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Abstract 
 

The absence of an animal model for sporadic Inclusion Body Myositis (IBM) has hindered 

progress in the field including an incomplete understanding of pathogenesis and a lack of 

effective therapies. We have developed a novel xenograft model of IBM in which human skeletal 

muscle is transplanted into immunodeficient NOD-Rag1nullIIL2rγnull mice. These grafts are 

spontaneously revascularized and innervated by the mouse host to form a fully functional 

human muscle ideal for modeling disease.  At 4 months, xenografts from control and IBM 

patients both display robust regeneration, indicating that IBM patient satellite cells can 

proliferate and differentiate normally. In addition, pathological features of IBM are recapitulated 

within xenografts, including endomysial inflammation, primary invasion of non-necrotic fibers by 

CD3+ T cells, upregulation of MHC-I, and COX-deficient fibers. Ki-67 staining reveals that a 

majority of the CD8+ T cells within IBM xenografts are proliferative at 4 months, and T cell 

receptor sequencing shows that these T cells are oligoclonal. Removal of CD3+ T cells via 

treatment of mice with a monoclonal CD3 antibody (OKT3) does not significantly impact 

regeneration, indicating that myofiber regeneration is largely unaffected by T cells within 

xenografts. However, OKT3 significantly reduces the number of COX-deficient fibers suggesting 

that T-cell mediated inflammation drives mitochondrial pathology. Indeed, the number of COX-

deficient fibers is significantly correlated with the number of CD3+ T cells in IBM xenografts but 

not in control myositis xenografts with comparable numbers of T cells. In addition to these 

inflammatory features, splicing defects due to loss of nuclear TDP-43 and rare fibers containing 

p62-positive aggregates are observed at later timepoints (8-10 months). Thus, this xenograft 

model of IBM shows both inflammatory and degenerative features of the human disease, and 

this model will be valuable for carrying out mechanistic studies and preclinical therapeutic 

testing in IBM.   
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Chapter 1: Introduction 
 

“It’s not life-threatening, it’s life-changing.” 

-Peter Frampton, 2019 

 

When Peter Frampton publicly announced his diagnosis of Inclusion Body Myositis (IBM) 

in 2019, he shined a spotlight on this rare disease, which affects ~50 patients per million 

according to a recent meta-analysis study (Callan et al. 2017). IBM is a chronic disease 

of progressive skeletal muscle weakness with both degenerative and autoimmune 

pathological features. The field of IBM research faces many challenges, such as the 

uncertain pathogenesis, a struggle to develop effective treatments, and the lack of 

awareness in the general population as well as the medical community. A brief history of 

IBM, its clinical and pathological presentation, laboratory models, and treatment 

approaches for this life-changing disease are discussed below.  

1.1 History of Inclusion Body Myositis 

The first published description of IBM resides within a case study of a 66 year old man 

erroneously diagnosed with chronic polymyositis (PM) (Chou 1967). This patient 

presented with progressive weakness of all muscles over the course of 6 years, mild 

dysphagia, and muscle atrophy of the shoulder girdle and quadriceps. Of note, there 

was no significant elevation of creatine kinase (CK), whereas CK levels in PM patients 

are typically elevated 10-50 fold (Schmidt 2018). In hindsight, it is clear this study 

describes an IBM patient. A major novel finding of this study was the detection of 

filamentous aggregates via electron microscopy in both the sarcoplasm and nucleus of 
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patient myofibers. Based on the morphological similarity of the filaments to structures 

observed in cultured myxovirus-infected cells, it was hypothesized that the patient’s 

disease was caused by a viral infection. In subsequent years, numerous studies have 

explored the association and potential contribution of viral infections to the development 

of IBM (Nishino, Engel, and Rima 1989; Kallajoki et al. 1991; Fox et al. 1996; Uruha et 

al. 2016). 

 

A case study from 1971 is responsible for the etymology of ‘Inclusion Body Myositis’, 

although, this study actually described a patient that likely had limb-girdle muscular 

dystrophy (Yunis and Samaha 1971). It took an additional seven years for the first 

‘accurate ‘ clinical case study of IBM to be published (Carpenter et al. 1978). In this 

study, 6 patients were described showing progressive muscle weakness frequently 

involving distal muscles, a male predominance, and no improvement with corticosteroid 

treatment. Pathologically abnormal filaments could also be detected in the muscle using 

electron microscopy, and “hematoxylinophilic granules in “lined” vacuoles”—rimmed 

vacuoles—were described for the first time (Carpenter et al. 1978). This case study 

established IBM as a discrete entity within the group of idiopathic inflammatory 

myopathies (IIM). IIM is a heterogeneous group of diseases characterized by skeletal 

muscle weakness, and the intramuscular infiltration of immune cells (Dalakas 2015). 

Currently, this group also includes Dermatomyositis (DM), Polymyositis (PM), Immune 

Mediated Necrotizing Myopathy (IMNM), and non-specific myositis (Hoogendijk et al. 

2004; Dalakas 2015). From these initial descriptions, the characteristics of IBM have 

been further researched and refined.  
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1.2 The Presentation of Inclusion Body Myositis 

IBM patients have a heterogeneous presentation, and diagnosis is rarely straightforward 

with almost half of patients initially misdiagnosed with polymyositis, peripheral 

neuropathy, or motor neuron disease (Rose and ENMC 2013; Paltiel et al. 2015). 

Patients typically seek medical care when their muscle weakness limits the use of their 

hands or when they start to have difficultly climbing stairs or falls (Paltiel et al. 2015). 

The median time from symptom onset to diagnosis is between 5 to 6 years, and patients 

lose the ability to independently ambulate an average of 15 years after diagnosis 

(Needham, Corbett, et al. 2008; Molberg and Dobloug 2016). The diagnosis of IBM 

requires a careful assessment of a patient’s clinical features, which commonly includes 

physical exam, electrodiagnostic testing, blood testing, and in some centers, MRI of 

affected muscle groups. In addition, a thorough pathological analysis of a skeletal 

muscle biopsy is typically an important component of the diagnostic process.   

 

Clinical Presentation 

IBM has a male predominance and usually affects individuals over the age of 45 with a 

mean age of symptom onset between 61-68 years (Molberg and Dobloug 2016; Suzuki 

et al. 2016; Greenberg 2019). The disease is characterized by chronic, slowly 

progressive asymmetric weakness of both proximal and distal muscles, with the finger 

flexors and quadriceps typically most affected (Griggs et al. 1995). Dysphagia is 

observed in more than half of patients, with some studies reporting an incidence of 

greater than 80% (Wintzen et al. 1988; Houser, Calabrese, and Strome 1998; Mohannak 

et al. 2019). Cardiac abnormalities in IBM patients have not been extensively explored, 

but several studies suggest that cardiac function is largely unaffected. (Cox et al. 2010; 
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Rosenbohm et al. 2020). However, patients with IBM may be predisposed to 

hypertension and show higher rates of myocardial infarction and congestive heart failure 

(Keshishian et al. 2018; Rosenbohm et al. 2020).  

 

MRI studies of IBM patients show fatty infiltration and inflammation in affected muscles, 

especially in the flexor digitorum profundus (FDP), vastus medialis and lateralis, and 

gastrocnemius (Phillips et al. 2001; Cox et al. 2011; Guimaraes et al. 2017; Ansari et al. 

2020). Assessment of FDP via MRI, electromyography (EMG), or ultrasonography may 

be particularly helpful in discriminating IBM from other IIMs and aid in diagnosis (Sekul, 

Chow, and Dalakas 1997; Hokkoku et al. 2012; Albayda et al. 2018). In contrast to the 

other forms of IIM, it is rare to observe a serum CK level more than 15 times the upper 

limit of normal (Rose and ENMC 2013). Another feature of IBM that distinguishes it from 

other IIMs are neurogenic findings in over 20% of IBM patients, including neuropathic-

like recruitment patterns on EMG (Felice and North 2001; Hermanns, Molnar, and 

Schroder 2000). The most important clinical features in establishing a diagnosis are the 

history and pattern of weakness on physical exam, with finger flexor weakness greater 

than arm abductor weakness and knee extensor weakness greater than hip flexor 

weakness.  In combination, these clinical features alone can be sufficient for a diagnosis 

of IBM by some diagnostic criteria. This has led some clinicians to question the 

necessity of a diagnostic open muscle biopsy, however, biopsies are routinely performed 

on IBM patients as they show several distinguishing pathological features and can be 

very helpful in confirming a diagnosis (Brady, Squier, and Hilton-Jones 2013). 
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Pathological Features 

The pathological features of IBM are diverse and, although these features are shared 

with other disorders, in combination, they are highly specific for IBM. Histological 

features observed in IBM muscle biopsies include rimmed vacuoles, protein aggregates, 

cytochrome c oxidase (COX)-deficient fibers, upregulation of major histocompatibility 

complex class I (MHC-I) molecules, and an endomysial inflammatory infiltrate (reviewed 

in:Naddaf, Barohn, and Dimachkie 2018; Greenberg 2019). A considerable effort has 

been put forth by researchers to characterize the variety of aggregated proteins, and by 

2010 more than 80 proteins had been reported as present within aggregates in IBM 

patient muscle, including ubiquitin, tau, and β-amyloid (Greenberg 2010b). In this 

overabundance of aggregated proteins, TDP-43 and p62 have been suggested to have 

high specificity for IBM and are seen aggregated in a high percentage of fibers (Dubourg 

et al. 2011; Hiniker et al. 2013).  

 

Mitochondrial pathology has been recognized as a prominent feature of IBM, including 

myofibers that accumulate abnormal mitochondria, COX-deficient fibers, and 

mitochondrial DNA (mtDNA) deletions and depletion (Oldfors et al. 1993; Oldfors et al. 

2006; Lindgren et al. 2015; Bhatt et al. 2019). While the number of COX-deficient fibers 

normally increases with age, the proportion of COX-deficient fibers is significantly higher 

in IBM patients (Oldfors et al. 1993). Electron microscopy of affected muscle shows 

enlarged mitochondria, loss of inner membrane cristae, and paracrystalline inclusions, 

although, is it important to note these changes are also associated with normal aging 

(Oldfors et al. 2006). Decreased transcript and protein levels of mitofusion-2 (MFN2) and 

optic atrophy 1 (OPA1)—genes involved in mitochondrial fusion—in IBM muscle suggest 

fusion is impaired and may partially explain this altered mitochondrial morphology 
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(Catalan-Garcia et al. 2016). In addition to these morphological changes, downregulated 

expression of complex I (NADH coenzyme Q oxidoreductase) and reduced COX activity 

indicates impaired oxidative phosphorylation in IBM muscle (Lindgren et al. 2015; Rygiel 

et al. 2015). Interestingly, positive correlations have been reported between the number 

of COX-deficient muscle fibers and the relative amount of mtDNA deletions as well as 

the severity of inflammation (Lindgren et al. 2015; Rygiel et al. 2015). These studies 

suggest that mitochondrial pathology may be mechanistically linked with inflammation. It 

is possible that inflammatory cells could trigger mtDNA damage, eventually leading to 

respiratory dysfunction and subsequent degeneration of muscle fibers.  

 

The invasion of non-necrotic fibers by autoaggressive cytotoxic CD8+ T cells is a 

prominent feature of IBM muscle biopsies, and this inflammatory infiltrate has been a 

focus of numerous studies. T cell receptor (TCR) sequencing or spectratyping of cells 

from patient blood and muscle has shown these populations of T cells are clonally 

expanded, suggesting recognition of an unknown antigen is occurring (Amemiya 2000; 

Müntzing et al. 2003; Salajegheh et al. 2007). Recent microarray and mass cytometry 

studies have revealed a distinctive signature of T cell cytotoxicity in IBM muscle and 

blood in comparison to other muscle diseases and an abundance of highly differentiated 

CD8+ T-cell effector memory (TEMRA) cells and terminally differentiated effector cells 

(Greenberg et al. 2019; Dzangue-Tchoupou et al. 2019). This cytotoxic signature shows 

elevation of granzymes A, B, H, and K, perforin, and increased expression of KLRG1 

(killer cell lectin-like receptor G1) and T-bet (T-box expressed in T cells) which are 

markers of highly differentiated CD8+ T cells. KLRG1 is an inhibitory T- and NK-cell 

receptor associated with increased cytotoxic activity, and high levels of T-bet are 

required for antigen-specific CD8+ response and cytotoxic function (Hruz et al. 2008; 
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Greenberg et al. 2019; Dzangue-Tchoupou et al. 2019). In particular, KLRG1+ cells were 

shown to be present in multifocal endomysial infiltrates and observed invading muscle 

cells. Taken together, KLRG1 and T-bet may serve as useful biomarkers for IBM, and it 

is hypothesized that therapeutic targeting of these highly differentiated cytotoxic T cell 

populations may be beneficial for the treatment of IBM. 

 

Beyond cell-mediated immune responses, microarray analysis of IBM patient muscle 

has revealed an overabundance of immunoglobulin gene transcripts and intramuscular 

CD138+ plasma cells, suggesting a previously unappreciated role of humoral immune 

mechanisms in IBM (Greenberg et al. 2005). In 2011, the first circulating autoantibody in 

IBM was discovered, and shortly thereafter two groups independently identified cytosolic 

5′‐nucleotidase 1A (NT5C1A; cN1A) as the target of this circulating autoantibody 

(Salajegheh, Lam, and Greenberg 2011; Larman et al. 2013; Pluk et al. 2013). These 

initial studies showed that serum positivity of anti-NT5C1A was highly specific—90-95%-

-for the diagnosis of IBM. Further analysis of additional patient cohorts have supported 

this high specificity, but the sensitivity varies widely from 37% to 76% (Greenberg 2014; 

Lloyd et al. 2016; Amlani et al. 2019). Part of this variation could be explained by the 

different tests used to detect anti-NT5C1A, and the antibody has also been detected in 

other disorders such as systemic lupus erythematosus (SLE) and Sjögren’s syndrome at 

varying levels of prevalence (Rietveld et al. 2018). Overall, serum negativity for anti-

NT5C1A should not discourage a diagnosis of IBM, and more studies are needed to 

determine the diagnostic utility of anti-NT5C1A in IBM.  

 

Diagnostic Guidelines  

The first diagnostic criteria proposed by Griggs et al relied heavily on the pathological 
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features of IBM and divided patients into two categories: definite or possible IBM (Griggs 

et al. 1995). A definite diagnosis of IBM required muscle biopsies to show all the 

following: mononuclear cell invasion of non-necrotic muscle fibers, vacuoles, and 

amyloid deposits or 15-18 nm tubulofilaments. If a muscle biopsy showed these features 

the patient would be diagnosed with definite IBM regardless of any other clinical or 

laboratory features. If a patient biopsy only showed invasion of mononuclear cells, then 

a combination of clinical and laboratory features would allow a diagnosis of possible 

IBM. Understandably, these strict criteria lacked sensitivity as one or more of these 

pathological features are often missing in IBM biopsies (Chahin and Engel 2008; 

Ikenaga et al. 2017). Therefore, an international group of experts met to review and 

update diagnostic criteria for IBM and established the ENMC IBM Research Diagnostic 

Criteria 2011 (Rose and ENMC 2013). 

 

The ENMC 2011 criteria divides IBM diagnosis into three classifications: clinico-

pathologically defined IBM, Clinically defined IBM, or Probable IBM. Unlike the Griggs 

criteria, this updated classification considers the patient’s clinical presentation. To be 

diagnosed with clinico-pathologically defined IBM patients must meet the following 

criteria: they must be over the age of 45, have a serum CK less than 15 times the upper 

limit of normal, with finger flexor and/or knee extension muscle weakness lasting more 

than a year, and muscle biopsies showing endomysial inflammation, rimmed vacuoles, 

and protein aggregation or 15-18nm filaments (Rose and ENMC 2013). Assessment of 

ENMC 2011 diagnostic criteria via machine learning approaches showed its “Probable 

IBM” classification performed the best with 90% sensitivity and 96% specificity (Lloyd et 

al. 2014).  The Probable IBM classification requires patients to be over the age of 45, a 

serum CK less than 15 times the upper limit of normal, with finger flexor or knee 
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extension muscle weakness lasting more than a year, and muscle biopsies showing one 

or more of the following: endomysial inflammation, upregulation of MHC-I, rimmed 

vacuoles, or protein aggregation/15-18nm filaments (Rose and ENMC 2013). 

 

More recently, the European League Against Rheumatism (EULAR) and the American 

College of Rheumatology (ACR) has developed a new classification criteria for IIMs 

(Bottai et al. 2017). When using muscle biopsy features in combination with clinical 

factors the EULAR/ACR criteria had high sensitivity (93%) and high specificity (88%), 

and by comparison the ENMC 2011 had low sensitivity despite its high specificity. 

Needless to say, as research progresses new criteria will continue to be proposed with 

the goal of improving the diagnostic process for both patients and clinicians.  

1.3 Genetics of Inclusion Body Myositis 

This section is adapted from Britson, K.A., Yang, S.Y., and Lloyd, T.E. New 

Developments in the Genetics of Inclusion Body Myositis. Curr Rheumatol Rep. 2018 

Apr 2;20(5):26. doi: 10.1007/s11926-018-0738-0 (Britson, Yang, and Lloyd 2018). 

