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Abstract

Traditional machine learning and statistical analysis techniques often breakdown when

applied to high dimensional data. While significant progress has been made in processing

such data [1, 2], these techniques often attempt to exploit some sub-structure prevalent to the

data. Dimensionality reduction is a broad class of techniques designed to specifically reduce

the dimensionality of data, while preserving relevant structure for further processing, e.g.

clustering. Uniform Manifold Approximation and Projection (UMAP) [3] is a state-of-the-art

non-linear dimension reduction algorithm that constructs a topologically motivated graph

representation of the data, before optimizing the low-dimensional representation of this

graph. Current implementations of UMAP use a stochastic gradient estimate of a constructed

smooth approximation while performing this optimization. The Simultaneous Perturbation

Stochastic Approximation (SPSA) [4] algorithm, which only requires two measurements of

the loss function when computing gradient estimates, bypasses the need for this smooth

approximation. This thesis introduces the UMAP-SPSA algorithm to perform the UMAP

dimension reduction without the need for the smooth approximator. Further, we analyze the

the algorithm’s computational performance and embedding accuracy.
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Chapter 1

Introduction

1.1 Motivation

Recent advances in technology have driven a massive increase in the volume, velocity, and

dimension of data available for measurement and collection [5]. Many diverse fields have

benefited from this proliferation, such as neurology, sensor fusion, and finance [6, 7, 8]. While

learning techniques exist for analysis and prediction in these fields, they typically break down

in high dimensions due to the curse of dimensionality [9, 10]. If one were able to reduce the

dimensionality of such large datasets while preserving the structure of interest, then these

classes of techniques would again become viable.

1.2 Dimension Reduction

Dimension reduction is the process of finding lower-dimensional representations of high-

dimensional data, while preserving some relevant structure, e.g., sample distance. The study

of dimension reduction techniques has its roots in Pearson’s seminal paper on lines of best fit

[11]. Pearson was originally interested in finding curves and surfaces of best-fit given a set

of (potentially noisy) measurements. In Pearson’s case, the data of interest was measured

in some ambient space (each dimension corresponding to a measured property), but the

relationship of interest was found when projecting the data to these lower-dimensional lines

and planes.
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Formally, the general dimension reduction problem seeks to find a function

f : A → E, (1.1)

where A is the ambient data space and E is the embedded data space, with dim(A) < dim(E).

Such an f need not be injective, for if we consider the canonical projections πi : Rn → R,

i = 1, · · · , n such that πi(x1, · · · , xn) = xi, then f is clearly non-injective.

The linearity of f divides techniques into two broad families, namely linear and non-linear.

That is, if f is a linear mapping, i.e., f(x + y) = f(x) + f(y) and f(αx) = αf(x), then

the dimension reduction technique is a linear technique; otherwise it is non-linear. Linear

methods, such as Principle Component Analysis (PCA) [11], Factor Analysis [12], and Linear

Discriminant Analysis (LDA) [13] have long been used to perform dimension reduction, but

such approaches typically fail to appropriately account for nonlinearities that can arise in

complex sets of data. Recent work has instead explored non-linear techniques for reducing

the dimension of complicated data.

In particular, a specific sub-class of non-linear dimension reduction has been of interest

recently which focuses on constructing a neighbor-graph representation of the dataset of

interest, then seeks to efficiently embed this graphical representation. Techniques such

as Laplacien Eigenmaps [14], t-Distributed Stochastic Neighbor Embedding (t-SNE) [15],

and Uniform Manifold Approximation and Projection [3] have all adopted this approach,

and recently UMAP has achieved state-of-the-art performance in terms of computational

runtime and embedding accuracy across many open machine learning datasets. In our study,

we explore a modification to the UMAP algorithm which we feel enhances the embedding

accuracy while maintaining a computationally competitive runtime.

1.3 Summary of Contents

The remainder of this thesis is as follows: in Chapter 2 we summarily review the Laplacian

Eigenmaps (LE) algorithm as a precursor for Uniform Manifold Approximation and Pro-
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jection (UMAP), before presenting the UMAP and Simultaneous Perturbation Stochastic

Approximation (SPSA) algorithms in detail. Then in Chapter 3, we introduce our UMAP

modification to leverage SPSA optimization. In Chapter 4 we provide numerical results

on the quantitative and computational performance of the algorithm as compared to other

dimension reduction techniques. Finally, we conclude this thesis in Chapter 5 by discussing

the strengths and weaknesses of our approach, and suggest possible research directions for

future study.
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Chapter 2

Preliminaries

2.1 The Nerve Theorem

While we focus on the Uniform Manifold Approximation and Projection (UMAP) algorithm in

this work, and to an extent its spectral precursor Laplacian Eigenmaps (LE), the underlying

neighbor-graph construction technique is common to many dimension reduction techniques.

