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ABSTRACT 

Inorganic arsenic (iAs) is a ubiquitous element in the environment- it innately exists 

within the earth’s crust and mobilizes into the atmosphere, soil, water, and within 

organisms [1]. Information on arsenic speciation within tissues is limited, although 

speciation is vital given that each arsenic species has different qualitative and 

quantitative differences in toxicity [2]. The goal of this thesis is to (1) provide a non-

systematic literature review to compare the current state of literature and de2ne the gaps 

in mammalian arsenic speciation and note arsenic metabolism within the lungs, liver, 

and spleen and to (2) develop arsenic extraction and analysis methods to assess 

arsenic in lung, spleen, and liver tissues of male and female C57BL6 mice exposed to 0, 

and 1000 ppb of sodium (meta) arsenite in drinking water. Arsenic species iAsIII, iAsV, 

MMA, and DMA were examined through use of high-performance liquid chromatography 

joined with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) within spiked 

mammalian tissues. Arsenic species were detected during a preliminary assessment of 

1000 ppb dosed spleen and lung. This research evaluates a method for arsenic 

speciation in different tissues. The use of these method in follow-up studies will provide 

insight for the potential biochemical pathways, toxicological mechanisms, and allow for 

future inferences about arsenic species in mammalian tissue. 
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CHAPTER I

The Metabolism of Arsenic Species within the Mammalian Hepatic, Pulmonary, and 

Splenic Systems: A Literature Review

1.1 Introduction

 

Arsenic is a ubiquitous element in the environment- it exists within the earth’s crust and 

mobilizes into the atmosphere, soil, water, and within organisms [1]. Due to its 

pervasiveness, individuals are readily exposed to arsenic by inhalation, ingestion, and 

dermally [2]. Arsenic is especially a concern in drinking water. The World Health 

Organization (WHO) has adopted the standard for arsenic in drinking water as 0.01 mg/l 

or 10 parts per billion (ppb); however, it is reported that at least 140 million individuals 

ingest water above this guideline [3]. 

The U.S. Environmental Protection Agency (EPA), International Agency for Research on 

Cancer (IARC), and Department of Health and Human Services all recognize inorganic 

arsenic as a human carcinogen [2]. Arsenic exposure via drinking water has been 

associated with various adverse health effects such as diabetes mellitus [4, 5], cirrhotic 

portal hypertension [6, 7], cardiovascular diseases [8, 9], bronchiectasis [10], and 

impaired neurological function [6, 7]. Dark patches of hyperpigmentation on extremities 

are considered the "pathologic hallmark of chronic arsenic exposure" [2]. Furthermore, 

the toxic effects of arsenic are dependent on its species [11]; given that each arsenic 

species has distinct qualitative and quantitative differences in toxicity [10]; however, the 

mechanism of chemical action of arsenic toxicity is not entirely known [12]. Thus, 

collecting data and current literature on arsenic speciation should be approached with 

urgency as arsenic exposure is a de2ned threat to public health [13].
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Currently, information on arsenic speciation within tissues is limited. Cumulative internal 

dose of arsenic may be dependent on the species present and accumulated within the 

body [14]. Therefore, analysis of arsenic species within tissue, especially when exposed 

chronically, can indicate patterns of arsenic metabolism [15]. Determination of arsenic 

species in speci2c organ tissues can lead to a better understanding of the mechanisms 

of toxicity and offer insight for hazard identi2cation and exposure assessment [10]. The 

goal of this review is to summarize the scope of the current state of literature regarding 

arsenic species within mammalian lung, liver, and spleen. 

1.2 The Chemical Actions and Characteristics of Arsenic

1.2.1 The Environmental Relevance of Arsenic 

Arsenic is a metalloid as it displays physical and chemical properties of both metals and 

nonmetals [16, 17]. It is a part of the nitrogen family, exists as a free element, covalently 

bonds with hydrogen, carbon, and oxygen, and is present in the environment as sul2de 

ores [18]. Unlike metals which are only mobile within acidic conditions, arsenic is readily 

soluble in acidic (pH 6), neutral, and alkaline (pH 6.6–7.8) settings [1, 19-21]. Arsenic is 

a major constituent of more than 245 mineral species [20] and subsists into two major 

groups: inorganic arsenic and organic arsenic (12) (Figure 1). Arsenic also exists in two 

different oxidation states: pentavalent (V) and trivalent (III and –III) [22, 23]. Each arsenic 

species has different chemical properties and can reside within different tissues in the 

human body. Arsenic retention in speci2c tissues varies based on the amount of 

exposure, the species, and the methylation potential [16].

Humans are exposed to arsenic through multiple routes, including: intake of 

contaminated water, ingestion of food (2sh is a common source of arsenic for example), 

and inhalation of ambient air (Figure 1) [24]. Weathering reactions such as volcanic 

emissions or high winds can displace arsenic in the environment [1]. Arsenic exposure 
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can also be brought on by anthropogenic activities such as coal industries and the 

manufacturing of pesticides, wood treatment sprays, and nonferrous alloys [2]. Arsenate, 

or pentavalent inorganic arsenic (iAsV), is the prevalent and stable arsenic species in 

drinking water [16] except within reducing conditions (e.g. when ammonia is released by 

microbial processes in water), where arsenite, also referred as trivalent inorganic arsenic 

(iAsIII), will dominate water’s arsenic composition [17]. Paradoxically, as far back as 

1786, arsenic compounds were designed for therapeutics [25].  Arsenic has been 

indicated to treat dermatological disease, syphilis, hematological disorders, respiratory 

diseases, and marked the creation of chemotherapy [25, 26]. Arsenic trioxide is still used 

today to alleviate the symptoms of leukemia [25].       

   

1.2.2 Arsenic Metabolism Pathways

Arsenic’s chemistry makes distinguishing its species challenging [20, 21]. Organic is 

de2ned by a carbon bond in the chemical framework [27]. Organic species are 

monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) [13] (Table 1, Figure 1). 

Arsenic can undergo eight electron reductions and exists in four valence or oxidation 

states: V, III, 0, and –III [7, 17]. Arsenic metabolism is characterized by reduction 

reactions of pentavalent arsenic into trivalent form and oxidation reactions where 

trivalent arsenic is methylated and converted to pentavalent form [17]. The 

transformation of arsenic within the body is further explained by 2rst pass metabolism 

[22].

Table 1. Arsenic Species of Interest regarding the Mammalian Metabolism. (Table 1 

was created referencing Sattar et al. (2016) [26] and Chen et al. (2014) [11].  
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Inorganic AsV is typically ingested via water. In the body, iAsV is reduced to iAsIII, by 

the enzyme AsV reductase (Figure 2A). Glutathione (GSH) can permit arsenic reduction 

as an essential co-factor to create an oxidized glutathione disul2de product (GSSG) [28] 

iAsV can further be reduced to iAsIII without enzymes by interaction with thiols [14, 21] 

or by other endogenous reductants such as purine nucleotide phosphorylase (PNP), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ornithine carbamoyl 

4

Table 1. Arsenic Species of Interest regarding the Mammalian 
Metabolism

Common Names Common Abbreviations
Chemical 
Structure 

In
o

rg
a
n

ic
Arsenic Acid, Arsenate, 
Inorganic AsV

AsV, iAsV AsO(OH)3 

Arsenous Acid, Arsenious 
Acid, Arsenite, Inorganic 
AsIII

AsIII, iAsIII As(OH)3 

O
rg

a
n

ic

Monomethylarsonic Acid, 
Methylarsonic Acid 

MMAV, MAsV CH3AsO(OH)2 

Monomethylarsonous Acid, 
Methylarsonous Acid, 
Methylarsonite 

MMAIII, MAsIII (CH3)3As(OH)2

Dimethylarsenic Acid, 
Dimethylarsinate 

DMAV, DMAsV (CH3)2AsO(OH) 

Dimethylarsinous Acid, 
Dimethylarsenite

DMAIII, DMAsIII (CH3)2As(OH) 

Trimethylarsine Oxide TMAO, TMAsVO, TMAOV (CH3)3AsO 

Arsenobetaine AsB
(CH3 )3 As+ CH2 
COOH 

Arsenocholine AsC
(CH3 )3 As+ CH2 
-CH2 OH 



transferase (OTC) [28-30]. 

Figure 1. Arsenic Metabolic Chemical Pathway. The arsenic metabolism is a series of 

oxidation and reduction reactions. A) Inorganic AsV is reduced to iAsIII, by the enzyme 

AsV reductase using GSH, which is oxidized to glutathione disul2de in the process. 

AS3MT permits the oxidation of iAsIII to MMAV. AS3MT removes SAM from DNA 
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methylation. B) MMAV is then reduced to MMAIII using MMAV reductase or AS3MT as 

an enzyme. MMAIII is oxidized into the 2rst dimethylated form (DMAV) via AS3MT or 

N6AMT1. C) DMAV is then converted to DMAIII, by AS3MT, which is the 2nal form in the 

human metabolism. D) Rodents however trimethylate DMAIII into TMAO. (Figure 2 was 

created through Pubchem [31] and ChemDraw [32] with reference to Hall et al., 2012 

[29], Reichard and et al., 2010 [30], and Chen et al., 2014 [13], Khairul et al. (2017)[14], 

Tamaki (1992) [21], Healy et al. (1998) [21].) 

AsIII methyltransferase (AS3MT) then oxidizes iAsIII and catalyzes the addition of a 

methyl group to make MMAV [14] (Figure 2A and 2B). AS3MT utilizes s-

adenosylmethionine (SAM) as the methyl donor and forms s-adenosylhomocysteine 

(SAH) [33]. MMAV is then reduced to MMAIII via MMAV reductase or AS3MT (Figure 

2B) [30, 34]. MMAIII is oxidized and methylated to become DMAV by AS3MT or N-6 

adenine-speci2c DNA methyltransferase 1 (N6AMT1) (Figure 2B and 2C) [34, 35]. 

DMAV is then reduced to DMAIII in humans (Figure 2C). Finally, MMAV and DMAV are 

excreted in the urine, DMAV typically being at a higher concentration (Figure 1) [14, 36]. 

For rodents, oxidative methylation continues to form trimethylarsine oxide (TMAO) from 

DMAIII (Figure 2D) [10, 22]. 

