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Abstract

This thesis develops a methodology for applying modern manifold embedding algorithms

to the problem of empirical asset pricing. Our technique combines traditional linear com-

pression with geometric dimensionality reduction in order to characterize the time-evolving

distribution of a nonconstant dimensional time series using a small number of latent factors.

We use this model to perform an asset pricing study on US equity data from 1980 to present,

using a novel cross-validation approach suited to the problem. These preliminary results are

competitive with, but do not significantly outperform, simpler models which are restricted

to linear structure. We propose several extensions of the model and calibration techniques

which may improve performance.
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Secondary reader: Thomas Woolf
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1 Introduction

Advances in computing power, data availability, and statistical learning techniques have

broadened the set of problems which can be addressed through direct, data-driven tech-

niques. This work leverages recent developments in the field of manifold learning to address

a central question in modern empirical finance: what common factors drive the risks and

expected returns of firms?

Financial data has a complex covariance structure, but it is broadly believed that this arises

from the interaction of a low-dimensional set of common risk factors and high-dimensional

noise. Economic theory has argued rigorously for the existence of a latent risk factor structure

which linearly spans the space of expected returns, but is not able to directly specify what

these factors are. Traditional approaches in the literature choose a set of factors motivated

by economic intuition, trading off misspecification risk for parsimony and interpretability. A

more recent vein of research assimilates a large number of candidate factors using modern

machine learning techniques to identify a compact set of risk factors in a data-driven fash-

ion. Our work continues in this direction, identifying the similarity between the arbitrage

pricing theory of Ross (1976) and the manifold hypothesis of machine learning in order to

leverage the flexibility of nonlinear models while relying on parsimonious assumptions mo-

tivated by economic theory. The method that we propose is adapted from the approach

of Lian et al. (2015), who apply manifold embedding techniques to time series data. We

add a pre-processing step which allows our model to accomodate a dataset with nonconstant

width. In addition to using the diffusion map algorithm investigated in that work to perform

the embedding, we also consider the recently-developed UMAP algorithm of McInnes et al.

(2020). To our knowledge, this work is also the first to apply manifold embedding techniques

to the field of asset pricing.

We use this enhanced time series analysis methodology to perform an empirical study of
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the cross-section of US equity returns. Our approach follows most closely the framework of

Kelly et al. (2019), particularly the extension which uses firm-level characteristics in addition

to returns. Relative to that work, our technique relaxes the restriction that latent factors

lie on a hyperplane spanned by characteristics to the more general assumption that they lie

on a low-dimensional manifold embedded in the ambient space. Our approach to estimating

pricing errors via cross-sectional cross-validation, rather than splitting the data into training

and validation sets temporally, is also distinct to this work. Our preliminary results do not

significantly outperform simpler linear benchmarks; however, we identify ways to refine the

methodology which may lead to improved performance.

The remainder of this paper lays out each of these topics in detail, according to the fol-

lowing structure. Section 2 provides an overview of the literature in manifold learning and

empirical asset pricing, to contextualize this work and its contributions. Section 3 discusses

our methodology in detail, including an extension of the model utilizing characteristic infor-

mation, and benchmarking our approach against a more constrained linear model. We also

establish our cross-validation technique for producing error estimates, which is crucial to the

study and distinct from many others in the literature. In section 4, we perform an empirical

study of US equity returns using our method and discuss the results. Section 5 concludes

with a discussion of future avenues of research.
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2 Literature survey

2.1 Manifold learning

This work utilizes two manifold embedding algorithms developed in the mathematics litera-

ture. They are both neighbor graph type methods, which attempt to integrate information

about local similarity (the K nearest neighbor graph) into a global metric.

The first algorithm we consider is diffusion map, developed in Coifman and Lafon (2006).

It begins by fitting a diffusion process to the data. The diffusion distance – the probability-

weighted average length of all paths between two points along the embedded manifold – is

then given by examining the eigenfunctions of the diffusion operator. This weighted-average

definition of embedding distance is more robust to sampling noise than the sample geodesic

distance, and can be computed fairly quickly even on high-dimensional data. By varying the

time-scale and normalization of the diffusion kernel, structures at varying levels of localiza-

tion can be detected. Other algorithms in this family include the Laplacian eigenmaps of

Belkin and Niyogi (2003).