Several non-linear dimension reduction techniques make the same initial assumption: suppose

X = {x1, · · · , xn} is a set of points lying on a manifold M embedded in ambient RD space.

This manifold M is of a lower-dimension than RD, but it is not observed; only samples from

this manifold are available (the observed X). From this discrete subset X, we seek to recover

the manifold structure of M .

Fortunately, the machinery to recover such structure is possible by way of the Čech

complex. Given a set of points X, the Čech complex Čϵ(X) is built as follows: for each

subset of X, σ ⊂ X, σ ∈ Čϵ(X) if and only if the intersection of every ϵ-ball centered at each

σi ∈ σ is non-empty. Such a construction is important because it has been shown that Čϵ(X)

is homotopy-equivalent (see Appendix A) to the union of ϵ-ballscentered at each point in X,

and thus the manifold structure local to the sampled points may be recovered [16]. This is

known as the nerve theorem. Niyogi, Smale, and Weinberger [17] further extend this result

to encompass cases where the sampled X is “noisy” and lies near rather than on the manifold

in question. By constructing a neighbor-graph of the sampled points X in the "right" way,
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one can now exploit the nerve theorem when constructing a dimension-reducing embedding

by recovering the underlying manifold structure. For a detailed review on the underlying

Homology theory, we refer the reader to [18], [19], or [16].

2.2 Laplacian Eigenmaps

We present here the details of the Laplacian Eigenmaps (LE) algorithm, an important precursor

to UMAP. Given a set of points X = {x1, · · · , xn} lying on a manifold M embedded in RD,

the LE algorithm seeks to find an embedding f : X → RE with E ≪ D. The algorithm

constructs such an f in two key phases: construction of a weighted adjacency graph, and

construction of the eigenmap embedding.

The LE algorithm considers the ambient data X as an adjacency graph’s vertices, i.e.

V = X, then connects each vertex xi to its nearest k neighbors

eij =

⎧⎨⎩1, xj ∈ Nk(xi),
0, otherwise,

(2.1)

where Nk(xi) is the set of k-nearest neighbors to xi as defined by dRD (the metric on RD),

and k is an algorithmic hyperparameter. Choice of k is motivated by how much local, versus

global, neighborhood information is to be encoded in the adjacency graph. For each edge, eij

from xi to xj, the algorithm then defines the edge weighting as

wij =

⎧⎪⎨⎪⎩exp
(︃

−∥xi−xj∥2

t

)︃
, eij = 1,

0, otherwise,
(2.2)

where t > 0 is another algorithmic hyperparameter. The choice of such a weight function is

established by Belkin and Niyogi [20, 14] via connection of the Laplacian operator to heat

flow. With edge matrix E = {eij} and weight matrix W = {wij}, the weighted adjacency

graph is then G = (V, E, W ).

If G is a connected graph, i.e., every node is reachable from every other node via edge

connections, then the algorithm proceeds as follows (otherwise it proceeds on each connected
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component): compute the eigenvalues and eigenvectors for

Lf = λDf, (2.3)

where D is the diagonal matrix Dii = ∑︁
j Wij , and L = D − W is the graph’s Laplacian. The

connection between the Laplacian operator on the sampled points X and the underlying

manifold is well-founded by Belkin and Niyogi [21], and others [22, 23]. If f0, · · · , fn−1 are

solutions to equation 2.3, then the embedding f is taken as {f1, · · · , fE} such that for any

xi ∈ X, f(xi) = (f1i, · · · fEi), where fji is the ith entry in the jth eigenvector.

As an example, we can consider a set of points lying in R2 that we wish to embed into R,

such as in Figure 2-1.

1 2

3

4

W =

⎡⎢⎢⎢⎣
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

⎤⎥⎥⎥⎦ D =

⎡⎢⎢⎢⎣
3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

⎤⎥⎥⎥⎦ L =

⎡⎢⎢⎢⎣
3 −1 −1 −1

−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

⎤⎥⎥⎥⎦

Figure 2-1. X ⊂ R2, connected with k = 2 and t = ∞.

Solving equation 2.3 for the example in Figure 2-1, we find the eigenvalues λ0 = 0, λ1 = 1,

λ2 = 4
3 , and λ3 = 5

3 , with corresponding eigenvectors f0 = (1, 1, 1, 1), f1 = (0, −1, 0, 1),

f2 = (−1, 0, 1, 0), and f3 = (−2
3 , 1, −2

3 , 1). The embedding is then f = f1 = (0, −1, 0, 1), and

so f(x1) = 0, f(x2) = −1, f(x3) = 0, and f(x4) = 1.

