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Abstract

This thesis presents a series of conceptual and empirical developments on the ranking

and retrieval of candidates under semantic relevance. Part I of the thesis introduces the

concept of uncertainty in various semantic tasks (such as recognizing textual entailment)

in natural language processing, and the machine learning techniques commonly employed

to model these semantic phenomena. A unified view of ranking and retrieval will be pre-

sented, and the trade-off between model expressiveness, performance, and scalability in

model design will be discussed.

Part II of the thesis focuses on applying these ranking and retrieval techniques to text:

Chapter 3 examines the feasibility of ranking hypotheses given a premise with respect to

a human’s subjective probability of the hypothesis happening, effectively extending the

traditional categorical task of natural language inference. Chapter 4 focuses on detecting

situation frames for documents using ranking methods. Then we extend the ranking notion

to retrieval, and develop both sparse (Chapter 5) and dense (Chapter 6) vector-based meth-

ods to facilitate scalable retrieval for potential answer paragraphs in question answering.

Part III turns the focus to mentions and entities in text, while continuing the theme on
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ranking and retrieval: Chapter 7 discusses the ranking of fine-grained types that an entity

mention could belong to, leading to state-of-the-art performance on hierarchical multi-

label fine-grained entity typing. Chapter 8 extends the semantic relation of coreference to

a cross-document setting, enabling models to retrieve from a large corpus, instead of in a

single document, when resolving coreferent entity mentions.

Primary Reader and Advisor: Prof. Benjamin Van Durme

Secondary Reader: Prof. David Yarowsky, Prof. João Sedoc
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Chapter 1

Introduction

Various tasks in the general field of artificial intelligence (AI) can be formulated as a

ranking problem on a set of elements. These elements may include labels (e.g. types in

an ontology), sentences, paragraphs, documents, mentions, or entities in knowledge bases

(KBs), etc.

Some examples of ranking problems that arise in NLP include:

• Document search: given a search query, returns documents that are most relevant

with respect to the query (i.e. Google Search);

• Textual question answering: given a natural language question, return sentences that

contain the answer to the query;

• Natural language inference or plausiblity: given a context, determine which outcome

is most probable given the context.
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Take a well-studied task, corpus-based question answering (QA), as an example. Given

a natural language question, a system finds sentences in a corpus that answers a given ques-

tion. Current research in corpus-based QA is typically modeled as a two-step process: (1)

triaging: finding a candidate set of passages (e.g., documents or sentences in a corpus) that

may contain an answer to a question, followed by (2) downstream models: a downstream

candidate reranking / selection model that refines and extracts the answer from the initial

set.

The reason for employing this two-step process, instead of a direct run of the down-

stream model on the whole corpus, is the problem of scalability: A typical QA system like

Watson (Ferrucci et al., 2010) processes millions of documents to answer questions, yet

the response time should be restricted to seconds, or even below a second. Directly run-

ning the downstream model (which, in recent years, has become quite sophisticated) on the

whole text corpus could be prohibitively infeasible – the runtime complexity is linear to the

number of candidates. This means that knowledge in the text corpus has to be indexed, i.e.

preprocessed and organized offline in some fashion, to enable fast searching and access.

In this thesis, we develop approaches and methods that addresses both of these two

problem, triaging candidates for retrieval, and ranking the candidates for various prob-

lems that arise in semantics. We seek to address the following problems under a unified

perspective of ranking and retrieval under some semantic relevance:

• How can we train a system that learns to rank under various semantic relevance?
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• How can a system learn representations of objects (i.e. sentences, mentions, etc.) so

that such representations facilitate scalable, efficient retrieval in very large corpora?

Ranking We explore modeling choices that explicitly account for uncertainties in var-

ious semantic problems, modeling them as ranking problems. Specifically, in Chapter 3,

we extend the traditional categorical classification task of natural language inference to

a scalar prediction task, namely uncertain natural language inference (UNLI), where the

model is asked to predict the human subjective probability of the hypothesis happening

given a premise. We explore various modeling techniques, such as regression and ranking

to the problem, illustrating modeling abilty to predict subjective probabilities that corre-

lates well with humans. In Chapter 4, we turn to examine the detection of situation frames

in text, where models should respond to the emergence of natural disasters or social crises

mentioned in documents, under low-resource language scenarios. We demonstrate various

ranking methods to ameliorate biases generated from data annotation from crowdsourcing

workers. In Chapter 7, we examine the semantic relation of a mention being an instance

of an entity type, by designing a ranking method over fine-grained entity types in a tree-

structured type ontology, leading to state-of-the-art results across multiple datasets.

Retrieval Current systems that perform well on ranking (e.g. state-of-the-art question

answering systems (D. Chen et al., 2017), state-of-the-art coreference resolution systems

(Joshi, D. Chen, et al., 2020)) does not scale to large corpora: they are only able to operate
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in a small candidate set that contains about hundreds of paragraphs under limited time

constraints (e.g. less than a second). Conversely, retrieval systems that can scalably retrieve

from millions or billions of documents usually resort to shallow, lexical features to ensure

fast performance.

There exists a tradeoff between model expressiveness and model scalability: a more

complex model lends to more expressiveness of modeling power, resulting in more perfor-

mant models; but such complex modeling requires heavyweight computation that is simply

not feasible for scalability concerns. This could be illustrated in Figure 1.1, where one goal

of this thesis is to explore methods to advance the Pareto frontier.

To address these problems, in Chapter 5, we extend the traditional bag-of-words re-

trieval model to a bag-of-features one for the task of triaging in question answering,

with linguistic features customizable and feature weights learned, from a learning-to-rank
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model based on question answering datasets, leading to improved recall in triaging sys-

tems. In Chapter 6, we explore pure neural solutions for the triaging problem that uses ap-

proximate maximum inner product search methods for dense representations. Turning our

focus to mentions again, in Chapter 8, we extend the span-ranking model in state-of-the-art

coreference resolution systems to a cross-document retrieval setting, enabling coreference

resolution systems to attend to mentions across documents.

The various chapters of this thesis can be summarized in Figure 1.2.
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Chapter 2

Background

2.1 Ranking

Many tasks in information retrieval (IR) and natural language processing (NLP) have

ranking as a central problem. These include the canonical IR task document retrieval, and

other NLP tasks such as entity search or question answering, and extends to other AI tasks

such as online advertisement, dialogue generation, or content-based image retrieval (H. Li,

2014).

The problem of ranking can be formulated as the following mathematical problem:

Given a query 𝑞 ∈ Q, a set of candidates 𝐶 = {𝑐1, · · · , 𝑐𝑁 } ⊆ C,1 rank the elements in 𝐶

based on the information from the query 𝑞 and the set of candidates 𝐶.

This is most often modeled by a relevance function, or scoring function 𝐹 : Q × C →
1 A note on the notation here: 𝐶 is the candidate set, and C is the set of all possible candidates. For

example, 𝐶 could be all sentences in Wikipedia, where C would then be the set of all possible sentences.
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R: we say that the relevance, or the score between query 𝑞 and a specific candidate 𝑐 is

𝐹 (𝑞, 𝑐). The set of candidates 𝐶 is thus ranked, and can be sorted, under the function

𝐹 (𝑞, ·).

2.1.1 Document Retrieval as an Example

Let’s start our discussion with the traditional document retrieval task as an example.

One of the oldest ranking model for document retrieval is TF-IDF, a numerical statistic

that models how important a term 𝑡 is to a document 𝑑 in a corpus 𝐷. It is a product of two

factors: term frequency (TF), which is proportional to the number of times a term occurs

in a document (Luhn, 1957); and inverse document frequency (IDF), also known as the

specificity of a term, can be quantified as an inverse function of the number of documents

in which it occurs (Jones, 1972).

TF-IDF is used as the relevance function to rank candidate passages given a query. It

has many incarnations with variations in computation details, but a widely used instance

is the Okapi BM25 (Robertson, Walker, et al., 1994) due to their robustness in ad hoc

retrieval:

𝐹 (𝑞, 𝑑) =
∑︂
𝑖

idf (𝑞𝑖) · (𝑘1 + 1) · freq(𝑞𝑖, 𝑑)
freq(𝑞𝑖, 𝑑) + 𝑘1

(︂
1 − 𝑏 + 𝑏 · |𝑑 |avgdl

)︂ (2.1)

where 𝑞 is a query, 𝑞𝑖 is the 𝑖-th token in 𝑞, 𝑑 is any candidate document, and |𝑑 |

is its length, avgdl is the average document length, idf (𝑞𝑖) is the IDF (inverse document
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frequency) of token 𝑞𝑖, and freq(𝑞𝑖, 𝑑) is the frequency (number of occurrences) of token

𝑞𝑖 in document 𝑑. Values 𝑘1 = 1.2 and 𝑏 = 0.75 are hyperparameters.

In another thread of work, the ranking model is defined as a conditional probability

distribution 𝐹 (𝑞, 𝑑) = 𝑃(𝑞 | 𝑑) under a language model (Ponte and Croft, 1998; Zhai and

Lafferty, 2001). Both TF-IDF based methods and language model based methods requires

no training (only tuning a few parameters is necessary, for example, the 𝑘1 and 𝑏 in BM25

Equation 2.1).

These ranking methods work well for document retrieval since the relevance function

models word overlap. However, there is a trend that arises in the IR community to employ

machine learning techniques such as learning-to-rank, to automatically construct such a

relevance function 𝐹 (𝑞, 𝑐). This is useful because:

• Model expressiveness: We are motivated to model more complex, semantic rele-

vance functions that goes beyond what can be captured by mere word overlap;

• Feasibility of obtaining training data: We can obtain training data for ranking, for

example, clickthrough data aggregated by web search engines.

These issues motivate the use of supervised learning methods to train a relevance func-

tion, which is what we are going to discuss below.
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2.1.2 Supervised Learning to Rank

For a supervised learning setup, a training dataset is required. In the field of learning-

to-rank, each training sample is set to be (𝑥, 𝑦) where 𝑥 = (𝑞, 𝑐). Here 𝑞 ∈ Q is the query,

𝑐 ∈ C is the candidate object, and 𝑦 ∈ Y , where the labels represent grades about how

relevant 𝑞 is to 𝑐. Usually Y is set to be a discrete set {0, 1, · · · , 𝐿 − 1}, where 0 stands for

“irrelevant”, 1 stands for “somewhat relevant”, · · · , and 𝐿 − 1 stands for “very relevant”.

The label set Y has a total ordering endowed, which is usually denoted as “≻”: 𝑖 ≻ 𝑗 is

read as “𝑖 is a higher relevance grade than 𝑗 .” We will extend this graded, Likert scale-styled

label set to a scalar value in R in Chapter 3.

There are mainly three classes of ranking methods, namely pointwise, pairwise, and

listwise ranking. The main difference lies in the loss function employed:

• Pointwise ranking: The loss takes each sample independently, reducing the ranking

problem to a traditional classification or regression problem.

𝐿 (D) =
∑︂

(𝑞,𝑐,𝑦)∈D
ℓ(𝑞, 𝑐, 𝑦); (2.2)

• Pairwise ranking: The loss takes a pair of samples at a time, and learns to compare

these two to decide which one is of higher relevance.

𝐿 (D) =
∑︂
𝑦+>𝑦−

ℓ(𝑞+, 𝑐+, 𝑦+, 𝑞−, 𝑐−, 𝑦−); (2.3)
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• Listwise ranking: The loss takes a query and all of its associated candidates and their

labels, and jointly considers the rank of all the candidates in the list.

𝐿 (D) =
∑︂
𝑞

ℓ(𝑞, (𝑐1, · · · , 𝑐𝑛), (𝑦1, · · · , 𝑦𝑛)) (2.4)

It is observed that pairwise and listwise approach usually outperform the pointwise

counterpart (H. Li, 2014). Pointwise and pairwise ranking can easily be incorporated in

a neural model (as compared to listwise methods) that can be trained end-to-end, hence

will be extensively used and discussed in this thesis. One can refer to Duh (2009) for an

extensive discussion on ranking methods.

2.1.3 Pointwise Ranking

In the pointwise ranking approach, the ranking problem is reduced to standard classifi-

cation or regression. Therefore, the structure of the ranked list is ignored in this approach.

More specifically, the pointwise approach predicts the score of an instance (𝑞, 𝑐) using

the relevance function 𝐹 (𝑞, 𝑐). Depending on the type of the label 𝑦,

• if it is a binary label {0, 1} designating irrelevance/relevance, the ranking problem is

effectively reduced to a binary classification problem;

• if it is a set of labels {0, 1, · · · , 𝐿 − 1} representing graded relevance, the ranking

problem turns into an ordinal classification problem;
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• or if the label is a scalar variable (e.g. in [0, 1] or R), the ranking problem is effec-

tively a regression problem.

Once the model is reduced to a binary classification or regression problem, standard

machine learning models such as logistic regression and SVMs can be employed.

2.1.4 Pairwise Ranking

Contrary to the pointwise approach, instead of taking one sample for consideration at

a time, the pairwise ranking takes two. Instead of directly answering the question “what is

the label for this sample”, we ask “of these two samples, which one is more relevant.” It

hence reduces the problem of ranking to a classification problem on pairs.

A central concern in pairwise ranking is the construction of a preference pair set.

A preference pair set contains sample pairs where one is more relevant than the other.

These preference pairs is therefore used as the training set for the pairwise classification

problem that decides which one is “better”, or more relevant. ee When constructing the

preference pair set, one often employs negative sampling: For each relevant (or positive)

query/candidate pair, a set of negative samples are sampled to serve as contrastive sam-

ples for the model to learn. Usually different sampling techniques are used for different

problems, and tuned to the need of the specific task, for example, the number of negative

samples is usually a hyperaparameter tuned using a dev set.

Given the pairwise preference set R = {𝑞, 𝑐+, 𝑐−} where 𝑐+ ≻ 𝑐− (𝑐+ ranks higher than

𝑐− under query 𝑞), the model can be trained using various losses. Under a cross entropy
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loss, the model is essentially RankNet (Burges et al., 2005), where the probability of 𝑐+

ranking higher than 𝑐− is maximized:

𝑃(𝑐+ ≻ 𝑐−) = exp(𝐹 (𝑞, 𝑐+) − 𝐹 (𝑞, 𝑐−))
1 + exp(𝐹 (𝑞, 𝑐+) − 𝐹 (𝑞, 𝑐−)) . (2.5)

Or, such a model can be learned under a primal SVM formulation. This is equivalent to

the RankSVM method (Herbrich, Graepel, and Obermayer, 1999):

𝐿 =
∑︂

(𝑞,𝑐+,𝑐−)∈R
max{0, b − 𝐹 (𝑞, 𝑐+) + 𝐹 (𝑞, 𝑐−)} , (2.6)

where b is a margin hyperparameter that denotes the desired margin between the relevance

score of positive and negative candidates.

2.2 Retrieval

The task of retrieval is closely tied to that of ranking. In the retrieval scenario, we

are not concerned with ranking the whole candidate set 𝐶 as what we consider under the

ranking scenario. Instead, we are only concerned with the most relevant 𝑘 elements: we

wish to retrieve the top-𝑘 elements in 𝐶 that score the highest under the relevance function

𝐹 given a query 𝑞. Abstractly, we are solving the following problem:

𝐶′𝑞 = arg top𝑘
𝑐∈𝐶

𝐹 (𝑞, 𝑐) ⊆ 𝐶 , (2.7)
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The retrieved top-𝑘 set 𝐶′𝑞 ⊆ 𝐶. Here 𝑞 is the query, 𝑐 ∈ 𝐶 is a candidate, 𝐶 is the

set of candidates to retrieve from, 𝑘 is the number of top items to retrieve and 𝐹 (·, ·) is the

relevance function. We denote “arg top𝑘” as a generalization to “arg max”: selecting top-𝑘

instead of just selecting 1.

2.2.1 Triaging as Approximate Retrieval

As we have discussed in Chapter 1, question answering systems are usually modeled

as a two-step process consisting of triaging (retrieval) and reranking steps, owing to scala-

bility concerns. This two-step process can be generalized to various information extraction

(IE) problems, whenever the candidate set is too large (millions, or even billions) to run a

model over exhaustively, could use a triaging model to scale it. Lots of tasks in AI can be

cast as a ranking problem under the aforementioned triaging framework:

• Documents as candidates: The most traditional task of information retrieval (IR),

where the query is a set of search terms and the candidate set is a set of documents,

is a classical example in this case. The system selects candidate documents that have

word overlap with the given search terms.

• Sentences as candidates: Corpus-based QA is an example as we have elaborated

before. Additional examples include finding in a large corpus semantically related

sentences (answering a question; being a paraphrase to the query; entailing the query;

or being entailed by the query etc.) given a sentence.
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• Knowledge base entities as candidates: An example of this is the task of knowl-

edge base question answering (KBQA), in which the system retrieves entities in a

knowledge graph given a natural language question. We’ll use an example in Yao

and Van Durme (2014) here: given the question “Who is Justin Bieber’s sister?”, the

system should return the entity “Jazmyn Bieber” in the knowledge graph. Another

example is entity linking (EL), where the system links a mention in the text (e.g. the

text snippet “Justin Bieber” in a snippet) to an entity in a KB that it refers to.

• Mentions in text as candidates: We define coreferent mention retrieval (CMR)

(Sankepally et al., 2018) as an information retrieval task in which one passage men-

tioning a specifc entity is presented as an example, and the system’s task is to find all

other sentences in the test collection in which that same entity is mentioned.

• Tasks outside of NLP: There’s been a series of work outside of NLP that are highly

related to this triaging problem. In speech processing, the task of speech term dis-

covery (Park and Glass, 2008; Jansen, Church, and Hermansky, 2010; Jansen and

Van Durme, 2011) aims to find repeated similar acoustic patterns in a collection of

speech in an unknown language. Also in computer vision research, there is the task

of content-based image retrieval (CBIR) (Smeulders et al., 2000; Lew et al., 2006;

Wan et al., 2014), where the system retrieves from a large image set similar images

to a query image (an example is Google Image Search).
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These tasks could be summarized in the table below, which could gives us a clearer idea

of the ubiquity of the triaging task in AI research.

Task Query 𝑞 ∈ Q Candidate set 𝐶 ⊆ C

Information retrieval Search terms Documents

Text-based question answering Question Sentences

Finding paraphrases Sentence Sentences

Textual entailment Sentence Sentences

Textual abduction Sentence Sentences

Knowledge base question answering Question Entities

Entity linking Mention Entities

Coreferent mention retrieval Mention Mentions

Retrieval-based dialog generation Context Sentence

Speech term discovery Speech snippet Speech snippets

Text-based image retrieval Search terms Images

Content-based image retrieval Image Images

Table 2.1: Problems that could use a triaging system to scale.

Under scrutiny, we can formulate the triage-then-rerank setup as an approximation of

exact retrieval. Instead of exact ranking using the relevance function Equation 2.7:

𝑅𝐹 (𝑞, 𝐶) = arg top𝑘
𝑐∈𝐶

𝐹 (𝑞, 𝑐) (2.8)

16



Query
x

Query representation 
fx(x)

Candidate
y

Candidate representation 
fy(y)

Index 
structure

Retrieval 
result

Scoring function

ONLINE

OFFLINE

Downstream 
tasks

SEARCHING DOWNSTREAM

Training set
(x, y)

Representations
fx,y(x, y)

Figure 2.1: General scheme of retrieval problems.

we approximate this with the triage-then-rerank process:

• Triaging: We first filter the very large candidate set 𝐶 with a surrogate relevance

function �̃� that approximate the better relevance function 𝐹, so that computation is

feasible for downstream models. This results in a reduced candidate set with a much

smaller size: |�̃� | ≪ |𝐶 |:

�̃� = arg top�̃�
𝑐∈𝐶

�̃� (𝑞, 𝑐) (2.9)

This should be very efficient (ideally sublinear with respect to |𝐶 |) to run for this

step to be computationally feasible.

• Reranking: Then we rerank the triaged set �̃� with a better relevance function 𝐹, and

then take the top 𝑘:

�̂� = arg top𝑘
𝑐∈�̃�

𝐹 (𝑞, 𝑐) (2.10)

We can afford to use more heavyweight and complex models since it is feasible to

traverse the reduced set, with a linear complexity of O( |�̃� |).

As we discussed before, for many of these retrieval problems under semantic relevance,
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traditional retrieval methods like BM25 lacks model expressivenss. We turn to learning-to-

rank methods to automatically construct such relevance functions from training sets.

A schematic illustration of a learned triage-then-rerank system can be found in Fig-

ure 2.1.

2.2.2 Efficient Triaging

How can we make the triage step efficient? Under scrutiny, the approximate scoring

function �̃� takes the following form:

�̃� (𝑞, 𝑐) = 𝑆(f𝑄 (𝑞), f𝐶 (𝑐)) . (2.11)

Such a function can be illustrated in the form of computation graphs in Figure 2.2.

The computation of a relevance function can be decomposed into two stages: decoupled

computation, the independent computation of the representations of the queries and can-

didates, resulting in the representations of a query f𝑄 (𝑞) ∈ R𝑄 , and the representations of

candidates f𝐶 (𝑐) ∈ R𝐶 for all 𝑐 ∈ 𝐶;2 and coupled computation, where the final relevance

score based on the two representations is computed as in Equation 2.11. Therefore such a

triaging system could be decomposed into the following three subproblems:

• Query representation (f𝑄 : Q → R𝑄): The query 𝑞 has to be represented in some

form f𝑄 (𝑞) to enable computation. It could be a bag-of-words in the IR task (essen-

2 Here R𝑄 and R𝐶 are the space of the representations of queries and candidates respectively. For
example, under a dense vector-based representation, R𝑄 = R𝑑 .
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tially a sparse vector representation of the query); or in the case of image retrieval,

the image is precomputed to yield a code (could be a dense vector representation, or

a bit sequence).

• Candidate representation (f𝐶 : C → R𝐶): Similarly, candidates should also be

preprocessed and indexed offline: each candidate 𝑐 ∈ 𝐶 will be used to generate some

representation f𝐶 (𝑐).

• Final scoring function (𝑆 : R𝑄 × R𝐶 → R), search algorithms and data struc-

tures: There should be a data structure that stores a large number of candidate
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representations {f𝑐 (𝑐) | 𝑐 ∈ 𝐶} that enables a fast search algorithm that computes

Equation 2.11 under the similarity function 𝑆(·, ·).

The earlier the coupling is, the more complicated the final scoring function 𝑆 would be,

hence leading to better model expressiveness and performance, but unavoidably reducing

computational efficiency, making models less scalable. Conversely, the later the coupling

is, the final scoring function 𝑆 will be simple (e.g. cosine distance or inner product), moving

large amounts of representation computation offline to be indexed. A simple final scoring

function 𝑆 allows for the design of very efficient searching algorithms (see sections below).

This makes models easier to scale, but hurts the performance.

2.2.3 Retrieval over Sparse Vectors

We’ll investigate a widely used relevance function, Okapi BM25 (Robertson, Walker,

et al., 1994) under the framework we just described.

Following the formulation of linear feature-based IR models (Metzler and Croft, 2007),

the relevance function in Equation 2.1 can be reformulated as an inner product between a

feature vector f𝑞 (𝑞) on query 𝑞 and another feature vector f𝑑 (𝑑) on candidate document 𝑑.

These feature vectors are sparse and easily indexed. Under the notation of sparse vectors
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Queries Q Search terms
↓ Bag-of-words

Query representations R𝑄 R𝑉 : Sparse vectors

Candidates C Documents
↓ Bag-of-words

Candidate representations R𝐶 R𝑉 : Sparse vectors

Scoring function 𝑆(·, ·) Sparse inner product
Indexing structure Postings lists

Table 2.2: The three subproblems identified in a sparse-vector based retrieval system.

as associative arrays, the BM25 scoring function can be expressed in the following form:

f𝑞 (𝑞) = {𝑡 : 1}𝑡∈𝑞 ; (2.12)

f𝑑 (𝑑) =
⎧⎪⎪⎨⎪⎪⎩𝑡 : idf(𝑡) · freq(𝑡, 𝑑) · (𝑘1 + 1)

freq(𝑡, 𝑑) + 𝑘1 ·
(︂
1 − 𝑏 + 𝑏 · len(𝑑)

avgdl

)︂ ⎫⎪⎪⎬⎪⎪⎭𝑡∈𝑑 ; (2.13)

𝐹 (𝑞, 𝑑) = f𝑞 (𝑞) · f𝑑 (𝑑) . (2.14)

We can see that under Eqs. (2.12, 2.13), Eq. (2.14) is equivalent to Eq. (2.1). By this

featurization we cast the BM25 scoring function as a linear ranking function.

Retrieval under an inner product function in Eq. (2.14) can be implemented efficiently

(sublinear time complexity – not all candidates are going to be traversed) using the classical

data structure known as postings lists.

There has been some work to generalize this to include richer features: we will discuss

these in Chapter 5.
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2.2.4 Retrieval over Dense Vectors

The retrieval problem when applied to dense vectors, becomes an approximate nearest

neighbor search (ANNS) or maximum inner product search (MIPS) problem.

Normally triaging with dense vectors are reduced to a nearest neighbor search (NNS)

problem, where we define the scoring function to be a distance

𝐹 (𝑞, 𝑐) = 𝑆(f𝑞 (𝑞), f𝑐 (𝑐)) , (2.15)

where 𝑆(·, ·) is a distance measure (usually 𝐿1 or 𝐿2 distance, which we seek to minimize)

or a similarity measure (cosine similarity, inner product, etc., which we seek to maximize).

When the dimensionality of f𝑞 (𝑞) and f𝑐 (𝑐) is low, the problem is easily solved sub-

liearly (𝑂 (log|𝑌 |)) using data structures such as 𝑘-d trees (Bentley, 1975) or R-trees (Rous-

sopoulos, Kelley, and Vincent, 1995). However, when the dimensionality of the vector

grows (usually more than 100 in typical neural embeddings), we encounter the “curse of

dimensionality” (Bellman, Corporation, and Collection, 1957) which greatly complicates

the search. Usually we resort to approximate nearest neighbor search (as a trade-off for

scalability and speed) instead of an optimal search algorithm in high-dimensional settings.

One possible way of dealing with high-dimensional nearest neighbor search is a fam-

ily of closely related algorithms called locality sensitive hashing (LSH) (Gionis, Indyk,

and Motwani, 1999). In some versions of LSH, every vector x ∈ R𝑑 is hashed to a vec-

tor h(f𝑞 (𝑥)) ∈ B𝑘 , where B could be {0, 1} (being the Hamming space, where very fast
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retrieval can be performed since modern computer architectures can compute Hamming

distances in just a few CPU instructions), and there is a distance in B𝑘 space 𝑑𝐻 (·, ·) such

that 𝑑𝐻 (h(f𝑞 (𝑥)), h(f𝑐 (𝑦))) ≈ 𝑑 (f𝑞 (𝑥), f𝑐 (𝑦)) when the distance is small, and solving the

problem in 𝐻𝑘 space is usually much easier and offers a sublinear 𝑂 (log|𝑌 |) algorithm.

Various LSH algorithms have been proposed for different distance functions. These

include 𝐿2 (Euclidean) distance (Andoni and Indyk, 2006), cosine similarity (Charikar,

2002) and more recently, inner product (Neyshabur and Srebro, 2015; Shrivastava and P.

Li, 2014), among others.

Another way of dealing with NNS with dense vectors is using space partitioning meth-

ods (that partitions the space into a hierarchical tree of subspaces) (Dasgupta and Sinha,

2013). These methods include randomized 𝑘-d trees (Silpa-Anan and Hartley, 2008), in

which space is split at each level by a coordinate chosen randomly among those whose

data set in that subspace shows the greatest variances. Multiple trees are constructed to

minimize searching approximation errors. Another method is the hierarchical 𝑘-means tree

(Nistér and Stewénius, 2006), which recursively cluster the dataset by 𝑘-means algorithm

into a tree where nodes in a common subtree are close in the space.