Once arsenic is ingested, it can be taken up by tissues via aquaporin 9 (AQP9) [37-39]. 

Aquaglyceroporins are a subfamily of aquaporins that facilitate the permeation of small 

molecules and water molecules between plasma and tissue [40, 41]. AQP9 is 

particularly vital for the transport of iAsIII, but has been theorized to transport multiple 

species of arsenic [37-39]. AQP9 is not explicit to arsenic transport since mammals also 

permeate AQP9 from glycerol and other small neutral solutes [38].

1.2.3 Arsenic Methylation and Toxicity
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Methylation of arsenic within the body was formerly theorized to be for detoxi2cation and 

bioactivation [14, 20]. Methylation is now recognized to be dependent on exposure 

conditions and dose [14]. Furthermore, products or intermediates yielded through 

arsenic methylation are potentially more reactive [42]. The ability to methylate does not 

protect cells against the acute toxicity of trivalent arsenicals [43]. The trivalent forms of 

both inorganic and organic arsenic are more toxic and carcinogenic than the pentavalent 

forms [11, 44, 45]. Multiple studies have shown that MMAIII is more toxic than any other 

species of arsenic [45-47] (Table 2). In fact, in 2005 it was discovered MMAIII is over 

100 times more potent than iAsIII as an in vitro inhibitor of thioredoxin reductase [20]. 

Organic arsenic species which have been found to be non-toxic include arsenobetaine 

(AsB) and arsenocholine (AsC) [13], which require extreme oxidation conditions to 

decompose [21]. Petrick and colleagues (2000) used human hepatocytes to rank arsenic 

species by toxicity: MMA(III) > iAsIII > iAsV > MMA(V) = or > DMA(V) [47]. Although 

DMAIII was not included in Petrick et al.’s study, it should be acknowledged that DMAIII 

has greater toxicity than MMAV and less than iAsV [11, 44, 45].

Table 2. Mammalian Arsenic Species- Toxicity Rankings and Endpoints. Arsenic 

species vary in toxicity. Arsenic species have been reported to target various regions of 

the mammalian body. (Table 2 was created in reference to Devesa et al. (2004) [48], 

Drobná et al. (2004) [55], Hughes et al. (2006) [8], Jamova et al. (2011) [42], Li et al. 

(2017) [47], Le et al. (2000) [52], Mandal et al. (2007) [49], Mass (2001) [43], Reichard et 

al. (2010) [29], Styblo (2000) [56], Vahter et al. (1984) [50], and Yoshino et al. (2009) 

[51].)

Table 2. Mammalian Arsenic Species - Toxicity Rankings & Endpoints 

Toxicity 

Ranking

As 

Species

 

Tissue and Areas of Concentration in 

Body

   

Organic and 

Inorganic Total
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1 MMAIII

Urine [19]

Spleen, Bone marrow, Thymus, Blood 

Plasma [48]

MMA combined: 

Blood [49] 

Urine [19]

Hippocampus, 

Cerebral Cortex, 

Cerebellum [49]

Liver [50]

5 MMAV

Urine [30] 

Fingernails, Blood plasma  [51] 

Liver [50] 

Spleen [49] 

Bladder [44]

2 iAsIII Hair, Fingernails [11]

Blood Plasma, Liver, Lung, Kidneys [52]

Inorganic As:  

Lungs, Liver, 

Kidneys 

[52]
3 iAsV Urine, Fingernails, Blood Plasma [53]

Liver, lung, kidneys [52]

4 DMAIII

Urine [54] 

Fingernails [51] 

Liver [50]

DMA combined: 

Bladder, Cerebral 

Cortex, 

Cerebellum, 

Kidney, Bladder 

[49]

Lungs [55] 

 Red Blood cells, 

Gastrointestinal 

Tract [52] 

6 DMAV Urine [30] 

Fingernail, blood plasma, liver [56] 

Bladder [44] 

Kidney [44]

 

As3MT promoter methylation is triggered by even moderate exposure to arsenic, and 

aberrant As3MT expression is correlated to a weakened arsenic metabolism [57]. 

Arsenic methylation is con2rmed to be correlated to As3MT gene variation [58]. As3MT 

genetic polymorphisms may inVuence arsenic methylation in children, potentially to a 

lesser extent than in adults [58]. A 2016 study which tested arsenic species within urine 

of children in Taiwan revealed that the AS3MT high-risk haplotype is related to 

developmental delay affecting motor skills and cognition [59]. The Atacama Desert has 

the highest arsenic levels in the Americas (>1,000 µg/L) and its residents have been 

exposed to arsenic for over 7,000 years without epidemiological emergencies- it is 
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theorized to be due to adaptations of the methyltransferase AS3MT gene [60, 61].  

In humans, low excretion of DMAV or MMAV in the urine represents poor methylation 

and can indicate poor arsenic metabolism [62]. In addition, the methylation of inorganic 

metabolites is thought to inVuence where arsenic species distribute within the human 

body [63]. Inorganic AsIII is methylated more rapidly than iAsV, perhaps due to iAsIII 

having greater uptake into tissues which methylate arsenic [19]. Nevertheless, questions 

persist regarding how and where MMAIII (as well as other species of arsenic) target 

within tissue [45-47]. Multiple studies have shown that females are more ef2cient at 

metabolizing arsenic [64-66]. In fact, pregnant females have been shown to metabolize 

inorganic arsenic into DMA more rapidly than both non-pregnant female and male 

counterparts, which is suggested to reduce health risks to both the fetus and the mother 

[67].

1.2.4 Chemical and Molecular Mechanisms of Arsenic Toxicity 

 

Arsenic’s toxic action is thought to depend on its structure and chemical reactions. To 

date several mechanisms for arsenic toxicity have been described (as reviewed in 

Hughes 2002 [68]). Oxidative stress is one of the predominant mechanisms of arsenic 

toxicity [69]. Unbound arsenic produces reactive oxygen intermediates (e.g. MMA) 

during reduction-oxidation reaction cycling; in addition, such metabolic activation can 

elicit lipid peroxidation, DNA damage, and impair proteins [69, 70]. Arsenic mediated 

generation of reactive oxygen (ROS) and nitrogen species (RNS) within systems results 

in cellular damage, apoptosis, and activation of oxidative sensitive signaling pathways 

[69]. 

Trivalent methylated arsenic species inhibit thioredoxin reductase as well as GSH 

reductase (and therefore, the reduction of GSSG) [43]. Gene expression regulating the 

binding of transcription factors to DNA is inVuenced by thioredoxin levels (as reviewed in 
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Hughes [68]). Enzyme inhibition can result in altered reduction-oxidation status of cells 

and decreased protection against cell oxidants [43, 68].

Arsenic and phosphorus have similar electron orbitals and oxidation states [18]. 

Arsenic’s chemical resemblance to phosphorus and af2nity to form covalent bonds with 

sulfur are two additional causes for its toxicity [18]. Pentavalent inorganic arsenic, iAsV, 

speci2cally resembles phosphate and replaces it in critical biochemical processes [39]. 

The replacement is initiated by iAsV’s reaction with glucose to form glucose-6-iAsV, 

which resembles 6-phosphogluconate and glucose-6-phosphate, and therefore acts as a 

substrate toglucose-6-phosphate dehydrogenase during glycolysis [68]. 

Oxidative phosphorylation uncoupling occurs by pentavalent arsenic when adenosine 

diphosphate (ADP) creates ADP‐iAsV instead of ATP in the absence of the high‐energy 

ATP phosphate bonds [68]. Trivalent arsenicals, iAsIII, react directly with sulfhydryl 

groups, which are a key constituent of proteins [44]. It is possible that many arsenic 

pathways are mediated by the binding of proteins [22]. 

Another mechanism of arsenic toxicity is due to the fact that both DNA methylation and 

iAs methylation steps require SAM as a methyl donor [33]. In the presence of arsenic, 

SAM is depleted by AS3MT to methylate arsenic rather than carry out important 

methylation functions such as methylate DNA [30]. DNA methyltransferase (DNMT) 

catalyzes the transfer of a methyl of from SAM to the C5′ position of cytosine at CpG 

dinucleotides, creating 5-methylcytosine (as reviewed by Reichard et al. [30]). Mass and 

Wang (1997) 2ndings suggest the CpG within the entire genome can become 

hypermethylated upon iAsIII exposure of adenocarcinoma cells, due to diminished ability 

of SssI methylase to remove methyl groups from SAM for DNA [71]. Zhong and Mass 

(2001) alternatively found hypomethylation and hypermethylation in DNA of human 

respiratory cells after several weeks of iAsIII exposure [45]. 
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Trivalent arsenicals, such as iAsIII, react directly with sulfhydryl groups, which are a key 

constituent of proteins and therefore can hinder protein activity [68]. It is possible that 

many arsenic pathways are mediated by the binding of proteins [70]. MMAIII speci2cally 

can hinder the mitochondrial electron transport chain (ETC) [14, 72]. Moreover, MMAIII 

restrains the activity of ETC complexes II and IV, which results in electron leakage from 

complex I and III which creates reactive oxygen species in mitochondria, therefore an 

induction of mitochondrial dysfunction takes place and can trigger apoptosis) [14, 72]. 

Despite extensive research the molecular and cellular mechanisms involved in arsenic 

toxicity in mammals are still not thoroughly de2ned given arsenic’s complicated 

metabolism [65].

1.2.5 Differences in Arsenic Mammalian Metabolisms

A myriad of studies discuss arsenic species composition within blood as it serves to 

understand arsenic circulation in the metabolism. After only four hours of being 

intravenously exposed to iAsIII and iAsV, rats showed 95% of arsenic levels in blood to 

be in the form of DMA [73]. Interestingly, arsenic amounts in blood are low compared to 

liver, kidney, lungs, or bladder [19]. For humans, the half-life of inorganic arsenic is 

roughly 10 hours and 70% of arsenic is excreted through urine [74]. Unlike humans and 

other mammals, following exposure to inorganic arsenic, rats metabolize arsenic readily 

within red blood cells [52] and have an increased binding af2nity towards trivalent forms 

of arsenic (iAsIII, DMAIII, and MMAIII) [75]. Twaddle et. al (2019) compared rhesus 

monkeys and mice dosed with sodium iAsIII and to 2nd both animals had predominant 

formation of DMAV within plasma while erythrocyte composition suggested covalent 

binding of arsenic in the magnitude of DMAIII > MMAIII > inorganic arsenic species [76]. 

