REALIZING SELECTIVE ELECTROCHEMICAL CO$_2$ AND N$_2$ REDUCTION BY INTERFACIAL ENGINEERING AND RATIONAL CATALYST DESIGN

by

Xu Han

A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

October 2020

© 2020 Xu Han

All Rights Reserved
Abstract

Global demand for renewable energy is growing as the excessive burning of fossil fuels causes severe environmental consequences and crisis of energy shortage. Popular technologies for renewable energy conversion include transformation of solar or wind energy to electricity. Therefore, new requirement has arisen for storage and utilization of the electricity. Electrochemical reduction of CO$_2$ and N$_2$ are promising routes for this demand because of the fuels and value-added chemicals generated in the process.

However, due to the inert nature of CO$_2$ and N$_2$, current attempts under aqueous conditions result in low activity and selectivity. The poor electrocatalytic performance is mainly attributed to underexposed active sites of catalysts and competing hydrogen evolution reaction (HER). An additional challenge for CO$_2$ reduction reaction (CO$_2$RR) on Cu, the only metal with the ability to catalyze formation of hydrocarbon and alcohol, is the selective generation of certain product, especially C$_{2-3}$ molecules.

In order to suppress HER, catalyst morphologies that lead to elevated local pH have been developed. In the first study, we discovered the importance of carbon porosity on Cu-catalyzed CO$_2$RR using carbon aerogels, a class of high surface area carbon foams with tunable structural properties. Systematically adjusting the porosity of the carbon aerogels leads to significant differences in catalytic selectivity and activity.
Selectivity for C-C coupling products remains a major challenge for CO$_2$RR. Continuing the study on the effect of carbon in this reaction, we developed a facile method by modifying the Cu foil surface with a layer of porous carbon. Compared to a carbon black modifier, the carbon aerogel one contributes to a major boost of C$_{2-3}$ selectivity. Our findings illustrate that carbon, long-time regarded as an innocent player in catalysis, can have an outsized role in directing product formation.

To tackle the challenges of low yield rate and selectivity with nitrogen reduction reaction (NRR), we presented a catalyst comprised of MoO$_2$ with highly active surface sites dispersed over conductive carbon nanowires. This uniquely engineered catalyst exhibits exceptional performance under ambient aqueous conditions, which demonstrates rational design of active sites and adequate use of carbon support can overcome challenging obstacles within NRR.

Primary Reader and Advisor: Professor V. Sara Thoi

Secondary Readers: Professor D. Howard Fairbrother
Acknowledgements

First and foremost, I would like to express my gratitude to my advisor, Professor Sara Thoi. Through her guidance in the past five years, I was able to develop the rigorous attitude toward science and enhance critical thinking. I was allowed and encouraged to study the projects that I’m most interested in, during which I had the opportunity to do research and solve problems relatively independently. This experience has shaped me into a better scientist and will have long-lasting impact on my career. I’m very grateful that she also encouraged me to take on opportunities that would benefit me to grow as a person.

I would like to thank Professor Thomas Kempa and Professor Howard Fairbrother for being my committee members, and providing support and advices throughout my graduate study. I also express thankfulness to all my research collaborators, Carter Gerke, Dr. Elisa Miller, Dr. Nick Bedford, Mei Wang, Dr. Taylor Woehl and My Linh Le, who all helped me successfully transform research ideas into impactful results.

I’m thankful for many friends within and outside of the Chemistry Department, who have supported me throughout the journey and enriched my life when not in lab. Thank you all for leaving me great memories through the trips, parties, and other get-togethers.

Finally, I especially thank my mom, dad, Jin, Hao, Jingrui, Lucy (feline) and Shaochen. Their unconditional love has always been the foundation of my fearless exploration.
Contents

Abstract ... ii

Acknowledgements ... iv

List of Tables .. vi

List of Figures .. vii

List of Schemes ... xiii

Chapter 1: Introduction to New Catalytic Designs to Solve the Challenges of
Electrochemical CO\textsubscript{2} and N\textsubscript{2} Reduction Reaction 1
 1.1 Growing Need for Renewable Energy ... 2
 1.2 Electrochemical Reduction of CO\textsubscript{2} and Nitrogen 3
 1.3 Challenges with CO\textsubscript{2}RR and NRR ... 6
 1.4 New Designs for Solving the Challenges ... 7
 1.5 Implications for the Thesis Research .. 9
 1.6 Reference ... 10

Chapter 2: Effects of Substrate Porosity in Carbon Aerogel Supported Copper for
Electrocatalytic Carbon Dioxide Reduction .. 17
 2.1 Introduction ... 18
 2.2 Experimental Procedures ... 21
 2.2.1 Synthesis of Cu/CA .. 21
2.2.2 Electrode Preparation .. 21
2.2.3 Controlled-Potential Electrolysis .. 22
2.3 Synthesis and Characterization of Cu/CA 23
2.4 Electrocatalytic CO\textsubscript{2} Reduction 27
2.5 Conclusions ... 34
2.6 References .. 34

Chapter 3: Non-Innocent Role of Porous Carbon Towards Enhancing C\textsubscript{2-3} Products in Electroreduction of Carbon Dioxide ... 43
3.1 Introduction ... 44
3.2 Experimental Procedures .. 46
 3.2.1 Synthesis of CA ... 46
 3.2.2 Electrode Preparation ... 46
 3.2.3 Controlled-Potential Electrolysis 47
 3.2.4 Cu Electrode Preparation with Removed Carbon Layer 48
3.3 Material Characterization and Electrode Preparation 49
3.4 Electrocatalytic CO\textsubscript{2} Reduction 51
3.5 Post Electrolysis Analysis .. 57
3.6 Conclusions ... 60
3.7 References .. 60

Chapter 4: Strategic Design of MoO\textsubscript{2} Nanoparticles Supported by Carbon Nanowires for Enhanced Electrocatalytic Nitrogen Reduction ... 69
4.1 Introduction ... 70
4.2 Experimental Procedures .. 71
C1.1 Materials .. 140
C1.2 General Instrumentation .. 140
C1.3 Materials Characterization ... 141
C2 Figures .. 143
C3 Tables ... 153
C4 References ... 155

Curriculum Vitae ... 158
List of Tables

Table 1.1. Standard potentials (E^0) associated with the electrochemical CO$_2$RR. 7

Table 2.1. Comparison of Cu/CA material properties and catalytic activity. 33

Table A1. Compositional Analysis by Atomic Absorption Spectroscopy and Energy Dispersive X-ray Spectroscopy. 120

Table A2. Calculated electroactive surface area of Cu/CA samples. 120

Table A3. Coordination number modeled from Cu K-edge EXAFS. 120

Table A4. Nearest neighbor distances model from Cu K-edge EXAFS. 120

Table A5. Isotope experiment gas product percentage. 121

Table A6. Errors in CO$_2$RR current efficiency. 121

Table A7. Comparison of this work to Cu supported on carbon on literature. 122

Table B1. Elemental fraction obtained from XPS. 134

Table B2. Percent incorporation of 13C in gaseous carbon products using isotopically labeled 13CO$_2$ and KH13CO$_3$. 134

Table B3. C$_{2-3}$ Product Selectivity on different surface modified Cu catalysts for CO$_2$RR. 135

Table C1. EXAFS fitting results. 153

Table C2. Structural parameters from PDF refinement of the HE-XRD data for MoO$_2$ at Room Temperature. 153

Table C3. Electrochemical NRR performance comparison of different Mo catalysts. 154

Table C4. Surface Mo atomic ratio comparison before and after electrolysis. 154
List of Figures

Figure 1.1. Possible reaction pathways for CO₂RR on Cu to produce various products. 5

Figure 1.2. Typical mechanisms for NRR on heterogeneous catalysts. 6

Figure 2.1. Annular dark field STEM images of carbon aerogel supports and Cu particles for Cu/CA-180, Cu/CA-300, Cu/CA-400, and Cu/CA-650. 25

Figure 2.2. BJH pore size distribution showing varying of pore widths at different R/C ratios. 27

Figure 2.3. Comparison of CO₂RR product selectivity at 4 potentials. 28

Figure 2.4. Plot of total CO₂RR current as a function of pore size at various potentials, and comparison of product selectivity ratios of CO to HCO₂H and C₂H₄ to CH₄ at 4 potentials. 29

Figure 2.5. Comparison of CO₂RR current density as a function of potential. 31

Figure 3.1. SEM images of CA and VXC supports, and nitrogen isotherms and DFT-calculated pore size distribution of CA and VXC. 50

Figure 3.2. Partial current density for CA-Cu, VXC-Cu, and Cu foil. 53

Figure 3.3. Faradaic efficiency C₂ and C₃ products for CA-Cu, VXC-Cu, and Cu foil. Comparison of C₁, C₂, and C₃ product selectivity at -0.92 V, -0.98 V, and -1.04 V vs. RHE. 54

Figure 3.4. SEM images of the Cu foil before electrolysis, and the Cu foil upon removing the CA or VXC layer after a 2- and 8-h electrolysis at -0.98 V vs RHE. 56

Figure 4.1. PXRD, SEM, TEM, and SAED of MoO₂/C nanowires. 75
Figure 4.2. Fitted XPS data of Mo 3d for the MoO₂/C composite, showing the presence of Mo(IV), Mo(V), and Mo(VI). EPR of anilinium molybdate and MoO₂/C nanowires. XANES of MoO₂/C, anilinium molybdate, and Mo foil, and Mo K-edge EXAFS for MoO₂/C.

Figure 4.3. Faradaic efficiencies and yields following CPE experiments of MoO₂ catalyst in 0.1 M HCl from -0.1 to -0.4 V vs. RHE. Current-time profile for a long-term electrolysis exhibits steady-state current density over 12 h.

Figure 4.4. Post-electrolysis Mo 3d XPS of MoO₂/C nanowires. FE and ammonia yields generated when using MoO₂/C nanowires, unsupported MoO₂ particles, and a control carbon paper electrode.

Figure A1. Sol-gel synthesis for cu/ca catalysts.

Figure A2. Powder X-ray diffraction analysis of Cu/CA.

Figure A3. X-ray Photoelectron Spectroscopy depth profiling.

Figure A4. Scanning Electron Micrographs of Cu/CA.

Figure A5. Cu particle size distributions and STEM images.

Figure A6. STEM-EDS analysis of Cu particles.

Figure A7. HRTEM and Raman spectra of Cu/CA.

Figure A8. Nitrogen isotherm of Cu/CA.

Figure A9. Hg porosimetry pore size distribution.

Figure A10. DFT pore size distribution of micropores based on nitrogen isotherm.

Figure A11. Linear Sweep Voltammetry (LSV) of Cu/CA for CO₂RR.
Figure A12. CO$_2$RR selectivity on Cu foil. 111

Figure A13. Cyclic voltammograms for electroactive surface area. 112

Figure A14. Formation rate of different products on all samples. 112

Figure A15. HCO$_2$H and CH$_4$ current density as a function of potential for Cu/CA. 113

Figure A16. Linear sweep voltammetry of metal-free carbon aerogels. 113

Figure A17. Cu K-edge XAS data. 114

Figure A18. XAS k-space and EXAFS fits. 115

Figure A19. Comparison of CVs on Cu/CA before and after electrolysis for CO$_2$ reduction. 116

Figure A20. CO$_2$RR selectivity and activity of metal-free CA-400. 117

Figure A21. Long-term control potential electrolysis of Cu/CA-400 for CO$_2$RR. 118

Figure A22. Representative NMR spectrum for CO$_2$RR liquid products. 119

Figure B1. Additional SEM and TEM images of CA and VXC. 127

Figure B2. XPS survey scan of CA and VXC. 127

Figure B3. BET on CA layer with Nafion. 128

Figure B4. LSV of CA-Cu and VXC-Cu under Ar and CO$_2$. 128

Figure B5. Comparison of CO$_2$RR specific current density for Cu foil and Cu foil covered with a Nafion membrane (without carbon). 129

Figure B6. SEM images of CA-Cu and VXC-Cu after electrolysis. 129
Figure B7. Comparison of SEM images of unmodified Cu foil before and after a 2-h electrolysis at -0.92 V vs RHE.

Figure B8. Surface roughness measurements of CA-Cu, VXC-Cu, and Cu foil.

Figure B9. Partial current densities of products for CA-Cu and VXC-Cu during long term electrolysis.

Figure B10. Specific current densities for C₁, C₂, and C₃ products and the corresponding SEM images of the Cu morphology for CA-Cu and VXC-Cu after electrolysis at various potentials.

Figure B11. SEM images of carbon layers lifted off the Cu foil.

Figure B12. XPS on carbon layer lifted off the Cu foil.

Figure B13. Specific current densities for CA-Cu and VXC-Cu before and after removal of the carbon modifier.

Figure B14. Contact angle measurement of a water droplet on top of CA-Cu, and VXC-Cu.

Figure C1. PXRD of anilinium molybdate nanowire precursor.

Figure C2. SEM of anilinium molybdate nanowire precursor.

Figure C3. Additional SEM, TEM images at different magnifications and EDS of MoO₂/C nanowires.

Figure C4. First derivative XANES.

Figure C5. Mo K-edge EXAFS fitting results.

Figure C6. Crystallographic fitting of the atomic PDF data for MoO₂/C.
Figure C7. Polarization curves of MoO₂/C on carbon paper under N₂ and Ar. 146

Figure C8. Chronoamperometry curves during bulk electrolysis with MoO₂/C NWs. 147

Figure C9. UV-Vis spectra or indophenol blue assays for NH₃ calibration and linear fit of absorbance maximum at 655 nm as a function of NH₃ concentration. 147

Figure C10. UV-Vis spectra for N₂H₄ calibration using the Watt and Chrisp method and linear fit of absorbance maximum at 460 nm as a function of N₂H₄ concentration. 148

Figure C11. Indophenol blue assay of NH₃ concentration following bulk electrolysis with MoO₂/C nanowires. 148

Figure C12. N₂H₄ detection following bulk electrolysis with MoO₂/C NWs showing negligible N₂H₄ production. 149

Figure C13. Current density and yield rate as a function of potential. 149

Figure C14. Control experiments for electrolysis of bare carbon paper under continuous flow N₂, MoO₂/C on carbon paper under continuous flow Ar and MoO₂/C on carbon paper with continuous flow N₂. 150

Figure C15. PXRD spectra of MoO₂/C nanowires after 3 h of electrolysis at -0.1 V vs. RHE, showing negligible change. 151

Figure C16. SEM of MoO₂/C post-electrolysis for 3 h in 0.1 M HCl at a constant potential of -0.1 V vs. RHE. 151

Figure C17. Characterization of the unsupported MoO₂ particles by X-ray diffraction and SEM. 152
Figure C18. Electrochemical impedance spectroscopy (EIS) of the MoO$_2$/C and unsupported MoO$_2$ materials in 0.1 M HCl.
List of Schemes

Scheme 1.1. Illustration of CO$_2$RR conducted in a H-type cell. 3

Scheme 1.2. Illustration of the effect of catalyst structure on local pH. 8

Scheme 2.1. Impact of resorcinol to catalyst ratio (R/C) on the growth of primary carbon particles and aerogel porosity. 24

Scheme 4.1. Synthesis of MoO$_2$/C nanowires. 75
Chapter 1: Introduction to New Catalytic Designs to Solve the Challenges of Electrochemical CO$_2$ and N$_2$ Reduction Reaction
1.1 Growing Need for Renewable Energy

There is a growing global demand for renewable energy as the excessive burning of fossil fuels causes severe environmental consequences and crisis of energy shortage.1 Renewable energy, usually with a carbon-neutral scope, involves harnessing the power of nature like wind and sun as well as developing new technologies to facilitate sustainable energy conversion. Popular technologies for renewable energy conversion include transformation of solar or wind energy to electricity. Traditional way to utilize electricity has been focused on developing electricity storage technique, like various generations of batteries. However, safety and toxicity are the issues associated with battery usage in addition to the consumption of natural resources in the production process of batteries.2,3

Novel ways of electricity storage and utilization have been a hot topic in recent decades. These methods usually involve further conversion of electricity into other forms of fuels that are easy to store and utilize. One common approach is electricity-powered production of hydrogen, which is a clean fuel with only water and heat as by-products upon combustion.4 In recent years, electrochemical reduction of CO\textsubscript{2} into CO or hydrocarbons has emerged to be a popular research area.5 This reaction enables utilization of the excessive and abundant CO\textsubscript{2} as the carbon source for generating carbon-neutral fuels. Nitrogen reduction is also an important process in this regard.6,7 It facilitates ammonia synthesis which is not only essential to the global agriculture industry but also an energy-rich carbon-free fuel.
1.2 Electrochemical Reduction of CO₂ and Nitrogen

Electrochemical CO₂ reduction reaction (CO₂RR) is the conversion of CO₂ into more reduced chemicals by electrical energy. In recent years, it has been of great research interest as a promising approach for carbon capture and utilization. The process overall is made possible by conducting electrocatalysis with CO₂ feed gas in a H-type cell (Scheme 1.1).

Scheme 1.1. Illustration of CO₂RR conducted in a H-type cell.

Electrocatalysis utilizes the electrode to donate or accept electrons while being a catalyst. It happens at the electrode-electrolyte interface and can be defined as the heterogeneous catalysis of electrochemical reactions. It also happens at much milder conditions than traditional industrial reactions. By using electricity generated from renewable energy, the reaction can be environmentally friendly.
Various transition metal electrocatalysts have been investigated for CO₂RR.⁹,¹⁰ On a specific metal, the reaction rate is determined by binding strength of the adsorbed species to the metal surface. More specifically, the binding strength needs to be just “right”—too weak adsorption of CO₂ on the surface results in no reactions on the electrocatalyst surface; too strong interaction leads to poisoning the surface as the products fail to dissociate.⁹ As for the multi-step reduction nature of CO₂RR, different binding strength of CO₂ and intermediates on metal surfaces also contributes to variations on product selectivity. For example, in aqueous reaction conditions, CO is the favored product on Au, Ag and Zn surface, while HCO₂H is selectively produced on Sn, In and Pb. Cu, however, is the only metal known to convert CO₂ into hydrocarbons and alcohols (Figure 1.1).¹¹,¹² Because of the value-added products it is able to produce, Cu has been the center of research for CO₂RR for selectively generating products at an efficient rate.
Similar to CO$_2$RR, nitrogen reduction reaction (NRR) when powered by sustainable sources of energy is the renewable conversion of nitrogen into ammonia, a highly useful compound that feeds the earth and is widely used in a variety of industries. Ammonia production in industry is dominated by the Haber-Bosch process, where large amount of energy is consumed to maintain the high temperature in addition to the need of fossil fuel products to produce the hydrogen feedstock. During this process, approximately 1.87 tons of carbon dioxide is released for each ton of NH$_3$.13 The process operates on such a grand scale that it consumes more than 1% of the global annual energy generation.14 Thus,
electrochemical NRR is of significant importance as it is conducted under mild conditions with electron as the reducing agent and water as hydrogen source.

The study of electrocatalysts for NRR has been focused on noble metals, Fe-group metals and Mo. Unlike CO₂RR, the electrochemical NRR though occurring from multiple possible pathways generally produces ammonia as the only product (Figure 1.2).15

Figure 1.2. Typical mechanisms for NRR on heterogeneous catalysts. Reproduced with permission from reference 14. Copyright 2017 Elsevier.

1.3 Challenges with CO₂RR and NRR

Electrocatalysis focuses on how to mitigate the energy barrier by electrode/catalyst design. Like all the electrocatalytic reaction, the major challenge for CO₂RR and NRR is to develop efficient electrocatalysts to increase the reaction rate. CO₂ and nitrogen are extremely stable molecules. The formation of initial intermediate CO₂⁻ requires large energy uptake, which is the origin that CO₂RR usually requires high potentials applied to the system.16 The reduction of nitrogen...
to ammonia is a multi-step process that is kinetically and energetically challenging. Current studies focus on how to improve the yield rate of ammonia during NRR.