Space partition methods (constructing trees) suffer from a performance issue: at search

time, from the root node to the actual leaf, at every node encountered a similarity function

evalation has to be invoked for that node and the given query. Fast search on Hamming

distances are desired, leading to a new family of techniques called product quantization

(PQ) (Jégou, Douze, and Schmid, 2011), where the original high-dimensional space is
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Queries Q Question
↓ Neural encoder

Query representations R𝑄 R𝑑: Dense vectors

Candidates C Passages
↓ Neural encoder

Candidate representations R𝐶 R𝑑: Dense vectors

Scoring function 𝑆(·, ·) Dense inner product
Indexing structure Product quantization

Table 2.3: The three subproblems identified in a dense-vector based retrieval system.

decomposed into Cartesian products of subspaces, with each subspace quantized by 𝑘-

means. This achieves good search performance and efficient runtime. An improvement is

the optimized product quantization (OPQ) (Ge et al., 2013), where the space decomposition

is trained by a subset of the original dataset so that the space decomposition is less lossy.

Scalable NNS systems that supports millions to billions of candidates has been built, with

the notable example of FAISS (Johnson, Douze, and Jégou, 2017), which is used in this

thesis’ research.

2.2.5 Evaluation Metrics

To evaluate the performance of a ranking model, one usually takes the ground truth list

of candidates and compare it against the predicted list of candidates.

Commonly used metrics include mean average precision (MAP), mean reciprocal rank

(MRR), or precision and recall at 𝑘 (P@𝑘 , and R@𝑘). These metrics are computed by
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averaging the score for each query in a test set: for example, the MAP score is the average

of the average precision (AP) scores for each query in the test set.

These common metrics will be briefly described here, where the formula focuses on a

single query instead of the test set, since the score of the test set is the average of all the

scores of each query.

• Precision at k (P@𝑘): This is the proportion of the top-𝑘 candidate retrieved that

are actually relevant to the query. This is especially relevant to modern web-scaled

information retrieval tasks, where there are thousands of relevant documents with

respect to a specific query. Few users will read all of the returned documents, instead,

only the top 𝑘 are going to be read by users.

• Recall at k (R@𝑘): This is the proportion of the candidates that are relevant to the

query that are successfully retrieved in the top-𝑘 list. For triaging systems (e.g. in a

question answering system, the relevant passages for a query is very sparse), a high

R@𝑘 is desired since a high recall implies more relevant samples in the retrieved

candidates, thus benefitting downstream rerankers.

• Success at k (S@𝑘): This measures whether at least 1 relevant query is retrieved for

a given query. When averaged across queries in a test set, it serves as a kind of upper

bound for downstream models: if there is none retrieved in the triaging phase, no

downstream model can predict the correct result.

• Mean average precision (MAP): For a retrieval system that returns a ranked se-
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quence of candidates, it is desirable to consider to order in which the retrieved can-

didates are returned. Average precision is the average value of precision over the

interval of recall 𝑟 ∈ [0, 1]: AP =

∫ 1

0
𝑝(𝑟)d𝑟 . In practice, this integral is approxi-

mated by a sum
𝑘∑︂
𝑖=1

𝑝(𝑖)Δ𝑟 (𝑖), where 𝑝(𝑖) is the precision at cut-off 𝑘 in the retrieved

list, and Δ𝑟 (𝑖) is the change in recall from items 𝑖−1 to 𝑖. Thi sum is in turn equivalent

to the following formula, which is used for actual computation:

AP =
1
|𝐶 |

𝑘∑︂
𝑖=1

𝑝(𝑖)rel(𝑖) , (2.16)

where |𝐶 | is the number of relevant candidates, and rel(𝑖) ∈ {0, 1} indicates whether

the 𝑖-th returned candidate is relevant.

• Binary preference (b-pref): Buckley and Voorhees (2004) proposed the b-pref mea-

sure to address the problem of MAP not being stable under substantially incomplete

relevance judgments. Since the candidate sets are extremely large in lots of modern

applications, obtaining exhaustive annotation of relevance on the candidate set with

respect to a query is infeasible. B-pref, instead, only uses binary relevance judgments

to define the preference relation (any relevant candidate is preferred over any non-

relevant candidate for a given query Buckley and Voorhees (2004)), and measures

how frequently relevant candidates are retrieved before non-relevant documents:

b-pref =
1
|𝑅 |

∑︂
𝑟∈𝑅

1 − ℎ(𝑟)|𝑅 | , (2.17)
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where 𝑅 is the non-exhaustively annotated relevant candidate set for a query, and

ℎ(𝑟) is the number of non-relevant candidates retrieved above candidate 𝑟.

These metrics can easily be computed using the standard trec_eval toolkit3 devel-

oped by the TREC community, and will be discussed in detail along with their use cases in

the remaining chapters.

3 https://github.com/usnistgov/trec_eval.
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Chapter 3

Uncertain Inference

In this chapter, we extend the traditional categorical classification task of natural lan-

guage inference to a scalar prediction task, namely uncertain natural language inference

(UNLI), where the model is asked to predict the human subjective probability of the hy-

pothesis happening given a premise. We explore various modeling techniques, such as

regression and ranking to the problem, illustrating modeling ability to predict subjective

probabilities that correlates well with humans, and finding that a ranking-based approach

is better at capturing uncertainty in natural language inference. This is a ranking problem

where both the queries and the candidates are natural language sentences, and the relevance

function being a probability measuring textual entailment.

Some material in this chapter has been published in T. Chen, Jiang, et al. (2020). Sec-

tion 3.3 are contributions of coauthors from the aforementioned article that serves as foun-

dations to later models, hence does not form a part of this thesis’ contributions.
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3.1 Introduction

Various entailment tasks have been used in the natural language processing community

for benchmarking systems’ capability of natural language understanding. The FraCaS con-

sortium offered the task as an evaluation mechanism, along with a small challenge set (R.

Cooper, Crouch, et al., 1996), which was followed by the recognizing textual entailment

(RTE) or natural language inference (NLI) tasks. In their first RTE-1 challenge (Dagan,

Glickman, and Magnini, 2005) the paper states:

We say that 𝑝 entails ℎ if, typically, a human reading 𝑝 would infer that ℎ is

most likely true. This somewhat informal definition is based on (and assumes)

common human understanding of language as well as common background

knowledge.

Subsequent modeling efforts for RTE models the problem as a binary classification

problem: given premise 𝑝 and hypothesis ℎ, determine whether 𝑝 entails ℎ or not, i.e.,

a classification problem where the label set is {ENT,¬ENT}, standing for entailment and

non-entailment.

This is later developed into classification problems where the set of discrete labels may

be larger than what is described above, e.g. a 3-class label set {ENT, NEU, CON} standing

for entailment, neutral, and contradiction. Despite differences between these and recent

NLI datasets (Marelli et al., 2014; Bowman et al., 2015; Williams, Nangia, and Bowman,

2018), NLI has remained a categorical prediction problem.

However, entailment inference is uncertain and has a probabilistic nature (Glickman,
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Dagan, and Koppel, 2005). Maintaining NLI as a categorical classification problem is

not ideal since coarse categorical labels mask the uncertain and probabilistic nature of

entailment inference. NLI pairs may share a coarse label, but the probabilities that the

hypotheses are entailed by their corresponding premises may vary greatly (see Table 3.1).

Hence, not all contradictions are equally contradictory and not all entailments are equally

entailed.

To take this probabilistic nature of entailment inference into account, we proposed un-

certain natural language inference (T. Chen, Jiang, et al., 2020), a refinement of NLI

that captures more subtle distinctions in meaning by shifting away from categorical labels

to the direct prediction of human subjective probability assessments. UNLI modifies the

definition for RTE above as:

We say that ℎ has subjective probability 𝑦 given 𝑝 if, typically, a human reading

𝑝 would infer that ℎ has a 𝑦 chance of being true. This somewhat informal def-

inition is based on (and assumes) common human understanding of language

as well as common background knowledge.

We illustrate that human-elicited probability assessments contain subtle distinctions on the

likelihood of a hypothesis conditioned on a premise, and UNLI captures these distinctions

far beyond categorical labels in popular NLI datasets (for examples, see Table 3.1).

We demonstrate how to elicit UNLI annotations. Using recent large-scale language

model pre-training, we provide experimental results illustrating that systems can often pre-

dict UNLI judgments, but with clear gaps in understanding. We conclude that scalar an-
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Premise〜 Hypothesis NLI UNLI

A man in a white shirt taking a picture
〜 A man takes a picture

ENT 100%

A little boy in a striped shirt is standing behind a tree
〜 The boy is hiding outside

ENT 90%

A man is holding a bus pole near a building
〜 The man is waiting for the bus

NEU 74%

Woman reaching for food at the supermarket
〜Woman is reaching for frozen corn at the store

NEU 0.1%

A smiling child is standnig behind a tree
〜 A man is eating a hotdog

CON 4%

Man laying on a platform outside on rocks
〜 Man takes a nap on his couch

CON 0%

Table 3.1: Probability assessments on NLI pairs. The NLI and UNLI columns respectively
indicate the categorical label (from SNLI) and the subjective probability for the correspond-
ing pair.

notation protocols should be adopted in future NLI-style dataset creation, which should

enable new work in modeling a richer space of interesting inferences.

3.2 Related Work

The probabilistic nature and the uncertainty of natural language inference has been

considered from a variety of perspectives. The notion of probabilistic entailment has been

floating around in recent literature, as is first defined in Glickman, Dagan, and Koppel

(2005) for lexical inference:

We say that 𝑝 probabilistically entails ℎ (denoted as 𝑝 〜 ℎ) ... if 𝑡 increases

the likelihood of ℎ being true, i.e. 𝑃(Trℎ = 1 | 𝑝) > 𝑃(Trℎ = 1), ... Once
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Likert Scale Pavlick and Callison-Burch (2016) S. Zhang, Rudinger, et al. (2017)

1 definite contradiction impossible
2 likely contradiction technically possible
3 neutral plausible
4 likely entailment likely
5 definite entailment very likely

Table 3.2: Labels used by prior work for eliciting Likert-scaled inference annotations.

knowing that 𝑝 〜 ℎ, 𝑃(Trℎ = 1) serves as a probabilistic confidence value for

ℎ being true given 𝑝.1

Additionally, A. Lai and Hockenmaier (2017) noted how predicting the conditional prob-

ability of one phrase given another would be helpful in predicting textual entailment. Our

UNLI work is an answer to this call: we proposed methods to annotate data and the model

this direct probabilistic confidence.

There are other prior work (Pavlick and Callison-Burch, 2016; S. Zhang, Rudinger,

et al., 2017) that sought to extend the 3-class classification to more fine-grained inference

using a Likert scale from 1 to 5. These two papers elicited ordinal annotations reflecting

likelihood judements, but then collapsed the annotations into coarse categorical labels for

modeling. Their chosen labels are listed in Table 3.2. We could see that the labels used

by S. Zhang, Rudinger, et al. (2017) are more probabilistically oriented than the set used

by Pavlick and Callison-Burch (2016), and our work can be viewed as an extension to S.

Zhang, Rudinger, et al. (2017): we directly elicit probabilistic scores.

To sum up, various historical textual inference tasks can be summarized in Table 3.3.

1 Notations are slightly changed to accomodate to the notations used throughout this thesis.

33



Task Input Output

RTE-1 (Dagan, Glickman, and Magnini, 2005) 𝑝, ℎ ∈ S 𝑦 ∈ Y = {¬ENT, ENT}
RTE-4 (Giampiccolo et al., 2008) 𝑝, ℎ ∈ S 𝑦 ∈ Y = {CON, UNK, ENT}
OCI (S. Zhang, Rudinger, et al., 2017) 𝑝, ℎ ∈ S 𝑦 ∈ Y = {1, 2, 3, 4, 5}
UNLI (T. Chen, Jiang, et al., 2020) 𝑝, ℎ ∈ S 𝑦 ∈ Y = [0, 1]

Table 3.3: Formulation of the family of entailment tasks.

Vulić et al. (2017) proposed graded lexical entailment, which is similar to our idea

but applied to lexical-level inference, asking the question “to what degree 𝑥 is a type of 𝑦”.

This could be seen as a probabilistic version of the logical form 𝑥 → 𝑦, given 𝑥 and 𝑦 are

considered as semantic predicates.

Lalor, Wu, and H. Yu (2016) and Lalor, Wu, Munkhdalai, et al. (2018) tried capturing

the uncertainty of each natural language inference pair by item response theory (IRT),

showing fine-grained differences in discriminative power in each label.

Pavlick and Kwiatkowski (2019) recently argued that models should “explicitly capture

the full distribution of plausible human judgments” as plausible human judgments cause

inherent disagreements. Our concern is orthogonal to theirs, as we are interested in the

uncertain and probabilistic nature of NLI. We are the first to propose a method for direct

elicitation of subjective probability judgments on NLI pairs and direct prediction of these

scalars, as opposed to reducing to categorical classification.

Recent work have also modeled the uncertainty of other semantic phenomena as direct

scalar regression (and collected scalar versions of data for them) instead of categorical

classification, e.g. factuality (Lee, Artzi, et al., 2015; Stanovsky et al., 2017; Rudinger,

34



White, and Van Durme, 2018), and semantic proto-roles (Teichert et al., 2017). These

efforts shares the same spirit as our work towards semantic modeling: taking uncertainty

of natural language semantics into account.

Plausiblity tasks such as COPA (Roemmele, Bejan, and Gordon, 2011) and ROCStories

(Mostafazadeh et al., 2016) ask models to choose the most probable examples given a con-

text, capturing relative uncertainty between examples, but do not force a model to predict

the probability of any hypothesis ℎ given premise 𝑝. Z. Li, T. Chen, and Van Durme (2019)

viewed this plausibility task as a learning to rank problem, where the model is trained to

assign the highest scalar value to the most plausible outcome given context. Our work can

be viewed as a variant to this, with the score being an explicit human probability judgement

instead of a latent score that is not interpretable.

Linguists such as Van Eijck and Lappin (2012), Goodman and Lassiter (2015), R.

Cooper, Dobnik, et al. (2015) and Bernardy et al. (2018) have described models for natu-

ral language semantics that introduce probabilities into the compositional, model-theoretic

tradition begun by those such as Davidson (1967) and Montague (1973). These efforts

propose new frameworks for modeling language, with examples for a fragment of the lan-

guage, relying on manual transduction into a target meaning representation. Whereas they

propose probabilistic models for interpreting language, we are concerned with illustrating

the feasibility of eliciting probabilistic judgements on examples through crowdsourcing,

and contrasting this with prior efforts that were restricted to limited categorical label sets.

Much work in AI (e.g., Garrette, Erk, and Mooney (2011)) proposes general language
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understanding systems with formal underpinnings based wholly or in part on probabilities.

Here our focus is specifically on (U)NLI, as a motivating task for which we can gather data.

3.3 Data

We construct a UNLI dataset by eliciting subjective probabilities from crowdsource

workers (Mechanical Turk) on presented premise-hypothesis pairs: Annotators are asked

to estimate how likely the situation described in the hypothesis sentence would be true

given the premise.

No new NLI premise-hypothesis pairs are elicited or generated, as our focus is on the

uncertainty aspect of NLI. Owing to its familiarity within the community, we choose to

illustrate UNLI via re-annotating a sampled subset of SNLI (Bowman et al., 2015) across

the three categories CON / NEU / ENT.

For examples taken across the three categories CON / NEU / ENT we elicit a probability

annotation 𝑦 ∈ [0, 1], resulting in what we will call u-SNLI (Uncertain SNLI).

We preferred SNLI over MultiNLI (Williams, Nangia, and Bowman, 2018) for this

work owing to SNLI containing a subset of examples for which multiple NEU hypotheses

were collected per premise. Pavlick and Kwiatkowski (2019) reported a wide range of

ordinal likelihood judgments collected across SNLI NEU examples, and so we anticipated

these multi-neutral premise examples to be good fodder for illustrating our points here.

There are 7,931 distinct premises in the training set of SNLI that are paired with 5 or
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Premise〜 Hypothesis SNLI U-SNLI

A man is singing into a microphone.
〜 A man performs a song. NEU 0.946
〜 A man is performing on stage. NEU 0.840
〜 A male performer is singing a special and meaningful song. NEU 0.152
〜 A man performing in a bar. NEU 0.144
〜 A man is singing the national anthem at a crowded stadium. NEU 6.18×10−3

Table 3.4: A premise in SNLI train, whose 5 hypotheses are annotated with subjective
probabilities in u-SNLI.

more distinct NEU hypotheses: we take these 5 for each premise in this subset as prompts

in elicitation (We believe that this is the subset of SNLI that is the hardest in terms of un-

certainty – it contains the most nuanced and subtle differences between the annotations),

resulting in 39,655 NEU pairs, with additional 15,862 CON and ENT pairs combined. Al-

together we call this our training set, with 55,517 pairs containing 7,931 distinct premises.

One such training example is shown in Table 3.4. Dev and test sets were sampled from

SNLI dev and test respectively, again with heavy emphasis on NEU examples (see Ta-

ble 3.5).

3.3.1 Annotation

Our data annotation process was inspired by the Efficient Annotation of Scalar Labels

(EASL) framework of Sakaguchi and Van Durme (2018), which combines notions of direct

and relative assessments into a single crowd-sourcing interface. Groups of items are put

into lists of size 𝑘 , where 𝑘 such items are presented to a user in a single page view, each

item paired with a slider bar (for example, one may present 𝑘 = 5 distinct items on one page
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Partition Breakdown SNLI U-SNLI

train

Distinct premises 151k 7,931
ENT hypotheses 183k 7,931
NEU hypotheses 183k 39,655
CON hypotheses 183k 7,931
Total P-H pairs 550k 55,517

dev

Distinct premises 3,319 2,647
ENT hypotheses 3,329 162
NEU hypotheses 3,235 2,764
CON hypotheses 3,278 114
Total P-H pairs 10k 3,040

test

Distinct premises 3,323 2,635
ENT hypotheses 3,368 156
NEU hypotheses 3,219 2,770
CON hypotheses 3,237 114
Total P-H pairs 10k 3,040

Table 3.5: Statistics of our u-SNLI dataset.

view). The slider bar enables direct assessment by the annotator per item. The interface

has an implicit relative assessment aspect in that performing direct assessment judgments

of multiple items placed visually together in a single page view is meant to encourage

cross-item calibration of judgments. Our individual items were premise hypothesis pairs,

with instructions requesting a probability assessment (see Figure 3.1).

Annotators were asked to estimate how likely the situation described in the hypothesis

sentence would be true given the premise. Example pairs were provided in the instructions

along with suggested probability values (see Figure 3.2 for three such examples). Annota-

tors were recommended to calibrate their score for a given element taking into account the

scores provided to other elements in the same page view.
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Figure 3.1: An example of our annotation interface.

Figure 3.2: Three examples from the instructions.

Interface For each premise-hypothesis pair, we elicit a probability assessment in the

interval [0, 1] from annotators using an interface shown in Figure 3.1, in contrast to the

uniform {1, · · · , 100} scale employed in the original EASL protocol. We modify the in-

terface to allow finer-grained values near 0.0 and 1.0, following findings that humans are

especially sensitive to values near the ends of the probability spectrum (Tversky and Kah-

neman, 1981).2 We also use a more casual “1 in 𝑥” probability representation instead of the

percentile representation for probability less than 0.5, as our pilot experiments suggested

2This is called the certainty effect: more sensitivity to the difference between, e.g., 0% and 1% than 50%
and 51%.
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Figure 3.3: Our logistic transformation function.

this would lead to more reliable annotations near 0.0. Annotators were presented a numeric

value based on a non-linear projection of the slider position (𝑥 ∈ {0, · · · , 10000}):

𝑓 (𝑥) = 1
1 + exp −𝛽(𝑥−5000)

100

(3.1)

We ran pilots to tune 𝛽, finding that people often choose far lower probabilities for

some events than was intuitive upon inspection, (e.g., just below 50%). Therefore, we

employed different 𝛽 values depending on the range of [0, 0.5] or (0.5, 1] (Figure 3.3).

Only the transformed probability score is revealed in the annotation interface, hence we are

still eliciting probability judgments directly from annotators.

Qualification Test Annotators were given a qualification test to ensure non-expert work-

ers were able to give reasonable subjective probability estimates. We first extracted seven

statements from Book of Odds (Shapiro, Campbell, and Wright, 2014), and manually split

the statement into a bleached premise and hypothesis. We then wrote three easy premise-

hypothesis pairs with definite probabilities like (𝑝 = “A girl tossed a coin.”, ℎ = “The coin

comes up a head.”, probability: 0.5). We qualify users that meet both criteria: (1) For the
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three easy pairs, their annotations had to fall within a small error range around the cor-

rect label 𝑦, computed as 𝛿 = 1
4 min{𝑦, 1− 𝑦}. (2) Their overall annotations have a Pearson

𝑟 > 0.7 and Spearman 𝜌 > 0.4. This qualification test led to a pool of 40 trusted annotators,

which were employed for the entirety of our dataset creation.

Incremental Annotation Sakaguchi and Van Durme (2018) explored iterative anno-

tation strategies where similar valued items from previous rounds were more likely to be

placed together in subsequent rounds, meant to encourage increasingly more fine grain

distinctions from annotators.

Each item was doubly annotated. In the case where the difference between the first two

annotations on the raw slider bar {0, · · · , 10000} was greater than 2000, we elicited a third

round of annotation. After annotation, the associated probability to a pair was the median

of gathered responses.

Many NEU items in the SNLI can be roughly seen as sampling from a very large con-

dition set therefore should have small probabilities near 0. However, the beta-distribution

based back-end of original EASL discourages this as it tends to push labels back to the

middle of its bounded support. Thus we replaced EASL’s Bayesian Updating back-end

with median calculation (instead of mean which is numerically identical to EASL’s score

response, as median is more stable when annotation number is small). Also, we select items

to be re-annotated according to minimum difference between previous annotations instead

of the distribution variance based criteria of original EASL as it is over-selecting items with
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probability in the middle. To be specific, in each round for any premise-hypothesis pair with

𝑁 existing annotations corresponding to raw slider bar positions {𝑝1, 𝑝2, · · · , 𝑝𝑁 }, we use

the minimum step difference min1≤𝑖< 𝑗≤𝑁 |𝑝𝑖 − 𝑝 𝑗 | as the uncertainty measure of an ele-

ment. For elements with the largest 𝑘 uncertainty, another additional round of annotation is

performed. In our implementation we first do two rounds of annotation, therefore for each

pair at most 3 annotations are elicited. The median of these 2 or 3 is chosen as the final

score.

3.3.2 Data Analysis

We plot the resultant median and quartile for each of the 3 categories of SNLI under our

U-SNLI training set (Figure 3.4), showing the wide range of probability judgments elicited.

Figure 3.4: Distribution of U-SNLI training set, illustrating median and quartile for each of
the 7 categories (ENT / NEU1:5 / CON) under our scalar probability scheme. NEU𝑖 denotes
the set of NEU samples labeled as the 𝑖-th least likely among the 5 hypotheses paired with
each premise. Light / dark shade covers 96% / 50% of each category.

Our labels show a reasonable gradation among element pairs. In some examples, the

subjective probability assessments suggest common sense based inference, e.g., “A woman
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is at the beach” has a 50% chance of being true knowing that “A person is at the beach

while the sun sets.”

3.4 Models for UNLI

Formally, given a premise 𝑝 ∈ S and a hypothesis ℎ ∈ S, a UNLI model 𝐹 : S ×

S → [0, 1] should output an uncertainty score �̂� ∈ [0, 1] of the premise-hypothesis pair

that correlates well with a human-provided subjective probability assessment. This is the

relevance function between premises and hypotheses.

We train regression UNLI models to predict the probability that a premise entails a hy-

pothesis, by modifying and extending existing neural architectures used for the traditional

categorical NLI. Specifically, we extend the sentence pair classifier3 in BERT (Devlin et al.,

2019), exploiting the advantages brought by large-scale language model pre-training.

We utilize the BERT model for sentence-pair classification, to exploit recent advance-

ments in large-scale language model pre-training. This original model for categorical NLI

first concatenates the premise and the hypothesis, with a special sentinel token (CLS) in-

serted at the beginning and a separator (SEP) inserted after each sentence. After passing

this concatenated token sequence to the BERT encoder, take the encoding of the first (0th)

3 The neural architecture for MultiNLI (Williams, Nangia, and Bowman, 2018) in BERT (Devlin et al.,
2019).
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sentinel (CLS) token,

f (𝑝, ℎ) = BERT(CLS ; 𝑝 ; SEP ; ℎ ; SEP) [0] , (3.2)

and pass the resulting feature vector f (𝑝, ℎ) through a linear layer to result in the 3 classes

for NLI.

We modify this structure to accommodate our scenario: we change the last layer of the

network from the 3-dimensional output to a scalar output – the logit score �̂�. A sigmoid

function 𝜎 is used as the last layer (so that the output lies in [0, 1], as any probability

should).

𝐹 (𝑝, ℎ) = 𝜎(wTf (𝑝, ℎ)). (3.3)

3.4.1 Regression Model

The model is trained with logistic regression instead of a cross-entropy classification

loss:4

𝐿log( �̂�, 𝑦) = 𝑦 log𝜎( �̂�) + (1 − 𝑦) log(1 − 𝜎( �̂�)) , (3.4)

where 𝑦 is the gold probabilistic judgement from the training set.

4We also tried the linear setting, where we directly use the output of the last layers as the prediction to
the slider bar location and train using 𝐿2 loss. It yielded no significant differences.
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3.4.2 Ranking Model

Since we focus on the uncertainty of NLI, we alternatively approach the problem as a

learning to rank problem. Instead of regression, we train a model that could correctly rank

the premise-hypothesis pairs according to the probability: ENT ≻ NEU ≻ CON. To this

end, we train the UNLI model 𝐹 : S × S → [0, 1] with a margin-based loss (Weston and

Watkins, 1999): ∑︂
𝑦𝑖≻𝑦 𝑗

max{0, b − 𝐹 (𝑝𝑖, ℎ𝑖) + 𝐹 (𝑝 𝑗 , ℎ 𝑗 )} , (3.5)

where b is a constant margin hyperparameter. This is to say, the model learns to assign a

higher score for 𝐹 (𝑝, ℎ) than 𝐹 (𝑝′, ℎ′) if 𝑡𝑖 ≻ 𝑡 𝑗 , ideally the gap being larger than b. We

also experiment with a linear margin that is proportional to their difference:

∑︂
𝑦𝑖≻𝑦 𝑗

max{0, b · (𝑦𝑖 − 𝑦 𝑗 ) − 𝐹 (𝑝𝑖, ℎ𝑖) + 𝐹 (𝑝 𝑗 , ℎ 𝑗 )} , (3.6)

where the margin b · (𝑦𝑖 − 𝑦 𝑗 ) depends on the label. We term this as the linear margin case,

and can be seen as a special case of structured SVMs (Tsochantaridis et al., 2005).

Preference Pairs However, the summation in Equation 3.5 is over 𝑅 = {(𝑖, 𝑗) | 𝑦𝑖 ≻

𝑦 𝑗 }, which unfortunately has a computationally infeasible O(𝑁2) complexity, where 𝑁 is

the number of samples in the dataset. Owing to the discussion in Chapter 2 about preference

pairs, we take the summation over subsets:

• (1) Shared-premise pairs: data pairs with identical premises are included — these
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pairs rank the probability of different hypotheses given the same premise:

𝑅1 = {(𝑖, 𝑗) | 𝑝𝑖 = 𝑝 𝑗 ∧ 𝑦𝑖 ≻ 𝑦 𝑗 }; (3.7)

• (2) Cross-premise pairs: For each sample 𝑖, we randomly sample 𝐾 other samples

𝑆𝑖 with different premises and lower probability: 5

𝑅2 = {(𝑖, 𝑗) | 𝑗 ∈ 𝑆𝑖 ∧ 𝑦𝑖 ≻ 𝑦 𝑗 }. (3.8)

The union 𝑅1 ∪ 𝑅2 is used as training set, hence reducing the complexity to O(𝐾𝑁).

