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Abstract

My thesis is about developing statistical methods by integrating disparate data

sources with real data applications, and identifying gene-environment interac-

tions (G × E) in more extensive studies using existing analytical methods. We

propose a general and novel statistical framework for combining information on

multivariate regression parameters across multiple different studies which have

varying level of covariate information (Chapter 2). We illustrate the method us-

ing real data for developing a breast cancer risk prediction model. We propose

a generalized method of moments (GMM) approach for analyzing two-phase

studies where we take into account the dependent structure of the datasets

across the two-phases (Chapter 3). We illustrate the method using real data

on Wilm’s tumor, a common type of kidney cancer in children. We analyze the

largest gene by smoking interaction study for pancreatic ductal adenocarcinoma

risk conducted to date using existing statistical methods (Chapter 4).
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Chapter 1

Introduction

In the world of decision making, data is an indispensable ingredient for ad-

dressing relevant questions in almost all disciplines of study, including science,

humanities, and business. However, in the era of big data, where the collection

of data from different studies is increasing in volume, variety, and velocity, it is

arduous to share and tackle such massive data across studies. To mitigate this

difficulty and to have meaningful results by harnessing knowledge and reasoning

from multiple data sets, there is a well-known procedure of harmonizing various

data sources in the literature of Big Data, called Data Integration. Formally,

data integration is a process of fusing information from multiple, possibly het-

erogeneous data sources, giving a unified way to draw inference on real-world

problems and building generalizability to a larger population [100]. Due to

advancements in technology and ease in the availability of modern tools, the re-

search in a variety of fields, including genomic medicine, genetics, clinical trials,

epidemiology, and environmental science, has become data-intensive with a del-

uge of heterogenous data[173, 97, 119, 107, 149]. This has made the researchers
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to explore and apply data integration strategies to blend all the available in-

formation for more discoveries in science, which makes data integration a vital

contribution to humanity at present and future.

Disparate data sources are often necessary to answer a scientific question

of interest. It is common to see many observational studies with dissimilar,

but overlapping, information on some crucial potential risk factors. Here, we

provide some real data examples. The Breast Cancer Detection Demonstration

Project (BCDDP) Study has information on mammographic density, one of the

critical risk factors of breast cancer, apart from other primary risk factors [110].

Since mammograms can be expensive, the study sample size is small. However,

the Breast and Prostate Cancer Cohort Consortium, a collection of ten large

prospective cohorts, is a more extensive study that has information on the other

primary risk factors except mammographic density. In this example, we see two

disparate datasets, one a smaller study with a rich set of risk factors and the

other a larger study with limited risk factors. Other examples include mul-

tiple pediatric cohort studies in the Environmental influences on Child Health

Outcomes (ECHO) Program [https://www.nih.gov/echo] that aims at under-

standing the etiological factors affecting children’s health outcome by combined

analysis of information from existing pediatric cohorts. Disparate risk factors

across data can arise from sampling design itself. For example, a two-phase

sampling design collects information in two phases where the ascertainment of

expensive variables is limited to a judiciously chosen smaller subset of individ-

uals sampled in phase-I. Data across the two phases creates dependent datasets

with more variables measured in phase-II [125, 154, 145, 132, 112]. One of the

classic examples includes the US National Wilm’s Tumor Study that is used by
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many researchers to simulate a two-phase design [14, 42, 63, 7]. Another exam-

ple that induces disparate and dependent datasets by design is the UKBiobank,

the world’s most extensive cohort study to date [25, 50, 49]. Separate sub-

studies within the UKBiobank, including the accelerometry study and imaging

study, create disparity on the group of measured variables across them. Varia-

tion in quantification of variables across studies can also induce disparity. For

example, some studies quantify smoking behavior as never, former and current,

while others quantify as pack-years or number of cigarettes smoked per day. All

these examples fall under the category of disparate data sources.

Observational studies are designed to generate a hypothesis, where researchers

are often interested in the association of a risk factor with an outcome after ad-

justing for all possible measured confounders under a regression model frame-

work. Stitching together the partial information available across disparate data

sources is a potential solution where it is difficult to infer from a single data

source due to the unavailability of some of the variables or due to low power. One

of the most popular statistical tools, due to logistic convenience and statistical

efficiency, used in data integration is meta-analysis. Meta-analysis is a process

of synthesizing summary-level information (estimates and standard errors) on

common parameters of interest (e.g. log odds ratio, treatment effect) across

studies[47, 48, 82]. In large cohorts like UKBiobank(http://www.ukbiobank.

ac.uk), CKBiobank(http://www.ckbiobank.org/site/) where both sample

size and the number of covariates measured are huge, model fitting is a daunt-

ing computational task. In modern GWAS, clinical trials, and many other

epidemiological studies, sharing of data across the studies is a big concern due

to various privacy, ethical, and logistical issues. In these troubling situations,
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meta-analysis plays a significant role by following the divide and conquer ap-

proach. It combines the summary-level information across studies, e.g., model

parameters, to make conclusions on a scientific question of interest, eventually

aiding in decisions for making policies. However, with disparate data sources, we

cannot combine the parameter estimates across the data sources as the param-

eters have different interpretation across studies. For example, it is known that

mammographic density and weight are negatively correlated. In this situation,

the association of weight with breast cancer after adjusting for mammographic

density will have different interpretation with that without adjustment. This

motivates us to develop a general statistical framework for integrating disparate

data sources.

In chapter 1, we develop a generalized meta-analysis approach for combin-

ing information on multivariate regression parameters across multiple different

studies which have varying level of covariate information [95]. Using algebraic

relationships between regression parameters in various dimensions, we specify a

set of moment equations for estimating parameters of a maximal model through

the information available from sets of parameter estimates from a series of re-

duced models available from the different studies [28]. The specification of the

equations requires a reference dataset to estimate the joint distribution of the

covariates. We propose to solve these equations using the generalized method

of moments (GMM) approach, with the optimal weighting of the equations

taking into account uncertainty associated with estimates of the parameters of

the reduced models [80, 69]. We describe extensions of the iterated reweighted

least squares algorithm for fitting generalized linear regression models using
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the proposed framework. Based on the same moment equations, we also pro-

pose a diagnostic test for detecting violations of underlying model assumptions,

such as those arising due to heterogeneity in the underlying study populations.

Methods are illustrated using extensive simulation studies and a real data ex-

ample involving the development of a breast cancer risk prediction model using

disparate risk factor information from multiple studies.

In chapter 2, we analyze two-phase studies using the GMM approach. Two-

phase design can reduce the cost of epidemiological studies by limiting the as-

certainment of expensive covariates or/and exposures to an efficiently selected

subset (phase-II) of a larger (phase-I) study. Efficient analysis of the result-

ing dataset combining disparate information from phase-I and phase-II, how-

ever, can be complex. Most of the existing methods, including semiparametric

maximum-likelihood estimator, require the information in phase-I to be summa-

rized into a fixed number of strata [19, 16, 20]. In this paper, we describe a novel

method for analysis of two-phase studies where information from phase-I is sum-

marized by parameters associated with a reduced logistic regression model of

the disease outcome on available covariates. We then setup estimating equations

for parameters associated with the desired extended logistic regression model

based on information on the reduced model parameters from phase-I and com-

plete data available at phase-II after accounting for non-random sampling design

at phase-II. We use the generalized method of moments to solve overly identi-

fied estimating equations and develop the resulting asymptotic theory for the

proposed estimator. Simulation studies show that the use of reduced parametric

models can lead to more efficient utilization of phase-I data than summarizing

into strata. An application of the proposed method is illustrated using the US
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National Wilms Tumor study data.

In chapter 3, we apply standard multivariate meta-analysis to high-dimensional

genome-wide association studies of pancreatic cancer. Pancreatic cancer is the

seventh leading cause of cancer death worldwide with pancreatic ductal ade-

nocarcinoma (PDAC) being the most common subtype (>90%). Inherited ge-

netic changes and cigarette smoking are established independent risk factors

of PDAC. The problem of interest is to identify gene by smoking interactions

with pancreatic cancer that can better inform the underlying biological pathway

leading to pancreatic cancer. Gene-environment interactions play a significant

role in the etiology of cancer risk. There are many existing statistical meth-

ods to identify gene-environment interactions [67, 151, 31, 121, 29]. The study

of discovering such interactions (gene by smoking in our study) can provide

insights into the underlying biological pathways leading to PDAC and thus bet-

ter inform in making public health strategies for pancreatic cancer prevention.

We conducted the largest (till date) genome-wide gene-by-environment interac-

tion analysis of 7,937 PDAC cases and 11,774 controls arising from two data

sources, the Pancreatic Cancer Case-Control Consortium (PanC4) and the Pan-

creatic Cancer Cohort Consortium [93, 32]. After a meta-analysis of these two

datasets, we identified a statistically significant interaction by smoking status

(never, former, current) of SNPs located on 2q21 (P-value < 5 × 10−9). This

region includes rs1818613 and is located intronic to TMEM163 and upstream

of CCNT2. Genetic variants in this region are strongly associated (p-value ¡10-

8) with differential expression of TMEM163 in several tissues, including heart,

pituitary, and whole blood, and differential CCNT2 expression in tibial nerve

and lung (p-values < 10−6) tissue in the GTEx database. Our work provides
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evidence of the importance of genetic variation in this region in conjunction

with cigarette smoking on PDAC risk.
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Chapter 2

Generalized Meta-Analysis

2.1 Introduction

In a variety of domains of applications, including observational epidemiologic

studies, clinical trials and modern genome-wide association studies, meta-analysis

is widely used to synthesize information on underlying common parameters of

interest across multiple studies [45, 46, 83, 88]. The popularity of meta-analysis

stems from the fact that it can be performed based only on estimates of model

parameters and standard errors, avoiding various logistical, ethical and privacy

concerns associated with accessing the individual level data that is required in

pooled analysis. Moreover, in many common settings, it can be shown that un-

der reasonable assumptions, meta-analyzed estimates of model parameters are

asymptotically as efficient as those from pooled analysis [127, 115, 102]. In fact,

meta-analysis approaches are now being used in divide and conquer approaches

to big data, even when individual level data are potentially available, because of

the daunting computational task of model fitting with extremely large sample
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sizes [87, 54, 37].

In this chapter, we study the problem of multivariate meta-analysis in the

setting of parametric regression modeling of an outcome given a set of covariates.

In standard settings, if estimates of multivariate parameters for an underlying

common regression model and associated covariances are available across all

the studies, then meta-analysis can be performed by taking inverse-variance-

covariance weighted average of the vector of regression coefficients [156, 140,

84]. In many applications, a typical problem is that different studies include

different, but possibly overlapping, sets of covariates. In a large consortium

of epidemiologic studies, for example, some key risk factors will be measured

across all the studies. Inevitably, however, there will be potentially important

covariates which are measured only in some, but not all the studies. It is

also possible that some covariates are measured at a more detailed level or

with a finer instrument in some studies compared to others. Disparate sets of

covariates across studies render standard meta-analysis to be applicable for the

development of models only limited to a core set of variables that are measured

in the same fashion across all the studies.

We propose a generalized meta-analysis (GENMETA) approach for building

rich models using information on model parameters across studies with disparate

covariate information. GENMETA is built upon a fundamental mathematical

relationship between parameters of two regression models in different dimen-

sions from our recent study [28]. In the current article, we utilize this mathe-

matical relationship to develop a general framework for combining information

on parameters of various models of different dimensions within the generalized

method of moments framework [71, 81]. We develop an iterated reweighted

9



least square algorithm allowing stable and speedy computation of estimates.

The proposed method requires access to a reference dataset for estimating of

joint distribution of the covariates in a nonparametric fashion. We show how

the reference dataset can be used to derive an optimal estimator and associated

variance-covariances even when entire variance-covariance matrices for model

parameter estimates may not be obtainable from individual studies.

2.2 Models and Methods

2.2.1 Formulation of the model

Suppose we have parameter estimates θ̂k and associated estimates of their co-

variance matrices Sk from K independent studies which have fitted reduced

regression models, for which the likelihood is of the form gk(Y | XAk ; θk), where

Y is a common underlying outcome of interest but the vector of covariates XAk is

potentially distinct across the studies. Let X be the set of covariates used across

all studies and we assume the true distribution of Y given X can be specified

by a maximal regression model f(Y | X; β). Our goal is to estimate and make

inference about β∗, the true value of β, based on summary-level information,

(θ̂k, Sk) from the K studies.

In the proposed setup, it is possible but not necessary, that one or more

of the studies have information on all covariates to fit the maximal model by

themselves. Under certain study designs, such as the multi-phase designs [15, 17,

162, 147] and the partial questionnaire design [157], data could be partitioned

into independent sets where the maximal model can be fitted on some sets and

10



various reduced models can be fitted on others. The maximal model f(Y |

X; β) and the reduced models gk(Y | XAk ; θk) may have different parametric

forms, such as logistic and probit models when Y is a binary disease outcome.

This setup also allows incorporation of covariates which may be measured more

accurately or in a more refined fashion in some studies than others. For example,

different studies may include two types of measurements, namely, Z1 and Z2,

for the same covariate, with Z2 a more refined measurement. In this case the

different reduced models may include Z1 or Z2, but we require that the reference

dataset includes both Z1 and Z2. In the maximal model, we can enforce that Y

is independent of Z1 given Z2 by setting the regression parameters associated

with Z1 to be zero.

If all of reduced models were the same, i.e. all studies have the same covariate

information, we have Xk = X, θk = β and gk = f for each k, and the common

parameter of interest β∗ can be efficiently estimated by the fixed-effect meta-

analysis estimator β̂meta =
∑K

k=1(
∑K

k=1 S
−1
k )−1S−1

k θ̂k, the variance of which, in

turn, can be estimated by Σ̂meta = (
∑K

k=1 S
−1
k )−1 [156, 140, 84].

2.2.2 A Special Case Involving Linear Regression Model

As readers may find it counter-intuitive to comprehend how it is possible to esti-

mate parameters of the maximal model as no single study may have ascertained

Y and all components of X simultaneously, following we give a linear model

example to help develop insight into the problem. Suppose, one is interested in

developing a multiple linear regression model for Y based on a set of covariates

11



X in the form

Y = α +
K∑

k=1

βkXk + ε

where it is further assumed that ε ∼ N(0, σ2). Without loss of generality,

we will assume that all the variables Y , X1, . . . , XK are standardized to have

mean zero and variance one. Under this model, the population parameter

β = (β1, . . . , βK)T can be expressed as β = E(XTX)
−1
E(XTY ) = R−1E(XTY ),

where R is the population correlation matrix of X. Now, suppose we have no

data available on Y and mutivariate X on the same sample, but we have esti-

mates available for parameters (θk, k = 1, ...K) for univariate linear regression

models of the form

Y = θkXk + ψk.

From above θk = E(XkY ) and thus θ̂ = (θ̂1, . . . , θ̂K), provides an estimate of

the cross product terms, E(XTY ), which is required in estimating β. Further, if

we have a reference dataset, which has information on multivariate X but is not

required to be linked to Y , it can be use to estimate R, as R̂ say, and a consistent

estimate of β can be obtained simply as β̂ = R̂−1θ̂. Thus, this simple derivation

shows that it is possible to estimate parameters of a multiple regression model

using information on parameters of a series of univariate regression models and

a reference dataset. In fact, this observation that information on univariate

regression parameters (known as summary-level statistics) can be utilized to

reconstruct estimates of parameters of multivariate regression model has revo-

lutionized the field of statistical genetics. Recently, a large variety of methods

have been developed for the inference on parameters underlying multivariate

regression models utilizing widely available summary-level results from large

12



GWAS and reference datasets to estimate linkage disequlibrium across genetic

markers [168, 23, 173, 128]. In the following, we show a more general statistical

formulation of the problem that allows consideration of non-linear models and

use of information from arbitrary types of reduced models as opposed to simply

univariate models.

2.2.3 Generalized meta-analysis

To understand the approach, we start with a simple example. Suppose, we

have two studies, K = 2. In the first study, let us assume we have measured

values on two covariates, say, X1 and X2, while in the second study we have

measured values on a different set, but overlapping, of covariates, say, X2 and

X3. Also, both the studies have measured values on the outcome of interest,

say, Y which we assume to be a binary variable. We assume both the studies

are independent, employ a random sampling design and the same probability

law of (Y,X1, X2, X3) holds in all the underlying populations. Someone fits a lo-

gistic regression model, g, in each of the two studies and obtain the mle’s of the

respective model parameters and their standard errors, denoted by (θ̂Ak ,SAk) ,

k = 1, 2. To be specific, say, we fit a model to data from the first study, ssum-

ing that Y |X1, X2 ∼ Bernoulli({1+exp(−(θ10 +θ11X1 +θ12X2))}−1), using the

standard glm package in R. W estimate the maximum-likelihood estimator of

the parameter vector, (θ̂10, θ̂11, θ̂12)T and denote it by θ̂A1 , where A1 = {1, 2}.

And, we denote its standard error by SA1 . Similarly, we fit a logistic regres-

sion model to the other data from the other study to obtain the estimates,

(θ̂A2 ,SA2). Now, suppose we are provided with the summary-level information,
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((θ̂A1 ,SA1), (θ̂A2 ,SA2)), only. Let X = (X1, X2, X3) denote the full set of co-

variates across studies. Also, assume that the true maximal model, f , of Y |X is

Y |X ∼ Bernoulli({1 + exp(−(β0 + β1X1 + β2X2))}−1). We aim for estimating

the true value, β∗, of β = (β0, β1, β2, β3).

Let Sk(y|xAk ;θAk) =
∂ log g(y|xAk ;θAk )

∂θAk
= (y − expit(θTAkxAk))xAk denote the

score function in study k = 1, 2, solving which we get the mle’s, (θ̂A1 , θ̂A2). Irre-

spective of the correct or incorrect specification of the reduced models fitted to

the studies, EP ∗Sk(y|xAk ;θAk) = 0 holds true, where, P ∗ is the true probability

law. Writing the expectation as an iterated expectation , we get

EY,XSk(Y |XAk ;θAk) = EXEY |X [(Y − expit(θTAkXAk))XAk ]

= EX [(expit(βTX)− expit(θTAkXAk))XAk ]

Denote (expit(βTX)− expit(θTAkXAk))XAk by U k(XAk ,X;θAk ,β). Then, we

have the following key equation that connects the full model parameter, β and

reduced model parameters θAk , for k = 1, 2.

EXU k(XAk ,X;θAk ,β)|(β=β∗,θ=θ∗) = 0 (2.1)

where β∗ and θ∗ denote the true values.

Reference dataset to estimate joint distribution of all risk-factors :

To evaluate the above expectation, we need a reference data set on all the

covariates, X1, X2, X3 to empirically estimate the distribution function F (X).
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Since, we may not have individual level information from the studies, we as-

sume there is a reference data set independent of the studies. Later, we show

through simulation studies that the sample size for the reference data set need

not be large to reach the plateau of efficiency. Replacing the study param-

eters by their estimates from the summary-level information and the expec-

tion with its sample version, we get a sample version of the LHS in eqn(1),

1
nref

∑nref
i=1 U k(XAk,i,X i; θ̂Ak ,β), denote it by Unk(β) for k = 1, 2, where nref

is the sample size of the chosen reference data set. Thus, from each study pro-

vides a single estimation equation of the form (1) which in turn gives a sample

vector, like Unk(β) for kth study.

Now, we stack those vectors from two studies into a single vector, denoted by,

Un(β) = (UT
n1(β),UT

n2(β))T . Our goal, now, boils down to solving Un(β) = 0

for β. We might not be able to exactly solve this equation as the number

of equations is, dim(θA1) + dim(θA2) = 6, is greater than the dimension of

β = 4. We try to find a solution close to zero, where the concept of gener-

alised method of moments(GMM) perfectly fits in by minimizing the quadratic

form Qn(β) = UT
n (β)CUn(β) for a positive-definite matrix, C. We define our

GMeta estimator to be

β̂GMeta := argminβQn(β).

Similary, we extend the approach described above to K independent studies,

with f and gk’s belonging to the class of generalized linear model. Without any

loss of generality, we assume the functional form of the reduced models to be

same across studies, i.e., gk = g for k = 1, . . . , K.
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Asymptotics of β̂GMeta : Assume the study summary statistics θ̂k’s are inde-

pendent; nk
1/2(θ̂k−θ∗k)→N(0,Σk) in distribution and limn→∞nk/n = ck > 0 for

each k; and the reference sample is independent of the study samples. Denote

Γ = E(∂U(X;β,θ?)/∂β |β=β∗), ∆ = E(U(X;β∗,θ?)U
T
(X;β∗,θ?)) and Λ =

diag(Λ1, . . . ,ΛK), where Λk = (1/ck)WkΣkW
T
k andWk = E∂uk(X;β∗,θk)/∂θk |θk=θ∗k

for each k.

Theorem 2.2.1 (Consistency and Asymptotic Normality of β̂). Suppose the

positive semi-definite weighting matrix Ĉ→C in probability. Then, under As-

sumptions (A1)-(A4) in the appendix, β̂→β∗ in probability. Further, given

β∗ is an interior point and under additional Assumptions (A5)-(A9) in the

appendix, n1/2(β̂ − β∗) converges in distribution to the normal distribution

N(0, (ΓTCΓ)−1ΓTC(∆ + Λ)CΓ(ΓTCΓ)−1).

The optimal C that minimizes the above asymptotic covariance matrix is

Copt = (∆ + Λ)−1 and the corresponding optimal asymptotic covariance matrix

is {ΓT (∆ + Λ)−1Γ}−1. Because Copt itself depends on unknown underlying

parameters, it requires iterative evaluation. In our applications, we first evaluate

an initial GENMETA estimator with a simple choice of Ĉ such as the identity

matrix. We then obtain the iterated GENMETA estimator by continuing to set

Ĉ = Ĉopt based on the latest parameter estimate till convergence. By Theorem

2.2.1, β̂ with Copt approximately follows a Gaussian distribution with mean β∗

and covariance matrix

[ΓT{ 1

n
∆ + diag(

1

n1

W1Σ1W
T
1 , . . . ,

1

nK
WKΣKW

T
K)−1}Γ]−1, (2.2)

which indicates that the precision of GENMETA depends on the size of the

16



reference sample, n, as well as on those of the studies, nk. However, as we will

see in Section 3, the study sample sizes are the dominating factor controlling

the precision of GENMETA and with fixed nk’s, the precision of GENMETA

quickly reaches plateau as a function of n.