Other challenges come from the specific system. For example, aqueous system is the most favorable condition due to low cost and environmental friendliness. In this case, hydrogen evolution reaction (HER) as a result of reducing water becomes the major side reaction for both CO$_2$RR and NRR. It remains a challenge to suppress the HER and promote the CO$_2$RR and NRR products (Table 1.1). Cu is one of the most studied metals for CO$_2$RR due to its ability to catalyze formation of hydrocarbon and alcohol. The diverse reaction pathways on Cu in the meantime also contribute to the difficulties of product selectivity. In addition, stability issue of catalytic materials during CO$_2$RR and NRR also poses a challenge on ensuring long-term activity and selectivity.

Table 1.1. Standard potentials (E^0) associated with the electrochemical CO$_2$RR. Data source: reference 16.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E^0 (V vs. RHE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$ + 2H$^+$ + 2e$^-$ → CO + H$_2$O</td>
<td>−0.106</td>
</tr>
<tr>
<td>CO$_2$ + 2H$^+$ + 2e$^-$ → HCOOH</td>
<td>−0.250</td>
</tr>
<tr>
<td>CO$_2$ + 4H$^+$ + 4e$^-$ → HCHO + H$_2$O</td>
<td>−0.070</td>
</tr>
<tr>
<td>CO$_2$ + 6H$^+$ + 6e$^-$ → CH$_3$OH + H$_2$O</td>
<td>0.016</td>
</tr>
<tr>
<td>CO$_2$ + 8H$^+$ + 8e$^-$ → CH$_4$ + 2H$_2$O</td>
<td>0.169</td>
</tr>
<tr>
<td>2CO$_2$ + 12H$^+$ + 12e$^-$ → C$_2$H$_4$ + 4H$_2$O</td>
<td>0.064</td>
</tr>
<tr>
<td>2H$^+$ + 2e$^-$ → H$_2$</td>
<td>0.000</td>
</tr>
</tbody>
</table>
1.4 New Designs for Solving the Challenges

To tackle the high energy barriers and low reaction rate of CO$_2$RR and NRR, catalyst designs have been focused on exploring and exposing active sites for the reaction. The efforts include developing active metal compounds and controlling electrocatalyst morphology. For example, O impurity in Cu has been proven to enhance the activity towards CO$_2$RR.$^{17–19}$ Nano-structured Cu compounds expose more grain boundaries and high-index surface, which is shown to increase the CO$_2$RR efficiency.$^{20–22}$ As for NRR, several Mo compounds have been reported as promising catalysts.$^{23–25}$ Nanostructured catalysts can also improve the catalytic activity.

In order to suppress the parasitic HER, catalysts with morphologies that lead to elevated local pH have been developed. This type of catalyst design has in common a roughened 3-D structure that restricts the diffusion of buffer ions to the reaction site to compensate for the local pH increase due to the catalytic reaction. (Scheme 1.2) Some examples include mesoporous Au26, and nanofoam/nanowire Cu27,28 for CO$_2$RR.

![Scheme 1.2. Illustration of the effect of catalyst structure on local pH.](image)
In recent years, a new strategy to enhance the product selectivity by modifying the electrode surface emerges. More specifically, the use of polymers29, organic compounds30,31, or surfactants32 as surface modifiers on Cu surface can suppress HER and promote selectivity of C-C coupling, which benefit the generation of value-added C\textsubscript{2-3} products.

1.5 Implications for the Thesis Research

Carbon has a long history to be used as catalyst support due to its great conductivity, chemical stability as well as high surface area to bind reaction intermediates. It has been regarded as an inert support with no effect on the catalytic reaction. This note has been challenged recently when Cu supported by different types of carbon was found to have varied activity towards CO\textsubscript{2}RR.33 Moreover, carbon support was also shown to affect the structure evolution of Cu nanoparticles during CO\textsubscript{2}RR.34 The following chapters will discuss the utilization of porous carbon as support and surface modifier for Cu catalyst to tune the selectivity during CO\textsubscript{2}RR and carbon nanowire as conductive support for surface defected MoO\textsubscript{2} nanoparticles for NRR. To begin the efforts, carbon aerogels with controlled pore sizes were synthesized and used as support for Cu particles toward CO\textsubscript{2}RR. An optimized pore size at 30-50 nm was shown to best suppress HER and promote C\textsubscript{2} products generation (Chapter 2). To further probe the effect of porous carbon in a broader scope, direct modification of Cu surface by the carbon aerogel (CA-Cu) was studied with carbon black modified Cu as comparison. Significant enhancement of C\textsubscript{2-3}—45% Faradaic efficiency at potential of -0.98 V
vs. RHE—was demonstrated on CA-Cu, which was attributed to the dual effect of carbon modifier: as diffusion layer and surface restructuring inducer (Chapter 3). NRR was then investigated with highly dispersed surface defected MoO$_2$ nanoparticles supported on carbon nanowires. This material showed unprecedented activity and selectivity to produce ammonia in aqueous solution. Surface defect on the MoO$_2$ nanoparticles as well as the carbon nanowire support which contributes to the high nanoparticle dispersion was believed to have contributed to the promising catalytic performance (Chapter 4).

1.6 Reference

(11) Hori, Y.; Murata, A.; Takahashi, R. Formation of Hydrocarbons in the

Chem. Soc. 2020, 142 (15) 6878-6883. https://doi.org/10.1021/jacs.0c00971.

(28) Raciti, D.; Livi, K. J.; Wang, C. Highly Dense Cu Nanowires for Low-

Chapter 2: Effects of Substrate Porosity in Carbon

Aerogel Supported Copper for Electrocatalytic Carbon Dioxide Reduction

The work encompassed in this chapter has been published with the following citation and listed authors:

Xu Han,a Mei Wang,b My Linh Le,a Nicholas M. Bedford,c Taylor J. Woehl,b V. Sara Thoia*

aDepartment of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA. Email: sarathoi@jhu.edu

bDepartment of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, 20740, USA.

cFaculty of Engineering, University of South New Wales, Sydney, AU.

Additional spectroscopic, microscopic, and electrochemical data are provided in Appendix A.
2.1 Introduction

Owing to the rise in greenhouse gas emissions and global climate change, conversion of unconventional carbon feedstock to sustainable fuels has become an urgent area of need. Electrochemical reduction of carbon dioxide, an abundant byproduct of fossil fuel combustion, is a promising route for the storage of electricity generated from renewable resources in the form of carbon fuels.1–4 However, the energetic requirements of the CO\textsubscript{2} reduction reaction (CO\textsubscript{2}RR) are high due to a kinetically uphill one-electron reduction of linear CO\textsubscript{2} to form the bent radical anion, CO\textsubscript{2}\. Moreover, efficient catalysts must be selective for CO\textsubscript{2}RR over the more facile hydrogen evolution reaction (HER).

Among the different strategies for activating CO\textsubscript{2} and stabilizing the high-energy intermediates, metallic surfaces have emerged as a promising route for selective carbon dioxide activation.5–7 Copper is one of the most active non-precious metal catalysts for CO\textsubscript{2}RR with the capability to yield high-order hydrocarbon products, such as methane, ethylene, and alcohols.8–11 However, HER is often the dominant reaction pathway and the carbon product selectivity of Cu is typically poor. Large research efforts have thus been focused on the development of Cu catalysts to control relative ratios of reduced carbon products.12–18

Beyond the catalytic active sites, other catalytic conditions—such as mesostructuring, diffusional concentration gradients, and chemical environment—can have an influential role on CO\textsubscript{2}RR. For instance, surface roughness of an oxide-derived Cu catalyst has been shown to be important for selective product formation and HER inhibition.19 The thickness of a porous catalyst film can also impact the local pH and the diffusion of reactive species.20–22 Cu\textsubscript{2}O and Cu\textsubscript{2}O/ZnO catalysts have been shown to enhance
CH$_3$OH formation. Copper-based metal-organic frameworks and aerogels have also been shown to improve product selectivity towards methanol and ethanol. In addition, several studies have reported that experimental design parameters such as CO$_2$ flow rate and bubble size may have a drastic influence on the catalytic performance. These findings clearly illustrate that the mesostructure of the catalyst and solution dynamics are as significant on selective CO$_2$RR as the identity and morphology of the catalyst itself.

An interesting approach to control these factors is in metal particles deposited on porous carbon. It has been observed that in situ Cu nanoparticles electrodeposited on carbon nanotubes (CNTs), graphene oxide (GO), high purity graphite, and glassy carbon are active for CO$_2$RR, with methane as a significant product albeit at a relatively high potential of -1.3 V vs the reversible hydrogen electrode (RHE). Others have reported high selectivity for C$_2$H$_4$ production using Cu nanoparticles (particle size < 100 nm) deposited on various forms of commercial carbons. However, while the catalytic performances of the Cu/C catalysts varied significantly, the lack of systematic control over the carbon substrate properties impeded the elucidation of any trends. To date, there are no reports that provide insights on how the porosity and structure of carbon specifically affect CO$_2$RR. Understanding the synergistic effects of carbon for catalysis thus remains a major challenge.

To tackle this challenge, we embark on a search for a tunable carbon substrate that has high surface area, porosity, and electrical conductivity. We elect to use carbon aerogels, a unique class of porous carbon that possesses a 3D network of nanographitic sheets and amorphous carbon. The aerogel structure is achieved via a sol-gel process and is composed of interconnected primary particles with diameters in the
nanometer range, giving the structure its unique low mass density, continuous porosities, and high surface area. Carbon aerogel can be doped with various metals and was found to enhance the unit activity per metal towards CO$_2$ reduction. 32 Metal loading and particle size effects have been further studied in the case of cobalt-doped and iron doped carbon aerogel, respectively. 33,34 Moreover, SnO$_2$ supported on carbon aerogel has been studied for selectively reducing CO$_2$ to formate. 35 Another advantage of carbon aerogels is the ability to tune their morphology and porosity using a facile sol-gel process. However, there are limited studies that have focused on the systematic control of carbon aerogel pore size to evaluate the impact of substrate porosity on electrocatalysis.

Herein, we report an in-depth study on the effects of carbon porosity on the catalytic performance for CO$_2$RR. We take advantage of the synthetic versatility of carbon aerogels to control composition and porosity for the deposition of catalytically active Cu particles. While other reports have shown that Cu supported on carbon substrates are competent catalysts for CO$_2$RR,14,28,29 carbon structure-activity relationships have not been established. Using low-loading Cu on carbon aerogels, we demonstrate a pore size-selectivity relationship for CO$_2$RR, particularly for C$_2$H$_4$ and CO production. We propose that confinement of reactants and intermediates in the mesopores of the catalytically inactive carbon aerogel play a significant role in total CO$_2$RR activity and product selectivity. Our results emphasize the importance of substrate properties and encourage further studies on tunable carbon platforms for CO$_2$RR catalysis and beyond.
2.2 Experimental Procedures

2.2.1 Synthesis of Cu/CA

Carbon aerogels were synthesized by using resorcinol and formaldehyde as precursors. Based on the well-known sol-gel method,30,36,37 resorcinol was stirred with formaldehyde by a 1:2 molar ratio to form a 5 wt \% aqueous solution followed by the addition of varying concentrations of \(\text{Na}_2\text{CO}_3 \) as a base catalyst. The solution was left undisturbed for 48 hours at 30 °C, during which primary particles were formed and an orange solution was generated. The temperature was then increased to 60 °C for another 2 days. To vary the morphology of the aerogel, the molar ratio of resorcinol (R) to the base catalyst (C) was varied at R/C = 180, 300, 400, and 650.

After the gelation process, the wet gels were carefully removed from the container and soaked in reagent alcohol for 12 hours. This process was repeated with a fresh stock of reagent alcohol for another 12 hours. The wet gels were then soaked in dry ethanol for 6 hours on a gently shaking plate to facilitate the removal of residual water, which is necessary for critical point drying. This process was repeated 4 times. Copper was loaded by soaking the wet gel in an ethanol solution containing 15 mg mL\(^{-1}\) \(\text{Cu(NO}_3\text{)}_2 \) for 12 hours twice. Finally, the wet gel was dried on a Tousimis 795 Critical Point Dryer. The copper-loaded RF aerogel was pyrolyzed at 1050 °C for 5 hours under \(\text{N}_2 \). The heating rate was 2.5 °C/minute.

2.2.2 Electrode Preparation

Cu/CA was ground to powders by shaking in a plastic vial with stainless steel balls. An ink slurry was prepared by dispersing 3 mg of Cu/CA powder in 1 mL 1:4 (v/v) ethanol water solution. 100 \(\mu \text{L} \) 5 wt \% Nafion in water and 1-propanol were added as a binder. A 3 mm glassy carbon
electrode and a glassy carbon plate were used as the working electrode for cyclic voltammetry and bulk electrolysis, respectively. The glassy carbon electrode was first cleaned by sonicating in ethanol and DI water. Then it was polished by using alumina particles on a polishing cloth. The electrode for electrolysis was prepared by drop-casting 200 µL catalytic ink on a 1 cm x 2 cm area of glassy carbon plate electrode and allowed to dry under an infrared lamp, which facilitated the formation of a uniform thin film with good surface adhesion. Silicone polyimide tape was used to control the surface area. For controlled experiments, Cu foil and Cu wire electrodes were prepared by mechanical polishing using a 220-grit sand paper.

2.2.3 Controlled-Potential Electrolysis

The experiments were performed in a gas-tight two-compartment electrochemical cell (H-cell) separated by a glass frit with a working electrode and an Ag/AgCl reference electrode on one side and a Pt coil or graphite rod counter electrode. Each compartment was filled with 40 mL 0.1 M NaHCO$_3$ electrolyte with a headspace volume of 30 mL. CO$_2$ gas was purged through both compartments for at least 15 min before electrolysis. Electrolysis were conducted for 2.5 h between -0.8 V to -1.2 V vs. RHE. The working compartment was directly connected to an Agilent 490 MicroGC to analyze gas products and gas injections were initiated every 1 h. At least three freshly prepared electrodes were independently measured at each potential. The ohmic drop was measured by electrochemical impedance spectroscopy (EIS). The real resistance at 1 x 10^4 Hz on Nyquist plot was taken as the ohmic drop for the system and all potentials reported are IR compensated. The potential was converted to V vs. Reversible Hydrogen Electrode (RHE) by the following equation:
\[E \text{ (vs RHE)} = E \left(\text{vs } \frac{Ag}{AgCl} \right) + 0.209 \, V + 0.0591 \, p\text{H} + R \, I \]

where the \(p\text{H} \) was 6.8, \(R \) is the solution resistance measured by EIS, and \(I \) is the average current during the electrolysis. Gas products were analyzed by an Agilent 490 Micro GC equipped with a thermal conductivity detector (TCD), a Molsieve 5Å column and a PoraPlot U (PPU) column. The Molsieve column was used to separate \(\text{H}_2 \), \(\text{CO} \), and \(\text{CH}_4 \), while the PPU column was used to separate \(\text{C}_2\text{H}_4 \) and other hydrocarbons. Isotopic labeling experiments demonstrate carbon products are derived from \(\text{CO}_2 \) and additional control experiments are available in the ESI.

2.3 Synthesis and Characterization of Cu/CA

Copper-deposited carbon aerogels are synthesized by the Pekala’s method\(^{30}\). In contrast to commercial carbons, this facile synthesis of carbon aerogels does not use metal catalysts and allows for careful control of trace impurities. The carbon framework is formed from the condensation of resorcinol (R) and formaldehyde (F) in the presence of catalytic amounts of \(\text{Na}_2\text{CO}_3 \) (Figure A1)\(^{36,37}\). Upon heating the sol, the condensation products of resorcinol and formaldehyde can undergo a number of etherification and Michael Addition reactions to yield polymeric microspheres called primary particles. When the concentration of these particles reaches a threshold, crosslinking of individual microspheres leads to the formation of a 3-dimensional interconnected porous network. The organic gel subsequently undergoes several solvent exchanges with dry ethanol to remove excess precursors and water. Copper ions are loaded by soaking the wet gel, which contains –OH functional groups, in a dry ethanolic solution of a copper salt. The liquid solvent is gently removed with critical point \(\text{CO}_2 \) drying method to retain the porous structure of the RF gel. Pyrolysis of the sample results in a
simultaneous carbonation of the organic aerogel as well as the formation of Cu particles.

Scheme 2.2. Impact of resorcinol to catalyst ratio (R/C) on the growth of primary carbon particles and aerogel porosity.

To vary the porosity and morphology of carbon aerogels, the molar ratio of resorcinol to Na$_2$CO$_3$ (R/C) is adjusted. (Scheme 2.1). A low catalyst concentration favors the growth of polymeric spheres, while a high catalyst concentration leads to enhanced crosslinking of microspheres. Thus, a high R/C ratio will generate a gel structure with large particles and fewer cross linkages. Correspondingly, pyrolysis of this material will yield a carbon aerogel with large mesopores (2-50 nm).38,39 In this manner, we synthesize four Cu-deposited carbon aerogels with varying carbon structures using R/C ratios of 180 (Cu/CA-180), 300 (Cu/CA-300), 400 (Cu/CA-400), and 650 (Cu/CA-650) as well as the respective metal-free carbon aerogels.

A combination of spectroscopic and imaging techniques is used to characterize the Cu-loaded carbon support. First, Atomic Absorption Spectroscopy (AAS) is utilized to determine the total Cu concentration per sample mass of Cu/CA. All four samples contain similar Cu content ranging between 8 and 13% (Table A1). In addition, the powder X-ray diffraction (PXRD) measurements indicate the presence of metallic Cu and Cu$_2$O.
The Cu$_2$O component is due to a slow oxidization of the Cu particle under ambient conditions. The peak intensity ratio of Cu$_2$O (200) to Cu(200) are similar across all four samples, suggesting that Cu/CAs have similar levels of oxidation.

X-ray Photoelectron Spectroscopy (XPS) is used to examine Cu/CA-180 as a representative sample. Interestingly, no Cu is detected on the surface of the sample by XPS. XPS depth profiling reveals that Cu is evenly distributed throughout the 3D carbon network. At the depth of ~300 nm, Cu constitutes about 5 wt% of the material (Figure A3) as corroborated by Energy Dispersive X-ray Spectroscopy (EDS) compositional analysis (Table A1). Likewise, Scanning Electron Microscopy (SEM) shows uniform deposition of Cu particles on the highly porous carbon 3D framework (Figure A4).

![Figure 2.4](image)

Figure 2.4. Annular dark field STEM images of (a-d) carbon aerogel supports and (e-h) Cu particles for Cu/CA-180, Cu/CA-300, Cu/CA-400, and Cu/CA-650 (left to right).

Transmission electron microscopy (TEM) and scanning TEM (STEM) are used to characterize the Cu particles and the structure of the carbon
support. Annular Dark Field (ADF) STEM images of each sample reveal the Cu particle sizes of Cu/CA-300, Cu/CA-400, and Cu/CA-650 are similar, ranging in average particle size of 315-335 nm, while Cu/CA-180 exhibits an average particle size of 75 nm (Figure 2.1 and Figure A5). The STEM-EDS measurements (Figure A6) are consistent with XRD that the Cu particles undergo surface oxidation to form Cu$_2$O shells. For the carbon structure, ADF-STEM images support that high R/C ratios lead to the generation of large primary carbon particles during the aerogel synthesis (Figure 1a-d). The thickness of the carbon framework and the porosity are increasing in the order of Cu/CA-180 < Cu/CA-300 ~ Cu/CA-400 < Cu/CA-650.

