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Abstract 

Background 

Tuberculosis (TB) is a leading cause of morbidity and mortality globally. Scale-up 

of evidence-based interventions has had limited impact at the population level. 

Targeting interventions based on geographic and movement patterns may 

improve TB control. 

Objectives 

We use the spatiotemporal epidemiology of TB to identify populations at high risk 

for experiencing barriers to care and acquiring TB disease and consider the 

possible impact of geographically targeted interventions in urban sub-Saharan 

Africa.  

Methods 

We conducted a facility and community-based case-control study in Kampala, 

Uganda. We describe heterogeneity of zone-level TB notifications and assessed 

the potential impact of using programmatic data to target active case finding in 

areas with high TB burden. We then characterize geographic mobility patterns 

using latent class analysis and assess the association of mobility with TB disease 

using conditional logistic regression. Finally, we assessed the association 

between distance from home to health care facility on treatment outcomes 

among TB patients using multivariable Poisson regression. 

Results 

In our study area, 5 geographic zones constituting 22% of the population 

accounted for 62% (95% CI 47-75%) of facility-based TB notifications and 42% 
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(95% CI 35-51%) of undiagnosed TB in the community. A two class model of 

geographic mobility was largely driven by frequency (≥9 times per month [84% 

mobile vs. 2% non-mobile] and duration (≥6 hours [78% vs 17%]) of travel >3 km 

from residence; there was no association between mobility and TB case status 

(adjusted odds ratio 0.85 [95% CI 0.44-1.6]). TB patients residing ≥2 km from 

their treatment health facility were less likely to be lost to follow-up (adjusted risk 

ratio [aRR] 0.57 [95%CI 0.41-0.79]) but more likely to die prior to completing 

treatment (aRR 1.42 (95%CI 0.99-2.03)]. 

Conclusions 

Geographic targeting of active case finding interventions may be an efficient way 

to identify undiagnosed cases. Defining mobility is complex and further research 

is needed to understand mobility patterns and their association with health 

outcomes. Geographic barriers to care play a role in TB treatment outcomes. 

Spatiotemporal patterns are critical components to understanding the local 

context of TB and designing targeted interventions to reduce the TB epidemic. 
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Chapter 1: Background and Study Context 
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Overview  

Tuberculosis (TB) is a major contributor to morbidity and mortality globally. 

Despite substantial international and local investment in the scale-up of evidence-based 

interventions, global progress in reducing TB incidence has been slow (1). TB control 

interventions targeted at specific high-risk populations have shown promise; however, 

challenges remain in identifying and reaching those populations. Building off the current 

evidence of spatial heterogeneity of TB burden globally, this research aims to 

investigate individual spatiotemporal (i.e., location and movement) patterns as potential 

risk factors for TB and to develop spatially targeted interventions for improving TB 

control in high-risk populations in urban sub-Saharan Africa. 

 

Epidemiology of Tuberculosis 

There were an estimated 10 million cases of TB resulting in 1.5 million deaths in 

2018, making TB the leading cause of mortality due to a single pathogen worldwide (1). 

The burden of TB is geographically heterogeneous; among 202 countries reporting data 

to the World Health Organization (WHO), TB rates range from <5 per 100,000 

population to upwards of 500 per 100,000 population (1). The majority of new TB cases 

are found in African (24%) and South-East Asian countries (44%) (1). 

The heterogeneity of TB disease is driven by risk factors that contribute to an 

individuals’ likelihood of developing TB disease. Risk factors for TB include those that 

biologically increase an individuals’ chance of disease by hindering the immune system 

response as well as factors that increase an individuals’ likelihood of being exposed to 
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TB. Globally, HIV is one of the most important individual drivers of the TB epidemic (1), 

particularly in sub-Saharan Africa where approximately a third of TB patients are 

infected with HIV (2,3). People living with HIV may be more than 20 times as likely to 

develop active TB upon exposure compared to those without HIV (4). Treatment with 

antiretroviral therapy (ART) reduces but does not eliminate this risk (5). Areas with high 

HIV notifications are associated with increased TB burden (6), and TB death rates are 

largely driven by HIV (3). In some settings (particularly in southern and eastern Africa), 

HIV is the primary driver of TB risk, such that scale-up of ART leads to a population-

level reduction in TB (7). Other individual risk factors that can increase risk of TB 

include diabetes (8–10), smoking (8,11), alcohol use (8,12), undernutrition (13), and 

exposure to indoor air pollution (14).  

In addition to individual factors that may limit an individual’s ability to control TB 

infection, the structural context contributes to TB risk; these factors range from distal 

factors such as government expenditures to more proximal factors such as individual 

living conditions (15). Structural determinants that increase risk for TB include 

urbanization, crowding, housing conditions, and demographic and economic trends 

(16). The structural context in which an individual lives is inextricably linked to social 

determinants that increase an individual’s risk for TB (17,18). Most notably, TB has long 

been known to be a disease of poverty (19), with effects stretching from national health 

expenditures (20) to individual unemployment (6). Additionally, overcrowding (21,22), 

poor housing conditions (23), and homelessness (24) can lead to conditions for TB 

transmission. These social determinants are often associated with individual additional 
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risk factors for TB (25) that act on a biological level and must be addressed in order to 

have a population-level impact on TB burden (26).  

 

Basis of TB Control 

TB is an caused by transmission of the Mycobacterium tuberculosis bacteria 

(27). Upon infection, an individual’s immune system may control the bacteria, resulting 

in an asymptomatic infection (latent tuberculosis infection [LTBI]); LTBI may reactivate 

and develop into active disease if an individual later becomes immunocompromised 

(28). Other individuals will immediately develop active TB disease. Only individuals with 

active TB are infectious (29) and while it is likely that coughing it the primary mechanism 

for transmitting TB (27), there is growing evidence of transmission of subclinical (active 

but asymptomatic) TB (30). Many TB control activities focus on understanding and 

preventing further transmission of TB (31); other strategies focus on preventing TB 

infection from reactivation of LTBI (32,33). In order to have an impact on TB, control 

efforts must both treat the existing cases as well as prevent future transmission, an 

approach called “turning off the tap” (34). Methods to halting transmission include 

improved case detection through active case finding and ensuring timely and adequate 

treatment of existing TB cases (34). 

 

Active Case Finding 

In most settings, TB is identified through passive detection in which individuals 

with symptoms seek care from a health facility or other health provider and are 
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subsequently diagnosed with TB in a clinical setting (35). This system puts the onus on 

the patient, and frequently leads to delays in diagnosis (36) or cases going undetected; 

globally it is estimated that 30% of cases are never diagnosed and notified to public 

health authorities (1). Not only does this meant the patient does not get the care they 

need (37), but because most transmission occurs prior to initiation of treatment (38), 

delays in diagnosis contribute to increased disease spread (39). 

Active case finding is an intervention that aims to detect and diagnose individuals 

with TB by actively seeking them out rather than waiting for them to seek care on their 

own (35). Active case finding can detect cases earlier in their disease course, so they 

may be less infectious and have had less opportunity for further transmission (40,41). 

Although resource intensive, active case finding can greatly increase the number of TB 

cases being diagnosed (42) and can be cost-effective (43). In order to be effective, it is 

critical that active case finding interventions take the local epidemiology into account 

(35,44). Active case finding approaches can be targeted to high-risk groups or 

population-based (45). 

Targeted active case can efficiently identify cases in known high-risk populations, 

such as people living with HIV (46), household contacts of TB cases (47), health care 

workers (48), and people living in prisons (49). For example, active case finding among 

people seeking care at HIV clinics has found TB prevalence of 8%, far higher than 

population-based testing (50). Recent contacts of TB cases are also at increased risk 

for TB (51). The WHO recommends household contact investigations due to their high 

yield (52,53), although in high-burden settings the majority of transmission occurs 

outside of the household so the effect on transmission may be limited (54). Institutional 



 

 6 

transmission of TB is common in settings like prisons (55) and health care settings (56), 

making them ideal targets for case finding and halting transmission.  

Community or population-based active case finding tends to be lower yield 

compared to targeted interventions (50) but can reach people who do not fall into known 

high-risk categories and would otherwise be missed (57). While there is evidence that 

mass screening activities can lead to sustained reductions in TB incidence (34,58), the 

implementation of broad community-based case finding interventions has had mixed 

results (59–63). Challenges in implementation include access to the target population, 

choice of screening and diagnostic tests, and linkages to the health care system (57). 

For example, the ZAMSTAR trial conducted in Zambia and South Africa found no effect 

of its enhanced case finding intervention, but only reached 6% of the population in its 

door to door testing efforts. Lack of sensitive diagnostics may also limit the yield of 

active case finding among people with mild or asymptomatic disease (62). Active case 

finding in Brazil led to increased case detection but no improvement in treatment 

initiation or outcomes (60); other studies have shown that patients identified by active 

case finding are less likely to complete treatment than those detected by passive case 

finding (64,65), thereby limiting the impact of active case finding on TB at the population 

level.  

 

Treatment completion 

Treatment for uncomplicated pulmonary TB currently requires six months of 

combination antibiotic therapy; the treatment course can be longer for those with 

extrapulmonary TB or drug resistance (66). Treatment can quickly reduce the 
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infectiousness of a TB patient but if an adequate course of treatment is not completed 

the patient is at increased risk for treatment failure or relapse. Therefore, treatment is 

critical not just for the patient’s well-being but also to prevent ongoing transmission; 

early analyses suggested that treating infectious TB cases would be the most effective 

and cost-effective way to reduce TB transmission and mortality (67). 

However, only 85% of diagnosed TB cases completed treatment in 2017 (1). 

Using a patient cascade approach, it is estimated that less than 50% of all TB cases 

complete treatment due to health system losses (37). Barriers to treatment adherence 

include health system limitations as well as individual patient knowledge, perceptions, 

and stigma (68). In individual patients, risk factors for poor treatment outcomes include 

HIV co-infection, older age, and alcoholism (69). 

The primary strategy to improve treatment outcomes globally has been 

implementation of directly observed therapy (DOT), in which a healthcare provider or 

treatment supporter observes the patient taking their treatment (70). DOT, an important 

component of the WHO’s TB control DOTS strategy (71), has not been shown to be 

consistently effective compared to self-administered therapy (72); improvements in 

treatment adherence and outcomes are dependent on successful implementation of 

DOT (73). Other interventions to improve treatment adherence and completion include 

material incentives and enablers (74), patient counselling and education (75), and 

appointment reminder systems (76). These interventions have shown improvement in 

treatment outcomes in some settings but overall results in improving treatment 

outcomes have been mixed (77). 
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End TB strategy and progress 

In 2015, the WHO launched the End TB strategy, a follow-up to previous global 

TB control strategies that focuses on ending the TB epidemic (78). The strategy is 

founded on three pillars: 1. Integrated, patient-centered TB care and prevention; 2. Bold 

policies and supportive systems; and 3. Intensified research and innovation (79). The 

End TB strategy set ambitious targets of reducing the number of TB deaths by 95% and 

the TB incidence rate by 90% by 2035 (compared to 2015). More recently, there has 

been increased political support for the End TB strategy, including the first ever high-

level United Nations (UN) meeting on TB held in September 2018. In this meeting, all 

UN member states reaffirmed their commitment to the End TB Strategy (1). Among 

other goals, they promised to find and treat 40 million TB cases by 2020; however, 

participants felt that the meeting fell short and were skeptical of the actual commitment 

to these goals (80). Others have expressed the need to improve access to prevention 

and treatment in order to reach the End TB goals and that more action is needed (81) 

Indeed, we are not on target to achieve the End TB goals. The annual reduction 

in incidence rate over the past five years has been less than 2%, far below that required 

to reduce TB incidence by 90% by 2035 (1). While interventions including active case 

finding and treatment of active TB cases have been shown to be effective, the broad 

application of these interventions has not had the population level impact that early 

models had suggested (82). A large “delivery gap” persists for TB and other health care 

issues in developing countries such that the interventions known to work are not 

reaching the people that need it most (83). This is in part due to a broad “one-size-fits-

all” approach to implementation of TB control interventions that fails to account for local 
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needs and contexts (84). This approach does not work in the reality that there is 

substantial heterogeneity of TB; even in areas of high burden the relative rarity of TB 

makes population-based interventions challenging (85). Therefore, in order to prioritize 

the efficiency of interventions, there is increasing interest in intensive and tailored small-

scale interventions that can have a large impact (86). The most successful and effective 

interventions match implementation to the local context of the epidemic (87,88). This 

research aims to use in-depth understanding of the local context of TB in urban Uganda 

to identify approaches for improving the efficiency of TB control interventions in this 

setting. 

 

Study location and context 

This research was conducted in Uganda, a WHO high-priority country (1). 

Uganda has an estimated TB prevalence of 253 per 100,000 population and 24% of 

diagnosed TB cases in Uganda are co-infected with HIV (89). There is substantial 

heterogeneity in the geographic distribution of both TB and HIV in Uganda, although 

they are closely correlated (90) and the prevalence of both diseases is higher in urban 

areas compared to rural areas (89,91). While there have been few in-depth studies of 

the local burden of TB, one study in a region of Kampala (the capital city) estimated a 

TB incidence more than three times higher than that estimated by the prevalence 

survey (92), suggesting the burden of TB in urban settings may be underestimated. In 

additional to traditional risk factors for TB, including HIV, smoking and alcohol use, and 
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poverty and overcrowding (93), fishing communities are a key population for TB in 

Uganda due to their living conditions and limited access to health care (94).  

The Uganda National TB and Leprosy Program (NTLP) oversees the provision of 

TB diagnosis and treatment services (95). These services are provided for free at public 

health facilities although patients often initially seek care in the private sector, which can 

lead to delays in diagnosis (96). Case detection and treatment completion remain 

challenges in Uganda. The NTLP primarily relies on passive diagnosis of TB cases 

which limits their ability to detect TB; only 39% of symptomatic TB patients have ever 

sought care for their symptoms, and 46% of TB cases go completely undetected (89). 

Although the national guidelines recommend that community-based DOT be provided 

and managed by a designated subcounty health worker, this is not widely enforced or 

monitored. Qualitative research suggests that facilitators of treatment success include a 

patient-centered approach to care and the use of village health teams; barriers to 

treatment success include lack of trained staff, funding shortages, and poor 

implementation of directly observed therapy (97). 

This research was conducted as part of the STOMP-TB study in three parishes in 

central Kampala, Uganda. This is a densely populated area (approximately 50,000 

people in less than 2.5 km2), including some slums, that had an estimated prevalence of 

more than 300 TB cases per 100,000 population prior to the initiation of this study. 

Given the known geographic heterogeneity of TB burden in this area, this research aims 

to use the spatiotemporal epidemiology of TB in this population in urban Uganda to 

inform efficient interventions that could improve case detection and access to health 

care.  
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Spatial Epidemiology and TB control 

The distribution of TB burden is not random or homogenous; spatial 

heterogeneity is demonstrated by varying national (1) and sub-national TB rates (98). In 

many countries, including Uganda, urban areas have higher burden of TB compared to 

rural ones, due to increased risk of exposure, infection, and disease associated with 

urban residence (99,100). Even within high-burden urban settings, there is often 

clustering of TB (100,101), particularly in the most densely populated (21,102) or 

extremely poor areas (21,103,104). Spatial clusters are often composed of individuals 

with similar risk factors, such as migrants (105,106), those with lower income or 

socioeconomic status (104,107–110), and people who use illicit drugs (108). While 

some of this clustering may be due to local transmission (107,108,111), clustering can 

also be driven these shared risk factors in the population (18). In programmatic settings, 

the molecular data required to identify local transmission is usually unavailable; 

therefore, interventions based on spatial data must use routine data to identify and 

prioritize areas for intervention. Spatially targeted interventions in high-burden urban 

settings can increase case notifications and diagnose cases earlier in their disease 

course, thereby reducing transmission (112,113). These geographically targeted 

interventions can also have a population-level effect on TB burden while focusing 

limited resources on the population that needs them the most (114). In aim 1, I 

considered the potential impacts of geographically targeted active case finding based 

on routinely collected TB notification rates, using a subsequent active case finding 

activity to assess whether TB notifications can predict the locations of undiagnosed TB 

in the community. 
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While the majority of geographically-prioritized interventions focus on TB burden 

based on location of residence, there is substantial evidence that in high-burden 

settings, most transmission is occurring outside of the household and may not be 

attributable to close contacts (54,115–119). Therefore, it is important to consider places 

outside of the immediate vicinity of the household where individuals spend time as 

potential locations for TB transmission (120). One approach to this is the assessment of 

geographic mobility, a special application of spatial epidemiology which considers not 

only locations but also movement patterns including distance and duration of travel 

(121). Geographic mobility may increase an individual’s exposure to TB by influencing 

the frequency or duration of contact with TB cases (116,122). For example, 

transmission of TB has been documented during travel (123–125) including on public 

transportation (126). In aim 2, I investigated patterns of geographic mobility among 

people seeking care for TB symptoms; I also assessed the relationship between 

mobility and both TB disease as well as care seeking behavior.  