For the implementation of the optimal GENMETA and the variance esti-

mation of any of the GENMETA estimators, one needs to have valid estimates

of Λk, which depend on Σk, the asymptotic covariance matrices of the esti-

mates of the reduced model parameters. Ideally, the studies should provide

robust estimates of the covariance matrices, such as the sandwich covariance

estimators, so that they are valid irrespective of whether the underlying re-

duced models are correctly specified or not. In practice, however, while some

kind of estimates of standard errors of the individual parameters are expected

to be available from a study, obtaining the desired robust estimate of the en-

tire covariance matrix could be difficult. When no estimate of Σk is avail-

able from the kth study, one can take the advantage of the reference sam-

ple to estimate it by Σ̂ref
k = Ĵ−1V̂ Ĵ−1, where Ĵ = Pn[EY |X{∇θksk(θk)}]|θk=θ̂k

,

V̂ = Pn[EY |X{sk(θk)sk(θk)T}]|θk=θ̂k
, sk(θ̂k) = sk(Y | XAk ; θk)|θk=θ̂k

, θ̂k is a con-

sistent estimator of θ?k, ÊY |X is the expectation with respect to the distribu-

tion of Y | X with β? replaced by a consistent estimator β̂, and Pn is the

empirical measure with respect to the reference sample. Further, assuming

EY |X{∇θksk(θk)}|θk=θ∗k = ∇θkEY |X{sk(θk)}|θk=θ∗k , it follows

Λk = (1/ck)E(Y,X){sk(θk)sk(θk)T}|θk=θ∗k , which can be estimated by Λ̂ref
k =

(1/ck)Pn[EY |X{sk(θk)sk(θk)T}]|θk=θ̂k
. For example, suppose Y | X and Y | XAk

follow logistic distributions with parameters β? and θk, respectively. Denote
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X = (1, XT )T and XAk = (1, XT
Ak

)T . Then,

Λ̂ref
k =

1

ck
Pn[{(1+e

XT
Ak
θ̂k)−2(1+e−X

T β)−1+(1+e
−XT

Ak
θ̂k)−2(1+eX

T β̂)−1}XAkX
T
Ak

].

(2.3)

In section 2.3, we will study the properties of the GENMETA estimators using

either covariance matrices estimated from studies or the reference sample.

It is insightful to explore the connection between GENMETA and stan-

dard meta-analysis when all of the reduced models are identical to the maximal

model, that is, when θ∗k = β∗, XAk = X and gk = f for each k. Under this setup,

the moment vector evaluated at the true parameters becomes zero for each study,

i.e. uk(X; β∗, θ∗k) = uk(X; β∗, β∗) = 0. This simplification implies ∆ = 0 and

thus the optimal weighting matrix is Copt = Λ−1 = diag(c1Σ, . . . , cKΣ), where

Σ is the inverse of the Fisher’s information matrix of f . Denote by β̂opt the

GENMETA estimator with a consistent estimator of Copt. Then, by arguments

similar to those in the proof of Theorem 2.2.1, β̂opt can be expressed as

β̂opt = β̂meta + op(1/n
1/2),

which implies that β̂opt and β̂meta are asymptotically equivalent in terms of

limiting distributions.

2.2.4 Iterated Reweighted Least Square Algorithm

GENMETA computation involves minimization of a quadratic form, QC(β) =

UT
n (β, θ̂)CUn(β, θ̂), with a known weighting matrix C. Next, we derive the it-

erated reweighted least squares algorithm for minimizing the quadratic form,
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assuming that the maximal and reduced models belong to the class of gen-

eralized linear models [117]. Specifically, the densities of Y | X and Y |

XAk are of the forms exp({1/a(φ)}(yh(xTβ?) − b{h(xTβ?)}) + c(y;φ)) and

exp({1/a(φk)}(yh(xTAkθk)−b{h(xTAkθk})+c(y;φk)), respectively, where a(·), b(·)

and c(·) are known functions, h(·) = b′−1{g−1(·)}, g is a monotone and differen-

tiable link function, and φ and φk are the dispersion parameters of the maximal

and the kth reduced models, respectively.

First, we assume that the dispersion parameters, φ and φk’s, are known and

later we will relax this assumption. For this case, it follows, for each k,

uk(x; β, θk) = rk(x; β, θk, φk)xAk , (2.4)

where rk(x; β, θk, φk) = {1/a(φk)}(g−1(xTβ)− g−1(xTAkθk))h
′(xTAkθk). Then, the

empirical moment vector is Un(β, θ̂) = Pn(u1(X; β, θ̂1)T , . . . , uK(X; β, θ̂K)T )T .

The Newton-Raphson (NR) method for searching the minimizer of QC(β) can

be written as

β(t+1) = β(t) − (XT
rbindW

∗Xrbind)−1XT
rbindWXAdiag

CXT
Adiag

r (2.5)

where Xrbind = 1 ⊗ X and X(n×p) is the reference data matrix; XAdiag
=

diag(XA1 , . . . , XAK ) andXAk(n×dk) is the reference data matrix for the kth study;

W = diag(W1, . . . ,WK), Wk = diag(wk1, . . . , wkn) and

wki = (1/(a(φk)g
′{g−1(XT

i β
(t))))h′(XT

Ak,i
θ̂k) for k = 1, . . . , K; i = 1, . . . , n;

W ∗ is the sum of WXAdiagCX
T
Adiag

W and diag(rTXAdiagCX
T
Adiag

L), a diago-

nalized matrix from a vector; r = (rT1 , . . . , r
T
K)T , rk = (rk1, . . . , rkn)T and
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rki = rk(Xi; β
(t), θ̂k, φk); and L = diag(L1, . . . , LK), Lk = diag(lk1, . . . , lkn)

and

lki = −g′′{g−1(XT
i β

(t))}/(a(φk)[g
′{g−1(XT

i β
(t))}]3h′(XT

Ak,i
θ̂k)). Equation (2.5)

implies that the Newton-Raphson’s method is an iterated reweighted least squares

algorithm.

When φ and φk’s are unknown, we propose to first obtain the GENMETA

estimator β̂ of β? as above with φ′ks replaced by φ̂k’s. Next, we consider the

estimation of φ?, the true value of φ. For the kth reduced model, we have an

additional score function with respect to φk, from which, similar to equation

(2.4), we can obtain

uk(X; β, φ, θk, φk) = − a
′(φk)

a2(φk)
(g−1(XTβ)h(XT

Ak
θk)−b{h(XT

Ak
θk)})+qk(X; β, φ, φk),

where qk = EY |X{c′(Y ;φk)} and c′(Y ;φk) is the derivative of c(Y ;φk) with

respect to φk. Then, the empirical moment vector for φ is

Un(φ) = Pn(u1(X; β̂, φ, θ̂1, φ̂1)T , . . . , uK(X; β̂, φ, θ̂K , φ̂K)T )T . To estimate φ?, we

need to compute the minimizer of Un(φ)TCUn(φ), where C is a known weighting

matrix. The Newton-Raphson steps can be written as

φ(t+1) = φ(t) − J−1
n (φ(t))Dn(φ(t)), (2.6)

where Jn(φ) = UT
n (φ)Cd2qn(φ)/dφ2 + (dqn(φ)/dφ)TCdqn(φ)/dφ,

Dn(φ) = UT
n (φ(t))Cdqn(φ)/dφ and qn(φ) = Pn(q1(X; β̂, φ, φ̂1), . . . , qK(X; β̂, φ, φ̂K))T .

In brief, when φ and φk, k = 1, . . . , K, are unknown, we first choose initial

estimates β(0) and φ(0). Then, we get the GENMETA estimator β̂ by using
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equation (2.5) until a stopping rule is reached. Subsequently, φ(0), β̂ and the

study estimates are plugged in equation (A.12) and the process is repeated

until a stopping rule is reached to get the GENMETA estimator of φ∗. In

each NR step, the weighting matrix C is estimated by the estimates from the

previous step. A software implementing the IRWLS algorithm in the form

of an R Package (GENMETA) is available on CRAN and Github reposito-

ries through the links https://cran.r-project.org/package=GENMETA and

https://github.com/28pro92/packages-GENMETA, repectively.

2.2.5 Diagnostic Test for Model Violation

GENMETA relies on several modeling assumptions, including homogeneity of

the underlying populations with respect to the distribution of covariates and

regression parameters, and correct specification of the maximal model. In the

absence of individual level data from the different studies, these assumptions

could not be tested in the usual manner using traditional diagnostic tests. How-

ever, even with summary-level data, some diagnostic testing is possible. In par-

ticular, from an intuitive perspective, departure of the GENMETA estimating

equations, when evaluated at estimated parameter values, from their expected

null value will be indicative of disagreement between the model and the ob-

served data, i.e. the estimates of the parameters from the reduced models from

different studies. For example, if the regression parameters underlying the max-

imal model are highly heterogeneous across studies, then the assumption of a

common β in GENMETA will not be able to explain the heterogeneity that

is expected to be present in overlapping reduced model parameters across the
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studies. Specifically, we propose to use the score test based on the statistic,

TGENMETA = nQĈopt
(β̂), where β̂ is the GENMETA estimate. When all the

underlying assumptions are correct, from the standard generalized method of

moments theory, TGENMETA converges in distribution to a χ2 distribution with

d− p degrees of freedom, where d is the total number of GENMETA equations

and p is the total number of underlying parameters that are being estimated.

The test is only applicable when d > p, which arises when different studies have

overlapping covariates.

2.3 Simulations

We study the performance of the GENMETA estimators through simulation

studies in both idealized and non-idealized settings. In all simulations, we as-

sume that the relationship between a binary outcome variable Y and three

covariates (X1, X2, X3) can be described by a logistic regression model of the

form

Y | (X1, X2, X3) ∼ Bernoulli([1 + exp{−(β∗0 +β∗1X1 +β∗2X2 +β∗3X3)}]−1) (2.7)

where (X1, X2, X3) follows a multivariate normal distribution with mean µ =

(µ1, µ2, µ3), variance σ2 = (σ2
1, σ

2
2, σ

2
3) and underlying correlations ρ = (ρ12, ρ13, ρ23).

We chose β∗1 = β∗2 = β∗3 = log 1.3 to reflect a moderate degree of association of

the outcome with each covariate after adjusting for the others. We assume ex-

istence of three separate studies, where each study fits a reduced logistic model
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for the outcome Y on two of the covariates in the form

Y | (Xi, Xj) ∼ Bernoulli((1 + exp{−(θ∗0,ij + θ∗i,ijXi + θ∗j,ijXj, )})−1), (2.8)

with X1 and X2 included in Study-I, X2 and X3 in Study-II and X1 and X3 in

Study-III. Here, as data for each study are generated using the maximal model,

the reduced models are by definition incompatible due to non-collapsibility of

the logistic model. We fix the sample size of the studies at n1 = 300, n2 = 500

and n3 = 1000 and vary the sample size of the reference dataset.

2.3.1 Homogeneous Population

We assume that the studies are conducted in the same underlying population

from which the reference sample is drawn. Under this setting, there exists a

common mean vector µb = (0, 0, 0), common variance vector σ2
b = (1, 1, 1) and

common correlation vector ρb = 0.3, 0.6, 0.1), that describes the joint distribu-

tion of the three covariates across all the underlying populations. In the first set

of simulation, we assume a fixed sample size n = 50 for the reference dataset.

In all settings, we simulate data (Y,X1, X2, X3) for the underlying studies based

on the data generating models as described above and fit the respective reduced

models to obtain estimates of the reduced model parameters. For each set of

simulated data, we obtain estimates of covariance matrices of the reduced model

parameters using robust sandwich estimators based on either the study datasets

themselves, or the reference dataset (see (2.3)). We consider three GENMETA

estimators: GENMETA.0, which is the initial GENMETA estimator with iden-

tity weighting matrix and GENMETA.1 and GENMETA.2, that use covariance
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estimates from the reference dataset and the studies, respectively.

From the results shown in Table 2.1, we observe that all three GENMETA

estimators are nearly unbiased. The standard error estimates, irrespective of

whether Σk, k = 1, 2, 3 were estimated using the study data sets or the reference

sample, accurately reflected the true standard errors of the GENMETA param-

eter estimates across different simulations. As a result, the 95% confidence

intervals maintained the coverage probability at the nominal level. Among the

three GENMETA estimators considered, clearly GENMETA.0, which use the

non-optimal choice of C = I, is less efficient than GENMETA.1 and GEN-

META.2, which, between themselves, had comparable efficiency.

In the same setting as above, when we vary n from 10 up to the maximum

of 1000 (Figure 2.1), we observe that the precision of the GENMETA estimates

do not increase with n once it reaches a threshold around 100, which is one

third of the minimum of the study sample sizes(n1 = 300). These thresholds

were even smaller for estimation of coefficients associated with X2, which had

weak to moderate correlation with the other covariates in the model. The fact

that the reference dataset can be substantially smaller than the study datasets

without having much impact on the precision of the GENMETA estimator is

encouraging given that accessing reference dataset of large sample size may be

difficult in practice.

Finally, we conduct additional simulation studies to obtain more insight into

results from the real data analysis (Section 2.4). Here, the settings are similar

to before except we assume there are only two studies: study-I fits the maximal

logistic regression model involving all the three covariates and study-II involves

only two covariates, namely X1 and X2. We assume ρI = ρII = ρb. In our
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Table 2.1: Results on the GENMETA estimators

n = 50 β∗i Bias SD (ESD1, ESD2) RMSE CR AL

β∗1 .010 .161 (.161, .162) .161 .968, .964 .642, .636
GENMETA.0 β∗2 .005 .110 (.111, .108) .110 .958, .960 .434, .423

β∗3 -.001 .138 (.143, .142) .138 .963, .964 .559, .556

β∗1 .005 .117 (.116, .110) .117 .976, .966 .455, .433
GENMETA.1 β∗2 -.003 .101 (.105, .099) .101 .964, .955 .411, .386

β∗3 .001 .099 (.102, .097) .099 .973, .961 .402, .381

β∗1 .007 .115 (.116, .111) .115 .971, .964 .455, .435
GENMETA.2 β∗2 -.003 .102 (.105, .099) .102 .960, .959 .413, .388

β∗3 .003 .098 (.103, .098) .098 .957, .957 .403, .383

Biases, standard deviation (SD), estimated standard deviation (ESD), square
roots of mean square errors (RMSE), coverage rates (CR) and average lengths
(AL) of 95% confidence intervals for GENMETA.0 (the initial GENMETA es-
timator with identity weighting matrix), GENMETA.1 and GENMETA.2 (the
iterated GENMETA estimators without and with using the study covariance es-
timators) in the logistic regression setting. Standard deviations were estimated
either using the reference sample (ESD1) or using the covariance estimates of re-
duced model parameters from the studies (ESD2). Estimated standard deviations
are reported by taking averages over simulated datasets. Both estimated SE’s are
used to construct 95% confidence intervals and their CR’s and AL’s are reported.
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Figure 2.1: Square roots of mean square errors (RMSE) of GEN-
META estimators for β∗1 , β∗2 and β∗3 with fixed study sample sizes
n1 = 300, n2 = 500 and n3 = 1000 and varying reference sample
size n from 10, 30, 50, 70, 100, 200 to 1000. The circle and solid
line are for the RMSE’s of GENMETA.0; the triangle and dashed
line are for those of GENMETA.1; the plus and dotted line are for
those of GENMETA.2.

estimation, we further considered an added complexity to account for study

specific intercept terms for the maximal logistic regression model

Y | (X1, X2, X3, study) ∼ Bernoulli([1+exp{−(β∗0,study+β∗1X1+β∗2X2+β∗3X3)}]−1)

so that the prevalence of the outcome, pr(Y = 1), could be different across the

two studies. In this setting, the maximal set of parameters that are to be esti-

mated through GENMETA can be defined as β∗ = (β
0,study-I, β0,study-II, β1, β2, β3).

We simulated data using values of intercept parameters that are identical across

the two models, but for estimation we allowed the intercept parameters to be

different. For the sake of comparison, we also fitted a reduced model for study-I

and conducted a standard multivariate meta-analysis of the underlying common
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Table 2.2: A Simulation for Understanding Real Data Analysis

Study I Study II Meta GENMETA
Maximal Reduced Reduced Reduced Reduced Maximal

β∗i PE (SD) PE (SD) PE (SD) PE (SD) PE (SD) PE (SD)

β∗1 .270 (.149) .429 (.116) .424 (.037) .424 (.035) .425 (.035) .268 (.088)
β∗2 .263 (.111) .243 (.112) .236 (.035) .236 (.034) .237 (.034) .263 (.039)
β∗3 .258 (.136) NA NA NA NA .255 (.135)

Point estimates (PE) and standard deviations (SD) from logistic regression with re-
duced and maximal models, meta-analysis and GENMETA estimation with β∗1 = β∗2 =
β∗3 = log(1.3) ≈ .262. NA means there is no corresponding estimator.

parameters (θ1 and θ2) across the two studies. We assume the sample sizes for

the two studies to be n1 = 500 and n2 = 5000, and that for the reference dataset

to be n = 300.

From the results reported in Table 2.2, we observe that in this simulation

setting the reduced models produce biased estimate for β∗1 , but not for β∗2 . The

result is intuitive given that the omitted covariate X3 is primarily correlated with

X1. As a result, standard meta-analysis was nearly unbiased for β∗2 , but not for

β∗1 . Parameter estimates from the maximal model from study-I are unbiased

for all parameters, but have much larger standard error compared to meta-

analysis for estimation of β∗2 . The GENMETA estimator produced unbiased

estimates for all parameters and at the same time has comparable efficiency

as standard meta-analysis for estimation of β∗2 . These results highlight the

desirable feature of the GENMETA estimator that it can effectively combine

information across studies to minimize bias due to omitted covariates and yet

utilize all the information available across the partially informative studies.
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2.3.2 Heterogeneous Population

In this section, we consider simulation studies where the underlying assump-

tion of the homogeneity of covariate distribution across populations may be

violated in multiple different ways. As a bench mark for comparison, we will

describe setting (I) as the same setting as the the one we simulate under ho-

mogeneous population. In the setting (II), we allow the means or/and vari-

ances to vary across the populations underlying the studies and reference sam-

ple, keeping the correlations to remain constant. Specifically, we assume the

mean-vector for the three covariates can take one of three possible values:

µh = (1, 1, 1), µm = (0.5, 0.5, 0.5) and µb = (0, 0, 0). Similarly, the variance-

vector is also allowed to vary across three possible set of values: σ2
h = (2, 2, 2),

σ2
l = (0.5, 0.5, 0.5), σ2

b = (1, 1, 1). In the setting (III), we then allow the correla-

tions among the covariates to vary across populations. Here we also allow three

possible set of correlation vector ρ as ρl = (0.2, 0.4, 0.0) , ρh = (0.4, 0.8, 0.2)

and ρb = 0.3, 0.6, 0.1). Finally, we consider simulation setting (IV), where we

allow for potential different inclusion criteria across studies leading to possi-

ble violations of the assumption of homogeneity of the covariate distribution.

Specifically, we first simulate an underlying study base using the setup de-

scribed in simulation setup (I), and then for study-I we only keep individuals

with X1 > −0.5 and X2 < 0.5, and in study-II we keep individuals with X1 > 0.

Finally, we consider an alternative simulation scenario where we assume the co-

variates are log-normally distributed by defining X = exp(W ), where W is

generated from multivariate normal distribution following the same settings as

I-IV described above
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When covariates were normally distributed, we observe that (see Table 2.3)

the proposed method is not very sensitive to underlying assumption of homo-

geneity of covariate distribution. In the setting (II), where the mean or/and

variances of the covariates are varied across the population, but correlations are

kept fixed, there is virtually no bias. In setting (III), where correlations are var-

ied, we observe more noticeable, but still small, biases in parameter estimates.

In setting (IV), when the inclusion criteria are varied across studies, there is

also very minimal bias. When covariates are log-normally distributed, however,

we observe that (see Table 1 in Supplementary Material) the method could be

more sensitive to the violation of the underlying homogeneity assumption. In

particular, when the inclusion criteria varied across studies (setting IV), large

bias in point estimate and low coverage probability are observed for estimation

of coefficient associated with X2, the covariate which is used to define fairly

non-overlapping inclusion criterion across two studies. Notably, even in this

scenario, minimal bias is observed for estimation of the other covariates in the

model.

2.3.3 Power Evaluation of the Diagnostic Test (TGENMETA)

We assess the power of the proposed test statistic, TGENMETA in the presence of

heterogeneity in the regression parameters (β) across the studies. In the context

of standard multivariate meta-analysis, where it is assumed that all the studies

ascertain the same set of covariates, test for heterogeneity is performed using
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Table 2.3: Robustness of GENMETA Estimation (Normally Distributed Covariates)

Setting Study-I Study-II Study-III Reference β∗
i Bias SD (ESD) RMSE CR AL

µb µb µb µb β∗
1 .001 .111 (.112) .111 .947 .437

I σ2
b σ2

b σ2
b σ2

b β∗
2 -.002 .098 (.099) .098 .956 .389

ρb ρb ρb ρb β∗
3 .005 .096 (.098) .096 .954 .382

µb µh µm µb β∗
1 .010 .103 (.104) .103 .952 .405

σ2
b σ2

b σ2
b σ2

b β∗
2 -.006 .083 (.083) .083 .954 .324

ρb ρb ρb ρb β∗
3 .005 .085 (.088) .085 .956 .343

µb µb µb µb β∗
1 .003 .139 (.136) .139 .939 .529

II σ2
b σ2

h σ2
l σ2

b β∗
2 -.003 .084 (.086) .084 .956 .335

ρb ρb ρb ρb β∗
3 .003 .112 (.111) .112 .949 .431

µb µh µm µb β∗
1 .013 .124 (.126) .125 .946 .493

σ2
b σ2

h σ2
l σ2

b β∗
2 -.006 .073 (.075) .073 .958 .291

ρb ρb ρb ρb β∗
3 .005 .097 (.100) .097 .949 .391

µb µb µb µb β∗
1 -.092 .142 (.151) .169 .958 .579

σ2
b σ2

b σ2
b σ2

b β∗
2 .019 .105 (.109) .107 .963 .423

ρb ρb ρb ρh β∗
3 .053 .120 (.129) .131 .971 .495

µb µb µb µb β∗
1 .035 .099 (.099) .106 .917 .385

σ2
b σ2

b σ2
b σ2

b β∗
2 .002 .096 (.096) .096 .954 .377

ρb ρb ρb ρl β∗
3 .012 .087 (.087) .088 .944 .343

µb µb µb µb β∗
1 .060 .113 (.113) .128 .916 .443

III σ2
b σ2

b σ2
b σ2

b β∗
2 -.001 .096 (.097) .096 .955 .379

ρl ρb ρh ρl β∗
3 -.006 .103 (.102) .104 .944 .398

µb µb µb µb β∗
1 .039 .130 (.132) .135 .939 .515

σ2
b σ2

b σ2
b σ2

b β∗
2 -.006 .097 (.100) .097 .958 .392

ρl ρb ρh ρb β∗
3 -.027 .116 (.118) .119 .944 .461

µb µb µb µb β∗
1 -.036 .165 (.173) .169 .957 .671

σ2
b σ2

b σ2
b σ2

b β∗
2 .013 .103 (.109) .104 .962 .424

ρl ρb ρh ρh β∗
3 .003 .143 (.153) .143 .959 .591

µb µb β∗
1 .014 .123 (.127) .124 .961 .494

IV X1 > −0.5, X2 > 0 σ2
b σ2

b β∗
2 -.008 .105 (.109) .105 .965 .428

X2 < 0.5 ρb ρb β∗
3 -.001 .094 (.093) .093 .958 .366

Biases, standard deviation (SD), estimated standard deviation (ESD), square roots of mean square errors (RMSE),
coverage rates (CR), and average lengths (AL) of 95% confidence intervals of the GENMETA estimates using the
study covariance estimators in the setting of logistic regression. In setting (I), data are simulated in ideal setting
there the covariate distribution, characterized by mean, sd and correlation of normal variates, are assumed to same
across all populations. In setting (II)-(IV), the assumption is violated by creating variations in mean/sd, correlations
and selection criterion across the studies and reference sample. with different study and reference sample. The
vector of covariate means, variances and correlations are denoted by denoted by µ∗ = (µ1, µ2, µ3), σ2

∗ = (σ2
1 , σ

2
2 , σ

2
3)

and ρ∗ = (ρ12, ρ23, ρ13) for ∗ ∈ {b, l,m, h}, where µb = (0, 0, 0), µm = (0.5, 0.5, 0.5), µh = (1, 1, 1); σ2
b = (1, 1, 1),

σ2
l = (0.5, 0.5, 0.5), σ2

h = (2, 2, 2) and ρb = (0.3, 0.6, 0.1), ρh = (0.4, 0.8, 0.2), ρl = (0.2, 0.4, 0). Estimated standard
deviation are obtained by the asymptotic formula (2.2) and used to construct 95% confidence interval.
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standard multivariate Cochran’s test-statistic in the form

Q =
K∑

k=1

(β̂k − β̂meta)TS−1
k (β̂k − β̂meta)

where β̂meta is the usual multivariate meta-analysis estimate and Sk is the stan-

dard error of β̂k for k = 1, . . . , K. We will utilize Q as a benchmark to evaluate

the power of TGENMETA.