The second algorithm we consider is the Uniform Manifold Approximation and Projection

(UMAP) algorithm of McInnes et al. (2020). While diffusion maps have their origin in

stochastic differential equations, UMAP is motivated by algebraic topology. It constructs a

local metric around each observed data point, forming a fuzzy simplicial set, and approxi-

mates the embedded manifold as the union of these. Mapping points on the fitted manifold

to a lower-dimensional space is then a tractable optimization problem. Normalizing distance

metrics allow the technique to scale well to high-dimensional datasets and to produce high-

quality embeddings regardless of the target dimension.

Applying these techniques to time-series data presents a unique challenge, since the dis-
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tribution from which the data is sampled is not constant across observations. This issue is

raised in Coifman and Hirn (2014), which addresses the generic problem of manifold learn-

ing on changing data. The technique of Lian et al. (2015) builds on this and forms the

foundation of the approach in this thesis. Their technique is motivated by the information-

geometric dimensionality reduction of Carter et al. (2011), which focuses on the advantages

of performing manifold learning in the space of distributions. Rather than treating the data

as a point-cloud in Eucliean space and applying dimensionality reduction to the observations

directly, Lian et al. (2015) apply manifold embedding in the space of distributions, using the

symmetrized Kullback-Leibler divergence as their distance metric. In this way, the temporal

structure of the data is incorporated through the point-in-time distribution and the problem

is put on similar footing to the standard setting.

2.2 Empirical asset pricing

The technique proposed in this work was directly motivated by its potential applications

to asset pricing in financial economics. This field has an extensive literature going back at

least to Markowitz (1952), which established optimal portfolio theory and the central role

of estimating risk and expected returns.

2.2.1 Supervised latent factor models

While the space of financial asset returns is extremely high-dimensional, researchers have

long suspected that there are a relatively small number of latent factors which drive re-

turn co-variation. The capital asset pricing model (CAPM) of Sharpe (1964), among other

contemporaneous work, was the first set of financial theories which attempted to establish

a low-dimensional set of risks which drive common variation in asset returns. In CAPM,

the covariation between a security’s return and a broad-market index (called β, since it is

estimated as the coefficient of a linear regression of each security’s returns onto those of the

market index) is assumed sufficient to describe all common variation between firms. This
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forms an asset pricing theory because all remaining risk, which is idiosyncratic and uncor-

related among distinct stocks, will be diversified away in a large portfolio. The equilibrium

theory thus argues that the expected return of each stock should be proportional to its β.

The arbitrage pricing theory (APT) of Ross (1976) generalized this line of reasoning to

higher dimensions and argued for the existence of a latent factor structure. Ross’ argument

follows in a straightforward fashion from the intuition of CAPM. Risks that are common

across firms cannot be diversified away by holding a large portfolio; therefore, investors must

demand compensation (a risk premium) for bearing them. Risks which are firm-specific

(idiosyncratic) can be mitigated via diversification and so should not be compensated. If

expected returns are not proportional to common risk exposures, arbitrageurs could form

riskless portfolios with positive returns. Therefore, in equilibrium we would expect com-

petitive pressures to give rise to a factor structure, wherein expected returns are linear in

common risk exposure.

The APT lays a firm theoretical foundation for the existence of a factor structure, but

does not specify what exactly these common risk factors are or how they might be iden-

tified, giving rise to a large literature. The dominant approach in the literature has used

factors which are chosen according to a mixture of economic intuition and strong empirical

performance. Among the most influential have been the 3-factor model of Fama and French

(1993), the 4-factor model of Carhart (1997), and the 5-factor model of Fama and French

(2015). Taking Fama and French (1993) as an example, the factors chosen are the market

index (as in CAPM), the returns for stocks with small capitalizations versus those with large

capitalizations (”small-minus-big” or SMB) and stocks with high book values versus those

with low book values relative to their market capitalization (”high-minus-low” or HML).