In addition to potential risk for transmission or disease, location may affect TB 

epidemiology if it represents barriers to quality health care (127). People living in areas 

with high poverty rates, often correlated with TB burden, frequently experience 

limitations in their access to healthcare (102). For example, individuals who face a 

difficult journey between home and health facility, whether due to physical distance, 

travel time, or transport cost and availability, may face barriers to TB diagnosis and 

treatment (102,128). This may also be reflected in the choice of facility; the total cost to 

the patient may actually be lower if care is sought at a nearby private facility compared 

to a public facility that provides TB diagnosis and treatment for free but is further away 
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(83,96). There is evidence that geographic barriers may play a role in delays and loss to 

follow-up during the TB diagnostic process (129–131); in aim 3, I took that research a 

step further and investigated whether geographic barriers play a role in TB treatment 

outcomes.  

The spatiotemporal epidemiology of TB is increasingly of both programmatic and 

research interest as spatial methods become more readily available. Primarily, spatial 

scan and autocorrelation techniques are used to identify areas at high risk for TB; these 

analyses are often limited by the use of TB notification data, which may not represent 

the true underlying burden of TB in the population (98,132–135). In aim 1, I built on this 

existing research by using community-based active case finding as an empiric measure 

of the TB in the population, thereby allowing assessment of the impact of a 

geographically targeted active case finding intervention in this setting. Additionally, while 

spatial assessments of TB risk in high-burden settings increasingly consider locations 

outside of the home as potential transmission locations, often these investigations are 

specific to the study setting and not broadly generalizable (136). In aim 2, I considered 

geographic mobility as an individual behavior characteristic, not tied to specific locations 

but representing movement that may affect an individual’s risk for TB or care seeking 

behavior. The development of a definition of this mobility may be more widely applicable 

to identifying high-risk populations other high-burden settings that could be targeted for 

early case finding interventions. Finally, identifying populations for case finding 

interventions will have limited effect on the TB epidemic if those cases are not enrolled 

in care and cured; in aim 3, I considered the effect of location as a barrier to completing 

TB treatment.  
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At the local level, understanding these patterns can help inform geographically 

focused TB control interventions that efficiently target resources to the most high-need 

populations and reduce TB burden in these settings. From a research perspective, the 

development of methods to identify these high-risk populations that can be applied to 

other similar settings is critical. This research presents a combination of detailed 

understanding of the local context with methods that may be used in other high-burden 

settings to identify populations for active case finding and treatment adherence 

interventions, with the goal of reducing transmission and “turning off the tap” on TB 

transmission (34).   
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Chapter 2: Using spatial heterogeneity of facility-based TB notification rates to 
identify areas with high burden of undiagnosed TB in Kampala, Uganda 
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Abstract  

Background: Routine tuberculosis (TB) notifications are geographically heterogeneous, 

but their utility in predicting the location of undiagnosed TB cases is unclear.  

Methods: We used routinely collected data to identify geographic areas with high TB 

notification rates and evaluated the extent to which these areas correlated with the 

location of undiagnosed cases during a subsequent community-wide active case finding 

intervention in Kampala, Uganda. We first enrolled all adults who lived within 35 

contiguous zones and were diagnosed through routine care at four local TB Diagnosis 

and Treatment Units. We calculated average monthly TB notification rates in each zone 

and defined geographic areas of “high risk” as zones that constituted the 20% of the 

population with highest notification rates. We compared the observed proportion of TB 

notifications among residents of these “high-risk” zones to the expected proportion 

using simulated estimates based on population size and random variation alone. We 

then evaluated the extent to which these “high-risk” zones identified areas with high 

burdens of undiagnosed TB during a subsequent community-based active case finding 

campaign.  

Results: We enrolled 45 adults diagnosed with TB through routine practices and who 

lived within the study area (estimated population of 49,527). Eighteen zones reported no 

TB cases in the 9-month period; among the remaining zones, monthly TB notification 

rates ranged from 3.9 to 39.4 per 100,000 population. The five zones with the highest 

notification rates constituted 62% (95%CI 47-75%) of TB cases and 22% of the 

population – significantly higher than would be expected if population size and random 

chance were the only determinants of zone-to-zone variation (48%, 95% simulation 



 

 24 

interval 40-59%). These five “high-risk” zones accounted for 42% (95%CI 34-51%) of 

the 128 cases detected during the subsequent community-based case finding 

intervention, which was significantly higher than the 22% expected by chance (p<0.001) 

but lower than the 62% of cases notified from those zones during the pre-intervention 

period (p=0.02). 

Conclusions: There is substantial heterogeneity in routine TB notification rates at the 

zone level. Using facility-based TB notification rates to prioritize high-yield areas for 

active case finding could double the yield of case finding interventions.  
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Introduction 

More than 10 million people were diagnosed with tuberculosis (TB) in 2018. This 

burden is not distributed equally; the majority of TB cases are found in 30 countries 

designated as high burden by the World Health Organization (1). Even within high-

burden countries, TB is geographically heterogeneous, often concentrated in densely-

populated, low-income areas (2). This small-scale geographic heterogeneity, as seen 

among city neighborhoods, may reflect local transmission (3–5) and is often associated 

with neighborhood characteristics such as crowding or poverty (6,7). Models have 

suggested that interventions targeted at hotspots could have a large impact on overall 

incidence (8,9). However, in order to be actionable, hotspots would need to be 

identifiable based on routine data and reasonably stable over the time between hotspot 

identification and subsequent intervention. Understanding whether these criteria are met 

could inform local-level prioritization of interventions, as is critical for TB control at the 

global level (10). 

In most high-burden settings, routine TB diagnosis depends on symptomatic 

presentation by patients, which places the burden on the patient to recognize their 

symptoms as warranting medical attention and to subsequently seek care. Such 

symptom-driven diagnosis often fails to detect TB in people with milder symptoms, 

groups with limited access to care, or areas with limited clinical resources (11,12). A 

recent prevalence survey in Uganda estimated that these current practices fail to detect 

46% of TB cases (13). Active case finding, in which resources are leveraged at the 

community level to identify TB cases and link them to care, is therefore essential to 

detect undiagnosed TB in communities (14,15) and further reduce the burden of TB 
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(16). However, active case finding is resource intensive, and studies of broad 

community-wide active case finding have had mixed results (17–21). Targeted 

approaches to active case-finding, by focusing on people at higher-than-average risk for 

TB such as recent contacts of TB cases or persons living with HIV, are therefore 

important (22,23). Geographic targeting is an approach to TB case finding that may be 

feasible but has not been widely implemented, largely because of uncertainty regarding 

whether cases identified through routine systems can predict the locations of 

undiagnosed prevalent cases in the community.  

A better understanding of local geographic heterogeneity in routinely identified 

TB cases and the correlation of that heterogeneity with the location of undiagnosed 

prevalent cases may therefore be useful in directing active case finding interventions to 

high-risk areas. We used routinely collected TB diagnosis data to identify small-scale 

geographic areas with high notification rates in Kampala, Uganda. We then evaluated 

the degree to which these areas contain a higher proportion of undiagnosed prevalent 

TB, using a subsequent community-wide active case finding intervention.  

 

Methods 

Study Overview and Population 

This was a community-based study conducted in Kisugu, Wabigalo, and Bukasa 

parishes in Kampala, Uganda (an area of 2.2 km2 with an estimated population of 

49,527) from May 2018 through December 2019. The study site consists of 37 

contiguous zones; zones are the smallest standard administrative area unit used by the 
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Uganda Bureau of Statistics, with a median size of 0.05km2 within the study area. Prior 

to initiation of the study, a door-to-door census was conducted by the study team to 

estimate the population of each zone. Zones with a population of less than 500 were 

merged with neighboring zones with similar characteristics such that all areas for 

analysis had a population of at least 500 in order to ensure that each unit of analysis 

would contain at least two TB cases assuming spatial homogeneity and an anticipated 

TB prevalence of 400 cases per 100,000 population. Two zones for which the census 

could not be completed were excluded, resulting in 33 areas for analysis. 

 

Case definition 

A TB case was defined as any individual with a positive sputum smear or 

GeneXpert result, sputum culture positive for Mycobacterium tuberculosis, or 

documented initiation of TB treatment based on clinical judgment of pulmonary 

tuberculosis. The GeneXpert (“Xpert”) system (Cepheid, Inc., Sunnyvale, CA, USA) was 

the primary test used for the study. Sputum samples were tested using Xpert MTB/RIF 

cartridges at the beginning of the study; the Xpert Ultra cartridge was implemented in 

February 2019. Sputum smears were used based on clinician request and were rare. 

Sputum culture was generally only performed for research purposes after TB diagnosis 

by other means; thus, TB diagnosis based only on culture was very uncommon. In this 

analysis, we included only individuals who were age 15 years or older and residing 

within the study area; zone of residence was self-reported and verified using landmarks 

and Google Maps. We conducted a sensitivity analysis using a case definition that only 

included microbiologically confirmed (Xpert, smear, or culture) cases. 
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Case Detection and Enrollment 

The study prospectively enrolled TB patients in two phases: a facility-based 

phase (May 2018-January 2019) and a community-based phase (February-December 

2019). In the facility-based phase, we enrolled all consenting adult TB cases who lived 

in the study area and were passively identified through routine TB diagnostic services at 

four outpatient TB Diagnosis and Treatment Units located within the study area. 

Clinicians at the facilities were responsible for making TB diagnoses based on clinical 

judgment and the results of any laboratory tests (for example, sputum smears); 

diagnosed cases were then referred for study enrollment.  

In the community-based phase, we attempted to identify all prevalent TB cases in 

the community through a combination of passive and active case finding activities. 

Passive case detection continued at the four health facilities as described above. We 

also conducted door-to-door sputum collection and testing throughout the study area; 

this included participants who were at a residence other than their own at the time of 

testing as long as their residence was within the study area. Ten venue-based 

screening events were held at churches, markets, and other community locations in 

order to reach those who were not available during door-to-door testing. Contact 

investigation was also completed for all identified cases. If residents could be contacted 

but were not available at the time of screening, follow-up home appointments were 

scheduled. The goal of the community-based phase was to obtain a sputum specimen 

from every adult residing in the study area regardless of their TB symptomology.  
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Facility-based TB Rates 

Average monthly TB notification rates (per 100,000 population) for the facility-

based study phase were calculated by zone as: (number of TB cases residing in that 

zone)/(estimated population of the zone * facility-based phase duration, in months). We 

then ranked zones according to their average monthly TB notification rates and defined 

a “high-risk” group of zones by starting with the zone reporting the highest TB 

notification rate and including additional zones with the next-highest rates until the 

“high-risk” category accounted for at least 20% of the population. The 20% cutoff was 

an a priori threshold corresponding to the likely size of any targeted case-finding 

intervention that could be undertaken in the study area; sensitivity analyses were 

conducted using cutoffs of 10%, 15%, 25%, and 30% of the population. We calculated 

the proportion of facility-based phase TB cases who resided within the high-risk group 

of zones and a corresponding 95% confidence interval, assuming a binomial 

distribution. We compared demographic, clinical, and behavioral risk factors among 

cases residing in the high-risk vs. low-risk zones using Fisher’s exact tests for 

categorical variables and non-parametric Wilcoxon rank-sum tests for continuous 

variables.  
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Estimation of expected spatial distribution of TB cases 

To estimate the number of facility-based TB cases that would be expected to 

occur in the high-risk zones based on chance alone, we conducted 1,000 stochastic 

simulations in which we assumed that the only driver of spatial heterogeneity in TB 

notification rates was random variation. For each simulation, we randomly assigned to 

each zone a number of TB notifications based on population size by drawing a value 

from a Poisson distribution with mean of (total number of TB cases in study area during 

facility-based phase * proportion of total population residing in that zone). As with the 

observed data above, we then sorted the zones by the simulated TB rate (simulated 

number TB notifications per 100,000 population per month) and identified the “high-risk” 

zones as those representing the 20% of the simulated study population with the highest 

simulated TB notification rates. These simulated high-risk zones therefore occurred 

randomly throughout the study area, varying from one simulation to the next, and did 

not correlate with the actual observed high-risk zones. For each simulation, we then 

calculated the cumulative proportion of TB notifications occurring among residents of 

these simulated high-risk zones – thereby providing an estimate of the proportion of TB 

notifications that would be expected to occur in high-risk zones if the only determinant of 

“high-risk” were random variation in the spatial distribution of TB notifications. We used 

the 2.5 and 97.5 percentiles of our simulations to define the corresponding 95% 

uncertainty range around this proportion. 
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Stability of facility-based notifications over time 

We compared cases diagnosed passively at the health facilities during the 

facility-based and community-based phases to determine whether there were changes 

in the spatial distribution of facility-diagnosed cases over time. We calculated the 

proportion of passively-diagnosed community-phase cases with 95% confidence 

intervals using a binomial distribution and compared this proportion to the proportion 

from the facility-based phase using a chi-square test. 

 

Prediction of community-based prevalence using facility-based notifications  

We used all cases from the community-based phase to represent the true 

underlying distribution of prevalent TB. For each zone, we used data from the facility-

based phase to calculate an expected number of TB cases that would be found during 

the community-based phase, by multiplying the proportion of facility-based phase TB 

cases residing in each zone by the total number of TB cases found in the community 

phase. The expected number of community-based phase TB cases in each zone was 

compared to the observed number of TB cases found using a chi-squared test. The 

observed proportion of community-based phase TB cases residing within the high-risk 

zones (as defined during the facility-based phase) was calculated, with corresponding 

95% confidence intervals using a binomial distribution, and compared to the proportion 

from the facility-based phase using a chi-square test. We also conducted a sensitivity 

analysis using only community-phase cases that were diagnosed via community-based 

active case finding (excluding those diagnosed at the health facilities during the 
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community-based phase) to represent the cases that would be expected to be found via 

a case finding intervention informed by notification data from the facility-based phase.  

 

Results 

Facility-based TB notifications 

During the facility-based phase, 45 cases were notified at the four participating 

facilities through routine care. These cases resided in 15 different zones in the study 

area; among those zones, the average monthly TB notification rate ranged from 3.9 to 

39.4 TB cases per 100,000 population per month (Figure 1, panel A). One zone in 

Bukasa parish accounted for 11 of the 45 (24%) TB cases diagnosed during this phase 

(Table 1). The five zones with the highest TB notification rates were classified as “high-

risk.” These zones accounted for 22% of the population but 62% (95%CI 47-75%) of 

routinely diagnosed TB cases during the facility-based phase.  

 

Compared to facility-based cases from other zones, facility-based TB cases from 

the high-risk zones were more likely to be female (11/28 [39%] vs. 3/17 [18%]), self-

employed (10/28 [36%] vs. 2/12 [12%]), lower income (median monthly income 340,000 

Ugandan Shillings [UGX] vs. 600,000 UGX), and HIV positive (11/38 [39%] vs 2/12 

[12%]) (Table 3). They were less likely to be able to read and write without difficulty 

(13/28 [46%] vs. 5/17 [71%]) or to have known any other TB cases (7/28 [25%] vs. 8/17 

[47%]). None of these results was statistically significant due to the small sample size. 
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Expected spatial distribution of TB cases 

Under the assumption that the only variation in spatial distribution of TB cases 

was random chance, we estimated that 47% (95% simulation interval 39-58%) of TB 

cases would come from “high-risk” zones accounting for the same fraction of the 

population (22%), a lower percentage than the observed 62%. The results of sensitivity 

analyses using cutoffs of 10%, 15%, 25%, and 30% of the population are shown in 

Table 2. 

 

Stability of facility-based notifications over time 

Among passively-diagnosed (health facility) cases during the community-based 

phase, 32% (95% CI 18-50%) were residents of the high-risk zones as defined by the 

facility-based phase, significantly lower than would be expected if facility-based 

diagnoses were constant over time (p=0.009).  

 

Prediction of community-based prevalence using facility-based notifications 

During the community-based phase, 128 people were diagnosed with TB; these 

individuals resided in 27 different zones. Among these 27 zones, the average monthly 

TB notification rate ranged from 8.3 to 120.0 TB cases per 100,000 population (Figure 

1, panel B). The five zones classified as “high-risk” based on the facility-based phase 

(22% of the study population) accounted for 42% (95% CI 34-51%) of the TB cases in 

the community-based phase,  which was significantly higher than the 22% expected by 
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chance (p<0.001) but lower than the 62% of cases notified from those zones during the 

pre-intervention period (p=0.02).  

The location of the five high risk zones is shown in Figure 2. Three of the five 

form a contiguous area in Bukasa parish. If this area were to be defined as a single 

intervention zone, this area would account for 18% of the total population, 51% (95% CI 

36-66%) of the routinely diagnosed TB cases in the facility-based phase and 40% (95% 

CI  32-49%) of TB cases diagnosed in the community-based phase.  

 

Sensitivity analyses of case definition 

When considering only microbiologically confirmed cases (32/45 facility-based 

phase cases and 125/126 community-based phase cases), six zones accounting for 

21% of the population had 59% (95% CI 41-75%) of facility-based phase TB cases; 

three of these zones were the same as in the primary analysis. We estimated that 53% 

(95% simulation interval 43-66%) of TB cases would come from “high-risk” zones 

accounting for the same fraction of the population (21%), based on random variation 

and population size alone. In the community-based phase, 40% (95%CI 32-49%) of 

cases came from these 6 “high-risk” zones. 