 

Introduction 

In 1990, IBM was referenced in 11 citations in the PubMed database maintained by the 

United States National Library of Medicine at the National Institutes of Health (Pubmed 

2020). Over the last decade the average number of citations has risen to 85 per year. 

Part of this growth can be attributed to the increasing number of sequencing studies 

performed on IBM patient samples, which has been made possible by a concerted effort 

by several international groups to develop patient biospecimen banks and databases of 
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clinical information. Two groups that have been instrumental in these efforts are the 

Myositis Genetics Consortium (MYOGEN) and the International IBM Consortium Genetic 

Study (IIBMCGS).  

 

At this point, it is crucial to draw a distinction between IBM and hereditary Inclusion Body 

Myopathies (HIBMs). The latter is a group of genetic muscle disorders with either 

autosomal recessive or dominant inheritance, and includes Glucosamine (UDP-N-

acetyl)-2-epimerase/N-acetylmannosamine kinase gene (GNE) myopathy, hereditary 

inclusion-body myopathy with Paget's disease of the bone and frontotemporal dementia 

(IBMPFD), and HIBM with congenital joint contractures and external ophthalmoplegia  

(Broccolini and Mirabella 2015). Although rare patients with genetic muscle disease 

have been reported with clinical phenotypes indistinguishable from IBM (Roda et al. 

2014), HIBMs typically present at a younger age than IBM (before age 40), lack 

inflammation, and display different patterns of muscle weakness (Leung et al. 2014; 

Broccolini and Mirabella 2015). For example, GNE myopathy—also called HIBM2—is 

caused by autosomal recessive inheritance of mutations in the GNE gene, the 

quadriceps is typically spared, and biopsy shows rimmed vacuoles and protein 

inclusions but lacks inflammation (No et al. 2013; Huizing et al. 2014; Carrillo, Malicdan, 

and Huizing 2018). Thus, mutations in known HIBM genes cause syndromes that share 

degenerative features on biopsy but otherwise are clinically distinct from IBM. However, 

classic IBM can occasionally be present within multiple family members (“familial IBM”) 

strongly supporting a role for genetic risk factors in the development of IBM (Sivakumar, 

Semino-Mora, and Dalakas 1997; Ranque-Francois et al. 2005). The advent of high-

throughput sequencing technologies and the efforts of genetic consortiums have begun 

to shed light on the complex genetic landscape of IBM. 
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HLA Locus: the strongest risk alleles for IBM 

Robust, unbiased genome-wide association studies (GWAS) have not yet been 

completed in IBM due to the rarity of the disease, though a large multinational effort is 

underway (Gang, Bettencourt, Houlden, et al. 2015).  Nonetheless, since first described 

by Garlepp et al in 1994, the Human Leukocyte Antigen (HLA) locus has been shown 

repeatedly to contain the strongest risk alleles for the development of IBM (Garlepp et al. 

1994; Rojana-udomsart et al. 2012; Johari et al. 2017; Rothwell et al. 2017). Recently, 

the Myositis Genetics Consortium (MYOGEN) analyzed immune-related genes in 252 

Caucasian IBM patients and 1,008 ethnically-matched controls from 11 countries using 

the Illumina Immunochip array (Rothwell et al. 2017).  Variants within the HLA locus 

were the only single-nucleotide polymorphisms (SNPs) to reach genome-wide 

significance (p < 5 x 10-8). HLA-DRB1*03:01 showed the most significant association 

with IBM (p = 5.77 x 10-34), followed by HLA-DRB1*01:01 (p = 1.57 x 10-16), and HLA-

DRB1*13:01 (p = 3.28 x 10-8). This finding is consistent with prior HLA-association 

studies identifying an association of IBM with the 8.1 ancestral MHC haplotype (8.1 AH) 

(Garlepp et al. 1994; Badrising et al. 2004; Mastaglia 2009; Needham, James, et al. 

2008). Contrary to previous results that HLA-DRB4 is protective and ameliorates the risk 

effect of HLA-DRB1*03:01 (Rojana-udomsart et al. 2012), no HLA alleles were found to 

modify disease onset or severity of IBM in this study. Furthermore, in agreement with a 

study performed in an Australian cohort, there was no distinct HLA association with anti-

cytosolic 5’-nucleotidase 1A (anti-NT5C1A) positivity (Rothwell et al. 2017; Limaye et al. 

2016).  

 

To investigate whether the risk associated with these HLA-DRB1 alleles could be 

explained by specific amino acid positions shared between alleles, amino acid 
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imputation was performed. A tyrosine residue at position 26 was found to be more 

strongly associated with IBM (p < 5.22 x 10-43) than the HLA-DRB1 allele alone, and an 

additional independent effect was seen at position 11 (p < 3.8 x 10-13) for serine. Of note, 

previous studies have associated positions 11 and 26 with other autoimmune diseases 

such as systemic lupus erythematosus (Kim et al. 2014). Both of these residues are 

located within the β-sheet floor of DR β-chain 1 that forms part of the peptide-binding 

groove and may influence peptide binding and predispose individuals to autoimmunity 

(Rothwell et al. 2017). Interestingly, although HLA-DRB1*03:01 is also a significant risk 

factor for Polymyositis (PM) and Dermatomyositis (DM), amino acid position 74 explains 

almost all of the risk within the allele for PM and DM (Rothwell et al. 2016).  

 

NOTCH4, a previously identified risk gene within the HLA locus (Scott et al. 2012), was 

not explicitly examined in this study due to its strong linkage disequilibrium with the 8.1 

AH. Three regions outside of the HLA locus that almost reached the level of genome-

wide significance (p < 2.25 x 10-5) included a known frameshift mutation in CCR5 that 

causes a nonfunctional receptor (Rothwell et al. 2017). CCR5 (C-C Chemokine Receptor 

type 5) is an important regulator of T-cell migration, suggesting a potential role for 

chemokines in the pathogenesis of IBM. A recent case-control study analyzing whole 

exome sequencing data on 30 Finnish IBM patients identified seven SNPs found at >2-

fold higher frequency in IBM, and in addition to the HLA locus, implicated genes that 

regulate sphingolipid transport as potential IBM risk factors (Johari et al. 2017).  Overall, 

these recent studies have confirmed that variants within the HLA locus are risk factors 

for developing IBM 

 

 



   
 

13 
 

Genetic Variants Identified in Pathways Related to Proteostasis 

As mentioned previously, both IBM and HIBM syndromes share degenerative myopathic 

features on biopsy including rimmed vacuoles, ubiquitinated protein aggregates, and 15-

18 nm tubulofilamentous “inclusions” observed with electron microscopy. A known cause 

of this pathology shared with many degenerative diseases is disruption of protein 

homeostasis, or proteostasis, as can be caused by impairment of the proteasome or 

autophagy (reviewed in: Klaips, Jayaraj, and Hartl 2018).  For example, IBMPFD is a 

multisystem degenerative disease caused by autosomal dominant inheritance of 

missense mutations in valosin-containing protein (VCP) (Watts et al. 2004). VCP, also 

called p97 or cdc48, is a highly conserved homohexameric ATPase that functions as a 

“segregase” to remove ubiquitinated proteins from macromolecular complexes, and thus 

plays an important role in proteostasis (Meyer and Weihl 2014).  

 

Intriguingly, rare VCP variants have recently been implicated in IBM as well as multiple 

neurodegenerative diseases including Frontotemporal Dementia (FTD), Parkinson’s 

Disease, Amyotrophic Lateral Sclerosis (ALS), and Charcot-Marie Tooth Disease 

(Johnson et al. 2010; Koppers et al. 2012; Majounie et al. 2012; Spina et al. 2013; 

Gonzalez et al. 2014). Rare mutations in other genes, including HNRPA1, HNRPA2B1, 

and SQSTM1 have also been found to cause similar autosomal dominantly inherited 

degenerative diseases affecting muscle, bone, and brain, and have been termed 

“multisystem proteinopathy”, or MSP (Benatar et al. 2013). As with HIBM, MSP patients 

usually present before age 40 without the typical IBM pattern of weakness, and affected 

muscles in MSP display rimmed vacuoles and protein inclusions but lack inflammation. 

However, recent findings suggest that rare variants in these MSP genes may increase 

the risk for developing IBM.  
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Using targeted next generation sequencing, Weihl et. al. screened a cohort of 79 IBM 

patients for variants in 38 genes associated with muscular dystrophies, myopathies, 

ALS, and dementia (Weihl et al. 2015).  This candidate-based approach uncovered an 

increased frequency of rare variants in multiple genes including VCP, SQSTM1, FLNC, 

ZASP, and BAG3 as well as a novel variant in HNRPA2B1.  FLNC, SQSTM1, ZASP, and 

BAG3 are known to be mutated in rare inherited vacuolar myopathies and also play 

integral roles in the autophagy pathway (Ruparelia et al. 2016; Behl 2011; Baixauli, 

López-Otín, and Mittelbrunn 2014). SQSTM1 (Sequestosome 1, also known as p62) is a 

ubiquitin-binding autophagic adaptor that has been shown to label protein inclusions in 

IBM muscle (Nogalska et al. 2009; Dubourg et al. 2011; Ikenaga et al. 2017). The two 

rare variants identified in VCP were previously reported as putative disease-associated 

variants (Majounie et al. 2012; Kimonis et al. 2008; Rohrer et al. 2011), and expression 

of these variants in cell culture causes an accumulation of the autophagosome markers 

p62 and LC3-II, suggestive of a disruption in autophagy (Ju et al. 2009). Similarly, other 

candidate-based whole exome sequencing (WES) approaches have also identified rare 

VCP variants in IBM in addition to SQSTM1 (Gang et al. 2016) and ZASP (Cai et al. 

2012). The majority of these variants are in evolutionarily conserved regions, suggesting 

that they may have functional consequences and increase risk for disease. However, 

given the selection bias inherent in candidate-based approaches, further studies are 

necessary to determine whether these variants significantly alter protein function and 

play a role in IBM pathogenesis.  

 

Rather than starting with genes previously implicated in muscle disease, Guttsches et. 

al. performed an unbiased proteomics approach to identify proteins enriched in rimmed 
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vacuoles (RVs) (Guttsches et al. 2017). This method led to the identification of 213 

proteins, 40 of which had been previously described in IBM including VCP and p62, 

validating this approach. Interestingly, proteins involved in protein quality control were 

among the most abundantly overrepresented proteins. To look for novel genetic 

contributors to IBM, WES was used to identify variants in genes encoding proteins found 

in RVs. When comparing the burden of these variants to an ALS cohort, only variants in 

the FYCO1 gene were statistically enriched in IBM patients (11.3% vs. 2.6% in controls).  

FYCO1 has been implicated in microtubule transport of autophagosomes, consistent 

with a role for autophagy impairment in the pathogenesis of IBM (Pankiv et al. 2010).     

 

Large Deletions in Mitochondrial DNA and Related Genetic Variants  

Using real-time PCR, COX-deficient fibers from IBM patients were shown to have higher 

mitochondrial DNA (mtDNA) deletion loads when compared to COX-normal fibers 

(Lindgren et al. 2015). In addition, it has been reported that the amount of mtDNA is 

reduced in IBM muscle in comparison to controls (Catalan-Garcia et al. 2016). 

Interestingly, the fraction of COX-deficient fibers correlated with the amount of infiltrating 

T lymphocytes, suggesting an interaction between the mitochondrial defect and the 

autoimmune component of IBM (Rygiel et al. 2015).      

 

Another mitochondrial protein that has been investigated in IBM is the Translocase of 

Outer Mitochondrial Membrane 40 (TOMM40).  TOMM40 lies adjacent to apolipoprotein 

E (ApoE) in the genome, and thus ApoE and TOMM40 alleles are co-inherited. Prior 

studies have shown that the ApoE and TOMM40 genotype combination can be used as 

a predictor of age-dependent risk in Alzheimer’s Disease (AD) (Roses et al. 2013). 

Given reported β-amyloid deposition in both IBM and AD, Mastaglia et al investigated 
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ApoE and TOMM40 polymorphisms in IBM (Mastaglia et al. 2013). In a study of 90 

Caucasian patients, they found that carriers of APOE ε3 who also contained the very 

long (VL) poly-T repeat allele of TOMM40 had a reduced risk of developing IBM as well 

as a later age of onset. Recently, Gang et. al. investigated this further in a larger cohort 

of 158 IBM patients obtained through the International IBM Genetics Consortium (Gang, 

Bettencourt, Machado, et al. 2015). In contrast to the previous study, they did not find an 

association between any particular APOE-TOMM40 genotype and the risk of developing 

IBM, but did find that individuals carrying the VL TOMM40 allele had a later age of onset 

(Gang, Bettencourt, Machado, et al. 2015). Since both studies found that the TOMM40 

VL allele delays IBM disease onset, these findings suggest that further investigation into 

how the VL allele alters TOMM40 and mitochondrial function may shed insight into IBM 

pathogenesis.    

 

Conclusion 

New high-throughput sequencing methods have revolutionized genetic analyses of 

complex diseases, allowing for identification of genetic variants that are associated with 

an increased risk of developing IBM. Recent studies have confirmed and refined the 

major role the HLA locus plays in IBM susceptibility, strongly implicating autoimmunity in 

disease pathogenesis.  In addition, multiple studies have identified rare variants within 

genes known to regulate protein quality control including autophagy, suggesting that 

one’s ability to prevent protein aggregate formation may partially underlie disease risk. 

While intriguing, the rare nature of IBM and the presence of most of these variants at low 

levels in the population make the significance of these findings unclear. However, the 

identification of both immune and proteostasis-related genes in disease susceptibility of 

IBM further implicates both processes in IBM pathogenesis. 
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1.4 Current Treatments and Ongoing Clinical Trials 

Regrettably, there are no clinically effective treatments that have been shown to improve 

muscle weakness or halt its progression for IBM patients. The standard of care for IBM 

patients includes nonpharmacological management such as physical and occupational 

therapy, education on fall prevention, and the use of medical devices to improve mobility 

such as braces for foot drop and wheelchairs. Interventions to improve dysphagia in IBM 

patients are also common as dysphagia is associated with increased mortality and 

morbidity due to malnutrition, dehydration, and aspiration pneumonia (Oh et al. 2007; 

Mohannak et al. 2019). There are both non-invasive (e.g. lingual strengthening 

programs) and invasive approaches (e.g. balloon dilation, botulinum toxin injection, and 

cricopharyngeal myotomy) for treating dysphagia. These invasive approaches have 

been found to be more effective, and in one study, approximately 60% of patients with 

dysphagia benefitted at least temporarily from undergoing cricopharyngeal myotomy 

(Mohannak et al. 2019).  

 

Exercise in IBM 

Although previously it had been thought that exercise did not significantly alter the 

natural history of IBM, several studies suggest beneficial effects of exercise in IBM 

patients (Spector et al. 1997; Arnardottir et al. 2003; Johnson et al. 2009; Alexanderson 

and Lundberg 2012; Alexanderson 2018). A variety of exercise paradigms have been 

tested in small IBM cohorts, including home exercise programs, resistance strength 

training, and blood-flow restriction training. Importantly, several of these studies 

assessed the effect exercise had on the patient’s immune system and endomysial 

inflammation. Serum CK levels were unaffected by exercise and in studies where 
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participants underwent repeated muscle biopsies, changes in the number of 

degenerating fibers or inflammatory cells were not observed (Spector et al. 1997; 

Johnson et al. 2009; Arnardottir et al. 2003). IBM patients undergoing blood-flow 

restriction training did show increased endomysial infiltration of CD3-CD8+ expressing 

natural killer cells, but populations of T cells and macrophages were unchanged (Jensen 

et al. 2019). The main conclusions from these studies were that exercise is well tolerated 

by IBM patients and the exercise arms frequently showed modest improvements in 

aerobic capacity, or improved strength from baseline (Spector et al. 1997; Johnson et al. 

2009). These studies are encouraging, but large, randomized trials examining the 

potential benefits of exercise for IBM patients are still needed. 

 

Clinical Trials 

A modest number of clinical trials—both open-label and blinded placebo-controlled 

trials—have been carried out with IBM patients to test potential pharmaceutical therapies 

targeting immune modulation, the myostatin pathway, or proteostasis (reviewed in: 

Greenberg 2019; Glaubitz, Zeng, and Schmidt 2020). Broad lymphocytic depletion 

treatment strategies tested in IBM patients include antithymocyte globulin (ATG), 

methotrexate, intravenous or subcutaneous immunoglobulin, and alemtuzumab. Most of 

these treatments have shown minimal or no treatment efficacy (Glaubitz, Zeng, and 

Schmidt 2020). For instance, a double-blinded, placebo-controlled study with 

methotrexate showed no difference in progression and muscle strength over 48 weeks, 

although a pilot trial of alemtuzumab in 13 IBM patients suggested reduced progression 

of weakness, and post-treatment biopsies showed reduced endomysial lymphocytes 

(Badrising et al. 2002; Dalakas et al. 2009). It is also worth noting studies have found 

that intravenous immunoglobulin (IVIG) may be beneficial for patients with dysphagia 
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(Dalakas et al. 1997; Dobloug et al. 2012). 