High Resolution TEM (HRTEM) images of the carbon substrate reveal both graphitic and amorphous carbon (Figure A7a,b). In Raman Spectroscopy, amorphous carbon typically displays a disorder-induced D-band at 1348 cm$^{-1}$, while graphite exhibits a first-order allowed G band at 1591 cm$^{-1}$.40,41 The Raman spectra in Figure A7c illustrate that the Cu/CAs have similar intensity ratios of D to G bands, implicating that they consist of similar fractions of amorphous carbon and graphitic domains.

The porosity of the carbon aerogel is further characterized using isothermal nitrogen adsorption methods (Figure A8). All four samples exhibit high BET surface areas: 39 Cu/CA-180 (1236 m2 g$^{-1}$), Cu/CA-300 (832 m2 g$^{-1}$), Cu/CA-400 (940 m2 g$^{-1}$), and Cu/CA-650 (940 m2 g$^{-1}$). The desorption branches of the nitrogen isotherms are modeled by the Barrett-Joyner-Halenda (BJH) method, which is commonly used for examining mesoporosity (2-50 nm) of carbon materials. Consistent with ADF STEM images (Figure 2.1), the pore size distributions (PSD) clearly show the Cu/CA samples exhibit drastically different pore sizes (Figure 2.2) with the peak and average mesopore diameters increasing in the order of Cu/CA-
180 < Cu/CA-300 < Cu/CA-400 < Cu/CA-650. This trend is also corroborated by Hg porosimetry (Figure A9). Density functional theory (DFT) modeling of the nitrogen isotherms shows all four Cu/CA samples have similar microporosity (< 2 nm) (Figure A10).

![Pore size distribution](image)

Figure 2.5. BJH pore size distribution showing varying of pore widths at different R/C ratios.

2.4 Electrocatalytic CO$_2$ Reduction

To examine the overall electrochemical behavior of Cu/CA, linear sweep voltammetry (LSV) experiments are performed in a pH 6.8 solution of
0.1 M NaHCO$_3$ saturated with CO$_2$. All four Cu/CA electrodes show a large current enhancement indicative of catalytic activity with an onset potential of \sim0.7 V vs. RHE (Figure A11). Beyond the potential \sim1.05 V vs. RHE, Cu/CA-300 and Cu/CA-400 have higher current densities compared to Cu/CA-180 and Cu/CA-650.

Controlled potential electrolysis correlate with the performance seen in LSV. In general, CO$_2$RR current efficiencies are the highest in Cu/CA-300 and Cu/CA-400, reaching up to 50% (Figure 2.3). We note that the Cu loading in Cu/CAs is only 8-13 wt% (Table A1), yet the catalysts exhibit enhanced CO$_2$RR current efficiency as 50 wt% Cu/carbon catalyst reported previously at this potential.29 Other carbon-supported Cu catalysts with similar low loadings also show significant HER current efficiency.14,28 Moreover, bulk Cu foil have a drastically different product distribution with higher HER Faradaic efficiencies compared to Cu/CAs (Figures A12).
Interestingly, CO$_2$RR current efficiency is correlated with the carbon porosity. **Figure 2.4** shows the largest selectivity occurs at the carbon peak pore size between 30 and 50 nm (i.e. Cu/CA-300 and Cu/CA-400). As the pore size increases from 20 nm, CO$_2$ is able to diffuse more easily to the Cu active site, resulting in the notable enhancement in CO$_2$RR current efficiency (**Figure 2.4a**). However, a precipitous drop in current efficiency is observed after 50 nm. We postulate that at larger pore sizes, CO$_2$RR efficiency is influenced by the confinement of reactive intermediates near the active site.15,20 This phenomenon has been observed in ordered nanoporous Cu electrocatalysts, where it is reported that increasing the pore size leads to a less stable ion concentration at the Cu surface and consequently poorer CO$_2$RR selectivity.15 Likewise, the larger peak pore sizes in the nanoporous carbon aerogel of Cu/CA-650 may perturb the reaction environment and result in a decreased CO$_2$RR current efficiency.

![Figure 2.4.](image)

Figure 2.4. (a) Plot of total CO$_2$RR current as a function of pore size at various potentials. The pore size is determined by the peak position in the PSD. Comparison of product selectivity ratios of (b) CO to HCO$_2$H and (c) C$_2$H$_4$ to CH$_4$ at 4 potentials. In general, Cu/CA-300 and Cu/CA-400 have higher selectivity for reduced CO$_2$ products, illustrating an optimal pore size distribution.

Supporting our observations, the selectivities for C$_2$H$_4$ and CO display a similar inverted parabola trend as a function of pore size. It has been reported that confinement of reactive intermediates promote the formation of higher order species such as ethylene.20 In **Figure 2.4b**, the current
efficiency ratios of C$_2$H$_4$ to CH$_4$ are the highest for the 30-50 nm pore size range of Cu/CA-300 and Cu/CA-400, particularly at the potential of -1.04 V vs. RHE. At the extremes, Cu/CA-180 and Cu/CA-650 exhibit a C$_2$H$_4$/CH$_4$ ratio of less than 1, suggesting the balance of CO$_2$ diffusion and ion confinement is not optimal. The current efficiency ratio of CO/HCO$_2$H can also elucidate fundamental changes in the microenvironment of the active Cu sites. The CO/HCO$_2$H ratio of Cu/CA-300 and Cu/CA-400 are higher than the extreme Cu/CA cases (Figure 2.4c). In all cases, both C$_2$H$_4$/CH$_4$ and CO/HCO$_2$H product ratios of Cu/CA are significantly greater than that of a bulk Cu foil under our experimental parameters (Figure 2.4, Figure A12).

As the Cu particles are embedded in the carbon aerogel, the electrochemically active surface area (EASA) of Cu/CAs may vary. To determine if surface area accounts for the differences in catalytic activity, an Cu/CA nafion ink of each catalyst is deposited on a 3 mm glassy carbon electrode and the cyclic voltammograms of an aqueous solution of K$_3$Fe(CN)$_5$. As shown in Figure A13, the reversible Fe$^{2+}$/Fe$^{3+}$ redox feature at 0.23 V vs Ag/AgCl has a similar shape and intensity for all four catalysts. Using the Randles-Sevcik equation, the EASA values for Cu/CA-180, Cu/CA-300, Cu/CA-400, and Cu/CA-650 are comparable (14.0 ± 1.5 cm2 mg$^{-1}$ Cu, Table A2). This result suggests that variations in Cu surface area are not the primary reason for the observed catalytic trends.
Figure 2.5. Comparison of CO$_2$RR current density as a function of potential. Cu/CA-300 and Cu/CA-400 are more active catalysts than Cu/CA-180 and Cu/CA-650, demonstrating the impact of carbon structure on CO$_2$RR.

To study the influence of carbon structure on the catalytic activity, the specific current density and formation rate of HER and CO$_2$RR for the Cu/CA catalysts are examined (Figure 2.5, Figure A14). At all potentials tested, Cu/CA-300 and Cu/CA-400 exhibit the higher total current density towards CO$_2$RR compared to Cu/CA-180 and Cu/CA-650 (Figure 2.5a). This enhancement is mainly due to the improved C$_2$H$_4$ and CO current densities (Figure 5b,d) since the specific current densities for HCO$_2$H and CH$_4$ are invariant across the tested potential range (Figure A15). Furthermore, the HER current density is comparable among the samples except for the slightly higher activity for Cu/CA-400. (Figure 2.5c). This outcome stands in contrast with previous reports on mesoporous Cu and Au electrodes, where
an increase in CO$_2$RR selectivity is attributed to the suppression of HER due to increasing local pH.20,21 The similar HER current densities imply that the local pH is comparable for the four catalysts despite their differences in mesoporosity. In addition, LSV experiments of metal-free carbon aerogels in CO$_2$ saturated 0.1 M NaHCO$_3$ solutions show similar HER current densities at all potentials (Figure A16) and validate that porosity of the aerogels does not impact HER activity.

X-ray absorption spectroscopy (XAS) experiments are performed to evaluate if the differences in product selectivity are related to compositional variance of the Cu particles. In the X-ray absorption near-edge structure (XANES) portion of the spectra (Figure A17), the tested Cu/CA samples contain features in the absorption edge that are similar to those of a bulk Cu$_2$O powder.42 This result is consistent with XRD and TEM analysis that the metallic Cu particles in the carbon aerogels are partially oxidized to Cu$_2$O. We further use the extended X-ray absorption fine structure (EXAFS) region to examine the extent of oxidation and the local Cu environment. EXAFS modeling (Figure A17, Figure A18) provides quantitative structure metrics, such as coordination numbers (CNs) and nearest neighbor distances (NNDs), which are provided in Table A3 and A4. Despite the large particle sizes observed in TEM, all modeled metal oxide CNs are reduced from the bulk value of 4.0 for Cu-O and 8.0 for Cu-Cu. Correspondingly, the model NNDs are slightly expanded from the known NNDs in Cu$_2$O (1.84 Å and 3.01 Å for Cu-O and Cu-Cu NNDs respectively). This outcome signifies nanoscale ordering of the Cu$_2$O shell within the aerogels, which are not uncommon as surface strain and interfacial interactions can lead to differences between bulk and nanoscale properties.$^{43–45}$ More importantly, the reduced CNs and expanded NNDs reveal that the nanoscale domains in
the Cu/CA samples are similar. Although the complexity of the Cu/CA structure precludes in-situ characterization of the Cu particles during electrolysis, the XAS data suggests that all four catalysts will generate comparable Cu sites upon reductive conditions.19 Compositional differences of the active sites thus are unlikely to fully account for the varied CO$_2$RR product selectivity.

Taken together, our extensive spectroscopic and microscopic characterization suggest that the surfaces of the Cu particles are comparable in the Cu/CA series. Moreover, differences in catalytic performances are not likely due to nano-sized effects previously observed in 1-10 nm Cu nanoparticles given the large Cu particle sizes (~300 nm) in this study.46,47 Our careful characterization of the carbon aerogel signifies that while Cu/CA are compositionally similar, the mesoporous structure plays an important role in the overall CO$_2$RR selectivity (Table 2.1).

Table 2.1. Comparison of Cu/CA material properties and catalytic activity.

<table>
<thead>
<tr>
<th></th>
<th>Cu/CA-180</th>
<th>Cu/CA-300</th>
<th>Cu/CA-400</th>
<th>Cu/CA-650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu weight % by EDS</td>
<td>8.5 ± 0.5</td>
<td>7.7 ± 0.4</td>
<td>6.9 ± 0.6</td>
<td>7.7 ± 0.9</td>
</tr>
<tr>
<td>Cu weight % by AA</td>
<td>9.7 ± 0.6</td>
<td>11 ± 0.6</td>
<td>7.8 ± 0.5</td>
<td>12 ± 0.7</td>
</tr>
<tr>
<td>Average size</td>
<td>75 nm</td>
<td>315 nm</td>
<td>330 nm</td>
<td>335 nm</td>
</tr>
<tr>
<td>Cu$_2$O(200)/Cu(200)*</td>
<td>2.8</td>
<td>2.5</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Carbon Aerogel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak pore size</td>
<td>20 nm</td>
<td>30 nm</td>
<td>50 nm</td>
<td>90 nm</td>
</tr>
<tr>
<td>Average pore size</td>
<td>32 nm</td>
<td>40 nm</td>
<td>43 nm</td>
<td>64 nm</td>
</tr>
<tr>
<td>CO$_2$RR Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at -0.81 V</td>
<td>43 %</td>
<td>46 %</td>
<td>54 %</td>
<td>22 %</td>
</tr>
<tr>
<td>at -0.96 V</td>
<td>34 %</td>
<td>44 %</td>
<td>43 %</td>
<td>26 %</td>
</tr>
<tr>
<td>at -1.04 V</td>
<td>38 %</td>
<td>52 %</td>
<td>39 %</td>
<td>26 %</td>
</tr>
<tr>
<td>at -1.13 V</td>
<td>33 %</td>
<td>50 %</td>
<td>36 %</td>
<td>18 %</td>
</tr>
</tbody>
</table>

Peak intensity ratio from powder XRD measurements
2.5 Conclusions

In summary, carbon aerogel supported copper is a novel platform for studying electrocatalytic reduction of CO$_2$. The tunability of the carbon substrate allows direct comparisons of catalytic performance as a function of porosity. We demonstrate that Cu/CAs possessing intermediate pore sizes lead to increased selectivity for CO$_2$RR and notable product selectivity of CO over HCO$_2$H and C$_2$H$_4$ over CH$_4$. While adjusting the carbon porosity can lead to a 2-fold enhancement in CO$_2$RR, the morphology of the carbon aerogel plays a less significant role in HER. To our knowledge, this is the first systematic study on the influence of the porous carbon support on the selectivity and activity of electrocatalytic CO$_2$RR. Future studies are focused on templated mesoporosity in carbon materials to provide greater control over the PSD and further elucidate structure-activity relationships. Our findings have implications on the design and development of supported catalysts in carbon dioxide conversion and other industrially relevant catalytic processes.

2.6 References

(27) Pan, F.; Zhao, H.; Deng, W.; Feng, X.; Li, Y. A Novel N,Fe-Decorated

https://doi.org/10.1021/acscatal.5b02399.

https://doi.org/10.1039/c0ee00627k.

https://doi.org/10.1016/j.carbon.2013.01.019.

https://doi.org/10.3390/catal7010025.

https://doi.org/10.1016/j.jcou.2018.01.007.

40
(19), 6138–6144. https://doi.org/10.1021/cm071572m.

(43) Zheng, J.-C.; Frenkel, a. I.; Wu, L.; Hanson, J.; Ku, W.; Božin, E. S.;
https://doi.org/10.1103/PhysRevB.81.144203.

https://doi.org/10.1021/cm034640n.

https://doi.org/10.1021/ja500328k.

https://doi.org/10.1021/jacs.5b00046.
Chapter 3: Non-Innocent Role of Porous Carbon

Towards Enhancing C_{2-3} Products in Electroreduction of Carbon Dioxide

The work encompassed in this chapter has been published with the following citation and listed authors:

ACS Appl. Mater. Interfaces 2020, XXXX, XXX, XXX-XXX

Xu Han, V. Sara Thoi*

Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA.

Additional figures and tables on characterizations as well as electrolysis data and comparison to recent reports are provided in Appendix B.
3.1 Introduction

The electrochemical CO\textsubscript{2} reduction reaction (CO\textsubscript{2}RR) is a sustainable approach to address the rise in greenhouse gas emissions and utilize CO\textsubscript{2} as an abundant carbon feedstock. Tremendous efforts have been taken to tackle the high kinetic barrier of CO\textsubscript{2} activation and the competition of the hydrogen evolution reaction (HER) in aqueous solutions. Innovative strategies include controlling catalyst morphology and composition,1–6 manipulating oxidation state and adsorption energies,7,8 and regulating the local electrode environment.9–12 Recent studies have utilized surface modification on metal films to dramatically alter product selectivity. Pyridinium-based and polyamide films on Cu were shown to suppress hydrogen production and favor C\textsubscript{≥2} formation.13–15 More recently, hydrophobicity of the Cu film was demonstrated to be important for carbon product selectivity.16,17 Although there have been significant improvements in electrocatalytic CO\textsubscript{2}RR, directing product formation to valuable high-order carbon species remains a critical challenge.

Morphological evolution of the catalyst during electrolysis significantly affects the catalytic behavior. For instance, Hsieh et al. revealed that the surface morphology of Ag nanocorals changed to a dendrite-like structure after 72 h of electrolysis, resulting in a 29% drop in CO current efficiency and attenuated total current density.18 Grosse et al. monitored the dynamic morphological and chemical transformations of cube-shaped Cu nanoparticles on carbon substrate by operando electrochemical techniques. Drastic changes in the cubic morphology
were found to take place under CO$_2$RR conditions and were attributed to a decrease in selectivity for CO$_2$RR compared to HER.19 On the other hand, surface restructuring can benefit the selectivity towards desired products. Scholten et al. showed that Cu dendrites supported on metal substrates underwent visible roughening with the formation of small particles. Their combined *in situ* and *operando* electrochemical analysis suggested that the high selectivity of dendritic Cu toward ethylene and ethanol is exclusively due to these dynamic morphological changes.20 Kim et al. also found that dense Cu particle ensembles supported on carbon paper can lead to the formation of Cu nanocubes, which significantly benefited the selectivity toward C$_2$ and C$_3$ products.21

Herein, we examine the role of carbon modifier on metal surfaces for CO$_2$RR. Porous carbon materials are ubiquitously used to support metal particles and are often assumed to be innocent bystanders to the catalytic reactions. Our recent research challenged this notion by showing that the porosity of the carbon support can modulate the selectivity of CO$_2$RR on Cu particles.9 It has also been demonstrated by other researchers that different types of carbon have varied effects on the reaction.$^{21–26}$ In the present study, we utilize a straightforward approach to examine the influence of carbon types on surface reconstruction of Cu foils under CO$_2$RR conditions. We demonstrate that a carbon layer can promote advantageous morphological transformations that lead to enhanced C$_2$ and C$_3$ product selectivity and activity. The structure of the porous carbon is also attributed
to differences in mass transport of protons and carbon dioxide to and from the electrode, ultimately enabling HER suppression.

3.2 Experimental Procedures

3.2.1 Synthesis of CA

Carbon aerogels were synthesized by the same procedure reported in our recent paper by using resorcinol and formaldehyde as precursors. Reproduced here for clarity, resorcinol was stirred with formaldehyde by a 1:2 molar ratio to form a 5 wt % aqueous solution followed by the addition of varying concentrations of Na$_2$CO$_3$ as a base catalyst. The solution was left undisturbed for 48 hours at 30 °C, during which primary particles were formed and an orange solution was generated. The temperature was then increased to 60 °C for another 2 days.

After the gelation process, the wet gels were carefully removed from the container and soaked in reagent alcohol for 12 hours. This process was repeated with a fresh stock of reagent alcohol for another 12 hours. The wet gels were then soaked in dry ethanol for 6 hours on a gently shaking plate to facilitate the removal of residual water, which is necessary for critical point drying. This process was repeated 4 times. Finally, the wet gel was dried on a Tousimis 795 Critical Point Dryer. The copper-loaded RF aerogel was pyrolyzed at 1050 °C for 5 hours under N$_2$. The heating rate was 2.5 °C/minute.

3.2.2 Electrode Preparation

An ink slurry was prepared by dispersing 1.5 mg of carbon powders of CA or Vulcan XC72R(VXC) in 1 mL 1:4 (v/v) ethanol water solution. 100 μL 5 wt %
Nafion in water and 1-propanol were added as a binder. CA was ground to powders by shaking in a plastic vial with stainless steel balls. The electrode for electrolysis was prepared by drop-casting 200 µL catalytic ink on a 1 cm × 1 cm area of Cu foil electrode masked by Kapton tapes and allowed to dry under an infrared lamp, which facilitated the formation of a uniform thin film with good surface adhesion. Prior to drop-casting the ink, Cu foils were dipped in HCl acid briefly to remove the oxide layer. We tried to prepare CA-Ag and VXC-Ag electrode using the same method. However, upon conducting electrolysis, the carbon layer partially lifts off the surface owing to formation of large gas bubbles.

