
 
 

 

EXAMINING THE POLICY AND PRACTICE DISCONNECT:  

THE IMPACT OF DATA-DRIVEN PERFORMANCE MONITORING ON DATA QUALITY 

IN INDIA’S PUBLIC HEALTH SECTOR  

 

 

 

 

 

 

by 

Ankita Nigam Meghani 

 

 

 

 

 

 

A dissertation submitted to Johns Hopkins University in conformity with the 

requirements for the degree of Doctor of Philosophy 

 
 

 

Baltimore, Maryland 

October 2020 

 

 

 

 

 

 

 

 

 

 

 

 

© 2020 Ankita Meghani 

All rights reserved 



ii 
 

Abstract 

Health management and information systems (HMIS) provide valuable data for monitoring and 

evaluating health services, identifying unmet needs, establishing local priorities, and measuring the 

performance of health programs. Considerable investments have been made in implementing 

technical approaches to improve HMIS performance, however, growing evidence suggest that 

focusing on these approaches alone is insufficient. 

 

A recent HMIS policy reform in Uttar Pradesh, India, implementing a series of technical approaches 

to improve the quality and use of HMIS data in decision-making, offered a unique opportunity to 

examine how organizational factors, including organizational culture, shape the implementation of 

formal policy guidelines and influence overall HMIS performance. The first paper qualitatively 

examines how organizational factors, for example, hierarchy and distribution of power, influence 

HMIS implementation processes, and in turn performance, from the perspectives of policy 

implementers. The second paper quantitatively examines how data quality varies among HMIS 

indicators that are used in performance metrics (like district rankings), that are associated with 

financial incentives and that are only collected for routine monitoring. The final paper describes the 

types of HMIS data manipulation observed in Uttar Pradesh (UP), and their underlying drivers.  

 

Results demonstrate that issues of weak HMIS implementation are not merely a reflection of 

insufficient resources or lack of technical guidelines. We found challenges associated with working 

within a strict hierarchy. Performance pressures and punitive work culture resulted in weak 

enforcement of data quality mechanisms and created perverse incentives to manipulate district 

ranking indicators to show high achievement of performance metrics. The HMIS data quality 

analysis corroborated these assessments and presented evidence to show the potential overreporting 
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of HMIS indicators that are associated with performance measures like district rankings and financial 

incentives.  

 

Looking ahead, stakeholder engagements would be critical for identifying context-appropriate 

strategies to: (i) align health actors on HMIS goals, so that the goal of high data quality is not at odds 

with the goal of achieving a high district ranking; (ii) strengthen the integrity of data-related 

processes at all levels; and (iii) to implement system-wide policies that make data manipulation an 

anomaly.   
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Chapter 1. Introduction 

 

1.1 Introduction to the study 

Health management and information systems (HMIS) in low- and middle-income countries (LMICs) 

like India routinely collect data on public health services provided by the government. For example, 

HMIS provide information about the availability of drugs, equipment, and the utilization of health 

services within a geographic area (Boerma, 2013). These data can be valuable for monitoring and 

evaluating health services, identifying unmet needs, and benchmarking the performance of different 

health facilities (World Health Organization, 2009).  

 

The importance of investing in strengthening the performance of HMIS has been codified in the 

World Health Organization’s (WHO) Health Systems Framework, which identifies Health 

Information Systems as one of the six critical building blocks of a health system (World Health 

Organization, 2007). Sustainable Development Goal 17.18 similarly underscores the importance of 

improving “the availability of high-quality, timely and reliable data disaggregated by income, gender, 

age, race, ethnicity….and other characteristics relevant in national contexts” to support decision-

making (United Nations, 2016).  

 

In discussing the importance of strengthening HMIS performance, it is important to acknowledge a 

paradigm shift that has occurred in the last few decades. In the early 1990s, improving the 

performance of HMIS often relied on technical solutions. These approaches focused on ensuring the 

availability of resources and designing and implementing technical rules for HMIS data collection, 

processing, and analysis. The expectation was that if managers had sufficient resources and 

developed appropriates rules and processes, then HMIS data would be used for decision-making 

(Aqil et al., 2009). Aligned with this thinking, global health partners and national governments 
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created technical outputs like the data management standards, training manuals on conducting data 

quality audits, and tools to better analyze and use data for decision-making (Health Metrics Network, 

2008; MEASURE Evaluation, 2019). 

 

Implicit in these technical approaches was the assumption that a well-designed HMIS would deliver 

on its intended HMIS performance goals of producing good quality data that are used in decision-

making. However, growing evidence from evaluations of HMIS in many LMICs show that these 

technical approaches have been simply insufficient in improving HMIS performance; thereby, 

questioning a linear causal relationship between HMIS inputs (e.g., resources), processes (e.g., good 

organizational rules), and outputs (e.g., use of good quality data in decision-making) (Chaulagai et 

al., 2005; Aqil et al., 2009).  

 

Increasingly, practitioners and evaluators of HMIS have underscored the importance of non-technical 

determinants, like organizational factors (e.g., the culture of information use), and behavioral factors 

(e.g., the demand for good quality data) in improving HMIS performance (Aqil et al., 2009), and 

have contributed to a paradigm shift which begs the question: If technical policies and guidelines are 

insufficient for improving HMIS performance, then what else explains HMIS performance, and how 

can HMIS performance be improved in a health system? 

 

The Government of Uttar Pradesh (GOUP) in the state of Uttar Pradesh, India, sees HMIS as an 

important source of information for planning, monitoring and evaluating health programs that are 

implemented across its 28,250 health facilities, which serve roughly 230 million state residents 

(Census Population, 2020). To improve the performance of its HMIS, beginning in 2014, the GOUP 

implemented a series of technical policies driven by the assumption that improvements in data 

quality would promote data use, and this reinforcing positive feedback loop would lead to better 
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HMIS performance. This HMIS policy reform in Uttar Pradesh offered a unique opportunity to look 

beyond the technical determinants and unpack the underlying organizational determinants of HMIS 

performance in Uttar Pradesh, India. 

 

1.2 Study objectives 

This dissertation explores the non-technical determinants of HMIS performance, such as 

organizational factors that are critical for effective HMIS performance, yet often less examined in 

literature. A majority of HMIS performance initiatives continue to rely on technical approaches, 

which predominantly focus on strengthening the formal rules and processes for HMIS, and 

insufficiently examine how contextual, organizational, and behavioral factors influence everyday 

HMIS practices.  

 

Leveraging both qualitative and quantitative methods (explained further in Chapters 2-4), this 

dissertation seeks to identify the barriers to HMIS performance, including the unintended 

consequences that result from a partial implementation of well-intentioned technical policy 

guidelines. Understanding factors that weaken or deter HMIS implementation is critical for 

informing strategies and mechanisms to remove such barriers and for supporting the 

institutionalization of processes that can ultimately lead to a stronger HMIS. This study contributes 

evidence on how non-technical factors, such as hierarchy, distribution of power and authority, 

discretion, and interpersonal power dynamics, influence the implementation of HMIS policies, and 

HMIS performance. In addition, this study examines one aspect of HMIS performance – data quality 

– and analyzes the underlying drivers of poor data quality, including factors that incentivize HMIS 

data manipulation.  
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Each of the three dissertation papers has a distinct aim. The first paper (Chapter 2), a policy 

implementation study, analyzes how organizational factors, including organizational culture shape 

the implementation of new HMIS policies in Uttar Pradesh from the perspectives of policy 

implementers, and further explains the observed gap between well-intentioned HMIS policies and 

their implementation. The second paper (Chapter 3) quantitatively examines how data quality varies 

among HMIS indicators that are used in performance metrics (like district rankings), associated with 

financial incentives or those that are only collected for routine monitoring. Finally, the third paper 

(Chapter 4) describes the types of HMIS data manipulation observed in Uttar Pradesh, with a focus 

on investigating the underlying drivers that create opportunities and the pressures to manipulate data 

and the rationalization of data manipulation by those involved.  

 

1.3 Conceptual framework  

The conceptual frameworks and theoretical perspectives that were used to inform the research 

questions, data collection, analysis, and interpretation of findings, are presented in the chapters 

specific to each of the three aims. However, the overall dissertation and the literature review draws 

on the concepts presented in the Performance of Routine Information Systems (PRISM) framework 

(Aqil et al., 2009), which emphasizes the role of underlying non-technical determinants like 

organizational and behavioral factors in influencing HMIS processes and ultimately, HMIS 

performance.  

 

The PRISM framework promotes an integrated approach to analyzing HMIS performance. As shown 

in Figure 1, the framework recognizes that the collective interactions among technical factors, 

organizational factors, and behavioral factors can shape HMIS data processes, and in turn, influence 

overall HMIS performance (Figure 1). For example, technical factors, like HMIS design and the 
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complexity of data collection forms can influence data processes, like data collection, which in turns 

affects HMIS performance. Similarly, the PRISM framework recognizes the importance of 

organizational factors (e.g., available resources, training and supervision), however among these, it 

does not explicitly recognize less tangible factors, like accountability, enforcement of HMIS rules, 

and work culture that may also influence HMIS data processes in critical ways. The PRISM 

framework below has been adapted to include these factors (reflected in blue). In addition, discretion, 

autonomy and authority have been added to the PRISM framework as both organizational and 

behavioral factors. While organizations may set, for example, the degree of authority one has in the 

workplace, we recognize that individuals also have the capacity to determine how to exercise that 

authority.  

 

Overall, the conceptual framework suggests that technical, organizational and behavioral factors can 

influence the implementation of data processes, which in turn drive HMIS performance, reflected in 

improved HMIS data quality and use of HMIS data in decision-making. Decisions made based on 

good quality data are expected to improve health systems performance and ultimately lead to better 

health status.  

 

An examination of interactions between technical, organizational and behavioral factors presented in 

the PRISM framework, or even a subgroup of them, may help inform the development of different 

interventions to strengthen or reform HMIS. 
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Figure 1. Performance of Routine Information Systems framework 

 

*Adaptations; Source (Aqil et al., 2009) 

 

1.4 Overview of health management information systems (HMIS) 

Brief history of HMIS strengthening efforts 

A well-functioning HMIS is a core component of a country’s health system and is designed to 

generate timely, relevant, and accurate information to facilitate decision-making about managing, 

planning, and monitoring health programs. During the Millennium Development Goals (MDGs), the 

escalating demand for data to monitor and track the progress of health programs, build accountability 

and create transparency, drew global attention to the challenges of existing HMIS in many low- and 

middle-income countries (LMICs) (Chan et al., 2010). In addition, as vertical donor-funded data 

collection efforts proliferated, the MDGs highlighted the missed opportunity of making better use of 

routinely generated HMIS data (Chan et al., 2010). 
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To coordinate and align HMIS efforts on a global level and to strengthen the performance of HMIS 

in LMICs, the Health Metrics Network was established in 2005 (Vidaurre-Arenas et al., 2005). The 

Health Metrics Network created universal standards and methodologies for data collection, analysis, 

synthesis and dissemination, and developed a technical framework outlining the components of a 

successful national health information system (Health Metrics Network, 2020). This framework 

highlighted the core technical components (including resources and data management policies) that 

would ultimately lead to good data quality and data use. Around the same time, in 2009, the 

International Health Partnership (IHP+) also organized themselves around a common monitoring and 

evaluation platform. Through a common evaluation framework, IHP+ aimed to align countries and 

partners to develop a national comprehensive monitoring and evaluation plan that would generate the 

data required for monitoring progress and performance of health programs without creating undue 

reporting burdens in accordance with the principles of the Paris Declaration of Aid Effectiveness 

(International Health Partnership+, 2009). 

 

Health partners generated and implemented technical tools in LMICs to: (i) inform and assess the 

design of a well-performing HMIS, (ii) identify barriers to data quality and data use; (iii) determine 

appropriate stakeholders for data-related processes; and (iv) develop measures to monitor data 

quality and use. Varying levels of financial and technical investments were made to strengthen 

national-level capacity building efforts, for example, by developing HMIS training curricula and 

implementing trainings, designing HMIS monitoring tools and documenting best practices to support 

continuous HMIS improvement (Health Metrics Network, World Health Organization, 2012; 

MEASURE Evaluation, 2017, 2019).  

 

In parallel to these strengthening efforts at the global and national levels, there was increasing 

evidence on factors affecting HMIS performance in LMICs. While technical guidelines and the 
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implementation of technical processes were expected to improve data management, data quality and 

data use, some researchers acknowledged that they were not an end in themselves for assuring good 

data quality and data use (Garrib et al., 2008; Karuri et al., 2014). In fact, there was growing 

recognition of underlying non-technical determinants that may influence HMIS processes and overall 

performance. The Performance of Routine Information System Management (PRISM) developed by 

Aqil and colleagues (Aqil et al., 2009) encapsulated some of these concerns and identified three 

interrelated determinants - technical, behavioral and organizational factors - that influence HMIS 

processes and performance, which is measured by good data quality and the use of those data in 

decision-making (Aqil et al., 2009). 

 

Factors affecting HMIS performance 

Based on a review of literature, the underlying challenges and opportunities to strengthen HMIS 

performance are presented below according to the three determinants identified in the PRISM 

framework (Aqil et al., 2009).  

 

A. Technical factors 

Technical factors have been defined as the “know how” for designing, implementing, and 

strengthening HMIS processes (Aqil et al., 2009). These include the design of data collection forms, 

the reporting processes that govern data collection, analysis, and review, as well as the complexity of 

information communication and technology (ICT) services that support HMIS data collection and 

management processes. In many countries, technical barriers - reflected in the high burden of data 

collection and data entry, use of complex reporting forms, and lack of universal data reporting 

standards - have adversely affected data quality (Odhiambo-Otieno, 2005; Andargie, 2006; Foreit et 

al., 2006; Aqil et al., 2009; Djibuti et al., 2009; Braa et al., 2012; Boerma, 2013; Teklegiorgis et al., 

2014; Nah and Sæbø, 2017). Relatedly, challenges arise from the complexity and design of the data 



9 
 

collection forms, for example, the collection of too much data (Braa et al., 2012) or the absence of 

relevant data (Al Laham et al., 2001).  

 

The implementation of user-friendly computer software, and HMIS data rationalization activities 

have been found to address HMIS-related technical barriers. For example, countries that have 

implemented the District Health Information System (DHIS) platform have reportedly improved the 

timeliness of reporting, and increased the use of data for decision-making at local levels (Boerma, 

2013). The implementation of user-friendly software systems have also been found to facilitate data 

analysis by automating the analytical capacity and thereby supporting data use (Mutale et al., 2013). 

With respect to improving reporting forms and the use of collected data, a study in Zanzibar 

demonstrated how regular review of HMIS data through quarterly workshops contributed to a 

reduction in number of data elements collected, and the integration of many vertical data collection 

forms into a more streamlined HMIS form. In addition to successfully rationalize the HMIS 

indicators, these quarterly data use workshops were also found to strengthen technical capacity such 

as, data analysis and interpretation skills, as well as data presentation skills, which contributed 

towards the timeliness, completeness, and accuracy of HMIS data (Braa et al., 2012).  

 

B. Organizational factors 

Organizational factors refer to the broader organizational context that influences HMIS performance 

through formal and informal rules, organizational values and norms, as well as the availability of 

financial and technical resources, such as the level of training and supervision of those involved in 

HMIS activities (Aqil et al., 2009).  

 

Inadequate availability of human resources both in number and technical skill, as well as, the absence 

of inputs necessary for data collection and analysis efforts, such as data collection forms/registers, 
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pens and papers, and computers for data managers to perform their jobs have been found to impede 

all aspects of HMIS performance, including data collection, data entry, data analysis and review, as 

well as activities, like supportive supervision (Aqil et al., 2009; Ndabarora et al., 2014; Nah and 

Sæbø, 2017). In particular, in clinical settings with persistent health worker shortages, where health 

workers have to decide between attending to their patients’ needs or entering data; the latter has 

consistently been deprioritized (Nah and Sæbø, 2017). Relatedly, in settings where HMIS reporting 

from peripheral health facilities to the district-level is paper-based, delays in transferring data from 

one level to the next have been attributed to transportation challenges; for example, in Cameroon, 

submission of paper-based HMIS reports at district-levels depended on when sub-district supervisors 

traveled to district offices for meetings (Nah and Sæbø, 2017). 

 

Organizational rules, both formal and informal, have also been found to affect data quality and data 

use. Rules refer to the shared understanding among actors about “what actions are required, 

prohibited, or permitted”(Ostrom, 2011). Formal rules expressed in government orders, circulars, 

letters, and other guidelines govern what data are collected, at what frequency, and indicate when and 

how data should be reviewed for accuracy or used in decision-making. Such rules dictate how 

information or data systems are structured, managed, or may be accessed by a decision-maker.  

However, formal rules may also reinforce silos among data collection processes, limiting the ability 

to harmonize and integrate data across different sources, and hindering a more holistic understanding 

of health needs. For example, the centralized data management structure in Mexico was found to 

affect data use by limiting the flow of information to lower, operational levels where those data may 

be most relevant for decision-making (Trostle et al., 1999).  

 

While formal rules reflect the “written policies,” they may not always be practiced as such. In 

practice, “working rules” are what are implemented and adhered to (Ostrom, 2011). Working rules 
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may arise from a lack of clarity or specification in formal documents. However, working rules more 

commonly reflect the shared values among actors within an organization (Ostrom, 2011), which may 

reinforce normative behaviors around HMIS-related processes, and in turn may influence HMIS 

performance. For example, organizational cultures that were unsupportive of ‘data collection’ and 

‘information’ made minimal investments in the development and capacity of their information 

systems (Kamadjeu et al., 2005).  

 

Organizational culture and governance processes were also found to stymie HMIS processes, 

affecting both data quality and data use. For example, in Orissa, despite guidelines for conducting 

supportive supervision visits, presiding norms condoned weak implementation of supervision and 

data quality checks at lower administrative tiers, which contributed to overall low quality of HMIS 

data (Bhojani et al., 2010). A study in Pakistan demonstrated that the weak prioritization of data-

related activities by the leadership resulted in incomplete reporting and exacerbating the data quality 

of the province (Qazi and Ali, 2009). Poor data quality has also been attributed to intentional data 

manipulation, for example, studies in India, and Pakistan found HMIS data were overreported by 

junior staff at the insistence of their superiors, who wanted to secure additional funds for their health 

facilities (Qazi and Ali, 2011; Husain et al., 2012). Similarly, a study in Nigeria showed the 

underreporting of maternal deaths to meet hospital performance targets (Oni-Orisan, 2016).  

 

Overall, these findings suggest that factors related to organizational culture, such as strict adherence 

to hierarchies within a health system, may lead staff to operate in ways that meet favor with their 

supervisors (perhaps through reporting inaccurate data) rather than enhancing data quality.  

Though not explicitly stated in the PRISM framework, the ability to implement HMIS-related 

processes and use data for decision-making is also influenced by the level of power and autonomy 

given to HMIS data staff and data units within the health system (Mutemwa, 2006; Wickremasinghe 
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et al., 2016). For example, the low prioritization of national statistical agencies reflected in their 

small annual financial budgets has limited the functional authority necessary for strengthening HMIS 

performance in many LMICs (Sandefur and Glassman, 2015).  

 

C. Behavioral factors 

The behaviors of both data collectors and users, as well as underlying drivers influencing their work-

related motivation, confidence, and competency may affect the prioritization and implementation of 

HMIS-related processes (Harrison and Nutley, 2010; Moreland et al., 2010; Oliver et al., 2014). For 

example, interpersonal relationships between supervisors and supervisees, and workplace culture, 

may influence the motivation to complete HMIS-related tasks and shape other behaviors that 

influence HMIS processes (Mutemwa, 2006; Aqil et al., 2009; Qazi and Ali, 2009). In Syria, poor 

feedback given to doctors who were expected to report on notifiable diseases contributed to a 

perception that reporting these diseases was not important (Al Laham et al., 2001). Similarly, weak 

implementation of data quality checks also resulted in data clerks developing “the habit for data 

falsification” according to a study conducted in Cameroon (Nah and Sæbø, 2017). The same study 

noted that though monthly reports were an impetus for data review, the actual use of these data to 

improve health program performance was absent. Together, these findings suggest that despite 

having formal organizational processes, existing norms and values shaped individual behaviors that 

in turn affected the effectiveness of HMIS processes (Aqil et al., 2009; Ndabarora et al., 2014). 

 

Specifically with respect to data use, studies have found that multiple factors, including: a decision-

makers’ perceptions about data; their technical ability to understand, analyze and/or use the data, 

their work-related motivation, their personal interests, as well as the vested interests of other actors 

may influence demand and use of HMIS data in decision-making (Harrison and Nutley, 2010; 

Moreland et al., 2010; Oliver et al., 2014). Due to their preconceived notions or perceptions about 
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program operations and performance, decision-makers may have low appreciation for data, 

especially, if data contradict their own perceptions of success (Weiss and Bucuvalas, 1980). 

Relatedly, decision-makers may also discredit data for being of low quality, inaccurate or irrelevant 

to their decision-making needs (Mutemwa, 2006). For example, Aqil and colleagues noted that some 

decision-makers found household- and facility-level surveys more objective than HMIS data, and 

therefore preferred the former in decision-making (Aqil et al., 2009). Such perceptions not only 

affect decisionmakers’ demand for the data, but also influence how inclined they may be to take 

‘ownership’ of the data. Those who are less likely to take ownership of these data, are also found to 

be less likely to invest in improving data quality and thereby reducing the usability of data in 

decision-making (Odhiambo-Otieno, 2005; Harrison and Nutley, 2010).  

 

1.5 Study context and research site 

The data for this study were collected from the district, division and state-levels in Uttar Pradesh, 

India. Data were collected from 16 different districts that span four different administrative divisions. 

At the state-level, data were collected from Directorates of Medical Health and Family Welfare, and 

the National Health Mission, which are in Lucknow, Uttar Pradesh. 

 

To place the research site into a broader context, Uttar Pradesh is the most populous state in India 

and home to roughly 230 million people (Census Population, 2020). If it were a country, Uttar 

Pradesh would be the sixth most populous country in the world following China, India, United 

States, Indonesia, and Pakistan  (US Census Bureau, 2020). However, when measured based on 

health outcomes, Uttar Pradesh continues to lag behind other Indian states in maternal and child 

health indicators as well as social development indicators, such as poverty and literacy rates (The 

DHS Program, 2016). To address these pressing challenges, the GOUP has prioritized improving the 
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performance of its health system, particularly its HMIS (Government of Uttar Pradesh, 2013, 2015). 

As described in the next section, the GOUP expected that improvement in HMIS data quality would 

better inform health program planning and monitoring, which in turn, would improve service 

delivery and increase the impact of different health interventions and programs (Government of Uttar 

Pradesh, 2013, 2015). 

 

HMIS system overview in Uttar Pradesh 

Many of the challenges affecting HMIS performance (described in Section 1.4) have also been 

observed in Uttar Pradesh. In 2009, consistent with national-level Government of India (GOI) policy 

recommendations, the GOUP implemented the national-level HMIS platform (hereafter, 

HMIS)(Government of India, 2008). In 2014, five years following the implementation of HMIS in 

Uttar Pradesh, an assessment conducted by the GOUP with the support of the Uttar Pradesh 

Technical Support Unit (UP-TSU) revealed several technical and process-related challenges affecting 

HMIS performance. 

 

On a technical level, several issues with the existing HMIS were noted (Meghani et al., 2020). 

Firstly, HMIS data reporting forms were unavailable at different levels of the health system. 

Secondly, duplicative data were being collected between the HMIS reporting forms and vertical 

program specific paper-based reports. Thirdly, there was a mismatch between what data program 

managers at the district- and state- levels found useful (e.g., indicators capturing inputs and 

processes) versus what was actually being collected in the HMIS (e.g., indicators capturing outputs). 

In addition, managers at the block- and district- levels lacked digital access to the facility-level HMIS 

data for analysis. At the state-level, though program managers had access to these data, monthly 

reports from at least 28,000 health facilities had to be individually downloaded in order to conduct 

state-wide analysis, a process that could take up at least two weeks.  
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Weak reporting processes at the block- and district-levels were also found to contribute to untimely 

and incomplete reporting of data to the HMIS. In part, this was attributed to the varied 

implementation of reporting guidelines across the state. Because data were usually aggregated and 

analyzed before the monthly District Health Society meetings held by the District Magistrates, 

reporting periods varied from district to district based on when this meeting was scheduled. This 

resulted in districts forwarding data to the state at different time points resulting in unique monthly 

reporting periods by district (e.g., 16-15th, 26-25th, 1-30th) that diverged from the state’s expected 

HMIS reporting guidelines.  

 

The assessment also revealed that districts had inadequate mechanisms in place to validate HMIS 

data quality before they were entered into the HMIS at the district-level. This challenge was reflected 

in the incompleteness and inaccuracy of several data element reported in HMIS. Relatedly, the 

assessment also found that mechanisms to promote the use of HMIS data for decision-making were 

weak at the district-level. While two monthly district-level meetings chaired by district-level Chief 

Medical Officers and District Magistrates were held, these meetings tended to focus on resolving 

logistical issues rather than strategically reviewing data to inform decision-making about program 

improvement. In part, this was attributed to the lack of understanding about what data sources/portals 

should be reviewed during these meetings, and how those data should be analyzed and interpreted to 

identify performance gaps and inform decision-making.  

 

The development of UP-HMIS and policy guidelines to strengthen its performance 

To address these technical challenges associated with the HMIS, with the support of the UP-TSU, the 

GOUP created its own data platform known as the Uttar Pradesh HMIS (UP-HMIS) in 2015. The 

three primary objectives for developing UP-HMIS were: (1) to capture data elements that were 
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absent in the HMIS but imperative to decision-making at the district- and state-levels; (2) to integrate 

data elements from government data portals and different health program paper-based reports into 

one centralized data source –  the UP-HMIS; and (3) to provide decision-makers at different levels of 

the health system with relevant data to measure holistically the performance of health programs. 

Following the development and implementation of the new UP-HMIS, the GOUP with the support of 

the UP-TSU conducted state-wide trainings for sub-center, block, district, division and state staff on 

the new UP-HMIS data formats and the corresponding web-based UP-HMIS portal in 2017. These 

initial capacity building activities were followed by targeted efforts to strength the processes 

governing HMIS data quality and HMIS data use for decision-making, particularly at the district-

levels. To this end, the GOUP developed and released a series of government orders, circulars, and 

memos. Figure 2 presents a simplified timeline highlighting the major policy decisions that were 

implemented by the GOUP. These policy decisions are discussed further in Chapter 2, which 

examines UP-HMIS policy implementation at the district-level. 

 

Figure 2. Simplified timeline of major GOUP policy decisions with respect to improve HMIS data 

quality and data use 
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The parent project and my role 

This dissertation was nested in a health system strengthening project led by Johns Hopkins 

Bloomberg School of Public Health (JHSPH) in Uttar Pradesh, India under the direction of Dr. David 

Peters, the Principal Investigator from JHSPH. The overall project aimed to provide analytical 

support to the Uttar Pradesh, Technical Support Unit (UP-TSU), a technical unit to the Government 

of Uttar Pradesh (GOUP). One of the key priorities of the UP-TSU has been to improve the 

performance of the state’s Health Management Information Systems (HMIS). In collaboration with 

the GOUP, the UP-TSU has played a critical role in designing and implementing the UP-HMIS 

described above, as well as, designing and scaling up initiatives to improve the quality and use of 

UP-HMIS data in decision-making at the block, district and state-levels.  

 

As a research assistant and doctoral student on this project, I was closely involved with the project’s 

Data Use workstream, which focused on understanding the performance of the UP-HMIS. I played a 

key role in designing, planning and implementing the primary data collection for the Data Use 

workstream; developing the study protocols and managing the submissions of the Institutional 

Review Board approvals; as well as preparing training materials, conducting trainings, pilot-testing 

data collection tools, and analyzing and drafting the results.  

 

To oversee and implement these activities, I was based in Lucknow, the capital city of Uttar Pradesh, 

for roughly one year. This time allowed me to collaborate with our colleagues at the UP-TSU who 

informed the conceptualization and supported the implementation of this dissertation. At the outset of 

my dissertation, I spent several weeks trying to understand the UP-HMIS – for example, what led to 

its development and why; what are the new reporting mechanisms; and what are GOUP’s processes 

to verify data quality, and what are their expectations for data use at different levels of the health 

system.  
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At the time, many of my conversations with UP-TSU colleagues focused on understanding how 

broader institutional mechanisms promoted or hindered the use of data for decision-making at the 

district-level, given the important administrative role districts play in the state’s health system. In 

addition, we discussed how district-level decision-makers’ perceptions about their own 

empowerment in the workplace might influence their use of data for decision-making. These 

discussions largely reflected my previous dissertation interests, which focused on understanding the 

relative role of individual- and organizational-factors in shaping the use of data in decision-making.  

 

However, findings from my formative work, consisting of in-depth interviews and a few district-level 

meetings observations, which aimed to understand UP-HMIS policy implementation processes at the 

district-level (first aim), brought a fundamental question to the forefront: are HMIS data of high 

enough quality to be used for decision-making? Challenges associated with data quality dominated 

nearly every interview and for strong technical reasons, I revised my second and third aims to focus 

explicitly on issues affecting HMIS data quality as presented in Section 1.2. 

 

During the revision process and during subsequent stages of data collection, I periodically discussed 

emerging themes and general observations with UP-TSU colleagues and sought their reactions. 