Our experiments found that 𝐾 = 1 is better than no cross-premise pairs, but 𝐾 = 2

does not lead to further improvement.

3.4.3 Metrics

We compute Pearson correlation (𝑟), the Spearman rank correlation (𝜌), and the mean

square error (MSE) between y and �̂� as the metrics to measure the performance of UNLI

models. Pearson 𝑟 measures the linear correlation between the gold probability assessments

and model’s output; Spearman 𝜌 measures the ability of the model ranking the premise-

hypothesis pairs with respect to their subjective probability; MSE measures whether the

model can recover the subjective probability value from premise-hypothesis pairs. A high

𝑟 and 𝜌, but a low MSE is desired.
5 We skip this for CON samples in SNLI since there are no samples with lower probability.
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3.5 Results & Analyses

3.5.1 Hypothesis-only baselines

Owing to the concerns raised with annotation artifacts in SNLI (Gururangan et al.,

2018; Poliak et al., 2018; Tsuchiya, 2018), we include a hypothesis-only baseline that only

encodes hypotheses.

Under our formulation of UNLI, the hypothesis-only baseline takes a more interesting

interpretation: given hypothesis ℎ, the hypothesis-only UNLI score 𝐹 (∅, ℎ) can be consid-

ered as the subjectively probability of ℎ happening regardless of context: with an abuse of

notation, we could say that this is essentially marginalizing out all possible premises.

Table 3.6 reports results on u-SNLI dev and test sets. Just training on 55,517 u-SNLI

examples yields a 62.71% Pearson 𝑟 on test. The hypothesis-only baseline achieved a

correlation around 40%. This result corroborates the findings that a hidden bias exists

in the SNLI dataset’s hypotheses, and shows this bias may also exist in u-SNLI. This is

unsurprising because u-SNLI examples are sampled from SNLI.

Hyp-only Full-model

Dev Test Dev Test

𝒓 0.376 0.412 0.638 0.627
𝝆 0.385 0.417 0.641 0.630

MSE 0.109 0.106 0.075 0.078

Table 3.6: Metrics for training on u-SNLI.
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3.5.2 Human Performance

We elicit additional annotations on u-SNLI dev set to establish a randomly sampled

human performance. We use the same annotators as before but ensure each annotator has

not previously seen the pair they are annotating. We average the scores from three-way

redundant elicitation. This setting approximates the performance of a randomly sampled

human on u-SNLI, and is therefore a reasonable lower bound on the performance one

could achieve with a dedicated, trained single human annotator. Under this setting it yields

𝑟 = 0.6978, 𝜌 = 0.7273, and MSE = 0.0759: our regression model trained on u-SNLI is

therefore approaching human performance. While encouraging, the model fails drastically

for some examples.

3.5.3 Qualitative Error Analysis

Table 3.7 illustrates examples with large gaps between the gold probability assessment

and the BERT-based model output. The model seems to have learned lexicon-level infer-

ence (e.g., race cars 〜 going fast, but ignored crucial information (sits in the pits), and

fails to learn certain commonsense patterns (e.g. riding amusement park ride 〜 scream-

ing; man and woman drinking at a bar〜 on a date). These examples illustrate the model’s

insufficient commonsense reasoning and plausibility estimation.
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Premise〜 Hypothesis SNLI u-SNLI Predicted

A man perched on a row of aquariums is using
a net to scoop a fish from another aquarium.
〜 A man is standing by the aquariums. ENT 1.0 0.119

A man and woman are drinking at a bar.
〜 A couple is out on a date. NEU 0.755 0.377
Couple walking on the beach.
〜 The couple are holding hands. NEU 0.808 0.308
An elderly woman crafts a design on a loom.
〜 The woman is a seamstress. NEU 0.923 0.197
Two girls riding an amusement park ride.
〜 The two girls are screaming. NEU 0.909 0.075

A man and woman sit at a cluttered table.
〜 The table is neat and clean. CON 4.91×10−4 0.262
A race car sits in the pits.
〜 The car is going fast. CON 2.88×10−7 0.724
A guy is standing in front of a toilet with a coffee
cup in one hand and a toilet brush in the other.
〜 A man is attempting to brew coffee. CON 8.32×10−6 0.504

Table 3.7: Selected u-SNLI dev examples where BERT predictions greatly deviate from
gold assessments.

3.5.4 Pre-training with SNLI

Can we leverage the remaining roughly 500,000 SNLI training pairs that only have

categorical labels? We devise two pre-training methods.

Surrogate Regression One method would be to train a categorical NLI model on SNLI

and when fine-tuning on u-SNLI, replace the last layer of the network from a categorical

prediction with a sigmoid function.6 However, a typical categorical loss function would not

6 This is similar to how babies pre-train on SNLI, then fine-tune the model using their Add-One pairs.
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take into account the ordering between the different categorical labels.7 Instead, we derive a

surrogate function 𝑠 : T → [0, 1] that maps SNLI categorical labels 𝑡 ∈ {ENT, NEU, CON}

to the average score of all u-SNLI training annotations labeled with 𝑡 in SNLI.8

We use this mapping to pre-train a regression model on the SNLI training examples not

included in u-SNLI. We also fine-tune the model on u-SNLI’s training set. Table 3.6 reports

the results evaluated on u-SNLI’s dev and test sets. The model trained on the roughly

500𝐾 mapped SNLI examples, performs much worse than when trained on just about 55𝐾

u-SNLI examples.

Ranking on SNLI As we have noted before, under our entailment relevance function,

we should have ENT ≻ NEU ≻ CON. Hence we could directly derive a ranking preference

pair set from SNLI. Given the SNLI dataset SNLI = {(𝑝, ℎ, 𝑦)} where 𝑝, ℎ ∈ S and

𝑦 ∈ {ENT, NEU, CON}, we construct the preference pair set:

RSNLI = {(𝑝, ℎ+, ℎ−) | (𝑝, ℎ+, 𝑦+), (𝑝, ℎ−, 𝑦−) ∈ SNLI, 𝑦+ ≻ 𝑦−} , (3.9)

then apply a pairwise ranking loss:

𝐿 =
∑︂

(𝑝,ℎ+,ℎ−)∈RSNLI

max{0, bpretrain − 𝐹 (𝑝, ℎ+) + 𝐹 (𝑝, ℎ−)} . (3.10)

Note that the margin hyperparameter bpretrain is different from the linear margin b in Equa-

7 That the score of ENT > score of NEU > score of CON.
8 𝑠 : {ENT ↦→ 0.9272; NEU ↦→ 0.4250; CON ↦→ 0.0209}.
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Setting Dev Test

𝒓 𝝆 MSE 𝒓 𝝆 MSE

SNLI (Surrogate regression) 0.520 0.524 0.093 0.496 0.523 0.097
SNLI (Ranking) 0.545 0.533 0.093 0.539 0.538 0.095
u-SNLI (Ranking) 0.623 0.634 0.087 0.611 0.623 0.089
u-SNLI (Regression) 0.638 0.641 0.075 0.627 0.635 0.078

+ SNLI regression pre-training 0.676 0.681 0.069 0.659 0.671 0.073
+ SNLI ranking pre-training 0.680 0.683 0.068 0.665 0.675 0.072

Table 3.8: Metrics of the prediction models under various configurations for u-SNLI.

tion 3.5 or Equation 3.6: This b is for pre-training purposes, and different from what is

used for fine-tuning on u-SNLI.

When we pre-train the model on the SNLI using either of the two pre-training methods

(surrogate regression and ranking) and fine-tune on u-SNLI, results noticeably improve (see

Table 3.8). This improvement is akin to the Phang, Févry, and Bowman (2018)’s finding

that many NLI datasets cover informative signal for different tasks, explaining why pre-

training on NLI can be advantageous. Here, an impoverished version of UNLI is helpful.

Additionally, in Table 3.8, we could find that when training on u-SNLI alone, ranking

and regression produces similar Pearson or Spearman coefficients, but the actual value

measured under MSE is better under a regression loss (0.078 < 0.089). However, for SNLI,

ranking produces better correlation with human judgements than the surrogate regression

(𝑟: 0.539 > 0.496): Since we only know the ranking between hypotheses in UNLI but do

not know the actual the relevance scores of SNLI inference pairs, using a pairwise ranking

loss is the more suitable choice. When ranking on SNLI is used as pre-training, it also leads

to slight performance improvements even after fine-tuning on u-SNLI (𝑟: 0.665 > 0.659).
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(a) Left: SNLI surrogate regression, 𝑟 = 51.98%;
Right: After fine-tuning with U-SNLI, 𝑟 = 67.62%.
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(b) Left: SNLI learning to rank, 𝑟 = 54.51%;
Right: After fine-tuning with U-SNLI, 𝑟 = 67.97%.

Figure 3.5: Heatmap of the predictions on U-SNLI dev set under the pretrained (left) and
the fine-tuned (right); regression pre-trained (top) and ranking pre-trained (bottom) models.
Prediction frequencies are normalized along each gold label row.

3.5.5 Model behavior

Figure 3.5 depicts the model behavior when training just on SNLI or fine-tuning with

u-SNLI. When using the original SNLI data, under the surrogate regression setting, the

model’s prediction concentrates on the 3 surrogate scalar values of the 3 SNLI classes.

After fine-tuning on u-SNLI, the model learns smoother predictions for premise-hypothesis

pairs, supported by the superior Pearson correlation score. The darker boxes in bottom-
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Preteen girl with blond-hair plays with bubbles near a vendor stall in a mall courtyard.
〜0.162 The girl is ten.
Alternatives: a newborn | one | two | three | · · · | ten | eleven | twelve

Three young men standing in a field behind a barbecue smiling each giving the two
handed thumbs up sign.
〜0.525 Three men are barbecuing lunch.
Alternatives: breakfast | lunch | dinner

Table 3.9: Examples from SNLI prompting a question of logical coherence of crowd-
sourced probabilities.

right corner of the heatmaps indicate high accuracy on samples with ≈ 1.0 gold u-SNLI

labels and ≈ 1.0 model predictions, signifying that our UNLI models are very good at

recognizing entailments.

3.5.6 A Case Study on Coherence

We defined UNLI following RTE, in terms of human responses to ℎ given 𝑝. Are these

responses logically coherent when taken over a larger space of hypotheses? We are eager

to consider future work that explores the connections between predicting crowdsourced

annotations on NLI-inspired items, with the rich study of epistemology and uncertainty in

philosophy and psychology. Here we limit ourselves to two cases (see Table 3.9) that probe

the logical coherence of our crowd-elicited probabilities.

Both examples were selected from SNLI train owing to the premise establishing the

potential for a common-sense, finitely enumerable set of alternatives. We manually con-

structed alternatives such that they were: (1) logically mutually exclusive; and (2) one of

the hypotheses must reasonably hold given the premise. Specifically, a preteen must have
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Figure 3.6: Subjective probability for the preteen girl (left) and the barbecued meal (right).

an age in the range of 0 ... 12, and the most common-sense alternatives to lunch include

breakfast and dinner. We distribute these constructed pairs into separate HITs making sure

that no annotator is viewing two related premise-hypothesis pairs at the same time, em-

ploying 6-way redundancy. We observe that the sum of resultant scores exceeds 1.0 in both

cases. That humans can be irrational in their probability assignments is well known, and

therefore this result is neither a flaw nor unexpected: in UNLI we have embraced human

judgments, taking seriously the phrasing of the original RTE task. Future works may con-

sider how strongly we wish Natural Language Understanding (NLU) models to reproduce

human incoherence.
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3.6 Conclusion

We proposed Uncertain Natural Language Inference (UNLI), a new task of directly

predicting human likelihood judgments on NLI premise-hypothesis pairs. In short, we have

shown that not all NLI contradictions are created equal, nor neutrals, nor entailments. We

demonstrated that (1) eliciting supporting data is feasible, and (2) annotations in the data

can be used for improving a scalar regression model beyond the information contained in

existing categorical labels, using recent contextualized word embeddings, e.g. BERT.

We proposed models based on regression and ranking, and utilized ranking methods

on the coarser-annotated traditional NLI datasets (e.g. SNLI) as pre-training, leading to

improvements on UNLI model performance.

Humans are able to make finer distinctions between meanings than is being captured

by current annotation approaches; we advocate the community strives for systems that can

do the same, and therefore shift away from categorical NLI labels and move to something

more fine-grained such as our UNLI protocol.

This concludes the discussion of ranking in the context of natural language inference

where we take the uncertainty nature of human language into account. In the next chap-

ter, we turn our focus to ranking short documents with respect to how likely they evoke

situation frames.
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Chapter 4

Predicting Situation Frames

In this chapter we switch the ranking target from another text snippet (as in UNLI) to a

label: ranking the relevance a text snippet to a specific label in a designated label set. We

will focus on the task of predicting situation frames, and show how ranking methods can

be used for these types of problems. This enables NLP systems’ capability to respond to

incidents like a natural disaster, or a regime change, within a short time of the emergence

of that incident, especially under low-resource language scenarios.

Some materials presented in this chapter can be found in the non-peer-reviewed archive

from NIST LoReHLT19 evaluation program (M. Zhang et al., 2019). Section 4.3 con-

tains background material contributed by other performers in the LoReHLT19 evaluation

program, hence should not be considered as contribution of this thesis.
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4.1 Introduction

Most of the world’s languages are under-resourced for developing human language

technologies, but the lack of linguistic resources does not correlate with the lack of need for

such technologies (Rehms and Uszkoreit, 2012). The DARPA Low Resource Languages

for Emerging Incidents (LORELEI) program aims to advance the technologies of NLP

in these low-resource languages. The program is especially concerned with the ability

to obtain situational awareness (Strassel and Tracey, 2016; Strassel, Bies, and Tracey,

2017): How can an NLP system respond to incidents like a natural disaster, or a regime

change, within a short time of the emergence of that incident, under the scenario where the

information obtained are all in low-resource languages?

This need leads to the development of an evaluation program called Situation Frames

(SF). SF data labels basic information relevant to humanitarian aid and disaster relief

(HADR) scenarios, so that systems can respond to actional information contained in these

HADR-related documents. Mission planners might require these information in order to

mount a quick response to these types of incidents (Griffitt et al., 2018). There are 11 SF

types defined in the evaluation program (see below) that serve as prediction targets.

To test the performance of these situation frame detection systems, the evaluation pro-

gram devised a schema where training data and test data do not overlap in languages: The

Representative Language Packs, containing large volumes of formal and informal text with

annotations to support situational awareness, are used as training datasets (e.g. English,

Bengali, Farsi, Amharic, etc.), whereas the Incident Languages (IL) Packs, containing
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manually labeled evaluation data designed to test system performance, are in one or more

surprise languages (e.g. Oromo, Ukrainian, Uyghur) that remain unknown until the start

of the annual evaluation (Strassel and Tracey, 2016).

No training data is provided for incident languages (ILs), since in the actual use of

these SF systems, data is unlikely to be available at the start of an incident involving a

low resource language. Systems must utilize techniques such as transfer learning and lan-

guage universals in order to rapidly respond to the need for situational awareness in a new

language (Griffitt et al., 2018).

In this section, the problem of SF prediction is cast as a multi-label regression problem

as opposed to conventional document classification: for each text snippet 𝑥, and for each

SF type 𝑦, the model outputs a confidence score 𝐹 (𝑥, 𝑦) that is representative of how much

the text snippet 𝑥 evokes a situation frame of type 𝑦.

We approach this with a learning-to-rank method, to synergize with our scalar annota-

tions. Scalar annotations on crowdsourcing platforms such as Amazon Mechanical Turk,

instead of categorical annotations, enables eliciting graded response that are crucial in

many NLP tasks (Sakaguchi and Van Durme, 2018). Since annotators may not have a pre-

existing or well-calibrated scale for the annotation of a specific task, we explore models that

take into account per-worker or per-HIT (Human Intelligence Task) biases via learning-to-

rank, leading to better performance on the SF prediction task.
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4.2 Task Definition

Given a collection of documents (in the form of text snippets), in the incident language

(IL) or English, a situation frame detection (SF) system is required to automatically identify

zero or more situation frames in the text snippet.

The type of situation frames, as defined in the NIST LoReHLT 2019 evaluation,1 con-

sists of the following need frame types. These frame types are defined by the LORELEI

project and from existing annotation schemes, i.e. MicroMappers (Imran et al., 2014).

• evac: Evacuation

• food: Food supply

• infra: Infrastructure

• med: Medical assistance

• search: Search/rescue

• shelter: shelter

• utils: Utilities/energy/sanitation

• water: Water supply

And the following issue frames:

• regimechange: Regime change

• crimeviolence: Civil unrest / widespread crime

• terrorism: Terrorism / extreme violence

Multiple needs or issues in a document leads to mulitple frames labeled as positive,

effectively turning the SF prediction problem to a multi-label prediction problem: given a
1 https://www.nist.gov/system/files/documents/2019/06/19/nist_lorehlt_2019_

evaluation_plan_v1.0.pdf.
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document 𝑥 in an incident language (IL), predict the set of possible SF types document 𝑥

may evoke, and the confidence score for each type predicted.

4.3 Background Discription

4.3.1 Data Collection

We collected scalar annotations (on the scale from 1 to 100 that indicates how much a

document evokes a specific need/issue) using the EASL annotation scheme (Sakaguchi and

Van Durme, 2018). The scalar annotation compensates for noisy annotations and inconsis-

tent thresholds between annotators or between HITs.

Sentence-level SF scalar labels are collected from the LoReHLT language pack data and

additional data constructed as part of the LoReHLT evaluation program,2 with additional

tweet collections of various high-profile incidents, including:

• 2011 volcanic explosions in Eritrea

• 2011 major droughts in East Africa

• 2013 major 7.7-scale earthquake in Iran near Pakistan border

• 2013 overthrow of Morsi and replacement by el-Sissi in Egypt

• 2013 Cycone Phallin in India

• 2014 brutal crackdown on student protesters in Ethiopia

• 2011 mass flooding in Turkey

• 2015 ISIS suicide-attack & shooting in Paris
2 This includes a tweet collection about incidents in Nepal from Douglas A. Jones of the MIT Lincoln

Laboratory.
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4.3.2 Embeddings

We use cross-lingual word embeddings (Artetxe, Labaka, and Agirre, 2016; Joulin et

al., 2018; Lample et al., 2018) as features, since they allow models trained on English SF

data to be applied to incident language (IL) documents. An off-line alignment method for

trainign cross-lingual word embeddings is used.

A set of monolingual word embeddings are trained using fastText with the skip-gram

setting (Mikolov et al., 2018). Incident language (IL) embeddings are trained from the

provided documents and then aligned them to centered and normalized English and Ben-

gali Wikipedia embeddings. The alignment methods used are MultiCCA (Ammar et al.,

2016) and RCSLS (Joulin et al., 2018). Dictionaries used to align the embeddings include

(1) Set0 category-I dictionary; (2) NI annotations; (3) aligned words extracted from Set0

parallel texts with fastAlign; (4) a Unimorph-derived dictionary. MultiCCA uses (1), (2),

(3), and (5), whereas RCSLS uses (1) and (3), based on intrinsic evaluations. We use

300-dimensional cross-lingual word embeddings for further experiments and discussions.

4.3.3 Scalar Annotations

Our training data based on EASL is gathered in batches of five (each batch forms a

HIT): a single page has five distinct messages, each of which are assigned a scalar value

from 1 ‘not present’ to 100 ‘present’. Instead of converting these values to binary judg-

ments for sake of training binary classification models, we explore the idea that at model
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training time we should not be building binary classifiers, but instead learning to rank con-

tent with respect to how likely they evoke a given SF type. In addition, we explore whether

different crowdsource annotators may differ significantly in their annotations (per-worker

bias), or even whether a single annotator may make use of the scalar range a little differently

from page to page (each batch of five, per-HIT bias).

4.4 Ranking Model

We explore these ideas by training models under a pairwise loss: given two messages

that were annotated under EASL, the two messages need to have derived scores whose gap

is proportional to the annotated scalar difference between the two messages. Additionally,

we employ a word-level attention with a “type” vector as the query (each SF is associated

with such a type vector, which is learned by the system), so that salient part of the message

will be attended.

Formally, given a specific SF type 𝑦, and a message 𝑥 = (𝑤1, · · · , 𝑤𝑛), an attended

representation x̃ of the message is computed as follows:

𝑎𝑖 (𝑦) ∝ exp(y · w𝑖) (4.1)

x̃(𝑦) =
𝑛∑︂
𝑖=1

𝑎𝑖w𝑖 (4.2)

where w𝑖 ∈ R𝑑 is the cross-lingual word embedding of word 𝑤𝑖, and y ∈ R𝑑 is a learned

type embedding of SF type. Here the dimension of the word embeddings 𝑑 = 300.
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This is similar to the span embedding method proposed by Lee, L. He, Lewis, et al.

(2017): where they used a fixed query vector to attend to a mention span to get a weighted

average of the word encodings in the span. Our method here is different in two ways:

(1) instead of a global fixed query vector, our vector depends on the target prediction SF

type: so that encodings salient to each SF type can be extracted separately instead of a

type-agnostic embedding; (2) We do not have a mention or text span here: the whole text

snippet is attended using the type vector.

A final score of the relevance of the document 𝑥 and SF type 𝑦 is obtained by combining

the type-specific document embedding and the type embedding using various matching

methods (Mou et al., 2016) and pass that through a 3-layer neural network. The last layer

is a sigmoid layer that converts the output to a score in [0, 1]:

𝐹 (𝑥, 𝑦) = 𝜎(FFNN( [x̃(𝑦) ; y ; x̃(𝑦) · y ; |x̃(𝑦) − y|])) (4.3)

Then given two messages 𝑥1 and 𝑥2 where 𝑥1 is more likely to evoke SF type 𝑦, we

employ a ranking loss (Weston and Watkins, 1999):

𝐿 (𝑥1, 𝑥2, 𝑦) = max{0, b − 𝐹 (𝑥1, 𝑦) + 𝐹 (𝑥2, 𝑦)} (4.4)

This loss encourages the model to learn that message 𝑥1 should be more likely (by a margin

of b) to evoke type 𝑦 than 𝑥2.

For example, given a SF type “food”, a message saying I’m hungry would need to be
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further away from a message like I’m bored, than a message like Food is good (question-

ably evoking a FOOD need, but not confidently). After training models to rank content under

each SF type, we calibrated our model scores against NI annotations to determine what the

final binary thresholds should be. Internal experiments suggested that training based pairs

of examples taken from single batches (pairs from the same page of five examples, by the

same annotator) led to the most robust model. We have remaining experiments to perform

to validate if this finding is robust, but our initial results were sufficiently promising to

employ this approach for some of our evaluations submissions.

4.4.1 Generation of Ranking Pairs

When using Equation 4.4 as our loss, a question arise: what (𝑥1, 𝑥2) pairs do we pick

as training data?

As we have discussed before, we explore per-worker biases and per-HIT biases here.

Let us assume that each annotation we gathered from EASL forms a 4-tuple in the form of

D = {(worker, hit, 𝑥, 𝑦, 𝑠)} , (4.5)

where worker and hit are string IDs that uniquely identifies an MTurk worker or a partic-

ular instance of HIT; 𝑥 is the document, 𝑦 is an SF type, and 𝑠 ∈ [0, 1] is the score workers

assigned to the relevance of document 𝑥 pertaining to SF type 𝑦.

We experiment with the following two ways of sampling the pairs:
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• Group by workers: Only sample documents 𝑥1 and 𝑥2 if they are annotated by the

same worker:

Rworker = {(𝑥1, 𝑥2, 𝑦) | 𝑠1 > 𝑠2 ∧ worker1 = worker2} (4.6)

This accounts for worker biases: Worker 𝐴 might be generally assigning higher

scores to documents, whereas worker 𝐵 may assign lower scores. By only training

on these pairs, the model only compares the annotations done by the same worker.

This might lead to a reduction in biases from workers.

• Group by HIT: Only sample documents 𝑥1 and 𝑥2 if they are annotated by the same

worker in the same HIT:

RHIT = {(𝑥1, 𝑥2, 𝑦) | 𝑠1 > 𝑠2 ∧ hit1 = hit2} (4.7)

Even for the same worker, they could exhibit different thresholds between HITs. We

can safely assume that in the same HIT, the annotations are generally well calibrated.

4.5 Experiments

We use the two sampling method (Group by worker / group by HIT) for ranking dis-

cussed above.

The data collected are randomly split into a training set (90%) and a dev set (10%).
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The training set consists of 53,296 samples, and the dev set 6,144 samples. Note that the

split for the two sampling method are different: for the “group by worker” case, we ensure

no overlap between workers in the training and dev set; similarly, for the “group by HIT”

case, there is no overlap between HITs.

Metrics Similar to UNLI, since the prediction target is scalar instead of categorical, we

use Pearson correlation coefficient to measure the linear correlation between the annota-

tions and the predictions.

Results Table 4.1 shows that for most of the situation frame types, ranking models based

on preference pairs in HITs are better than models trained on within-worker preference

pairs. Despite the larger size of the preference pair set used in training, we hypothesize that

grouping by HIT reduces inter-annotator and inter-HIT bias, leading the better correlation

between human annotations and model predictions.

4.6 Conclusion

We proposed a learning-to-rank method to detect situation frames in short documents.

Particularly, we explored the design choices when constructing the preference pairs for

ranking: namely grouping by worker IDs, and grouping by HIT IDs. While the current

results are not conclusive, we believe that these design choices affect how the model treats
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SF Type Group by worker Group by HIT

evac 0.495 0.567
food 0.582 0.649
infra 0.405 0.436
med 0.640 0.677

search 0.646 0.690
shelter 0.566 0.673
utils 0.598 0.561
water 0.508 0.574

regimechange 0.667 0.652
crimeviolence 0.674 0.732
terrorism 0.590 0.552

Table 4.1: The results on the internal dev set on the situation frame task.

per-worker biases and per-HIT biases, since taking these biases into account result in im-

provement in performance of a scalar prediction task.

Future modeling on similar tasks with scalar annotations (such as sentiment analysis,

sentence similarity, etc.) should consider modeling with explicit consideration of inter-

annotator and inter-HIT bias, as the ranking model in this chapter suggests.
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Chapter 5

Discriminative Retrieval

In this chapter, we propose a framework for discriminative information retrieval atop

linguistic features, trained to improve the recall of answer candidate passage retrieval, the

initial step in text-based question answering. We formalize this as an instance of linear

feature-based information retrieval, demonstrating significant improvement in recall for

candidate triage in question answering.

This is an instance of retrieval over sentences, where a given query is a natural language

question, with the candidate set being the set of all sentences in a corpus. Our model can be

considered as a bag-of-features approach, and the retrieval effectively reuses infrastructures

built for bag-of-words retrieval, therefore obtaining scalability similar to traiditional IR

techniques but with much richer feature representations.

Materials in this chapter have been published in T. Chen and Van Durme (2017).
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5.1 Introduction

Question answering (QA) with textual corpora is typically modeled as first finding a

candidate set of passages (sentences) that may contain an answer to a question, followed

by an optional candidate reranking stage, and then finally an information extraction (IE)

step to select the answer string (Greenwood, 2008; Yao, Van Durme, and P. Clark, 2013;

D. Chen et al., 2017). QA systems normally employ an information retrieval (IR) system to

produce the initial set of candidates, usually treated as a black box, bag-of-words process

that selects candidate passages best overlapping with the content in the question.

Recent efforts in corpus-based QA have been focused heavily on reranking, or answer

sentence selection: filtering the candidate set as a supervised classification task to single out

those that answer the given question. Extensive research has explored employing syntactic

or semantic hand-crafted features (Yih et al., 2013; M. Wang and Manning, 2010; Heilman

and Smith, 2010; Yao, Van Durme, Callison-Burch, et al., 2013), and recently using neural

networks with various architectures (L. Yu et al., 2014; Severyn and Moschitti, 2015; D.

Wang and Nyberg, 2015; Yin et al., 2016).