 

Sensitivity analyses for active case finding 

In the community-based phase, 34 (27%) cases were diagnosed at one of the 

four health facilities via routine services. In our sensitivity analysis excluding these 

cases, the five high-risk zones from the facility-based phase in the primary analysis 
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accounted for 46% (95% CI 36-56%) of cases detected via active case finding activities 

(door to door testing, venue based screening events, and contact investigation). 

Discussion 

This study in Kampala, Uganda, found evidence of spatial heterogeneity of TB 

burden within an urban, densely-populated area using routinely collected TB notification 

data, with 22% of the population accounting for 62% of cumulative TB notifications. 

Data from a subsequent community-based active case finding activity demonstrated 

that routine TB notifications can be used to identify geographic areas with a high 

underlying burden of TB; for example, the same 22% of the population accounted for 

42% of the cases diagnosed during a subsequent case-finding intervention. Geographic 

targeting could therefore double the yield of active case finding interventions in this 

setting.  

Interventions targeted at small geographical scales have not been widely 

implemented for TB, but locally focused prevention and case finding interventions have 

been shown to reduce the burden and transmission of HIV (24), malaria (25), and other 

neglected tropical diseases (26). Based on our results, targeting 22% of the population 

in an urban high-burden area could identify 42% of TB cases in that population. While 

we chose a cutoff of 20% of the population as a reasonable size to screen, targeted 

interventions even in this subpopulation would be resource intensive and logistically 

challenging. To further improve the feasibility of geographically targeted interventions, it 

may make sense to focus on a single contiguous area. In this study, three of the five 

“high-risk” zones (Figure 2) were geographically contiguous, suggesting a possible 

intervention area. However, this analysis does not account for the increased cost and 
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human resources required to conduct comprehensive interventions in targeted (often 

underserved) areas with populations that may be highly mobile; in other studies, the 

per-case-detected costs of active case finding in high TB burden areas have been 

shown to be high (27,28). Intervention-specific cost and epidemiological data would be 

needed to estimate the impact and cost-effectiveness of any particular intervention in 

this setting.  

Spatial analyses of TB have been primarily limited to using TB notification data 

(29) and are therefore unable to assess whether high notification rates are due to high 

prevalence of TB in the community or improved access to TB diagnosis (30). Numerous 

studies in high-burden countries have shown that TB notifications are limited by 

underdiagnosis and under-reporting (14,15,31–35), but it is not clear whether the 

location of residence of the reported TB cases represents that of the missed cases. Our 

analysis suggests that, in this setting, facility-based TB notifications can reasonably 

predict the location of prevalent TB cases, suggesting that geographically targeted 

active case finding using routine notifications to define the target zones could be 

effective in this area. This is a strength of small-scale geographic analysis in our 2.2 km2 

study area, as access to health care may be relatively homogeneous. In settings where 

low notification rates may represent poor access to services, notifications are likely to 

be less useful in targeting areas for further TB-related interventions.  

The population denominators on which our estimates of zone-level TB rates are 

based used census estimates collected by our research team; official population 

estimates are not available from the Uganda Bureau of Statistics at this scale, which 

may limit the ability of other regions to apply these methods. While our population 
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estimates may be imprecise, they are the first to be estimated at the zone level in this 

area, and there is no a priori reason to expect that any biases in population estimates 

would be differential from one zone to the next. Our community-based phase was 

conducted shortly after the facility-based phase, reflecting how a geographically 

targeted case finding intervention may be implemented, but the lack of stability in 

geographic distribution of facility-based notifications over time may make it difficult to 

accurately predict the location of undiagnosed cases. Our sample size was small, 

leading to imprecise estimates – but such sample sizes are likely to be representative of 

real-world interventions that might seek to target TB activities on small geographic 

scales over realistic time frames. Finally, given the urban, densely population nature of 

our study setting, these results may not be generalizable to rural settings or different 

epidemiological contexts; however, these methods could be applied in different settings 

using routinely available data. 

In conclusion, we show that there is substantial geographic heterogeneity in the 

residence of routinely diagnosed TB patients. We identified high risk zones using data 

routinely collected at health facilities and show that it may be possible to detect more 

than 40% of undiagnosed TB cases in the community by screening approximately 20% 

of the population. Comparison of the spatial distribution of passively diagnosed cases 

with those identified via community-wide active case finding suggests that 

geographically prioritized case finding may be an efficient way to detect prevalent TB in 

urban high-burden settings. 
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Tables and Figures 

Figure 2.1. Average Monthly TB Notifications, by zone (per 100,000 population)  
This figure shows the average monthly TB notification rate per 100,000 population by 

zone as estimated in (A) the facility-based phase, where TB cases were passively 

diagnosed via routine standard of care practices from May 2018 to January 2019 and 

(B) the community-based phase, where additional active case finding activities were 

implemented throughout the study area from February to December 2019. Numbers 

indicate each zone’s rank (from 1-15) based on average monthly TB notification rates 

during the facility-based phase – with no numbers assigned to zones in which no TB 

cases were diagnosed during that phase. High-risk zones (outlined in bold) were 

selected using notifications from the facility-based phase by starting with the zone 

reporting the highest TB notification rate and including additional zones with the next-

highest rates until the “high-risk” category accounted for at least 20% of the population, 

resulting in five zones. Two zones did not have population data available to inform 

denominators and were thus excluded from this analysis.                 
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Table 2.1. Observed TB Notifications by Zone and Phase of Case Detection in Urban Uganda 

   Facility-based (routine) phase Community-based (active) phase 

Parish Zone 
Observed 

TB Cases 
Population 

Monthly TB 

Notification 

Rate (per 

100,000) 

Rank 

(Fig. 

1) 

Cumulative 

Proportion of 

Population 

Cumulative 

Proportion of 

TB Cases 

Observed 

TB Cases  

Monthly TB 

Notification 

Rate (per 

100,000) 

Cumulative 

Proportion of 

TB Cases 

Bukasa Namuwongo A 11 3299 39.4 1 0.07 0.24 31 120.0 0.25 

Kisugu South B 3 906 39.1 2 0.08 0.31 1 14.1 0.25 

Bukasa Yoka 7 2793 29.6 3 0.14 0.47 13 59.4 0.36 

Wabigalo Klezia 2 950 24.9 4 0.16 0.51 1 13.4 0.37 

Bukasa Namuwongo B 5 2705 21.8 5 0.22 0.62 8 37.8 0.43 

Kisugu Kasanvu 4 2471 19.1 6 0.26 0.71 10 51.7 0.50 

Kisugu South AC 1 809 14.6 7 0.28 0.73 4 63.1 0.53 

Wabigalo Project 2 1739 13.6 8 0.32 0.78 2 14.7 0.55 

Kisugu Upper Zone 2 1742 13.6 9 0.35 0.82 4 29.3 0.58 

Wabigalo Central 2 1898 12.4 10 0.39 0.87 11 74.0 0.66 

Wabigalo Kitooro 1 1166 10.1 11 0.41 0.89 0 0.0 0.66 

Kisugu Go Down 1 1202 9.8 12 0.44 0.91 7 74.3 0.72 

Wabigalo Industrial 1 1302 9.1 13 0.46 0.93 2 19.6 0.73 

Kisugu Lakeside 2 2701 8.7 14 0.52 0.98 2 9.5 0.75 

Kisugu Mugalasi 1 3062 3.9 15 0.58 1 2 8.3 0.77 

18 zones reporting 0 cases 

in the facility-based phase 
0 20,782 0  1.0 1.0 30 18.4 1.0 
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Table 2.2. Sensitivity Analysis: Different Cutoffs for “High-Risk” TB Population 

 

Cutoff for 
percentage 
of 
population 
in “high-
risk” 
area  

Actual 
percentage  
of 
population 
in “high-
risk” area1 

Number 
of 
zones 
in the 
“high-
risk” 
area 

Observed 
percentage of 
TB cases in the 
“high-risk” area 
(95% CI) 

Expected (simulated) 
percentage of TB 
cases in the “high-
risk” area (95% CI) 

5% 7% 1 24% (14-39%) 19% (44-26%) 

10% 14% 3 47% (32-62%) 35% (28-44%) 

15% 16% 4 51% (36-66%) 38% (31-48%) 

20% 22% 5 62% (47-75%) 47% (39-58%) 

25% 27% 6 71% (56-83%) 55% (46-66%) 
1 The actual percentage is higher than the cutoff percentage because the actual “high-

risk” area consists of intact zones, added sequentially to the “high-risk” area until the 

cutoff is surpassed. 
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Figure 2.2. Potential Implications of Geographic-Targeted Screening 
High-risk zones as defined by the facility-based phase TB notification rates are 

indicated in purple. Numbers indicate each zone’s rank (from 1-15) based on 

average monthly TB notification rates during the facility-based phase – with no 

numbers assigned to zones in which no TB cases were diagnosed during that 

phase. While targeted active case finding at each selected zone may not be 

feasible for logistical and political reasons, we highlight that the easternmost 

three of the five high-risk zones are contiguous and within Bukasa parish (parish 

boundaries are designated in bold). If this area were to be defined as a priority 

for case finding activities, it would represent 18% of the total population, 23/45 

(51%) of facility-based phase TB cases, and 52/128 (40%) of the community 

phase TB cases. Two zones did not have population available and were 

excluded from this analysis.                 

 

 

Three zones combined: 
18% of the total population 
51% of the facility TB cases  
40% of the community TB cases 
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Figure 2.3. Comparison of observed TB notifications in high-risk zones to 
expected cases due to chance  
Panel A orders the 35 zones the study area according to each zone’s facility-

based phase TB notification rate (also provided in Table 1); the red line shows 

the cumulative proportion of TB cases notified who reside in “high-risk” zones (y-

axis) according to the cumulative proportion of the population in the “high-risk” 

zone (x-axis). The shaded area corresponds to the 95% simulation interval (2.5th 

and 97.5th percentiles) from 1,000 simulations that assume the observed 

population size in each zone and observed total number of TB notifications, but 

assign TB cases to zones under the assumption that spatial heterogeneity of TB 

notifications in the area is driven only by population size and random chance. 

The vertical line at 22% of the cumulative population represents the cutoff for 

“high-risk” zones used in our primary analysis and shows that 62% of facility-

based cases resided in “high-risk” zones, significantly higher than the 

corresponding simulation interval of 40-59%. Panel B compares the same 

observed facility-based phase cases from Panel A (red line) with the cumulative 

proportion of TB cases identified through active case finding during the 

community-based validation phase (blue line), with the zones ordered according 

to TB notification rates during the facility-based phase. The vertical line in this 

panel shows that 42% of community-based phase cases resided in the “high-risk” 

zones (22% of the population) identified based on notifications during the facility-

based phase.  
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Table 2.3. Demographic and clinical comparison between routinely 
diagnosed cases residing in high risk and low risk zones during the facility-
based phase 

  

Residents of 

High- Risk Zones 

(N=28) 

Residents of Low-Risk 

Zones (N=17) 

p-

value 

  N (%) N (%) 

Female 11 (39%) 3 (18%) 0.19 

Age at TB diagnosis     0.46 

15-24 years 4 (14%) 3 (18%)   

25-34 years 10 (36%) 8 (47%)   

35-44 years 11 (39%) 3 (18%)   

45-54 years 3 (11%) 3 (18%)   

Literacy     0.28 

Can read & write without difficulty 13 (46%) 12 (71%)   

Can read & write, but one or both are difficult 13 (46%) 5 (29%)   

Can neither read nor write 2 (7%) 0 (0%)   

Occupation     0.52 

Self-employed 10 (36%) 2 (12%)   

Student 1 (4%) 1 (6%)   

Salaried worker 7 (25%) 6 (35%)   

Occasional work (piece jobs) 4 (14%) 4 (24%)   

Unemployed but able to work 3 (11%) 3 (18%)   

Unemployed and unable to work 3 (11%) 1 (6%)   

Monthly income (Ug Shillings x1000), 

median (IQR) 340 (136) 600 (350, 750) 0.06 

Skipped 1+ Meals in the last month1 19 (68%)  7 (41%)  0.12 

Household Size, median (IQR) 2 (1, 3) 3 (1, 5) 0.35 

Duration of cough (weeks), median (IQR) 5 (3, 12) 8 (4, 20) 0.08 

HIV Positive 11 (39%) 2 (12%) 0.09 

Ever lived with a TB Case 6 (21%) 5 (29%) 0.37 

Ever known a TB Case 7 (25%) 8 (47%) 0.08 
1 Participant or other adults in their household reported skipping at least one meal or eating 

smaller meals than wanted because there wasn't enough money for food 
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Chapter 3: Characterization of Geographic Mobility among patients at TB 
Diagnosis and Control Units in Kampala, Uganda 
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Abstract 

Background: International and internal migration are key risk factors for 

tuberculosis (TB). Geographic mobility, including small-scale travel for work, 

education, or personal reasons, may also play a role in TB but is poorly defined. 

We aimed to describe geographic mobility patterns among patients seeking TB 

diagnostic services in Kampala, Uganda and to assess the associations of this 

mobility with TB disease and access to care.  

Methods: This was a facility-based case control study conducted at four 

outpatient health facilities providing TB diagnostic and treatment services in 

Kampala, Uganda. We enrolled confirmed TB cases age ≥15 residing in the 

study catchment area; each case was matched with 2 controls. Participants self-

reported seven characteristics of geographic mobility which were used to conduct 

a latent class analysis (LCA) and create a definition of mobility. We assessed 

association of mobility and delays in diagnosis using non-parametric Wilcoxon 

rank-sum tests for cases and controls separately. We evaluated the association 

of mobility and TB case status using conditional logistic regression. 

Results: We enrolled 101 cases and 202 matched controls. Cases were more 

likely than controls to have lived in their neighborhood for more than a year 

(p=0.02); there was no difference between cases and controls in the remaining 

mobility characteristics. The LCA model with the best fit had 2 classes; the 

“mobile” class was largely driven by travel > 3 km from residence ≥9 times per 

month (84% vs. 2%) and spending ≥6 hours away from home when traveling >3 
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km from residence (78% vs 17%). Mobility was not associated with TB case 

status (adjusted odds ratio 0.85, 95% CI 0.44, 1.6), duration of symptoms (cases: 

p=0.73; controls p=0.6) or number of healthcare visits (cases: p=0.42; controls 

p=0.03) prior to the visit of enrollment. 

Conclusions: We provide the first description of mobility characteristics in a TB 

care seeking population and developed a definition of mobility based on 

frequency and duration of travel > 3 km from home. While this definition of 

mobility was not associated with TB case status or barriers to care, more 

research is needed to understand the drivers of mobility in this population. 
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Introduction 

Tuberculosis (TB) is a leading cause of morbidity and mortality globally, 

contributing to an estimated 10.0 million cases and 1.2 million deaths in 2018 

(1,2). Mobile and migratory individuals are a key population at risk for TB 

infection and disease (3). Mobile individuals may be more likely to acquire or 

transmit TB (4,5) and often experience barriers to TB diagnosis and treatment 

(6,7). While most research on TB and migration is focused on international 

migration (3), internal mobility such as rural-urban migration (8,9), labor migration 

(10), and nomadic populations (11–13) have also been shown to be at high risk 

for TB and to experience barriers to TB care. 

Many studies on mobility have focused on HIV in defined populations that 

are known to experience high mobility. For example, studies have shown truck 

drivers to be at high risk of acquiring (14–16) and transmitting HIV (17) and to 

have limited access to health care (18). Agricultural migrant workers have also 

been shown to be at increased risk for HIV (19,20). However, mobility may exist 

in less defined scenarios, such as due to marriage, work, or education (21), and 

there is no single definition of this geographic mobility. Studies of mobility and 

HIV have considered frequency (20,22–24) and duration of travel from home 

(22), number of nights spent away from home (20,22–25), circular or temporary 

migration (26), as well as distance traveled or internal borders crossed 

(21,22,24), but no studies have applied these definitions to TB.  

We aimed to develop a broader understanding of generalized mobility 

patterns. We described mobility patterns among patients seeking care at four TB 
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diagnostic and treatment units in Kampala, Uganda. We also assess the 

relationship between mobility and access to care and TB risk. Identifying mobility 

characteristics that affect health seeking behaviors or disease transmission is 

important for providing services in this hard to reach population. 

 

Methods 

Study population  

We prospectively enrolled patients presenting for TB testing at one public 

and three private outpatient TB Diagnosis and Treatment Units in Kampala 

between May 22, 2018, and January 31, 2019. Eligibility criteria included age ≥15 

years and residence within the study area, consisting of three parishes (Kisugu, 

Wabigalo, and part of Bukasa; estimated population: 49,527, total area 2.2 km2). 

For the time period between June 25, 2018, and January 1, 2019, we also 

enrolled participants from Kisugu Health Center (the public facility) regardless of 

their residence. TB cases were defined as patients diagnosed with pulmonary TB 

by the treating clinician, regardless of microbiological test result; however, most 

cases were confirmed with sputum Xpert MTB/RIF. For each case, two controls 

matched by facility and location of residence (within study area vs. outside study 

area, for the participants from Kisugu Health Center) were enrolled. Controls 

were randomly selected from eligible individuals who presented to the same 

treating facility and were tested for pulmonary TB but had a negative Xpert 

MTB/RIF result and were not empirically treated for TB. Data collection included 

participant interviews and abstraction from clinical and laboratory records.  
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Measurement of components of geographic mobility 

We defined a priori seven components of mobility and collected 

information through patient self-report. These measures and their categorization 

are shown in Table 3.1. As a sensitivity analysis for the continuous variables 

(frequency and duration of travel further than 3km from home), in addition to 

using the median to dichotomize the variable, we also considered the 25th and 

75th quartiles as cutoffs.  