Currently, UP-TSU colleagues are reviewing the three papers presented in this dissertation (Chapters 

2, 3, and 4) and I will be discussing the findings with them by Zoom in August 2020. Their written 

and oral feedback will be incorporated into the final drafts of the manuscripts before publication.  

I would also like to note that this dissertation research is closely linked with other work products 

from the Data Use workstream. The Data Use workstream’s two primary goals are to: (i) describe 

existing processes, including barriers and facilitators, for data quality and use; and (ii) examine and 

strengthen HMIS data quality in Uttar Pradesh, India. Findings from this dissertation will contribute 
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to both the goals by: (i) describing the factors affecting the implementation of data quality and data 

use policies at the district levels and identifying data-related processes and systems that may not be 

functioning as expected (Chapters 2 and 4), and (ii) examining the quality of HMIS data (Chapter 3). 

In addition, findings from this dissertation, which focuses largely on processes at the district-level, 

complements the objectives of a separate data use survey, which examines the capacity to demand 

and use HMIS data by division- and state-level officials. Overall, our hope is that the Data Use 

workstream is able to provide a comprehensive view of how HMIS data is being collected, analyzed, 

monitored and used in Uttar Pradesh, with the aim of helping GOUP build a culture of information 

use – one that aligns incentives and existing accountability mechanisms for data use and data quality 

activities across the state. 

 

Positionality 

It is important to reflect on my positionality as a researcher given my roots and strong family 

connections in Uttar Pradesh. First and foremost, I found being able to speak Hindi with native 

fluency, and using my middle name - formerly my maiden name (a common surname in Uttar 

Pradesh) to introduce myself during interviews - immediately created a sense of familiarity, which 

helped me build a stronger rapport with my respondents. Often, my interviews began and ended with 

questions about myself and my family, including, which part of Uttar Pradesh I belong to and where 

my family lives. I found these conversations created a sense of kinship, which I think was critical for 

rapport building, and helped create a comfortable interview space.  

 

During district-level interviews, and particularly when discussing issues around hierarchy, a punitive 

work culture, and data manipulation, I deemphasized the “foreign” aspects of my identity, like my 

international institutional affiliation, which could be viewed as prestige marker, and could lead 

respondents to perceive me as being more powerful relative to them. In addition, especially for 



20 
 

sensitive issues, like data manipulation, I found my myself switching between being informed and 

uninformed, or even at times, being naïve in order to encourage respondents to provide greater 

details, which otherwise they would have been assumed to be commonly understood.  

 

When speaking with a few senior health and administrative officials at the district and state levels, I 

found that drawing on my international institutional affiliation actually made it easier for me to 

schedule interviews with them. Similarly, for some interviews at the division- and state-levels, being 

introduced by UP-TSU colleagues was critical for gaining access to potential respondents. To access 

district-level respondents generally, I found approaching contractual data staff and scheduling 

interviews with them first, enabled subsequent access to the remaining district-level respondents 

during my visit.  

 

Across all the interviews, I found that having a strong foundational understanding of the UP-HMIS 

was critical for gaining access to their more intimate insights and opinions about implementation 

processes and challenges. In two occasions, I found being conversant in the content and details of 

UP-HMIS government orders was imperative for being given time to conduct interviews with two 

district-level health officials.  

 

Nearly all my study respondents at the district-level, and most of my respondents at the division- and 

state-level were men. Often being the only woman or one of the only women was especially obvious 

when I conducted district-level meeting observations. Overall, I did not see being a woman factored 

into the quality of my interviews because I found my strong ties to Uttar Pradesh and being a native 

Hindi speaker was most critical for developing a strong rapport with all of my respondents, and 

gaining access to intimate insights, which I think otherwise would have been quite difficult. In one 

notable occurrence, I did find that my caste played a role. After my interview ended, one district-
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level respondent personally introduced me to a senior district health official because of our common 

caste (which is identifiable based on my maiden name). This was an exception. The issue of caste did 

not emerge during my interview with this district health official, nor did it come up again in the 

interview process. 

 

I think coming to the interview space as an “outsider” also had its advantages. Because I did not have 

any preconceived notions, I was able to open myself up to new perspectives. For example, while the 

problem of data manipulation is well-known among actors within the GOUP health system, I was 

surprised by how frequently respondents spoke about it with a blithe lack of concern. I was also 

equally surprised to see how infrequently data manipulation was explicitly discussed in HMIS 

literature.  

 

In this respect, being able to draw upon attributes of being an “insider” and an “outsider,” provided 

me with a unique advantage that fueled my motivation and interest to study data manipulation in 

greater depth without having to worry about standing out.  

 

1.6 Organization of the dissertation 

The subsequent three chapters – 2, 3, and 4 – pertain to my three aims. Chapter 2, a policy 

implementation analysis, examines how organizational factors, including organizational culture, 

shaped the implementation of new HMIS policies in Uttar Pradesh, India from the perspectives of 

policy implementers. Chapter 3 quantitatively examines how data quality varies among HMIS 

indicators that are used in performance metrics (like district rankings), associated with financial 

incentives or those that are only collected for routine monitoring. Chapter 4 qualitatively explores the 

construct of data manipulation. It first describes the types of data manipulation observed in HMIS, 
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and then explains the driving factors that have allowed data manipulation practices to persist. 

Reflecting on the findings of this dissertation, Chapter 5 offers concluding remarks on strengthening 

HMIS performance, including considerations for addressing the problem of data manipulation and 

potential areas for future research. 
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Chapter 2. The disconnect between policy intentions and implementation 

practices: How organizational factors influence health management 

information systems in Uttar Pradesh, India 

 

2.1 Introduction 

Timely, accurate and relevant health data are fundamental for the effective implementation, 

monitoring, and management of health programs (Aqil et al., 2009). For example, data gathered in 

health management information systems (HMIS) are critical for informing public health decision-

making (World Health Organization, 2019). Among other data sources, HMIS data routinely provide 

national and local decision-makers with information about the changing disease burden of their 

populations, and the range and number of health services delivered to them. These data further enable 

decision-makers to establish and plan local health priorities, allocate resources, evaluate health 

services, and identify areas of unmet health needs.  

 

The Millennium Development Goals (MDGs) underscored the importance of strengthening data 

systems as a “global public good” (Chan et al., 2010). The increased demands for data, including 

HMIS data, during the MDGs were largely fueled by global donors who used results-based 

mechanisms to track performance, enhance accountability, and evaluate their own investments in 

low- and middle-income countries (LMICs) (Chan et al., 2010). However, these demands for data 

also revealed the weaknesses of HMIS in LMICs (Boerma and Stansfield, 2007) including challenges 

exacerbated by the fragmented disease-specific data collection efforts, and high reporting burdens 

associated with donor-sponsored programs (AbouZahr et al., 2007; Chan et al., 2010). 

 

Over the past 15 years, there has been a renewed focus on strengthening HMIS in LMICs 

(MA4Health, 2015). However, persistent barriers to HMIS performance remain (Akhlaq et al., 2016; 
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Macfarlane et al., 2019). HMIS performance, reflected in the quality and use of HMIS data in 

decision-making, has been influenced by three interrelated determinants: technical, behavioral and 

organizational factors (Aqil et al., 2009). Technical factors, like complex reporting forms and 

insufficient human resources, have been found to weaken HMIS data collection, entry and analyses  

(Andargie, 2006; Foreit et al., 2006; Aqil et al., 2009; Djibuti et al., 2009; Teklegiorgis et al., 2014). 

Relatedly, the behaviors of both data collectors and users, including their levels of work-related 

motivation, confidence, and competency to perform their work, influence the prioritization and 

implementation of HMIS-related processes (Harrison and Nutley, 2010; Moreland et al., 2010; 

Oliver et al., 2014). Organizational factors, such as interpersonal relationships between supervisors 

and supervisees and workplace culture, may also influence the motivation to complete HMIS-related 

tasks (Mutemwa, 2006; Aqil et al., 2009; Qazi and Ali, 2009). Similarly, existing norms and values 

around data use within organizations may directly influence HMIS performance (Aqil et al., 2009; 

Ndabarora et al., 2014). 

 

Evidence suggests that technical tools have only been partially effective in improving HMIS 

performance (Belay et al., 2013; Welay et al., 2017; Wandera et al., 2019). In fact, non-technical 

factors, such as social and political influence in decision-making have been found to contribute to 

low HMIS data use (Wickremasinghe et al., 2016) and poor HMIS data quality (Qazi and Ali, 2011). 

Chauglagai et al. corroborated this point, in their reflection of Malawi’s HMIS implementation, and 

concluded: “no matter how good the design of an information system, it will not be effective unless 

there is internal desire, dedication and commitment of leadership to have an effective and efficient 

health service management system” (Chaulagai et al., 2005). So far, few studies on HMIS have 

moved beyond technical assessments (Mutemwa, 2006; Qazi and Ali, 2009, 2011; Maluka et al., 

2010), and a fundamental question remains unanswered: why have HMIS strengthening objectives 

not been met despite significant financial, technical and capacity building investments? 
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To address this question, it is critical to understand how the “software” components of HMIS (e.g., 

organizational cultural factors including hierarchy, distribution of power and authority, discretion, 

and interpersonal power dynamics) interact with their “hardware” counterparts (e.g., formal rules and 

processes) (Sheikh et al., 2011). Thus, we analyze how organizational factors, including 

organizational culture, shape the implementation of new HMIS policies in Uttar Pradesh (UP), India 

from the perspectives of policy implementers. In addition, we attempt to explain the observed gap 

between well-intentioned HMIS policy guidelines and their actual implementation, which has 

contributed to the partial achievement of the HMIS policy objectives; and finally, we conclude with 

considerations for strengthening HMIS. 

 

Study context 

This section provides an overview of the new HMIS policies implemented in UP, and summarizes 

the roles of key government workers, who are involved in policy implementation. 

 

A. The design of the Uttar Pradesh - Health Management Information System (UP-HMIS) 

In 2015, the Government of Uttar Pradesh (GOUP) with the support of the Uttar Pradesh, Technical 

Support Unit (UP-TSU), an entity established in partnership between the Bill and Melinda Gates 

Foundation and the GOUP, implemented new policy guidelines (hereafter referred to as policies) to 

strengthen the state’s HMIS performance. These policies aimed to address existing barriers with 

HMIS performance, for example, the complexity and duplication of reporting formats, and weak 

processes resulting in the lack of timeliness and completeness of reporting across block- and district-

levels (Meghani et al., 2020).  
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First, the GOUP designed and implemented its own data platform, the Uttar Pradesh HMIS (UP-

HMIS), to include data elements that state program managers felt were absent in the national HMIS 

but relevant for decision-making. Second, the GOUP developed policies to improve the UP-HMIS 

data quality and use. Table 1 presents these policy details and their current implementation status.  

 

1. Data quality policies  

To improve data quality, the GOUP targeted two points in the UP-HMIS data flow (Appendix 1): (i) 

the block-level, where data from public and private health facilities are collated before being 

forwarded to districts; and (ii) the district-level, where data from blocks and additional private health 

facilities are collated before being forwarded to the state-level.  

 

Data quality policies targeted strengthening UP-HMIS reporting and monitoring and evaluation 

(M&E) processes. First, all paper-based health facility reports which were collated at the block-level 

were directly entered into web-based portals, thereby discontinuing paper-based reporting from 

block- to the district- and state- levels. Second, blocks and districts were required to establish data 

validation committees to ensure UP-HMIS data quality were vetted before being forwarded to 

subsequent administrative levels (from block to district, and district to state) (Appendix 2). To 

complement these initiatives, a state-level data validation committee and data quality audit teams 

were subsequently established. 
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Table 1. Overview of key Government of Uttar Pradesh (GOUP) policy guidelines to improve data quality and use 

 Policy topic (description) 
 

District policy 

status 4  

Situation post policy 

implementation 

Implications  

Data quality 

R
ep

o
rt

in
g

 

J
a

n
u

a
ry

 2
0
1

5
 

Timeliness and periodicity of reporting 

by blocks 

 

(Paper-based health facility reports1 are 

entered into digital portals at the block-

level during a specific timeframe)  
 

Partial 

implementation  

 

Overburdened data entry operators are 

unable to enter data from health 

facilities during the allocated time  

 

 

(1) Data on digital portals are 

incomplete, missing or inaccurate, 

especially those data elements that are 

not used to calculate district rankings; 

(2) Due to incomplete data some 

district and state officials rely on paper-

based or other forms of reporting 

resulting in multiple sources of data  

J
u

n
e 

2
0

1
5
 

Reporting from private health facilities 

and medical colleges in Uttar Pradesh to 

the UP-HMIS digital portal 

 

(Private sector services are captured on 

paper-based forms and entered to digital 

portals at the block- and district-levels) 

Low 

implementation 

 

Private facilities rely on paper-based 

reporting; reporting has been 

infrequent despite the state- and 

district-level directives urging 

compliance 

(1) Limited data on utilization of 

services in the private sector 

M
a

y
 2

0
1

7
 

Discontinuation of paper-based 

reporting1 in favor of reporting via 

digital portal 

 

(Only digital reports are to be used at all 

levels of the GOUP health system so that 

decisions are made using a single source 

of data) 

 

Partial 

implementation 

 

Paper-based reports are being used to 

cross-check the data reported in the 

UP-HMIS digital portal at the district-

level 

(1) Validation of data quality between 

paper-based reports and digital portal 

data has replaced recommended data 

quality checks like supportive 

supervision visits; (2) When 

discrepancies exist, paper-based reports 

are viewed as the “gold standard” 

because they are signed off by block 

health officials 
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 2
0
1

5
 

Data quality supportive supervision 

visits by block officials 

 

(Block officials are expected to check 

data accuracy by comparing digital data 

with source data reported in health 

registers using supportive supervision 

checklists) 
 

Low 

implementation  

 

Irregularly implemented based on 

assessment of district program and 

data staff 

 

Block staff are viewed as lacking the 

technical know-how to conduct data 

quality checks 

(1) Frequent detection of data quality 

errors at the district-level, particularly 

during the district data validation 

committee meetings 
A

u
g

u
st

- 
S

ep
te

m
b

er
 2

0
1

5
 

2
 

Establishment of block and district level 

data validation committees 

 

(Data validation committee meetings are 

expected to review the accuracy of 

digital portal data before they are 

reviewed by the next administrative 

level) 
 

Block: Partial 

implementation 

 

District: High 

implementation 

  

Meetings held irregularly held at the 

block-level 

 

Meetings held regularly at the district-

level 

(1) Frequent detection of data quality 

errors at the district-level, particularly 

during the district data validation 

committee meetings 

Data use 

M
o

n
it

o
ri

n
g

 &
 f

ee
d

b
a

ck
 

J
a

n
u

a
ry

 2
0
1

6
 

Guidelines outline: (1) the review of UP- 

Health Dashboard, specifically the 

district rankings, to inform decision-

making during monthly district-level 

meetings; (2) the analyses that should be 

conducted to identify gaps in health 

services based on district ranking 

indicators; and (3) the development of 

an action plan to address identified gaps 

 

Partial 

implementation 

 

District rankings are reviewed, 

however the preparation and review of 

action plan during meetings is variable 

across districts.  

 

Meetings focus on addressing 

logistical issues rather than using data 

to inform strategic planning decisions 

 
 
 
 

 
 

 

  

(1) Focus on district ranking indicators 

reduces focus on other program 

indicators that are excluded from the 

monthly district ranking; (2) Greater 

emphasis is on using district ranking 

data to manage performance rather than 

giving equal consideration issues of 

data quality; (3) Limited focus on 

developing action plans to improve 

performance of low performing health 

indicators 
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F
eb

ru
a

ry
 /

 A
u

g
u

st
 2

0
1

8
 Use of rankings & UP Health Dashboard 

during monthly Executive 

Committee/program review meetings3 

 

Promote the review of key indicators in 

the district rankings, available on the 

UP-Health Dashboard to ensure progress 

on the state’s priority health programs 

High 

implementation 

 

District rankings and the indicators 

used to achieve those rankings are 

regularly reviewed during executive 

committee meetings, in addition to the 

district health society meeting chaired 

by the District Magistrate 

Resources to support policy implementation   

C
ro

ss
-c

u
tt

in
g

 

J
u

ly
 /

 S
ep

t 
2

0
1

7
 

Training on UP-HMIS 

 

Orders released to ensure full 

participation of in health trainings at the 

primary health center, block, district, 

division and state levels and the 

availability of required logistics to 

implement trainings 

High 

implementation 

 

Results suggest 88% of targeted actors 

participated in the UP-HMIS trainings 

across all levels of the health system,6 

however the quality of trainings is 

unclear 

(1) Limited technical knowledge and 

understanding of issues of data quality, 

particularly, at the block level (from the 

perspective of district-level 

staff/officials); (2) High demand for 

refresher UP-HMIS trainings for field 

staff and block-level data entry 

operators 

A
n

n
u

a
l5

 

Release of annual funds to support the 

printing of UP-HMIS formats and 

financial support to hire data entry 

operators at the block level 

Unable to assess  Unable to assess (1) Indication that block data entry 

operators are insufficient; (2) Unclear 

whether larger budgets for hiring are 

required or existing budgets are not 

being allocated for the intended 

purpose 

1Blocks are the first administrative level where paper-based reports are digitized by being entered into the UP-HMIS web-based portal; 2A separate government 

order in September 2015 required the inclusion of members from district hospitals in the district data validation committees; 3Executive committee meetings are 

also referred to as program review meetings or monthly medical-officer-in-charge (MOIC) meetings; 4This analysis is based on our in-depth interviews from a 

purposive selection of high, middle and low performing districts across Uttar Pradesh; 5To support policy implementation, these guidelines are released every 

annum; 6Assessments based on Meghani et al., 2020 

 



 

30 
 

2. Data use policies  

To promote UP-HMIS data use at the district-level, the GOUP implemented two policies. The first, 

focused on improving the periodicity and quality of monthly district-level Executive Committee 

meetings, which convene all block and district health staff, and are chaired by the district’s chief 

medical officer. The second, required the review of the UP-Health Dashboard during Executive 

Committee meetings, and the high-level Governing Body meetings of the District Health Society 

(hereafter, District Health Society), chaired by the District Magistrate and attended by block and 

district health staff and health partners (Appendix 2). The UP-Health Dashboard (Figure 3) was 

viewed as an important data use tool for these meetings because it presents the monthly ranking of 

each district (relative to the other 74 districts in the state) using a set of UP-HMIS indicators. Based 

on the monthly performance in the district rankings, districts are expected to prepare an action plan 

for improving poorly performing health indicators and facilities. 

 

Figure 3. District-level performance data available on the Uttar Pradesh Health Dashboard  

  

Note: this Figure presents an example of Amethi district 

 

 



 

31 
 

3. The role of key staff/officials in UP-HMIS implementation 

Five main types of government workers involved in UP-HMIS policy implementation are: 

(i) Permanent employees of the Directorate of Medical Health and Family Welfare 

(DOMHFW), who receive full benefits and paid time off;  

(ii) Contractual employees of the Uttar Pradesh National Health Mission (NHM), who receive 

fewer benefits than permanent employees and have less job security;  

(iii) Temporary contractual staff, who are hired by external agencies, like data entry operators;  

(iv) M&E specialists, contractual data staff of the UP-TSU, who are posted in 25 high priority 

districts out of the 75 districts in UP; and 

(v) District administrative officials (e.g. district magistrates), who are members of the prestigious 

Indian Administrative Services, govern the district and play a peripheral role in UP-HMIS 

policy implementation.  

 

With respect to data quality policies, permanent data staff in blocks and districts lead data quality 

processes, including data validation committee meetings, with the support of contractual data staff at 

each level.  

 

With respect to data use policies at the district-level, contractual data staff are responsible for 

analyzing the district performance data and presenting those data (including district rankings) during 

the two district-level data use meetings. They are also expected to conduct gap analyses and develop 

action plans with support of district program staff, who are permanent employees and manage health 

programs in the district. Appendix 3 provides additional details about the roles and responsibilities 

of staff by administrative level.  
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Conceptual framework 

We investigated policy implementation from the lens of district-level respondents, the primary 

implementers of the UP-HMIS data policies. To understand their experiences, we drew from 

Lipsky’s street level bureaucracy theory (Lipsky, 2010), which challenges the key assumption that if 

policy objectives are neatly laid out, then implementation will follow suit. Instead, the theory focuses 

“on what organizations actually did [do] in the name of policy” by examining the perspectives of the 

policy implementers on the frontlines - the street level bureaucrats (SLBs) - and understanding how 

their realities shape policy implementation (Brodkin, 2012). Often, it is their interpretation of 

policies, based on their worldviews, which creates a gap between “policies as written” versus 

“policies as practiced” (Brodkin, 2012).  

 

SLBs exercise varying levels of discretion and autonomy that shape how, when and where policies 

are implemented. SLBs often face high performance pressures and are expected to deliver on them 

despite limited time and resources. Under these circumstances, SLBs develop “coping mechanisms.” 

Some SLBs use their discretion to comply with policy directives, while others bend policies to meet 

broader organizational objectives. Therefore, the discretion exercised by SLBs reflects the powers 

they have negotiated within their organizational and work environment, which Lipsky argues 

influences SLB practices. In line with street-level bureaucracy theory, we investigated how the 

discretion, autonomy, and authority of district officials/staff in Uttar Pradesh influenced UP-HMIS 

policy implementation. We examined how their behaviors and implementation practices were shaped 

by organizational factors, like performance pressures.  

 

We also drew on organizational culture literature to study how the behaviors of the SLBs were 

influenced by their broader environment. We understand organizational culture as “the beliefs, 

norms, values, and behaviors of organization members relative to the characteristic way in which 
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work is approached and conducted” (Shortell et al., 2000). Within organizational culture, we 

examined two specific dimensions given their importance in the UP bureaucracy and how SLBs 

operate namely: (i) organizational hierarchy, focusing on reporting relationships among actors, 

formal rules, processes and regulations; and (ii) performance management culture, including 

approaches to enforcing accountability, participation, and coordination among different team 

members.  

 

2.2 Methods 

Our study draws on a pragmatist epistemology (Strübing, 2007) and follows an emergent research 

design (Creswell, 2013). For this research inquiry, we drew from three primary data sources: (i) 

document review; (ii) in-depth interviews; and (iii) meeting observations. The document review was 

conducted first, followed by in-depth interviews and meeting observations, which were conducted 

concurrently. 

 

Study Design 

A. Document Review 

We conducted a document review to describe the new UP-HMIS policies on data quality and use; 

examine their implementation status; and inform the development of a semi-structured in-depth 

interview guide. Review of GOUP government orders, circulars and memos helped: (i) define the 

new data collection, data quality and use processes at the district-level; (ii) describe proposed 

meeting platforms for data quality and data review/use; and (iii) distinguish the roles and 

responsibilities of district officials/staff in UP-HMIS policy implementation.  
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The UP-TSU and district level participants shared documents, such as, the agendas, presentations, 

and meeting minutes for data quality and data review meetings, and examples of reports from 

supervision visits, which enabled us to ascertain policy implementation status. 

 

We analyzed 49 Hindi and English documents according to steps outlined by O’Leary (O’Leary, 

2004), focusing on who produced the document, when, and for what purpose. Results were 

summarized in English in an Excel sheet. 

 

B. In-depth interviews 

The district-level in-depth interview guide consisted of questions on the: (i) actual roles and 

responsibilities of district-level staff/officials in UP-HMIS policy implementation; (ii) status of data 

quality/use policy implementation in the district; (iii) barriers and facilitators influencing 

implementation; (iv) district-level interactions with block and state officials/staff relating to data 

quality and use; and (v) general perspectives on how to strengthen policy implementation. The 

division and state-level interview guide focused on understanding current practices for data use in 

decision-making, and potential challenges and opportunities to improve data use in UP. 

 

We conducted 87 in-depth interviews with district-, division- and state-level staff/officials, who were 

involved in compiling, analyzing, or reviewing routinely collected GOUP health data, like the UP-

HMIS, or were knowledgeable about UP-HMIS policies (Table 2). Interviews were conducted by 

AM primarily in Hindi, the official language of GOUP, in three rounds: (i) December 2018; (ii) 

February-March 2019; and (iii) August-October 2019. Except for 12 phone interviews, in-person 

interviews were largely conducted in GOUP administrative offices. 
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Table 2. Number of respondents interviewed by administrative level and employment type 

Level Staff type Number of 

interviews 

State Program managers 26 

Data managers 5 

Division Data staff 7 

District District administrative & health 

officials 

3 

Permanent - Program staff  10 

Permanent - Data staff 10 

Contractual - Data staff 26 

 Total 87 

 

 

Seeking maximum variation, district selection was based on two factors: (i) the district’s 

performance based on its ranking in the UP-Health Dashboard during the interview month; and (ii) 

the district’s designation as a high priority or non-high priority district. We found these two factors 

important given their potential to influence the level of UP-HMIS policy implementation at the 

district-level. First, this approach enabled us to examine whether high ranking districts had better 

implementation of UP-HMIS policies compared to lower ranking districts. Second, we were able to 

examine the potential influence of UP-TSU’s contractual data staff in high priority districts on UP-

HMIS policy implementation.  

 

In sum, we conducted interviews in 5 top ranked districts (ranked 1-25), 6 middle-ranked districts 

(ranked 26-50) and 5 bottom-ranked districts (ranked 51-75); with each tier, having 2 high priority 
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districts. In each district, we aimed to interview four respondent-types: (i) contractual data staff (e.g., 

district program managers or district data managers); (ii) permanent data staff (e.g., assistant research 

officers); (iii) permanent program staff (e.g., assistant chief medical officers); and (iv) district health 

officials (e.g., chief medical officers) or district administrative officials (e.g., district magistrates). 

We selected these groups to understand the relative roles of both permanent and contractual data and 

program staff in UP-HMIS policy implementation. 

 

We interviewed M&E officers at the division-level, who are responsible for monitoring district-level 

data quality processes through supportive supervision and data audits. State-level respondents 

included program managers from the NHM, and directors or joint directors from the DOMHFW. To 

capture the diversity of experiences at the state-level, we purposively interviewed state-level 

respondents responsible for national health programs, state health programs, and involved in data-

related activities. 

 

We sought written informed consent before each interview. If permission was granted, interviews 

were audio-recorded; otherwise, hand-written notes were taken. Interviews ranged from 25 to 90 

minutes. A qualified transcription service translated audio-recorded interviews to English; transcripts 

were reviewed for quality by AM.  

 

Following interviews, AM wrote memos to record emerging themes/sub-themes, detail existing 

themes/sub-themes or identify areas of further inquiry for upcoming interviews. Constant comparison 

of emerging findings (Boeije, 2002) between interview rounds through memo writing, and 

discussions among team members informed the revision of the interview guide, and triangulation of 

findings by respondent-type. This iterative approach to data collection and analysis facilitated the 

achievement of data saturation (Morse, 2015).  
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C. Meeting observations 

We observed 15 district and state level meetings, and notes were taken on the adherence to new UP-

HMIS policy implementation guidelines, the nature of interactions among district officials/staff 

(SLBs), and between SLBs and their superiors, as well as the tone and the level of participation of 

meeting participants (Table 3). The observations helped contextualize and triangulate findings from 

the document review and in-depth interviews.  

 

Table 3. Meetings observations conducted in Uttar Pradesh 

Level Number of observations 

District1 

Data validation committee meetings 6 

Executive Committee 5 

District Health Society  3 

State 

Data validation committee meeting 1 

Total 15 

1Meetings were observed in 8 districts, where interviews were also conducted.  

 

Data analysis 

The framework method was used to thematically analyze the in-depth interviews (Gale et al., 2013). 

First, AM read through all the interviews, and performed line-by-line inductive coding on the first 20 

transcripts. Following open coding and iterative discussions with study team members, an analytical 

framework was developed based on the identified inductive codes and the conceptual theories 

described above. The analytical framework identified five major categories: (i) policy environments 

at the national and state levels; (ii) UP-HMIS policy implementation observed in practice; (iii) 

organizational factors influencing policy implementation; (iv) SLBs’ roles in policy implementation; 
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and (v) perceptions about barriers and opportunities to strengthen policy implementation. Each 

category was further divided into codes and sub-codes described in Appendix 4.  

 

This analytical framework was applied to all the interview data and meeting observation notes, and 

relevant data were extracted into an excel sheet. For each category, memos were written to capture 

the following: definition of each category; codes and sub-codes within the category; summary of 

findings; deviant cases; and points for further consideration when comparing and contrasting findings 

across respondent type. The documentation summary excel sheet was also reviewed and relevant 

information was incorporated into the memos written for each category. After the analysis, a meeting 

was conducted with a couple of respondents as a way of member checking. 

 

Authors’ positionality  

We are a team of researchers and public health practitioners, who combine perspectives of insiders 

and outsiders. Our research team includes UP-TSU members who were deeply involved with the 

design of UP-HMIS and initial implementation efforts, and JHU members, who were not associated 

with UP-HMIS policy reforms. Two authors (AM, SB) conceptualized and designed this study with 

input from other co-authors. UP-TSU colleagues additionally imparted important contextual 

understanding to inform this study.  

 

2.3 Ethical Considerations 

Johns Hopkins Bloomberg School of Public Health deemed this research as IRB exempt (00009106). 

The study was approved for ethical research by the Institutional Review Board of SIGMA Research 

and Consulting in New Delhi, India (10047/IRB/D/18-19).  
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2.4 Results 

Overall, we found no meaningful differences in implementation experiences across high, middle, and 

low ranked districts. As district rankings fluctuate for many districts in UP, including those where we 

conducted interviews, this may not be a meaningful categorization reflecting larger underlying 

issues. Therefore, we do not present our results by these stratifications. 