The shared aspect of all these approaches is that the quality of reranking a candidate set

is upper-bounded by the initial set of candidates: unless one plans on reranking the entire

corpus for each question as it arrives, one is still reliant on an initial IR stage in order to

obtain a computationally feasible QA system.

We propose a framework for performing this triage step for QA sentence selection and

other related tasks in sublinear time. Our method shows a log-linear model can be trained to
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optimize an objective function for downstream reranking, and the resulting trained weights

can be reused to retrieve a candidate set. The content that our method retrieves is what the

downstream components are known to prefer: it is trainable using the same data as em-

ployed in training candidate reranking. Our approach follows Yao, Van Durme, and P. Clark

(2013) who proposed the automatic coupling of QA sentence selection and IR by augment-

ing a bag-of-words query with desired named entity (NE) types based on a given question.

While Yao et al. showed improved performance in IR as compared with an off-the-shelf IR

system, the model was proof-of-concept, employing a simple linear interpolation between

bag-of-words and NE features with a single scalar value tuned on a development set, kept

static across all types of questions at test time. We generalize Yao, Van Durme, and P.

Clark (2013)’s intuition by casting the problem as an instance of classification-based re-

trieval (Robertson and Jones, 1976), formalized as a discriminative retrieval model (W. S.

Cooper, Gey, and Dabney, 1992; Gey, 1994; Nallapati, 2004) allowing for the use of NLP

features. Our framework can then be viewed as an instance of linear feature-based IR,

following Metzler and Croft (2007).

To implement this approach, we propose a general feature-driven abstraction for cou-

pling retrieval and answer sentence selection. Our experiments demonstrate state-of-the-art

results on QA sentence selection on the dataset of J. J. Lin and Katz (2006), and we show

significant improvements over a bag-of-words of baseline on a novel Wikipedia-derived

dataset we introduce here, based on WIKIQA (Yang, Yih, and Meek, 2015).
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5.2 Background

5.2.1 Discriminative Information Retrieval

Traditional information retrieval (IR) models viewed the retrieval problem as measuring

the similarity, often the cosine similarity, or the inner product, between two bag-of-words

vectors, i.e., between the query and the candidates. One of these standard functions used

for ranking is the Okapi BM25 (Robertson, Walker, et al., 1994), which is a variant of

the TF-IDF function. Recalling the formulation of BM25 (Equation 2.1) in Chapter 2, we

can see that the BM25 relevance function can be decomposed as an inner product of sparse

vectors in the form of

f𝑄 (𝑞) = {𝑡 : freq(𝑡, 𝑞) · idf (𝑡) | 𝑡 ∈ 𝑉} (5.1)

f𝐷 (𝑑) =
⎧⎪⎪⎨⎪⎪⎩𝑡 :

(𝑘1 + 1) · freq(𝑡, 𝑑)
freq(𝑡, 𝑑) + 𝑘1

(︂
1 − 𝑏 + 𝑏 · |𝑑 |avgdl

)︂
|︁|︁|︁|︁|︁|︁|︁ 𝑡 ∈ 𝑉

⎫⎪⎪⎬⎪⎪⎭ (5.2)

𝐹 (𝑞, 𝑑) = f𝑄 (𝑞) · f𝐷 (𝑑) (5.3)

One shortcoming of this vector-space model (VSM) is that it did not provide a theo-

retical basis for computing the optimum weights. The binary independence retrieval (BIR)

(Robertson and Jones, 1976) viewed IR as a classification problem that classifies the entire

collection of candidates into two classes: relevant and irrelevant. In the framework of BIR,
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a probability of 𝑃(𝑝, 𝑞) is computed and ranked to generate the retrieved list. In this view

of casting IR as a discriminative model, sophisticated machine learning techniques can be

leveraged.

W. S. Cooper, Gey, and Dabney (1992), Gey (1994), and Nallapati (2004) further for-

malized this framework into a logistic regression (log-linear) retrieval model. Another

prominent example of employing discriminative models in IR is by language modeling

(Ponte and Croft, 1998).

5.2.2 Question Answering Sentence Selection

There exists substantial previous work on question answering sentence selection, or

more generally, sentence pair modeling.

Syntactic and Semantic Analysis Bag of words representation with simple surface

form matching often results in poor predictive power, leading to prior work exploring syn-

tactic and semantic structures of the text. Bilotti et al. (2007) preprocessed the corpus with

a semantic parser and an NER system. These semantic analyses are expressed as structural

constraints on semantic annotations and keywords, and are translated directly into struc-

tured queries. Moldovan et al. (2007) transformed questions to logic representations based

on their syntactic, semantic and contextual information, utilizing a logic prover to perform

QA. Heilman and Smith (2010) and Yao, Van Durme, Callison-Burch, et al. (2013) used
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tree edit distance, and M. Wang, Smith, and Mitamura (2007) employed quasi-synchronous

grammars to match the dependency parse trees of the question and the answer sentence.

Lexical semantic features Instead of utilizing higher-level abstractions such as syn-

tactic and semantic analysis, another thread of previous work focussed on shallow lexical

semantic features. Yih et al. (2013) performed semantic matching based on a latent word-

alignment structure arising from WordNet. A. Lai and Hockenmaier (2014) utilized word

relations such as words being synonyms, antonyms, hypernyms and hyponyms to perform

a more fine-grained semantic overlap between sentences.

Neural methods for ranking L. Yu et al. (2014) and Severyn and Moschitti (2015)

proposed the use of convolutional neural networks (CNNs) to model question and answer

pairs, followed by Yang, Yih, and Meek (2015) with a related model and the introduction

of the WikiQA dataset. Tan, Xiang, and Zhou (2015) and D. Wang and Nyberg (2015)

made use of bidirectional LSTM networks to model question answer pairs. J. Rao, H. He,

and J. J. Lin (2016) used either CNNs or RNNs to encode sentences, but utilized a triplet

loss to learn to rank answer candidates. To better capture the interdependency between the

question answer sentence pairs, Yin et al. (2016) proposed a generic attention-based CNN

to model the sentence pairs for question answering, paraphrase identification and textual

entailment. Amiri et al. (2016) presented a pairwise context-sensitive autoencoder to com-

puting text pair similarity, and achieved state-of-the-art performance on answer reranking.
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All of these efforts were aimed at candidate set re-ranking, once an initial retrieval step had

been performed. P.-S. Huang et al. (2013) proposed to embed questions and the sentences

of a provided corpus together into a shared vector space, followed by an “argmax” opera-

tion at query time to seek the sentence maximizing cosine similarity: they give no details

on what is by default a linear operation in the size of the corpus, which is impractical for

large collections as compared to our sub-linear retrieval approach.

5.3 General Approach

5.3.1 Problem Formulation

Formally, given a candidate set 𝐶 = {𝑝1, · · · , 𝑝𝑁 }, a query 𝑞 and a relevance function

𝐹 (𝑞, 𝑝), an IR system retrieves the top-𝑘 items under the objective

arg top𝑘
𝑝∈𝐶

𝐹 (𝑞, 𝑝). (5.4)

If the function 𝐹 is simple enough (e.g. tf-idf ), it could be easily solved by traditional IR

techniques. However, tackling this problem with a complex 𝐹 via straightforward appli-

cation of supervised classification (e.g., recent neural network based models) requires a

traversal over all possible candidates, i.e. the corpus, which is computationally infeasible

for any reasonable collection.
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5.3.2 Linear Featurized Model

To tackle the problem state above, we elaborate our design of a linear featurized model.

Let f𝑄 (𝑞) refer to feature extraction on the query 𝑞, with corresponding candidate-

side feature extraction f𝑃 (𝑝) on the candidate, and finally f𝑄𝑃 (𝑞, 𝑝) extracts features from

a (query, candidate) pair is defined in terms of f𝑄 and f𝑃 via some form of composition

(defined later):

f𝑄𝑃 (𝑞, 𝑝) = 𝐶 (f𝑄 (𝑞), f𝑃 (𝑝)). (5.5)

From a set of query/candidate pairs we can train a model 𝑀 such that given the feature

vector of a pair (𝑞, 𝑝), its returning value 𝑓 (f𝑄𝑃 (𝑞, 𝑝)) represents the relevance score of

whether the passage 𝑝 answers the question 𝑞. In this work, the model is selected to be

linear with the feature weight vector 𝜽 , leading to the optimization problem

arg max
𝑝∈D

𝜽 · f𝑄𝑃 (𝑞, 𝑝). (5.6)

This is in accordance with the pointwise reranker approach, and is an instance of the

linear feature-based model of Metzler and Croft (2007).

Under specific compositional operations in f𝑄𝑃 the following transformation can be

made:

𝜽 · f𝑄𝑃 (𝑞, 𝑝) = t𝜽 (f𝑄 (𝑞)) · f𝑃 (𝑝). (5.7)
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Figure 5.1: A schematic diagram of discriminative IR.

This is elaborated in § 4. We project the original feature vector of the query f𝑄 (𝑞) to a

transformed version t𝜽 (f𝑄 (𝑞)): this transformed vector is dependent on the model param-

eters 𝜽 , where the association learned between the query and the candidate is incorporated

into the transformed vector. This is a weighted, trainable generalization of query expansion

in traditional IR systems.

Under this transformation we observe that the joint feature function f𝑄𝑃 (𝑞, 𝑝) is de-

coupled into two parts with no interdependency – the original problem in Equation 5.7 is

reduced to a standard maximum inner product search (MIPS) problem as seen on the

RHS of Equation 5.7. Under sparse assumptions (where the query vector and the candidate

feature vector are both sparse), this MIPS problem can be efficiently (sublinearly) solved
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using classical IR techniques (multiway merging of postings lists), where the index, instead

of being a bag-of-words model, became a bag-of-features model instead.

A schematic diagram of this approach can be found in Figure 5.1.

5.4 Feature Composition Algebra

In this section we will devise a feature composition algebra that allows for such specific

compositional operations. Some definitions will be introduced below.

5.4.1 Feature Vectors

A feature vector can be seen as an associative array (or in Python terminology, a Dict)

that maps features in the form “KEY:value” to real-valued weights (each feature KEY:value

will then be indexed to a unique ID so that the vector is a sparse vector). One item in a

feature vector f is denoted as “(KEY : value,weight)”, and a feature vector can be seen as

a set of such tuples. We write f [KEY : value] = weight to indicate that the features serve as

keys to the associative array, and \𝑋 is the weight of the feature 𝑋 in the trained model 𝜽 .

This feature definition subsumes a wide range of different featurization used in NLP.

For example:

• Boolean feature with both key and value. For example, there could be a feature vector

entry that says “there is a named entity with type GPE in this sentence.” This would

be represented as a feature (NAMED-ENTITY-TYPE : GPE, 1);
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• A Boolean feature that sigifies the distance between two words. The feature could

take the form of (DISTANCE : 5, 1);

• Weighted tf-idf bag-of-words features, e.g. (WORD : avocado, 7.465);

• etc.

These show the expressiveness of this formulation of feature vectors. We will in turn

develop our algebra based on this feature definition.

5.4.2 Feature Composition: Cartesian Product

For any feature vector f = {(𝑘 : 𝑣, 𝑤)} and g = {(𝑘′ : 𝑣′, 𝑤′)}, the Cartesian product

f ⊗ g of feature vectors f and g is defined as:

f ⊗ g = {((𝑘, 𝑘′) : (𝑣, 𝑣′), 𝑤𝑤′} . (5.8)

This Cartesian product can just be thought as the Cartesian product of two multisets.

It can be used to measure the association between the query and the passage, under our

scenario of question answering here (details see section below).

78



5.4.3 Feature Composition: Inner Join

Again, For any feature vector f = {(𝑘 : 𝑣, 𝑤)} and g = {(𝑘′ : 𝑣′, 𝑤′)}, we define the

inner join f ⊲⊳ g of feature vectors f and g as: 1

f ⊲⊳ g = {(𝑘 = 𝑘′ : None, 𝑤𝑤′) | 𝑣 = 𝑣′} . (5.9)

5.4.4 Feature Projection for Cartesian Product

We define the projection of the feature vector f under the Cartesian product operation

⊗ and the linear model 𝜽 as:

t⊗𝜽 (f) = {(𝑘′ : 𝑣′, 𝑤 · \ [(𝑘, 𝑘′) : (𝑣, 𝑣′)]) | (𝑘 : 𝑣, 𝑤) ∈ f} , (5.10)

for all 𝑘′, 𝑣′ such that \ [(𝑘, 𝑘′) : (𝑣, 𝑣′)] ≠ 0.

Theorem 5.1. For any feature vector f and g, we can decompose the score of the Cartesian

product 𝜽 · (f ⊗ g) as

𝜽 · (f ⊗ g) = t⊗𝜽 (f) · g . (5.11)
1The value of the join can only be None: This designates the unit type (or the 0-tuple) with only 1 possible

value, variously denoted as (), None, or Unit in programming languages literature.
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Proof.

𝜽 · (f ⊗ g) = 𝜽 · {(𝑘, 𝑘′) : (𝑣, 𝑣′), 𝑤𝑤′ | (𝑘 : 𝑣, 𝑤) ∈ f, (𝑘′ : 𝑣′, 𝑤′) ∈ g}

=
∑︂

(𝑘:𝑣,𝑤)∈f

∑︂
(𝑘 ′:𝑣′,𝑤′)∈g

𝑤𝑤′ · \ [(𝑘, 𝑘′) : (𝑣, 𝑣′)]

= {(𝑘′ : 𝑣′, 𝑤 · \ [(𝑘, 𝑘′) : (𝑣, 𝑣′)] | (𝑘 : 𝑣, 𝑤) ∈ f} · {(𝑘′ : 𝑣′, 𝑤′) | (𝑘′ : 𝑣′, 𝑤′) ∈ g}

= t⊗𝜽 (f) · g .

□

This shows that the score for the Cartesian product joint feature vector is indeed de-

composable, as is shown in Equation 5.11.

5.4.5 Feature Projection for Inner Join

Similarly, we show that the score of the inner-joined feature vector can also be similarly

decomposed.

We define the projection of the feature vector f under the inner join operation ⊲⊳ and the

linear model 𝜽 as:

t⊲⊳𝜽 (f) = {(𝑘′ : 𝑣, 𝑤 · \ [𝑘 = 𝑘′ : None]) | (𝑘 : 𝑣, 𝑤) ∈ f} , (5.12)

for all 𝑘′ such that \ [𝑘 = 𝑘′ : None] ≠ 0.
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Theorem 5.2. For any feature vector f and g, we can decompose the score of the inner join

𝜽 · (f ⊲⊳ g) as

𝜽 · (f ⊲⊳ g) = t⊲⊳𝜽 (f) · g . (5.13)

Proof.

𝜽 · (f ⊲⊳ g) = 𝜽 · {(𝑘′ : 𝑣, 𝑤 · \ [𝑘 = 𝑘′ : None]) | (𝑘 : 𝑣, 𝑤) ∈ f}

=
∑︂

(𝑘:𝑣,𝑤)∈f

∑︂
(𝑘 ′:𝑣′,𝑤′)∈g

𝑣=𝑣′

𝑤𝑤′ · \ [𝑘 = 𝑘′ : None]

= {(𝑘′ : 𝑣, 𝑤 · \ [𝑘 = 𝑘′ : None]) | (𝑘 : 𝑣, 𝑤) ∈ f} · {(𝑘′ : 𝑣′, 𝑤′) | (𝑘′ : 𝑣′, 𝑤′) ∈ g}

= t⊲⊳𝜽 (f) · g .

□

Again, this shows that the score of an inner joined feature vector can also be decom-

posed as an inner product of two sparse vectors, as is in Equation 5.13.

5.4.6 Feature Projection for Any Composed Features

Since both Cartesian product and inner product can be projected (by Theorem 5.1 and

Theorem 5.2), we show that any composed feature vector that is the sum of these two kinds

of composition can be projected.

Theorem 5.3. For any feature vector f with a number of components f =
𝑚∑︂
𝑖=1

f𝑖 and feature
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vector g, also with a number of components g =
𝑛∑︂
𝑗=1

g 𝑗 , a composition feature function

𝐶 (f, g) that is the sum of various Cartesian or inner product composition of any compo-

nents between f and g, namely 𝐶 (f, g) =
𝐾∑︂
𝑘=1

f𝑙𝑘 ⋄𝑘 g𝑟𝑘 , where 1 ≤ 𝑙𝑘 ≤ 𝑚 and 1 ≤ 𝑟𝑘 ≤ 𝑛

are the indices to the components in f and g, and ⋄𝑘 ∈ {⊗, ⊲⊳} are any of the composition

operators, can be projected. That is, there exist a projection function t𝐶𝜽 (·) such that

𝜽 · 𝐶 (f, g) = t𝐶𝜽 (f) · g . (5.14)

Proof. Construct a projection function

t𝐶𝜽 (f) =
𝐾∑︂
𝑘=1

t⋄𝑘𝜽 (f𝑙𝑘 ) . (5.15)

We have

𝜽 · 𝐶 (f, g) =
𝐾∑︂
𝑘=1

𝜽 · (f𝑙𝑘 ⋄𝑘 g𝑟𝑘 )

=
𝐾∑︂
𝑘=1

t⋄𝑘𝜽 (f𝑙𝑘 ) · g𝑟𝑘

=
𝐾∑︂
𝑘=1

t⋄𝑘𝜽 (f𝑙𝑘 ) · g

= t𝐶𝜽 (f) · g .

Hence we have 𝜽 · 𝐶 (f, g) = t𝐶𝜽 (f) · g (Equation 5.14) as desired.

□
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5.5 Features for Question Answering

We first describe the feature functions (featurizers: a function, given an object, returns

a feature vector) used in QA retrieval here to lay the foundation for further discussion to be

grounded.

For natural language questions, we extract the following types of features:

Question word (fwh) The type of the question, typically the wh-word of the question

sentence. If it is a question that starts with something like “How many”, the word after

the question word how is also included in the feature. It results in a Boolean feature, e.g.

(Q-WORD : how many, 1).

Lexical answer type (flat) If the query is a question where the question word is either

“what” or “which”, the lexical answer type (LAT) is question is identified (Ferrucci et al.,

2010), which is defined as the head word of the first NP (noun phrase) after the question

word. For example, the LAT feature from the question “What is the city of brotherly love?”

would be (LAT : city, 1).

Typed named entities (fNE) All the named entities discovered in the question are ex-

tracted (its type also form part of the feature). For example, if a named entity “Mar-

garet Thatcher” is detected with named entity type PERSON, a feature (NE-PERSON :

Margaret Thatcher, 1) will be generated.
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TF-IDF-weighted bag-of-words for queries (fTF-IDF) The TF-IDF-weighted bag-of-

words feature for a natural language question. An example feature would be (WORD :

author, 0.454), denoting that the word “author” has a weight of 0.454 in the sentence. Note

that this feature is real-valued.

Similarly, for candidate passages, we can also define the following types of feature

extractors:

Bag-of-words features (fBoW) Bag-of-words: any distinct word x in the passage will

generate a feature (WORD : 𝑥, 1).

Named entity types (fNE-Type) Named entity type. If the passage contains a name of a

person, a feature (NE-TYPE : PERSON, 1) will be generated.

Given these features, we could define the following joint feature extractor for question

answering reranking:

𝐶 ( f𝑄 (𝑞) , f𝑃 (𝑝) )

= fwh(𝑞) ⊗ fNE−Type(𝑝)

+ (fwh(𝑞) ⊗ flat(𝑞)) ⊗ fNE−Type(𝑝)

+ (fwh(𝑞) ⊗ flat(𝑞)) ⊗ fBoW(𝑝)

+ fNE(𝑞) ⊲⊳ fNE(𝑝)

+ fTF−IDF(𝑞) ⊲⊳ fBoW(𝑝) .

(5.16)
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We will dissect these feature compositions in detail below.

fwh(𝑞) ⊗ fNE−Type(𝑝) captures the association of question words and the expected type

of named entities. During training, we discovered features like (Q-WORD, NE-TYPE) :

(who, PERSON), or (Q-WORD, NE-TYPE) : (when, DATE) will be assigned high weights.

This shows that the model learns, for example, to answer a question that asks “when”, an

answer sentence with a DATE should be of higher relevance.

(fwh(𝑞) ⊗ flat(𝑞)) ⊗ fNE−Type(𝑝) captures the association of question words together with

lexical answer types with the expected type of named entities, in case that the question word

alone is not enough. This would result in the following example high-weighted features to

be learned: ((Q-WORD, LAT), NE-TYPE) : ((what, city), GPE).

(fwh(𝑞) ⊗ flat(𝑞)) ⊗ fBoW(𝑝) captures the relation between some question types with cer-

tain words in the answer. For example, we observed feature “((Q-WORD, LAT), WORD) :

((what, capacity), gallon)” to have a relative high weight, because the word “gallon” can

be expected from a question asking about capacity.

fNE(𝑞) ⊲⊳ fNE(𝑝) captures named entity overlap. Features like (NE-PERSON = NE-PERSON) :

None will be assigned high weights because sentences talking about the same per-

son will have high question-answer association. Interestingly, we observed feature

(NE-NORP2 = NE-LANGUAGE) = 1 is of high weight, because words like “French”

can refer to either a language or an adjective meaning “pertaining to France”. This kind of

feature helps mitigates the error of named entity annotations.3

2NORP: Nationality.
3As observed by Yao et al.
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fTF−IDF(𝑞) ⊲⊳ fBoW(𝑝) measures general tf-idf -weighted context word overlap. Using

only this feature without the others effectively reduces the system to a traditional tf-idf -

based retrieval system.

5.6 Training

The model is trained to maximize the likelihood of correct answer sentences answering

the given questions:

𝑃(𝑝 | 𝑞) = 1
1 + exp(−𝐹 (𝑞, 𝑝)) . (5.17)

where the relevance function 𝐹 (𝑞, 𝑝) = 𝜽 · 𝐶 (f𝑄 (𝑞), f𝑃 (𝑝)) = t𝐶𝜽 (f𝑄 (𝑞)) · f𝑃 (𝑝).

We minimize the corresponding negative log likelihood with 𝐿1 (LASSO) regulariza-

tion to enforce sparsity on the model so that only important features are nonzero: this

ensures that the projected feature vector t𝐶𝜽 (f𝑄 (𝑞)) is also sparse. After all, the reduction to

bag-of-feature retrieval requires the query vector to be sparse to ensure good performance.

The 𝐿1 regularization coefficient _ is a hyperparameter that controls the sparseness of

the model: It will be tuned on the dev set.
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5.7 Retrieval

We use Apache LUCENE4 to build the index of the corpus, which, in the scenario of this

work, is the feature vectors of all candidates f𝑃 (𝑝), 𝑝 ∈ D. This is an instance of weighted

bag-of-features instead of common bag-of-words.

For a given question 𝑞, we first compute its feature vector f (𝑞) and then compute its

transformed feature vector t𝜽 (𝑞) given model parameters 𝜽 , forming a weighted query. We

modified the similarity function of LUCENE when executing multiway postings list merging

so that fast efficient maximum inner product search can be achieved. This classical IR

technique ensures sublinear performance because only vectors with at least one overlapping

feature, instead of the whole corpus, is traversed.5 For details, see Section A.1.

5.8 Experiments

5.8.1 Datasets

TREC/AQUAINT Data We use the training and test data from Yao, Van Durme, and

P. Clark (2013). Passages are retrieved from the AQUAINT Corpus (Graff, 2002), which

is NER-tagged by the Illinois Named Entity Tagger (Ratinov and Roth, 2009) with an

18-label entity type set. Questions are parsed using the Stanford CORENLP (Manning et

4http://lucene.apache.org.
5The closest work on indexing we are aware of is by Bilotti et al. (2007), who transformed linguistic struc-

tures to structured constraints, which is different from our approach of directly indexing linguistic features.
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Dataset # of questions # of sentences
train dev test

TREC/AQUAINT 2,150 53 99 23,398,942
WIKIQA/Wikipedia 2,118 77 157 20,368,761

Table 5.1: Summary of the datasets.

al., 2014) package. Each question is paired with 10 answer candidates from AQUAINT,

annotated for whether it answers the question via crowdsourcing. The test data derives

from J. J. Lin and Katz (2006), which contains 99 TREC questions that can be answered

in AQUAINT. We follow Nallapati (2004) and undersample the negative class, taking 50

sentences uniformly at random from the AQUAINT corpus, per query, filtered to ensure no

such sentence matches a query’s answer pattern as negative samples to the training set. The

summary of the datasets are shown in Table 5.1.6

WikiQA-Wikipedia Data We introduce a novel evaluation dataset for QA retrieval,

based on WIKIQA (Yang, Yih, and Meek, 2015), which pairs questions asked to Bing

with their most associated Wikipedia article, along with sentence-level annotations on the

introductory section of those articles as to whether they answer the question.

Note that as compared to the TREC dataset, there are some questions in WIKIQA

which are not answerable based on the provided context alone: rather, they require outside

commonsense knowledge to answer. For example, the question “Who is the guy in the

wheelchair who is smart” has the answer snippet “Professor Stephen Hawking, known for

6The number of negative samples of the training set does not include the randomly sampled 50 negative
samples for each training question.
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being a theoretical physicist, has appeared in many works of popular culture.” This sets the

upper bound on performance with WIKIQA below 100 when using contemporary question

answering techniques, as assumed here.

We automatically aligned WIKIQA annotations, which was based on an unreported

version of Wikipedia, with the Feb. 2016 snapshot, using for our corpus the introductory

section of all Wikipedia articles, processed with Stanford CORENLP. Alignment was per-

formed via string edit distance, leading to a 55 alignment to the original annotations. Table

1 dev/test reflects the subset resulting from this alignment; all of the original WIKIQA train

was used in training, along with 50 negative examples randomly sampled per question.

5.8.2 Setup and Baseline Systems

The model is trained using LIBLINEAR (Fan et al., 2008) with heavy 𝐿1-regularization

(feature selection) to the maximum likelihood objective. The model is tuned on the dev set,

with the objective of maximizing recall.

Recent work in neural network based reranking is not directly applicable here as those

are linear with respect to the number of candidate sentences, which is computationally

infeasible given a large corpus. The following baseline systems are compared against:

• Off-the-shelf LUCENE: Directly indexing the sentences in LUCENE and perform

sentence retrieval. This is equivalent to maximum tf-idf retrieval.

• Yao, Van Durme, and P. Clark (2013): A retrieval system which augments the bag-
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of-words query with desired named entity types based on a given question. This can

be seen as a special case of the method described in this chapter.

5.8.3 Metrics

We use the following metrics to evaluate the performance of various retrieval systems

for question answering.

• R@1k: The recall in top-1000 retrieved list. Contrary to normal IR systems which

optimize precision (as seen in metrics such as P@10), our system is a triaging system

whose goal is to retrieve good candidates for downstream reranking: high recall

within a large set of initial candidates is our foremost aim.

• b-pref (Buckley and Voorhees, 2004): This is designed for situations where rele-

vance judgments are known to be far from complete, computing a preference relation

of whether judged relevant documents are retrieved ahead of judged irrelevant docu-

ment. This is usually the case in passage retrieval, where complete annotation of all

sentences in a large corpus as to whether they answer each question is not feasible

beyond a small set (such as the work of J. J. Lin and Katz (2006), as we have utilized

here in the TREC/AQUAINT corpus).

• MAP: mean average precision;

• MRR: mean reciprocal rank.
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Model R@1k b-pref MAP MRR

TREC / AQUAINT

LUCENE (dev) 52.44 41.95 9.63 13.94
LUCENE (test) 35.47 38.22 9.78 15.06
Yao+ (test) 25.88 45.41 13.75 29.87
DiscIR (dev) 71.34 70.69 20.07 30.34
DiscIR (test) 78.20 75.15 17.84 25.30

WIKIQA / Wikipedia

LUCENE (dev) 25.00 25.97 1.83 1.83
LUCENE (test) 24.73 25.69 0.58 0.72
DiscIR (dev) 60.00 61.69 9.56 9.65
DiscIR (test) 58.79 60.88 10.26 11.42

Table 5.2: Performance of the QA retrieval systems.