In all simulations, as before, we assume the existence of three separate stud-

ies and relationship between a binary outcome variable Y and three covariates

(X1, X2, X3) in each study follows the same logistic regression model of the form

(2.7). However, instead of assuming a fixed set of β across all studies, we simu-

late different values of β from a normal distribution with mean (β∗0 , β
∗
1 , β

∗
2 , β

∗
3) =

(log 1.3, log 1.3, log 1.3) and variance σ2I, where the parameter σ2 > 0 is varied

to control the degree of heterogeneity across studies. As before, we assume that

(X1, X2, X3) follows a multivariate normal distribution with mean zero, unit

variances and underlying correlations ρ = ρ12 = 0.3, ρ13 = 0.6, ρ23 = 0.1) across

all the three studies. We simulate data for the different studies from the above

random-effects logistic regression model and then fit reduced models of the form

(2.8) to the three different studies. In particular, we assume X1 and X2 included

in Study-I, X2 and X3 in Study-II and X1 and X3 in Study-III. We fix the sam-

ple size of the studies at n1 = 3000, n2 = 5000 and n3 = 10000 and vary sample

size of the reference dataset. The level of the test is set to 5%. For the purpose

of comparison, we also fit the maximal model to each study involving all three

covariates and apply the standard Q-statistics for testing heterogeneity.

Comparison of power of TGENMETA and Q statistics shows that, as expected,
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Figure 2.2: Power curves of simple multivariate meta-analysis test
statistic (Q) and TGENMETA for simulated datasets. The long-dashed
line is for the simple meta-analysis estimator. The solid and dotted lines
are for GENMETA estimators with reference data sample sizes 100 and
500, respectively. Level of the test (α) is set to 0.05.

the power for both tests increases as a function of degree of heterogeneity, σ2

(Figure 2.2). Clearly, TGENMETA suffers some loss of power as it handles missing

covariates, but it retains substantial power, even with small reference dataset

(n = 100), to remain practically useful.

2.4 Real Data Analysis

In this section, we illustrate an application of the proposed methodology to

develop a model for predicting risk of breast cancer based on combination of

different risk factors using data from multiple studies. The first study, the Breast

Prostate Colorectal Cancer Cohort study (BPC3), includes a total of 7448 cases

and 8812 controls, drawn from eight different underlying cohorts. Details of

the study, including its recent application for the development of breast cancer

risk prediction model, can be found elsewhere [114]. In the current analysis,
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we focus on the analysis of breast cancer risk associated with a selected set of

factors, including family history, age at menarche, age at first birth and weight.

The second study involves a dataset involving 1217 cases and 1616 controls

from the Breast Cancer Detection and Demonstration Project (BCDDP). The

study has been previously used to develop an updated version of the widely

popular Breast Cancer Risk Assessment tool [33] to incorporate mammographic

density, the areal proportion of breast tissue that is radiographically dense,

known to be a strong risk factor for breast cancer. The dataset from the BCDDP

study included mammographic density and number of previous breast biopsy,

in addition to all the factors considered in the BPC3 data analysis. Let X

denote the common set of covariates that are measured across both the studies

and Z be the factors that are available only in BCDDP. The goal is to estimate

parameters associated with an underlying logistic regression model that includes

all of the different factors. While the BPC3 study is large in size and represents

multiple populations, it has information on more limited number of risk factors.

The BCDDP study, on the other hand, has information on extended set of risk

factors, but is much smaller in size. A combined analysis of these two studies can

potentially lead to more generalizable and precise estimate of risk parameters.

Throughout the analysis, we used a sample of 137 cases and 163 controls

from the BCDDP study as the reference sample based on which the distribution

of covariates are estimated. To maintain independence of the reference and

study samples, we exclude the reference sample from the primary analysis of

the BCDDP study that involved estimation of the log-odds-ratio parameters.

Further, both the studies involve case-control sampling with similar case-control

proportions. In general, if non-random sampling is used for selection of subjects
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in any of the studies, then the covariate distribution underlying the GENMETA

estimating equation needs to be adjusted to account for the study design. In

this application, because we had access to the the BCDDP study, we could

adjust for the design effect by simply selecting a reference sample that includes

cases and controls in similar ratio as the main studies. In general, however, the

effect of non-random sampling design for the main studies may need to adjusted

through careful weighting of subjects in the reference sample.

For each of the eight cohorts within the BPC3 study and for the BCCDP

study, we first fit a reduced logistic regression model including X. All models

included age as an additional cofactor and included study specific intercept

parameters and age effects. Specifically, we consider underlying models in the

form

(Y | X,Age, study = k) ∼ Bernoulli((1 + exp{−(θ0k + θAkAge+ θTXX)})−1).

(2.9)

We applied the diagnostic test for model violation to these datasets. We

found the value of the test-statistic (T̂GENMETA) to be 59.01 and the corre-

sponding p-value to be 0.366 under a χ2
(56) distribution. Thus, it appears that

the underlying model assumptions are unlikely to be grossly violated in this

application.

First, to illustrate how the proposed GENMETA estimator compares to

standard meta-analysis method, we consider estimating the common underlying

parameters of interest θX using these two alternative methods. We fitted model

(2.9) separately for each study and obtained estimates of the parameters and

covariance matrices. Then, for the underlying common parameter of interests
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θX , we conducted a standard multivariate meta-analysis using the corresponding

subset of parameters estimates and covariance matrices. Alternatively, using

the parameters estimates and variance-covariance matrices from the individual

studies, and using the set aside BCDDP sample as the reference dataset to

estimate the joint distribution of X and age, we estimated all of the parameters

of model (2.9) using the GENMETA procedure. From the results reported in

Table 2.4, we observe that in this setting, the meta-analysis and GENMETA

estimators produce similar estimates as well as their standard errors across

all the different risk-factors of interest. In one of the results stated earlier,

we have seen theoretically that in an idealized setting where all the models

and underlying populations are identical, the two estimators are asymptotically

equivalent. It’s encouraging to observe the close correspondence between the

estimators in the data analysis, which includes a diverse set of studies that

are likely to have significant heterogeneity across the underlying populations.

In particular, for a number of the risk-factors (e.g family history), coefficient

estimates were noticeably different across the two studies. When significant

heterogeneity existed, the meta-analyzed estimates were pooled closer to those

from the BPC3 study due to its large sample size.

Next, we turn our attention to the analysis of data from the BCDDP study

using a maximal model that includes X and the additional covariates, mam-

mographic density and number of previous breast biopsy. Comparison of the

parameter estimates associated with X across the maximal and reduced model

within the BCDDP study indicates major differences in the estimates of the co-

efficients associated with weight. In the maximal model, higher weight is found

to be be much more strongly associated with increased risk of breast cancer.
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The unmasking of the effect of weight in the maximal model is intuitive given

that body weight and mammographic density is known to have strong nega-

tive correlation. Although not as dramatic, there are some differences in effects

of age at menarchy and age at first birth between the maximal and reduced

models, also possibly because of modest correlation of these factors with mam-

mographic density and number of previous breast biopsy. The effect of family

history, however, is almost identical across the two models.

Finally, we used the GENMETA method to combine estimates of the pa-

rameters of the maximal model from the BCDDP study and those from the

reduced models from the eight BPC3 cohorts. We assumed an underlying max-

imal model of interest across the 9 studies in the form

(Y | X,Z,Age, study=k) ∼ Bernoulli([1+exp{−(θ0k+θAkAge+β
T
XX+βTZZ)}]−1).

We observe that GENMETA produces estimates of effect of family history

and associated standard error very similar to those observed based on the stan-

dard meta-analysis of the reduced models across the nine cohorts. The estimate

is pooled heavily towards the BPC3 study due to its large sample size. In con-

trast, the GENMETA estimates for weight are very similar to those observed

from the maximal model only within the BCDDP study. These results are con-

sistent with simulation studies, where GENMETA behaves similar to reduced

model meta-analysis when omitted covariates do not cause notable bias. In

contrast, when omitted covariates cause important bias, the GENMETA esti-

mator is pooled towards estimates from maximal or more complete models that

may be available from a restricted set of studies. The behavior of GENMETA
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for the two other covariates, age at menarchy and age at first birth, were in

between, which is also intuitive given that we had observed their coefficients

changed notably, but less dramatically, in the maximal model compared to the

reduced model within the BCDDP study. The GENMETA parameter esti-

mates and standard errors for the additional variables mammographic density

and number of previous breast biopsy, were similar to those observed for the

maximal model in the BCDDP, the only study which had information on these

two factors. Thus, overall the data analysis illustrates that the GENMETA es-

timator behaves in a similar manner as meta-analysis for combining information

across multiple possibly heterogeneous studies, but it has the added flexibility

to effectively combine information from disparate models.
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Table 2.4: Combined analysis of BCDDP and BPC3 study to develop a multivariate logistic regression model for breast cancer risk. For each
cohort within BPC3 and for BCDDP, standard logistic regression model is applied for fitting reduced models including FH (family history),
AMEN (age at menarche), AFB (age at first live birth) and WT (weight). Parameter estimates of the reduced models across studies are
then combined using standard meta-analysis (meta) or GMeta. For the BCDDP study, a maximal logistic model is fitted including additional
covariates mammographic density (MD) and number of previous biopsy (NBIOPS). These estimates are then combined with with estimates of
reduced model parameters from BPC3 studies to obtain GMeta estimates of the maximal model. Point estimates (PE) and standard errors (SE)
are shown for each analysis. NA means there is no corresponding estimator. The variables analyzed include: FH: binary indicator of family
history; AMEN1 and AMEN2: dummy variables associated with age-at-menarche categories ≥ 14, 12–13 and ≤ 11; AFB1 and AFB2: dummy
variables associated with age-at-first-live-birth categories ≤ 20, 21–29 and ≥ 30; WT1 and WT2: dummy variables associated with weight
categories ≤ 62.6, 62.6–73.1 and ≥ 73.1 in kilograms; NBIOPS: the number of biopsies coded as a conitunous variable and MD: the standardized
mammographic density coded as a continuous variable.

BCDDP BPC3 Meta GMeta
Maximal Reduced CPS2 EPIC MCCS MEC NHS PLCO WHI WHS Reduced Reduced Maximal
Model Model Cohort Cohort Cohort Cohort Cohort Cohort Cohort Cohort Model Model Model

PE(SE) PE(SE) PE(SE) PE(SE) PE(SE) PE(SE) PE(SE) PE(SE) PE(SE) PE(SE) PE(SE) PE(SE) PE(SE)
FH1 .80(.14) .80(.14) .47(.13) .29(.15) .56(.19) .41(.28) .48(.08) .39(.13) .30(.06) .28(.19) .40(.04) .42(.04) .37(.08)
AMEN1 .11(.10) .07(.10) -.03(.14) .02(.09) -.19(.17) -.09(.24) .06(.09) -.05(.12) .13(.08) .03(.17) .04(.04) .03(.04) .04(.06)
AMEN2 .55(.15) .45(.15) -.09(.17) .04(.12) -.44(.23) .35(.35) .19(.10) .03(.15) .19(.09) .14(.19) .13(.05) .13(.05) .32(.08)
AFB1 .06(.14) .18(.15) .28(.17) .12(.14) -.08(.25) .06(.17) .39(.20) .16(.14) .19(.09) .92(.23) .21(.05) .20(.05) .05(.09)
AFB2 .29(.20) .46(.20) .73(.24) .24(.17) .35(.30) .05(.26) .36(.22) .52(.22) .44(.13) .96(.28) .38(.06) .38(.07) .21(.12)
WT1 .29(.11) .09(.11) .09(.14) -.01(.09) .22(.18) .09(.17) .21(.08) .09(.13) -.03(.08) -.01(.14) .08(.04) .08(.04) .31(.07)
WT2 .52(.13) .10(.13) .16(.14) .24(.11) .45(.19) -.08(.18) .10(.08) .09(.13) .18(.08) -.16(.15) .14(.04) .14(.04) .63(.09)
NBIOPS .13(.09) NA NA NA NA NA NA NA NA NA NA NA .13(.10)
MD .46(.05) NA NA NA NA NA NA NA NA NA NA NA .43(.06)

38



2.5 Discussion

The proposed method can be viewed as a natural extension of the traditional

fixed effect meta-analysis method that is widely used in practice. Both simula-

tion studies and data analysis demonstrate that the method not only provides

theoretically valid and efficient inference in idealized conditions, but also can

perform robustly in non-idealized settings. A critical element of the proposed

method is the access to a reference dataset. While the ideal choice of the ref-

erence dataset will vary by applications, publicly available survey data, which

collect information on a wide variety of factors, can be useful broadly. In fact, in

large scale genetic association studies, use of reference samples, such as the 1000

Genome study, are commonly used for estimation correlation parameters across

genetic markers in the genome [38, 39, 99]. For epidemiologic studies, good re-

sources for reference dataset for the US population include the National Health

Interview Survey [2, 11, 8] and the National Health and Nutrional Examination

Survey [55, 72, 43, 79, 96], which routinely collect data on a wide variety of

health and lifestyle related factors. If multiple studies coordinate through con-

sortium effort, which is increasingly common in biomedical applications, then

studies which have most complete information, at least on some sub-samples,

can provide reference sample.

When information on all covariates are not available in a single reference

sample, one may have to consider simulation for generating such data by com-

bining information from multiple studies under some modeling assumptions.

As the access to large reference dataset that is ideally representative of the
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underlying study populations can be difficult, we found two aspects of GEN-

META to be appealing. First, the sample size for the reference dataset can be

small relative to the study datasets and yet GENMETA can have reasonable

efficiency. In fact, increasing the sample size for the reference dataset beyond

certain threshold does not have an impact on the efficiency of GENMETA. Sec-

ond, although technically the method requires all the populations underlying

the studies and the reference dataset to be the same, in practice, the method

can be robust to a reasonable degree of heterogeneity in distribution of covari-

ates. However, it is possible to have a large bias when estimating coefficients

associated with covariates that have been used to define widely varying inclu-

sion criteria. When different studies follow very different designs it is best to

obtain study-specific reference samples for estimating the underlying moment

equations. Alternatively, it may be possible to modify a large reference sam-

ple by using study-specific sampling weights/inclusion criteria when estimating

the moment equations. Dealing with study-specific covariates, such as centers

within a study, can also pose challenges as information on such variables are

not expected to be available from a common reference sample. We have illus-

trated in our data example that it is possible to deal with such variables by

imposing additional independence assumptions from other factors. In general,

such complications need to be dealt in a case-by-case basis and some study

specific reference samples may be needed to avoid making strong assumptions.

Further research is merited to explore these and other practical challenges in

implementation of the proposed method.

In general, we believe caution is needed for interpretations and applications

of models that may be developed by combining information from disparate
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models across multiple studies. A model developed from a single study with

complete information, although may be inefficient and may lack generalizability,

is more likely to be internally consistent and thus can provide valid etiologic

inference even if it is not representative of the general population. On the other

hand, etiologic interpretation of parameters can be difficult when the underlying

model is developed using information across multiple studies that are potentially

heterogeneous. For the development of predictive models, however, where the

focus is not so much parameter interpretation, development of rich models by

combining information across multiple studies and then validating such models

in independent studies can be an appealing strategy. These and other practical

issues related to model development using multiple data sources have been also

discussed in several recent articles [160, 66, 35, 52].

We used generalized method of moments as the underlying inferential frame-

work. Alternatively, inference could be also performed using empirical likelihood

theory [135, 136, 28] exploiting the same set of moment equations as we propose.

While in small sample, empirical likelihood estimators may perform better, im-

plementation can be substantially more complex. Recently, a simulation based

method has been also described for combining information on model parameters

across disparate studies [138]. Computationally, the proposed method may also

enjoy substantial advantages in dealing with complex models, such as those in

high-dimensional settings, where repeated model fitting on simulated data is

extensive. Further research is merited in multiple directions to increase the

practical utility of GENMETA. It is possible that in some applications we may

have information only on subsets of parameters underlying the fitted reduced

models. It’s an open question how such partial information can be used to set
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up the underlying moment equations in the GENMETA procedure. Ideally,

to increase robustness of inference, the GENMETA procedure should use study

specific reference sample for setting up the moment equations. For this purpose,

it may be useful to develop strategies to combine information on a common ref-

erence sample with complete covariate information and data from individual

studies that have partial covariate information.
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Chapter 3

Analysis of Two-Phase Studies

using Generalized Method of

Moments

3.1 Introduction

Modern epidemiological studies often require collection of information on a large

number of factors, including lifestyle and behavioral factors, social and environ-

mental conditions, and biomarkers. Measuring certain factors, such as novel

biomarkers or physical activity levels based on wearable devices, can be cost-

prohibitive. The difficulty can be overcome by employing a two-phase sampling

design where at phase-I, a relatively large number of individuals are sampled

from a target population for the ascertainment of a set of inexpensive covari-

ates. At phase-II, a small sub-sample is then judiciously selected, possibly

stratified by disease status and covariate information collected at phase-I, for
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the ascertainment of more expensive covariates. Two-phase sampling was first

introduced by Neyman in 1938 as an approach for stratification and gradually,

it gained popularity in many other fields including epidemiology, econometrics

and GWAS [125, 112, 132, 145, 154]. Several studies have illustrated the design

and analysis of two-phase studies using the data from the National Wilms Tu-

mor Study [42, 62, 14].

Existing methods for logistic regression analysis of two-phase epidemiolog-

ical studies include weighted-likelihood [56] (WL) and conditional-likelihood

[164, 75, 13] (CML), which essentially focus on the analysis of the phase-II

data, after accounting for sampling probability through weights or offsets, re-

spectively. Information from phase-I data in these methods can be incorporated

through post-hoc estimation of sampling weights based on available covariates.

A variety of methods have been proposed to analyze two-phase designs under

a semi-parametric missing data framework, where no modeling assumption re-

garding distribution of covariates is required. Examples include methods based

on estimated-likelihood [129, 26, 77], regression calibration [34], pseudo-score

[30] , weighted likelihood with weights calibrated by various sample survey tech-

niques [20] and semiparametric maximum likelihood [141, 19, 146, 98, 171, 137].

In this chapter, we address two major challenges associated with the existing

methods. First, a variety of methods assume that the available phase-I data

can be summarized into a finite number of strata and as a result, they cannot

effectively utilize information available on continuous covariates at phase-I. For

example, many researchers have proposed semiparametric maximum likelihood

estimation, but these methods are only efficient under the assumption that the
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phase-I data can be summarized into finite strata [18]. Another challenge for

the analysis of two-phase studies can arise in the setting of large consortium

based studies that require data sharing. For example, large consortia have been

formed for conducting GWAS of various diseases. In such consortia, studies

often share individual-level data on samples (e.g. a case-control sample) which

are genotyped, but individual-level data from the large underlying study (e.g. a

cohort study) is not typically made available. In such a setting, it may still be

possible to get some summary-level information from phase-I, such as estimates

of parameters associated with a reduced model including some basic covariates.

Thus, methods that can incorporate summary-level data from the phase-I data

can facilitate the incorporation of two-phase design methodology in consortia

setting.

We propose a method for the analysis of two-phase studies with a binary

outcome where phase-I data can potentially involve numerous covariates, some

of which could be continuous. We summarize the information from phase-I

data through parameters associated with the fitting of a reduced logistic regres-

sion model. We then use the individual-level data from phase-II and estimates

of the reduced model parameters from phase-I to set up a set of estimating

equations for inference on parameters associated with an extended logistic re-

gression model of interest. We use the generalized method of moment (GMM)

techniques for parameter estimation and asymptotic inference. Through simu-

lation study and real data analysis, we show that the proposed method has the

same efficiency as SPMLE when the phase-I data are discrete and yet it provides

more flexibility to efficiently incorporate richer phase-I data by controlling the

complexity of the reduced model.
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This chapter is organized as follows: in section 3.1.1, the notations and

statistical formulation of the problem is described followed by asymptotic prop-

erties of the proposed estimator. In section 3.2, extensive simulations are con-

ducted under different sampling designs to study the performance of the pro-

posed method. In section 3.3, we illustrate applications of our method using

data from the US National Wilms Tumor Study.

3.1.1 Model Formulation

Let us denote the outcome of interest by Y , a binary variable taking values 1

and 0, and the set of full covariates by X, where dimension of X is q2. We

assume the true relationship between Y and X is given by a full model , or

sometimes referred to as an extended model, of the form,

P (Y = i|X = x) =
exp(iβTX)

1 + exp(βTX)
. (3.1)

Our goal is to estimate and draw inference about β0, the true value of β. Before

we move onto the estimation procedure, we introduce the two-phase sampling

design considered here.