These models have the benefit of being economically intuitive, but are also potentially prone

to misspecifcation or selection bias effects.
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2.2.2 Machine learning and semi-supervised asset pricing models

This work is firmly situated in an emerging trend which seeks to leverage machine learning

techniques in asset pricing; see Gu et al. (2020) for an extensive survey. Chamberlain and

Rothschild (1983) were among the first to recognize the potential for data-driven statistical

techniques to identify latent factor structure. They establish the asymptotic sufficiency of

principal components analysis, applied to the covariance matrix of asset returns, to uncover

the latent risk factors when the market is infinitely large and the structure constant over

time. In practice however, the restrictions of PCA limited its sucess in empirical applications.

More recent work has been able to overcome these limitations and provide some synthesis

of the data-driven approach with conventional factor models. The instrumental principal

components analysis (IPCA) of Kelly et al. (2017) leverages a large set of characteristics,

such as the SMB and HML factors in Fama and French (1993), as instruments rather than

factors in and of themselves. By assuming that these characteristics are linear proxies of the

latent risk factors, this framework can accommodate a large number of potential factors and

allows the loadings of each individual security to vary with its characteristics, simultaneously

mitigating the issues of model misspecification in traditional factor models and the problem of

time-varying risk exposures in PCA. Kelly et al. (2019), which applies IPCA to an empirical

study of US equity returns, is most similar in spirit to this work. Our approach relaxes the

assumption that the latent factor structure is spanned linearly by the instruments, while

preserving the geometric intuition that there is a low-dimensional structure (an embedded

manifold) which describes risk and expected returns. A complementary extension is Gu

et al. (2021), which fits a nonlinear mapping between observable characteristics and market

returns using an autoencoder neural network architecture.
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3 Methodology

We establish some notation for clarity. For a discretely sampled time series {v(t)}, we de-

note by v(t) the vector of observations at time t. We use the notation v(t1, t2) to refer to

the matrix with first row v(t1), last row v(t2), and intermediate rows given by the samples

in-between these observations. Subscripts indicate indexing into a given entry such that vi(t)

is a scalar and vi(t1, t2) is a vector.

We let r(t) denote the cross-section of returns. XL(t) refers to linear and XN(t) to nonlinear

factors used in our pricing model.

3.1 Managing nonconstant width time series

In order to apply the methodology of Lian et al. (2015) we must have a time series of constant

dimension, because the distance metric derived from the Kullback-Leibler divergence is not

well-defined when the two distributions being compared have different sample spaces. This

assumption is challenged in the domain of asset pricing because {r(t)} has dimension N r(t)

which varies strongly over time as new firms enter the market or existing firms exit through

acquisition, bankruptcy, or delisting. To accomodate this, we pre-process the data by ap-

plying a principal components analysis to the estimated rolling covariance matrix of returns.

Letting LBL denote the number of observations used in our rolling window estimation, we

begin by demeaning each market return on a rolling basis:

r′(t) = r(t)− 1

LBL

LBL∑︂
i=0

r(t− i)

and then estimating the rolling covariance matrix as:

Σ̂
r
(t) =

1

LBL − 1
r′(t− LBL, t)r

′(t− LBL, t)
T .
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We then perform an eigendecomposition of this matrix:

Σ̂
r
(t) = V (t)D(t)V −1(t)

with D(t) diagonal. We form a compressed representation of this matrix by taking the first

N l columns of V (t), which are the eigenvectors associated with the N l largest eigenvalues.

Call this truncated N r(t)×N l matrix L(t), and define the linear compression factors

XL(t) = r(t)L(t)

This yields a vector of returns which has constant dimension N l at each point in time. Each

XL
i (t) return can be interpreted as the return to a portfolio whose weights are given by the

ith column of L(t). In this way, we compress the time-varying cross-section of returns r(t)

into a constant-dimensional cross-section XL
i (t) of portfolios whose returns are independent

and span the covariance structure of the raw cross-section as completely as possible. By

choosing largeN l we address the problem of nonconstant dimensionality without prematurely

constraining the downstream dimensionality reduction. In addition, by implicitly truncating

the covariance structure by removing components associated with small eigenvalues, we

reduce the impact of noise on the subsequent embedding estimation.

