
MANIFOLD-AWARE FORESTS: CLOSING THE GAP
TO CONVOLUTIONAL NEURAL NETWORKS

by

Ronan Perry

A thesis submitted to The Johns Hopkins University

in conformity with the requirements for the degree of

Master of Science and Engineering

Baltimore, Maryland

May, 2020

© 2020 Ronan Perry

All rights reserved

Abstract

Decision forests (DF), in particular random forests and gradient boosting trees, have demonstrated

state-of-the-art accuracy compared to other methods in many supervised learning scenarios.

In particular, DFs dominate other methods in tabular data, that is, when the feature space is

unstructured, so that the signal is invariant to permuting feature indices. However, in structured

data lying on a manifold—such as images, text, and speech—neural nets (NN), specifically

convolutional neural nets (CNN), tend to outperform DFs. We conjecture that at least part of the

reason for this is that the input to NN is not simply the feature magnitudes, but also their indices (for

example, the convolution operation uses “feature locality”). In contrast, naïve DF implementations

fail to explicitly consider feature indices. A recently proposed DF approach demonstrates that DFs,

for each node, implicitly sample a random matrix from some specific distribution. Here, we build on

that to show that one can choose distributions in a manifold aware fashion. For example, for image

classification, rather than randomly selecting pixels, one can randomly select contiguous patches.

We demonstrate the empirical performance of data living on three different manifolds: images,

time-series, and a torus. In all three cases, our Manifold-aware Forest (MF) algorithm empirically

dominates other state-of-the-art approaches that ignore feature space structure, achieving a lower

classification error on all sample sizes. This dominance extends to the MNIST data set as well.

Moreover, training time is significantly faster for MF as compared to deep nets. This approach,

therefore, has promise to enable DFs and other machine learning methods to close the gap with

deep nets on manifold-valued data.

Advisor: Professor Joshua Vogelstein

Secondary Readers: Professor Carey Priebe and Professor Mauro Maggioni

ii

Acknowledgements

First and foremost, many thanks to my research advisor, Professor Joshua Vogelstein, for all his

support and mentorship during my time in his lab, working on this project and others. This thesis

would not have been possible without his guidance and enthusiasm. I would also like to thank the

entire Neurodata lab for being an engaging and supportive environment, frisbees and all. One

could not hope for a better academic environment. Among them, credit to Tyler Tomita, Jesse

Patsolic, and Benjamin Falk for their initial ideas on this topic and work developing the software

infrastructure that enabled this research as well as Ronak Mehta, Ali Geisa, and Jesús Arroyo for

their valuable feedback.

I would like to acknowledge all the amazing faculty at Johns Hopkins I’ve had the fortunate of

learning and working under. I cannot list them all but would like to thank to Professor Donniell

Fishkind for his unwavering humor, guidance, and Matrix Analysis class, Professor Justin Bledin for

his rewarding philosophy lessons, and Professor Avanti Athreya who I had the pleasure of learning

under and serving as a TA for.

I also want to thank Professors Mauro Maggioni and Carey Priebe as readers on my thesis

committee as well as engaging lecturers from whom I’ve learned much.

Lastly, special thanks to all the wonderful friends I’ve made at Hopkins. The people I have met

during my time here have been truly inspiring and I could not have accomplished as much as I did

without their support.

Ronan Perry

iii

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background and Related Work 2

2.1 Classification . 2

2.2 Random Forests . 3

2.3 Sparse Projection Oblique Randomer Forests 5

3 Methods 6

3.1 Random Projection Forests on Manifolds . 6

3.2 Feature Importance . 7

4 Theoretical Results 8

4.1 Partitioning of the Feature Space . 8

4.2 Classifier Consistency . 8

5 Simulation Results 10

5.1 Simulation Settings . 10

5.2 Classification Accuracy . 11

5.3 Run Time . 12

iv

6 Real Data Results 13

6.1 Classification Accuracy . 13

6.2 Feature Importance . 14

7 Discussion 15

A Proofs 19

A.1 Convex Polytope Partition Results . 19

A.2 Consistency Results . 20

A.2.1 Posterior Consistency . 20

A.2.2 Classifier Consistency . 24

B Pseudocode 27

C Hyperparameters 29

Biographical Note 31

v

List of Tables
1 CNN hyperparameters for each experiment. 29

2 scikit-learn, SPORF, and MF hyperparameters for each experiment. 30

vi

List of Figures
1 MF outperforms other algorithms in three two-class classification settings. Upper

row shows examples of simulated data from each setting and class. Lower row

shows misclassification rate in each setting, tested on 10,000 test samples. (A) Two

segments in a discretized circle. Segment lengths vary by class. (B) Image setting

with uniformly distributed horizontal or vertical bars. (C) White noise (class 0) vs.

exponentially decaying unit impulse plus white noise (class 1). 11

2 Algorithm train times (above) and test times (below). MF runtime is not particularly

costly and well below CNN runtime in most examples. 12

3 MF improves classification accuracy over all other non-CNN algorithms for all

sample sizes, especially in small sample sizes. 13

4 Averages of images in the two classes and their difference (above). Feature impor-

tance from MF (bottom right) shows less noise than SPORF (bottom middle) and

is smoother than RF (bottom left). 14

vii

1 Introduction

Decision forests, including random forests and gradient boosting trees, have solidified themselves

in the past couple decades as a powerful ensemble learning method in supervised settings [1,

2], including both classification and regression [3]. In classification, each forest is a collection

of decision trees whose individual classifications of a data point are aggregated together using

majority vote. One of the strengths of this approach is that each decision tree need only perform

better than chance for the forest to be a strong learner, given a few assumptions [4, 5]. Additionally,

decision trees are relatively interpretable because they can provide an understanding of which

features are most important for correct classification [6]. Breiman originally proposed decision trees

that partition the data set using hyperplanes aligned to feature axes [6]. Yet, this limits the flexibility

of the forest and requires deep trees to classify some data sets, leading to overfitting. He also

suggested that algorithms which partition based on sparse linear combinations of the coordinate

axes can improve performance [6]. More recently, Sparse Projection Oblique Randomer Forest

(SPORF), partitions a random projection of the data and has shown impressive improvement over

other methods [7].

Yet random forests and other machine learning algorithms frequently operate in a tabular setting,

viewing an observation x⃗ = (x1, . . . , xp)T ∈ Rp as an unstructured feature vector. In doing so,

they neglect the indices in settings where the indices encode additional information. For structured

data, e.g. images or time series, traditional decision forests are not able to incorporate known

continuity between features to learn new features. For decision forests to utilize known local

structure in data, new features encoding this information must be manually constructed. Prior

research has extended random forests to a variety of computer vision tasks [8, 9, 10, 11] and

augmented random forests with structured pixel label information [12]. Yet these methods either

generate features a priori from individual pixels, and thus do not take advantage of the local

topology, or lack the flexibility to learn relevant patches. Decision forests have been used to learn

1

distance metrics on unknown manifolds [13], but such manifold forest algorithms are unsupervised

and aim to learn a low dimensional representation of the data.