 

With respect to policy implementation, we found annual budgetary policies for printing UP-HMIS 

forms and hiring data entry operators were fully implemented. In contrast, process-oriented policies – 

which formed the crux of the GOUP data quality and data use policies – were partially implemented 

(Table 1). District-level staff/officials (SLBs) identified: (1) inadequate organizational inputs for 

policy implementation, such as, inadequate human resource capacity and technical skill; but also (2) 

deeply embedded organizational cultural issues, like seniority and hierarchy, which significantly 

influenced how staff/officials implemented UP-HMIS policies.  

 

The first part of the results describes the role of organizational factors on UP-HMIS implementation 

practices, followed by a deeper investigation of the influence of organizational cultural factors in the 

subsequent section.  

 

Organizational factors influencing policy implementation 

A. Human resource capacity 

Inadequacies in human resource capacity – both in number and skill – were universally 

acknowledged by respondents at all levels; as one succinctly stated, “Where there is more 

manpower, there is better data” (I-78, state-level respondent). District-, division- and state-level 

respondents also agreed that the shortage of block-level data entry operators was the greatest 
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challenge facing UP-HMIS implementation. On average, each block data entry operator played a 

critical role of entering paper-based reports from each of its 26 to 31 health facilities (depending on 

block size) to up to 16 digital health portals every month.  

 

District-level respondents acknowledged that the high data entry workload contributed to incomplete 

and inaccurate data, limiting their use at the state-level due to empty data fields and mistrust in some 

of the reported data. As a result, many state respondents described making separate data requests 

from districts, and at times, reverting to paper-based reports, despite the new policies discouraging 

their use.  

 

Human resource constraints were also observed at the district-level. Such constraints arose from 

delays in recruitment or having disproportionately higher “less active” or low-performing district 

staff. To cope with these challenges, district health officials (namely, chief medical officers) were 

found to assign or transfer program responsibilities to “more active” health staff, who they perceived 

could “get the job done” (I-35, contractual data staff, district-level).  

 

While this informal reallocation of responsibilities across existing staff allowed district health 

officials to manage work expectations by ensuring “no posts are [were] vacant because someone is 

[was] made-in-charge” (I-1, contractual data staff, district-level), many district staff felt the 

additional workload distracted them from performing their data-related responsibilities. 

Overburdened with program responsibilities, district-level program staff were unable to fulfill their 

data-related responsibilities, such as conducting supportive supervision visits at the block-levels or 

participating in district-level data quality meetings.  
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Many district staff also acknowledged that the reallocation of responsibilities resulted in performing 

duties that went beyond their terms of reference and training. While some reconciled this strategy as 

a form of coping with human resource constraints, others found the divergence between actual and 

assigned responsibilities demotivating: 

"People see the difference between their TOR [Terms of Reference] of when they joined and 

what it is presently. They begin thinking ‘what was the purpose of joining here when this is 

now the work that we are doing’" (I-5, contractual data staff, district-level). 

 

B. Technical skills & trainings 

Though trainings on new UP-HMIS policies were conducted at all levels as a part of the initial policy 

implementation processes, district-level staff felt the lack of technical knowledge about UP-HMIS 

data elements among field and block staff was the root cause of poor data quality. Often limited 

knowledge about UP-HMIS data resulted in basic data entry errors, like the reporting of institutional 

deliveries in male hospitals. District respondents further explained that data entry problems increased 

when: (i) Hindi-literate field staff were expected to populate English-based data collection forms; and 

(ii) data collection forms were frequently revised or new ones were introduced. Reflecting on these 

technical barriers, one state respondent recommended:   

“If any new indicator is getting included, permission should be taken from everyone… 

Recommendations like ‘At least for six months, none of the indicators should be included or 

deleted from portal’ should be suggested. Guidelines should also not change often.” (I-85, 

State-level respondent) 

 

According to some district staff, poor data quality was expected given the high workload of data 

entry operators, and low pay. After paying their staffing agency, district staff shared that most data 
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entry operators made low salaries of 5000-7000 rupees (US$66-93) per month; many worked second 

jobs for additional income.  

 

District respondents observed that a second technical barrier among block staff/officials was their 

inadequate knowledge about the latest health program guidelines. District staff felt this knowledge-

gap resulted in data discrepancies between financial and service data reported in UP-HMIS, and data 

validation errors between indicators one would expect to correlate. These barriers were also evident 

in district-level meeting observations.  

 

District respondents felt these technical weaknesses would be mitigated at the block-level if existing 

permanent block-level data staff, who were more experienced than their contractual counterparts, 

took ownership of UP-HMIS data quality processes, like data validation committee meetings, and if 

vacant data-related posts were filled. The lack of technical ownership to review data quality at the 

block-level was found to increase dependency on districts: 

“MOICs [Medical Officers-in-charge; block health officials] do not have requisite 

knowledge and skills to use data. BPMs [block program managers] are also not that skilled 

to analyze and use data. Hence, they are dependent on the district. Whatever we brief them at 

the district, they blindly follow and implement the same but next time they again depend on 

us" (I-1, contractual data staff, district-level). 

 

In contrast, we observed higher levels of technical skills among district data staff (both permanent 

and contractual) based on district-level respondents’ own assessments, as well as our meeting 

observations. During meetings, district data staff were critical in identifying data discrepancies in 

block-level reports, as well as informing block staff on how to review and analyze their data for 

quality.  
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Technical skills observed among district data staff, however, did not equate to computer literacy. 

Though commonly viewed as the data expert at the district-level, some permanent data staff, who had 

less experience using computers, were found to rely on others to access, download, or view the UP-

HMIS data, limiting them from carrying out data-related activities independently:  

"Most of them [permanent data staff] don’t know how to use a computer. So, they won’t be 

able to download the data. They feel comfortable in manual [paper-based] reports 

verification and if there are any errors then sit with the operator and get them rectified” (I-

49, contractual data staff, district-level). 

Our state respondents, who had formerly held district-level data positions, corroborated this 

assessment, and described working in dyads for data entry. 

 

Organizational cultural factors influencing policy implementation 

A. Organizational hierarchy 

Observance of strict hierarchical rules resulted in a significant power imbalance at the district-level. 

We observed that an individual’s status within the health system hierarchy was usually determined 

by: (i) their formal position (e.g., decision-making authority); and (ii) their employment status 

(permanent or contractual staff), with permanent staff being more highly regarded. These factors 

influenced who had discretion, authority, and power, which at times, shaped how UP-HMIS policies 

were implemented. Figure 4 depicts the hierarchical gradient we observed.   
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Figure 4. Hierarchical gradient described by district-level respondents 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Chief medical officers, assistant chief medical officers (program staff); 2Block level medical officers in charge 

 

B. Seniority-oriented organizational culture  

District data staff explained that the disadvantages of a hierarchical organizational culture was felt 

most by field staff, who sat at the base of the organizational pyramid. Their perceived lack of 

authority contributed to the incomplete reporting as many private health facilities sent field staff 

away or directed them “to come another day” when they went to gather UP-HMIS reports (I-15, 

district-level permanent data staff).  

 

The consolidation of power and authority among senior health officials, the medical officers-in-

charges in blocks and chief medical officers (CMOs) in districts, resulted in an abuse of power. 

District-level staff/officials shared several examples of block-level health officials redirecting data 

entry operators to prioritize their personal errands over formal data entry duties:  

“"Whatever work, like if the MOIC [medical officer-in-charge] needs a train reservation, he 

asks the MCTS [data entry] operator. The other work like typing up a letter is also assigned 

to him. So, there is problem in his priority. " (I-11, contractual data staff, district-level). 

1. District Magistrate 

2. Permanent officers1 – District 

3. Permanent (data) staff - District 

4. Permanent officers2 – Block 

5. Permanent (data) staff - Block 

6. Contractual data staff – District 

7. Contractual data staff – Block 

8. Permanent Field staff – Primary health 

center/community levels 

 

INCREASING POWER 
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This reallocation of priorities of data entry operators at the behest of block health officials 

exacerbated the extant problems of incomplete and inaccurate data, which were also attributed to the 

severe shortage of data entry operators. Despite the release of a state-level GOUP memo, 

reprimanding block health officials for this practice, district staff reported that little had changed.  

 

District data staff also found themselves overburdened. Attending to the immediate priorities of their 

district-level superiors or managing urgent ad-hoc data requests from the state-level, left district data 

staff with little time for their own work. District data staff found state-level requests particularly 

distracting because state officials/staff had access to the same web-based data portals as they did: 

 "It [Ad-hoc requests] spoils our personal planning. Like 10 General Managers sit there [at 

the state level] and if they have called and asked for the report then they all want their report 

first. So, we cannot fix our priorities as we are bounded by them. If 9 get the report out of 10 

then that one person will be upset" (I-5, contractual data staff, district-level).  

 

State respondents explained that data requests arose when data were missing, incomplete, appeared 

inaccurate or when additional data, not routinely collected, were needed for high-level meetings. 

However, state respondents also acknowledged increasing the frequency of data requests during 

national health campaigns or priority programs because they wanted data in real-time, whereas the 

portals only provided them access to monthly data.  

 

To cope with these requests, district data staff often prioritized the reporting of closely monitored 

data, which they explained contributed to incomplete reporting of other data elements reported in 

UP-HMIS. Furthermore, district data staff felt the steep power differential precluded them from 

sharing feedback about their work-related challenges with their superiors at the district- or state-



 

46 
 

levels. Relatedly, they also acknowledged that their lack of power and authority at the district- and 

block-levels often resulted in escalation of data-related issues:  

“Basically, in Data Cell, we do not have administrative powers, we cannot punish anyone, 

we can only request our boss and say this is the situation we are facing… I will give this 

letter to our senior, CMO [Chief Medical Officer] Sir, and he is the authority to take further 

action" (I-18, permanent data staff, district-level). 

 

As a result, minor issues were tabled to the monthly data use meetings chaired by district health and 

administrative officials, who helped to bring greater accountability to data-related processes at the 

block and district-levels:  

"DM or the CDO [district magistrate and chief development officers; district administrative 

officials] ask questions directly to the MOICs [medical officers-in-charge; block health 

officials] about their performance. If the DPM [contractual data staff] asks it doesn’t make 

much of a difference, even with the CMO [chief medical officers; district health official] you 

may not get the effects you’d see with the DM or CDO. There is a distance maintained so 

they take the feedback of these IAS [Indian Administrative Services; cadre of district 

administrative officials] more carefully" (I-5, contractual data staff, district-level). 

 

Escalation, however, came at a high cost. Only occasionally did the monthly data use meetings 

achieve their intended policy objectives of making strategic decisions (e.g., identifying drivers of 

poor performance) based on UP-HMIS district ranking indicators. Meetings we observed 

predominantly focused on coordinating logistics across teams, reflecting deep working silos among 

and between block and district staff.  
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Unequal distribution of power and authority between permanent and contractual staff 

District contractual data staff universally noted one major exception to the strict observance of 

seniority in organizational culture: the distinction between permanent and contractual staff, with the 

former benefitting from power and authority not available to contractual staff. 

 

Some district contractual data staff reported an inability to directly question or provide feedback to 

block-level permanent data staff or senior block health officials about data quality issues they were 

identifying. All feedback about data quality errors had to be directed to block-level contractual data 

staff. District-level contractual data staff recognized that the power gradient was steeper for block-

level contractual staff who were incapable of mandating the implementation of data quality 

validation committees or data quality supportive supervision visits without support from their block-

level permanent health officials.  

 

In districts where paper-based reports were still used, district-level data staff (both contractual and 

permanent) noted how the distinction between permanent versus contractual staff influenced how 

block-level data were regarded at the district-level. If differences in data were observed between 

paper-based reports and those entered in UP-HMIS, preference was given to paper-based reports 

because they were signed off by permanent staff. In comparison, the UP-HMIS portal data was given 

less priority because it was managed by contractual data staff. Even in instances when district data or 

program staff questioned the integrity of these paper-based reports, the presiding norms around 

hierarchy was cited as a primary reason that compelled them to prioritize data from paper-based 

reports. 
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A. Punitive performance management  

1. Overemphasis on performance data 

Within the context of UP-HMIS implementation, district data staff noted a dichotomy: district 

rankings ended up generating accountability for performance data, but not for data quality.  

Particularly district-level data staff felt that GOUP’s primary policy intention of using district 

rankings to actively encourage UP-HMIS data use to guide program improvement was overlooked by 

the district health (i.e., CMOs) and administrative officials (e.g., district magistrates).  

 

Many district staff felt their district health and administrative officials were fixated with becoming 

the top-ranking district in their administrative division, if not across the state, as they saw the 

rankings as a reflection of their own performance. While some of this pressure was associated with 

improving actual performance on health indicators, many district staff felt the pressure of achieving 

high district rankings “at all cost” was passed on to them and block-level staff. If the district’s 

monthly ranking was low, district staff described being verbally reprimanded during monthly district-

level meetings or receiving warning letters from district officials demanding a justification for their 

low performance. One permanent program staff equated working in the GOUP health system to 

“being in a pressure cooker, with the pressure coming in from all levels of the health system” (I-42, 

permanent program staff, district-level).  

 

Many district data staff acknowledged that rankings were misleading district officials. Because 

districts were ranked relative to others in the state, they were not absolute measures of performance:  

“Competition should not be there in terms of ranking; it should be in terms of data entry 

improvement and improvements of indicators. We should focus on the percentage of 

improvement... If there is only 2-3% improvement, we should see what conditions led to that 
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improvement, and then we need to work on them. We should change our thinking...” (I-33, 

Contractual data staff, district-level). 

 

However, when some district data staff aimed to redirect attention to absolute achievement of targets 

as opposed to rankings, many felt unsupported by their senior district health officials because of their 

need to be a top ranked district, as one district data staff recounted:  

" The CMO [district health official] said, “Bring me everything on one page. Tell me which 

block is poor. The rest I will take care of.” If I start telling the CMO which block are poor, 

letters will be sent against them. Then the blocks will send back letters with reasons 

achievement did not happen. Letters will keep getting exchanged from here [district] to there 

[block]...the meetings will get diluted" (I-61, Contractual data staff, district-level). 

 

2. Differential approaches to enforcing individual vs team-based accountability  

Though district rankings measured the overall district performance on priority health programs, the 

prevailing norms around accountability targeted individuals rather than teams. District staff often felt 

district health and administrative officials targeted and blamed staff for wrongdoing, rather than 

suggesting corrective action. While district health officials and permanent district staff felt the 

burden of poor performance, contractual data staff felt they unfairly faced the greatest repercussions 

of poor performance: termination of their contractual status or warning letters by district 

administrative officials holding them accountable for the district’s poor ranking. In comparison, 

transferring or even firing permanent employees, which involves complex government processes 

(Legal Service India, 2018) was not pursued and reserved for high-profile misdemeanors (e.g., 

preventable deaths due to stock-outs)(First Post Staff, 2017).  
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Contractual data staff felt this differential approach to accountability was evident in a new 

accountability mechanism introduced specifically for contractual data staff that ranks district 

program managers on health and process indicators (UP NHM, 2019). While these indicators 

measured district-wide performance (e.g., percent of women accepting a birth-spacing method), a 

single individual was being held accountable in the ranking.   

 

Examples of strengthening implementation of UP-HMIS policies 

Leadership that valued good quality data for decision-making was critical in promoting adherence to 

UP-HMIS policies. This was evident during meeting observations, where we observed district health 

and administrative officials reiterating the importance of “real data,” “not hiding neonatal deaths,” 

and encouraging district staff to communicate the significance of data accuracy with their field staff. 

In another meeting, we also observed a district administrative official motivating district health 

officials to use data to uncover the root causes of low performing programs by commissioning them 

to complete analyses and present findings during the next monthly meeting. According to district 

staff, review of supportive supervision reports and surprise visits by district health and administrative 

officials created stronger accountability for data quality measures, which were otherwise ignored.  

In high priority districts, the presence of UP-TSU M&E contractual data staff helped ensure the 

regularity of district-level data validation committee meetings, and the implementation of UP-HMIS 

supportive supervision visits. However, the enforcement of accountability for data quality by district 

leadership was still viewed as a critical factor in institutionalizing the new UP-HMIS policies.   

To close the technical gaps in UP-HMIS data comprehension at field- and block levels, data staff in 

one district described implementing quarterly trainings. A majority of the data-related staff we 

interviewed across high priority and non-high priority districts also described using existing district-

level data validation meetings to review data quality concepts and indicator definitions, which we 
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also observed in practice during our district- and state- data validation committee meetings 

observations. 

 

On a broader scale, many respondents acknowledged that widespread corruption affected the 

implementation of UP-HMIS processes, such as, the quality of supportive supervision visits, and UP-

HMIS data quality. However, corrupt practices did not go unnoticed by district administrators. Some 

district administrative officials described resorting to independent monitoring to keep corruption in 

check, as one district administrative official shared:  

“Most of the CMOs [Chief Medical Officers] are more into other things than their own jobs. By 

other things, I mean there is corruption…I believe that corruption is a culture that flows from top 

to bottom, and it would be worse at the bottom compared to top, because it is flowing down. That 

is a big reason for the poor performance of our district, but we do so much monitoring of it that 

we do not let it spoil a lot. Our project director is deputed for regular inspection….” (I-26, district 

administrative official).  

 

2.5 Discussion 

Technical approaches to strengthening HMIS have been extensively examined in health systems 

literature. However, this paper explicitly examines the role of organizational cultural factors in 

shaping the behaviors of policy implementers in the context of new HMIS policies, an area which has 

been relatively understudied.  

 

Consistent with other studies, we found that human resource constraints – the number and level of 

technical skill in light of the high reporting burden weakened the implementation of HMIS policies 

for supportive supervision and data validation meetings, and reduced data availability, completeness 
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and accuracy (Odhiambo-Otieno, 2005; Garrib et al., 2008; Qazi and Ali, 2009, 2011). While hiring 

more data staff and providing skills-based training may address these technical challenges, our 

evidence suggests that they would be unlikely to resolve the underlying organizational cultural 

barriers, which are critical for effective HMIS policy implementation at local levels. For example, 

studies examining the effects of training on HMIS implementation in South Africa and Zanzibar 

reported mixed findings: while trainings helped build analytical skills among district staff, they did 

not remove the feeling of “powerlessness” associated with low discretion to act on the data (Østmo, 

2007). 

 

The bottom-up perspectives of district-level respondents, namely, the street-level bureaucrats 

provided overwhelming evidence for the influence of organizational cultural factors on UP-HMIS 

implementation. Though the UP-HMIS policy guidelines were driven by a rational theory – that 

improved data quality (via stronger data validation processes) would drive data use (use of district 

rankings data to improve district performance) and this positive feedback loop would drive HMIS 

performance –  our analysis points to several implementation gaps.  

 

First, operating within UP’s strong command-and-control hierarchy presented challenges for district-

level data staff, who were responsible for UP-HMIS implementation. Holding relatively lowly 

positions in the hierarchy, district data staff had little discretion, autonomy, or authority to make 

decisions. They were expected to follow superiors’ directives – even if that meant ignoring UP-

HMIS policy objectives (e.g., using paper-based reports). Exacerbating these challenges was the 

inability of district-level data staff to share grievances with an independent entity, like a functional 

data unit at the state-level. Other studies have similarly reported on how challenges associated with 

strict hierarchies between supervisors and subordinates influenced the functioning of HMIS at 

different levels of the health system (Mumtaz et al., 2003; Qazi and Ali, 2009), with one study 
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reporting on data entry operators in their HMIS units being “forced” to complete non-work-related 

tasks per their superiors’ directives (Qazi and Ali, 2009). 

 

Second, unequal distribution of authority between permanent and contractual staff complicated UP-

HMIS accountability processes. Though district-level data contractual staff were held accountable for 

managing UP-HMIS across the district, they were unable in turn to hold others accountable for poor 

adherence to UP-HMIS guidelines because of their contractual status. The state envisioned creating 

accountability for UP-HMIS through contractual staff in a way they were unable to do so with 

permanent staff who hold more secure positions. Yet, power dynamics between contractual and 

permanent staff resulted in dysfunctional reporting relationships and minor issues being escalated to 

monthly meetings chaired by senior district officials. This escalation came at another cost: high-level 

data meetings became fora for troubleshooting trivial issues instead of being a platform for strategic 

discussions as outlined in the UP-HMIS policies. This discordance between contractual and 

permanent staff has also resulted in state-wide protests demanding “equal pay for equal work” 

(Tribune News Service, 2020).  

 

Third, the overemphasis on the monthly district rankings - one component of the data use HMIS 

policies - also had unintended effects. So long as high district rankings were achieved, district 

leadership was found to condone low prioritization of data quality in the HMIS. To cope with 

performance pressures, district data staff , who saw themselves as having little power, routinized 

behaviors (e.g., prioritizing review of ranking indicators rather than those of other health programs) 

that allowed them to meet their superiors’ expectations while working with limited technical capacity 

and an overburdened staff. Such types of “task trade-offs,” i.e., “focusing on actions that receive 

rewards to the detriment of other tasks” (Renmans et al., 2016) have been observed for health 

services associated with higher financial incentives (Basinga et al., 2011; Chimhutu et al., 2014). 
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Conceivably, such behaviors may also incentivize data manipulation to facilitate achievements of 

targets. 

 

Finally, we found that policy implementation was also based on the SLBs’ own values (e.g., how 

much district leadership valued good data quality); their commitment and motivation towards their 

work (e.g., initiating informal UP-HMIS trainings); and their own interpretations of outlined policies 

(e.g., seeing district rankings as assessments of their own performance).  

 

A few limitations of our study must be noted. First, our respondent sample was weighted towards 

district-level staff because we unable to extensively capture the views of senior district health and 

administrative officials (e.g., chief medical officers and district magistrates) who had busy schedules, 

but whose insights would have valuably shaped our narrative. Second, while our goal was to conduct 

interviews in a quiet environment, we found this to be often challenging in district-level 

administrative offices. In some cases, our interviews were interrupted, which may have affected our 

rapport building with the respondent. Lastly, we recognize our findings may not be transferable to 

every district in UP, and that interviews in additional districts may further enhance our findings.  

 

2.6 Conclusion 

In order to achieve the UP-HMIS policy objectives, this study demonstrates the importance of 

incorporating the perspectives of policy implementers (the street-level bureaucrats), and recognizing 

the actual levels of discretion, autonomy and power they have in implementation processes. In the 

near term, policymakers may consider increasing trainings and hiring more data staff. However, 

addressing underlying organizational cultural barriers will require a comprehensive approach to help 

institutionalize socially acceptable, new norms that empower implementers to implement and 
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promote data-related policies. Strategies may include building integrity into data-related processes 

through an independent monitoring unit, empowering data staff to enforce accountability, and 

increasing the prioritization of data quality processes in tandem with data use. 
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Chapter 3. Does the quality of data vary when indicators are associated with 

financial incentives or performance assessments? An examination of 

administrative health data in Uttar Pradesh, India. 

 

3.1 Introduction 

Performance-based financing schemes (Fritsche et al., 2018) and performance metrics, like district 

rankings or league tables (Business Standard News, 2016; Kirunga Tashobya et al., 2018), have 

commonly been used by governments, and development partners to increase the impact of their 

health programs. Performance-based financing schemes are designed to financially reward health 

providers for achieving outlined targets or for performing specific activities (WHO, 2020). For 

example, the Janani Suraksha Yojana program in India provides a financial incentive to frontline 

community health workers for encouraging pregnant women to give birth in health facilities and a 

separate financial incentive to women immediately after their health facility delivery (National 

Health Mission, 2020). Similarly, performance measures, like district league tables 

(KirungaTashobya et al., 2018) and state-level or country rankings have also been widely used to 

benchmark the progress of health services in different geographic regions (Tandon et al., 2016; Niti 

Aayog, The World Bank, Ministry of Health & Family Welfare, 2019). For example, India’s national 

planning commission, the Niti Aayog, has developed a health index that annually ranks states and 

union territories to spark “positive competition” and learning within the country (Niti Aayog, The 

World Bank, Ministry of Health & Family Welfare, 2019).  

 

Timely, reliable, and accurate data are fundamental to both these strategies. Monthly health facility-

level data reported to the country’s national health management information system (HMIS) often 

serves as the primary, routine data source for monitoring and evaluating the performance of health 

programs. Thus, appraising the completeness, reliability, and accuracy of HMIS data is critical for 
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ensuring that high-quality data are available to government program managers and their partners for 

decision-making.  

 

While performance-based financing schemes and performance metrics attempt to encourage better 

performance of health programs, studies have identified weaknesses in program design that 

inadvertently create perverse incentives that compromise data quality. Several studies have observed 

the overreporting of indicators associated with financial incentives; for example, one study 

examining data discrepancies between HMIS and survey data, found an overreporting bias of 5% in 

HMIS coverage data for the third dose of diphtheria-tetanus-pertussis (DPT-3) across 41 African 

countries when compared to survey-based DPT-3 coverage (Sandefur and Glassman, 2015). The 

authors explained that the overreporting bias may be attributed to a Global Alliance for Vaccines and 

Immunization (GAVI) policy which paid eligible African countries for each additional child 

vaccinated with DPT-3. Another study in India examining the agreement between HMIS indicators 

on maternal health services with an externally conducted survey similarly observed an overreporting 

of maternal health indicators that were associated with financial incentives (Phillips et al., 2019). 

Challenges with data quality of indicators used in performance metrics have similarly been noted in 

qualitative studies that have described the pressures from supervisors to overreport data as a means of 

hiding low provision and utilization of health services and to secure additional funds for health 

facilities (Qazi and Ali, 2011; Husain et al., 2012),.   

 

Poor data quality has far-reaching consequences. Incomplete and inaccurate data may lead to 

inequitable distribution of limited resources, contribute to misinformed health priorities, and 

undermine the primary objective of a well-performing HMIS, which is to use good quality data to 

make better decisions that improve population health (Aqil and Lippeveld, 2009). To help 

governments and health partners improve overall HMIS data quality, the World Health Organization 
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(WHO) has developed a data quality toolkit that lay outs quantitative metrics for evaluating the 

quality of HMIS data within a geographic setting (World Health Organization, 2017). In a context 

like Uttar Pradesh (UP), India – where HMIS data are routinely used to disburse funds for 

performance-based financing schemes, and to inform performance metrics, like the district rankings 

that guide district-level and state-level health program strategies – a continuous assessment of HMIS 

data quality is essential (Uttar Pradesh Technical Support Unit, 2018).  

 

Considering previously published literature that questions the data quality of HMIS indicators that 

are associated with financial incentives or used in performance metrics, a direct comparison of data 

quality across indicators with different characteristics, (e.g., ranked, incentivized, unranked and 

unincentivized) may illuminate data quality issues that are critical to address. To the best of our 

knowledge, the variation in data quality among HMIS indicators that: (i) are associated with financial 

incentives (hereafter, incentivized indicators); (ii) are used in performance measures, like district 

rankings (hereafter, ranked indicators); and (iii) are neither ranked nor incentivized (hereafter, 

unranked and unincentivized indicators) has not been examined. We aim to address this gap by 

analyzing the quality of data being reported in Uttar Pradesh’s HMIS, which captures monthly 

facility-level data on (i) ranked, (ii) incentivized, (iii) ranked and incentivized, and (iv) unranked and 

unincentivized indicators. In this analysis, we hypothesize that ranked indicators, incentivized 

indicators, and ranked and incentivized indicators may have poorer data quality metrics compared to 

unranked and unincentivized indicators. 

 

3.2 Methods 

Data source 
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We conducted this assessment using data from January – December 2019 in the Uttar Pradesh Health 

Management Information System (UP-HMIS), the government administrative data for UP, which 

captures self-reported monthly health facility reports from different levels of the health system 

(subcenters, primary health centers, community health centers, district hospitals) across 75 districts in 

UP. Among these, 25 districts are high priority districts (HPDs) that receive additional financial 

support from the Government of Uttar Pradesh (GOUP) and technical assistance from the Uttar 

Pradesh Technical Support Unit (UP-TSU). In each HPD, one monitoring and evaluation staff 

member from the UP-TSU is placed at the district-level to support HMIS data quality and data use 

processes through activities such as analyzing data to check quality and performing HMIS supportive 

supervision visits within the district.  

 

The UP public health system serves an estimated population of roughly 230 million people (Census 

Population, 2020), and each month up to 28,241 health facilities, including subcenters, primary 

health centers, community health centers and hospitals, report to the UP-HMIS. Of these, 19,610 

health facilities are in non-HPDs, and the remaining 8,631 are in HPDs.  

 

Our study included a census all health facilities reporting to the UP-HMIS, and all monthly health 

facility reports submitted to the UP-HMIS were analyzed. Therefore, no power and sample size 

calculations were performed..  

 

The UP-HMIS dataset analyzed in this study captures 919 indicators, and includes 4 types of 

indicators: 

(i) ranked indicators, i.e., indicators used to compute the monthly ranks of each district relative 

to 74 other districts in the state. With respect to the district rankings, the GOUP’s expectation 

was that district health and administrative officials review the district’s ranking indicators 



 

60 
 

every month during their program review meetings; and identify low performing ranking 

indicators in order to develop corresponding strategies for their improvement. 

(ii) incentivized indicators, i.e., indicators that capture health services associated with financial 

incentives, for example, antenatal care, institutional deliveries, cesarean sections (C-

sections), intrauterine contractual devices (IUCD) insertions, postpartum IUCDs insertions, 

and childhood immunizations (UP-TSU, 2019);   

(iii)  ranked and incentivized indicators, i.e., indicators that have characteristics of both (i) and 

(ii).  

