EVALUATING THE EFFECT CHINA’S BELT AND ROAD INITIATIVE HAS ON THE UNITED STATES’ CLEAN ENERGY TRANSITION

by

Trevor Donald McHugh

A research study submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Arts in Global Security Studies

Baltimore, Maryland
December 2021

© 2021 Trevor McHugh
All Rights Reserved
Abstract

This research study looks at how China’s Belt and Road Initiative (BRI) is negatively impacting the United States’ (US) clean energy transition. Whether intentionally or unintentionally, China’s BRI is eliminating US access to minerals critical to the clean energy transition and is essentially monopolizing the overall supply chain. This research study analyzes Chinese engagements in specific countries determined to be among the top three producers of one of the seven minerals identified by the International Energy Agency as critical for a clean energy transition, highlighting the BRI’s investment and political tactics and corresponding effects on US clean energy markets, investments, and initiatives. The elimination of critical mineral and alternate processing providers outside of Chinese control runs the risk of not only limiting US clean energy goals and transition timelines but projecting China as a leader and top partner in the rapidly growing global clean energy push. While research has been done on the relationship between the BRI and critical minerals, the BRI and clean energy, and critical minerals and clean energy, there is a lack of research on the intersection of all three. This research study looks to bridge that gap and provide insight into how the BRI is hindering US clean energy efforts in an attempt to not only better inform the US strategy going forward, but to understand China’s intentions.

This research study was faculty peer reviewed by:

Oliver Fritz – Research Study Reviewer
Sarah Clark – Research Study Advisor
Sophie Estes – Student Peer Reviewer
Acknowledgements

I would like to thank my wife for her patience and constant support as I pursue my goals, always pushing me to challenge myself. I would also like to extend my deepest gratitude to my parents for encouraging me to apply to Johns Hopkins University and their unrelenting support, understanding, and guidance. Special thanks as well to the rest of my family, friends, colleagues, and professors who helped me along the way and shaped this research study.
Table of Contents

Abstract... ii
Acknowledgements .. iii
List of Tables ... v
List of Figures ... vi
Introduction... 1

Literature Review ... 4
 Belt and Road Initiative .. 4
 Clean Energy Transition ... 7
 Critical Minerals .. 10

Hypothesis & Methodology .. 14
 Overview ... 14
 Caveats and Limitations .. 16

Data .. 18
 Chile .. 18
 Democratic Republic of the Congo .. 20
 Indonesia ... 22
 Mozambique ... 24
 Myanmar ... 26
 Peru ... 28
 Philippines ... 30
 South Africa .. 32
 Zimbabwe .. 34

Discussion ... 37

Conclusions .. 42

Bibliography .. 44

Curriculum Vitae ... 53
List of Tables

Table 1: Demand for Minerals Under SPS and B2S...8
Table 2: Mineral Shortage Assessment...8
List of Figures

Figure 1: Minerals Used in Selected Clean Energy Technologies ... 1
Figure 2: US and China Critical Mineral Net Import Reliance and Concentration 12
Figure 3: 2019 Share of Top Three Producing Countries for Select Clean Energy Minerals .. 14
Introduction

Clean energy has quickly become a major geopolitical touchpoint, with international tensions and worries increasing over how to limit and reduce greenhouse gas emissions. With this increasing interest in limiting greenhouse gas emissions, for fear of irreversible damage to the climate, has also come a need for clean energy technologies. Clean energy technologies/sources typically include nuclear, solar, hydro, and wind. As seen in Chart 1, these clean energy technologies require a significantly larger amount of minerals than their fossil-fuel counterparts. Because of this increased need for specific minerals, the geopolitical importance of the countries that control the mining and processing of them will likely increase as well.

Chart 1: Minerals Used in Selected Clean Energy Technologies\(^1\)

![Chart 1: Minerals Used in Selected Clean Energy Technologies](chart1.png)

Given the importance of these critical minerals to clean energy transitions and thus importance of the countries with the largest reserves, the threat from China’s Belt and Road

Initiative (BRI) is steadily growing as it potentially limits United States (US) access to these minerals and supply chains, hindering the US clean energy transition. This issue stems from the fact that China is already a top supplier for 18 of the 35 minerals designated as critical by the US in any given year, with the US being import reliant for 31 of those 35, and the BRI able to expand this dependence.\(^2\) China has likely realized the geopolitical significance of leading the global clean energy transition and is strategically gaining access to/taking control of the global supply of critical minerals and related supply chains in an effort to advance related political and economic objectives. What is less known is how, where, and to what extent, these efforts are affecting US clean energy objectives. It may also be important to consider if Chinese efforts have been specifically targeted to create leverage over the US or to prevent the US from influencing or succeeding in the clean energy transition.

This research study will begin by reviewing some of the existing literature/research in areas covering the BRI, clean energy, and critical minerals, with most tying in at least one of the other aforementioned topics. Next, this research will analyze agreements made under the purview of the BRI in countries identified as the top extractors and processors for minerals vital to clean energy, cross-referencing those against major global or US climate and mineral announcements, summits, agreements, etc. Taking this information into account, this research will end by studying the broader market of the identified minerals of concern and how BRI investments have altered the US Government’s and US companies’ clean energy strategy, production, resource allocation, and effectiveness. Overall, this analysis and research will help reveal the true extent of how China’s BRI has impacted the US’ clean energy transition and raise

awareness of the tactics, techniques, and procedures the BRI is using to gain a strategic advantage in the global clean energy push and related supply chains.
Literature Review

Building upon the primary areas of the BRI, clean energy transitions, and critical minerals, this paper will review and expand on these concepts and related research from the academic community. While there is abundant research on all of these topics separately, there are a select few articles that help provide the necessary background and insight into the interconnectedness of the multiple areas. Each section will look to bridge this divide, bringing together the available research and synthesizing their findings.