3.2.3 Controlled-Potential Electrolysis

The following procedures are reproduced from a previous publication for clarity.¹ The experiments were performed in a gas-tight two-compartment electrochemical cell (H-cell) separated by a glass frit with a working electrode and a Ag/AgCl reference electrode on one side and a Pt coil or graphite rod counter electrode. Each compartment was filled with 40 mL 0.1 M KHCO₃ electrolyte with a headspace volume of 30 mL. CO₂ gas was purged through both compartments for at least 15 min before electrolysis. Electrolysis were conducted for 2 h between -0.6 V to -1.05 V vs. RHE. The working compartment was directly connected to an Agilent 490 Micro GC to analyze gas products and gas injections were initiated every 30 min after 1 h of electrolysis. At least three freshly prepared electrodes were independently measured at each potential. The ohmic drop was measured by electrochemical impedance spectroscopy (EIS). The real resistance at 1×10^4
Hz on Nyquist plot was taken as the ohmic drop for the system and all potentials reported are IR compensated. The potential was converted to V vs. Reversible Hydrogen Electrode (RHE) by the following equation:

$$E \text{ (vs RHE)} = E \text{ (vs AgAgCl)} + 0.209V + 0.0591pH + RI$$

where the pH was 6.8, R is the solution resistance measured by EIS, and I is the average current during the electrolysis. Gas products were analyzed by the GC equipped with a thermal conductivity detector (TCD), a Molsieve 5Å column and a PoraPlot U (PPU) column. The Molsieve column was used to separate H_2, CO, and CH$_4$, while the PPU column was used to separate C$_2$H$_4$ and other hydrocarbons. Calibration curve was made for quantification by injecting standard amounts of each gas to the H-cell. Isotopic labeling experiments conducted on a GC-MS demonstrate carbon products are derived from CO$_2$ and additional control experiments are available. Liquid products were analyzed by a Bruker Advance 400 MHz FT-NMR spectrometer with dimethylsulfoxide (DMSO) as internal standard. Specifically, the sample was prepared by adding 0.5 mL of electrolyte and 0.1 mL D$_2$O with DMSO concentration 4.70×10^{-5} M. Solvent suppression method was used to obtain well-resolved spectra.

3.2.4 Cu Electrode Preparation with Removed Carbon Layer

Carbon layer was gently lifted by a piece of Kapton tape. Then the electrode was rinsed with deionized water. The minimal residue was cleaned gently with a Kimwipe. SEM and EDS were conducted to make sure full removal of carbon layer without changing the Cu surface structure.
3.3 Material Characterization and Electrode Preparation

Carbon aerogels are intriguing platforms to study interfacial processes owing to their tunable porosity, high conductivity, and robust mechanical properties.27–29 Unlike commercial carbons, the facile synthesis of carbon aerogels does not use metal additives and allows for careful control of metal impurities. In a previous study, we used carbon aerogels as a substrate for Cu particle catalysts.9 We demonstrated that the carbon porosity, which is tuned by the resorcinol to carbonate (R/C) ratio, has a significant effect on CO\textsubscript{2}RR selectivity. In the present report, we utilized an R/C ratio of 180 to synthesize a highly porous and mechanically robust carbon aerogel (CA). As shown in Figure 1, the carbon structure is composed of small primary carbon particles (~9 nm) with interconnected pores (\textbf{Figure 3.1a}, \textbf{Figure B1a-c}). Nitrogen adsorption and desorption experiments show that the BET surface area of CA is 1409.6 m2 g-1 (\textbf{Figure 3.1b}). Elemental characterization by XPS confirm that the as-synthesized CA is highly carbonized, containing less than 3% oxygen species and showing no detectable signals from other elements (\textbf{Table B1}, \textbf{Figure B2}).

To probe the effect of carbon hierarchical structure on the electrode-electrolyte interface, Vulcan XC 72R (VXC) is also studied as a carbon modifier. VXC is a widely used commercial carbon support for fuel cells and other catalysts, owing to its low cost, relatively high surface area, and chemical purity. VXC primary particles are large (> 50 nm) and the structure has significantly less void space compared to CA (\textbf{Figure 3.1c}, \textbf{Figure B1d-f}). The lower gas adsorption and
smaller hysteresis in the nitrogen adsorption and desorption experiments clearly illustrate that VXC is less porous than CA with a BET surface area of 232.7 m2 g$^{-1}$ (Figure 3.1b). BJH modeling of the gas isotherms reveals that the pore size range of VXC is centered at 70 nm, whereas there is a broad distribution of pore sizes centered at 40 nm in CA (Figure 3.1d). The higher BET surface area and the wide range of pore diameters of CA result from the presence of interconnected channels in the aerogel structure. XPS characterization show that VXC is more oxygenated compared to CA with an oxygen content of 9.8% (Table B1, Figure B2).

Figure 3.1. SEM images of (a) CA and (c) VXC supports, and (b) nitrogen isotherms and (d) DFT-calculated pore size distribution of CA (red circles) and VXC (blue triangles).
3.4 Electrocatalytic CO$_2$ Reduction

Electrodes are prepared by dropcasting an ink composed of 1.5 g L$^{-1}$ carbon and 0.5 wt. % Nafion on copper foils. BET analysis of the dried CA ink shows that a high surface area (854 m2/g) is retained even with the addition of Nafion (Figure B3). Linear sweep voltammetry (LSV) is conducted using the carbon-modified Cu electrodes both under Ar and CO$_2$ (Figure B4). There is a decrease in the current density under CO$_2$ because adsorbed CO can inhibit the HER reaction.30 Controlled potential electrolysis are conducted at various potentials in CO$_2$-saturated 0.1 M KHCO$_3$ and the products are quantified by gas chromatography and 1H nuclear magnetic resonance spectroscopy. Current density is plotted for C$_1$ and C$_{2,3}$ products separately in Figure 3.2 to show the distinct trends for product formation. While both CA-modified (CA-Cu) and VXC-modified Cu (VXC-Cu) generate mostly C$_1$ products at low cathodic potentials, CA-Cu begins to form significant amounts of C$_2$ and C$_3$ products at a lower overpotential than VXC-Cu. For instance, ethylene current density of 1.0 mA cm$^{-1}$ is observed at -0.92 vs. RHE for CA-Cu, whereas a more cathodic potential of -0.98 V is needed for the same ethylene current density on VXC-Cu (blue traces, Figure 3.2a,b). In addition, the ethanol current density doubles for CA-Cu compared to VXC-Cu at the same potential. However, current density of C$_1$ product shows an opposite trend at overpotentials more negative than -0.9 V. At these more cathodic potentials, VXC-Cu is better at generating C$_1$ products, particularly methane, than CA-Cu. Isotopic labeling demonstrates that all carbon products are derived from 13CO$_2$ and not from
the degradation of the carbon layer (Table B2). As we have previously reported, a controlled potential electrolysis using CA modified glassy carbon electrode yields negligible carbon products.\(^9\)

In contrast, the pristine Cu foil displays dramatically different catalytic behavior.\(^3,31\) C-C coupled products are not detected until -0.92 V (Figure 3.2c). The overall CO\(_2\)RR current density is significantly attenuated compared to CA-Cu and VXC-Cu, illustrating that the carbon modifiers are not passivating the metallic surface (Figure 3.2c). In a control experiment, the nafion-only modified Cu does not show high selectivity for C\(_{2-3}\) product formation (Figure B5). Our results suggest that the carbon layers are effective at altering the catalytic activity of the Cu electrode.

The enhanced C\(_{2-3}\) product selectivity of carbon-modified Cu electrodes is also confirmed by calculating the Faradaic efficiency. Figure 3.3a reveals a clear trend for increasing C\(_{2-3}\) product selectivity in the order of CA-Cu > VXC-Cu > Cu foil. Notably, ~45% selectivity for C\(_{2-3}\) products is achieved for CA-Cu at -0.98 V with a high efficiency towards ethylene and ethanol production (Figure 3.3a). In contrast, both VXC-Cu and Cu foil predominantly form C\(_1\) products at -0.92 and -0.98 V (Figure 3.3b,c). The differences in selectivity of CA-Cu and VXC-Cu become less noticeable at the most cathodic potential tested, -1.04 V (Figure 3.3d).
Figure 3.2. Partial current density for (a) CA-Cu, (b) VXC-Cu, and (c) Cu foil. Conditions: CO$_2$-saturated 0.1 M KHCO$_3$, pH 6.8
Figure 3.3. (a) Faradaic efficiency C\textsubscript{2} and C\textsubscript{3} products for CA-Cu, VXC-Cu, and Cu foil. Comparison of C\textsubscript{1}, C\textsubscript{2}, and C\textsubscript{3} product selectivity at (b) -0.92 V, (c) -0.98 V, and (d) -1.04 V vs. RHE. CA-Cu showed the highest selectivity for C\textsubscript{2} and C\textsubscript{3} formation. Conditions: CO\textsubscript{2}-saturated 0.1 M KHCO\textsubscript{3}, pH 6.8.

Post-electrolysis characterization of the Cu foil is conducted to understand the enhanced product selectivity of carbon modified Cu foils. SEM images and cross-sectional analysis show that the electrode surface remains covered by the dropcasted carbon modifier with some non-uniformity in thickness (Figure B6a,d). The cross-section view of the electrode shows both CA and VXC layers are of similar thickness of \(\sim 10 \, \mu m \) (Figure B6b,e). To evaluate the surface morphology, the carbon layer is gently peeled away from the metal foil after electrolysis and both interfaces are imaged by SEM. Figure 3.4 shows that the Cu surface undergoes dynamic changes during the 8-h time electrolysis. After the first 2 h at a potential of -0.98 V, pitting and particle formation are observed on the metal.
surface of CA-Cu (Figure 3.4, top). After an 8-h electrolysis, the Cu particles become more faceted and resemble cubic prisms. By comparison, VXC-Cu only shows pitting and very few particles on the metal surface (Figure 3.4, bottom), while bare Cu foil essentially shows no morphological change after a 2-h electrolysis (Figure B7). Surface roughness quantification of the Cu foil after removing the carbon modifiers is accomplished by capacitance measurement. Consistent with SEM images, the CA-Cu:VXC-Cu:Cu roughness ratio is 22 : 9 : 1 after a 2-h electrolysis at -0.98 V (Figure B8).

Accordingly, the CO$_2$RR activity of CA-Cu and VXC-Cu is monitored during the 8-h electrolysis. For CA-Cu, the total current density decreases over the first 5 h due to HER suppression (Figure B9a). The specific current density for ethylene in the first 3 h increases while the generation of CO decreases. A notable increase in ethanol formation occurred during the course of 8 h. Formations of the other major products, namely HCO$_2$H, methane, ethane, and n-propanol are relatively constant. Similar HER suppression is seen in the case of VXC-Cu, though the specific current densities for CO$_2$RR products remain relatively unchanged over 8 hours (Figure B9b). The increase in C-C product formation in CA-Cu suggests the presence of new active sites on the Cu surface.

The Cu surface morphology is also examined as a function of potential in CA-Cu and VXC-Cu. Roughening of the surface is seen at the onset of C$_{2-3}$ production at -0.79 V for CA-Cu. The density of Cu particles and the surface pitting increase with more cathodic potentials (Figure B10) where C$_{2-3}$ formation is
increasingly favored. In the case of VXC-Cu, pitting is observed at -0.92 and -0.98 V with negligible particle formation. However, in addition to pitting, small particles are detected at -1.04 V, which also coincides with high C$_2$ and C$_3$ production. These results show that pitting and particle deposition in the presence of VXC and CA lead to higher C$_2$ and C$_3$ yields, whereas surface pitting alone in the presence of VXC shows limited enhancement for C$_{2-3}$. We note that pitting on Cu surfaces has been previously observed in NaHCO$_3$ solutions, but only at potentials anodic to 0.020 V vs. Ag/AgCl.32 Our observation occurs at much more cathodic potentials (< -0.79 V), which suggests a different mechanism is at play.

Figure 3.4. SEM images of the Cu foil before electrolysis (left), and the Cu foil upon removing the CA or VXC layer after a 2- (middle) and 8-h (right) electrolysis at -0.98 V vs RHE, showing major surface reconstruction. Conditions: CO$_2$-saturated 0.1 M KHCO$_3$, pH 6.8
3.5 Post Electrolysis Analysis

The Cu-carbon interface is further studied by imaging the removed carbon layer. Cu particles can only be seen in the area contacted with Cu foil, which suggests Cu redeposition is confined at the interface of carbon layer and Cu. (Figure B11) XPS on the same carbon samples correspondingly shows weak Cu signals confirming the presence of a Cu(0) or Cu(I) species (Figure B12). Cross-sectional SEM images and EDS linear scans show that the Cu signal diminishes away from the interface, further validating that Cu deposition does not penetrate into the carbon layer (Figure B6c,f). This is likely due to that Nafion is a poor conductor of heavy metal cations, so it prevents Cu ions from penetrating the carbon layer and facilitates redeposition of Cu particles at the interface.33

Our results imply that C2-3 selectivity is highly correlated with surface reconstruction. This observation is consistent with previous reports that increased surface roughness induces local alkalization and suppresses H2 and CH4 generation.20,34,35 Moreover, the higher density of faceted particles in CA-Cu compared to VXC-Cu at all potentials (Figure B10) suggests that exposed faces on the particles may play a role in lowering the overpotential for C2 and C3 formation.36–38 The particles may contribute to improved exposure of Cu(100) facets, which is shown to be more active than other facets for C2 product formation.37 Higher density of particles also benefit the presence of active edge sites and the restructuring process increases the possibility to involve more oxygen impurities, which both favor C-C coupling reaction.36,38 It has been shown
previously that an alkaline environment can encourage copper corrosion to
\(\text{Cu}_2\text{O} \),39–41 which can subsequently lead to Cu redeposition during the reduction of
\(\text{CO}_2 \). In our materials, the high porosity in CA may lead to the local pH increase
and promote the roughening effect. Current investigations are focused on
understanding why carbon aerogels are more efficient at promoting the formation
of Cu particles under electrocatalytic conditions.

To evaluate the role of carbon modifiers on the local pH, a 2-h electrolysis
is conducted on the roughened Cu electrodes after gently removing the carbon
layer. For both CA-Cu and VXC-Cu, removal of the carbon modifier leads to an
increase in \(\text{H}_2 \) current density and a decreased selectivity for \(\text{C}_2 \) and \(\text{C}_3 \) products
(Figure B13). The losses in \(\text{CO}_2\text{RR} \) selectivity and activity are more dramatic in
the case of VXC-Cu, where the absence of the carbon layer results predominantly
in \(\text{H}_2 \) generation. This finding supports that the carbon layer helps maintain a high
local pH that in turn suppresses HER and promotes \(\text{C}_{2-3} \) generation. We have
previously reported that there is an optimal carbon porosity for balancing an
alkaline pH and rapid \(\text{CO}_2 \) diffusion to the catalyst surface.9 In the present study,
variations in the structure and porosity of CA and VXC may also contribute to the
different catalytic behavior of CA-Cu and VXC-Cu. These results also suggest that
surface pitting alone on the Cu foil does not lead to significantly enhanced
selectivity for \(\text{CO}_2 \) reduction, whereas particle redeposition on the Cu foil has a
more dramatic impact on carbon product formation.
In addition, efficient CO\textsubscript{2} transport to the surface can lead to higher local concentrations of activated Cu-CO surface species and greater selectivity towards high-order products at lower overpotentials.42 Recent studies illustrated that hydrophobicity can impact local CO\textsubscript{2} concentrations.16,17 Wakerley et al. postulated that hydrophobic Cu surface can trap gases to increase the concentration of CO\textsubscript{2} at the interface, thus enhancing CO\textsubscript{2}RR selectivity.17 In order to compare the hydrophobicity of CA-Cu and VXC-Cu, the contact angle is measured on both surfaces. Contact angles of 92.5° and 68.0° are obtained for CA-Cu and VXC-Cu, respectively, clearly demonstrating that CA-Cu has a more hydrophobic surface than VXC-Cu (Figure B14). We postulate that the more hydrophobic channels in carbon aerogel may facilitate CO\textsubscript{2} transport to the Cu-carbon interface, further contributing to the enhanced selectivity of C\textsubscript{2} and C\textsubscript{3} products of CA-Cu.

Our work utilizes carbon materials as modifiers to the Cu surface and reaches C\textsubscript{2-3} Faradaic efficiency of 45% at -0.98 V on CA-Cu. This is superior to most of the recent reports of Cu surface modification to enhance C\textsubscript{2-3} selectivity for CO\textsubscript{2}RR in terms of selectivity at a relatively low overpotential as well as the abundance of carbon materials compared to the noble metals and synthesized organic compounds used in other reports (Table B3). Our work is the first study on utilizing carbon to modulate the Cu surface and provides new insights into the role of local environment and surface structure on Cu for CO\textsubscript{2}RR.
3.6 Conclusions

In summary, we have demonstrated a strategy to use porous carbons as surface modifiers to tune the electrocatalytic behavior of Cu foils for CO$_2$RR. Our findings suggest that the improvement of selectivity and activity results from the dual roles of the carbon modifier. On one hand, the carbon modifiers contribute to surface reconstruction of the Cu foil electrode. Significant surface roughening was observed in both CA-Cu and VXC-Cu, but the nature of the morphological changes was different. The CA led to the formation of distinct particles on Cu surface, which were prone to evolve into faceted particles under long-term electrolysis. In contrast, VXC-Cu showed pitting on the Cu surface at similar potentials. These morphological transformations are correlated with more selective CO$_2$RR. On the other hand, the structure, porosity, and hydrophobicity of the carbon layers on Cu can influence the local pH and CO$_2$ concentration at the surface of the Cu electrode, further enhancing high-order carbon production. Our results highlight that carbon materials can alter the morphology of the metal surface and play an underexplored role in directing product formation. Importantly, these findings invite a more careful evaluation of carbon-supported metal catalysts, where small surface changes can lead to dramatic differences in catalytic performance.

3.7 References

https://doi.org/10.1021/ja500328k.

(24) Lum, Y.; Kwon, Y.; Lobaccaro, P.; Chen, L.; Clark, E. L.; Bell, A. T.; Ager,
https://doi.org/10.1021/acscatal.5b02399.

(40) Souto, R. M.; González, S.; Salvarezza, R. C.; Arvia, A. J. Kinetics of

Chapter 4: Strategic Design of MoO$_2$ Nanoparticles
Supported by Carbon Nanowires for Enhanced
Electrocatalytic Nitrogen Reduction

The work encompassed in this chapter has been published with the following
citation and listed authors:

Xu Han1*, Carter S. Gerke1*, Soumyodip Banerjee1, Muhammad Zubair3, Junjie Jiang3, Nicholas
M. Bedford3, Elisa M. Miller4, V. Sara Thoi1,2*

1Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
2Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
3School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
4Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80204, United States

* Co-first authors

Additional data on materials characterization, electrolysis results and
comparison to recent reports are provided in Appendix C.
4.1 Introduction

Ammonia (NH$_3$) is one of the most widely synthesized molecules in the chemical industry and plays a key role in the development of medications, fertilizers, and plastics with emerging applications as a carbon-neutral fuel source.$^{1-4}$ The traditional route for synthesizing NH$_3$ at industrial scales is the energy intensive Haber-Bosch (HB) process, which relies on extreme temperatures (~700 K) and pressures (~100 atm) to reduce molecular nitrogen.5 Additionally, the HB process requires high purity hydrogen produced from the steam reformation of fossil fuels, which results in over 1% of global CO$_2$ emissions.6 There exists a palpable need for developing a carbon-neutral synthetic pathway capable of reducing the formidable N-N triple bond with high activity and selectivity. Research in the electrocatalytic nitrogen reduction reaction (NRR) has accelerated in recent years with exploration of noble metals,7,8 non-noble transition metals,9,10 and non-metal systems.11,12 Although impressive results have been found using noble metal catalysts and extreme reaction conditions,13 the need for developing a catalytic system that is industrially processable at ambient temperatures and pressures is necessary to displace the HB process.