The LE algorithm has two main computational tasks: finding the k-nearest neighbors

during construction of the adjacency graph, and solving the eigenvalue problem when

constructing the eigenmap embedding. Brute-force nearest-neighbor search takes O(n2) time

as each sample is compared to every other sample when computing distances and neighbors,

but more recent heuristic approaches, such as nearest neighbor descent [24], are able to achieve
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empirical run times of O(n1.14). Similarly, solving the eigenvalue problem via brute-force

takes O(n3) time, with efficient algorithms [25, 26] requiring only O(n2). In general, the

eigenmap computation will be the rate-limiting step.

2.3 Uniform Manifold Approximation and Projection

The UMAP algorithm builds on LE in several important ways. Both algorithms begin in

the same way: let X = {x1, · · · , xn} be a set of n points, and suppose that this data lies

on a manifold within RD. UMAP makes three key assumptions as to the structure of this

manifold:

• the data is uniformly distributed (in distance) on the manifold,

• the Riemannian metric is locally constant,

• the manifold is locally connected.

McInnes et al. [3] show that a metric may be constructed such that the data is approximately

uniformly distributed (in distance) with regard to that metric.

Lemma 2.3.1 ([3]). Let (M, g) be a Riemannian manifold in RD and take p ∈ M . If g is

locally constant about p in an open neighborhood U , then in a ball Bp ⊆ U centered at p, the

geodesic distance on the manifold from p to any point q ∈ Bp is 1
r
dRD(p, q), where r is the

radius of Bp in RD and dRD is the existing metric on RD.

This means that (except on the manifold boundary), any ball of fixed volume will contain

approximately the same number of points. A ball centered at xi that contains precisely xi’s

k−nearest neighbors will (approximately) have fixed volume, and so by Lemma 2.3.1, the

geodesic distance from xi to its k−nearest neighbors is effectively constant. McInnes et al. [3]

further show that this construction (in conjunction with the local connectivity assumption)

corresponds with the Čech complex and captures the relevant topological structure.
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UMAP uses this connection to update the construction of the adjacency graph as compared

to LE by updating the weight function. For each xi ∈ X, denote the set of k−nearest neighbors

to xi as Nk(xi), and define ρi and σi such that

ρi = min{d(xi, xij
)|xij

∈ Nk(xi), d(xi, xij
) > 0}, (2.4)

k∑︂
j=1

exp
(︃− max(0, d(xi, xij

) − ρi)
σi

)︃
= log2(k). (2.5)

Here ρi is the distance to the closest neighbor of xi and σi is a normalization factor, which

taken together enforce the local connectivity assumption. The weight function is then defined

as

wij =

⎧⎪⎨⎪⎩exp
(︃

− max(0,d(xi,xij
)−ρi)

σi

)︃
, xj ∈ Nk(xi),

0, otherwise.
(2.6)

Intuitively, the weight of an edge is the probability that it exists. If A is the weighted

adjacency matrix, a weight wij ∈ A represents the probability that an edge exists from xi to

xj. UMAP constructs the symmetric matrix

B = A + AT − A ◦ AT ,

where "◦" is the Hadamard (element-wise) product. The same weight wij ∈ B represents the

probability that an edge exists from both xi to xj and from xj to xi. The UMAP graph is

then G = (X, B). This weighted graph G encodes the topology of the source data, X, from

which we then seek to find a set of data, Y = {y1, · · · , yn}, such that the weighted graph H

encoding the topology of Y is "similar" to G.

Interpreting the weights of G and H as the probability of an edge existing, these are

Bernoulli variables as the edge either exists or it does not. Considering the set of all possible

edge weights E, with weight functions wG(e) and wH(e) to represent the weight of such an
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edge in G and H respectively, UMAP then minimizes the Cross-Entropy between G and H as

C(G, H) =
∑︂
e∈E

(︃
wG(e) log

(︄
wG(e)
wH(e)

)︄
+ (1 − wG(e)) log

(︄
1 − wG(e)
1 − wH(e)

)︄)︃
(2.7)

=
∑︂
e∈E

(︃
wG(e) log(wG(e)) + (1 − wG(e)) log(1 − wG(e))

)︃
(2.8)

−
∑︂
e∈E

(︃
wG(e) log(wH(e)) + (1 − wG(e)) log(1 − wH(e))

)︃
. (2.9)

Note that in 2.8, the weight function of G is fixed as it is constructed from the source data

X, and so 2.7 minimizes precisely when 2.9 is minimized, that is

−
∑︂
e∈E

(︃
wG(e) log(wH(e)) + (1 − wG(e)) log(1 − wH(e))

)︃
. (2.10)

UMAP employs stochastic gradient descent (SGD) to find such a minimizer. To compute the

gradient required for SGD, UMAP makes use of a smooth approximation of wH(eij) of the

form

Φ(eij) =
(︃

1 + a(∥xi − xj∥2b
2

)︃−1
, (2.11)

where a, b are found by fitting 2.11 to 2.6. As an initial "guess" at Y , UMAP uses the

lower-dimensional eigenmaps that LE computes via 2.3, and then minimizes according to

2.7. The resultant graph vertices are the optimal embedding. Figure 2-2 shows a simple

comparison of LE versus UMAP embeddings, along with PCA.