3.2 Uncovering nonlinear structure with manifold embedding

Having achieved a constant but still very high-dimensional compression of the data through

the previous step, we can directly apply the technique of Lian et al. (2015). We model the

time-varying distribution of the linear factor data XL(t) as approximately normal, using the

rolling mean and covariance matrix:

L(t) ∼ N (µ̂L(t), Σ̂
L
(t))
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where µ̂(t) and Σ̂(t) are the rolling sample mean and covariance of the linear factors, respec-

tively, computed in the same fashion as in section 3.1. It is this time series of distributions

to which we apply dimensionality reduction. The distance metric which is used to describe

local similarity is defined using Kullback-Leibler (K-L) divergence, which under the normal

assumption is given by:

DK−L(L(t1),L(t2)) = tr(Σ̂
L
(t2)

−1Σ̂
L
(t1))−Nl + log

det
(︂
Σ̂

L
(t2)

)︂
det

(︂
Σ̂

L
(t1)

)︂
+ (µ̂L(t1)− µ̂L(t2))

T Σ̂
L
(t2)

−1(µ̂L(t1)− µ̂L(t2)).

Following Lian et al. (2015), the metric which is used for measuring similarity symmetrizes

the K-L divergence:

d(t1, t2) =
DK−L(L(t1),L(t2)) +DK−L(L(t2),L(t1))

2

This allows us to define a distance matrix D with Di,j = d(ti, tj) to which we apply the

diffusion map and UMAP algorithms, which recover a low-dimensional embedding:

(XL, D)
UMAP/Diffusion Map−−−−−−−−−−−−→ XN

where we drop the time index to indicate that this process is performed once across all

time-steps. The reduced time series {XN(t)} has constant dimension Nn with Nn << N l

such that we compress the linear factors significantly. These nonlinear factors form the

basis for our asset pricing model. The implementations used for this research expose two key

parameters for both algorithms used in constructing a kernel matrix: a bandwidth parameter

ϵ and a nearest-neighbor parameter Nknn. These are critical parameters as they tune the

scale at which the embedding algorithms attempt to identify structure. Since we do not have

strong theoretical guidance for choosing these parameters, we will fix the other aspects of
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the model (that is, LBL, N
l and so on) and consider a range of choices for these parameters

in our cross-validation. The values of ϵ and Nknn will be parameterized as percentiles of the

off-diagonal values of D and as a percentage of the number of observations, respectively, in

order to yield an appropriate parameter scale for each run.

3.3 Asset pricing

Section 3.2 uncovers a low-dimensional embedding {XN(t)} which compactly characterizes

the variation in the data. Unlike the linear factors {XL(t)}, these factors are nonlinear

and do not correspond to investible portfolios. In order to relate these to the risks and

returns of financial assets, we follow the pricing framework of Fama and MacBeth (1973),

which is composed of two steps. The first step measures the risk exposures of assets in the

cross-section to the latent factors. In order to measure these, we perform a simple rolling

regression per asset:

ri(t− LBβ, t) ≈ α̂i(t) + β̂i(t)X
N(t− LBβ, t)

With α̂i(t) a market-specific constant. This yields a set of exposure estimates {β̂(t)} for

each asset to each factor at each point in time. Note that each β̂(t) is an N r(t)×N l matrix.

These risk exposures are then used in the second step to estimate the compensation for risk

exposure – for each time in our sample, we perform a cross-sectional regression across all

assets:

r(t) ≈ β̂(t− 1)f̂(t)

where β̂(t − 1) includes a column of ones appended to reflect a cross-sectional constant

term in the regression. The estimate f̂(t) recovered from this cross-sectional regression is

our primary object of interest, because it describes the compensation for taking incremental
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exposure to each of the risk factors. We can use it to form an explanatory estimate

r̂Exp
i (t) = β̂(t− 1)f̂(t)

which corresponds to the forecast from the cross-sectional regression model. As the name

implies, comparing r̂Exp
i (t) to ri(t) gives us some sense of the power of the model to explain

the realized cross-section of returns. In addition, we can define a factor risk premium λ̂(t)

as the rolling full-sample average of the factor return:

λ̂(t) =
1

t− 1

t∑︂
i=1

f̂(t− i)

to define a predictive estimate:

r̂Pred
i (t) = β̂(t− 1)λ̂(t)

which is a prediction of the return using only ex-ante information. Clearly, this imposes

a much higher hurdle than explanatory estimates, and instead describes the persistence of

factor returns. A strong correlation between ri(t) and r̂Pred
i (t) would indicate not only that

the risk factors can describe returns, but that the compensation provided for bearing risk is

stable over time. We will elaborate on this distinction in greater detail when discussing our

performance metrics.

