 However, no SNP reached the 

genome-wide significance threshold (P<5x10-8). Here, we ran a GWAS for SCA 

using individuals of European descent with an additional 1,351 SCA cases and 

1,008 controls (a total of 5,290 SCA cases and 26,997 controls), as well as a sex- 

stratified GWAS. We also ran a GWAS for SCA using African American 

individuals (974 SCA cases and 3,526 controls). Finally, we performed a trans- 

ethnic GWAS for SCA using European (5,290 SCA cases/26,997 controls), 

African American (974 SCA cases/3,526 controls), and Asian (152 SCA 

cases/176 controls) individuals for a total of 6,416 SCA cases and 30,699 

controls. 

In addition to perform race-specific GWASs, we also stratified by 

underlying disease. We used a large Finnish study of individuals who died from 

an SCA event with a post-mortem autopsy that confirmed the underlying causal 

disease (ischemic vs. non-ischemic) as well as Finnish population controls. We 

hypothesized that there are genetic differences between those individuals with 
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diagnosed CAD and individuals with CAD whom go on to have an SCA event. 

To test this hypothesis, we used two control cohorts of individuals with diagnosed 

CAD to perform the GWAS. Finally, we stratified by underlying disease 

pathology in order to create a more homogenous phenotype that may result in the 

improved ability to detect genetic variants associated with SCA risk. 

2.2 Methods 
 

2.2.1 Study Population and Phenotype Definition 
 

2.2.1a Race-stratified and trans-ethnic analyses 
 

We conducted a GWAS for individuals of European descent using 9 

studies consisting of 5,290 SCA cases and 26,997 controls. We also conducted a 

GWAS for individuals of African descent using four different studies consisting 

of 974 SCA cases and 3,526 controls. Finally, we performed a trans-ethnic 

GWAS consisting of the studies of individuals of European descent, African 

American descent, as well as one study of individuals of Asian descent (152 SCA 

cases and 176 controls) for a total of 6,416 SCA cases and 30,699 controls. Study 

descriptions, study-specific SCA definitions and genotyping methods are detailed 

in Table 2.1 and 2.2. 

2.2.1b Underlying causal disease stratified analyses 

Fingesture 

The Fingesture study, started in 1998, aimed to collect consecutive victims 

of out-of-hospital sudden death from a defined geographical area, Oulu University 

Hospital District in northern Finland. All victims of sudden death were autopsied 

at the Department of Forensic Medicine, University of Oulu, Oulu, Finland. SCA 
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victims were defined as those with a witnessed sudden death within 6 hours of the 

onset of the symptoms or within 24 hours of the time that the victim was last seen 

alive in a normal state of health. Individuals with age at SCA event <30 years old 

or >80 years old were excluded from analysis. 

The underlying pathologies were divided into three categories: (1) 

ischemic, (2) non- ischemic, and (3) other disease. The ischemic SCA victims 

included individuals with evidence of a coronary complication, defined as a fresh 

intracoronary thrombus, plaque rupture or erosion, intraplaque hemorrhage, or 

critical coronary stenosis (>75%) in the main coronary artery. The non-ischemic 

SCA victims included individuals with the following conditions: hypertrophy due 

to hypertension; valve disease; cardiomyopathy due to alcohol use; dilated 

cardiomyopathy; hypertrophic obstructive cardiomyopathy; cardiomyopathy due 

to obesity; arrhythmogenic right ventricular cardiomyopathy; and primary 

myocardial fibrosis. Further definitions of these conditions have been previously 

described.16 The “other” SCA victims included individuals with the following 

conditions: myocarditis, cardiac anomaly, and normal autopsy individuals (e.g. 

individuals with a channelopathy). 

NFBC1966 
 

The Northern Finland Birth Cohort (NFBC) study is the product of a 

project initiated in the 1960s to examine risk factors involved in pre-term birth 

and intrauterine growth retardation, and the consequences of these early adverse 

outcomes on subsequent morbidity. The NFBC1966 cohort comprised of 12,068 

mothers and 12,231 children with an expected date of birth in 1966 within the 
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province of Oulu, Finland. Our study samples consisted of DNA extracted from 

the blood of the offspring at their 31-year follow-up visit. 

Artemis 
 

ARTEMIS is a prospective observational study (Innovation to Reduce 

Cardiovascular Complications of Diabetes at the Intersection; ClinicalTrials.gov 

identifier NCT01426685) that recruited patients with angiographically 

documented CAD, with or without type 2 diabetes. The study population was 

recruited from a series of patients enrolled in the coronary angiography registry at 

the Division of Cardiology, Oulu University Hospital, between August 1, 2007 

and December 31, 2012. The initial examinations and determination of 

inclusion/exclusion status were conducted at least 3 months after coronary 

angiography and/or the last revascularization.34
 

MRFAT 
 

The Multiple Risk Factor Analysis Trial (MRFAT) study population 

consisted of enrollees in a prospective post-MI study, enrolled between January 

1996 and January 2000. The diagnosis of MI was based on the presence of at least 

two of three criteria from ICD-10: elevated troponin levels, ECG findings, and 

typical angina pectoris. 

2.2.2 GWAS 
 

For the European studies, genome-wide genotype data was imputed to 

either the HapMap2-CEU reference panel or the TOPMed Freeze 5 reference 

panel. Studies that provided sex-stratified data were utilized in the sex-specific 

GWAS meta-analysis as indicated in Table 2.1. Genome-wide genotype data for 

11



the African American studies was imputed to the TOPMed Freeze 5 reference 

panel. Genome-wide genotype data for the study of individuals of Asian descent 

was imputed to 1000G Phase1v3. Each study performed regression analyses 

adjusting for sex and other study-specific covariates. Inverse variance meta- 

analysis using METAL35 was performed for the European-only and African 

American-only meta-analyses. For the European-only GWAS, a SNP had to 

present in at least 4/10 of the studies to be included in the final analysis. 

The trans-ethnic meta-analysis was performed using the software  

Metasoft. Metasoft uses three different meta-analysis methods: (1) fixed effect 

model; (2) random effects model; and (3) Han and Eskin's random effects  

model.36 The third model, Han and Eskin’s random effects model, differs from the 

traditional random effects model in that it assumes no heterogeneity under the null 

hypothesis. Therefore, in the presence of heterogeneity, this model is more 

powerful than the traditional random effects model. A SNP had to be present in at 

least 4/16 of the studies to be included in the final analysis. 

The underlying disease stratified GWASs were performed using 1,171 

Fingesture (614 ischemic and 557 non-ischemic) SCA individuals; 761 population 

controls (NFBC1966); and 1,015 ischemic controls (455 Artemis and 560 

MRFAT). Samples were run on either the Illumina Infinium Global Screening 

Array (GSA) or the Affymetrix Genome-wide Human SNP Array 6.0 and  

imputed to the TOPMed Freeze 5 reference panel. Three different analyses were 

performed: ischemic SCA individuals vs. population controls; ischemic SCA 
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individuals vs. ischemic controls; and non-ischemic individuals vs. population 

controls. We performed logistic regression using FASTv2.4.37
 

2.3 Results 
 

2.3.1 Race-specific GWAS 
 

After meta-analysis of the nine studies of individuals of European descent 

(5,290 SCA cases and 26,997 controls), no SNP reached genome-wide 

significance (5x10-8). In addition, no SNP reach genome-wide significance for the 

meta-analysis of the four studies of individuals of African American descent (974 

SCA cases and 3,526 controls). The QQ plot and Manhattan plot for these race- 

specific meta-analyses are shown in Figures 2.1 and 2.2, respectively. 

2.3.2 Trans-ethnic GWAS 
 

There were no SNPs that reached the genome-wide significance threshold 

under the fixed effects and traditional random effects models. One SNP, 

rs10803352, reached genome-wide significance using the Han and Eskin's 

random effects model. The QQ plots and Manhattan plots for these meta-analyses 

are shown in Figures 2.3 and 2.4, respectively. The forest plot for the top SNP 

(rs10803352) is shown in Figure 2.5. However, while the SNP achieved genome- 

wide significance, it is clear the association is driven by one of the studies. Given 

this association is not replicated in the other studies, this is likely a false positive 

association, and therefore we concluded that no true positive SNP reached the 

genome-wide significance threshold for meta-analysis using the Han and Eskin's 

random effects model. 
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2.3.3 Sex-specific GWAS 
 

Neither the men nor women-specific GWAS had SNPs that reached the 

genome-wide significance threshold. The QQ plots and Manhattan plots for these 

meta-analyses are shown in Figures 2.6 and 2.7. 

2.3.4 Disease-specific GWAS 
 

None of the disease-specific GWASs identified any SNP associated with 

SCA risk at the genome-wide significance threshold. QQ plots and Manhattan 

plots are shown in Figures 2.8 and 2.9. However, the top SNP from each GWAS 

(ischemic cases/population controls; ischemic cases/ischemic controls; non- 

ischemic cases/population controls) were unique to each GWAS. Regression 

results for each top SNP in all analyses are found in Tables 2.3 (ischemic 

cases/population controls), Table 2.4 (non-ischemic cases/population controls), 

and Table 2.5 (ischemic cases/ischemic controls). 

2.4 Discussion 
 

SCA is a complex disease with a heterogeneous make-up of risk factors 

and underlying causal diseases. This heterogeneous nature contributes to the 

difficulty in identifying genetic markers associated with SCA risk. Our previous 

attempt to identify common genetic variation associated with SCA risk in 

individuals of European descent using the largest GWAS (3,939 cases and 25,989 

controls) failed to identify any SNP of genome-wide significance.38 Here, with the 

addition of new European SCA cases and controls, while we did identify SNPs of 

greater significance than the previous study, we still failed to identify any 

common genetic variation associated with SCA risk that exceeded the genome- 
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wide significance threshold in individuals of European descent. We also 

performed the largest GWAS to date for SCA risk using African American 

individuals. Similar to the European GWAS, we were unable to identify any SNPs 

that reach genome-wide significance. 

In the trans-ethnic GWAS, even when utilizing different statistical models, 

we were unable to identify any plausible SNPs associated with SCA risk. While 

the Han and Eskin’s random effects model found one SNP that exceeded the 

genome-wide significance threshold, it was largely driven by one study of African 

American individuals, and therefore likely a false positive finding. This SNP also 

did not replicate in the African American GWAS, lending additional evidence this 

is a false positive. 

Failure to identify any associated SNPs could be due to several different 

factors. First, the SCA phenotype is broadly defined and each study classifies 

SCA somewhat differently. This phenotypic heterogeneity could potentially 

contribute to differences in the underlying genetics; therefore, any SNPs  

identified through this GWAS will have to be the shared risk variants across the 

different SCA phenotypes. Identifying the underlying disease of SCA individuals 

and analyzing the different diseases separately would provide a more homogenous 

phenotype and the ability to identify genetic variants associated with SCA risk 

within that phenotype. Second, the genetic susceptibility to SCA may be derived 

of multiple variants of moderate or low effect size and therefore our sample size is 

not large enough to detect these effect sizes. Given that the African American 

GWAS has fewer than 1,000 SCA cases, a lack of power is likely a major factor 
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in the failure to identify genome-wide significant SNPs for that particular racial 

group. Additional samples would assist in increasing power to detect these 

variants of moderate and lower effect sizes. Third, the causal SNP(s) may not be 

available in the earlier reference panels used in the imputation of most of the 

studies. Recently, the TOPMed reference panel became available for use with 

imputation. We were able to use it for imputation for 6 of the 16 studies used in 

the various meta-analyses. The TOPMed reference panel provides significantly 

more SNPs (>7 million post QC) than older reference panels (typically ~2 million 

SNPs). Updating the other studies to imputation using the TOPMed reference 

panel would provide analyses on a significantly larger number of SNPs, 

increasing the power to detect associations with these SNPs. All of these 

limitations likely contribute to the lack of genome-wide significant SNPs 

associated with SCA risk in our three GWASs. 

In conclusion, we did not identify any genome-wide significant SNPs in 

any of our analyses, likely due to lack of power and phenotypic heterogeneity. 

However, when stratifying by underlying causal disease, we did see more 

significant results and the top SNPs were unique to each disease subtype, 

indicating the genetic variation influencing SCA risk is likely specific to each 

underlying disease. Including new SCA cases, as well as identifying the 

underlying causal disease in order to create a more homogenous phenotype in the 

existing studies, and imputing all data to the TOPMed reference panel are all 

ways to improve potential detection of common genetic variants associated with 

SCA risk. Ultimately, identifying genetic risk markers for SCA will improve 
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detection of individuals at increased risk in the general population, regardless of 

race. 

2.5 Figures 
 

Figure 2.1: QQ plots for race-specific GWASs for SCA 
 

A. European ancestry 
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B. African ancestry 
 

 

1�



Figure 2.2: Manhattan plots showing results for race-specific GWASs for 

SCA 

A. European ancestry 
 

 
 
 
 
 
 

B. African ancestry 
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Figure 2.3: QQ plots for trans-ethnic GWAS for SCA 
 

A. Fixed effects model 
 

 

��



B. Random effects model 
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C. Han and Eskin's random effects model 
 

 
 
 

Figure 2.4: Manhattan plots showing results for trans-ethnic GWAS for SCA 
 

A. Fixed effects model 
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B. Random effects model 
 

 
 
 

C. Han and Eskin's random effects model 
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Figure 2.5: Forest plot for rs10803352 
 

 
 

 
The forest plot for the single SNP (rs10803352) that reached the genome-wide 

significance threshold using the Han and Eskin's random effects model shows the 

significance of the SNP is largely driven by a single cohort (MEG_MEGA.AA). 