Inspired by SPORF, we propose a projection distribution that takes into account continuity between

neighboring features while incorporating enough randomness to learn relevant projections. At each

node in the decision tree, sets of random spatially contiguous features are randomly selected using

knowledge of the underlying manifold, a supervised manifold-aware forest for data with known

structural relations. Summing the intensities of the sampled features yields a set of projections

which can then be evaluated to partition the observations. We describe this proposed classification

algorithm, Manifold-aware Forests (MF) in detail and show its effectiveness in three simulation

settings as compared to common classification algorithms. Furthermore, the optimized and

parallelizable open source implementation of MF in Python is available 1. This addition makes for

an effective and flexible learner across a wide range of manifold structures.

2 Background and Related Work

2.1 Classification

Let (X, Y) ∈ X × Y and Dn := {(Xi, Yi)}n
i=1 be our data where (Xi, Yi) ∈ X × Y for all i.

X ⊆ Rp (the space of feature vectors), and Y = {1, . . . , K} (the space of class labels). A

classifier is a function that assigns to X ∈ X a class label y ∈ Y . Our goal is to learn a classifier

gn(X; Dn) : X × (X × Y)n → Y from our data that minimizes the expected 0 − 1 loss, the

probability of incorrect classification,

L(g) := P(g(X) ̸= Y),

1https://neurodata.io/sporf/

2

with respect to the distribution of (X, Y). The optimal such classifier is the Bayes classifier,

g∗(X) := argmax
y∈{1,...,K}

P(Y = y | X),

which has the lowest attainable error L∗ := L(g∗(X)). For some finite number of samples n,

our goals is to learn a classifier gn from the data Dn that performs well with error denoted by

Ln = L(gn(X)) := P(gn(X) ̸= Y).

2.2 Random Forests

Originally popularized by Breiman, the random forest (RF) classifier is empirically very effective [1]

while maintaining strong theoretical guarantees [6]. A random forest is an ensemble of decision

trees whose individual classifications of a data point are aggregated together using majority vote.

Each decision tree consists of split nodes and leaf nodes. A split node is associated with a subset

of the data S = {(X1, Yi)} ⊆ D and splits into two child nodes, each associated with a binary

partition of S. Let ej ∈ Rp denote a unit vector in the standard basis (that is, a vector with a single

one and the rest of the entries are zero) and τ a threshold value. Then S is partitioned into two

subsets given the pair θj = {ej, τ}.

SL
θ = {(X1, Yi) | eT

j X1 < τ}

SR
θ = {(X1, Yi) | eT

j X1 ≥ τ}

To choose the partition, the optimal θ∗ = (e∗j , τ∗) pair is selected via a greedy search from among a

set of d randomly selected standard basis vectors ej. The selected partition is that which maximizes

some measure of information gain. A typical measure is a decrease in impurity, calculated by

the Gini impurity score I(S), of the resulting partitions [3]. Let p̂k = 1
|S| ∑Yi∈S I[Yi = k] be the

3

fraction of elements of class k in partition S, then the optimal split is found as

I(S) =
K

∑
k=1

p̂k(1 − p̂k)

θ∗ = argmax
θ

|S|I(S)− |SL
θ |I(SL

θ)− |SR
θ |I(SR

θ).

A leaf node is created once the partition reaches a stopping criterion, typically either falling below

an impurity score threshold or a minimum number of observations [3].

To classify a test sample x, it is evaluated at root node of the tree and split into one of the two

partitions. This process is repeated recrusively at subsequent split nodes until x "falls into" a

leaf, upon which posterior probability estimates of the class labels can be assigned. Let lb(x) be

the set of training examples at the leaf node in tree b into which x falls. The empirical posterior

probability of label y in b is thus pnb(y | x) = 1
|lb(x)| ∑n

i=1 I[Yi = y]I[X ∈ lb(x)]. The forest

composed of B trees computes the empirical posterior probability for x by averaging over the trees

pn(y | x) = 1
B ∑B

b=1 pnb(y | x) and classifies x per the label with the greatest empirical posterior

probability [3]

gn(x) = argmax
y∈{1,...,K}

pn(y|x)

For good performance of the ensemble and strong theoretical guarantees, the individual decision

trees must be relatively uncorrelated from one another. Breiman’s random forest algorithm does

this in two ways:

1. At every node in the decision tree, the optimal split is determined over a random subset d of

the total collection of features p.

2. Each tree is trained on a randomly bootstrapped sample of data points D′ ⊂ D from the full

training data set.

4

Applying these techniques reduces the capability of random forests to overfit and lowers the upper

bound of the generalization error [6].

2.3 Sparse Projection Oblique Randomer Forests

SPORF is a recent modification to random forest that has shown improvement over other ver-

sions [7, 14]. Recall that RF split nodes partition data along the coordinate axes by comparing the

projection eT
j x of observation x on standard basis ej to a threshold value τ. SPORF generalizes

the set of possible projections, allowing for the data to be partitioned along axes specified by any

sparse vector aj. The partition

SL
θ = {(Xi, Yi) | aT

j Xi < τ}

SR
θ = {(Xi, Yi) | aT

j Xi ≥ τ}

follows from our choice of θ = {aj, τ}.Rather than partitioning the data solely along the coordinate

axes (i.e. the standard basis), SPORF creates partitions along axes specified by sparse vectors.

In other words, let the dictionary A be the set of atoms {aj}, each atom a p-dimensional vector

defining a possible projection aT
j x. In axis-aligned forests, A is the set of standard basis vectors

{ej}. In SPORF, the dictionary D can be much larger, because it includes, for example, all

2-sparse vectors. At each split node, SPORF samples d atoms from D according to a specified

distribution. By default, each of the d atoms are randomly generated with a sparsity level drawn

from a Poisson distribution with a specified rate λ. Then, each of the non-zero elements are

uniformly randomly assigned either +1 or −1. Note that the size of the dictionary for SPORF is

3p (because each of the p elements could be −1, 0, or +1), although the atoms are sampled from

a distribution heavily skewed towards sparsity.

5

3 Methods

3.1 Random Projection Forests on Manifolds

In the structured setting, the dictionary of projection vectors A = {aj} is modified to take

advantage of a priori knowledge of the underlying manifold on which the data lie. We term

this method the Manifold-aware Forest (MF). This modification constrains the space of random

projection forest classifiers which can be learned to better suit certain classification tasks.

The features of an observation x ∈ Rp may be viewed in some settings to lie on a manifold, which

induces a notion of feature locality. Such relations between nearby features may be indicative

information in certain classification tasks. For instance, edges in images may be identified by

a neighborhood of pixels. The distribution of A is designed with respect to prior knowledge of

relevant structure in the features. Each atom aj ∈ A projects an observation to a real number,

nonzero elements effectively weight and sum features. Thus, neighborhoods of features on the

manifold define the atoms of A; the distribution of those patterns yields a distribution over the

atoms. At each node in the decision tree, MF samples d atoms, yielding d new features per

observation. MF proceeds just like SPORF by optimizing the best split according to the Gini

index. Algorithm pseudocode can be found in Appendix B.