Belt and Road Initiative

China’s BRI has quickly become an unprecedented example of combining economic development, international trade, national security, and foreign investment. Understanding the evolution of the BRI will provide the necessary background to further advance our knowledge of how the BRI may be affecting the US clean energy transition. Four research articles specifically help us form the basis of this understanding. In the first article, Si Cheng and Shaozhou Qi discuss the BRI’s foreign direct investment (FDI) shift towards non-carbon intensive industries.4 The second article is by three researchers studying the growing “green bonds” and incentives under the BRI.5 The third article is by Ruben Gonzalez-Vicente discussing the relationship

between the Chinese FDI in extractive sectors and possible resource curse theories.6 Lastly, the fourth article by Willie Ganda looks at specific BRI strategies in Africa.7

China’s global engagement through the BRI has historically targeted a wide-array of countries for various purposes, having differing effects on each. Ganda discusses some of China’s intentions with the BRI and highlights how China seems to have a “self-interested position of establishing and maintaining an assured and reliable source of raw materials for its economic interests” in countries with a “need for international support in the global geopolitical domain”.8 This is then expanded on, with Ganda showing how the BRI benefits from the “shared international adversaries along the initial Cold War rivalries that have transformed into modern day global economic dominance wars”.9 Building off this research, Gonzalez-Vincent shows how the effects from the BRI seem to depend on geographic location. For example, in Africa, where “resource-endowed countries often present authoritarian regimes or weak democracies, China’s impact on the internal curses of extraction ranges from neutral to negative”.10 This is in stark contrast to South America, where the BRI typically has a positive or neutral effect due to stronger democracies, more efficient state intervention, and civil societies as seen in Peru, Chile, and Paraguay.11

Demonstrating the evolution of the BRI, Cheng and Qi highlight how BRI investment has recently shifted from focusing on carbon-intensive industries to non-carbon-intensive industries

10 Gonzalez-Vicente, “China’s engagement,” 83.

11 Ibid.
given the growing global trend in the later sectors. Due to this growing trend, European countries have increasingly started implementing emission trading systems and carbon taxes, a newer market China has been quick to build on and influence through the BRI.12 China ultimately used this momentum to launch the green bond market, “advocating sustainable economic development and emphasizing green financial innovation”.13 They have also been able to use it to deflect some criticism of their own clean energy failures while also promoting the “Green BRI”.14 Having both the BRI and related “Green BRI”, China has created an avenue for BRI influence and investment regardless of sector or economic/policy goals.

Frequently highlighted throughout the research articles, and an important final aspect to consider, are the methods the BRI uses to achieve the goals stated above. Cheng and Qi emphasize how “China has been encouraged to develop markets through FDI” in an attempt to access those regions “high-yield area[s] for energy minerals and abundant reserves”.15 Reinforcing this analysis, the green bonds article assesses that the adoption of green bonds and broader green financing market could be a newer or unique attempt to access BRI countries’ “abundant mineral resources, cultivated land resources, solar energy resources, and petroleum resources”.16 Gonzalez-Vicente also shows that Chinese extraction firms typically use soft loans (i.e. loans with below-market interest rates) by Chinese state-run banks with weak oversight or form joint ventures with state-owned companies.17 In all, China has been able to use a variety of means and methods under the BRI for investments, enabling access to mineral resources in

12 Cheng, “The Potential for,” 7.
13 Jian, “The Green Incentives,” 1.
14 Ibid.
15 Cheng, “The Potential for,” 7.
17 Gonzalez-Vicente, “China’s engagement,” 72-78.
different regions and political climates across the globe and ultimately enhancing China’s posture and engagement in clean energy.

Clean Energy Transition

In order to understand how the BRI may affect the US’ clean energy transition, we must first understand China’s own climate ambition. Three academic articles provide the necessary background and insight into China’s growing clean energy transition and ambition. One article is from Colby College analyzing China’s First Nationally Determined Contribution (NDC), a document required under the 2015 Paris Agreement outlining the actions a country will take in achieving its emissions target, and assessing the implications on the broader Paris Agreement and possible ways forward.\(^1\) The second is from four Chinese researchers analyzing China’s strategy for incorporating critical minerals into their NDC and clean energy transition.\(^2\) Lastly, the third is from Wei Shen and Marcus Power, providing a strategic assessment on China’s clean energy ambition in Africa with implications for their broader global strategy.\(^3\)

According to the research, China is responsible for 26% of global greenhouse gas emissions, making them the largest emitter in the world. Although China is supposedly set to meet its First NDC objectives, their current trajectory shows they still won’t be compatible with the 2°C warming limit by 2030.\(^4\) Building off this research and highlighting the “unprecedented scale-up of renewable infrastructure” required by global targets for climate change, the four

\(^4\) Carlson, “China’s Climate,” 3.
Chinese researchers projected the mineral supply needed (for wind and solar technologies) under a Stated Policies Scenario (SPS) and a Below 2°C Scenario (B2S). The SPS is based off the NDC strategy described above, drastically reducing China’s emissions but failing to support or fall under the Paris Agreement 2°C target; while the B2S is based on the technology needs of complying with the Paris Agreement 2°C target. Looking at the research and tables, one can see the significant difference in the amount of minerals needed for the two scenarios.

Table 1: Demand for Minerals Under SPS and B2S

<table>
<thead>
<tr>
<th>Material</th>
<th>SPS</th>
<th>B2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous total demand in 2011–2015 (unit: tons)</td>
<td>843</td>
<td>67</td>
</tr>
<tr>
<td>Total future demand (2016–2050, unit: tons)</td>
<td>190,607</td>
<td>15,675</td>
</tr>
<tr>
<td>Total future demand (2016–2030, unit: tons)</td>
<td>67,912</td>
<td>5,423</td>
</tr>
<tr>
<td>Material in use stock in 2050 (unit: tons)</td>
<td>173,005</td>
<td>14,696</td>
</tr>
<tr>
<td>Total future End. material in 2016–2050 (unit: tons)</td>
<td>86,053</td>
<td>6,047</td>
</tr>
</tbody>
</table>

Table 2: Mineral Shortage Assessment

<table>
<thead>
<tr>
<th>Material</th>
<th>Nd</th>
<th>Dy</th>
<th>Gd</th>
<th>Tb</th>
<th>Te</th>
<th>In</th>
<th>Ga</th>
<th>Se</th>
<th>Ge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserve in China (unit: kt)</td>
<td>6784</td>
<td>702</td>
<td>92</td>
<td>6.6</td>
<td>16.3</td>
<td>26</td>
<td>1.3</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>Global reserve (unit: kt)</td>
<td>12,800</td>
<td>1100</td>
<td>500</td>
<td>31</td>
<td>560</td>
<td>98</td>
<td>12</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Annual Production in China 2015 (unit: tons)</td>
<td>15,215</td>
<td>11,42</td>
<td>800</td>
<td>280</td>
<td>550</td>
<td>620</td>
<td>350</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Global annual Production 2015 (unit: tons)</td>
<td>17,907</td>
<td>12,821</td>
<td>4,250</td>
<td>410</td>
<td>790</td>
<td>2,270</td>
<td>759</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Share of reserves in all end-users</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Friction of direct demand in China’s reserve</td>
<td>3%</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Friction of primary demand in China’s reserve</td>
<td>16%</td>
<td>11%</td>
<td>28%</td>
<td>64</td>
<td>2.3</td>
<td>4.8</td>
<td>1.9</td>
<td>1.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Co. Apy-production host metals</td>
<td>Re, other rare earth</td>
<td>2a, Cs</td>
<td>Ag, Al, In, Ca</td>
<td>64</td>
<td>2.3</td>
<td>4.8</td>
<td>1.9</td>
<td>1.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Shortage</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>Very High</td>
<td></td>
</tr>
</tbody>
</table>