Therefore, DMA is reported to be the predominant species of arsenic in the blood of rats, 

mice, and monkeys; MMA (MMAIII and MMAV), though not the predominant species, is 

also recorded in murine blood [19, 73]. 
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Mice and rats are better at methylation than humans [14, 22]. Some mammalian species 

exhibit minimal methylation capacity or lack methylation altogether. For example, 

chimpanzees cannot methylate arsenic while marmoset, tamarin monkeys, and guinea 

pigs appear to de2ciently methylate iAsIII [22, 77-79]. Another example is dogs, which 

have a greater capacity to methylate iAs species in hepatocytes than human, mice, or 

rabbits [80]. It is possible that without the As3MT enzyme, which only exists in some 

mammals, methylation of arsenic is hindered [20, 81]. Table 1 summarizes the 

differences in arsenic metabolism between mammalian species.

Table 3. Differences in Arsenic Metabolism by Mammal

Table 3. Differences in Arsenic Metabolism by Mammal

Species Findings Source

Chimpanzees Cannot methylate inorganic arsenic Vahter et al., 2005

Dogs Dogs have a greater capacity to methylate iAs 
in hepatocytes than human, mice, or rabbits.

Drobna et al., 2010

Guinea Pigs De2ciently methylate iAsIII Healy et al., 1997

Hamsters High MMAV reductase activity in bladder Sampayo-Reyes et al., 2000

Humans Six metabolites: iAsV, iAsIII, MMAV, MMAIII, 
DMAV, and DMAIII

2012 (27), Reichard and Puga, 
2010 (29), Khairul et al. (2017), 
Tamaki (1992), Healy et al. (1998)

Marmoset 
Monkeys

Cannot methylate inorganic arsenic Vahter, 1999

Mice Mice metabolize arsenic more ef2ciently than 
humans; methylate arsenic further than 
humans into TMAO.

Hughes et al., 2003
Vahter, 1999

Rats Rat hemoglobin has an increased binding 
af2nity towards trivalent forms of arsenic (iAsIII, 
DMAIII, and MMAIII).
Longer DMA half-life in rats compared to other 
mammals, including humans. DMA is more 
extensively methylated in rats.

Lu et al., 2004
ASTDR, 2007

Tamarin 
Monkeys

Cannot methylate arsenic Vahter, 1999
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1.3 Arsenic Presence in Different Tissues- The Liver, Spleen, and Lungs

The liver, lungs, and spleen are all important organs which can indicate the nuances of 

the arsenic metabolism and are pathologic targets of arsenic (Figure 2). The 2rst organ 

to process arsenic in the metabolic pathway is the liver, therefore the liver has been 

suggested to have the highest rates of total arsenic, and inorganic arsenic, as well as 

enzymes or aquaporins to facilitate arsenic transport [37-39]. Arsenic species target the 

spleen more so than various other tissues such as the liver [42]. Post-mortem studies 

have con2rmed that arsenic species can be found in the lungs upon chronic exposure 

(from either ingestion or inhalation) [52, 82-86].

 

Gender, exposure dose, enzymatic availability (e.g. AS3MT, N6AMT1, MMAV 

reductase, or AsV reductase), presence of AQP9, and genetics all have been reported to 

affect methylation capacity and arsenic metabolism [14, 64, 65, 74, 79]. Studies with 

increased dose models report increased total arsenic and the presence of arsenic 

species [14, 48]. It is known that arsenic species (iAsIII, iAsV, MMAV, MMAIII, DMAIII, 

and DMAV) are present in spleens, lungs, and liver after exposure of inorganic arsenic 

[48, 87]. However, different ratios of species exist in each organ. This is theorized to be 

due to the manner in which arsenic is metabolized within tissues [16]. For example, if 

one organ has a lower ability to methylate arsenic, it is associated with higher total 

arsenic tissue concentrations [16]. In the next sections, arsenic species are explored in 

the lungs, liver, and spleen to help to de2ne the knowledge gaps in arsenic metabolism.
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Figure 2: Arsenic Pathology as it relates to the Liver, Lungs, and Spleen. (Figure 2 

was developed with reference to the following publications: Abdul et al. (2015) [88], 

Chen et al. 2011 [9], Datta et al. (1979) [89], Hall et al. (2006) [8], IARC Monographs 

(2004) [90], Jomova et al. (2011) [44],Parvez et al. (2013) [91], Rahman et al. (2011) 

[92], U.S. Department of Health and Human Services (2007) [2]).

1.3.1 Arsenic Speciation and Metabolism within the Liver

The liver is a site of arsenic carcinogenesis- as reviewed by Liu and Waalkes (2008) 

arsenic exposure can result in hepatocellular carcinoma or angiosarcoma, preneoplastic 

lesions, hepatomegaly, hepatoportal sclerosis, 2brosis, and even cirrhosis [93]. Because 

of its position in the portal circulation, liver is a major site for metabolism of ingested 

inorganic arsenic. Upon ingestion, arsenic is readily absorbed by the gastrointestinal 

tract and directed to the liver, the primary site of arsenic methylation as it is rich with 

GSH [22, 94].
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In the liver, AQP9 is distinct in the basolateral membrane of hepatocytes (50). 

Consequently, Shinkai and colleagues (2009) suggest AQP9 is a transportation channel 

that contributes to iAsIII cytotoxicity in mouse hepatocytes [41]. Carbrey et al. (2009) 

agrees and additionally proposes that AQP9’s transportation mechanisms are a route for 

metabolism by the liver which elicits partial protection for mammals [38] from arsenic 

toxicity [38]. AS3MT induced inhibition of DNMT action is nearly distinct to the liver and 

potentially, other AS3MT-expressing cell types [30]. Within human hepatocytes, 

Inorganic arsenic is metabolized by the expression of membrane transporters such as 

MRP2, GLUT2 [95]. It is still uncertain how arsenic species travel from the liver into other 

tissues and how other cells uptake arsenic from hepatocytes [96].

 

Various studies have veri2ed inorganic arsenic presence in the liver and its transport out 

of the liver to determine the arsenic pathway and how it relates to methylation in tissues 

[14, 30, 49, 52].  iAsV is reduced to its trivalent form primarily in the liver and blood [12, 

26]. After iAsV is reduced to iAsIII, it is readily taken up by the hepatocytes [22, 73]. Cell 

culture studies have shown that human primary hepatocytes produce all methylated 

metabolites of iAs that are excreted in human urine: MMAIII, MMAV, DMAIII, and DMAV 

[50]. It is estimated that 1 kg of human liver can methylate up to 14.8 μmoles of iAsIII 

(i.e., 1,108 μg As) during 1 hour [95]. It is still unclear whether iAsIII or iAsV is the 

predominant arsenic species in the liver [22, 73]. Using rat studies, Lerman et al. (1983) 

found that iAsIII is readily taken up by hepatocytes than iAsV [73]. Vahter et al., (1984) 

discovered that when iAsIII was injected into mice and rabbit models, it caused elevated 

total arsenic concentration in the liver followed by the lungs [52]. Similarly, Li and 

colleagues (2017) orally dosed mice to 2500, 5000,10000, and 20000 ppb of NaAsO2 

and after a mere 6 to 9 hours, the liver: had the most abundant inorganic arsenic, the 

lowest values of MMA, and the highest levels of total arsenic [49].

1.3.2 Arsenic Speciation and Metabolism within the Spleen  
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Arsenic has been linked to splenic hypertrophy and is known to cause other diseases 

correlated to the spleen [88]. Arsenic exposure via ingestion has been con2rmed to yield 

arsenic within the spleen [37]. For example, after eight weeks of exposing mice to 

NaAsO2, the spleen contained 2- to 5- fold higher levels of total arsenic compared to the 

liver, kidney, and heart and furthermore; 37- fold higher than the lungs [97]. 

Consequently, dermal can result in arsenic uptake by the spleen and blood 2ve days 

following exposure at a rate of 1–33 μg/cm2/hour (as reviewed in the 2007 Toxicological 

Pro)le for Arsenic) [2].

Mice exposed to low concentrations of iAsIII water in vivo have shown suppressed 

spleen cell function [98]. Also, MMAIII has been shown to be more ef2cient than iAsIII at 

inhibiting spleen cell function [99]. Despite iAsIII targeting the spleen, iAsIII exposure has 

been reported to have no effect on splenic weight and cell recovery within mouse 

models [100]. In 2016, C57BL/6J mice were dosed with 100 and 500 ppb of iAsIII to 

analyze arsenic within spleens) [48]. iAsV, followed by DMAIII, were found to be the 

most dominant species at both doses, and there was no effect on spleen weight or cell 

recovery [48]. In 100ppb dosed mice, the amount of arsenic per species was: iAsV 

(11.62 ± 2.89pg) >> DMAV (0.97 ±0.71pg) > MMAV (0.29 ± 0.08pg) > MMAIII (0.12 ± 

0.05pg) > iAsIII (0.11 ± 0.08pg). Rankings slightly varied in 500ppb dosed mice ((iAsV 

(11.33 ± 2.86) > DMAIII (1.83 ± 0.42) > MMAV (1.61 ± 2.13) > DMAV (1.15 ± 0.27) > 

MMAIII (0.22 ± 0.17) > iAsIII (0.51 ± 0.26)). Species concentrations thus increased as 

expected with the higher doses of exposure [48]. Furthermore, a dose-dependent 

increase of intracellular MMAIII was found within bone marrow and thymus cells of the 

same mice while it was nearly undetectable in the spleen at even 500 ppb of iAsIII 

exposure [48].

The spleen has immune function as it is a source of T cell storage, speci2cally for 

systemic immune cell responses. It appears even low exposure of trivalent arsenic can 

inVuence T-cells within the spleen [99, 101]. Upon studying peripheral blood 
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mononuclear cells in humans, Burchiel et al. (2014) found T-cell proliferation at 

increasingly low levels of iAsIII (0.1–10 nM) and T-cell suppression by 100 nM MMAIII 

[99]. Consequently, Soto-Peña and partners observed suppression of 

phytohemmagglutinin (PHA)-induced T cell proliferation in children aged 6-10 years of 

age within the Zimapán community in the Mexican State of Hidalgo who were ingesting 

less than 100 ppb of iAsIII in drinking water [101]. 