3.1.2 Sampling Design

We assume at phase-I, N samples are randomly drawn from an underlying popu-

lation on each of which Y and Z, a set of covariates of dimension q1, are observed.

We assume Z to be a subset of X, but it could also include surrogates of some

components of X where Z does not have any effect on outcome Y, given X.
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More specifically, we will assume Pr(Y |X,Z) = Pr(Y |X). Let S := S(Z) de-

note a set of stratifying variables in phase-I. From each of the strata defined by

Y and S at phase-I, a random sub-sample is drawn in phase-II based on known

selection probabilities denoted by π(Y, S).

3.1.3 Method

We first propose to summarize the phase-I data through a reduced model and

use the reduced model parameters to establish an estimating equation for the

full model parameters. We fit a reduced model of the form,

Pr(Y = i|Z) =
exp(θTZ)

1 + exp(θTZ)
; i = 0, 1 (3.2)

to the phase-I data.

We will denote θ̂ to be the maximum-likelihood estimator of θ and denote

θ0 as the asymptotic limit of θ̂. Then, irrespective of whether the reduced

model (3.2) is correctly specified or not, we can write E{S(Y, Z; θ)}|θ=θ0 = 0,

where S(Y, Z; θ) is the score function and the expectation is taken under the

true data generating distribution. Assuming the maximal model (3.1) is cor-

rect and using the law of iterated expectation, we can rewrite the score equa-

tion as E{f(X,Z; β, θ)}|β=β0,θ=θ0 = 0, where f(X,Z, β, θ) := {expit(βTX) −

expit(θTZ)}Z [28]. While evaluating this equation, we estimate the distribution

of X empirically from the individual-level phase-II data with inverse probability

weighting to account for non-random sampling design. Hence, an asymptotically

unbiased estimating function for β, based on summary-level data (θ̂) available
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from phase-I, is given by,

U1N(β) =
1

N

N∑

i=1

Rif(Xi, Zi, β, θ̂)

π(Yi, Si)
,

where, Ri is an indicator variable determining the selection of ith subject in

phase-II. For rigorous derivation of the above estimating equation, see supple-

mental material.

Further, we propose to use the following estimating equation to incorporate

data from phase-II:

U2N(β) =
1

N

N

n

N∑

i=1

Ri[Yi − expit{γ(β)TXi}]Xi

The above estimating equation corresponds to standard logistic regression score

equation where the effect of non-random sampling is accounted through in-

corporation of offset parameter in the logistic model parameter as: γ(β) =

β + (log π(1,s)
π(0,s)

, 0T )T [15].

We define βGMM , the GMM estimator in two-phase design, to be the min-

imiser of the quadratic form, QN(β) = UT
N(β)ĈUN(β), where, UN(β) = (UT

1N(β), UT
2N(β))T

and Ĉ is a positive semi-definite matrix. Mathematically, β̂GMM := argminβ QN(β).

From now on, for simplicity, we denote β̂GMM by β̂.

Let the limiting value of n
N

be λ, where we assume λ ∈ (0, 1). Let Ψ(Y,X,R; β0, θ0) =

(ΨT
1 ,Ψ

T
2 )T denote the influence function of UN(β̂), where Ψ1 := Ψ1(Y,X,R; β0, θ0) =

Rf(X,β0,θ0)
π(Y,S)

+ {Y − expit(θT0 Z)Z}, Ψ2 := Ψ2(Y,X,R; β0, λ) = λ−1RS(Y,X; β0).

Following the well established theory of GMM [71, 51, 81], we have the following

theorem:
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Theorem 3.1.1 (Consistency and Asymptotic Normality of β̂). Suppose the

positive semi-definite matrix Ĉ
P−→ C. Then, under the regularity conditions

(RC1-RC4) provided in appendix, β̂
P−→ β0. Further, we have

√
N(β̂ − β0)

D−→ N(0, (ΓTCΓ)−1ΓTC∆Ω∆TCΓ(ΓTCΓ)−1)

where Ω = E(ΨΨT ), ∆ =



Iq1 0 Iq1

0 λ−1Iq2 0


 and Γ = E ∂

∂β
U(β, θ)|β=β0,θ=θ0.

The above asymptotic variance is minimized at the optimal C given by

Copt = (∆Ω∆T )−1. Then, the optimal asymptotic variance is given by (ΓT (∆Ω∆T )−1Γ)−1.

We compute β̂ using the following standard iterated GMM algorithm [70].

Algorithm:

(i) First we choose C to be an identity matrix and then minimize the quadratic

form to get an initial estimate, β̂(1).

(ii) Using the estimate obtained in step (i), we compute Ĉ = Ĉopt = {∆̂Ω̂(β̂(1))∆̂T}−1.

With this Ĉ, we minimize the quadratic form to obtain β̂(2).

(iii) Iterate step (ii) with the estimate obtained in step (ii) till convergence.

For a rigorous proof of the theorem, see supplemental material.

3.2 Simulation Studies Resembling US National

Wilms Tumor Data

We conduct simulations to gain insight into the results from real data analysis

involving the NWTS study (see section 3.3). The data contains 4028 children
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diagnosed with Wilms Tumor, the most common form of kidney cancer in the

pediatric age group, recruited in the third and fourth clinical trial of the National

Wilms Tumor study. Details of the study can be found elsewhere [42, 62, 14].

The outcome variable of interest in this is study is relapse, a binary variable

with 1 indicating that the patient’s condition has deteriorated. The covari-

ates of interest are: institutional histology (0 if favourable/1 if unfavourable);

central histology (0 if favourable/1 if unfavourable); stage (0 if stage-I/1 if

stage-II, 2 if stage-III and 3 if stage-IV) and age. There were two types of his-

tology measurements available in the study. First, the institutional histology,

i.e., the classification of the tumor into favorable and unfavorable, according

to the pathologist at the hospital where the children were admitted for their

treatment. Because the data came from many different hospitals, it’s expected

that the institutional histology is likely to be more error prone due to variations

associated with subjective judgements from the different pathologists. Thus,

the NWTG re-evaluated histology using a central pathologist recruited for the

entire study which is referred to as central histology, the second measurement

for histology available in the study.

Imitating this structure of the real data, we assume existence of four co-

variates, X1, X2, X3, and X4, where X1 and X2 are binary variables taking

values 0 and 1; X3 is an ordinal variable taking values 0,1,2 and 3; and X4

is a continuous variable assumed to follow standard normal distribution. The

covariates are simulated in a way such that the correlations among them are

(ρ12, ρ13, ρ14, ρ23, ρ24, ρ34) = (.73, .13,−.01, .09, .01, .27) and marginal probabili-

ties for the discrete variables are: Pr(X1 = 1) = .9, Pr(X2 = 1) = .89 and

(Pr(X3 = 0), P r(X3 = 1), P r(X3 = 2)) = (.39, .26, .23). These values are
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matched to those observed in real data. The algorithm underlying the simu-

lation mechanism is described elsewhere [3]. Let D = (D1, D2, D3) denote the

set of dummy variables constructed for coding the variable, X3, in categorical

form in the underlying models. We assume the relationship between Y and

the covariates in the source population can be described by a logistic regression

model of the form

Pr(Y = 1|X2, D,X4) = h(β0+β1X2+βT2 D+β3X4+βT4 D⊗X2+β5X2X4+βT6 D⊗X4)

where, β1 = 1.16, β2 = (β2A, β2B, β2C) = (.60, .46, .81), β3 = .22, β4 = (β4A, β4B, β4C) =

(.44, 1.03, 1.63), β5 = −.67, β6 = (β6A, β6B, β6C) = (.20, .33, .06) and h(.) =

(1 + (exp(.))−1)−1. These values are chosen by fitting the above model to the

real data. The intercept parameter, β0, is chosen to be -3.6 yielding a disease

prevalence of 6%.

According to the above simulation scheme, we generated 10, 000 individuals

in phase-I. We considered two sampling designs, a simple case-control design

and a balanced design, for generating the phase-II sample. Under the case-

control design, an equal number of samples are randomly drawn from the two

strata, Y = 1 and Y = 0, respectively. In the balanced design, we draw random

samples jointly stratified by Y and X1 so that the resulting sample is balanced

across both the levels of Y and the levels of X1. Previous studies [13, 14] have

shown that the balanced sampling design can gain efficiency over standard case-

control sampling for estimation of parameters associated with a covariate for

which balancing is achieved. During analysis of each data, we pretend that X2

is observed only for those individuals who are selected at phase-II.
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For data analysis using the proposed method, we considered the following

two logistic regression models for summarizing the phase-I data.

M1 : Pr(Y = 1|X1, D,X4) = h(γ0 + γ1X1 + γTDD + γ4X4),

M2 : Pr(Y = 1|X1, D,X4) = h(γ0+γ1X1+γTDD+γ4X4+γT5 X1⊗D+γ6X1X4+γT7 D⊗X4),

where γD = (γD1, γD2, γD3), γ5 = (γ5A, γ5B, γ5C) and γ7 = (γ7A, γ7B, γ7C).

For the purpose of comparison, we also implemented a semiparametric maximum-

likelihood estimator (SPMLE) where the phase-I data were summarized into

discrete strata as stratum probabilities. The strata were defined by combina-

tion of (Y,X1), the variables used for stratified sampling, and by X3, which we

included as a post-stratification variable to incorporate information on phase-I.

The SPMLE was computed using the missreg package in R [148].

From the results shown in Table 3.1, we observe that GMM produce nearly

unbiased estimates of the parameters, β = (β0, β1, β2, β3, β4, β5, β6) and their

standard errors; and was able to maintain the coverage probabilities at the

nominal level. We further observe that when the phase-I data were summarized

using a more saturated model (M2), there was a very substantial gain in effi-

ciency for the GMM estimator compared to SPMLE for covariates associated

with X4 and its interaction with other covariates. This highlights the desir-

able attribute of the GMM estimator that it can efficiently borrow information

available from phase-I covariates. However, we also observed that when the
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phase-I data were summarized using a less saturated model (M1), the GMM es-

timator can lose substantial efficiency compared to the SPMLE for parameters

associated with several covariates.

3.3 Application to US National Wilms Tumor

Data

In this section, we demonstrate an application of our methodology to simulated

two-phase data constructed from the real National Wilms Tumor study as de-

scribed in section 3.2. Analogous to the study conducted earlier by Breslow

and Chatterjee (1999) using this dataset, here we repeatedly simulated phase-II

samples while keeping the phase-I sample to be fixed as the entire NWTS cohort

[14].

Let D and S denote the outcome variable of interest, relapse status, and a

stratum indicator variable for institutional histology, respectively. Let Z denote

central histology and W = (W1,W2,W3) denote the set of dummy variables for

stage, where W = 0 denotes stage-I. We assume the probability of relapse given

all the covariates can be specified as,

Pr(Y = 1|S,Z,W,Age) = h(β0+β1Z+βT2 W+β3Age+β
T
4 W⊗Z+β5Z∗Age+β6W⊗Age)

(3.3)

, where we implicitly assumed that institutional histology has no information on

relapse status given central histology and other covariates. Since we have all the

variables measured in the full cohort, we assumed the ground truth to be the
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parameters associated with the model (3) fitted to the entire NWTS data. We

simulated two-phase studies where we pretended that the institutional histology

is available only at phase-II and we evaluated mean-squared errors of the GMM

and SPMLE estimators around the ground truth.

For simulation of phase II data, we first classified all the subjects in phase-

I into disjoint strata based on D and S, where the strata specific counts are

provided in Table 3.2. We considered two different designs, case-control and

balanced (see Table 3.2). Here, the balanced design is defined in a similar way

as described by Breslow & Chatterjee [14] by sampling all the relapsed cases

and all the patients with unfavorable histology. We simulated 1000 phase-II

samples based on each of the designs with the associated sampling probabilities

given in Table 3.2.

We summarized the phase-I data by fitting the following logistic regression

model,

Pr(Y = 1|Ze,W,Age) = h(θ0+θ1Ze+θ
T
2 W+θ∗3Age+θ

T
4 W⊗Ze+θ5Ze∗Age+θ6W⊗Age),

to the phase-I data where Ze denotes institutional histology which is an error

prone version of central histology, Z. From the simulated individual-level phase-

II data and the information on parameter estimates, (θ̂0, θ̂1, θ̂2, θ̂3, θ̂4, θ̂5, θ6), ob-

tained from the fitted model at phase-I, we estimated the regression parameters

associated with model (3.3) using our proposed methodology. Although, the

variance-covariance matrix associated with the phase-I model parameters can

be estimated from the phase-II sample, however, we estimated it from phase-I

data as we have access to the entire dataset in this application.
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To compare the performance of the GMM estimator with the SPMLE es-

timator, we implemented the latter using the missreg package in R [148]. In

the estimation procedure, the stage variable is used for post-stratification to

incorporate as much information as available from phase-I. When we attempted

to post-stratify based on both categories of age and stage, due to the sparsity

in sample size in some of the cells of the cross-classified table, the SPMLE of-

ten failed to converge. Thus, in the final analysis, we implemented SPMLE

with only stage as a post-stratification variable and hence incorporate the in-

formation on it from phase-I, but we incorporated the age information into the

analysis only from the subjects included at phase-II.

We calculated the mean square error of the regression coefficients around

the assumed ground truth. From Figure 3.1 and 3.2, we see substantial smaller

MSE for the effect of age and its interaction with other covariates in both the

designs. Also, we observed that under case-control design, the GMM produced

larger MSE compared to SPMLE for model terms that did not include age effect.

However, under the more efficient balanced design, this efficiency loss is modest

specially considering the gain in efficienct for age-related terms.

3.4 Discussion

In this article, we have proposed a novel method for the analysis of two-phase

studies which can incorporate information from complex multivariate phase-I

data through summary-level parameters associated with fitted reduced models.

We showed through extensive simulation studies and real data analysis that
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Figure 3.1: Mean square errors from real data analysis in case-control design

summarizing phase-I data through a set of parameters associated with an un-

derlying reduced model, in contrast to summarizing the information into a set

of strata, can lead to a more flexible and efficient way of utilizing the phase-I

data in the analysis. The reduced model, however, should be made as saturated

as possible as the size of the data permits. Use of a highly under-specified model

can result in a substantial loss of efficiency (see Table 3.1).

We have considered scenarios where the selection probabilities were known

by design. However, in large studies with complex designs, it may be consid-

erably difficult to retrieve true selection probabilities. In such settings, one

can estimate the selection probabilities in a post hoc fashion based on fitted

parametric or semi-parametric models[59, 144, 21, 103, 131]. Further research
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Figure 3.2: Mean square errors from real data analysis in balanced design

is merited to explore the impact of estimation of selection probabilities on effi-

ciency of the proposed method.

Our method relies on the generalized method of moments framework for

drawing an inference. Alternatively, inference would also be conducted using

empirical likelihood (EL) theory [136, 135] using a similar set of estimating

equations. Executing the EL approach may be notably complex in spite of

enjoying small sample properties. Application of EL approach in two-stage

outcome-dependent sampling designs have been discussed in recent articles [171,

137]. Computationally, the proposed method appreciates the benefits of an

iterated re-weighted least squares algorithm.

We assumed the phase-I sample to be a random sample. However, there are

many epidemiological studies that employ case-control sampling at phase-I itself
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[15, 146, 19] or/and considers even more complex designs, such as multi-phase

design [163] and partial questionnaire designs [158], all of which creates complex

missing data by design. In those scenarios, one can amend the estimating

equations accordingly to incorporate the particular design. Other extensions

that merit future research include analysis of time-to-event outcomes based on

hazard-based regression models under various two-phase sampling schemes for

cohort studies, such as the case-cohort design [172, 104, 101, 159, 134].
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Table 3.1: Simulation Results (Imitating Real Data Structure)

Design Phase-I Covariates Parameter Bias(%) SD (ESD) CP RE

Case-Control (X1, D,X4)
β1 .029 .33 (.31) .95 .73
β2A .003 .16 (.16) .94 0.82
β2B .004 .19 (.18) .94 0.82
β2C 0.002 .24 (.23) .95 .80
β3 0.003 .12 (.12) .95 1.00
β4A -0.015 .45 (.43) .94 0.66
β4B -.007 .46 (.43) .94 0.68
β4C .050 .57 (.53) .95 0.64
β5 -.013 .17 (.16) .95 1.09
β6A -.009 .17 (.17) .94 1.00
β6B .003 .18 (.17) .94 1.00
β6C .003 .22 (.20) .95 1.04

Balanced (X1, D,X4)
β1 -.03 .28 (.28) .94 0.93
β2A .004 .16 (.16) .96 0.83
β2B .007 .18 (.18) .95 0.84
β2C 0.03 .22 (.22) .94 .84
β3 1.29 .13 (.13) .95 1.08
β4A -.01 .37 (.36) .95 0.86
β4B -.01 .37 (.36) .95 0.88
β4C -.0008 .40 (.39) .95 0.89
β5 -.02 .12 (.13) .96 1.21
β6A -.01 .18 (.18) .95 1.04
β6B -.001 .18 (.18) .96 1.04
β6C -.006 .21 (.20) .94 1.05

Case-Control (X1, D,X4, X1X4, D ⊗X2, D ⊗X4)
β1 0.017 .298 (.284) .94 0.89
β2A 0.005 .148 (.156) .95 0.96
β2B 0.006 .175 (.173) .94 0.93
β2C 0.022 .215 (.205) .95 0.97
β3 0.001 .110 (.105) .94 1.20
β4A -.007 .388 (.375) .93 0.88
β4B -.003 .398 (.377) .95 0.92
β4C -.0008 .478 (.443) .95 0.89
β5 -.002 .139 (.134) .95 1.62
β6A -.006 .145 (.139) .95 1.40
β6B .006 .149 (.141) .95 1.45
β6C .007 .176 (.162) .94 1.65

Balanced (X1, D,X4, X1X4, D ⊗X2, D ⊗X4)
β1 -0.022 .274 (.275) .94 0.97
β2A 0.011 .159 (.156) .94 0.88
β2B 0.029 .176 (.178) .96 0.87
β2C 0.052 .205 (.213) .95 0.94
β3 -0.0006 .106 (.114) .93 1.43
β4A -0.019 .352 (.359) .95 .91
β4B -0.016 .349 (.355) .96 0.93
β4C -0.033 .378 (.389) .94 0.96
β5 -0.001 .117 (.114) .94 1.34
β6A -0.011 .141 (.148) .94 1.60
β6B -0.008 .141 (.147) .94 1.60
β6C -0.006 .155 (.168) .94 1.68

Biases, standard deviation (SD), estimated standard deviation (ESD), and coverage probabilities (CP)
for GMM estimator. The last column shows relative efficiency (RE) with respect to SPMLE estimator.
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Table 3.2: Wilms Tumor Data: Phase-I strata frequencies and Phase-II sam-
pling design

Phase-I: Strata Frequencies
Phase-II Sampling Probabilities

Case-Control Balanced
Institutional
Histology

Casesa Controls Casesa Controls Casesa Controls

Favorable 415 3207 1 0.165 1 0.086
Unfavorable 156 250 1 0.165 1 1
a Cases are defined to be the relapsed ones.
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Chapter 4

Genome-wide Interaction Scan

Identifies Gene by Smoking

interaction at 2q21.3 for

Pancreatic Cancer Risk

4.1 Introduction

Pancreatic cancer is the seventh leading cause of cancer death worldwide [139].

In 2018, 458,918 new cases of pancreatic cancer were diagnosed, and 432,242 in-

dividuals died from this disease [139]. The incidence rates for pancreatic cancer

has significantly increased since the mid-1990s in the United States and world-

wide [61, 108]. Risk of pancreatic cancer increases dramatically with increasing

age with the majority of cases diagnosed after 55 years of age [139]. Pancreatic

ductal adenocarcinoma (PDAC) is the most common subtype and represents ≥
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85% of total pancreatic cancer [139].

Inherited susceptibility plays an important role in pancreatic cancer risk as

demonstrated by the high-risk of PDAC in individuals with a family history

of pancreatic cancer, particularly those with multiple affected relatives [22].

Pathogenic variants in BRCA1, BRCA2, PALB2, ATM, CDKN2A, STK11,

BRCA1 as well as DNA mismatch repair genes have been shown to increase

risk of PDAC [76], with recent studies demonstrating that up to 10% of pan-

creatic cancer patient harbor pathogenic variants these genes [169]. Common

variants also play an important role in PDAC, with array-based heritability

estimates of up to 21.2% [32]. Our recent genome-wide association studies

(GWAS) have identified over 18 regions with significant (P − value ≤ 5× 10−8)

associated with PDAC. Associated gene regions include 1p36.33 (NOC2L), 2

independent loci at 1q32.1 (NR5A2), 2p13.3 (ETAA1), 3q29 (TP63), 3 loci at

5p15.33 (CLPTM1L- TERT), 7p12 (TNS3), 7p13 (SUGCT), 7q32.3 (LINC-

PINT), 8q21.11 (HNF4G), 8q24.21(MYC), 9q34.2 (ABO), 13q12.2 (PDX1),

13q22.1 (KLF5), 16q23.1 (BCAR1), 17q12 (HNF1B), 17q25.1 (LINC00673),

18q21.32 (GRP) and 22q12.1 (ZNRF3) [4, 36, 93, 130, 166, 170].

In addition to inherited genetic factors, other risk factors for PDAC include

cigarette smoking, diabetes, chronic pancreatitis, heavy alcohol use and excess

body weight [139]. In particular, the association between smoking and PDAC

is among the most well established with an estimated population attributable

fraction in the United States of 12.1% [150]. Both case-control and cohort

studies have demonstrated a close to 2-fold elevated risk among current smokers

compared to never smokers [109, 10]. A pooled analysis of data from 12 case-

control studies within the Pancreatic Cancer Case-Control Consortium (PanC4)
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showed that compared to never smokers, the odds ratio (OR) of PDAC was 1.17

(95% confidence interval [CI] 1.02-1.34) in former smokers and 2.20 (95% CI

1.71-2.83) for current cigarette smokers (15,16). A pooled nested case-control

study within 12 cohorts in the Pancreatic Cancer Cohort Consortium (PanScan)

showed an increased risk of PDAC among current smokers compared to never

smokers (OR = 1.77, 95%CI: 1.38- 2.2) [109]. Although no overall association

was observed among former smokers, former smokers who had quit less than 10

years had a significant elevated risk (OR=2.19, 95% CI 1.25-3.83) with the risk

attenuating as cessation time increased and approached that of never smokers

more than 15 years after quitting smoking [109].

Cigarette exposure has also been shown to cluster within families, and nico-

tine addiction has been shown to have a strong heritable component [167, 9].