In our experiments, the data was such that an observation x ∈ Rp was generalized to a vec-

torization of a matrix lying in RW×H, where W and H are the width and height of that matrix,

respectively. In these settings, the atoms of interest captured locally connected sets of features,

specifically rectangular patches reminiscent of convolution filters. A rectangular patch is fully

parameterized by the location of its upper-left corner (u, v), its height h, and width w. The location

is sampled given the other two with appropriate padding so that the probability of a given feature

being used is uniform. Hyperparameters determine the minimum and maximum heights {hmin,

hmax} and widths {wmin, wmax}, respectively. The atom aj yields a projection of the data aT
j x,

6

effectively a filter summing feature values in the sampled rectangular patch. Nonzero elements of

atoms in our experiments were all set to 1 to limit combinatorial complexity but domain-specific

atom design may be desired in some settings.

The structure of these atoms is flexible and task dependent. For graph-valued data, one may

consider sampling a collection of neighboring edges or nodes [15]. In the case of data lying on a

cyclic manifold, as in the first experiment we conduct, the atoms are patches that "wrap-around"

borders of the matrix to capture added continuity. In the case of multi-channel time-series data,

neighboring points in the time domain are selected but sampling of multiple channels faces no

structural restrictions. We pose a single channel experiment later as well. By constructing features

in this way, MF learns low-level features in the structured data, such as corners in images or

spikes in time-series. The forest can therefore learn the features that best distinguish a class.

An important aspect of this method is that MF represents a shift to more "locally connected"

tools whereby local points provide relevant information. However, unlike CNNs, this method is

not translation equivariant. Thus, discriminative features must be constant in their indices or the

training data must be rich enough to fully encapsulate possible observations [11].

3.2 Feature Importance

One of the benefits to decision trees is that their results are fairly interpretable in that they allow

for estimation of the relative importance of each feature. Many approaches have been suggested

[6, 16] and here a projection forest specific metric is used in which the number of times a given

feature was used in projections across the ensemble of decision trees is counted. A decision tree

T is composed of many nodes j, each one associated with an atom a∗j and threshold that partition

the feature space according to the projection a∗T
j x. Thus, the indices corresponding to nonzero

elements of a∗j indicate important features used in the projection. For each feature k, the number

7

of times πk it is used in a projection, across all split nodes and decision trees, is counted.

πk = ∑
T

∑
j∈T

I(a∗jk ̸= 0)

These normalized counts represent the relative importance of each feature in making a correct

classification. Such a method applies to both SPORF and MF , although different results between

them would be expected due to different projection distributions yielding different hyperplanes.

4 Theoretical Results

4.1 Partitioning of the Feature Space

We note, that MF and all other other random projection forests have certain nice properties, such

as the following result. Further details can be found in the Appendix.

Theorem 1. A random projection tree partitions the feature space into a finite number of (possibly

unbounded) convex polytopes.

Note that by the invariance of a forest to monotone transformations of the features, our feature

space X is equivalent to [0, 1]p for which all resulting polytopes are bounded.

4.2 Classifier Consistency

The least we can ask of a classification rule {gn}∞
n=1 is for it to be consistent. That is, the probability

of misclassification converges to the minimum (Bayes) error of misclassification. Random projection

forests are well-behaved in that they maintain and hold certain desired statistical properties from

the literature of axis-aligned splits. Honesty is a mild constraint that requires the set of training

examples used to learn the structure of the tree to be independent of the set of examples used

at the leaf nodes to estimate the posterior probabilities and has been used to prove asymptotic

results about forests [5] [17] [18] [19].

8

Following from the results of Athey, Tibshirani, and Wager [19], we adopt this constraint and show

that appropriately constructed honest random projection forests produce consistent classification

rules given a few general assumptions, see Appendix for details. We denote as before x ∈ X ⊆

Rp and y ∈ [1, . . . , K]. Consider the following assumptions:

Assumption 1. The dictionary A contains the set of standard basis vectors {ei}
p
i=1, all with fixed

nonzero probability of being selected at each split node.

Assumption 2. For all y ∈ Y , P(Y = y | X = x) is Lipschitz continuous in x ∈ X .

Assumption 3. The samples used to populate the leaves of the trees are mutually exclusive from

the set used to learn the structure of the trees (Honesty).

Assumption 4. There exists a density f over X and for all x ∈ X there exists a ε > 0 such that

ε < f (x) < 1
ε .

Theorem 2. Under Assumptions 1-4, the MF classification rule is consistent, i.e.

Ln
P→ L∗ as n → ∞

.
The Lipschitz assumption is a valid one taken in the literature on random forests [19]. It intuitively

makes sense a priori that small deviations in x should lead to small deviations in the class

probability. Note, nothing specific to the projection distribution of MF is used here. This implies

the following result.

Corollary 1. Under Assumptions 1-4, a random projection forest estimating posteriors as in MF

yields a consistent classification rule.

This extends Theorem 2 to hold for SPORF as well. Like axis-aligned splits in this setting, random

projection forests partition the feature space into convex polytopes whose radii go to zero, but slow

9

enough to populate the leaves with sets of size going to infinity.

5 Simulation Results

We evaluate MF in three simulation settings to show its ability to take advantage of the structure

in the data. It was compared to a set of traditional classifiers and SPORF that all learn from the

raw features. For each experiment, we used our open source implementation of MF and that of

SPORF while the other classifiers were run from the Scikit-learn Python package [20] with default

parameters. Additionally, we tested against a Convolutional Neural Network (CNN) built using

PyTorch [21] with two convolution layers, ReLU activations, and maxpooling, followed by dropout

and a densely connected hidden layer. See Appendix C for details on the hyperparameters and

network architectures across experiments.

5.1 Simulation Settings

Experiment (A) is a non-Euclidean cyclic manifold example inspired by Younes [22]. Each ob-

servation is a discretization of a circle into 100 features with two non-adjacent segments of 1’s

in two differing patterns: class 1 features two segments of length five while class 2 features one

segment of length four and one of length six. Figure 1(A) shows examples from the two classes

and classification results across various sample sizes.

In experiment (B) consists of a simple 28× 28 binary image classification problem. Images in class

0 contain randomly sized and spaced horizontal bars while those in class 1 contain randomly sized

and spaced vertical bars. For each sampled image, k ∼ Poisson(λ = 10) bars were distributed

among the rows or columns, depending on the class. The distributions of the two classes are

identical if a 90 degree rotation is applied to one of the classes. Figure 1(B) shows examples from

the two classes and classification results across various sample sizes.

Experiment (C) is a signal classification problem. One class consists of 100 values of Gaussian

10

noise while the second class has an added exponentially decaying unit step beginning at time 20.

X(0)
t = ϵt

X(1)
t = u(t − 20)e(t−20) + ϵt

ϵt ∼ N (0, 1)

Figure 1(C) shows examples from the two classes and classification results across various sample

sizes.

5.2 Classification Accuracy

Algorithm
Log. Reg
Lin. SVM
SVM
kNN
RF
MLP
SPORF
CNN
MF

Number of training samples

0.0
103110 102 103110 102103110 102

0.1

0.2

0.3

0.4

M
is

cl
a
ss

if
ic

a
ti
on

 R
a
te

(A) Circle Segments (B) Orthogonal Bars

Class 0

Class 1

(C) Noisy Impulse

Signal
Impulse

0.5

Figure 1: MF outperforms other algorithms in three two-class classification settings. Upper row shows
examples of simulated data from each setting and class. Lower row shows misclassification rate in each
setting, tested on 10,000 test samples. (A) Two segments in a discretized circle. Segment lengths vary by
class. (B) Image setting with uniformly distributed horizontal or vertical bars. (C) White noise (class 0) vs.
exponentially decaying unit impulse plus white noise (class 1).