1.3.3 Arsenic Speciation and Metabolism within the Lungs

Arsenic is one of the toxicants linked to both malignant and non-malignant respiratory 

disease [102]. Chronic and acute arsenic exposure is linked to a multitude of respiratory 

diseases such as lung cancer, nonmalignant lung disease, bronchiectasis, and 

respiratory infections [92]. Moreover, arsenic exposure during pregnancy increases the 

risk of lower respiratory infection and morbidity at infancy [63]. In 2011, Putila and Guo 

matched cancer registries, arsenic stream sediment, and soil concentrations (from the 

United States Geological Survey), smoking status, age, and socioeconomic status [103]. 

Findings concluded that arsenic is signi2cantly associated with lung cancer incidence, 

even with the previously stated variables controlled [65]. Parvez et al. (2013) examined 

water sources for 950 individuals and con2rmed that low- to moderate-doses of arsenic 

from water are associated with impaired lung function [104].

Arsenic can inVuence lung pathology if ingested or inhaled, which although atypical with 

chemical exposure, is con2rmed by multiple studies in Taiwan [83], Chile [84, 85], and 

Argentina [86].  Rationale regarding why arsenic species present in the lungs when 

arsenic is ingested is enigmatic. Some theorize it is because the lung is perfused with 

blood which may carry arsenic species [102]; The lung may play a critical role as a 

location for arsenic methylation as it has iAsIII methyltransferase activity equivalent to 

that of the liver [23]. Furthermore, several studies have indicated that lungs can have 

prolonged contact with arsenic compared to other organs [17, 38, 67]. Lung epithelial 
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cells have been documented to poorly convert inorganic arsenic to organic arsenic [68] 

which is considered a cause for pulmonary damage [104]. Organs of Swedish smelter 

workers were posthumously studied and con2rmed that liver samples had diminished 

levels of arsenic, while the content in the lungs remained high [82]. Interestingly, 

between 1989-2000, residents of Antofagasta, Chile were observed to have arsenic 

induced lung disorders after experiencing early-life arsenic exposure, which was 

signi2cantly linked to mortality [105].

 

In 2008, Kenyon et al. exposed mice to iAsV-treated water for 12 weeks and discovered 

that lungs had higher concentrations of arsenic than the liver [17]. As veri2ed by hydride 

generation atomic absorption spectrometry (HG-AAS), DMAIII and DMAV (DMA total) 

were the most dominant arsenic metabolites in murine lungs when exposed to iAsV 

treated water [19]. DMA has frequently been recorded in mammalian lungs [19, 49, 52, 

106]. DMA total can concentrate in the lungs in as little as 2-4 hours following iAsV 

exposure [19, 39]. Consequently, Li and colleagues (2017) observed DMA in lungs at 

consistent time points throughout their animal studies as well and to be the most 

dominant species when compared to the liver, kidney, and brain following NaAsO2 

exposure [49]. Li and partners also discovered MMA levels were found to be the lowest 

in the liver but ranked the second greatest in the lungs [49].

Experts debate where and how DMA species are methylated during the arsenic 

metabolic pathway [49, 107, 108]. Studies suggest that DMA forms in the liver and is 

then transported to the lungs where it accrues over a short period of time  [19, 62]. Yet, 

inorganic and organic arsenic circulates in the blood and travels to the lung to be 

metabolized and eventually methylated into DMA [19, 62]. In addition, upon exposure to 

methylated arsenic (DMA and MMA species), DMA still reveals prominence within the 

lungs [52, 107, 109]. For example, studies which exposed rats and mice to DMAV 

intravenously found concentrated DMA in the lungs [52, 109]. This suggests that DMA is 
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sequestered to the lung regardless of the capacity of the lung or other organs ability to 

methylate arsenic [109].

1.4 Conclusion

Arsenic undergoes a series of reduction and oxidation reactions which impact the 

mammalian metabolism resulting in disease and morbidity [2, 110]. Arsenic mechanisms 

of toxic action include (but are not limited to): ROS generation [69], inhibition of 

enzymatic actions [43, 68], alteration of the ETC [14, 72], elicitation of lipid peroxidation, 

DNA damage, and the impairment proteins [69, 70]. The actions of arsenic species with 

greater toxicity (i.e. MMAIII) can be linked to chemical mechanisms to help understand 

the roles of speciation within molecular mechanisms [43, 68, 111]. Albeit MMAIII is 

determined to be over 100 times more toxic than iAsIII [20], its action in the mammalian 

metabolism still requires more exploration. 

Examining arsenic metabolism in the spleen, lungs, and liver offers insight to arsenic 

speciation’s role in different tissues. The liver is claimed to metabolize and transport 

arsenic effectively [14, 64, 65, 74, 79]. Remarking on arsenic speciation in the liver, the 

2rst organ in the arsenic metabolic pathway [22], can promote further theories and study 

of the arsenic metabolic pathway. By noting elevated DMA in the lungs [52, 107, 109], 

one can infer that the lungs are one of the last organs to be targeted by arsenic or that 

DMA directly sequesters to the lungs upon exposure [109]. The spleen still remains 

ambiguous in the study of arsenic speciation and further examination can bring 

understanding to arsenic speciation’s effect on immunity and blood circulation. 
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CHAPTER II

Development of Methods for Arsenic Speciation via High Performance Liquid 

Chromatography and Inductively Coupled Plasma Mass Spectrometry

Chapter II Abstract

Introduction: There is a paucity of published literature on arsenic speciation in 

mammalian tissues with relation to gender and dose. Part of the reason could be 

explained by the lack of consensus of methods for the determination of species.

Goal: The long-term goal of this project is to assess arsenic species within mammalian 

tissue to understand the arsenic metabolism. The short-term goal is to develop a method 

to determine the relevant arsenic species. 

Methods: A method for detecting arsenic species was tested using high-performance 

liquid chromatography (HPLC) coupled with inductively coupled plasma mass 

spectrometry (HPLC-ICP-MS). The Hamilton PRPX-100 Anion Exchange Column was 

chosen, and several   mobile phases were tested using laboratory standards to optimize 

the separation of each species. Lung and spleen samples were spiked with 1000 ppb of 

iAsIII, iAsV, DMA total, and MMA total to test recovery. One male C57/BL6 mouse lung 

and spleen dosed at 1000 ppb were analyzed to test feasibility. Linearity, sensitivity, 

precision, accuracy and resolution were tested. 

Results: Four arsenic species (iAsIII, iAsV, MMA, and DMA) were observed via HPLC-

ICP-MS analysis after tissue spiked with 1000 ppb were extracted using EDTA. DMA 

(110 ng DMA/ g tissue) was recovered from the lungs of mice dosed at 1000 ppb during 

pilot method development tests. EDTA showed no interaction with arsenic for extraction 

and furthermore, EDTA permitted the ability to extract tissue through a 0.2µm 2lter for 

HPLC injection. 

Discussion / Conclusion: The 2ndings gathered from this research will help inform 

metabolic pathways of arsenic, explain variability of species of arsenic within tissues, 

and further assist to explain how dose can impact disease.
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2.1 Introduction 

2.1.1 The Relevance of Arsenic and the Importance of Speciation 

Arsenic is responsible for adverse health outcomes of hundreds of millions of people [3], 

Individuals are readily exposed to arsenic via, ingestion, dermal routes, and inhalation 

[2, 70]. Arsenic is a ubiquitous metalloid that exists as multiple species, each of which 

yield different toxicities and chemical actions [10, 12, 112]. Within the mammalian 

metabolism, arsenic undergoes a series of reduction-oxidation cycles which result in six 

arsenic species: pentavalent inorganic arsenic (iAsV), trivalent inorganic arsenic (iAsIII), 

monomethylarsonic acid  (MMAV), monomethylarsonous acid (MMAIII), dimethylarsinic 

acid (DMAV), and dimethylarsonous acid (DMAIII) (Table 1) [13, 30, 33]. Among these 

species, MMAIII is the most toxic; however, it is not certain [5] how and where each 

species of arsenic metabolizes within tissue [45, 46]. Though it is known that the severity 

of arsenic’s effects differ based on the species an individual is exposed to, how much 

one is exposed to, and even one’s gender, there is a lack of research which de2nes 

such variables.

Arsenic is metabolized through 2rst pass effect and therefore, the liver has been shown 

to have high total arsenic when compared with various organs (lungs, kidney, etc.) [37-

39]. Arsenic species presenting in the lungs can result from both ingestion or inhalation 

[83-86] and its clearance from the lungs is gradual (which can even be observed 

posthumously [52, 82]. The spleen’s immune and hematopoietic roles are critical to 

human health- which makes it important to understand how arsenic targets the spleen 

and why arsenic found at higher levels compared to several other tissues, including the 

liver [42].
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Table 1. Arsenic Species of Interest within the Human Metabolism. Six arsenic 

species exist within the human metabolism; MMAIII being the most toxic species 

followed by iAsIII, iAsV, DMAIII, MMAV, and the least toxic is DMAV [5]. Names of 

species are determined by their methylation and oxidation state being pentavalent or 

trivalent [13, 30, 33].

Table 1. Arsenic Species of Interest within the Human Metabolism

Toxicity 
Rank Common Names 

Common 
Abbreviations

Chemical 
Structure 

In
o
rg

a
n
ic

3 Arsenic Acid, Arsenate, 
Inorganic AsV

AsV, iAsV AsO(OH)3 

2
Arsenous Acid, Arsenious 
Acid, Arsenite, Inorganic AsIII

AsIII, iAsIII As(OH)3 

O
rg

a
n
ic

5 Monomethylarsonic Acid, 
Methylarsonic Acid 

MMAV, MAsV CH3AsO(OH)2 

1
Monomethylarsonous Acid, 
Methylarsonous Acid, 
Methylarsonite 

MMAIII, 
MAsIII 

(CH3)3As(OH)
2

6 Dimethylarsenic Acid, 
Dimethylarsinate 

DMAV, 
DMAsV

(CH3)2AsO(O
H) 

4 Dimethylarsinous Acid, 
Dimethylarsenite

DMAIII, 
DMAsIII

(CH3)2As(OH) 

2.1.2 Importance of Method Development for Arsenic Detection  

No methods have been standardized to measure arsenic within tissue by the EPA or any 

federal agencies, this includes the measurement of total arsenic as well as arsenic 

speciation [2].