Given the effect is not replicated in the other cohorts, this SNP is likely a false 

positive finding. 
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Figure 2.6: QQ plots for sex-specific GWASs of European individuals 
 

A. Males 
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B. Females 
 

 
 
 

Figure 2.7: Manhattan plots for sex-specific GWASs of European individuals 
 

A. Males 
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B. Females 
 

 
 
 

Figure 2.8: QQ plots for the disease-stratified GWASs 
 

A. Ischemic cases/Population controls 
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B. Non-ischemic cases/Population controls 
 

 
 

C. Ischemic cases/Ischemic controls 
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Figure 2.9: Manhattan plots for the disease-specific GWASs 
 

A. Ischemic cases/Population controls 
 

 
 
 

B. Non-ischemic cases/Population controls 
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C. Ischemic cases/Ischemic controls 
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2.6 Tables 
Table2.1 Sample Characteristics of European Cohorts 
Cohort ARIC CABS CARTAGENE 
N, number of cases with genotype data 204 2165 166 
N, number of controls with genotype data 8,682 2430 241 
    
 
 
 
 
QC criteria, per sample 

Sex-check, Removed 
duplicates, checks for cryptic 

relatedness and genetic 
outliers from PCA 

Sex-check, Removed 
duplicates, checks for cryptic 

relatedness and genetic 
outliers from PCA 

Sex-check, Removed 
duplicates, checks for 
genetic outliers from 

PCA 

Genotyping platform Affymetrix 6.0 Affymetrix Axiom Illumina Human660K 

Genotype calling algorithm Birdseed apt-probeset-genotype Illumina beadstudio 

Inclusion criteria--MAF >1% >1% >=1% 

Inclusion criteria--Call Rate per SNP >95% >95% >=95% 

Inclusion criteria--pvalue HWE >1E-4 >1E-5 >=5E-6 

Autosomal SNPs after QC 7,300,831 2,543,888 2,599,339 

Imputation Reference Panel TOPMed Freeze5 Hapmap.v2 Hapmap.v2 

Imputation Software Minimac3 Beagle Impute v1.0.0 

Meta analysis Imputation quality filter >0.75 <1.1 <1.1 
Meta analysis minor allele count (MAC) in cases 
filter 

 
>5 

 
no filter 

 
no filter 

Genomic inflation factor for meta-analysis No adjustment 1.049 1.012 

Sex, number of women among cases 53 496 30 

Sex, number of women among controls 4655 537 50 

Age, mean age at baseline among cases 55.78 67.55 56.2 

Age, age-range at baseline among cases 45-65 20-101 22-77 

Age, mean age at time of SCD among cases 68.29 66.65 56.6 

Age, age-range at time of SCD among cases 51.29-79.95 23-96 28-86 

Average time to SCD, yrs  (for prospective studies) 12.5   
Mean followup time, yrs (for prospective studies) 20.3   
Study design Prospective Case-control Case-control 
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Cohort CHS FHS Fingesture CARTAGENE/ KORA F3 

N, number of cases with genotype data 138 32 340 169 

N, number of controls with genotype data 3157 4358 570 338 

     
 
 
 
 
QC criteria, per sample 

 
 
 

Array call rate <95%, 
sex check 

 Sex-check, Removed 
duplicates, checks for 

cryptic relatedness and 
genetic outliers from PCA, 
genotyping call rate > 90% 

 
 

Sex-check, Removed 
duplicates, checks for 

genetic outliers from PCA 
 
 
Genotyping platform 

 
 

Illumina CNV370 

Affymetrix 500K+ 
50K Human Gene 

Focused Panel 

 
 

Affymetrix 6.0 

Illumina 
HumanOmniExpress+Huma 

nOmni25 

Genotype calling algorithm Illumina beadstudio BRLMM Birdseed Illumina Genomestudio 

Inclusion criteria--MAF >=0% >1% >1% >=0.1% 

Inclusion criteria--Call Rate per SNP >=97% >95% >95% >=98% 

Inclusion criteria--pvalue HWE >1E-5 >1E-6 >1E-6 NA 

Autosomal SNPs after QC 2,613,506 2,010,513 7,088,524 560,568 

Imputation Reference Panel Hapmap.v2 Hapmap.v2 TOPMed Freeze5 not imputed 

Imputation Software BimBam Mach Minimac3 not imputed 

Meta analysis Imputation quality filter <1.1 <1.1 & >=0.4 <1.1 not imputed 

Meta analysis minor allele count (MAC) in cases filter >5 >5 >10 >5 

Genomic inflation factor for meta-analysis 1 1.024 1.029 No adjustment 

Sex, number of women among cases 70  52 29 

Sex, number of women among controls 1935  135 58 

Age, mean age at baseline among cases 72.34  63.85 58 

Age, age-range at baseline among cases 64-98  35-92 19-76 

Age, mean age at time of SCD among cases 74.09  61.22 59.5 

Age, age-range at time of SCD among cases 65-94  28-83 35-84 

Average time to SCD, yrs  (for prospective studies) 9.17 3.78   
Mean followup time, yrs (for prospective studies) 12.9 5.56   
Study design Prospective Prospective Case-control Case-control 
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Cohort Harvard Rotterdam study Fingesture 

N, number of cases with genotype data 420 385 1,171 

N, number of controls with genotype data 424 5589 1,208 

    
 
 
 
 
QC criteria, per sample 

 
 

Checks for cryptic relatedness 
and genetic outliers from PCA, 

genotyping call rate > 95% 

 
Sex-check, Removed 

duplicates, checks for cryptic 
relatedness and genetic 

outliers from PCA 

Sex-check, Removed 
duplicates, checks for cryptic 

relatedness and genetic outliers 
from PCA, genotyping call rate 

> 95% 
 
Genotyping platform 

 
Affymetrix 6.0 

 
Illumina HumanHap610 

Illumina Global Screening 
Array 

Genotype calling algorithm Birdseed Beadstudio Genecall Illumina beadstudio 

Inclusion criteria--MAF >1% >1% >1% 

Inclusion criteria--Call Rate per SNP >95% >95% >95% 

Inclusion criteria--pvalue HWE >1E-6 >1E-6 >1E-4 

Autosomal SNPs after QC 2,402,071 2,494,839 9,888,815 

Imputation Reference Panel Hapmap.v2 Hapmap.v2 TOPMed Freeze5 

Imputation Software Mach Mach Minimac3 

Meta analysis Imputation quality filter <1.1 <1.1 & >0.5 NA 
Meta analysis minor allele count (MAC) in cases 
filter 

 
no filter 

 
>5 

 
>10 

Genomic inflation factor for meta-analysis 1.005 1.029 no adjustment 

Sex, number of women among cases 127 203 420 

Sex, number of women among controls 134 3344 1920 

Age, mean age at baseline among cases 64.3 71.7  
Age, age-range at baseline among cases 40.3-91.9 55.2-95.5  
Age, mean age at time of SCD among cases 64.2 69.3 61.23 

Age, age-range at time of SCD among cases 48.1-96.6 54.5-99.5 35-80 

Average time to SCD, yrs  (for prospective studies) 7.49 9.2  
Mean followup time, yrs (for prospective studies) 11.02 13.2  
 
Study design 

Case-control from prospective 
studies and clinical trials 

 
Prospective 

 
Case-control 
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Cohort ARIC CABS CARTAGENE CARTAGENE/ KORA F3 
 
 
 
 
SCD definition/Ascertainment 

Sudden, pulseless condition 
from a cardiac origin in a 

previously stable individual, 
review of death and medical 

records 

Sudden, pulseless condition from a 
cardiac origin in a previously stable 

individual, review of death and 
medical records.  Pt in VF or 

asystole (NO PEA) 

Sudden, pulseless condition 
from a cardiac origin in a 

previously stable individual, 
review of death and medical 

records. 

 
Sudden, pulseless condition from 
a cardiac origin in a previously 

stable individual, review of death 
and medical records. 

 
 
 
Control definition 

 
 
 

Population based 

 
 
 

Population based 

French registry of Acute ST 
elevation or non-ST-elevation 

Myocardial Infarction 
(FastMI) 

 
 
 

Population based 
Software used for GWAS 
statistical analysis 

 
FASTv2.4 

 
R 

 
snptest v2.1.1 

 
PLINK v1.07 

 
 
Model with covariates 

 
Cox proportional hazards, with 
age, sex, and PCs as covariates 

 
 

age, sex 

 
 

age, sex 

 
 

age, sex, PCs 
Included in sex-stratified meta- 
analysis 

 
Yes 

 
Yes 

 
No 

 
No 

 
Cohort CHS FHS Fingesture 
 
 
 
 
 
 
 
 
 
SCD definition/Ascertainment 

Sudden pulseless condition 
presumed due to a cardiac 

arrhythmia, without evidence 
for a non-cardiac condition as a 

cause of the arrest, in an 
otherwise stable patient, after 
review of events surrounding 

arrest / death and medical 
records. 

 
 
 
 
 
 
Coronary heart disease death within 

one hour of onset of symptoms 
adjudiated by panel of physicians. 

 
 
 
 

Sudden, pulseless condition 
from a cardiac origin in a 

previously stable individual, 
review of death and medical 

records. 

Control definition Population based  MI survivors 
Software used for GWAS 
statistical analysis 

 
R 

  
FASTv2.4 

Model with covariates age, sex, clinic age,sex sex, 10 PC 
Included in sex-stratified meta- 
analysis 

 
Yes 

 
No 

 
Yes 
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Cohort Harvard Rotterdam study Fingesture 
 
 
 
 
 
 
 
 
 
SCD definition/Ascertainment 

a cardiac death is considered a definite SCD if 
the death or cardiac arrest that precipitated 
death occurred within one hour of symptom 

onset as documented by medical records or next 
of-kin reports or had an autopsy consistent with 
SCD (i.e. acute coronary thrombosis or severe 

coronary artery disease without myocardial 
necrosis or other pathologic findings to explain 

death) 

 
 
 
 

Death <1 hour of cardiovascular 
symptoms or found dead and seen 

<24 hours earliers in stable 
medical condition. Based on 
review of medical records. 

 
 
 
 
 
Sudden, pulseless condition from 
a cardiac origin in a previously 

stable individual, review of death 
and medical records. 

 

 
 
 
 
 
 
 
Control definition 

Controls from population studies and clinical 
trials matched on on study cohort, sex, age 

(+/−1 year), ethnicity, smoking status (current, 
never, past), time and date of 

blood sampling, fasting status, and presence or 
absence of cardiovascular disease (MI, angina, 

CABG, or stroke) prior 
to death. 

 

 
 
 
 
 
 
 

Population based 

 
 
 
 
 
 

MI survivors and population 
based 

Software used for GWAS statistical 
analysis 

 
Plink/Eigenstrat 

 
ProbABEL 

 
FASTv2.4 

Model with covariates 20 PCs, cohort age, sex, PCs sex, 10 PC 

Included in sex-stratified meta-analysis Yes Yes Yes 
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Table 2.2 Sample Characteristics of African American & Asian 
Cohort ARIC CABS CHS 
N, number of cases with genotype data 127 196 29 
N, number of controls with genotype data 1,685 194 686 
    
 
 
 
QC criteria, per sample 

Sex-check, Removed 
duplicates, checks for cryptic 

relatedness and genetic outliers 
from PCA 

Sex-check, Removed 
duplicates, checks for cryptic 

relatedness and genetic 
outliers from PCA 

 
Sex-check, Removed duplicates, 

checks for cryptic relatedness and 
genetic outliers from PCA 

Genotyping platform Affymetrix 6.0   
Genotype calling algorithm Birdseed   
Inclusion criteria--MAF >1% >1% >1% 
Inclusion criteria--Call Rate per SNP >95% >95% >95% 
Inclusion criteria--pvalue HWE >1E-4   
Autosomal SNPs after QC 6,951,301 8,676,110 7,693,386 
Imputation Reference Panel TOPMed Freeze5 TOPMed Freeze5 TOPMed Freeze5 
Imputation Software Minimac3 Minimac3 Minimac3 
Meta analysis Imputation quality filter >0.75   
Meta analysis minor allele count (MAC) in 
cases filter 

 
>5 

 
>15 

 
>5 

Genomic inflation factor for meta-analysis No adjustment 1.045 0.894 
Sex, number of women among cases 63   
Sex, number of women among controls 1076   
Age, mean age at baseline among cases 55.83   
Age, age-range at baseline among cases 46-64   
Age, mean age at time of SCD among cases 67.6   
Age, age-range at time of SCD among cases 48.98-79.84   
Average time to SCD, yrs  (for prospective 
studies) 

 
11.76 

  

Mean followup time, yrs (for prospective 
studies) 

 
19.78 

  

Study design Prospective Case-Control Prospective 
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Cohort CVPath/ARIC CABS/CVPath/ARIC CABS-Asian Americans 
N, number of cases with genotype data 187 435 152 
N, number of controls with genotype data 367 593 176 
    
 
 