(iv)  unranked and unincentivized indicators, i.e., indicators that capture data for health services, 

which are not incentivized and not used to compute district rankings.  

 

Research hypotheses 

Four hypotheses were examined in this study using the UP-HMIS dataset from January to December 

2019. First, we hypothesized that the reporting of ranked and incentivized indicators would be more 

complete than unranked and unincentivized indicators in the monthly facility reports (H1). Second, 

we hypothesized that the proportion of outliers among ranked and incentivized indicators would be 

higher than those for unranked and unincentivized indicators in the monthly facility reports (H2). 

Third, we hypothesized that there would be a systematic bias towards overreporting positive 

indicators (such as, number of services delivered) among ranked and incentivized indicators 

compared to unranked and unincentivized indicators in the monthly facility reports (H3). Finally, we 

hypothesized that the quality of all indicators reported in monthly facility reports from high-priority 

districts (HPDs) would be higher in terms of completeness (H4-a), number of outliers (H4-b), and 

degree of systematic overreporting (H4-c) compared to indicators reported in monthly facility reports 

from non-HPDs. 
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Indicator selection 

Our analytical dataset consisted of 41 UP-HMIS indicators. With respect to the selection of ranked 

indicators, we only selected those reported in the UP-HMIS, relating to the provision of health 

services, and excluded indicators capturing inputs, like the availability of human resources. 

Incentivized indicators in the UP-HMIS were selected based on a review of Government of India 

(GOI) and Government of Uttar Pradesh (GOUP) policy documents from January to December 2019 

that describe the incentives given to Accredited Social Health Activists, who are community health 

workers, for achieving outlined targets or completing pre-defined activities (UP-TSU, 2019). Finally, 

we selected unranked and unincentivized indicators that pertained to health services that were not 

associated with a financial incentive nor captured by the district ranking indicators, however, 

belonged to the same health domains as ranked indicators, incentivized indicators, and ranked and 

incentivized indicators. The classification of the UP-HMIS indicators into the four indicator 

categories was reviewed by colleagues at the UP-TSU who were involved in designing the UP-HMIS 

and who continue to provide managerial support to the UP-HMIS state-level team in the GOUP. 

Table 4 lists the indicators included in this analysis. 

 

Table 4. UP-HMIS indicators included in the study analysis 

Indicator 

classification 
Indicator list 

R
an

k
ed

 a
n

d
 

in
ce

n
ti

v
iz

ed
 

(n
=

 6
) 

1) Number of injectable contraceptives, depot medroxyprogesterone acetate (DMPA) first dose 

2) Number of children aged between 9 and 11 months fully immunized- male 

3) Number of children aged between 9 and 11 months fully immunized - female 

4) Number of pregnant women with 4 or more antenatal care (ANC) check ups 

5) Number of institutional deliveries conducted (including cesarean sections) 

6) Number of pregnant women screened for HIV 

R
an

k
ed

 

(n
=

4
) 

1) Number of pregnant women tested for hemoglobin (Hb) 4 or >4 times in ANC visits  

2) Number of women receiving 1st post-partum checkup within 48 hours of delivery 

3) Number of children who received the third dose of pentavalent vaccine 

4) Number of children who received Bacille Calmette-Guérin (BCG) dose 
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(n
=

9
) 

1) Number of interval intrauterine device (IUCD) insertions (excluding post-partum IUCD/post-

abortion IUCD) 

2) Number of post-partum IUCD insertions (within 48 hours of delivery) 

3) Number of post-abortion IUCD insertions (within 12 days) 

4) Number of newborns who received 6 home based newborn care (HBNC) visits after institutional 

delivery 

5) Number of newborns who received 7 HBNC visits after home delivery 

6) Number of new pregnant women identified as high-risk pregnancy (HRP), who are 35 years and 

older 

7) Number of new pregnant women identified as HRP due to previous history with any complication 

8) Number of new pregnant women identified as HRP due to any other reasons not due to age or 

previous history 

9) Number of pregnant women registered in 1st trimester (within 12 weeks) out of the total ANC 

registrations that month 

 

U
n
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(n
=

2
2
) 

1) Number of women aged 15-49 years receiving the first dose of DMPA after abortion  

2) Number of women aged 15-49 years receiving the first dose of DMPA after delivery (post-

partum) 

3) Number of women aged 15-49 years receiving first dose of DMPA in ‘interval’ period (6 weeks 

after delivery/ any time when woman is not pregnant other than post-partum or post-abortion) 

4) Number of IUCD inserted on the fixed day services (FDS) days 

5) Number of IUCD inserted on the fixed day off-service (FDOS) days 

6) Number of children who received measles and rubella (MR) vaccine 1st dose (9-11months) 

7) Number of children who received measles vaccine 1st dose (9-11 months) 

8) Number of pregnant women who received full ANC check-ups by the end of the reporting month. 

9) Number of PW having severe anemia (Hb<7) treated 

10) Number of pregnant women with Hb<7 gm received iron sucrose by the end of the reporting 

month. 

11) Number of home deliveries attended by a skill birth attendant (SBA)  

12) Number of home deliveries attended by a non-SBA 

13) Number of oral polio virus – birth doses (OPV 0) delivered 

14) Number of hepatitis B – birth dose delivered 

15) Number of vitamin K1 doses delivered after delivery - birth dose 

16) Number of pregnant women registered for ANC 

17) Number of women receiving 1st post-partum checkup between 48 hours and 14 days 

18) Number of HIV tests found positive during ANC visits  

19) Number of mothers provided full course of 180 Iron/Folic Acid (IFA) tablets after delivery 

20) Number of pregnant women tested for syphilis  

21) Number of pregnant women tested for blood sugar (oral glucose tolerance test) 

22) Number of new cases of pregnant women with hypertension detected 

 

 

Analysis 

Methods for characterizing data quality were drawn from the WHO Data Quality Review 

Framework, which outlines four dimensions of data quality: (1) completeness and timeliness of data; 

(2) internal consistency of reported data; (3) external consistency of reported data; and (4) external 

comparisons of population data (World Health Organization, 2017). Given the lack of access to 

publicly available survey data, district-level census data, and information on timestamps associated 
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with monthly health facility report submissions to the UP-HMIS, our analysis focused on examining 

the four metrics in dimensions 1 and 2 as shown in Table 5. All four hypotheses relating to these 

measures were tested for significance at the 0.05 level (alpha error) by examining the difference 

between proportions using t-tests.  

 

Table 5. Data quality dimensions adapted from the World Health Organization Data Quality Review 

Framework 

Measures Definition 

Dimension 1: Completeness of data 

(a) Completeness of health facility reporting The percentage of expected monthly health 

facility reports submitted in the UP-HMIS web-

based portal 

(b) Completeness of indicator reporting The percentage of missing values for indicators 

in the submitted monthly health facility reports 

Dimension 2: Internal consistency of reported data 

(c) Identification of moderate and extreme 

outliers 

The percentage of moderate (+/-2 standard 

deviations) and extreme outliers (+/- 3 standard 

deviations) from the mean for each indicator 

reported in the submitted monthly facility report 

(d) Consistency between indicators The ratio of events reported for two sets of 

indicators that are expected to be equal 

 

With respect to completeness of data (dimension 1), we first examined the completeness of monthly 

facility reports by calculating the percentage of expected monthly reports submitted from health 

facilities to the online UP-HMIS web-based portal. Second, we examined completeness of indicators 

in monthly facility reports by examining the percentage of missing data for the four indicator 

categories (ranked; incentivized; ranked and incentivized; and unranked and unincentivized).  

 

With respect to internal consistency of reported data (dimension 2), we calculated the percentage of 

moderate outliers by identifying values that lie above or below two standard deviations from the 

mean for each indicator reported in the monthly facility reports. However, in instances when two 

times the standard deviation was less than 1, we used 1 as the corresponding value to determine a 
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moderate outlier. The percentage of extreme outliers was calculated by identifying values that lie 

above or below three standard deviations from the mean for each indicator reported in the monthly 

facility reports. Similarly, in instances when three times the standard deviation was less than 1, we 

used 1 as the corresponding value to determine an extreme outlier. This calculation prevented us 

from classifying values for indicators reported in the monthly facility reports as outliers when 

absolute changes were small. For example, a change in value from 0 to 1 for an indicator (that rarely 

reports a non-zero value, like HIV tests found positive during ANC visits) was not counted as a 

moderate or extreme outlier. With regard to outliers, we also quantified the proportion of outliers that 

lie above the mean and below the mean to gauge potential overreporting (>2 standard deviations 

above the mean) and underreporting (>2 standard deviations below the mean) of indicators.  

 

Next, we developed internal consistency checks to examine whether the observed relationships 

between the values of indicators were as expected based on our programmatic knowledge and in 

consultation with the UP-TSU colleagues. We found two methods to calculate the same metric, one 

using ranked and incentivized indicators, and another using unranked and unincentivized indicators. 

Then, we calculated the ratio of the values calculated from the two methods. Since the two methods 

calculate the same metric, we expect the resultant ratio to equal 1.0. A ratio >1.0 may suggest 

overreporting of the ranked and incentivized indicators relative to unranked and unincentivized 

indicators, and a ratio < 1.0 may suggest underreporting of ranked and incentivized indicators 

relative to unranked and unincentivized indicators. To account for potential, unintentional, data entry 

errors, we considered a 10% difference in ratios as acceptable for internal consistency based on the 

WHO Data Quality Assessment Toolkit guidelines (World Health Organization, 2017). Therefore, 

accounting for this 10% threshold, we interpreted ratios > 1.1 as potential evidence for overreporting, 

and ratios <0.9 as potential evidence for underreporting. For this analysis, we only included monthly 

facility reports with non-missing data for the indicators used to calculate the internal consistency 
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checks for both methods. These internal consistency ratios were calculated for each monthly facility 

report. Table 6 presents the six consistency checks which were examined in this analysis.  

 

All the analyses were conducted using STATA 14.0. 

Table 6. Internal consistency checks examined in the analysis 

# Internal consistency check Measure #1  

(ranked & 

incentivized 

indicators)  

Measure #2  

(unranked and 

unincentivized 

indicators) 

Expected 

ratio  

(Measure #1/ 

Measure #2) 

1 Total number of first DMPA1 

contraceptive dose should equal 

number of first DMPA doses 

given across programs 

Total number of 

first DMPA 

contraceptive 

doses given 

Number of women 

receiving first DMPA 

contraceptive dose 

post-abortion, post-

delivery or any other 

time 

~ 1.0 

2 Total number of IUCDs2 

provided should equal total 

number provided during on and 

off-services days 

Total number of 

IUCDs provided 

Number of IUCDs 

provided during on 

and off-service days 

~ 1.0 

3 Total number of institutional 

deliveries resulting in a live birth 

should equal number of birth 

dose vaccine (vitamin K vaccine 

birth dose)  

Total number of 

institutional 

deliveries 

Total number of birth 

doses for Vitamin K 

vaccine plus 

stillbirths  

~ 1.0 

4 Total number of institutional 

deliveries resulting in a live birth 

should equal number of birth 

dose vaccine (oral polio virus 

vaccine birth dose)  

Total number of 

institutional 

deliveries 

Total number of birth 

doses for oral polio 

virus vaccine plus 

stillbirths  

~ 1.0 

5 Total number of institutional 

deliveries resulting in a live birth 

should equal number of birth 

dose vaccine (hepatitis B birth 

dose)  

Total number of 

institutional 

deliveries 

Total number of birth 

doses for hepatitis B 

plus stillbirths  

~ 1.0 

6 Total number of fully immunized 

child should be no greater than 

the number of doses of the 

measles-rubella vaccine 

Total number of 

fully immunized 

children (9-11 

months) 

Total number of 

measles-rubella 

vaccine given (9-11 

months) 

~ 1.0 

1 Depot medroxyprogesterone acetate; 2 Intra-uterine contraceptive device 
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3.3 Results  

The results are presented below by the two data quality dimensions examined in this study.  

Dimension 1: Completeness of data 

A. Completeness of monthly health facility reporting 

Each facility is expected to submit a monthly report; therefore 338,892 facility reports were expected 

in the UP-HMIS dataset from January 2019 – December 2019. Overall, we found that 99.7% 

(n=337,907) of expected monthly health facility reports were submitted to the UP-HMIS across all 

districts with roughly the same percentage of monthly health facility reports submitted from HPDs 

(99.5%) and non-HPDs (99.8%). 

 

B. Completeness of indicator reporting in monthly health facility reports 

With respect to the completeness of indicator reporting in the monthly facility reports, consistent 

with our hypothesis (H1), we found that ranked indicators, and ranked and incentivized indicators 

were more completely reported compared to unranked and unincentivized indicators.  

 

As shown in Figure 5, the average percentage of missing data was lowest among ranked indicators 

(10.42%; 95%  CI: 10.37%, 10.48%) followed by ranked and incentivized indicators (12.45%; 95% 

CI: 12.40%, 12.49%) and incentivized indicators (24.42%; 95% CI: 24.37%, 24.47%), with unranked 

and unincentivized indicators having the highest average percentage of missing data (37.70%; 95% 

CI: 37.66%, 37.73%). The completeness of indicator reporting across all the four indicator categories 

were statistically different from one another at the 0.05 level (p<0.01). 

 

The same pattern of completeness observed by indicator category was observed for monthly facility 

reports in HPDs and non-HPDs (Figure 6), however for each indicator category, there were 
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significantly fewer missing values observed in HPD monthly facility reports compared to non-HPD 

monthly facility reports (p<0.01) consistent with H4-a. Appendix 5 presents the average percentage of 

indicator completeness, and confidence intervals for each indicator category disaggregated by HPD 

status. When examining the percentage of indicator completeness over time, we found that indicators 

reported in the monthly facility reports from HPDs had higher levels of completeness relative to 

those reported in monthly facility reports from non-HPDs (Appendices 6 and 7). 

 

Figure 5. The average percentage of missing data reported by indicator category in the monthly 

facility reports gathered from January to December 2019 

  
Note: Completeness was examined in 337,907 monthly health facility reports that had been submitted. Confidence 

intervals are presented in orange. * indicates that the percentage of completeness of indicator reporting across all the 

four indicator categories (examined as pairwise comparisons) are significantly different from one another at the 0.05 

level (p<0.01). 
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Figure 6. The average percentage of missing data being reported by indicator category in monthly 

facility reports from high priority districts (HPDs) and non-high priority districts (non-HPDs) 

gathered from January to December 2019 

 
Note: Completeness was examined in 337,907 monthly health facility reports that had been submitted. Confidence 

intervals are presented in orange. ^ indicates that within each indicator category the percentage of missing values 

observed in HPD monthly facility reports compared to non-HPD monthly facility reports are significantly different 

from one another (p<0.01). 

 

 

Dimension 2: Internal consistency of reported data 

A. Identification of moderate and extreme outliers 

Overall, about 8.2% of all monthly facility reports had moderate outliers (Figure 7). When 

examining moderate outliers by district status, nearly 8.7% of monthly facility reports from HPDs 

had moderate outliers, whereas roughly 8.1% of monthly facility reports from non-HPDs had 

moderate outliers (Figure 8).  

 

Supporting our hypothesis (H2), we observed the highest average percentage of moderate outliers 

reported in the monthly facility reports among ranked indicators (2.94%; 95% CI: 2.91%, 2.97%), 

followed by ranked and incentivized indicators (2.22%; 95% CI: 2.20%, 2.24%) and incentivized 

indicators (1.74%; 95% CI: 1.72%, 1.76%), with the lowest average percentage of moderate outliers 

observed among unranked and unincentivized indicators (1.45%; 95% CI: 1.44%, 1.46%). A similar 
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pattern was observed in monthly facility reports across HPDs and non-HPDs (Figure 8). However, 

we identified a significantly higher average percentage of moderate outliers for two indicator 

categories - ranked indicators and incentivized indicators – in HPD monthly facility reports 

compared to non-HPD monthly facility reports (p<0.01), contradicting our hypothesis (H4-b). 

Appendix 8 presents the average percentage of moderate outliers and the corresponding confidence 

intervals for each indicator category disaggregated by HPD status. 

 

Figure 7. The average percentage of moderate outliers reported by indicator category in the monthly 

facility reports gathered from January to December 2019 

 
Note: Moderate outliers was identified by indicator category in 337,907 monthly health facility reports that had been 

submitted. Confidence intervals are presented in orange. * indicates that the percentage of moderate outliers 

identified across all the four indicator categories (examined as pairwise comparisons) are significantly different from 

one another at the 0.05 level (p<0.01). 
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Figure 8. The average percentage of moderate outliers observed in monthly health facility reports 

from high priority districts and non-high priority districts from January to December 2019 

 

Note: Moderate outliers was identified by indicator category in 337,907 monthly health facility reports that had been 

submitted. Confidence intervals are presented in orange. ^indicates that within each indicator category the 

percentage of moderate outliers identified in HPD monthly facility reports compared to non-HPD monthly facility 

reports are significantly different from one another (p<0.01). 

 

In comparison to moderate outliers, extreme outliers were identified in 1.3% of monthly facility 

reports (Figure 9). Contradicting our hypothesis (H2), the highest average percentage of extreme 

outliers were observed among incentivized indicators (0.52%; 95% CI: 0.51%, 0.53%), followed by 

unranked and unincentivized indicators (0.31%; 95% CI: 0.30%, 0.31%), ranked and incentivized 

indicators (0.26%; 95% CI: 0.25%, 0.27%), and ranked indicators (0.23%; 95% CI: 0.22%, 0.25%).  

 

The same pattern was observed in monthly facility reports among HPDs and non-HPDs (Figure 10).  

However, we identified a significantly higher average percentage of extreme outliers for three 

indicator categories - ranked and incentivized indicators, incentivized indicators, and unranked and 

unincentivized indicators – in HPD monthly facility reports compared to non-HPD monthly facility 

reports (p<0.01), contradicting our hypothesis (H4-c). Appendix 9 presents the average percentage 
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of extreme outliers and the corresponding confidence intervals for each indicator category 

disaggregated by HPD status. The number of moderate and extreme outliers for each indicator in 

monthly facility reports in HPDs and non-HPDs are reported in Appendix 10. 

 

Overall, a majority of the outliers were overreported (Table 7). Among the underreported outliers, 

about 97.2% were moderate outliers. Among the overreported outliers, roughly 82.4% were moderate 

outliers, and 17.5% were extreme outliers.  

 

Figure 9. The average percentage of extreme outliers reported by indicator category in the monthly 

facility reports gathered from January to December 2019 

 
Note: Extreme outliers was identified by indicator category in 337,907 monthly health facility reports that had been 

submitted. Confidence intervals are presented in orange. *indicates that the percentage of extreme outliers identified 

across all the four indicator categories (examined as pairwise comparisons) are statistically different from one 

another at the 0.05 level (p<0.01). 
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Figure 10. The average percentage of moderate outliers observed in monthly health facility reports 

from high priority districts and non-high priority districts from January to December 2019 

 
Note: Extreme outliers was identified by indicator category in 337,907 monthly health facility reports that had been 

submitted. Confidence intervals are presented in orange. ^indicates that within each indicator category the 

percentage of extreme outliers identified in HPD monthly facility reports compared to non-HPD monthly facility 

reports are statistically different from one another (p<0.01). 

 

Table 7. Percentage of moderate and extreme outliers that were overreported or underreported 

 

Outliers observed in 

monthly health facility 

reports from HPDs 

 

 

(n=102,845) 

Outliers observed in 

monthly health 

facility reports from 

non-HPDs 

 

(n=235,062) 

Outliers observed in 

monthly health 

facility reports from 

all districts 

 

(n=337,907) 

Total number of underreported outliers 26,005 (7.70%) 

Moderate 8,934 (8.69%) 16,887 (7.18%) 25,821 (7.64%) 

Extreme 54 (0.05%) 130 (0.06%) 184 (0.05%) 

Total number of overreported outliers 189,608 (56.11%) 

Moderate 52,970 (51.50%) 103,292 (43.94%) 156,262 (46.24%) 

Extreme 11,693 (11.37%) 21,653 (9.21%) 33,346 (9.86%) 

 

 

 

   

B. Consistency between indicators  

Consistent with our hypothesis (H3), we found evidence of possible overreporting of ranked and 

incentivized indicators relative to unranked and unincentivized indicators in all six consistency 
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checks as reflected in ratios greater than 1.1, which account for the 10% threshold to allow for 

potential inconsistency (Table 8). When these ratios were disaggregated by district status, the same 

pattern of substantial overreporting (ratios > 1.1) was observed in monthly facility reports from 

HPDs and monthly facility reports from non-HPDs. While there were no significant differences 

observed in ratios for two internal consistency checks reported in monthly facility reports from HPDs 

and non-HPDs (H4-c), three consistency checks had significantly higher ratios reported in monthly 

facility reports from HPDs compared to those non-HPDs.   

 

Table 8. Internal consistency checks in monthly health facility reports in high priority districts 

(HPDs) and non-high priority districts (non-HPDs) 

Internal consistency check Ratioa Ratio HPDb Ratio nHPDc  p-value 

Total number of first DMPA1 

contraceptive doses should equal 

number of first DMPA doses given 

across programs 

1.60 

(1.57, 1.63) 

1.69 

(1.64, 1.74) 

1.55 

(1.51, 1.60) 
<0.01 

Total number of IUCDs2 provided 

should equal total number provided 

during on and off-services days 

6.64 

(6.40, 6.89) 

6.73 

(6.32, 7.14) 

6.59 

(6.29,  6.89) 
0.59 

Total number of institutional 

deliveries resulting in a live birth 

should equal number of birth dose 

vaccine (vitamin K vaccine birth 

dose)  

4.41 

(4.33, 4.49) 

4.22 

(4.12 , 4.33) 

4.52 

(4.41, 4.62) 
<0.01 

Total number of institutional 

deliveries resulting in a live birth 

should equal number of birth dose 

vaccine (oral polio virus vaccine birth 

dose)  

1.84 

(1.80, 1.88) 

2.00 

(1.95, 2.06) 

1.76 

(1.71,  1.81) 
<0.01 

Total number of institutional 

deliveries resulting in a live birth 

should equal number of birth dose 

vaccine (hepatitis B birth dose)  

2.97 

(2.92, 3.02) 

3.21 

(3.13,  3.28) 

2.84 

( 2.78, 2.91) 
<0.01 

Total number of fully immunized 

children should be no greater than the 

number of doses of the measles-

rubella vaccine 

1.15 

(1.12, 1.17) 

1.11 

(1.07, 1.15) 

1.16 

(1.13, 1.19) 
0.05 

1 Depot medroxyprogesterone acetate; 2 Intra-uterine contraceptive device; aRatio based on monthly health facility 

reports across all districts; bRatio based on monthly health facility reports from high priority districts (HPDs); cRatio 

based on monthly health facility reports from non-high priority districts (nHPDs); Note: all ratios for all internal 

consistency checks are between ranked and incentivized indicators versus unranked and unincentivized indicators. 
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3.4 Discussion 

This study examined the data quality of four indicator categories (ranked, ranked and incentivized, 

incentivized and unranked and unincentivized) using an administrative health dataset with 337,907 

monthly health facility reports from over 28,000 health facilities during a one-year time period.  

 

Our analyses show that data quality metrics for completeness and internal consistency varied by the 

four indicator categories (ranked, incentivized, ranked and incentivized, and unranked and 

unincentivized). With respect to completeness of indicator reporting, largely consistent with the first 

hypothesis (H1), we found a higher percentage of complete reporting for ranked indicators, closely 

followed by ranked and incentivized indicators. When examining the percentage of outliers by 

indicator category, we found that ranked indicators had the highest percentage of moderate outliers 

followed by ranked and incentivized indicators, incentivized indicators, and unranked and 

unincentivized indicators, supporting our second hypothesis (H2). However, this trend differed for 

extreme outliers. Incentivized indicators had the highest percentage of extreme outliers, followed by 

unranked and unincentivized indicators, ranked and incentivized indicators, and ranked indicators.  

 

The analyses comparing internal consistency revealed higher levels of systematic overreporting of 

ranked and incentivized indicators compared to unranked and unincentivized indicators, providing 

evidence for our third hypothesis (H3). Finally, with respect to the above data quality metrics by 

district status (HPDs and non-HPDs), consistent with our hypothesis (H4-a), we observed higher 

levels of completeness across the four indicator categories in monthly facility reports from HPDs. 

However, contrary to our hypothesis (H4-b), we found at least the same percentage or a higher 

percentage of moderate and extreme outliers by the four indicator categories in the monthly health 

facility reports from HPDs compared to non-HPDs. Similarly, contradicting our hypothesis (H4-c), we 
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observed potential overreporting of ranked and incentivized indicators relative to unranked and 

unincentivized indicators in monthly facility reports from both HPDs and non-HPDs. Furthermore, in 

three out of the six internal consistency checks, we observed significantly higher ratios in monthly 

facility reports from HPDs as compared to non-HPDs.  

 

The differences in completeness of reporting by indicator type may be explained by the higher 

demand of UP-HMIS indicators used to calculate district rankings, which were routinely reviewed by 

district and state leadership across all districts during monthly review meetings. In contrast, the high 

percentage of missing data for unranked and unincentivized indicators may reflect the low 

prioritization and demand for those data for decision-making.  

 

Our analyses also support previous studies, which have attributed high reporting burdens contributing 

to incomplete data and poor data quality (AbouZahr et al., 2007). More broadly across low- and 

middle-income countries (LMICs), the high burden of data collection and entry has been attributed to 

the implementation of vertical health programs and the requirements of funders (Chan et al., 2010). 

Similarly, in UP, high reporting burden has been attributed to a large number of national health 

programs and the concomitant rise in demand for those program data (Meghani et al., 2020). Our 

study suggests that data entry was prioritized for indicators associated with district rankings or 

financial incentives and highlights a need to rationalize the number of indicators in the UP-HMIS, 

which currently captures 919 indicators.  

 

In our analysis, we found a much lower percentage of extreme outliers reported in monthly health 

facility reports compared to moderate outliers across all districts (1.3% vs. 8.2%). We offer three 

potential explanations. First, close monitoring and demand of ranked indicators, ranked and 

incentivized indicators, and incentivized indicators may have improved the accuracy of reporting. 
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Second, these indicators may be consistently overreported resulting in a lower percentage of 

detectable extreme outliers. Or, third, building on the first and second explanations, indicators may 

not be overreported at extreme levels to avoid undue attention from superiors, which may prompt 

investigations to examine potential overreporting.  

 

As seen in the internal consistency ratios (H3), the higher levels of systematic overreporting of 

ranked and incentivized indicators compared to unranked and unincentivized indicators may provide 

evidence for the second and third explanation. This finding resonates with the results from another 

data validation study in UP, which found overreporting of HMIS indicators that are associated with 

financial incentives (Phillips et al., 2019). More broadly, overreporting of data has also been 

observed in the context of achieving external donor-outlined targets and performance-based aid 

(Sandefur and Glassman, 2015; Closser, 2019), 

 

In the context of UP, our finding highlights how specific measures, like district ranking indicators, 

which are associated with rewards and punishments (described further in Chapter 4), may perversely 

incentivize individuals to adopt behaviors that maximize potential awards and minimize punishment 

possibly to the detriment of the broader good (Goodhart, 1989). This point is also represented in a 

study from Burkina Faso, which described how a data auditing verification process created perverse 

incentives for auditors to falsify the data because they were paid based on the number of patients they 

covered during each data verification exercise (Turcotte-Tremblay et al., 2017).  

 

By placing additional monitoring and evaluation staff in HPDs, the GOUP attempted to improve 

overall UP-HMIS data quality. Our findings suggest that the presence of additional technical staff 

may have contributed to improvements in data completeness, however this approach may be 

insufficient for improving internal consistency and accuracy of HMIS data. Improving these two data 
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quality metrics may require a different set of strategies, such as strengthening the implementation of 

data quality audits that compare source documents in health facilities or managed by frontline health 

workers, with data being reported in the UP-HMIS, and ensuring those results are used to guide 

improvements. It is also possible that given the recent UP-HMIS reform, districts may first be 

prioritizing processes to improve the completeness of data being reported to the UP-HMIS before 

turning their attention to issues relating to data accuracy. 

 

Many of the challenges with UP-HMIS data quality presented here have not gone unnoticed by the 

GOUP. To streamline data collection efforts and improve the completeness of UP-HMIS data, the 

GOUP in collaboration with the UP-TSU has been conducting data rationalization consultations with 

state- and district-level decision-makers to reduce the number of indicators in the UP-HMIS. In 

addition, the GOUP has been actively working on addressing data quality gaps by scaling up the 

implementation of state-level data quality audits, quarterly state-level data quality meetings with 

district-level staff, and establishing a new cadre of monitoring and evaluation staff at the division 

level who can supervise and support data quality initiatives across all the 75 districts.  

 

At the national level, Niti Aayog, the national planning commission, has also been paying increasing 

attention to issues of data quality, by explicitly incorporating a measure for data integrity in its state-

health index, which is published annually to show the variations in health outcomes across different 

states and union territories of India (Niti Aayog, The World Bank, Ministry of Health & Family 

Welfare, 2019). Recently, the Ministry of Health and Family Welfare (MoHFW) also reiterated its 

commitment to conducting a National Family Health Survey to generate district-level estimates for 

health indicators, and launched the development of a tablet-based data entry application to facilitate 

digital data entry by frontline health workers “at source” (Press Information Bureau, Government of 

India, 2017). Currently, the GOUP is scaling up trainings to enable tablet-based data entry by 
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frontline health workers across all 75 districts to reduce the burden of data entry at the block-level, 

which plays the critical role of entering monthly paper-based reports collected from the frontline 

health workers and primary health workers to the UP-HMIS web-based portal. 