Total arsenic is typically measured using inductively coupled plasma mass spectrometry 

(ICP-MS) or graphite furnace atomic absorption (GFAA). ICP-MS has the advantage of 

analyzing many elements simultaneously and having a very low limit of detection [37] 

whereas GFAA can only measure one element at a time and is not as sensitive.  
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There are multiple ways to determine the species of arsenic [113]. High Performance 

Liquid Chromatography coupled with ICP-MS (HPLC-ICP-MS) can show a vast range of 

arsenic species as it can separate chemicals by polarity and pH [27]. Another method is 

X-Ray Absorption Fine Structure Spectroscopy (XAFS) [1]. utilizing a synchrotron light 

source, which is a powerful way to differentiate between species. However, access to 

the synchrotron is limited and time consuming. Gas phase chromatography is typically 

well suited for separation; however, many arsenic species are not volatile or not stable at 

the temperature required in gas phase [27]. 

Determining an appropriate mobile phase to separate arsenic species with the HPLC-

ICP-MS is critical to attain ideal peak retention and ionization of the analyte molecules. 

Mobile phase parameters were discussed with professionals of Johns Hopkins 

University (Baltimore, MD) and Agilent Technologies (Santa Clara, CA). 

Arsenic speciation studies utilizing HPLC have varying mobile phases, some of which 

require ammonium phosphate despite phosphate within mobile phases causing build-up 

on the interface of cones. Ammonium phosphate however, contains surface ions as well 

as oppositely charged ions within the mobile phase and therefore, exchanges equilibria 

well during the stationary phase [114]. Ethylenediaminetetraacetic acid (EDTA) and 

hydrochloric acid are often used in mobile phases as stabilizers. Mobile phases also 

often contain methanol, which can help with enhancing the signal due to its carbon 

bonds. 

The most important parameters to consider in the selection of the column that is used to 

separate arsenic species within the HPLC are packing and column length. Packing 

options include polystyrene divinylbenzene (PS-DVB) and trimethylammonium which are 

polymeric packing materials stable across pH ranges from 1 to 13 and therefore, one 

single column can analyze varying ions [115]. Available column lengths range from 50 

mm to 250 mm. A long column allows ideal separation of peaks (Agilent). 
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Helium is a large halogen which can assist to remove argon chloride interferences from 

HPLC-ICP-MS results [37]. Chlorides interfere with arsenic speciation as it forms large 

and intense peaks. This speci2cally occurs from the polyatomic ion argon (mass of 40) 

chloride (mass of 35) because it shares the same mass-to-charge ratio (m/z) as the 

arsenic isotope [37]. 

2.1.3 The Importance of Sample Preparation 

Sample preparation is a critical step in order to avoid aerobic conditions that oxidize 

trivalent arsenic to the pentavalent form (iAsV, MMAV, DMAV) [116]. DMAIII is highly 

unstable under aerobic conditions [113]. and arsenic species undergo species change in 

aqueous solutions [117, 118]. Thus, in order to capture the arsenic species as they exist 

in each tissue at the time of sampling, contact with oxidizing or reducing conditions need 

to be minimized or avoided during sample preparation.   

The use of C57BL/6 mice to model uptake and metabolism of arsenic is particularly 

advantageous as they have proven to be sensitive to arsenic exposure [119] are 

genetically and physiologically near identical and have elucidated metabolic pathways 

and biological mechanisms [120]. Mouse organs are typically “snap frozen” by 

introducing liquid nitrogen immediately to reduce morphological distortion or lyse of cells 

within tissue [121]. as well as minimize aerobic conditions that might oxidize arsenic 

species. Tissues should not be 2xed or buffered with any solutions to avoid reaction of 

arsenic species; e.g. trivalent arsenicals have an af2nity for sulfhydryl groups of proteins 

and therefore protein or nutrient-rich solutions should be avoided since they may alter 

speciation [25].

1.3.4 Arsenic Extraction from Tissues

24



Trivalent species of arsenic are the most dif2cult to preserve in a sample as they oxidize 

readily in the environment; however, methylated forms of arsenic (MMAIII and 

DMAIII) have been detected as metabolites of urine with the treatment of chelating 

agents [32]. Ethylenediamine tetraacetic acid or EDTA is an anticoagulant de2ned by a 

polyprotic acid with two amine groups that have lone-pair electrons which permit the 

chelation of metal ions [122]. Chelating agents have long been indicated for therapy to 

alleviate arsenicosis [123]. AsIII oxidation to AsV during sample preparation and storage 

procedures has been prevented in water through the use of EDTA and other chelation 

agents [124].

The main goals of this study were: 1) to develop and validate a method for the ef2cient 

extraction of arsenic from mammalian tissues that preserves the species present at time 

of sampling; 2) to optimize the hardware needed for the identi2cation of arsenic species 

which would be present in the lungs, liver, and spleen of mammalian species.  

2.2.0 Materials and Methods

An optimized analytical method for analysis of arsenic species from mammalian tissues 

using high performance liquid chromatography (HPLC) coupled with inductively 

coupled–mass spectrometry (ICP-MS) was adapted with modi2cations from methods 

reported by Yathavakilla et al., (2008) [125], Hanen et al., (2004) [126], Guimarães et al., 

(2018) [127], Kawalek et al. (2011) [128], Nam et al., (2006) [129], Jackson et al., (2001) 

[130]. Organ samples from mice dosed with 0, 100 ppb, and 1000 ppb arsenic were 

collected for method optimization experiments. Multiple samples of lungs, livers and 

spleens were extracted and weighed before analysis.

Arsenic species separation was performed using high performance liquid 

chromatography (HPLC) (model 1260, Agilent Technologies, Santa Clara, CA) in 

tandem with an inductively coupled plasma mass spectrometry (ICP-MS) (7500 ce 
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series, Agilent). The two instruments in unison can determine the presence of arsenic 

species and the ICP-MS alone can measure total arsenic [21, 22]. 

2.2.1 Animal Exposure to Arsenic

One hundred and twenty C57BL/6 mice (Charles River, Wilmington, Massachusetts), 

were exposed ad libitum to sodium (meta) arsenite (sodium iAsIII or NaAsO2) (Sigma 

Aldrich, St. Louis, MO, USA) mixed with water (Crystal Geyser Natural Spring Water, 

Weed, CA) for eight weeks starting at four to 2ve weeks of age (Table 2). Groups of 

mice were exposed to 0, 100, and 1000 parts per billion (ppb = μg/L) of inorganic 

arsenic to model no exposure, moderate exposure, and elevated exposure respectively 

(Table 2). When the mice were about 12 weeks of age, they were sacri2ced. Lung, liver, 

and spleen samples were harvested, snap-frozen in liquid nitrogen (N2) immediately 

after collection and stored in a freezer at -80° Celsius. Not all organs were analyzed for 

this thesis. 

Animal use and care was approved by Johns Hopkins Bloomberg School of Public 

Health and follows all protocols enforced by the Institutional Animal Care and Use 

Committee (IACUC), which complies with the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals.  

Table 2. C57BL/6 Mice Dosing and Organ Inventory. Mice were dosed with 100ppb 

and 1000ppb of NaAsO2 (or sodium iAsIII) for eight weeks. One hundred and twenty 

total organs were collected. 

Table 2. C57BL/6 Mice Dosing and Organ Inventory

 
Control-

100 ppb iAsIII 1000 ppb iAsIII Totals
No Arsenic 

C57BL6

male female male female male female  Mouse

Organ 

Spleen 10 10 5 5 5 5 40
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Liver 10 10 5 5 5 5 40

Lung 10 10 5 5 5 5 40

Totals 

30 30 15 15 15 15

120     

60 30 30

2.2.2 Arsenic Extraction from Tissues 

After organs were thawed on ice for 2-3 hours in a dark space (Figure 1A), the weight of 

each organ was determined. Several extraction methods were tested to evaluate yield 

and ef2ciency of extraction, and to select the one that best preserved arsenic species.  

In this paper we report extraction using EDTA [131, 132], heat [125, 127, 129, 133] and 

TMAH [128]. All extraction methods were conducted as indicated in Figure 1. (EDTA 

was replaced with TMAH for that extraction method). 

     

Figure 1.A 

Figure 1.B 
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 Figure 1.C 

Figure 1. Lung, Liver, and Spleen Extraction Methods for HPLC-ICP-MS. (Figure 1 

was created through BioRender [134]). 

2.2.2.1 Extraction with EDTA

After the organ mass was determined, 0.5 mL of double distilled (DDI) water was added 

to the cryovial along with 1.6mg EDTA per 1g of tissue, based on guidelines from Sigma 

Aldrich [135]. The cryovial was then inverted and vortexed until the organ peeled off the 

sides of the cryovial (less than one minute). Then, the organ was placed in a 1510 

Branson ultrasonic bath at 25°C for 30 minutes. 

Following the 2rst sonication, the organ was homogenized with sterile hemostat scissors 

and tweezers (Figure 1B) taking care not to scratch the plastic within the cryovial to 

avoid introducing unwanted chemicals into the organ sample. The homogenized sample 

was then placed on a cell strainer (Falcon (A Corning Brand) Cell Strainer, 70µm nylon). 

The cell strainer was placed on the 50-mL tube utilizing sterile procedure. Using a pestle 

(CellTreat Scienti2c Products Cell Strainer Pestle), the organ was strained into the 50-

mL tube. The remaining amount of DDI water (1 to 1.5mL depending on organ weight) 

was used to: 1) rinse off the hemostat scissors, pestle, and tweezers, 2) added to the 

cryovial and vortexed to remove any remaining parts of the organ sample and, 3) rinse 

any remaining tissue sample out of the strainer. The 50-mL tube with the homogenized 
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and strained organ sample was then vortexed and put in an ultrasonic bath at 25°C for 

30 minutes.  