Going along with China’s ambitions as described in the NDC, a major focus is on expanding their influence in other countries as a means to access the above minerals, increase

23 Ibid, 8.
24 Ibid, 9.
clean energy production and infrastructure, and enhance their image as a global climate leader. This focus has been especially targeted towards Africa given the growing demand for renewable energy in the region due to the “increasing international recognition of the nexus between energy access, climate change and environmental sustainability more broadly”.25 Shen and Power show that Chinese investments in Africa cover a “full range of commercial activities along the production chain, including the export of wind turbines and solar panels, the development of new equipment manufacturing facilities, and the financing and construction of new renewable energy generation facilities”.26 More broadly, in 2020 alone, China “invested in 36 renewable energy projects, the majority of which centered on solar and in the Belt and Road countries”, showcasing China’s increasing clout in the clean energy sector.27

With Paris Agreement Parties increasing pressure on China to do more, China has “double[d]-down on the importance of the original interpretation of the CBDR + RC principle [(common but differentiated responsibilities and respective capabilities principle)], arguing that developed countries such as the United States and those in the European Union should lead and be the first to cut their emissions”.28 At the same time, China is increasing its global push to project itself as a major contributor to climate change and broader clean energy transition, “reaffirm[ing] its position as a lead nation…and fostering their economic growth and development in the process”.29 Ultimately, China has been able to use this growing clean energy footprint, along with the US’ uneven stance on clean energy, to amplify themselves as a reliable

26 Ibid.
27 Carlson, “China’s Climate,” 5.
28 Ibid, 1.
clean energy partner while building out a reliable supply chain that would be difficult for other countries to emulate.

Critical Minerals

Taking the research on both the BRI and clean energy into account, critical minerals seemingly act as the link connecting the two. Learning more about the nature of critical minerals and their role in resource competitions will help us better understand this link. Four research articles make up the research in this area. The first article is from Dhana Raju, discussing the nature, occurrence, and uses of critical minerals.\(^{30}\) The second is from five researchers at China’s Hebei GEO University discussing mineral resource competition in terms of “dominator” and non-dominator” countries.\(^{31}\) The third article is from three researchers analyzing China and the US’ competition for critical minerals.\(^{32}\) And the final article is looking at China’s domestic and foreign influence in certain critical mineral supply chains.\(^{33}\)

Critical minerals, defined by Raju as “metals and non-metals that are considered vital for the economic well-being of the world’s major and emerging e-economies”, are essential in the production of technologies in clean energy, defense, transportation, space exploration, health, and more.\(^{34}\) These minerals are also more likely to have supply chain disruption risks from “geopolitical scarcity, geopolitics, trade policy, vulnerability and other factors”.\(^{35}\) Underscoring

35 Ibid.
This issue is the “fact that many of the elements required for advanced technologies are obtained from mineral commodities that are produced online in a few countries, recovered only or mainly as byproducts, and generally not recycled in significant quantities after use”.\(^{36}\)

This supply chain risk and increasing uses of critical minerals in advanced technologies has driven “dominant” countries (i.e. countries with stronger international status such as the US and China) to “compete for resources in other nondominant countries or regions”.\(^{37}\) This has inevitably led to non-dominant countries finding themselves stuck between the power-struggle/competition of dominant countries for their resources.\(^{38}\) An example of this competition was China’s “Going Out Strategy” (an earlier iteration of the BRI), which encouraged “Chinese companies to expand overseas foreign direct investment—especially for mineral resources and infrastructure in developing countries in Africa and Asia”.\(^{39}\) This then gave way to China’s “minerals for infrastructure” strategy, with a primary example being China “providing favorable loans to the DRC [(Democratic Republic of the Congo)] government for infrastructure, purportedly in exchange for access to copper and cobalt mineral development rights”.\(^{40}\)

Tying into, and building off, the above research, the article examining the US and China’s competition for critical minerals uses the Herfindahl-Hirschman Index to analyze the concentration of global production for US designated critical minerals and the corresponding import reliance for both the US and China. The Herfindahl-Hirschman Index is a common measure of market concentration, with an index greater than 2,500 signifying a highly concentrated market. The research shows that while the US is not only import reliant for

\(^{36}\) Gulley, “China, the United States,” 4111.

\(^{38}\) Ibid.

\(^{39}\) Gulley, “China’s Domestic,” 318.

\(^{40}\) Ibid.
significantly more critical minerals than China, those minerals are more concentrated globally than China’s import reliant minerals.\(^{41}\) It is this dilemma, reliance, and fear of monopolization that has created the targeting of non-dominant countries to access these minerals. This has inevitably left these non-dominant countries to weigh the economic and security benefits of working closer with China versus the US, with significant geo-political, security, and economic implications tied to the outcome.\(^{42}\)

Chart 2: US and China Critical Mineral Net Import Reliance and Concentration\(^{43}\)

With the US having 35 minerals designated as critical, all with major technological and energy implications, and only three ways to acquire them (domestic extraction, recycling, and

\(^{41}\) Gulley, “China, the United States,” 4112.
\(^{43}\) Gulley, “China, the United States,” 4112.
imports/international extraction), the importance of/competition for these minerals will continue to escalate.44 China’s increasing geopolitical and economic clout has already created a major obstacle for US superiority globally, with China’s active strategy of acquiring critical mineral mines abroad and exclusive trading rights for critical minerals challenging US strategic goals across many sectors.45 As the above literature shows, China likely recognizes the importance of this competition and is strategically growing its mineral accesses to improve its economic security and clean energy position, leaving the US with limited options going forward.

44 Raju, “Critical Minerals,” 919.
46 Gulley, “China, the United States,” 4113-4114.
Hypothesis & Methodology
Overview

Taking the existing research into account, one can see that while there is sufficient insight into the relationship between the BRI and clean energy, the BRI and critical minerals, or critical minerals and clean energy, there is a gap in our understanding of the interconnectedness between all three. Determining the relationship between the BRI, clean energy transitions, and critical minerals would shed light on drivers and repressors of the US transition, helping the US better understand the geopolitical environment and formulate a cohesive strategy to counter efforts aimed at or inadvertently limiting US clean energy and technology advancements.