3.4 Cross-validation

Manifold embedding algorithms have multiple tuning parameters which must be chosen –

mostly crucially the kernel bandwidth and number of nearest neighors used in forming the

similarity matrix. To evaluate our model, it is critical that we have out-of-sample pricing

error estimates for each data point. The approach in much of the literature is to report

in-sample errors, which are biased because they informed the selection of risk factors and
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estimation of factor premia. More recent research motivated by the statistics and machine

learning literature employs a temporal train/test split, where the model is tuned using data

from one period, then evaluated in a subsequent testing period. While there are techniques

for performing such a split using manifold embedding techniques, they are complicated sig-

nificantly by the fact that these models are nonparametric. In particular, our use of a

non-standard distance metric (relative to the library implementations of diffusion maps and

UMAP) makes such an effort much more complex. Instead, we obtain unbiased error esti-

mates by splitting the data cross-sectionally.

Our approach is as follows. At each point in time, we randomly assign each market to

a unique cross-validation fold. The steps outlined in sections 3.1 and 3.2 are performed on

all markets except those in our fold of interest, yielding a set of risk factors defined on to-

tally distinct data. These factors are then used with markets in our fold as in section 3.3 to

produce pricing errors. In this way, the information in the cross-section used to identify risk

factors is completely separated from the set of test assets used to assess those risk factors.

The existence of common information across distinct sets of markets is, of course, what we

hope to discover, and so should not pose an undue hurdle for a genuinely successful model.

By repeating this process across all folds we obtain out-of-sample error estimates for each

market in the cross-section.

The full process is summarized in Figure 1. We continue with a discussion of an exten-

sion to the model, benchmarking, and performance assessment.

3.5 Incorporating firm characteristics

The methodology as specified in the previous sections uses only the returns of the assets in

the cross-section. As an extension, we may also consider exogenous information in the form

of characteristic portfolios. Similar to the principal components analysis compression, char-
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acteristic portfolios are linear combinations of assets. Compared to that process, however,

the weights in each portfolio are determined by information from outside the model. For

example, in the style of the HML factor of Fama and French (1993), a characteristic could

be the book-to-market ratio of each firm in the cross-section, at each point in time.

Let {c(t)} denote the time series of characteristics, such that c(t) is a N r(t) × NC matrix,

where NC is the number of characteristics. Continuing with our example, cHML
i (t) would

refer to the book-to-market ratio of firm i at time t. We define characteristic portfolios

according to the weighting scheme:

wj
i (t) = percentile(cji )− 0.5

where the percentile is defined cross-sectionally across all markets for a given point in time

t and characteristic j. Markets whose value exceeds the median will be assigned a positive

weight, and those below the median will be assigned a negative weight (corresponding to a

short sale). We then compute the characteristic portfolio return simply as:

XL
j (t) = wj(t− 1)r(t)

where the lag in w indicates that characteristic portfolios should be described using only

ex-ante information. Defining the return in this way allows the market composition to vary

with chacteristic loadings. Concluding with our example of book-to-price as a characteris-

tic, {XHML
L (t)} gives us a time series of returns which corresponds to being long the stocks

with the highest price-to-book ratios versus short the others. As each individual firm’s

ratio changes, so too will its weight in the portfolio. By repeating this across all charac-

teristics we obtain an NC-dimensional time series {XL(t)} of characteristic portfolio returns.