 

As therapies targeting inflammatory pathways have only been moderately efficacious at 

best, researchers have been exploring a number of other treatment avenues. A small 

study showed that the myostatin inhibitor Bimagrumab could improve skeletal muscle 

mass in 14 IBM patients (Amato et al. 2014). This was followed by a large randomized, 

placebo-controlled trial of Bimagrumab in 240 patients using a 6-minute walk test as the 

primary outcome, which was not significantly changed compared to the placebo-

controlled group (Hanna et al. 2019). 

 

Recently, a study evaluated the therapeutic potential of targeting protein aggregation in 

IBM with Arimoclomol (Ahmed et al. 2016). Arimoclomol is a small molecule thought to 

upregulate chaperone expression in stressed cells, thereby reducing the formation of 

protein aggregates (Kieran et al. 2004; Douglas and Cyr 2010). In cultured myoblasts 

and mice expressing mutant VCP protein, Arimoclomol improved IBM-like pathology, 

and in a small proof-of-concept clinical study, there was a trend toward reduced decline 

in muscle strength and physical function in IBM patients taking Arimoclomol compared to 

placebo (Ahmed et al. 2016) . A multisite phase II clinical trial (NCT02753530) began in 

2018 to evaluate the efficacy of this drug in IBM and the study is predicted to conclude in 

December of 2021.  

 

Recent success in clinical trials of gene therapy in Spinal Muscular Atrophy (SMA), an 

inherited motor neuron disease (Mendell, Al-Zaidy, et al. 2017; Finkel et al. 2017; 

Ramdas and Servais 2020), in addition to excitement around using genome editing 

technologies such as CRISPR for treating muscle diseases (Bengtsson et al. 2017; 
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Amoasii et al. 2018; Jin et al. 2019), has led to the consideration of gene therapy for 

IBM.  Since muscle atrophy is a major part of IBM pathology, researchers have analyzed 

the myostatin signaling pathway in IBM muscle. Myostatin is a tumor growth factor beta 

(TGF-β) family member that has a well-defined role as a negative regulator of muscle 

mass, making it a promising therapeutic target for muscle wasting disorders (Elkina et al. 

2011). In particular, gene therapy using follistatin, a natural inhibitor of the myostatin 

receptor, has been reported to be safe and causes muscle hypertrophy in mice and 

primates (Kota et al. 2009). Since the myostatin signaling pathway was reported to be 

upregulated in IBM (Amato et al. 2014), follistatin gene therapy has been tested to 

determine if it improves muscle strength and function in IBM.   

  

In a recent phase 1/2a clinical trial, adeno-associated viral (AAV) delivery of follistatin 

isoform 344 (FS344) via intramuscular quadriceps injection was reported to modestly 

improve the distance traveled for a 6 minute walk test (6MWT) in a small cohort of 

Becker muscular dystrophy (BMD) patients (Mendell et al. 2015). Promising histological 

changes were also observed including reduced endomysial fibrosis, fewer centralized 

nuclei, and normalization of fiber size. In a ‘proof-of-principle’ trial, 6 male IBM patients 

received bilateral intramuscular quadriceps injections of AAV1 vectors carrying FS344 

(Mendell, Sahenk, et al. 2017). One noteworthy change from the BMD study is that the 

IBM study included an exercise regimen for each participant as it had been 

demonstrated that exercise increased plasma levels of follistatin (Hansen et al. 2011). 

This study observed an improvement in the distance traveled for a 6MWT, and all post-

treatment biopsies showed increased number of muscle fibers (Mendell, Sahenk, et al. 

2017). However, significant concerns have been raised in regards to the design of this 

trial and the authors’ claim of efficacy (Greenberg 2017). Most importantly, the lack of a 
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control group makes it difficult to determine how much of the improvement was a result 

of exercise and/or placebo effect.  

1.5 Laboratory Models of Inclusion Body Myositis 

To date, the xenograft model described below in Chapter 5 is the only comprehensive 

animal model of IBM. A plethora of laboratory models have been developed for various 

forms of HIBM, such as transgenic mutant VCP mouse models (Weihl et al. 2007; 

Custer et al. 2010), a knock-in mutant VCP model (Nalbandian et al. 2013), GNE 

myopathy models (reviewed in:Pogoryelova et al. 2018), and various Drosophila models 

(Ritson et al. 2010; Chang et al. 2011; Wang et al. 2012; Li et al. 2016). However, to 

reiterate, while HIBMs share some pathological features with IBM, they are clinically 

distinct from sporadic IBM in that they lack inflammation (which is prominent in sporadic 

IBM), have a much earlier age of onset, and have a different pattern of muscle 

involvement. 

 

Outside of the HIBM models, several labs have developed animal models that 

recapitulate specific characteristics of IBM (reviewed in: Afzali et al. 2017). The majority 

of these models involve using either pharmacologic or transgenic means to drive β-

amyloid (Aβ) aggregation in skeletal muscle. One group performed intraperitoneal 

injections of Wistar rats with chloroquine diphosphate: an anti-malaria drug that can 

cause a vacuolar myopathy (Ikezoe et al. 2009). Prior to rimmed vacuole formation at 7 

weeks post-treatment, they observed increased levels of LC3-II—indicating increased 

autophagy—and Aβ in skeletal muscle followed by an elevated unfolded protein 

response (UPR). The authors hypothesized that Aβ accumulation may be driving ER 
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stress in their model eventually leading to degeneration of myofibers (Ikezoe et al. 

2009). Interestingly, when this chloroquine rat model was challenged with resistance 

exercise—rats climbed a ladder with weight attached to their tails 9 weeks after starting 

treatment—it was found that exercise reduced Aβ accumulation, which rescued muscle 

atrophy and increased expression of key regulators of mitochondrial biogenesis (Koo, 

Kang, and Cho 2019). Another group generated a transgenic animal model in which 

human wild-type (WT) β-amyloid precursor protein (βAPP) was expressed in fast-twitch 

(type II) skeletal muscle (Moussa et al. 2006). Hemizygous transgenic mice showed 

increased levels of βAPP and Aβ in skeletal muscle fibers, and they became significantly 

weaker with age in comparison to nontransgenic littermates. In addition, dissociated 

muscle fibers from transgenic mice exhibited a 2-fold increase in resting calcium and 

membrane depolarization compared with nontransgenic littermates (Moussa et al. 2006). 

These latter characteristics may explain the persistent muscle weakness in IBM, 

however, the potential contribution of βA and βAPP in the pathogenesis of IBM remains 

controversial (Greenberg 2009; Fergusson 2009). 

 

A striking feature of IBM biopsies is the dramatic sarcoplasmic and sarcolemmal 

upregulation of MHC-I, and several groups have developed models to explore this 

characteristic. First, a conditional mouse model was developed where overexpression of 

MHC-I (mouse H-2Kb) was driven by a muscle-specific promoter repressible with 

doxycycline (Nagaraju et al. 2000). After doxycycline was removed at 4 weeks, these 

transgenic mice showed specific upregulation of MHC-I, impaired locomotor activity, and 

increased serum levels of CK and glutamic-oxaloacetic transaminase, indicating ongoing 

muscle damage compared to littermates. By 3.5 months, skeletal muscles showed 

myopathic features including internalized nuclei and degenerating fibers as well as 
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macrophage infiltration. Readministration of doxycycline for 5 months after 4 months of 

transgene expression was unable to rescue these phenotypes, and expression of MHC-I 

remained elevated, indicating the persistent, uncontrollable nature of this inflammatory 

response once initiated (Nagaraju et al. 2000). Another group used this model to assess 

the impact of this MHC-I overexpression in young muscle tissue and reported a more 

severe phenotype when doxycycline was removed immediately after weaning (Li et al. 

2009). Gene expression analysis of these mice revealed up-regulation of genes involved 

in protein transportation, folding, processing, and glycosylation such as Hsp40 

chaperones and derlin proteins (Li et al. 2009). In addition, several significantly over-

expressed genes were part of the UPR, such as Armet, a clear parallel to the 

chloroquine rat model discussed above. The UPR is activated to handle misfolded or 

overexpressed proteins and is characterized by the expression of ER chaperones, 

reduced protein synthesis, and enhanced degradation of misfolded proteins by the 

ubiquitin-proteasome system and ER-associated degradation. Interestingly, when MHC-I 

is overexpressed in the skeletal muscle of immunodeficient, alymphoid mice, proteomic 

analysis also shows upregulation of the UPR indicating this process is intrinsic to 

myofibers and can occur independently from involvement with the adaptive immune 

system (Freret et al. 2013). It is important to note that MHC-I staining is also commonly 

seen in muscle biopsies from patients diagnosed with non-inflammatory myopathies and 

neurogenic disorders, whereas MHC-II staining is more specific to inflammatory 

myopathies (Rodriguez Cruz et al. 2014). Therefore, it would be informative to explore 

the effect of conditionally overexpressing MHC-II in skeletal muscle.   

  

To explore the involvement of anti-NT5C1A in IBM pathology, a passive in-vivo 

immunization model has been developed by injecting mice with immunoglobulin (IgG) 
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samples from IBM patients with and without NT5C1A antibodies. Mice injected with anti-

NT5C1A positive patient serum showed myopathic features (e.g. fiber size variation), 

p62 aggregates in muscle, and macrophage infiltration (Tawara et al. 2017). As a next 

step, this group has also developed an active immunization mouse model using NT5C1A 

peptides (Chinoy and Lilleker 2019: P131). Of the three different peptide sequences 

injected into mice, autoantibodies recognizing the injected NT5C1A peptides were 

detected in the sera of all the mice (5 per group). Two of the peptide-injected groups 

showed a significant decrease in motor activity, and one group also showed increased 

expression of p62 and LC3-II in muscle lysates as detected via western blot (Chinoy and 

Lilleker 2019: P131). These models show that mice immunized passively or actively to 

develop antibodies to NT5C1A can mimic some pathological features of IBM; however, 

more research is needed to understand the of role anti-NT5C1A in IBM.  

 

While the models described above are useful tools to elucidate the basic biology 

underlying discrete elements of IBM pathology, none of them could be described as a 

comprehensive laboratory model showing the full spectrum of pathological features. 

Increasingly, xenograft models of disease —where human tissue is transplanted in 

immunocompromised mice—have proven to be valuable tools for rare or sporadic 

diseases that often lack laboratory models and they have propelled therapeutic 

development, especially in oncology. 
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Chapter 2: Using Xenografts to Study 
Human Disease 

2.1 The Use of Patient Derived Xenografts in Cancer 

The first immortal human cell line was created in Dr. George Gey’s laboratory by the 

technician Mary Kubicek who successfully cultured cells from a sample of Henrietta 

Lacks’ cervical cancer at Johns Hopkins Hospital (Scherer, Syverton, and Gey 1953). 

This HeLa cell line has had an immeasurable impact on human medicine, and it is only 

natural that in vitro cell culture models dominated cancer research for decades. In 2012 

the Cancer Cell Line Encyclopedia (CCLE) compiled gene expression, chromosomal 

copy number, and parallel sequencing data from 947 human cancer cell lines to aid in 

predictions of drug sensitivity (Barretina et al. 2012). In a recent amendment, the number 

of lines rose to 1,072 and the characterization of the cell lines expanded to include data 

on RNA splicing, DNA methylation, and histone H3 modification among other 

characteristics (Barretina et al. 2019). This vast array of cancer cell lines have been 

used for both in vitro and in vivo studies, in particular, the most frequently used models 

for preclinical therapeutic testing have historically been xenograft models generated by 

injecting these cells into immunodeficient mice (Jung, Seol, and Chang 2018). While 

such models are easy to generate, they have a number of limitations. Most importantly 

these models do not recapitulate the heterogenous population of cells found within the 

tumor microenvironment, and they typically fail to predict drug efficacy in patients. To 

overcome these shortcomings, researchers have turned to patient-derived tumor 

xenografts (PDX).  
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The first successful PDX model was developed by subcutaneously transplanting tissue 

from a metastatic adenocarcinoma into athymic, nude mice (Rygaard and Povlsen 

1969). Although the xenografts regressed in control mice, they showed rapid growth in 

nude mice, and 40 days after transplantation the tumor mass more than doubled. More 

than five decades have passed since this initial study, and PDX models have been 

developed for the majority of solid tumors including urothelial and renal cell carcinomas, 

prostate cancer, and glioblastomas (Namekawa et al. 2019; Lee et al. 2019; Tracey et 

al. 2020). One clear issue that can arise when using PDX models is tissue availability as 

not all universities or laboratories have ready access to patient samples. However, 

numerous serially transplantable PDX models have been established to address this 

issue of accessibility (Dobrolecki et al. 2016; Navone et al. 2018). To date, the Jackson 

Laboratory’s Mouse Models of Human Cancer Database (MMHCDB), a compendium of 

mouse models of human cancer, lists over 400 patient-derived xenograft (PDX) models 

(Krupke et al. 2017). 

 

It is clear that PDXs models have been successfully utilized to develop laboratory 

models and treatments for common cancers, including multiple myeloma, as well as 

personalized therapies for individual patients (Kim et al. 2005; Rubio-Viqueira and 

Hidalgo 2009; Sako et al. 2010; Roberts et al. 2014; Izumchenko et al. 2017). Although 

some characteristic hallmarks of cancer—uncontrollable proliferation and tissue 

invasion—undoubtably predispose the success of PDX models in oncology, researchers 

have expanded the use of xenografts to successfully study other diseases including 

disorders of skeletal muscle (Fouad and Aanei 2017). 
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2.2 Using Xenografts to Study Muscle Disease 

The most frequently used method for producing skeletal muscle xenografts is the 

injection of myogenic cells (e.g. satellite cells, iPSCs, or myoblasts) into immunodeficient 

mice following preinjury of the injection site via cardiotoxin, cryodamage, or irradiation to 

create a favorable niche for engraftment (reviewed in: Mueller and Bloch 2019). This 

process creates a chimeric muscle within the host mouse containing both murine and 

human myofibers. Originally nude or SCID mice were preferred hosts as these mice lack 

T cells or all lymphocytes, respectively, which make them permissive for xenograft 

studies. However, improved immunocompromised mouse models have been developed 

in recent years. In particular, NOD-Rag1 (null) strains carrying the IL2rγ (null) mutation, 

such as NSG and NRG mice, more readily support engraftment of human tissue (Silva-

Barbosa et al. 2005; Maykel et al. 2014).  

 

Three major obstacles to successful engraftment of myogenic precursors are early 

progenitor cell death, limited cell proliferation, and poor migration within engrafted 

muscle (Riederer et al. 2012). In addition, the injection of a homogenous population of 

cells does not fully recapitulate the heterogenous population of cells found within the 

skeletal muscle niche. For instance, fibro-adipogeneic progenitors (FAPs) massively 

proliferate in skeletal muscle following muscle injury and their intercellular interactions 

drive satellite cell activation and promote efficient regeneration (Farup et al. 2015; 

Malecova et al. 2018; Biferali et al. 2019). In a mouse model of limb girdle muscular 

dystrophy 2B, progressive accumulation of Annexin A2—a calcium-dependent 

phospholipid-binding protein involved in exocytosis—in the myofiber matrix causes FAPs 

to preferentially differentiate into adipocytes driving fatty replacement of myofibers 
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(Hogarth et al. 2019). These data implicate FAPs in the adipogeneic replacement of 

myofibers commonly seen in muscle diseases, including IBM, and showing the 

importance of cells beyond myogenic precursors in skeletal muscle regeneration. 

 

Another approach to generate human skeletal muscle xenografts is to transplant whole 

muscle grafts into immunodeficient host mice. The first proof-of-principal study that 

unintentionally tested this approach involved the transplantation of muscle from 

dystrophic mdx mice to control mice sharing the same genetic background (Morgan, 

Coulton, and Partridge 1989). While the goal of this study was to demonstrate that the 

mdx mutation caused a muscle intrinsic primary myopathy, it also revealed that whole 

muscle grafts could regenerate in host mice and maintain their original genetic profile 

(Watt et al. 1987; Morgan, Coulton, and Partridge 1989).  

 

More recently, whole muscle xenografts have been used to develop a model of 

fascioscapulohumeral muscular dystrophy (FSHD) (Zhang et al. 2014). In this model, 

human muscle biopsy specimens are transplanted into the hindlimbs of immunodeficient 

NRG mice to form xenografts. The transplanted human myofibers die, but human 

satellite cells present in the xenograft subsequently expand and differentiate into new 

human myofibers which repopulate the engrafted human basal lamina. Therefore, the 

regenerated myofibers in these xenografts are entirely human and are spontaneously 

revascularized and innervated by the mouse host. Importantly, FSHD patient muscle 

tissue transplanted into mice recapitulates key features of the human disease, namely 

expression of the DUX4 transcription factor (Zhang et al. 2014). FSHD is caused by 

overexpression of DUX4, which is epigenetically silenced in normal muscle tissue 

(Gabellini, Green, and Tupler 2002; Lemmers et al. 2010). In the FSHD xenograft model, 
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treatment with a DUX4-specific morpholino has been shown to successfully repress 

DUX4 expression and function and may be a potential therapeutic option for FSHD 

patients (Chen et al. 2016).  