11

In all three simulation settings, MF outperforms all other classifiers, doing especially better at

low sample sizes, except the CNN for which there is no clear winner. The performance of MF is

particularly good in the discretized circle simulation for which most other classifiers perform at

chance levels. MF also performs quite well in the signal classification problem.

10 2

100

T
ra

in
 T

im
e
 (

s)

Circle Segments Orthogonal Bars Noisy Impulse

Algorithm
Log. Reg
Lin. SVM
SVM
kNN
RF
MLP
SPORF
MF
CNN

101 103

T
e
st

 T
im

e
 (

s)

101 103 101 103

Number of training samples

Algorithm Runtimes

10 2

100

Figure 2: Algorithm train times (above) and test times (below). MF runtime is not particularly costly and
well below CNN runtime in most examples.

5.3 Run Time

All experiments were run on CPUs in parallel and allocated the same computational resources.

MF has train and test times on par with those of SPORF and RF and so is not particularly

more computationally intensive to run. The CNN, however, took noticeably longer to run across

simulations for the majority of sample sizes. Thus its strong performance in those settings comes

at an added computational cost, a typical issue for deep learning methods [23].

12

102 103 104

Number of training samples

0.0

0.1

0.2

0.3

0.4

M
ea

n
te

st
 e

rro
r

MNIST Classification Results
Algorithm

Log. Reg
Lin. SVM
SVM
kNN
RF
MLP
SPORF
MF
CNN

Figure 3: MF improves classification accuracy over all other non-CNN algorithms for all sample sizes,
especially in small sample sizes.

6 Real Data Results

6.1 Classification Accuracy

MF ’s performance was evaluated on the MNIST dataset, a collection of handwritten digits stored

in 28 by 28 square images [24], and compared to the algorithms used in the simulations. 10,000

images were held out for testing and the remaining images were used for training. The results

are displayed in Figure 3. Default hyperparameters were used and MF was optimized to find a

suitable dictionary of projections, see Appendix C for hyperparameter details. MF showed an

improvement over the other algorithms, especially for smaller sample sizes. Thus, even this trivial

modification can improve performance by several percentage points. Specifically, MF achieved a

lower classification error than all other algorithms besides CNNs for all sample sizes on this real

data problem.

13

6.2 Feature Importance

To evaluate the capability of MF to identify importance features in manifold-valued data as

compared to SPORF and RF. All methods were run on a subset of the MNIST dataset: we only

used threes and fives, 100 images from each class.

Average 3 Average 5

MORF ImportanceSPORF Importance

Absolute Difference

RF Importance

Figure 4: Averages of images in the two classes and their difference (above). Feature importance from MF
(bottom right) shows less noise than SPORF (bottom middle) and is smoother than RF (bottom left).

The feature importance of each pixel is shown in Figure 4. MF visibly resultss in a smoother pixel

importance, a result most likely from the continuity of neighboring pixels in selected projections.

Although Tomita et al. [7] demonstrated empirical improvement of SPORF over RF on the MNIST

data, its projection distribution yields scattered importance of unimportant background pixels as

compared to RF. Since projections in SPORF have no continuity constraint, those that select high

importance pixels will also select pixels of low importance by chance. This may be a nonissue

asymptotically, but is a relevant problem in low sample size settings. MF , however, shows little or

no importance of these background pixels by virtue of the modified projection distribution.

14

7 Discussion

The success of sparse oblique projections in decision forests has opened up many possible ways

to improve axis-aligned decision forests (including random forests and gradient boosting trees) by

way of specialized projection distributions. Traditional decision forests have already been applied

to some manifold-valued data, using predefined features to classify images or pixels. Decision

forest algorithms like that implemented in the Microsoft Kinect showed great success but ignore

pixel continuity and specialize for a specific data modality, namely images [11].

We expand upon sparse oblique projections and introduced manifold-aware projection distributions

that uses prior knowledge of the topology of a feature space. The open source implementation of

SPORF has allowed for a relatively easy implementation of MF, creating a flexible classification

method for a variety of data modalities and tailored projection dictionaries. We showed in various

simulated settings that appropriate domain knowledge can improve the projection distribution to

yield impressive results that challenge the strength of deep learning techniques on manifold-valued

data. On the MNIST data set, MF closed the gap to CNNs while maintaining interpretability,

robustness to hyperparameter tuning, quick run time, and theoretical justification.

Research into other, task-specific projection dictionaries may lead to improved results in real-world

computer vision tasks and or classification tasks in other manifold-valued settings such as graphs.

These projection distributions, while incorporated into SPORF here, may also be incorporated into

other state of the art algorithms such as XgBoost [25].

Data and Code Availability Statement The analysis of the data was performed using an open-

source software package SPORF (https://sporf.neurodata.io).

15

References

[1] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. “Do we
Need Hundreds of Classifiers to Solve Real World Classification Problems?” In: Journal of
Machine Learning Research 15 (2014), pp. 3133–3181.

[2] Rich Caruana and Alexandru Niculescu-Mizil. “An Empirical Comparison of Supervised
Learning Algorithms”. In: Proceedings of the 23rd International Conference on Machine
Learning. ICML ’06. Pittsburgh, Pennsylvania, USA: ACM, 2006, pp. 161–168. ISBN: 1-
59593-383-2. DOI: 10.1145/1143844.1143865.

[3] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. New York, NY, USA: Springer New York Inc., 2001.

[4] Robert E. Schapire. “The Strength of Weak Learnability”. In: Mach. Learn. 5.2 (July 1990),
pp. 197–227. ISSN: 0885-6125. DOI: 10.1023/A:1022648800760.

[5] Gérard Biau, Luc Devroye, and Gábor Lugosi. “Consistency of Random Forests and Other
Averaging Classifiers”. In: J. Mach. Learn. Res. 9 (June 2008), pp. 2015–2033. ISSN: 1532-
4435.

[6] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001), pp. 5–32. ISSN:
1573-0565. DOI: 10.1023/A:1010933404324.

[7] Tyler M. Tomita, James Browne, Cencheng Shen, Jesse L. Patsolic, Jason Yim, Carey E.
Priebe, Randal Burns, Mauro Maggioni, and Joshua T. Vogelstein. “Random Projection
Forests”. In: arXiv e-prints, arXiv:1506.03410 (June 2015), arXiv:1506.03410. arXiv: 1506.
03410 [stat.ML].

[8] V. Lepetit, P. Lagger, and P. Fua. “Randomized trees for real-time keypoint recognition”. In:
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). Vol. 2. June 2005, 775–781 vol. 2. DOI: 10.1109/CVPR.2005.288.

[9] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. “Hough Forests for Object
Detection, Tracking, and Action Recognition”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 33.11 (Nov. 2011), pp. 2188–2202. ISSN: 0162-8828. DOI: 10.1109/
TPAMI.2011.70.