We are most concerned with R@1k and b-pref here since our focus is recall. MAP and

MRR are reported in keeping with prior work.

5.8.4 Results

Our approach (DiscIR) significantly outperforms Yao, Van Durme, and P. Clark (2013)

in R@1k and b-pref, demonstrating the effectiveness of trained weighted queries compared

to binary augmented features. The performance gain with respect to off-the-shelf LUCENE

with reranking shows that our weighted augmented queries by decomposition is superior

to vanilla tf-idf retrieval, as can be shown in Table 5.2.

We also plot the performance of these systems at different 𝑘s on a log-scale (see Fig-

ure 5.2 and Figure 5.3). We use two metrics here: recall at 𝑘 (R@𝑘) and success at 𝑘

(S@𝑘). Success at 𝑘 is the percentage of queries in which there was at least one relevant
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answer sentence among the first 𝑘 retrieved result by a specific system, which is the true

upper bound for downstream tasks.
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Figure 5.2: The R@𝑘 and S@𝑘

curve for different models in the
TREC/AQUAINT setting.
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Figure 5.3: The R@𝑘 and S@𝑘

curve for different models in the WIK-
IQA/Wikipedia setting.

Again, DiscIR demonstrated significantly higher recalls than baselines at different 𝑘s

and across different datasets. Success rate at different 𝑘’s are also uniformly higher than

LUCENE, and at most 𝑘’s higher than the model of Yao et al.’s.

5.8.5 End-to-end Performance after Reranking

As we stated before in this thesis, a first-stage retriever’s job is to find as many relevant

candidates as possible so that downstream rerankers can rank them high on the ranked list.

In this section we investigate the effect of a state-of-the-art reranker under the retrieved

result of BM25 and our Discriminative IR models, using the TREC/AQUAINT data.
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We train a BERT-based reranker 𝐹BERT(𝑞, 𝑐) that maps a natural language question

and an answer candidate to a score indicating whether 𝑐 answers the question in 𝑞. The

model concatenates the query and the candidate answer sentence with delimiters, and pass

the sequence through BERT. The score is derived from the first CLS token (similar to the

UNLI model we proposed earlier in Chapter 3). We train this via pairwise ranking, dictat-

ing the model to rank relevant candidates above irrelevant candidates for answer sentence

selection (J. Rao, H. He, and J. J. Lin, 2016), using the TREC-QA dataset. The model

achieves 89.7% MAP on the TREC-QA test set, similar to recent models with BERT-style

pretraining models (T. M. Lai et al., 2019).

We execute the pipeline of first retrieving top-𝐾 using either BM25 or our DiscIR here

as the relevance function, and then rerank the retrieved list using the BERT-based reranker,

tested on the dev set of TREC/AQUAINT IR corpus. For 𝐾 = 1024, reranking raised

MAP from 20.1% to 70.0% for DiscIR, and from 13.8% to 51.7% for vanilla BM25 (for

other 𝐾’s, see Figure 5.4). This shows that the improved recall of DiscIR has a significant

improvement over traditional vanilla IR, boosting downstream reranking performance.
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Figure 5.5: Average time consumed for
executing each query.

There exist the tradeoff between performance and latency: the larger 𝐾 is, the higher

recall the triaging phase shows, the slower the pipeline runs since all the 𝐾 retrieved candi-

dates are going to be reranked using the heavyweight neural reranker. We plot the average

processing time for each query, with 𝐾 ∈ {1, 2, 4, · · · , 1024} in Figure 5.5. We could see

that the processing time is mostly linear with respect to 𝐾; and at 𝐾 = 1024, the average

processing time for a query is 453ms on a machine with one NVidia GTX 1080Ti GPU.

The selection for 𝐾 depends on hardware constraints: for example, at 𝐾 = 128, the average

processing time is 56ms, but the MAP is already 56.6% for DiscIR, significantly higher

than BM25 at the same 𝐾 , whose MAP is only 19.8%. The selection of 𝐾 depends on such

tradeoff, and will be determined by real-world engineering constraints.
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5.8.6 Error Analysis

We showcase some typical negative samples of our discriminative IR system running

over the question answering sentence retrieval tasks. Most of these errors arise from the

lack of expressiveness of the feature functions, as can be shown below.

Q: What is the abbreviation of London Stock Exchange?

A: The London Stock Exchange (LSE) board Thursday agreed to introduce its con-

troversial computerized order-driven share dealing system, but not for at least another

year and initially only for FT-SE 100 stocks.

Failed because the current feature set is unable to capture how to answer an “abbrevi-

ation” question. This is a case of lacking understanding of the word “abbreviation” and

the parenthesis construction. If we add an additional lightweight feature to detect all-caps

words in the feature side (fallCaps will fire if there exists an all-caps word in the candidate

sentence), and add a feature (fwh ⊗ flat) ⊗ fallCaps, given enough training data, a feature

((Q-WORD, LAT), ALL-CAPS) : ((what, abbreviation), TRUE) will probably gain a high

weight in the training process, hence enabling the system to correctly answer this question

instance.

Q: What is another name for the North Star?

A: Capella is important to navigators here on Earth, as it is the closest bright star

to the North Star, Polaris in Ursa Minor, and it can be seen for at least part of the night

every month.
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Failed because the model in unable to capture how to answer a question asking for ap-

positives. To solve this problem, features that captures the relation of appositives must be

present. These semantic features are heavyweight features that requires heavy preprocess-

ing on the passage side, hence would result in big overhead in the indexing of the corpus.

Q: What is the fastest car in the world?

A: The Thrust SuperSonic Car set a world land speed record of 1,142 kph on

September 25.

Our approach failed to retrieve this sentence because of the inability of the feature

set to learn the association between “fastest” and “speed record.” This is best solved by

distributed semantic representation of words and sentences, which are inherently dense,

real-valued vectors. Because this work relies on sparsity to achieve its sublinear retrieving

performance, these dense features are out of scope for this sparse approach to tackle.

These errors can be classified into several bins:

• Lacking lexical understanding: Two words might be synonymous, but our lexical

features cannot represent them (e.g. the query uses the word “created” but the rel-

evant answer has the word “established”). These might be alleviated by term-level

query expansion;

• Superficial matching: Our retriever might match Mount Victoria with capital of Vic-

toria, in which Victoria is clearly a geo-political entity instead of a mountain. These

errors are instances of superficial matching while lacking understanding of context;
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• Lacking syntactic understanding: The abbreviation and the appositive example above

are examples of this kind of errors;

• Lacking semantic understanding: The “fastest car” example above is an example of

this class of error: our feature functions cannot understand the semantic relevance of

“the fastest car” and “setting a world land record”. These might be ameliorated by

using neural representations elaborated in the next chapter.

We manually sample and inspect 50 queries in both TREC-QA and the WikiQA datasets

whose first relevant answer is not retrieved in their corresponding top 10 retrieved candidate

set (in other words, for these queries, their P@10 metric equals 0), and classifies these

errors into the types of errors described above:

Error type Proportion

Lacking lexical understanding 18%

Superficial matching 30%

Lacking syntactic understanding 8%

Lacking semantic understanding 44%

Table 5.3: Proportions of common errors made by our discrimative QA retrieval system.
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5.9 Conclusion

Yao, Van Durme, and P. Clark (2013) proposed to couple information retrieval with fea-

tures from downstream question answer sentence selection. We generalized this intuition

by recognizing it as an instance of discriminative retrieval, and proposed a new framework

for generating weighted, feature-rich queries based on a given query (may be a natural lan-

guage question or a mention as we discussed in this thesis). This approach allows for the

straightforward use of a downstream model in the candidate selection process, and leads to

a significant gain in recall, b-pref and MAP in the triaging step compared to prior work,

hence providing better candidates for downstream reranking models, which could be cou-

pled to this approach in future work.

Our framework is general and should apply to a variety of other structurally related

tasks, such as entity linking (retrieving candidate entities from a large knowledge base

given a query mention) and slot filling (retrieving candidate mentions from a large text

corpus given a query mention and a relation).

This chapter concludes our discussion with sparse vector-based retrieval for question

answering. In the next chapter, we extend this thread of research to dense vectors by har-

nessing recent advancements in neural representation learning.
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Chapter 6

Retrieval with Dense Vectors

The previous chapter developed a sparse-vector based trainable retrieval system. How-

ever, some distributional semantics cannot be easily captured by sparse features, as the

error analysis section has shown. In this chapter we turn to pure neural methods that learn

dense vector representations for text and reuses these vectors for retrieval.

We explore using trainable dense vector-based neural representations for queries and

candidates, and illustrate how such an efficient retrieval system can be built. While our ex-

ploration here does not yield a positive result, later research down this track has shown this

is feasible and can outperform lexical retrieval under better strategies of negative sampling.

Differences of these work with this chapter will be discussed.
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6.1 Introduction

As we have discussed in previous chapters in detail, triaging systems commonly use

bag-of-word or bag-of-feature (T. Chen and Van Durme, 2017) relevance functions that

computes the relevance between a query and a candidate with heuristics defined over lexical

or feature overlap. Though commonly employed models such as Okapi BM25 (Robertson,

Walker, et al., 1994) are successful, these sparse vector-based retrieval systems still struggle

to understand queries and documents beyond surface lexical or feature forms. A main issue

is vocabulary mismatch, where the same concept is described with different words in the

query and the candidate document. Under this scenario, lexical or feature overlap will not

capture this kind of semantic relevance.

Furthermore, triaging systems for question answering requires the relevance function

abilities to express semantic relatedness beyond what ad hoc retrieval demands: as we have

shown in the previous chapter, using lexical retrieval systems like BM25 hinders the recall

of the retriever, thus hurting the overall performance of the question answering system.

This motivates the development of neural representations for text, together with dense

vector-based retrieval methods. We apply this method to two tasks:

• Question answering sentence retrieval: The same task in Chapter 5, but with dense

encodings of questions and answer candidates learned;

• Similar question retrieval: Given a natural language question, retrieve similar ques-

tions in the corpus. This has real-world use: consider a social question answering
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website like Quora—if a user asks a new question, the web interface can return sim-

ilar questions and ask the user if the question has already been asked by other users.

This reduces the question redundancy on these websites.

As we have discussed in Chapter 2, such a dense vector based retrieval system has to be

equipped with decoupled encoders for both the query and the candidate: A f𝑄 : Q → R𝑄

and a separate f𝐶 : C → R𝐶 . The two tasks here represents two different strategies with

respect to how model parameters are tied. In the question answering case, the questions

and answers are clearly different and should use two distinct set of parameters to model,

whereas in the similar question retrieval case, question 𝑞1 being similar to question 𝑞2

implies that 𝑞2 is also similar to 𝑞1. We term the former case as asymmetric retrieval and

the latter case as symmetric retrieval.

6.2 Method

Our dense vector based relevance function for a query 𝑞 and a candidate 𝑐 is

𝐹 (𝑞, 𝑐) = qTc . (6.1)

Here q ∈ R𝑑 is a fixed-length dense vector representation of 𝑞, and c ∈ R𝑑 is a fixed-length

dense vector representation of 𝑐. Under this formalism, the retrieval problem is reduced

101



to a maximum inner product search (MIPS) problem if the representations of candidates

{c | 𝑐 ∈ 𝐶} are stored and indexed.

6.2.1 Sentence Representations

We adopt the ELMo encoder (Peters et al., 2018) as our text contextualizer to take

advantage of recent language model-based pretraining. For each sentence 𝑠 = (𝑥1, · · · , 𝑥𝑛)

(𝑥𝑖’s are tokens), we pass through the 2-layer bi-directional LSTM layers and take the max

pooling to get a fixed-length vector. Under ELMo, the dimensionality 𝑑 = 1024.

s = f (𝑠) = MaxPool(ELMo(𝑥1, · · · , 𝑥𝑛)) ∈ R𝑑 . (6.2)

For the asymmetric and symmetric cases discussed above, we take different approaches

here:

• Asymmetric case: Two copies of the encoder, one for queries and one for candidates,

are both initialized with pre-trained ELMo parameters. At training time the two

encoders are not tied so that different parameters can be learned for queries and

candidates (in the task of question answering here, questions are queries and answer

snippets are candidates):

𝐹 (𝑞, 𝑐) = f𝑄 (𝑞) · f𝐶 (𝑐) ; (6.3)
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• Symmetric case: A single copy of the encoder for both queries and candidates is

initialized with the pre-trained ELMo parameters. Neural parameters for questions

and answers are tied: this makes sense since in our similar question retrieval sce-

nario, queries and candidates are both natural language questions, and the relevance

function is symmetric:

𝐹 (𝑞, 𝑐) = f𝑄 (𝑞) · f𝑄 (𝑐) . (6.4)

6.2.2 Training

We use the pairwise ranking method (see Chapter 2) to train the models. A concern in

these methods is negative sampling, or how to construct the training set of preference pairs.

Assume that each query 𝑞 in the dataset is associated with a positive candidate set

𝐶 (𝑞) where every 𝑐 ∈ 𝐶 is considered as a relevant candidate. We construct two different

negative sample sets for each query:

• Random negative samples: We uniformly sample 𝑘1 candidates in the whole corpus

set that is not positive (i.e., in 𝐶) as the uniformly negative sample set 𝐶′1(𝑞);

• Competitive negative samples: The 𝐶′1 negative set may be too easy for the model

to learn since the sentences may differ a lot from the correct answers just be looking

at its words. We mine some harder negative samples for the model by retrieving the

top-𝑘2 using an off-the-shelf IR engine under a lexical overlap relevance function

(BM25) from the corpus. Positive samples are removed accordingly. This set is
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negative (irrelevant to the query) but has considerable word-level overlap with the

query, making it a set of harder negative samples for the model:

𝐶′2(𝑞) = arg top𝑘2
𝑐′∈C\𝐶

BM25(𝑞, 𝑐′) (6.5)

The whole training set containing all the preference pairs would then be

R =
⋃︂
𝑞

{(𝑐, 𝑐′) | 𝑐 ∈ 𝐶 (𝑞), 𝑐′ ∈ 𝐶′1(𝑞) ∪ 𝐶′2(𝑞)} . (6.6)

Under the pairwise training loss, we minimize

𝐿 =
∑︂
(𝑐,𝑐′)∈R

max(0, b − 𝐹 (𝑞, 𝑐) + 𝐹 (𝑞, 𝑐′)) + _
2
∥𝚯∥22 . (6.7)

Note that we use 𝐿2 regularization instead of 𝐿1 used in Chapter 5 since sparsity is not

desired in our dense retrieval scenario. Hyperparameters to tune on the development set

include the desired margin b, the regularization coefficient _, the number of uniformly

sampled negative samples for each query 𝑘1, and the number of negative samples that are

competitive under BM25 𝑘2.

6.2.3 Retrieval

We use FAISS (Johnson, Douze, and Jégou, 2017) as our retrieval engine, with opti-

mized product quantization (Ge et al., 2013) for maximum inner product search, where
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100,000 samples are used to train the index (as Ge et al. (2013) required, a subset of the

candidate dense vectors is used to train a PCA which is in turn used to normalize the space

of the candidate vectors). The system runs efficiently under a single CPU.

6.3 Experiments on Question Answering

Datasets We here reuse the TREC/AQUAINT dataset created in the past chapter. The

details can be found in Table 5.1.

Baselines and Setup We use BM25 as is implemented in Apache Lucene, Yao, Van

Durme, and P. Clark (2013), and the Discriminative IR result elaborated in the previous

chapter as baselines. We apply dropout probability 𝑝D = 0.3 for the query and candidate

vectors, number of uniformly-sampled negative samples 𝑘1 = 40, and margin hyperparam-

eter b = 0.5.1 We do not augment the preference pair set with Lucene-retrieved competitive

negative samples, since in the dataset there are already competitive negative samples (for

each query there are on average 6 of them).

Results Results are shown in Table 6.1. Clearly, our trained dense retriever did not out-

perform the lexical retrieval baseline BM25 except MRR, and it is easily outperformed by

1 One might argue that the b can just be set as 1 in a normal linear SVM formulation. However, since
our embedding results from a max pooling over ELMo outputs (which are LSTM outputs), its range is fixed
in [−1, 1] due to the tanh layer, it is not free as in a normal SVM, where the last layer is a linear layer with
output range R.
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Model R@1k b-pref MAP MRR

BM25 35.5 38.2 9.8 15.1
Yao, Van Durme, and P. Clark (2013) 25.9 45.4 13.8 29.9

Discriminative IR 78.2 75.2 17.8 25.3

Dense Retrieval 19.3 19.3 6.5 15.9

Table 6.1: Results of retrieval methods over the TREC/AQUAINT dataset.

feature-augmented methods like Yao, Van Durme, and P. Clark (2013) and Discriminative

IR (T. Chen and Van Durme, 2017) in the previous chapter.

6.4 Experiments on Similar Question Retrieval

Dataset Creation We use the Quora Question Pairs (QQP) dataset (Iyer, Dandekar, and

Csernai, 2017). This dataset comprises of pairs of actual questions on Twitter, with a binary

true/false annotation that indicates whether the two questions in the pair are similar or not.

We convert this dataset to a retrieval dataset. QQP data samples take the form

(𝑞1, 𝑞2, 𝑦) ∈ 𝐷 where 𝑞1, 𝑞2 ∈ 𝑄 are natural language questions, and 𝑦 ∈ {0, 1} is the

label. We say that 𝑞1 and 𝑞2 are similar, 𝑞1 ∼ 𝑞2, if (𝑞1, 𝑞2, 1) ∈ 𝐷.

Assuming that the question similarity relation is transitive, we construct an equivalence

relation over 𝑄 by applying the transitive closure: if there exists a 𝑞2 such that 𝑞1 ∼ 𝑞2

and 𝑞2 ∼ 𝑞3, we believe that 𝑞1 ∼ 𝑞3. Under this equivalence relation “∼”, each question

𝑞 gets its equivalence class [𝑞] ∈ 𝑄/∼, the set of all questions similar to 𝑞. For a retrieval
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Original QQP training similar pairs 363,871
Original QQP dev similar pairs 40,432
Original QQP test similar pairs 390,965

QQP distinct questions (also the candidate question set) 537,933
Similar candidate questions per query question (except itself) 1.20

QQP-Retrieval training queries 48,273
QQP-Retrieval dev queries 1,816
QQP-Retrieval test queries 1,816

Table 6.2: Statistics of the QQP and the transformed QQP-Retrieval datasets.

system, all questions in [𝑞] are considered as relevant, and thus should rank higher than all

other irrelvant systems.

We call this retrieval dataset as QQP-Retrieval, and its statistics is shown in Table 6.2.

In QQP-Retrieval, each query 𝑞 itself is in the question candidate set: 𝑞 ∈ 𝐶, and itself

is the most similar candidate. Except itself, each query has 1.20 similar questions in the

candidate set on average. The task is to retrieve these similar question candidates. When

evaluating, for each query 𝑞, the top candidate 𝑞 itself is removed: since it is trivial, any

downstream metrics like MAP and MRR will not take 𝑞 into account.

Baselines and Setup Again, we use BM25 as is implemented in Apache Lucene as

the off-the-shelf baseline. When training the model, we apply dropout rate for the encoder

𝑝D = 0.3, number of uniformly-sampled negative samples 𝑘1 = 40, number of Lucene-

retrieved competitive negative samples 𝑘2 = 10, and margin hyperparameter b = 0.7.
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Model MAP MRR R@5 R@1k

Lucene 77.8 78.0 85.9 97.4

Dense Retrieval 44.8 66.3 51.0 77.9

Table 6.3: Results of retrieval methods over the QQP-Retrieval dataset.

Results Results are shown in Table 6.3. Clearly, our trained dense retriever did not

outperform the lexical retrieval baseline BM25.

6.5 Discussions

Our models were built in 2018 before any known publication that addressed this prob-

lem. Although it failed to outperform simple baselines such as BM25 in the question

answering system, similar approaches have been shown to be successful (outperforming

BM25) after this work, starting with the publication of Lee, Chang, and Toutanova (2019).

There are many similarities between the approach in this thesis chapter and the one in

Lee, Chang, and Toutanova (2019), yet there are important differences. We hypothesize

that Lee, Chang, and Toutanova (2019)’s success is based on a few factors different from

our work here:

• The use of BERT (Devlin et al., 2019) for sentence encoding, leading to better dense

vector representations of questions and answer candidates, as opposed to our ELMo-

based vectors;

• Massive pretraining via their ICT strategy: They mine lots of proxy question and
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answer pairs by sampling one sentence from a Wikipedia paragraph as the question,

and all the other sentences as a proxy answer candidate. This strategy forces the

model to learn the relevance function of question answerability instead of focusing

on surface-level word overlap. Their model is trained on huge corpus with lots of

GPU compute that is not feasible in an academia environment.

• Note that in Lee, Chang, and Toutanova (2019), dense retrieval outperformed

BM25 in datasets such as NaturalQuestions and WebQuestions, but not TriviaQA

or SQuAD. The authors hypothesize that in datasets like SQuAD or TriviaQA, the

questions are elicited from annotators who already know the answer, hence creating a

bias towards word overlap, whereas queries in NaturalQuestions and WebQuestions

are derived from real users seeking information. Our dataset may suffer from similar

biases.

Later work that discusses dense retrieval include Guu et al. (2020) and Karpukhin et al.

(2020). Guu et al. (2020) uses the exact relevance function as ours (Equation 6.1), but since

the model is updating, the index goes “stale” after every gradient update: their solution is

to refresh the index by asynchronously re-embedding and re-indexing all documents every

several hundred training iterations (Guu et al., 2020). This is not computationally feasible

in an academic setting.

On the other hand, Karpukhin et al. (2020) achieves the feat of training the system on a

single GPU, while also outperforms BM25 retrieval for open domain QA over Wikipedia.

Again, their relevance is Equation 6.1 with BERT embeddings and FAISS for retrieval, and
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they do not need the massive ICT training used in Lee, Chang, and Toutanova (2019). Their

key is a trick called “in-batch negative sampling”, where in a batch 𝑥0:𝑛, the positive sample

for 𝑥𝑖 is a negative sample for 𝑥 𝑗 if 𝑖 ≠ 𝑗 . The rationale is that for 𝑁 questions, you get 𝑁2

ranking pairs. Hence the batch size can be improved, thereby minimizing the variance of

the gradients, achieving better performance. Additionally, they add only 1 negative sample

from BM25 retrieval that is not gold. They found out that 1 is enough, no need for 2 (we

used at least 10 negative samples from BM25 retrieval).

Additionally, recent work that I have collaborated in (Gao et al., 2020) points out that

both lexical retrieval (based on sparse vector representations) and embedding-based re-

trieval (methods in this chapter that are based on dense representations) have merits and

should be treated as complementary: one can train the neural vector embeddings so that

they learn to capture semantics that lexical retrieval fails to capture, as a residual part of the

lexical relevance. Empirical evaluation demonstrates the advantages of this method over

various lexical retrieval models and a BERT-based dense embedding retrieval model, sub-

stantially narrowing the gap between full-collection retrieval and costly reranking systems,

and setting a state-of-the-art result for ad hoc text retrieval. Later work should expand this

combined method for (1) other retrieval tasks such as open-domain question answering, or

claim verification; and (2) instead of using lexical features alone for the sparse representa-

tions, a more expressive feature system like what we proposed in Chapter 5 (T. Chen and

Van Durme, 2017) can be utilized (e.g. to include named entity information) to boost the

performance of these retrieval systems.
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To summarize, we proposed dense vector based retrieval for QA and similar question

retrieval in this chapter. While our experiment did not yield a competitive result against

vanilla BM25 baselines or feature-augmented sparse vector based solutions in the previous

chapter, later work in this thread shows that this idea can work with better pre-trained

embeddings, larger distant-supervised pre-training, or better strategies in the creation of

preference pairs for training.
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Part III

Mentions and Entities
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Chapter 7

Hierarchical Typing

In this chapter, we turn the focus from sentences to mentions in text, and study the task

of fine-grained entity typing, i.e., assigning semantic types for mentions in text. We cast the

problem as a type-ranking problem, where given a text mention, candidate types are ranked

under a relevance function representing whether the mention is an instance of the specific

type. These fine-grained entity typing systems found usages in various scenarios, such as

task-oriented multi-domain dialogue understanding in agents such Siri or Alexa (T. Chen,

Naik, et al., 2019), where various slots in dialogue sessions can be properly typed to aid

downstream execution of these commands (e.g. playing music, or order a book).

The proposed method for hierarchical entity classification embraces the tree-structured

ontology at both training and during prediction. At training, our novel multi-level learning-

to-rank loss compares positive types against negative siblings according to the type tree.

During prediction, we define a coarse-to-fine decoder that restricts viable candidates at
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each level of the ontology based on already predicted parent type(s). We achieve state-of-

the-art across multiple datasets, particularly with respect to strict accuracy. Some materials

in this chapter has been published in T. Chen, Y. Chen, and Van Durme (2020).

7.1 Introduction

Entity typing is the assignment of a semantic label to a span of text, where that span

is usually a mention of some entity in the real world. Named entity recognition (NER) is

a canonical information extraction task, commonly considered a form of entity typing that

assigns spans to one of a handful of types, such as PER (person), ORG (organization), GPE

(geo-political entity), and so on.

Fine-grained entity typing (FET) seeks to classify spans into types according to more

diverse, semantically richer ontologies (Ling and Weld, 2012; Yosef et al., 2012; Dan

Gillick et al., 2014; Del Corro et al., 2015; Choi et al., 2018), and has begun to be used

in downstream models for entity linking (Gupta, Singh, and Roth, 2017; J. Raiman and O.

Raiman, 2018).

Consider the example in Figure 7.1 from the FET dataset, FIGER (Ling and Weld,

2012). The mention of interest here in this example, Hollywood Hills, will be typed with

the single label LOC in traditional NER, but may be typed with a set of types {/location,

/geography, /geography/mountain} under a fine-grained typing scheme. In these

finer-grained typing schemes, types usually form a hierarchy: there are a set of coarse
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artist doctor
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Figure 7.1: An example mention classified using the FIGER ontology. Positive types are
bolded whereas negative types are grayed out.
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Figure 7.2: Various type ontologies. Different levels of the types are shown in different
shades, from L0 to L3. The ENTITY and OTHER special nodes are discussed in Section 7.3.

types that lies on the top level—these are similar to traditional NER types, e.g. /person;

additionally, there are finer types that are subtypes of these top-level types, e.g. /per-

son/artist or /person/doctor.

Most prior work concerning fine-grained entity typing has approached the problem as

a multi-label classification problem: given an entity mention together with its context,

the classifier seeks to output a set of types, where each type is a node in the hierarchy.
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Approaches to FET include hand-crafted sparse features to various neural architectures

(Ren, W. He, Qu, L. Huang, et al., 2016; Shimaoka et al., 2017; Y. Lin and Ji, 2019) (for

additional background introduction, see Section 7.2).

Perhaps owing to the historical transition from “flat” NER types, there has been rela-

tively little work in FET that exploits the tree structure of the ontology, where type labels

satisfy the hierarchical property: a subtype is valid only if its parent supertype is also

valid. We propose a novel method that takes the explicit ontology structure into account,

by a multi-level learning to rank approach that ranks the candidate types conditioned on

the given entity mention. Intuitively, coarser types are easier whereas finer types are harder

to classify: we capture this intuition by allowing distinct margins at each level of the rank-

ing model. Coupled with a novel coarse-to-fine decoder that searches on the type hierar-

chy, our approach guarantees that predictions do not violate the hierarchical property, and

achieves state-of-the-art results according to multiple measures across various commonly

used datasets.

7.2 Related Work

FET is usually studied as allowing for sentence-level context in making predictions,

notably starting with Ling and Weld (2012) and Dan Gillick et al. (2014), where they

created the commonly used FIGER and OntoNotes datasets for FET. While researchers

have considered the benefits of document-level (S. Zhang, Duh, and Van Durme, 2018) or
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corpus-level (Yaghoobzadeh and Schütze, 2015) context, here we focus on the sentence-

level variant for best contrast to prior work.