 

Classification of mobility 

We used a latent class analysis (LCA) to inform our definition of mobility. 

The construct of mobility as a latent variable is shown in Figure 3.1. We 

conducted latent class analysis with a logit link using these seven variables as 

defined above using our entire study population. To determine the number of 

classes that provided the best model fit, we considered models with 1-4 classes 

and selected the model with the lowest Bayesian Information Criterion (BIC). We 

then characterized the classifications of mobility based on the LCA marginal 

means and assigned each participant to a mobility class. 

 

As described below, the results of the LCA were very similar to a 

dichotomous definition of geographic mobility. We compared a calculated 

definition of mobility (observed, rather than latent) to the classes predicted by the 

LCA and used the calculated classes of mobility for further analyses.  
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Mobility and Access to Care 

We defined two variables to indicate barriers to care. Symptom duration 

prior to current visit was calculated as the time from the self-reported start of the 

first symptom (cough, fever, night sweats, or weight loss) to the date of the 

patient’s interview. We also elicited the number of self-reported health care visits 

during this time. Both symptom duration and number of health care visits were 

compared for mobile vs. non-mobile patients (based on the definition of mobility 

above) in cases and controls separately using non-parametric Wilcoxon rank-

sum tests. 

 

Mobility and TB case status 

Using our calculated definition of mobility, we described the characteristics 

of mobile vs. non-mobile persons, stratified by TB case status, using chi-squared 

tests. We then assessed the association of mobility with TB case status (case vs. 

control) using conditional logistic regression, adjusting for possible confounders. 

Due to the large number of potential confounders, covariates with p-value<0.05 

in the bivariate analysis were included in the final model.  

 

Results 

Study population  

We enrolled a total of 303 participants (101 TB cases and 202 matched 

controls). Cases generally had similar mobility characteristics compared to 
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controls, although they were less likely to have lived in their current 

neighborhood for less than 1 year (p=0.02) (Table 3.1). Cases were less likely to 

be female (39% vs 60%, p<0.001) or to live in a household with 3 or more people 

(38% vs. 55%, p=0.006) and were more likely to report limitation in at least one of 

the 5 EQ-5D domains (physical mobility, self-care, usual activities, 

pain/discomfort, anxiety/depression) (75% vs. 57%, p=0.002) compared to 

controls. Cases were also more likely to have been to prison (46% vs 23%, 

p<0.001) and to have been treated for TB in the past (26% vs 10%, p<0.001).   

 

Classification of mobility 

We selected the model with two latent classes as the best fit based on BIC 

(Table 3.S1 and Figure 3.S1 in Supplement). One class was characterized as 

“mobile” based on higher marginal means for the following characteristics: travel 

more than 3 km from residence ≥9 times per month (84% vs. 2%), spending ≥6 

hours away from home when traveling more than 3 km from residence (78% vs 

17%), and traveling outside Kampala at least once in the last year (81% vs 68%) 

(Figure 3.2, Table 3.S3 in Supplement). People in this mobile class were more 

likely to have lived in the current neighborhood of residence at least one year 

(13% vs. 29%). These results did not change in sensitivity analyses that varied 

the cutoffs for dichotomizing frequency and durations of travel >3 km. Applying 

these classes to our patient population, we categorized 175 (57.8%) participants 

as mobile.  
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Calculation of Mobility 

Based on the results of the LCA, we considered a definition of geographic 

mobility as traveling further than 3 km from home at least 9 times per month or 

spending at least 6 hours away from home when traveling further than 3 km. 

Using this definition classified 94% (N=284/303) of patients in the same mobility 

category as predicted by the LCA. The remaining 19 patients were categorized 

as non-mobile in the LCA but mobile based on this calculation; however, the 

probability of being in the non-mobile class from the LCA was lower among these 

19 patients (63%, 95% CI 53-80%) compared to all patients categorized as non-

mobile (90%, 95% CI 53-99%). 

 

Characteristics associated with mobility 

Among both cases and controls, mobile patients were more likely to be 

men (cases: 76% vs. 38%, p<0.001; controls: 48% vs. 26%, p=0.002) and 

employed (cases: 87% vs. 51%, p<0.001; controls: 77% vs. 57%, p=0.011); 

mobile patients were also less likely to report limitations in any of the five EQ-5D 

domains (cases: 66% vs. 90%, p=0.007; controls: 53% vs. 66%, p=0.083) (Table 

3.3). Among controls only, mobile patients were more likely to have difficulty 

reading or writing (67% vs. 42%, p=0.004) and were less likely to have known 

(24% vs. 37%, p=0.04) or lived with a TB case (16% vs. 30%, p=0.019). 
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Mobility and access to care 

While the median duration of symptoms among cases (8 weeks [IQR 4-

12]) was higher than among controls (3 weeks [IQR 2-8]), there was no 

significant difference between mobile and non-mobile patients among either 

cases or controls (Table 3.S5 in Supplement).  

The median number of symptom-related visits was 4 (IQR 2-7) among 

cases and 3 (2-6) among controls. There was no significant difference between 

mobile and non-mobile cases; among controls, the number of visits was slightly 

higher in non-mobile populations (p=0.03) (Table 3.S5 in Supplement). 

 

Mobility and TB Case Status 

Among TB cases, 61% (n=62) were classified as mobile compared to 65% 

(n=132) controls (p=0.50). Mobility was not associated with TB case status 

(adjusted odds ratio 0.85, 95% CI 0.44, 1.6). In multivariable analysis, previous 

treatment for TB (aOR 2.8, 95% CI 1.3, 5.9) or limitation in any of the EQ-5D 

domains (aOR 2.0, 95%CI 1.1, 3.8) were associated with TB case status. Female 

patients (aOR 0.40, 95% CI 0.20, 0.8) were less likely to have TB. 

 

Discussion 

Mobility may be a key factor in infectious disease epidemics, as it may be 

related to transmission of disease or represent a population that faces challenges 

in accessing health care. In this analysis of over 300 individuals presenting for 
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TB diagnosis in urban Uganda, we found that mobility was best defined by the 

frequency and number of trips further than 3 km from home residence. However, 

we did not find an association between this definition of mobility and delays in TB 

evaluation or risk of TB disease.  

 

There is no consistently applied definition of mobility, but our definition of 

mobility was similar to that used in other studies of mobility in sub-Saharan Africa 

(20,22–24). A strength of our definition is that it was determined using a data 

driven approach based on our latent class analysis. Some studies distinguish 

between internal migration and travel as components of mobility (21); we 

considered both in our LCA but ultimately only used travel in our final definition. 

Additionally, our use of a 3 km cutoff, designed to capture travel beyond the 

participants’ neighborhood, was unique in the definition of mobility. We did 

consider longer travel distance (outside of Kampala), which is similar to inter-

district travel used in other studies (21) but found that shorter distance better 

distinguished the classes of mobility. However, we did not collect information on 

nights spent away from the home, which is a common component of mobility in 

other studies (20,22–25).  

 

While we hypothesized that mobile populations would be at increased risk 

for TB disease (due to increased range of contacts) and may experience barriers 

to care due to an unstable lifestyle, we did not observe such associations in our 

analysis. The effect of mobility on disease outcomes and barriers to care is likely 
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driven by the cause and context of mobility, which we are unable to assess in this 

simplified analysis. There has been conflicting evidence as to whether mobile 

populations have more or less exposure to education campaigns and whether 

they experience greater or fewer barriers to care (27,28). Our analysis suggests 

that mobile individuals are more likely to be employed and less likely to report 

limitations on any of the EQ-5D domains, which may suggest that they are 

healthier and of higher socioeconomic status (supported by the result that mobile 

individuals were more likely to be in the highest quartile of income among both 

cases and controls) than non-mobile individuals, putting them at lower risk for 

disease and experiencing barriers to care. Other mobile populations have been 

shown to be at increased risk for TB, and interventions targeting these 

populations have been successful in providing TB diagnostic and treatment 

services for truck drivers in India (29) and nomadic populations in Nigeria (13) 

and Iran (12). Migrant-centered care, including mobile clinics, expanding service 

hours, flexible treatment options, or health passports may be appropriate 

services for this population (3).  

 

Limitations of our study primarily center on the measurement of mobility. 

Mobility questions were assessed via self-report in patient interviews and may be 

subject to misclassification or bias. Additionally, we asked a set of questions that 

may not capture every component of mobility; for example, we did not elicit 

number of nights spent away from home and reasons for travel. GPS trackers 

have been used in other studies and can capture continuous information that can 
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be used to calculate additional indicators (30,31) and may provide more reliable 

information (30,32). However, our approach using an LCA contributes to the 

development of a mobility definition that may be applied to other populations. Our 

interviews were conducted only at the time of seeking TB diagnostic services; 

participants, particularly those who were diagnosed with TB, may therefore have 

been symptomatic for substantial periods of time. A lack of mobility may thus 

reflect the effects of TB disease itself (i.e., be subject to reverse causality), which 

could counterbalance any increased TB risk that might be associated with 

increased mobility; a similar relationship has been suggested for HIV (33). 

Prospective data collection may help clarify these causal relationships between 

mobility and risk of disease. Additionally, our population of patients seeking TB 

diagnostic services at urban health facilities may not represent the general 

population and therefore our definition of mobility may not be appropriate for 

other populations.  

 

Conclusion 

We developed a data-driven definition of mobility among patients seeking 

care at health facilities in Kampala, Uganda. While we found no association 

between this definition of mobility and delays in TB diagnostic evaluations or risk 

of TB disease, mobile populations remain critical to infectious disease control. 

Additional research to better measure and classify mobility is warranted to 

understand the drivers of mobility in order to mitigate any increased risk that for 

disease that certain mobile populations may experience.  
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Tables and Figures 

Table 3.1. Components of Geographic Mobility 

Question Categorization 
Sensitivity 
Analysis 

Where were you born? 
in Kampala vs. 
outside Kampala 

n/a 

How long have you lived within 3km 
of your current residence? 

new residents: < 1 
year  

n/a 

Is there another place that you stay, 
other than the residence you have 
just described? 

yes vs. no n/a 

How often do you typically visit each 
of the following places* for any 
reason?  

Visit any taxi park at 
least 1 time per 
month vs. less than 
1 time per month 

n/a 

How often do you go somewhere 
more than about 3km from your 
residence? 

<9 times per month 
vs. ≥9 times per 
month (median) 

<2 times per 
month vs. ≥2 times 
per month (25th 
percentile) 
 
<24 times per 
month vs. ≥24 
times per month 
(75th percentile) 

When you go more than about 3km 
from your residence, how many 
hours do you usually spend >3km 
away? 

<6 hours per trip vs. 
≥6 hours per trip 
(median) 

<4 hours per trip 
vs. ≥4 hours per 
trip (25th 
percentile) 
 
<9 hours per trip 
vs. ≥9 hours per 
trip (75th 
percentile) 

How many times did you travel 
outside of Kampala in the past 12 
months, to your best recollection? 

0 trips in the last 
year vs. ≥1 trip in the 
last year 

n/a 

*Kisugu Taxi stage, Namuwongo Taxi Stage, Old Taxi Park, New Taxi par, Ssali 
Stage Wabigalo 
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Figure 3.1. Construct of Geographic Mobility as a Latent Variable 
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Table 3.2. Mobility and Sociodemographic and Risk Factor Characteristics 
by TB  

case status 

 

TB 
Case 
N=101 

Control 
N=202 p-value 

 N (%) N (%)  
Mobility Characteristics    

Born in Kampala 
15 
(15%) 26 (139%) 0.63 

Lived in neighborhood <1 year 
12 
(12%) 47 (23%) 0.02 

Have another residence 8 (8%) 19 (9%) 0.67 

Visited taxi stage ≥1 times per week 
27 
(27%) 47 (23%) 0.51 

Travel 3km ≥9 times per month (median) 
50 
(50%) 101 (50%) 0.94 

Spend ≥6 hours away when traveling 3km (median) 
52 
(52%) 107 (53%) 0.81 

Ever traveled outside Kampala in last year  
73 
(72%) 156 (77%) 0.34 

Other Sociodemographic Characteristics    

Age in years   0.17 

   15-24 
19 
(19%) 44 (22%)  

   25-34 
46 
(46%) 67 (33%)  

   35-44 
22 
(22%) 48 (24%)  

   ≥45 
14 
(14%) 43 (21%)  

Female sex 
39 
(39%) 121 (60%) <0.001 

Parish of Residence   0.75 

   Kisugu 
14 
(14%) 36 (18%)  

   Wabigalo 9 (9%) 18 (9%)  

   Bukasa (within study area) 
22 
(22%) 36 (18%)  

   Other (Kisugu health Center Only) 
56 
(54%) 112 (55%)  

Location of Birth   0.76 

   Kampala 
15 
(15%) 26 (13%)  

   Northern Uganda 
10 
(10%) 17 (8%)  

   Eastern Uganda 
25 
(25%) 41 (20%)  

   Western Uganda 
20 
(20%) 40 (20%)  

   Central Uganda (outside Kampala) 29 69 (34%)  
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(289%
) 

   Outside Uganda 2 (2%) 9 (5%)  
Literacy   0.46 

   Can read/write without difficulty 
45 
(45%) 81 (40%)  

   Difficulty or in ability in reading/writing 
56 
(55%) 121 (60%)  

Highest completed education   0.37 

   None 
43 
(43%) 72 (36%)  

   Certificate 
52 
(52%) 110 (55%)  

   Degree/further studies 6 (6%) 20 (10%)  
Occupation   0.14 

   Employed 
74 
(73%) 142 (70%)  

   Unemployed 
23 
(23%) 39 (19%)  

   Other 4 (4%) 21 (10%)  
Income quartile   0.69 

   1st  (lowest) 
30 
(30%) 61 (30%)  

   2nd   
17 
(17%) 45 (22%)  

   3rd  
32 
(32%) 57 (28%)  

   4th (highest) 
22 
(22%) 39 (19%)  

Ever Been to Prison 
46 
(46%) 47 (23%) <0.001 

HIV Positive 
34 
(34%) 61 (30%) 0.54 

Previous TB Treatment 
26 
(26%) 21 (10%) <0.001 

Ever had household TB contact 
21 
(21%) 42 (21%) 0.98 

Ever known a TB case 
24 
(24%) 57 (28%) 0.44 

Household has ≥3 people 
38 
(38%) 

110 
(555%) 0.006 

Limitations in any of the EQ-5D domains 
76 
(75%)  116 (57%) 0.002 
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Figure 3.2. Marginal Means for Latent Classes of Mobility 
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Table 3.3. Association of sociodemographic characteristics with mobility 
classification  

 TB Cases Controls 

 
Mobile 
N=62 

Non 
mobile 
N=39 

p-
value 

Mobile 
N=132 

Non 
mobile 
N=70 

p-
value 

 N (%) N (%)  N (%) N (%)  

Age in years   0.059   0.35 

   15-24 7 (11%) 12 (31%)  26 (20%) 18 (26%)  

   25-34 28 (45%) 18 (46%)  47 (36%) 20 (29%)  

   35-44 16 (26%) 6 (15%)  28 (21%) 20 (29%)  

   ≥45 11 (18%) 3 (8%)  31 (24%) 12 (17%)  

Female Sex 15 (24%) 24 (62%) <0.001 69 (52%) 52 (74%) 0.002 

Parish of Residence   0.016   0.25 

   Kisugu 11 (18%) 3 (8%)  23 (17%) 13 (19%)  

   Wabigalo 9 (15%) 0 (0%)  11 (8%) 7 (10%)  

   Bukasa (within study area) 13 (21%) 9 (23%)  19 (14%) 17 (24%)  
   Other (Kisugu health Center 
Only) 29 (47%) 27 (69%)  79 (60%) 33 (47%)  

Location of Birth   0.78   0.8 

   Kampala 9 (15%) 6 (15%)  19 (14%) 7 (10%)  

   Northern Uganda 6 (10%) 4 (10%)  13 (10%) 4 (6%)  

   Eastern Uganda 17 (27%) 8 (21%)  25 (19%) 16 (23%)  

   Western Uganda 14 (23%) 6 (15%)  26 (20%) 14 (20%)  
   Central Uganda (outside 
Kampala) 15 (24%) 14 (36%)  44 (33%) 25 (36%)  

   Outside Uganda 1 (2%) 1 (3%)  5 (4%) 4 (6%)  

Literacy   0.54   0.004 

   Can read/write without 
difficulty  26 (42%) 19 (49%)  43 (33%) 38 (54%)  
   Difficulty or in ability in 
reading/writing 36 (58%) 20 (51%)  89 (67%) 32 (46%)  
Highest completed 
education   0.2   0.018 

   None 22 (35%) 21 (54%)  39 (30%) 33 (47%)  

   Certificate 36 (58%) 16 (41%)  76 (58%) 34 (49%)  