 

Following sonication, the sample was centrifuged at 1400 rotations per minute (RPM) for 

40 minutes with a ten-minute deceleration (Figure 2C). When completed, the 

supernatant was aliquoted into a new 50 mL tube while the pellet was stored for later 

analysis. Following a method by Li et al. (2017) [49], the supernatant was analyzed. The 

supernatant was centrifuged again at 1400 RPM for 40 minutes with a ten-minute 

deceleration. The supernatant was removed  and 2ltered sequentially using 13mm 

syringe 2lters, 2rst with a 0.8 µm pore followed by a 0.2 µm 2lter (Pall Corporation 

Acrodisc 13mm Syringe Filter with 0.8 µm Supor Membrane, Pall Gelman Laboratory 

Acrodisc 13mm Syringe Filters with 0.2 µm Supor (PES) Membrane for HPLC Sample 

Preparation and Solvent or Aqueous Filtration). If the syringe yielded any resistance 

upon attempting to push the supernatant through the 2lter, the 2lter was changed. One 

to four 2lters (of either 0.2 or 0.8 µm) were used for each organ- numbers of 2lters 

varied. The 2nal 2ltered supernatant products were transferred into 2 mL amber vials 

compatible with the HPLC and stored in an inert atmosphere in 4°C up to 12 hours 

before analysis. 

2.2.2.2 Extraction with Heat

After thawing and weighing, lung, liver, and spleen samples were sonicated at 25°C for 

30 minutes twice and homogenized using cell strainers in 50 mL tubes as described 

above. The 50 mL tubes with organ samples were put in a beaker with water and placed 

on a hot plate at 90°C for three hours to replicate the methods of Guimaraes et al. 

(2018) [127] as well as other arsenic extraction methods which utilize heat [125, 129, 

133]. The water was monitored with a thermometer every 20 minutes over the three-hour 

span to assure the temperature was stable. The heated samples were then centrifuged 

twice at 2000 RPM for 40 minutes with a ten-minute deceleration. The supernatant was 
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separated from the sample following each centrifugation and the pellet was stored for 

later analysis. Both the supernatant and pellet were stored under argon as described 

below, and placed in 4°C for up to 12 hours.

2.2.2.3 Extraction with TMAH

The same extraction procedure described in Figure 1 was followed using 25% 

Tetramethylammonium hydroxide (TMAH) instead of EDTA (Alfa Aeser, Haverhill, MA) 

[131, 132]. TMAH was used in a concentration of 3 mL per 0.5 grams of organ tissue 

along with 6.5 mL DDI water [128]. 

2.2.3 Storage Under Inert Atmosphere

The extracted organ samples were stored in 2mL amber vials with twist-on septum seal 

lids to decrease light exposure, which may cause speciation changes [25]. Additionally, 

30 mL amber vials were used for all reference materials or standards. The septum seal 

permitted the ability to safely add argon gas into the vial to provide an inert atmosphere 

and therefore reduce changes in arsenic species. Two 18-gauge needles were inserted  

into the septum just high enough to avoid touching the solution within the vial; this allows 

for the release of oxygen within the vial to go into the atmosphere through one needle 

while argon Vows in through the second needle. Argon Vows through a rotameter set to 

35-45 mL/ min. Argon was injected for 30 minutes into each 30 mL vial  , and 2 minutes 

into each 2 mL vials  to allow approximately 10 air changes within each vial and ensure 

no air is left inside. 

All vials were placed in a re-sealable 5600 mL chamber, which was also 2lled with argon 

to create an inert atmosphere (Figure 2) and stored at 4° C. Samples were stored in this 

chamber for a maximum of 12 hours before analysis to minimize oxidation or reduction 
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of the samples. 
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2.2.4 HPLC and ICP-MS Settings 

A mobile phase was created using 10 milliliters (mL) of 1% methanol (ACS Certi2ed, 

Thermo Fisher, Waltham, Massachusetts), 2 mL of 1 M (moles/liter) of dibasic 

ammonium hydrogen phosphate (BB-2627, Boston BioProducts, Ashland, MA), and 58.4 

mg of .0002 M of ethylenediamine tetraacetic acid (EDTA) salt. All chemicals were 

added to a 1L TeVon bottle and then DDI water was added to the remaining ~988 mL to 

make 1L mobile phase. 

Three pH solutions were tested: 2.36, 6.15, and 9.14. The pH of the mobile phase is 

important as each arsenic species each carry multiple different pKa values [20]. The pH 

of the mobile phase was considered the most successful if it allowed us to detect all 

species simultaneously. 

Female and male mouse organs were analyzed for arsenic species using Agilent 1260 

high performance liquid chromatography (HPLC) in tandem with Agilent 7500ce series 

inductively coupled plasma mass spectrometry (ICP-MS) with Masshunter and 

Chemstation software. For the HPLC, a PRPX-100 Anion Exchange Column (Hamilton, 

Reno, NV) with polyether ether ketone (PEEK) lining, a diameter of 4.6mm and 250 mm 
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in length. The size of the bead packing within the column is 5 µm for a volume of 4,155 

mm3. The corresponding PEEK guard column (PRPX-100 Anion Exchange Analytical 

Guard, Hamilton, Reno, NV) was placed before the PRPX-100 column. The guard 

column retains impurities from the sample to avoid damage to the analytical column. The 

column was conditioned prior to conducting any analysis, calibration, or runs. Conditions 

of the HPLC and ICP-MS were set as seen in Tables 2 and 3. 

All bottles and tubes used were rinsed overnight with 10% Optima grade nitric acid 

(HNO3) (Fisher Scienti2c, Waltham, MA) to remove any potential residual metals. Glass 

materials were avoided - arsenic is often used in glass making and arsenic may 

potentially leach out of glass and interfere with results [136]. 

An internal standard (ISTD) of 5 ppb iAsV (SPEX, NIST, Gaithersburg, MD) was used to 

normalize the raw arsenic signal, or the counts, to the internal standard counts in order 

to correct for drifts or Vuctuations. The ISTD was always injected at the start of each 

HPLC-ICP-MS sample injection to bypass  the column. Inorganic arsenic 2ve was 

chosen as it is the most stable in an aerobic environment and iAsV was measured in 

every run. 

Table 3. Settings utilized with the Agilent 1260 High Performance Liquid 

Chromatography (HPLC). Settings were determined through literature review.

Table 3. Settings utilized with the Agilent 1260 High Performance Liquid 
Chromatography (HPLC). 

Mobile phase composition 10 mL 1% methanol, 2 mL of 1 M dibasic ammonium 
hydrogen phosphate, 58.4 mg of .0002 M EDTA 

Mobile phase pH pH 6 (±0.05)

Mobile phase Vow rate 1 mL/min

Injection volume 50 µL

Column temperature Ambient 

Acquisition time 900 s (15 min)

Column PRPX-100 Anion Exchange HPLC Column, PEEK 
lining

Diameter 4.6mm, Length is 250 mm

33



Table 4. Settings utilized with the Agilent 7500ce Series Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS). Settings were determined through literature 

review.

Table 4. Settings utilized with the Agilent 7500ce Series Inductively 
Coupled Plasma Mass Spectrometry (ICP-MS)

RF Power 1530 W
Spray Chamber 

Temp.
2°C

RF Matching 1.80 V Collision cell
He Gas , 5.0 

mL/ min

Auxilliary (makeup) gas 
Vow

0.10 L/min
Data acquisition 

Mode & Ions 
Monitored

Time-resolved, 
m/z 75 for 

75As+ , and m/z 
77 for 

40Ar37Cl+
Nebulizer (carrier) gas 

Vow
0.81 L/min Octopole Bias Negative 15 V

Nebulizer type Micromist Quadrupole Bias Negative 18 V

Sampling Depth 7.6 mm
Cell Entrance 

Voltage
negative 30 V

Peristaltic Pump Speed 0.30 rps Cell Exit Voltage Negative 40 V

2.2.5 Total Arsenic Analysis 

Twelve total organs from female mice were analyzed to evaluate if EDTA impacts the 

presence of arsenic within tissue and to determine the concentration of total arsenic in 

tissues (Table 4). Total arsenic was measured in each organ via ICP-MS. The organs 

were split into four groups: 1) 1000 ppb dosed mouse organs with no EDTA, 2) 1000 ppb 

dosed mouse organs with EDTA, 3) 0 dosed mouse organs with no EDTA 4) 0 ppb 

dosed mouse organs with EDTA. Each group had one female lung, a female liver, and a 

female spleen. 

EDTA was dissolved in double distilled water using a 1.6 mg of EDTA to 1 mL of water 

ratio. EDTA solution was added directly to the six organs within their cryovials. Cryovials 

were inverted and let stand for 30 minutes to permit coagulation. Samples were then 

transferred to 50 mL conical tubes. All samples were digested using an atmospheric 

pressure and open vessel digestion method inside a microwave (MARS-5, CEM, 

Charlotte, NC, US) using Sarstedt 50 mL conical tubes which had holes drilled into the 

caps in-house and were used. To each tube, 5 mL of HNO3 was added. 
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For quality control, bovine liver certi2ed reference material was used (BCR- 185R, 

0.0330 +/- 0.0029 mg/kg arsenic, Institute for Reference Materials and Measurements 

(Geel, Belgium)). From the BCR-185R powder, 0.56 g was weighed into a 50-mL 

polypropylene tube and 5 mL of concentrated Optima nitric acid (Fischer Scienti2c, 

Waltham, MA) and 5 mL of double distilled water was added at the start of digestion. 

The bovine liver reference material was then microwaved with the samples at 110 °C 

with 10-minute ramp to temperature followed by a  5-minute hold time for one round for 

samples; the BCR powder was not completely digested after the 2rst round of 

microwaving and subjected to a second round of microwaving with an additional 5 mL of 

nitric acid added. Following microwaving, 5 mL of DDI water was added to all samples, 

bovine reference materials, and digest blanks. 

Three digest blanks were tested, which were composed of 5 mL of concentrated Optima 

nitric acid and digested by the exact same method as the samples. All run samples were 

prepared by adding 4.2 mL of diluent and 75 µL of MeOH (for carbon enhancement of 

the As signal) to 400 µL of acid digests (including samples, RMs, and digest blanks) or 

calibration standard stocks. Six point calibration standards were prepared from a stock 

standard of As 100 mg/mL (High Purity Standards, North Charleston, SC) at 0.1, 0.5, 2, 

10, 50, and 500 µg/L. Standards were prepared fresh before the run from intermediate 

solutions containing 2% Optima HNO3.