2.4 Simultaneous Perturbation Stochastic Approxima-
tion

In the previous sections, we present brief summaries of the LE and UMAP algorithms for

dimension reduction. At its core, UMAP added a critical step on top of the LE algorithm,

namely the optimization of the low-dimensional representation. In this section we will

introduce Simultaneous Perturbation Stochastic Approximation (SPSA) [4], a stochastic

optimization algorithm. SPSA seeks to find the minimizer θ∗ of a loss function J(θ)

θ∗ = arg min
θ

J(θ). (2.12)

9



Figure 2-2. Comparison of PCA, LE, and UMAP embeddings of the Pendigits dataset. The LE
embedding is able to generate some separation between classes, but UMAP does a much better
job of bringing same-class points together, while separating the different classes.
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From an initial guess θ̂0, the algorithm progressively updates the current estimate θ̂k via

estimates of the gradient of J in the general stochastic approximation form [27]

θ̂k+1 = θ̂ − akĝk(θ̂k), (2.13)

where ĝk is the current gradient estimate and ak is a nonnegative gain sequence. SPSA

computes gradient estimates by perturbing the given parameter estimate θ̂k and evaluating

the loss function at these perturbations. That is, if ∆k is a zero-mean perturbation vector of

the same dimension as θ̂k, then

ĝk(θ̂k) = J(θ̂k + ck∆k) − J(θ̂k − ck∆k)
2ck∆k

, (2.14)

where ck is a nonnegative step sequence defined in [4]. Spall [4] defines specific conditions

that these gain and step sequences must adhere to, namely:

• ak, ck → 0

• ∑︁
ak = ∞

• ∑︁ a2
k

c2
k

< ∞

While many functional forms for ak and ck exist which satisfy these requirements, Spall

recommends using

ak = a

(k + 1 + A)α
ck = c

(k + 1)γ
, (2.15)

with a, A, α, c, and γ being optimization hyperparameters.

The gradient estimator constructed in 2.14 is shown to be an "almost unbiased" estimator

for each mth entry via a first-order Taylor expansion:

E
[︃
ĝkm(θ̂k)

⃓⃓⃓⃓
θ̂k

]︃
= E

[︃
J(θ̂k + ck∆k) − J(θ̂k − ck∆k)

2ck∆km

⃓⃓⃓⃓
θ̂k

]︃

≈ E
[︃
J(θ̂k) + ckg(θ̂k)T ∆k) − [J(θ̂k) − ckg(θ̂k)T ∆k)]

2ck∆km

⃓⃓⃓⃓
θ̂k

]︃

= E
[︃2ck

∑︁
i gi(θ̂k)∆ki

2ck∆km

⃓⃓⃓⃓
θ̂k

]︃
= gm(θ̂k) +

∑︂
i ̸=m

gi(θ̂k)E[ ∆ki

∆km

]

11



Assuming ∆ki is a zero-mean random vector, is independent of ∆km, and E[ 1
∆km

] is finite,

then E[ ∆ki

∆km
] = 0. Thus

E
[︃
ĝkm(θ̂k)

⃓⃓⃓⃓
θ̂k

]︃
≈ gm(θ̂k)

Spall [4] further notes that when compared to similar algorithms, such as Finite Difference

Stochastic Approximation which require a number of loss function evaluations commensurate

with the number of parameters, SPSA only requires two loss function measurements per

gradient estimate.
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Chapter 3

UMAP Optimization via SPSA

A problem with the UMAP SGD optimization is that while the weight function for a given

graph H is easily understood (the probability that an edge exists between two points), its

derivative ∇wH is highly intractable with respect to the underlying edge. To circumvent

this, UMAP constructs a smooth-approximation to perform Stochastic Gradient Descent for

computing the minimizer (2.11) for 2.9. While this smooth approximation is differentiable,

the derivative of even a good approximation may differ from the true gradient, resulting in

poor performance. It is then desirable to avoid this construction.

Instead of constructing this smooth approximation, we may instead leverage the SPSA

algorithm, which only requires two loss function measurements to compute a gradient estimate.

Let

J(H) = −
∑︂
e∈E

(︃
wG(e) log(wH(e)) + (1 − wG(e)) log(1 − wH(e))

)︃
(3.1)

be the UMAP objective function; then we seek

H∗ = arg min J(H). (3.2)

With an, cn as the usual SPSA gain sequences, then (3.2) is found by iterating

wH,n+1 = wH,n − anĝn(wH,n)

ĝn(wH,n)i = J(wH,n + cn∆n) − J(wH,n − cn∆n)
2cn(∆n)i

,

where ∆n is the random perturbation vector.