This research aims to bridge the divide outlined above by analyzing Chinese engagements in specific countries determined to be a top three producer of one of the seven minerals (five of which are designated as critical by the US) identified by the International Energy Agency as critical for the clean energy transition. The countries, which can be seen with their corresponding minerals in Chart 3, will be discussed in alphabetical order.

Chart 3: 2019 Share of Top Three Producing Countries for Select Clean Energy Minerals

Due to the BRI not officially starting until 2013, engagements from 2013 and on will be the primary focus. It is important to note that three of the top producing countries (Australia, Brazil, and Russia) have not formally joined the BRI. These three countries will not be included in this research due to the specific focus of how the BRI is affecting clean energy. While Brazil and Russia are both a part of BRICS (i.e. an economic association consisting of Brazil, Russia, India, China, and South Africa) with China, and have discussed the possibility of joining the BRI, the assessment of different strategies targeting BRI members and non-BRI members is a topic for another study.4849

This study hypothesizes that the BRI is eliminating US access to minerals vital to the clean energy transition, creating bottleneck supply chains for clean energy minerals and technologies, and hindering US leadership in the global clean energy push. The null hypothesis would show no effect on the US clean energy transition and/or decreasing or stagnant Chinese investment or influence in the mining or energy sectors of one of the top three producing countries currently apart of the BRI. Additionally, this research will look for any correlation between the timing of Chinese investments in the countries, specifically focusing on major investments around seven specific timeframes: (1) November 2016 enactment of the Paris Agreement, (2) December 2017 Executive Order (EO) 13817 on securing a critical minerals supply, (3) May 2018 designation by US Department of the Interior of critical minerals, (4) June 2019 report by US Department of Commerce on how to achieve the goals of EO 13817, (5) September 2020 EO on addressing reliance on critical minerals from adversaries, (6) January

2021 EO on tackling climate change, and (7) April 2021 US climate summit. If the research shows large investments in the target countries’ energy and mineral sectors around these dates, it would at least suggest that China is purposely using the BRI to hamper US clean energy ambitions.

Caveats and Limitations

While this study is focused on the effect the BRI has on the US clean energy transition, we must also consider the effect the US’ own policies have. Given the US’ fluctuating and uneven support to domestic and international energy initiatives, and shifting view on the importance of international engagements, it is likely this has had a significant impact on the US clean energy transition in itself. Although the BRI would likely have some sort of an effect on the US clean energy transition regardless of US policies and engagement, the extent of the BRI’s effect likely varies greatly based on the different degrees of US Government involvement and decisions.

Unrelated to the above, China also has a history of attempting to “cover up” or “hide” certain BRI agreements it knows may cause increased backlash for the host country or itself. One example is China and a state government in Australia initially attempting to conceal a memorandum of understanding (MoU) on the BRI in October 2018, likely in an attempt to prevent US retaliation. While the agreement was eventually canceled in April 2021, it shows that not all agreements may be publicly available/announced.50 Although a lack of fully transparent agreements slightly hinders this research, it is unlikely that any major agreements with the

The potential to alter the overall ownership or rights to significant mining or processing ventures would be able to go unreported.
Data

Chile

Chile joined the BRI in early November 2018. China and Chile have historically been major trading partners and joining the BRI was apparently Chile’s way of becoming a “landing point for investments in Latin America”. According to reporting on the agreement, China and Chile were using the BRI to streamline customs procedures and secure key investments in certain industries. One of the major initiatives that Chile was pursuing from the BRI was securing investments in its lithium and copper industries, two minerals Chile is a leading producer of and are vital to clean energy. Chile joining the BRI also came at a time that many consider to be the beginning of their clean energy transition, with electricity from renewable energy sources more than tripling from 2014 to 2018.

In October 2018, a few months after the US designated lithium as a critical mineral and right before Chile officially joined the BRI, China’s largest lithium company, Tianqi Lithium Corporation, agreed to a deal to purchase 24 percent of Chile’s largest lithium producer, Sociedad Química y Mineral (SQM), for $4.1 billion. Less than a year later, in September 2019, Chile began marketing its lithium reserves to China in exchange for technology investments, in what came to be called a “lithium-for-investment tender.” According to government documents obtained by Reuters, Chile’s goal was to offer discounted lithium in exchange for “a commitment to build battery parts plants in Chile as the government looks to

move up the value chain”. China’s interest in this deal is especially important given “Of the 136 lithium ion battery plants in the pipeline to 2029, 101 are based in China”. Therefore, this opportunity gave China the ability to essentially catapult vastly ahead in the lithium ion battery production worldwide and further limit supplies outside of Chinese control.

As for copper, Chile is the top producer and China is the largest buyer. This buying power has historically given China the ability to affect prices through their demand signals, ultimately able to control the market. China has also pursued the same strategy for copper mines in Chile as it has for lithium, attempting to gain a controlling interest or exclusive trading rights (i.e. a contractual agreement guaranteeing a supplier provides a set amount of a good at a specific price before supplying other parties). A recent example of this was in July 2021, with Chilean mining company Antofagasta PLC signing an agreement to supply select Chinese copper smelters, one of which is the biggest copper user in the world, for the next year. Although it does not give China direct control over any copper mines, it has instead secured “supply deals well before the annual fourth-quarter ‘mating season’ for three years running, as buyers seek feedstock in a tight market”. This deal came just a few months after US President Biden held a summit on the climate crisis and announced the US’ intention of rejoining the Paris Agreement.

Outside of just mineral investments, China has used a variety of other means to further deepen ties to Chile. In April 2019, China and Chile signed a Joint Action Plan for 2019-2022 and a MoU on Trade Defense. The Joint Action Plan promotes cooperation between the two countries in 14 areas, including geology and mining, energy, transportation and telecommunications, and technology to name a few. Also in 2019, Chinese company Huawei announced an investment of over $100 million to be spread out over three years to build cloud services and 5G capabilities in Chile, building data centers in Chile in both 2019 and 2020.

Democratic Republic of the Congo

The Democratic Republic of the Congo (DRC), the largest producer of cobalt in the world, recently agreed to join the BRI in January 2021. In what was likely an attempt to garner goodwill with the DRC and enhance future collaboration, China canceled nearly $30 million in debts that matured in 2020 for the DRC, while also issuing almost $20 million in support. During the trip in which the DRC signed on to join the BRI, Chinese Foreign Minister Wang Yi promised that Beijing would fund infrastructure projects, mostly in DRC’s energy and mining industry, where Chinese companies have already invested more than US$10 billion in the past decade.