Molybdenum species have been critically examined for NRR owing to its role in the nitrogenase FeMoco active site.14 Density functional theory (DFT) simulations have been performed for a Mo surface showing that Mo is uniquely suited for NRR because it is capable of enabling the chemisorption of nitrogen,
selective stabilization of the N_2H^+ intermediate and destabilization of NH_2^+.15

Numerous accounts on synthesizing and testing Mo-based electrocatalysts for NRR have surfaced in recent years, including Mo/Mo\textsubscript{x}C, MoN, MoS\textsubscript{2}, MoO\textsubscript{3}, Mo\textsubscript{2}N, Mo foil, Mo\textsubscript{2}C, and atomically dispersed Mo.9,16–22 Distinctive trends can be observed in recent literature relating to catalyst design for electrocatalytic nitrogen reduction. Different techniques have been used to suppress hydrogen adsorption to the surface of the catalyst, such as introducing strain induced defects23–25 or by engineering surface vacancies.26–32 By exploiting these surface states, the electronic structure of a material can be tuned to lower the energy barrier for binding nitrogen. Furthermore, it has been shown that these defect-rich nanomaterials can be chemically stabilized and energetically coupled to conductive carbon-based supports to further enhance catalytic activity.33–35 Conductive carbonaceous supports can serve two major roles during electrolysis: 1) enhance the electrical contact to the current collector, effectively improving electron transport to the active sites and 2) prevent agglomeration of the nanoscale materials by providing a scaffold that allows for high particle dispersity.36

4.2 Experimental Procedures

4.2.1 Synthesis of Anilinium Molybdate Nanowires

1.24 g of ammonium molybdate tetrahydrate $[(\text{NH}_4)_6\text{Mo}_7\text{O}_{24}\cdot 4\text{H}_2\text{O}]$ was dissolved in 40 mL of Millipore water in a 100 mL round bottom flask. To this solution, 1.6 g of aniline was added dropwise. Subsequently, 1.0 M HCl was added to the resulting mixture dropwise and the pH was monitored. At a pH \sim4.0, a white
suspension was observed. The solution was further acidified to pH = 3.0 and heated at 60 °C for 5 h. The precipitate was collected via vacuum filtration and washed with water (x3) and finally ethanol (x1). The powder was dried in an oven overnight at 60 °C.

4.2.2 Synthesis of MoO$_2$/C nanowires

Approximately 1.0 g of the anilinium molybdate nanowires was placed into a ceramic crucible and transferred to a tube furnace. The system was flushed with Ar gas for 30 min and the sample was heated at a ramp rate of 2.5 °C/min to a final temperature of 650 °C, which was maintained for 5 h and then allowed to cool back to room temperature under a flow of Ar. The obtained black powder was then washed with 0.1 M HCl to remove adsorbed nitrogen species (x2) followed by Millipore water (x3) and dried in an oven at 60 °C overnight.

4.2.3 Electrochemistry preparation and analysis

To prepare the working electrode, 5.0 mg of the MoO$_2$ NW catalyst was suspended in 1.8 mL Millipore water and 0.2 mL Nafion (5.0 % w/w solution in water and 1-propanol) solution. The resulting suspension was sonicated for 30 min to ensure homogeneity. 40.0 μL of the ink solution was drop-casted onto a polyimide masked carbon paper electrode (exposed surface area = 1.0 cm2) and dried under an IR lamp.

A 25 mL two-compartment H-cell with a glass frit joining was used for all electrochemical measurements. The carbon paper working electrode, an aqueous Ag/AgCl reference electrode and a stirring bar were added to the cathodic
compartment of the H-cell, containing 10 mL of electrolyte (0.1 M HCl, pH = 1.0). To the anode compartment was added 10 mL of electrolyte and a graphite counter electrode. A continuous stream of N\textsubscript{2} gas was bubbled first through a 0.1 M HCl acid trap to remove nitrogenous contaminants and then flowed into both compartments of the H-cell at a flow rate ranging between 20-30 cm3 min-1. Three separate electrolysis were conducted at four different potentials: -0.4, -0.3, -0.2, -0.1 V vs. RHE. All potentials were converted to RHE by, \(E (\text{RHE}) = E (\text{Ag/AgCl}) + 0.059 \times \text{pH} + 0.197 \) (V).

NH\textsubscript{3} was detected following a modified indophenol blue method and was analyzed via UV-Vis Spectroscopy. Three separate indicator solutions were freshly prepared: (1) 0.4 g NaOH, 0.5 g salicylic acid, and 0.5 g sodium citrate in 10 mL water; (2) 0.305 mL NaClO in 10 mL water; (3) 0.1 g sodium nitroferricyanide hydrate in 10 mL. Sample detection was performed by adding 1 mL of solution from the cathode side of the cell followed by 1 mL of (1), 0.5 mL of (2), and 100 \(\mu\)L of (3). The UV-Vis spectra were taken following color development for 30 min in the dark and characterized at the peak maxima at 655 nm. Calibration samples were prepared: 0.0, 0.25, 0.5, 1.0, 2.5, 5.0, and 10.0 \(\mu\)g mL-1 of NH\textsubscript{4}Cl which were then converted to \(\mu\)g mL-1 of NH\textsubscript{4}+. The calibration curve was found to exhibit good linearity (\(R^2 = 0.998 \), see Figure C9).

N\textsubscript{2}H\textsubscript{4} was detected with the Watt and Chrisp method. One indicator solution was prepared: (1) 0.599 g of p-Dimethylaminobenzaldehyde and 3 mL concentrated HCl were dissolved in 30 mL ethanol. Sample detection was
performed by adding 2 mL of the electrolyte solution with 2 mL of indicator (1). Absorption was taken following 30 min of development in the dark and characterized by its peak maxima at 460 nm. Calibration samples were prepared: 0.0, 0.5, 1.0, 2.5, and 5.0 μg mL⁻¹. The calibration curve was found to exhibit good linearity ($R^2 = 0.999$, see Figure C10).

Calculation of FE and yield of NH₃:

Faradaic Efficiency (%):

$$FE_{NH_3} = \frac{3F \times C_{NH_3} \times V}{M(NH_4^+) \times Q}$$

Yield (ug h⁻¹ mg⁻¹):

$$V_{NH_3} = \frac{C_{NH_3} \times V}{t \times m_{cat}}$$

Where F is the Faraday constant (96,485.3329 s A mol⁻¹), C_{NH_3} is the concentration of NH₃ (μg mL⁻¹), V is the volume of the electrolyte (mL), $M(NH_4^+)$ is the relative atomic mass of ammonia produced, Q is the accumulated charge, t is time in hours, and m_{cat} is the mass of the catalyst (mg).

4.3 MoO₂/C Synthesis and Characterization

Motivated by the rich NRR chemistry on Mo, we present the synthesis and characterization of highly dispersed, defect rich, MoO₂ nanoparticles grafted onto the surface of a conductive carbon nanowire support (MoO₂/C) (Scheme 4.1). Our electrocatalytic system exhibits an average Faradaic efficiency (FE) of 31.3% and NH₃ yield of 21.2 μg h⁻¹ mg⁻¹ at a low applied potential of −0.1 V vs. RHE, displaying one of the highest activities and
selectivity towards NRR on a Mo-based system reported thus far (Table C3).

An extensive combination of powder X-ray diffraction (PXRD) and pair
distribution function (PDF) analysis along with X-ray absorption (XAS), X-ray
photoelectron (XPS), and electron paramagnetic resonance (EPR)
spectroscopies show that this material consists of mixed valance Mo(IV) ,
Mo(V), and Mo(VI) redox centers at the surface. This unique Mo composite
catalyst demonstrates the power of rational design for exposing active sites
on a conductive matrix of carbon nanowires.

Scheme 4.1. Synthesis of MoO$_2$/C nanowires.

Figure 4.1. a) PXRD (peaks indexed as monoclinic MoO$_2$, JCPDS no. 32-0671),
b) SEM, c) TEM, d) SAED of MoO$_2$/C nanowires.
The synthesis of MoO$_2$/C nanowires was adapted from a previously published procedure for Mo$_2$C/C.37 Briefly, aniline is added dropwise to a stirring solution of ammonium molybdate. Nanowires are formed upon adjusting the pH of molybdate and aniline solution to 3.0 at 60 °C. XRD of the precursor indicates formation of anilinium molybdate with the formula Mo$_8$O$_{26}$(C$_6$H$_8$N$_2$)$_4$•2H$_2$O (Figure C1).38 Scanning electron microscopy (SEM) confirms the anticipated nanowire morphology (Figure C2). Pyrolysis of the resulting anilinium molybdate at 650 °C under a constant stream of Ar results in the formation of MoO$_2$/C nanowires. PXRD shows a dominant presence of crystalline MoO$_2$ (Figure 4.1a). SEM and transmission electron microscopy (TEM) images illustrate Mo-based nanoparticles with the size range of 20-55 nm are decorated on the surface of the carbon nanowires (Figures 4.1bc, and C3). SEM energy-dispersive spectroscopy (EDS) confirms a roughly 1:2 (1:1.88±0.09) atomic ratio of Mo to O (Figure C3). Selected area electron diffraction (SAED) on the MoO$_2$/C material corroborates the presence of crystalline MoO$_2$ (Figure 4.1d).
Figure 4.2. a) Fitted XPS data of Mo 3d for the MoO₂/C composite, showing the presence of Mo(IV), Mo(V), and Mo(VI), b) EPR of anilinium molybdate and MoO₂/C nanowires, c) XANES of MoO₂/C, anilinium molybdate, and Mo foil, and d) Mo K-edge EXAFS for MoO₂/C.

We further conducted XPS to obtain compositional information of the MoO₂/C catalyst surface. Figure 4.2a shows the Mo 3d region, where the surface Mo species (~ top 10 nm) can be fitted into three components, namely, Mo(VI), Mo(V), and Mo(IV). The Mo(VI) at 232.3 eV and 235.4 eV is the most dominant surface species, which comprises more than 60% of the Mo signal and is likely MoO₃. This species, the Mo(V) signal at 230.7 eV and 233.8 eV, and the remaining Mo(IV) signal at 229.2 eV and 232.3 eV illustrate a mixed valent Mo surface likely as a result of partial surface oxidation. The Mo(VI) and Mo(V) crystalline structures
were not detected by XRD measurements but were observed by XPS, which strongly suggests that Mo(VI) and MoO(V) environments are amorphous and not crystalline. To probe the apparent paramagnetic species within our material as well as the presence of possible oxygen vacancies, we performed EPR spectroscopy (Figure 4.2b). A strong signal is observed at $g = 2.003$, indicating the presence of electrons trapped in oxygen vacancies. The $g = 1.929$ signal can be designated to a paramagnetic Mo(V) center that displays dipolar peak broadening, which corroborates with XPS findings.

X-ray absorption spectroscopy (XAS) was further used to understand local Mo chemistry and structure. The X-ray absorption near edge structure (XANES) for the MoO$_2$/C nanowires and its anilinium molybdate precursor are shown in Figure 4.2c along with a reference Mo foil (first-order derivation in Figure C4). The MoO$_2$/C exhibits a lower E_0 as compared to the precursor material, indicating a reduced oxidation state in the bulk from the Mo(VI) in the precursor. Considering the XPS results (Figure 4.2a), this suggests that any Mo(VI) speciation is largely at the surface of the MoO$_2$ nanoparticles. The overall profile of the MoO$_2$/C strongly resembles that of previous reported XANES for MoO$_2$, apart from a small pre-edge feature positioned at 20,004 eV. Note that the pre-edge feature for the Mo(VI) precursor is positioned at 20,006.6 eV, further indicating a lack of Mo(VI) in the bulk of the MoO$_2$/C. This feature shape and position at 20,004 eV more closely resemble those found in Mo(V) environments, indicating the presence of possible defect sites in a MoO$_2$-type structure.
The extended X-ray absorption fine structure (EXAFS) for MoO$_2$/C is shown in Figure 4.2d and displays four prominent features, strongly indicating the presence of multiple Mo-containing species with two possible Mo-O and Mo-Mo contributions. With insights from the XANES and XPS observations, we modeled the mixed valency of MoO$_2$/C with Mo$_8$O$_{23}$, which contains both Mo(V) and Mo(VI), in conjunction with MoO$_2$ (Figure C5). The local structural contributions for MoO$_2$ yield Mo-O and Mo-Mo coordination numbers (CNs) of 4.53 ± 0.38 and 0.49 ± 0.24, respectively, which are significantly lower than 6.0 and 2.0 found in the bulk crystalline structure. Contributions from Mo-O and Mo-Mo from Mo$_8$O$_{23}$ yielding CNs of 2.76 ± 0.52 and 2.07 ± 0.38 respectively, it is likely that the undercoordinated MoO$_2$ results are due to the presence of a Mo(V)-like species within the bulk of the material. The expanded Mo-Mo distances observed in EXAFS modeling of 2.93 ± 0.03 Å for MoO$_2$-like contributions (bulk value of 2.81 Å) and 3.44 ± 0.01 Å for Mo$_8$O$_{23}$-type distance (bulk value of 3.28 Å) are a further indication of a distorted and defect structure within the MoO$_2$/C (Table C1).

High energy XRD coupled to atomic PDF analysis was then performed to resolve the atomic scale structure of the material. Using crystallographic modeling techniques, the PDF is fit to a monoclinic MoO$_2$ lattice with a reasonable goodness of fit value (Figure C6, Table C2). Interestingly, the anisotropic temperature factors from our modeling in the O atoms are much higher than Mo atoms, indicating that the long-range order and symmetry in the O atoms is comparatively lacking vs Mo. This observation strongly suggests O vacancy formation, as
observed previously in defective metal oxides studied using PDF analysis, and further supported by our XPS, EPR, and EXAFS observations.

4.4 Electrocatalytic Nitrogen Reduction

After determining their composition and structure, the MoO\textsubscript{2}/C nanowires were evaluated for their performance towards the electrocatalytic NRR. Polarization curves were taken to assess the onset of nitrogen reduction (Figure C7). When the system is held under an Ar atmosphere, a gradual increase in current density following 0.0 V vs. RHE is observed, which is attributed to the hydrogen evolution reaction (HER), a parasitic side reaction of NRR. The sample purged with nitrogen gas shows an increase in the catalytic current density beginning at -0.1 V, implying an enhancement in catalytic activity in an N\textsubscript{2}-rich system.

![Figure 4.3](image)

Figure 4.3. (a) Faradaic efficiencies and yields following CPE experiments of MoO\textsubscript{2} catalyst in 0.1 M HCl from -0.1 to -0.4 V vs. RHE. (b) Current-time profile for a long-term electrolysis exhibits steady-state current density over 12 h. (Inset: ammonia yields at each 3-hour time point).

Accordingly, controlled-potential electrolysis (CPE) was carried out between -0.1 to -0.4 V vs. RHE in 0.1 M HCl (pH = 1.0) under a continuous flow of nitrogen, operating at a relatively low overpotential to limit the evolution of hydrogen (Figure 4.3a). The chronoamperometric profiles (Figure C8) achieve
steady current densities within the first few minutes of electrolysis and remain stable for the full three hours of electrolysis. The only products of this system are NH₃, detected by the Indophenol Blue method, and hydrogen (Figure C9, C11). No hydrazine was detected at any potential, characterized by the Watt and Chrisp method (Figure C10, C12). The average FE for NH₃ was 31.3% with a yield of 21.2 µg h⁻¹ mg⁻¹ at a potential of -0.1 V vs. RHE, which is exceptionally high in comparison to other molybdenum oxide catalysts under similar conditions (Table C3). Unsurprisingly, the more negative potentials result in a sharp decrease of both FE and yield of NH₃ as HER becomes the dominant reaction pathway (Figure C13). To determine the presence of exogenous nitrogenous contaminants, several control experiments were performed on the bare carbon paper electrode under nitrogen and the MoO₂/C nanowire catalyst under Ar both of which generate negligible NH₃ (Figure C13). In addition, elemental analysis of the catalyst was conducted using ICP-OES and found MoO₂/C to contain approximately 2% N by mass. Assuming all the nitrogenous species in the catalyst can be converted to NH₃ during electrolysis, 2% N by mass translates to an upper bound of 2.4 µg of NH₃, which can represent a 9% error in our FE calculation. To track the possible leaching of N species from our catalyst, electrolysis under Ar were conducted and an average ammonia production of less than 0.2 µg (Figure C14) was determined. This analysis indicates that the majority of NH₃ is produced from the electrochemical reduction of the supplied nitrogen gas.
Figure 4.4. a) Post-electrolysis Mo 3d XPS of MoO$_2$/C nanowires. b) FE and ammonia yields generated when using MoO$_2$/C nanowires, unsupported MoO$_2$ particles, and a control carbon paper electrode. CPE conditions: -0.1 V vs. RHE, 3 h, electrolyte = 0.1 M HCl.

An important property of a catalyst is its stability under reaction conditions. To this end, we evaluated the electrochemical stability of the MoO$_2$/C catalyst by performing CPE for 12 h (Figure 4.3b). Aliquots of electrolyte were removed at each 3-hour time point, and NH$_3$ in solution was quantified. The current density was stable for the full 12 hours with a linear increase in NH$_3$ (Figure 4.3b, inset).

To further determine changes in surface morphology and composition, SEM, XPS, and XRD were conducted following 3 h of electrolysis at -0.1 V vs. RHE. SEM shows that the morphology is largely retained with some bundling of the nanowires (Figure C15). In addition, the XRD pattern is unchanged, showing that the major crystalline species remains MoO$_2$ (Figure C16). However, XPS show that the 3-h electrolyzed sample displays significant evolution of the MoO$_2$/C surface. Mo(V) replaces Mo(VI) to become the dominant Mo species on the surface, while the relative ratio of MoO$_2$ remains the same (Figure 4.4a, Table C4). These findings are consistent with partial reduction of Mo(VI) under catalytic
conditions to Mo(V) indicating that Mo(VI) species on the electrode surface is unlikely a major catalytic component under these conditions.

We hypothesize that the defect-rich MoO₂/C is a more competent NRR catalyst than other reported Mo-based systems for several reasons: 1) the high particle dispersity results in an increased exposure of active sites, 2) the conductive carbonaceous support, which promotes electronic contact and transport⁴⁶, and 3) the Mo catalyst is rich in surface defects suitable for binding reaction intermediates.⁴⁷,⁴⁸ To test these assumptions, we synthesized MoO₂ particles from well-established literature procedures.⁴⁹,⁵⁰ This material exhibits similar chemical composition as shown by XRD (Figure C17a), with a spherical particle morphology with larger particle sizes (Figure C17b). We observed a large initial difference when analyzing the cell resistance using EIS (Figure C18), where the electrode prepared with the MoO₂ particles showed a much higher intrinsic resistance compared to the MoO₂/C electrode. Comparison of the CPE results of MoO₂ particles to MoO₂/C nanowires (Figure 4.4b) shows MoO₂/C nanowires are superior to MoO₂ particles with an enhancement of 23.6% and 18.1 µg h⁻¹ mg⁻¹ in the FE and yield, respectively, at E = -0.1 vs. RHE. We attribute this performance enhancement to the unique morphology of the MoO₂/C nanowires. The configuration of surface defect rich MoO₂ nanoparticles grafted onto a conductive carbon support manifests a cooperative relationship between the two materials for an enhanced capacity for NRR.
4.5 Conclusions

Simultaneously achieving high catalytic selectivity and activity has been a critical challenge for NRR in aqueous systems. Herein, we reported a unique defect-rich MoO$_2$ catalyst supported on conductive carbon nanowires that can reach up to 31% selectivity towards NH$_3$ conversion with a yield of 21.2 µg h$^{-1}$ mg$^{-1}$ at the low potential of -0.1 V vs. RHE. These results illustrate that defect-rich MoO$_2$/C is a highly competitive catalyst compared to the existing Mo-based ones, which typically do not see significant yields until -0.3 and -0.4 V with lower NRR selectivity (Table C3). We assign the exceptional behavior of this catalyst to its unique architecture and defect sites. The highly dispersed MoO$_2$ nanoparticles on the surface of an amorphous carbon nanowire backbone decreases particle aggregation and increases the exposure of surface-active sites, leading to a higher yield rate. The conductive carbon backbone assists in funnelling electrons into the nanoparticles. Moreover, the mixed Mo valency induced by in-situ reduction of the MoO$_x$ surface and presence of oxygen vacancy sites have been shown to enable strong binding of nitrogen and reaction intermediates. Our study illustrates that catalyst morphology and composition play important roles in selective NRR. As the surfaces of low valance Mo compounds (e.g. MoC$_2$, Mo$_2$N$_3$) are easily subject to oxidation, our study reveals the importance of identifying and stabilizing the surface-active sites under reductive electrocatalytic conditions. Our findings add to the burgeoning body of work on developing earth-abundant electrocatalysts for selective conversion of molecular nitrogen to value-added nitrogen products.
4.6 References

Zhao, J. Facile Ammonia Synthesis from Electrocatalytic N₂ Reduction
under Ambient Conditions on N-Doped Porous Carbon. ACS Catal. 2018,

Accessibility to Boron-Rich Covalent Organic Frameworks via

Ammonia in Molten Salts under Atmospheric Pressure. J. Am. Chem. Soc.