 
QC criteria, per sample 

 
Sex-check, Removed duplicates, 

checks for cryptic relatedness and 
genetic outliers from PCA 

Sex-check, Removed 
duplicates, checks for cryptic 

relatedness and genetic outliers 
from PCA 

 
sex check, removed duplicates, 

checks for cryptic relatedness and 
genetic outliers from PCA 

 
Genotyping platform 

 
Omni/Exome chip/diaspora 

Illumina Multi-Ethnic Global 
array 

 
Affymetrix Axiom 

Genotype calling algorithm  Illumina Genomestudio apt-probeset-genotype 
Inclusion criteria--MAF >1% >1% >1% 
Inclusion criteria--Call Rate per SNP >95% >95% >95% 
Inclusion criteria--pvalue HWE >1E-4 >1E-4 >1E-5 
Autosomal SNPs after QC 13,651,803 12,828,867 16820556 
Imputation Reference Panel TOPMed Freeze 5 TOPMed Freeze 5 1000G PhaseIv3 
Imputation Software Minimac3 Minimac3 minimac 
Meta analysis Imputation quality filter >0.75 >0.75 no filter 
Meta analysis minor allele count (MAC) in 
cases filter 

 
>5 

 
>10 

 
>10 

Genomic inflation factor for meta-analysis    
Sex, number of women among cases 54 129 70 
Sex, number of women among controls 133 306 91 
Age, mean age at baseline among cases   63.44 
Age, age-range at baseline among cases   20-102 
Age, mean age at time of SCD among cases   61.59 
Age, age-range at time of SCD among cases   32-89 
Average time to SCD, yrs  (for prospective 
studies) 

   

Mean followup time, yrs (for prospective 
studies) 

   

Study design Case-Control Case-Control Case-control 
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Cohort ARIC CABS CHS 
 
 
 
 
 
 
 
SCD definition/Ascertainment 

 
Sudden, pulseless 

condition from a cardiac 
origin in a previously 

stable individual, review 
of death and medical 

records 

 
 

Sudden, pulseless condition 
from a cardiac origin in a 

previously stable individual, 
review of death and medical 

records 

 
 
 

Sudden, pulseless condition from a 
cardiac origin in a previously stable 

individual, review of death and 
medical records 

 
Control definition 

 
Population based 

 
Population based 

 
Population based 

Software used for GWAS statistical analysis FASTv2.4   
 
 
 
 
 
 
 
Model with covariates 

 
 
 
 
 
Cox proportional hazards, 
with age, sex, and PCs as 

covariates 

 
 
 
 
 
 

Logistic score test with age 
as covariate 

 
 
 
 
 
 

Cox proportional hazards, with age, 
sex, clinic, and PCs as covariates 

 
Cohort CVPath/ARIC CABS/CVPath/ARIC CABS-Asian Americans 
 
 
 
 
 
SCD definition/Ascertainment 

  Sudden, pulseless condition from a 
cardiac origin in a previously stable 

individual, review of death and 
medical records.  Pt in VF or asystole 

(NO PEA) 
Control definition Population based Population based Population based 
Software used for GWAS statistical analysis FASTv2.4 FASTv2.4 R 
 
 
Model with covariates 

 
Logistic regression with 

sex, PCs1-10 as covariates 

 
Logistic regression with sex, 

PCs1-10 as covariates 

 
 

age, sex, 2 PCs 
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Table 2.3 Top SNP in ischemic cases/population controls: rs7269951 (C/G) 

 All 
Dataset cases/controls Beta (SE) P-value 

All cases/all controls 1481/1692 -0.301 (0.110) 0.006 
non-ischemic cases/population controls 557/761 -0.508 (0.187) 0.006 

ischemic cases/ischemic controls 1011/952 -0.138 (0.139) 0.32 
ischemic cases/population controls 701/1169 -1.01 (0.187) 8.60E-08 

 
 
 

 Males 
Dataset cases/controls Beta (SE) P-value 

All cases/all controls 1368/1250 -0.201 (0.128) 0.10 
non-ischemic cases/population controls 422/354 -0.557 (0.236) 0.02 

ischemic cases/ischemic controls 791/699 -0.063 (0.157) 0.69 
ischemic cases/population controls 531/354 1.03 (0.228) 5.86E-06 

 
 Females 

Dataset cases/controls Beta (SE) P-value 
All cases/all controls 299/871 -0.504 (0.219) 0.02 

non-ischemic cases/population controls 135/407 0.460 (0.302) 0.13 
ischemic cases/ischemic controls 133/232 -0.402 (0.354) 0.26 

ischemic cases/population controls 83/407 -0.706 (0.348) 0.04 
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Table 2.4 Top SNP in non-ischemic cases/population controls: rs145160360 (C/T) 

 All 
Dataset cases/controls Beta (SE) P-value 

All cases/all controls 1481/1692 0.547 (0.121) 5.77E-06 
non-ischemic cases/population controls 557/761 0.927 (0.182) 3.74E-07 

ischemic cases/ischemic controls 1011/952 0.300 (0.165) 6.90E-02 
ischemic cases/population controls 701/1169 0.425 (0.202) 0.035 

 
 Males 

Dataset cases/controls Beta (SE) P-value 
All cases/all controls 1218/1053 0.521 (0.150) 5.10E-04 

non-ischemic cases/population controls 422/354 1.08 (0.267) 4.90E-05 
ischemic cases/ischemic controls 791/699 0.220 (0.186) 0.88 

ischemic cases/population controls 531/354 0.768 (0.261) 0.003 
 

 Females 
Dataset cases/controls Beta (SE) P-value 

All cases/all controls 268/639 0.601 (0.211) 0.004 
non-ischemic cases/population controls 135/407 0.779 (0.252) 0.002 

ischemic cases/ischemic controls 133/232 0.532 (0.417) 0.32 
ischemic cases/population controls 83/407 -0.351 (0.438) 0.95 
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Table 2.5 Top SNP in ischemic cases/ischemic controls: rs58823851 (A/G) 

 All 
Dataset cases/controls Beta (SE) P-value 

All cases/all controls 1481/1692 0.224 (0.083) 0.007 
non-ischemic cases/population controls 557/761 -0.252 (0.131) 0.055 

ischemic cases/ischemic controls 1011/952 0.614 (0.116) 1.05E-07 
ischemic cases/population controls 701/1169 0.095 (0.125) 0.45 

 
 Males 

Dataset cases/controls Beta (SE) P-value 
All cases/all controls 1368/1250 0.241 (0.098) 0.013 

non-ischemic cases/population controls 422/354 -0.248 (0.157) 0.12 
ischemic cases/ischemic controls 791/699 0.565 (0.131) 1.66E-05 

ischemic cases/population controls 531/354 0.158 (0.140) 0.26 
 

 Females 
Dataset cases/controls Beta (SE) P-value 

All cases/all controls 299/871 0.133 (0.172) 0.44 
non-ischemic cases/population controls 135/407 -0.251 (0.228) 0.27 

ischemic cases/ischemic controls 133/232 0.800 (0.287) 0.005 
ischemic cases/population controls 83/407 -0.166 (0.290) 0.57 
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Chapter 3: Identifying causal risk factors for SCA using Mendelian 

Randomization in European Individuals 

3.1 Introduction 
 

Sudden cardiac arrest (SCA) is a major cause of cardiac mortality, 

affecting over 300,000 people in the US every year.39 Despite recent increases in 

SCA survival rates40, survival remains low. Exploring the genomic architecture of 

SCA allows us to assess causal relationships of clinical and subclinical risk 

factors with SCA. Mendelian randomization methods exploit the fact that genetic 

variants are determined at conception and randomly distributed in populations, to 

determine whether an exposure may be causally associated with the outcome, and 

to estimate the effect size of that causal association41–43. 

Here, we use a multi-SNP genetic risk score association (GRSA) model to 

compare genetic associations of 18 known SCA risk factors to genetic 

associations with SCA as an effective way to understand the potential underlying 

causal pathways and processes that modulate SCA risk. While the majority of the 

results reported in this chapter are using the most recently published EA GWAS 

of 3,939 SCA cases and 25,989 controls, we also report the Mendelian 

randomization results for the largest EA GWAS for SCA of 5,290 SCA cases and 

26,997 controls described in the previous chapter, and discuss the discrepancies 

between the two analyses. 

3.2 Methods 
 

3.2.1 Mendelian Randomization Instrument 
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Observational studies examine association of an exposure (e.g., body mass 

index, or BMI) with an outcome (e.g., SCA) but cannot assess causality. 

Unobserved variables affecting both exposure and outcome may confound these 

associations and lead to biased estimates of association. Mendelian  

randomization is based on the assumption that because genetic variants are 

determined at conception and are randomly distributed in large populations, they 

are unassociated with potential confounders. Therefore, under certain 

assumptions such as the absence of genetic pleiotropy, genetic variants used as 

instrumental variables can determine whether an exposure is potentially causally 

associated with the outcome, and estimate the size of that association. Here we 

use a multi-SNP genetic risk score association (GRSA) model to compare genetic 

associations with SCA with those of known SCA risk factors as an effective way 

to understand the underlying causal pathways and processes that influence SCA 

risk. 

3.2.2 Genetic Risk Score Association (GRSA) 
 

We estimated a separate GRSA utilizing the recently published SCA 

GWAS of 3,939 cases and 25,989 controls12 for each of the following: (1) CAD 

and traditional CAD risk factors, including type 2 diabetes (T2D), fasting glucose 

adjusted for BMI (FGadjBMI), fasting insulin adjusted for BMI (FIadjBMI), 

diastolic blood pressure (DBP), systolic blood pressure (SBP), total cholesterol 

(TCH), and triglycerides (TG); (2) cardiac electrophysiologic factors, including 

atrial fibrillation (AF), heart rate (HR), QRS interval (QRS), and QT interval 

(QT); and (3) anthropometric traits, including BMI, waist circumference adjusted 
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for BMI (WCadjBMI), waist to hip ratio adjusted for BMI (WHRadBMI), and 

height. Table 3.1 details the 18 traits, and the source published GWAS used to 

construct the GRSA models for these traits. 

To estimate GRSAs for each putative SCA risk factor, we examined 

genome-wide SNPs associated with the risk trait following stringent LD-pruning. 

For LD pruning, the ‘clump’ function implemented in PLINK v1.944,45 was  

applied on summary statistics from GWAS for risk factors to identify independent 

common variants (minor allele frequency >1%) associated with the respective 

traits. Briefly, the ‘clump’ function utilizes a P-value aware linkage 

disequilibrium (LD)-pruning approach that was used to identify index SNPs at the 

two alpha cutoffs, and exclude variants with R2 ≥ 0.01 within 1Mb of the index 

variant. For LD pruning, we used imputed genotype data from 9,747 European 

individuals from the ARIC study. For index variants with P-value <5x10-8, we 

used a more stringent approach of excluding all variants within a 1Mb radius to 

exclude any possibility of spurious association due to weak LD with the index 

SNP. A feature of this LD-pruning process is that by iteratively selecting the most 

significant SNP in a 2 MB window, followed by removing all SNPs with R2 ≥ 

0.01, even using the custom P-value cut-off, different traits are unlikely to contain 

a significant number of overlapping SNPs in the absence of significant pleiotropy. 

SNPs were also removed if not present in the CABS study, which contained over 

half of all the SCA cases. 

The associations of these SNPs with the risk factors and the SCA outcome 

are used to calculate an inverse-variance weighted multi-SNP GRSA as 
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SCA SCA 

implemented in the R-package ‘MendelianRandomization’.46 This GRSA can be 

interpreted as an inverse-variance weighted, meta-analyzed (over SNPs) estimate 

of the causal log odds ratio for SCA associated with a one SD higher value of the 

risk factor from a Mendelian randomization analysis.47 It is computationally 

equivalent to the slope estimate from a zero-intercept linear regression with log 

odds ratio for the association of an additional variant allele in SNPs with SCA 

(βSCA) as the dependent variable and the mean difference associated with one 

additional variant allele in SNPs on the risk factor trait (βtrait) as the independent 

variable, weighted by the standard error of the β squared (SE 2) (Figure 3.1). 

We evaluated the use of other MR methods, including MR-Egger, simple median, 

and median-weighted. However, we found while these produced similar GRSA 

estimates as the inverse-weighted (IVW) method, these other methods had lower 

power (Table 3.2). We therefore only report the results from the IVW method. 

We also used the intercept test from the MR-Egger method to evaluate the 

presence of pleiotropy in our analyses (Table 3.2). 

The validity of this analysis requires that SNPs included can only affect 

the outcome through their effects on the risk factor (i.e. no horizontal pleiotropy). 

If there is no pleiotropy, the SNPs contributing the GRSA estimate should all 

estimate the same magnitude causal association between risk factor and SCA. We 

use the HEIDI-outlier method from the ‘gsmr’ R package to detect and remove 

potentially pleiotropic SNPs.48 Note that we report GRSA estimates from analyses 

only including SNPs that meet a stringent genome-wide significant (GWS) P- 

value cut-off (P<5x10-8), GRSA  GWS , as SNPs at this significance level likely are 
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true positives and reliable instruments. However, the power for Mendelian 

randomization is dependent on the variance explained by the SNPs included in the 

GRSA, and for complex traits, the majority of the true signals may lie in SNPs 

that do not meet genome-wide significance. Therefore, we identified a somewhat 

arbitrary P-value cut-off based on visual inspection of the variance explained  

plots that largely maximizes variance explained while minimizing the number of 

SNPs (Figure 3.2). We found that all the traits fell between 0.2-0.4 P-value 

cutoff, but the results within a trait were robust to cutoffs chosen between 0.2 and 

0.4. We use a GRSA constructed with this custom P-value cut-off (GRSAmax) to 

assess only the significance of the GRSA (Pmax), as this model has the greatest 

power to assess the significance of an association. Pmax is determined by 

permutation due to inflated test statistics (Figure 3.3). At less stringent P-values, 

false-positive SNPs may be included resulting in a bias of the estimate toward the 

confounded association level. Therefore, we do not use the GRSAmax to determine 

the magnitude of the GRSA association, only its direction and significance. We 

performed two analyses, one using GRSAGWS to evaluate significance and effect 

size, and secondarily using the GRSAmax to evaluate potential associations and 

directions of effect at maximal power (Pmax). We performed multiple-testing 

adjustment on all resulting P-values (PGWS and Pmax) using a false discovery rate 

(FDR) cutoff of FDR<0.05. 