[10] A. Bosch, A. Zisserman, and X. Munoz. “Image Classification using Random Forests and
Ferns”. In: 2007 IEEE 11th International Conference on Computer Vision. Oct. 2007, pp. 1–8.
DOI: 10.1109/ICCV.2007.4409066.

[11] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A.
Blake. “Real-time human pose recognition in parts from single depth images”. In: CVPR
2011. June 2011, pp. 1297–1304. DOI: 10.1109/CVPR.2011.5995316.

[12] P. Kontschieder, S. R. Bulò, H. Bischof, and M. Pelillo. “Structured class-labels in random
forests for semantic image labelling”. In: 2011 International Conference on Computer Vision.
Nov. 2011, pp. 2190–2197. DOI: 10.1109/ICCV.2011.6126496.

16

https://doi.org/10.1145/1143844.1143865
https://doi.org/10.1023/A:1022648800760
https://doi.org/10.1023/A:1010933404324
https://arxiv.org/abs/1506.03410
https://arxiv.org/abs/1506.03410
https://doi.org/10.1109/CVPR.2005.288
https://doi.org/10.1109/TPAMI.2011.70
https://doi.org/10.1109/TPAMI.2011.70
https://doi.org/10.1109/ICCV.2007.4409066
https://doi.org/10.1109/CVPR.2011.5995316
https://doi.org/10.1109/ICCV.2011.6126496

[13] Antonio Criminisi, Jamie Shotton, and Ender Konukoglu. “Decision Forests: A Unified
Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-
Supervised Learning”. In: Found. Trends. Comput. Graph. Vis. 7.2–3 (Feb. 2012),
pp. 81–227. ISSN: 1572-2740. DOI: 10.1561/0600000035.

[14] Tyler M. Tomita, Mauro Maggioni, and Joshua T. Vogelstein. “ROFLMAO: Robust Oblique
Forests with Linear MAtrix Operations”. In: Proceedings of the 2017 SIAM International
Conference on Data Mining. 2017, pp. 498–506. DOI: 10.1137/1.9781611974973.56.

[15] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu.
“A Comprehensive Survey on Graph Neural Networks”. In: IEEE Transactions on Neural
Networks and Learning Systems (2020), pp. 1–21. ISSN: 2162-2388. DOI: 10.1109/tnnls.
2020.2978386.

[16] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predictions”.
In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc.,
2017, pp. 4765–4774.

[17] Misha Denil, David Matheson, and Nando De Freitas. “Narrowing the Gap: Random Forests
In Theory and In Practice”. In: Proceedings of the 31st International Conference on Machine
Learning. Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning
Research. Bejing, China: PMLR, 22–24 Jun 2014, pp. 665–673.

[18] Stefan Wager and Guenther Walther. “Adaptive Concentration of Regression Trees, with
Application to Random Forests”. In: arXiv:1503.06388 [math, stat] (Apr. 2016). arXiv:
1503.06388.

[19] Susan Athey, Julie Tibshirani, and Stefan Wager. “Generalized Random Forests”. In:
arXiv:1610.01271 [econ, stat] (Apr. 2018). arXiv: 1610.01271.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. “Automatic differentiation
in PyTorch”. In: NIPS-W. 2017.

[22] Laurent Younes. Diffeomorphic Learning. 2018. arXiv: 1806.01240 [stat.ML].

[23] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. “On the Computational Efficiency of
Training Neural Networks”. In: Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 1. NIPS’14. Montreal, Canada: MIT Press, 2014,
pp. 855–863.

[24] Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. The MNIST Database of Hand-
written Digits. 1999.

17

https://doi.org/10.1561/0600000035
https://doi.org/10.1137/1.9781611974973.56
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1109/tnnls.2020.2978386
https://arxiv.org/abs/1806.01240

[25] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In: Pro-
ceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’16. San Francisco, California, USA: ACM, 2016, pp. 785–794. ISBN:
978-1-4503-4232-2. DOI: 10.1145/2939672.2939785.

[26] Richard Guo, Ronak Mehta, Jesus Arroyo, Hayden Helm, Cencheng Shen, and Joshua
T. Vogelstein. “Estimating Information-Theoretic Quantities with Uncertainty Forests”. In:
arXiv:1907.00325 [cs, stat] (Nov. 2019). arXiv: 1907.00325.

[27] Ryan Rifkin and Aldebaro Klautau. “In Defense of One-Vs-All Classification”. In: J. Mach.
Learn. Res. 5 (Dec. 2004), pp. 101–141. ISSN: 1532-4435.

18

https://doi.org/10.1145/2939672.2939785

Appendices

A Proofs

A.1 Convex Polytope Partition Results

Theorem 1. A random projection tree partitions the feature space into a finite number of (possibly

unbounded) convex polytopes.

Proof. A convex polytope in d dimensions can be defined as the union of a finite number of

halfspaces, where a halfspace is a d − 1 dimensional surface defined by the linear inequality

aTx ≤ b

for fixed a ∈ Rd and b ∈ R. In a random projection tree, each split node i partitions the set of

points at that node according to such an inequality aT
i x ≤ bi. Consider the path of k split nodes,

including the root, to a leaf l and the set of corresponding halfspace defining {(ai, bi}k
i=1 terms for

each split node. We see that in the feature space S, the subset that "falls into" leaf l is the solution

set to

Alx ≤ bl

where Al = [a1, . . . , ak]
T and bl = [b1, . . . , bk]

T.

Thus each leaf node forms a convex polytope. Additionally, note that any x ∈ S will deterministically

end up in a leaf node (by classification of x) as the tree is of finite depth and that all leaf node

convex polytopes are mutually exclusive as the lowest common ancestor of any two leaves forms

mutually exclusive sets. If the feature space is unbounded, then at least one partition must be

unbounded too. Thus, a tree partitions the feature space into a finite number of possibly infinite

convex polytopes.

19

A.2 Consistency Results

The least we can ask of our classification rule {gn}∞
n=1 is for it to be consistent,

Ln
P→ L∗ as n → ∞

where Ln and L∗ are the expected 0-1 losses of gn and the Bayes decision g∗, respectively.

A.2.1 Posterior Consistency

Following from the results of Athey, Tibshirani, and Wager [19] and in the spirit of [26], we show

that random projection forests such as MF can produce a consistent empirical estimate pn(y | x)

of the posterior P(Y = y | X = x) which we denote as p(y | x).

Lemma 2. Under Assumptions 1-4 of Section 4.2, for all y ∈ {1, . . . , K} and x ∈ X , the honest

MF estimate pn(y | x) P→ p(y | x) as n → ∞

Proof. To estimate the posterior probability in a multiclass setting, we adopt the one-vs-all approach

[27]. Let y be the fixed arbitrary class label of interest. Given our data, we seek to estimate the

posterior probability p(y | x), equivalent to estimating the conditional mean µ(x) := E[I[Y =

y] | X = x] for a fixed y. To follow the notation of Athey, Tibshirani, and Wager [19], we frame

µ(x) as the solution to the estimation equation

Mµ(x) := E[ψµ(x)(Y) | X = x] = 0

where the score function ψµ(x)(Y) is defined as

ψµ(x)(Y) := I[Y = y]− µ(x).