Progress in FET has focused primarily on:

• Better mention representations: Starting from sparse hand-crafted binary features

(Ling and Weld, 2012; Dan Gillick et al., 2014), the community has moved to dis-

tributed representations (Yogatama, Daniel Gillick, and Lazic, 2015), to pre-trained

word embeddings with LSTMs (Ren, W. He, Qu, L. Huang, et al., 2016; Ren, W. He,

Qu, Voss, et al., 2016; Shimaoka et al., 2016; Abhishek, Anand, and Awekar, 2017;

Shimaoka et al., 2017) or CNNs (Murty et al., 2018), with mention-to-context atten-

tion (S. Zhang, Duh, and Van Durme, 2018), then to employing pre-trained language

models like ELMo (Peters et al., 2018) to generate ever better representations (Y. Lin

and Ji, 2019). Our approach builds upon these developments and uses state-of-the-art

mention encoders.

• Incorporating the hierarchy: Most prior works approach the hierarchical typing

problem as multi-label classification, without using information in the hierarchical

structure, but there are a few exceptions. Ren, W. He, Qu, L. Huang, et al. (2016)

proposed an adaptive margin for learning-to-rank so that similar types have a smaller

margin; Xu and Barbosa (2018) proposed hierarchical loss normalization that penal-

izes output that violates the hierarchical property; and Murty et al. (2018) proposed

to learn a subtyping relation to constrain the type embeddings in the type space.

In contrast to these approaches, our coarse-to-fine decoding approach strictly guar-
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antees that the output does not violate the hierarchical property, leading to better

performance. HYENA (Yosef et al., 2012) applied ranking to sibling types in a type

hierarchy, but the number of predicted positive types are trained separately with a

meta-model, hence does not support neural end-to-end training.

Researchers have proposed alternative FET formulations whose types are not formed in

a type hierarchy, in particular Ultra-fine entity typing (Choi et al., 2018; Xiong et al., 2019;

Onoe and Durrett, 2019), with a very large set of types derived from phrases mined from

a corpus. FET in KB (Jin et al., 2019) labels mentions to types in a knowledge base with

multiple relations, forming a type graph. Dai et al. (2019) augments the task with entity

linking to KBs.

7.3 Problem Formulation

We denote a mention as a tuple 𝑥 = (𝑤, 𝑙, 𝑟), where 𝑤 = (𝑤1, · · · , 𝑤𝑛) is the sentential

context and the span [𝑙 : 𝑟] marks a mention of interest in sentence 𝑤. That is, the mention

of interest is (𝑤𝑙 , · · · , 𝑤𝑟). Given 𝑥, a hierarchical entity typing model outputs a set of

types 𝑌 in the type ontology Y , i.e. 𝑌 ⊆ Y .

Type hierarchies take the form of a forest, where each tree is rooted by a top-level

supertype (e.g. /person, /location, etc.). We add a dummy parent node ENTITY = “/”,

the supertype of all entity types, to all the top-level types, effectively transforming a type
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forest to a type tree. In Figure 7.2, we show 3 type ontologies associated with 3 different

datasets (see Section 7.5.1), with the dummy ENTITY node augmented.

We now introduce some notation for referring to aspects of a type tree. The binary

relation “type 𝑧 is a subtype of 𝑦” is denoted as 𝑧 <: 𝑦.1 The unique parent of a type 𝑦

in the type tree is denoted �̄� ∈ Y , where �̄� is undefined for 𝑦 = ENTITY. The immediate

subtypes of 𝑦 (children nodes) are denoted Ch(𝑦) ⊆ Y . Siblings of 𝑦, those sharing the

same immediate parent, are denoted Sb(𝑦) ⊆ Y , where 𝑦 ∉ Sb(𝑦).

In the AIDA FET ontology (see Figure 7.2), the maximum depth of the tree is 𝐿 = 3,

and each mention can only be typed with at most 1 type from each level. We term this

scenario single-path typing, since there can be only 1 path starting from the root (ENTITY)

of the type tree. This is in contrast multi-path typing, such as in the BBN dataset, where

mentions may be labeled with multiple types on the same level of the tree.

We discuss the problem of unspecified subtypes. For example, in AIDA, there are men-

tions labeled such as as /per/police/<unspecified>. In FIGER, we find instances

with labeled type /person but not any further subtype. What does it mean when a men-

tion 𝑥 is labeled with a partial type path, i.e., a type 𝑦 but none of the subtypes 𝑧 <: 𝑦? We

consider two interpretations:

• Exclusive: 𝑥 is of type 𝑦, but 𝑥 is not of any type 𝑧 <: 𝑦.

• Undefined: 𝑥 is of type 𝑦, but whether it is an instance of some 𝑧 <: 𝑦 is unknown.

We devise different strategies to deal with these two conditions. Under the exclusive
1 Per programming language literature, e.g. the type system 𝐹<: that supports subtyping.
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case, we add a dummy OTHER node to every intermediate branch node in the type tree. For

any mention 𝑥 labeled with type 𝑦 but none of the subtypes 𝑧 <: 𝑦, we add this additional

label “𝑦/OTHER” to the labels of 𝑥 (see Figure 7.2: AIDA). For example, if we interpret a

partial type path /person in FIGER as exclusive, we add another type /person/OTHER

to that instance. Under the undefined case, we do not modify the labels in the dataset. We

will see this can make a significant difference depending on the way a specific dataset is

annotated.

7.4 Model

7.4.1 Mention Representation

Hidden representations for entity mentions in sentence 𝑤 are generated by leveraging

recent advances in language model pre-training, e.g. ELMo (Peters et al., 2018).2 The

ELMo representation for each token 𝑤𝑖 is denoted as w𝑖 ∈ R𝑑𝑤 . Lexical dropout is applied

with probability 𝑝D to the ELMo vectors.

Our mention encoder largely follows Y. Lin and Ji (2019). First a mention represen-

tation is derived using the representations of the words in the mention. We apply a max

2 Y. Lin and Ji (2019) found that ELMo performs better than BERT (Devlin et al., 2019) for FET. Our
internal experiments also confirm this finding. We hypothesize that this is due to the richer character-level
information contained in lower-level ELMo representations that are useful for FET.
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pooling layer atop the mention after a linear transformation:3

m = MaxPool(Tw𝑙 , · · · ,Tw𝑟) ∈ R𝑑𝑤 . (7.1)

Then we employ mention-to-context attention first described in S. Zhang, Duh, and Van

Durme (2018) and later employed by Y. Lin and Ji (2019): a context vector c is generated

by attending the sentence with a query vector derived from the mention vector m. We use

the multiplicative attention of Luong, Pham, and Manning (2015):

𝑎𝑖 ∝ exp(mTQw𝑖) (7.2)

c =
𝑁∑︂
𝑖=1

𝑎𝑖w𝑖 ∈ R𝑑𝑤 (7.3)

The final representation for an entity mention is generated via concatenation of the

mention and context vector: [m ; c] ∈ R2𝑑𝑤 .

7.4.2 Type Scorer

We learn a type embedding y ∈ R𝑑𝑡 for each type 𝑦 ∈ Y . To score an instance with

representation [m ; c], we pass it through a 2-layer feed-forward network that maps into

the same space as the type space R𝑑𝑡 , with tanh as the nonlinearity. The final score is an

3 Y. Lin and Ji (2019) proposed an attentive pooler with a learned global query vector. We found out that
a simple max pooling layer achieves similar performance.
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inner product between the transformed feature vector and the type embedding:

𝐹 (𝑥, 𝑦) = FFNN( [m ; c]) · y . (7.4)

7.4.3 Hierarchical Learning-to-Rank

We introduce our novel hierarchical learning-to-rank loss that (1) allows for natural

multi-label classification and (2) takes the hierarchical ontology into account.

We start with a multi-class hinge loss that ranks positive types above negative types

(Weston and Watkins, 1999):

𝐽flat(𝑥,𝑌 ) =
∑︂
𝑦∈𝑌

∑︂
𝑦′∉𝑌
[b − 𝐹 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦′)]+ (7.5)

where [𝑥]+ = max{0, 𝑥}. This is actually learning-to-rank with a ranking SVM (Joachims,

2002): the model learns to rank the positive types 𝑦 ∈ 𝑌 higher than those negative types

𝑦′ ∉ 𝑌 , by imposing a margin b between 𝑦 and 𝑦′: type 𝑦 should rank higher than 𝑦′ by b.

Note that in Equation 7.5, since it is a linear SVM, the margin hyperparameter b could be

just set as 1 (the type embeddings are linearly scalable), and we rely on 𝐿2 regularization

to constrain the type embeddings.

Multi-level Margins However, this method considers all candidate types to be flat in-

stead of hierarchical — all types are given the same treatment without any prior on their
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relative position in the type hierarchy. Intuitively, coarser types (higher in the hierarchy)

should be easier to determine (e.g. /person vs /location should be fairly easy for the

model), but fine-grained types (e.g. /person/artist/singer) are harder.

We encode this intuition by (i) learning to rank types only on the same level in the type

tree; (ii) setting different margin parameters for the ranking model with respect to different

levels: ∑︂
𝑦∈𝑌

∑︂
𝑦′∈Sb(𝑦)\𝑌

[blev(𝑦) − 𝐹 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦′)]+ (7.6)

Here lev(𝑦) denotes the level of the type 𝑦 on the type tree: for example, lev(ENTITY) =

0; lev(/location) = 1, and lev(/person/artist/singer) = 3. In Equation 7.6, each

positive type 𝑦 is only compared against its negative siblings Sb(𝑦) \ 𝑌 , and the margin

hyperparameter is set to be blev(𝑦) , i.e., a margin dependent on which level 𝑦 is in the tree.

Intuitively, we should set b1 > b2 > b3 since our model should be able to learn a larger

margin between easier pairs: we show that this is superior than using a single margin in our

experiments.

Analogous to the reasoning that in Equation 7.5 the margin b can just be 1, only the

relative ratios between b’s are important. For simplicity,4 if the ontology has 𝐿 levels, we

assign

b𝑙 = 𝐿 − 𝑙 + 1 . (7.7)

4 We did hyperparameter search on these margin hyperparameters and found that Equation 7.7 generalized
well.
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Figure 7.3: Hierarchical learning-to-rank. Positive type paths are colored black, negative
type paths are colored gray. Each blue line corresponds to a threshold derived from a parent
node. Positive types (on the left) are ranked above negative types (on the right).

For example, given an ontology with 3 levels, the margins per level are (b1, b2, b3) =

(3, 2, 1).

Flexible Threshold Equation 7.6 only ranks positive types higher than negative types

so that all children types given a parent type are ranked based on their relevance to the

entity mention. What should be the threshold between positive and negative types? We

could set the threshold to be 0 (approaching the multi-label classification problem as a set

of binary classification problem, see Y. Lin and Ji (2019)), or tune an adaptive, type-specific

threshold for each parent type (S. Zhang, Duh, and Van Durme, 2018). Here, we propose a

simpler method.

We propose to directly use the parent node as the threshold. If a positive type is 𝑦, we
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learn the following ranking relation:

𝑦 ≻ �̄� ≻ 𝑦′, ∀𝑦′ ∈ Sb(𝑡) (7.8)

where ≻ means “precedes”, or “ranks higher than”. For example, a mention has gold type

/person/artist/singer. Since the parent type /person/artist can be considered as

a kind of prior for all types of artists, the model should learn that the positive type “singer”

should have a higher confidence than “artist”, and in turn, higher than other types of artists

like “author” or “actor”. Hence the ranker should learn that “a positive subtype should rank

higher than its parent, and its parent should rank higher than its negative children.” Under

this formulation, at decoding time, given parent type 𝑦, a child subtype 𝑧 <: 𝑦 that scores

higher than 𝑦 should be output as a positive label.

We translate the ranking relation in Equation 7.8 into a ranking loss that extends Equa-

tion 7.6. In Equation 7.6, there is an expected margin b between positive types and nega-

tive types. Since we inserted the parent in the middle, we divide the margin b into 𝛼b and

(1 − 𝛼)b: 𝛼b being the margin between positive types and the parent; and (1 − 𝛼)b is the

margin between the parent and the negative types. For a visualization see Figure 7.3.

The hyperparameter 𝛼 ∈ [0, 1] can be used to tune the precision-recall tradeoff when

outputting types: the smaller 𝛼, the smaller the expected margin there is between positive

types and the parent. This intuitively increases precision but decreases recall (only very

confident types can be output). Vice versa, increasing 𝛼 decreases precision but increase
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recall. We present a diagnosis of how 𝛼 influences precision and recall in the experiment

section below.

Therefore we learn 3 sets of ranking relations from Equation 7.8:

• Positive types should be scored above parent by 𝛼b:

𝐽𝑦≻�̄� = [𝛼blev(𝑦) − 𝐹 (𝑥, 𝑦) + 𝐹 (𝑥, �̄�)]+ (7.9)

• Parent should be scored above any negative sibling types by (1 − 𝛼)b:

𝐽�̄�≻𝑦′ =
∑︂

𝑦′∈Sb(𝑦)\𝑌
[(1 − 𝛼)blev(𝑦) − 𝐹 (𝑥, �̄�) + 𝐹 (𝑥, 𝑦′)]+ (7.10)

• Positive types should be scored above negative sibling types by b:

𝐽𝑦≻𝑦′ =
∑︂

𝑦′∈Sb(𝑦)\𝑌
[blev(𝑦) − 𝐹 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦′)]+ (7.11)

Our final hierarchical ranking loss is formulated as the sum of the 3 components listed

above.

𝐽hier(𝑥,𝑌 ) =
∑︂
𝑦∈𝑌

(︁
𝐽𝑦≻�̄� + 𝐽�̄�≻𝑦′ + 𝐽𝑦≻𝑦′

)︁
(7.12)
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7.4.4 Decoding

Predicting the types for each entity mention can be performed via iterative searching

on the type tree, from the root ENTITY node to coarser types, then to finer-grained types.

This ensures that our output does not violate the hierarchical property, i.e., if a subtype is

output, its parent must be output.

Given instance 𝑥 we compute the score 𝐹 (𝑥, 𝑦) for each type 𝑦 ∈ Y , the searching

process starts with the root node ENTITY of the type tree in the queue. For each type 𝑦 in the

node, a child node 𝑧 <: 𝑦 (subtypes) is added to the predicted type set if 𝐹 (𝑥, 𝑧) > 𝐹 (𝑥, 𝑦),

corresponding to the ranking relation in Equation 7.8 that the model has learned.5

Here we only take the top-𝑘 element to add to the queue to prevent from an over-

generation of types. This can also be used to enforce the single-path property (setting

𝑘 = 1) if the dataset is single-path. For each level 𝑖 in the type hierarchy, we limit the

branching factor (allowed children) to be 𝑘𝑖. The algorithm is listed in Algorithm 1, where

the function TOPK(𝑆, 𝑘, 𝑓 ) selects the top-𝑘 elements from 𝑆 with respect to the function

𝑓 .

5 For the OntoNotes dataset, we introduce another set of per-level hyperparameters 𝛿lev(𝑦) , and the thresh-
old value 𝐹 (𝑥, 𝑦) is modified to 𝐹 (𝑥, 𝑦) + 𝛿lev(𝑦) , akin to the adaptive threshold in S. Zhang, Duh, and Van
Durme (2018). This is due to a large type distribution mismatch between the training and dev/test sets in
OntoNotes (in dev/test there are a lot of instances with the single type /other but not in the training set).
For other datasets they are unused, i.e. just 0.
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Algorithm 1 Decoding for Hierarchical Typing
1: function HIERTYPEDEC(𝐹 (𝑥, ·))
2: 𝑄 ← {ENTITY} ⊲ queue for searching
3: �̂� ← ∅ ⊲ set of output types
4: repeat
5: 𝑦 ← DEQUEUE(𝑄)
6: \ ← 𝐹 (𝑥, 𝑦) + 𝛿lev(𝑦) ⊲ threshold value
7: 𝑍 ← {𝑧 ∈ Ch(𝑦) | 𝐹 (𝑥, 𝑧) > \} ⊲ all decoded children types
8: 𝑍′← TOPK(𝑍, 𝑘 lev(𝑦)+1, 𝐹 (𝑥, ·)) ⊲ pruned by the max branching factors
9: �̂� ← �̂� ∪ 𝑍′

10: for 𝑧 ∈ 𝑍′ do
11: ENQUEUE(𝑄, 𝑧)
12: end for
13: until 𝑄 = ∅ ⊲ queue is empty
14: return �̂� ⊲ return all decoded types
15: end function

7.4.5 Subtyping Relation Constraint

Each type 𝑦 ∈ Y in the ontology is assigned a type embedding y ∈ R𝑑𝑡 . We notice the

binary subtyping relation “ <: ” ⊆ Y ×Y on the types. Trouillon et al. (2016) proposed the

relation embedding method ComplEx that works well with anti-symmetric and transitive

relations such as subtyping. It has been employed in FET before — in Murty et al. (2018),

ComplEx is added to the loss to regulate the type embeddings. ComplEx operates in the

complex space — we use the natural isomorphism between real and complex spaces to map

the type embedding into complex space (first half of the embedding vector as the real part,

and the second half as the imaginary part):

𝜙 : R𝑑𝑡 → C𝑑𝑡/2 (7.13)

t = [ Re 𝜙(t) ; Im 𝜙(t) ] (7.14)
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We learn a single relation embedding r ∈ C𝑑𝑡/2 for the subtyping relation. Given type 𝑦

and 𝑧, the subtyping statement 𝑦 <: 𝑧 is modeled using the following scoring function:

𝑟 (𝑦, 𝑧) = Re
(︂
r ·

(︂
𝜙(y) ⊙ 𝜙(z)

)︂)︂
(7.15)

where ⊙ is element-wise product and 𝑥 is the complex conjugate of 𝑥. If 𝑦 <: 𝑧 then

𝑟 (𝑦, 𝑧) > 0; and vice versa, 𝑟 (𝑦, 𝑧) < 0 if 𝑦 ≮: 𝑧.

Loss Given instance (𝑥,𝑌 ), for each positive type 𝑦 ∈ 𝑌 , we learn the following rela-

tions:

𝑦 <: �̄�

𝑦 ≮: 𝑦′, ∀𝑦′ ∈ Sb(𝑦)

𝑦 ≮: 𝑦′, ∀𝑦′ ∈ Sb( �̄�) (7.16)

Translating these relation constraints as a binary classification problem (“is or is not a

subtype”) under a primal SVM, we get a hinge loss:

𝐽rel(𝑥,𝑌 ) =
∑︂
𝑦∈𝑌

(︄
[1 − 𝑟 (𝑦, �̄�)]+ +

∑︂
𝑦′∈Sb(𝑦)∪Sb( �̄�)

[1 + 𝑟 (𝑦, 𝑦′)]+
)︄
. (7.17)

This is different from Murty et al. (2018), where a binary cross-entropy loss on ran-

domly sampled (𝑦, 𝑦′) pairs is used. Our experiments showed that the loss in Equation 7.17
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performs better than the cross-entropy version, due to the structure of the training pairs: we

use siblings and siblings of parents as negative samples (these are types closer to the posi-

tive parent type), hence are training with more competitive negative samples.

7.4.6 Training and Validation

Our final loss is a combination of the hierarchical ranking loss and the subtyping rela-

tion constraint loss, with 𝐿2 regularization over all parameters 𝚯:

𝐽hier(𝑥,𝑌 ) + 𝛽𝐽rel(𝑥,𝑌 ) + _2 ∥𝚯∥
2
2 . (7.18)

The AdamW optimizer (Loshchilov and Hutter, 2019) is used to train the model, as it

is shown to be superior than the original Adam under 𝐿2 regularization. Hyperparameters

𝛼 (ratio of margin above/below threshold), 𝛽 (weight of subtyping relation constraint), and

_ (𝐿2 regularization coefficient) are tuned.

At validation time, we tune the maximum branching factors for each level 𝑘1, · · · , 𝑘𝐿 .6

These parameters tune the trade-off between the precision and recall for each layer and

prevents over-generation (as we observed in some cases). All hyperparameters are tuned

so that models achieve maximum micro 𝐹1 scores (see Section 7.5.4).
6 For the OntoNotes dataset, this also includes the per-level threshold 𝛿lev(𝑘) .
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Dataset Train Dev Test # Levels # Types Multi-path?

AIDA 2,492 558 1,383 3 187 single-path
BBN 84,078 2,000 13,766 2 56 multi-path
OntoNotes 251,039 2,202 8,963 3 89 multi-path
FIGER 2,000,000 10,000 563 2 113 multi-path

Table 7.1: Statistics of various datasets.

7.5 Experiments

7.5.1 Datasets

AIDA The AIDA Phase 1 practice dataset for hierarchical entity typing comprises

of 297 documents from LDC2019E04 / LDC2019E07, and the evaluation dataset is from

LDC2019E42 / LDC2019E77. We take only the English part of the data, and use the prac-

tice dataset as train/dev, and the evaluation dataset as test. The practice dataset comprises

of 3 domains, labeled as R103, R105, and R107. Since the evaluation dataset is out-of-

domain, we use the smallest domain R105 as dev, and the remaining R103 and R107 as

train.

The AIDA entity dataset has a 3-level ontology, termed type, subtype, and subsubtype.

A mention can only have one label for each level, hence the dataset is single-path, thus the

branching factors (𝑘1, 𝑘2, 𝑘3) for the three layers are set to (1, 1, 1).

BBN Weischedel and Brunstein (2005) labeled a portion of the one million word Penn

Treebank corpus of Wall Street Journal texts (LDC95T7) using a two-level hierarchy, re-
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Dataset 𝛼 𝛽 _ 𝑝D 𝑘1,··· ,𝐿

AIDA 0.1 0.3 0.1 0.6 (1,1,1)
BBN 0.2 0.1 0.003 0.5 (2,1)
OntoNotes 0.15 0.1 0.001 0.5 (2,1,1)
FIGER 0.2 0.1 0.0001 0.5 (2,1)

Table 7.2: Hyperparameters tuned for these datasets.

sulting in the BBN Pronoun Coreference and Entity Type Corpus. We follow the train/test

split by Ren, W. He, Qu, Voss, et al. (2016), and follow the train/dev split by S. Zhang,

Duh, and Van Durme (2018).

OntoNotes Dan Gillick et al. (2014) sampled sentences from the OntoNotes corpus and

annotated the entities using 89 types. We follow the train/dev/test data split by Shimaoka

et al. (2017).

FIGER Ling and Weld (2012) sampled a dataset from Wikipdia articles and news re-

ports. Entity mentions in these texts are mapped to a 113-type ontology derived from Free-

base (Bollacker et al., 2008). Again, we follow the data split by Shimaoka et al. (2017).

The statistics of these datasets and their accompanying ontologies are listed in Table 7.1.

7.5.2 Setup

To best compare to recent prior work, we follow Y. Lin and Ji (2019) where the ELMo

encodings of words are fixed and not updated. We use all 3 layers of ELMo output, so the
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initial embedding has dimension 𝑑𝑤 = 3072. We set the type embedding dimensionality to

be 𝑑𝑡 = 1024. The initial learning rate is 10−5 and the batch size is 256.

Hyperparameter choices are tuned on dev sets, and are listed in Table 7.2.7 We employ

early stopping: choosing the model that yields the best micro 𝐹1 score on dev sets.

Our models are implemented using AllenNLP (Gardner et al., 2018), with implemen-

tation for subtyping relation constraints from OpenKE (Han et al., 2018).

7.5.3 Baselines

We compare our approach to major prior work in FET that are capable of multi-path

entity typing.8 For AIDA, since there are no prior work on this dataset to our knowledge,

we also implemented multi-label classification as set of binary classifier models (similar

to Y. Lin and Ji (2019)) as a baseline, with our mention feature extractor. The results are

shown in Table 7.3 as “Multi-label”.

7.5.4 Metrics

We follow prior work and use strict accuracy (Acc), macro 𝐹1 (MaF), and micro 𝐹1

(MiF) scores. Given instance 𝑥𝑖, we denote the gold type set as 𝑌𝑖 and the predicted type set

�̂� 𝑖. The strict accuracy is the ratio of instances where𝑌𝑖 = �̂� 𝑖. Macro 𝐹1 is the average of all

7 The OntoNotes dataset has an additional set of hyperparameters, i.e. the per-level threshold 𝛿1,2,3 =

(2.5, 3.0, 0.0).
8 S. Zhang, Duh, and Van Durme (2018) included document-level information in their best results—for

fair comparison, we used their results without document context, as are reported in their ablation tests.
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𝐹1 scores between 𝑌𝑖 and �̂� 𝑖 for all instances, whereas micro 𝐹1 counts total true positives,

false negatives and false positives globally.

We also investigate per-level accuracies on AIDA. The accuracy on level 𝑙 is the ratio

of instances whose predicted type set and gold type set are identical at level 𝑙. If there is

no type output at level 𝑙, we append with OTHER to create a dummy type at level 𝑙: e.g.

/person/OTHER/OTHER. Hence accuracy of the last level (in AIDA, level 3) is equal to

the strict accuracy.

7.5.5 Results

All our results are run under the two conditions regarding partial type paths: exclusive

or undefined. The result of the AIDA dataset is shown in Table 7.3. Our model under the

exclusive case outperforms a multi-label classification baseline over all metrics.

Of the 187 types specified in the AIDA ontology, the train/dev set only covers 93

types. The test set covers 85 types, of which 63 are seen types. We could perform

zero-shot entity typing by initializing a type’s embedding using the type name (e.g.

/fac/structure/plaza) together with its description (e.g. “An open urban public

space, such as a city square”) as is designated in the data annotation manual. We leave

this as future work.

Results for the BBN, OntoNotes, and FIGER can be found in Table 7.4. Across 3

datasets, our method produces the state-of-the-art performance on strict accuracy and micro

𝐹1 scores, and state-of-the-art or comparable (±0.5%) performance on macro 𝐹1 score, as
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Approach L1 L2 L3 MaF MiF

Ours (exclusive) 81.6 43.1 32.0 60.6 60.0
Ours (undefined) 80.0 43.3 30.2 59.3 58.0

− Subtyping constraints 80.3 40.9 29.9 59.1 58.3
−Multi-level margins 76.9 40.2 29.8 57.4 56.9

Multi-label 80.5 42.1 30.7 59.7 57.9

Table 7.3: Results on the AIDA dataset.

Approach BBN OntoNotes FIGER

Acc MaF MiF Acc MaF MiF Acc MaF MiF

Ling and Weld (2012) 46.7 67.2 61.2 − † 52.3 69.9 69.3
Ren, W. He, Qu, Voss, et al. (2016) 49.4 68.8 64.5 51.6 67.4 62.4 49.4 68.8 64.5
Ren, W. He, Qu, L. Huang, et al. (2016) 67.0 72.7 73.5 55.1 71.1 64.7 53.3 69.3 66.4
Abhishek, Anand, and Awekar (2017) 60.4 74.1 75.7 52.2 68.5 63.3 59.0 78.0 74.9
Shimaoka et al. (2017) − † 51.7 71.0 64.9 59.7 79.0 75.4
Murty et al. (2018) − † − † 59.7 78.3 75.4
S. Zhang, Duh, and Van Durme (2018) 58.1 75.7 75.1 53.2 72.1 66.5 60.2‡ 78.7‡ 75.5‡

Y. Lin and Ji (2019) 55.9 79.3 78.1 63.8* 82.9* 77.3* 62.9 83.0 79.8

Ours (exclusive) 48.2 63.2 61.0 58.3 72.4 67.2 69.1 82.6 80.8
Ours (undefined) 75.2 79.7 80.5 58.7 73.0 68.1 65.5 80.5 78.1

− Subtyping constraint 73.2 77.8 78.4 58.3 72.2 67.1 65.4 81.4 79.2
−Multi-level margins 68.9 73.2 74.2 58.5 71.7 66.0 68.1 80.4 78.0

†: Not run on the specific dataset; *: Not strictly comparable due to non-standard, much larger training set;
‡: Result has document-level context information, hence not comparable.