We similarly computed risk factor GRSAs on the outcome of CAD. We 

use a 1-degree of freedom Wald test to test for difference in GRSAGWS magnitudes 

between SCA and CAD. We also performed sex-specific SCA GWAS analyses to 
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construct trait GRSAs separately by sex. GRSAs were constructed from the same 

set of LD-pruned SNPs used for overall GRSAGWS analyses. P-values for 

difference in GRSAGWS between sexes were obtained from 1-degree of freedom 

Wald test. 
 

3.3 Results 
 

3.3.1 CAD and CAD risk factors 
 

Prevalent CAD is an important SCA risk factor with ~80% of male SCA 
 

survivors having underlying CAD49. From GRSA  GW
S 

analysis we show that the 

 

difference in CAD status is causally associated with SCA (odds ratio in SCA risk 
 

per log odds difference in CAD, 1.36; 95% CI, 1.19-1.55; P =9.29x10-5) 
 

(Figure 3.4 and Table 3.3). While traditional CAD risk factors (blood pressure, 

lipids and diabetes) were not significantly associated with SCA at the more 

restrictive GRSAGWS threshold, using GRSAmax to maximize power, several 

additional associations were detected, including type 2 diabetes (Pmax<0.001), 
 

LDL (Pmax=0.005), total cholesterol (Pmax<0.001), triglycerides (Pmax<0.001), 

diastolic blood pressure (Pmax=0.0170), and systolic blood pressure (Pmax=0.0230) 

(Table 3.4). In the GRSAmax analysis, variants associated with higher diabetes 

risk, higher cholesterol and triglyceride levels, and higher systolic and diastolic 

blood pressure were all associated with higher SCA risk. 
 

3.3.2 Cardiac electrophysiologic factors 
 

To explore the influence of cardiac electrophysiology on SCA, we 

examined genetics of electrophysiologic traits associated with SCA: (1) atrial 

fibrillation, (2) QT interval (ventricular repolarization), (3) QRS interval 
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(ventricular conduction), and (4) heart rate. In the GRSAGWS analysis, we show 

that longer QT interval, a risk factor for SCA in the general population, is 

significantly associated with SCA (odds ratio in SCA risk per SD increase in QT, 
 

1.44; 95% CI, 1.13-1.83; PGWS=0.018) (Figure 3.4 and Table 3.3). Using 
 

GRSAmax, in addition to QT, we also identified a significant association of AF 

with SCA (Pmax<0.001 for both QT and AF) (Table 3.4). Variants associated with 

longer QT interval and higher AF risk were associated with higher SCA risk. By 

contrast, no significant association was seen with QRS or heart rate, even at the 

more permissive and statistically powerful GRSAmax. 

3.3.3 Anthropometric Measures 
 

The BMI GRSAGWS was significantly associated with SCA (odds ratio for 

SCA risk per SD higher BMI, 1.63; 95% CI, 1.23-2.15; PGWS=0.005) (Figure 3.4 

and Table 3.3). Using GRSAmax, we found a significant negative association 

between height and SCA (Pmax<0.001) (Table 3.4). Variants associated with 

greater height are associated with lower CAD risk51, and we correspondingly 

observed a negative GRSA between SCA and height. No significant association 

was seen with GRSAs composed of variants associated with measures of 

central/abdominal adiposity, such as waist-to-hip ratio or waist circumference. 

3.3.4 Contrasting SCA and CAD GRSAs 
 

Given the strong association of CAD with SCA, we compared the 

magnitudes of risk factor GRSAGWS on the outcomes of SCA (Figure 3.4) and 

CAD (Figure 3.5) to identify traits where risk factors may be more strongly 
 

causally associated with SCA than CAD. While the GRSAGWS for traditional CAD 
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risk factors (blood pressure and lipid traits) are larger for CAD risk than SCA 

risk, we find that GRSAGWS for electrophysiologic traits of QT interval (0.34 for 

SCA vs. 0.096 for CAD, P for difference = 0.06) and AF (0.097 for SCA vs. - 

0.029 for CAD, P for difference=0.017), there was a suggestion of a larger 

association with SCA than CAD risk (Figure 3.6 and Table 3.3). 

3.3.5 Sex differences 
 

Sex differences in SCA incidence, underlying SCA pathophysiology, and 

prevalence of certain risk factors have been well documented52, yet little is known 

about whether the effect of risk factors on SCA differs by sex. Among GRSAsGWS 

where a main effect association was identified, we found a nominally significant 
 

difference in association between women and men for diabetes (0.240 for women 

vs. 0.021 for men, P for difference = 0.05) and HDL (-0.417 for women vs. 0.026 

for men, P for difference = 0.04) (Table 3.5). 

3.4 Discussion 
 

This study demonstrates that while SCA is a complex disease with 

multiple risk factors, a comprehensive genetic approach can shed light on causal 

versus correlational associations. Using Mendelian randomization with the 

European SCA GWAS (3,939 cases and 25,989 controls), we establish that 

differences in CAD, BMI, and QT interval are causally associated with SCA. 

Secondary analyses further implicate type 2 diabetes, additional traditional CAD 

risk factors such as lipids and blood pressure, as well as height and atrial 

fibrillation. Of particular interest, the GRSA estimates of phenotypes associated 

with electrical instability (AF and QT) are causally associated with SCA risk, 
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more so than they are causally associated with CAD. This confirms our 

understanding of the pathophysiology of SCA─SCA is not simply fatal CAD, but 

rather, electrical instability also plays a prominent role in influencing SCA risk. 

Intriguingly, not all electrophysiologic phenotypes observationally linked 

to SCA are causally associated with SCA in our analyses. QRS interval and heart 

rate, two traits observationally associated with SCA53,54, failed to show significant 

evidence of a shared genetic basis with SCA. This lack of association may be due 

to inadequate power to identify more modest correlations. Alternatively, it may be 

that the associations from observational studies are confounded by other factors, 

and not causative (Figure 3.1B-C). For instance, underlying CAD can lead to 

both longer QRS interval and increased SCA risk; thus, while observational 

studies show an association between SCA and both traits (CAD and QRS 

interval), the association between SCA and QRS interval may not be causal. 

Similarly, the observational association of higher heart rate with SCA risk may be 

confounded by higher adrenergic state due to underlying heart disease and not 

itself be causal. Thus, the GRSA approach to examining observational risk factors 

assists in differentiating causative factors from confounded associations. 

CAD is the most common underlying pathologic substrate for SCA. It is 

reassuring, therefore, that we find significant estimated causal associations with 

SCA risk using GRSA models constructed from CAD and traditional CAD risk 

factors, including blood pressure, diabetes and cholesterol traits. 

Anthropometric measures appear to be causally associated with SCA. 

Shorter stature is associated with increased SCA risk in observational studies; our 

��



findings support the conclusion that this observational association is causal. 

Observational data on BMI and SCA risk have been conflicting, perhaps due to 

confounding from smoking status and frailty. Previously55, we have shown that 

increased BMI is associated with increased SCA risk in non-smokers, but not 

smokers. In this study, we find that differences in BMI, but not central/abdominal 

obesity, were causally associated with SCA risk. This finding is especially 

interesting in the context of recent data that imply different biological process 

underlying BMI and central obesity.56,57
 

Finally, of the traits associated with SCA, we found that GRSAs for 

diabetes and HDL were nominally significantly different between men and 

women. While diabetes is a SCA risk factor among both sexes, previous 

observational studies have consistently suggested a stronger, albeit not 

statistically different, association among women than men58,59. These findings 

may reflect different underlying SCA pathophysiology between men and women. 

While these differences may be due to chance as they do not remain significant 

after multiple test correction, it is also likely that our study is underpowered to 

detect these differences. 

Several limitations deserve consideration. First, as somewhat addressed 

above, without detailed autopsy information, rhythm monitoring, and information 

on circumstances surrounding the cardiac arrest, the underlying etiology and 

mechanism of death may be heterogeneous and genetic associations are likely to 

be diluted. Nonetheless, clinical and autopsy studies have demonstrated a 

predominant, common pathophysiology of SCA in Western populations: VF in 
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the setting of CAD. Hence, it is reassuring that our genetic studies suggest an 

important role for both CAD and electrical instability in SCA. Second, the 

validity of the GRSA method as a Mendelian randomization instrument rests on 

the assumption that the variant causes differences in the outcome only by its 

effects on the risk factor of interest, and not directly or by influencing other risk 

factors. Although we did not explicitly exclude SNPs associated with multiple 

risk factors (genetic pleiotropy), we did utilize a goodness-of-fit approach to 

exclude putative “pleiotropic” effects from all GRSAs. Furthermore, we 

performed a sensitivity analysis using the MR-Egger method, which tests for the 

presence of pleiotropy. Only HDL was found to be significantly influenced by 

pleiotropy (P=0.02). Lastly, while genetic pleiotropy can bias our conclusions, 

important influence is less likely when using multiple SNPs aggregated in a 

genetic risk score.60
 

In conclusion, we have provided evidence for causal associations between 
 

some, but not all, observational risk factors for SCA. We show that differences in 

CAD status, BMI, and QT interval are causally associated with SCA risk. 

However, as evident in the second Mendelian randomization analysis, phenotypic 

heterogeneity is likely causing the lack of significantly causally associated risk 

factors. Further work into generating a more homogeneous phenotype is 

necessary to further explore causal SCA risk factors. 
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3.5 Figures 
 

Figure 3.1: Genetic Risk Score Association (GRSA) Estimation 
 

 
 

The plot (A) illustrates the process by which the QT-SCA GRSA is calculated 

using SNPs associated with QT at P<5x10-8. The points represent the effect of 

each SNP on QT (in units of standard deviation of QT) on the x-axis, and the log 

odds effect on SCA risk (corresponding 95% confidence intervals in grey) on the 

y-axis. The estimate of the genetic risk score association is the slope of the zero- 

intercept weighted regression line (solid red line). For the GRSA used in our 
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analyses, the model contains a genome-wide LD-pruned SNP set (details in 

Methods). The top directed acyclic graph (B) represents a scenario in which the 

trait of interest has a causal effect on the outcome. If the GRSA, comprised of 

trait-associated variants (e.g., QT), has a significant effect on the outcome (e.g., 

SCA), it supports a causal role for the trait on the outcome. The bottom directed 

acyl graph (C) presents the case where an association is observed between the 

trait and outcome, but the GRSA comprised of trait-associated variants is not 

significantly associated with the outcome, suggesting that the observational 

association is likely being mediated by a confounding variable and the trait does 

not have a causal impact on the outcome. 

Figure 3.2: Variance of Trait Explained Plots 
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Each data point represents a different group of SNPs set by an increasing P-value 

threshold (x-axis) and the percent of variance of a trait explained by those SNPs 

(y-axis). These plots are used to determine the fewest number of SNPs required to 

maximize the variance explained, as indicated by the dotted gray line, and are 

reported in Table 3.4 for each trait. (A) CAD = coronary artery disease; (B) T2D 

= type 2 diabetes; (C) AF = atrial fibrillation; (D) BMI = body mass index; (E) 

WCadjBMI = waist circumference adjusted for BMI; (F) WHRadjBMI = waist to 

hip ratio adjusted for BMI; (G) DBP = diastolic blood pressure; (H) SBP = 

systolic blood pressure; (I) FGadjBMI = fasting glucose adjusted for BMI; (J) 

FIadjBMI = fasting insulin adjusted for BMI; (K) HR = heart rate; (L) QRS = 

QRS interval; (M) QT = QT interval; (N) HDL = high-density lipoproteins; (O) 

LDL = low-density lipoproteins; (P) TG = triglycerides; (Q) TCH = total 

cholesterol; (R) Height. 
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Figure 3.3: P-value Distributions from 1000 Null Datasets 
 
 

A B 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1000 dummy GWAS datasets were created using genotypes of 9,533 European 

participants from the ARIC cohort and 1000 randomly generated quantitative 

phenotypes (mean=0, sd=1). These datasets were subsequently used to compute a 

GRSA estimate for SCA with (A) P<5x10-8 and (B) P<0.3. Each panel plots the - 

log10(P-value) of GRSs constructed from these datasets at the different alphas, 

and represents the null distribution of GRSA P-values. These null distributions 

were used to determine the permutated P-value in Table 3.4. 
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Figure 3.4: Genetic Risk Scores Association (GRSA) Estimates for SCA using 

SCA GWAS with 3,939 cases and 35,989 controls 

 
 
 

These data points represent the exponentiated GRSA estimates of 18 traits on 

sudden cardiac arrest (SCA) and corresponding 95% confidence interval values 

using the previously published SCA GWAS with 3,989 cases and 25,989 controls. 

The GRSA estimates in the top panel for the binary traits are in log odds units. 

Values in bottom panel are in SD units of the quantitative traits. GRSA estimates 

and significance are derived from SNPs associated with each trait at P<5x10-8. 