The solution can be estimated as the solution, µ̂(x), to the empirical estimation equation

n

∑
i=1

αi(x)ψµ̂(x)(Yi) = 0.

20

It follows that

µ̂(x) =
n

∑
i=1

αi(x)I[Yi = y]

per the expansion

n

∑
i=1

αi(x)ψµ̂(x)(Yi) =
n

∑
i=1

αi(x)(I[Yi = y]− µ̂(x)) =
n

∑
i=1

αi(x)I[Yi = y]− µ̂(x) = 0.

These weights we derive from a learned random forest. Let a forest be composed of B trees. In a

single tree b, let lb(x) denote the set of training examples at the leaf node for which X is placed.

Define the weights αib(x) for that tree as

αib(x) :=
1

|lb(x)|I[xi ∈ lb(x)],

the normalized indicator of whether or not x and xi exist in the same leaf. Thus the forest weights

αi(x) = 1
B ∑B

b=1 αib(x) are simply the normalized weights across all trees.

By Theorem 3 of Generalized Random Forests [19], a random forest built according to the following

Specification 1A and solving an estimation problem satisfying the following assumptions yields a

consistent estimator pn(y | x) for p(y | x). We list these requirements and verify that they hold

for honest random projection forests.

Importantly, the use of splits which may be a linear combination of features does not violate these

properties given Assumption 1 from Section 4.2 guarantees that the individual features are split on

with positive probability and so maintains the Bayes error. The same heterogeneity maximization

step at each split node in [19] occurs, albeit with more ways to form the partition into two child

nodes.

Specification 1A: Each tree in the forest is built with the following requirements:

i. Is symmetric (their outputs are invariant to the permuting of the indices of the training data).

21

ii. Has balanced splits (each child node receives a nonzero fraction of the observations at the

parent node).

iii. Is randomized (each feature has a nonzero probability of being split on).

iv. The forest is honest (the posterior probabilities for a test point at a tree come from training

examples not used in construction of that tree).

v. s → ∞ and s/n → 0 where s is the number of subsampled training examples used to

construct each tree and n is the total number of examples.

Specification 1A is clearly met. Subsampling of the training examples is invariant on the example

indices (i) and we can asymptotically take subsamples of size nα for 0 < α < 1 to satisfy (v). An

unbalanced split is no better than any other split per the Gini split criterion and so each child node

will contain a nonzero fraction of the samples at the parent (ii). Lastly, Assumptions 1 and 3 from

Section 4.2 give us (iii) and (iv) respectively.

Assumption 1A: For fixed values µ(x), we assume that Mµ(x) is Lipschitz continuous in x.

This holds per Assumption 2 from Section 4.2.

Assumption 2A: When x is fixed, we assume that Mµ(x) is twice continuously differentiable in µ

with a uniformly bounded second derivative, and that ∂
∂(µ)

Mµ(x) |µ(x) ̸= 0 for all x ∈ X .

This is true, as evident in the derivatives

∂

∂µ
Mµ(x) = −1 and

∂2

∂2µ
Mµ(x) = 0.

Assumption 3A: The worst-case variogram of ψµ(Y) is Lipschitz-continuous in µ(x).

22

This is evident in the worse-case variogram for two solutions µ and µ′

γ(µ(x), µ′(x)) := sup
x∈X

{Var(ψµ(x)(Y)− ψµ′(x)(Yi) | X = x)}

= sup
x∈X

{Var(I[Y = y]− µ(x)− I[Y = y]− µ′(x) | X = x)}

= sup
x∈X

{Var(µ′(x)− µ(x)|X = x)} = 0

which is trivially Lipschitz-continuous.

Assumption 4A: The ψ-functions can be written as ψµ(x)(Y) = λ(µ(x); Y) + ξµ(x)(g(Y)), such

that λ is Lipschitz-continuous in µ, g : {Y} → R is a univariate summary of Y, and ξµ(x) : R → R

is any family of monotone and bounded functions.

Clearly ψµ(x)(Y) is linear in µ(x) and so is a Lipschitz-continuous function in µ(x). The other

term is 0 in this case.

Assumption 5A: For any weights αi(x) such that ∑i αi(x) = 1, the estimation equation returned

a minimizer µ(x)ˆ that at least approximately solves the estimating equation

||
n

∑
i=1

αi(x)ψ
µ(x)ˆ (Yi)||2 ≤ Cmax{αi(x)}

for some constant C ≥ 0.

As shown previously shown, the estimation equation is solved to equal 0.

Assumption 6A: The score function ψµ(x)(Y) is a negative sub gradient of a convex function,

and the expected score Mµ(x) is the negative gradient of a strongly convex function.

This holds true by construction of the following convex function

Ψµ(x)(Y) :=
1
2
(I[Y = y | X = x]− µ(x))2 such that ψµ(Y) = − d

dµ
Ψµ(x)(Y)

23

and the following strongly convex function

Mµ(x) :=
1
2
(P(Y = y | x)− µ(x))2 such that Mµ(x) = − d

dµ
Mµ(x)

A.2.2 Classifier Consistency

The prior proof established consistency for each posterior probability estimate pn(y | x). We now

proceed to show consistency for the classification rule gn(x) = argmaxy pn(y | x).

Lemma 3. Let x ∈ X with unique maximum y∗ := argmaxy p(y | x), and define the finite

sample estimate ŷ := argmaxy pn(y | x). Given that pn(y | x) is a consistent estimator for

p(y | x), then

P[ŷ ̸= y∗ | x] → 0 as n → ∞

Proof. We omit the conditional for notational brevity by substituting p(y) := p(y | x) and

pn(y) := pn(y | x),

P[ŷ ̸= y∗ | x] = P[max
y

pn(y) > pn(y∗)]

= P

⎡⎣ ⋃︂
y ̸=y∗

pn(y) > pn(y∗)

⎤⎦
≤ ∑

y ̸=y∗
P[pn(y) > pn(y∗)]

= ∑
y ̸=y∗

P[pn(y)− pn(y∗) > 0]

= ∑
y ̸=y∗

P[(pn(y)− pn(y∗))− (p(y)− p(y∗)) > p(y∗)− p(y)]

Let εy := p(y∗)− p(y) and note that εy > 0 for all y ∈ Y \ {y∗} since y∗ is a unique maximum.

24

Observe that

∑
y ̸=y∗

P[(pn(y)− pn(y∗))− (p(y)− p(y∗)) > εy]

≤ ∑
y ̸=y∗

P
[︁⃓⃓
(pn(y)− pn(y∗))− (p(y)− p(y∗))

⃓⃓
> εy

]︁
By the consistency of the individual posteriors, the difference of two is consistent and so since Y

is a finite set,

P[ŷ ̸= y∗ | x] ≤ ∑
y ̸=y∗

P[|(pn(y)− pn(y∗))− (p(y)− p(y∗))| > εy] → 0 as n → ∞

Theorem 2. Under assumptions 1-4 of Section 4.2, the MF classification rule is consistent, i.e.

Ln
P→ L∗ as n → ∞

.