   Degree/further studies 4 (6%) 2 (5%)  17 (13%) 3 (4%)  

Occupation   <0.001   0.011 

   Employed 54 (87%) 20 (51%)  

102 
(77%) 40 (57%)  

   Unemployed 7 (11%) 16 (41%)  19 (14%) 20 (29%)  

   Other 1 (2%) 3 (8%)  11 (8%) 10 (14%)  

Income quartile   0.19   0.1 

   1st (lowest) 15 (24%) 15 (38%)  35 (27%) 26 (37%)  

   2nd  9 (15%) 8 (21%)  26 (20%) 19 (27%)  
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   3rd  21 (34%) 11 (28%)  41 (31%) 16 (23%)  

   4th (highest) 17 (27%) 5 (13%)  30 (23%) 9 (13%)  

Ever Been to Prison 31 (50%) 15 (38%) 0.26 31 (24%) 16 (23%) 0.92 

HIV Positive 20 (32%) 14 (36%) 0.71 41 (31%) 20 (29%) 0.71 

Previous TB Treatment 16 (26%) 10 (26%) 0.99 12 (9%) 9 (13%) 0.4 

Ever had household TB 
contact 15 (24%) 6 (16%) 0.35 21 (16%) 21 (30%) 0.019 

Ever known a TB case 17 (28%) 7 (18%) 0.26 31 (24%) 26 (37%) 0.04 

Household has >=3 people 23 (37%) 15 (38%) 0.89 71 (54%) 39 (56%) 0.79 

Limitation in any of the EQ-
5D domains 41 (66%) 35 (90%) 0.007 70 (53%) 46(66%) 0.083 

 

Table 3.4. Association of mobility and sociodemographic and clinical risk 
factors with TB case status 

 

Unadjusted Odds 
Ratio 

(95% CI) 

Adjusted Odds 
Ratio 

(95%CI) 

Mobility 0.85 (0.52, 1.4) 0.85 (0.44, 1.6) 

Age in years   

   15-24 Reference Reference 

   25-34 1.6 (0.83, 3.1) 0.75 (0.31, 1.8) 

   35-44 1.1 (0.51, 2.2) 0.49 (0.17, 1.4) 

   ≥45 0.75 (0.34, 1.7) 0.39 (0.14, 1.1) 

Female Sex 0.42 (0.26, 0.69) 0.40 (0.20, 0.78) 

Parish of Residence   

   Kisugu Reference  
   Wabigalo 1.3 (0.47, 3.5)  
   Bukasa (within study area) 1.6 (0.7, 3.6)  
   Other (Kisugu health Center Only) 1.3 (0.64, 2.6)  
Location of Birth   

   Kampala Reference  
   Northern Uganda 1.0 (0.37, 2.8)  
   Eastern Uganda 1.0 (0.47, 2.4)  
   Western Uganda 0.87 (0.38, 2.0)  
   Central Uganda (outside Kampala) 0.73 (0.34, 1.6)  
   Outside Uganda 0.39 (0.07, 2.0)  
Literacy   

   Read/write no difficulty 1.2 (0.74, 2.0)  
   Can't read/write or do w/difficult Reference  
Highest completed education   

   None Reference  
   Certificate 0.79 (0.48, 1.3)  
   Degree/further studies 0.5 (0.19, 1.4)  
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Occupation   

   Employed Reference Reference 

   Unemployed 1.1 (0.63, 2.0) 1.4 (0.6, 3.0) 

   Other 0.37 (0.12, 1.1) 0.34 (0.08, 1.4) 

Income quartile   

   1st (lowest) Reference  
   2nd  0.77 (0.38, 1.6)  
   3rd  1.1 (0.62, 2.1)  
   4th (highest) 1.2 (0.58, 2.3)  
Ever Been to Prison 2.8 (1.7, 4.6) 1.7 (0.87, 3.2) 

HIV Positive 1.2 (0.70, 2.0)  
Previous TB Treatment 3.0 (1.6, 5.6) 2.8 (1.3, 5.9) 

Ever had household TB contact 1.0 (0.56, 1.8)  
Ever known a TB case 0.80 (0.46, 1.4)  
Household has >=3 people 0.50 (0.31, 0.82) 0.67 (0.37, 1.2) 

Limitation in any of the EQ-5D 
domains 2.3 (1.3, 3.8) 2.0 (1.1, 3.8) 
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Supplemental Materials 

Table 3.S1. Model selection 

Number 
of 
Latent 
Classes df AIC BIC 

    

1 7 2247.703 2273.699 

2 15 2174.194 2229.9 

3 22 2173.285 2254.987 

4 30 2179.721 2291.133 

 

 

Table 3.S2. Marginal Probabilities for Latent Classes  

Class Probability 

1 0.42 (0.24-0.62) 

2 0.58 (0.38-0.76) 

 

 

Figure 3.S1. Plot of Information Criteria Values for Models with 1-4 Latent 
Classes 
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Table 3.S3. Marginal Means for Latent Classes of Mobility (with 95% 
Confidence Intervals) 

 Class 1 Class 2 Total* 

Born in Kampala 0.12 (0.07-0.21) 
0.14 (0.1-
0.21) 

0.14 (0.1-
0.18) 

Lived in 
neighborhood < 1 
year 0.29 (0.2-0.4) 

0.13 (0.08-
0.2) 

0.2 (0.15-
0.24) 

Have another 
residence 0.09 (0.05-0.17) 

0.08 (0.05-
0.14) 

0.09 (0.06-
0.13) 

Visited taxi stage ≥1 
time per week 0.24 (0.17-0.33) 

0.25 (0.19-
0.32) 

0.24 (0.2-
0.3) 

Travel 3km ≥9 times 
per month (median) 0.02 (0-0.98) 

0.84 (0.48-
0.97) 

0.5 (0.44-
0.55) 

Spend ≥6 hours 
away when traveling 
≥3km 0.17 (0.04-0.52) 

0.78 (0.65-
0.87) 

0.52 (0.47-
0.58) 

Ever traveled outside 
Kampala in the last 
year 0.68 (0.58-0.77) 

0.81 (0.73-
0.87) 

0.76 (0.7-
0.8) 

*observed proportion 

 

 

  



 

 73 

Table 3.S4. Marginal Means for Latent Classes of Mobility Mobility (with 
95% Confidence Intervals) - sensitivity analysis (different cutoffs for 
frequency & duration of travel) 

 

 25th percentile 75th percentile 

 Class 1 Class 2 Class 1 Class 2 Total 

Born in 
Kampala 0.1 (0.05-0.22) 

0.14 
(0.1-0.2) 

0.14 
(0.09-
0.21) 

0.13 
(0.08-
0.2) 

0.14 
(0.1-
0.18) 

Lived in 
neighborhood 
< 1 year 0.31 (0.2-0.45) 

0.16 
(0.12-
0.22) 

0.25 
(0.18-
0.33) 

0.14 
(0.09-
0.21) 

0.43 
(0.38-
0.49) 

Have another 
residence 0.16 (0.08-0.29) 

0.07 
(0.04-
0.12) 

0.09 
(0.05-
0.15) 

0.09 
(0.05-
0.15) 

0.09 
(0.06-
0.13) 

Visited taxi 
stage ≥1 time 
per week 0.21 (0.11-0.35) 

0.26 
(0.2-
0.32) 

0.2 
(0.14-
0.28) 

0.29 
(0.22-
0.38) 

0.24 
(0.2-0.3) 

Travel 3km ≥9 
times per 
month 
(median) 0.18 (0.01-0.76) 1 (0-1) 0 (0-1) 

0.66 
(0.55-
0.76) 

0.5 
(0.44-
0.55) 

Spend ≥6 
hours away 
when traveling 
≥3km 0.18 (0.05-0.45) 

0.8 
(0.69-
0.88) 0 (0-1) 

0.55 
(0.45-
0.64) 

0.52 
(0.47-
0.58) 

Ever traveled 
outside 
Kampala in 
the last year 0.67 (0.53-0.78) 

0.78 
(0.72-
0.83) 

0.69 
(0.61-
0.76) 

0.82 
(0.75-
0.88) 

0.76 
(0.7-0.8) 
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Figure 3.S2. Marginal Means for Latent Classes of Mobility – sensitivity 
analysis (different cutoffs for frequency & duration of travel) 

a. 25th percentile 
b. 75th percentile 
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Table 3.S5. Duration of TB-related symptoms among mobile vs. non-mobile 
patients (median, IQR) 

 Mobile Non-mobile p-value 

 (median, IQR) (median, IQR)  

Cases 8 (3, 16) 8 (4, 12) 0.7 

Controls 3 (2, 8) 4 (2, 8)  0.6 

 

Table 3.S6. Number of symptom-related health care visits among mobile vs. 
non-mobile patients 

 Mobile Non-mobile p-value 

 (median, IQR) (median, IQR)  

Cases 4 (3, 7) 4 (2, 7) 0.42 

Controls 3 (2, 4) 3 (2, 6) 0.03 
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Chapter 4: Is Distance associated with Tuberculosis Treatment Outcomes? A 
Retrospective Cohort Study in Kampala, Uganda 
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Abstract 

Introduction: Barriers to accessing nearby health facilities may hinder initiating and 

completing tuberculosis (TB) treatment. We aimed to evaluate whether distance from 

residence to health facility chosen for treatment is associated with TB treatment 

outcomes. 

Methods: We conducted a retrospective cohort study of all patients initiating TB 

treatment at six health facilities in Kampala from 2014-2016. We investigated 

associations between distance to treating facility and unfavorable TB treatment 

outcomes (death, loss to follow up, or treatment failure) using multivariable Poisson 

regression. 

Results: Unfavorable treatment outcomes occurred in 20% (339/1,691) of TB patients. 

The adjusted relative risk (aRR) for unfavorable treatment outcomes (compared to 

treatment success) was 0.87 (95% confidence interval [CI] 0.70, 1.07) for patients living 

≥ 2 km from the facility compared to those living closer. When we separately compared 

each type of unfavorable treatment outcome to favorable outcomes, those living ≥2 km 

from the facility had increased risk of death (aRR 1.42 [95%CI 0.99, 2.03]) but 

decreased risk for loss to follow-up (aRR 0.57 [95%CI 0.41, 0.78]) than those living 

within 2 km. 

Conclusions: Distance from home residence to TB treatment facility is associated with 

increased risk of death but decreased risk of loss to follow up. Those who seek care 

further from home may have advanced disease, but once enrolled may be more likely to 

remain in treatment.  
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Introduction 

Although tuberculosis (TB) is both preventable and treatable, it is the leading 

cause of death due to a single pathogen worldwide (1). One challenge in TB control is 

maintaining adherence to a minimum of six months of treatment. The World Health 

Organization estimates that 82% of patients worldwide who start treatment for TB 

experience treatment success (defined as treatment completion or cure); this 

percentage has not improved substantively in the past decade (1). People with 

restricted access to health care may not be able to initiate and complete TB treatment 

as recommended. Risk factors for unfavorable treatment outcomes include 

demographic, clinical, and health systems characteristics (2–4). 

Geographic barriers to care, including physical distance to a health facility, may 

contribute to poor treatment outcomes. Distance from home to health facility has been 

associated with decreased access to a wide range of health services and outcomes, 

including poor HIV treatment clinic attendance (5) and antiretroviral adherence (6), 

lower likelihood of facility-based childbirth (7), and maternal (8) and child mortality (9). 

Geographic barriers to care have been linked to delays (6,10), loss-to follow up (11), 

and lack of adherence during the TB diagnostic evaluation and treatment processes 

(10). Whether these associations translate into worse treatment outcomes remains 

uncertain. As the effect of geographic barriers has primarily been noted in rural areas 

where patients likely have limited options as to where they seek care and even the 

closest health care facilities may require more than an hour of travel, we aimed to 

understand the effect of these barriers on TB treatment outcomes in the context of a 
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densely populated, urban setting where there are many TB treatment facilities available 

and patients may choose to seek care at facilities other than the ones closest to them.  

Understanding links between geographic barriers to care and TB treatment 

outcomes may help identify a population at risk for unfavorable treatment outcomes that 

could be targeted with interventions to reduce barriers to care and improve outcomes. 

We therefore sought to characterize the association of distance from home to health 

facility and TB treatment outcomes in six public and private health facilities in Makindye 

division, Kampala district, Uganda. 

 

Study population and Methods 

Study Overview and Population 

We conducted a retrospective cohort study of TB patients at one public (Kisugu 

Health Center, the primary public TB treatment facility in this area) and five private 

urban outpatient health facilities serving the population of Kisugu and Wabigalo 

parishes of Makindye division, Kampala, Uganda. Facilities were included if they 

provided TB care to an average of at least one patient per month from Kisugu or 

Wabigalo parish. At each of the selected facilities, all patients initiating TB treatment 

from January 1, 2014 to December 31, 2016 and who lived in Uganda were included. 

The National TB Control Program oversees all TB care and patients may seek 

treatment at any facility of their choosing. Treatment of adult TB is largely decentralized 

in Uganda; TB cases requiring hospitalization or advanced clinical care, such as 

pediatric TB or drug-resistant TB, may be diagnosed at these facilities in the community 
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but are referred to referral hospitals for their treatment and management and would not 

be included in this analysis. All facilities providing TB treatment in Uganda are expected 

to follow the national guidelines for TB treatment, although variation in implementation 

may exist and additional services (such as laboratory tests) may incur additional 

charges at private facilities. In urban settings, the national guidelines recommend that 

patients or their treatment supporters report to the treating facility to receive their anti-

TB drugs every two weeks during the intensive phase and every four weeks during the 

continuation phase. 

 

Data Collection  

Demographic and clinical data were abstracted retrospectively from the Facility 

TB Registers, including treatment facility, parish of residence, age at diagnosis, sex, 

HIV status, site of disease (pulmonary vs. extrapulmonary), treatment regimen, 

diagnostic test results (sputum microscopy and Xpert MTB/RIF [Cepheid, Inc., 

Sunnyvale, California, USA]), date of treatment initiation, and treatment outcome. Data 

were abstracted directly as written in the registers with guidance from health facility staff 

as needed. Study data were collected and managed using REDCap (Research 

Electronic Data Capture) (12,13) hosted at Johns Hopkins Bloomberg School of Public 

Health. 
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Measurement of Primary Exposure and Outcome 

We used reported area of residence to calculate two measures of distance from 

residence to the health facility where the patient chose to receive TB treatment. The TB 

registers do not capture patient addresses but do have information on the administrative 

area of residence, the smallest of which is the parish with a median size of 0.13 km2 

and median population of 23,041 within Kampala. The centroid of the parish of 

residence was used to estimate each patient’s location of residence based on parish 

boundaries provided by Uganda Bureau of Statistics 2014 census data. We calculated 

Euclidean distance as a straight line from parish centroid to each health facility using 

ArcGIS (ESRI, Redlands, California, USA). Additionally, we used OpenStreetMap 

(OpenStreetMap Foundation, Cambridge, United Kingdom) to define road networks and 

calculated travel distance based on the shortest available route using the Network 

Analysis tool in ArcGIS.  

Treatment outcomes following the World Health Organization (WHO) definitions 

were abstracted from the Facility TB Registers. “Unfavorable” outcomes included 

treatment failure, death, and loss to follow-up (including those with a documented 

outcome of default); patients with no documented outcome were not included in the 

analysis, although we performed a sensitivity analysis in which these patients were 

considered to have unfavorable outcomes. These were compared to favorable 

treatment outcomes of treatment completion or cure (also called treatment success). 

Patients with an outcome of “transferred out” (with no additional treatment outcome 

information from their receiving facility) were excluded. 
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Facility TB Notification Rate  

We calculated an average annual “facility TB notification rate” for each parish, 

which we defined as the annual average number of cases from the parish reported at 

the six facilities divided by the parish’s 2014 population from the Uganda Bureau of 

Statistics (14). We used Poisson regression to assess the association of Euclidean 

distance from the parish centroid to the facility where the patients received TB treatment 

on facility TB notification rates.  

 

Distance to TB treatment facility and Treatment Outcomes 

To measure the association between distance from residence to TB treatment 

facility and treatment outcome at the individual level, our primary exposure was 

Euclidean distance divided into four categories: <2 km, 2 to <5 km, 5 to <10 km, and 

≥10 km. These categories were chosen based on the following rationale: <2 km is 

walking distance and therefore distance should not represent significant barriers to care; 

2 to <5 km is still quite close but may require additional means of transport or additional 

travel time; 5 to <10 km is within the urban area but may take significant time and/or 

resources to travel; ≥10 km represents a significant investment in time and resources to 

reach the facility. For additional analyses using shortest available route travel distance, 

we used the same four distance categories. We also considered a binary exposure with 

distance dichotomized as <2 km or ≥2 km. Our outcome of interest was unfavorable 

treatment outcome, which was defined as above.  
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Patient characteristics were compared across the four exposure categories for 

Euclidean distance using chi-square tests. Risk factors of interest were defined a priori 

as characteristics known to be associated with TB treatment outcomes and that 

conceivably could lead to differences in care-seeking behavior and choice of TB 

treatment facility, and included: age, sex, HIV status, site of disease (pulmonary vs. 

extrapulmonary), lack of bacteriologic confirmation (positive sputum microscopy or 

GeneXpert), year of treatment, and treatment facility. We estimated the relative risk as a 

measure of association between unfavorable treatment outcomes and Euclidean 

distance, modeling distance both in four categories (with reference to the <2 km 

category) and as binary, using simple and multivariable Poisson regression with robust 

variance. All risk factors of interest were included in the multivariable model regardless 

of statistical significance. We analyzed associations between travel distance and 

unfavorable treatment outcomes in similar fashion. In a sub-analysis, we also analyzed 

death and loss to follow up as separate outcomes compared to favorable treatment 

outcomes.  