�1



The significance of the GRSAGWS estimates (FDR adjusted PGWS) are represented 

as “*” for P<0.05, “**” for P<0.01, and “***” for P<0.001. The significance of 

the secondary analysis using GRSAmax estimates (FDR adjusted permuted Pmax) 

are represented as “+” for P<0.05, “++” for P<0.01 and “+++” for P<0.001. For 

details on values of GRSA estimates and P-values, see Table 3.3. CAD = 

coronary artery disease; T2D = type 2 diabetes; AF = atrial fibrillation; BMI = 

body mass index; WCadjBMI = waist circumference adjusted for BMI; 

WHRadBMI = waist to hip ratio adjusted for BMI; DBP = diastolic blood 

pressure; SBP = systolic blood pressure; FGadjBMI = fasting glucose adjusted for 

BMI; FIadjBMI = fasting insulin adjusted for BMI; HR = heart rate; QRS = QRS 

interval; QT = QT interval; HDL = high-density lipoproteins; LDL = low-density 

lipoproteins; TCH = total cholesterol; TG = triglycerides. 
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Figure 3.5 Genetic Risk Scores Association (GRSA) Estimates for CAD 
 

 
 

These data points represent the exponentiated GRSA estimates of 17 traits on 

coronary artery disease (CAD) and corresponding 95% confidence interval 

values. The GRSA estimates in the top panel for the binary traits are in log odds 

units. Values in bottom panel are in SD units of the quantitative traits. GRSA 

estimates and significance are derived from SNPs at P<5x10-8. The significance 

of the GRSAGWS estimates (PGWS) are represented as “*” for P<0.05, “**” for 

P<0.01, and “***” for P<0.001. The significance of the secondary analysis using 

GRSAmax estimates (permuted Pmax) are represented as “+” for P<0.05, “++” for 
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P<0.01 and “+++” for P<0.001. For details on values of GRSA estimates and P- 

values, see Table 3.3. T2D = type 2 diabetes; AF = atrial fibrillation; BMI = body 

mass index; WCadjBMI = waist circumference adjusted for BMI; WHRadBMI = 

waist to hip ratio adjusted for BMI; DBP = diastolic blood pressure; SBP = 

systolic blood pressure; FGadjBMI = fasting glucose adjusted for BMI; FIadjBMI 

= fasting insulin adjusted for BMI; HR = heart rate; QRS = QRS interval; QT = 

QT interval; HDL = high-density lipoproteins; LDL = low-density lipoproteins; 

TCH = total cholesterol; TG = triglycerides. 
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Figure 3.6: Comparison of GRSA for SCA and CAD. 
 

 
 

 
 

These data represent exponentiated GRSAs of all 17 traits. GRSA estimates for 

SCA and CAD, are plotted in orange and teal respectively. Bars around the 

estimates represent the 95% confidence interval. The GRSA estimates in the top 

panel for the binary traits are in log odds units. Values in bottom panel are in SD 

units of the quantitative traits. The level of significance for 1 degree of freedom 

Wald test of difference in GRSAGWS estimates between SCA and CAD is 

represented “*” for P<0.05, “**” for P<0.01, and “***” for P<0.001. T2D = type 

2 diabetes; AF = atrial fibrillation; BMI = body mass index; WCadjBMI = waist 
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circumference adjusted for BMI; WHRadBMI = waist to hip ratio adjusted for 

BMI; DBP = diastolic blood pressure; SBP = systolic blood pressure; FGadjBMI 

= fasting glucose adjusted for BMI; FIadjBMI = fasting insulin adjusted for BMI; 

HR = heart rate; QRS = QRS interval; QT = QT interval; HDL = high-density 

lipoproteins; LDL = low-density lipoproteins; TCH = total cholesterol; TG = 

triglycerides. 

��



 
3.6 Tables 
Table 3.1 Study Details 

Trait Abbreviation Consortium Title Total Sample Size 
 

Coronary Artery Disease 
 

CAD 
 

CARDIOGRAM+C4D 
Large-scale association analysis identifies 
new risk loci for coronary artery disease 

(Deloukas et al., 2012) 

 
194,427 

 
 

Type 2 Diabetes 

 
 

T2D 

 
 

DIAGRAM 

Large-scale association analysis provides 
insights into the genetic architecture and 

pathophysiology of type 2 diabetes (Morris 
et al, 2012) 

 
 

149,821 

 
 

Atrial Fibrillaiton 

 
 

AF 

 
Atrial Fibrillation 
Genetics (AFGen) 

Large-scale analyses of common and rare 
variants identify 12 new loci associated 
with atrial fibrillation (Christophersen et 

al., 2017) 

 
 

110,099 

 
Body-mass Index 

 
BMI 

 
GIANT 

Genetic studies of body mass index yield 
new insights for obesity biology (Locke et 

al., 2015) 

 
339,224 

 
Height 

 
HEIGHT 

 
GIANT 

Defining the role of common variation in 
the genomic and biological architecture of 

adult human height (Wood et al., 2014) 

 
253,288 

 

Waist Circumference adjusted 
for BMI 

 
WCADJBMI 

 
GIANT 

New genetic loci link adipose and insulin 
biology to body fat distribution (Shungin et 

al., 2015) 

 
224,459 

 

Waist-to-Hip Ratio adjusted 
for BMI 

 
WHRADJBMI 

 
GIANT 

New genetic loci link adipose and insulin 
biology to body fat distribution (Shungin et 

al., 2015) 

 
142,762 

 

 
 
 

Diastolic Blood Pressure 

 

 
 
 

DBP 

 

 
 
 

ICBP 

Genetic variants in novel pathways 
influence blood pressure and 

cardiovascular disease risk (Ehret et al., 
2011) & The genetics of blood pressure 

regulation and its target organs from 
association studies in 342,415 individuals 

(Ehret et al., 2016) 

 

 
 
 

69,395 / 201,529 
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Trait 
 

Abbreviation 
 

Consortium 
 

Title Total Sample 
Size 

 
 

Systolic Blood Pressure 

 
 

SBP 

 
 

ICBP 

Genetic variants in novel pathways influence 
blood pressure and cardiovascular disease 
risk (Ehret et al., 2011) & The genetics of 

blood pressure regulation and its target 
organs from association 

 
 

69,395 / 
201,529 

 
 

Fasting Glucose adjusted for BMI 

 
 

FGADJBMI 

 
 

DIAGRAM 

A genome-wide approach accounting for 
body mass index identifies genetic variants 

influencing fasting glycemic traits and insulin 
resistance (Manning et al., 2012) 

 
 

58,074 

 
 

Fasting Insulin adjusted for BMI 

 
 

FIADJBMI 

 
 

DIAGRAM 

A genome-wide approach accounting for 
body mass index identifies genetic variants 

influencing fasting glycemic traits and insulin 
resistance (Manning et al., 2012) 

 
 

51,750 

 
 

Heart Rate 

 
 

HR 

 
 

UK Biobank 

Identification of genomic loci associated 
with resting heart rate and shared genetic 

predictors with all-cause mortality (Eppinga 
et al., 2016) 

 
 

134,251 

 

QRS Interval 
 

QRS 
 

CHARGE QRS 52 Genetic Loci Influencing Myocardial 
Mass (van der Harst et al., 2016) 

 

60,255 
 
 

QT Interval 

 
 

QT 

 
 

QT-IGC 

Genetic association study of QT interval 
highlights role for calcium signaling 

pathways in myocardial repolarization 
(Arking et al., 2014) 

 
 

76,061 

 

High-Density Lipoprotein 
 

HDL Global Lipids Genetics 
Consortium 

Discovery and refinement of loci associated 
with lipid levels (Willer et al., 2013) 

 

188,577 
 

Low-Density Lipoprotein 
 

LDL Global Lipids Genetics 
Consortium 

Discovery and refinement of loci associated 
with lipid levels (Willer et al., 2013) 

 

188,577 
 

Total Cholesterol 
 

TCH Global Lipids Genetics 
Consortium 

Discovery and refinement of loci associated 
with lipid levels (Willer et al., 2013) 

 

188,577 
 

Triglycerides 
 

TG Global Lipids Genetics 
Consortium 

Discovery and refinement of loci associated 
with lipid levels (Willer et al., 2013) 

 

188,577 
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Table 3.2 Comparison of Mendelian Randomization Methods 
 

Trait 
 

Number 
of SNPs 

 
IVW Estimate [95% CI] 

 

IVW P- 
value 

 
MR-Egger Estimate [95% CI] 

 

MR-Egger 
P-value 

 

MR-Egger 
Intercept 

MR-Egger 
Intercept P 

value 
CAD 23 0.307 [0.175,0.440] 5.16x10-6

 0.365 [0.032,0.698] 0.032 -0.007 0.71 
T2D 38 0.063 [-0.052,0.177] 0.29 0.014 [-0.265,0.293] 0.92 0.006 0.71 
AF 19 0.097 [-0.024,0.218] 0.12 0.009 [-0.229,0.247] 0.94 0.013 0.40 

BMI 72 0.488 [0.209,0.767] 6.02x10-4
 0.864 [0.183,1.55] 0.013 -0.012 0.24 

Height 447 -0.100 [-0.212,0.013] 0.08 -0.06 [-0.368,0.248] 0.70 -0.001 0.79 
WCadjBMI 67 -0.358 [-0.715,-0.001] 0.05 -0.429 [01.95,1.09] 0.58 0.002 0.92 

WHRadjBMI 39 -0.404 [-0.864,0.056] 0.09 -1.92 [-4.26,0.419] 0.11 0.043 0.20 
DBP 54 0.093 [-0.121,0.307] 0.39 0.363 [-0.224,0.951] 0.23 -0.013 0.33 
SBP 54 0.208 [-0.410,0.826] 0.51 0.593 [-1.11,2.30] 0.49 -0.006 0.63 

FGadjBMI 22 0.203 [-0.051,0.456] 0.12 0.432 [-0.103,0.966] 0.11 -0.019 0.34 
FIadjBMI 9 -0.113 [-0.874,0.648] 0.77 -1.247 [-5.63,3.132] 0.58 0.036 0.61 

HR 67 -0.188 [-0.414,0.038] 0.10 -0.760 [-1.38,-0.137] 0.017 0.023 0.05 
QRS 22 -0.027 [-0.395,0.342] 0.89 -0.834 [-2.15,0.481] 0.21 0.036 0.21 
QT 60 0.365 [0.125,0.605] 0.003 0.571 [0.101,1.041] 0.017 -0.009 0.32 

HDL 89 -0.099 [-0.279,0.081] 0.28 0.230 [-0.096,0.556] 0.17 -0.017 0.019 
LDL 68 0.142 [-0.070,0.355] 0.19 0.198 [-0.190,0.586] 0.32 -0.003 0.73 
TCH 85 0.158 [-0.032,0.349] 0.10 0.021 [-0.340,0.381] 0.91 0.008 0.38 
TG 58 0.15 [-0.075,0.376] 0.19 -0.050 [-0.415,0.315] 0.79 0.012 0.17 
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Trait 
 

Number of 
SNPs 

 

Simple Median Estimate 
[95% CI] 

 

SimpleMedia  Median Weighted Estimate 
n P-value [95% CI] 

Median 
 

value 
CAD 23 0.304 [0.100,0.507] 0.003 0.329 [0.128,0.531] 0.001 
T2D 38 0.018 [-0.139,0.175] 0.82 0.056 [-0.106,0.218] 0.50 
AF 19 0.158 [-0.035,0.351] 0.11 0.053 [-0.112,0.219] 0.53 

BMI 72 0.426 [-0.025,0.877] 0.06 0.729 [0.250,1.21] 0.003 
Height 447 -0.165 [-0.340,0.011] 0.07 -0.084 [-0.264,0.095] 0.36 

WCadjBMI 67 -0.527 [-0.985,-0.069] 0.024 -0.519 [-0.977,-0.061] 0.026 
WHRadjBMI 39 -0.45 [-1.02,0.122] 0.12 -0.547 [-1.12,0.022] 0.06 

DBP 54 0.090 [-0.228,0.407] 0.58 0.070 [-0.239,0.380] 0.66 
SBP 54 0.218 [-0.694,1.13] 0.64 0.180 [-0.707,1.07] 0.69 

FGadjBMI 22 0.160 [-0.236,0.556] 0.43 0.472 [0.147,0.798] 0.004 
FIadjBMI 9 -0.225 [-1.27,0.824] 0.67 -0.271 [-1.27,0.729] 0.60 

HR 67 -0.184 [-0.531,0.162] 0.30 -0.260 [-0.601,0.082] 0.14 
QRS 22 -0.061 [-0.535,0.413] 0.80 -0.074 [-0.543,0.395] 0.76 
QT 60 0.428 [0.027,0.829] 0.037 0.470 [0.106,0.835] 0.011 

HDL 89 -0.053 [-0.347,0.240] 0.72 0.029 [-0.254,0.312] 0.84 
LDL 68 0.088 [-0.225,0.400] 0.58 0.196 [-0.100,0.491] 0.19 
TCH 85 0.100 [-0.183,0.383] 0.49 0.025 [-0.230,0.280] 0.85 
TG 58 0.066 [-0.308,0.439] 0.73 -0.129 [-0.449,0.190] 0.43 
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Table 3.3A: SCA GRSA with 18 traits using SNPs with P<5x10-8
 

 

TRAIT Number of SNPs GRSA estimate [95% CI] P-value for GRSA FDR adjusted P-value 
CAD 23 0.307 [0.175,0.440] 5.16x10-6