13



Figure 3-1 illustrates an example of the SPSA perturbation, as applied to the low-dimension

UMAP embedding graph. For illustration, we consider a set of four points being embedded

into R2. At this specific iteration, we highlight the perturbation of the second sample (2),

which is perturbed in a positive, and negative direction. Note that all nodes are perturbed

at once (simultaneously), but we only demonstrate a single node for convenience. This

perturbation creates two graphs, for which loss measurements may be taken, and the gradient

estimated per 2.14. Figure 3-2 shows a simple comparison of LE, UMAP, and UMAP-SPSA

embeddings.

1

2+

2

2−

3

4

Figure 3-1. SPSA perturbation of UMAP graph

Figure 3-2 shows a simple comparison of LE, UMAP, and UMAP-SPSA embeddings.
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Figure 3-2. Comparison of LE, UMAP, and UMAP-SPSA embeddings of the Pendigits dataset.
The LE embedding is able to generate some separation between classes, but UMAP does a
much better job of bringing same-class points together, while separating the different classes.
UMAP-SPSA generates comparable clustering and separation of samples as UMAP.
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Chapter 4

Experiments and Results

The primary datasets used in this work are: Wisconsin Breast Cancer [28], Pendigits [29],

MNIST [30], and FMNIST [31]. A summary of these datasets is provided in table 4-I.

Name Samples Dimensionality Classes
Breast Cancer 569 30 2

Pendigits 1797 64(8 × 8) 10
MNIST 70000 784(28 × 28) 10

FMNIST 70000 784(28 × 28) 10

Table 4-I. Summary of datasets

4.1 Computational Performance Comparison

Benchmarks were performed on a Windows 10 machine with a 3.6 GHz AMD Ryzen 5 3600

and 16 GB of DDR4 RAM. Scikit-learn [32] implementations of several dimension reduction

techniques were compared against UMAP [3] and UMAP-SPSA, including PCA [11], TSNE

[15], Local Linear Embedding [33], Laplacian Eigenmaps (Spectral Embedding) [14], Isomap

[34], and Multidimensional Scaling [35]. Computational run-times were captured for these

algorithms on the MNIST [30] dataset with a varing number of samples. A summary of

runtime performance can be found in Table 4-II for the UMAP, UMAP-SPSA, and LE

algorithms on several datasets.

For small subsample (n < 1600), all algorithms previously described are used to embed

16



a subset of MNIST to 2D, with Figure 4-1 presenting the runtime scaling as number of

subsamples is increased. All algorithms, except MDS, provide reasonable scaling at low

sample sizes, but as sample size increases (5000 < n < 25000), TSNE and Local Linear

Embedding scale poorly, as shown in Figure 4-2. Figure 4-3 shows the results for larger (n

> 10000) numbers of samples for the UMAP, UMAP-SPSA, and PCA algorithms. While

UMAP-SPSA is outperformed, in terms of recorded runtime, by UMAP, it is still faster than

most other considered dimension reduction algorithms.

(Number of Samples,
Dimension of Samples) UMAP UMAP-SPSA Laplacian Eigenmaps

Breast Cancer 2.545734s ± 0.105s 1.985s ± 0.076s 0.026s ± 0.002s
(569, 30)

Pendigits 4.733s ± 0.375s 5.710s ± 0.114s 0.783s ± 0.020s
(1797, 64)

MNIST 37.269s ± 0.567s 65.116s ± 0.909s N/A
(70000, 784)

FMNIST 31.420s ± 0.574s 69.261s ± 0.715s N/A
(70000, 784)

Table 4-II. Runtime of UMAP, UMAP-SPSA, and LE on various datasets. LE runtimes are not
computed for MNIST and FMNIST due to time required for convergence; UMAP authors reported
times in excess of an hour, compared to seconds required by UMAP / UMAP-SPSA.

4.2 Quantitative Performance Comparison

We compare the PCA, UMAP, and UMAP-SPSA embeddings via a k-nearest neighbor

classifier trained on the embedded data according to the procedure used by the UMAP

authors with slight modification [3]. We embed the dataset using the various dimensionality

reduction algorithms to Rd for several values of d, then train a kNN classifier for several

values of k. The kNN classifier accuracy indicates how well the embedding has captured the

local structure at small k values, while also indicating how well the embedding captured the
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Figure 4-1. Scaling of embedding algorithm runtime with sample size
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Figure 4-2. Scaling of fast embedding algorithm runtime with sample size
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Figure 4-3. Scaling of very fast embedding algorithm runtime with sample size

20



global structure at large k values. Following the UMAP authors’ protocol, we divide the

datasets into small (Wisconsin Breast Cancer and Pendigits) for which smaller values of k

are more reasonable and large (MNIST and FMNIST) for which larger values of k are more

reasonable. A 10-fold cross-validation is used to compute 10 accuracy scores following each

embedding. Across these datasets in general, UMAP-SPSA performs as well, or better than

UMAP, or other comparable algorithms.