Proof. Denote the finite samples classification rule ŷ := argmaxy pn(y | x) as before and let

y∗ := argmaxy p(y | x) be a unique maximum. If y∗ were not unique, we would instead consider

the aggregate of all such maximum classes as a pseudo class, apply the following analyses, and

be confident in both Ln and L∗ up to a factor equal to the reciprocal of the number aggregated

classes.

25

To begin, for any ε > 0,

P [|Ln − L∗| > ε] = P [|pn(ŷ | x)− p(y∗ | x)| > ε]

= P [|pn(ŷ | x)− p(y∗ | x)| > ε | ŷ = y∗]× P [ŷ = y∗] +

P [|pn(ŷ | x)− p(y∗ | x)| > ε | ŷ ̸= y∗]× P [ŷ ̸= y∗] .

In the case that ŷ = y∗, by Lemma 2 we have convergence of the posteriors and so

P [|pn(ŷ | x)− p(y∗ | x)| > ε | ŷ = y∗] → 0 as n → ∞.

In the case that ŷ ̸= y∗, by Lemma 3 we have that

P [ŷ ̸= y∗] → 0 as n → ∞.

Since the probabilities are bounded above by one, it follows that both

P [|pn(ŷ | X)− p(y∗ | x)| > ε | ŷ = y∗]× P [ŷ = y∗] → 0 as n → ∞

and

P [|pn(ŷ | x)− p(y∗ | x)| > ε | ŷ ̸= y∗]× P [ŷ ̸= y∗] → 0 as n → ∞.

Thus,

P [|Ln − L∗| > ε] = P [|pn(ŷ | x)− p(y∗ | x)| > ε] → 0 as n → ∞.

26

B Pseudocode

Algorithm 1 Learning a Manifold-aware Forest decision tree.

Input: (1) Dn: training data (2) d: dimensionality of the projected space, (3) fA: distribution of the
atoms, (4) Θ: set of split eligibility criteria

Output: A MF decision tree T
1: function T = GROWTREE(X, y, fA, Θ)
2: c = 1 ▷ c is the current node index
3: M = 1 ▷ M is the number of nodes currently existing
4: S(c) = bootstrap({1, ..., n}) ▷ S(c) is the indices of the observations at node c
5: while c < M + 1 do ▷ visit each of the existing nodes
6: (X′, y′) = (xi, yi)i∈S(c) ▷ data at the current node

7: for k = 1, . . . , K do n(c)
k = ∑i∈S(c) I[yi = k] end for ▷ class counts (for classification)

8: if Θ satisfied then ▷ do we split this node?
9: A = [a1 · · · ad] ∼ fA ▷ sample random p × d matrix of atoms

10: ˜︁X = ATX′ = (˜︁xi)i∈S(c) ▷ random projection into new feature space
11: (j∗, t∗) = findbestsplit(˜︁X, y′) ▷ Algorithm 2
12: S(M+1) = {i : aj∗ · ˜︁xi ≤ t∗ ∀i ∈ S(c)} ▷ assign to left child node

13: S(M+2) = {i : aj∗ · ˜︁xi > t∗ ∀i ∈ S(c)} ▷ assign to right child node

14: a∗(c) = aj∗ ▷ store best projection for current node

15: τ∗(c) = t∗ ▷ store best split threshold for current node
16: κ(c) = {M + 1, M + 2} ▷ node indices of children of current node
17: M = M + 2 ▷ update the number of nodes that exist
18: else
19: (a∗(c), τ∗(c), κ∗(c)) = NULL
20: end if
21: c = c + 1 ▷ move to next node
22: end while
23: return (S(1), {a∗(c), τ∗(c), κ(c), {n(c)

k }k∈Y}m−1
c=1)

24: end function

27

Algorithm 2 Finding the best node split. This function is called by growtree (Alg 1) at every
split node. For each of the p dimensions in X ∈ Rp×n, a binary split is assessed at each
location between adjacent observations. The dimension j∗ and split value τ∗ in j∗ that best split
the data are selected. The notion of “best” means maximizing some choice in scoring function.
In classification, the scoring function is typically the reduction in Gini impurity or entropy. The
increment function called within this function updates the counts in the left and right partitions as
the split is incrementally moved to the right.

Input: (1) (X, y) ∈ Rp×n ×Yn, where Y = {1, . . . , K}
Output: (1) dimension j∗, (2) split value τ∗

1: function (j∗, τ∗) = FINDBESTSPLIT(X, y)
2: for j = 1, . . . , p do

3: Let x(j) = (x(j)
1 , . . . , x(j)

n) be the jth row of X.

4: {mj
i}i∈[n] = sort(x(j)) ▷ mj

i is the index of the ith smallest value in x(j)

5: t = 0 ▷ initialize split to the left of all observations
6: n′ = 0 ▷ number of observations left of the current split
7: n′′ = n ▷ number of observations right of the current split
8: if (task is classification) then
9: for k = 1, . . . , K do

10: nk = ∑n
i=1 I[yi = k] ▷ total number of observations in class k

11: n′
k = 0 ▷ number of observations in class k left of the current split

12: n′′
k = nk ▷ number of observations in class k right of the current split

13: end for
14: end if
15: for t = 1, . . . , n − 1 do ▷ assess split location, moving right one at a time
16: ({(n′

k, n′′
k)}, n′, n′′, y

mj
t
) = increment({(n′

k, n′′
k)}, n′, n′′, y

mj
t
)

17: Q(j,t) = score({(n′
k, n′′

k)}, n′, n′′) ▷ measure of split quality
18: end for
19: end for
20: (j∗, t∗) = argmax

j,t
Q(j,t)

21: for i = 0, 1 do ci = mj∗

t∗+i end for

22: τ∗ = 1
2(x(j∗)

c0 + x(j∗)
c1) ▷ compute the actual split location from the index j∗

23: return (j∗, τ∗)
24: end function

28

C Hyperparameters

Table 1: CNN hyperparameters for each experiment.

Experiment Classifier Architecture Sequence
Circle CNN Conv1d(32, window=6, stride=1)

MaxPool1d(window=2, stride=2)
Conv1d(64, window=10, stride=1)
MaxPool1d(window=2, stride=2)
Dropout(p=0.5)
Linear(500)
Linear(2)

H/V Bars CNN Conv2d(32, window=5, stride=1)
MaxPool1d(window=2, stride=2)
Conv2d(64, window=5, stride=1)
MaxPool1d(window=2, stride=2)
Dropout(p=0.5)
Linear(200)
Linear(2)

Impulse CNN Conv1d(32, window=10, stride=1)
MaxPool2d(window=2, stride=2)
Conv2d(64, window=5, stride=1)
MaxPool2d(window=2, stride=2)
Dropout(p=0.5)
Linear(200)
Linear(2)

MNIST CNN Conv2d(32, window=5, stride=1)
MaxPool2d(window=2, stride=2)
Conv2d(64, window=5, stride=1)
MaxPool2d(window=2, stride=2)
Dropout(p=0.5)
Linear(200)
Linear(10)

29

Ta
bl

e
2:

sc
ik

it-
le

ar
n,

S
P

O
R

F,
an

d
M

F
hy

pe
rp

ar
am

et
er

s
fo

re
ac

h
ex

pe
rim

en
t.