 9.29x10-5
 

T2D 38 0.063 [-0.052,0.177] 0.29 0.38 
AF 19 0.097 [-0.024,0.218] 0.12 0.24 

BMI 72 0.488 [0.209,0.767] 6.02x10-4
 5.42x10-3

 

HEIGHT 449 -0.100 [-0.212,0.013] 0.08 0.29 
WCADJBMI 65 -0.358 [-0.715,-0.001] 0.05 0.23 

WHRADJBM 39 -0.404 [-0.864,0.056] 0.09 0.27 
DBP 54 0.093 [-0.121,0.307] 0.39 0.47 
SBP 54 0.208 [-0.410,0.826] 0.51 0.58 

FGADJBMI 22 0.203 [-0.051,0.456] 0.12 0.22 
FIADJBMI 9 -0.113 [-0.874,0.648] 0.77 0.82 

HR 67 -0.188 [-0.414,0.038] 0.10 0.26 
QRS 22 -0.027 [-0.395,0.342] 0.89 0.89 
QT 60 0.365 [0.125,0.605] 0.003 0.018 

HDL 90 -0.099 [-0.279,0.081] 0.28 0.39 
LDL 66 0.142 [-0.070,0.355] 0.19 0.32 
TCH 84 0.158 [-0.032,0.349] 0.10 0.23 
TG 55 0.150 [-0.075,0.376] 0.19 0.29 
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Table 3.3B: CAD GRSA with 17 traits using SNPs with P<5x10-8
 

 

 
 

TRAIT 

 
 
Number of SNPs 

 
 
GRSA estimate [95% CI] 

 
 
P-value for GRSA 

 
 
FDR adjusted P-value 

P-value for 
difference in 

GRSA between 
SCA and CAD 

T2D 38 0.090 [0.049, 0.131] 1.66x10-5
 3.53x10-5

 0.817 
AF 19 -0.029 [-0.086, 0.028] 0.317 0.337 0.017 

BMI 71 0.327 [0.201, 0.452] 3.30x10-7
 8.01x10-7

 0.303 
HEIGHT 455 -0.156 [-0.207, -0.106] 1.07x10-9

 3.03x10-9
 0.269 

WCADJBMI 67 0.022 [-0.116, 0.160] 1.66x10-5
 3.14x10-5

 0.066 
WHRADJBM 40 0.365 [0.195, 0.535] 2.51x10-5

 3.88x10-5
 0.005 

DBP 54 0.489 [0.396, 0.583] 1.41x10-24
 5.99x10-24

 0.023 
SBP 54 1.37 [1.10, 1.64] 2.62x10-23

 8.90x10-23
 2.00x10-4

 

FGADJBMI 22 0.0547 [-0.040, 0.150] 0.258 0.313 0.277 
FIADJBMI 9 0.223 [-0.121, 0.566] 0.204 0.267 0.426 

HR 63 -0.026 [-0.128, 0.075] 0.610 0.610 0.208 
QRS 21 -0.087 [-0.237, 0.064] 0.258 0.292 0.776 
QT 61 0.096 [-0.001, 0.201] 0.073 0.103 0.063 

HDL 82 -0.166 [-0.243, -0.089] 2.16x10-5
 3.67x10-5

 0.533 
LDL 66 0.493 [0.419, 0.566] 1.41x10-39

 1.20x10-38
 0.001 

TCH 80 0.515 [0.444, 0.586] 9.65x10-46
 1.64x10-44

 0.004 
TG 54 0.538 [0.440, 0.637] 6.31x10-27

 3.58x10-26
 0.003 
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Table 3.4A: SCA GRSA for 18 traits using SNPs from custom P-value cutoff 

 

 
 
 

TRAIT 

 
 

Pvalue 
Threshold 

 
 
Number of 

SNPs 

 
 
 
GRSA estimate (95% CI) 

 
 
P-value for 

GRSA 

Empirical P 
value from 

1000 
permutatio 

ns 

 
FDR 

adjusted P- 

CAD 0.4 32,252 0.050 [0.039, 0.061] 4.81x10-19
 <0.001 <0.001 

T2D 0.3 29,276 0.041 [0.031, 0.050] 1.72x10-17
 <0.001 <0.001 

AF 0.3 31,196 0.045 [0.032, 0.058] 2.73x10-11
 <0.001 <0.001 

BMI 0.4 29,478 0.095 [0.044, 0.146] 2.57x10-4
 0.006 0.012 

HEIGHT 0.2 19,651 -0.162 [-0.215, -0.110] 1.29x10-9
 <0.001 <0.001 

WCADJBMI 0.3 27,081 -0.044 [-0.089, -0.001] 0.047 0.13 0.18 
WHRADJBMI 0.3 28,111 -0.004 [-0.047, 0.039] 0.85 0.89 0.89 

DBP 0.3 27,871 0.051 [0.020, 0.081) 0.001 0.017 0.031 
SBP 0.3 27,820 0.052 [0.018, 0.085] 0.002 0.023 0.038 

FGADJBMI 0.2 24,415 0.003 [-0.023, 0.029] 0.82 0.88 0.93 
FIADJBMI 0.4 34,051 -0.014 [-0.051, 0.023] 0.45 0.57 0.69 

HR 0.2 24,471 -0.013 [-0.056, 0.030] 0.56 0.66 0.74 
QRS 0.3 29,636 -0.030 [-0.067, 0.007] 0.11 0.24 0.30 
QT 0.3 30,129 0.108 [0.056, 0.159] 4.06x10-5

 0.002 0.005 
HDL 0.4 29,737 -0.050 [-0.088, -0.011] 0.011 0.05 0.08 
LDL 0.4 30,177 0.066 [0.032, 0.101] 1.86x10-4

 0.005 0.011 
TCH 0.4 30,036 0.097 [0.062, 0.133] 5.90x10-8

 <0.001 <0.001 
TG 0.4 30,505 0.095 [0.057, 0.134] 9.89x10-7

 <0.001 <0.001 
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Table 3.4B: CAD GRSA for 17 traits using SNPs from custom P-value cutoff 

 

 
 

TRAIT 

 
 

Pvalue Threshold 

 
Number of 

SNPs 

 
 

GRSA estimate (95% CI) 

 
P-value for 

GRSA 

Empirical P- 
value from 

1000 
permutations 

 
FDR adjusted 

P-value 

T2D 0.3 28,184 0.051 [0.047, 0.056] 2.30x10-109
 <0.001 <0.001 

AF 0.3 29,300 0.033 [0.026, 0.039] 2.46x10-24
 <0.001 <0.001 

BMI 0.4 27,872 0.089 [0.065, 0.113] 3.93x10-13
 <0.001 <0.001 

HEIGHT 0.2 18,695 -0.117 [-0.142, -0.092] 1.65x10-20
 <0.001 <0.001 

WCADJBMI 0.3 25,780 -0.003 [-0.023, 0.018] 0.80 0.85 0.85 
WHRADJBMI 0.3 26,709 0.062 [0.042, 0.082] 2.33x10-9

 <0.001 <0.001 
DBP 0.3 26,029 0.054 [0.038, 0.067] 1.55x10-11

 <0.001 <0.001 
SBP 0.3 25,859 0.078 [0.061, 0.095] 2.43x10-19

 <0.001 <0.001 
FGADJBMI 0.2 22,814 0.010 [-0.003, 0.023] 0.14 0.26 0.29 
FIADJBMI 0.4 31,601 0.043 [0.024, 0.063] 1.47x10-5

 <0.001 <0.001 
HR 0.2 22,991 0.014 [-0.006, 0.034] 0.17 0.29 0.31 

QRS 0.3 27,648 0.018 [0.001, 0.049] 0.046 0.13 0.15 
QT 0.3 27,905 0.044 [0.012, 0.068] 6.95x10-4

 0.011 0.014 
HDL 0.4 28,799 -0.062 [-0.075, -0.049] 1.24x10-11

 <0.001 <0.001 
LDL 0.4 29,412 0.078 [0.062, 0.094] 3.83x10-21

 <0.001 <0.001 
TCH 0.4 29,101 0.050 [0.034, 0.067] 4.07x10-9

 <0.001 <0.001 
TG 0.4 29,650 0.075 [0.057, 0.093] 2.27x10-16

 <0.001 <0.001 
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Table 3.5A: Sex-stratified SCA GRSA for 18 traits using SNPs with P<5x10-8 -Men 
 

Trait Number of 
SNPs 

 

GRSA estimate (95% CI) 
 

P-value for GRSA 

CAD 23 0.329 [0.168, 0.490] 5.98x10-5
 

T2D 39 0.021 [-0.100, 0.141] 0.74 
AF 19 0.063 [-0.083, 0.209] 0.40 

BMI 72 0.603 [0.269, 0.937] 3.97x10-4
 

HEIGHT 462 -0.023 [-0.157, 0.110] 0.73 
WCADJBMI 68 -0.268 [-0.641, 0.105] 0.16 

WHRADJBMI 40 -0.494 [-0.963, -0.026] 0.039 
DBP 47 0.156 [-0.323, 0.646] 0.52 
SBP 45 0.149 [-0.362, 0.660] 0.57 

FGADJBMI 22 0.072 [-0.177, 0.321] 0.57 
FIADJBMI 9 -0.687 [-1.61, 0.232] 0.14 

HR 68 -0.205 [-0.477, 0.066] 0.14 
QRS 22 0.063 [-0.351, 0.477] 0.77 
QT 64 0.245 [-0.037, 0.528] 0.09 

HDL 90 0.026 [-0.181, 0.232] 0.81 
LDL 70 0.253 [0.051, 0.455] 0.014 
TCH 86 0.189 [-0.001, 0.380] 0.05 
TG 59 0.077 [-0.160, 0.313] 0.53 
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Trait 

 
Number of  

GRSA estimate (95% CI)  
P-value for 

SNPs GRSA 

P-value for 
difference in GRSA 

by sex 
CAD 23 0.267 [0.014, 0.519] 0.039 0.64 
T2D 39 0.240 [0.053, 0.427] 0.012 0.048 
AF 19 0.107 [-0.124, 0.338] 0.37 0.65 

BMI 72 0.469 [-0.060, 0.997] 0.08 0.68 
HEIGHT 464 -0.220 [-0.429, -0.011] 0.039 0.15 

WCADJBMI 68 -0.492 [-1.08, 0.093] 0.09 0.54 
WHRADJBMI 40 -0.005 [-0.740, 0.730] 0.99 0.3 

DBP 47 0.334 [-0.413, 1.08] 0.38 0.71 
SBP 45 0.268 [-0.531, 1.07] 0.51 0.81 

FGADJBMI 22 0.546 [0.155, 0.937] 0.006 0.044 
FIADJBMI 9 0.778 [-0.693, 2.25] 0.30 0.11 

HR 68 -0.235 [-0.663, 0.194] 0.28 0.11 
QRS 22 -0.215 [-0.857, 0.427] 0.51 0.37 
QT 63 0.615 [0.167, 1.06] 0.007 0.32 

HDL 90 -0.417 [-0.743, -0.091] 0.012 0.043 
LDL 71 -0.039 [-0.343, 0.264] 0.80 0.15 
TCH 85 0.034 [-0.263, 0.331] 0.82 0.23 
TG 60 0.283 [-0.094, 0.660] 0.14 0.47 

 

 
Table 3.5B: Sex-stratified SCA GRSA for 18 traits using SNPs with P<5x10-8 -Women 
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Chapter 4: The effect of sex and underlying disease on the genetic 

association of QT interval and sudden cardiac arrest 

4.1 Introduction 
 

SCA is often the first manifestation of heart disease, particularly for 

women; several studies have found that women are less likely than men to have a 

prior history of known cardiac disease.15,61 It has been hypothesized that SCA is a 

much more heterogeneous condition in women, potentially due to the different 

underlying diseases, leading to differences in the associated risk factors. 

Prolonged QT interval, a measure of ventricular repolarization, has been 

previously established as a risk factor for SCA,62,63 and recent studies using 

Mendelian randomization have demonstrated that this risk factor is causal.38 

Women, on average, exhibit longer QT intervals than men in the general 

population once puberty is reached.64,65 In addition, a previous study found that 

the increase in risk for overall cardiac death associated with longer QT interval 

was more pronounced in women.66 Women also have higher risk of arrhythmic 

events than men in the setting of inherited or acquired (drug-induced) QT 

prolongation.67 Based on the sex differences in QT interval in the general 

population and its association with overall cardiac mortality, we hypothesize that 

the risk of SCA associated with longer QT interval could differ by sex. Likewise, 

we also hypothesize that QT interval could differentially affect SCA risk 

depending on the underlying pathology (e.g. ischemic vs. non-ischemic disease). 

Previous studies have shown that ~34% of QT interval variation is 

heritable68,69. In addition, recent research indicates that ~21% of variation can be 
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explained by common autosomal SNPs found genome-wide, including SNPs in 

genes such as KCNQ1, KCNH2, SCN5A and NOS1AP.70 The top SNP from the 

most recent QT interval genome-wide association study (GWAS) was the 

NOS1AP locus SNP rs12143842, which increased QT interval by 3.50 ms per T- 

allele (p-value=1x10-213)33 and accounts for ~1% of the variation in QT interval.71
 

This SNP has been previously associated with increased SCA risk72,73, and has 
 

also been found to have stronger effect on QT interval in women than men.71
 

 
In this study we examined a large Finnish study of post-mortem autopsy- 

confirmed SCA subjects to study the genetic association between QT interval and 

SCA risk. More specifically, we compared the association of the NOS1AP locus 

variant rs12143842 with SCA risk between subjects with underlying ischemic vs. 

non-ischemic disease. We also performed sex-stratified analyses within these 

groups to investigate any sex-specific association of the NOS1AP locus SNP with 

SCA risk. Finally, we performed Mendelian randomization to test for differences 

in the causal association between a previously identified causal risk factor, longer 

QT interval, and SCA in the setting of different underlying disease and/or 

between sexes. 