 

These studies demonstrate that human skeletal muscle xenografts are a promising 

approach to model muscle disease and test potential therapies in mice. In a novel 

application of this methodology, this study demonstrates that human skeletal muscle 

xenografts can be used to model acquired, inflammatory muscle diseases, such as IBM.  
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Chapter 3: A Surgical Description of the 
Xenograft Technique 

 
 

This is adapted from Britson, K. A., Black, A. D., Wagner, K. R., Lloyd, T. E. Performing 

Human Skeletal Muscle Xenografts in Immunodeficient Mice. J. Vis. Exp. (151), e59966, 

doi:10.3791/59966 (2019) (Britson et al. 2019). Reprinted in this dissertation with 

permission from the Journal of Visual Experiments, pursuant to their Author License 

Agreement. 

3.1 Introduction 

It has been reported that only 13.8% of all drug development programs undergoing 

clinical trials are successful and lead to approved therapies (Wong, Siah, and Lo 2019). 

While this success rate is higher than the 10.4% previously reported (Hay et al. 2014), 

there is still significant room for improvement. One approach to increase the success 

rate of clinical trials is to improve laboratory models used in preclinical research. The 

Food and Drug Administration (FDA) requires animal studies to show treatment efficacy 

and assess toxicity prior to Phase 1 clinical trials. However, there is often limited 

concordance in treatment outcomes between animal studies and clinical trials (Perel et 

al. 2007). In addition, the need for preclinical animal studies can be an insurmountable 

barrier for therapeutic development in diseases that lack an accepted animal model, 

which is often the case for rare or sporadic diseases. 
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One way to model human disease is by transplanting human tissue into immunodeficient 

mice to generate xenografts. There are three key advantages to xenograft models: First, 

they can recapitulate the complex genetic and epigenetic abnormalities that exist in 

human disease that may never be reproducible in other animal models. Second, 

xenografts can be used to model rare or sporadic diseases if patient samples are 

available. Third, xenografts model the disease within a complete in vivo system. For 

these reasons, we hypothesize that treatment efficacy results in xenograft models are 

more likely to translate to trials in patients. Here, we describe in detail the surgical 

method for creating human skeletal muscle xenografts in immunodeficient mice. 

3.2 Protocol 

All use of research specimens from human subjects was approved by the Johns Hopkins 

Institutional Review Board (IRB) to protect the rights and welfare of the participants. All 

animal experiments were approved by the Johns Hopkins University Institutional Animal 

Care and Use Committee (IACUC) in accordance with the National Institutes of Health 

(NIH) Guide for the Care and Use of Laboratory Animals. 8 to 12-week-old male NOD-

Rag1null IL2rγnull (NRG) host mice (Jackson Laboratory, 007799) are used to carry out 

xenograft experiments. These mice are housed in ventilated racks and are given HEPA-

filtered, tempered, and humidified air as well as reverse osmosis filtered 

hyperchlorinated water. Mice are provided water and an irradiated antibiotic diet (Envigo, 

TD.06596) ad libitum, and the facility provides 14 hours of light to 10 hours of dark as 

controlled by central timer. 
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1. Equipment preparation  

1.1. Acquire NOD-Rag1null IL2rγnull (NRG) mice, 8-12 weeks of age. 

1.2. Autoclave surgical equipment: scissors, forceps, needle holder, surgical stapler 

(Table 3.1), wound clips, surgical wipes (Table 3.1), and beaker. 

1.3. Prepare 50 mL of muscle media (20% fetal bovine serum, 2% chick embryo extract, 

1% antibiotic/antimycotic in Hams F10 Medium). Keep all chemicals/drugs/solutions 

used for surgery at room temperature unless stated differently in the protocol. 

1.4. Prepare a 1 mL syringe with a 26-gauge needle that is 3/8 inches long containing 2 

mg/mL analgesic (Table 3.1), and place on ice. The analgesic can be diluted to the 

proper concentration using sterile phosphate buffered saline (PBS). 

 

2. Surgical preparation  

2.1. Obtain a human muscle biopsy under an IRB-approved protocol from patients 

whose muscles display strength > 4-/5 on the MRC (Medical Research Council) scale 

(MRC 1976). Place the research specimen in a 100 mm x 15 mm Petri dish containing 

muscle media.  

NOTE: The MRC scale is used in clinical practice as an assessment of muscle 

strength with 0 showing no contraction, 5 showing normal power, and 4 (4- to 4+) 

showing movement against resistance (MRC 1976). We have found that muscles 

with mild to moderate weakness (MRC > 4-/5) typically show disease pathology 

but are not extensively replaced by fatty tissue or fibrosis, both of which impede 

xenograft regeneration. In the case of autopsy tissue where a recent MRC score 

is not available, muscle quality can be accessed via gross observation. Muscle 

biopsies that are pale pink in appearance or have large areas of fatty tissue are 

not likely to xenograft successfully. 
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2.2. Remove any remaining fascia or fatty tissue from the specimen with surgical 

scissors using a stereo microscope and light source to assist visualization. 

2.3. Dissect the muscle biopsy into approximately 7 mm x 3 mm x 3 mm pieces with 

surgical scissors using the stereo microscope and a light source. Ensure fibers are 

arranged longitudinally within the specimen.  

2.4. Place the Petri dish containing dissected muscle on ice. On average, the xenografts 

are kept in media for 4 hours while surgeries are being performed. However, biopsies 

have been stored in media for 24 hours prior to xenografting, and this delay did not 

appear to negatively impact transplantation or regeneration.  

2.5. Place synthetic, non-absorbable sutures (Table 3.1) in a 100 mm x 15 mm Petri 

dish containing 70% ethanol. 

2.6. Set up a dual procedure anesthesia circuit: arrange the Mapleson E breathing circuit 

on the stereo microscope and place the induction chamber in a biosafety cabinet. 

2.7. Obtain the weight of the NRG mouse by placing in an autoclaved beaker on a scale, 

and transfer to the induction chamber. Induce anesthesia under 3% isoflurane. Once the 

appropriate anesthetic depth is achieved—as assessed by observation of respiratory 

rate, muscle relaxation, and lack of voluntary movement—reduce the vaporizer setting to 

1.5% for the remainder of the surgery.  

2.8. Transfer the mouse from the induction chamber to the Mapleson E breathing circuit 

and apply ophthalmic ointment to eyes.  

2.9. Remove hair overlying the tibialis anterior (TA) from ankle to knee with a trimmer, 

followed by a 1-minute treatment with hair removal lotion (Table 3.1) (Figure 3.1).  

2.10. Disinfect the surgical site by swabbing the leg with povidone-iodine solution. Then 

wash away the remaining povidone-iodine with 70% ethanol. 

2.11. Inject the mouse subcutaneously with analgesic (Table 3.1) at a dose of 5 mg/kg. 
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3. Xenograft surgery  

3.1. Tape down the leg and make a straight incision over the tibialis anterior (TA) muscle 

with scissors and iris forceps originating at the distal tendons and terminating below the 

knee (Figure 3.1A, B).  

3.2. Separate skin from muscle using blunt dissection with surgical scissors. 

3.3. Cut through the epimysium of the TA muscle with scissors starting at the tendon and 

ending at the knee.  

NOTE: This is a very superficial cut (less than 0.5 mm; Figure 3.1B, black 

dashed line), and the underlying TA should not be damaged in the process as 

this would make removal more challenging. When performed correctly, the 

muscle fibers will visibly relax.  

3.4. Cut the distal tendon of the TA with scissors, grab the tendon with iris forceps, and 

pull the TA up toward the knee (Figure 3.1C).  

3.5. Cut the distal tendon of the extensor digitorum longus (EDL) with scissors and pull 

the EDL up toward the knee (Figure 3.1D). Once the proximal tendon of the peroneus 

longus (PL) muscle is visible, remove the EDL with scissors (Figure 3.1D, green dashed 

line). 

3.6. Remove the TA with scissors (Figure 3.1D, blue dashed line) and use a surgical 

wipe wetted with PBS and slight pressure to achieve hemostasis (Figure 3.1E).  

 
 
 
3.7. Thread a suture through proximal peroneus longus (PL) tendon and trim, leaving 

approximately 1.5 inch of thread on either side of the tendon (Figure 3.1F). 
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3.8. Perform the first half of a two-hand surgical square knot, but do not tighten: this will 

form a circle. Place a xenograft in this circle and tighten the loop to secure the xenograft. 

Complete the other half of the square knot (Figure 3.1G, H). This will suture the 

xenograft to the proximal tendon of the PL. 

NOTE: The medial tarsal artery and vein can lie close to or on top of the distal 

tendon of the PL. Do not place sutures through or around these vessels. It is 

easy to tell if a suture has been improperly placed as vessels will blanch or 

bleed. If this occurs, remove the suture and place in a different location. 

3.9. Thread suture through distal PL tendon and repeat the square knot technique from 

step 3.8 to tie the xenograft to the distal tendon (Figure 3.1H, I).  

3.10. Pull skin over xenografted muscle, seal with surgical glue, and place 2-3 surgical 

staples over the incision (Figure 3.1J). 

3.11. Place mouse in a clean cage on a heated pad to recover. Monitor mouse until fully 

conscious and periodically over the next few days for signs of local systemic infection 

and to ensure the surgical site is not reopened.  

 

4. Xenograft collection 

NOTE: Xenografts are typically collected between 4 to 6 months post-surgery. 

However, collections have been performed up to 12 months post-surgery.  

4.1. Place a covered beaker containing 200 mL of 2-methylbutane in a box containing 

dry ice for a minimum of 30 minutes before xenograft collection.  

4.2. Induce anesthesia under 3% isoflurane in induction chamber. Once the appropriate 

anesthetic depth is achieved, reduce the vaporizer setting to 1.5% for the remainder of 

the surgery.  
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4.3. Transfer the mouse from the induction chamber to the Mapleson E breathing circuit 

arranged on a stereo microscope. 

4.4. Remove hair overlying the tibialis anterior from ankle to knee with a trimmer and hair 

removal lotion. The sutures holding the xenograft in place can be seen through the skin 

(Figure 3.2A). 

4.5. Tape down the leg and use scissors and iris forceps to open skin over the xenograft 

until both sutures are visible (Figure 3.2B). Skin overlying the xenograft can be removed 

as shown to make removal of the xenograft easier (Figure 3.2C). 

4.6. Use a scalpel to cut between the PL muscle and the gastrocnemius muscle (Figure 

3.2D, E, incision along epimysium labeled with arrow). The PL will be removed with the 

xenograft.  

4.7 Use a scalpel to cut between the xenograft and the tibia (Figure 3.2E, arrow denotes 

initial site and direction of incision).  

4.8. Cut below the distal suture and through the distal tendon of the PL (Figure 3.2F, the 

arrow indicates where the tendons are cut).  

4.9. Remove the xenograft and PL by grabbing the suture with iris forceps and deflecting 

it toward the knee while using scissors to cut it away from the underlying muscle (Figure 

3.2J). 

4.10. Cut above the proximal suture with scissors to remove the xenograft and PL 

(Figure 3.2J, cut along dotted line). 

4.11. Place the specimen on a small piece of cardboard or plastic, and pin as close to 

the sutures as possible. While pinning the specimen, gently stretch the muscle to ensure 

that the fiber orientation is maintained during the snap freezing process. After the pins 

are securely in place, slide the muscle up the pins so it rests just above the cardboard. 
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NOTE: Alternatively, one end of the xenograft can be mounted in tragacanth on a 

cork, or it can be submerged entirely in optimal cutting temperature (O.C.T.) 

compound in a cryomold. With care, muscle conformation can be retained with 

both methods.  

4.12. Snap freeze the xenograft in pre-cooled 2-methylbutane.  

4.13. Store xenograft at -80 °C.  

4.14. Immediately following xenograft collection, euthanize mice in accordance with 

American Veterinary Medical Association guidelines:  

4.14.1. Place mice in a sealed chamber with an appropriate waste gas 

scavenging system. Use isoflurane at a concentration of 3-4% to induce 

anesthesia.  

4.14.2. Once the appropriate anesthetic depth is achieved—as assessed by 

observation of respiratory rate, muscle relaxation, and lack of voluntary 

movement—increase the vaporizer setting to 5% to induce death. Leave the 

mice in the chamber for an additional 2 minutes after breathing has ceased. 

Death is verified by observing that the mice fail to recover within 10 minutes after 

overdose of isoflurane.  

4.14.3. Finally, perform cervical dislocation on the mice. 

NOTE: In the case of bilaterally xenografted mice, the contralateral xenograft can be 

saved for a later collection. To perform a survival collection, open the skin overlying the 

xenograft with a single straight cut with surgical scissors, and remove the xenograft as 

described in steps 4.6 to 4.10. Then close the skin over the empty tibial compartment 

using surgical glue and staples. Treat the mouse with analgesic as described in step 

2.11 and place the mouse in clean cage on heated pad to recover. Monitor the mouse 
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until fully conscious and periodically over the next few days for signs of local systemic 

infection and to ensure the surgical site is not reopened. 
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Table 3.1 Materials for Xenograft Surgery. A summary of all equipment and reagents 
necessary to carry out the xenograft surgical technique. 
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Figure 3.1 Xenograft Surgery  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A) Hair is removed from surgical site. B) An incision is made over the tibialis anterior 
(TA). The distal tendons of the TA and extensor digitorum longus (EDL) are marked with arrows. 
The black dashed line indicates where the epimysium will be cut in step 3.3. C) The distal tendon 
of the TA is cut and the muscle is pulled up to the knee. D) The tendon of the EDL is cut and the 
EDL is pulled up to the knee. This exposes the proximal tendon of the peroneus longus (PL) marked 
with an arrow. Dashed lines indicate where to cut with scissors to remove the EDL (green) and PL 
(blue). E) The EDL and TA are removed. F) A suture is placed through the proximal tendon of the 
PL. G) The xenograft is placed in the empty tibial compartment and sutured to the proximal PL 
tendon using a two-hand surgical square knot. H) A suture is placed through the distal tendon of 
the PL, marked with an arrow, and another two-hand surgical square knot is used to suture the 
xenograft to the distal tendon. I) The xenograft is fully transplanted and sutured to the PL. J) The 
skin is closed with surgical glue. 
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Figure 3.2 Xenograft Collection 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 A) Hair is removed from surgical site. Sutures are visible under skin. B) An incision is 
made over the top of the xenograft. C) The skin overlying the xenograft is removed. D) By pulling 
the gastrocnemius muscle to the side, a faint white line of epimysium separating the peroneus 
longus (PL) muscle and the gastrocnemius becomes visible (shown by the arrow). Use the 
scalpel to cut along this line to separate the PL from the other leg muscles. E) Starting at the 
ankle, a scalpel is used to cut along the tibia and free the xenograft. The arrow shows the 
beginning of the incision along the tibia. F) The right side of the xenograft, and the PL are now 
free from the other muscles in the leg and are ready for removal. The arrow indicates where the 
tendons are cut with surgical scissors to start removing the xenograft and PL. J) After cutting 
below the distal suture, deflect the xenograft toward the knee. The dashed line indicates where to 
cut with surgical scissors to remove the xenograft and PL from the tibial compartment. F) The 
empty tibial compartment with the xenograft and PL successfully removed. 
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3.3 Results 

As demonstrated by Yuanfan Zhang et al., this surgical protocol is a straightforward 

method to produce human skeletal muscle xenografts (Zhang et al. 2014). Regenerated 

xenografts become spontaneously innervated and display functional contractility. In 

addition, muscle xenografted from FSHD patients recapitulates changes in gene 

expression observed in FSHD patients (Zhang et al. 2014). 

 

In our experience, approximately 7 out of 8 xenografts performed from control patient 

specimens will show successful muscle engraftment. A successful xenograft shows 

robust regeneration of human myofibers as identified with human specific antibodies 

(Figure 3.3). Positive embryonic myosin staining within a proportion of myofibers 

indicates that the regeneration process is still ongoing. In contrast, poor surgical 

technique or an inadequate specimen may lead to poor regeneration of muscle fibers 

(Figure 3.3). 

 

Xenografts performed from a patient diagnosed with an idiopathic inflammatory 

myopathy (IIM) show moderate numbers of regenerated human myofibers at 4- and 6-

month collections, and embryonic myosin staining persists at 6 months (Figure 3.4A). 

Inflammatory cells are present in the xenograft as shown by H&E staining (Figure 3.4A), 

and have been confirmed with CD3, CD68, and other immunological markers (data not 

shown). Xenografts are stable within the mouse, and up to 12-month collections have 

been performed. Individual myofiber size is comparable between the 4- and 6-month IIM 

xenografts and the original IIM patient biopsy (Figure 3.4B). Rare fibers showing a cross 

sectional area (CSA) greater than 3500 μm2 are observed in xenografts but not in the 
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IIM biopsy, indicating that some myofibers in the xenografts can regenerate to a CSA 

comparable in size to healthy myofibers (Figure 3.4B). 