The diluent used in all samples contained: 0.5% (v/v) concentrated Optima grade 

hydrochloric acid, 5 µg/L Peak Performance Multi-elemental internal standard (CPI 

International, Santa Rosa, CA), 0.005% (v/v) Triton-X detergent solution (Sigma Aldrich, 

St. Louis, MO), and DDI water. Triton-X is a detergent used in the diluent to help 

proteins become better solubilized in the solution [137]. Yttrium (Y) was used as the 

internal standard element for normalization of the arsenic signal. 
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Table 5. Total Arsenic EDTA Comparison Experiment Set-Up. Evaluation of arsenic 

extraction ef2ciency using EDTA. Total arsenic was measured in 12 organs via ICP-MS. 

The organs were split up into four groups: 1) 1000 PPB dosed mouse organs with no 

EDTA, 2) 1000 PPB dosed mouse organs with EDTA, 3) 0 PPB dosed mouse organs 

with no EDTA 4) 0 PPB dosed mouse organs with EDTA

Table 5. Total Arsenic EDTA Comparison
Experiment Set-Up

No EDTA EDTA 

Female 1000 PPB Dosed Mice

1 Lung 1 Lung

1 Liver 1 Liver 

1 Spleen 1 Spleen 

Female Control Mice (0 PPB)

1 Lung 1 Lung

1 Liver 1 Liver 

1 Spleen 1 Spleen 

2.2.6 MMA Separation 

Because MMAIII is the most toxic arsenic species, MMAIII and MMAV were separated 

from total MMA (MMAIII + MMAV) by following the exact methods established by Reay 

and Asher in 1977 [138]. Sulfuric acid (Fisher Scienti2c, Waltham, MA), Optima grade 

nitric acid, sodium meta-bisul2te (EM Chemicals, Burlington, MA) and sodium thiosulfate 

(Sigma-Aldrich, St. Louis, MO) were combined to make the Reay and Asher reagent. 

National Institute of Standards and Technology (NIST) (Gaithersburg, MD) standard 

reference material for MMA total (1ppm, 17.64 mg/kg (+-) of MMA) was left in a biosafety 

hood overnight to permit oxidation of the arsenic species. The 1 ppm reference material 

was then added to reagents in a one to one ratio and incubated at room temperature 

(25°C) for eighty-one minutes.
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2.2.7 Quality Control 

2.2.7.1 Standard Reference Materials 

Standard reference materials (SRMs) help to evaluate ef2ciency, percent recovery, and 

detection. Certiprep inorganic AsIII and iAsV standards were ordered from Spex 

(Metuchen, NJ). The iAsV standard has 1000 mg/L of iAsV in H2O while the iAsIII 

standard has 1000 mg/L iAsIII in 2% HCl. DMA and MMA standards were ordered from  

National Institute of Standards and Technology (NIST) (Gaithersburg, MD). A total DMA 

SRM (combined DMAIII and DMAV, SRM# 3031) was ordered from NIST which has 

20.47 mg/kg of DMA (k= 2.73). Lastly, a total MMA standard (combined MMAIII and 

MMAV, SRM# 3030) was ordered from NIST with a concentration of 17.64 mg/kg (+-) of 

MMA (k= 2.12). 

2.2.7.2 Calibration Standards for Speciation Preparation 

For each arsenic species, a 2ve-point calibration curve was constructed. Calibration  

concentrations of: 0, 25, 50, 100, 500, and 1000 ppb of combined arsenic species (MMA 

total, DMA total, iAsIII, and iAsV) were used.  Standards were prepared by serial dilution 

using a 1000 ppb mixed species solution, diluting with the mobile phase.

Initial Concentration (Ci) x Initial Volume  (Vi)                   Equation 1

= Final Concentration (Cf) x Final Volume (Vf)  

2.2.7.3 Total Arsenic Mass Fraction Calculations

The mass fractions, or µg of arsenic per gram of tissue, was calculated using the mass 

of arsenic obtained from the ICP-MS  divided by the organ mass (equation 2). The total 

Volume of Digest (VT, in mL) was obtained by adding the volume of sample during 

extraction (VS, in mL) plus the 10 mL of digestion acid (nitric acid).The mass of As (in µg) 
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per g of tissue was calculated by multiplying the concentration from the ICP-MS (µg per 

L) by the total volume of digest (L).

           Mass Fraction = µg of As / Organ Weight (g)                        Equation 2

2.2.7.4 Limit Of Detection 

Three digest blanks (composed of nitric acid) were used to calculate the limit of 

detection (LOD) and the average was used for blank subtraction. The LOD was 

calculated to be 0.161 ug of arsenic/L and was determined by equation 3. 

          LOD (ug/L) =  3 x (standard deviation of the blanks)             Equation 3

Blank subtraction was done to account for noise on the ICP-MS, potential contamination 

of the reagents, and to measure interferences or suppression of the signal which would 

be caused by the chemical or the digestion methods. The three digest blanks were 

averaged to be 1.67 µg/L for blank subtraction. 

2.2.7.5 Spiked Sample Methods

In order to evaluate the sensitivity of our method to detect arsenic species in the 

presence of the complex tissue matrix, 6 tissue samples were spiked with 1000 ppb of 

standard reference materials (SRM) described in section 2.6.1 for iAsIII, iAsV, MMA, and 

DMA in mobile phase (2 lungs, 2 livers, and 2 spleens). Equation 1 was used to 

determine the amount of each SRM added to each organ. After the tissues were spiked, 

they were processed following our EDTA extraction method described above (Figure 1). 

After extraction, each sample was analyzed using HPLC-ICP-MS. 
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2.3.0 Results

Arsenic extraction and analysis optimization studies were conducted using the HPLC-

ICP-MS operating conditions described above. Total arsenic, as well as several arsenic 

species were detected in spiked samples. The mobile phase was determined to be the 

most advantageous at a pH of 6.

2.3.1 Arsenic Extraction for Speciation Results 

2.3.1.1 Extraction Method Results 

Extraction with Heat. Out of all the heated organ samples (one lung, one liver, and one 

spleen), the 2nal supernatant of the spleen was the only organ that could go through a 

0.2 µm syringe 2lter. The spleen supernatant could 2lter through the 0.2 µm 2lter only if 

the supernatant went through the 0.8 µm 2lter 2rst. 

Extraction with TMAH. None of the organs treated with TMAH during extraction could be 

2ltered with a 0.8 µm syringe 2lter. For the liver and spleen samples, following the 2rst 

and second centrifuge steps, the resulting supernatants presented with precipitates that  

tore the 0.8 µm 2lter. 

2.3.1.2 Extraction with EDTA Results 

Supernatant from all organs treated with EDTA passed through both 0.8 and 0.2 µm 2lter 

sieves and therefore were the only ones that were analyzed using the HPLC-ICP-MS. 

Figure 2 shows tissue treated with and without EDTA.
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Figure 2. EDTA Treated Tissue for Arsenic Species Extraction. Mouse lungs, livers, 

and spleens were extracted for HPLC-ICP-MS analysis using EDTA to prevent 

coagulation of tissue. In the non-EDTA treated tissue, supernatant is cloudy, opaque, 

and could not pass through a 0.2 µm 2lter. The EDTA treated organs, successfully 

passed through a 0.2 µm 2lter for HPLC-ICP-MS analysis. 

2.3.1.3 Extraction of Total Arsenic from EDTA Results- Treated Tissue of Dosed 

Mice

Tissue treated with EDTA (compared to tissue not treated with EDTA) does not inVuence 

the recovery of arsenic within organs (Table 6 and Table 7). Recoveries of total arsenic 

were similar with EDTA treated tissue and non-EDTA tissue, for the 1000 ppb dosed 

mice and 0 ppb dosed mice.   

Table 6. Evaluation of EDTA for Extraction of Arsenic from Dosed Tissues. 

Recoveries of total arsenic were similar with EDTA treated tissue, non-EDTA tissue, 

1000 ppb dosed mice, and 0 ppb dosed mice. 
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*BCR – Bovine liver certi2ed reference material *DB – Digest blank *CPS- Counts per 

second *CRM- Certi2ed Reference Material

2.3.1.4 Calibration Results

The calibration curve con2rmed it is possible to see all four species within one 

chromatogram (Figure 3). The calibration standard counts at 1 ppb are higher than those 

at 0 ppb (the mobile phase) which con2rms that we can detect arsenic species at 

concentrations as low as 1 ppb (Table 7). The R2 values reveal the calibration curve is 

linear for all arsenic species (see Figure 5A and 5B for reference). R2 values are as 

follows: iAsIII = 0.9758, DMA = 0.9999, MMA= 0.9998, iAsV = 0.9929. Calibration was 

completed through MassHunter which produced counts per second (cps). 

Table 7. Arsenic Species Calibration Curve Data. Arsenic species were calculated at 

1, 5, 25, 50, 100, 500, and 100 ppb of arsenic species. HPLC-ICP-MS data revealed 

chromatographic peak areas and counts per second. 
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Table 7. Calibration Counts and Peak Areas from HPLC-ICP-MS 

Standard 
Conc 
(ppb)

iAsIII DMA  MMA  AsV

Area Count Area Count Area Count Area Count

0 (mobile 
phase)

2.20E1 2.20E1 1.30E1 1.30E1 2.90E1 2.90E1 2.90E1 2.90E1

1 6.10E1 6.10E1 3.68E3 3.68E3 5.82E3 5.82E3 1.59E3 1.59E3

5 1.06E2 1.06E2 2.21E4 2.21E4 2.14E4 2.14E4 3.62E3 3.62E3

25 1.00E3 1.00E3 1.07E5 1.07E5 1.13E5 1.13E5 1.68E4 1.68E4

50 1.56E3 1.56E3 2.28E5 2.28E5 2.28E5 2.28E5 3.80E4 3.80E4

100 7.89E3 7.89E3 4.65E5 4.65E5 4.80E5 4.80E5 8.93E4 8.93E4

500 1.07E5 1.07E5 2.29E6 2.29E6 2.29E6 2.29E6 3.62E5 3.62E5

1000 2.95E5 2.95E5 4.47E6 4.47E6 4.47E6 4.47E6 6.24E5 6.24E5

Figure 3. Anion Exchange Chromatogram Showing 500 ppb Mixed Species 

Standards (iAsIII, DMA, MMA, iAsV). ISTD of 5ppb iAsV was injected before the start 

of each run. PRP X-100 (250 X 4.6MM) column with 1mL/min Vow rate. MP= MeOH 

(NH4)3PO4 and EDTA, pH of 6. As species detected by ICP-MS in He mode at m/z of 75. 
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Figure 4. DMA and MMA Species Calibration Curve. A) DMA Calibration Curve from 

0 to 1000ppb standards, DMA R2 = 0.9999  B) MMA Calibration Curve from 0 to 

1000ppb standards, MMA R2= 0.9998.