(14) Hoffman, B. M.; Lukoyanov, D.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C.
Mechanism of Nitrogen Fixation by Nitrogenase: The next Stage. Chem.

(15) Zhao, J.; Chen, Z. Single Mo Atom Supported on Defective Boron Nitride
Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A
https://doi.org/10.1021/jacs.7b05213.

Z.; Hu, J.-S. Engineering Mo/Mo₂C/MoC Hetero-Interfaces for Enhanced
Electrocatalytic Nitrogen Reduction. J. Mater. Chem. A 2020, 8(18),

(18) Han, J.; Ji, X.; Ren, X.; Cui, G.; Li, L.; Xie, F.; Wang, H.; Li, B.; Sun, X. MoO\textsubscript{3} Nanosheets for Efficient Electrocatalytic N\textsubscript{2} Fixation to NH\textsubscript{3}. *J. Mater. Chem. A* **2018**, *6* (27), 12974–12977. https://doi.org/10.1039/c8ta03974g.

(21) Ren, X.; Zhao, J.; Wei, Q.; Ma, Y.; Guo, H.; Liu, Q.; Wang, Y.; Cui, G.; Asiri, A. M.; Li, B.; Tang, B.; Sun, X. High-Performance N\textsubscript{2} -to-NH\textsubscript{3} Conversion Electrocatalyzed by Mo\textsubscript{2}C Nanorod. *ACS Cent. Sci.* **2019**, *5* (1), 116–121. https://doi.org/10.1021/acscentsci.8b00734.

Chemie - Int. Ed. 2019, 58 (8), 2321–2325.

https://doi.org/10.1002/anie.201811728.

https://doi.org/10.1038/s41467-019-10888-5.

https://doi.org/10.1039/c9cc00936a.
(28) Zhang, G.; Ji, Q.; Zhang, K.; Chen, Y.; Li, Z.; Liu, H.; Li, J.; Qu, J.
Triggering Surface Oxygen Vacancies on Atomic Layered Molybdenum
Dioxide for a Low Energy Consumption Path toward Nitrogen Fixation.

G.; Asiri, A. M.; Zhang, Y.; Sun, X. Identifying the Origin of Ti$^{3+}$ Activity
toward Enhanced Electrocatalytic N$_2$ Reduction over TiO$_2$ Nanoparticles
https://doi.org/10.1002/adma.202000299.

(30) Li, C.; Ma, D.; Mou, S.; Luo, Y.; Ma, B.; Lu, S.; Cui, G.; Li, Q.; Liu, Q.; Sun,
X. Porous LaFeO$_3$ Nanofiber with Oxygen Vacancies as an Efficient
Electrocatalyst for N$_2$ Conversion to NH$_3$ under Ambient Conditions. *J.
https://doi.org/10.1016/j.jechem.2020.03.044.

(31) Chu, K.; Liu, Y. P.; Cheng, Y. H.; Li, Q. Q. Synergistic Boron-Dopants and
Boron-Induced Oxygen Vacancies in MnO$_2$ Nanosheets to Promote
5208. https://doi.org/10.1039/d0ta00220h.

(32) Chu, K.; Wang, J.; Liu, Y. P.; Li, Q. Q.; Guo, Y. L. Mo-Doped SnS$_2$ with
Enriched S-Vacancies for Highly Efficient Electrocatalytic N$_2$ Reduction:

(37) Gao, Q.; Zhang, C.; Xie, S.; Hua, W.; Zhang, Y.; Ren, N.; Xu, H.; Tang, Y. Synthesis of Nanoporous Molybdenum Carbide Nanowires Based on Organic - Inorganic Hybrid Nanocomposites with Sub-Nanometer Periodic

https://doi.org/10.1002/aenm.202001381.

https://doi.org/10.1021/ac60072a044.

https://doi.org/10.1021/acsami.9b00852.

(47) Li, Y.; Chen, X.; Zhang, M.; Zhu, Y.; Ren, W.; Mei, Z.; Gu, M.; Pan, F. Oxygen Vacancy-Rich MoO3-x Nanobelts for Photocatalytic N2 Reduction

Appendix A

Supporting Information for Chapter 2: Effects of Substrate Porosity in Carbon Aerogel Supported Copper for Electrocatalytic Carbon Dioxide Reduction
Table of Contents

A1 Supplemental Experimental Conditions

A2 Figures

Figure A1. Sol-gel Synthesis for Cu/CA catalysts.

Figure A2. Powder X-ray Diffraction Analysis of Cu/CA.

Figure A3. X-ray Photoelectron Spectroscopy Depth Profiling.

Figure A4. Scanning Electron Micrographs of Cu/CA.

Figure A5. Cu Particle Size Distributions and STEM Images.

Figure A6. STEM-EDS Analysis of Cu Particles.

Figure A7. HRTEM and Raman Spectra of Cu/CA.

Figure A8. Nitrogen Isotherm of Cu/CA.

Figure A9. Hg Porosimetry Pore Size Distribution.

Figure A10. DFT Pore Size Distribution of Micropores based on Nitrogen Isotherm.

Figure A11. Linear Sweep Voltammetry of Cu/CA for CO$_2$RR.

Figure A12. CO$_2$RR Selectivity on Cu foil.

Figure A13. Cyclic Voltammograms for Electroactive Surface Area.

Figure A14. Formation rate of different products on all samples.

Figure A15. HCO$_2$H and CH$_4$ Current Density as a Function of Potential for Cu/CA.

Figure A16. Linear Sweep Voltammetry of Metal-free Carbon Aerogels.
Figure A17. Cu K-edge XAS Data.

Figure A18. XAS k-space and EXAFS Fits.

Figure A19. Comparison of CVs on Cu/CA before and after Electrolysis for CO\textsubscript{2} reduction.

Figure A20. CO\textsubscript{2}RR Selectivity and Activity of metal-free CA-400.

Figure A21. Long-Term Control Potential Electrolysis of Cu/CA-400 for CO\textsubscript{2}RR.

Figure A22. Representative NMR Spectrum for CO\textsubscript{2}RR Liquid Products.

A3 Tables

Table A2. Calculated Electroactive Surface Area of Cu/CA Samples.

Table A3. Coordination Number modeled from Cu K-edge EXAFS.

Table A4. Nearest Neighbor Distances model from Cu K-edge EXAFS.

Table A5. Isotope experiment gas product percentage.

Table A6. Errors in CO\textsubscript{2}RR Current Efficiency.

Table A7. Comparison of this work to Cu supported on carbon on literature.
A1 Supplemental Experimental Conditions

A1.1 Materials

Resorcinol (99%), formaldehyde (37% w/w aqueous solution stabilized with 7-8% methanol), sodium carbonate (≥ 99.95%), copper(II) nitrate hemi(pentahydrate) (≥ 99.99%, trace metal basis), Nafion solution (5% w/w in water and 1-propanol), graphite rod counter electrode and glassy carbon plates (2.5 x 2.5 cm², Type 1) were purchased from Alfa Aesar. Reagent alcohol (94%-96% v/v), ethanol (200 proof, ≥99.9%), sodium bicarbonate (≥ 99.998%, metals basis), dimethyl sulfoxide (≥ 99.9%), nitric acid (67%-70% trace metal grade) were purchased from Fisher Scientific. Gaseous hydrogen, methane (≥ 99.99%), ethylene (≥ 99.9%), carbon monoxide (≥ 99.9%) and carbon dioxide (≥ 99.9%) were from Airgas. Glassy carbon electrode (3 mm dia) and Ag/Ag/Cl reference electrode were from CH Instruments and BASi, respectively. The Pt counter electrode (≥99.9%) was purchased from uGems.

A1.2 General Instrumentation

The morphology and composition of Cu/CA was characterized by a JEOL 6700F Scanning Electron Microscope equipped with a TEAM EDS system. Scanning TEM (STEM) of Cu/CA samples was performed on a JEOL JEM 2100 Field Emission Gun (FEG) TEM and HRTEM was performed on a JEOL JEM 2100 LaB₆ TEM. High Resolution TEM (HRTEM) images were acquired on the JEOL JEM 2100 LaB₆ TEM. Images were analyzed and processed using Gatan Digital Micrograph and ImageJ software. Local structure and chemistry of Cu was
examined using XAS performed at the 10-BM beamline of the Advanced Photon Source. Powder X-ray diffraction was done on a Bruker D8 Focus diffractometer, with Cu Kα source and LynxEye detector. The Brunauer–Emmett–Teller (BET) surface area and pore-size distribution were characterized by Micromeritics ASAP 2020 Plus instrument. The BET surface area analysis used the \(P/P_0 < 0.08 \) region, where the C-constant is positive. Average pore size is calculated based on the BJH pore-size distribution curve. Hg porosimetry experiments were conducted on a MicroActive AutoPore V 9600. Raman spectroscopy measurements were performed using a Horiba Jobin-Yvon T64000 spectrometer equipped with an Olympus microscope, using the 514.5 nm line of the Spectra-Physics Ar+ – Kr+ laser for excitation. The surface of Cu/CA was characterized by a PHI 5600 X-ray Photoelectron Microscopy (XPS) using Mg Kα X-ray (1253.6 eV) radiation. All electrochemistry measurements were conducted on an Ivium-n-STAT Multichannel Electrochemical Analyzer.

A1.3 Characterization

Elemental analysis: The copper content was quantified by atomic adsorption spectroscopy (AAS) using a Perkin Elmer A Analyst 100 system and Perkin Elmer Intesitron hollow cathode lamps. To prepare the sample, 1 mg of Cu/CA was stirred in 16% nitric acid aqueous solution and the mixture was heated at 60 °C overnight. A syringe filter was used to remove the remaining solids and the solution was diluted with a 2% nitric acid aqueous solution in a 50 mL
volumetric flask. A standard curve was used by conducting AAS measurements with Cu standard solutions in 2% nitric acid.

Transmission Electron Microscopy (TEM): Cu/CA samples for TEM were dispersed in ethanol solution at 0.5 g L⁻¹ followed by sonication treatment for 30 s to form homogenous particle suspensions. 2 µL of the suspension was drop-cast onto a carbon TEM grid (Ted Pella Inc., 01824) and then air-dried. TEM grids were treated by UV-Ozone plasma cleaner (MTI Corp) for 30 minutes to remove contamination before characterization. Scanning TEM (STEM) of Cu/CA samples was performed on a JEOL JEM 2100 Field Emission Gun (FEG) TEM and HRTEM was performed on a JEOL JEM 2100 LaB₆ TEM. Both TEMs were operated with an accelerating voltage of 200 kV. STEM mode was used to obtain the annular dark field (ADF) images of Cu/CA sample with a beam spot size of 1.5 nm and camera length of 12 cm. ADF STEM images were captured with Digital Micrograph using 1024 pixels × 1024 pixel image size and 25 µs dwell time. Images were analyzed and processed using Gatan Digital Micrograph and ImageJ software. Energy-dispersive X-Ray Spectroscopy (EDS) line scans were performed in STEM mode with a spot size of 1.5 nm.

X-ray Absorption Spectroscopy (XAS): Samples were prepared by placing as-synthesized aerogels between Kapton tape. Experiments were performed in fluorescence mode using a four-channel Si drift detector wherein the samples were rotated ~45° normal to the direction of the X-ray beam to maximize signal. Data was collected from ~150 eV below the Cu K-edge (8797 eV) up to ~800 eV past
the edge. The extended X-ray absorption fine structure (EXAFS) data are obtained by first converting the XAS data to \(k \)-space \((k^2\text{-weighted})\), followed by a Fourier transform to \(r \)-space. Data processing and linear combination fitting was performed in the program Athena, while EXAFS modeling was performed using the Artemis software package.32 Linear combination fitting was performed by modeling each sample from -15 eV below to 50 eV above the Cu K-edge. For EXAFS modeling, scattering paths were taken from fcc Cu, along with Cu-O and Cu-Cu nearest neighbors from known crystal structure of Cu\textsubscript{2}O. The value for \(S_0^2 \) for Cu was determined to be 0.8833 from modeling the EXAFS from a Cu foil in transmission mode and used for all subsequent EXAFS modeling.

Electroactive surface area (EASA) measurement: An ink slurry composed of Cu/CA and a Nafion binder (see above) was casted onto a polished 3 mm glassy carbon electrode. The EASA of the Cu/CA composite electrode was calculated by taking cyclic voltammograms of a 5 mM K\textsubscript{3}[Fe(CN)\textsubscript{6}] in a 0.5 M Na\textsubscript{2}SO\textsubscript{4} aqueous solution at various scan rates according to the Randles-Sevcik equation:

\[
I_p = (2.69 \times 10^5)n^{3/2}AD^{1/2}C^{1/2}v^{1/2}
\]

where \(I_p \) is the peak current, \(n \) equals 1, \(D \) is the diffusion coefficient, \(v \) is the scan rate, \(C \) is the concentration of K\textsubscript{3}[Fe(CN)\textsubscript{6}], and \(A \) is the calculated electrochemically active surface area (EASA) of Cu/CA samples. In all cases, a redox feature centered at 0.23 V vs. Ag/AgCl is observed with a peak-to-peak separation of 0.083 V (Figure A11). The calculated EASA among samples are comparable (Table A2). Current densities are normalized to EASA.
Control electrolysis experiments: As a control to ensure the Pt counter electrode does not affect the overall catalysis, linear sweep voltammographs (LSV) of Cu/CA were taken before and after a 2.5-h bulk electrolysis at -1.16 V vs RHE in 0.1 M NaHCO$_3$ under CO$_2$ and N$_2$ with Pt as the counter electrode and the same H-cell configuration as described above (Figure A16). An increase in current density (from HER) is expected if Pt ions had migrated across to the working compartment and deposited onto the Cu/CA electrode. As shown in Figure A19, the LSVs are unchanged before and after electrolysis, demonstrating that the Pt counter electrode does not interfere with the catalysis. As a control to confirm the Cu particle is the active catalytic site, metal-free CA-400 is tested for CO$_2$RR under the same catalytic conditions. Negligible CO$_2$RR products are observed at all potentials, with hydrogen being the predominant gas product (Figure A20). In addition, a representative long-term electrolysis using Cu/CA-400 at -0.81 V is shown in Figure A21. The small decrease in current density over 8 h is attributed to the mechanical instability of the Nafion film from rapid bubble generation. In addition, isotopically labeled 13CO$_2$ and NaH13CO$_3$ were used to demonstrate that the reduced carbon products are derived from CO$_2$/CO$_3^{2-}$ and not from the degradation of the carbon aerogel (Table A5).

Product quantification: Each gas product was quantified based on a standard curve, which was made by plotting the integrated peak area from GC against the injection volume of the pure gas. The volume of product was calculated by fitting the integrated peak area to the standard curve. Standard curve was
determined for each gas product, i.e. hydrogen, carbon monoxide, methane and ethylene respectively. Specific current density for each gas product was calculated by the following equation:

\[
j_{gas} = \frac{F P V m}{R T t A}
\]

where \(j\) is the specific current density, \(F\) is the Faradaic constant \((96,485 \text{ C mol}^{-1})\), \(P\) is the pressure \((1 \text{ atm})\), \(V\) is the volume of product gas calculated by the standard curve \((\text{mL})\), \(m\) is the number of electrons needed to produce one product gas molecule \((2 \text{ for H}_2, 2 \text{ for CO, 2 for HCO}_2\text{H, 8 for CH}_4, 12 \text{ for C}_2\text{H}_4)\), \(R\) is the gas constant \((82.057 \text{ mL atm K}^{-1} \text{ mol}^{-1})\), \(T\) is 298 °K, \(t\) is the electrolysis time \((\text{s})\), \(A\) is the electroactive surface area of each material. Similarly, formation rate was obtained by:

\[
r_{gas} = \frac{P V}{R T t A}
\]

The liquid product was quantified by a Bruker Advance 400 MHz FT-NMR spectrometer with dimethylsulfoxide (DMSO) as internal standard. To prepare the sample, 0.5 mL of the electrolyte from the working compartment after electrolysis was added to 0.1 mL of D$_2$O in a NMR tube. DMSO was added to form a concentration of 4.70 x 10$^{-5}$ M. The amount of product was determined by integrating the peak area of product and DMSO. Specific current density of liquid product was calculated by the following equation:

\[
J_{liquid} = \frac{6 m F S_{liquid} C_{DMSO}}{n S_{DMSO} t A} \times V_{NMR \text{ tube}} \times \frac{V_{chamber}}{V_{electrolyte}}
\]
where S_{liquid} and S_{DMSO} are the integration peak area from NMR spectrum, C_{DMSO} is the concentration of DMSO in NMR tube (4.70×10^{-5} M), n is the number of protons contribute to the peak area of liquid product (1 for formate acid), and V_{chamber}, $V_{\text{electrolyte}}$, and $V_{\text{NMR tube}}$ are the total solution volume in the working electrode chamber, the total sample volume removed from the electrolysis, and the total liquid volume in the NMR tube after adding DMSO, respectively. A typical NMR spectrum is shown in Figure A22. Comparison with other carbon supported Cu catalysts is shown (Table A7)
Figure A1. Sol-gel Synthesis for Cu/CA catalysts.

Figure A2. Powder XRD of Cu/CA-180, Cu/CA-300, Cu/CA-400 and Cu/CA-650. The XRD clearly shows the presence of Cu₂O and metallic Cu in all samples and a similar intensity ratio in each sample.
Figure A3. (a) Survey scan of XPS, and (b) scan of Cu region at a depth of 300 nm of Cu/CA-180.

Figure A4. SEM image of (a, e) Cu/CA-180, (b, f) Cu/CA-300, (c, g) Cu/CA-400, and (d, h) Cu/CA-650.
Figure A5. Cu particle size distributions (PSD) and STEM images for Cu/CA-180 (a-c), Cu/CA-300 (d-f), Cu/CA-400 (g-i), Cu/CA-650 (j-l). Each PSD was determined from measurements of at least 200 particle sizes.

Figure A6. STEM-EDS elemental line scans images of Cu particles from (a,d) Cu/CA-180, (b,e) Cu/CA-300, (c,f) Cu/CA-400 and (d,h) Cu/CA-650. Solid red lines indicate the position and length of the line scan. The data in the plots are normalized to the maximum element intensity.
Figure A7. Representative HRTEM images of carbon aerogel from (a) Cu/CA-400 and (b) Cu/CA-180, showing the presence of both amorphous and graphitic carbon, and (c) Raman spectrum of Cu/CA-180, Cu/CA-300 and Cu/CA-400.