 

 

Figure 3.3 Expected Positive and Negative Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 Xenografts collected 4-months post-surgery showing good or poor regeneration are 
stained with human-specific lamin A/C (1:50) and human-specific spectrin (1:20) and embryonic 
myosin (1:10) (Table 3.1). Regions indicated by the white dashed boxes are shown as higher 
magnification inserts. Scale bar: 200 µm. 
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Figure 3.4 Representative Xenograft Regeneration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4 A) Xenografts (outlined with dashed lines) performed from a patient diagnosed with an 
idiopathic inflammatory myopathy (IIM) stained with Hematoxylin and Eosin (H&E), human 
specific Lamin A/C, and human specific spectrin, show myofiber formation within NRG mice at 
both 4- and 6-month time points. Embryonic myosin staining demonstrates that regeneration is 
still ongoing at both time points. Scale bar: 200 µm. B) Histograms depicting cross sectional area 
(CSA) of myofibers from 4- and 6-month xenografts and human biopsies from one patient 
diagnosed with an idiopathic inflammatory myopathy (IIM) and one healthy control patient. 
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3.4 Discussion 

Patient-derived xenografts are an innovative way to model muscle disease and carry out 

preclinical studies. The method described here to create skeletal muscle xenografts is 

rapid, straightforward, and reproducible. Unilateral surgeries can be performed in 15 to 

25 minutes, or bilaterally in 30 to 40 minutes. Bilateral xenografts can provide additional 

experimental flexibility. For instance, researchers can perform localized treatment of one 

xenograft, with the other left as a control. The NRG mice are resistant to surgical site 

infection when housed in a pathogen-free facility; in our experience performing more 

than 300 xenografts, we have never had a mouse acquire a surgical infection. In 

addition, host mice tolerate the removal of the TA and EDL very well. Within an hour 

post-surgery, unilaterally and bilaterally xenografted mice will be active and walking 

around their cage, and even standing up on their hindlimbs. Occasionally we observe 

some foot drop in host mice, but usually only after a period of inactivity, such as if 

recently awoken, and within minutes of waking leg use will be normal. 

  

There are several critical steps in the protocol. First, during removal of the EDL and TA, 

it is very important to not injure the adjacent PL muscle or its tendons. This can be 

avoided by carefully and correctly identifying the placement of all distal tendons after the 

initial incision over the TA is performed. In addition, the proximal tendon of the PL should 

be identified and clearly visible before removal of the EDL (Figure 3.1D). Second, 

sutures must be placed through tendons and tightened fully in a proper two-hand 

surgical square knot. Xenografts regenerate more robustly under tension, and this is 

only obtainable if the xenograft is tethered to the PL tendons and if the sutures do not 

loosen post-operatively. Finally, it is important to not damage or sever any major blood 
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vessels supplying the foot. In particular, the medial tarsal artery and vein can lie close to 

or on top of the distal tendon of the PL. Do not place sutures through or around these 

vessels. It is easy to tell if a suture has been improperly placed as vessels will blanch or 

bleed. If this occurs, remove the suture and place in a different location. 

 

This method does have several limitations. It is not amenable to standard functional 

assays used in mouse models of muscle disease, such as grip strength or treadmill 

endurance. However, electrophysiological assessments of xenograft function can still be 

performed. Evoked force measurements can be recorded from collected xenografts, and 

single enzymatically isolated myofibers from xenografts loaded with ratiometric calcium 

dyes and electrically stimulated can be used to study calcium dynamics (Zhang et al. 

2014). Another inherent challenge in this model is that acquiring and working with 

human tissue can be difficult. Not all laboratories will have easy access to fresh muscle 

biopsies, but it has been shown that xenografts performed from autopsy tissue 

approximately 48 hours post-mortem can successfully engraft, and this tissue may be 

easier to obtain for some laboratories (Zhang et al. 2014). It is also challenging to 

manipulate gene expression in human tissue, whereas researchers using standard 

mouse models of disease can readily use the plethora of mouse genetic tools available.  

 

A strength of this xenograft model is that it allows researchers to study human muscle in 

vivo. Tissue culture has been used extensively to study the cell and molecular biology of 

human muscle. Yet, these short-term, ex vivo studies do not always approximate 

functional muscle in vivo. However, one caveat is that it is challenging to determine how 

closely xenograft biology and function approximates human muscle due to the 

contribution of components from the host mouse during the regenerative process. For 
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instance, human and mouse neuromuscular junctions (NMJs) are morphologically 

distinct, and there is significant divergence between the synaptic proteome of human 

and mouse NMJs (Jones et al. 2017). As xenografts are innervated by the mouse host, 

this may result in biological changes unique to the human xenografts. 

 

In future studies, this skeletal muscle xenograft method could be used to better 

understand human muscle cell biology and to develop novel models for rare or acquired 

muscle diseases that currently lack animal models. We anticipate that this will have a 

significant beneficial impact on therapeutic development for these diseases. 
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Chapter 4: Methods 
Human Muscle Biopsy 

All use of research specimens from human subjects was approved by the Johns Hopkins 

Institutional Review Board (IRB) to protect the rights and welfare of the participants. 

Patients with putative Inclusion Body Myositis (IBM) or other forms of myositis provided 

informed consent prior to recruitment and then were screened for participation in this 

study. More specifically, for inclusion in this study, IBM cases met ENMC 2011 criteria 

for clinically or clinico-pathologically defined IBM (Rose and ENMC 2013). Control 

samples were selected from age-matched non-IBM patients, including dermatomyositis, 

polymyositis, immune-mediated necrotizing myopathy, as well as patients with normal 

biopsies or non-inflammatory pathological features. Patient samples with excessive 

fibroadipose replacement or in poor condition were excluded. During a required 

diagnostic biopsy, individuals included in the study donated an extra muscle sample for 

use in xenograft surgeries. Under sterile conditions in the operating room, approximately 

one gram of tissue was removed from muscles having strength of ≥4 (MRC scale (MRC 

1976)). This tissue was then dissected into approximately 7 x 3 x 3mm strips of 

longitudinal fibers and taken immediately to the animal suite for xenografting. 

 

Irradiation of Muscle Biopsy 

Human biopsies treated with irradiation were dissected into two pieces, placed in 

separate 50mL conical tubes containing 10mL of primary muscle media (20% fetal 

bovine serum, 2% chick embryo extract, 1% antibiotic/antimycotic in Hams F10 

Medium), and one tube was treated with a 6.5 Gy dose of ionizing radiation using a Cs-
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137 irradiator. This dose was selected based on several studies demonstrating this dose 

was myeloablative, but not likely to severely impact satellite cell activation and thus 

xenograft regeneration (Gulati 1987; Masuda et al. 2015; Giebel et al. 2014; Paix et al. 

2018). This irradiated and untreated muscle was immediately taken to the animal suite 

and xenografted into 8- to 12-week NRG mice.  

 

Animal Husbandry 

All animal experiments were approved by the Johns Hopkins University Institutional 

Animal Care and Use Committee (IACUC) in accordance with the National Institutes of 

Health (NIH) Guide for the Care and Use of Laboratory Animals. Male NOD-Rag1[null] 

IL2rγ[null] (NRG) mice (The Jackson Labs, stock 007799) were used for all experiments. 

Mice were housed in ventilated racks and were given HEPA-filtered, tempered, and 

humidified air as well as reverse osmosis filtered hyperchlorinated water. Mice were 

provided water and an irradiated antibiotic diet (Envigo, TD.06596) ad libitum, and the 

facility provided 14 hours of light to 10 hours of dark as controlled by central timer. For 

xenografted mice treated with 10mg/kg OKT3 (Fisher, 50561956), stock OKT3 was 

diluted with sterile PBS and injected intraperitoneally immediately after the xenograft 

surgery and once weekly until xenograft collection was performed. This dose was 

chosen based on previous studies that demonstrated a dose of 10mg/kg delivered 

intraperitoneally could effectively eliminate CD45+CD3+ cells in the peripheral blood of 

humanized mice (Wunderlich et al. 2014). Control “untreated” mice in OKT3 experiments 

were injected with sterile PBS following the same treatment regimen. 

 

Xenograft Surgery  

For a detailed protocol please refer to Chapter 3. Briefly, 8- to 12-week NRG mice were 
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anaesthetized with 1.5% isoflurane, and 0.1mg/kg Buprenorphine (ZooPahrm) was 

administered subcutaneously for pre-emptive analgesia. A vertical incision was made to 

open the skin above the tibial compartment. The tibialis anterior and extensor digitorum 

longus muscles were removed, and pressure applied to achieve hemostasis. A 7 x 3 x 

3mm strip of dissected human muscle was placed in the tibial compartment and ligated 

with non-absorbable suture (6-0 Surgipro, Covidien) to the tendons of the peroneus 

longus muscle. The incision was closed with surgical glue (Histoacryl, Tissue seal) and 

stainless-steel wound clips (AutoClip System, F.S.T). The analgesic Carprofen (Rimadyl, 

Patterson Veterinary) was given subcutaneously after the surgery at a dose of 5mg/kg.  

 

Xenograft Collection and Processing 

For a detailed protocol please refer to Chapter 3. Briefly, NRG host mice were 

anesthetized with 1.5% isofluorane, and the leg was shaved. The skin overlying the 

xenograft was opened by a longitudinal incision from ankle to knee, and the location of 

the graft was determined by the position of the non-absorbable sutures. The xenograft 

was then removed, snap-frozen in 2-methylbutane (Fisher, 03551), and sectioned at 10 

µm using a cryostat (Leica, CM1860 UV). Following collection, the NRG host mice were 

euthanized consistent with AVMA guidelines.  

 

Hematoxylin and Eosin (H&E) Staining  

Fresh, 10µm sections were rehydrated through an ethanol dilution series: three 3-minute 

washes in 100% ethanol (Fisher, BP2818100), a 3-minute wash in 95% ethanol, and a 

3-minute wash in 80% ethanol). Following a 5-minute wash in distilled water (dH2O), 

slides were placed in Hematoxylin (Poly Scientific, s212A) for 3 minutes, washed quickly 

in dH2O, and placed in Tap water for 5 minutes to allow stain to develop. Slides were 
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dipped 12 times in acid ethanol (1 mL concentrated Hydrochloric Acid (Fisher, SA48) in 

400mL 70% ethanol), rinsed twice in Tap water for 1 minute, and placed in dH2O for 5 

minutes. Slides were then placed in Eosin (Poly Scientific, s176) for 30 seconds, and 

dehydrated in ethanol. Slides were cleared in xylene (Fisher, X5) and mounted using 

Permount (Fisher, SP15). 

 

Cytochrome C Oxidase/Succinate Dehydrogenase (COX/SDH) Stain 

10µm cryostat sections were obtained and dual-stained for COX/SDH as previously 

described (Loughlin 1993). Briefly, after slides were sectioned, they were immediately 

placed in COX incubating solution. Slides incubated for 2 hours at room temperature, 

and then were rinsed with distilled water. Next, the slides  were placed in SDH 

incubating solution and incubated at 37oC for 2 hours, rinsed in distilled water, 

dehydrated in ethanol (80%, 95%, and 100% Ethanol 5 minutes each), cleared in xylene, 

and mounted using Permount. 

 

Immunohistochemistry  

10µm fresh frozen sections were fixed with ice-cold methanol (Fisher, A412) for 10 

minutes and blocked with anti-mouse IgG (MKB-2215, Vector Laboratories) or with a 

blocking solution consisting of 2% normal goat serum in PBS. The primary antibodies 

used were: anti-human spectrin (NCL-SPEC1, Leica, 1:50), anti-human lamin A/C 

(Abcam, Ab40567, 1:50), anti-human MHC-1 (SC-32235, Santa Cruz, 1:300),  anti-

human p62 (SC-25575, Santa Cruz, 1:250),  anti-embryonic Myosin (eMHC, MYH3) 

(F1.652, DSHB, 1:10), anti-CD3 mouse (M725401-2 ,DAKO, 1:60), anti-CD3 rabbit 

(A0452, DAKO, 1:60), anti-human CD4 (ab133616, abcam, 1:100), anti-CD8 (M710301-

2,DAKO, 1:60), anti-Ki-67 (ab92742, abcam,1:60), anti-CD20 (M0755, DAKO, 1:200), 
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anti-CD68 (M0718, DAKO, 1:60), anti-CD138 (M7228, DAKO, 1:100). The secondary 

antibodies used were AlexaFluor 488 goat anti-mouse IgG1, AlexaFluor 594 goat anti-

mouse IgG2b, and AlexaFluor 594 goat anti-mouse IgG1a (all Life technologies, 

1:500). Biotinylated Goat Anti-Rabbit IgG Antibody (BA-1000, Vector Laboratories, 

1:100) and Biotinylated Goat Anti-Mouse IgG Antibody (BA-9200, Vector Laboratories, 

1:100) were used for DAB peroxide staining (SK-4100, Vector Laboratories). Where 

applicable, nuclei were labeled with DAPI in mounting medium (P36931, Invitrogen).   

 

TDP-43 Cryptic Exon Detection 

RNA was extracted from xenograft samples and human biopsies using TRIzol (Fisher 

Scientific, 15596018). A cDNA library was prepared using Protoscript II First Strand 

cDNA synthesis kit with random primers (NEB, E6560L), and cryptic exons were PCR 

amplified using the Dreamtaq Kit (Fisher, K1081P) following the protocol described in 

Figure 4.1. Primer sequences for TDP-43 target genes are summarized in Table 4.1. 

PCR products were visualized via gel electrophoresis on a 2% agarose (Fisher, 17850) 

gel containing 0.5µg/mL Ethidium bromide (Fisher, A25645). 

 

 Figure 4.1 Protocol for Cryptic Exon Product Amplification 
 

  
 

 

 

 

 

 

Temperature Duration  
95°C 60 s    
95°C 30 s    
64°C 15 s  40X  
72°C 45 s    
72°C 7 min    
4°C ∞    
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Table 4.1 Primer Sequences for Cryptic Exon Detection 

Target Gene Primer Sequences (5’ => 3’) Product Length 

GPSM2 F- AGTGGACATGTGGTGGTAAGAA 

R- GCTTCAAAGAATGACACGCCA 

199bp 

ACSF2 F- TGGTCAGACACAAACCTGG 

R- ACCGAGATGACTGTGGTCAG 

169bp 

HDGFRP2 F- CTGCGCTAAAGATGTCGGTCT 

R- TGCTTCCCTCCCTTCTGATGC 

263bp 

 

 

T cell Receptor Sequencing 

T cell Receptor (TCR) Sequencing experiments were performed in collaboration with the 

laboratory of Dr. H. Benjamin Larman using the Framework Region 3 (FR3) 

AmplifiKation sequencing (“FR3AK-seq”) method (Montagne et al. 2018). Briefly, RNA 

was TRIzol extracted from human biopsies and xenograft samples, and then reverse 

transcribed using a TCR beta (TCRB) chain constant region reverse primer with 

Superscript III First-Strand Synthesis System (Invitrogen). Primers to FR3 were used to 

PCR amplify all human TCR beta V alleles with KAPA2G Fast Multiplex Mix (Roche). 

Sequencing was performed on a HiSeq 2500, and results were analyzed using MiXCR 

v2.1.11 software (Bolotin et al. 2015) 

 

Flow Cytometry 

Flow Cytometry experiments were performed in collaboration with the laboratory of Dr. 

Armando Villalta as previously described (Villalta et al. 2014). To eliminate non-muscle 
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residing immune cells, mice were perfused with PBS and lymph nodes were removed. 

Single-cell suspensions were prepared from the isolated xenografts and incubated with 

anti-CD16/32 (clone 2.4G2) to block Fc receptors. These suspensions were then stained 

with human antibodies for CD3, CD4, CD8, CD28, CD57, and DAPI or Blue-Fluorescent 

Reactive Dye (Invitrogen Life Technologies) to assess cell viability. Analysis was 

performed on live cells on a BD LSRII flow cytometer with FACSDiva software (BD 

Bioscience). Post-acquisition analysis was performed with Flowjo software version 9.1. 

  

Microscopy and Image Analysis 

Fluorescent and transmitted light microscopy was carried out at the Johns Hopkins 

NINDS Multiphoton Imaging Core on a Keyence (BZ-X700) widefield, inverted 

microscope. Image analysis was performed in Fiji (Schindelin et al. 2012). Analysis of 

fiber cross-sectional area was semi-automated using MuscleJ (Mayeuf-Louchart et al. 

2018). 

 

Statistical analysis 

All statistical analyses were performed using GraphPad Prism version 8.3.1 for 

Windows, GraphPad Software, La Jolla California USA, www.graphpad.com. 

One-way ANOVA was used for comparisons between multiples groups, followed by a 

post hoc Tukey test to determine significance of differences between two groups. 