64 Ibid.
DRC cobalt mining currently produces around two-thirds of the world’s cobalt through 14 mines and companies, eight of them being Chinese-owned.\(^6^5\) A notable deal that is important to mention, but happened well before China even started the BRI, is the 2007 deal for China to acquire 68 percent ownership of Sicomines cobalt and copper mine (one of Africa’s largest) in exchange for China Railway Group Limited and Sinohydro Corporation building $3 billion worth of infrastructure including hospitals and roads.\(^6^6\) This is a great example of one of the original “minerals for infrastructure” deals China has leveraged since then to access certain mineral reserves. In 2016, China and the DRC formed an agreement to have Chinese company Sinohydro build a dam and hydroelectric power plant to power the entire Sicomines mine, further creating reliance on China and making it significantly harder to use the dam and mine without Chinese cooperation.\(^6^7\) Then, shortly after the Paris Agreement was signed, China’s China Molybdenum Co. acquired 56 percent of the Tenke Fungurume mine (later increased to 80 percent), one of the largest cobalt and copper mines in the DRC, from U.S. Freeport-McMoRan.\(^6^8\)

More recently, in December 2020, China Molybdenum Co. acquired a 95 percent ownership stake in DRC’s Kisanfu copper and cobalt mine.\(^6^9\) This deal came just two months after former US President Trump issued an EO on “Addressing the Threat to the Domestic

\(^{69}\) Ibid.
Supply Chain from Reliance on Critical Minerals from Foreign Adversaries. Additionally, in September 2021, Chinese company Zhejiang Huayou Cobalt and its subsidiary Congo Dongfang International Mining SARL were in negotiations with DRC-backed Entreprise Generale du Cobalt over the rights to the Kasulo mine in the DRC, with the Chinese companies stating they have “a contract giving it the right to stay until the deposit is exhausted”. This, once again, comes just months after the US summit on climate change and the Paris Agreement.

Indonesia

Indonesia is a country originally determined by China to be vital to the BRI, largely due to its strategic location for shipping routes. While there never seemed to be an official declaration of Indonesia joining the BRI, most experts agree that Indonesia technically joined in 2015 when it awarded China the Jakarta-Bandung High Speed Rail project. What often goes unnoticed with Indonesia though is how it is the world’s leading supplier of nickel. Indonesia currently produces over 30 percent of the global nickel supply, with current plans that could possibly bring its share close to 60 percent by 2030. These plans have one small caveat though, they are all “linked to Chinese companies keen to cement their grip on stainless steel production and to meet fast growing demand for batteries which require a range of new-energy metals”.

China’s increasing interest in Indonesia’s nickel can be traced back to shortly after Indonesia joined the BRI. In 2016, China funded/supported three separate nickel projects, establishing nickel smelting facilities across the country.\(^{74}\) One year later, in June 2017, French company Eramet and one of the Chinese companies involved with the 2016 deal (Tsingshan) agreed to develop the Weda Bay nickel deposit in Indonesia. It was around this same time that Tsingshan announced they were looking to expand their nickel refining capabilities, providing China with complete supply chain control over nickel.\(^{75}\) Although the 2016 nickel projects happened before the Paris Agreement, the 2017 deals came shortly after it; and just months before EO 13817.\(^{76}\)

Further showcasing China’s clean energy ambitions, in May 2019, two Chinese companies planned to partner with mining company PT Aneka Tambang Tbk (Antam) for two nickel projects in Indonesia. One project was partnering with China’s Zhejiang Huayou Cobalt Company Ltd to produce lithium-ion batteries while the other partnered with Sinomach to develop a ferronickel plant.\(^{77}\) Building off these successes, China actively pursued a significant increase in mining deals in Indonesia in 2021. In January 2021, Chinese electric vehicle battery manufacturer GEM Co Ltd stated they would increase their share in a nickel project in Indonesia from 36 percent to 72 percent to “strengthen ‘strategic control’ of the resources amid a nickel

shortage”.78 In May 2021, Zhejiang Huayou Cobalt Company Ltd (mentioned above) announced a partnership with EVE Energy in an Indonesian nickel and cobalt project.79 EVE Energy is an electric vehicle battery manufacturer, with this deal showcasing an increasing trend in control over electric vehicle battery markets. Lastly, in June 2021, the China Baowu Group signed an agreement with PT Vale Indonesia and Shandong Xinhai Technology to jointly run a nickel processing facility in Morowali. Both this deal and the EVE Energy deal happened just a month or two after the US summit on climate change.

\textbf{Mozambique}

Mozambique is said to have joined the BRI in 2016 when the two countries agreed to raise their relationship to the level of a “comprehensive strategic partnership”.80 While Mozambique has historically accounted for approximately 10 percent of the global graphite production, it has recently been pushing to capitalize on its vast untapped reserves. Specifically, Mozambique is attempting to take advantage of the world’s largest graphite reserve, the Balama mine.81 On the other hand, China accounts for approximately 60 to 70 percent of graphite production in any given year, but has begun increasing its imports in recent years in an attempt to meet the rising demands of clean energy technology. Although reporting on China’s mining, processing, and other energy deals in Mozambique is limited, the available reporting still clearly shows Chinese targeting of Mozambique mines and processing companies.

78“China’s GEM seeks to double stake, take control of Indonesia nickel project.” \textit{Reuters}, January 3, 2021. https://www.reuters.com/article/gem-indonesia-nickel-cobalt/chinas-gem-seeks-to-double-stake-take-control-of-indonesia-nickel-project-idUKL4N2JF0UG.

A relevant deal in Mozambique with available reporting is Triton Minerals, an Australian mining company, agreeing in May 2018 to provide close to 25 percent of Mozambique’s Ancuabe mine graphite to Chinese company Qingdao Chenyang Graphite for the next five years. Just one month prior, Triton Minerals and Chinese company Qingdao Tianshengda Graphite Company agreed to a similar deal, ultimately giving China the rights to 50 percent of mined graphite from the mine.82 In September 2018, Australian company Triton Minerals signed a contract with Chinese company MCC International to build additional infrastructure supporting the exploration of the Ancuabe mine. Then, in October 2019, Chinese mining company Jinan Hi-Tech purchased a 34 percent ownership stake in Triton Minerals, bolstering “China’s presence in Mozambique’s graphite extraction and processing”.83 Outside of the October 2019 deal, the others seem strategically timed. The April and May 2018 deals were months after EO 13817 was signed and the September 2018 deal came months after the US Department of the Interior released its list of designated critical minerals.

As mentioned above, China has been relatively unable to expand control over Mozambique graphite resources compared to its attempts in other countries. A major reason for this failure seems to be Australia and other countries push to control Mozambique’s graphite resources. Australia’s Syrah Resources currently controls the massive Balama mine and Triton Minerals holds around eight exploration licenses in Mozambique, with each pursuing more Western involvement.84 In July 2021, Syrah opened a graphite processing facility in Louisiana to

create battery anode materials, looking to “establish a non-China supply chain for active anode material… [with] US and Australia governments strongly aligned on the longer-term importance of critical minerals in the battery supply chain”.