Figure A8. Representative nitrogen adsorption/desorption isotherms of Cu/CA-180.
Figure A9. Hg Porosimetry Pore Size Distribution. The data corroborate the trends observed in BJH analysis (Cu/CA-180 < Cu/CA-300 < Cu/CA-400 < Cu/CA-650). Previous reports have shown that Hg intrusion can compress the pores of carbon aerogels and xerogels (Journal of Non-Crystalline Solids 186 (1995) 309-315; Journal of Non-Crystalline Solids 292 (2001) 138-149)). Thus, BJH analysis was primarily used in the main text.
Figure A10. DFT Pore Size Distribution of Micropores.
Figure A11. Linear sweep voltammetry experiment of Cu/CA-180, Cu/CA-300, Cu/CA-400, and Cu/CA-650 in CO$_2$ saturated 0.1 M NaHCO$_3$ solution, demonstrating high electrocatalytic activity from Cu/CA-300 and Cu/CA-400.

Figure A12. CO$_2$RR selectivity on Cu foil (a), comparison of CO/HCO$_2$H ratio (b1) and C$_2$H$_4$/CH$_4$ ratio (b2) of Cu foil to Cu/CAs.
Figure A13. Cyclic Voltammograms in 0.5 M K₃Fe(CN)₆ at a scan rate of 5 mV/s.

Figure A14. Formation rate of different products on all samples
Figure A15. Specific current densities of (a) formate and (b) methane on Cu/CA-180, Cu/CA-300, Cu/CA-400, and Cu/CA-650 are invariant with respect to potentials. Current density normalized to EASA.

Figure A16. Linear sweep voltammetry experiment of metal free CA-180, CA-300, and CA-400 in CO2-saturated 0.1 M NaHCO3 solution. The three samples show no major differences, demonstrating the carbon aerogel electrodes do not alter HER and CO2RR activities.
Figure A17. Cu K-edge XAS data showing a) extensive Cu oxidation in XANES and b) EXAFS modeling. The orange dashed line represent the Cu-O (left) and Cu-Cu (right), while the green dashed line represents Cu-Cu interactions in metallic Cu.
Figure A18. XAS k-space and EXAFS Fits
Figure A19. Comparison of CVs in 0.1 M NaHCO₃ solution before and after 2-h bulk electrolysis at -1.13 V in CO₂ and N₂ atmospheres of (a) Cu/CA-180, (b) Cu/CA-300 and (c) Cu/CA-400. The unchanged CVs after 2-h bulk electrolysis at the highest tested potential demonstrate that there is negligible Pt deposition on Cu/CA and the use of a Pt counter electrode does not impact CO₂RR and HER. No control for Cu/CA-650 is needed as its electrolysis were done with a graphite rod counter electrode.
Figure A20. (a) Current density, and (b) current efficiency of CO$_2$RR products on metal-free CA-400 at different potentials, demonstrating negligible CO$_2$RR activity from the carbon aerogel electrodes.
Figure A21. Current to time plot of bulk electrolysis of Cu/CA-400 at -0.81 V for 8 hours. We attribute the slight decline in current density to the mechanical instability of the catalyst film from gas bubble formation.
Figure A22. NMR trace of Cu/CA-400 obtained after electrolysis at -1.13 V for 2.5 hours. The peaks from left to right correspond to 1H in HCOO$^-$, suppressed 1H of water, and 1H of DMSO.
A3 Tables

Table A1. Cu weight percent characterized by EDS and AA

<table>
<thead>
<tr>
<th></th>
<th>Cu/CA-180</th>
<th>Cu/CA-300</th>
<th>Cu/CA-400</th>
<th>Cu/CA-650</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS</td>
<td>8.5 ± 0.5 wt %</td>
<td>7.7 ± 0.4 wt %</td>
<td>6.9 ± 0.6 wt %</td>
<td>7.7 ± 0.9 wt %</td>
</tr>
<tr>
<td>AA</td>
<td>9.7 ± 0.6 wt %</td>
<td>11 ± 0.6 wt %</td>
<td>7.8 ± 0.5 wt %</td>
<td>12 ± 0.7 wt %</td>
</tr>
</tbody>
</table>

Table A2. Calculated Electroactive Surface Area of Cu/CA Samples

<table>
<thead>
<tr>
<th></th>
<th>Cu/CA-180</th>
<th>Cu/CA-300</th>
<th>Cu/CA-400</th>
<th>Cu/CA-650</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm²/mg₈Cu by AA</td>
<td>15.5</td>
<td>12.5</td>
<td>15.2</td>
<td>12.8</td>
</tr>
<tr>
<td>cm²/mg₈Cu/CA</td>
<td>1.50</td>
<td>1.33</td>
<td>1.18</td>
<td>1.60</td>
</tr>
</tbody>
</table>

Table A3. Coordination Number (CN) of Cu₂O surface modeled from Cu K-edge EXAFS

<table>
<thead>
<tr>
<th></th>
<th>Cu/CA-180</th>
<th>Cu/CA-300</th>
<th>Cu/CA-400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-O CN</td>
<td>1.62 ± 0.33</td>
<td>1.28 ± 0.28</td>
<td>2.28 ± 0.37</td>
</tr>
<tr>
<td>Cu-Cu CN</td>
<td>5.79 ± 0.69</td>
<td>6.16 ± 0.75</td>
<td>7.33 ± 0.72</td>
</tr>
</tbody>
</table>

Table A4. Nearest Neighbor Distances (NND, Å) model of Cu₂O surface from Cu K-edge EXAFS, showing a similar surface among samples.

<table>
<thead>
<tr>
<th></th>
<th>Cu/CA-180</th>
<th>Cu/CA-300</th>
<th>Cu/CA-400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-O NND</td>
<td>1.85 ± 0.03</td>
<td>1.87 ± 0.03</td>
<td>1.87 ± 0.02</td>
</tr>
<tr>
<td>Cu-Cu NND</td>
<td>3.02 ± 0.03</td>
<td>3.06 ± 0.04</td>
<td>3.04 ± 0.03</td>
</tr>
</tbody>
</table>
Table A5. Percentage of 13C gas product at potential -1.04 V on Cu/CA-400 via using 13CO$_2$ and NaH13CO$_3$.

<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>CH$_4$</th>
<th>C$_2$H$_4$</th>
<th>C$_2$H$_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C product percentage</td>
<td>94 %</td>
<td>100 %</td>
<td>96 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Table A6. Errors in CO$_2$RR Current Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Cu/CA-180</th>
<th>Cu/CA-300</th>
<th>Cu/CA-400</th>
<th>Cu/CA-650</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.81 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.055</td>
<td>0.095</td>
<td>0.069</td>
<td>0.020</td>
</tr>
<tr>
<td>C$_2$H$_4$</td>
<td>0.008</td>
<td>0.008</td>
<td>0.011</td>
<td>n/a</td>
</tr>
<tr>
<td>HCOOH</td>
<td>0.019</td>
<td>0.014</td>
<td>0.042</td>
<td>0.015</td>
</tr>
<tr>
<td>H$_2$</td>
<td>0.083</td>
<td>0.051</td>
<td>0.130</td>
<td>0.032</td>
</tr>
<tr>
<td>-0.96 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.063</td>
<td>0.097</td>
<td>0.005</td>
<td>0.024</td>
</tr>
<tr>
<td>C$_2$H$_4$</td>
<td>0.022</td>
<td>0.028</td>
<td>0.008</td>
<td>0.015</td>
</tr>
<tr>
<td>HCOOH</td>
<td>0.012</td>
<td>0.017</td>
<td>0.011</td>
<td>0.044</td>
</tr>
<tr>
<td>H$_2$</td>
<td>0.092</td>
<td>0.125</td>
<td>0.047</td>
<td>0.065</td>
</tr>
<tr>
<td>-1.04 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.046</td>
<td>0.094</td>
<td>0.061</td>
<td>0.016</td>
</tr>
<tr>
<td>C$_2$H$_4$</td>
<td>0.024</td>
<td>0.023</td>
<td>0.029</td>
<td>0.012</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>0.068</td>
<td>0.018</td>
<td>0.021</td>
<td>0.027</td>
</tr>
<tr>
<td>HCOOH</td>
<td>0.026</td>
<td>0.025</td>
<td>0.027</td>
<td>0.012</td>
</tr>
<tr>
<td>H$_2$</td>
<td>0.096</td>
<td>0.099</td>
<td>0.089</td>
<td>0.077</td>
</tr>
<tr>
<td>-1.13 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.007</td>
<td>0.034</td>
<td>0.054</td>
<td>0.016</td>
</tr>
<tr>
<td>C$_2$H$_4$</td>
<td>0.038</td>
<td>0.015</td>
<td>0.025</td>
<td>0.007</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>0.036</td>
<td>0.025</td>
<td>0.045</td>
<td>0.024</td>
</tr>
<tr>
<td>HCOOH</td>
<td>0.011</td>
<td>0.011</td>
<td>0.028</td>
<td>0.009</td>
</tr>
<tr>
<td>H$_2$</td>
<td>0.114</td>
<td>0.035</td>
<td>0.090</td>
<td>0.036</td>
</tr>
<tr>
<td>Material</td>
<td>Size</td>
<td>Cu loading</td>
<td>Potential</td>
<td>CO₂RR efficiency</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Cu/CA-400</td>
<td>330 nm</td>
<td>7.8 wt% (16.9 µg/cm²)</td>
<td>-0.81 V vs. RHE</td>
<td>54 %</td>
</tr>
<tr>
<td>20 wt% Cu/SWNT</td>
<td>19 nm</td>
<td>20 wt%</td>
<td>-1.4 V vs. Ag/AgCl⁺</td>
<td><20 %**</td>
</tr>
<tr>
<td>20 wt% Cu/VC</td>
<td>27 nm</td>
<td>20 wt%</td>
<td>-1.4 V vs. Ag/AgCl⁺</td>
<td><5 %**</td>
</tr>
<tr>
<td>40 wt% Cu/VC</td>
<td>12 nm</td>
<td>40 wt%</td>
<td>-1.4 V vs. Ag/AgCl⁺</td>
<td><20%**</td>
</tr>
<tr>
<td>Cu NP/GC</td>
<td>12 nm</td>
<td>9.69 µg/cm²</td>
<td>-1.3 V vs. RHE</td>
<td>50 %</td>
</tr>
<tr>
<td>Cu/N-doped graphene</td>
<td>39 nm</td>
<td>14.2 ca%</td>
<td>-0.8 V vs. RHE</td>
<td>47 %</td>
</tr>
</tbody>
</table>

* held at pH 6.8, -1.4 V vs Ag/AgCl is roughly equal to -0.80 V vs. RHE
** determined for CO, C₂H₄, and CH₄. No liquid products were reported
*** SWNT = single-walled carbon nanotube; VC = Vulcan; GC = glassy carbon
Appendix B

Supporting Information for Chapter 3: Non-Innocent Role of Porous Carbon Toward Enhancing C$_{2-3}$ Products in Electroreduction of Carbon Dioxide
Table of Contents

B1 Supplemental Experimental Conditions

B2 Figures

Figure B1. Additional SEM and TEM images of CA and VXC.

Figure B2. XPS survey scan of CA and VXC.

Figure B3. BET on CA layer with Nafion.

Figure B4. LSV of CA-Cu and VXC-Cu under Ar and CO\(_2\).

Figure B5. Comparison of CO\(_2\)RR specific current density for Cu foil and Cu foil covered with a Nafion membrane (without carbon).

Figure B6. SEM images of CA-Cu and VXC-Cu after electrolysis.

Figure B7. Comparison of SEM images of unmodified Cu foil before and after a 2-h electrolysis at -0.92 V vs RHE.

Figure B8. Surface roughness measurements of CA-Cu, VXC-Cu, and Cu foil.

Figure B9. Partial current densities of products for CA-Cu and VXC-Cu during long term electrolysis.

Figure B10. Specific current densities for C\(_1\), C\(_2\), and C\(_3\) products and the corresponding SEM images of the Cu morphology for CA-Cu and VXC-Cu after electrolysis at various potentials.

Figure B11. SEM images of carbon layers lifted off the Cu foil.

Figure B12. XPS on carbon layer lifted off the Cu foil.
Figure B13. Specific current densities for (a) CA-Cu and (b) VXC-Cu before and after removal of the carbon modifier.

Figure B14. Contact angle measurement of a water droplet on top of (a) CA-Cu, and (b) VXC-Cu.

B3 Tables

Table B1. Elemental Fraction Obtained from XPS.

Table B2. Percent incorporation of 13C in gaseous carbon products using isotopically labeled 13CO$_2$ and KH13CO$_3$.

Table B3. C$_{2-3}$ Product Selectivity on different surface modified Cu catalysts for CO$_2$RR.
B1 Supplemental Experimental Conditions

B1.1 Materials

Resorcinol (99%), formaldehyde (37% w/w aqueous solution stabilized with 7-8% methanol), sodium carbonate (≥ 99.95%), Nafion solution (5% w/w in water and 1-propanol), and graphite rod counter electrode were purchased from Alfa Aesar. Reagent alcohol (94%-96% v/v), ethanol (200 proof, ≥99.9%), potassium bicarbonate (≥ 99.995%, metals basis), Cu foil (99.999%, metals basis), and dimethyl sulfoxide (≥ 99.9%) were purchased from Fisher Scientific. Gaseous hydrogen, methane (≥ 99.99%), ethylene (≥ 99.9%), carbon monoxide (≥ 99.9%), ethane (balanced in 95% carbon dioxide), and carbon dioxide (≥ 99.9%) were from Airgas. Vulcan XC 72R was from Cabot Corporation. Glassy carbon electrode (3 mm dia) and Ag/Ag/Cl reference electrode were from CH Instruments and BASi, respectively. The Pt counter electrode (≥99.9%) was purchased from uGems.

B1.2 General Instrumentation

The morphology and composition of CA was characterized by a JSM-IT200 InTouchScope SEM and FEI Tecnai TF-30 300kV TEM. The Brunauer–Emmett–Teller (BET) surface area and pore-size distribution were characterized by Micromeritics ASAP 2020 Plus instrument. The surface of Cu/CA was characterized by a PHI 5600 X-ray Photoelectron Microscopy (XPS) using Mg Ka X-ray (1253.6 eV) radiation. All electrochemistry measurements were conducted on an Ivium-n-STAT Multichannel Electrochemical Analyzer.
B2 Figures

Figure B1. Additional SEM images and TEM of (a-c, g-i) CA and (d-f, j-l) VXC.

Figure B2. XPS survey scan of a) CA, and b) VXC.
Figure B3. BET on CA layer with Nafion.

Figure B4. LSV of a) CA-Cu and b) VXC-Cu under Ar and CO$_2$.

\[
y = 5.051E-03x + 4.878E-05 \\
R^2 = 9.979E-01
\]
Figure B5. Comparison of specific current density for Cu foil and Cu foil covered with a Nafion membrane (without carbon) at 0.92 V vs. RHE in 0.1 M KHCO$_3$ under a CO$_2$ atmosphere.

Figure B6. SEM images of (a-c) CA-Cu and (d-f) VXC-Cu after electrolysis. (a,d) Top-down view. (b,e) Cross-sectional view, showing a thickness of roughly 10 µm. (c,f) EDS line scan of Cu (pink) and C (blue) signals.
Figure B7. Comparison of SEM images of unmodified Cu foil (a) before and (b) after a 2-h electrolysis at -0.92 V vs RHE.

Figures S8. Surface roughness measurements of CA-Cu (red circles), VXC-Cu (blue triangle), and Cu foil (black diamonds) after electrolysis at -0.98 V for 2 hours. A surface roughness ratio of 22:9:1 was obtained for CA-Cu : VXC-Cu : Cu foil.
Figure B9. Partial current densities for (a) CA-Cu and (b) VXC-Cu during extended controlled potential electrolysis at -0.98 V vs RHE. Conditions: 0.1 M KHCO₃, pH 6.8, CO₂

Figure B10. Specific current densities for C1, C2, and C3 products and the corresponding SEM images of the Cu morphology for CA-Cu (top row) and VXC-Cu (bottom row) after a 2-h electrolysis at various potentials. The letter designation of each micrograph corresponds with to a point in the current density versus potential graph shown on the left column. Scale bar = 5 µm.
Figure B11. SEM images of CA (a, b), and VXC (c, d) lifted off the Cu foil. The surfaces in contact with Cu are facing up.

Figure B12. XPS on carbon modifier lifted off the Cu foil of a) CA-Cu, and b) VXC-Cu.
Figure B13. Specific current densities for (a) CA-Cu and (b) VXC-Cu before and after removal of the carbon modifier. Selectivity for C2 and C3 product decreases significantly after removing the carbon layer for both CA-Cu and VXC-Cu. Conditions: 0.1 M KHCO₃, pH 6.8, CO₂

Figure B14. Contact angle measurement of a water droplet on top of (a) CA-Cu, and (b) VXC-Cu.
B3 Tables

Table B1. Elemental Fraction Obtained from XPS.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>97.3%</td>
<td>2.7%</td>
</tr>
<tr>
<td>VXC</td>
<td>90.2%</td>
<td>9.8%</td>
</tr>
</tbody>
</table>

Table B2. Percent incorporation of $13C$ in gaseous carbon products using isotopically labeled $13CO_2$ and KH$13CO_3$ by GC-MS at -0.96 V vs. RHE after CPE for 2000 s.

<table>
<thead>
<tr>
<th>13C product percentage</th>
<th>CO</th>
<th>CH\textsubscript{4}</th>
<th>C\textsubscript{2}H\textsubscript{4}</th>
<th>C\textsubscript{2}H\textsubscript{6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>92%</td>
<td>92%</td>
<td>94%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table B3. C$_{2-3}$ Product Selectivity on different surface modified Cu catalysts for CO$_2$RR.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Electrolyte</th>
<th>Potential (vs. RHE)</th>
<th>FE (C$_{2-3}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-Cu</td>
<td>0.1 M KHCO$_3$</td>
<td>-0.9 V</td>
<td>45%</td>
<td>This work</td>
</tr>
<tr>
<td>O$_2$ plasma modified dendrite Cu/Ag</td>
<td>0.1 M KHCO$_3$</td>
<td>-0.9 V</td>
<td>~44%</td>
<td>10.1021/acscatal.9b00483</td>
</tr>
<tr>
<td>Glycine modified Cu foil</td>
<td>0.1 M KHCO$_3$</td>
<td>-1.3 V</td>
<td>~34%</td>
<td>10.1039/C5EE0.3694A</td>
</tr>
<tr>
<td>N-tolylpyridinium chloride modified Cu foil</td>
<td>0.1 M KHCO$_3$</td>
<td>-1.09 V</td>
<td>~75%</td>
<td>10.1021/acscent.7b00180</td>
</tr>
<tr>
<td>PdCl$_2$ modified Cu$_2$O-derived Cu</td>
<td>0.1 M KHCO$_3$</td>
<td>-1.0 V</td>
<td>~40%</td>
<td>10.1021/acs.jpcc.5b09144</td>
</tr>
<tr>
<td>Pd-decorated Cu</td>
<td>0.5 M KHCO$_3$</td>
<td>-0.96 V</td>
<td>7%-11% (C$_2$H$_4$)</td>
<td>10.1002/anies.20170478</td>
</tr>
<tr>
<td>Benzimidazole-functionalized Cu foil</td>
<td>0.1 M KHCO$_3$</td>
<td>-1.01 V</td>
<td>30%</td>
<td>10.1039/C8CC0.4735A</td>
</tr>
<tr>
<td>Poly(acrylamide)) modified Cu foam</td>
<td>0.1 M NaHCO$_3$</td>
<td>-0.96 V</td>
<td>~31%</td>
<td>10.1021/acscatal.7b04347</td>
</tr>
</tbody>
</table>
Appendix C

Supporting Information for Chapter 4: Strategic design of MoO$_2$ nanoparticles supported by carbon nanowires for enhanced electrocatalytic nitrogen reduction
Table of Contents

C1 Supplemental Experimental Conditions

C2 Figures

Figure C1. PXRD of anilinium molybdate nanowire precursor.

Figure C2. SEM of anilinium molybdate nanowire precursor.

Figure C3. Additional SEM, TEM images at different magnifications and EDS of MoO₂/C nanowires.