Alternatively, If the standard deviations between the groups were different, one-way 

Brown-Forsythe and Welch ANOVA test was used with the Dunnett’s T3 test for multiple 

comparisons. The nonparametric Mann-Whitney test was used also used to determine 

significance between two groups where noted. Data are presented as means +/- SD 

unless otherwise indicated in figure legends. Significance markers on figures are from 
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post hoc analysis (ns, not significant; *p ≤ 0.05, **p ≤ 0.001; ***p ≤ 0.001; ****p ≤ 

0.00001) with values of p ≤ 0.05 considered significant. 
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Chapter 5: A Xenograft Model of 
Inclusion Body Myositis  

5.1 Overview and Aims 

The pathogenesis of IBM has eluded researchers for decades, and is an area of 

considerable debate (Benveniste et al. 2015; Weihl and Mammen 2017; Keller, Schmidt, 

and Lünemann 2017; Greenberg 2019). The presence of highly differentiated CD8+ T-

cells invading healthy-appearing myofibers, the association of IBM with specific HLA loci 

and other autoimmune disorders, and the presence of autoantibodies in IBM support an 

autoimmune basis for the disease. However, the fact that immunosuppression has failed 

to show clinical benefit, the presence of protein aggregates (e.g. p62 and TDP-43) 

commonly found in neurodegenerative diseases, and the association with aging suggest 

the possibility that IBM is primarily a degenerative disease. Taken together, the 

pathogenesis of IBM is likely multifactorial with contributions from aging, genetic 

background, and environmental factors, and thus may be a combination of autoimmune 

and degenerative pathophysiologic processes. The absence of an animal model for IBM 

has hindered our progress in understanding the pathogenesis of IBM, and this study 

aims to establish and characterize the first animal model of IBM.  
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5.2 Inclusion criteria and patient characteristics 

Patients with putative IBM or other forms of myositis or myopathy provide informed 

consent prior to recruitment and then are screened for participation in this study (Table 

5.1).  Older patients undergoing muscle biopsy were preferentially recruited for this study 

to increase the likelihood of obtaining age-matched controls. IBM cases meet ENMC 

2011 criteria for clinically or clinico-pathological defined sporadic IBM (Rose and ENMC 

2013). Control samples are selected from non-IBM patients, including dermatomyositis, 

polymyositis, immune-mediated necrotizing myopathy, as well as patients with normal 

biopsies or mild, non-inflammatory pathological features. Patient samples with excessive 

fibroadipose replacement or in poor condition are not used for xenograft surgeries. 

Control patients are divided into non-myositis or myositis groups based on the absence 

or presence of T cells within the diagnostic biopsy respectively. The typical pathologic 

diagnoses of “non-myositis control” (NMC) biopsies include normal muscle, mild 

myopathic features (e.g. scattered internalized nuclei), mild neurogenic atrophy, and/or 

mitochondrial abnormalities. The “myositis control” (MC) biopsies show perifascicular 

inflammation, mild necrosis, myophagocytosis, and/or fasciitis. The IBM biopsies show 

characteristic features of IBM, including endomysial inflammation, primary invasion of 

myofibers by CD3+ T cells, COX-deficient fibers, and/or rimmed vacuoles. The sex and 

disease duration of the patients as well as the strength of the biopsied muscle are not 

significantly different between control and IBM patients (Table 5.1). However, the IBM 

patient population is significantly older than both control groups (non-myositis controls 

(NMC) vs IBM, p = 0.0125; myositis controls (MC) vs IBM, p = 0.0088) (Table 5.1). The 

majority of skeletal muscle biopsies used in xenograft surgeries were obtained from the 

biceps (46.15%) or rectus femoris (30.77%).  
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Table 5.1 Characteristics of xenograft study population   

 
Table 5.1 A summary of clinical, demographic, and biopsy details of patients involved used in this 
study. The disease duration was determined from the time of symptom onset—according to the 
patient’s medical records—to the time the diagnostic biopsy was performed. The strength of the 
biopsied muscle was based on the Medical Research Council (MRC) scale out of five (MRC 
1976). Mann-Whitney test was used to determine significance for the following features: age, 
disease duration, and strength of biopsied muscle. Fisher’s exact test was used to determine 
significance for the sex ratio of the patient population (Non-myositis control (NMC); Myositis 
control (MC)). In all cases, p ≤ 0.05 was considered significant. 
 

 

 

 
Entire 

Population 
(n=26) 

Non-
myositis 
Controls 

(n=6) 

Myositis 
Controls 

(n=6) 
IBM (n=14) 

p-value 
NMC vs 

IBM 

p-value 
MC vs 

IBM 

Sex (male), 
n (%) 17 (65.38%) 3 (50%) 3 (50%) 11 (78.57%) 0.3027 0.3027 

Age (yrs.), 
mean ± SD 64.27 ± 10.23 58.5 ± 10.9 57.3 + 9.58 69.7 + 7.13 0.0125* 0.0088** 

Disease 
duration 
(yrs.),   
mean ± SD 

4.77 ± 5.98 5.67 ± 4.84 6.50 ± 11.57 3.64 ± 2.27 0.4503 0.3313 

Biopsy 
location,    
n (%) 

      

-   Biceps 12 (46.15%) 3 (50%) 1 (16.67%) 8 (57.14%)   

-   Rectus    
    femoris 8 (30.77%) 2 (33.33%) 3 (50%) 3 (21.43%)   

-   Vastus  
    lateralis 3 (11.54%) 1 (16.67%) 1 (16.67%) 1 (7.12%)   

-   Deltoid 3 (11.54%) 0 (0%) 1 (16.67%) 2 (14.28%)   

Number of 
Xenografts 229 48 42 139   

Histological 
features of 

biopsy 
---- 

Normal 
muscle, mild 
myopathic 
features, mild 
neurogenic 
atrophy, 
and/or 
mitochondrial 
abnormalities 

Perifascicular 
inflammation, 
mild necrosis, 
myophagocyt-
osis, and/or 
fasciitis 

Endomysial 
inflammation, 
primary 
invasion, 
COX-
deficient 
fibers, and/or 
rimmed 
vacuoles 
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5.3 IBM xenografts regenerate robustly in NRG mice 

Our data demonstrate that IBM xenografts successfully regenerate comparably to both 

non-myositis and myositis control xenografts (Figure 5.1). Histological and 

immunofluorescent stains both show numerous regenerated human fibers (Figure 

5.1A), and there are no significant differences in the number of regenerated fibers 

between any of the three groups (Figure 5.1B). In addition, the percent of embryonic 

myosin (eMHC) positive fibers is unchanged, indicating that the process of myofiber 

maturation as assessed by the turnover of eMHC is unaffected (Schiaffino et al. 2015) 

(Figure 5.1D). There is a moderate increase in myofiber density, as determined by the 

percent of the xenograft area covered by myofibers, observed in IBM xenografts in 

comparison to non-myositis control xenografts (p = 0.0315) (Figure 5.1C). This can be 

explained by a corresponding increase in the median cross-sectional area (CSA) of IBM 

xenografts in comparison to both non-myositis control (p < 0.0001) and myositis control 

xenografts (p = 0.0420) (Figure 5.1E). Overall, these data show that IBM patient muscle 

is capable of forming robust human xenografts, even from patients showing moderate to 

severe IBM pathology. This is important on two fronts: first and foremost, this 

demonstrates feasibility of this model, and second, it demonstrates that IBM muscle is 

capable of robust regeneration which shows promising potential for therapeutic testing.  
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Figure 5.1 IBM muscle regenerates robustly in NRG mice 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1 (A) Representative images of non-myositis control, myositis control, and IBM 
xenografts stained with H&E, human spectrin (red), human lamin A/C (green), embryonic myosin 
(eMHC) (green), and DAPI (blue). Quantification of the number of fibers over the xenograft area 
(B), the fiber density of the xenografts as determined by the percentage of the xenograft area 
covered by myofibers (C), the percent of eMHC+ fibers (D), and the median cross-sectional area 
(CSA) of myofibers within the xenografts (E). For all graphs, each point denotes one xenograft 
(non-myositis control, n=14; myositis control, n=14; IBM xenografts, n=31) and for all p-values 
determined by Dunnett’s T3 test following one-way Brown-Forsythe and Welch ANOVA: *p ≤ 
0.05. 
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5.4 IBM xenografts recapitulate disease pathology 

Once it was established IBM muscle could regenerate in host mice, the next step was to 

assess these xenografts for features of IBM pathology. Namely, we examined xenografts 

for degenerative features such as protein aggregation and mislocalization as well as 

inflammatory features such as endomysial inflammation and primary invasion of non-

necrotic fibers.  

 

Protein aggregation and mislocalization 

To assess the IBM xenografts for degenerative features of disease we first performed 

immunostaining for p62, an autophagic adaptor that binds to ubiquitinated protein 

aggregates and is commonly seen aggregated in IBM muscle (Hiniker et al. 2013). We 

found positive staining at 10-months within IBM xenografts, but not myositis controls 

(Figure 5.2A). These p62-positive fibers are rare and have not been observed in earlier 

collections. Another degenerative feature observed in IBM patient muscle is the 

sarcoplasmic mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43) 

(Salajegheh et al. 2009; Hiniker et al. 2013). One of the essential nuclear functions of 

TDP-43 is to act as a splice repressor of cryptic exons (Jonathan P. Ling 2015). When 

TDP-43 is mislocalized from the nucleus, these cryptic exon sequences are included in 

mRNA transcripts and can be detected via RT-PCR using primers designed to the 

junctions between cryptic exons and adjacent exons (Figure 5.2B). We tested non-

myositis, myositis, and IBM patient biopsies for cryptic exon expression from three TDP-

43 target genes: GPSM2, ACSF2, and HDGFRP2 (Figure 5.2C). The majority (9 out of 

11, 81.82%) of the IBM patient biopsies showed cryptic exon expression, and none (0 

out of 7, 0%) of the control patients showed cryptic exon expression (Figure 5.2C). In 
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addition, we have detected GPSM2 and ACSF2 cryptic exon expression within 8-month 

and 10-month IBM xenografts from three different IBM cases, but not in non-myositis 

control xenografts (Figure 5.2D,E). Cryptic exon expression in IBM xenografts always 

corresponds to the patient biopsy; i.e. only human biopsies showing cryptic exon 

expression result in xenografts with cryptic exon expression. Examining cryptic exon 

expression longitudinally within one case reveals that although cryptic exon expression 

cannot be detected at 4-months (0/2 xenografts), by 8-months expression can be 

detected (3/4 xenografts) (Figure 5.2E), which suggests that this feature of IBM 

xenografts develops over time. Of note, we have not observed an obvious 

mislocalization and aggregation of TDP-43 in the sarcoplasm of IBM xenografts. 

However, these data show that TDP-43 nuclear function is likely impaired, and the 

protein is likely mislocalized in IBM xenografts, but not to the same extent as observed in 

IBM patient biopsies. 
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Figure 5.2 IBM xenografts show p62 aggregation and TDP-43 cryptic exon expression 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2 (A) Staining of autophagic adaptor p62 within patient biopsies and 10-month xenograft 
collections from myositis control and IBM xenografts. (B) Using primer pairs (arrows) designed to 
the junction of cryptic exon (CE) sequences, cryptic exon expression from TDP-43 target genes 
can be detected using RT-PCR. (C) Cryptic exon expression from TDP-43 target gene GPSM2 
(G), ACSF2 (A), and HDGFRP2 (H) detected in IBM patient biopsies. No cryptic exon expression 
was detected in biopsies from non-myositis controls patients, or myositis control patients 
diagnosed with Dermatomyositis (DM) or immune mediated necrotizing myopathy (IMNM). (D) 
Cryptic exon expression from GPSM2 (G) detected in IBM patient biopsies and xenografts, but 
not non-myositis control biopsy or xenografts (B = patient biopsy). (E) Cryptic exon expression 
from TDP-43 target gene GPSM2 (G) and ACSF2 (A) detected in IBM xenografts at 8-months, 
but not 4-month collections (B = patient biopsy). 
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Mitochondrial Pathology 

Mitochondrial abnormalities are a widely underappreciated feature of IBM pathology, and 

are not included in most diagnostic criteria for IBM. However, scattered cytochrome c 

oxidase (COX)-deficient fibers can be seen in the vast majority of patient muscle 

biopsies (Dahlbom, Lindberg, and Oldfors 2002; Joshi et al. 2014; Catalan-Garcia et al. 

2016). To assess IBM xenografts for this pathological feature, we carried out dual COX 

and succinate dehydrogenase (SDH) histological stains on 4-month non-myositis, 

myositis, and IBM xenografts. We find that the number of COX-deficient fibers is 

significantly increased in IBM xenografts in comparison to both non-myositis control 

xenografts (p = 0.0010) and myositis control xenografts (p = 0.0256) (Figure 5.3A,B). 

These findings indicate that this feature of IBM pathology is also recapitulated in our IBM 

xenograft model.  
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Figure 5.3 IBM xenografts display mitochondrial pathology 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3 (A) Representative images of dual COX/SDH stains of 4-month non-myositis control, 
myositis control, and IBM xenografts. (B) Quantification of the number of COX-deficient fibers in 
each group; each point denotes one xenograft (non-myositis control n = 12, myositis control n= 
13, IBM n = 25). Groups were compared using Brown-Forsythe and Welch one-way ANOVA with 
Dunnett’s T3 multiple comparison test to determine all p-values: *p ≤ 0.05, **p ≤ 0.01. 
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Endomysial inflammation and primary invasion in IBM xenografts 

In addition to these degenerative characteristics, several inflammatory features of IBM 

are also recapitulated in IBM xenografts (Figure 5.4). Non-myositis and myositis control 

xenografts show typical MHC-I staining around capillaries; however, IBM xenografts 

show a dramatic sarcoplasmic upregulation of MHC-1 (Figure 5.4A). We find that this 

upregulation corresponds to the presence of CD3+ T cells within IBM xenografts (Figure 

5.4A). In comparison to non-myositis control xenografts, both myositis control xenografts 

(p < 0.0001) and IBM xenografts (p < 0.0001) show significantly higher levels of CD3+ T 

cells (Figure 5.5B). Despite the similar levels of inflammation in both IBM and myositis 

control xenografts, examples of primary invasion of non-necrotic fibers are only 

observed in IBM xenografts (Figure 5.5C). Further staining shows a variety of different 

human immune cells persist within IBM xenografts, including helper (CD4+) and 

cytotoxic (CD8+) T cells, in addition to B cells (CD20+), macrophages (CD68+), and rare 

plasma cells (CD138+) (Figure 5.4D).  

 

Remarkably, the majority of CD8+ T cells within IBM xenografts were found to be 

proliferative at 4-months, and this proliferation is significantly reduced by 6-months (p < 

0.0001) and remains low at 8.5-months (p < 0.0001) (Figure 5.5A,B). The nature of the 

immune cells present with IBM patient muscle has been the focus of numerous studies. 

The majority of IBM muscle biopsies show oligoclonal populations of T cells, indicating 

that recognition of an unknown antigen is likely occurring (O'Hanlon et al. 1994; 

Lindberg, Oldfors, and Tarkowski 1994; Fyhr et al. 1997; Salajegheh et al. 2007). These 

clonal population of T cells persist over time, experience repeated antigen stimulation 

indicated by their loss of CD28 expression, and become highly differentiated and 
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cytotoxic as shown by the expression of markers such as CD57 and KLRG1 (Müntzing 

et al. 2003; Pandya et al. 2010; Greenberg et al. 2016; Greenberg et al. 2019).  

 

To better characterize the human immune cells within IBM xenografts, we have 

performed flow cytometry and T cell receptor (TCR) sequencing. Flow cytometry 

experiments have shown increased numbers of human CD45+ lymphocytes in an IBM 

xenograft in comparison to a myositis control xenograft (Figure 5.5C). The IBM 

xenograft had high levels of both CD4+ T cells and CD8+ T cells whereas the myositis 

control only had very low numbers of CD8+ cells (Figure 5.5C). Finally, many CD4+ and 

CD8+ T cells in the IBM xenografts were CD57+, and some of the CD8+ cells were 

CD28-CD57+ indicating they were antigen experienced, which was not the case in the 

myositis control xenograft (Figure 5.5C). These populations of cells mirror what has 

been found in IBM patient biopsies. 