To date, several genome-wide significant loci have been detected associated to

distinct smoking related traits [78, 116, 105]. Studies include a recent GWAS

analysis of over 1.2 million individuals that identified over 406 loci associated

with the tobacco related traits [105]. Established associations include a clus-

ter of nicotinic acetylcholine receptor (nAChR) genes highly expressed in the

brain, CHRNA5-CHRNA3-CHRNB4 located on chromosome 15q24 [116, 105].

Despite the large number of associated loci, the common genetic variants alto-

gether account only for 0.1% of the phenotypic variation in smoking cessation

and 2.9% of the phenotypic variation in age at smoking initiation indicating

highly polygenic nature of these traits [105].

Candidate gene studies, mostly related to carcinogen metabolism, DNA re-

pair, oxidative stress and inflammation, have examined interactions by smoking

for PDAC with inconsistent results [86]. A previous genome-wide gene-smoking
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interaction analysis for PDAC that included 2,028 cases and 2,109 controls from

PanC4 did not show significant evidence of SNP by smoking interactions [153],

however may have not had the power to detect modest effect sizes. A more

comprehensive approach with a larger number of participants may detect asso-

ciations not previously considered. Hence, in the present study we conducted

genome-wide gene-by smoking interaction analysis of PDAC risk using genotype

data from four prior GWAS studies conducted in the PanScan and PanC4 Con-

sortia [4, 36, 93, 130, 166] and alternative statistical methods that have robust

power for detecting gene-environment interactions [151].

4.2 Results

We conducted our study using 1000 Genomes imputed genotype data from the

PanScan and PanC4 Consortia participants [4, 36, 93, 130, 166] with complete

smoking status data (never, former, current). Our final analytic dataset was

comprised of 6,769,447 common single nucleotide polymorphisms (SNP, MAF>

5%, INFO score >0.5) in 7,937 individuals with PDAC and 11,774 control in-

dividuals.

Figure 4.1 shows the Q-Q and Manhattan plot associated with genome-

wide test for interaction using the Empirical Bayes (EB) method (see methods).

Compared to the theoretical distributions, the lambda values for the interaction

0.93, showing reasonable control of type-I errors. Figure C.2 in Appendix C

shows the Q-Q and Manhattan plots for the constrained maximum-likelihood

(CML) and UML unconstrained maximum-likelihood (UML) methods.

We found a genome-wide significance interaction between smoking and SNPs
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Figure 4.1: Q-Q and Manhattan Plots of Interaction Analysis using Empirical
Bayes Approach

located in a region on chromosome 2q21.2 (Figure 4.2, [161]). The EB and

CML methods detected a genome-wide significant interaction with p-values,

3.08 × 10−9 and 2.7 × 10−9, respectively (Table 4.1). Evidence was also seen

using the UML method though at below the genome-wide significance threshold.

SNP rs1818613 provided the most significant evidence of interaction using both

the EB and CML methods and more than 40 additional SNPs within the ∼

100Kb region of high LD (r2 ≥ 0.8) also showed evidence of interaction (2
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Figure 4.2: Locus plot of 2q21.3 region for the interaction GWAS of pancreatic
cancer by smoking using FUMA [161]. a. Extended region of the TMEM163
locus that prioritizes genes TMEM163 and CCNT2. b. Zoomed in regional
plot of TMEM163 locus with GWAS interaction P-values (SNPs are colored
based on r2), Combined Annotation Dependent Depletion (CADD score), and
eQTL P-value. eQTLs are plotted per gene and colored based on tissue types.

degree-of-freedom, interaction EB p-value ≤ 5× 10−8) (Figure2). This region is

located in intron 5 of transmembrane protein 163 gene (TMEM163) and 100kb

upstream of transcription factor cylin T2 (CCNT2) (Figure 4.2). Compared

to the G allele, the minor allele T of rs1818613 (Table 4.1) was associated with

reduced risk of PDAC in never smokers (per allele EB-OR=0.87, 95% CI 0.82-

0.93, p− value = 0.001), had a null effect in former smokers (OR=1.00, 95%CI

0.91-1.07, p-value= 0.94) and was associated with an increased risk of PDAC

66



Table 4.1: Region with genome wide significant evidence for SNP by smoking interaction on
risk of PDAC

Chromosome
Physical Position

SNP
Ref/Effect Alleles

Ref Allele Frequency
Imputation Quality

Gene

Analytical Method

Odds Ratio for rs181613
(95% Confidence Interval)

P-value
InteractionP-value#

Never Smokers Former Smokers Current Smokers

2q21.3
135356285
rs1818613

G/T
0.39
0.99

TMEM163(intronic)

CML
0.87

(0.82, 0.92)
1.19× 10−6

0.97
(0.91,1.02)

0.24

1.16
(1.07,1.25)
3.3× 10−4

2.7× 10−9

EB
0.87

(0.82,0.93)
0.001

1.00
(0.93,1.07)

0.94

1.25
(1.12,1.40)
1× 10−4

3.08× 10−9

UML
0.89

(0.84,0.96)
2.04× 10−5

0.99
(0.92,1.06)

0.74

1.17
(1.08,1.28)
2.6× 10−4

1.02× 10−6

Physical position in Build 37: CML, Constrained maximum-likelihood; EB, Empirical Bayes; UML, Unconstrained maximum-
likelihood
# Based on 2 degrees of freedom chi-square test. Analysis was adjusted for age, sex, ancestry (via principle components) and
for PanScan study phase and site)

among current smokers (OR 1.25, 95%CI 1.12-1.40, p-value= 1× 10−4) . Thus,

there was evidence of qualitative interaction between rs1818631 and PDAC by

cigarette smoking status. This pattern was fairly consistent across all of the

three methods and GWAS studies (PanScan and PanC4) (Appendix C, Table

C.1).

4.2.1 Established GWAS regions

We also examined whether smoking status modified the associations of the 18

independent previously identified GWAS SNPs for PDAC in European popu-

lations [4, 36, 93, 130, 166]. Overall, there was no interaction by smoking for

any of these regions (all UM and EB p-values ≥ 0.05 and only one region had

SNPs that has p-values borderline significant (0.05 > p-value > 0.005) under

the CML method. (Appendix C, Table C.2).
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Expression quantitative trait locus (eQTL) and co-localization analysis:

Using data from the Genotype-Tissue Expression (GTEx) Project, we ex-

amined if there was evidence for eQTLs with genes in this region and if any

observed eQTLs colocalized with our SNP-by-smoking interactions results sug-

gesting possible target gene(s) underlying this association. SNPs in this region,

including rs1818613, were significantly associated with a differential expression

of TMEM163 with the most significant showing carriers of the T allele increased

expression in heart atrial appendage (P-value = 1.6 × 10−14), whole blood (p-

value = 3.2×10−14), esophagus muscularis (p-value = 1.0×10−14) and pituitary

(p-value= 2.9× 10−9) and decreased expression in testis (p-value =1.0× 10−14)

tissue. In addition, there was significant evidence of decreased CCNT2 expres-

sion with the T allele in tibial nerve tissue (p-value=1.1× 10−9) and lung tissue

(p-value=1.5× 10−7) (Figure 4.3).

We then conducted colocalization analysis to determine if there was support

for a common SNP(s) underlying both of these highly significant associations.

We used two methods, co-loc [58], which tests the hypothesis that a single

causal SNP underlies both the eQTL and SNP by smoking association results

and eCAVIAR [74], which allows for multiple shared causal signals. In both

analyses, the posterior probability of a shared signal was extremely high. The

most significant evidence was for rs842357, which is in strong LD with rs1818613

(r2 = 0.94), and also had significant evidence of interaction with smoking (EB

p-value = 1.75 × 10−08)(Figure 4.2). The A allele of rs842357 was associated

with decreased expression of TMEM163 in heart atrial appendage, tibial nerve,

and stomach compared with the T allele. The eCAVIAR posterior probability

of a shared locus underlying both the SNP-by-smoking association and eQTL
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Figure 4.3: Results of colocalization analysis using eCAVIAR and co-loc. SNPs
with colocalization probability (CLPP) ≥ 0.001 are shown in this plot. PP.H4
denotes posterior probability of having a common causal snp across eQTL and
SNP X Smoking loci.
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results for heart atrial appendage was 0.98. Additional evidence of colocaliza-

tion (CLPP > 0.01) was observed for rs842357 for TMEM163 in brain anterior

cingulate cortex BA24 and for CCNT2 in prostate, cells transformed fibroblasts,

and small intestine terminal ileum (Figure C2). Interestingly, the A allele of

rs843257 associated with decreased TMEM163 expression and increased CCNT2

expression.

4.3 Methods

4.3.1 Study sample

Study participants were selected from four previously conducted GWAS from

the Pancreatic Cancer Cohort Consortium and the Pancreatic Case Control

consortia. Details of these studies have been previously published [4, 36, 93,

130, 166]. Our study was based on 9,038 primary PDAC cases (ICD-O-3 code

C250-C259) and 12,389 controls free of PDAC. Participants with non-exocrine

pancreatic tumors were excluded (histology types 8150, 8151, 8153, 8155 and

8240). We only included participants of European ancestry to avoid confound-

ing by population stratification. Each participating study obtained informed

consent from participants and approval from their local Institutional Review

Board. The Johns Hopkins School of Medicine and the National Cancer Insti-

tute’s Special Studies Institutional Review Board approved the consortia study.
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4.3.2 Genome-wide association genotyping data

Genotyping was conducted in four phases, PanScan I, PanScan II, PanScan

III and PanC4. The PanScan studies were genotyped at the Cancer Genomics

Research Laboratory (CGR) of the National Cancer Institute (NCI) of the Na-

tional Institutes of Health (NIH) and genotyped on the Illumina HumanHap

series arrays (Illumina HumanHap550 Infinium II [4], Human 610-Quad [130]

for PanScan I-II, respectively, and the Illumina Omni series arrays (OmniEx-

press, Omni1M, Omni2.5 and Omni5M) for PanScan III [166]. PanC4 was

genotyped on the Illumina HumanOmniExpressExome-8v1 array at the Johns

Hopkins Center for Inherited Disease Research (CIDR) [36]. Details on imputa-

tion and quality controls prior to meta-analysis have been previously published

[93]. In brief, for each study SNPs with call rates ≤ 98%, MAF ≤ 0.05 and

Hardy-Weinberg equilibrium p value, measured in controls, was < 1×10−6 were

excluded. SNPS were pre-phased using SHAPEIT2 software [44]. Genotype im-

putation was conduct using IMPUTE2 [113] with the 1000 genomes Phase 3 [1]

as reference panel. Imputation was conducted separately for the PanScan I/II

studies, Panscan III Study and PanC4 GWAS study. After imputation, we re-

tained only SNPS with an imputation quality score > 0.5 and MAF was > 0.05.

Data from the PanScan and PanC4 GWAS studies are available through db-

GAP (accession numbers phs000206.v5.p3 and phs000648.v1.p1, respectively).

Our final analysis included 6,769,447 variants.

71



4.3.3 Smoking and demographic assessment

Smoking status was assessed through self-report, proxy report or in-person in-

terviews [109, 10]. We used the most recent accessed smoking status for the

cohort studies [109]. For the case-control studies, smoking status at diagnosis

(for cases) or when the questionnaire was administered (for controls)[10]. For

these analyses smoking was categorized as never, former, and current smoker.

Never smokers were individuals who smoked less than 100 cigarettes in their

lifetime or less than 6 months. Former smokers were individuals who reported

quitting cigarette smoking > 1 year prior to the administration of the ques-

tionnaire. Current smokers were individuals who reported current smoking at

the time of the questionnaire or who reported quitting cigarette smoking within

the past year. Data on age, sex, and other possible confounders were collected

from questionnaires at baseline from each cohort study and when smoking was

assessed from the case-control studies [109, 10].

4.3.4 Statistical analyses

We used three alternative methods to evaluate the gene by smoking interaction,

namely UML, CML, or EB [151]. The UML method corresponds to standard

logistic regression analysis of case-control studies which allow the joint distribu-

tion of underlying covariates of the model to remain completely unspecified. The

CML method, on the other hand, exploits as assumption of independence be-

tween SNP and smoking status in the underlying population [29]. The method,

similar to the case-only method [133], can gain in efficiency for making inference

in interaction parameter and yet it can be used to test or estimate all of the
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parameters of an underlying logistic model, including the main effect of a SNP

and the exposure of interest. The EB method is an intermediate between the

two methods above and allows data adaptive relaxation of the gene-environment

independence assumption. Because the EB procedure provides a good compro-

mise between bias and variance [121, 120], we use this as the primary method

for evaluating the GWAS interaction while we used the other two methods for

sensitivity analysis.

The association analysis was conducted using CGEN software (Version 3.5.0)

(https://dceg.cancer.gov/tools/analysis/cgen), an R package for logistic

regression analyses of SNP-environment interactions [68], using the ‘snp.score’

option in order to incorporate the genotype probabilities from the imputed data

in the analysis. This option implements a score test (JScore), which tests for

the join effect of gene and gene by environment interaction under a logistic

regression model.

The analyses were first conducted separately for PanScan and PanC4 and

results were combined using meta-analysis. Smoking was included as categor-

ical dummy variable with never smokers as reference. Effect of each SNP was

modeled under an additive model. Imputed SNPs were incorporated through

expected dosage using snp.score function of the CGEN package [68]. Interaction

between SNP and smoking was modeled using two parameters (current vs never)

and the other for (former vs never). Each SNP genotype was coded using an

underlying dosage model, coded in terms of observed/impute allele counts. The

analysis was adjusted for age in decade, sex, and the top eigenvectors (5 for Pan-

Scan and 9 for PanC4) from principal components analysis (PCA) to control for

ancestry. In addition, PanScan analyses were adjusted for study and geographic
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region of individual based upon parental study. For each SNP we obtained the

one-step maximum-likelihood estimate of SNP and SNP-smoking interaction ef-

fects along with the associated variance-covariance matrix from the SNP-score

function [151]. We implemented a fixed-effect meta-analysis using these sum-

mary statistics. Meta-analysis was performed separately for joint effect of SNP

and SNP by smoking, and interaction effect only. Based on the meta-analyzed

estimates, we performed a 2 degree-of-freedom tests for SNP by smoking inter-

action terms of the model as a way of identifying novel SNPs/regions the effect

of which may be modified by smoking. In addition, we performed 3 degree-of-

freedom joint tests (47) that simultaneously tests for both the main effect of a

SNP and two SNP by E interaction terms. P-values less than 5 × 10−8 for the

2 degree-of-freedom tests were considered statistically significant.

Expression quantitative trait locus (eQTL) analysis: We examined eQTL to

assess the cis effects of the rs1818163 genotype and corresponding 2q21region on

gene expression across multiple tissues using the NIH Genotype-Tissue Expres-

sion (GTEx) v7 (https://gtexportal.org/home/) [65]. In addition, we created

regional plots of the locus 2q21.3 region surrounding the rs1818163 genotype us-

ing the SNP2GENE function of FUMA [161]. FUMA incorporates information

from multiple biologic resources and data repositories for functional annotation

[161].

Colocalization analysis: For each SNP, we first meta-analyzed estimate of

interaction parameters across current and former smokers to obtain a single es-

timate of SNP by smoking interaction under a dose-response model for smoking

with never former and current coded as 0, 1 and 2, respectively. We used sin-

gle statistics to summarize the evidence of interaction of individual SNPs with
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respect to smoking status in the colocalization analysis for the ease of interpre-

tation of final results. Estimates of interaction separately by smoking categories

indicate the dose-response model is adequate. To perform colocalization analy-

sis, we matched the reference and alternate allele across our genome-wide inter-

action study and the eQTL results from GTEx v7. We performed colocalization

analysis using two methods, co-loc and eCAVIAR [58, 74]. For eCAVIAR, we

investigated the locus by considering 500Kb upstream and downstream of the

most significant SNP, rs1818613, from the genome-wide interaction scan. In ad-

dition, we chose genes with at least one significant variant and set the maximum

number causal variants to 3.

4.4 Discussion

We observed a qualitative interaction by cigarette smoking status for genetic

variation and PDAC risk in a large LD block on chromosome 2 (2q21.3) in intron

5 of TMEM163 and upstream of CCNT2 such that alleles were associated

with increased risk among current smokers and a decreased risk among never

smokers. The pattern of the interaction was consistent across three analytical

methods that rely on different assumptions regarding independence between

the genetic variation and smoking exposure. The results were also consistent

across the individual PDAC GWAS studies. Given the qualitative nature of

this interaction, it is not surprising we did not observe an association in this

region in our previous GWAS which did not stratify by smoking as the differing

associations for smokers and non-smokers would result in no overall association.

To the best of our knowledge, this is the largest gene-by-smoking interaction
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study for PDAC conducted to date.

The TMEM163 gene is conserved across many vertebrate species; it is highly

expressed in specific brain regions and neuronal populations (glutamatergic and

γ-aminobutyric acid (GABA)-ergic) [24], and is modestly expressed in other

tissues including the pancreas, pituitary, and testis [65]. TMEM163 is a zinc

binding and transporter protein involved in cellular zinc homeostasis and whose

putative interaction with other zinc transporters and role in health and disease

is not well understood [41]. Zinc mediates a wide range of cellular processes

and alternations in its homeostasis can disrupt cellular function [5]. Dysreg-

ulation of other zinc transporters has been observed in PDAC such that zinc

transporter upregulation has been associated with enhanced cancer cell migra-

tion and worse patient prognosis [5]. Interestingly, a genome-wide association

study in the Finnish population reported an association in the same 2q21.3 re-

gion in an intron of TMEM163 gene for nicotine withdrawal in heavy smokers

sampled from the population-based Finnish Twin Cohort study [78]. Of the

three most significant SNPs described in this Finnish study, two (rs74865979

and rs62171406) were not present in 1000G. The third variant (rs75435861)

was present in our sample with a MAF of 0.16 compared with 0.094 in Finnish

population [78]. This SNP was in relatively low LD (r2 = 0.24, D′ = 0.91)

with the associated SNPs in the present study and the evidence of interaction

in PDAC susceptibility between this SNP and smoking was much weaker (EB

P-value=0.0002) compared with that we observed for the lead SNPs. Germline

variation in 2q21 region has also been associated with Parkinson’s disease [122]

and hematocrit concentrations [94] in populations of European ancestry, as well

as, Type 2 diabetes in Asian Indians [152] and a Mongolian population in China
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[6] .

Our colocalization results strongly support a single locus at the 2q21.3 region

that underlies the qualitative interaction we observed for PDAC by cigarette

smoking and the differential expression of TMEM163 and CCNT2 in several

tissue types but not in pancreas tissue, which may imply the importance of gene-

regulation beyond the pancreatic gland. The qualitative interaction suggests

either a single mechanism that has inverse effects in never smokers compared

with current smokers or given the role of this region in regulating multiple

proteins, the protective effect observed in never-smokers is overwhelmed by a

second risk-increasing mechanism in the context of cigarette smoking exposures.

Any hypothesis regarding the underly mechanism of the observed qualitative

interaction between genetic variation at the 2q21.3 region and cigarette smoking

is speculative. As mentioned above, the Finnish GWAS study linked variation

inTMEM163 to nicotine dependence [78] and the increased PDAC risk in smok-

ers may be due to differences in smoking behavior. In the Indian GWAS study,

variation in on 2q21 at rs998451 within the TMEM163 region was associated

with decreased plasma insulin concentrations and Homeostatic Model Assess-

ment of Insulin Resistance (HOMA-IR) (p-value < 0.008) with experimental

studies supporting TMEM163 playing a possible role in zinc homeostasis in

β-cells and insulin secretion, [152, 27]. Metals found in cigarette smoke, such

a cadmium, have been shown to compete with other zinc transporters (e.g.

metallothionein and ZIP8) and increase chronic toxicity [73]. It is possible a

similar process could be contributing to the increased risk in smokers and qual-

itative interaction that we observe. Long term cigarette smoke spreads smoke
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related chemicals systemically in the bloodstream to target organs [126] and to-

bacco smoke inhalation causes pancreatic inflammation and damage to β-cells

[126, 165]. Heavy smoking is a known risk factor for pancreatitis, diabetes, and

PDAC [109, 10, 123, 64] and it is plausible that at least part of the interaction

that we observe with the TMEM163 region may be related to pancreatogenic

disease processes in smokers [126, 53] that are not present in never smokers.

In conclusion, we identified a qualitative interaction for PDAC by cigarette

smoking status at 2q21.3 in intron 5 of the TMEM163 region. The co-localization

results and eQTLs for TMEM163 and CCNT2 provides evidence of the impor-

tance of this gene region. Further studies are needed to replicate our observed

association. In addition, studies are needed to understand functional mecha-

nisms that could contribute to the qualitative interaction that we observe in

smokers and never smokers and the clinical significance of our findings.
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Chapter 5

Conclusions and Future Work

In this concluding chapter, we would like to summarize the contributions of

this thesis and the possible impacts in public health, and delineate some of the

potential future work.

5.0.1 Contribution

The key contributions are:

(i) Methodology : We developed a unified and general statistical framework

for integrating disparate data sources. We developed an asymptotic theory

of the proposed estimator based on the standard semiparametric theory

behind the GMM approach, taking into account the uncertainty coming

from the external studies. Although the framework is applied to breast

cancer and kidney cancer, however, it can be used to other cancers, traits,

or/and diseases where the outcome is binary or continuous.
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(ii) Software : We developed an iteratively re-weighted least squares algo-

rithm (IRWLS) and implemented it in the software for ease of use. It is

well-known that IRWLS algorithm provides an easy way to approximately

evaluate L1 norm, which is considered to be more robust than L2 norm.

The code is accounted for scalability using standard vectorization tricks

in R and standard sparse multiplication packages from Rcpp. We incor-

porated a function named GENMeta.plot, that graphically displays the

estimates from the studies and the GENMeta estimate along with their

95% CI in the form of a dynamic series of forest plots for each covariate.

The current version of the software is developed for linear and logistical

regression models.

(iii) Efficiency in two-phase studies : Stratifying continuous variables in

phase-I of a two-phase design can be ad-hoc and cumbersome. Classifica-

tion of phase-I data that has a mixture of continuous and categorical vari-

ables can lead to some strata with limited number of individuals or even

lead to empty strata. In such scenarios, the semi-parametric likelihood

estimator can be computationally intractable. The proposed framework

provides an alternate solution where all the phase-I data is captured in

the form of parameters associated with a model and thus increases the ef-

ficiency of the parameters associated with continuous (or/and continuous-

related) variables observed in phase-I.