 

Results 

Study Population 

From 2014 to 2016, 2,251 patients initiated TB treatment at the six study 

facilities, of whom 2,146 (95.3%) had a documented residential information in the 

Facility TB register. Patients came from 181 parishes in 28 districts throughout Uganda. 

We excluded 261 (12.2%) patients whose listed parish of residence information could 
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not be matched to a parish listed in the 2014 Uganda Bureau of Statistics Census and 

an additional 16 participants from analyses of travel distance who could not be linked 

due to lack of road network connectivity. We excluded 109 (5.8%) TB patients who were 

transferred out as we were unable to determine their final treatment outcome. Among 

1,691 patients with reported outcomes, favorable treatment outcomes were seen in 

1,352 (80.0%) of TB patients; 85 (4.8%) TB patients had no documented treatment. 

 

Facility TB Notification Rate  

Average annual parish-level facility TB notification rates ranged from 0 to 327 TB 

cases per 100,000 population (Figure 1). Facility notification rates decreased by 4% 

with each additional kilometer from the parish centroid to the health facility where the 

patient received TB treatment (rate ratio 0.96 [95% CI 0.95, 0.97]).  

 

Distance to TB treatment facility and Treatment Outcomes 

The median Euclidean distance from the centroid of parish of residence to health 

facility where the patient chose to receive TB treatment was 3.7 km. While many 

patients lived <2 km from their chosen facility (34%), nearly half of patients lived 2-10 

km from their facility (49%), and 17% lived ≥ 10 km from their facility. Across the four 

distance exposure groups, there were differences in age, sex, HIV status, disease site, 

laboratory confirmation of disease, year of treatment initiation, and health facility (all 

p<0.05) (Table 1). People living ≥2km from the facility were more likely to be female 

(42% vs 34%), HIV positive (53% vs 46%), have extrapulmonary disease (17% vs. 8%), 
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and lack bacteriologic confirmation of disease (37% vs. 24%) compared to those living 

<2 km from the facility. 

In simple and multivariable Poisson regression models, no significant association 

was seen between the four categories of distance and unfavorable treatment outcomes 

(Table 2). In analysis of a binary measure of distance, the adjusted relative risk [aRR] 

for unfavorable treatment outcomes was 0.87 (95% CI 0.70, 1.07) for patients who lived 

≥2 km from the facility where they chose to receive TB treatment compared to those 

living within 2 km. Patients who were HIV positive (aRR 1.72 [95%CI 1.36, 2.17]), over 

the age of 65 years (aRR 2.53 [95%CI 1.59, 4.04]), or lacked bacteriologic confirmation 

of TB (aRR 1.57 [95%CI 1.27, 1.94]) were more likely to have unfavorable treatment 

outcomes. Patients aged less than 14 years (aRR 0.44 [95%CI 0.21, 0.90]) or receiving 

TB treatment at St. Francis Nsambya Hospital (aRR 0.60 [95%CI 0.45, 0.80], compared 

to Kisugu Health Centre) had lower risk of unfavorable treatment outcomes. 

In a sub-analysis evaluating death and loss to follow-up separately, distances of 

≥ 2 km from residence to facility chosen for TB treatment were associated with an 

increased risk of death but decreased risk of loss to follow up (Table 3). Comparing 

those living ≥2 km from the facility to those living within 2 km, the adjusted RR for death 

was 1.42 (95% CI 0.99, 2.03) and the adjusted RR for loss to follow up was 0.57 (95% 

CI 0.41, 0.78). Risk factors for death included older age (55-64 years or 65+ years), 

being HIV positive, and lacking bacteriologic confirmation of disease (Table 3).  
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Travel distance  

Travel distance using the shortest available route was strongly correlated with 

Euclidean distance (R2=0.98) but was on average 19% further than Euclidean distance 

(95% CI 18%, 20%). While 31.1% of participants were reclassified to a different 

distance category if travel distance was used instead of Euclidean distance, there were 

no substantive differences in the association between distance from facility chosen for 

TB treatment and treatment outcomes when using travel distance as the exposure 

compared to Euclidean distance (Tables in supplement).  

 

Discussion 

This analysis of 1,774 patients treated for TB across six urban clinics in the 

Makindye division of Kampala, Uganda, was suggestive of a protective association 

between longer distance from home to chosen treatment facility and composite 

unfavorable treatment outcomes. Facility notification rates for the included treatment 

facilities were high in parishes nearest to the facilities but were also high for some 

parishes far from the facilities. Nevertheless, despite the high density of TB treatment 

facilities in Kampala, 66% of patients starting TB treatment in these six facilities lived 

more than ≥2 km from the treating facilities (Table 1); compared to those who lived 

within 2 km of the facility, those living more remotely were 42% more likely to die but 

43% less likely to be lost to follow-up. 

Most patients in our study setting live within 2 km of multiple facilities and 

therefore can choose where they want to receive TB care. Patients may choose to seek 
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care at a facility further away due to stigma against TB and a desire to hide their TB 

status (15–17), convenience due to work or other travel (18), or perception of better 

care, particularly at private facilities (18). This dynamic may explain the differences seen 

when considering death versus loss to follow up as an outcome. Death during TB 

treatment in this setting (where multidrug resistance is uncommon) likely reflects a 

patient’s severity of illness when diagnosed, whereas loss to follow-up may more 

closely reflect patient motivation and health system investment. Thus, patients who 

choose to travel more than 2 km to be treated may be those who experience other 

barriers to seeking care (e.g., stigma, job-related time limitations, unease with the 

healthcare system) which can cause delays in diagnosis and treatment. Such delays 

are associated with increased disease severity (19) and higher corresponding mortality 

rates (20–22). However, once treatment is initiated, these patients who are sicker and 

willing to travel longer distances may be more motivated to adhere to treatment, thereby 

reducing losses to follow-up. These findings illustrate how important distinctions 

between these two outcomes may be obscured when considering unfavorable treatment 

outcome as a composite measure. 

Our study fills an important gap in knowledge regarding barriers to care and TB 

treatment outcomes. Prior studies have had mixed results regarding the effect of 

distance on delays in TB diagnosis and initiation of TB treatment (2–4). Our study 

suggests that, once treatment is initiated, distance is not associated with overall 

unfavorable treatment outcomes. Other studies have highlighted economic, socio-

cultural, and health system barriers to care in high-burden settings as access-related 

risk factors for poor treatment outcomes (23); the current research suggests that 
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geographic distance to treatment facility may not be a strong measure of access to 

care, particularly in the urban sub-Saharan African setting. Additionally, our finding that 

travel distance using the shortest available route does not change our results compared 

to using Euclidean distance is in contrast with other research (24). This may reflect the 

high population density and informal road network in our setting, such that travel paths 

are generally direct and the differences between Euclidean and travel distances are 

small, particularly if walking or using boda bodas (motorbike taxis) for transport. 

This analysis does have some key limitations, largely due to the limited data 

available in facility TB registers. For example, these registers do not contain data on 

precise address of residence, thus limiting our measurement of distance to that of the 

parish centroid. Nevertheless, on average, participants will live within 500 meters of the 

parish centroid, making major bias at the scale of our distance categories less likely. 

Additionally, while Euclidean distance does not directly capture the distance traveled to 

seek care, our assessment of travel distance yielded comparable results. Due to the 

limited data available in the TB registers, we are unable to assess the contribution of 

broader barriers to health care access, including economic, socio-cultural, and health 

system barriers. These factors may overlap or interact with geographic barriers. 

Additionally, we could not assess patients’ reasons for choosing particular facilities; 

further qualitative research could help to elucidate these motivations. Our study includes 

patients attending facilities in a densely crowded urban area, and our findings may not 

generalize to other settings (e.g., rural areas) where facilities are further apart and 

patients have fewer treatment options. While we do not have complete capture of any 

geographic region (e.g., people living in Kisugu and Wabigalo parishes) due to our 
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sampling frame based on health facilities, we do have full capture of every patient 

seeking care at these facilities. Our final models excluded more than 20% of TB cases 

seen at these facilities due to missing data on either residence or treatment outcome; 

while our sensitivity analysis showed no major effect of excluding those missing 

treatment outcomes, we may have selection bias if those included in our analysis are 

not representative of those missing residential information in regards to the association 

of distance on treatment outcomes. Finally, since we only considered patients enrolled 

in care, we could not assess the role of geographic barriers in limiting initial access to 

care.  

 

Conclusion 

Distance from home residence to TB treatment facility was not associated with 

overall unfavorable treatment outcomes in this urban Ugandan population, but was 

associated with increased risk of death and decreased risk of loss to follow up. These 

findings suggest that those who seek care further from home may do so at a more 

advanced disease state, but once enrolled they may be more likely to remain in 

treatment. This is important for TB control programs to consider, as they may need to 

invest in programs that decrease delays in diagnosis among those living further away 

and improving treatment adherence among those who live closer to facilities. A detailed 

understanding of the patient population and the varying experiences of that population 

is key to appropriately focusing resources to improve TB treatment outcomes. 
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Tables and Figures 

Table 4.1. Patient characteristics by distance from residence to TB health facility 

 

Total 

Euclidean Distance Categories 

p-value 
< 2km 

2 to <5 

km 

5 to 

<10 

km 

≥ 10 km 

n (%) n (%) n (%) n (%) n (%)   

Total 1,776 

(100) 

606 

(34) 

459 

(26) 

407 

(23) 

304 

(17) 

  
Age (years) 

(N=1,774)1 

          <0.001 
0-14  87 (5) 21 (3) 20 (4) 26 (6) 20 (7)   
15-24 366 (21) 142 

(23) 

95 (21) 81 (20) 48 (16)   
25-34 627 (35) 224 

(37) 

177 

(39) 

140 

(35) 

86 (29)   
35-44 398 (22) 122 

(20) 

113 

(25) 

93 (23) 70 (23)   
45-54 200 (11) 66 (11) 37 (8) 48 (12) 49 (16)   
55-64 61 (3) 21 (3) 12 (3) 11 (3) 17 (6)   
≥65 35 (2) 10 (2) 4 (1) 7 (2) 14 (5)   
Male (N=1,773) 1 1,079 (61) 401 

(66) 

286 

(62) 

219 

(54) 

173 

(57) 

0.001 
HIV Positive 

(N=1,770) 1 

887 (50) 275 

(45) 

263 

(57) 

202 

(50) 

147 

(49) 

0.002 
Pulmonary TB 

(N=1,765) 
1,513 (86) 

552 

(92) 

395 

(86) 

323 

(80) 

242 

(80) 
<0.001 

Lack of bacteriologic 

confirmation 

(N=1,776) 

569 (32) 
142 

(23) 

132 

(29) 

168 

(41) 

127 

(42) 
<0.001 

Year of treatment 

initiation (N=1,773) 1 
          0.289 

2014 622 (35) 200 

(33) 

171 

(37) 

149 

(37) 

102 

(34) 

  
2015 558 (31) 212 

(35) 

131 

(29) 

126 

(31) 

89 (30)   
2016 593 (33) 194 

(32) 

156 

(34) 

132 

(32) 

111 

(37) 

  
Facility (N=1,776)           <0.001 
Kisugu Health Center 

(public) 
441 (24) 

284 

(47) 
84 (18) 51 (13) 22 (7)   

Alive Medical Services 383 (22) 112 

(18) 

149 

(32) 

55 (14) 67 (22)   
International Hospital 

Kampala 
178 (10) 92 (15) 27 (6) 37 (9) 22 (7)   

Kibuli Muslim Hospital 184 (10) 49 (8) 28 (6) 63 (15) 44 (14)   
St. Francis Hospital - 

Nsambya 

578 (33) 60 (10) 
169 

(37) 

201 

(49) 

148 

(49) 
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Meeting Point 12 (1) 9 (2) 2 (0) 0 (0) 1 (0)   
Treatment Outcome 

(N=1,776) 
          <0.001 

Cured 919 (51) 342 

(56) 

239 

(52) 

194 

(48) 

144 

(47) 

  
Complete  433 (24) 101 

(17) 

108 

(24) 

127 

(31) 

97 (32)   
Failure 21 (1) 4 (1) 9 (2) 7 (2) 1 (0)   
Died 167 (9) 38 (6) 48 (10) 44 (11) 37 (12)   
Lost to Follow Up 

(including Default) 

151 (9) 88 (15) 29 (6) 22 (5) 12 (4)  
Unknown/Missing 85 (5) 33 (5) 26 (6) 13 (3) 13 (4)   
1 Ns below the total of 1,776 indicate data missing for that particular variable 
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Table 4.2. Crude and Adjusted Relative Risks for unfavorable TB treatment 
outcomes (death, treatment failure, or loss to follow-up) 

  

Crude RR 

(95% CI) 

Adjusted RR 

(95% CI) 

Euclidean Distance     

<2 km Reference Reference 

2 to <5 km 0.88 (0.69, 1.12) 0.91 (0.70, 1.17) 

5 to <10 km 0.82 (0.63, 1.06) 0.88 (0.68, 1.15) 

>10 km 0.76 (0.56, 1.02) 0.77 (0.57, 1.04) 

Age at diagnosis     

0-14 years 0.42 (0.20, 0.87) 0.44 (0.21, 0.90) 

15-24 years 0.63 (0.46, 0.87) 0.79 (0.57, 1.08) 

25-34 years Reference Reference 

35-44 years 1.03 (0.80, 1.32) 0.97 (0.75, 1.25) 

45-54 years 1.35 (1.02, 1.77) 1.18 (0.89, 1.57) 

55-64 years 1.25 (0.79, 1.98) 1.23 (0.79, 1.92) 

>65 years 1.96 (1.25, 3.06) 2.53 (1.59, 4.04) 

Male sex 1.12 (0.92, 1.36) 1.08 (0.88, 1.32) 

HIV Positive 1.83 (1.50, 2.24) 1.72 (1.36, 2.17) 

Pulmonary TB 0.85 (0.66, 1.10) 1.06 (0.80, 1.40) 

Lack of bacteriologic 

confirmation 1.47 (1.22, 1.78) 1.57 (1.27, 1.94) 

Treatment Start year     

2014 Reference Reference 

2015 0.89 (0.71, 1.12) 0.88 (0.70, 1.11) 

2016 0.86 (0.69, 1.09) 0.89 (0.71, 1.11) 

Facility     

Kisugu Health Center 

(public) Reference Reference 

Alive Medical Services 1.19 (0.93, 1.53) 0.97 (0.74, 1.27) 
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International Hospital 

Kampala 0.99 (0.70, 1.40) 0.84 (0.59, 1.20) 

Kibuli Muslim Hospital 1.01 (0.72, 1.40) 0.97 (0.70, 1.35) 

St. Francis Hospital - 

Nsambya 0.63 (0.48, 0.83) 0.60 (0.45, 0.80) 

Meeting Point 0.76 (0.21, 2.72) 0.55 (0.15, 2.03) 
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Table 4.3. Adjusted relative risks for Death and Loss to Follow up during TB 
treatment 

  Death Lost to Follow Up 

  

Adjusted RR 

(95% CI) 

Adjusted RR 

(95% CI) 

Euclidean Distance     

    <2 km Reference Reference 

    2 to <5 km 1.48 (0.99, 2.22) 0.59 (0.38, 0.89) 

    5 to <10 km 1.38 (0.90, 2.12) 0.61 (0.39, 0.95) 

    >10 km 1.35 (0.86, 2.10) 0.45 (0.25, 0.81) 

Age at diagnosis     

    0-14 years 0.59 (0.24, 1.46) 0.28 (0.07, 1.12) 

    15-24 years 0.59 (0.30, 1.14) 0.80 (0.53, 1.22) 

    25-34 years Reference Reference 

    35-44 years 1.38 (0.94, 2.02) 0.65 (0.42, 0.99) 

    45-54 years 1.68 (1.11, 2.54) 0.64 (0.36, 1.12) 

    55-64 years 2.08 (1.23, 3.51) 0.51 (0.16, 1.58) 

    >65 years 6.44 (3.69, 11.27) 0.77 (0.20, 3.02) 

Male sex 0.98 (0.74, 1.31) 1.31 (0.94, 1.83) 

HIV Positive 3.28 (2.23, 4.81) 1.05 (0.73, 1.51) 

Pulmonary TB 0.93 (0.66, 1.30) 1.50 (0.78, 2.86) 

Lack of bacteriological 

confirmation 2.14 (1.59, 2.89) 1.45 (0.99, 2.13) 

Treatment Start year     

    2014 Reference Reference 

    2015 0.78 (0.55, 1.10) 0.88 (0.61, 1.26) 

    2016 0.81 (0.59, 1.13) 0.88 (0.61, 1.27) 