In addition to this, in August 2021, UK graphite company Tirupati acquired Australian company Battery Minerals’ Mozambique graphite portfolio, further isolating China.

Myanmar (Burma)

Myanmar officially joined the BRI in May 2017 during the Belt and Road Forum for International Cooperation. This cooperation and agreement came at a time when Myanmar was under intense geopolitical pressure due to treatment of the Rohingya population, ultimately extending Myanmar a so-called “lifeline” of political, diplomatic, and economic support.

Myanmar is the third-largest producer of Rare Earth Elements (REEs), most notably dysprosium and terbium; which the U.S. Department of Energy declared as two of the five “most critical in the short term for clean energy technologies”.

Dysprosium was declared the single-most critical element, so much so that the Department of Energy drastically increased research on alternate minerals for use in wind turbines in case they were ever cut off.

As for China’s involvement in Myanmar, they have long viewed a China-Myanmar Economic Corridor as key to the BRI, proposing 38 separate projects from 2017-2020. The importance of Myanmar as a key country for establishing the BRI should not take away from the parallel efforts China is using to control Myanmar minerals in the name of the BRI. Myanmar is a major BRI focus for China not simply because of its geographic location, but because Myanmar supplies about half of China’s heavy REE concentrates. The deals China uses in Myanmar are murky at best, but China seems to be supporting more infrastructure in the country while gaining favorable trade terms for REEs.

For the investments China does make in Myanmar’s mining industry, outside of simple purchase agreements, they tend to be fairly opaque and underreported. For example, in 2015, Amnesty International released a statement saying Chinese mining company Wanbao worked with the economic arm of the Myanmar military, the Union of Myanmar Economic Holdings, to evict people from 2011 to 2015 in order to expand and run the Letpadaung mine under military protection. In June 2020, PanAust, an Australian-based subsidiary owned by a Chinese state-owned entity, was granted a mineral “exploration license for an area nearly the size of Singapore” in Myanmar. This apparently brought the total number of exploration licenses for PanAust in Myanmar to seven, with other licenses being granted in 2016 and 2018. These deals

obviously fell within the time frame between the Paris Agreement, EO 13817, and the
designation of critical minerals. It is also important to acknowledge a statement in a Myanmar
news website, Irrawaddy, claiming “China buys up all the metal from Wa State, a self-
administered region in Shan State, as well as all the rare earth metals from Panwar in Kachin
State”, showcasing the possibly illicit nature of Chinese deals in the country.94

Peru

In late April 2019 Peru joined the BRI, weeks after Secretary of State Mike Pompeo
visited South America and warned of China’s ill-intentions with the BRI.95 Peru, being the
second largest producer of copper behind Chile, has seen significant Chinese interest in its
copper holdings, especially since joining the BRI. To put it into perspective, China is the leading
export destination for Peru (approximately $12 billion), with over 70 percent of Peru’s exports to
China being either copper ore or refined copper. As for China’s increasing ownership and control
over Peruvian mines, there are currently over 170 Chinese companies in the country, with a
majority of them within the mining sector.96

According to Peru’s Ministry of Energy and Mines, China invested over $15 billion in
Peru’s mining sector between 2009 and 2020. The largest portion of this investment came
between 2012 and 2015 (coinciding with the launch of the BRI) into the Las Bambas copper
mine, one of the largest in the world.97 Chinese company MMG Limited originally acquired the

95 Galindo, Jimena. “Peru to join China’s Belt and Road Initiative.” *Global Americans*, May 1, 2019.
96 Ibid.
mine in 2014 for nearly $6 billion. In 2016, China and Peru signed a MoU for the “Mechanism for Development and Collaboration of the Energy Sector” while at the same time a large Chinese mining company, China Three Gorges Corporation, signed an “Agreement on Further Cooperation on Renewable Energy” with Peru’s Ministry of Energy and Mines. Since then, China has subtly expanded influence and control over Peru’s mining and energy sectors through a variety of factors. One of the other largest copper mines in Peru, the Toromocho copper mine, is also owned by a Chinese company and in 2018 (one month after the US Department of the Interior’s designation of critical minerals) invested over $1 billion to expand copper production by one-third. Although this all happened before Peru joined the BRI, China has used this strategic leverage in the country to further its objectives in clean energy from 2019 and on.

Outside of minerals, and shortly after Peru joined the BRI, China purchased a Peruvian hydroelectric facility for $1.4 billion. Later that year, in September 2019, a Chinese power company bought almost $4 billion worth of electric utility assets from a Pure-based power company, giving China control over almost 35 percent of Peru’s power grid. Lastly, in 2021, after Peru’s presidential elections put a new president in charge, the government was quick to

conduct outreach to Chinese mining companies to discuss policies and strengthen trade agreements, further increasing China’s power in copper and thus clean energy.\(^{102}\)

Philippines

The Philippines officially signed a MoU to join the BRI in November 2018, while formalizing $24 billion worth of deals with China.\(^{103}\) The Philippines are the second largest producer of nickel, after Indonesia, accounting for around 16 percent of global production. Since joining the BRI, the Philippines has expanded policies designed to increase Chinese investments into the energy sector and also take advantage of China’s growing demand for minerals vital to clean energy.\(^{104}\) In addition, the country has long been a proponent of clean energy, recently kicking off their third clean energy selection process in January 2021 where they decided to move forward on 17 hydropower projects and five geothermal projects.\(^{105}\)

In 2012, the Philippines surprisingly put a ban on new mineral mining agreements, creating a potential roadblock for increased Chinese influence over energy and minerals in the country. From 2012 up until April 2021 (when Philippine President Duterte lifted the ban), China increased investments into other aspects of the energy sector while also engaging in “improper”/backdoor investments in the mining sector.\(^{106}\) For overt investments outside of minerals, China poured large amounts of money into Philippine energy. For example, in 2014,

China only invested in the Philippines power sector.107 In 2016, after Duterte announced the Philippines and US had a “falling out”, China pledged over $20 billion in investments to Philippine infrastructure and energy. Showcasing this increased Chinese interest, from 2016 to 2017, Chinese FDI in the Philippines more than quadrupled.108 Fast forward a few years to when the Philippines joins the BRI, Chinese investments in the Philippines surpass the US’ with almost $90 billion, illustrating the Philippines pivot towards China.109