(iii) Applications in pancreatic cancer : We carried out a genome-wide

gene-by-environment(GxE) scan on the most extensive study on pancre-

atic cancer to date. Using existing GxE methods [151, 121, 29], we found
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novel SNP by smoking interactions at the genome-wide significance level

in chromosome 2 associated with pancreatic cancer. This can help in iden-

tifying the underlying biological pathway(s) leading to pancreatic cancer.

Risk prediction is one of the vast areas in the scientific domain, which has

critical applications in public health. The first essential step in risk prediction is

to develop the risk prediction model. We believe the proposed methodology will

aid in producing accurate and precise estimates of the parameters associated

with the model. Eventually, this will help to stratify risk better to identify

individuals with a higher risk for early detection of disease and help in making

well-informed decisions for any intervention.

Inherited genetic changes and cigarette smoking are both known to play a

significant role in the etiology of pancreatic cancer [93, 91, 92, 155]. Therefore,

it is essential to study how the interaction between cigarette smoking and SNP

is associated with pancreatic cancer risk. We found a susceptibility locus on

2q21 (long arm of chromosome 2) where pancreatic risk is modified by smoking

status. Future studies are needed to explore this association in other smoking-

related cancers and to understand the biological mechanism of such association.

The study of discovering such associations (gene by smoking in our study) can

provide insights into the underlying biological pathways leading to cancer (pan-

creatic cancer in our study) and thus better inform in making public health

strategies for cancer prevention.
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5.0.2 Future Work

There are potential extensions of the proposed methodology and many exciting

applications of it with some modifications. We describe a few of them that are

of particular interest to us:

(A) Natural extensions : We assumed fixed effect sizes across the studies.

However, we would like to modify the framework under a random-effects

model [85, 90]. MCMC type techniques can be used to estimate the poste-

rior distribution that will be needed to evaluate the estimating equations

[60]. Many researchers are often interested in modeling the time to an

event instead of just looking at the binary outcome. It will be an exciting

extension of our method to survival outcomes [40, 12]. GENMeta relies

on the assumption that all the parameter estimates associated with the

reduced models are provided to us or available from the literature. How-

ever, in some situations, some of the parameter estimates might not be

reported in the literature and therefore, might be challenging to obtain.

In those situations, it will be interesting to explore how to integrate such

information in developing the maximal model.

(B) Developing a model that includes high dimensional genetic fac-

tors : In large consortia, GWAS are performed on various diseases. Due to

a large number of cases, those case-control studies estimate the association

of an SNP and a disease efficiently compared to cohort studies. Multiple

web-based platforms provide easy access to these estimates and their stan-

dard errors. However, these associations might not be adjusted for other

risk factors apart from primary demographic factors and genetic principal
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components. Extensive prospective cohort studies like UKBiobank collect

information on a rich set of risk factors, including genetic factors. An in-

teresting problem that we are currently working on is how to build a richer

model on the UK Biobank population containing all the genetic and non-

genetic risk factors of interest using GMM-LASSO approach by combining

the information from large GWAS which provides a more precise estimate

on SNP-disease association [57, 111, 106].

(C) Multiple Outcomes : The Breast Cancer Association Consortium (BCAC)

is an international consortium encompassing 84 epidemiological and clin-

ical breast cancer studies (http://www.b-cast.eu/eligibility/bcac/) [118,

110] . The study has rich information on genome-wide panel of SNP

markers, epidemiologic risk factors, and a variety of tumor characteris-

tics that can be potentially used to classify the disease into clinically

distinct subtypes. A primary goal of the study is to understand how dif-

ferent genetic and epidemiologic risk factors are associated with the risk

of breast cancer with specific subtypes of interest. However, various stud-

ies have varying levels of tumor characteristics information. Specifically,

some studies have coarser information on breast cancer, such as only the

indicator of the disease as yes/no or only have a subset of the relevant tu-

mor characteristics. In contrast, some other studies have information on

all relevant tumor characteristics, such as estrogen (ER) and progesterone

(PR) hormone receptor status, human epidermal growth factor receptor

status (HER2), stage, histology, and grade. This gives rise to different

studies with varying levels of phenotypic information. For the study with
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the coarsest information on breast cancer, one usually fits a logistic re-

gression model, whereas, for the study with finer level information, one

usually fits a polytomous logistic regression. Suppose, we are provided

with summary-level information (parameter estimates and their standard

errors) from different fitted models corresponding to the different indepen-

dent studies. Then, this setting fits into the GENMeta framework with

appropriate key equations for synthesizing the summary level-information

to generalize the results to a larger population.

(D) Time-varying covariates : The National Health and Nutrition Exami-

nation Survey (NHANES) data set(https://www.cdc.gov/nchs/nhanes/

nhanes_questionnaires.html) is a rich source of information on a vari-

ety of factors including demographic, socioeconomic, dietary and health-

related factors in the US population of adults and children from multiple

cohorts. It also has information on physical activity from the accelerome-

ter device. For example, the accelerometry data from 2003- 2004 and 2005-

2006 surveys containing minute-by-minute activity counts for seven days,

which is more reliable than data from the questionnaire. This gives rise

to a complex data structure with time-varying covariates. The National

Center for Health Statistics(NCHS) has linked various surveys, including

the NHANES, with death certificate records from the National Death In-

dex(NDI), thus, providing information on mortality. One of the scientific

questions of interest is to assess the association of risk factors with 5-year

mortality in a larger population. Combining NHANES data over differ-

ent years using GENMeta can be a potential application of GENMeta,
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especially given that in a more recent year, they have collected additional

data, such as biomarker data, that were not available earlier. To be spe-

cific, suppose we are provided the parameter estimates and their standard

errors corresponding to the risk factors(including activity counts) from

the independent datasets in NHANES. We can now use the GENMeta

methodology, modifying the key equations appropriately to incorporate

the time-varying nature of the covariate, to estimate the parameter of the

maximal model that is built by including all the covariates across the two

studies.
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Eaton, Marissa A. Ehringer, Tõnu Esko, Edoardo Fiorillo, Nathan A.

Gillespie, Daniel F. Gudbjartsson, Toomas Haller, Kathleen Mullan Har-

ris, Andrew C. Heath, John K. Hewitt, Ian B. Hickie, John E. Hokan-

son, Christian J. Hopfer, David J. Hunter, William G. Iacono, Eric O.

Johnson, Yoichiro Kamatani, Sharon L. R. Kardia, Matthew C. Keller,

Manolis Kellis, Charles Kooperberg, Peter Kraft, Kenneth S. Krauter,

Markku Laakso, Penelope A. Lind, Anu Loukola, Sharon M. Lutz, Pamela

A. F. Madden, Nicholas G. Martin, Matt McGue, Matthew B. Mc-

Queen, Sarah E. Medland, Andres Metspalu, Karen L. Mohlke, Jonas B.

Nielsen, Yukinori Okada, Ulrike Peters, Tinca J. C. Polderman, Danielle

Posthuma, Alexander P. Reiner, John P. Rice, Eric Rimm, Richard J.

Rose, Valgerdur Runarsdottir, Michael C. Stallings, Alena Stančáková,
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de Mesquita, Peter Bugert, Laurie Burdette, Daniele Campa, Neil E. Ca-

poraso, Gabriele Capurso, Charles Chung, Michelle Cotterchio, Eithne

Costello, Joanne Elena, Niccola Funel, J. Michael Gaziano, Nathalia A.

Giese, Edward L. Giovannucci, Michael Goggins, Megan J. Gorman, My-

ron Gross, Christopher A. Haiman, Manal Hassan, Kathy J. Helzlsouer,

Brian E. Henderson, Elizabeth A. Holly, Nan Hu, David J. Hunter, Fed-

erico Innocenti, Mazda Jenab, Rudolf Kaaks, Timothy J. Key, Kay-Tee

Khaw, Eric A. Klein, Manolis Kogevinas, Vittorio Krogh, Juozas Kupcin-

skas, Robert C. Kurtz, Andrea LaCroix, Maria T. Landi, Stefano Landi,

Loic Le Marchand, Andrea Mambrini, Satu Mannisto, Roger L. Milne,

Yusuke Nakamura, Ann L. Oberg, Kouros Owzar, Alpa V. Patel, Pe-

tra H. M. Peeters, Ulrike Peters, Raffaele Pezzilli, Ada Piepoli, Miquel

Porta, Francisco X. Real, Elio Riboli, Nathaniel Rothman, Aldo Scarpa,

Xiao-Ou Shu, Debra T. Silverman, Pavel Soucek, Malin Sund, Renata

Talar-Wojnarowska, Philip R. Taylor, George E. Theodoropoulos, Mark

122



Thornquist, Anne Tjønneland, Geoffrey S. Tobias, Dimitrios Trichopou-

los, Pavel Vodicka, Jean Wactawski-Wende, Nicolas Wentzensen, Chen

Wu, Herbert Yu, Kai Yu, Anne Zeleniuch-Jacquotte, Robert Hoover, Pa-

tricia Hartge, Charles Fuchs, Stephen J. Chanock, Rachael S. Stolzenberg-

Solomon, and Laufey T. Amundadottir. Genome-wide association study

identifies multiple susceptibility loci for pancreatic cancer. Nature Genet-

ics, 46(9):994–1000, September 2014.

[167] J. Yang and M. D. Li. Converging findings from linkage and association

analyses on susceptibility genes for smoking and other addictions. Molec-

ular Psychiatry, 21(8):992–1008, 2016.

[168] Jian Yang, Teresa Ferreira, Andrew P. Morris, Sarah E. Medland,

Pamela AF Madden, Andrew C. Heath, Nicholas G. Martin, Grant W.

Montgomery, Michael N. Weedon, and Ruth J. Loos. Conditional and

joint multiple-snp analysis of gwas summary statistics identifies additional

variants influencing complex traits. Nature genetics, 44(4):369, 2012.

[169] Matthew B. Yurgelun, Anu B. Chittenden, Vicente Morales-Oyarvide,

Douglas A. Rubinson, Richard F. Dunne, Margaret M. Kozak, Zhi Rong

Qian, Marisa W. Welch, Lauren K. Brais, Annacarolina Da Silva, Justin L.

Bui, Chen Yuan, Tingting Li, Wanwan Li, Atsuhiro Masuda, Mancang

Gu, Andrea J. Bullock, Daniel T. Chang, Thomas E. Clancy, David C.

Linehan, Jennifer J. Findeis-Hosey, Leona A. Doyle, Aaron R. Thorner,

Matthew D. Ducar, Bruce M. Wollison, Natalia Khalaf, Kimberly Perez,

Sapna Syngal, Andrew J. Aguirre, William C. Hahn, Matthew L. Mey-

erson, Charles S. Fuchs, Shuji Ogino, Jason L. Hornick, Aram F. Hezel,

123



Albert C. Koong, Jonathan A. Nowak, and Brian M. Wolpin. Germline

cancer susceptibility gene variants, somatic second hits, and survival out-

comes in patients with resected pancreatic cancer. Genetics in Medicine:

Official Journal of the American College of Medical Genetics, 21(1):213–

223, 2019.

[170] Mingfeng Zhang, Zhaoming Wang, Ofure Obazee, Jinping Jia, Erica J.

Childs, Jason Hoskins, Gisella Figlioli, Evelina Mocci, Irene Collins,

Charles C. Chung, Christopher Hautman, Alan A. Arslan, Laura Beane-

Freeman, Paige M. Bracci, Julie Buring, Eric J. Duell, Steven Gallinger,

Graham G. Giles, Gary E. Goodman, Phyllis J. Goodman, Aruna Kami-

neni, Laurence N. Kolonel, Matthew H. Kulke, Núria Malats, Sara H.
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Appendix A

Chapter 1

A.1 Asymptotic Equivalence of GENMETA Es-

timator and Simple Meta-Analysis Esti-

mator When All the Reduced Models Are

the Same to the Maximal Model

When all the reduced models are the same to the maximal model, it follows θ∗k =

β∗, XAk = X and gk = f for k = 1, 2, . . . , K. Then, for each k, uk(X; β∗, θ∗k) =

uk(X; β∗, β∗) =
∫
sk(y | XAk ; β

∗)f(y | X; β∗)dy = 0. By the definition of ∆, we

have ∆ = 0. On the other hand, assuming EY |X{∇θksk(θ
∗
k)} = ∇θkEY |X{sk(θ∗k)}

with sk(θ
∗
k) = sk(Y | XAk ; θ

∗
k), it follows Λk = (1/ck)I(θ∗k), where I(θ∗k) is the

Fisher’s information matrix of gk or f . Then, the optimal C is

Copt = Λ−1 = diag(c1Σ, . . . , cKΣ),

127



where Σ = I(θ∗k)
−1. Denote as Ĉopt a consistent estimator of Copt. Then, the

GENMETA estimator with Ĉopt is

β̂opt = argminβU
T
n (β, θ̂)ĈoptUn(β, θ̂).

Under regularity conditions similar to those in Theorem 1, β̂opt → β∗ in proba-

bility. By Mean Value Theorem,

Un(β̂opt, θ̂) = Un(β∗, θ̂) +Gn(β̄, θ̂)(β̂opt − β∗), (A.1)

where β̄ is the mean value and Gn(β̄, θ̂) = ∂Un(β, θ̂)/∂β |β=β̄. By the first order

condition, β̂opt satisfies GT
n (β̂opt, θ̂)ĈoptUn(β̂opt, θ̂) = 0. Left-multiplying (A.1)

by GT
n (β̂opt, θ̂)Ĉopt, it follows

β̂opt − β∗ = −{GT
n (β̂opt, θ̂)ĈoptGn(β̄, θ̂)}−1{GT

n (β̂opt, θ̂)ĈoptUn(β∗, θ̂)} (A.2)

Also,

Gn(β̂opt, θ̂) =
∂

∂β
Un(β, θ̂) |β=β̂opt

=




∂
∂β
u1(β, θ̂1) |β=β̂opt

...

∂
∂β
uK(β, θ̂K) |β=β̂opt



.

Under regularity conditions similar to those in Theorem 1, ∂uk(β, θ̂k)/∂β |β=β̂opt
=

Σ−1 + op(1) for each k. Then,

Gn(β̂opt, θ̂) =




Σ−1

...

Σ−1




+ op(1). (A.3)
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Similarly,

Gn(β̄, θ̂) =




Σ−1

...

Σ−1




+ op(1). (A.4)

On the other hand, under regularity conditions similar to those in Theorem 1,

uk(β
∗, θ̂k) = −Σ−1(θ̂k − β)∗ + op(1/n

1/2). Then,

Un(β∗, θ̂) = −




Σ−1(θ̂1 − β∗)
...

Σ−1(θ̂K − β∗)




+ op(1/n
1/2). (A.5)

Hence, by (A.2), (A.3), (A.4), (A.5) and Slutsky’s theorem,

β̂opt − β∗ =
( K∑

k=1

ck

)−1{ K∑

k=1

ck(θ̂k − β∗)
}

+ op(1/n
1/2). (A.6)

On the other hand,

β̂meta − β∗ =
{ K∑

k=1

(Σ̂k

nk

)−1}−1{ K∑

k=1

(Σ̂k

nk

)−1

θ̂k

}
− β∗

=
( K∑

k=1

ck

)−1{ K∑

k=1

ck(θ̂k − β∗)
}

+ op(1/n
1/2). (A.7)

Therefore, by (A.6) and (A.7), β̂opt = β̂meta + op(1/n
1/2).
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A.2 Newton-Raphson’s Method and Iteratively

Reweighted Least Squares Algorithm

In this section we provide a derivation of the Newton-Raphson’s method for

GENMETA with generalized linear models. As in Section 2.3, we assume that

the maximal and reduced models belong to the class of GLM [117]. Specifically,

assume the densities of Y | X and Y | XAk are of the forms

f(y | x; β, φ) = exp({1/a(φ)}(yh(xTβ)− b{h(xTβ)}) + c(y;φ)),

and

gk(y | xAk ; θk) = exp({1/a(φk)}(yh(xTAkθk)− b{h(xTAkθk)}) + c(y;φk)),

respectively, where a(·), b(·) and c(·) are known functions, h(·) = b′−1(g−1(·)), g

is a monotone and differentiable link function, and φ and φk are the dispersion

parameters of the maximal and the kth reduced models, respectively. Recall

that we assume the maximal and the reduced models have the same link func-

tion g. However, both the GENMETA and the Newton-Raphson’s method are

flexible to allow the maximal and the reduced models to have different link

functions. We also assume X = ∪Kk=1XAk , where the vectors of the covariates

are viewed as sets without confusion. Denote the dimensions of θk and β as

dk and p, respectively. Assume d =
∑K

k=1 dk ≥ p since the parameters of the

maximal model will not be identifiable if d < p.
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A.2.1 Case I : φ and φk’s are known.

The log-likelihood of gk is

lk(y | xAk ; θk) = {1/a(φk)}(yh(xTAkθk)− b{h(xTAkθk)}) + c(y;φk).

Then, the score function is

sk(y | xAk ; θk) = {1/a(φk)}{y − g−1(xTAkθk)}h
′(xTAkθk)xAk .

Then,

uk(x; β, θk) = EY |Xsk{(y | xAk ; θk)} = {1/a(φk)}{g−1(xTβ)−g−1(xTAkθk)}h
′(xTAkθk)xAk .

Thus, the vector of empirical moment functions for β is

Un(β) = Pn




uk(X; β, θ̂k)

uk(X; β, θ̂k)

...

uk(X; β, θ̂k)



,

where Pn is the empirical measure with respect to the reference sample.

Let Qn(β) = UT
n (β)CUn(β) where C is a d× d positive definite matrix. The

goal is to find the minimizer of Qn(β). Its equivalent to solving the equation

Dn(β) = 0,
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where Dn(β) = GT
n (β)CUn(β) and Gn(β) = ∂Un(β)/∂β is a d×p matrix. Then,

the tth iteration step for the Newton-Raphson’s method is

β(t+1) = β(t) − Jn(β(t))−1Dn(β(t)), (A.8)

where Jn(β) = ∂Dn(β)/∂β is a p× p matrix.

Next, we write Dn(β) in a matrix form. The matrix form of Gn(β) is

Gn(β) = Pn




[a(φ1)g′{g−1(XTβ)}]−1h′(XT
A1
θ̂1)XA1X

T

...

[a(φK)g′{g−1(XTβ)}]−1h′(XT
AK
θ̂K)XAKX

T




= (1/n)XT
Adiag

WXrbind,

where Xrbind = 1 ⊗ X and X(n×p) is the reference data matrix; XAdiag
=

diag(XA1 , . . . , XAK ) andXAk(n×dk) is the reference data matrix for the kth study;

W = diag(W1, . . . ,WK), Wk = diag(wk1, . . . , wkn), wki = [a(φk)g
′{g−1(XT

i β)}]−1h′(XT
Ak,i

θ̂k)

for k = 1, . . . , K, i = 1, . . . , n and i, and XT
i and XT

Ak,i
are the ith rows of X and

XAk , respectively. Similarly, the matrix form of Un(β) is Un(β) = (1/n)XT
Adiag

r,

where r = (r1, . . . , rK)T , rk = (rk1, . . . , rkn)T and rki = {1/a(φk)}{g−1(XT
i β)−

g−1(XT
Ak,i

θ̂Ak,i)}h′(XT
Ak,i

θ̂Ak,i) for each k and i. Thus, the matrix form of Dn(β)

is

Dn(β) = (1/n2)XT
rbindWXAdiagCX

T
Adiag

r. (A.9)

Next, we write Jn(β) in a matrix form. Let Gn(β) be partitioned by columns
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as Gn(β) = (Gn,1(β), . . . , Gn,p(β)), where Gn,j(β) is a d × 1 column vector for

j = 1, . . . , p. Then,

Jn(β) =
∂

∂β
Dn(β) =

∂

∂β
GT
n (β)CUn(β)

=




∂
∂β
GT
n,1(β)CUn(β)

...

∂
∂β
GT
n,p(β)CUn(β)




= GT
n (β)CGn(β) +




UT
n (β)C ∂

∂β
Gn,1(β)

...

UT
n (β)C ∂

∂β
Gn,p(β)



.

(A.10)

Then, the matrix form of the first summand is (1/n2)XT
rbindWXAdiagCX

T
Adiag

WXrbind.

The jth row of the second summand is rTXAdiagC∂Gn,j(β)/∂β. Note that

∂

∂β
Gn,j(β) = (1/n)XT

Adiag
LX∗jdiagXrbind,

where L = diag(L1, . . . , LK), Lk = diag(lk1, . . . , lkn) and, for each k and i,

lki = −g′′{g−1(XT
i β)}/(a(φk)[g

′{g−1(XT
i β)}]3h′(XT

Ak,i
θ̂k));

X∗jdiag = diag(Xjdiag , . . . , Xjdiag) withK diagonal blocks andXjdiag = diag(X1j, . . . , Xnj)

for j = 1, . . . , p. Then, for each j, the matrix form of UT
n (β)C∂Gn,j(β)/∂β is

(1/n2)rTXAdiagCX
T
Adiag

LX∗jdiagXrbind.

Then, the second summand of (A.10) can be rewritten as (1/n2)XT
rbindV Xrbind,

where V = diag(v1, . . . , vnK) and vi is the ith element of the row vector rTXAdiagCX
T
Adiag

L.
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Thus,

Jn(β) = (1/n2)XT
rbind(WXAdiagCX

T
Adiag

W + V )Xrbind = (1/n2)XT
rbindW

∗Xrbind.

(A.11)

where W ∗ = WXAdiagCX
T
Adiag

W + V .

Therefore, plugging (A.9) and (A.11) in (A.8), we get the following tth

iteration step

β(t+1) = β(t) − (XT
rbindW

∗Xrbind)−1XT
rbindWXAdiag

CXT
Adiag

r,

which can be seen as the tth step of an iteratively reweighted least squares

algorithm.

A.2.2 Case II : φ and φk’s are unknown.

When φ and φk’s are unknown, we propose to first obtain the GENMETA

estimator β̂ of β? as above with φ′ks replaced by φ̂k’s. Next, let us consider the

estimation of φ?, the true value of φ. For the kth reduced model, we have an

additional score function with respect to φk, which is

sk(y | xAk ; θk, φk) = − a
′(φk)

a2(φk)
(yh(xTAkθk)− b{h(xTAkθk)}) + c′(y;φk),

where c′(y;φk) is the derivative of c(y;φk) with respect to φk. Then, we obtain

uk(X; β, φ, θk, φk) = − a
′(φk)

a2(φk)
(g−1(XTβ)h(XT

Ak
θk)−b{h(XT

Ak
θk)})+qk(X; β, φ, φk),
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where qk = EY |X(c′(Y, φk)). The distribution of Y | X depends on β and φ so

that qk also depends on them. Then, the empirical moment vector for φ is

Un(φ) = Pn(u1(X; β̂, φ, θ̂1, φ̂1)T , . . . , uK(X; β̂, φ, θ̂K , φ̂K)T )T .