Figure 4-4 provides a facet grid of the accuracy results for the Cancer dataset. Each row

corresponds to an embedding algorithm (PCA, UMAP, UMAP-SPSA), each column to the

"k" value used in the kNN classifier, and each entry showing a plot of embedding dimension

against classifier accuracy. Figure 4-5 summarizes the results for the Pendigits dataset, figure

4-6 summarizes the MNIST dataset, and figure 4-7 summarizes the FMNIST dataset. Overall,

embedding dimension only affects the PCA accuracy, with classifier accuracy increasing as

embedding dimension is increased, before leveling off. Broadly, the embedding accuracy

between UMAP and UMAP-SPSA is comparable, with UMAP-SPSA exhibiting slightly

superior performance on the Pendigits and FMNIST datasets.
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Figure 4-4. Wisconsin Breast Cancer Embedding Accuracy
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Figure 4-5. Pendigits Embedding Accuracy
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Figure 4-6. MNIST Embedding Accuracy
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Figure 4-7. FMNIST Embedding Accuracy
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This paper highlights the potential usefulness of the SPSA algorithm in optimizing the UMAP

objective function. We can see that there is a trade-off in the algorithms computational run-

time, and embedding accuracy. Through the work of Spall, we show that a gradient estimate

of the UMAP graph’s cross-entropy may be constructed using only two loss measurements at

each iteration, regardless of the number, or dimension, of the samples to be embedded.

Our main contribution in this paper was the UMAP-SPSA algorithm which we introduced

in Chapter 3. We were able to show that this approach, while slower than UMAP, is still

computationally competitive against other dimension reduction techniques, while maintaining

embedding accuracy.

5.2 Future Work

We believe there are still research paths to explore regarding the UMAP-SPSA algorithm.

While we introduce the algorithm and demonstrate its relative performance as compared to

UMAP and other dimension reduction techniques, the question remains as to the relationship

of the bias-variance trade-off between the original UMAP gradient estimate and the SPSA

gradient estimate. It may be possible to express the bias and variance of the different gradient

estimates using common terms, and establish a bound relating the two. Spall [4] established
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the expression for the bias of the SPSA gradient estimate in terms of the SPSA step sequence,

perturbation vector, perturbed parameters, and the loss function.

A one-measurement version of SPSA [36] also exists which leverages a single loss function

measurement at each iteration to construct the gradient estimate. While the one-measurement

SPSA algorithm is asymptotically superior to the two-measurement SPSA for a specific class

of problems, it is not currently known whether the UMAP optimization falls within this class.

However, we hypothesize that using the one-measurement form of SPSA would bring the

UMAP-SPSA algorithm’s runtime in line with that of UMAP’s. Additionally, a second-order

SPSA method [37] exists which leverages multiple loss measurements at each iteration to

estimate both the gradient and hessian of the loss function. The second-order method

accelerates convergence to the minimizer as compared to the first-order two-measurement

SPSA method) at the cost of requiring more loss measurements at each iteration.

Overall, our work has shown that leveraging first-order SPSA to optimize the UMAP

objective function is beneficial. From these results, we hypothesize it is worthwhile to pursue

further SPSA based modifications to UMAP.
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Appendix A

Topological Background

A.1 Topological Spaces

Let T be a set. A collection τ of subsets of T is a topology on T , if

• both T and ∅, the empty set, belong to τ ,

• the arbitrary union of sets in τ belongs to τ ,

• the finite intersection of sets in τ belongs to τ .

A topological space (T, τ) is a set T paired with a topology τ on T . For a set T , multiple

topologies may exists, including the trivial topology containing only the empty set and T

itself, and the discrete topology containing every subset of T . A subset of T belonging to

τ is said to be open. For any open subset U ∈ τ , the complement of U is said to be closed.

Within a topological space (T, τ), one can consider a sequence of points {xn}, with xn ∈ T .

The N-tail of xn is the collection of all points {xi : i > N}. A sequence of points {xn}

in T is said to converge to x ∈ T if for every open set U ∈ τ containing x, there is an

integer N such that xi ∈ U for all i > N . In other words, given any open set U containing x,

there exists an N ∈ N such that the N-tail of xn is contained in U . One such example is the

real-line R, paired with the topology of arbitrary union of open intervals, and the sequence

{ 1
n
}. This sequence converges to 0, since for every open interval containing 0, i.e., (a, b) with

a < 0 < b and a, b ∈ R, there will exist N such that a < 1/n < b for n > N .
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Now consider two topological spaces (T1, τ1) and (T2, τ2). A function f from T1 to T2,

f : T1 → T2, is a mapping that assigns to each element in T1 a unique element in T2. The

simplest function is the identify function, idT : T → T , which maps each element of a space T

to the same element in T , e.g. idX(x) = x. A function f : T1 → T2 is said to be injective if

for all x, y ∈ T1, f(x) = f(y) implies x = y. A function f : T1 → T2 is said to be surjective

if for all y ∈ T2, there exists x ∈ T1 such that f(x) = y. A function that is injective and

surjective is said to be bijective. If f : T1 → T2 and g : T2 → T1, then g is said to be the

inverse of f if f ◦ g = idT2 and g ◦ f = idT1 , where ◦ denotes function composition, i.e.,

(g ◦ f)(x) = g(f(x)). Similarly, f is the inverse of g.