As our notation suggests, this approach achieves a similar goal as the dimensionality reduc-
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tion described in section 3.1. In the characterstic-based extension, we use these portfolios as

the constant-dimensional representation of the data in lieu of the PCA compression. Using

a large number of characteristic portfolios achieves the same goal of constant dimensional-

ity while still affording the manifold embedding step significant flexibility. This seamlessly

integrates the exogenous information in the characteristics without requiring any alteration

to the downstream methodology.

3.6 Benchmark models

Both the original model specification and the characteristic extension use manifold embed-

ding to identify a small set of risk factors which form the basis of the pricing model. In order

to benchmark our approach, we also consider simpler models which are restricted to linear

formulations. As an extreme example, we consider a full linear model which uses the set of

linear factors obtained from step (2) of Figure 1 directly, without any subsequent compres-

sion. This serves as an upper bound on the potential of the pricing model and a measure

of the information that can be extracted from the linear factors. We also fit a restricted

linear model which compresses the data linearly, again using principal components analy-

sis, to extract the same number of factors as used in the manifold models. The restricted

model provides a more direct comparison of the value added from the nonlinear manifold

embedding step.

3.7 Performance assessment

Following Kelly et al. (2019), we assess the performance of our models primarily on the basis

of their total and predictive R2 values. They are both simply defined using the explanatory

and predictive estimates r̂Exp
i (t) and r̂Pred

i (t) defined in section 3.3. First, we have:

R2
Total = 1− SSEExplanatory

SSETotal

= 1−
∑︁

i,t(r̂
Exp
i (t)− ri(t))

2∑︁
i,t ri(t)

2
,
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Figure 1: A flow diagram which summarizes the approach to identifying latent factors and
producing out-of-sample asset pricing errors using cross-validation.

where r̂Exp
i (t) = β̂(t− 1)f̂(t) estimates the return using the contemporaneous factor return

estimates. An R2
Total value of 1 would indicate the model is able to explain, contempo-

raneously, all of the variation in the cross-section. Importantly, this does not mean that

returns are predictable, since the factor returns themselves f̂(t) could have strong explana-

tory power but be impossible to forecast ex-ante. The metric R2
Pred addresses the notion of

predictability, and is defined as

R2
Pred = 1− SSEPredictive

SSETotal

= 1−
∑︁

i,t(r̂
Pred
i (t)− ri(t))

2∑︁
i,t ri(t)

2

where r̂Pred
i (t) = β̂(t − 1)λ̂(t) is a prediction using only information available prior to the

period when the return is observed. λ̂(t) plays the role of a simple forecast of the next-

period factor return: its rolling full-sample average up until that point. A high value of

R2
Pred would indicate both that the latent factors can describe significant amounts of return

variation, and that the factor returns themselves are highly persistent. It is possible for

R2
Pred to be negative, indicating that the variance of prediction errors is larger than the
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variance of the cross-section itself, but it is worth noting that recent work by Kelly et al.

(2021) argue that the investment implications of R2
Pred < 0 are underdetermined because the

investment performance of such a model when constructing e.g. optimal portfolios will also

be influenced by its bias. As they demonstrate, there exist models with negative R2
Pred whose

improvement in prediction bias is sufficient to offset their increased variance. While we will

not focus on such considerations in this document, we note that this a known limitation of

R2
Pred in summarizing the quality of a pricing model.
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4 Empirical study

Having established our method for building asset pricing models with manifold embedding,

we apply this model in an empirical study of the cross-section of US stock returns. We begin

with a discussion of our data sources. We provide additional details on the software used to

perform this analysis in Appendix A.

4.1 Data

4.1.1 CRSP

Historical security returns, prices, volumes, and shares outstanding were downloaded from

the monthly stock file from the Center for Research in Security Prices (CRSP; see University

of Chicago (2020)). We download monthly data beginning in 1965, covering all securities

listed on NYSE, NASDAQ, and BATS with prices above $5. The data was accessed using

Wharton Research Data Services (WRDS) in February 2022. We use monthly data, rather

than daily, because it substantially reduces the computational burden of fitting the model

compared to daily data, while still being economically relevant (and perhaps more so, as

daily returns, particularly for small stocks, may be prone to predictable but economically

insignificant illiquidity effects).