We propose to estimate φ? in the GMM framework. Thus, we need to compute

the minimizer of Un(φ)TCUn(φ), where C is a known weighting matrix. As

before, we use the Newton-Raphson’s method and it can be written as

φ(t+1) = φ(t) − J−1
n (φ(t))Dn(φ(t)), (A.12)

where

Jn(φ) = UT
n (φ)C

d2

dφ2
qn(φ) + (

d

dφ
qn(φ))TC

d

dφ
qn(φ),

Dn(φ) = UT
n (φ(t))Cdqn(φ)/dφ and qn(φ) = Pn(q1(X; β̂, φ, φ̂1), . . . , qK(X; β̂, φ, φ̂K))T .

Thus, when φ and φk’s are unknown, we first choose initial estimates β(0)

and φ(0). Then, we get the GENMETA estimator β̂ by using equation (A.8)

until a stopping rule is reached. Subsequently, φ(0), β̂ and the study estimates

are plugged in equation (A.12) and the process is repeated until a stopping rule

is reached to get the GENMETA estimator of φ∗. In each Newton-Raphson’s

step, the weighting matrix C is estimated by the estimates from the previous

step.

If the estimates of the study dispersion parameters, φk’s, are not provided

directly, but the the outcomes are standardized (var(Y ) = 1), we can obtain

135



them through the following relation based on conditional variance formula

a(φ̂k) =
1− (Png

−1(XT
Ak
θ̂k)

2 − {Png−1(XT
Ak
θ̂k)}2)

Pnb′′{h(XT
Ak
θ̂k)}

,

where h(·) = b′−1(g−1(·)) and Pn is the empirical measure with the reference

data. For normal family where the canonical link is an identity function, we

have b′′(ψ) = 1, which implies the denominator is 1.

A.3 Full proof of theorem 2.2.1 and Checking

regularity assumptions in two examples

A.3.1 Regulartity Assumptions for Theorem 2.2.1

Assumptions (A1)-(A4) are for consistency and the additional assumptions

(A5)-(A9) are for asymptotic normality.

(A1): C is positive semi-definite and CE{U(X; β, θ∗)} = 0 if and only if

β = β∗.

(A2): β∗ ∈ Dβ, which is compact.

(A3): uk(X; β, θk) is continuous for each (β, θk) ∈ Dβ ×N (θ∗k) with proba-

bility one, where N (θ∗k) is a neighborhood of θ∗k for k = 1, . . . , K.

(A4): E{sup(β,θk)∈Dβ×N (θ∗k) ||uk(X; β, θk)||} <∞ for k = 1, . . . , K.

(A5): ∂uk(X; β, θk)/∂β is continuous at each (β, θk) ∈ N (β∗)×N (θ∗k) with

probability 1, where N(β∗) is a neighborhood of β∗.

(A6): E{sup(β,θk)∈N (β∗)×N (θ∗k) ||∂uk(X, β, θk)/∂β||} <∞.

(A7): ∂uk(X; β∗, θk)/∂θk is continuous at each θk ∈ N (θ∗k) with probability
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one.

(A8): E{supθk∈N (θ∗k) ||∂uk(X, β∗, θk)||/∂θk} <∞.

(A9): ∆(β∗, θ∗) exists and is finite and Γ(β∗, θ∗) is of full rank.

More on the global identification assumption (A1) : Sometimes

it’s difficult to practically check the global identification condition. This moti-

vates us to investigate conditions for local identifiability, or equivalently, the

invertibility of the matrix of second derivatives at the true parameter, i.e.,

∂2Q(β)/∂β2 |β=β∗= [E{∂U(X; β)/∂β}TCE{∂U(X; β)/∂β}] |β=β∗ [142, 51], as-

suming C is a positive definite matrix. The condition can be stated in terms of

the equivalent sample version of the matrix, given by, XT
rbindWXAdiagCX

T
Adiag

WXrbind.

As C is a positive definite matrix, the entire local identifiability condition for

the sample version then boils down to XT
Adiag

WXrbind being a full column rank

matrix. A sufficient condition for this is XAdiag contains information on all the

covariates of the maximal model. In other words, the individual covariates in

the maximal model have to be part of at least one of the reduced models.

We first provide a complete proof of Theorem 1 and then check the assump-

tions for logistic and linear regression models.

Proof of Theorem 2.2.1 : First, we show the consistency of β̂. Denote

θ̂ and θ∗ as stacked vectors of θ̂k’s and θ∗k’s, respectively. Denote U0(β, θ) =

E(U(X; β, θ)) and Q0(β) = U0(β, θ∗)TCU0(β, θ∗).

By (A1) and Lemma 2.3 of [124], Q0(β) is uniquely minimized at β∗.

By (A2), (A3), (A4) and Lemma 2.4 of [124], U0(β, θ) is continuous and

Un(β, θ) converges uniformly to U0(β, θ) for (β, θ) ∈ Dβ ×Nc(θ
∗), where Nc(θ

∗)

is a compact subset of N(θ∗) including θ∗. Note that θ̂ is a consistent estimator
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of θ∗. With probability going to one (wpg1),

sup
β∈Dβ

||Un(β, θ̂)− U0(β, θ̂)|| ≤ sup
(β,θ)∈Dβ×Nc(θ∗)

||Un(β, θ)− U0(β, θ)||.

Then, Un(β, θ̂)− U0(β, θ̂) converges uniformly in probability to 0 for β ∈ Dβ.

For any r > 0, wpg1,

sup
β∈Dβ

||U0(β, θ̂)− U0(β, θ∗)|| ≤ sup
β∈Dβ

E( sup
||θ−θ∗||<r

||U(β, θ)− U(β, θ∗)||).

By (A3), (A4) and dominant convergence theorem, E(sup||θ−θ∗||<r ||U(β, θ) −

U(β, θ∗)||) converges to 0 for every β ∈ Dβ as r decreases to 0. Note that

E(sup||θ−θ∗||<r ||U(β, θ)−U(β, θ∗)||) decreases as r decreases for each β. By (A2)

and Dini’s theorem (see, for example, Theorem 7.13 of [143]), E(sup||θ−θ∗||<r ||U(β, θ)−

U(β, θ∗)||) converges uniformly in probability to 0 for β ∈ Dβ as r decreases to

0. Then, U0(β, θ̂)−U0(β, θ∗) converges uniformly in probability to 0 for β ∈ Dβ.

By combining the above two results, it follows that Un(β, θ̂) converges uni-

formly in probability to U0(β, θ∗) for β ∈ Dβ.

By the triangle and Cauchy-Schwartz inequalities,

sup
β∈Dβ

|Qn(β)−Q0(β)| ≤ ||Ĉ|| sup
β∈Dβ

||Un(β, θ̂)− U0(β, θ∗)||2

+ 2||Ĉ|| sup
β∈Dβ

||U0(β, θ∗)|| sup
β∈Dβ

||Un(β, θ̂)− U0(β, θ∗)||

+ ||Ĉ − C|| sup
β∈Dβ

||U0(β, θ∗)||2

Since Ĉ is a consistent estimator of C, ||Ĉ|| converges in probability to ||C||,
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which is finite; ||Ĉ − C|| converges in probability to 0. Since U0(β, θ∗) is con-

tinuous for β ∈ Dβ and Dβ is compact, supβ∈Dβ ||U0(β, θ∗)||2 is finite. Since

supβ∈Dβ ||Un(β, θ̂)−U0(β, θ∗)|| converges in probability to 0, supβ∈Dβ ||Un(β, θ̂)−

U0(β, θ∗)||2 converges in probability to 0. Thus, Qn(β) − Q0(β) converges uni-

formly in probability to 0 for β ∈ Dβ. Recall that β∗ is the unique minimizer

of Q0(β). By Theorem 2.1 of [124], β̂ is a consistent estimator of β∗.

Next, we derive the asymptotic distribution of the GENMETA estimator β̂.

Note that β̂ is a solution to

Gn(β, θ̂)T ĈUn(β, θ̂) = 0,

where Gn(β, θ̂) = ∂Un(β, θ̂)/∂β, the Jacobian of Un(β, θ̂). On the other hand,

by mean value theorem,

Un(β̂, θ̂) = Un(β∗, θ̂) +Gn(β̄, θ̂)(β̂ − β∗),

where β̄ denotes a matrix each column of which corresponds to each element of

Un(β, θ̂). After left multiplying Gn(β̂, θ̂)T Ĉ to the above identity, it follows

n1/2(β̂ − β∗) = −Mnn
1/2Un(β∗, θ̂),

where Mn = (Gn(β̂, θ̂)T ĈGn(β̄, θ̂))−1Gn(β̂, θ̂)T Ĉ.

Consider Mn. Since β̂ is a consistent estimator of β∗, each column of β̄ is

a consistent estimator of β∗. On the other hand, θ̂ is a consistent estimator

of θ∗. By (A5), (A6) and Lemma 2.4 of [124], Gn(β, θ) converge uniformly
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to continuous E{∂U(X; β, θ)/∂β} for (β, θ) ∈ Dβ × Nc(θ
∗), where Nc(θ

∗) is a

compact subset of N(θ∗), including θ∗. Since β̂ and each column of β̄ converge

in probability to β∗ and θ̂ is a consistent estimator of θ∗, by, for example,

Theorem 9.4 of [89], both Gn(β̂, θ̂) and Gn(β̄, θ̂) converges in probability to

Γ = E{∂U(X; β∗, θ∗)/∂β}. Thus, by noting Ĉ→C in probability, Mn converges

in probability to (ΓTCΓ)−1ΓTC.

Consider n1/2Un(β∗, θ̂). By mean value theorem,

Un(β∗, θ̂) = Un(β∗, θ∗) + Vn(β∗, θ̄)(θ̂ − θ∗),

where Vn is the Jacobian of Un(β∗, θ) as a function of θ and θ̄ is a matrix each

column of which corresponds to each element of Un(β∗, θ). Thus,

n1/2Un(β∗, θ̂) = n1/2Un(β∗, θ∗) + Vn(β∗, θ̄)n1/2(θ̂ − θ∗).

By (A9) and central limit theorem, n1/2Un(β∗, θ∗)
d→ N(0,∆). Since θ̂ is a

consistent estimator of θ∗. each column of θ̄ converges in probability to θ∗.

Similar to the above argument, by (A7), (A8), Lemma 2.4 of [124] and Theorem

9.4 of [89],

Vn(β∗, θ̄)→diag(W1,W2, . . . ,WK) in probability,

where, for k = 1, 2, . . . , K, Wk = E{∂uk(X, β∗, θk)/∂θk} |θk=θ∗k . The K study

data sets are independent. So are θ̂k’s. Note that nk/n → ck, where ck is a

positive constant for k = 1, 2, . . . , K. Then n1/2(θ̂−θ∗) converges in distribution
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to

N(0, diag((1/c1)Σ1, (1/c2)Σ2, . . . , (1/cK)ΣK)).

Since the K data sets and the reference data are independent, the above results

imply that n1/2Un(β∗, θ̂) converges in distribution to N(0,∆ + Λ), where Λ is a

block diagonal matrix whose kth block is (1/ck)WkΣkW
T
k for k = 1, . . . , K.

Therefore, with the above two results on Mn and n1/2Un(β∗, θ̂) and by Slut-

sky’s theorem, the asymptotic normality of n1/2(β̂ − β∗) follows.

Checking assumptions for logistic regression model : Suppose the

maximal model is

Y | X ∼ Bernoulli
{ 1

1 + exp(−XTβ∗)

}
,

where X = (1, XT )T , X = (X1, . . . , Xd)
T is the vector of covariates and β∗ =

(β∗0 , β
∗
1 , . . . , β

∗
p)
T is the vector of coefficients of interest. There are K indepen-

dent studies and the reduced model of the kth study is

Y | XAk ∼ Bernoulli
{ 1

1 + exp(−XT
Ak
θk)

}
,

where XAk = (1, XT
Ak

)T , XAk is a sub-vector of X with A ⊂ {1, 2, . . . , p}. For

example, XA = (X1, X2)T when A = {1, 2}.

The global identification assumption (A1) usually holds and Dβ is a compact

set. Next, we check the assumptions (A3) to (A9). The moment functions from

the kth study is

uk(X; β, θk) =
( 1

1 + e−XT β
− 1

1 + e
−XT

Ak
θk

)
XAk .
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It is a continuous function of β and θk. Then, (A3) is satisfied. Note that

sup
(β,θ)∈Dβ×N(θ∗)

||
( 1

1 + e−XT β
− 1

1 + e
−XT

Ak
θk

)
XAk || ≤ 2||X||1,

where ||·|| and ||·||1 are the l2 and l1 norms, respectively. Then, given E(|Xi|) <

∞ for each i, (A4) is satisfied. Also,

∂

∂β
uk(X; β, θk) =

e−X
T β

(1 + e−XT β)2
XAkX

T , (A.13)

which does not depend on θk and is continuous for each β. Then, (A5) is verified.

Note that

sup
(β,θ)∈Dβ×N(θ∗)

|| e−X
T β

(1 + e−XT β)2
XAkX

T || ≤ ||XXT ||1.

Given E(X2
i ) <∞ for each i, (A6) is satisfied. Note that

∂

∂θk
uk(X; β∗, θk) = − e

−XT
Ak
θk

(1 + e
−XT

Ak
θk)2

XAkX
T
Ak
,

which is continuous for each θk. Then, (A7) is satisfied. Note that

sup
(β,θ)∈Dβ×N(θ∗)

|| − e
−XT

Ak
θk

(1 + e
−XT

Ak
θk)2

XAkX
T
Ak
|| ≤ ||XXT ||1.

Given E(X2
i ) < ∞ for each i, (A8) is satisfied. The absolute value of each

element of ∆(β∗, θ∗) is less than 1, E(|Xi|) or E(|XiXj|) for each i and j. Given

E(X2
i ) <∞, ∆(β∗, θ∗) is finite. Note that Γ(β∗, θ∗k) is a stacked matrix of (A.13)

for k = 1, . . . , K. Given each covariate of the maximal model is in at least one

reduced model and E[{e−XT β/(1 + e−X
T β)2}XXT ] is positive definite, Γ(β∗, θ∗)
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is of full rank. Then, (A9) is verified.

Checking assumptions for linear regression Model : Suppose the

true maximal model is

Y | X ∼ N(XTβ∗, σ∗2),

where X = (X1, X2, . . . , Xp)
T ; β∗ = (β∗1 , β

∗
2 , . . . , β

∗
p)
T ; E(X) = 0 and E(Y ) = 0,

that is, both X and Y are centered. There are K independent studies and the

reduced model of the kth study is

Y | XAk ∼ N(XT
Ak
θk, σ

2
k).

For simplicity, assume σ∗2 is known and the unknown parameter is β∗. The case

with unknown σ∗2 can be similarly considered.

The moment functions from the kth reduced model is

uk(X; β; θk, σ
2
k) =

1

σ2
k

(XAkX
Tβ −XAkX

T
Ak
θk),

which is linear in β. Note that

∂

∂β
uk(X; β; θk, σ

2
k) =

1

σ2
k

XAkX
T . (A.14)

Given each covariate of the maximal model is in at least one reduced model and

E(XXT ) is positive definite, Γ(β∗, {θ∗k}, {σ∗2k }) = ∂uk(X; β∗; {θ∗k}, {σ∗2k })/∂β is

of full rank. Given C is positive definite, (A1) is satisfied. Suppose Dβ is a

compact set. Then, (A2) is satisfied.

Next, we check the assumptions (A3) to (A9). Note that uk(X; β; θk, σ
2
k) is
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continuous for every (β, θk, σ
2
k). Then, (A3) is satisfied. Note that

sup
(β,θk,σ

2
k)

|| 1

σ2
k

(XAkX
Tβ −XAkX

T
Ak
θk)|| ≤

1

σ2
k

(||β||+ ||θk||)||XXT ||1,

Denote a finite upper bound of ||β|| for β ∈ Dβ as C(β), a finite upper bound

of ||θk|| for θk ∈ N(θ∗k) as C(θk), and a positive finite lower bound of σ2
k for

σ2
k ∈ N(θ∗k) as σ2

L. The supremum of (1/σ2
k)(||β|| + ||θk||) for (β, θk, σ

2
k) ∈

Dβ ×N(θ∗k)×N(σ∗2k ) is bounded by (1/σ2
L)(C(β) +C(θk)). Given E(X2

i ) <∞

for each i, (A4) is satisfied. Note that ∂uk(X; β; θk, σ
2
k)/∂β does not depend on

β and θk and is continuous for each σ2
k. Then, (A5) is satisfied. Note that

sup
σ2
k∈N(σ∗2

k )

|| 1

σ2
k

XAkX
T || ≤ 1

σ2
L

||XXT ||1.

Given E(X2
i ) <∞ for each i, (A6) is satisfied. Note that

∂

∂(θk, σ2
k)
uk(X; β; θk, σ

2
k) = {− 1

σ2
k

XAkX
T
Ak
,− 1

σ4
k

(XAkX
Tβ −XAkX

T
Ak
θk)},

which is continuous for every (β, θk, σ
2
k). Then, (A7) is satisfied. For every

(β, θk, σ
2
k) ∈ Dβ ×N(θ∗k, N(σ∗2k )), the l2 norm of the above partial derivative is

less than or equal to

1

σ2
L

+
1

σ4
L

(C(β) + C(θk))||XXT ||1.

Given E(X2
i ) <∞ for each i, (A8) is satisfied. Each element of ∆(β∗, {θ∗k}, {σ∗2k })

is equal to a constant times E(Xi1Xi2Xi3Xi4) for some i1, i2, i3, i4. Given E(X4
i ) <

∞ for each i, ∆ is finite. Note that Γ(β∗, {θ∗k}, {σ∗2k }) is a stacked matrix of
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(A.14) for k = 1, . . . , K. As in checking (A2), given each covariate of the maxi-

mal model is in at least one reduced model and E(XXT ) is positive definite, Γ

is of full rank. Then, (A9) is verified.
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A.4 Simulation Results for Log-normally Dis-

tributed Covariates
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Table A.1: Robustness of GENMETA Estimation (Log-normally Distributed Co-
variates)

Setting Study-I Study-II Study-III Reference β∗
i Bias SD (ESD) RMSE CR AL

µb µb µb µb β∗
1 .010 .076 (.075) .077 .941 .288

I σ2
b σ2

b σ2
b σ2

b β∗
2 .011 .064 (.061) .065 .947 .237

ρb ρb ρb ρb β∗
3 .006 .066 (.064) .066 .954 .246

µb µh µm µb β∗
1 .010 .079 (.072) .079 .930 .272

σ2
b σ2

b σ2
b σ2

b β∗
2 .002 .056 (.054) .056 .948 .211

ρb ρb ρb ρb β∗
3 -.002 .062 (.058) .062 .945 .222

µb µb µb µb β∗
1 .032 .088 (.088) .094 .930 .339

II σ2
b σ2

h σ2
l σ2

b β∗
2 -.002 .062 (.057) .062 .941 .221

ρb ρb ρb ρb β∗
3 -.005 .074 (.074) .074 .967 .286

µb µh µm µb β∗
1 .021 .079 (.077) .081 .929 .294

σ2
b σ2

h σ2
l σ2

b β∗
2 .0005 .055 (.055) .055 .956 .213

ρb ρb ρb ρb β∗
3 -.008 .065 (.064) .065 .954 .246

µb µb µb µb β∗
1 -.062 .107 (.118) .124 .934 .382

σ2
b σ2

b σ2
b σ2

b β∗
2 .021 .070 (.065) .073 .930 .250

ρb ρb ρb ρh β∗
3 .030 .087 (.096) .092 .956 .322

µb µb µb µb β∗
1 .039 .072 (.069) .081 .891 .264

σ2
b σ2

b σ2
b σ2

b β∗
2 .023 .065 (.062) .069 .932 .240

ρb ρb ρb ρl β∗
3 .018 .061 (.058) .064 .930 .224

µb µb µb µb β∗
1 .053 .079 (.075) .095 .866 .290

III σ2
b σ2

b σ2
b σ2

b β∗
2 .019 .065 (.063) .067 .942 .242

ρl ρb ρh ρl β∗
3 .012 .068 (.064) .069 .935 .249

µb µb µb µb β∗
1 .032 .089 (.084) .095 .912 .322

σ2
b σ2

b σ2
b σ2

b β∗
2 .010 .062 (.062) .063 .946 .240

ρl ρb ρh ρb β∗
3 -.009 .073 (.071) .073 .942 .273

µb µb µb µb β∗
1 -.025 .113 (.108) .116 .954 .407

σ2
b σ2

b σ2
b σ2

b β∗
2 .017 .065 (.064) .067 .951 .248

ρl ρb ρh ρh β∗
3 -.002 .091 (.091) .091 .965 .347

µb µb β∗
1 .007 .096 (.104) .096 .968 .365

IV X1 > −0.5, X2 > 0 σ2
b σ2

b β∗
2 .242 .353 (.117) .428 .572 .401

X2 < 0.5 ρb ρb β∗
3 -.015 .067 (.081) .068 .971 .283

Biases, standard deviation (SD), estimated standard deviation (ESD), square roots of mean square errors (RMSE),
coverage rates (CR), and average lengths (AL) of 95% confidence intervals of the GENMETA estimates using the
study covariance estimators in the setting of logistic regression. In setting (I), data are simulated in ideal setting
where the covariate distribution is a log-normal distribution with the natural logarithm of the covariates being
characterized by mean, sd and correlation of normal variates and are assumed to same across all populations.
In setting (II)-(IV), the assumption is violated by creating variations in mean/sd, correlations of the underlying
normal distribution and selection criterion across the studies and reference sample. The vector of means, variances
and correlations of the underlying normal covariates are denoted by µ∗ = (µ1, µ2, µ3), σ2

∗ = (σ2
1 , σ

2
2 , σ

2
3) and

ρ∗ = (ρ12, ρ23, ρ13) for ∗ ∈ {b, l,m, h}, where µb = (0, 0, 0), µm = (0.5, 0.5, 0.5), µh = (1, 1, 1); σ2
b = (1, 1, 1),

σ2
l = (0.5, 0.5, 0.5), σ2

h = (2, 2, 2) and ρb = (0.3, 0.6, 0.1), ρh = (0.4, 0.8, 0.2), ρl = (0.2, 0.4, 0). Estimated standard
deviation are obtained by the asymptotic formula (2) in the main paper and used to construct 95% confidence
interval.
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Appendix B

Chapter 2

In this section, we denote the vectors/matrices by bold symbols. We replace θ

by θ(R) to denote the reduced parameter in phase-I.