 

As the GOUP and the national-level government strengthen data quality processes, and strive 

towards improving HMIS data quality, it will be important to ensure that other factors that determine 

HMIS performance – like gaps in availability of human resources, both in number and technical skill, 

are addressed so that basic functions like supportive supervision and data validation activities are 

implemented at lower administrative levels. Similarly, it will also be important to move towards 

building an organizational culture that values good quality, and use of good quality data in decision-

making, so that data quality processes and activities are successfully institutionalized within the UP 

health system over time.  

 

While this analysis provides some evidence of differences in data quality metrics by indicator 

category, it is important to note several study limitations. First, we did not examine all the indicators 

reported in the UP-HMIS, as our focus was limited to examining the data quality of maternal and 

child health program indicators because they are a priority of the GOUP. Second, we recognize that 

calculating the number of outliers can be particularly problematic for indicators that are dependent on 

the availability of health commodities in health facilities. For these indicators, sudden increases in 

availability of health commodities in health facilities may coincide with higher completeness of data, 

which may lead to potential misclassification of values being identified as outliers. Third, our study 

had a small number of internal consistency checks because we were limited by our approach to 

calculate one construct in two different ways – one using ranked and incentivized indicators and the 

other using unranked and unincentivized indicators. Related to this point, while our findings on 

internal consistency suggest potential overreporting of ranked and incentivized indicators relative to 
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unranked and unincentivized indicators, we were unable to explore whether this phenomenon was 

being driven by the potential underreporting of unranked and unincentivized indicators. Facility-level 

audits measuring the agreement of HMIS web-based portal data with source documents, like health 

facility registers would have provided a direct measure of data accuracy (e.g., development of data 

verification ratios), however due to time and resource constraints this was not feasible. Related to 

resource constraints, lastly, we could not conduct an independent survey and measure the external 

consistency of coverage data for the indicators in our analysis, another data quality metric.  

 

3.5 Conclusion 

To conclude, our study provides initial evidence for how data quality varies for indicators that are 

associated with performance measures like district rankings and financial incentives. While 

completeness of data may have improved for ranked and incentivized indicators, we found evidence 

for potential overreporting of these indicators relative to unranked and unincentivized indicators. 

Routinely examining data accuracy would be important for ensuring that real progress and 

achievement is being reflected in the district rankings, and effectively guiding decision-making. Data 

quality audits that are currently being scaled up by the GOUP may help quantify potential data 

manipulation, however additional qualitative research may shed light on the underlying drivers that 

may be leading to this practice. As GOUP scales up the initiatives to improve HMIS data quality, 

effective implementation of those initiatives will be critical for achieving the intended objective of 

good data quality. 
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Chapter 4. Understanding when, how and why administrative health data are 

manipulated in Uttar Pradesh, India 

 

 

4.1 Introduction 

The Performance of Routine Information Systems (PRISM) framework identifies technical, 

organizational and behavioral determinants that are critical for improving the quality and use of 

health management information system (HMIS) or administrative data for decision-making (Aqil et 

al., 2009). While these determinants are useful for identifying interventions to improve 

administrative data quality and use, there are no conceptual frameworks or theories that explain how 

and why administrative data are manipulated, and equally importantly, how one might intervene to 

prevent data manipulation.  

 

A number of parallels can be drawn between data manipulation and corruption; for example, both 

entail officials misusing their power or coercing others to misuse their power for private gain; and 

corruption, like data manipulation, often happens “quietly,” in clandestine ways. There is a well-

developed body of theory on corruption in the health sector that may be used to study data 

manipulation (Sardan, 1999; Brinkerhoff, 2004; Lewis, 2006; Savedoff and Hussmann, 2006). 

Therefore, to better understand the forces that result in data manipulation and how best to respond to 

this practice in a health system, we drew upon a theoretical framework that consolidated previously 

proposed concepts on corruption in the health sector (Vian, 2008). In this study, we define the 

manipulation of administrative health data or data manipulation, as the fabrication or alteration of 

data, done with the aim of furthering one’s personal interests or to cope with systemic pressures; for 

example, by giving falsely positive impressions of health sector achievements, or hiding negative 

data.  
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Public health researchers have observed data manipulation in the unreliability of national statistics 

(Jerven, 2013; Sandefur and Glassman, 2015); they have reported on the falsification of 

administrative data (Qazi and Ali, 2009; Mercader et al., 2017), and explored how perceptions of 

compromised data quality affect data use (Mutemwa, 2006; Setel et al., 2007). The consequences of 

making decisions based on manipulated and poor quality data have been far-reaching, resulting in 

poor planning and inequitable distribution of resources and delivery of health services (Mackey et 

al., 2018), and a breakdown in transparency and accountability processes within a health system 

(Transparency International, 2019). Therefore, ensuring the accuracy of Health Management 

Information Systems (HMIS) data, the largest routinely collected data source about the health 

services delivered to a population, is of paramount importance.  

 

To improve the quality of HMIS data, many low- and middle-income countries have introduced 

district health information systems (DHIS2, 2019). These systems have been replacing paper-based 

reports with mobile health (mHealth) applications by enabling frontline health workers to record data 

directly on mobile phones (Asangansi et al., 2013; Ethiopian FMoH, 2014; Biemba et al., 2017); 

automating and implementing data validation processes to detect data quality errors (Government Of 

India, Ministry of Statistics and Program Implementation, 2018; Burnett et al., 2019); and 

establishing web-based health data dashboards to promote visibility and real-time monitoring of 

collected data to support communication and decision-making (Nutley et al., 2013; Mutale et al., 

2018).  

 

While these technical processes are expected to improve data management, data quality and data use, 

some researchers acknowledge that they are insufficient to ensure good data quality and data use 

(Garrib et al., 2008; Karuri et al., 2014). In fact, the quality of administrative data remains a 

persistent challenge (Kiberu et al., 2014; Ndabarora et al., 2014; Morton et al., 2016; Phillips et al., 
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2019). For example, quantitative studies have shown a systematic overreporting of certain HMIS 

health indicators (Singh et al.; Sharma et al., 2016; Phillips et al., 2019), and qualitative studies have 

found that the inability to uphold data quality standards stems from multiple individual and 

organizational factors, including the lack of interest and ownership in the data (Hernández-Ávila et 

al., 2013), poor accountability processes, and even personal associations with political elites that 

condone the failure to comply with HMIS standards (Qazi and Ali, 2009, 2011; Ramesh et al., 2012). 

A key question remains: why are data manipulated or misreported in the first place? 

 

Answering this question requires unpacking contextual factors, organizational factors, and 

interpersonal dynamics of actors who may be incentivized to allow corrupt practices to thrive. In this 

paper, we first describe the types of data manipulation observed in Uttar Pradesh (UP), India and 

then using a theoretical framework on corruption in the health system (Vian, 2008) examine the (i) 

pressures and (ii) opportunities for data manipulation; and (iii) the rationalization of data 

manipulation by those involved. A deeper understanding of these collective factors driving data 

manipulation may provide insights into how to address this problem. 

 

4.2 Methods 

Study Context 

The Government of Uttar Pradesh (GOUP) implemented a series of initiatives in 2015 to address 

barriers affecting HMIS performance like, complex reporting formats, weak processes for HMIS data 

quality, and low use of HMIS data in decision-making (Meghani et al., 2020).  

 

First, the GOUP implemented a new online HMIS, known as the UP-HMIS to gather relevant data, 

largely on maternal and child health programs, to meet the state’s managerial and decision-making 
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needs. Among the 919 data elements in HMIS, some were used to calculate the monthly district 

rankings (Uttar Pradesh Technical Support Unit, 2018), others captured services that have been 

incentivized by the national government, like antenatal care, and institutional deliveries (Government 

of India, 2018), and the remaining data elements were collected for routine monitoring.  

 

Second, to improve data quality, the GOUP established data validation committees at two 

administrative levels below the state – at block and district levels – to ensure accurate data were 

available for decision-making. Relatedly, the GOUP also built automated data validation checks 

within UP-HMIS web-based portals to identify data errors, but also instituted data quality audits and 

supportive supervision visits at both levels. Finally, to facilitate the use of these validated data for 

decision-making across the health system, the GOUP developed a UP Health Dashboard. Populated 

using the UP-HMIS data, the Dashboard ranked each of the 75 districts in UP relative to one another 

based on their performance on priority health indicators every month. The policy did not outline any 

explicit awards or punishments for high or low ranking districts, however, the GOUP expected that 

these district ranking indicators would be examined during program review meetings at the district 

level to identify program weaknesses and develop action plans to target improvements in 

performance. Given this context, UP offered an opportunity to investigate why data are manipulated 

or misreported despite the implementation of technical solutions to improve data quality. 

 

Conceptual framework 

Based on our formative research, we adapted Vian’s framework on corruption in the health sector 

(Vian, 2008) to investigate key factors driving data manipulation in UP (Figure 12). First, to identify 

factors that created opportunities for data manipulation, we examined the level of discretion and 

autonomy of actors, the accountability mechanisms for performance and data quality, and processes 

for detecting data manipulation and enforcing sanctions to curb future occurrences. Second, we 
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studied pressures that incentivized data manipulation, e.g., performance pressures from one’s 

superiors and peers, as well as pressures associated with the organization’s work culture. Third, we 

explored the social norms, ethical beliefs and attitudes of health staff to understand how data 

manipulation was rationalized by those involved. Finally, acknowledging the importance of context, 

we remained open to studying how related health systems factors like availability of resources, 

workload, and leadership styles may influence data manipulation and its drivers.  

 

Figure 11. Conceptual framework for the study 

 

*Denotes the adaptations to the original framework on corruption in the health sector developed by Vian (2008) 

 

Sampling 

We conducted 83 interviews with officials at the district, division and state levels. Following the 

principal of maximum variation sampling, we purposively selected 16 high, middle and low ranked 

districts based on their rankings in the UP-Health Dashboard, which included a combination of both 
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high priority and non-high priority districts (Government of India, 2015). To ensure broad 

representation of district respondents, within each district, we purposively interviewed respondents 

who were involved in at least one data-related activity, such as data analysis, data validation or data 

review (e.g., reviewing data to monitor program performance or make a program-related decision), 

and included both government employees of the state’s Directorates of Medical Health and Family 

Welfare (DOMHFW), as well as contractual employees of the National Health Mission (NHM) and 

the UP Technical Support Unit. Overall, we interviewed 48 district-level respondents. To better 

understand the organizational context, we also interviewed 35 division- and state-level officials in 

NHM and the DOMHFW responsible for monitoring district health programs. Finally, we observed 

14 district-level data validation and program review meetings in the 8 of the 16 districts where we 

conducted interviews to corroborate and triangulate findings from the in-depth interviews. 

 

Data collection 

Our district-level interview guide aimed to elicit respondents’ perceptions on: (1) the data quality of 

existing administrative data; (2) current practices to promote data quality; (3) the prioritization of 

data quality initiatives within the health department; (4) individual, organizational and contextual 

factors that influence data quality processes; and (5) potential opportunities to uphold data quality 

standards within the health system. Our division- and state-level guide focused on understanding 

which data are used for decision-making, how they are used, and potential challenges and 

opportunities for improving the use of data for decision-making in UP. 

 

Interviews were conducted primarily in respondents’ offices in Hindi or English depending on their 

preference. Before each interview, we obtained written informed consent. Interviews were audio-

recorded except for 22 interviews when respondents preferred hand-written notes be taken. 

Interviews generally lasted between 30-90 minutes. All audio recorded interviews were transcribed 
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verbatim and translated to English as needed by a qualified transcription agency; AM reviewed all 

transcripts for accuracy.  

 

Interviews (Table 9) and meeting observations (Table 10) were conducted in three phases: 

December 2018; February-March 2019; and August-October 2019. During data collection, the study 

team debriefed biweekly to discuss emerging findings, triangulate data by respondent type, and 

identify probes for subsequent interviews.  

 

Table 9. Types of positions held by respondents 

Level Type of position Description Number of 

respondents 

District Administrative 

officials 

District magistrates, chief development officers 2 

Health officials Chief medical officers 2 

District staff Program staff1  46 

Data staff2  

Division  Monitoring and evaluation specialists 5 

State  DOMHFW: Directors, Joint Directors,  

NHM: Program managers and additional research 

officers 

30 

Total 83 

1 Responsible for managing and monitoring implementation of health programs; positions include: assistant chief 

medical officers and district immunization officers; 2Responsible for collating, reviewing and analyzing health 

program data; positions include: assistant research officers, district program managers, district data managers, data 

entry operators, monitoring and evaluation specialists 

 

Table 10. Meeting observed at the district level in Uttar Pradesh 

Meeting types Number of observations 

Data validation committee meetings 6 

Program review meetings 8 

Total 14 
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Analysis 

We conducted a thematic analysis using the framework method (Gale et al., 2013). First, we 

inductively coded twenty transcripts line-by-line, and used our conceptual framework (Figure 12) to 

develop an analytical framework that captured data on: (1) rationalization of data manipulation; (2) 

opportunities for data manipulation; (3) pressures and work-related stressors; and (4) other factors. 

The detailed sub-categories in the analytical framework are in Appendix 11. Relevant data were 

extracted from the interview transcripts, notes and meeting observations into the excel-based 

analytical framework. Then, memos for each category were prepared, summarizing the overall 

findings, identifying deviant cases, comparing/contrasting potential conflicting findings reported by 

respondents (Boeije, 2002), and triangulating meetings observations with interview findings (Carter 

et al., 2014). Memos were shared with team members to deepen the discussion and understanding of 

the data. After the analysis, a meeting was conducted with a couple of respondents as a way of 

member checking. 

 

4.3 Ethical Considerations 

The study was approved for ethical research by the Institutional Review Board of SIGMA Research 

and Consulting in New Delhi, India (10047/IRB/D/18-19). Johns Hopkins Bloomberg School of 

Public Health deemed this research as IRB exempt (00009106). In some cases, we have not directly 

quoted respondents to ensure anonymity since they come from a tightly knit pool of actors whose 

speaking styles may be revealing. Furthermore, we do not identify the respondent’s organizational 

affiliation in our results, and only indicate their administrative level and position type.     
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4.4 Results 

Despite recent improvements in data quality, district level respondents perceived that data 

manipulation and the pressures to manipulate data were common at the district level across both 

high-priority and non-high priority districts. Therefore, we do not present our results by this 

stratification. Similarly, because district rankings significantly fluctuated month-to-month over the 

course of our study, we decided not to present our results stratified by low, middle and high 

performing districts. Below, we describe types of data manipulation, opportunities and pressures to 

change data, and how respondents rationalize these actions. 

 

Types of data manipulation 

District staff observed direct (overreporting and underreporting) and indirect forms of data 

manipulation at the block and district levels (Table 11). 
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Table 11. Types of administrative data manipulation observed at the block and district levels in Uttar Pradesh, India 

Type of data manipulation How it works Examples of indicators being manipulated 

Direct forms  

Overreporting progress The numerator, i.e., the number of services 

provided, reflect a longer time-period (e.g., 

45 days), while the denominator is assumed 

to be for the typical 30-day reporting period. 

In other instances, data may be made up to 

reflect progress. 

Observed for indicators that are:  

(i) difficult to cross-validate with other indicators (e.g., 

supplies distributed, community activities conducted); 

 (ii) associated with financial incentives (e.g., 

identification of high-risk pregnancies, institutional 

deliveries, bed occupancy rates); and  

(iii) for priority programs and national campaigns that are 

closely monitored (e.g., institutional deliveries, high risk 

pregnancies) 

Underreporting indicators Reporting fewer incidents than actually occur   Observed for indicators that may reflect poorly on health 

workers (e.g., maternal deaths) 

Indirect forms 

Retrofitting service data to match 

inventory  

Distribution of health commodities are 

calculated based on stocks/inventory left in 

the health facilities at the end of the month 

compared to the inventories at the beginning 

of the month. 

 

Inventory data do not reflect the actual 

number of commodities distributed by health 

workers. 

Observed for data pertaining to health commodities, like 

oral contraceptive pills, and multi-dose vaccine vials  

Hiding data Data reflecting low progress on certain 

health indicators are not presented during 

review meetings with senior officials 

Any information about health programs with low 

performance are not presented in reports or PowerPoint 

slides prepared for high-level review meetings with 

superiors 
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A. Overreporting progress 

District staff described overreporting of health indicators that were (i) monitored in the district 

rankings and (ii) associated with financial incentives. Overreporting involved inflating the number of 

services (numerator) provided over a fixed reporting period (denominator). According to district data 

staff, ranking indicators (e.g., the ratio of health worker incentives paid against total institutional 

deliveries) were often overreported to demonstrate higher than actual progress before meetings with 

district administrative officials, as one district data staff described:  

“To prepare for the District Health Society meeting [with district magistrates/district 

administrative officials], I collect the data till 20th of the month. I see that the ASHA 

payments till 20th is not so good, so they [chief medical officers/district health officials] ask 

to change the data of ASHA payments [numerator] but the number of [institutional] 

deliveries should be same [denominator]" (I-5).  

 

District staff observed similar practices in some blocks, where block health officials requested that 

their data staff overreport before meetings with their superiors, district health officials. Similar 

practices were observed at the field level by community health workers before their monthly 

meetings with their supervisors:  

"Our ANMs [health workers] come and say that this is the actual amount of work done and 

this is the amount of work that is yet not done … they create the report where even if 4 people 

have been vaccinated, they write it as 14 people vaccinated. They say they will vaccinate the 

remaining 10 people when they come the next day" (I-32, District program staff). 

  

While personal financial gain may influence community health workers to overreport incentivized 

indicators like high risk pregnancies, district staff explained that those who manipulated the data 
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were not always community health workers, who were the direct beneficiaries of financial incentives. 

Their supervisors at the block-level may change the data (e.g., identify pregnant women as high risk 

pregnancies even if they are not) and through complex kick-back systems receive a portion of the 

incentives given to community health workers.  

 

B. Underreporting poor performance 

Overall, district-level respondents felt that maternal and neonatal deaths were systematically 

underreported within the health system (e.g., by documenting fewer or no deaths than actual) because 

such indicators reflected poorly on a health worker’s performance. This challenge was also broadly 

acknowledged by district leadership, who emphasized the importance of changing this practice:  

“Staff are afraid that if they report a maternal death then they will get some punishment. 

They feel that they may be blamed for not taking care of the mother. They escape by not 

mentioning maternal or child deaths… If the message goes to a higher level, then some 

action may be taken, some investigation may be conducted to find out the reason for death. 

Like if the HB [hemoglobin] was less, then superiors will ask ‘why was this not taken care 

of?’" (I-36, District administrative official)  

 

C. Indirect forms of data manipulation 

Drawing on experiences from their supportive supervision visits, district staff observed other subtle 

forms of data manipulation. For example, they often felt data on the distribution of health 

commodities (e.g., oral contraceptive pills) were retrofitted to match the existing health facility 

inventories and were not based on verifiable data reported in health workers’ registers. Before 

meetings with district administrative officials, district staff also described requests by district health 

officials to hide data on poorly performing indicators from meeting presentations to avoid bringing 

attention to low provision of health services or commodities in the district.   
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Opportunities for data manipulation 

A. Discretion 

Many district staff observed that unchecked power and authority exercised by senior block and 

district health officials created opportunities for data manipulation. Their high level of discretion 

coupled with little demand for accurate data resulted in low prioritization of data quality processes, 

which was problematic for two main reasons.  

 

First, without explicit support from their health officials, data staff in blocks and districts were unable 

to convene data validation meetings and unable to create accountability for other health staff to 

deliver on their data quality-related tasks.  Second, other lower-level staff’s lack of seniority limited 

their ability to prevent district and block health officials from requiring data manipulation. For 

example, when district health officials demanded that data be fixed or changed, district data staff 

described their reluctance to push back because their job security was directly tied to district health 

officials’ opinion of them. Furthermore, the lack of avenues available to district staff, particularly 

data staff, to report their grievances was problematic; as one stated, “who would they raise their 

voices to when all the feedback goes back to one person?” (I-16). Similar challenges were described 

at the block-level between block staff and block health officials. 

 

B. Accountability 

District staff described the implementation of two competing forms of accountability within the 

health system: district- and state-level leadership created strong accountability mechanisms for 

performance, while weakly enforcing accountability for data quality. For accurate data to inform 

district rankings, enforcement of both forms of accountability are needed. 
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1. Accountability for performance 

District-level performance was largely based on the monthly district rankings in the UP-Health 

Dashboard. A district’s rank was routinely reviewed during meetings with district health and 

administrative officials. If the district’s ranking was low, district staff felt the focus shifted to 

pinpointing blame rather than examining the drivers of low performance:  

“They [District administrative officials] just want to see their A grading of the district. No 

one wants to know that we cannot do well in the outpatient department because we do not 

have doctors” (I-32, District data staff).   

 

Following these meetings, district health and administrative officials reportedly sanctioned 

punishments via official letters or requests for “action taken reports” requiring explanations for poor 

performance. Unofficial forms of communication like threats to withhold salaries or delay approval 

of holidays were also reportedly used by district leadership, a point corroborated by the district health 

officials and administrative leaders we interviewed.  

 

The district leadership’s emphasis on accountability for performance was seen to mirror state-level 

priorities, as meetings between districts and states predominantly focused on monitoring targets and 

performance based on the district rankings. Most state-level respondents corroborated this, saying 

they used data to monitor performance as opposed to identify or address issues of data quality.  

 

2. Accountability for data quality 

Despite the presence of two formal mechanisms to improve data quality – supportive supervision 

visits and data validation committee meetings – six factors appeared to weaken their enforcement: (i) 

poor understanding of data quality; (ii) high workload; (iii) overemphasis on performance data; (iv) 
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perception that district performance reflects one’s own performance, (v) systemic corruption; and (vi) 

weak processes for disciplining or dismissing staff.  

 

First, district-level respondents described an inadequate level of understanding about data quality – 

what good data quality means and how it is measured – among district administrative and health 

leadership. Often “good data” were interpreted as “good performance” and not necessarily “good 

quality data.” Relatedly, some district- and state-level respondents rationalized poor performance by 

explaining that services were being systematically underreported:  

“We are doing very good work, our doctors, paramedics… but it is not reflected in the data 

because you [they] are not managing the data. It is not that the doctors are not seeing the 

patients, day by day the OPD [Outpatient Department] load is increasing… but it is not 

reflected in the data” (I-58, State-level respondent).  

 

This perception that services are being delivered but being underreported may also explain why 

reporting errors were not given due consideration when identified during district data validation 

meetings: 

"They [data entry operators or community health workers] do not worry about writing the 

wrong data. They just say, ‘Oh, it went wrong, tell me what to fill here.’ Here, data does not 

mean true data" (I-18, District data staff).  

 

Some district-level data staff further explained that less time was invested in recording, reviewing 

and assessing the data quality of data that did not inform the district-level rankings and were not 

associated with financial incentives. 
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Second, high workload associated with the implementation of a number of national health programs 

and fortnightly health campaigns also contributed to the low prioritization of data quality 

accountability mechanisms, like supportive supervision. As one district data staff noted: “In practice, 

we have so much work that supportive supervision actually becomes too much…there is no time to do 

actually do it” (I-27). District data staff also reported that some of them preferred “changing the 

data” rather than conducting supportive supervision (I-43).  

 

When supportive supervision did occur, district data staff questioned the quality of these visits, 

describing them as informal “tea-visits” rather than official validations of web-based data (I-43). 

This laxness was attributed to district staff’s minimal training on using the supportive supervision 

checklist or lack of sincerity towards work. 

 

Third, the state leadership’s emphasis on performance over data quality contributed to weak 

enforcement of data quality at district and block levels. Several district data staff felt this was evident 

in the little attention given to data quality issues when data demonstrated good performance (e.g., a 

high district ranking): “The trouble is, if the performance is good on the basis of data, no one is 

going to ask anything [about data quality]” (I-43). In a similar vein, one state-level respondent 

explained if the focus is on demonstrating improvement, using the data source that fits that 

messaging becomes priority. 

 

State-level respondents also said there was limited demand for data quality at the state-level. 

According to some, lack of consideration for data quality was perhaps most reflected in a decision to 

minimize the functions of a data unit within the DOMHFW. Until 2015, this cell was responsible for 

reviewing paper-based administrative data and hosting monthly meetings to review the quality of 

those data with district-level data staff. However, with the replacement of paper-based reporting for 
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web-based reporting, some state-level respondents said that the state leadership felt a less prominent 

role for the data unit was justified. Regardless, district data staff and state-level respondents 

universally expressed the importance of establishing clear lines of reporting from district-level data 

units to the state-level data units. State-level respondents further articulated that building capacity for 

data analysis and data quality in DOMHFW would be critical for improving accountability for data 

quality. 

 

Fourth, some district-level respondents explained the difficult tradeoff they faced between upholding 

data quality or using data to show good district performance, because the latter factored into their 

performance assessment: “You can look at the data to actually see whether or not things are 

improving and to track health programs; or, you can focus on looking at the data mainly as a way to 

save your own job” (I-13, District data staff). This conflict of interest was also applicable to 

community, block, and district staff/officials, as one district administrative official explained. 

 

Fifth, district-level respondents explained how political or personal connections with members of the 

legislative assembly or district health and administrative officials weakened accountability for data 

quality and data manipulation at lower administrative levels. For example, district data staff 

described how those who manipulate data at community or block levels were protected by district 

health officials who they had bribed for their current positions or were connected with through 

existing systems of kick-back.  

 

Finally, and related to the point above, influential connections coupled with high levels of discretion 

meant that senior block and district health officials rarely bore the consequences of engaging in 

corrupt practices like data manipulation. For example, a district data staff described being unable to 
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enforce disciplinary measures against a block health official who was extorting a portion of the 

financial incentives given to community health workers for supporting institutional deliveries: 

 “If I tell the CMO [chief medical officers/district health official], the CMO will not take any 

action. The previous CMO would have called the MOIC [medical officer-in-charge/block 

health official] and said, ‘Listen I heard this news. You need to give me this much for this 

problem to go away…’” (I-29). 

 

Politics aside, many district-level respondents pointed to the lengthy process for dismissing and 

suspending government employees (Legal Service India, 2018), which made holding them 

accountable very difficult. Despite being aware of the problems associated with corruption, district 

administrative officials submitted that in light of significant human resources constraints, making do 

with the staff they had was their only option.  

 

3. Examples of strong enforcement of district-level data quality accountability mechanisms 

District staff identified two factors contributing to the strong enforcement of data quality 

accountability mechanisms at the district-level. First, district health and administrative officials who 

prioritized good quality data, through their enforcement of supportive supervision visits and review 

or presentation of those reports during meetings. Second, many district health officials with better 

enforcement of data quality processes held weekly meetings with block-level officials/staff to ensure 

consistent achievement of targets, troubleshoot problems, and safeguard against data manipulation.  

 

On a broader scale, there was a consensus across respondents of all levels that the replacement of 

paper-based reporting with digital reporting increased accountability for good quality data and 

reduced opportunities to manipulate data at lower administrative tiers:  
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“Now with HMIS/UP-HMIS [web-based reporting platforms], manual [paper-based] reporting 

is decreasing, things are improving. Previously, it was difficult to catch errors but now with 

digitization, it’s easier for us to go back in time and see what data were being reported. With 

data coming online, we have capacity to do more analytical work.” (I-78, State-level respondent) 

 

Interviews with division- and state-level respondents also signaled increasing prioritization of data 

quality at higher administrative levels with the recent development of a division-level monitoring and 

evaluation unit, as well as a state-level data validation committee and audit team. State-level 

respondents also noted that demand for the states, including UP, to improve data quality was coming 

from the national-level, particularly, the Niti Aayog, India’s planning commission:  

“Niti Aayog is not accepting [paper-based] data so all are focusing on HMIS data and that 

has to be correct and complete… they are ensuring HMIS should have correct data entry, 

data validation committee should be there, data should be checked and data output should be 

maximized, so this process is beginning now.” (I-55, State-level respondent) 

 

Pressures to manipulate data 

A. Performance pressures  

A high-pressure environment geared towards results and achievement of targets was evident in the 

content and number of meetings held at the district, and between districts and the state. Low 

achievement in the district rankings resulted in videoconferences with senior state-level leadership, 

which many district data staff described as a “one-way communication” where the state-leadership 

restated its performance expectations (I-25, District data staff).  

 

District staff felt this top-down pressure was reiterated during district-level meetings with district 

administrative officials. If achievements were lagging on certain priority programs based on the 
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district rankings, district administrators (e.g., district magistrates) would demand improvement. 

District staff universally stated that the district magistrates would never suggest “changing or 

manipulating the data,” however, to steer clear of their “scolding” during the next meeting, district 

and block health officials would demand their staff to “increase the reporting” of priority health 

indicators. As one district data staff explained: 

“The thing is that they [block health officials and staff] have already understood that in the 

previous meeting, I was scolded for this. … So, if any one of the MOIC [medical-officer-in 

charge/block-level health official] was scolded for this HBNC [home-based newborn care] 

thing in the last month; to take care of that next month they will do this [data manipulation]" 

(I-43, District data staff). 