 

To examine whether the T cells in IBM xenografts are oligoclonal, we used Framework 

Region 3 AmplifiKation sequencing (FR3AK-seq), a multiplex PCR-based approach to 

determine TCR repertoires (Montagne et al. 2018). This technique revealed that T cells 

within IBM xenografts are clonally restricted and contain hyperexpanded populations of 

T cells (Figure 5.5D). In addition, T cells within two xenografts showed restricted J gene 

(TRBJ2-3*01) usage, which was also observed three IBM patients (Figure 5.5E). Taken 

together, these data indicate that potentially disease relevant immune cells persist in 

IBM xenografts, and, as this model recapitulates the inflammatory and degenerative 

features of IBM, it provides a platform for therapeutic testing.   
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Figure 5.4 Endomysial inflammation and primary invasion in IBM xenografts 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4 (A) Representative MHC-I and CD3 stains of 4-month non-myositis control, myositis 
control, and IBM xenografts. (B) Quantification of the number of CD3+ T cells over the xenograft 
area. Each point denotes one xenograft (non-myositis control, n=14; myositis control, n=14; IBM 
xenografts, n=31), and one-way ANOVA with Tukey’s multiple comparison test was used to 
determine p-values ( ****p<0.0001). (C) H&E and CD3 stains showing an example of primary 
invasion of a non-necrotic fiber in a 4-month IBM xenograft. (D) Representative stains of CD4, 
CD8, CD20, CD68, and CD138 from a 4-month IBM xenograft. 
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Figure 5.5 T cells in IBM xenografts are proliferative, antigen experienced, and oligoclonal 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5 (A) Ki-67 (red) and CD8 (green) staining of 4-month, 6-month, and 8.5-month IBM 
xenografts. (B) Quantification of the percent of CD8+ T cells that show positive Ki-67 staining in 
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4-month, 6-month, and 8.5-month IBM xenografts. Fisher’s exact test was used to determine 
significance (****p < 0.0001). (C) Flow cytometry experiments comparing a myositis control 
xenograft and an IBM xenograft using human specific CD45 (hCD45) to analyze CD4+ and CD8+ 
populations of human T cells in xenografts. CD28 and CD57 populations were also examined (D) 
Analysis of TCR repertoire of 14 IBM muscle biopsies shows that most have primarily “large or 
“hyperexpanded” T cell clones. 5 xenografts samples from case 1 (1A-1F) and 7 samples from 
case 2 (2A-2G) from 3-11 month timepoints all show primarily hyperexpanded T cell clones. (E) 
Multiple sequence alignment (by MUSCLE) of a TCR clone found in xenografts from 2 patients 
(“xeno”) and 3 IBM biopsies (“IBM”) showing restricted usage of TRBJ2-3*01. 
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Chapter 6: Preclinical Testing in 
the IBM Xenograft Model 

6.1  Overview and Aims 

A fundamental stumbling block to the development of therapies for IBM has been the 

lack of an animal model: a problem we have aimed to address with our IBM xenograft 

model. The second goal of this project is to determine the feasibility of using this model 

to carry out preclinical studies. A central question in IBM is whether inflammation drives 

degeneration or is secondary to it. Recently, highly differentiated effector CD8+ T cells 

present in IBM muscle have been suggested to be refractory to conventional 

immunotherapy, and several companies are developing targeted approaches to deplete 

this subpopulation of T cells for therapeutic development in IBM (Greenberg et al. 2016; 

Greenberg et al. 2019).  Our xenograft model may be an ideal model to test this 

hypothesis in vivo. If depleting T cells rescues degenerative pathological features, this 

would provide direct evidence that T cells are necessary for myofiber degeneration in 

IBM. In contrast, if depleting T cells (including the putative refractory highly-differentiated 

subset) has no effect on degenerative pathology, this would suggest that this is unlikely 

to be a successful therapeutic approach. If these experiments are successful, they hold 

promise for directing therapeutic development in IBM.  

 



   
 

72 
 

6.2 Irradiation of IBM Xenografts 

Our initial studies involved the use of ex vivo irradiation to eliminate immune cells within 

the human biopsy. Ionizing radiation causes double-strand breaks in DNA either directly 

or indirectly via reactive oxygen species (ROS). DNA repair mechanisms for correcting 

double-strand breaks are error-prone and typically result in chromosomal aberrations 

and rearrangements that can be observed in the first metaphase after irradiation (Hall 

and Kereiakes 2001). When cells attempt to proliferate in the face of this DNA damage, 

they enter cell cycle arrest, and, if the DNA damage cannot be repaired, apoptosis or 

other cell death pathways are triggered and the cells are eliminated (Mladenov et al. 

2016). In particular, T cells are moderately radiosensitive and typically die via necrosis 

when challenged with a dose over 2 Gy (Falcke et al. 2018).  We hypothesize that low 

dose radiation may deplete inflammatory cells without inhibiting proliferation of muscle 

stem cells (satellite cells), and thereby allow us to test our central hypothesis that T cells 

drive degenerative pathology in IBM. 

 

Patient Characteristics  

To carry out these experiments, muscle biopsy specimens from six patients (4 IBM, 2 

controls (Table 6.1)) were treated with a 6.5 Gy dose of ionizing radiation. This dose 

was selected based on several studies demonstrating that this dose was myeloablative, 

without severely impacting satellite cell activation (Gulati 1987; Masuda et al. 2015; 

Giebel et al. 2014; Paix et al. 2018; Falcke et al. 2018). All IBM patients met ENMC 2011 

criteria for clinico-pathologically or clinically defined IBM (Rose and ENMC 2013). The 

IBM biopsies showed characteristic pathological features including endomysial 

inflammation and primary invasion as well as vacuoles and mitochondrial pathology 
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(Table 6.1, Figure 6.1). The control case 14 biopsy showed scattered myofiber 

degeneration and necrosis (Figure 6.1E), and rare scattered inflammatory cells (Figure 

6.1H). There were no examples of primary invasion, and the GT stain did not show red-

rimmed vacuoles or ragged-red fibers (Figure 6.1K). The control case 15 biopsy showed 

rare angular atrophic fibers indicating mild neurogenic atrophy, and there was no 

myofiber degeneration, regeneration, or necrosis and no inflammatory cells were present 

(Figure 6.1C,F,I,L). 
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Table 6.1 Patient Characteristics - Irradiation Experiments 

 
Table 6.1 A summary of clinical demographics, histological features, and clinical diagnosis of 
patients involved in irradiation experiments. The average age of the IBM patients was 70.25 years 
and the average age of controls was 64 years. One of the four IBM patients was female, and both 
control patients were female. The majority of the muscle biopsies were taken from the biceps. 
One IBM patient had a vastus lateralis biopsy, and one control had a rectus femoris biopsy. The 
biopsy location is followed in parentheses by the strength of the biopsied muscle based on the 
Medical Research Council (MRC) scale out of five (MRC 1976). The IBM biopsies showed 
characteristic pathological features including endomysial inflammation and invasion as well as 
rimmed vacuoles. One control showed a mild necrotizing myopathy with limited immune cells, 
and the other control showed mild neurogenic atrophy and an absence of immune cells.    
 

Case Patient 
Sex 

Age Clinical 
Diagnosis 

Biopsy 
Location 

(MRC) 

Histological Features of Biopsy 

5 Male 77 sIBM Biceps 
(5) 

Moderate inflammatory myopathy with 
myofiber degeneration, MHC-I 
upregulation, necrosis, regeneration, 
endomysial inflammatory cells, and 
frequent red rimmed vacuoles. In addition, 
there is mild neurogenic atrophy and 2 
dozen COX-negative fibers. 

6 Male 74 sIBM Vastus 
lateralis 

(5) 

Chronic inflammatory myopathy with red 
rimmed vacuoles, myofiber degeneration, 
endomysial inflammation and primary 
invasion, numerous COX-negative fibers, 
and mild neurogenic atrophy.  

19 Female 66 sIBM Biceps 
(4+) 

Severe, chronic inflammatory myopathy 
with myofiber degeneration, necrosis, 
regeneration, endomysial inflammation and 
primary invasion, and vacuoles. There is 
also mild neurogenic atrophy and several 
COX-negative fibers. 

20 Male 66 sIBM Biceps 
(5) 

Moderate inflammatory myopathy with 
myofiber degeneration, necrosis, 
regeneration, endomysial inflammation and 
primary invasion, and frequent vacuoles. In 
addition, there is mild neurogenic atrophy 
and innumerable COX-negative fibers. 

14 Female 64 HMGCR-
myopathy 

Biceps 
(5) 

Mild necrotizing myopathy and mild type 2 
atrophy. There is scattered myofiber 
degeneration and necrosis, rare scattered 
inflammatory cells and no primary 
inflammation. 

15 Female 64 Putative 
metabolic 
myopathy 

Rectus 
Femoris 

(5) 

Mild Neurogenic atrophy. No myofiber 
degeneration, regeneration, or necrosis, 
and no inflammatory cells are present. 
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Figure 6.1 Histological Features of Human Biopsies - Irradiation Experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.1 Paraffin (A-C), H&E (D-F), CD3 (G-I), and gomori trichrome (GT) (J-L) stains showing 
representative histology from IBM case 19, and control cases 14 and 15. The IBM case 19 biopsy 
shows severe endomysial inflammation and primary invasion of non-necrotic fibers ( A,D,G), and 
vacuoles (J, arrow). The control case 14 biopsy shows scattered myofiber degeneration and 
necrosis (E), and rare scattered inflammatory cells (H). There is no primary invasion, and the GT 
stain does not show vacuoles or ragged-red fibers (K). The control case 15 biopsy shows rare 
angular atrophic fibers (F) indicating mild neurogenic atrophy. There is no myofiber degeneration, 
regeneration, or necrosis, and no inflammatory cells are present (C,F,I,L). 
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Irradiation of xenografts severely impairs control regeneration and does not 

significantly reduce inflammation 

At 4 months, irradiated IBM xenografts show moderately improved regeneration (p = 

0.0309), but no significant reduction in the number of CD3+ T cells (Figure 6.2, Figure 

6.3A,B). Interestingly, while the regeneration of control xenografts was severely 

impaired by irradiation (p = 0.0004) (Figure 6.2D, Figure 6.3A), irradiation led to a small 

but significant improvement in muscle regeneration in IBM xenografts. Similarly, while 

there is also a reduction in the median CSA of regenerated myofibers in the irradiated 

control xenografts (p = 0.0023), there is no effect of radiation on myofiber size in IBM 

xenografts (Figure 6.3C). These data demonstrate that even low dose irradiation can 

impair regeneration of control xenografts, likely by impacting proliferating satellite cells. It 

is interesting that IBM xenografts appear to be resistant to this irradiation-induced 

impairment in myoregeneration. It has been reported that the number of satellite cells is 

increased in IBM patient muscle, and expression of MyoD is reduced whereas Myogenin 

is strongly upregulated (Hollemann et al. 2008). MyoD is a transcription factor that drives 

proliferation of satellite cells and, conversely, the transcription factor Myogenin drives 

differentiation (Zammit 2017). Taken together, this describes an increased population of 

satellite cells primed for differentiation instead of proliferation, which may explain why 

IBM xenografts were not negatively impacted by irradiation and instead showed 

moderate improvement in the number of regenerated fibers. The number of control (n=2) 

and IBM (n=4) patients used in these studies was small, however, this may be an 

interesting area for future investigation. In addition, despite the small patient population, 

the inability of irradiation to significantly reduce T cell number in xenografts suggests that 

a more targeted approach is needed to test the effects of T cells on IBM pathology. 
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Figure 6.2 Irradiation of xenografts severely impairs control regeneration and does not 
reduce inflammation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Figure 6.2 Lamin A/C (green), spectrin (red), eMHC (green), DAPI (blue), and CD3 staining of 
control untreated xenografts (A-C), control irradiated xenografts (D-F), IBM untreated xenografts 
(G-I), and IBM irradiated xenografts (J-L). All xenografts were collected at 4 months. 
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Figure 6.3 Fiber Morphology and T cell quantification of 4-month Irradiated and Untreated 
xenografts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Quantification of the number of fibers over the xenograft area (A), the number of 
CD3+ T cells over the xenograft area (B), the median cross sectional area (CSA) of myofibers 
within the xenografts (C), and the fiber density of the xenografts as determined by the percent of 
the xenograft area covered by myofibers (D). For all graphs, each point denotes one xenograft 
(control untreated n =4, control irradiated n = 4, IBM untreated n = 9, IBM irradiated n = 9) and p-
values determined were determined by Tukey’s multiple comparisons test: ns, not significant; *p ≤ 
0.05; **p ≤ 0.01; ***p ≤ 0.001. 
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6.3 Depleting T cells in IBM Xenografts with 
monoclonal CD3 antibody OKT3 

A monoclonal antibody is produced by a single B cell targeting one specific antigen, and 

this specificity has been adapted for clinical use in the form of chimeric and humanized 

monoclonal antibodies (Zhang et al. 2018). Monoclonal antibodies can be used to 

deplete specific immune cells via induction of apoptosis or by antibody-dependent cell-

mediated cytotoxicity (ADCC).  One of the first human monoclonal antibodies created 

was OKT3 (generic name: Muromonab-Cd3), which recognizes a nonpolymorphic 

subunit of the human TCR: CD3ε (Kung et al. 1979; Kjer-Nielsen et al. 2004). OKT3 was 

the first monoclonal antibody approved by the US FDA for therapy in humans to prevent 

acute rejection in organ transplant patients by blocking cytotoxic T cell function (Zhang 

et al. 2018). In addition, OKT3 treatment can prevent graft-versus-host disease (GVHD) 

by ablating human T cells in mice engrafted with human hematopoietic cells (Wunderlich 

et al. 2014). We hypothesized that treating xenografted mice with OKT3 would 

specifically eliminate T cells within the grafts, which would enable us to study the effect T 

cells may be exerting on xenograft regeneration and determine if aspects of IBM 

degenerative pathology are dependent on T cells.  

 

Patient Characteristics 

Muscle biopsies from three patients with clinico-pathologically or clinically defined IBM 

were used to carry out these OKT3 experiments (Table 6.2). All IBM patient biopsies 

showed moderate to severe endomysial inflammation, numerous examples of primary 

invasion of non-necrotic fibers, and mitochondrial pathology (Figure 6.4). Of note, IBM 

case 36 did not have rimmed vacuoles, but studies have found that up to 20% of 
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patients with typical clinical features of IBM do not have rimmed vacuoles (Chahin and 

Engel 2008; Ikenaga et al. 2017). 

 

 

Table 6.2 Patient Characteristics - OKT3 Experiments 

Case Patient 
Sex 

Age Clinical 
Diagnosis 

Biopsy 
Location 

(MRC) 

Histological Features of Biopsy 

23 Male 64 sIBM Biceps 
(4+) 

Severe, chronic inflammatory myopathy 
with myofiber degeneration, necrosis, 
regeneration, and rimmed vacuoles. 
There is diffuse endomysial 
inflammation and many examples of 
primary invasion. MHC-1 is upregulated 
and innumerable COX-negative fibers. 

26 Male 75 sIBM Biceps 
(4) 

Moderate inflammatory myopathy with 
endomysial and perivascular 
inflammation, examples of primary 
invasion, many COX-negative fibers, 
MHC-1 is diffusely upregulated, red-
rimmed vacuoles, and neurogenic 
atrophy.  

36 Male 64 sIBM Rectus 
Femoris 

(5) 

Moderately severe, chronic inflammatory 
myopathy with myofiber degeneration, 
necrosis, and regeneration. There are 
numerous foci of endomysial 
inflammation, primary invasion, and. 
Particularly striking are mitochondrial 
abnormalities with innumerable COX-
negative fibers and several ragged red 
fibers. There were no vacuoles seen, 
and there is mild acute neurogenic 
atrophy 

 
Table 6.2 A summary of clinical demographics, histological features, and clinical diagnosis of IBM 
patients involved in OKT3 experiments. The average age of the IBM patients was 67.667 years. 
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Figure 6.4 Histological Features of Human Biopsies - OKT3 Experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Paraffin (A-C), H&E (D-F), CD3 (G-I), Gomori trichrome (GT) (J-L), and dual COX-
SDH (M-O) stains showing representative histology from IBM cases 23, 26, And 36. All biopsies 
show endomysial inflammation and primary invasion (A-I). In addition, all biopsies show 
innumerable COX deficient fibers (M-O). The IBM cases 23 and 26 show rimmed vacuoles (J,K 
arrows), but vacuoles are absent in IBM case 36 (L). 
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OKT3 successfully eliminates T cells from xenografts, but myofiber regeneration 

is unaffected 

Xenografted mice are treated weekly via intraperitoneal injection with 10mg/kg OKT3 as 

this treatment regimen has been shown to effectively ablate human T cells in vivo 

(Wunderlich et al. 2014). OKT3 dramatically reduced the number of CD3+ T cells at both 

2-month (p = 0.0286) and 4-month (p <0.0001) timepoints (Figure 6.5A-E). Untreated 

IBM xenografts show numerous foci of endomysial inflammation and high numbers of 

CD3+ T cells (Figure 6.5A,B), whereas OKT3 treated xenografts show very low 

numbers of scattered CD3+ T cells (Figure 6.5 C,D).  