4.2 Methods 
 

4.2.1 Genotyping 
 

Samples from the Fingesture and NFBC1966 studies, as described in 

Chapter 3, were genotyped for rs12143842 using five different platforms: 

Illumina Infinium Global Screening Array (GSA); Affymetrix Genome-wide 

Human SNP Array 6.0; Agena Biosciences MassARRAY; Applied Biosystems 
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Taqman real-time PCR; and Illumina TruSeq sequencing. All genotyping and 

sequencing were performed according to the manufacturer’s instructions. Quality 

control was performed separately on each dataset before merging. Dataset and QC 

information is summarized in Table 4.1. Overlapping samples between platforms 

were used to evaluate the accuracy of the genotyping (reported in Supplementary 

Table 1). After exclusions, the study population included 2,282 SCA victims and 

3,561 Finnish controls. 

4.2.2 Statistical Analysis 
 

P-values for differences in the Fingesture study characteristics were 

calculated using a two sample t-test for continuous variables and Pearson chi- 

square test for categorical variables. The genotypes for rs12143842 for all  

samples were merged and logistic regression was performed using R (version 

3.3.3), with sex as the only covariate. The SCD cases were stratified by sex and 

underlying disease (ischemic, non-ischemic and other disease) to examine the 

SNP effects in each group. Differences between sexes were determined by 

incorporating an interaction term into the regression model. P-values for 

differences in effect sizes between the underlying disease groups were obtained 

from a 1-degree of freedom Wald test. Multi-dimensional scaling (MDS) using 

PLINKv1.9 was used for samples run on the GSA microarray (1,168 cases/761 

controls) to assess potential population substructure between the Fingesture and 

NFBC1966 studies. MDS is a method that reduces the high number of dimensions 

(i.e. the number of SNPs) to a smaller number of dimensions based on similarities 

in the data and orders these MDS dimensions (called components) based on the 
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amount of variation explained in the data.74 Most often, population substructure 

accounts for the most variation within the data and is captured in the first several 

MDS components. 

4.2.3 Mendelian Randomization 
 

While association tests establish observational relationships between a  

trait (i.e. QT interval) and an outcome (i.e. SCD), they cannot establish causality. 

Confounding variables, variables affecting both the trait and the outcome, can 

result in false positive associations. Mendelian randomization circumvents these 

potential confounders to establish causality by exploiting certain characteristics of 

SNPs: that they are (1) assigned at conception and (2) randomly distributed in the 

large population.60,75 Mendelian randomization has other assumptions that must be 

met as well, including the absence of pleiotropy.76 This assumption is often hard 

to fully meet, leading to potential bias of the results. However, recent methods 

have been developed to remove potentially pleiotropic SNPs in order to meet this 

assumption. 

Mendelian randomization uses genetic variants as instrumental variables  

to test for causal relationships between a trait and an outcome. We used a multi- 

SNP genetic risk score association (GRSA) model to test for causality between 

QT interval and SCD in our stratified datasets. The SNPs used in the model are 

known to be associated with the trait of interest. In this study, we used genome- 

wide significant SNPs from the most recent QT interval GWAS.33 The SNPs were 

pruned for linkage disequilibrium (LD) using the ‘clump’ method in PLINKv1.9, 

which removes any SNP within a 1Mb window of the SNP with the lowest P- 
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value. This step is performed in order to remove any correlated SNPs and reduce 

any potential bias. The GRSA model uses 57 LD-pruned SNPs to compare the 

association of these SNPs with the trait of interest (βtrait) to the association of the 
 

SNPs with SCD (βoutcome) using the R package 'MendelianRandomization’. Zero- 
 

intercept inverse-weighted (IVW) linear regression is used to calculate the GRSA 

estimate, which is the slope of the resultant regression line, and estimates the 

difference in log odds of SCD risk per SD increase in QT interval. We used the 

HEIDI-outlier method from the ‘gsmr’ R package to detect and remove 

potentially pleiotropic SNPs.48 P-values for difference in GRSA estimates were 

obtained from a 1-degree of freedom Wald test. 

Genome-wide SNP data is required for Mendelian randomization analyses 

and therefore only the Fingesture and NFBC1966 samples genotyped using the 

Infinium Global Screening Array (GSA) and imputed to the NHLBI Trans-Omics 

for Precision Medicine (TOPMed) imputation panel using the University of 

Michigan imputation server77 were used in this analysis (1,168 SCD victims and 

761 Finnish controls). Logistic regression for single SNP association tests were 

run using FASTv2.4.37 We performed several stratified analyses, including by sex 

and underlying disease (ischemic and non-ischemic disease). There were a small 

number of SCD cases with other underlying disease genotyped on this array and 

therefore were only included in the overall analysis and sex-stratified analyses but 

were excluded from the underlying disease-stratified analysis and subsequent sex- 

stratified analyses. 
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4.3 Results 
 

4.3.1 Sample population 
 

The SCA population is comprised of a subset of the Fingesture study of 

Finnish SCA subjects with autopsy-confirmed assessment of underlying heart 

disease in whom DNA was available at the time of this study (n=2,282). Controls 

were drawn from the Northern Finland Birth Cohort of 1966 (NFBC1966) and are 

comprised of 3,561 Finnish individuals born in 1966. Characteristics of the 

Fingesture study are detailed in Table 4.2. Additional information about the 

different sample subgroups is provided in Table 4.3. To assess for potential 

population stratification, we ran multi-dimensional scaling (MDS) on a subset of 

the samples with genome-wide SNP data (1,168 cases/761 controls). We assessed 

the top 10 MDS components, which can be used to visualize potential population 

substructure, for association with SCD status to test for possible confounding of 

our SNP association results. We ran logistic regression for SCD status, including 

sex and the top 10 MDS components as covariates. Results are in Table 4.4. Plots 

for the top 10 MDS components, colored by SCA status, are found in Figure 4.1. 

MDS component 7 was associated with SCA status after multi-test correction 

(P<0.002) (Table 4.4), indicating the potential for confounding due to population 

substructure. However, combined, the top 10 components explained only 0.9% of 

the variance in SCA status, suggesting likely minimal impact. This minimal 

impact was confirmed by sensitivity analyses (described below). 
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4.3.2 NOS1AP locus SNP analysis 
 

Given the previously established relationship between QT interval and 

SCA risk, and with NOS1AP locus SNPs and SCA in other cohorts63,78, we first 

sought to assess the association between SCA and the NOS1AP locus SNP 

rs12143842. When analyzing all 2,282 SCA cases and 3,561 controls, the T allele 

of rs12143842 was significantly associated with increased SCA risk with an OR 

of 1.14 for each copy of the QT lengthening allele (95% CI, 1.04-1.25; P = 

0.005). In sensitivity analyses, including the 10 top components from the MDS 

analysis in the model minimally increased the effect estimate (Table 4.5). All 

SNP association results are summarized in Figure 4.2 and Table 4.6. 

4.3.2a Ischemic vs. Non-ischemic 
 

To explore whether the association of rs12143842 differs by underlying 

disease pathology, we stratified the SCA cases into those with (1) underlying 

ischemic heart disease (n=1,478), (2) non-ischemic heart disease (n=750), and (3) 

other pathologies (myocarditis, cardiac anomaly, and normal autopsy, n=54). The 

rs12143842 T allele had the strongest association in non-ischemic SCA 

individuals with an OR of 1.23 (95% CI, 1.07-1.39; P=0.003). A weaker non- 

significant association was observed in both ischemic SCA individuals (OR 

=1.09; 95% CI, 0.98-1.21; P=0.12), and those with other underlying conditions 

(OR = 1.11; 95% CI, 0.71-1.73; P=0.64). 

4.3.2b Men vs. Women 
 

Given that QT interval is a stronger SCA risk factor in men than women, 

and rs12143842 has a larger effect on QT interval in women than in men,71 we 
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next investigated whether the effect of rs12143842 on SCA risk differed between 

men and women. We limited sex-stratified analyses to SCA cases with underlying 

ischemic and non-ischemic pathology and excluded those with other underlying 

conditions due to the small sample size of those with other conditions. 

Among 1,862 SCA male victims and 1,641 male controls, the rs12143842 

QT lengthening allele was marginally associated with an increased risk of SCA 

(OR of 1.11; 95% CI, 0.99-1.23; P=0.07). When stratified by underlying disease 

pathology, the association was significant among non-ischemic SCA males (579 

cases/1,641 controls) with an OR of 1.17 (95% CI, 1.00-1.37; P=0.045), while 

there was no statistically significant association in ischemic SCA males (1,245 

cases/1,641 controls) for SCA risk (OR =1.09; 95% CI, 0.96-1.23; P=0.18; P for 

difference between ischemic/non-ischemic males=0.48). 

Overall, among 420 female SCA cases and 1,920 female controls, the 

rs12143842 QT lengthening allele was associated with increased SCA risk (OR of 

1.24; 95% CI, 1.04-1.46; P=0.015). Similar to findings among men, a stronger 

association was observed in the non-ischemic SCA women (171 cases/1,920 

controls), with the rs12143842 T allele association with a 1.37-fold increased 

SCA risk (95% CI, 1.07-1.75; P=0.013) than among ischemic SCA women (233 

cases/1,920 controls) (OR = 1.11 for each copy of the variant allele; 95% CI, 

0.88-1.38; P=0.39; P for difference between ischemic/non-ischemic 

women=0.08). 
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4.3.3 Mendelian Randomization of QT Interval 
 

Using Mendelian randomization approaches, we have previously 

established that QT interval is causally associated with SCA.38 To investigate 

whether these causal associations differ based on sex and underlying disease, we 

calculated genetic risk score association (GRSA) estimates using the genome- 

wide significant SNPs from the most recent QT interval GWAS.33 Inverse- 

weighted (IVW) linear regression was performed to compare the effect of the 

SNP on QT interval to the effect of the SNP on SCA risk in the sex-stratified and 

underlying disease-stratified datasets. Results are summarized in Figure 4.3 and 

Table 4.7. 

Among all SCA victims (n=1,168 cases/761 controls), a one standard 

deviation (SD) increase in QT interval was associated with a 1.42-fold increased 

risk of SCA (95% CI, 0.83-2.45; P=0.20), which translates in our sample 

population to a 1.10-fold increased risk of SCD per 10 ms increase in QT interval 

(95% CI, 0.90-1.34, P=0.20). While not statistically significant, these findings are 

consistent with our previous work (previous findings: odds ratio in cardiac arrest 

risk per SD increase in QT, 1.44; 95% CI, 1.13-1.83; P=0.018)38. Similar to our 

findings with NOS1AP locus SNP rs12143842, we found that the causal 

relationship of QT interval and SCA differs between individuals with ischemic 

heart disease and individuals with non-ischemic disease. Among non-ischemic 

SCA victims (507 cases/761 controls), there was a 1.96-fold increase in SCA risk 

per SD increase in QT (95% CI, 1.00-3.82; P=0.05). By contrast, there was no 
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evidence of a causal association of QT interval with SCA among SCA cases with 

ischemic disease (611 cases/761 controls; OR= 0.88; 95% CI, 0.47-1.67; P=0.70). 

Non-ischemic female SCA cases had the strongest causal association of 

QT interval with SCA (odds ratio in SCA risk per SD increase in QT, 3.60; 95% 

CI, 1.22-10.59; P=0.02). Non-ischemic males had a large but non-significant 

causal association estimate between QT interval and SCA (odds ratio in SCA risk 

per SD increase in QT, 1.47; 95% CI, 0.64-3.39; P=0.36). Among those with 

underlying ischemic disease, there was no evidence for a causal relationship of 

QT interval with SCA for men or women (odds ratio in SCA risk per SD increase 

in QT, 0.92; 95% CI, 0.41-2.05; P=0.84 and odds ratio in SCA risk per SD 

increase in QT, 0.80; 95% CI 0.22-2.94; P=0.74, respectively). 

4.4 Discussion 
 

In the general population, women have longer QT intervals than men; 

women experience a higher rate of arrhythmias in the setting of prolonged QT 

interval; and prolonged QT interval is causally associated with SCD. We therefore 

hypothesized that women would show a greater association between genetically 

determined longer QT interval and SCD. Given the different etiologies between 

ischemic and non-ischemic cardiac disease, we further hypothesized that the 

genetic association with longer QT interval would also differ between the  

different underlying diseases. Our results, while not conclusive, support both of 

these hypotheses. We found that rs12143842, the top QT interval-associated SNP 

from previous GWAS33, was associated with SCD risk in our overall dataset. We 

observed a larger, yet not statistically significant, genetic effect on SCD risk in 
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non-ischemic individuals compared to ischemic individuals. Furthermore, the 

women with SCD in the setting of non-ischemic cardiac disease had the largest 

genetic effect of rs12143842 on SCD risk. Our Mendelian randomization analyses 

had similar findings; non-ischemic individuals showed a potential causal 

association between longer QT interval and SCD, and female non-ischemic 

individuals had the strongest causal association. By contrast, both the SNP 

association and Mendelian randomization analyses did not show evidence for a 

genetic (causal) association between QT interval and SCD due to underlying 

ischemic disease in men or women. These results suggest that SCD in the setting 

of ischemic disease may not be strongly influenced by myocardial repolarization 

(QT interval), or that the effect of longer QT interval on ischemic SCD risk is 

masked by other risk factors exerting a larger effect. While the differences in sex- 

and underlying disease-stratified associations were not statistically significant, the 

directionality of our findings is nevertheless consistent with our underlying 

hypotheses; together these results provide evidence that SCD risk in non-ischemic 

individuals, particularly women with non-ischemic disease, may be influenced by 

genetically determined QT interval. 