E
xp

er
im

en
t

C
la

ss
ifi

er
H

yp
er

pa
ra

m
et

er
s

C
irc

le
Li

n.
S

V
M

C
=1

,p
en

al
ty

="
l2

";
ke

rn
el

="
lin

ea
r"

;lo
ss

="
sq

ua
re

d_
hi

ng
e"

C
irc

le
Lo

g.
R

eg
C

=1
,p

en
al

ty
="

l2
"

C
irc

le
M

F
m

ax
_f

ea
tu

re
s=

0.
5;

pa
tc

h_
he

ig
ht

_m
ax

=1
;p

at
ch

_h
ei

gh
t_

m
in

=1
;p

at
ch

_w
id

th
_m

ax
=1

2;
pa

tc
h_

w
id

th
_m

in
=3

C
irc

le
M

LP
ac

tiv
at

io
n=

"r
el

u"
;a

lp
ha

=0
.0

00
1;

hi
dd

en
_l

ay
er

_s
iz

es
=(

10
0,

);
so

lv
er

="
ad

am
"

C
irc

le
R

F
m

ax
_f

ea
tu

re
s=

sq
rt

(n
)

C
irc

le
S

P
O

R
F

m
ax

_f
ea

tu
re

s=
sq

rt
(n

)
C

irc
le

S
V

M
C

=1
;g

am
m

a=
1/

(n
_f

ea
tu

re
s*

Va
r(

X
))

;k
er

ne
l=

"r
bf

"
C

irc
le

kN
N

n_
ne

ig
hb

or
s=

5;
p=

2
H

/V
B

ar
s

Li
n.

S
V

M
C

=1
,p

en
al

ty
="

l2
";

ke
rn

el
="

lin
ea

r"
;lo

ss
="

sq
ua

re
d_

hi
ng

e"
H

/V
B

ar
s

Lo
g.

R
eg

C
=1

,p
en

al
ty

="
l2

"
H

/V
B

ar
s

M
F

m
ax

_f
ea

tu
re

s=
au

to
;p

at
ch

_h
ei

gh
t_

m
ax

=2
;p

at
ch

_h
ei

gh
t_

m
in

=2
;p

at
ch

_w
id

th
_m

ax
=9

;p
at

ch
_w

id
th

_m
in

=2
H

/V
B

ar
s

M
LP

ac
tiv

at
io

n=
"r

el
u"

;a
lp

ha
=0

.0
00

1;
hi

dd
en

_l
ay

er
_s

iz
es

=(
10

0,
);

so
lv

er
="

ad
am

"
H

/V
B

ar
s

R
F

m
ax

_f
ea

tu
re

s=
sq

rt
(n

)
H

/V
B

ar
s

S
P

O
R

F
m

ax
_f

ea
tu

re
s=

sq
rt

(n
)

H
/V

B
ar

s
S

V
M

C
=1

;g
am

m
a=

1/
(n

_f
ea

tu
re

s*
Va

r(
X

))
;k

er
ne

l=
"r

bf
"

H
/V

B
ar

s
kN

N
n_

ne
ig

hb
or

s=
5;

p=
2

Im
pu

ls
e

Li
n.

S
V

M
C

=1
,p

en
al

ty
="

l2
";

ke
rn

el
="

lin
ea

r"
;lo

ss
="

sq
ua

re
d_

hi
ng

e"
Im

pu
ls

e
Lo

g.
R

eg
C

=1
,p

en
al

ty
="

l2
"

Im
pu

ls
e

M
F

m
ax

_f
ea

tu
re

s=
0.

3;
pa

tc
h_

he
ig

ht
_m

ax
=1

;p
at

ch
_h

ei
gh

t_
m

in
=1

;p
at

ch
_w

id
th

_m
ax

=1
2;

pa
tc

h_
w

id
th

_m
in

=2
Im

pu
ls

e
M

LP
ac

tiv
at

io
n=

"r
el

u"
;a

lp
ha

=0
.0

00
1;

hi
dd

en
_l

ay
er

_s
iz

es
=(

10
0,

);
so

lv
er

="
ad

am
"

Im
pu

ls
e

R
F

m
ax

_f
ea

tu
re

s=
sq

rt
(n

)
Im

pu
ls

e
S

P
O

R
F

m
ax

_f
ea

tu
re

s=
sq

rt
(n

)
Im

pu
ls

e
S

V
M

C
=1

;g
am

m
a=

1/
(n

_f
ea

tu
re

s*
Va

r(
X

))
;k

er
ne

l=
"r

bf
"

Im
pu

ls
e

kN
N

n_
ne

ig
hb

or
s=

5;
p=

2
M

N
IS

T
Li

n.
S

V
M

C
=1

,p
en

al
ty

="
l2

";
ke

rn
el

="
lin

ea
r"

;lo
ss

="
sq

ua
re

d_
hi

ng
e"

M
N

IS
T

Lo
g.

R
eg

C
=1

,p
en

al
ty

="
l2

"
M

N
IS

T
M

F
m

ax
_f

ea
tu

re
s=

au
to

;p
at

ch
_h

ei
gh

t_
m

ax
=2

;p
at

ch
_h

ei
gh

t_
m

in
=2

;p
at

ch
_w

id
th

_m
ax

=5
;p

at
ch

_w
id

th
_m

in
=2

;
M

N
IS

T
M

LP
ac

tiv
at

io
n=

"r
el

u"
;a

lp
ha

=0
.0

00
1;

hi
dd

en
_l

ay
er

_s
iz

es
=(

10
0,

);
so

lv
er

="
ad

am
"

M
N

IS
T

R
F

m
ax

_f
ea

tu
re

s=
sq

rt
(n

)
M

N
IS

T
S

P
O

R
F

m
ax

_f
ea

tu
re

s=
sq

rt
(n

)
M

N
IS

T
S

V
M

C
=1

;g
am

m
a=

1/
(n

_f
ea

tu
re

s*
Va

r(
X

))
;k

er
ne

l=
"r

bf
"

M
N

IS
T

kN
N

n_
ne

ig
hb

or
s=

5;
p=

2

30

Biographical Note

Ronan Perry grew up in Ithaca, NY, and attended the Johns Hopkins University where he earned a

Bachelor’s degree in Applied Mathematics & Statistics in 2019 and a Master’s degree in Biomedical

Engineering in 2020, with a concentration in biomedical data science. During this period, he

worked at the biotechnology company Rheonix, spent a summer as a researcher in the Medical

Image Processing Lab in Geneva, Switzerland, and studied abroad at the Danish Technical Institute

where he competed in national and international ultimate frisbee tournaments.

31

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background and Related Work
	Classification
	Random Forests
	Sparse Projection Oblique Randomer Forests

	Methods
	Random Projection Forests on Manifolds
	Feature Importance

	Theoretical Results
	Partitioning of the Feature Space
	Classifier Consistency

	Simulation Results
	Simulation Settings
	Classification Accuracy
	Run Time

	Real Data Results
	Classification Accuracy
	Feature Importance

	Discussion
	Proofs
	Convex Polytope Partition Results
	Consistency Results
	Posterior Consistency
	Classifier Consistency

	Pseudocode
	Hyperparameters
	Biographical Note