Lemma A.1.1. A function f : T1 → T2 has an inverse if and only if it is bijective.

Proof. Let f : T1 → T2 be bijective. As f is surjective, for all y ∈ T2, there exists x ∈ T1 such

that f(x) = y, and as f is injective, this x is unique. Define g : T2 → T1 such that g(y) = x

for each such x, y pairing. This g is well-defined, and (f ◦ g)(y) = idT2 and (g ◦ f) = idT1 .

Now let f have an inverse g. Choose y ∈ T2 and let x ∈ T1 be such that g(y) = x.

Applying f to both sides yields y = f(x), as (f ◦ g) = idT2 , and so f is surjective. Take

x1, x2 ∈ T1 such that f(x1) = f(x2). Let y ∈ T2 be such that f(x1) = f(x2) = y. As g is the

inverse of f , g(y) = (g ◦ f)(x1) = (g ◦ f)(x2) → x1 = x2, and so f is injective.

A function f : T1 → T2 is said to be continuous if for every open set U ⊆ T2, f−1(U) =

{x ∈ T1 : f(x) ∈ U} is open in T1. A continuous bijective function f : T1 → T2, with

continuous inverse f−1 : T2 → T1, is a homeomorphism. If such a function exists between

two topological spaces T1 and T2, then T1 is homeomorphic to T2, and vice versa. In other

words, if f : T1 → T2 is a homeomorphism, we may continuously deform T1 into T2 via f ,

and T2 into T1 via f−1.

Given two continuous functions, f, g : T1 → T2, one can consider the deformation of f

into g. That is, consider the function h : T1 × [0, 1] → T2 such that h(x, 0) = f(x) and

h(x, 1) = g(x). Then h(x, t) deforms f(x) into g(x) as t goes from zero to one. If h is
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continuous, then h is said to be a homotopy. If there exist continuous functions f : T1 → T2

and g : T2 → T1 such that there exists a homotopy between f ◦ g and idT1 and a homotopy

between g ◦ f and idT2 , then T1 and T2 are said to be homotopy-equivalent. Intuitively,

we may deform T1 into T2 by stretching or shrinking T1 into T2.

Lemma A.1.2. If topological spaces T1 and T2 are homeomorphic, then they are also

homotopy-equivalent.

Proof. Let T1, T2 be two homeomorphic topological spaces, with homeomorphism f : T1 → T2.

As f is bijective, (f−1◦f)(x) = x for all x ∈ T1, and so f−1◦f = idT1 . Let h(x, t) = (f−1◦f)(x),

then h(x, 0) = (f−1 ◦ f)(x) and h(x, 1) = (f−1 ◦ f)(x) = idT1(x), and so h is a homotopy

between f−1 ◦ f and idT1 . The same may be shown for f ◦ f−1 and idT2 . Thus T1 and T2 are

homotopy equivalent.

A.2 Topological Bases

When considering a space T , one may have a preconceived notion as to what sets should be

open in that space, e.g., the canonical open intervals in R. From this collection, one seeks

to generate a topology guaranteeing the openness of said collection. For a collection B of

open sets in a topological space (T, τ), B is said to be a base of τ if every set in τ may be

expressed as the union of sets from B.

Lemma A.2.1. Given a topological space (T, τ ), a collection B of open sets is a base of τ if

and only if for each U ∈ τ and each x ∈ U , there exists B ∈ B such that x ∈ B ⊆ U .

Proof. Let (T, τ) be a topological space, and let B be a collection of open sets in T . If B

is a base, then U is the union of sets in B (as B is a base). Let x belong to U , then one

such B ∈ B must exist that contains x as part of such a union; denote this set as B∗. Then

x ∈ B∗ ⊆ U .
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Now suppose that for each U ∈ τ and x ∈ U there exists Bx ∈ B such that x ∈ Bx ⊆ U .

Now, U is the union of the Bx, which completes the proof.

A topological space (T, τ) is second-countable if there exists an at most countably

infinite base of τ . By limiting the size of the base to being at most countably infinite, a

second-countable space restricts how "large" (in an abstract sense) τ may be. We now present

two important theorems regarding second-countable spaces.