Facility     

    Kisugu Health Center 

(public) Reference Reference 
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    Alive Medical Services 1.02 (0.63, 1.66) 1.10 (0.74, 1.62) 

    International Hospital 

Kampala 1.41 (0.83, 2.39) 0.60 (0.34, 1.08) 

    Kibuli Muslim Hospital 1.48 (0.90, 2.44) 0.83 (0.49, 1.41) 

    St. Francis Hospital - 

Nsambya 0.92 (0.59, 1.45) 0.25 (0.14, 0.46) 

    Meeting Point 1.72 (0.51, 5.77) excluded 

Note: Meeting Point reported no patients lost to follow up 
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Figure 4.1. TB Facility Notification by Parish in Kampala District1 and surrounding 
areas for six Facilities serving Kisugu and Wabigalo Parishes2, 2014-2016  

a. Annual Facility Notification Rate per 100,000 population (based on 2014 

census) 

b. Total Count of Facility Notified TB Cases 

 

 

1 Parishes further outside Kampala not displayed. Dark line indicates Kampala District 
boundary 
2 Facility Notification Rates and Total Number of TB Cases Reported are from six study 
facilities providing TB treatment and do not represent all TB cases diagnosed at all 
facilities within each parish 
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Figure 4.2. Percentage of TB Cases with unfavorable treatment outcomes by 
Parish in Kampala District and surrounding areas, 2014-2016  

 

Note: Parishes further outside Kampala not displayed. Dark line indicates Kampala 

District boundary.  
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Supplemental Material 

Table 4.S1 Adjusted relative risks for unfavorable TB treatment outcomes using 
Euclidean and travel distance 

  Euclidean Distance Travel Distance 

  Adjusted RR (95% CI) Adjusted RR (95% CI) 

Distance     

<2 km Reference Reference 

2 to <5 km 0.91 (0.70, 1.17) 0.94 (0.70, 1.26) 

5 to <10 km 0.88 (0.68, 1.15) 0.96 (0.71, 1.31) 

>10 km 0.77 (0.57, 1.04) 0.79 (0.56, 1.10) 

Age at diagnosis     

0-14 years 0.44 (0.21, 0.90) 0.44 (0.21, 0.91) 

15-24 years 0.79 (0.57, 1.08) 0.79 (0.57, 1.09) 

25-34 years Reference Reference 

35-44 years 0.97 (0.75, 1.25) 0.97 (0.75, 1.25) 

45-54 years 1.18 (0.89, 1.57) 1.19 (0.90, 1.59) 

55-64 years 1.23 (0.79, 1.92) 1.25 (0.80, 1.95) 

>65 years 2.53 (1.59, 4.04) 2.54 (1.59, 4.04) 

Male 1.08 (0.88, 1.32) 1.09 (0.89, 1.33) 

HIV Positive 1.72 (1.36, 2.17) 1.71 (1.35, 2.16) 

Pulmonary TB 1.06 (0.80, 1.40) 1.05 (0.79, 1.39) 

Lack of bacteriological 

confirmation 1.57 (1.27, 1.94) 1.58 (1.28, 1.95) 

Treatment Start year     

2014 Reference Reference 

2015 0.88 (0.70, 1.11) 0.89 (0.71, 1.12) 

2016 0.89 (0.71, 1.11) 0.89 (0.71, 1.12) 

Facility     

Kisugu Health Center (public) Reference Reference 

Alive Medical Services 0.97 (0.74, 1.27) 0.94 (0.72, 1.23) 
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International Hospital Kampala 0.84 (0.59, 1.20) 0.84 (0.59, 1.20) 

Kibuli Muslim Hospital 0.97 (0.70, 1.35) 0.93 (0.67, 1.30) 

St. Francis Hospital - Nsambya 0.60 (0.45, 0.80) 0.57 (0.43, 0.75) 

Meeting Point 0.55 (0.15, 2.03) 0.54 (0.14, 2.05) 
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Table 4.S2. Sensitivity Analysis comparing adjusted relative risks for unfavorable 
TB treatment outcomes including and excluding patients with no documented 
outcomes 

  Unfavorable Outcomes 

Unfavorable + Unknown 

Outcomes 

  Adjusted RR (95% CI) Adjusted RR (95% CI) 

Euclidean Distance     

<2 km Reference Reference 

2 to<5 km 0.91 (0.70, 1.17) 0.94 (0.78, 1.14) 

5 to <10 km 0.88 (0.68, 1.15) 0.90 (0.73, 1.10) 

>10 km 0.77 (0.57, 1.04) 0.90 (0.72, 1.12) 

Age at diagnosis     

0-14 years 0.44 (0.21, 0.90) 0.69 (0.45, 1.05) 

15-24 years 0.79 (0.57, 1.08) 0.90 (0.72, 1.13) 

25-34 years Reference Reference 

35-44 years 0.97 (0.75, 1.25) 0.96 (0.80, 1.17) 

45-54 years 1.18 (0.89, 1.57) 1.06 (0.85, 1.33) 

55-64 years 1.23 (0.79, 1.92) 1.11 (0.78, 1.59) 

>65 years 2.53 (1.59, 4.04) 1.93 (1.31, 2.83) 

Male 1.08 (0.88, 1.32) 1.09 (0.94, 1.26) 

HIV Positive 1.72 (1.36, 2.17) 1.40 (1.18, 1.66) 

Pulmonary TB 1.06 (0.80, 1.40) 1.01 (0.82, 1.24) 

Lack of bacteriological 

confirmation 1.57 (1.27, 1.94) 1.56 (1.33, 1.84) 

Treatment Start year     

2014 Reference Reference 

2015 0.88 (0.70, 1.11) 0.94 (0.78, 1.12) 

2016 0.89 (0.71, 1.11) 1.04 (0.88, 1.23) 

Facility     

Kisugu Health Center Reference Reference 
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Alive Medical Services 0.97 (0.74, 1.27) 1.09 (0.89, 1.33) 

International Hospital 0.84 (0.59, 1.20) 1.15 (0.91, 1.45) 

Kibuli Muslim Hospital 0.97 (0.70, 1.35) 0.96 (0.75, 1.24) 

St. Francis Hospital - 

Nsambya 0.60 (0.45, 0.80) 0.51 (0.40, 0.65) 

Meeting Point 0.55 (0.15, 2.03) 0.45 (0.12, 1.61) 

 

  



 

 104 

Table 4.S3. Adjusted relative risks for unfavorable TB treatment outcomes 
by TB Treatment Facility 

  

Kisugu 
Health 
Center 

Alive 
Medical 
Service
s 

Internation
al Hospital 
Kampala 

Kibuli 
Muslim 
Hospital 

St. Francis 
Hospital - 
Nsambya 

  

Adjusted 
RR (95% 
CI) 

Adjuste
d RR 
(95% CI) 

Adjusted 
RR (95% 
CI) 

Adjusted 
RR (95% 
CI) 

Adjusted 
RR (95% 
CI) 

Euclidean 
Distance           

<2 km Reference 
Referenc
e Reference Reference Reference 

≥2 km 
0.69 (0.47, 
1.02) 

0.95 
(0.65, 
1.38) 

1.00 (0.56, 
1.8) 

1.21 (0.63, 
2.31) 

0.86 (0.47, 
1.60) 

Age at 
diagnosis           

0-14 years 0 (0, 0) 

0.24 
(0.04, 
1.62) 

0.54 (0.13, 
2.16) 

1.36 (0.27, 
6.82) 

0.51 (0.16, 
1.58) 

15-24 
years 

0.70 (0.40, 
1.21) 

1.09 
(0.63, 
1.88) 

0.91 (0.29, 
2.85) 

0.54 (0.16, 
1.81) 

0.68 (0.30, 
1.51) 

25-34 
years Reference 

Referenc
e Reference Reference Reference 

35-44 
years 

0.89 (0.56, 
1.42) 

0.89 
(0.56, 
1.41) 

0.78 (0.34, 
1.78) 

1.24 (0.60, 
2.56) 

1.03 (0.59, 
1.78) 

45-54 
years 

0.83 (0.38, 
1.80) 

1.17 
(0.73, 
1.86) 

1.06 (0.47, 
2.39) 

0.87 (0.42, 
1.80) 

1.56 (0.86, 
2.85) 

55-64 
years 

1.24 (0.48, 
3.19) 0 (0, 0) 0 (0, 0) 

1.33 (0.67, 
2.66) 

2 (0.94, 
4.25) 

>65 years 
2.16 (0.96, 
4.87) 0 (0, 0) 

4.07 (0.62, 
26.54) 

0.63 (0.08, 
5.35) 

6.16 (2.99, 
12.71) 

Male 
1.41 (0.92, 
2.17) 

0.89 
(0.61, 
1.29) 

0.88 (0.48, 
1.62) 

1.07 (0.61, 
1.85) 

1.15 (0.76, 
1.74) 

HIV Positive 
1.44 (0.96, 
2.16) 

1.12 
(0.66, 
1.90) 

1.92 (0.87, 
4.27) 

2.07 (1.14, 
3.76) 

2.43 (1.55, 
3.81) 

Pulmonary 
TB 

2.41 (0.36, 
16.22) 

0.86 
(0.50, 
1.50) 

2.33 (0.92, 
5.95) 

1.03 (0.60, 
1.77) 

0.82 (0.49, 
1.38) 
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No 
bacteriologi
cal 
confirmation 

1.28 (0.76, 
2.15) 

1.2 
(0.78, 
1.83) 

2.37 (1.12, 
4.99) 

4.04 (2.05, 
7.97) 

1.36 (0.82, 
2.24) 

Treatment 
Start year           

2014 Reference 
Referenc
e Reference Reference Reference 

2015 
1.01 (0.65, 
1.57) 

0.79 
(0.49, 
1.26) 

0.75 (0.38, 
1.49) 

0.54 (0.27, 
1.07) 

1.22 (0.75, 
1.96) 

2016 
1.11 (0.71, 
1.73) 

1.08 
(0.72, 
1.61) 

0.68 (0.23, 
2.00) 

0.63 (0.36, 
1.10) 

0.7 (0.42, 
1.16) 
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Chapter 5: Conclusions and Public Health Significance 
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Summary of Key Findings 

In order to achieve the End TB vision of a world free of TB (1), there need 

to be substantial improvements to the efficiency and implementation of current 

TB control interventions. This research used the application of spatiotemporal 

epidemiology in the context of local TB epidemics to investigate approaches to 

improving TB control methods in urban, high-burden settings.  

In aim 1, we used routinely collected data and small-scale administrative 

units to assess the potential yield of targeted, community based active case 

finding interventions. We demonstrated that even within a very small area (2.2 

km2) where access to care is expected to be homogeneous, there is substantial 

heterogeneity in the spatial distribution of TB cases presenting at the local health 

facilities such that more than 60% of cases come from areas accounting for only 

20% of the population. Additionally, through a subsequent active case finding 

activity, we showed that the facility-based TB notifications reasonably predict the 

location of undiagnosed TB in the community; more than 40% of cases found 

during our community-based case finding intervention came from those same 

areas accounting for 20% of the population. Therefore, in this setting it may be 

feasible to detect nearly half of undiagnosed TB cases in the community by 

targeted case finding interventions to only 20% of the population. Additionally, 

the application of these methods may be useful in other urban, high-burden 

settings.  

In aim 2, we investigated geographic mobility, which complements aim 1 

by considering the potential TB risk that occurs way from one’s home residence. 
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Using six a priori defined questions regarding routine movement beyond the 

study boundaries, we developed a definition of geographic mobility using latent 

class analysis. We found that frequency and duration of travel more than 3 km 

from home were the driving components of this case definition. However, we 

found no association between this definition of mobility and TB case status 

(compared to TB negative controls) (adjusted odds ratio 0.85 [95% CI 0.44-1.6]) 

or between mobility and delays in TB diagnosis among TB cases (p>0.05). This 

is one of the first attempts to characterize mobility in the context of TB; further 

research should address other potential measures and causes of mobility in 

order to develop a better understanding of mobility that can be used more 

broadly to identify potential risk groups for TB or other diseases. 

In aim 3, we used a broader study population to assess the association of 

distance between home residence and TB treatment facility and unfavorable TB 

treatment outcomes. We found that patients residing further from the facility 

where they received their care were more likely to die before completing 

treatment (adjusted risk ratio [aRR] 1.42 (95% CI 0.99-2.03) but less likely to be 

lost to follow-up (aRR 0.57 [95% CI 0.41-0.79]). This suggests that patients who 

live further away from the health facility may delay seeking care, and thus have 

more advanced disease leading to increased mortality, but that once patients 

from further away are engaged in care they are more invested and less likely to 

be lost to follow-up.  

 These aims together demonstrate that spatiotemporal epidemiology, 

including location of residence and movement behavior occurring outside that 
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residence, is an important consideration for TB control programs. In aim 1, we 

show that using small-scale administrative area of residence to target active case 

finding may efficiently identify undiagnosed cases in the community. However, 

the impact may be limited if those case finding activities fail to capture the mobile 

individuals identified in aim 2, who may not be home during door-to-door testing. 

Similarly, if those cases identified reside too far from a health facility to receive 

timely treatment and are at increased risk of mortality as shown in aim 3, the 

effect of the case finding on treatment outcomes may be minimal. Incorporating 

spatiotemporal epidemiology is an important consideration in the development of 

targeted TB interventions.  

 

Public health implications 

This research was designed to not only to advance understanding of 

geography and movement as it relates to TB, but also to directly inform TB 

control in this setting in urban Uganda and to inform approaches to 

understanding local spatiotemporal epidemiology of TB in other settings. For 

example, from our results in aim 1, we can recommend that this study area 

implement case finding activities in areas with high TB facility-based notification 

rates; we can also recommend that other areas consider a similar approach to 

identifying high-risk locations based on their own data. We can also suggest that 

our study facilities consider TB treatment adherence interventions that focus on 

reducing loss to follow-up among people living close to the facility, who may be 

less invested in their care, based on the results from aim 3; facilities in other 
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settings could replicate our analysis using their own treatment data to see if their 

patient population is at similar risk for loss to follow-up.  

A major strength of this research is its hyper-local context. While there is 

increasing interest in applying spatial approaches to TB research and control 

programs, this is generally done at the national or district level (2). Research at 

this geographic level can give broad context to the epidemic but cannot inform 

locally appropriate interventions. Therefore, there is a need for high-quality 

routinely collected spatiotemporal data at the local level. This includes improved 

quality of GIS data as well as improved timeliness and accessibility in order to 

detect areas with high burden or limited healthcare access in an actionable 

timeframe (3). Supplementing health system data with additional data sources, 

such as Open Street Map (4), can support more complex analyses of the 

relationship between geography and health (5,6). Given the sensitive nature of 

spatiotemporal data, as more data becomes available considerations regarding 

maintaining confidentiality will become increasingly important (7–9). 

We present one of the first attempts to investigate geographic mobility at 

the individual level among people at risk for TB; previous research has focused 

on using population-level mobility in transmission models for TB and other 

infectious diseases (10–13). The importance of this mobility in relation to 

infectious disease transmission is increasingly recognized; for example, Uganda 

is currently implementing control measures for Ebola due to the outbreak in 

bordering Democratic Republic of Congo (14) and is applying new methods to 

collecting data on population movement in order to plan those efforts. As better 
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data collection tools and measures of mobility are developed, these should be 

applied across disease programs to supplement spatial analyses based on 

residence, particularly in scenarios where transmission is likely to occur outside 

the home.   

 

Limitations 

We posit the role of location in TB risk as being a combination of local 

transmission and local barriers to care. In this research, we are not able to 

distinguish the causes for associations seen between location and TB. For 

example, in Aim 1 we identified areas with high TB notification rates and 

undiagnosed TB, but we could not determine whether there in ongoing 

transmission or if these cases represent recent reactivation or undiagnosed 

active TB. However, by framing our approach from the perspective of 

implementing active case finding interventions, we were able to show potential 

impact of such interventions without explicitly understand the cause of the local 

epidemic. Molecular sequencing technologies are rarely used in this type of 

setting but could help understand transmission (15). 

Fixing the “delivery gap” (16) in TB between effective interventions and the 

highest-need is only one piece of the solution to the TB epidemic. Models 

suggest that in high-burden settings, even broad scale-up of a single intervention 

will not be sufficient to reach the End TB targets; in some settings, even scale-up 

of all the major interventions would not achieve these goals (17). While, 
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improvement in the implementation of established TB interventions (18) will 

contribute to these goals, this needs to be done in parallel with additional 

research on preventive vaccines, therapeutic solutions to latent TB infection, 

rapid point of care diagnostics, and shorter drug regimens (18) in order to end 

the TB epidemic. 