 

Although treatment with OKT3 was highly effective in depleting T cells, myofiber 

regeneration was unchanged between control and treatment groups (Figure 6.6). The 

number of regenerated fibers, their median CSA, and the fiber density of the xenografts 

are not significantly different (Figure 6.6 E,F,H). In addition, OKT3 treatment did not 

impact the number of eMHC+ fibers (Figure 6.6G), indicating that the process of 

myofiber maturation was unchanged (Schiaffino et al. 2015). The human biopsies 

display fiber size variability as expected for IBM patients (Figure 6.7 A,C,E), and the 

myofiber CSA distributions do not differ between OKT3 treated and untreated xenografts 

(Figure 6.7B,D,F). In healthy muscle, the inflammatory response to muscle injury is a 

highly complex and coordinated process involving cells from both the innate and 

adaptive immune system (Tidball 2017). Fortunately, these data demonstrate that the 

presence of T cells within IBM xenografts does not significantly impair myofiber 

regeneration in our model and allows us to examine if aspects of IBM pathology are 

influenced by the presence or absence of T cells. 
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Figure 6.5 OKT3 eliminates T cells from IBM Xenografts 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5 Representative H&E (A,C) and CD3 (B,D) stains of 4-month untreated (A,B) and 
OKT3 treated (C,D) xenografts from IBM case 26. Quantification of the number of CD3+ T cells 
over the xenograft area (E) shows the number of T cells is significantly reduced both at 2 months 
(p=0.0286) and 4 months (p<0.0001) by OKT3 treatment. For all graphs, each point denotes one 
xenograft (2 month untreated n = 4 , 2 month OKT3 n = 4 ,  4 month untreated n = 11, 4 month 
OKT3 n = 12) and Mann-Whitney U test was used to determine p-values (*p<0.05, ****p<0.0001). 
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Figure 6.6 Myofiber regeneration is unaffected by T cells  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6.6 Representative lamin A/C (green), spectrin (red), eMHC (green), and DAPI (blue) 
stains of 4-month untreated (A,B) and OKT3 treated (C,D) xenografts from IBM case 36. 
Quantification of the number of fibers over the xenograft area (E), fiber density (F), percent of 
eMHC+ fibers (G), and median fiber CSA (H) show OKT3 treatment did not significantly impact 
regeneration or fiber morphology. For all graphs, each point denotes one xenograft (2 month 
untreated n = 4 , 2 month OKT3 n = 4 ,  4 month untreated n = 11, 4 month OKT3 n = 12) and 
Mann-Whitney U test was used to test for significance (ns, not significant). 
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Figure 6.7 The distribution of myofiber CSA is unchanged by OKT3 treatment  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 6.7 Histograms of the cross-sectional area (CSA) of the Case 23 (A,B), Case 26 (C,D), 
and Case 36 (E,F) human biopsies and the 4-month untreated and OKT3 treated xenografts. The 
distribution of the CSAs of the untreated and OKT3 treated xenografts are similar and are skewed 
right. 
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T cells drive mitochondrial pathology in IBM Xenografts 

Dual COX/SDH staining was carried out on all 4-month xenograft samples from cases 

23, 26, and 36 (Figure 6.8A,B). The untreated xenografts have an average of 3.27 

COX-deficient fibers and the OKT3 treated xenografts had an average of 1.55 COX-

deficient fibers, which was a significant decrease (p = 0.0291) (Figure 6.8C). These data 

indicate that T cells are driving mitochondrial pathology in IBM xenografts. Indeed, we 

find that the number of COX-deficient fibers is significantly correlated to the number of 

CD3+ T cells in IBM xenografts (p = 0.0203) (Figure 6.8D). These data support previous 

work demonstrating positive correlations between the number of COX-deficient muscle 

fibers and the severity of inflammation in IBM patient biopsies (Rygiel et al. 2015). 

Interestingly, this relationship is not observed in control myositis xenografts that show 

comparable levels of inflammation.  
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Figure 6.8 T cell-mediated inflammation drives mitochondrial pathology 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Dual COX-SDH stain of untreated (A) and OKT3 treated (B) 4-month IBM xenografts 
from IBM case 36. COX-deficient fibers appear light to dark blue. (C) Quantification of the number 
of COX-deficient fibers in 4-month xenografts, each point denotes one xenograft (untreated n = 
11, OKT3 n =12). Mann-Whitney test was used to determine significance (*p ≤ 0.05). (D) 
Correlation of the number of CD3+ T cells to the number of COX-deficient fibers in 4-month 
xenografts, each point denotes one xenograft (non-myositis control n=12 , myositis control n=13, 
IBM n=25). Spearman rank correlation was used to determine all p-values (*p ≤ 0.05). 
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Chapter 7: Discussion and Future 
Directions 

 
Human Skeletal Muscle Xenografts are a novel way to model IBM 

The intertwined degenerative and inflammatory pathological features of IBM have fueled 

the debate underlying the pathogenesis of the disease and have stymied attempts to 

create comprehensive laboratory models (Keller, Schmidt, and Lünemann 2017; 

Greenberg 2019). Skeletal muscle xenografts provide an exciting new avenue to model 

both inherited and acquired muscle diseases (Zhang et al. 2014; Britson et al. 2019). 

These xenografts can recapitulate the complex genetic and epigenetic abnormalities that 

exist in human disease that may never be reproducible in other animal models, and 

xenografts form a complete in vivo system for modeling disease. There was an initial 

concern that IBM patient muscle would not be competent to form xenografts as some 

studies suggest muscle regeneration may be impaired in IBM. First, in vitro studies have 

shown that myoblasts isolated from IBM patients proliferate at a slower rate than age-

matched controls, and show telomere shortening, indicative of premature senescence 

(Morosetti et al. 2010). In addition, skeletal muscle regeneration is highly regulated by 

the immune system, and the chronic inflammation in IBM has been suggested to 

negatively influence muscle regeneration (Loell and Lundberg 2011; reviewed in: Tidball 

2017; Sass et al. 2018; Howard et al. 2020). Finally, aging itself diminishes the 

regenerative capacity of skeletal muscle, resulting in the loss of muscle mass and 
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strength observed in elderly populations termed sarcopenia (Suetta et al. 2013; Dodds et 

al. 2015; Joanisse et al. 2017).  

 

In contrast to these studies suggesting muscle regeneration may be impaired in IBM, 

one study showed an increased expression of myogenic regulatory factor myogenin in 

IBM patient satellite cells and reported higher numbers of satellite cells and regenerating 

fibers in IBM patient biopsies in comparison to age-matched controls (Wanschitz et al. 

2013). Our data show that IBM patient muscle can robustly regenerate in NRG host mice 

to form skeletal muscle xenografts. In fact, IBM xenografts showed significantly higher 

fiber density and increased median CSA in comparison to non-myositis control 

xenografts. These results show that our xenograft approach to modeling IBM is feasible 

despite previous studies showing reduced proliferation of IBM myoblasts, the persistent 

chronic inflammation in IBM xenografts, and the significantly elevated age of the IBM 

patients in our xenograft study in comparison to controls. 

 

Importantly, several degenerative and inflammatory pathological features of IBM are 

recapitulated in this xenograft model. First, rare fibers with p62 aggregates are observed 

in 10-month IBM xenografts, but not in 10-month myositis control xenografts. It has been 

reported that the combination of p62 and TDP-43 staining is both sensitive and specific 

for IBM, and these two markers are seen aggregated in 12% of patient myofibers 

(Dubourg et al. 2011; Hiniker et al. 2013). Although these aggregates are rarely seen in 

other inflammatory myopathies, they are frequently observed in neurodegenerative 

diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), 

which lends support to the idea that IBM is primarily a degenerative disease (Cortese et 

al. 2014; Chornenkyy, Fardo, and Nelson 2019). In our neuromuscular biopsy laboratory, 
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we have difficulty detecting TDP-43 cytoplasmic aggregates and loss of nuclear TDP-43 

in IBM muscle biopsies, and as a result, we are unable to reliably quantify sarcoplasmic 

TDP-43 aggregation in IBM xenografts.  However, a sensitive way to detect nuclear loss 

of TDP-43 is through the assessment of cryptic exon expression (Jonathan P. Ling 2015; 

Jeong et al. 2017). One of the normal functions of TDP-43 is to act as a splice repressor 

of these cryptic exons, and their incorporation in mRNA transcriptions can be detected 

using a simple RT-PCR assay (Jonathan P. Ling 2015; Jeong et al. 2017). Of note, 

cryptic exon incorporation can be detected in hippocampal samples from AD patients 

lacking TDP-43 aggregation, suggesting that nuclear depletion of TDP-43 precedes 

cytoplasmic aggregation (Sun et al. 2017). 

 

As expected, the majority of IBM patient biopsies and none of the control patient 

biopsies showed cryptic exon expression. In addition, cryptic exon expression was 

detected within 8-month and 10-month IBM xenografts from three different IBM cases, 

but not in non-myositis control xenografts. Interestingly, cryptic exon incorporation is not 

observed in 4-month IBM xenografts, but is detected 8 months after the xenograft 

surgery suggesting this phenotype develops over time. It has been reported that TDP-43 

has a role in normal muscle regeneration through the formation of cytoplasmic, amyloid-

like “myo-granules,” which associate with sarcomeric mRNAs and localize to sites of 

sarcomere formation (Vogler et al. 2018). These myo-granules form in healthy muscle 

following injury and are readily cleared as myofibers matures. However, purified myo-

granules can seed the formation of amyloid-like fibrils in vitro (Vogler et al. 2018). It is 

hypothesized that the normal formation and resolution of these myo-granules is 

disturbed in muscle disease, leading to the formation of stable aggregates, which may 

drive disease pathology (Cutler et al. 2019). The potential role these myo-granules play 
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in the development of IBM is an intriguing avenue for future studies with this xenograft 

model.  

 

In addition to these degenerative features, IBM xenografts also show mitochondrial 

pathology in the form of significantly elevated numbers of COX-deficient fibers, as well 

as endomysial inflammation. IBM xenografts show elevation of MHC-I, which 

corresponds to the presence of CD3+ T cells within IBM xenografts. In addition, 

examples of primary invasion of non-necrotic fibers are observed in xenografts from 

several different IBM patients, but invasion is not observed in xenografts from myositis 

control patients despite showing similar levels of endomysial inflammation. Further  

studies reveal that T cells in IBM xenografts are proliferative, antigen-experienced, and 

oligoclonal, which mirror immune cell populations described in IBM patients (reviewed 

in:Greenberg 2019). The antigen or multiple antigens driving the clonal expansion of T 

cells in IBM patients are still unknown. The xenograft model may enrich for these clonal 

populations and facilitate antigen discovery.  

 

Overall, our xenograft model of IBM is the first comprehensive laboratory model of the 

disease to model both degenerative and inflammatory features of the disease and 

represents a significant step forward in IBM research.  

 

The IBM xenograft model can be used for mechanistic studies and pre-clinical 

testing 

Based on recent successes with patient-derived tumor xenograft models, we 

hypothesize that treatment efficacy results in our IBM xenograft model are more likely to 

translate to trials in patients than in vitro models or mouse models of IBMPFD (Kim et al. 
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2005; Rubio-Viqueira and Hidalgo 2009; Sako et al. 2010; Roberts et al. 2014; Ahmed et 

al. 2016; Izumchenko et al. 2017). Due to the extensive endomysial inflammation 

present in IBM xenografts including examples of primary invasion, we aimed to 

determine if reducing this inflammation would have an impact on the features of IBM 

pathology observed in this model. 

 

Although proponents of a primarily degenerative pathomechanism of IBM point to the 

lack of effectiveness of immunomodulatory therapies in IBM, there are a few clinical 

trials that suggest T cell ablation can benefit IBM patients. A pilot trial of alemtuzumab, a 

humanized monoclonal antibody targeting CD52 present on lymphocytes, was 

performed in 13 IBM patients and suggested that progression of weakness was reduced 

and that post-treatment biopsies showed a reduction in endomysial lymphocytes 

(Dalakas et al. 2009).  However, this study is controversial and the conclusions have 

been challenged (Greenberg 2010a). In addition, dual treatment with anti-T lymphocyte 

globulin (ATG) and methotrexate in a small patient population showed statistically 

significant efficacy in comparison to treatment with methotrexate alone (Lindberg et al. 

2003). It is also worth noting several studies have found that intravenous 

immunoglobulin (IVIG) may be beneficial for patients with dysphagia (Dalakas et al. 

1997; Dobloug et al. 2012). Thus, depletion of T cells continues to be a possible 

therapeutic strategy. 

 

Our initial attempts to remove inflammatory cells via ex vivo irradiation proved to be 

detrimental to control xenografts. Therefore, a more targeted approach using a 

monoclonal CD3 antibody (OKT3) was adopted. OKT3 binds to the epsilon chain of 

CD3, effectively blocking T cell receptor function and causing ablation of T cells in vivo 
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following treatment (Norman 1995; Kjer-Nielsen et al. 2004; Wunderlich et al. 2014). 

OKT3 treatment significantly reduced T cells in IBM xenografts, but this did not impact 

xenograft regeneration or fiber morphology. One of the more striking findings of these 

OKT3 experiments was the positive relationship between the number of COX-deficient 

fibers and the number of T cells in IBM xenografts, which has also been observed in 

patient biopsies (Rygiel et al. 2015). This relationship was not observed in control 

xenografts, and this phenotype could be significantly ameliorated by ablating T cells with 

OKT3. To our knowledge, this is the first demonstration that T cells are driving 

mitochondrial pathology in IBM. Our data is also supported by recent work showing that 

exposing primary myotubes derived from non-myopathic patient samples to pro-

inflammatory cytokines such as interferon-gamma (IFN-γ) and interleukin-1beta (IL-1β) 

can result in decreased COX protein levels (Chinoy and Lilleker 2019: P123). This is an 

exciting step forward in IBM research and demonstrates this xenograft model of IBM can 

be used to carry out mechanistic studies to better understand disease pathogenesis and 

perform therapeutic testing. 

 
 

Future Directions 

Moving forward, our immediate goals are to fully characterize the human immune cells 

present within IBM xenografts, to compare xenografts to patient biopsies using RNA-

sequencing (RNA-seq), and to better understand the dynamics underlying cryptic exon 

expression. We will be expanding on the TCR sequencing data by analyzing our patient 

biopsies and comparing them to xenografts. We hypothesize that all the xenografts from 

a single patient will be enriched for a subset of T cell clones shared with the original 

biopsy if the observed proliferation is antigen driven. Alternatively, xenografts from the 

same patient may show variable populations of T cells more indicative of a bottleneck. In 
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addition, flow cytometry will allow us to better understand the specific subsets of immune 

cells present within the xenografts. We have been able to show that IBM xenografts 

contain both CD8+CD57+ and CD4+CD57+, antigen experienced cells. Recently, highly 

differentiated, cytotoxic KLRG1+ T cells have been proposed as a potential therapeutic 

target in IBM (Greenberg et al. 2019), and our preliminary data show KLRG1+ T cells 

within xenografts. We aim to assess if this population of cells is affected by OKT3 

treatment using flow cytometry and immunohistochemistry.  Going forward, we are 

obtaining peripheral blood mononuclear cells (PBMCs) from patients at the time of 

biopsy so that we can compare the antigen-specificity and function of T cells from patient 

blood with those present in the biopsied muscle and xenograft.   

 

It will be informative to examine the subsets of nonlymphocytic cells as well. For 

instance, it has been recently reported that CD74, CD163, and STAT1 are highly 

expressed in muscle biopsies of sIBM patients and these proteins were found to localize 

to macrophages (Roos et al. 2019). We are currently assessing different populations of 

human immune cells including macrophages, B cells, NK cells, and dendritic cells in all 

our xenograft experiments as we have done previously.  Another interesting area to 

explore in the future is the role of the host (mouse) innate immune system in muscle 

regeneration in the xenograft model. Our preliminary flow cytometry experiments  

performed in collaboration with the Villalta laboratory suggest that there are many mouse 

macrophages present within the human xenografts, presumably to phagocytose 

degenerating human myofibers, but the role  that they are playing in both control and 

IBM xenografts is unknown.  

 



   
 

95 
 

Recent RNA sequencing of myositis patients has shown activation of the interferon 1 

(IFN1) pathway in patients with DM, antisynthetase syndrome (AS), IMNM, and IBM, as 

well as robust activation of the interferon 2 (IFN2) pathway in AS, IBM, and DM but not 

in IMNM (Pinal-Fernandez et al. 2019). In addition, a study comparing Jo-1 associated 

myositis patients to IBM patients using RNA sequencing followed by pathway analysis 

found the top canonical pathways altered in both Jo-1 and IBM were oxidative 

phosphorylation and mitochondrial dysfunction (Hamann et al. 2017). These studies 

demonstrate the usefulness of using transcriptomic analysis to understand similarities 

and differences between subsets of myositis, and to identify biological pathways of 

interest. We aim to perform RNA sequencing to compare xenografts with the initial 

muscle biopsy to determine how closely xenografts resemble the initial biopsy and to 

characterize cytokine expression and determine if there are any muscle-specific 

changes in gene expression. 

 

In addition, we will expand our understanding of the dynamics underlying cryptic exon 

expression by analyzing additional xenograft samples and timepoints. Currently, it 

appears that only biopsies with cryptic exon expression result in xenografts with cryptic 

exon expression. We do not yet know whether the variability in cryptic exon detection is 

due to assay variability, heterogeneity of muscle biopsies, or whether the presence or 

absence of cryptic exon detection or defines specific subtypes of IBM.  If the latter, 

cryptic exon detection may be a useful disease biomarker and may suggest that there is 

a factor intrinsic to the skeletal muscle niche regulating TDP-43 pathology. Our data also 

indicate that cryptic exon incorporation is only detectable at late timepoints, although we 

have yet to fully examine the time course of cryptic exon expression. In addition, it is 

possible that there is earlier expression, but that our RT-PCR assay is not sensitive 
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enough to detect it. Ligation in situ Hybridization (LISH) is a technique we plan to use for 

more sensitive detection of cryptic exons, and we may potentially adapt LISH to visualize 

cryptic exons within patient biopsies and xenograft samples (Credle et al. 2017). This 

method uses T4 RNA Ligase 2 to efficiently join adjacent chimeric RNA–DNA probe 

pairs hybridized in situ on fixed RNA target sequences, which allows for multiplexed 

measurement of multiple targets and would allow us to analyze several TDP-43 target 

genes simultaneously.  

 

Finally, although the dramatic reduction of inflammatory cells via OKT3 did not 

significantly improve regeneration, these samples allow us to examine about how the 

presence of lymphocytes in IBM muscle impact some of the pathological phenotypes 

we’ve observed in the IBM xenograft model. Beyond the exciting results showing the role 

of inflammation in mitochondrial pathology, we also want to test how eliminating T cells 

impacts cryptic exon expression within xenografts. These experiments will help advance 

our understanding of how the immune system influences IBM pathology.
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