 

Many district staff described feeling “frustrated,” “burnt out,” and “overburdened.” However, one 

district staff noted that the most severe performance pressure was yet to come: rankings of district 

program managers, who are contractual data staff of the NHM. At the time of these interviews, these 

rankings were being developed by the GOUP, and the expectation was that they would be released 

every month alongside the district rankings (UP NHM, 2019). 

 

B. Punitive work environment 

Fear-based tactics, such as transfers or holding back salaries were often employed by district health 

and administrative officials to increase accountability for program performance. These tactics were 

observed during district-level meeting observations and confirmed by the district health and 

administrative officials we interviewed, who noted using similar approaches. 

 

Many district program and data staff described “holding their breath” when attending district-level or 

state-level meetings where district-rankings were reviewed, fearing repercussions for poor 
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performance. The pressures to “fix” or “improve” performance fostered an organizational culture 

where data manipulation became a coping strategy, which was operationalized via informal networks 

with district and block health officials, and data staff at the block and district levels. In particular, to 

draw less attention and scrutiny during meetings with district administrative officials or state-level 

officials if ranked as a top district, district staff said their district health officials preferred to be 

“somewhere in the middle” of the district rankings as one noted: “CMO [District health official] is 

satisfied as long as we are ranked somewhere in the middle. Same with DM [District 

Magistrate/district administrative official]" (I-43, district data staff). 

 

Rationalization 

Not all district staff succumbed to the pressures of their environment. Many responded to these 

pressures by using existing technical reasons for being unable to manipulate data. One district data 

staff recalled refusing a request by clearly stating: “We [assistant research officers/district data staff] 

are not data generators. We compile data” (I-37).  

 

Other district data staff also described flatly ignoring requests to change data. For example, district 

data staff, who were aware of data being manipulated, refused from clicking the “submit” button on 

the online UP-HMIS that would record those data on the UP-HMIS web-based data portal. In another 

example, a district data staff described a peer’s strong adherence to data quality principles, who 

continued to report actual attendance data of block-level medical officers despite facing high levels 

of pressure to inflate their attendance. However, persistently ignoring these requests resulted in a 

hostile work environment, which eventually led to the data staff’s resignation.  

  

District data staff also noted how many districts had “rapid increases in district ranking even though 

those improvements should happen overtime and gradually” (I-54). These quick spikes in ranking 
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were attributed to manipulating the district rankings indicators. In such situations, when it was 

obvious that other districts were engaging in the practice, resisting data manipulation was socially 

unpopular. This challenge was reiterated by another district data staff who described how the district 

health official felt peer pressure to demonstrate progress when comparable districts had high district 

ranks, which the respondent speculated was due to overreporting (I-37). In short, data manipulation 

was seen as the way to survive within the broader system that appeared to condone the practice. 

 

District-level respondents also felt job security and family financial security were often used as 

justification for data manipulation. One district data staff reflected on a personal transformation from 

wanting “to change the system” and abiding by abstract ethical norms to the current realization that 

“challenges to address are too many” and the importance of prioritizing that “family is taken care of” 

(I-13).  

 

4.5 Discussion 

Our study identified the main forms of administrative health data manipulation (Table 11) and the 

informal networks that operationalized the practice to provide a clearer view of the underlying 

factors that incentivize data manipulation. This analysis also presents the first application of the Vian 

corruption in the health system framework to study data manipulation. While the topic of data 

manipulation has been peripherally examined in the context of falsification of records for personal 

financial gain, and misreporting of administrative data to meet targets or benefit from results-based 

aid programs (Qazi and Ali, 2011; Sandefur and Glassman, 2015; Closser, 2019), our goal through 

this study is to explicitly situate data manipulation as a corrupt practice in the health systems 

literature.  
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Based on our analysis, we find that the problem of data manipulation, in part, reflects the persistent 

disconnect between “brilliantly formulated policies” and “realities on the ground”(Pritchett, 2009). In 

UP, HMIS policies clearly stated the objective of using good quality data in decision-making. 

However, the uneven implementation of data use and data quality policies at local levels resulted in 

competing systems of accountability. More specifically, the overemphasis on one aspect of the data 

use policies (i.e., using district rankings to create accountability for performance, and not the related 

aspect of identifying gaps and devising actions plans for improvement) - created unrealistic 

expectations of achieving significant improvements in a short time (or, before the next monthly 

district ranking). 

 

Top-down pressures from the state translated to stronger system-wide enforcement of accountability 

for performance rather than data quality. The absence of functional state-level data units reflected the 

void in state-level demand for better data quality, further amplifying these pressures. At the district-

level, performance pressures were reinforced by a punitive performance management system, where 

district staff/health officials were chastised during high-level meetings for low district rankings. 

Furthermore, a major conflict of interest emerged: the performance of district/block health officials, 

who were responsible for data quality were also judged on those same data (via the district ranking). 

This situation perversely incentivized data manipulation and led to a break down in the formal 

channels of accountability, transparency, and enforcement of practices for good data quality. Since 

job security of lower level staff was strongly tied to their obedience to superiors’ directives, the 

discretionary powers of officials often remained unchecked. Finally, the widespread social 

acceptability of data manipulation, in part to cope with the performance pressures, resulted in the 

rationalization of the practice.  
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Our study mirrors findings from other studies where data were manipulated for personal financial 

gain and to achieve outlined targets (Qazi and Ali, 2011; Sandefur and Glassman, 2015; Closser, 

2019). However, unlike these studies, which have explored pressures to manipulate data in the 

context of achieving external donor-outlined targets and performance-based aid (Sandefur and 

Glassman, 2015; Closser, 2019), we found that data manipulation was a coping strategy to manage 

pressures associated with a punitive work culture which demanded achievements of aggressive 

targets quickly. The approaches to performance management - naming, shaming and blaming – more 

commonly affected contractual staff working in data units, who were less capable of effectively 

responding to pressures from their superiors. As observed in other studies, we found the data units 

lacked functional independence and had little discretionary power at the district-level, and were 

incapacitated at the state-level, allowing data manipulation to persist (Sandefur and Glassman, 2015).  

 

Consistent with other studies, we also found that enforcement of accountability for data quality were 

weaker for those connected with influential politicians or those who had bought their positions from 

them because they had impunity for non-performance (Closser, 2019). In addition, we found that the 

overwhelming influence of indirect social pressures via socially acceptable working norms created a 

tension between delivering on the expectations of peers and supervisors in the district and abiding by 

abstract ethical norms. One corruption theory grounded in behavioral sciences explains that 

individuals who are likely to be involved in corruption are “those who internalize the sanction 

(experience guilt, shame or embarrassment)” for not participating in their organization’s corrupt 

practices, and “conclude they have in fact done wrong” by rebuking those corrupt practices; though 

their actions chastising corruption would be considered correct outside their networks (Smith-Crowe 

and Warren, 2014). This point further demonstrates the challenges of working in punitive 

environment, where possibly false impressions of reality (e.g., feeling embarrassed for not achieving 

an unrealistic target) perpetuate corrupt practices, like data manipulation. 
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While our analysis describes the main forces of data manipulation and how they interact with one 

another, we were unable to fully examine if pressures to manipulate data subside when technical and 

resources constraints within the system are addressed. In our interviews with respondents from high 

priority districts, which receive additional technical support, we anticipated fewer pressures to 

manipulate data. However, contrary to expectation, they reported similar experiences with data 

manipulation to those articulated by respondents in non-high priority districts, suggesting that issues 

of data manipulation and corruption are not a mere reflection of insufficient resources but broader 

organizational cultural issues. 

 

There have been louder calls for countries to implement top-down anti-corruption approaches and 

strengthen system-wide governance initiatives (Sudarshan and Prashanth, 2011). In 2013, the 

Government of India (GOI) instituted Lokpal and Lokayukta to investigate corruption at the national 

and state-levels respectively (The Times of India, 2013). States like Karnataka, also expanded 

Lokayukta into vigilance cells within health departments (The Times of India, 2013). While it is 

currently unclear, whether these units are able to identify or even address issues of data manipulation, 

the Government of India has started implementing national data quality audits to strengthen data 

quality. The frequency, breadth (in terms of indicators and geography), and feasibility of conducting 

data quality audits seems challenging in large states like UP with nearly 29,000 public health 

facilities. Even if they are implemented as intended, it would be critical for the national government 

to penalize practices of data manipulation to curb recurrences, as well as devise strategies to address 

the root causes of it.  

 

Our study has several limitations worth highlighting. First, we examined the drivers of data 

manipulation, and while our respondents spoke with us extensively about data manipulation 

practices, we were unable to quantify the prevalence of these practices across all 75 districts. Second, 
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we recognize that the sensitive nature of this research may have resulted in social desirability bias. 

However, we attempted to address this limitation through prolonged engagement in the field, rapport 

building with participants, and generating detailed and nuanced accounts that would reveal a full 

picture. Third, due to their busy schedules, we were unable to extensively capture the views senior 

district health and administrative officials (e.g., chief medical officers and district magistrates) whose 

insights may have further illuminated the findings from this study.  

 

4.6 Conclusion 

This study unpacks the main drivers of data manipulation and shows why these practices persist 

despite the strong initiatives to improve data quality by the GOUP. A deeper understanding of the 

underlying barriers to data manipulation is the first step towards identifying strategies to curb this 

practice. While stakeholder engagements in UP will be required to identify context-appropriate 

strategies in UP, our study identifies three main entry points to mitigate data manipulation: (1) 

changing the incentive structures, for there to be equal emphasis on data quality as there is on 

performance data; (2) strengthening checks and balances to reinforce the integrity of data-related 

processes at all levels; and (3) implementing system-wide policies that make data manipulation an 

unacceptable anomaly.  Future evidence on context-relevant top-down and bottom-up strategies to 

effectively counter data manipulation are required.  
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Chapter 5. Discussion and conclusions  

 

5.1 Research purpose  

Leveraging both qualitative and quantitative methods, this dissertation explored the non-technical 

determinants of Health Management Information System (HMIS) performance, such as 

organizational and behavioral factors, that are often less examined in the literature. Chapter 2 

explained the observed gap between well-intentioned HMIS policies and their implementation by 

analyzing how organizational factors and culture shaped implementation processes. Chapter 3 

quantitatively analyzed the variations in data quality for HMIS indicators that are used in 

performance metrics (like district rankings) and are associated with financial incentives with those 

that are only collected for routine monitoring. Finally, Chapter 4 described the types of HMIS data 

manipulation observed in Uttar Pradesh (UP), and their underlying drivers. 

 

This chapter summarizes the key results from each of the three papers, presents the strengths and 

limitations of the overall study, and describes the broader policy implications as well as 

recommendations for future research.  

 

5.2 Summary of findings  

Chapter 2 identified four key factors that affected HMIS policy implementation and performance in 

Uttar Pradesh. First, respondents described the human resource shortages, including the lack of 

block-level data entry operators, which overburdened existing staff and weakened the 

implementation of HMIS activities. A second implementation gap was the inadequate knowledge 

about UP-HMIS policy guidelines, and limited computer literacy among block- and district-level 

staff. The issue of hierarchy emerged as a third important factor influencing HMIS implementation. 
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District data staff, particularly contractual data staff, described how their limited power and authority 

required them to escalate minor issues to the level of the district-leadership in order to create 

accountability among other staff for UP-HMIS activities. However, district-level data staff also noted 

that working within a very hierarchical organizational system meant having to follow their 

supervisors’ directives– even if they contradicted HMIS policy guidelines. A fourth gap affecting 

HMIS performance was the overemphasis on using monthly district rankings to create accountability 

for performance. Though the primary policy intention was to use district rankings to guide 

improvements in program implementation, district-level respondents described how their superiors’ 

“fixation” with becoming a top-ranking district, often meant disregarding the quality of data 

informing district rankings.  

 

Chapter 3 showed that data quality metrics for completeness and internal consistency varied by the 

four HMIS indicator categories (ranked, incentivized, ranked and incentivized, and unranked and 

unincentivized). The highest level of completeness in the monthly health facility reports was 

observed for ranked indicators, closely followed by ranked and incentivized indicators, incentivized 

indicators and finally, unranked and unincentivized indicators, which had the highest percentage of 

missing data. The high percentage of completeness for ranked indicators may be explained by the 

demand by district and state leadership to review these data during monthly meetings. 

 

Contrary to expectation, when examining the percentage of outliers, we found that ranked indicators 

had the smallest percentage of extreme outliers and unranked and unincentivized indicators had the 

highest percentage of extreme outliers. However, findings from internal consistency ratios revealed 

higher levels of systematic overreporting of ranked and incentivized indicators relative to unranked 

and unincentivized indicators. Together, these findings suggest that ranked and incentivized 

indicators may be overreported, but not at extreme levels, perhaps to avoid undue attention from 
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superiors that may prompt investigations. Finally, with respect to the performance of the three data 

quality metrics (completeness, outliers, internal consistency) by monthly facility reports in high 

priority districts (HPDs) and non-high priority districts (non-HPDs), as expected, we observed higher 

levels of completeness across the four indicator categories in monthly facility reports from HPDs. 

However, we observed the same percentage of moderate and extreme outliers, and evidence for 

potential overreporting of ranked and incentivized indicators relative to unranked and unincentivized 

indicators (based on internal consistency ratios) in monthly facility reports from both HPDs and non-

HPDs. 

 

Chapter 4 described the four types of data manipulation observed by district-level respondents and 

the underlying drivers of data manipulation in UP. The four types of data manipulation described 

were: (i) the overreporting of positive indicators, for example, health service indicators like 

institutional deliveries; (ii) the underreporting of negative indicators, e.g., reporting of maternal 

deaths or stillbirths; (iii) the retrofitting of health commodities data to match health facility 

inventories at the end of the month; and (iv) hiding data that showed low progress from presentations 

to senior district or state officials.  

 

Many district respondents observed that unchecked power and authority exercised by senior block 

and district health officials created opportunities for data manipulation. Their high level of discretion 

coupled with little demand for accurate data resulted in low prioritization of data quality processes. 

Relatedly, district-level respondents emphasized that opportunities for data manipulation were 

created, when accountability mechanisms for data quality were weakly enforced, which they 

attributed to six factors: (i) poor understanding of data quality; (ii) high workload; (iii) overemphasis 

on performance data; (iv) perception that district performance reflects one’s own performance, (v) 

systemic corruption; and (vi) weak processes for disciplining or dismissing staff.  
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Performance pressures and punitive work culture were also identified as key factors that created 

pressure to manipulate data. A high-pressure environment geared towards results and achievement of 

targets was evident in the content and number of meetings held at the district-level, and between 

districts and the state. Many district-level respondents also described the use of fear-based tactics, 

such as transfers or holding back salaries to increase accountability for program performance.   

Finally, district-level respondents explained the social pressure to manipulate data and described job 

security and financial security for one’s family as reasons to justify data manipulation. 

 

Some district-level staff described resisting manipulating data by drawing on technical reasons for 

being unable to change data or flatly ignoring requests. However, as potential elements of a broader 

strategy to mitigate data manipulation, district- and state-level respondents identified several 

potential avenues for exploration, including, the replacement of paper-based reports with digital 

reporting and the implementation of skills-based trainings to build technical knowledge among data 

and program staff. However, respondents noted that the most important factor to address data 

manipulation is having leadership that values, demands, and prioritizes good quality data in decision-

making.  

 

Conclusions from all three research papers demonstrate that issues of a weak HMIS implementation 

are not merely a reflection of insufficient resources or the lack of technical guidelines. Our 

qualitative findings (in Chapters 2 and 4) describe how organizational cultural factors – particularly, 

challenges associated with working within a strict hierarchy, and broader performance pressures and 

punitive work culture resulted in weak enforcement of data quality mechanisms, and created perverse 

incentives to manipulate district ranking indicators to show high achievement of performance 

metrics. The HMIS data quality analysis (in Chapter 3) corroborated these assessments and presented 

evidence to show the potential overreporting of HMIS indicators that are associated with 
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performance measures like district rankings and financial incentives. Findings from all three chapters 

demonstrate the lack of alignment in goals among health actors in data units and those in leadership 

positions, which resulted in data quality goals often being at odds with the goal of achieving a high 

district ranking. Findings also point to the need for strengthening the integrity of data-related 

processes at all levels of the health system, and implementing system-wide policies that make data 

manipulation an anomaly, not a norm. 

 

5.3 Strengths and limitations 

Since the strengths and limitations of each paper are highlighted in Chapters 2-4, this section reflects 

on the overall strengths and weaknesses of the dissertation. A major strength of the dissertation is the 

collaboration with technical partners of the GOUP -  the Uttar Pradesh Technical Support Unit (UP-

TSU), who had intimate understanding of the state’s governance structure and the UP-HMIS policy 

guidelines - throughout the dissertation research. First, research questions were designed to be policy 

relevant and were developed in consultation with the UP-TSU. The study tools, which were based on 

an initial document review, were further refined following discussions with colleagues at the UP-

TSU, and interviews with HMIS program implementers at the block and district levels. During data 

collection, emerging themes were also shared with colleagues at the UP-TSU. At this time, findings 

presented in Chapters 2-4 have been shared with UP-TSU colleagues for their written feedback, and 

meetings have been planned in August 2020 to discuss the interpretation of the dissertation’s 

findings, and the policy implications of this work in greater detail.  

 

Second, this dissertation leverages both qualitative and quantitative methods, such as in-depth 

interviews, meeting observations, document review, and descriptive quantitative analyses, which has 

helped shed light on different aspects of HMIS performance. For example, we were able to 
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triangulate findings from in-depth interviews with district-level meeting observations, which 

provided direct empirical evidence on behaviors and interactions pertaining to hierarchy and 

performance management. Similarly, the quantitative component of this dissertation (Chapter 3) 

corroborated qualitative findings (Chapters 2 and 4) by quantifying the level of potential 

overreporting of ranked and incentivized HMIS indicators compared to unranked and unincentivized 

HMIS indicators. 

 

Finally, being able to conduct all the in-depth interviews and meeting observations myself over the 

span of one year has had several advantages. My prolonged engagement in UP helped me build and 

gain the trust of my respondents and allowed me to better understand the organizational and health 

system culture that my respondents operate within. My long-term presence in UP also exposed me to 

a wide a range of respondents across different districts, which allowed me to iterate on the in-depth 

interview guide, develop nuanced accounts of my respondents’ experiences with HMIS 

implementation, and conduct interviews until data saturation was achieved.  

 

While the strengths described above improved the quality of the overall dissertation, there are 

shortcomings worth noting. In addition to those specified in each chapter, one major limitation of this 

dissertation was being unable to quantify the prevalence of data manipulation observed across 

districts in UP, even though we were able to identify the drivers of HMIS data manipulation (Chapter 

4) and quantitatively present evidence for potential overreporting, a type of data manipulation 

(Chapter 3). To enhance the quantitative findings presented, a data validation audit that verifies the 

HMIS data entered in source documents, like facility-level registers with UP-HMIS web portal data 

could have provided direct evidence on the practice of data manipulation. Second, the qualitative 

data collection for this dissertation happened in three phases over the span of one-year, and districts 

may have been at different phases of their UP-HMIS implementation processes during data 
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collection, which may have shaped their responses to some questions. However, because all the 

district-level policies examined in this dissertation had already been released by the GOUP at the 

start of data collection, this limitation is unlikely to significantly modify the findings presented here. 

 

5.4 Policy implications 

The findings from this dissertation have immediate- and long-term policy implications for 

strengthening HMIS performance in UP. The first three recommendations focus on drawing on 

technical strategies to improve HMIS performance in the state. The remaining recommendations 

largely focus on building an organizational culture that demands and values good HMIS data quality 

for decision-making.  

 

(1) Improve the number of qualified staff who can carry out data-related activities at all levels 

health systems 

One of the most critical gaps affecting HMIS performance is the overburdened block-level data entry 

operators, who are responsible for entering paper-based facility reports from 26 to 31 health facilities 

(depending on block size) to up to 16 web-based health program portals every month. Hiring 

additional data entry operators is the most obvious solution for reducing the reporting burden, and the 

current scale up of electronic data entry platforms like ANMOL (Auxiliary Nurse Midwives Online) 

by the GOUP may drastically help reduce the reporting burden on block-level data entry operators. 

However, as the findings in Chapter 2 explained, ensuring the availability of data entry operators 

(and human resources, generally) is not enough, as they are often redirected to other activities at the 

behest of their supervisors. To improve the performance of HMIS in the state, the GOUP must ensure 

that job descriptions of data and program staff are closely followed. 
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In particular, alleviating the workload placed on district-level staff (e.g., assistant chief medical 

officers/program staff) would require addressing the uneven distribution of responsibilities among 

them. For example, the GOUP may consider establishing a cutoff for the maximum number of health 

programs one program staff is allowed to manage. Implementation of such a directive may help 

reduce situations which disproportionately overburden few program staff and in turn may encourage 

all program staff to take on greater ownership of their programs, including their program data.  

 

Second, the GOUP should consider developing an ongoing collaboration with staffing agencies to 

establish a staffing pool that can be drawn upon in times of acute need. These staffing agencies can 

vet and assign the most qualified candidates to support the block or district’s short-term needs, for 

example, to support the implementation of monthly national health campaigns and short-term health 

drives, which often result in existing staff being redirected to support these “urgent” activities, 

thereby disrupting the implementation of routine data-related activities.  

 

Relatedly, findings showed how the lower status of contractual data staff relative to permanent staff 

inhibited them from effectively overseeing the implementation of HMIS data-related activities. 

Strategies that bridge the hierarchical divide between permanent and contractual staff and integrate 

contractual staff into the existing workforce would be critical for creating and enforcing 

accountability for HMIS-related activities. 

 

Lastly, addressing the persistent human resources shortages across different cadres who are required 

to support HMIS processes at different levels will require the GOUP to identify sustainable 

mechanisms and strategies for producing, retaining, and equitably distributing health workers in the 

UP health system.  
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(2) Invest in skill-based trainings, and automate data analysis to close existing technical knowledge 

gaps affecting HMIS performance  

Trainings during the scale-up of the UP-HMIS assumed a key competency: computer literacy and 

basic computer skills among block- and district-level staff. This oversight, in part, reflects the 

changing workforce in UP: new hires are often computer literate but lack technical knowledge of 

HMIS; whereas, older staff, who are nearing retirement, are better-versed in HMIS processes but 

remain less skilled with computers. In this context, the GOUP should consider developing targeted 

training sessions that address gaps in technical knowledge and computer literacy to ensure effective 

implementation of HMIS processes by all cadres in the health system. Developing and implementing 

an effective training program may involve drawing on theories about adult learning techniques, 

which outline the distinct styles with which adults learn and retain materials (Knowles, 1970) 

especially for those who continue to show deficiencies in their technical understanding of the HMIS 

despite have received prior trainings. In addition, the GOUP should consider routinely updating 

training content and implementing trainings (virtually or in-person) when data collection formats or 

data collection processes are changed so that health cadres responsible for data entry and analysis 

remain up-to-date with data demands for new and existing health programs.  

 

Aside from trainings, to close technical and computer literacy gaps, automating basic technical 

analyses, such as the generation of monthly reports, and building additional data validation checks 

(including those proposed in Chapter 3), may be helpful to block-level data staff, who often rely on 

their district-level counterparts to support them with data analysis.  
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(3) Draw on technical strategies to improve data quality and increase the transparency of data being 

reported at all levels of the health system 

Technical strategies that promote data entry at source may inhibit “fixing” of data at the block levels, 

and bring transparency and accountability, especially as data are entered in real-time. As of July 

2020, the GOUP has been scaling up the use of electronic data entry platforms like ANMOL 

(auxiliary nurse midwives online), which will enable frontline staff to directly enter data into web-

based portals via tablets. The state-wide implementation of such platforms would increase the 

availability of real-time data, which may encourage greater use of data for decision-making and help 

enhance transparency as more staff within the heath system would be able to view the data, making it 

harder to make changes to the data and establish informal networks for data manipulation (Press 

Information Bureau, Government of India, Ministry of Health and Family Welfare et al., 2016).  

Similarly, technical approaches, such as incorporating additional data validation metrics as proposed 

in Chapter 3 to identify potential overreporting of ranked and incentivized indicators relative to 

unranked and unincentivized indicators may help identify data quality errors early on, which may be 

followed up or verified during supportive supervision visits or audits at the facility-level.  

 

(4) Build leadership, and ownership to generate accountability for good quality data at all levels of 

the health system 

Having strong leadership that values, demands, and prioritizes good quality data in decision-making 

is critical for creating an organizational culture where data quality is prioritized, and mechanisms to 

strengthen HMIS data quality are enforced at all levels of the health system. Instilling among 

leadership at all levels of health system the value of data quality is critical and may require additional 

trainings to illustrate the benefits of good data quality and to further develop relevant skills for 

analyzing and using data for decision-making.  
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Aside from leadership being a critical factor in creating accountability for good quality data within 

the health system, the GOUP should strengthen the capacity of existing data units or establish a new, 

integrated data unit within the Directorate to coordinate, monitor and evaluate data quality processes 

across the state. To effectively lead, state-level data units must have sufficient financial and decision-

making authority to develop and implement data quality initiatives, as well as enforce accountability 

mechanisms to promote good HMIS data quality at all levels of the health system.  

 

Most importantly, state-level data units could help strengthen existing GOUP initiatives, such as, the 

implementation of the state-level data validation committee meetings, and data quality audits, which 

have been weakly implemented. Relatedly, the state-level data units could play a broader analytic 

role to support better planning and monitoring of health programs being implemented in the state.  

 

(5) Create incentives for good data quality, and disincentives for data manipulation 

At the district-level, findings clearly demonstrated the tangible benefits of achieving high district 

rankings, such as better postings and promotions of health and administrative officials from top-

ranking districts. In addition, top-ranking district officials were also less likely be to “named and 

shamed” for poor performance during district and state high-level meetings. Consequently, 

maintaining or achieving top district rankings took precedence over enforcing data quality 

mechanisms, especially when the incentives for good data quality and the disincentives for bad data 

quality were both lacking.  

 

The GOUP may consider the following incentives to improve HMIS data quality: (i) computing a 

metric for data accuracy, which is calculated into the monthly district rankings; (ii) implementing a 

“naming and faming” strategy (Zomer, 2018) that recognizes block and district officials, whose 

districts show excellent data quality, for example, based on data quality audit results; and (iii) 
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requiring district and state officials to review the data quality results from supportive supervision 

visits and data validation committee meetings, just as the GOUP guidelines mandate the review of 

the monthly district rankings from the UP Health Dashboard during these meetings.  

 

To disincentivize data manipulation, the GOUP should clearly articulate the consequences of data 

manipulation in policy guidelines and enforce those guidelines. This policy should be considered as a 

part of a broader anti-corruption agenda which should include: (i) requiring district health officials to 

disclose conflicts of interests that could influence the recruitment, appointment or promotions of staff 

in the district; and (ii) expanding the Lokpal and Lokayukta’s role by establishing vigilance cells to 

strengthen system-wide governance and employment grievance redressal mechanisms in the GOUP 

health system (The Times of India, 2013). Successful implementation of these initiatives will require 

strong leaders, who are passionate about defeating corruption and able to navigate political 

repercussions.  

 

In addition, the GOUP should consider removing any direct or indirect “incentives” for potential data 

manipulation. By introducing “randomness” in the selection of indicators used to compute the 

monthly district rankings, the GOUP may reduce the perverse incentive for data manipulation. 

Relatedly, by expanding the pool of district ranking indicators, the GOUP could also increase 

attention given to health programs that are overlooked. Lastly, it is important to recognize that 

“urgencies,” like, the immediate implementation of a national campaign and the expectation of high 

achievement often opens an opportunity for data manipulation because of the high pressure health 

officials feel to deliver on results in a short period of time. The GOUP may like to consider strategies 

that could alleviate such pressures to avoid data manipulation from becoming a coping strategy.   
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(6) Build respect for data managers and data staff within the health system 

Building respect for data managers and data staff within the health system, who are responsible for 

implementing and overseeing data-related activities will be critical to improving HMIS performance. 

Creating a collaborative working environment based on mutual respect and one that recognizes their 

essential role in the health system may increase the status of data managers and staff. Some tangible 

approaches may include a combination of financial and non-financial approaches, such as, increasing 

salaries to retain employees but also recognizing staff who have exceeded expectations. The 

government may also consider establishing mechanisms for absorbing contractual data staff into 

established government positions, which may also help address the power dynamics that exist 

between permanent staff and contractual staff, many of whom were hired to support data-related 

activities.  

 

(7) Strengthen the public health capacity to ensure leadership and staff at different levels of the 

health system are well-equipped to make strategic decisions to guide program improvement 

District-level respondents described that high-level meetings with their supervisors generally focused 

on the importance of achieving a high district ranking, but seldom in those meetings did they discuss 

“how” to improve the program performance within the district. While this observation certainly 

underscores the need to reshape organizational incentives (as discussed in point 3-5 above), it 

possibly also reflects a mismatch of expectations between district health staff and officials, and their 

superiors. District health officials and staff expect their superiors to provide them with technical and 

analytical guidance. Yet many district administrative officials have limited formal public health 

training, given their role is to govern across all sectors within the district, not just health. At the same 

time, there is an implicit assumption by district administrative officials that their district health 

officials and staff have the relevant technical public health competencies to single-handedly manage 

and lead health programs successfully because of their medical training. However, as many have 
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already suggested, “public health is not clinical medicine” (McPherson, 2001). Effective public 

health governance, which is inherently complex, requires the intersection of multiple skillsets, 

disciplines, and sectors.  