As for the “improper” investments mentioned above, during the ban on new mining agreements period, “industry sources claim that most Chinese mining companies misrepresent[ed] their operations to reduce tax payments, engage in operations that tend to be rejected by government authorities or objected to by anti-mining advocacy groups, and to bypass Philippine mining laws”.110 Chinese mining companies reportedly bribed politicians often, gathered secret processing permits, and operated under the licenses of Filipino mining subsidiaries. During the ban, the only mining investments and processing permits allowed were those where Filipinos owned at least 60 percent of the company. Taking this into account, during that timeframe, Chinese mining companies invested in 25 different Philippine mining companies or projects for close to 40 percent.111 Shortly after the investment ban was lifted, the Philippine government attended the China Investment Fair for Investment and Trade 2021, highlighting

110 Stern, “Chinese Investments in the Philippines.”
111 Ibid.
investment opportunities for China in Philippines’ renewable energy sector. With no policies holding back Chinese companies anymore, and the Philippine government encouraging investment in the energy sector, it is likely China will continue to use the Philippines to its advantage in the clean energy race.

South Africa

South Africa, the leading producer of platinum and many other critical minerals not directly tied to clean energy production, joined the BRI in 2015, signing a MoU along with 25 other agreements with China worth approximately $7 billion. Of these agreements, major focus was put on Chinese investments in the energy and mining sectors. One of the biggest agreements signed was between the China Construction Bank Corporation and the Industrial Corporation of South Africa Limited, funding projects with a focus on “industrial infrastructure (which encompasses energy renewable and conventional) agro-processing; [and] manufacturing and mining beneficiation”. With South Africa also being a top three economy in Africa, as well as a Paris Agreement signatory, the implications of Chinese influence in the country on clean energy are significant.

As for Chinese involvement in South Africa outside of minerals, it seems to be very heavily focused on photovoltaic and wind power energy. China’s strategy involves both equity investments and general contracting, but after joining the BRI saw Chinese companies aiming to control the entire supply chain, from investment and construction all the way down to operations.

An example of this is the De Aar Project, which saw numerous Chinese companies fund, build, install, and operate 163 wind turbines throughout South Africa, establishing China as a leading supplier in this domain. China has also utilized its influence in BRICS to support a South Africa push. Chinese influence was a leading factor in the BRICS New Development Bank establishing a regional center in South Africa and approving $1.5 billion for energy projects.115 Much of China’s focus and involvement in this sector seemingly comes from China’s targeting of South Africa’s Renewable Energy Independent Power Producer Procurement Program, the primary channel for renewable energy investment in the country.116 None of these investments by China or Chinese companies seemed to correlate with any major US or energy initiative/announcement, but is obviously very heavily oriented towards clean energy.

Regarding minerals, China has been more active around the key dates mentioned above. China’s investment in this area first came around the rollout of the BRI in 2013, with China providing $650 million to Wesizwe Platinum’s Bakubung mine which would produce platinum group metals and was not even slated to start production until 2018. An interesting aspect of this deal was the unusually low interest rate of 3.8 percent compared to typical BRI interest rates of 8 percent, showcasing the value of the mine.117 Then, in July 2018 (just two months after the critical mineral designations by the US Department of the Interior) and around the time the mine became operational, Chinese investors provided over $10 billion to build a metallurgical

115 Ibid.
complex, further cementing China’s role in the supply chain. The most recent example of Chinese investment in South Africa’s platinum sector happened in May 2021, one month after the US climate summit, when it launched the Garatau Platinum Mine Project between Chinese gold company Zijin Mining Group and South Africa’s platinum developer Nkwe Platinum Limited. This individual investment is set to play a significant role in the future of the platinum market as the mine is slated to be among the top 10 largest platinum producers in the world.

Zimbabwe

The last country to highlight, Zimbabwe, is a leading producer of platinum but rich in countless other critical minerals and resources such as tin and cesium. Zimbabwe joined the BRI in mid-2018, coming to no surprise after their “Look East” policy mentioned above. Around that same time, and not-surprisingly around the same time as EO 13817 and the US Department of the Interior designation, China was “emerging as the top investor in Zimbabwe’s energy sector”. For years before joining the BRI China had been a major investor and geopolitical ally to Zimbabwe, building off that relationship once they officially joined. Given Zimbabwe’s relatively weak global political stance and conflicts with the West, China was able to pursue more lopsided energy and mineral deals likely having a major impact on critical mineral and energy supply chains.

For overall energy within the country, China has been instrumental in a majority of Zimbabwe’s power plants. China not only funded and constructed Zimbabwe’s largest power plant, the Hwange Thermal Power project, but is a major contributor to almost all major energy sources in the country.\(^\text{121}\) Since Zimbabwe joined the BRI, China has announced plans to build a major industrial park, steel plants, power plants, and more. To encourage increased Chinese investment in the country, given how much Zimbabwe’s GDP and economy relies on China, Zimbabwe agreed to lower electricity tariffs for some Chinese miners.\(^\text{122}\) Focusing more on clean energy, and possibly showcasing China’s use of Zimbabwe as a test for future energy ambitions, China’s Industrial and Commercial Bank of China canceled its funding of a $3 billion coal power plant in the country in June 2021 in a preliminary show of support to China’s green development initiative.\(^\text{123}\) Possibly unrelated, this “show of support” once again came just two months after the US climate summit.

As for Zimbabwe minerals and Chinese interest, there has been a steady flow of acquisitions in mines and companies over the years. In a strange change of events in the relationship with mining and China, in May 2020 Zimbabwe actually revoked a mining license for Chinese companies to mine Zimbabwe’s Hwange national park, claiming they were not transparent in their operations.\(^\text{124}\) Besides this issue, Zimbabwe has still agreed to (or seen) Chinese influence grow in the country’s mining sector. Much of China’s interest has come fairly

\(^{121}\) Ibid.

easily due to Zimbabwe announcing in 2019 the goal of tripling the country’s revenue from mining over four years. In Zimbabwe’s strategy, titled “Strategic Road to the Achievement”, it explicitly states Zimbabwe’s intention of increasing FDI into their platinum mines. Shortly after this announcement, China and Zimbabwe signed a currency swap deal, making Chinese investment significantly easier to attract and support in the mining sector (while also enabling Chinese companies to remit profits easier, doubling China’s benefits). Once again, this deal between China and Zimbabwe came just a few months after President Trump’s EO on critical mineral vulnerabilities.

Discussion

Taking the above information into account, it is important to understand how the control over strategic minerals and investments into clean energy supply chains are being leveraged to actually affect the US clean energy transition. For starters, it is obvious that China has a significant influence/control over a major portion of the supply of minerals critical to clean energy technologies. Looking at this supply of different minerals and corresponding demand, shortages, and recent US policies, we can begin to see the hurdles the BRI and Chinese influence over minerals are having on the US clean energy transition.