2.3.1.5 Spiked Sample Results

1000 ppb spiked lung, liver, and spleen organs were analyzed for the recovery of iAsIII, 

DMA, MMA, and iAsV (Table 8). Recovery of each arsenic species was seen in each 

organ. MMA is noted to be too sensitive and therefore, percent recovery does not 

appear to be accurate. The greatest percent recovery was from iAsV species for all three 

organs. All organs yielded chromatograms with all four arsenic species (Figure 5). 
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Table 8. Spiked Organ Arsenic Species Concentrations and Percent Recoveries. 

Lung, liver, and spleens were spiked with 1000 ppb of mixed arsenic species standards 

and observed for percent recoveries.  Expected concentration of spike is 167.5 ppb.

Table 8. Spiked Organ Arsenic Species Concentrations and Percent Recoveries 
Mouse Organ iAsIII DMA MMA iAsV 

1000 ppb 

Spiked 

Organs

Organ 

Wt (g)

Conc. 

(ppb)

Percent 

Recovery

Conc. 

(ppb)

Percent 

Recovery
Conc. (ppb)

Percent 

Recovery

Conc. 

(ppb)

Percent 

Recovery

Spiked 

Lung

0.18 161 96 112 67 394 235 179 107

Spiked 

Liver 

1.35 37 22 80 48 4.62E6 2.76E6 155 93

Spiked 

Spleen 

0.25 23 13 13 8 4.30E6 2.57E6 24 14
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Figure 5. Spiked 1000 ppb Lung, Liver and Spleen Chromatogram. Chromatograms  

showing 1000 ppb multi-species Spike-In A) Liver B) Spleen and C) Lung. PRPX-100 

(250 X 4.6MM) column, 1 mL/min Vow rate. MP= MeOH (NH4)3PO4 and EDTA, pH of 6. 

As species detected by ICP-MS in He mode at m/z of 75. The 2rst peak seen in each 

chromatogram is the internal standard (ISTD) of 5 ppb iAsV.  Peaks were identi2ed as 

follows  peak at around 120 seconds or 3 minutes) is iAsIII. Peak at around 4 minutes is 

DMA. Peak seen before eight minutes is MMA. The last peak is iAsV, which is the most 

polar of the species and therefore comes off the column last.
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2.3.1.6 Arsenic Speciation Results

Pilot data was obtained from HPLC-ICP-MS to ascertain the effectiveness of arsenic 

speciation extraction (Figure 1). DMA was found in the 1000 ppb dosed male lung at a 

concentration of 110 ng of DMA per gram of tissue (Table 9). 

Table 9. Arsenic Speciation in 0 ppb and 1000 ppb Dosed Tissue via HPLC-ICP-MS

Table 9. Arsenic Speciation in 0 ppb and 1000 ppb Dosed Tissue via HPLC-ICP-MS

1000 ppb Samples
Mass Fractions (ng As Species/ g 

Organ)

Organ Type Organ Wt (g) iAsIII DMA MMA iAsV 

0
 p

p
b

 

(C
o

n
tr

o
l)

 

O
rg

a
n

s

0 ppb Lung 0.177 1 1 8163 0
0 ppb Liver 1.344 0 0 386 0

0 ppb Spleen 0.128

0 1 2499 0

1
0

0
0

 p
p

b
 

D
o

s
e

d
 

O
rg

a
n

s
 1000 ppb      

Lung

0.265

0 110 5452 0
1000 ppb Spleen 0.187

0 1 5689 0

2.3.1.7 MMA Separation Results

MMAIII and MMAV were successfully separated (Figure 6) using methods from Reay 

and Asher (1977) [138]. Peaks could not be assigned to the respective MMA species. 
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Figure 6. MMA Species Separation. Anion exchange chromatography showing 1000 

ppm NIST MMA standard being separated to MMAIII and MMAV. The separation of 

MMAIII and MMAV was successful. A PRPX-100 (250 X 4.6MM) column used a 

1mL/min Vow rate. MP= MeOH (NH4)3PO4 and EDTA, pH of 9. 

2.4.0 Discussion and Future Directions 

2.4.1 Arsenic Extraction Discussion and Future Directions

2.4.1.1 Extraction with Heat Discussion and Future Directions
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Temperature changes during extraction proves to challenge the identi2cation of arsenic 

species [24, 25]. Some studies allow samples to sit as long as 12 hours at room 

temperature [35, 36] however, this was decided against to prevent interconversion of 

arsenic species [37]. Organs were heated in this experiment to replicate the methods of 

Guimaraes et al. (2018) [38] as well as other arsenic extraction methods which utilize 

heat [39-41]. Heating was discovered to be ineffective at breaking down tissue to 0.2µm 

and furthermore, heating can break down the tissue to the point of hypopigmentation of 

the tissues. 

2.4.1.2 Extraction with TMAH Discussion and Future Directions

TMAH not only was unsuccessful in breaking down tissue, but it is a strong base and 

therefore may cause speciation changes, such as trivalent species converting to 

pentavalent species [42]. Furthermore, TMAH can inVuence ion chromatography 

products [42]. Although many studies suggest TMAH use with arsenic speciation [131, 

132] it was deemed un2t for this project after method development. 

2.4.2 Arsenic Speciation Discussion and Future Directions

Arsenic speciation analysis with HPLC-ICP-MS has been successful with urine samples 

[25, 44, 45].  However, mammalian tissues are a more complicated matrix as one has to 

break down the organic samples without ruining the integrity of the chemicals, for 

example MMAIII and DMAIII are unstable in oxidative conditions. HPLC-ICP-MS may 

commonly be used for the analysis of arsenic species in aqueous matrixes. However, its 

success is limited by the extraction methods to convert a solid to a liquid (which can 

result in the loss of integrity of the species) and it relies on matching peaks to standards 

[46]. 

It is challenging to observe both trivalent and pentavalent species in one complex as 

trivalent species will oxidize while pentavalent reduce- especially the methylated species 
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[113, 117, 118]. It may serve as advantageous to extract and test for the trivalent or 

pentavalent species separately. However- this would not be representative of the 

species  present in the tissue at the time of sacri2ce or exposure. One would be 

reducing all of the pentavalent species (and vice versa) and therefore, the recorded 

concentrations would be an over representation of the presence of a species.

Although isocratic elution has been successful in separating arsenic species [139] a step 

gradient analysis may have proved effective as  gradient separations can yield a better 

resolution, and faster reduction of retention times [33]. For example, B’Hymer and 

Caruso (2002) successfully separated AsC, AsB, AsIII, DMAV, MMAV and AsV from 

apple samples with the same column (PRPX-100) following a gradient elution [114]. 

Nonetheless, isocratic elution keeps the chromatographic system in a permanent 

equilibrium, which is particularly convenient for routine analysis (as reviewed by 

Benramdane et al. (1999) [37]). 

2.4.3 MMA Separation Discussion and Future Directions

MMAIII and MMAV were successfully separated (Figure 6), however; peaks cannot be 

assigned to the correct MMA species as the m/z ratio of the ICP-MS was set to only read 

a mass of 75 and; therefore, cannot determine constituents with molecular weight. Since 

Reay and Asher’s methods were designed in 1977 and have seldom been repeated, it is 

important to note that the methods can successfully separate MMA species and should 

be used in the future [138]. Because of sulfhydryl groups in the reagent mixture, the 

extraction methods cannot be repeated with DMA as other metabolites will be present 

[126]. 

2.4.4  Extraction of Total Arsenic from EDTA- Treated Tissue of Dosed Mice
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There was no signi2cant difference in the mass fractions of arsenic recovered from 

tissues from mice that had been dosed with 1000 ppb and those who had not been 

dosed. EDTA did not improve the recovery (Table 5). Total arsenic analysis with more 

samples needs to be completed to con2rm results. Furthermore, total arsenic in whole 

organs was analyzed in this thesis. For the arsenic speciation analysis, 2nal extracted 

samples which were injected by the HPLC-ICP-MS were in supernatant form and the 

pellet was not used for analysis (Figure 1). To further understand how and where arsenic 

species congregate, it would be bene2cial to attain total arsenic concentrations of both 

the supernatant and the pellet of the extracted tissue separately. The pellet, however, 

cannot be analyzed for speciation by HPLC as it cannot break down to 0.2 µm, as the 

instrument requires. 

2.5.0  Conclusion

Methods to extract arsenic species from tissue were developed (Figure 1), but additional 

experiments to improve their ef2cacy must be conducted. EDTA proved to be bene2cial 

to attain a tissue particle size less than or equal to .2 µm - which is necessary to avoid 

impurities from obstructing the HPLC column. Calibration curves con2rmed that 

separation and determination of four arsenic species (iAsIII, DMA, MMA, and iAsV) is 

possible. When 1000 ppb spiked lung, liver, and spleen tissue were extracted, all four 

stock standards (iAsIII, DMA, MMA, and iAsV) were detected by the HPLC-ICP-MS. 

Total arsenic analysis via ICP-MS did not reveal much of a difference between 0 ppb 

and 1000 ppb dosed tissue (Table 6). Additional trials must be completed to explore the 

results. A pilot trial using tissues from mice exposed to 1000 ppb in-vivo determined 110 

ng of DMA per gram of tissue in a murine lung. The pilot study was not able to 

determine other species in the lung or in a spleen tissue (Table 9). This thesis promotes 

further exploration to compare arsenic speciation within tissues. Arsenic speciation 

within organs complemented by total arsenic analysis is particularly valuable as it gives 

a ratio of arsenic within the organ. The 2ndings from this research intend to help inform 
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the current state of arsenic speciation to de2ne the variability of toxic species of arsenic 

within the metabolism. 
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