B.1 Estimating equation in phase-I

Let Sθ(R)(Y,X(I)) = (Y − expit(θ(R)TX(I)))X(I) denote the score vector of di-

mension q1. Also, let f(X i,β,θ
(R)) := expit(βTX

(II)
i )− expit(θ̂(R)T

X
(I)
i )X

(I)
i

.Then,

E(I)(Sθ(R)(Y,X(I))) = 0
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E(I)(Sθ(R)(Y,X(I))) = E
(I)
X,S[EY |X,S{(Y − expit(θ(R)TX(I)))X(I)}]

=
J∑

s=1

n∑

i=1

[f(X i,β,θ
(R))Pr(X i = xi, Si = si)]

=
1∑

d=0

J∑

s=1

n∑

i=1

[f(X i,β,θ
(R))Pr(X i = xi, Si = s, Yi = d)]

=
1∑

d=0

J∑

s=1

n∑

i=1

[f(X i,β,θ
(R))Pr(X i = xi|Si = s, Yi = d)Pr(Si = s, Yi = d)]

=
1∑

d=0

J∑

s=1

n∑

i=1

[f(X i,β,θ
(R))

1

nds

Nds

N
1(yi=d,si=s)]

=
1

N

n∑

i=1

1∑

d=0

J∑

s=1

[f(X i,β,θ
(R))

Nds

nds
1(yi=d,si=s)]

=
1

N

N∑

i=1

1∑

d=0

J∑

s=1

[Rif(X i,β,θ
(R))

Nds

nds
1(yi=d,si=s)]

Let us denote
∑

d,s
Nds
nds

1{Wi∈Wds} by 1
π(W i)

where π(W i) =
∑

d,s
nds
Nds

1{W i∈Wds}.

Then the above estimating equation can be rewritten as

1

N

N∑

i=1

Rif(X i,β, θ̂
(R)

)

π(W i)
= 0 (B.1)
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B.2 Estimating equation in phase-II

Let Sθ(CC)(Y,X) = (Y − expit(θ(CC)TX))X denote the score vector of dimen-

sion q2 where θ(CC) = θ(CC)(β) = β + (log p(1,s)
p(0,s)

,0T )TThen,

E(II)(Sθ(CC)(Y,X)) = 0 (B.2)

E(II)(Sθ(CC)(Y,X)) = EY [E
(II)
X|Y {Sθ(CC)(Y,X)}]

=
n1

n

1

n1

n1∑

i=1

Sθ(CC)(Yi = 1,X i) +
n0

n

1

n0

n0∑

i=1

Sθ(CC)(Yi = 0,X i)

=
1

n

n∑

i=1

Sθ(CC)(Yi,X i)

=
1

n

n∑

i=1

(Yi − expit(θ(CC)TX i))X i

=
1

n

N∑

i=1

Ri(Yi − expit(θ(CC)TX
(II)
i ))X

(II)
i

=
1

N

N

n

N∑

i=1

Ri(Yi − expit(θ(CC)TX
(II)
i ))X

(II)
i

B.3 Consistency and Asymptotic Normality

Consistency can be proved in a similar way as shown in our original GMeta

paper. Asymptotic normality will also follow in the same direction, but, here,

we need to take into account of the dependence between the two phases.

150



Let GN(β) = ∂
∂β
UN(β). Then, GT

N(β)CUN(β)|β=β̂GMeta
= 0. From now on,

we will denote β̂GMeta by β̂. By Mean-value theorem,

√
NUN(β̂) =

√
NUN(β0) +

√
NGN(β̄)(β̂ − β0)

where β̄ ∈ (β0, β̂). Pre-multiplying the above by GT
N(β̂)C, we get

√
N(β̂ − β0) = −MN(β̂, β̄, θ̂

(R)
)
√
NUN(β0, θ̂

(R)
))

where MN = {GT
N(β̂, θ̂

(R)
)CGN(β̄, θ̂

(R)
)}−1GT

N(β̂, θ̂
(R)

)C. Assuming θ̂
(R)

a consistent estimator for θ0 , we have, under some regularity conditions,

GT
N(β̂, θ̂

(R)
)
P−→ ΓT andGn(β̄, θ̂

(R)
)
P−→ Γ where Γ = EV ,X

∂
∂β
U (β,θ(R))|β=β0,θ

(R)=θ0
.

Then, MN
P−→ (ΓTCΓ)−1ΓTC. Focussing on the second multiplicative term,

by mean value theorem, we have

√
NUN(β0, θ̂

(R)
) =
√
NUN(β0,θ0) +

√
NV N(θ̄)(θ̂

(R) − θ0)

where V N(θ̄) = (V T
1N(β0, θ̄

(R)
),0T )T , θ̄

(R) ∈ (θ̂
(R)
, θ0), V 1N(β0, θ̄

(R)
) =

∂

∂θ(R)U 1N(β0,θ
(R))|

θ(R)=θ̄
(R) .

Focussing on the phase-I moment vector of the first term of the above equa-

tion, we have

√
NU 1N(β0,θ0) =

√
NU ∗1N(β0,θ0) + { 1√

N

N∑

i=1

Rif(X i;β0,θ0)}op(1)

whereU ∗1N(β0,θ0) = 1
N

∑N
i=1

Rif(Xi,β0,θ0)
p(W i)

. Under regularity conditions 1√
N

∑N
i=1 Rif(X i;β0,θ0) =
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Op(1). Then by Slutsky’s theorem, we have

√
NU 1N(β0,θ0) =

√
NU ∗1N(β0,θ0) + op(1)

By WLLN, we have π(V ) = p(V ) + op(1). Using this we have V 1N(β0, θ̄
(R)

) =

V ∗1N(β0, θ̄
(R)

)+op(1) where V ∗1N =
∂U∗

1N

∂θ(R) . By WLLN, we have V ∗1N(β0, θ̄
(R)

)
P−→

V 1 where V 1 = V 1(β0,θ0) = E ∂

∂θ(R)U 1(β0,θ
(R))|θ(R)=θ0

Therefore, the influence function representation is given by,

√
NUN(β0, θ̂

(R)
) =



I 0 V ∗1N

0 I 0



√
N




U ∗1N(β0,θ0)

U 2N(β0)

θ̂
(R) − θ0




+ op(1)

=



I 0 V ∗1NI−1

N (θ̄
(R)

)

0 N
n
I 0







1√
N

∑N
i=1 Ψ1(W i,X i;β0,θ0)

1√
N

∑N
i=1 Ψ2(W i,X i;β0)

1√
N

∑N
i=1 Ψ3(Yi,X i;θ0)




+ op(1)

=



I 0 V ∗1NI−1

N (θ̄
(R)

)

0 N
n
I 0


 1√

N

N∑

i=1

Ψ(W i,X i;β0,θ0) + op(1)

(B.3)

where,

Ψ1(W i,X i;β0,θ0) = Rif(Xi,β0,θ0)
p(W i)

Ψ2(W i,X i;β0) = RiSβ0
(Yi,X

(II)
i )

Ψ3(Yi,X i;θ0) = {Yi − expit(θT0X(I)
i )X

(I)
i }
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IN(θ̄
(R)

) is the information matrix

By WLLN, I−1
N (θ̄

(R)
)
P−→ I−1(θ0) = (E[(g−1)′(θ(R)TX(I))X(I)X(I)T ]|θ(R)=θ0

)−1.

Let us assume n
N
→ λ ∈ (0, 1). By central limit theorem, we have

√
NUN(β0, θ̂

(R)
)
D−→ N(0,∆Ω∆T )

where Ω = E(Ψ(W i,X i;β0,θ0)ΨT (W i,X i;β0,θ0)), ∆ =



Iq1 0 V 1I−1

0 λ−1Iq2 0


.

Therefore, by Slutsky’s theorem, we have

√
N(β̂ − β0)

D−→ N(0, (ΓTCΓ)−1ΓTC∆Ω∆TCΓ(ΓTCΓ)−1)

Estimation of Ω, V 1, I from phase-II sample

Ω̂11 =
∑

d,s
Nds
N

∑nds
j=1

Nds
n2
ds
{expit(β̂Tx(II)

j )− expit(θ̂(R)T

x
(I)
j )}2x

(I)
j x

(I)T

j

Ω̂22 =
∑

d,s
nds
N

∑nds
j=1

1
nds
{yj − expit(θ̂

(CC)T

x
(II)
j )}2x

(II)
j x

(II)T

j

Ω̂33 =
∑

d,s
Nds
N

∑nds
j=1

1
nds
{yj − expit(θ̂

(R)T

x
(I)
j )}2x

(I)
j x

(I)T

j

Ω̂12 =
∑

d,s
Nds
N

∑nds
j=1

1
nds
{(expit(β̂Tx(II)

j )− expit(θ̂(R)T

x
(I)
j ))(yj −

expit(θ̂
(CC)T

x
(II)
j )}x(I)

j x
(II)T

j

Ω̂23 =
∑

d,s
nds
N

∑nds
j=1

1
nds
{(yj − expit(θ̂

(CC)T

x
(II)
j ))(yj − expit(θ̂

(R)T

x
(I)
j )}x(II)

j x
(I)T

j

Ω̂13 =
∑

d,s
Nds
N

∑nds
j=1

1
nds
{(expit(β̂Tx(II)

j )− expit(θ̂(R)T

x
(I)
j ))(yj −

expit(θ̂
(R)T

x
(I)
j )}x(I)

j x
(I)T

j

V̂ 1 = −∑d,s
Nds
N

∑nds
j=1

1
nds

exp(θ̂
(R)T

X
(I)
j )

(1+exp(θ̂
(R)T

X
(I)
j ))2

X
(I)
j X

(I)T

j

Î =
∑

d,s
Nds
N

∑nds
j=1

1
nds

exp(θ̂
(R)T

X
(I)
j )

(1+exp(θ̂
(R)T

X
(I)
j ))2

X
(I)
j X

(I)T

j

Γ̂1 =
∑

d,s
Nds
N

∑nds
j=1

1
nds

exp(β̂
T
X

(II)
j )

(1+exp(β̂
T
X

(II)
j ))2

X
(I)
j X

(II)T

j
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Γ̂2 = 1
n

∑n
i=1

exp(θ̂
(CC)T

X
(II)
i )

(1+exp(θ̂
(CC)T

X
(II)
i ))2

X
(II)
i X

(II)T

i

Γ = (ΓT
1 ,Γ

T
2 )T
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Appendix C

Chapter 3
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Figure C.1: Q-Q and Manhattan Plots of Interaction Analysis using CML and
UML approach
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Table C.1: Top-1 SNP (rs1818613) for locus 2q21.3 with association reaching genome wide significance

Chr
BP

SNP
A1/A2
Gene

Dataset Info MAF
Analytical

Method
OR SNP
(95% CI)

OR SNP × FormerSmoker
(95% CI)

OR SNP × CurrentSmoker
(95% CI)

Interaction
P-value

2q21.3
135356285
rs1818613

G/T
TMEM163
(intronic)

Meta
Analysis

CML
1.15

(1.1,1.21)
0.90

(0.83,0.97)
0.75

(0.66,0.84)
2.70E-09

EB
1.15

(1.08,1.21)
0.88

(0.79,0.97)
0.74

(0.65,0.84)
3.08E-09

UML
1.12

(1.05,1.18)
0.90

(0.8,0.99)
0.72

(0.59,0.84)
1.02E-06

PanScan 0.99 0.39
CML

1.14
(1.06,1.21)

0.88
(0.79,0.97)

0.72
(0.6,0.84)

8.22E-07

EB
1.11

(1.02,1.2)
0.90

(0.78,1.03)
0.72

(0.6,0.84)
1.01E-06

UML
1.09

(1,1.18)
0.93

(0.81,1.06)
0.71

(0.55,0.87
1.24E-04

PanC4 0.99 0.39
CML

1.18
(1.09,1.27)

0.92
(0.82,1.03)

0.79
(0.65,0.92)

2.49E-03

EB
1.18

(1.09,1.27)
0.89

(0.73,1.04)
0.78

(0.63,0.93)
4.96E-03

UML
1.17

(1.07,1.27)
0.85

(0.7,1)
0.76

(0.55,0.96)
1.30E-02

Abbreviations: Chr, chromosome; BP, base pair position according to the human genome Build 37; A1, effect allele (minor allele); A2, alternative
allele (major allele) Info, imputation quality score; MAF, minor allele frequency; CML, Constrained maximum-likelihood; EB, Empirical Bayes;
UML Unconstrained maximum-likelihood; OR (95%CI), odds ratios and confidence intervals.
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Table C.2: Odds Ratios and Interaction P-value GWASs loci in Caucasian population.

Chr
SNP

Positiona

Gene

Effect
Allele/

Ref
Allele

MAF
PanC4 -
PanScan

INFOb

PanC4 -
PanScan

Method
GxE

OR SNP
(95% CI)

OR SNP × FormerSmokers
(95% CI)

OR SNP × CurrentSmokers
(95% CI)

Interaction
P-value

1q32.1
rs2816938

199,985,368
NR5A2

A/T .26-.24 .99-.99
CML

1.19
(1.12-1.27)

.99
(.91-1.08)

1.05
(.94-1.17)

0.58

UML
1.18

(1.08-1.29)
.98

(.88-1.09)
1.16

(1.01-1.33)
0.06

EB
1.19

(1.12-1.27)
.99

(.90-1.08)
1.09

(.95-1.26)
0.33

1q32.1
rs3790844

200,007,432
NR5A2

G/A .22- .22 1-1
CML

.83
(.78-.88)

.94
(.87-1.03)

1.02
(.92-1.14)

0.23

UML
.83

(.76-.91)
.96

(.86-1.08)
.99

(.85-1.14)
0.81

EB
.83

(.78-.89)
.94

(.86-1.03)
1.01

(.90-1.13)
0.37

2p13.3
rs1486134
67,639,769

ETAA1 2236bp 3’

G/T .289-.286 1-1
CML

.91
(.86-.97)

.99
(.93-1.06)

.99
(.91-1.08)

0.97

UML
.89

(.84-.95)
1.01

(.90-1.12)
1.04

(.91-1.20)
0.8

EB
.91

(.85-.96)
.99

(91-1.09)
1.00

(.90-1.12)
0.97

3q29
rs9854771

189,508,471
TP63

A/G .344-.354 1-.998
CML

.89
(.84-.95)

1.00
(.93-1.08)

.99
(.90-1.09)

0.96

UML
.90

(.84-.95)
.99

(.89-1.09)
1.03

(.91-1.17)
0.82

EB
.89

(.84-.95)
1.00

(.92-1.09)
1.00

(.91-1.11)
0.99

5p15.33
rs2736098
1,294,086

TERT

T/C .252- .265 .921-.84
CML

.83
(.78-.88)

1.04
(.95-1.13)

.96
(.87-1.07)

0.37

UML
.77

(.70-.84)
1.13

(1.02-1.26)
1.10

(.94-1.27)
0.089

EB
.79

(.73-.87)
1.09

(.98-1.21)
1.04

(.89-1.21)
0.37

5p15.33
rs401681
1,322,087

CLPTM1L

T/C .466-.463 1-1
CML

1.19
(1.12-1.27)

.98
(.91-1.05)

.97
(.89-1.06)

0.78

UML
1.20

(1.13-1.28)
.97

(.88-1.06)
.99

(.88-1.12)
0.78

EB
1.19

(1.12-1.27)
.98

(.91-1.05)
1.00

(.89-1.12)
0.79

7p13
rs17688601
40,866,663
SUGCT

A/C .252-.259 1-1
CML

.87
(.82-.93)

1.01
(.93-1.09)

1.03
(.93-1.14)

0.82

UML
.87

(.82-.93)
1.00

(.89-1.11)
1.10

(.96-1.27)
0.31

EB
.87

(.82-.93)
1.00

(.90-1.10)
1.06

(.94-1.20)
0.55

Abbreviations: Chr:chromosome; MAF:Minor Allele Frequency; GxE: Gene by Environment ; OR 95% CI: Odds Ratio and its 95% confidence interval
a SNP position according to NCBI Human Genome Build 37
b Quality of imputation metric
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Table C.2: Odds Ratios and Interaction P-value GWASs loci in Caucasian population (Contd.)

Chr
SNP

Positiona

Gene

Effect
Allele/

Ref
Allele

MAF
PanC4 -
PanScan

INFOb

PanC4 -
PanScan

Method
GxE

OR SNP
(95% CI)

OR SNP × FormerSmokers
(95% CI)

OR SNP × CurrentSmokers
(95% CI)

Interaction
P-value

7p12
rs73328514
47,488,569

TNS3

T/A .109-.111 .965-.929
CML

.83
(.76-.90)

.98
(.88-1.09)

1.01
(.86-1.17)

0.93

UML
.83

(.74-.92)
1.02

(.87-1.18)
1.04

(.85-1.28)
0.91

EB
.83

(.76-.90)
1.00

(.88-1.13)
1.01

(.87-1.18)
0.98

7q32.3
rs6971499

130,680,521
LINC-PINT

C/T .146-.142 1- .954
CML

.84
(.77-.91)

.98
(.89-1.08)

.97
(.86-1.11)

0.89

UML
.84

(.77-.92)
.99

(.86-1.13)
.97

(.81-1.17)
0.96

EB
.84

(.77-.91)
.98

(.89-1.09)
.97

(.81-1.17)
0.92

8q21.11
rs2941471
76,470,404

HNF4G

G/A .419-.418 .997-.997
CML

1.14
(1.07-1.21)

.96
(.90-1.02)

.88
(.81-.96)

0.026

UML
1.15

(1.08-1.22)
.99

(.90-1.08)
.88

(.77-.99)
0.11

EB
1.14

(1.07-1.21)
.96

(.90-1.02)
.88

(.81-.96)
0.028

8q24.21
rs10094872
128,719,884

MYC

T/A .371-.375 .964-.943
CML

1.14
(1.07-1.21)

.95
(.88-1.02)

1.02
(.93-1.12)

0.2

UML
1.12

(1.06-1.20)
.96

(.87-1.06)
1.09

(.96-1.24)
0.16

EB
1.14

(1.07-1.21)
.95

(.87-1.03)
1.03

(.93-1.15)
0.23

8q24.21
rs1561927

129,568,078
MIR1208

C/T .25-.26 1-1
CML

1.12
(1.06-1.19)

.99
(.91-1.08)

.98
(.88-1.09)

0.92

UML
1.12

(1.05-1.19)
1.00

(.90-1.11)
1.04

(.91-1.20)
0.83

EB
1.13

(1.06-1.20)
.99

(.90-1.08)
1.01

(.89-1.14)
0.94

9q34
rs505922

136,149,229
ABO

C/T .373-.366 1-1
CML

1.26
(1.18-1.34)

.98
(.91-1.05)

1.05
(.96-1.16)

0.31

UML
1.23

(1.16-1.31)
1.02

(.93-1.13)
1.11

(.98-1.27)
0.24

EB
1.25

(1.18-1.34)
.99

(.91-1.08)
1.07

(.95-1.20)
0.4

13q12.2
rs9581943
28,493,997

PDX1-AS1-PDX1

A/G .41-.414 1- .987
CML

1.16
(1.09-1.23)

1.01
(.94-1.08)

.98
(.90-1.07)

0.85

UML
1.15

(1.08-1.22)
1.05

(.96-1.16)
.94

(.83-1.06)
0.19

EB
1.16

(1.09-1.23)
1.02

(.94-1.11)
.98

(.88-1.08)
0.68

Abbreviations: Chr:chromosome; MAF:Minor Allele Frequency; GxE: Gene by Environment ; OR 95% CI: Odds Ratio and its 95% confidence interval
a SNP position according to NCBI Human Genome Build 37
b Quality of imputation metric
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Table C.2: Odds Ratios and Interaction P-value GWASs loci in Caucasian population (Contd.)

Chr
SNP

Positiona

Gene

Effect
Allele/

Ref
Allele

MAF
PanC4 -
PanScan

INFOb

PanC4 -
PanScan

Method
GxE

OR SNP
(95% CI)

OR SNP × FormerSmokers
(95% CI)

OR SNP × CurrentSmokers
(95% CI)

Interaction
P-value

13q22.1
rs9543325
73,916,628

KLF5 and KLF12

C/T .409-.391 1-1
CML

1.29
(1.21-1.37)

.98
(.92-1.05)

.94
(.86-1.03)

0.43

UML
1.27

(1.20-1.36)
1.04

(.94-1.15)
.91

(.80-1.03)
0.13

EB
1.28

(1.20-1.36)
1.00

(.92-1.09)
.93

(.84-1.03)
0.33

16q23.1
rs7190458
75,263,661

BCAR1

A/G .056-.051 1-.739
CML

1.51
(1.32-1.74)

.87
(.74-1.03)

.83
(.67-1.02)

0.13

UML
1.50

(1.29-1.75)
.86

(.69-1.08)
.88

(.65-1.18)
0.4

EB
1.51

(1.31-1.73)
.87

(.73-1.04)
.86

(.65-1.14)
0.28

17q12
rs4795218
36,078,510

HNF1B

A/G .218-.222 .954-.958
CML

.88
(.82-.93)

.97
(.89-1.06)

.99
(.88-1.10)

0.79

UML
.90

(.83-.99)
.93

(.83-1.05)
.93

(.80-1.08)
0.43

EB
.88

(.83-.94)
.96

(.88-1.06)
.98

(.85-1.12)
0.73

17q25.1
rs11655237
70,400,166
LINC00673

T/C .13-.120 .955-1
CML

1.34
(1.23-1.47)

.88
(.79-.98)

.83
(.73-.96)

0.013

UML
1.32

(1.19-1.47)
.95

(.82-1.09)
.84

(.70-1.02)
0.21

EB
1.34

(1.23-1.46)
.90

(.79-1.02)
.84

(.73-.97)
0.038

18q21.32
rs1517037
56,878,274

GRP

T/C .177- .182 1-1
CML

.87
(.82-.93)

1.03
(.94-1.13)

.96
(.86-1.08)

0.48

UML
.85

(.78-.93)
1.06

(.93-1.20)
1.01

(.87-1.19)
0.66

EB
.86

(.79-.94)
1.07

(.96-1.19)
.97

(.85-1.11)
0.31

22q12.1
rs16986825
29,300,306

ZNRF3

T/C .165-.158 1- .996
CML

1.14
(1.04-1.24)

1.00
(.91-1.10)

1.20
(1.07-1.36)

0.0053

UML
1.18

(1.08-1.28)
.96

(.85-1.10)
1.06

(.90-1.25)
0.05

EB
1.15

(1.05-1.26)
.99

(.88-1.10)
1.12

(.95-1.32)
0.28

Abbreviations: Chr:chromosome; MAF:Minor Allele Frequency; GxE: Gene by Environment ; OR 95% CI: Odds Ratio and its 95% confidence interval
a SNP position according to NCBI Human Genome Build 37
b Quality of imputation metric
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Figure C.2
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