 

Therefore, addressing this challenge requires considering several issues, such as: (i) establishing or 

strengthening technical units with public health experts, possibly at the division- or state-levels, that 

can provide targeted guidance to districts on how to improve the implementation and performance of 

their health programs; (ii) clarifying the roles and responsibilities of which units or teams are 

expected to provide the technical leadership necessary for improving program performance at the 

district, division and state-levels; and (iii) ensuring those units have access to the relevant resources 

and skillsets necessary to achieve their intended goals.  

 

To take this work forward, perhaps, the most important next step would be to host one or more 

roundtable discussions with government stakeholders from block, district, division and state levels to 

identify strategies for improving data quality and strengthening HMIS performance in UP. These 

discussions could happen over four stages, for example: (i) first, present evidence from this 

dissertation and other resources to collectively frame the key problems affecting HMIS data quality 

and broader HMIS performance; (ii) second, brainstorm and map relevant strategies to address the 

problems identified based on best practices from districts in UP and those from other states; (iii) 

third, identify the key stakeholders (by role, and authority) whose involvement would be critical for 

championing the implementation of identified strategies; and (iv) finally, synthesize the discussions 

from parts (i-iii) into actionable policy briefs for consultation with a broader set of government 

stakeholders and the leadership before the designing strategies for implementation.  
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5.5 Future research 

While this dissertation addressed a number of questions, it also gave rise to further questions 

summarized in two key areas presented below. 

 

(1) Explore incentives to improve HMIS performance, particularly data quality, at the state and 

national levels 

Organizational incentives and disincentives to strengthen HMIS performance at the district-level 

were greatly shaped by the expectations of leadership at the division, state, and national levels. While 

this study was able to shed light on the incentives and disincentives for strengthening data quality 

based on the perspective of district-level staff and health officials, future research should unpack the 

incentives and disincentives for creating accountability for performance and data quality experienced 

by division, state and national leadership, who collectively represent three different organizations 

(Departments of Medical Health and Family Welfare, the National Health Mission and the Indian 

Administrative Services). A holistic understand of existing incentives and disincentives of leaders at 

different levels of the health system and across the three organizations that are involved in overseeing 

public health in UP, would be critical for creating alignment on the GOUP’s goal of improving the 

state’s health performance and using quality data to measure progress against that goal.  

 

(2) Conduct facility-level audits across high-priority and non-high priority districts 

Building on findings from chapter 3, which provided initial evidence on potential overreporting of 

ranked and incentivized UP-HMIS indicators relative to unranked and unincentivized indicators, 

conducting health facility audits across high priority and non-high priority districts would be an 

important next step for verifying data quality at different levels of the health system. Specifically, 

with a representative random sample of health facilities, one would be able to examine the level of 
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consistency between data reported in the web-based UP-HMIS portal, with data reported in the 

source documents and registers found in the sub-centers, primary health centers, and community 

health centers of a district. This exercise could help identify where inconsistencies are introduced and 

help establish a baseline of data quality within the state, which future facility-level audits could be 

compared against to evaluate improvements over time.  
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Appendices 

 

Appendix 1. The flow of information in the Uttar Pradesh Health Management Information System (HMIS) in Uttar Pradesh 

 

 
*At block- and district-levels, data entry operators are responsible to enter facility-level reports into UP-HMIS and other web-based portals for national programs 
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Appendix 2. UP-HMIS policy expectations for data quality and data use meetings at the block- and district-levels in Uttar Pradesh, India 

 Data validation committee meetings Data use meetings 

Block-level  District-level  District-level Executive 

Committee 

District-level Governing Body 

meeting: District Health 

Society  

Purpose Ensure quality 

(completeness, validation, 

consistency, accuracy) of 

data reported by the sub-

centers, primary health 

centers and community 

health centers in the block 

 

Ensure timely uploading 

and forwarding of data to 

districts 

Ensure the completeness, 

validation, consistency, and 

accuracy of data being reported 

from all blocks 

 

Ensure availability of quality 

data for district-level data use 

meetings 

Examine data, including the district ranking to measure relative 

performance of a district in UP based on priority health 

indicators 

 

Help district administration to identify the reasons for poor 

performance (e.g., availability, quality, utilization issues) and 

take appropriate actions 

Timeline Between 1st-5th of every 

month 

Between 6-10th of every month Last week of the month Last week of the month 

Chairperson Medical officer-in-charge Assistant chief medical officer 

for reproductive and child 

health programs 

Chief medical officer  District magistrate 

Participants Block attendees:  

(1) permanent data staff: 

assistant research officer; 

(2) permanent program 

staff: health education 

information officers; (3) 

contractual data staff: 

block program manager, 

data entry operators 

District attendees: (1) 

permanent data staff: assistant 

research officers; (2) 

contractual data staff: district 

program managers, district data 

manager, data entry operators 

 

 

Block attendees: (1) permanent 

staff: medical officers-in-

charge; (2) contractual data 

staff: block program managers, 

data entry operators 

District attendees: (1) 

permanent program staff: 

assistant chief medical 

officers, district community 

process managers; (2) 

permanent data staff: 

assistant research officers; 

(3) contractual data staff: 

district program managers, 

district data managers, 

district accounts managers, 

data entry operator 

 

District attendees: (1) permanent 

program staff: assistant chief 

medical officers, district 

community process managers; 

(2) permanent data staff: 

assistant research officers; (3) 

contractual data staff: district 

program managers, district data 

managers, district accounts 

managers, data entry operator 

 

Block attendees: (1) permanent 

program staff: medical officers-

in-charge; (2) contractual data 
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Block attendees: (1) 

permanent staff: medical 

officers-in-charge; (2) 

contractual data staff: block 

program managers, data 

entry operators 

 

staff: block program managers, 

data entry operators 

 

Partners: (1) World Health 

Organization; (2) United Nations 

partners (e.g., UNICEF and 

UNDP); (3) UP-TSU 
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Appendix 3. The primary data-related roles and responsibilities of health staff/officials in the Uttar Pradesh health system 

Level Employment Staff type Actors Data-related 

responsibility 

Specific responsibility 

S
ta

te
 

Permanent N/A Directors & Joint Directors - 

Department of Medical 

Health & Family Welfare 

Data review & 

feedback 

▪ Review data quality 

▪ Use data to monitor performance 

Contractual N/A General Managers from the 

National Health Mission 

D
is

tr
ic

t 

N/A  Administrative 

official 

District Magistrate; Chief 

Development Officer 

Data review & 

feedback to district 

▪ Chair Governing Body - District 

Health Society meetings 

▪ Use data to monitor performance 

Permanent Health officials 

 

Chief Medical Officer 

(CMO) 

Data review & 

feedback to block 

level 

▪ Chair Executive Committee Meetings 

▪ Use data to monitor performance 

Program staff Assistant Chief Medical 

Officer & Deputy CMO 

Data validation, 

review, validation, 

and feedback  

▪ Feedback to block 

▪ Programs officers to screen reports for 

accuracy & share reports with 

AROs/DDMs before data validation 

committee meeting 

Data staff Assistant Research Officer Data analysis, 

validation, and 

feedback  

▪ Review the data shared by district 

program nodal officers, prepare for the 

data validation committee meeting 
Contractual Data staff 

(NHM) 

District Program Managers 

District Data Managers 

Data (external 

agency) 

HMIS Operators Data entry and 

compilation  

▪ Following the data validation 

committee meetings, data are uploaded 

to the HMIS portal 

B
lo

ck
 

Permanent Health official Medical office-in-charge Data review, 

validation and 

feedback  

▪ Preside over the block-level data 

validation committee meeting 

Data staff Assistant Research Officer Data analysis, 

validation, and 

feedback to block 

▪ Screen the reports received from 

ANMs for accuracy  

▪ AROs review the data and conduct a 

data validation committee meeting 

before sharing the data with the DEOs 
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Level Employment Staff type Actors Data-related 

responsibility 

Specific responsibility 

Contractual 

 

Data staff 

(NHM) 

Block Program Managers 

 

Data analysis, 

validation, and 

review 

▪ Support data validation committee 

meetings 

Data staff 

(external 

agency) 

Data entry operators Data entry ▪ Validated data are uploaded by the 

DEOs into digital portals 

S
u

b
-c

en
te

r Permanent / 

contractual 

Program Auxiliary Nurse Wives 

(ANMs) 

Data entry, 

compilation, and 

verification 

▪ ANMs/Facilities will compile the 

reports collected from ASHAs & 

submit them to Block-level AROs 

 

C
o
m

m
u

n
it

y
 Permanent / 

contractual 

Program ASHAs Data entry 

 

 

 

 

▪ Record health services provided in 

registers 
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Appendix 4. Analytical framework used for the analysis 

# Domains Codes Sub-codes 

1 Policy 

environment 

National policy expectation National targets, national Schemes 

State policy expectations Blocks, districts, states 

2 Factors affecting 

policy 

implementation  

Technical factors  Reporting processes and complexity, availability of materials 

Resources Human resources distribution, human resources availability, 

trainings, technical skills 

Processes Supportive supervision 

Work culture  Authority/discretion, accountability, collaboration/coordination, 

workload  

Behavioral factors Commitment to work, attitudes towards data quality/use 

3 Characteristics 

of actors 

District permanent staff Responsibilities, incentives 

District contractual staff Responsibilities, incentives 

Senior district officials (district 

magistrates) 

Responsibilities, incentives 

Divisional staff Responsibilities, incentives 

State officials Responsibilities, incentives 

4 UP-HMIS policy 

implementation 

observed in 

practice 

Data quality meetings Processes, platforms 

Data use Processes, platforms 

5 Effects of UP-

HMIS policy 

implementation 

Data quality Positive, negative, other 

Data use Positive, negative, other 
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Appendix 5. Percentage of missing data (overall) by indicator category for monthly health facility reports from high priority districts 

(HPDs) and non-high priority districts (non-HPDs) from January to December 2019 

COMPARISON MEAN# 
STANDARD 

DEVIATION 

95% CONFIDENCE 

INTERVAL 

Ranked indicators (HPD) 0.056  0.230 (0.055, 0.056) 

Ranked indicators (non-HPD)  0.125 0.330 (0.124, 0.125) 

P-VALUE* <0.01 
  

Ranked and incentivized indicators (HPD) 0.067 0.251 (0.067, 0.068) 

Ranked and incentivized indicators (non-

HPD) 

0.149 0.356  (0.148, 0.149) 

P-VALUE* <0.01 
  

Incentivized indicators (HPD) 0.185 0.388 (0.184, 0.186) 

Incentivized indicators (non-HPD)  0.269 0.443 (0.269, 0.270) 

P-VALUE* <0.01 
  

Unranked and unincentivized indicators 

(HPD) 

 0.325 0.468 (0.325, 0.326) 

Unranked and unincentivized indicators 

(non-HPD) 

 0.399 0.489 (0.399, 0.399) 

P-VALUE* <0.01 
  

#not presented as a percentage ;*P-VALUE: diff = mean(HPD) - mean(non-HPD) 
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 Appendix 6. Trends in the percentage of missing data over time by indicator category for monthly health facility reports from high priority 

districts and non-high priority districts from January to December 2019  
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Appendix 7. Trends in the percentage of missing data over time by indicator (n=41) reported in monthly health facility reports from high 

priority districts and non-high priority districts from January to December 2019 

 

Ranked indicators 

 

A. Percentage of missing data among ranked indicators in the monthly health facility-reports from high priority districts   
Jan  Feb Mar Apr May June Jul Aug Sept Oct Nov  Dec 

Number of pregnant women tested for 

hemoglobin (Hb) 4 or >4 times in ANC 

visits  

10% 8% 9% 6% 5% 4% 5% 4% 5% 4% 3% 2% 

Number of women receiving 1st post-

partum checkups within 48 hours of 

delivery 

11% 9% 9% 7% 6% 5% 5% 5% 5% 4% 3% 2% 

Number of children who received 

pentavalent 3 dose 

10% 7% 7% 5% 5% 5% 5% 5% 5% 4% 3% 2% 

Number of children who received Bacille 

Calmette-Guérin (BCG) dose 

10% 8% 8% 6% 6% 5% 5% 5% 5% 4% 3% 2% 

 

B. Percentage of missing data among ranked indicators in the monthly health facility-reports from non-high priority districts   
Jan  Feb Mar Apr May June Jul Aug Sept Oct Nov  Dec 

Number of pregnant women tested for 

hemoglobin (Hb) 4 or >4 times in ANC 

visits  

19% 17% 16% 15% 14% 13% 11% 11% 11% 10% 8% 9% 

Number of women receiving 1st post-

partum checkups within 48 hours of 

delivery 

22% 20% 19% 18% 16% 15% 12% 12% 12% 11% 10% 10% 

Number of children who received 

pentavalent 3 dose 

16% 15% 14% 13% 12% 11% 9% 9% 9% 9% 8% 8% 

Number of children who received Bacille 

Calmette-Guérin (BCG) dose 

17% 15% 14% 13% 12% 11% 9% 9% 10% 9% 8% 8% 
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Incentivized indicators 

 

C. Percentage of missing data among incentivized indicators in the monthly health facility-reports from high priority districts   
Jan  Feb Mar Apr May June Jul Aug Sept Oct Nov  Dec 

Number of interval intrauterine device 

(IUCD) insertions (excluding post-partum 

IUCD/post-abortion IUCD) 

11% 9% 9% 7% 6% 6% 6% 6% 6% 5% 4% 4% 

Number of post-partum IUCD insertions 

(within 48 hours of delivery) 
13% 11% 11% 8% 8% 7% 8% 8% 7% 7% 7% 5% 

Number of post-abortion IUCD insertions 

(within 12 days) 
84% 83% 83% 81% 81% 81% 80% 80% 80% 79% 78% 77% 

Number of newborns received 6 home 

based newborn care (HBNC) visits after 

institutional delivery 

12% 10% 11% 8% 7% 7% 8% 7% 7% 5% 5% 4% 

Number of newborns received 7 HBNC 

visits home delivery 
18% 16% 17% 15% 14% 14% 14% 14% 14% 14% 14% 13% 

Number of new pregnant women identified 

as high-risk pregnancy (HRP), who are 35 

years and older 

17% 18% 17% 14% 13% 13% 13% 13% 14% 15% 13% 13% 

Number of new pregnant women identified 

as HRP (previous history with any 

complication) 

17% 18% 17% 14% 13% 13% 13% 13% 14% 16% 14% 14% 

Number of new pregnant women identified 

as HRP (any other reasons) 
17% 18% 16% 14% 13% 13% 13% 13% 13% 16% 14% 14% 

Number of pregnant women registered in 

1st trimester (within 12 weeks) out of the 

total ANC registrations that month 

9% 8% 8% 5% 5% 4% 5% 4% 5% 4% 3% 2% 

 

D. Percentage of missing data among incentivized indicators in the monthly health facility-reports from non-high priority districts   
Jan  Feb Mar Apr May June Jul Aug Sept Oct Nov  Dec 

Number of interval intrauterine device 

(IUCD) insertions (excluding post-partum 

IUCD/post-abortion IUCD) 

20% 18% 17% 17% 15% 14% 11% 11% 11% 11% 10% 9% 

Number of post-partum IUCD insertions 

(within 48 hours of delivery) 
25% 23% 21% 21% 19% 18% 16% 15% 15% 15% 14% 13% 

Number of post-abortion IUCD insertions 

(within 12 days) 
88% 88% 86% 85% 85% 84% 83% 83% 83% 82% 81% 81% 
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Number of newborns received 6 home 

based newborn care (HBNC) visits after 

institutional delivery 

23% 21% 20% 19% 18% 16% 14% 14% 14% 14% 12% 12% 

Number of newborns received 7 HBNC 

visits home delivery 
27% 26% 25% 25% 23% 22% 21% 21% 21% 22% 21% 20% 

Number of new pregnant women identified 

as high-risk pregnancy (HRP), who are 35 

years and older 

30% 29% 28% 27% 26% 25% 23% 23% 23% 24% 24% 23% 

Number of new pregnant women identified 

as HRP (previous history with any 

complication) 

31% 30% 29% 28% 27% 26% 24% 24% 24% 25% 24% 24% 

Number of new pregnant women identified 

as HRP (any other reasons) 
30% 29% 28% 27% 27% 25% 23% 23% 24% 24% 24% 24% 

Number of pregnant women registered in 

1st trimester (within 12 weeks) out of the 

total ANC registrations that month 

17% 15% 14% 13% 12% 11% 9% 9% 10% 9% 7% 7% 

 

Ranked and incentivized indicators 

 

E. Percentage of missing data among ranked and incentivized indicators in the monthly health facility-reports from high priority districts   
Jan  Feb Mar Apr May June Jul Aug Sept Oct Nov  Dec 

Number of injectable contraceptive, Antara 

program - first dose 
15% 13% 13% 10% 9% 9% 8% 7% 7% 6% 5% 3% 

Number of children aged between 9 and 11 

months fully immunized- male 
10% 8% 8% 5% 5% 4% 5% 5% 5% 4% 3% 2% 

Number of children aged between 9 and 11 

months fully immunized - female 
10% 8% 8% 5% 5% 4% 5% 5% 5% 4% 3% 2% 

Number of pregnant women with 4 or more 

antenatal care (ANC) check ups 
10% 8% 8% 5% 5% 4% 5% 4% 5% 4% 3% 2% 

Number of institutional deliveries 

conducted (including cesarean sections) 
12% 10% 10% 7% 7% 6% 7% 6% 6% 6% 7% 6% 

Number of pregnant women screened for 

HIV 
15% 13% 14% 11% 9% 8% 7% 6% 6% 6% 5% 3% 

  

F. Percentage of missing data among ranked and incentivized indicators in the monthly health facility-reports from non-high priority districts   
Jan  Feb Mar Apr May June Jul Aug Sept Oct Nov  Dec 

Number of injectable contraceptive, Antara 

program - first dose 

27% 26% 24% 22% 20% 19% 16% 15% 15% 15% 14% 13% 
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Number of children aged between 9 and 11 

months fully immunized- male 

20% 16% 15% 14% 12% 11% 10% 10% 10% 9% 8% 8% 

Number of children aged between 9 and 11 

months fully immunized - female 

20% 16% 15% 14% 12% 11% 10% 10% 10% 9% 8% 8% 

Number of pregnant women with 4 or more 

antenatal care (ANC) check ups 

18% 15% 14% 14% 12% 11% 9% 9% 10% 9% 8% 9% 

Number of institutional deliveries 

conducted (including cesarean sections) 

23% 22% 20% 18% 17% 14% 12% 12% 12% 12% 12% 12% 

Number of pregnant women screened for 

HIV 

30% 28% 26% 25% 23% 20% 17% 16% 15% 14% 13% 12% 

 

Unranked and unincentivized indicators 

 

G. Percentage of missing data among unranked and unincentivized indicators in the monthly health facility-reports from high priority districts   
Jan  Feb Mar Apr May June Jul Aug Sept Oct Nov  Dec 

Number of women aged 15-49 years 

receiving the first dose of DMPA (Inj. 

Antara) after abortion during the reporting 

month.  

28% 28% 28% 25% 23% 22% 21% 22% 23% 100% 100% 100% 

Number of women aged 15-49 years 

receiving the first dose of DMPA (Inj. 

Antara) after delivery (post-partum) during 

the reporting month.  

28% 29% 28% 25% 24% 22% 21% 22% 23% 100% 100% 100% 

Number of women aged 15-49 years 

receiving first dose of DMPA (Inj. Antara) 

in ‘interval’ period (6 weeks after delivery/ 

any time when woman is not pregnant other 

than post-partum or post-abortion) during 

the reporting month.  

27% 28% 27% 25% 24% 22% 21% 22% 23% 100% 100% 100% 

Number of IUCD inserted on the fixed day 

services (FDS) days during the reporting 

month. 

88% 88% 87% 87% 86% 86% 86% 86% 86% 100% 100% 100% 

Number of IUCD inserted on the fixed day 

off-service (FDOS) days during the 

reporting month 

88% 88% 87% 87% 86% 87% 86% 86% 86% 100% 100% 100% 

Number of children who received measles 

and rubella (MR) vaccine 1st dose (9-

11months) 

15% 12% 11% 8% 7% 7% 7% 7% 7% 4% 3% 2% 
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Number of children who received measles 

vaccine 1st dose (9-11 months) 

12% 9% 9% 8% 8% 7% 8% 8% 8% 8% 7% 7% 

Number of pregnant women received full 

ANC check-ups by the end of the reporting 

month. 

29% 29% 29% 27% 27% 26% 26% 26% 27% 100% 100% 100% 

Number of PW having severe anemia 

(Hb<7) treated 

83% 82% 82% 81% 81% 80% 80% 79% 79% 79% 78% 77% 

Number of pregnant women with Hb<7 gm 

received iron sucrose by the end of the 

reporting month. 

87% 87% 87% 86% 86% 86% 86% 86% 86% 86% 85% 86% 

Number of home deliveries attended by 

skill birth attendant (SBA)  

20% 18% 19% 16% 15% 15% 16% 15% 15% 15% 15% 15% 

Number of home deliveries attended by 

non-SBA 

17% 15% 16% 14% 13% 13% 14% 14% 14% 14% 14% 14% 

Number of oral polio virus – birth dose 

(OPV 0) 

11% 9% 9% 7% 6% 6% 5% 6% 6% 5% 4% 3% 

Number of hepatitis B – birth dose 13% 11% 12% 9% 8% 7% 7% 7% 7% 7% 5% 4% 

Number of vitamin K1 after delivery - birth 

dose 

17% 15% 15% 12% 11% 10% 10% 10% 9% 8% 7% 6% 

Number of total number of pregnant women 

registered for ANC 

10% 7% 8% 5% 5% 4% 5% 4% 5% 4% 3% 2% 

Number of women receiving 1st post-

partum checkup between 48 hours and 14 

days 

11% 9% 9% 7% 6% 5% 6% 5% 5% 4% 4% 3% 

Number of HIV tests found positive during 

ANC visits  

15% 14% 14% 11% 9% 8% 8% 7% 7% 7% 5% 4% 

Number of mothers provided full course of 

180 Iron/Folic Acid (IFA) tablets after 

delivery 

11% 10% 9% 7% 6% 5% 5% 5% 5% 5% 4% 2% 

Number of pregnant women tested for 

syphilis  

15% 12% 13% 10% 9% 8% 8% 8% 8% 7% 5% 4% 

Number of pregnant women tested for 

blood sugar (oral glucose tolerance test) 
84% 83% 83% 82% 81% 81% 80% 79% 80% 80% 79% 77% 

Number of new cases of pregnant women 

with hypertension detected 
11% 9% 10% 7% 6% 5% 6% 5% 5% 4% 3% 2% 

Note: missingness increases to 100% of some of the indicators suggesting potential changing in reporting forms where the GOUP may be stopped requesting 

electronic reporting on those indicators 
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H. Percentage of missing data among unranked and unincentivized indicators in the monthly health facility-reports from non-high priority 

districts   
Jan  Feb Mar Apr May June Jul Aug Sept Oct Nov  Dec 

Number of women aged 15-49 years 

receiving the first dose of DMPA (Inj. 

Antara) after abortion during the reporting 

month.  

41% 41% 40% 38% 38% 36% 34% 33% 35% 100% 100% 100% 

Number of women aged 15-49 years 

receiving the first dose of DMPA (Inj. 

Antara) after delivery (post-partum) during 

the reporting month.  

41% 41% 40% 39% 39% 36% 34% 33% 35% 100% 100% 100% 

Number of women aged 15-49 years 

receiving first dose of DMPA (Inj. Antara) 

in ‘interval’ period (6 weeks after delivery/ 

any time when woman is not pregnant other 

than post-partum or post-abortion) during 

the reporting month.  

41% 41% 40% 38% 38% 36% 34% 33% 35% 100% 100% 100% 

Number of IUCD inserted on the fixed day 

services (FDS) days during the reporting 

month. 

90% 90% 90% 89% 89% 89% 88% 88% 89% 100% 100% 100% 

Number of IUCD inserted on the fixed day 

off-service (FDOS) days during the 

reporting month 

91% 91% 90% 90% 90% 90% 89% 89% 90% 100% 100% 100% 

Number of children who received measles 

and rubella (MR) vaccine 1st dose (9-

11months) 

24% 20% 17% 16% 14% 12% 10% 10% 11% 10% 9% 9% 

Number of children who received measles 

vaccine 1st dose (9-11 months) 

24% 22% 21% 20% 19% 19% 17% 17% 18% 18% 17% 16% 

Number of pregnant women received full 

ANC check-ups by the end of the reporting 

month. 

36% 35% 35% 34% 34% 33% 32% 32% 34% 100% 100% 100% 

Number of PW having severe anemia 

(Hb<7) treated 

87% 87% 85% 85% 84% 84% 82% 82% 82% 82% 81% 81% 

Number of pregnant women with Hb<7 gm 

received iron sucrose by the end of the 

reporting month. 

90% 89% 89% 89% 89% 88% 88% 88% 88% 88% 87% 87% 

Number of home deliveries attended by 

skill birth attendant (SBA)  

28% 27% 26% 26% 24% 23% 22% 22% 22% 23% 22% 21% 
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Number of home deliveries attended by 

non-SBA 

26% 24% 24% 24% 22% 21% 20% 20% 20% 21% 20% 20% 

Number of oral polio virus – birth dose 

(OPV 0) 

19% 17% 16% 15% 14% 12% 11% 11% 11% 11% 9% 9% 

Number of hepatitis B – birth dose 25% 24% 22% 21% 20% 18% 16% 16% 15% 16% 15% 14% 

Number of vitamin K1 after delivery - birth 

dose 

28% 28% 26% 25% 23% 22% 19% 18% 18% 17% 16% 15% 

Number of total number of pregnant women 

registered for ANC 

16% 14% 13% 13% 12% 10% 9% 9% 10% 9% 8% 7% 

Number of women receiving 1st post-

partum checkup between 48 hours and 14 

days 

22% 20% 19% 18% 16% 14% 13% 13% 12% 12% 10% 10% 

Number of HIV tests found positive during 

ANC visits  

31% 30% 28% 27% 26% 23% 20% 19% 18% 16% 15% 14% 

Number of mothers provided full course of 

180 Iron/Folic Acid (IFA) tablets after 

delivery 

23% 21% 20% 19% 17% 16% 13% 13% 13% 12% 11% 11% 

Number of pregnant women tested for 

syphilis  

27% 25% 24% 23% 21% 19% 16% 15% 15% 14% 13% 12% 

Number of pregnant women tested for 

blood sugar (oral glucose tolerance test) 

87% 87% 86% 85% 85% 84% 83% 83% 82% 82% 81% 81% 

Number of new cases of pregnant women 

with hypertension detected 

23% 22% 20% 20% 18% 16% 14% 14% 14% 13% 12% 12% 
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Appendix 8. Percentage of moderate outliers identified by indicator category for monthly health facility reports from high priority districts 

(HPDs) and non-high priority districts (non-HPDs) from January to December 2019 

COMPARISON MEAN STANDARD 

DEVIATION 

95% CONFIDENCE 

INTERVAL  

Ranked indicators (HPD) 0.030  0.170 (0.029, 0.030) 

Ranked indicators (non-HPD) 0.029  0.167 (0.028, 0.029) 

P-VALUE* <0.01  
  

Ranked and incentivized indicators 

(HPD) 

0.021 0.145 (0.021, 0.022) 

Ranked and incentivized indicators 

(non-HPD) 

0.022 0.148 (0.022, 0.022) 

P-VALUE* <0.01 
  

Incentivized indicators (HPD) 0.019 0.139 (0.019, 0.020) 

Incentivized indicators (non-HPD) 0.016 0.126 (0.016, 0.016) 

P-VALUE* <0.01 
  

Unranked and unincentivized indicators 

(HPD) 

0.015  0.121 (0.014, 0.015) 

Unranked and unincentivized indicators 

(non-HPD) 

0.014 0.118 (0.014, 0.014) 

P-VALUE* <0.01 
  

#not presented as a percentage ;*P-VALUE: diff = mean(HPD) - mean(non-HPD) 
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Appendix 9. Percentage of extreme outliers identified by indicator category for monthly health facility reports from high priority districts 

(HPDs) and non-high priority districts (non-HPDs) from January to December 2019  

COMPARISON MEAN STANDARD 

DEVIATION 

95% CONFIDENCE 

INTERVAL  

Ranked indicators (HPD) 0.0019  0.043 (0.0017, 0.0020) 

Ranked indicators (non-HPD) 0.0024 0.049 (0.0023, 0.0025) 

P-VALUE* <0.01   

Ranked and incentivized indicators 

(HPD) 

0.0027 0.052 (0.0026, 0.0028) 

Ranked and incentivized indicators 

(non-HPD) 

0.0025 0.050 (0.0024, 0.0026) 

P-VALUE*  <0.01   

Incentivized indicators (HPD) 0.0061 0.077 (0.0059, 0.0062) 

Incentivized indicators (non-HPD) 0.0047 0.068 (0.0046, 0.0048) 

P-VALUE* <0.01   

Unranked and unincentivized indicators 

(HPD) 

0.0031 0.056 (0.0030, 0.0032) 

Unranked and unincentivized indicators 

(non-HPD) 

0.0030  0.054 (0.0029, 0.0030) 

P-VALUE*  <0.01 
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#not presented as a percentage ;*P-VALUE: diff = mean(HPD) - mean(non-HPD) 
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Appendix 10. Trends in the percentage of moderate and extreme outliers over time by indicator (n=41) reported in monthly health 

facility reports from high priority districts and non-high priority districts from January to December 2019 

 

A. Moderate outliers observed in monthly health facility reports from high priority districts and non-high priority districts from January to 