Copper, which Chile and Peru are leading producers of, is “the most widely used mineral in clean energy technologies,” primarily due to its “unmatched thermal and electrical conductivity.” The research above shows that China has used the BRI to establish itself as the leading investment and trading partner in both countries, especially in the energy and copper mining sectors. China has obtained exclusive supply deals and taken control of some of the largest copper mines in the world in Chile and Peru, usually shortly after one of the major US energy/mineral announcements. Additionally, the world is currently experiencing a significant shortage of copper. According to the global commodity trading company Trafigura’s CEO, to meet the growing renewable energy push the supply of copper will need to increase by at least 10 million metric tons by 2030, but “so far, only 5 million mt extra capacity is expected to come on stream, indicating a significant deficit”. Therefore, China’s deals through the BRI has set

China up to flourish in the copper shortage, essentially dictating the global market and making US clean energy ambitions dependent on China.

Building off China’s BRI deals in Chile, we must also look at Chile’s role in lithium supply (primarily used in lithium-ion batteries). As mentioned above, China has used the BRI to take control over not only some of the largest lithium mines, but of nearly 75 percent of the lithium-ion battery plants in the world. Like copper, lithium demand is set to more than double within the next few years, with supply problems already affecting the US.¹²⁹ The current output will be unable to meet the US’ demand for lithium-ion battery production, already limiting capabilities at Ford, GM, Tesla, and more. Showcasing the impact of the BRI, Chinese electric vehicle sales have tripled within the last year with no problems in production, while Tesla has had to scale back the production of certain vehicles; and GM is spending millions of dollars to secure a reliable supply of lithium outside of Chinese control.¹³⁰¹³¹¹³²

In terms of REEs, their primary use in clean energy is in the creation of permanent magnets for motors and catalytic converters. China is already producing 60 percent of the world’s REEs (and securing Myanmar’s supply would bring closer to 70) and is actively looking to limit US access. In January 2021, China’s Ministry of Industry and Information Technology

announced the tightening of regulations on the export of REEs, primarily targeted at the US.133 This comes at a time when the US was looking to build a domestic supply chain capacity, hoping to end reliance on China.134 Where this ties into the BRI is how China can use this increased market share to drive out competitors and successfully keep the US from developing a cost-effective REE supply chain, thereby limiting US investment into and production of clean energy technologies. China has already done this in the past, with a 2018 Department of Defense report stating “China has strategically flooded the global market with rare earths at subsidized prices, driven out competitors, and deterred new market entrants”.135

Like lithium, cobalt and nickel are both currently essential in electric vehicles, lithium-ion batteries, wind turbines, and solar panels, facing similar supply and demand constraints. For cobalt, the DRC is responsible for nearly 70 percent of the cobalt supply, so it is unsurprising that the largest “minerals for infrastructure” deals China has pursued has been with the DRC. As for nickel, China has been extremely successful in obtaining mine ownership, mining rights, and exclusive mineral trade agreements with Indonesia and the Philippines, cementing control over approximately 50 percent of the nickel market. The US has apparently realized the threat this poses to its clean energy transition, with the US Department of Energy announcing a goal to “reduce U.S. lithium-battery manufacturing dependence on scarce materials, especially cobalt

\begin{itemize}
\end{itemize}
and nickel, in order to develop a stronger, more secure and resilient supply chain” by 2030. This strategy is important to note as it completely bypasses trying to acquire or develop mines for a reliable supply.

Graphite, necessary in nearly all renewable energy storage technologies, is mined almost entirely in China already. Given graphite demand is expected to multiply nine-fold by 2028 (from 2017 levels) due to clean energy production, China has attempted to use the BRI to expand their reach into Mozambique. China’s already dominant position in the market and aggressive tactics in acquiring new deposits seemed to be a determining factor in the US adding graphite to the US National Defense Stockpile Acquisitions List in October 2021. This has all led to numerous energy, technology, and mining companies in the US and abroad to scramble to acquire the limited supply of graphite or attempt to use less reliable and tested materials in its place.

Lastly, platinum, which is often used in fuel cells and catalytic converters and primarily found in South Africa and to a lesser extent Zimbabwe, has also seen some supply and demand disruptions. While currently not as drastic as the other minerals described above, the supply crunch for platinum is expected to become dire as the hydrogen and auto industry look to increasingly use platinum in place of palladium and other minerals. Although China’s control

over South Africa and Zimbabwe’s platinum supply chains likely does not affect the US clean energy transition currently, it definitely has the possibility to in the future.
Conclusion

This paper offers a foundation for better understanding the relationship between both the BRI and clean energy transitions, as well as the BRI and access to critical minerals. As this research shows, China has used the BRI to become “the world’s largest producer of solar panels, wind turbines, batteries and electric vehicles,… the top investor in clean energy for nine out of the last ten years”, and control a majority of the world’s minerals most vital to clean energy technologies.141 This increasing monopolization of clean energy has slowed US adoption of clean energy by limiting US energy companies access to these minerals, causing unfavorable trade deals, and forcing companies to limit production but increase research into alternate technologies.

A US inability to access the identified minerals above not only limits the US purchasing power, manufacturing, and installation of clean energy technologies, but limits the overall influence the US can have in clean energy globally. With calls for the US to be a leader in the clean energy push, but unable to produce or acquire the necessary clean energy technologies required to conform to agreements such as the Paris Agreement without Chinese cooperation, the US will likely stumble geopolitically. If so, with China’s increasing ability and clout in the clean energy sphere due to the BRI, China will be relied upon more by the international community, catapulting them both economically and politically.

Although this paper shows how the US clean energy transition is being impacted by the BRI, it does not mean China is purposely using the BRI to limit US clean energy goals. China may be pursuing the discussed minerals and using the BRI to advance their own economy and

defense industry, or even to possibly protect against Western countries increasing focus of limiting Chinese controlled/involved supply chains. Regardless, whether the US were to get serious about clean energy this instant and actively pursue carbon emission goals under the Paris Agreement, or wait a few years for the climate crisis to worsen, the US will find itself with limited options either way.

Curriculum Vita

Trevor McHugh works as a program officer for Leidos. In this role, Trevor serves as an advisor to the National Intelligence Manager for Economic Security and Financial Intelligence. Prior to this role, Trevor served as an intelligence analyst at both Booz Allen Hamilton and BAE Systems. Trevor holds a bachelor’s degree in Economics from the University of Wisconsin-Madison. Trevor lives with his wife in Virginia.