Figure C4. First derivative XANES.

Figure C5. Mo K-edge EXAFS fitting results.

Figure C6. Crystallographic fitting of the atomic PDF data for MoO₂/C.

Figure C7. Polarization curves of MoO₂/C on carbon paper under N₂ and Ar.

Figure C8. Chronoamperometry curves during bulk electrolysis with MoO₂/C NWs.

Figure C9. UV-Vis spectra or indophenol blue assays for NH₃ calibration and linear fit of absorbance maximum at 655 nm as a function of NH₃ concentration.

Figure C10. UV-Vis spectra for N₂H₄ calibration using the Watt and Chrisp method and linear fit of absorbance maximum at 460 nm as a function of N₂H₄ concentration.
Figure C11. Indophenol blue assay of NH$_3$ concentration following bulk electrolysis with MoO$_2$/C nanowires.

Figure C12. N$_2$H$_4$ detection following bulk electrolysis with MoO$_2$/C NWs showing negligible N$_2$H$_4$ production.

Figure C13. Current density and yield rate as a function of potential.

Figure C14. Control experiments for electrolysis of bare carbon paper under continuous flow N$_2$ (CP (N$_2$)), MoO$_2$/C on carbon paper under continuous flow Ar (MoO$_2$/CP (Ar)) and MoO$_2$/C on carbon paper with continuous flow N$_2$.

Figure C15. PXRD spectra of MoO$_2$/C nanowires after 3 h of electrolysis at -0.1 V vs. RHE, showing negligible change.

Figure C16. SEM of MoO$_2$/C post-electrolysis for 3 h in 0.1 M HCl at a constant potential of -0.1 V vs. RHE.

Figure C17. Characterization of the unsupported MoO$_2$ particles, (a) X-ray Diffraction and (b) SEM.

Figure C18. Electrochemical impedance spectroscopy (EIS) of the MoO$_2$/C and unsupported MoO$_2$ materials in 0.1 M HCl.

C3 Tables

Table C1. EXAFS fitting results.

Table C2. Structural parameters from PDF refinement of the HE-XRD data for MoO$_2$ at Room Temperature.
Table C3. Electrochemical NRR performance comparison of different Mo catalysts.

Table C4. Surface Mo atomic ratio comparison before and after electrolysis.

C4 References
C1 Supplemental Experimental Conditions

C1.1 Materials

\[(\text{NH}_4)_6\text{Mo}_7\text{O}_{24}\cdot 4\text{H}_2\text{O}\] was purchased from Strem chemicals. Trace metal grade HCl was purchased from Fisher Scientific. Carbon paper electrodes (5% hydrophobic coating) were purchased from Fuel Cell Earth. Aniline (C_6H_5NH_2), sodium hydroxide (NaOH), hydrazine dihydrochloride (N_2H_4·2HCl), and p-dimethylaminobenzaldehyde (C_9H_11NO) were purchased from Sigma Aldrich. Salicylic Acid (C_7H_6O_3), sodium nitroferricyanide·dihydrate (C_5FeN_6Na_2O·2H_2O), sodium hypochlorite (NaClO), and trisodium citrate (C_6H_5Na_3O_7·2H_2O) were purchased from Alfa Aesar. Ultra-High Purity gases (Ar and N_2) were purchased from Airgas. Ag/AgCl reference electrode was purchased from BASi.

C1.2 General Instrumentation

The morphology and composition of materials were characterized by a JSM-IT200 InTouchScope SEM and FEI Tecnai TF-30 300 kV TEM. Powder XRD was done on a Bruker D8 Focus diffractometer, with Cu Kα source and LynxEye detector. All electrochemistry measurements were conducted on an Ivium-n-STAT Multichannel Electrochemical Analyzer. XPS data were measured on a PHI 5600 instrument using monochromatic Al Kα radiation. Post-electrolysis XPS was done on the same type of instrument but using Mg Kα (1253.6 eV) radiation. Electron Paramagnetic Resonance (EPR) spectroscopy on a Bruker EMX-plus X-Band EPR spectrometer.
C1.3 Materials Characterization

X-ray absorption spectroscopy (XAS) measurements were performed at the 10-ID-B beamline of the Advanced Photon Source (APS), Argonne National Laboratory (ANL). Precursor materials and MoO$_2$ nanoparticles were loaded into 1 mm outer diameter Kapton capillaries probed from -200 eV below the Mo K-edge (20.0 keV) to ~800 eV above the edge in a transmission geometry. All data reduction, averaging and subsequent EXAFS modeling was done using the Demeter software package.1 EXAFS modeling of MoO$_2$ nanoparticles used Mo-O and Mo-Mo scattering paths from a known monoclinic MoO$_2$ model crystal structure2 while also including similar scattering paths to account for Mo$^{5+}$ contributions using a monoclinic Mo$_8$O$_{23}$ structure from the Materials Project.3 A value of 0.843 was used for S_0^2 in the EXAFS modeling, which was obtained by modeling the EXAFS of a reference Mo foil.

High-energy X-ray diffraction (HE-XRD) was performed at the 11-ID-B beamline of the APS. MoO$_2$ nanoparticles were loaded into a 1 mm outer diameter Kapton capillaries and examined using 86.58 keV x-rays. A sample to detector distance of ~220 mm was used to obtain a Q_{max} of ~32 Å$^{-1}$. HE-XRD to pair distribution function analysis (PDF) conversion was performed using the program RAD4 while crystallographic fitting was performed using PDFgui5 and a monoclinic MoO$_2$ model crystal structure.2

X-ray photoelectron spectroscopy (XPS) setup was calibrated with Au metal, which was cleaned via Ar-ion sputtering. The raw atomic concentration has a 5%
error due to surface inhomogeneities, surface roughness, literature sensitivity values for peak integration, etc. The powders were pressed onto carbon tape that was used to make electrical contact to the spectrometer. Post-electrolysis XPS sample was prepared by scratching off the materials from electrode after 3 h of electrolysis at -0.1 V vs. RHE. Adequate amount of sample ensured a full coverage of the carbon tape substrate.

Electron pair resonance (EPR) measurements were conducted at 9.42 GHz (X-band) on a Bruker EMXplus X-Band EPR spectrometer. The microwave power was set to 2 mW, the modulation amplitude was set to 5G and the temperature was 120 K.
Figure C1. PXRD of anilinium molybdate nanowire precursor.

Figure C2. SEM of anilinium molybdate nanowire precursor.
Figure C3. Additional SEM (a-d), TEM (e,f) images at different magnifications and EDS (g) of MoO$_2$/C nanowires. Atomic ratio was determined by EDS peak areas and was reported in the main text based on the average of three separate measurements.
Figure C4. Experimental first-order derivation XANES.

Figure C5. Mo K-edge EXAFS fitting results for (a) real r-space and (b) k²-space.
Figure C6. Crystallographic fitting of the atomic PDF data for MoO$_2$/C.

Figure C7. Polarization curves of MoO$_2$/C on carbon paper under N$_2$ and Ar. Scanned from 0.1 to -1.1 at a scan rate of 50 mV/s in 0.1 M HCl.
Figure C8. Chronoamperometry curves during bulk electrolysis with MoO$_2$/C NWs (E = -0.1, -0.2, -0.3, -0.4 vs. RHE). CPE conditions: 0.1 M HCl (pH = 1.0), 3 h.

Figure C9. (a) UV-Vis spectra of indophenol blue assays for NH$_3$ calibration and (b) linear fit of the absorbance maximum at 655 nm as a function of NH$_3$ concentration.
Figure C10. (a) UV-Vis spectra for N_2H_4 calibration using the Watt and Chrisp method. (b) Linear fit of the absorbance maximum at 460 nm as a function of N_2H_4 concentration.

Figure C11. Indophenol blue assay of NH_3 concentration following bulk electrolysis with MoO_2/C nanowires at -0.1, -0.2, -0.3, and -0.4 V vs. RHE for 3 hours.
Figure C12. N$_2$H$_4$ detection following bulk electrolysis with MoO$_2$/C NWs at -0.1, -0.2, -0.3, and -0.4 V vs. RHE, 3 h, showing negligible N$_2$H$_4$ production.

Figure C13. Current density and yield rate as a function of potential. CPE Conditions: -0.1 to -0.4 E vs. RHE, in 0.1 M HCl for 3 hours.
Figure C14: Control experiments for electrolysis of bare carbon paper under continuous flow N\textsubscript{2} MoO\textsubscript{2}/C on carbon paper (MoO\textsubscript{2}/C (N2)), under continuous flow Ar (MoO\textsubscript{2}/CP (Ar)) and carbon paper with continuous flow N\textsubscript{2}. (All controls were performed at -0.1 V vs RHE for 3 h).
Figure C15. SEM of MoO$_2$/C post-electrolysis for 3 h in 0.1 M HCl at a constant potential of -0.1 V vs. RHE.

Figure C16. PXRD spectra of MoO$_2$/C nanowires after 3 h of electrolysis at -0.1 V vs. RHE, showing negligible change.
Figure C17. Characterization of the unsupported MoO$_2$ particles, (a) X-ray Diffraction and (b) SEM.

Figure C18. Electrochemical impedance spectroscopy (EIS) of the MoO$_2$/C and unsupported MoO$_2$ particles in 0.1 M HCl.
C3 Tables

Table C1. EXAFS fitting results

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Mo-O CN</th>
<th>Mo-O NND (Å)</th>
<th>Mo-O σ^2</th>
<th>Mo-Mo CN</th>
<th>Mo-Mo NND (Å)</th>
<th>Mo-Mo σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoO$_2$</td>
<td>4.53 ±</td>
<td>2.072 ±</td>
<td>0.002 ±</td>
<td>2.76 ±</td>
<td>2.92 ±</td>
<td>0.002 ±</td>
</tr>
<tr>
<td></td>
<td>0.38</td>
<td>0.006</td>
<td>0.001</td>
<td>0.52</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>Mo8O${23}$</td>
<td>3.77 ±</td>
<td>2.32 ±</td>
<td>0.002 ±</td>
<td>2.07 ±</td>
<td>3.44 ±</td>
<td>0.002 ±</td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td>0.01</td>
<td>0.001</td>
<td>0.38</td>
<td>0.01</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table C2. Structural parameters from PDF refinement of the HE-XRD data for MoO$_2$ at Room Temperature

MoO$_2$ (Monoclinic P2$_1$/c)

- a (Å) = 5.6097 (7)
- b (Å) = 4.8422 (6)
- c (Å) = 5.6098 (3)
- β (degrees) = 120.72 (8)
- R_w = 0.163

<table>
<thead>
<tr>
<th></th>
<th>U_{11} (Å2)</th>
<th>U_{22} (Å2)</th>
<th>U_{33} (Å2)</th>
<th>U_{12} (Å2)</th>
<th>U_{13} (Å2)</th>
<th>U_{23} (Å2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>0.008 (1)</td>
<td>0.0094 (1)</td>
<td>0.0082 (6)</td>
<td>0.0009 (6)</td>
<td>0.0033 (6)</td>
<td>-0.0004 (5)</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.029 (11)</td>
<td>0.029 (12)</td>
<td>0.0086 (12)</td>
<td>-0.0019 (8)</td>
<td>-0.0048 (9)</td>
<td>-0.0025 (10)</td>
</tr>
<tr>
<td>O(2)</td>
<td>0.028 (14)</td>
<td>0.0023 (13)</td>
<td>0.031 (15)</td>
<td>0.003 (11)</td>
<td>0.084 (12)</td>
<td>0.0028 (13)</td>
</tr>
</tbody>
</table>
Table C3. Electrochemical NRR performance of different Mo catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Electrolyte</th>
<th>Potential (vs. RHE)</th>
<th>Yield</th>
<th>FE (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoO₂/C</td>
<td>0.1 M HCl</td>
<td>-0.1 V</td>
<td>21.2 µg h⁻¹ mg⁻¹</td>
<td>31.3</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.26 x 10⁻¹¹ mol·s⁻¹·cm⁻²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.13 µg h⁻¹ cm⁻²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoC@NC-800</td>
<td>1.0 mM HCl + 0.5 M Li₂SO₄</td>
<td>-0.35 V</td>
<td>22.5 µg h⁻¹ mg⁻¹</td>
<td>25.1</td>
<td>6</td>
</tr>
<tr>
<td>Mo/Mo₂C</td>
<td>0.1 M Na₂SO₄</td>
<td>-0.3, -0.3 V</td>
<td>20.4 µg h⁻¹ mg⁻¹</td>
<td>18.9</td>
<td>7</td>
</tr>
<tr>
<td>Mo/Mo₂C</td>
<td>0.1 M Na₂SO₄</td>
<td>-0.3 V</td>
<td>3.01 x 10⁻¹⁰ mol·s⁻¹·cm⁻²</td>
<td>1.15</td>
<td>8</td>
</tr>
<tr>
<td>MoN</td>
<td>0.1 M HCl</td>
<td>-0.3 V</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoS₂</td>
<td>0.1 M Na₂SO₄</td>
<td>-0.5 V</td>
<td>4.94 µg h⁻¹ cm⁻²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoO₃</td>
<td>0.1 M HCl</td>
<td>-0.4 V</td>
<td>29.43 µg h⁻¹ mg⁻¹</td>
<td>1.9</td>
<td>10</td>
</tr>
<tr>
<td>Mo₂N</td>
<td>0.1 M HCl</td>
<td>-0.3 V</td>
<td>78.4 µg h⁻¹ mg⁻¹</td>
<td>4.5</td>
<td>11</td>
</tr>
<tr>
<td>Mo Film</td>
<td>0.5 H₂SO₄</td>
<td>-0.49 V</td>
<td>3.09 x 10⁻¹⁰ mol·s⁻¹·cm⁻²</td>
<td>0.72</td>
<td>12</td>
</tr>
<tr>
<td>Mo₂C/GCE</td>
<td>0.1 M HCl</td>
<td>-0.3 V</td>
<td>95.1 µg h⁻¹ mg⁻¹</td>
<td>8.13</td>
<td>13</td>
</tr>
<tr>
<td>Atomically dispersed Mo</td>
<td>0.1 M KOH</td>
<td>-0.3 V</td>
<td>34.6 µg h⁻¹ mg⁻¹</td>
<td>14.6</td>
<td>14</td>
</tr>
</tbody>
</table>

Table C4. XPS surface Mo atomic ratio comparison before and after electrolysis

<table>
<thead>
<tr>
<th>Surface Mo atomic ratio</th>
<th>Mo(IV)</th>
<th>Mo(V)</th>
<th>Mo(VI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-electrolysis</td>
<td>0.17</td>
<td>0.20</td>
<td>0.63</td>
</tr>
<tr>
<td>Post-electrolysis</td>
<td>0.12</td>
<td>0.41</td>
<td>0.47</td>
</tr>
</tbody>
</table>
C4 References

(6) Qu, X.; Shen, L.; Mao, Y.; Lin, J.; Li, Y.; Li, G.; Zhang, Y.; Jiang, Y.; Sun, S. Facile Preparation of Carbon Shells-Coated O-Doped Molybdenum

(11) Ren, X.; Cui, G.; Chen, L.; Xie, F.; Wei, Q.; Tian, Z.; Sun, X. Electrochemical N$_2$ Fixation to NH$_3$ under Ambient Conditions: Mo$_2$N

Curriculum Vitae

Xu Han
Johns Hopkins University
mailforxhan@gmail.com

EDUCATION

<table>
<thead>
<tr>
<th>Institution</th>
<th>Degree</th>
<th>Start Date – End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johns Hopkins University</td>
<td>Ph.D. Candidate in Chemistry, M.A.</td>
<td>Aug. 2015–present</td>
</tr>
<tr>
<td>Fudan University</td>
<td>B.S. in Chemistry with Honors</td>
<td>Sep. 2011–June 2015</td>
</tr>
</tbody>
</table>

PUBLICATION

- **Han, X.**; Gerke, C*; Banerjee, S; Zubair, M; Jiang, J; Bedford, N; Miller, E; Thoi, V. S. Strategic design of MoO$_2$ nanoparticles supported by carbon nanowires for enhanced electrocatalytic nitrogen reduction. *ACS Energy Lett.* 2020, 5, 3237-3243. (*co-first authors*)
SELECTED HONORS & AWARDS

- ACS Travel Award, 2020
- Ada Sinz Hill Fellowship, 2018
- Outstanding College Graduate of Shanghai, 2015
- Outstanding Senior Design of Shanghai, 2015
- Honor Student of Fudan University, 2015
- "Education Cup" Shanghai College Student Innovation Competition Award, 2014
- State-Level Best Team Leader for Social Development Project, 2013

TEACHING

Teaching Assistant, Johns Hopkins University Aug. 2015–May 2017

- Assisted teaching of 4 core classes with 100+ student, led weekly labs and office hours, organized discussion session, graded homework and exams. Received consistently excellent student rating
 - 030.302 Physical Chemistry II
 - 030.305 Physical Chemistry Instrumentation Laboratory
 - 030.204 Chemical Structure and Bonding w/ Lab
 - 030.101 Introductory Chemistry Lab

INTERNSHIPS

Biomedical Science Advisory Intern, Milken Institute Aug.–Nov. 2019

- Advised a client on $12 million philanthropic investment for facilitating R&D of a rare disease: NF1
- Managed 9 portfolio projects by providing scientific and financial advice to ensure successful operations
- Contributed to programming of a national conference with 1000+ attendees of business executives, etc.

- Worked on commercialization of patented polymers into cosmetic product ingredients by designing and performing experiments to elucidate the benefits of using target polymers in skin care and hair products
- Formulated strategy for a client to double the efficacy of facial masks through the addition of our materials

LEADERSHIP & VOLUNTEER

- Director of Education, JHU Graduate Consulting Club, 2019–present
- Board Member, JHU Chemistry Student Diversity Committee, 2017–2020
• Vice President, JHU International Student Ambassadors, 2017–2018
• Board Member, JHU Chemistry Student Safety Committee, 2016–2018
• STEM Mentor, STEM Achievement in Baltimore Elementary Schools, 2016–2017
• Founder & Team Leader, Traditional Chinese Culture Conservation Initiative, 2013–2014

SKILLS

Languages: fluent in English, native in Chinese
Instrumentation: GC-MS, LC-MS, HPLC, NMR, FTIR, Raman, UV-Vis, SEM, TEM, EDS, TGA, XRD, BET, XPS, Potentiostat
Techniques: chromatography, electroanalysis, chemical synthesis, single crystal X-ray diffraction
Computer: Microsoft Office, AutoCAD, MATLAB, Adobe Photoshop, C. Basic skills in R, Python

RESEARCH EXPERIENCE

Ph.D. Researcher, Johns Hopkins University Jan. 2016–present
• Electrochemical catalysis: set up electrocatalytic systems from scratch for CO₂ reduction and N₂ fixation, conducted catalytic performance test and high-accuracy gas/liquid product detections
• Material synthesis and fabrication: developed carbon coated metal system for highly efficient CO₂ reduction with enhanced C-C coupling product selectivity. Synthesized carbon nanowires supported metal compound for N₂ reduction, which keeps the record to date for selectivity of producing ammonia
• Leadership and management: initiated research direction as the first PhD student, mentored 3 graduate students and 3 undergraduates and helped them receive 2 competitive research awards and publish first author papers

Undergraduate Researcher, Fudan University Sep. 2013–June 2015
• Metal nanocrystal synthesis and monolayer deposition: synthesized shape-controlled metal nanocrystals (cubes, octahedra, dodecahedra) supported monolayer materials for catalyzing alcohol oxidation in fuel cell

Summer Research Scholar, University of California, LA Summer 2014
• Supercapacitor fabrication and test: fabricated high-performance supercapacitors with graphene-metal oxide hybrid electrode and graphene screen printed finger electrode with aqueous electrolyte