4.1.2 Open Source Asset Pricing

For characteristics, we use the dataset created by the Open Source Asset Pricing project

of Chen and Zimmermann (Forthcoming). They aggregate 202 predictors advanced in the

literature for the full cross-section of stocks in CRSP. These signals form the basis of our

characteristics-based extension. We subset from their dataset the 50 factors with the greatest

level of mutual availability with our markets, which have been continuously available since

1965. We construct the returns of the characteristic portfolios independently, in order to

accommodate the cross-validation scheme outlined in the previous section.
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4.2 Historical market set construction

With the flexibility of our technique comes increased sensitivity to data processing decisions.

In order to stabilize our results and mitigate the impact of possibly erroneous datapoints, we

construct historical market sets which impose several additional requirements on markets:

1. 80% of observations not missing in the last five years, and none missing in the last

year.

2. No months with zero volume.

3. No more than 5% of months in the last five years with zero return.

It is critical that these filters are applied only on the basis of information that would have

been available at the time; otherwise, the analysis will be contaminated by survivorship ef-

fects. It is for this reason that we use high-quality data providers which build their databases

from point-in-time historical data.

Each year, we apply our screen to all of the firms in the dataset. From the firms satis-

fying this criteria, we take the top 1,000 by market capitalization (if more than that remain)

as of the end of the formation period. This market set is then fixed for one year, and we

repeat the process the following year. This yields a sequence of market sets, one per year, to

which we fit our latent factor model and analyze pricing performance. As indicated in fig-

ure 2, in all periods after 1980 we have more than 1, 000 markets fitting our screening criteria.

The intention of this process is that we have a set of fairly “well-behaved” markets which

are unlikely to have major data issues, which would require greater expertise in this dataset

to troubleshoot and resolve, and which have the potential to distort results. The forma-

tion based on only ex-ante properties of the markets ensures that we are not incorporating

knowledge of future events which could bias our results. We argue that this process still

yields a set of markets which are economically important and interesting. Figure 3 shows
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Figure 2: The number of firms satisfying our various screening criteria. We do not plot the
zero volume or zero return filters here as the vast majority of firms satisfy these
requirements.

that although the number of firms we use is relatively small compared to the entirety of the

cross-section, they represent the vast majority of the total market capitalization of the US

stock market. The orange line in this figure indicates that even if we were to extend our

market set to cover all firms meeting our criteria, the gain in terms of market cap coverage

would be small.

It is important to note that this screening process will focus our analysis on stocks with

medium to large market capitalizations. This is a double-edged sword; on the one hand,

small, illiquid firms may be more prone to outliers and other data issues which could desta-

bilize our pricing estimates. On the other, because of their illiquidity and high trading costs,

small firms could exhibit stronger pricing accuracy and more predictable returns. Studies

which perform their analysis on subsets of the market often find qualitatively different re-

sults for small and large stocks – for example, Kelly et al. (2019) document lower R2
Total but
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Figure 3: A comparison of the market cap share for firms kept in our historical market set.
The blue line indicates the share of market cap which passes all of our filters. The green
line indicates the share of market cap in our historical market set. The orange line
re-normalizes the market cap share kept by only including eligible firms.

higher R2
Pred when their analysis is restricted to small firms. For this reason, we caution

direct comparison of our results with those of other studies which may have included more

small stocks, and instead emphasize comparisons to our simple benchmark models which

hold the market set constant.

4.3 Setting expectations

For readers not familiar with the empirical finance literature, we wish to emphasize that

signal-to-noise ratios in financial data are extremely low. Asset pricing seeks to model the

structure of expected returns which reflect the information available to a representative in-

vestor. Realized returns will, of course, be influenced by significant events which are not

predictable ex-ante and by information which a marginal investor would not have known

(or, due to regulatory restrictions, could not have acted on). As a result, even successful
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models tend to have very low R2 values compared to studies in the physical sciences. Par-

ticularly in the predictive dimension, we expect competitive pressure to force low R2 values,

as strong return predictability creates opportunities for arbitrageurs, whose exploitation of

this predictability is self-correcting.