 

Conclusions 

Despite substantial investments and efforts, the annual reduction in TB 

incidence is too slow to meet the End TB targets (18). Interventions targeted at 

established high-risk populations have shown effectiveness and efficiency; the 

incorporation of spatiotemporal risk factors in defining and identifying high-risk 

populations may improve TB control efforts. Using detailed local epidemiology, 

we describe how the location of residence as well as movement outside that 

residence play a role in TB risk and access to care in an urban, high-burden 

setting. Further understanding of these risk factors in this setting as well as 

others is critical to targeting TB control interventions to high-risk populations that 

are being missed by current practices and to reduce the global incidence of TB 

as per the vision of the End TB goals.  
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Johns Hopkins University (2016-2020) 
Doctorate of Philosophy in Infectious Disease Epidemiology, Bloomberg School of Public 
Health (expected) 
 
University of California, Berkeley (2007-2009) 
Master of Public Health in Infectious Diseases, School of Public Health  
Certificate in International Health  
 
Boston University (2003-2007) 
Bachelor of Science in Human Physiology, Sargent College of Health and Rehabilitation 
Sciences  
Bachelor of the Arts in Biology, College of Arts and Sciences  
 

Work Experience 

 
TB Research Assistant (October 2016-March 2020) 
Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, 
Baltimore, MD 
Provided logistical and technical support to the STOMP-TB Study. Responsibilities 
included: supporting application for ethical reviews, participation in team coordination 
meetings, monitoring field work, conducting site visits, and supporting data 
management.  
 
Center for Health and Human Rights Research Assistant (September 2018-October 
2018) 
Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, 
Baltimore, MD 
Abstracted human rights data from published reports for data triangulation project of the 
Rohingya refugee crisis 
 
Senior TB/HIV Advisor (February 2016-August 2016) 
U.S. Centers for Disease Control and Prevention, Windhoek, Namibia 
Served as the primary technical expert and point-of-contact for CDC Namibia on TB/HIV 
operational research and monitoring & evaluation activities. Provided technical 
assistance to Namibia Ministry of Health and Social Services (MoHSS) counterparts 
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regarding evaluation and research methodology, data management and analysis 
(including Epi Info and/or Stata), report writing and development of scientific products. 
 
ASPPH/CDC Allan Rosenfield Global Strategic Information Fellow (September 
2013-September 2015) 
U.S. Centers for Disease Control and Prevention, Windhoek, Namibia 
Managed two operational research projects assessing the integration of TB and HIV 
clinical systems, in collaboration with the Namibia Ministry of Health and Social Services 
(MoHSS) and other partners. Responsibilities included finalizing scientific protocols, staff 
hiring and training, field supervision, data quality control, and data analysis and 
dissemination. 

 
Surveillance and Informatics Coordinator (October 2010-August 2013) 
California Department of Public Health, Tuberculosis Control Branch, Richmond, CA 
Led the Tuberculosis Control Branch to implement, coordinate, and improve information 
systems including CalREDIE, an award-winning (Digital Government Achievement 
Award, Government to Government category 2012) web-based disease reporting and 
surveillance system for TB and other communicable diseases in California. Conducted 
surveillance-based epidemiologic research, involving conceiving, planning, and 
conducting advanced epidemiologic analyses.  
 
Public Health Technical Assistance Fellow (June 2009-July 2010) 
Global Health Access Program, Mae Sot, Thailand 
Provided technical support to community-based relief organizations operating along the 
Thai-Burma (Myanmar) border, developing health workers’ capacity to coordinate public 
health activities benefitting internally displaced persons in conflict zones of Burma. Areas 
of focus included tuberculosis, malaria, and population-based surveys.  
 
Student Epidemiologist (May 2008-April 2009) 
California Department of Public Health, Tuberculosis Control Branch, Richmond, CA 
Conducted epidemiologic data analysis on characteristics of foreign-born TB cases for 
the state of California, which was used to inform programmatic decisions by senior 
leadership. Conceived and conducted analysis plan and presented results to local health 
jurisdictions that participated in data collection.  
 

Teaching Experience 
Lead Teaching Assistant, Johns Hopkins Bloomberg School of Public Health  

• Public Health 340.753, Epidemiologic Methods III, Term 3 2018 

 

Teaching Assistant, Johns Hopkins Bloomberg School of Public Health  

• Public Health 600.601, Seminars in Public Health, Term 1 2019 

• Public Health 340.658, Critical Reading of Epidemiologic Literature, Summer 

Institute 2019 

• Public Health 340.612, Epidemiologic Basis for Tuberculosis Control, Summer 

Institute 2019 

• Public Health 140.698, Spatial Analysis III: Spatial Statistics, Term 3 2018 

• Public Health 340.612, Epidemiologic Basis for Tuberculosis Control, Term 3 

2019 
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• Public Health 340.612, Epidemiologic Basis for Tuberculosis Control, Term 1 

2018 

• Public Health 340.601, Principles of Epidemiology, Summer Term 2018 

• Public Health 340.613, Design and Conduct of Clinical Trials, Summer Institute 

2018 

• Public Health 340.658, Critical Reading of Epidemiologic Literature, Summer 

Institute 2018 

• Public Health 340.612, Epidemiologic Basis for Tuberculosis Control, Summer 

Institute 2018 

• Public Health 340.752, Epidemiologic Methods II, Term 2 2017 

• Public Health 340.751, Epidemiologic Methods I, Term 1 2017 

 

Tutor, Johns Hopkins Bloomberg School of Public Health  

• Public Health 340.752, Epidemiologic Methods II, Term 2 2018 

 

Graduate Student Instructor, University of California, Berkeley 

• Public Health 162A, Public Health Microbiology Lab, Spring 2009 

• Integrative Biology 132, Human Physiology Lab, Fall 2008 

• Integrative Biology 128, Sports Medicine, Spring 2008 

 

Undergraduate Teaching Fellow, Boston University 

• Biology 108, Introductory Biology II, Spring 2005 

 

Awards and Honors 
• Charlotte Silverman Fund, Department of Epidemiology, Johns Hopkins 

Bloomberg School of Public Health (2020) 

• Fulbright Fogarty Award in Public Health, J. William Fulbright Foreign 

Scholarship Board (2019) 

• Diversity Recognition Award, Johns Hopkins Diversity Leadership Council 
(2019) – Epidemiology Inclusion, Diversity, Equity & Science Workgroup 

• Student Travel Support Fund, Department of Epidemiology, Johns Hopkins 

Bloomberg School of Public Health (2018) 

• Abraham Lilienfeld Teaching Assistantship in Epidemiologic Methods (2017-

2018) 

• Global Health Established Field Placement Grant, Center for Global Health, 

Johns Hopkins Bloomberg School of Public Health (2017) 

• U.S. Centers for Disease Control and Prevention, Namibia Certificate of 

Appreciation (2016) – In recognition of your contribution to the TB/HIV program in 

Namibia. Your commitment and leadership of the TB/HIV evaluation over the 

past two years will have a lasting impact on the program and health of 

Namibians. 
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• Embassy of the United States of America, Windhoek, Namibia Certificate of 

Appreciation (2015) – for professionalism, skills in public health evaluation, 

flexibility, and passion for public health work in Namibia 

• U.S. Mission Namibia Honor Award (2015) – for exceptional team work, 

dedication, and collaboration toward achieving the goal of COP 15 approval for 

CDC Namibia and PEPFAR 

• U.S. Mission Namibia Honor Award (2014) – for exceptional team work, 

dedication, and collaboration toward achieving the goal of COP 14 approval for 

CDC Namibia and PEPFAR 

• American Public Health Association – Abstract Review Panel, HIIT Section 

(2013) 

• Council of State and Territorial Epidemiologists Public Health Informatics 

Scholarship (2012) 

• California Department of Public Health, Public Health Acknowledging My Efforts 

Award (2011) – TB Registry Unit 

• Interexchange Foundation Christianson Grant (2009) 

• University of California, Berkeley Center for Health Leadership Internship Award 

(2008) 

• Sargent College Professional Contribution Award, Boston University (2007) 

• Undergraduate Research Opportunity Program Summer Grant, Boston University 

(2006) 

• America East Academic Honor Roll (2005-2007) 

• Boston University Merit Scholarship (2003-2007) 

Academic and Community Service  
• Peer Reviewer, Society for Epidemiologic Research Conference 2020 (January 

2020) 

• Peer Reviewer, Epidemiology and Infection (May 2019-present) 

• This is Public Health Ambassador, Association of Schools and Programs of 

Public Health (June 2019-present) 

• Member, Epidemiology Inclusion, Diversity, Equity & Science Workgroup, Johns 

Hopkins Bloomberg School of Public Health (September 2018-present) 

• Teaching Assistant Training Chair, Epidemiology Student Organization, Johns 

Hopkins Bloomberg School of Public Health (May 2018-present) 

• Member, Student Planning Committee for SER Conference (December 2017-

June 2018) 

• Member, Department of Epidemiology Doctoral Teaching Assistant Curriculum 

Working Group, Johns Hopkins Bloomberg School of Public Health (December 

2017-present) 

• Student Mentor, Epidemiology Student Organization, Johns Hopkins Bloomberg 

School of Public Health (August 2017-present) 

• Member, Surveillance and Outbreak Response Team, Johns Hopkins Bloomberg 

School of Public Health (June 2017-present) 
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• Team Captain, Hopkins Marathon Team, Johns Hopkins University (June 2017-

present)  

• Sports Chair, Epidemiology Student Organization, Johns Hopkins Bloomberg 

School of Public Health (May 2017-May 2018) 

 

Papers and Reports 

1. Kendall, Kamoga,Kitonsa, Nalutaaya, Salvatore, Robsky, Nakasolya, Mukiibi, 

Isooba, Cattamanchi, Kato-Maeda, Katamba, Dowdy. “Empiric treatment of 

pulmonary TB in the Xpert era: Correspondence of sputum culture, Xpert 

MTB/RIF, and clinical diagnoses.” PLoS One. July 2019. 14(7):e0220251. 

2. Duque-Silva, Robsky, Flood, Barry. “Risk Factors for Central Nervous System 

Tuberculosis.” Pediatrics. November 2015. 136(5):e1276-84. 

3. Chitnis, Robsky, Schecter, Barry. “Trends in Tuberculosis Cases among Nursing 

Home Residents, California, 2000-2009.” Journal of the American Geriatrics 

Society. June 2015. 63(6):1098-1104. 

4. Chitnis, Schecter, Cilnis, Robsky, Flood, Barry. “Epidemiology of Tuberculosis 

Cases with End-Stage Renal Disease, California, 2010.” American Journal of 

Nephrology. April 2014. 39(4): 314-321. 

5. Westenhouse, Cueva, Golden, Johnson, Kanowitz, Robsky. California 

Department of Public Health. Report on Tuberculosis in California, 2012. July 

2013. 

6. Westenhouse, Cueva, Johnson, Kanowitz, Robsky. California Department of 

Public Health. Report on Tuberculosis in California, 2011. October 2012. 

7. Westenhouse, Robsky, Brentnall, Cass. “Infectious Disease – Tuberculosis.” In 

Welton, Armenta, Dumbauld, Fernandez (Eds.) 2010 Health Status in the 

California Border Region. California Department of Public Health, Office of 

Binational Border Health. July 2011. 

8. Steingart, Jotblad, Robsky, Deck, Hopewell, Huang, Nahid. “Higher-dose 

rifampin for the treatment of pulmonary tuberculosis: a systematic review.” 

International Journal of Tuberculosis and Lung Disease. March 2011. 15(3): 305-

316.  

9. Robsky. “Analyzing Highly Infectious Tuberculosis in Mexican-born and Other 

Foreign-born Cases in California, 2001-2006.” Master’s Comprehensive Paper, 

UC Berkeley. May 2009. 

Presentations and posters 

1. Robsky, Kitonsa, Mukiibi, Nakasolya, Isooba, Nalutaaya, Salvatore, Kendall, 
Katamba, Dowdy. “Using spatial heterogeneity of facility-based TB notification 
rates to identify areas with high burden of undiagnosed TB in Kampala, Uganda.” 
Delta Omega Poster Competition, Johns Hopkins Bloomberg School of Public 
Health (February 2020)  

2. Robsky, Kitonsa, Mukiibi, Nakasolya, Isooba, Nalutaaya, Salvatore, Kendall, 
Katamba, Dowdy. “Using spatial heterogeneity of TB notification rates to identify 



 

119 

high-risk areas for in Kampala, Uganda.” 50th Union World Conference on Lung 
Health (October 2019) 

3. Robsky, Hughes, Kityamuwesi, Kendall, Kitonsa, Dowdy, Katamba. “Is Distance 
associated with Tuberculosis Treatment Outcomes? A Retrospective Study in the 
Kisugu and Wabigalo Neighborhoods of Kampala, Uganda.” Johns Hopkins TB 
Centre Annual Meeting (June 2019) 

4. Shisana, Robsky, Zuma, Zungu, Celentano. “Association of Perceived Risk, HIV 
Status and Behavioral Risk Factors, South Africa.” AIDSImpact (July 2019) 

5. Robsky, Hughes, Kityamuwesi, Kendall, Kitonsa, Dowdy, Katamba. “Is Distance 
associated with Tuberculosis Treatment Outcomes? A Retrospective Study in the 
Kisugu and Wabigalo Neighborhoods of Kampala, Uganda.” 49th Union World 
Conference on Lung Health (October 2018) 

6. Mungunda, Roscoe, Lockhart, de Klerk, Baughman, Agolory, Gawanab, 

Menzies, Jonas, Salomo, Taffa, Lowrance, Robsky, Tollefson, Pevzner, 

Hamunime, Mavhunga. “Assessing the Tuberculosis Preventive Therapy 

Cascade for People Living with HIV in Namibia and Identifying Challenges 

Associated with Its Implementation.” 49th Union World Conference on Lung 

Health (October 2018) 

7. Robsky, Hughes, Dowdy, Katamba. “A Retrospective Study of TB Treatment 
Outcomes in the Kisugu and Wabigalo Neighborhoods of Kampala, Uganda.” 
Johns Hopkins Global Health Day (March 2018) 

8. Robsky, Hamunime, Tjituka, Mavhunga, Menzies, Gawanab, Tollefson, 

Mungunda. “Assessment of Intensified Case Finding and Isoniazid Preventative 

Therapy at Health Facilities Providing HIV Care and Treatment Services in 

Namibia.” 47th Union World Conference on Lung Health (October 2016). 

9. Mavhunga, Menzies, Gawanab, Nandjebo, Taffa, Pathmanathan, Robsky, 

Mungunda. “Assessment of Uptake of Antiretroviral Therapy among HIV-Infected 

TB Patients in Namibia.” 47th Union World Conference on Lung Health (October 

2016). 

10. Chitnis, Robsky, Schechter, Barry, Flood. “Trends in Tuberculosis Cases among 

Nursing Home Residents, California, 2000-2009.” Infectious Disease Society of 

American Conference (November 2013).   

11. Robsky, Shah, Moore, Pascopella, Barry Flood. “Tuberculosis Treatment 

Outcomes among Individuals Born in Mexico and Central America Compared 

with other Foreign-Born Persons in California, 2000-2009.” Infectious Disease 

Society of American Conference (November 2013).   

12. Duque-Silva, Robsky, Flood, Barry. “Epidemiology of Pediatric Central Nervous 

System (CNS) Tuberculosis (TB) – California, 1993-2011.” International Union 

Against Tuberculosis and Lung Disease North America Region Conference 

(February 2013). 

13.  “Epidemiology of Tuberculosis.” Tuberculosis Clinical Intensive Training. Curry 

International Tuberculosis Center (September 2012). 

14. Robsky, Shah, Pascopella, Barry, Flood. “Tuberculosis among Individuals Born 

in Mexico and Central America Compared with Other Foreign-Born Persons in 

California, 2001-2010.” American Thoracic Society / Centers for Disease Control 

and Prevention (May 2012). 
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15. Lwin, Yone, Mahn, Moo, Benjamin-Chung, Smith, Mullany, T.Lee, Richards, 

C.Lee, Robsky, Chowdbury. “Diagnosis: Critical. Health and human rights 

survey in eastern Burma.” Global Health Council International Conference (June 

2011). 

16. Thura, Benjamin-Chung, Smith, Mullany, C.Lee, Richards, T.Lee, Robsky. 

“Health and Human Rights Survey in Western Burma.” Global Health Council 

International Conference (June 2010). 

17. Robsky, Forget, M.Richard, Wah Wah Paw, Eh Kalu Shwe Oo, A.Richard, 

Leigh, Lee. “Community-based tuberculosis care in Eastern Myanmar's chronic 

conflict zone: Challenges and solutions in meeting program objectives.” 

American Public Health Association Annual Meeting (November 2010). 

18. “Epidemiology of TB Among Mexican-born in California.” Presentation with Lisa 

Pascopella, California Department of Public Health TB Control Branch (April 

2009). 

19. Robsky, Pascopella, Flood. “Tuberculosis in Mexican-born, California, 2001-

2007.” California Tuberculosis Controllers Association (April 2009). 

20. Oh, Pascopella, Robsky, Salcedo, et al. “Immigration visa status and 

identification of foreign-born tuberculosis cases in California.” California 

Tuberculosis Controllers Association (April 2009). 

21. “Alameda County Foreign Born Data.” Presentation with Peter Oh, Alameda 

Public Health Department (August 2008). 

22. “Santa Clara County Foreign Born Data.” Presentation with Peter Oh, Santa 

Clara Tuberculosis Clinic (July 2008).  

 

http://apha.confex.com/apha/138am/webprogram/Paper220169.html
http://apha.confex.com/apha/138am/webprogram/Paper220169.html

	OLE_LINK2
	OLE_LINK3
	OLE_LINK1
	OLE_LINK4