Lemma A.2.2 (Lindelöf’s Lemma). Let (T, τ) be a second-countable topological space, then

every open cover of T contains an at most countable subcover.

Proof. Let (T, τ) be a second-countable topological space, and let G be an open covering of

T . As T is second-countable, there exists an at most countable base B of τ . As every G ∈ G

is open, and G is the union of sets in B, G may be rewritten as the union of sets in B. But

B is at most countable, and thus G may be rewritten as the union of an at most countable

number of open sets.

A set D ⊆ T is said to be dense in T , if for every non-empty open set U ⊆ T , there

exists a point in D that is also contained in U ; i.e., D and U have non-empty intersection.

If T has a dense set D that is at most countably infinite, then T is said to be separable.

One such example of a separable space is R under the usual topology (of arbitrary union of

open intervals). Q is countably infinite, and every open interval in R must contain a rational

number (by the Archimedean property).

Lemma A.2.3. Let (T, τ) be a second-countable topological space, then T is separable.

Proof. Let (T, τ) be a second-countable topological space. As T is second-countable, there

exists a countable base B of τ . For each Bi ∈ B, choose one point di ∈ Bi, and denote the set

of all di as D. Clearly D is countable, as one di is chosen for each set in B, a countable set.

For any non-empty open set U in T , and any x ∈ U , there exists B ∈ B such that x ∈ B ⊂ U
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(by Lemma 1.1). Thus U must also contain an element from D, as it contains a set from B

as a subset, and so D is dense in T .

A.3 Hausdorff Spaces

The previous subsection considered topological spaces under a restriction on how "big" (in

an abstract sense) τ could be. When a space is restricted to being second-countable, two

nice properties were shown to follow: the space is separable and Lindelöf. When considered

under a different restriction, namely when τ cannot be too "small", different, but similarly

nice properties exist.

Consider a topological space (T, τ). T is said to be a Hausdorff space, if for any two

distinct points, u, v ∈ T , there exist open sets U, V ∈ τ , such that u ∈ U and v ∈ V , with U

and V being disjoint. This implies uniqueness of limits. Otherwise, one could have a sequence

xn and two distinct points x and y, such that every open set of x contains elements of xn,

and every open set of y contains elements of xn; in this sense, xn converges to "both" x and y.

A.4 Topological Manifolds

Consider a second-countable Hausdorff space M . A chart (U, ϕ) is an open subset U of M ,

with a homeomorphism ϕ from U onto an open subset of Rn. (U, ϕ) is said to be a chart

at p, for p ∈ M if p ∈ U . An atlas is a collection of charts, {(Ui, ϕi)}i∈I , such that the

collection {Ui}i∈I covers M .

Given an atlas A, and two charts, (Ui, ϕi), (Uj, ϕj) ∈ A, if Ui ∩ Uj ̸= ∅, then

ϕj
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) ϕi

j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj)

are transition maps. Note that ϕj
i = ϕj ◦ ϕ−1

i and ϕi
j = ϕi ◦ ϕ−1

j , and thus ϕj
i = (ϕi

j)−1.

Intuitively, charts describe the mapping of regions of M to Rn, while transition maps describe

the transition between regions of M , precisely on the overlap of the regions.
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M is said to be a topological n-manifold if an atlas of M exists. A topological manifold

with an atlas whose transition maps are all differentiable is a differentiable n-manifold;

a topological manifold with an atlas whose transition maps are all smooth (continuously

differentiable) is a smooth n-manifold. Intuitively, this means that each point in M has a

local neighborhood that can be continuously (or smoothly) deformed into Rn.

A.5 Tangent Spaces and Riemannian Manifolds

Just as a tangent may be constructed at a point along a curve in Rn, one may consider the

tangents of a point on a manifold. Consider a smooth n-manifold M , and choose a point

p ∈ M , with chart (Up, ϕp) at p. Now consider a curve lying on M which passes through p,

γ : (−1, 1) ⊂ R → M with γ(0) = p, such that ϕp ◦ γ : (−1, 1) ⊂ R → Rn is differentiable

in the usual sense. The tangent vector of M at p along γ is the derivative of ϕp ◦ γ at

0. The set of all tangent vectors of M at p, denoted TpM , is the tangent space of M at

p. Intuitively, the tangent space of a point p ∈ M is constructed by taking all curves on M

which pass through p, and taking the tangent of those curves at p.

Consider now a real, smooth manifold M . For each point p ∈ M , equip the tangent space

TpM with an inner-product gp : TpM × TpM → R such that:

• gp(u, v) = gp(v, u), for all u, v ∈ TpM ,

• gp(u, u) ≥ 0, for all u ∈ TpM ,

• gp(u, u) = 0 if and only if u = 0.

Then M is said to be a Riemannian manifold, and gp is the Riemannian metric at p;

the collection of all Riemannian metrics on M is known as the Riemannian metric.
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