December 2019 
 Variable name # mod 

outliers –

HPD 

reports 

 

 

 

(n=102, 

845) 

# mod 

outliers: 

non-HPD 

reports 

 

 

 

(n=235,06

2) 

# mod 

outliers 

overrepor

ted:  HPD 

reports 

 

 

(n=102, 

845) 

# mod 

outliers 

overrepor

ted:  non-

HPD 

reports 

 

(n=235,06

2) 

# mod 

outliers 

underrep

orted:  

HPD 

reports 

 

(n=102, 

845) 

# mod 

outliers 

underrep

orted:  

non-HPD 

reports 

 

(n=235,06

2) 

% mod 

outliers in 

monthly 

health 

facility 

reports 

 

 (All 

districts) 

% mod 

outliers in 

monthly 

health 

facility 

reports 

 

 (HPDs) 

% mod 

outliers in 

monthly 

health 

facility 

reports  

 

(non-

HPDS) 

R
A

N
K

E
D

 

Number of pregnant women tested 

for hemoglobin (Hb) 4 or >4 times 

in ANC visits  

2,919 6,239 2,317 5,077 602 1,162 3.032% 3.005% 3.044% 

Number of women receiving 1st 

post-partum checkups within 48 

hours of delivery 

2,650 4,298 2,309 3,959 341 339 2.342% 2.741% 2.149% 

Number of children who received 

pentavalent 3 dose 

3,052 6,657 2,253 4,977 799 1,680 3.169% 3.133% 3.185% 

Number of children who received 

Bacille Calmette-Guérin (BCG) 

dose 

3,029 6,703 2,474 5,443 555 1,260 3.185% 3.123% 3.214% 

IN
C

E
N

T
IV

IZ
E

D
 

Number of interval intrauterine 

device (IUCD) insertions 

(excluding post-partum 

IUCD/post-abortion IUCD) 

2,048 4,768 1,922 4,320 126 448 2.278% 2.128% 2.349% 

Number of post-partum IUCD 

insertions (within 48 hours of 

delivery) 

337 568 317 541 20 27 0.315% 0.358% 0.294% 

Number of post-abortion IUCD 

insertions (within 12 days) 

30 77 30 77 0 0 0.186% 0.150% 0.205% 

Number of newborns received 6 

home based newborn care (HBNC) 

visits after institutional delivery 

2,047 3,479 1,715 3,044 332 435 1.895% 2.154% 1.770% 
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Number of newborns received 7 

HBNC visits home delivery 

2,378 3,284 2,126 3,090 252 194 2.102% 2.712% 1.807% 

Number of new pregnant women 

identified as high-risk pregnancy 

(HRP), who are 35 years and older 

2,000 2,442 1,936 2,358 64 84 1.687% 2.276% 1.392% 

Number of new pregnant women 

identified as HRP (previous history 

with any complication) 

1,283 1,436 1,237 1,391 46 45 1.043% 1.464% 0.829% 

Number of new pregnant women 

identified as HRP (any other 

reasons) 

1,759 2,296 1,714 2,239 45 57 1.546% 2.005% 1.315% 

Number of pregnant women 

registered in 1st trimester (within 

12 weeks) out of the total ANC 

registrations that month 

3,015 6,776 2,503 5,787 512 989 3.191% 3.091% 3.238% 

R
A

N
K

E
D

 A
N

D
 I

N
C

E
N

T
IV

IZ
E

D
 

Number of injectable 

contraceptive, Antara program - 

first dose 

365 772 359 759 6 13 0.400% 0.389% 0.405% 

Number of children aged between 

9 and 11 months fully immunized- 

male 

3,012 6,997 2,382 5,566 630 1,431 3.289% 3.096% 3.379% 

Number of children aged between 

9 and 11 months fully immunized - 

female 

3,018 6,884 2,487 5,808 531 1,076 3.256% 3.105% 3.326% 

Number of pregnant women with 4 

or more antenatal care (ANC) 

check ups 

2,957 6,715 2,367 5,322 590 1,393 3.166% 3.034% 3.228% 

Number of institutional deliveries 

conducted (including cesarean 

sections) 

953 2,001 709 1,526 244 475 1.005% 1.001% 1.006% 

Number of pregnant women 

screened for HIV 

2,145 3,626 2,027 3,324 118 302 2.042% 2.276% 1.926% 

U
N

R
A

N
K

E
D

 

A
N

D
 

U
N

IN
C

E
N

T
IV

IZ

E
D

 

Number of women aged 15-49 

years receiving the first dose of 

DMPA (Inj. Antara) after abortion 

during the reporting month.  

133 162 133 159 0 3 0.175% 0.229% 0.147% 

Number of women aged 15-49 

years receiving the first dose of 

DMPA (Inj. Antara) after delivery 

96 159 94 157 2 2 0.152% 0.165% 0.145% 
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(post-partum) during the reporting 

month.  

Number of women aged 15-49 

years receiving first dose of 

DMPA (Inj. Antara) in ‘interval’ 

period (6 weeks after delivery/ any 

time when woman is not pregnant 

other than post-partum or post-

abortion) during the reporting 

month.  

223 436 213 425 10 11 0.391% 0.383% 0.395% 

Number of IUCD inserted on the 

fixed day services (FDS) days 

during the reporting month. 

147 284 143 275 4 9 1.458% 1.438% 1.468% 

Number of IUCD inserted on the 

fixed day off-service (FDOS) days 

during the reporting month 

70 129 69 127 1 2 0.712% 0.693% 0.723% 

Number of children who received 

measles and rubella (MR) vaccine 

1st dose (9-11months) 

2,955 6,518 2,223 5,209 732 1,309 3.173% 3.114% 3.201% 

Number of children who received 

measles vaccine 1st dose (9-11 

months) 

1,011 2,213 1,007 2,107 4 106 1.132% 1.072% 1.162% 

Number of pregnant women 

received full ANC check-ups by 

the end of the reporting month. 

1,829 3,678 1,565 3,205 264 473 3.194% 3.270% 3.157% 

Number of PW having severe 

anemia (Hb<7) treated 

238 359 230 347 8 12 1.009% 1.171% 0.924% 

Number of pregnant women with 

Hb<7 gm received iron sucrose by 

the end of the reporting month. 

236 321 234 311 2 10 1.335% 1.652% 1.170% 

Number of home deliveries 

attended by skill birth attendant 

(SBA)  

438 1,371 435 1,313 3 58 0.681% 0.508% 0.000% 

Number of home deliveries 

attended by non-SBA 

2,531 3,413 2,208 3,222 323 191 2.183% 2.868% 1.855% 

Number of oral polio virus – birth 

dose (OPV 0) 

2,486 5,598 2,245 5,044 241 554 2.685% 2.581% 2.734% 

Number of hepatitis B – birth dose 520 1,155 418 945 102 210 0.585% 0.551% 0.602% 
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Number of vitamin K1 after 

delivery - birth dose 

407 639 314 540 93 99 0.377% 0.443% 0.345% 

Number of total number of 

pregnant women registered for 

ANC 

3,140 6,805 2,296 5,182 844 1,623 3.240% 3.218% 3.250% 

Number of women receiving 1st 

post-partum checkup between 48 

hours and 14 days 

2,473 4,216 2,257 3,899 216 317 2.256% 2.563% 2.108% 

Number of HIV tests found 

positive during ANC visits  

67 80 67 80 0 0 0.053% 0.072% 0.044% 

Number of mothers provided full 

course of 180 Iron/Folic Acid 

(IFA) tablets after delivery 

2,281 3,670 2,076 3,363 205 307 2.021% 2.367% 1.852% 

Number of pregnant women tested 

for syphilis  

700 1,640 665 1,514 35 126 0.823% 0.747% 0.860% 

Number of pregnant women tested 

for blood sugar (oral glucose 

tolerance test) 

131 196 114 181 17 15 0.563% 0.659% 0.514% 

Number of new cases of pregnant 

women with hypertension detected 

795 1,119 780 1,079 15 40 0.654% 0.824% 0.570% 

 

B. Extreme outliers observed in monthly health facility reports from high priority districts and non-high priority districts from January to 

December 2019 
 Variable name # ext 

outliers 

–HPD 

reports 

 

(n=102, 

845) 

# ext 

outliers: 

non-HPD 

reports 

 

(n=235,06

2) 

# ext 

outliers 

overrepor

ted:  HPD 

reports 

 

(n=102, 

845) 

# ext 

outliers 

overrepor

ted:  non-

HPD 

reports 

 

(n=235,06

2) 

# ext 

outliers 

underrep

orted:  

HPD 

reports 

 

(n=102, 

845) 

# ext 

outliers 

underrep

orted:  

non-HPD 

reports 

 

(n=235,06

2) 

% ext 

outliers in 

monthly 

health 

facility 

reports 

(All 

districts) 

% ext 

outliers in 

monthly 

health 

facility 

reports 

(HPDs) 

% ext 

outliers in 

monthly 

health 

facility 

reports 

(non-

HPDS) 

R
A

N
K

E
D

 Number of pregnant women tested 

for hemoglobin (Hb) 4 or >4 times 

in ANC visits  

125 285 177 285 0 0 0.162% 0.189% 0.150% 

Number of women receiving 1st 

post-partum checkups within 48 

hours of delivery 

359 0 0 0 0 0 0.000% 0.000% 0.000% 
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Number of children who received 

pentavalent 3 dose 

111 0 0 0 0 0 0.000% 0.000% 0.000% 

Number of children who received 

Bacille Calmette-Guérin (BCG) 

dose 

153 0 1 0 0 0 0.001% 0.002% 0.000% 

IN
C

E
N

T
IV

IZ
E

D
 

Number of interval intrauterine 

device (IUCD) insertions (excluding 

post-partum IUCD/post-abortion 

IUCD) 

753 1,405 752 1,382 1 23 0.721% 0.783% 0.692% 

Number of post-partum IUCD 

insertions (within 48 hours of 

delivery) 

300 369 300 369 0 0 0.233% 0.319% 0.191% 

Number of post-abortion IUCD 

insertions (within 12 days) 

60 63 60 63 0 0 0.213% 0.299% 0.168% 

Number of newborns received 6 

home based newborn care (HBNC) 

visits after institutional delivery 

702 0 0 0 0 0 0.000% 0.000% 0.000% 

Number of newborns received 7 

HBNC visits home delivery 

503 0 0 0 0 0 0.000% 0.000% 0.000% 

Number of new pregnant women 

identified as high-risk pregnancy 

(HRP), who are 35 years and older 

602 424 89 417 1 7 0.169% 0.093% 0.205% 

Number of new pregnant women 

identified as HRP (previous history 

with any complication) 

593 469 97 466 1 3 0.186% 0.101% 0.227% 

Number of new pregnant women 

identified as HRP (any other 

reasons) 

985 488 92 486 1 2 0.195% 0.098% 0.240% 

Number of pregnant women 

registered in 1st trimester (within 12 

weeks) out of the total ANC 

registrations that month 

 

 

 

  

106 1,503 723 1,503 0 0 0.782% 0.766% 0.789% 

R
A

N

K
E

D
 

A
N

D
 

IN
C

E
N

T

IV
IZ

E
D

 Number of injectable contraceptive, 

Antara program - first dose 

177 395 122 380 3 15 0.172% 0.129% 0.193% 
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Number of children aged between 9 

and 11 months fully immunized- 

male 

90 380 123 372 3 8 0.166% 0.129% 0.183% 

Number of children aged between 9 

and 11 months fully immunized - 

female 

98 0 0 0 0 0 0.000% 0.000% 0.000% 

Number of pregnant women with 4 

or more antenatal care (ANC) check 

ups 

126 111 45 111 0 0 0.264% 0.221% 0.286% 

Number of institutional deliveries 

conducted (including cesarean 

sections) 

208 114 59 114 0 0 0.415% 0.413% 0.416% 

Number of pregnant women 

screened for HIV 

882 1,275 695 1,273 7 2 0.678% 0.739% 0.649% 

U
N

R
A

N
K

E
D

 A
N

D
 U

N
IN

C
E

N
T

IV
IZ

E
D

 

Number of women aged 15-49 years 

receiving the first dose of DMPA 

(Inj. Antara) after abortion during 

the reporting month.  

0 971 500 969 3 2 0.547% 0.574% 0.534% 

Number of women aged 15-49 years 

receiving the first dose of DMPA 

(Inj. Antara) after delivery (post-

partum) during the reporting month.  

0 869 601 862 1 7 0.559% 0.685% 0.495% 

Number of women aged 15-49 years 

receiving first dose of DMPA (Inj. 

Antara) in ‘interval’ period (6 weeks 

after delivery/ any time when 

woman is not pregnant other than 

post-partum or post-abortion) during 

the reporting month.  

1 752 592 750 1 2 0.516% 0.677% 0.434% 

Number of IUCD inserted on the 

fixed day services (FDS) days 

during the reporting month. 

0 1,263 982 1,261 3 2 0.857% 1.123% 0.723% 

Number of IUCD inserted on the 

fixed day off-service (FDOS) days 

during the reporting month 

0 545 334 544 1 1 0.332% 0.389% 0.304% 

Number of children who received 

measles and rubella (MR) vaccine 

1st dose (9-11months) 

93 665 247 663 4 2 0.336% 0.284% 0.361% 
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Number of children who received 

measles vaccine 1st dose (9-11 

months) 

723 450 208 450 0 0 0.224% 0.219% 0.226% 

Number of pregnant women 

received full ANC check-ups by the 

end of the reporting month. 

0 1,045 573 1,044 1 1 0.538% 0.596% 0.510% 

Number of PW having severe 

anemia (Hb<7) treated 

45 783 407 783 0 0 0.416% 0.431% 0.408% 

Number of pregnant women with 

Hb<7 gm received iron sucrose by 

the end of the reporting month. 

59 305 282 305 0 0 0.212% 0.307% 0.165% 

Number of home deliveries attended 

by skill birth attendant (SBA)  

335 272 105 261 3 11 0.124% 0.111% 0.130% 

Number of home deliveries attended 

by non-SBA 

251 357 105 349 1 8 0.151% 0.109% 0.171% 

Number of oral polio virus – birth 

dose (OPV 0) 

574 970 358 969 1 1 0.448% 0.371% 0.485% 

Number of hepatitis B – birth dose 407 1,086 501 1,084 7 2 0.538% 0.527% 0.543% 

Number of vitamin K1 after delivery 

- birth dose 

282 369 108 358 3 11 0.157% 0.114% 0.177% 

Number of total number of pregnant 

women registered for ANC 

108 306 147 297 6 9 0.150% 0.158% 0.147% 

Number of women receiving 1st 

post-partum checkup between 48 

hours and 14 days 

508 1,058 881 1,050 1 8 0.687% 0.936% 0.562% 

Number of HIV tests found positive 

during ANC visits  

117 91 117 91 0 0 0.075% 0.125% 0.050% 

Number of mothers provided full 

course of 180 Iron/Folic Acid (IFA) 

tablets after delivery 

497 1,035 497 1,034 0 1 0.520% 0.516% 0.522% 

Number of pregnant women tested 

for syphilis  

337 734 337 734 0 0 0.377% 0.360% 0.385% 

Number of pregnant women tested 

for blood sugar (oral glucose 

tolerance test) 

60 88 60 88 0 0 0.255% 0.302% 0.231% 

Number of new cases of pregnant 

women with hypertension detected 

417 488 416 486 1 2 0.309% 0.432% 0.248% 
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Appendix 11. Categories and sub-categories in the analytical framework  

Categories Sub-categories 

Rationalization 

of data 

manipulation 

1. Perceptions of being empowered in the workplace 

a. autonomy 

b. self-efficacy 

c. ability to make a difference 

d. meaning or commitment to one’s work 

2. Morality/ethics 

3. Social Norms 

Opportunities to 

manipulate data 

1. Discretion 

a. Level 

b. Controls 

2. Accountability for performance  

a. Measurement of goals 

b. Monitoring mechanisms 

c. Sanctions/Consequences 

3. Accountability for data quality 

a. Measurement of goals 

b. Monitoring mechanisms 

c. Sanctions/Consequences 

Pressures to 

manipulate data 

1. Pressures 

a. Performance 

b. Fear-based (job security, withholding pay, scolding) 

2. Workload (including time pressure) 

Other factors [Open-ended] 

Types of data 

manipulation 

1. Types of data 

2. Level 

3. Participants/Network 
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Appendix 12. In-depth interview guide  

Note: This in-depth interview guide was largely used for the district-level interviews. The guide reflects 

the range of questions asked during the interviews, however not all questions were asked of each 

respondent. A subset of these questions was used for interviews with division- and state-level 

respondents. These interview guides were also translated into Hindi. 

 
I. Background characteristics 

Interviewer: Document the following information in a separate document 

a) Respondent current position/designation 

b) District affiliation (HPD vs non-HPD) 

c) Length of service in the district 

d) Length of service in the GOUP 

e) Educational background 

f) Any experience working outside the gov’t sector 

 

II. Interview guide 

Thank you for taking the time to speak with me. Before we begin our conversation, I would like us to read 

through the informed consent to review the aims of the study and then I would like to seek your consent 

to participate in this study. I would learn more about the quality of routine data sources, and how these 

data are used to make decisions about health programs in UP. Learning from your perspective would give 

me an opportunity to learn more about the current context around data use/quality, and how we may be 

able to bring improvements to these existing processes. 

 

Roles & responsibilities  

Let’s begin our conversation by first discussing the general roles and responsibilities of officials who are 

involved in data-related activities  

 

1) At the district-level, who is responsible for reviewing the data, analyzing the data, and making 

decisions based on the program data? 

a. What are the expected roles and responsibilities of the following individuals with respect 

to data? 

i. Permanent staff: CMO, ACMO/DIO, ARO, DEO 

ii. Contractual staff: DPM, DDM, HMIS operator, DEO 

iii. Supervisors: District Magistrate 

iv. Other staff (perhaps located in the DM’s office): any statistical officer? 

b. What roles and responsibilities do they actually carry out?  

i. How does this affect the quality of routine data available at the district level?  

ii. Are those who are responsible for carrying out these activities, able to do so in 

practice? Why or why not? 

iii. If they are not able to carry out those responsibilities, then who does?  

c. How does this affect how data are used for making decisions at the district-level? 

d. How do they view the data? How do you know that?  

 

 

2) Now, let’s talk about the officials at the block-level – who is responsible for reviewing the data, 

analyzing the data, and making decisions based on the program data? 

a. What are the expected roles and responsibilities of the following individuals with respect 

to data? 

i. Permanent staff: MOIC, HMIS operator 

ii. Contractual staff: BPM, HMIS operator 
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iii. Other staff? 

b. What roles and responsibilities do they actually carry out?  

c. How does this set up affect the quality of routine data available at the block level?  

i. Are those who are responsible for carrying out these activities, able to do so in 

practice? Why or why not? 

ii. If they are not able to carry out those responsibilities, then who makes those 

decisions, and why?  

d. How does this affect how data are used for making decisions at the block-level? 

e. How do they view the data? How do you know that?  

 

Interactions of the district with the block-level and state-level  

Now, I would like to learn more about your interactions with block, district and state level officials.  

 

3) How and when do you interact with block officials on data-related issues (e.g., discuss the quality 

of HMIS/UP-HMIS, MCTS/RCH and so on)? 

a. Who do you speak with from the block-level, and when?  

i. PROBE: program review meetings, data validation meetings, other meetings? 

b. How frequently do you meet with them? 

c. When these meetings occur, how are these meetings run?  

i. What is discussed during these meetings?  

1. Are data reviewed during these meetings?  

a. If so, what types? What types of data tend to be reviewed mostly 

frequently? And, why? 

ii. Who attends these meetings from the block level? 

iii. What type of feedback do you provide blocks? Do block-level staff also provide 

any feedback during these meetings?  

d. What types of decisions are made during these meetings? Who monitors these decisions, 

and follows up on them? 

 

4) How and when do you interact with state officials on data-related issues?  

a. Who do you interact with at the state-level? 

i. PROBE: Program Managers (NHM), Directors/Joint Directors (Directorates of 

Medical Health and Family Welfare), MD-NHM, Principal Secretary 

b. How frequently do you meet them?  

c. How do they view the data? How do you know that? 

d. When meetings occur, how are they run?  

i. What is discussed during these meetings?  

1. Are data reviewed during these meetings?  

a. If so, what types? What types of data tend to be reviewed mostly 

frequently? And, why? 

ii. Who attends these meetings from the state level, district level, block level? 

iii. What type of feedback does the state provide districts? Do district-level (or block-

level) staff also provide any feedback during these meetings?  

e. What types of decisions are made during these meetings? Who monitors these decisions, 

and follows up on them? 

 

5) How and when do you interact with the district magistrate on data-related issues?  

a. When do you meet the district magistrate, and how frequently? 

i. PROBE: District Health Society meetings, during campaigns, other program-

related meetings? 

b. When these meetings occur, how are they run?  
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i. What is discussed during these meetings?  

1. Are data reviewed during these meetings?  

a. If so, what types? What types of data tend to be reviewed most 

frequently? And, why? 

ii. Who attends these meetings? 

1. PROBE: block level? district level? other partners? 

iii. What type of feedback do you receive from the District Magistrate or other 

officials during these meetings? Do you also provide any feedback during these 

meetings?  

c. What types of decisions are made during the meeting? Who monitors these decisions, and 

follows up on them? 

 

Reflection on how meetings are run & the types of feedback received  

6) Overall, what types of feedback do you receive about your work from different supervisors (e.g., 

District Magistrate, NHM officials, Directorate officials? 

a. How do they provide this feedback, and when? 

b. How fair is the feedback you receive? 

c. How does their feedback affect how you do your work – e.g., how you modify/implement 

data quality processes, or use data when making decisions? 

 

7) Now, specifically reflecting on meetings, tell me about: 

a. What you think has worked well or not? 

b. Are there specific issues that come up again and again during these meetings? 

c. Are there problems that should be raised but are not? 

d. Are there individuals or participants that should participate but do not? 

e. How would you change how these meetings are conducted? 

 

General perceptions around prioritizing data and data quality 

Now, I would like to learn more about your perceptions about data quality, and the use of data when 

making decisions about health programs and so on.  

 

8) In the health department, do you feel that superiors and staff feel that data quality is an important 

activity? Why or why not? 

a. What types of issues pertaining to data quality do they bring up?  

b. When do they bring them up? 

i. PROBE: during meetings? when reviewing reports, etc.?  

c. How do their perceptions on this issue of data quality influence how the district or block 

views data quality efforts? 

i. Can you provide examples? 

 

9) In the health department, do superiors encourage staff to make decisions based on data? Why or 

why not? 

a. Can you give examples of when this happens, for example, what types of decisions are 

made, what types of data sources are used? 

 

Existing practices around data quality and how this affects decision-making  

Now, let’s talk about issues of data quality. Data quality is affected for various reasons. For example, 

sometimes this is because there is lack of sufficient understanding around the data; in other situations, 

data are misreported.   
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10) When you review block level data at the district, for example, during a program review meeting or 

data validation meeting – are there situations when you observe that data are not reported 

accurately?  

a. How do you know that data have been misreported? 

a. What types of data tend to be misreported?  

b. Do you have a sense about why these data are being misreported? 

c. How frequently does this happen?  

d. How is reporting of unusual data/indicators identified? 

i. Probes: during meetings when data are shared; in advance of meetings; in-built 

validation checks in UP-HMIS? 

e. What are the reasons that prompt/encourage/pressure people to change the data? 

f. What causes people to change the data more than others?  

g. What happens when someone misreports?  

i. What are the consequences for misreporting data? Is any action taken, and if so, 

by whom? 

ii. How well are these consequences working to address problems with 

misreporting? 

iii. What else could be done to address misreporting? 

 

Reflecting on your own role pertaining to data-related processes  

Now, I would like to learn more about your own experiences  

 

11) What are the processes in place for data quality (e.g., data validation meetings are held to ensure 

data are properly reviewed and validated)?  

a. How well are these processes being implemented?  

 

12) What are the factors that are driving how well these processes are running or not running? 

a. What are the expectations in terms of how data should be used for programmatic decision-

making? How do you think data are actually being used? 

 

 

13) How important do you feel data-related activities are with respect to other things? What are the 

types of factors that affect how much attention you give to data-related activities versus other 

activities?  

 

 

14) Are you able to make decisions to ensure appropriate processes are in place for there to be good 

quality data (e.g., data validation meetings are held to ensure data are properly reviewed and 

validated) and so on? Why or why not?   

a. If you are not able to make decisions, then who generally does? 

 

15) Do you feel district-level staff are able to perform data-related activities that are expected of them 

(e.g., data compilation, data review, data analysis)? Why or why not?  

a. Tell me, how you would reflect on your performance in this regard? 

 

16) Do you feel that district-level staff are committed to performing data-related activities? For 

example, do they see value in collecting data, engaging in data validation activities, and making 

decision based on data? Why or why not? 

 

17) How do you think your work is making a difference in improving health programs and health 

status of people? Why do you feel this way?  
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 Fixing the status quo 

 

18) Given all that we have discussed, what can be done to improve the overall data quality at the 

district level?  

a. Based on your experiences, which initiatives have shown improvement? Why or why not?  

b. What would you recommend? 

 

Data use for decision-making 

 

19) How likely are you to use the data to make decisions about health programs implemented in your 

district? Why or why not?  

a. Would you use data for certain types of decisions or programs, but not others? Can you 

give me an example? 

b. If you use data to inform a program decision, what types of data sources do you use most 

frequently? Why? 

c. Are there decisions for which you would like to have data, but for which data aren’t 

available or don’t exist?  
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Appendix 13.  Meeting observations  

 
Objective: Examine if, how and when data are being referred to or are being used during 

discussions/decision-making processes during meetings at the district-level  

General questions 

Type of meeting  Monthly MOIC review meeting 

 Validation committee meeting  

 Other, please specify _____________ 

District Name   

 

Meeting Location  

 

Name of meeting room  

 

 Note if meeting location 

rotates 

 

 

 

Date  

 

Observer name   

 

 

Observation checklist 

Observation Category  Prompts Notes 

Purpose of meeting 

 

 

N/A  

Attendees 

 

 

N/A  

Gender distribution   

Types of stakeholders 

represented (e.g., 

Block-level, district-

level, positions) 

  

Note how the listed 

objects are used or 

being referred to 

during meetings 

Objects: Present 

(check) 

Pertinent 

to 

meeting 

(note) 

Pertinent 

to study 

(note) 

Agendas    

Notes 
  

 

 

Guidelines    

PowerPoint presentations 
  

 

 

Mission statement 
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Strategy documents    

Other, please note here:    

Room setting ▪ What is the seating arrangement of the 

attendees?  

 

 

 

▪ Who is sitting at the head of the table?  

 

 

▪ Draw a quick sketch of the meeting 

seating arrangement (if easier) 

 

 

 

 

 

 

 

 

Organization and 

content of the meeting 

▪ Who starts and closes the meetings?  

▪ Who runs the meetings (e.g., who 

controls who speaks during the 

meeting)? 

 

 

 

▪ What is the agenda of the meeting? 

Request a copy of the agenda 

 

 

 

 

 

 

▪ What topics are discussed during the 

meetings? Can participants add to the 

agenda items? 

 

 

 

 

 

 

▪ What types of issues are discussed 

during the meetings? 

 

 

 

 

 

 

▪ How are decisions discussed? For 

example, is input requested from most 

participants during these discussions?  

 

f 

 

 

▪ What types of discussions (or 

decisions) dominant the meeting? For 

which topics is the largest amount of 

time devoted to during meetings? Do 

discussions about decisions appear to 

favor a set of activities or programs? 
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▪ Who has opportunity to speak and 

raise concerns? How formal is that 

process? 

 

 

 

 

 

 

▪ Are these opportunities to speak 

openly and voice concerns granted? 

When people get called on what they 

are saying? 

 

 

 

 

 

 

 

▪ How is positive or negative feedback 

taken by the group? And does this 

vary by the position of the participant? 

 

 

 

 

 

 

 

▪ What are the arguments are raised to 

support or negate a decision? 

 

 

 

 

 

 

Organizational Style ▪ How do participants address one 

another during the meeting? 

 

 

▪ Any practices or behaviors reflected 

by those who may have more status or 

authority (e.g., dismissiveness of 

certain ideas)? 

 

 

▪ What formalities are observed in the 

meetings? 

 

Common language 

used 

▪ Are any labels or language use to 

dismissive (or indicate receptiveness 

to) certain participants during the 

meeting?  

 

 

 

Discussion of data 

during the meeting 

▪ What types of data/information are 

discussed or referred to during the 

meeting and in what context? 

o List data sources 

o List how they are used 

 

 

▪ Are data or evidence used during a 

decision-making process or 

discussion? If yes, how so? 
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▪ Are there issues for which data were 

needed but were missing? What were 

they?  

▪ How were decisions made in the 

absence of data? 

 

 

 

▪ What types of data are most 

commonly referred to during 

meetings? 

 

 

▪ For which issues, are data most 

commonly used? 

 

Requests for 

data/information 

between levels 

▪ What types of information or 

questions do the district cadre ask of 

the block-level cadre? Who (indicate 

position) tends to make these asks 

during these meetings? 

 

 

▪ How do block level cadre respond to 

requests for information or data from 

the district level? 

 

▪ What types of information or 

questions do the block-level cadre ask 

of the district-level cadre?  

 

 

▪ How do district level cadre respond to 

requests for information or data from 

the block level? 
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E-data collection: KoBo Toolbox 
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