Table 7.4: Results of common FET datasets: BBN, OntoNotes, and FIGER. Numbers in
italic are results obtained with various augmentation techniques, either larger data or larger
context, hence not directly comparable.

compared to prior models, e.g. (Y. Lin and Ji, 2019). Especially, our method improves

upon the strict accuracy substantially (4%–8%) across these datasets, showing our decoder

are better at outputting exact correct type sets.
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7.5.6 Discussions

Effect of the threshold ratio hyperparameter In the model described above, we in-

troduced a hyperparameter 𝛼 that can be used to tune the precision-recall tradeoff when

outputting types: the smaller 𝛼 is, we expect the precision would be higher, and vice versa,

the greater 𝛼 is, the recall would be higher. We show evidence that supports this hypothesis

under the BBN dataset, with 𝛼 taking the values in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} (Fig-

ure 7.4). Clearly, we see that with increasing 𝛼 the precision drops but the recall improves.

We hence tune 𝛼 as a hyperparameter to achieve the highest overall F1 score.
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80

82

84

86

88

sc
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Figure 7.4: The micro precision (MiP), recall (MiR), and F1 score (MiF) with varying
threshold ratio 𝛼 on the BBN dev set.

Partial type paths: exclusive or undefined? Interestingly, we found that for AIDA and

FIGER, partial type paths should be better considered as exclusive, whereas for BBN and

OntoNotes, considering them as undefined leads to better performance. We hypothesize
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that this comes from how the data is annotatated—the annotation manual may contain

directives as whether to interpret partial type paths as exclusive or undefined, or the data

may be non-exhaustively annotated, leading to undefined partial types. We advocate for

careful investigation into partial type paths for future experiments and data curation.

Ablation Studies We compare our best model with various components of our model

removed, to study the gain from each component. From the best of these two settings (ex-

clusive and undefined), we report the performance of (i) removing the subtyping constraint

as is described in Section 7.4.5; (ii) substituting the multi-level margins in Equation 7.7

with a “flat” margin, i.e., margins on all levels are set to be 1. These results are shown in

Table 7.3 and Table 7.4 under our best results, and they show that both multi-level margins

and subtyping relation constraints offer orthogonal improvements to our models.

Error Analyses We identify common patterns of errors, coupled with typical examples:

• Confusing similar types: In BBN, our model outputs /gpe/city when the gold

type is /location/region for “... in shipments from the Valley of either hardware

or software goods.” These types are semantically similar, and our model failed to

discriminate between these types.

• Missing correct types: There could be mentions like “UW Department of Chem-

istry” labeled as /organization but missing another correct type /educa-

tion/department.

137



• Prediction too coarse: In FIGER, given instance “... multi-agency investigation

headed by the U.S. Immigration and Customs Enforcement ’s homeland security in-

vestigations unit”, the gold types are /government_agency and /organization,

but our model failed to output /organization, resulting in an incomplete type path.

• Prediction too fine: Given instance “...said professor Charles Campbell, who was

elected as an Fellow in 2010”, the mention “Charles Campbell” is labeled as /per-

son in the gold label but our model outputs /person/author. One could argue that

a professor is an author who writes papers, but this is not annotated as such in the

FIGER dataset. This is an instance of our model making too fine predictions rather

than too coarse.

• Focused on only parts of the mention: In AIDA, given instance “... suggested they

were the work of Russian special forces assassins out to blacken the image of Kievs

pro-Western authorities”, our model outputs /org/government whereas the gold

type is /per/militarypersonnel. Our model focused on the “Russian special

forces” part, but ignored the “assassins” part. Better mention representation is re-

quired to correct this, possibly by introducing type-aware mention representation—

we leave this as future work.

We manually sample and inspect 100 predictions errors in the FIGER dev set, and

classifies these errors into bins to show what kinds errors our models make:
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Error type Proportion

Confusing similar types 15%

Missing correct types 22%

Prediction too coarse 15%

Prediction too fine 35%

Focused on only parts of the mention 6%

Totally wrong 7%

Table 7.5: Common types of errors of our hierarchical entity typing system.

7.6 Experiments for UltraFine

7.6.1 Task and Dataset

Ultra-fine entity typing (Choi et al., 2018) is a newly proposed task for entity typing:

instead of a relatively coarse tree-structured ontology with about 100 types (see Table 7.1),

in ultra-fine entity typing, the goal is to predict a set of free-form noun phrases as very

fine-grained types (Choi et al., 2018). In their version, the ontology has more than 10,000

types (we will call the ontology and the accompanying dataset simply as “UltraFine” from

now on).

Their UltraFine types can be classified into 3 disjoint bins:
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Figure 7.5: The typing ontology of UltraFine. Its top two levels (general and fine-grained)
are formed by taking the union of the ontologies of FIGER and OntoNotes, but included a
new ultfa-fine third level (colored blue).

• General: These 9 types include person, location, object, organization,

place, entity, object, time, event;

• Fine-grained: These 121 types are formed by taking the union of existing type on-

tologies FIGER (Ling and Weld, 2012) and OntoNotes (Dan Gillick et al., 2014);

• Ultra-fine: These 10,201 types are mined by Choi et al. (2018), and encompasses a

very large space.

The task for UltraFine is similar to our aforementioned fine-grained entity typing task:

it evaluated as a multi-label classification task. The difference here is that instead of a

predefined tree-structured ontology, the UltraFine ontology only assumes 3 levels without

a well-defined tree structure.

The original dataset provided by Choi et al. (2018) contains a high quality crowd-

sourced subset, and a distantly supervised augmented dataset. This dataset is further fil-
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Dataset Train (with augmented data) Dev Test

Original UltraFine (Choi et al., 2018) 1,998 (aug. 6,224,985) 1,998 1,998
Denoised (Onoe and Durrett, 2019) 1,998 (aug. 726,890) 1,998 1,998

Table 7.6: Statistics for various UltraFine entity typing datasets.

tered and denoised by Onoe and Durrett (2019), which leads to better typing performance

than the original dataset, and is what we are going to use throughout this section. Statistics

of these datasets can be found in Table 7.6.

7.6.2 Hierarchical Models

Since the fine-grained subset of the type ontology is derived from tree-structured

ontologies FIGER and OntoNotes, we can restore their tree structure from FIGER and

OntoNotes. We manually connect these nodes to their semantic hypernyms in the gen-

eral type subset in UltraFine, resulting in a tree structure for the general and fine-grained

subsets with depth 3 (see Figure 7.5).

Hence the task of ultra-fine typing is decomposed to two subtasks: (1) A hierarchical

part dealing with the top 2 levels of the UltraFine ontology; and (2) a flat part dealing with

the 3rd (i.e. ultra-fine) level of the UltraFine ontology.

For the hierarchical part, the model described in previous sections is used. For the flat

type, we also employ a ranking-based solution similar to the solution we discussed, where

we add an additionally dummy type Y for these flat types. The model learns the ranking

relation that any positive ultra-fine type ranks above the dummy type Y, and the dummy
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Algorithm 2 Decoding for Flat Typing
1: function FLATTYPEDEC(𝐹 (𝑥, ·))
2: \ ← 𝐹 (𝑥, Y) ⊲ threshold value
3: 𝑍 ← {𝑧 ∈ Yflat | 𝐹 (𝑥, 𝑧) > \} ⊲ all decoded children types
4: 𝑍′← TOPK(𝑍, 𝑘flat, 𝐹 (𝑥, ·)) ⊲ pruned by the max branching factor
5: return 𝑍′ ⊲ return all decoded types
6: end function

type Y in turn ranks above any negative ultra-fine type. This can be formulated as

𝐽𝑦≻Y = [𝛼bflat − 𝐹 (𝑥, 𝑦) + 𝐹 (𝑥, Y)]+ (7.19)

𝐽Y≻𝑦′ =
∑︂
𝑦′∉𝑌
[(1 − 𝛼)bflat − 𝐹 (𝑥, Y) + 𝐹 (𝑥, 𝑦′)]+ (7.20)

𝐽𝑦≻𝑦′ =
∑︂
𝑦′∉𝑌
[bflat − 𝐹 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦′)]+ (7.21)

𝐽flat(𝑥,𝑌 ) = 𝐽𝑦≻Y + 𝐽Y≻𝑦′ + 𝐽𝑦≻𝑦′ (7.22)

The model is learned as a multitask problem, where the loss is a weighted sum of

the hierarchical loss for the general and fine-grained levels of UltraFine, and the flat loss

(Equation 7.22) for the ultra-fine level.

To decode, we adopt Algorithm 1 for a single-level setting.

Note that the newly included hyperparameters here: bflat is the margin hyperparameter

for flat types; and 𝑘flat is the maximum number of positive types that can be decoded on the

ultra-fine level.
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7.6.3 Setup

We use the filtered UltraFine dataset from Onoe and Durrett (2019). Baselines include

the original Choi et al. (2018) dataset, which used a GloVe-based LSTM encoder; and

Onoe and Durrett (2019) using both the original dataset and the filtered dataset. Both of

the results from Onoe and Durrett (2019) uses ELMo Peters et al. (2018) as the encoder.

The Onoe and Durrett (2019) model is similar with ours with respect to the encoder,

where they also utilized ELMo-based embeddings. However, they model the problem as a

set of binary classifiers for each type with a neural function 𝐹 (𝑥, 𝑦) = 𝜎(FFNN𝜽 (x) · y).

This is essentially a pointwise relevance function without any pairwise ranking.

From the intuition we discussed that coarser types should have larger margins and finer

types should have smaller margins, we set the margin hyperparameters for the hierarchical

and the flat levels aspects

(b1, b2, b3, bflat) = (4, 3, 2, 1) , (7.23)

where b1,2,3 corresponds to the 3 levels of the union of FIGER and OntoNotes, that covers

the general and fine-grained levels in UltraFine.

For other hyperparameters, we select the maximum branching factors for the hierarchy

(𝑘1, 𝑘2, 𝑘3) = (2, 2, 1), for flat types 𝑘flat = 8 (this means that at most 8 ultra-fine types
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Dataset General Fine Ultra-fine Overall

Original Choi et al. (2018) 61.0 39.4 14.6 31.3
Onoe and Durrett (2019) w/ original data 70.7 42.2 17.1 35.7
Onoe and Durrett (2019) w/ filtered data 73.2 43.8 25.2 40.1

Ours 72.5 42.8 29.2 41.5

Table 7.7: Results for UltraFine entity typing. All numbers are micro-F1 scores.

will be predicted9), threshold ratio 𝛼 = 0.1, relation constraint coefficient 𝛽 = 0.1, 𝐿2

regularization coefficient _ = 0.0003 and dropout rate 𝑝D = 0.3.

We follow Onoe and Durrett (2019) for the metrics: the micro-F1 scores for the three

levels (general, fine-grained, and ultra-fine) are reported, together with the overall micro-F1

score.

7.6.4 Results and Discussions

The results for the UltraFine entity typing task can be found in Table 7.7.

Our ranking-based model achieves a state-of-the-art results over Onoe and Durrett

(2019). Especially, the 4% gain on the flat, ultra-fine type level demonstrates the effec-

tiveness of the ranking approach than the set of classifiers approach. We hypothesize that

the slight performance drop on the hierarchical part is due to insufficient hyperparame-

ter searching: the hyperparameters used are empirically chosen based on experiments on

OntoNotes and FIGER, and they might not reflect the best achievable performance on the

9 This is based on the observation that the maximum number of annotated types in the dev set is 8.
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Choi et al. (2018) UltraFine datset since we had not extensively searched the hyperparam-

eter space.

7.7 Conclusions

We proposed (i) a novel multi-level learning to rank loss function that operates on a

type tree, and (ii) an accompanying coarse-to-fine decoder to fully embrace the ontological

structure of the types for hierarchical entity typing. Our approach achieved state-of-the-art

performance across various datasets, and made substantial improvement (4–8%) upon strict

accuracy.

Additionally, we advocate for careful investigation into partial type paths: their inter-

pretation relies on how the data is annotated, and in turn, influences typing performance.

We also extended the ranking-based method to the UltraFine entity typing task, where

the type ontology has a hierarchical subset and also a “flat”, unstructured subset. Proof-of-

concept experiments demonstrate that ranking-based method indeed leads to improvements

under the UltraFine setting.
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Chapter 8

Cross-document Coreference Resolution

In this chapter we turn the focus to the semantic relevance of mention coreference (i.e.

referring to the same entity), and explore how we can reuse a ranking function trained for

recognizing in-document coreference resolution for retrieval across multiple documents.

We devise methods to extrapolate relevance functions learned under the in-document sce-

nario to a cross-document scenario to retrieve possible coreferent mentions, enabling coref-

erence resolvers to attend not only just to in-document antecents, but also to mentions in

other documents.

We explore (1) substituting a marginal log likelihood loss to a learning-to-rank loss for

candidate antecedents, and (2) extending the second-order inference algorithm in the in-

document coreference resolution to a cross-document scenario, executing under the theme

of triage-then-rerank of this thesis. Methods proposed in this chapter can be reused for
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other scenarios that calls for attention mechanisms spanning over massive collections of

elements.

8.1 Introduction

Coreference resolution performed on noun phrases (NPs), the task of determining

which NPs in a document or dialogue refer to the same real-world entity, has long been

at the core of NLP (Ng, 2010). The task is commonly considered under two different

scenarios: (1) in-document coreference resolution, where the scope of the text is one docu-

ment or one dialogue session; or (2) cross-document coreference resolution, where a system

should predict links between NPs not only in the same document, but also across different

documents in a corpus.

In-document coreference resolution is related to the task of anaphora resolution, whose

goal is to identify an antecedent for an anaphoric NP (e.g. “her”, i.e., an NP that de-

pends on an antecedent NP for its semantic interpretation) (van Deemter and Kibble,

2000). Coreference resolution is considered as a hard NLP task, since correctly identifying

coreference chains involves sophisticated commonsense knowledge and inference proce-

dures (Charniak, 1972). Indeed, for challenge coreference resolution datasets such as the

Winograd Schema Challenge (WSC) (Levesque, 2011; Levesque, Davis, and Morgenstern,

2012) or more recently WINOGRANDE (Sakaguchi, Le Bras, et al., 2020), tasks proposed
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as alternative Turing tests, state-of-the-art NLP models still lag behind human performance

by a large margin.

There has been abundant work on in-document coreference resolution, either based on

traditional syntactic features, or recently pure neural learning methods. State-of-the-art

methods include a span-ranking module that decides, for each span, which of the previous

spans (if any) is a good antecedent. It involves a span-pair model that given a span 𝑥,

produces a relevance score for any antecedent span 𝑥′ that represents how likely 𝑥′ is an

antecedent of span 𝑥. Additionally, higher-order coreference resolution has proven to be

superior (Lee, L. He, and Zettlemoyer, 2018), where span representations are refined by

attending to other previous mentions, enabling the model to softly condition on predicted

clusters instead of prior mentions.

This falls under the overarching theme of this thesis of ranking candidates (here, an-

tecedent spans) given a query (here, an NP span) under a semantic relevance function (here,

the semantic relation of coreference). We devise methods to extrapolate relevance functions

learned under the in-document scenario to a cross-document scenario to retrieve possible

coreferent mentions. This retrieval is a natural generalization of the higher-order attention

described above by being an approximate corpus-wide attention instead of in-document

attention. We investigate whether this corpus-wide retrieval can bring improvements to

in-document coreference resolution by bringing more context.
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8.2 Background

8.2.1 In-document Coreference Resolution

In-document coreference resolution attempts to resolve coreference chains between en-

tity mentions in a single document. Prior work has long utilized machine learning tech-

niques, and can be mainly summarized as using the following general architectures:

• Pairwise mention scoring: In these work, the model learns a function 𝐹 (𝑠, 𝑠′) that

measures how likely mention 𝑠 corefers with mention 𝑠′. Usually, for each span 𝑥,

the most likely antecedent arg max𝑦 𝐹 (𝑥, 𝑦) is selected as the antecedent of 𝑥.

In some work, the function 𝐹 is learned as a pairwise classifier that outputs whether

the two spans corefer. This thread of work includes Ng and Cardie (2002) and Bengt-

son and Roth (2008), both being driven by hand-crafted feature vectors.

Other work approach the problem as a ranking problem, where the precedenting

mentions of a specific mention is considered as candidate antecedents. The model

then learns the rank these candidates with the relevance function 𝐹 so that coreferring

antecedents result on the top. These include Durrett and Klein (2013), Wiseman,

Rush, Shieber, and Weston (2015), and K. Clark and Manning (2016), and later

with Lee, L. He, Lewis, et al. (2017) and Lee, L. He, and Zettlemoyer (2018) that

incorporates mention detection as a joint end-to-end neural model. Our discussion

in this chapter is based on span-ranking methods, since it is relatively simple for
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neural models to learn (lacking complicated structure prediction), and also leading

to state-of-the-art performance by incorporating recent large-scale language model

pretraining methods, e.g. SpanBERT (Joshi, D. Chen, et al., 2020).

• Entity-level models allows coreference decisions to condition on entities (clusters of

coreferring mentions) instead of on a mention level. These systems build up corefer-

ence chains with agglomerative clustering, starting from singleton clusters for each

mention. These include Haghighi and Klein (2010), Stoyanov and Eisner (2012), K.

Clark and Manning (2015), and Wiseman, Rush, and Shieber (2016).

• Latent-tree models approach the problem of coreference resolution as structured in-

ference of a latent tree with span as nodes and coreference relation as edges. These

include Fernandes, dos Santos, and Milidiú (2012), Martschat and Strube (2015), and

Björkelund and Kuhn (2014).

8.2.2 Cross-document Coreference Resolution

Contrary to the traditional in-document coreference resolution task, cross-document

coreference resolution’s goal is to cluster all mentions of the same entity across differ-

ent documents in a corpus. It is commonly modeled as a clustering problem (Bagga and

Baldwin, 1998; Mann and Yarowsky, 2003; Gooi and Allan, 2004; Mayfield et al., 2009),

where dependence for every pair of mentions in the document are created and classified

for whether they are coreferent. These algorithm thus requires O(𝑛2) complexity over a

150



corpus with 𝑛 entity mentions, and operates in a batch mode where all pairwise relations

are simultaneously considered.

D. Rao, McNamee, and Dredze (2010) cast the problem in a streaming fashion, where

documents are processed one at a time and only a single time. This reduces the complexity

to O(𝑛) to achieve scalability across large document sets.

A most relevant work in our exploration in this chapter, and that I have collaborated on,

is Sankepally et al. (2018), where the streaming idea is taking to a more extreme case, in

that only a single mention is considered. Sankepally et al. (2018) is only concerned with

mentions coreferring to a single query mention, hence casting the problem as a coreferent

mention retrieval (CMR) problem. This falls into the theme of this thesis, where the prob-

lem is now retrieving candidate mentions in a corpus that corefers with the given query

mention. Sankepally et al. (2018) utilized the discriminative IR proposed in Chapter 5 (T.

Chen and Van Durme, 2017): here in this chapter we instantiate such a component with

neural, dense vector representations instead of featurized sparse vectors.

8.3 In-document Model

We first review the state-of-the-art in-document coreference resolution model in Joshi,

D. Chen, et al. (2020), which is based upon the higher-order model in Lee, L. He, and

Zettlemoyer (2018), which, in turn, is based upon the span-ranking model of Lee, L. He,

Lewis, et al. (2017).
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8.3.1 Problem Formulation

In-document coreference resolution can be formulated as a set of antecedent assign-

ments for every span 𝑖 in a document 𝐷 = (𝑤1, · · · , 𝑤𝑛). The set of all possible spans is

𝑆 = {(𝑙 : 𝑟) | 1 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛, 𝑟 ≤ 𝑙 + 𝑚}, where (𝑙 : 𝑟) is a span (left and right inclusive),

and 𝑚 is the maximum number of tokens in a span. An order is assumed on the spans: first

order by the left index, then the right index.

The coreference resolution task is therefore the assignment of each span 𝑠𝑖 ∈ 𝑆 with an

antecedent. For span 𝑠𝑖, the set of labels is Y𝑖 = {Y} ∪ {1, · · · , 𝑖 − 1}:

• Y is the dummy antecedent: it may cover the two possible scenarios: (1) 𝑠𝑖 is not an

entity mention; or (2) the span is an entity mention, but it is not coreferent with any

previous span in 𝑆;

• If 1 ≤ 𝑗 < 𝑖 is the antecedent, it means that span 𝑠 𝑗 is a coreferent antecedent of span

𝑠𝑖.

Hence an in-document coreferent resolution model learns a mapping 𝑠𝑖 ↦→ Y𝑖. The set

of decisions implies a final clustering of entity mentions, which can be recovered by taking

the transitive closure of spans that are connected by antecedent predictions.

8.3.2 Mention Representations

Under a neural setup, a span should have a fixed-size vector representation to help build

the overall model. The encoding of the text in the document has evolved with the progress
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of pretraining in NLP: from bidirectional LSTMs utilized in Lee, L. He, Lewis, et al. (2017)

and Lee, L. He, and Zettlemoyer (2018), to using BERT (Joshi, Levy, et al., 2019), to the

most recent SpanBERT (Joshi, D. Chen, et al., 2020), scores on various tasks continue to

improve. In this section we will use the current state-of-the-art contextualized encoding

SpanBERT (Joshi, D. Chen, et al., 2020) as our encoder.

We denote the vector representation of token 𝑤𝑖 as w𝑖 ∈ R𝑑 .1 To get a fixed length

vector s𝑖 for span 𝑠𝑖, the embedding of the left boundary token, the right boundary token,

and a summarized vector of the span (computed by attention with a global query vector a)

is concatenated.

𝑎𝑘 = aTw𝑘

𝑝𝑖𝑘 =
exp 𝑎𝑘
𝑟𝑖∑︂
𝑘=𝑙𝑖

exp 𝑎𝑘

s𝑖 =

[︄
w𝑙𝑖 ; w𝑟𝑖 ;

𝑟𝑖∑︂
𝑘=𝑙𝑖

𝑝𝑖𝑘w𝑘

]︄
(8.1)

Note that s𝑖 ∈ R3𝑑 .

We create a mention score function 𝐹m : R3𝑑 → R to determine whether a span 𝑠𝑖 is

likely to be an entity mention. Note that our goal is recall here: we do not want to have valid

entity mentions ignored by the model. 𝐹m is modeled as a feed-forward neural network,

and spans with higher scores are considered more likely to be entity mentions.

1 For tokens tokenized into subwords units, its represetation is the average of the representations of its
subwords.
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The model first uses 𝐹m to prune the number of spans to consider to effectively reduce

the computational load of the model. According to Lee, L. He, and Zettlemoyer (2018), the

number of spans to take into account is set to be 0.4× the number of tokens in document

𝐷: it achieves a mention recall of around 92% as reported by Lee, L. He, and Zettlemoyer

(2018) with BiLSTMs, but under our experiments this number is about 98% with Span-

BERT.

8.3.3 Span Ranking

The crucial part of the model is to have a relevance function 𝐹 (s𝑖, s 𝑗 ) that ranks candi-

date antecedents Y𝑖 = {Y} ∪ {𝑠 𝑗 }1≤ 𝑗<𝑖 under the semantic relation of how likely 𝑠 𝑗 corefers

with 𝑠𝑖. Under the theme of this thesis, we have a ranking problem here, where 𝑠𝑖 is the

query, Y𝑖 is the mention candidate set, and 𝐹 is the relevance function.

Lee, L. He, and Zettlemoyer (2018) utilized a method they termed “coarse-to-fine in-

ference” to reduce the computation cost. It is essentially operating under the triage-then-

rerank paradigm we discussed in Chapter 2. The method will be elaborated using ranking

terminologies below.

Two relevance functions are defined: a “fine” relevance function that is accurate and

heavyweight, and a “coarse” one that is relatively efficient to compute, and approximates

the former:
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• Approximate relevance function:

�̃� (s𝑖, s 𝑗 ) = 𝐹m(s𝑖) + 𝐹m(s 𝑗 ) + 𝐹c(s𝑖, s 𝑗 ) (8.2)

where 𝐹m determines whether span 𝑗 is likely to be an entity mention to be consid-

ered; and 𝐹c is a pairwise function that is easy to compute. It takes the bilinear form:

𝐹c(s𝑖, s 𝑗 ) = sT
𝑖 Wcs 𝑗 , (8.3)

where Wc ∈ R3𝑑×3𝑑 is a weight matrix to be learned.

• Accurate relevance function:

𝐹 (s𝑖, s 𝑗 ) = �̃� (s𝑖, s 𝑗 ) + 𝐹a(s𝑖, s 𝑗 ) , (8.4)

where 𝐹a is a concatenation-based model that is a feed-forward neural network

stacked upon the concatenation of two span representations and their elementwise

product:

𝐹a(s𝑖, s 𝑗 ) = FFNNa( [s𝑖 ; s 𝑗 ; s𝑖 ⊙ s 𝑗 ; 𝜙(s𝑖, s 𝑗 )]) , (8.5)

where 𝜙 is a manually constructed feature vector that encodes the distance between

two spans.
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Function 𝐹𝑎 is the residual of 𝐹1 except �̃�: we force the concatenative model 𝐹𝑎 to

learn relations that the approximate model �̃� is not able to learn.

Under this setup, we could easily arrive at a cascading triage-then-rerank approach to

coreference resolution:

• (0) Enumerate all spans: All spans whose length is less than 𝑚 is considered:

𝑆0 = {(𝑙 : 𝑟) | 1 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛, 𝑟 ≤ 𝑙 + 𝑚} ; (8.6)

• (1) Prune spans: Keep the top 𝐾1 spans based on the mention score 𝐹m(·):

𝑆1 = arg top𝐾1
𝑠∈𝑆0

𝐹m(𝑠) ⊆ 𝑆0 ; (8.7)

• (2) Triaging: For each mention 𝑠𝑖 ∈ 𝑆1, get the top 𝐾2 spans base on the approximate

relevance function �̃� (𝑠𝑖, ·):

𝑆2(𝑠𝑖) = arg top𝐾2
𝑠 𝑗∈𝑆1

�̃� (s𝑖, s 𝑗 ) ⊆ 𝑆1 ; (8.8)

• (3) Reranking: Rerank the candidate mentions in 𝑆2(𝑠𝑖) plus the dummy antecedent

Y under the accurate relevance function 𝐹 (𝑠𝑖, ·) and get the top one as the most likely

antecedent:

�̂�𝑖 = arg max
𝑠 𝑗∈𝑆2 (𝑠𝑖)∪{Y}

𝐹 (s𝑖, s 𝑗 ) ∈ Y𝑖 . (8.9)
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The candidate set is reduced in every step: from 𝑆0 → 𝑆1 → 𝑆2(𝑠𝑖) → {�̂�𝑖}, the size of

these set goes from |𝑆0 | → 𝐾1 → 𝐾2 → 1. This coarse-to-fine process is the key to make

the model perform reasonably fast but still performant.

8.3.4 High-order Inference

The model elaborated in the previous section suffers from a problem called the consis-

tency error: There could be predictions that are locally consistent by not globally inconsis-

tent. Take the following example from Wiseman, Rush, and Shieber (2016):

SPEAKER 1: Um and [I]1 think that is what’s – Go ahead Linda.

SPEAKER 2: Well and uh thanks goes to [you]2 and to the media to help us... So

our hat is off to [all of you]3 as well.

Span pairs (I, you) and (you, all of you) are locally consistent since the plurality of

“you” is not specified, but the span cluster (I, you, all of you) is globally inconsistent: the

full cluster has mixed plurality. To alleviate this kind of problem that requires cluster-level

information instead of just mention information, models should softly consider multiple

hops in the predicted clusters. We will first look at the higher-order coreference resolution

model in Lee, L. He, and Zettlemoyer (2018) designed to solve this problem.