The underlying cause(s) of the sex differences in the association between 

longer QT interval and SCD remains unknown, however, sex hormones may play 

a role. Studies have previously established that testosterone and progesterone 

shorten the QT interval, while estrogen lengthens the QT interval.79,80 While the 

underlying mechanism is unknown, our findings support the hypothesis that non- 

ischemic individuals are more susceptible to the effects of longer QT interval on 
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developing SCD. Given that women already have underlying lengthened QT due 

to sex hormones, the addition of QT lengthening genetic susceptibility (i.e. the T 

allele of the NOS1AP SNP rs12143842) may result in the higher observed risk of 

SCD in women with non-ischemic disease. 

While our study provides evidence for differences in SCD risk factors 

between both underlying disease and sex, several limitations should be noted. 

First, many of our analyses did not meet traditional statistical significance cut- 

offs, though we note that the directionality of the results is entirely consistent with 

our original hypotheses. The study is underpowered to detect interactions and 

thus, additional samples are necessary to confirm our results. Our findings in the 

subgroup analyses also require additional replication. Second, there is likely 

additional phenotypic heterogeneity within the underlying disease subgroups. The 

non-ischemic group, as noted in the supplementary methods, consists of eight 

different cardiac conditions. It is possible these different conditions, while similar 

in nature, may differ in their relationship between QT interval and SCD risk. 

Additional samples are needed to further stratify the non-ischemic group to 

investigate whether a particular condition is driving the association. Third, while 

our MDS components indicated potential population substructure within a subset 

of samples, when we included the components as covariates in our analysis, the 

effect was actually stronger. Therefore, not adjusting our main analysis for 

population substructure is likely resulting in a downward bias of the true 

association. Fourth, the NFBC1966 cohort used for our controls consisted of 

relatively young individuals (31 years old). Given the mean age of our SCD 
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cohort was 60 years old, it is likely some of our “controls” will go on to have an 

SCD event later in life, and by not excluding these individuals, we bias our 

estimates towards the null. Fifth, the Finnish population is quite homogenous and 

therefore our findings may not be able to be applicable to other populations, 

including other Europeans. Lastly, the strongest associations were seen in women 

and since women on average have lower rates of SCD, we have the least power to 

detect differences within this group. Nevertheless, our findings that female SCD 

victims with non-ischemic disease had the greatest association between longer QT 

interval and SCD risk were consistent between the various analyses performed, 

including both SNP association tests and Mendelian randomization. The 

directionality of our findings is consistent with our original hypothesis, which 

stated that the effect of longer QT interval will differ by underlying disease 

pathology and would be stronger in females than males. 

In conclusion, our study of autopsy-confirmed SCD victims provides 

consistent evidence to support the hypotheses that SCD risk factors, specifically 

lengthening of QT interval, may differ by both the underlying disease and sex.  

We found evidence of a genetic association in non-ischemic SCD victims, as well 

as a potentially causal association, between longer QT interval and SCD risk, with 

the largest genetic effect observed in female non-ischemic SCD individuals. SCD 

victims with underlying ischemic disease did not provide evidence for a genetic 

association, nor a causal association, between longer QT interval and SCD, 

regardless of sex. Our findings provide evidence that SCD risk factors, 
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particularly longer QT interval, may differ between sex and underlying disease 

etiology. 

4.5 Figures 
 

Figure 4.1 Multi-dimensional scaling (MDS) plot of Fingesture and 

NFBC1966 cohort samples 

A. Component 1 vs. Component 2 
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B. Component 3 vs. Component 4 
 

 
 
 
 
 

C. Component 5 vs. Component 6 
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D. Component 7 vs. Component 8 
 

 
 

 
E. Component 9 vs. Component 10 

 

 
 
 

The plots A-E demonstrates strong genetic overlap between the Fingesture cohort 

(red) and the NFBC1966 cohort (blue). 
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Figure 4.2 Forest plot of the association of rs12143842 with SCA risk 
 

 
 
 

The top white panel represents the analysis including all SCA victims (2,282 

cases); the middle gray panel includes ischemic-only SCA victims (1,478 cases); 

and the bottom white panel includes only non-ischemic SCA victims (750 cases). 

The dots represent the odds ratio of the rs12143842 QT prolonging allele on SCA 

risk and the lines represent the 95% confidence intervals. Both sexes (black), 

females only (red), and males only (blue). Additional information found in Table 

4.6. 
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Figure 4.3 Genetic risk score association (GRSA) estimates for QT interval 

with SCA 

 
 
 

The data points in the top plot represent the exponentiated GRSA estimates of QT 

interval on SCA (in log odds of SCA/SD of QT interval) and corresponding 95% 

confidence intervals. The top white panel represents the analysis including all 

SCA cases used in the MR analysis (1,168 cases); the middle gray panel includes 

ischemic-only SCA cases (611 cases); the bottom white panel includes only non- 

ischemic SCA cases (507 cases). Each panel includes analyses using: both sexes 
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(black), females only (red), and males only (blue). Additional information found 

in Table 4.7. 
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4.6 Tables 
Table 4.1 Genotyping Platform Sample Characteristics 

 

 
Genotyping platform 

Illumina Infinium 
Global Screening 

Array (GSA) 

Affymetrix Genome- 
wide Human SNP Array 

6.0 

Agena 
Biosciences 

MassARRAY 

 

 
AB Taqman 

 

 
Illumina Sequencing 

N, number of total cases 1168 358 574 572 825 
N, number of total controls 761 NA 422 2175 563 
N, number of independent 
cases 

 
1168 

 
315 

 
122 

 
496 

 
181 

N, number of independent 
controls 

 
761 

 
NA 

 
251 

 
2140 

 
408 

 
 
 
 
QC critieria 

Sample and SNP call 
rate (<95%); sex 
check; duplicate 
removal; cryptic 

relatedeness; genetic 
outlier removal using 

PCA 

 

Sample and SNP call rate 
(<95%); sex check; 

duplicate removal; cryptic 
relatedeness; genetic 
outlier removal using 

PCA 

 
 
 

Sample and 
SNP call rate 

(<95%) 

 
 
 
 

NA 

 

Minimum SNP read depth 
(10x); Sample and SNP call 

rate (<95%); sex check; 
duplicate removal; cryptic 

relatedeness; genetic outlier 
removal using PCA 

Sex, number of women 
among independent cases 

 
218 

 
50 

 
30 

 
91 

 
31 

 
Sex, number of women 
among independent controls 

 

 
 

407 

 

 
 

NA 

 

 
 

145 

 

 
 

1140 

 

 
 

228 
Age, mean age at SCD 
event 

 
60.1 

 
62.8 

 
59.8 

 
64.3 

 
58 

N, number of ischemic 
SCD cases 

 
610 

 
310 

 
44 

 
427 

 
87 

N, number of non-ischemic 
SCD cases 

 
557 

 
5 

 
78 

 
69 

 
94 

Number of non-matching 
alleles between overlap 
samples 

 

 
 

0 

 

 
 

0 

 

 
 

1* 

 

 
 

0 

 

 
 

1* 
*Same sample; removed from both analyses 
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Table 4.2 Fingesture study characteristics. 

 

Variable All 
(N=2,282) 

Men 
(N=1,862) 

Women 
(N=420) 

 

P* 

Mean age, year (SD) 61.23 (10.71) 60.65 (10.43) 63.84 (11.56) <0.001 
N, ischemic disease (%) 1,478 (64.8%) 1,245 (66.9%) 233 (55.5%) <0.001 
N, non-ischemic disease (%) 750 (32.8%) 579 (31.1%) 171 (40.7%) <0.001 
N, other (%) 54 (2.4%) 38 (2.0%) 16 (3.8%) 0.03 
BMI, kg/m2 (SD) 28.36 (6.61) 28.16 (6.23) 29.26 (8.10) 0.06 

Heart weight, g (SD) 493.60 (129.23) 509.60 (127.83) 421.40 (109.47) <0.001 
*P calculated for difference between men and women 

 
 

Table 4.3 Sample subgroup characteristics 
 

 
 

Subgroup 
 

N 
 
Mean Age (SD) 

 
N, Female 

NOS1AP SNP T 
Allele Frequency 

All Fingesture cases 2,282 61.23 (10.71) 420 0.264 
Female Fingesture cases 420 63.84 (11.56) 420 0.285 
Male Fingesture cases 1,862 60.65 (10.43) 0 0.259 
Ischemic Fingesture cases 1,478 64.10 (9.70) 233 0.258 
Non-ischemic Fingesture cases 750 56.22 (10.48) 171 0.276 
Fingesture cases, age 30-55 658 48.12 (5.99) 93 0.270 
Fingesture cases, age 56-85 1,604 66.70 (6.84) 322 0.262 
All NFBC1966 controls 3,561 31 (0) 1,920 0.242 
Female NFBC1966 controls 1,920 31 (0) 1,920 0.244 
Male NFBC1966 controls 1,641 31 (0) 0 0.240 
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Table 4.4 Multi-dimensional scaling (MDS) regression results 
Covariate Beta SE P 

Sex -1.61 0.105 <0.001 
MDS Component 1 -0.296 0.328 0.36 
MDS Component 2 -0.231 0.288 0.42 
MDS Component 3 0.477 0.189 0.011 
MDS Component 4 -0.265 0.292 0.37 
MDS Component 5 0.099 0.269 0.71 
MDS Component 6 0.147 0.245 0.55 
MDS Component 7 0.316 0.102 0.002 
MDS Component 8 0.009 0.210 0.97 
MDS Component 9 -0.002 0.197 0.99 

MDS Component 10 0.001 0.194 0.99 
*Components were re-scaled by mulitiplying by 100 before regression to avoid numerical errors in R 

 
Table 4.5 Multi-dimensional scaling (MDS) regression results for rs12143842 

Covariates used in model Beta SE P Variance Explained 
Sex 0.211 0.083 0.011 0.101 

Sex + MDS Components 1-10 0.227 0.084 0.007 0.108 
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Table 4.6 rs12143842 SNP association results 
 All 
 
 
 
 

Dataset 

 
 
 
 

cases/controls 

 
 
 
 

Beta 

 
 
 
 

SE 

 
 
 
 

P 

 
 

P for ischemic/ 
non-ischemic 

difference 
All cases/population controls 2282/3561 0.133 0.047 0.005  
ischemic cases/population controls 1478/3561 0.086 0.055 0.11  

0.15 non-ischemic cases/population controls 750/3561 0.203 0.067 0.003 
Other cases/population controls 54/3561 0.106 0.226 0.64  

 
 Males only 

Dataset cases/controls Beta SE P 
All cases/population controls 1862/1641 0.101 0.056 0.07 
ischemic cases/population controls 1245/1641 0.083 0.062 0.18 
non-ischemic cases/population controls 579/1641 0.160 0.080 0.045 
Other cases/population controls 38/1641 -0.172 0.290 0.55 

 

 
 

 Females only  
 

 
 

Dataset 

 

 
 

cases/controls 

 

 
 

Beta 

 

 
 

SE 

 

 
 

P 

P-value for 
interaction term 

(Sex*SNP) 
All cases/population controls 420/1920 0.211 0.087 0.015 0.14 
ischemic cases/population controls 233/1920 0.100 0.114 0.39 0.86 
non-ischemic cases/population controls 171/1920 0.314 0.126 0.013 0.14 
Other cases/population controls 16/1920 0.649 0.377 0.09 0.015 
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Table 4.7 Mendelian randomization of QT interval results 
 All 
 
 
 
 

Dataset 

 
 
 
 

cases/controls 

 

 
 

SNPs 
included 

 

 
 
GRSA Estimate [95% 

CI] 

 
 
 
 

P 

P for 
ishemic/non- 

ischemic 
difference 

All cases/population controls 1168/761 57 0.352 [-0.191, 0.895] 0.20  
ischemic cases/population controls 611/761 57 -0.124 [-0.757, 0.510] 0.70  

0.09 non-ischemic cases/population controls 507/761 57 0.671 [-0.003, 1.340] 0.05 
 

 Males only 
 

Dataset 
 

cases/controls 
SNPs 

included 
GRSA Estimate [95% 

CI] 
 

P 
All cases/population controls 950/354 57 0.126 [-0.567, 0.820] 0.72 
ischemic cases/population controls 528/354 57 -0.083 [-0.881,0.716] 0.84 
non-ischemic cases/population controls 387/354 57 0.386 [-0.445,1.220] 0.36 

 

 
 

 Females only  
 

 
 

Dataset 

 

 
 

cases/controls 

 
SNPs 

included 

 
GRSA Estimate [95% 

CI] 

 

 
 

P 

P for 
male/female 
difference 

All cases/population controls 218/407 57 0.783 [-0.112, 1.680] 0.09 0.26 
ischemic cases/population controls 83/407 57 -0.224 [-1.530, 1.080] 0.74 0.86 
non-ischemic cases/population controls 120/407 57 1.28 [0.202, 2.360] 0.020 0.20 
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