The inference procedures takes 𝑁 iterations. At each iteration, each the representation

of each span 𝑠𝑖 is updated with an attention mechanism that averages over previous repre-
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sentations weighted according to how likely each mention is to be an antecedent for span

𝑠𝑖. In essence, each span attends to other coreferent spans to update its representation.

The span representation in the previous section is the base case: the vector representa-

tion s𝑖 is denoted as s(0)
𝑖

to signify that it is the 0-th iteration.

At each iteration 0 ≤ 𝑡 < 𝑁 , we first compute the relevance scores for each candidate

spans:

𝑟
(𝑡)
𝑖 𝑗

= 𝐹 (s(𝑡)
𝑖
, s(𝑡)
𝑗
) . (8.10)

Then an aggregated vector of its candidate antecedents are computed with 𝑟𝑖 𝑗 as atten-

tion scores. This is similar to the context vector commonly used in machine translation

decoders:

𝑝
(𝑡)
𝑖 𝑗

=
exp 𝑟 (𝑡)

𝑖 𝑗∑︂
𝑗∈Y𝑖

exp 𝑟 (𝑡)
𝑖 𝑗

(8.11)

c(𝑡)
𝑖

=
∑︂
𝑗∈Y𝑖

𝑝
(𝑡)
𝑖 𝑗

s(𝑡)
𝑗

(8.12)

Finally, the current span representation s(𝑡−1)
𝑖

is updated by interpolation of itself with

the aggregated vector, with a learned gating function:

g(𝑡)
𝑖

= 𝜎(Wg · [s(𝑡)𝑖 ; c(𝑡)
𝑖
]) (8.13)

s(𝑡+1)
𝑖

= g(𝑡)
𝑖
⊙ s(𝑡)

𝑖
+ (1 − g(𝑡)

𝑖
) ⊙ c(𝑡)

𝑖
(8.14)
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According to Lee, L. He, and Zettlemoyer (2018), 2nd order inference significantly

outperforms first order inference, but orders higher than 2 do not bring significant additional

benefit.

8.3.5 Training

In Lee, L. He, and Zettlemoyer (2018), they proposed to use a marginal cross-entropy

loss to train the model. Specifically, since a span can have multiple correct antecedent

spans, they assume that there is one gold antecedent span in this set. The probability of the

“gold” antecedent span is thus marginalized across all these spans.

We can forgo the assumption of the existence of a single gold antecedent span here, and

propose to use pairwise learning to rank methods here.

Observe that the accurate relevance function 𝐹 (𝑠, 𝑠′) can be seen as a ranking function

that ranks candidate antecedents. All coreferring antecedents are considered as correct,

hence are relevant candidates. The dummy Y antecedent is positive if span 𝑠 has no core-

ferring antecedent, but negative otherwise. All other non-coreferring antecedent spans are

clearly irrelevant samples.

To apply the approach as ranking, we consider all coreferring antecedents as relevant

mentions and all non-coreferring mentions as irrelevant. The dummy Y serves as the thresh-

old between the coreferring and the non-coreferring mentions. This idea is similar to what

we propose in the previous chapter, where we use the parent node as the threshold between

positive subtypes and negative subtypes. In essence, the model learns the following ranking
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relation:

𝑠 ≻ Y ≻ 𝑠′, 𝑠 ∈ Y , 𝑠′ ∉ Y (8.15)

Note that if there is no coreferring antecedent, the dummy node Y automatically became

the highest ranking candidate in the candidate span set. This can be learned with a pairwise

ranking loss similar to what we proposed in the previous chapter:

𝐿𝑠≻Y = [𝛼 − 𝐹 (𝑥, 𝑦) + 𝐹 (𝑥, Y)]+ (8.16)

𝐽Y≻𝑠′ =
∑︂
𝑦′∉Y
[(1 − 𝛼) − 𝐹 (𝑥, Y) + 𝐹 (𝑥, 𝑠′)]+ (8.17)

𝐽𝑠≻𝑠′ =
∑︂
𝑦′∉Y
[1 − 𝐹 (𝑥, 𝑠) + 𝐹 (𝑠, 𝑦′)]+ (8.18)

𝐽 (𝑥,Y) = 𝐽𝑠≻Y + 𝐽Y≻𝑠′ + 𝐽𝑠≻𝑠′ (8.19)

Again, 𝛼 controls the precision/recall tradeoff: a larger 𝛼 shifts the decision boundary to-

wards the negative spans, thereby increasing recall; vice versa, a smaller 𝛼makes the model

more strict in predicting coreferring spans, increasing precision. The margin hyperparam-

eter can just be 1 since the last layer is linear—the scale can be learned into the weights of

the last layer as a linear SVM.
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8.4 Retrieval

The 2nd order inference problem is can be considered as an attention mechanism to

other previous spans in text. Can we extend this to an attention to other spans, including

spans in other documents rather than in the same document? The research question here

is: “can we extrapolate the in-document coreference relevance function to cross-document

scenarios?” We develop an approximate attention mechanism that attends to mentions in

all other documents in the corpus. That is, instead of the spans 𝑆(𝐷) in document 𝐷, we

are concerned with S =
⋃︂
𝐷∈D

𝑆(𝐷), the set of all entity mentions in the corpus D.

As we have discussed in Chapter 2, for a retriever to run efficiently, there are 3 issues to

be concerned with: query representation, candidate representation, and a relevance function

that allows for fast nearest neigbor or maximum inner product search.

Our query and candidates here are clearly spans (that are deemed as entity mentions by

the model) 𝑠 ∈ S , and they do have a natural dense-vector based representations s ∈ R3𝑑

here. Can we directly use these embeddings and retrieve under the accurate relevance

function 𝐹 as in Equation 8.9? The answer is no: The part 𝐹𝑎 based on concatenated

vectors cannot be computed efficiently if over all mentions in the corpus.

If the accurate relevant function 𝐹 is infeasible here, can we use the approximate rele-

vance function �̃�? It turns that we can, but that requires some manipulations on the vector

representations.

Recall the approximate relevance function �̃� between spans as described in Equa-
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tion 8.2:

�̃� (s𝑖, s 𝑗 ) = 𝐹m(s𝑖) + 𝐹m(s 𝑗 ) + sT
𝑖 Wcs 𝑗 (8.20)

At the first glance, this does not seem readily reducible to a familiar form (i.e., either

nearest neighbor search under a metric, or maximum inner product search). However, this

is reducible to maximum inner product search under asymmetric transformations (similar

to the trick employed in Neyshabur and Srebro (2015)) on both query and candidate vectors.

Note that

�̃� (s𝑖, s 𝑗 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s𝑖

𝐹m(s𝑖)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wc

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s 𝑗

1

𝐹m(s 𝑗 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.21)

We see that this relevance function is indeed decomposible, namely, it can be rewritten as

the inner product of two vectors.

We define the following transformation functions on both query and candidate vectors:

tQ(s) = (Wcs ; 𝐹m(s) ; 1) ∈ R3𝑑+2 ; (8.22)

tC(s) = (s ; 1 ; 𝐹m(s)) ∈ R3𝑑+2 ; (8.23)

Therefore,

�̃� (s𝑖, s 𝑗 ) = tQ(s𝑖) · tC(s 𝑗 ) (8.24)

This shows that the approximate relevance function �̃� is indeed decomposable into the

inner product of two vectors, but these vectors require some augmentation. This augmen-
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tation technique adds 2 extra dimensions to the vector, and contains the score computed in

𝐹𝑚.

This decomposition shares the spirit of discriminative retrieval as we discussed in Chap-

ter 5 and Chapter 6: The model learns a ranker and reuses its parameters to inform the

retriever what to retrieve. The retriever first maps a query to a representation (here tQ) so

that its most relevant candidates can be retrieved using MIPS.

Now we can perform retrieval of coreferent mentions across documents. First index all

the candidate vector representations tC(s′) of spans 𝑠′ ∈ S. At inference time, for each

query span 𝑠, we retrieve the top-�̄� spans across the whole corpus, denoted as �̄�(𝑠):

�̄�(𝑠) = arg top𝐾𝐶

𝑠′∈S
�̃� (s, s′) = arg top𝐾𝐶

𝑠′∈S
tQ(s) · tC(s′) ⊆ S (8.25)

Then we compute the attention mechanism in �̄�(𝑠) instead of the whole set S. This is

a good approximation of the partition function since the relevance scores follow a long-tail

distribution (see the diagnostic section below for validation):

∑︂
𝑠′∈�̄�(𝑠)

exp �̃� (s, s′) ≈
∑︂
𝑠′∈S

exp �̃� (s, s′) (8.26)

Now we can proceed with a second-order inference procedure that not only attends to
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coreferring mentions in the same document, but across a whole corpus:

𝑟 𝑠′ = �̃� (s, s′) 𝑠′ ∈ �̄�(𝑠) (8.27)

�̄�𝑠′ =
exp 𝑟𝑠′∑︂

𝑠′∈�̄�(𝑠)
exp 𝑟𝑠′

(8.28)

c̄ =
∑︂
𝑠′∈�̄�(𝑠)

𝑝𝑠′s′ (8.29)

Vector c̄ is an weighted aggregation of all spans in the whole corpus that is relevant to

the current span. The 2nd order inference algorithm update the representation of a span

with not only the in-document context c, but also with the cross-document corpus-wide

context c̄. The gating function in Equation 8.13 is also modified to account for a third

component, the cross-document context:

[g𝑠 ; g𝑐 ; g�̃�] = softmax(Wg · [s(𝑡)𝑖 ; c(𝑡)
𝑖

; c̄(𝑡)
𝑖
]) ∈ R3𝑑×3 (8.30)

s(𝑡+1)
𝑖

= g𝑠 ⊙ s(𝑡)
𝑖
+ g𝑐 ⊙ c(𝑡)

𝑖
+ g�̃� ⊙ c̄(𝑡)

𝑖
(8.31)

Relation to Shifted Inner Product Similarities Okuno, Kim, and Shimodaira (2019)

proved that any similarity function 𝐹 : X × X → R over element set X in the form

of 𝐹 (𝑥, 𝑦) = f (𝑥) · f (𝑦) + 𝑔(𝑥) + 𝑔(𝑦) (termed a shifted inner product similarity, where

𝑓 : X → R𝑛 and 𝑔 : X → R are both parameterized neural functions) can approximate
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any conditional positive-definite (CPD) kernel (Schölkopf, 2000), whereas a normal inner

product similarity in the form of 𝐹 (𝑥, 𝑦) = f (𝑥) · f (𝑦) can only approximate any positive-

definite kernel (the normal kernels utilized in SVMs). The approximate relevance function

�̃� between spans here is an instance of shifted inner product similarity.

CPD kernels are known to be inherently more expressive than normal kernels, and

our derivation here provides a method for reducing maximum shifted inner product search

to a maximum inner product search problem with asymmetric tricks (Equations (8.22)

to (8.24)).

8.5 Experiments and Discussions

We conduct our experiments based on the higher-order neural coreference model (Lee,

L. He, and Zettlemoyer, 2018), with the state-of-the-art pretrained encoder SpanBERT

(Joshi, D. Chen, et al., 2020) for the coreference task. Our implementation is based on

the neural coreference model in the allennlp-models package,2 that contains a set of

state-of-the-art NLP models based upon AllenNLP (Gardner et al., 2018).

Dataset We use the English portion of the coreference resolution dataset from the

CoNLL-2012 shared task (Pradhan et al., 2012), which is in turn a subset of the OntoNotes

5.0 dataset (Weischedel, Palmer, et al., 2013). The dataset is diverse in different text genres,

and contains 2,802 documents in the training set, 343 in dev, and 348 in test.

2 https://github.com/allenai/allennlp-models/tree/master/allennlp_models/coref.
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General Setup We use the SPANBERT-LARGE variant of SpanBERT, where the encod-

ing dimensionality for each token is 1,024. We use the coreference-fine-tuned SpanBERT

weights published by Joshi, D. Chen, et al. (2020), and freeze these weights to accelerate

training and to reduce the GPU memory footprint.

We inherit most of the hyperparameters from the AllenNLP code: the maximum num-

ber of tokens per span is 30; the maximum number of spans to retain in the mention filtering

stage is 0.4 per token, the number of spans selected in the triaging phase 𝐾2 = 50, and the

dropout probability for the mention representation is 𝑝D = 0.3.

Metrics To evaluate in-document coreference resolution, we follow the metrics defined

in prior work by using the official evaluation metrics in the CoNLL-2012 shared task. These

include the precision, recall, and F1 scores of MUC (Vilain et al., 1995), B3 (Bagga and

Baldwin, 1998), and CEAF𝜙4 (Luo, 2005). The main evaluation metric is the average F1

score of the three metrics.

8.5.1 Ranking Loss in In-document Model

We investigate how the ranking-based loss performs for the in-document coreference

resolution task, as compared to the marginalized cross-entropy utilized in Lee, L. He, and

Zettlemoyer (2018). The main hyperparameter to tune for this experiment is 𝛼: the ratio

of the margin between coreferring antecedents/dummy and dummy/non-coreferring spans.

Our best result is reported in Table 8.1. The best-performing model has 𝛼 = 0.15.
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Model MUC B3 CEAF𝜙4 Avg.

P R F1 P R F1 P R F1 F1

Joshi, D. Chen, et al. (2020) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6

Ranking-based loss 83.7 85.0 84.3 78.5 81.0 79.8 79.5 69.8 74.4 79.5

Table 8.1: Results of ranking loss vs. marginalized cross entropy loss for in-document
coreference resolution.

The final result is not much different: we observed a 0.1% decrease of performance

in the final average F1 score, indicating that a ranking-based loss, when properly trained,

is similar to a marginalized cross-entropy loss.3 However, on the metric B3, the ranking-

based loss is superior, especially in recall, but much worse on CEAF𝜙4. This is interesting

since the recall of B3 is the proportion of its actual coreferents that the system thinks are

coreferent with it, averaged across all mentions,4 and the CEAF metric computes the per-

formance on the entity level instead of on the mention level as in B3 (Cai and Strube, 2010).

Our gain in B3 recall but loss in CEAF𝜙4 recall indicate that a ranking-based loss performs

better on the mention level but worse on the entity level.

8.5.2 Corpus-wide Second-order Inference

We experiment with incorporating corpus-wide second-order inference, i.e., attending

over the entire corpus, to see if it improves the performance of in-document coreference

resolution. The main hyperparameter to tune here is the number of spans to retrieve �̄�

3 This is corrobrated in Lee, L. He, Lewis, et al. (2017) where they considered a ranking-based loss but
has not reported the result.

4 See Brendan O’Connor’s blogpost Probabilistic interpretation of the B3 coreference res-
olution metric that discusses these metrics at https://brenocon.com/blog/2013/08/
probabilistic-interpretation-of-the-b3-coreference-resolution-metric/.
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Model MUC B3 CEAF𝜙4 Avg.

P R F1 P R F1 P R F1 F1

�̄� = 0 (w/o external attention) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6

�̄� = 2 86.9 82.6 84.7 82.8 77.8 80.3 81.2 68.6 74.4 79.7
�̄� = 4 86.7 82.6 84.6 82.4 77.9 80.2 81.3 68.4 74.3 79.7
�̄� = 8 86.5 83.1 84.7 82.1 78.4 80.2 81.3 68.7 74.5 79.8
�̄� = 16 86.7 82.8 84.7 82.5 78.1 80.3 81.3 68.6 74.4 79.8
�̄� = 32 86.9 82.8 84.8 82.7 78.0 80.3 81.3 68.7 74.5 79.9

Table 8.2: Results of corpus-wide second-order inference for in-document coreference res-
olution.

from the entire corpus: we select the number from {2, 4, 8, 16, 32}: the more to retrieve,

the slower the training process would be.

We index all the mentions found in the training and dev set respectively (first pass

decoding), then at training time we retrieve from the training mention index, whereas at

validation time we retrieve from the dev mention index. This can be seen as a kind of two

pass decoding, where first the model detects all possible mentions for a document set, index

these mentions, then the model predicts coreference chains with corpus-wide second-order

inference conditioned on all these mentions discovered in the dataset. In the CoNLL-2012

dataset here, the training set has 319,426 mentions to retrieve from, the dev set 38,581, and

the test set 42,100.

Results are shown in Table 8.2. It shows that attending over the corpus brings very

modest improvement to the overall performance. Again, the improvement over B3 is more

significant, but not much overall.
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8.5.3 Diagnostics and Discussions

We perform some diagnostics on our proposed approach, namely, we investigate how

well the approximated second-order inference under cross-document coreference works.

Retrieval for approximating the partition function In Equation 8.26, we proposed

that the sum of the retrieved elements can approximate the partition function 𝑍 (𝑠) =∑︂
𝑠′∈S

exp �̃� (s, s′) over all mention spans in the corpus based on the hypothesis of the long-tail

distribution. Here we randomly sample 100 mention spans from the dev set of the CoNLL-

2012 dataset, and plot the scores �̃� (s, s′) to see whether it follows a long-tail distribution.
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Figure 8.1: Raw relevance scores of the
retrieved candidate mentions, with each
line in the plot representing one query
mention span.

0 50 100 150 200 250
rank

10 4

10 3

10 2

10 1

100

sc
or

e

Figure 8.2: Softmax-normalized rele-
vance scores of the retrieved candidate
mentions, on a log scale for the 𝑦-axis.

Figure 8.1 plots the raw scores of the retrieved candidate mentions for each sampled

query mention span, with 𝑥-axis as the rank (here we did top-𝑘 search with 𝑘 = 256), and
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Figure 8.2 plots the softmax-normalized scores used in the second-order inference proce-

dure. We clearly observe the long-tail distribution of these scores here, hence justifying our

approximation of the partition function.

Proportion of in-document mentions We investigate the mentions retrieved for each

mention that has at least one other coreferent mention in the same document, and found out

that most top mentions retrieved are in-document, and out-of-document retrieved mentions

are pretty random and most often does not corefer with the query mention.

𝐾 mentions to be retrieved 2 4 6 16 32

Proportion of retrieved mentions to be in-doc 59.0 39.2 28.6 19.8 14.0

Table 8.3: Proportion of retrieved mentions that are in the same document as the query
mention.

In Table 8.3, the randomly-sampled mention set in the previous diagnostic test is reused,

while filtering out singleton mentions. The proportion of retrieved mentions that are in

the same document is very high at 𝐾 = 2 or 4: this shows that in-document coreferring

mentions are far more likely to be retrieved that cross-document mentions.

Cross-document retrieved mentions are also not coreferring to the query mention: in our

sampled subset of test spans, if we take 𝐾 = 16 and manually inspect the retrieved cross-

document mentions (note that there is no annotations for cross-document coreference in the

CoNLL-2012 dataset), we found out that only about 4% are correct: many shares topical

context but are not coreferent. For example, a query span “the city” (referring to the city of
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Hong Kong in the document) retrieves mentions such as “Hollywood of the East” (referring

to the film industry of Hong Kong in the containing document, but not the city itself), “the

Hong Kong government”, “Shenzhen” (an adjacent city just across a river, but in mainland

China), “Taiwan” (a close geo-political entity), or “Hong Kong Wetland Park”.

This shows that the in-document trained coreference relevance function does not read-

ily extrapolate to cross-document scenarios because the encodings learned for the men-

tions are highly contextualized, and the performance gains (≈ 0.3% gain in average F1)

may come from the information of later coreferent spans (the base model of Lee, L. He,

and Zettlemoyer (2018) does not consider spans after the current span). For future work,

one might restrict the search to only in-document mentions or only cross-document men-

tions. Additionally, one might try to fine-tune the relevance function to let it learn cross-

document coreference links by using cross-document coreference datasets such as the one

in Sankepally et al. (2018).
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Part IV

Conclusions
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Chapter 9

Conclusions

9.1 Contributions

This thesis has made various contributions to the problem of ranking and retrieval un-

der a wide range of semantic relevance relations. In Chapter 3, we have shown that by

extending the traditional categorical notion of natural language inference to uncertain nat-

ural language inference, models can learn to predict scalar subjective probabilities instead

of categorical labels, making the predictions closer to human judgements. By treating

the model as a relevance function under the semantic relation of inference, we devise re-

gression and ranking methods to model such inference, and led to predictions that better

correlate with humans. In Chapter 4, we consider the problem of situation frame detec-

tion, where we consider the relevance function of whether a document evokes a specific

situation frame. We devised ranking methods based on annotators or HITs, illustrating

173



modeling methods that could potentially ameliorate per-annotator or per-HIT bias in data

elicitation. In Chapter 5, we consider the relevance function of a candidate passage answer-

ing a given natural language question, and devised a featurized sparse-vector based method

that could efficiently and scalably retrieve candidate answer passages for a given question.

This method significantly improves triaging recall that could benefit downstream reranking

models. In Chapter 6, we apply the same idea, but based on neural, dense embeddings for

question answering and similar questions retrieval. Although our results are not competi-

tive, later work has shown that this research direction is viable with more advanced dense

representations and better sampling strategies.

The contributions of Part II of this thesis center on semantic relevance over entity men-

tions rather than text snippets. Chapter 7 proposed methods to model the semantic rel-

evance of a mention belonging to a specific entity type in the task of fine-grained entity

typing. Under the tree-structured ontology of entity types, we devised ranking methods

that fully embraces the tree structure of the ontology, leading to state-of-the-art results for

the task. In Chapter 8, we viewed coreference resolution models as span-ranking models

whose relevance function models whether two mention spans corefer. We explored ex-

trapolating the relevance function learned in an in-document scenario to a cross-document

scenario, and proposed methods that could retrieve coreferring mentions across multiple

documents with neurally learned dense representations.
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9.2 Future Work

The research presented in this thesis initiates further research questions. A main con-

cern for all of these ranking and retrieval method is representation learning: methods for

generating better representations that could facilitate more accurate retrieval are of utmost

importance. With the rapid advancement of pretraining methods like ELMo (Peters et al.,

2018), BERT (Devlin et al., 2019), SpanBERT (Joshi, D. Chen, et al., 2020), etc., better

representations can be generated. However, the geometry of the space of the representa-

tions remain to be studied, for example, the anisotropy of the generated vectors Ethayarajh

(2019) may make approximate dense vector retrieval methods perform suboptimally.

Chapter 3 and Chapter 4 raises the question of annotation bias with respect to differ-

ent annotators and HITs. More research into ranking methods to ameliorate these biases

may be studied. The problem of natural language inference can be considered the inverse

of abductive reasoning (Bhagavatula et al., 2020), where we can apply retrieval methods

proposed in this thesis to perform corpus-wide abductive reasoning by finding evidences in

corpus that supports certain claims.

The dense retrieval method for open-domain question answering in Chapter 6 can fur-

ther faciliate multi-hop question answering, where systems iteratively retrieve paragraphs

in a large corpus for multi-hop reasoning. A close work following this thread is Feldman

and El-Yaniv (2019).

Chapter 7 addresses the problem of typing under a tree-structured ontology. How-

ever, types in an ontology may be structured as a directed acyclic graph (DAG), as DAGs
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extends trees by allowing multiple inheritance of types rather than single inheritance. Rep-

resentation learning methods like box embeddings (Vilnis et al., 2018; X. Li et al., 2019) or

hyperbolic embeddings in the Poincaré ball space (López, Heinzerling, and Strube, 2019)

are possible ways to deal with DAG-structured ontologies. Extension of ranking methods

to these spaces remain unsolved. Another thread of future research is the proper treatment

of nested entities.

The fine-grained entity typing task may be further generalized to include entity linking:

when the types gets finer and finer, they arrive at the level of singleton entities, effectively

becoming entity linking. Future research can seek to unify entity typing and linking un-

der the same task, and learn representations for both types and entities in the same space

(Euclidean, or alternatives such as Poincaré). Since the number of these types and entities

might be large (e.g. more than 5 million Wikipedia entities), typing and linking can be

again cast as a retrieval problem, instigating further research in scalable retrieval for these

spaces.

Finally, Chapter 8 raises the possibility of using document-level information for coref-

erence resolution, by treating the entire corpus as a candidate set to retrieve from. While

the work presented in that chapter is only exploratory, more could be done to refine the rep-

resentations learned to execute cross-document coreference mention search, thus providing

a neural dense-vector based solution to the coreferent mention retrieval (CMR) problem

raised by Sankepally et al. (2018). Treating all mentions as a candidate set also opens re-
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search directions such as question answering or slot filling by directly retrieving from a set

of mentions.

More broadly, future work may extend the ranking and retrieval paradigm discussed in

this thesis to a wide range of semantic and information extraction tasks (e.g. entity linking,

knowledge base question answering, etc.), and these ranking and retrieval modules can

serve as components in larger AI systems such as dialogue agents, enabling these agents

the capability to perform scalable inference with large-scale corpora or knowledge bases.
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Appendix A

Implementation Details

This section elaborates software engineering details with respect to the retrieval ser-

vices, for both sparse vector-based retrieval systems as described in Chapter 5, and dense

vector-based retrieval systems as described in Chapter 6 and Chapter 8.

A retrieval system for queries in Q and candidates in 𝐶 ⊆ C are implemented as two

distinct online services, called search and fetch here, and two offline service store and

index that stores the raw candidates and the computed representations respectively. We

give each candidate a string-valued ID.

The service search executes maximum inner product search for sparse or dense vec-

tors based on an vector index and a query, and returns top-𝑘 candidate IDs. The fetch

service fetches candidate objects given their IDs.

These routines can be summarized in Table A.1.

A generic search algorithm can be described as below in Algorithm 3.
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Routine Signature

CANDIDATE-REPR (fC) C → R𝐶

QUERY-REPR (fQ) Q→ R𝑄

TRANSFORM (t) R𝑄 → R𝐶

STORE Iterable[(str, C)] → Store
FETCH (Store, List[str]) → List[C]
INDEX Iterable[(str,R𝐶)] → Index

SEARCH (Index,R𝐶 , int) → List[str]

Table A.1: Common routines in retrieval services.

Algorithm 3 Generic retrieval algorithm
1: function RETRIEVE(Index, Store, 𝑞 ∈ Q, 𝑘 ∈ N)
2: q← QUERY-REPR(𝑞) ⊲ Query representation
3: q̃← TRANSFORM(q) ⊲ Transformed query
4: (𝑖1, · · · , 𝑖𝑘 ) ← SEARCH(Index, q̃, 𝑘) ⊲ Top-𝑘 search
5: (𝑐1, · · · , 𝑐𝑘 ) ← FETCH(Store, (𝑖1, · · · , 𝑖𝑘 )) ⊲ Fetch candidate objects
6: return (𝑐1, · · · , 𝑐𝑘 )
7: end function

Throughout the experiments in this thesis, STORE and FETCH are implemented using

the Berkeley DB1 key-value store. Each key (string ID) and value (candidate objects, can

be a string or a multi-dimensional array when encoded) are serialized as byte arrays that can

be stored in a Berkeley DB database. Multi-dimensional arrays are represented as NumPy

(Harris et al., 2020) np.ndarrays then serialized using msgpack-numpy2.

1 https://www.oracle.com/database/berkeley-db/.
2 https://github.com/lebedov/msgpack-numpy.
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A.1 Retrieval with Sparse Vectors

For sparse vector-based retrieval systems, we use Apache Lucene3 as the retrieval en-

gine to implement the INDEX and SEARCH services. A sparse vector is converted to a

stream of Lucene terms, with the weights encoded using the “payload” functionality in

Lucene (that allows the addition of arbitrary bytes for each term stored). We extend the

standard org.apache.lucene.search.similarities.ClassicSimilarity to ac-

count for the addition of payloads (that encode weights), so that our customized inner

product search can be efficiently executed in Lucene. We release this library as probe4.

A.2 Retrieval with Dense Vectors

For dense vector-based retrieval systems, the underlying engine for the INDEX

and SEARCH services is FAISS5 (Johnson, Douze, and Jégou, 2017). We use the

faiss.IndexIVFFlat and faiss.MultiIndexQuantizer for a retrieval system based

on the optimized product quantization (Ge et al., 2013) method.

3 https://lucene.apache.org/.
4 https://github.com/ctongfei/probe.
5 https://github.com/facebookresearch/faiss.
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