4.4 Parameter settings

There are a number of free parameters in our methodology which must be defined. In order

to focus our analysis on the value of manifold embeddings, we fix as many parameters as

appropriate, while allowing the two critical parameters which drive the embedding – the

kernel bandwidth parameter ϵ and number of nearest neighbors Nknn – to vary. For the

identification of risk factors, we prefer a fairly long lookback of 60 observations (correspond-

ing to five years) to keep the estimation stable, while for the beta estimation in asset pricing

we use a shorter lookback of 36 months (three years) to allow the market-level risk loadings

to be more dynamic. We set the number of linear factors used in the pre-processing step to

N l = 50; this is ad hoc but of a similar order of magnitude as studies which process a large

number of cross-sectional factors such as Kelly et al. (2019). From this, we extract Nn = 5

latent factors using the manifold embedding algororithms; this is the same number of risk

factors as used in Fama and French (2015) and in the upper range of the number of latent

factors used in the studies of Kelly et al. (2019) and Gu et al. (2021).

For the embedding parameters, we specify the Nknn parameter as a percentage of avail-

able observations, and ϵ as a percentile of (off-diagonal values of) the distance matrix D,

which allows the values to be specified on a consistent scale for each iteration. Our choice of

parameter values is summarized in Table 1. In our cross-validation, we use 5 folds to which

each market is assigned at random, which means that each fold contains approximately 200

markets. This number of folds is computationally feasible, and the 200 market validation

set for each iteration ensures there is a substantial number of markets to which we can fit a
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Term Meaning Value
N l Number of factors used in the pre-compression 50
Nn Number of latent factors in the embedding 5
LBL Lookback for the PCA pre-compression* 60 months
LBN Lookback for fitting the distribution 60 months
LBβ Lookback for estimating market-factor betas 36 months**
Nknn KNN parameter in manifold embedding algorithms 20-80% of observations
ϵ Bandwidth parameter in manifold embedding algorithms 10-50th percentile of D

Table 1: The parameter values that we use in our empirical study. The embedding
algorithm parameters Nknn and ϵ are varied in a range of 5 values each. *For the
characeristics extension, there is no pre-compression. **The large benchmark model uses
60 months for the beta estimation, since this lookback must be larger than the number of
factors (50).

pricing model.

4.5 Results

4.5.1 Latent factors

We begin by considering a few examples of the factors extracted by our method. First, we

consider the linear (PCA-based) factors constructed in the pre-processing step. Recall that

the eigenvectors extracted from the covariance matrix, which form our PC factors, corre-

spond to linear combinations of markets and so can be interpreted as portfolios. Figure

4 shows an example of the first five factors constructed from a cross-validation fold, plot-

ting the cumulative return of the portfolio corresponding to each factor. The first principal

component, by construction, captures the greatest amount of common volatility in the co-

variance matrix. The next four factors appear to move significantly less, indicating that

the volatility absorbed by the first pricipal component is much greater than the others (or

equivalently, that the eigenvalue spectrum of the rolling covariance matrix decays rapidly).

Readers familiar with market history may recognize that the first factor’s cumulative return

history looks very similar to the negated return of a broad-market index. Note, for example,

the peaks up in the late 2000’s (corresponding to the global financial crisis) and the blip in
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Figure 4: An example of the factors discerned from the PCA pre-transformation, which
yields our time-series of constant dimensionality. Here we plot the cumulative sum of the
factor values, since these factors correspond to investible portfolios and hence the cumsum
is their total return.
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Figure 5: The first PCA-based factor for each fold. It is consistent stylized fact that the
first principal component of the market covariance matrix is a broad “market” factor. Note
that because of the rotational invariance of PCA, factor is “short” (weights are mostly
negative), such that this would be strongly negatively correlated to a market index.
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early 2020. This is consistently the case; Figure 5 compares the first principal component

across each cross-validation fold. In each case, we see a similar pattern of the first principal

component capturing a broad “market” factor. The fact that this first factor has negative

returns, rather than positive, points to a limitation of principal components analysis that will

affect the ability of our methodology to identify structure. The decomposition of the market

covariance matrix into principal components is rotationally invariant. If L corresponds to

a mapping constructed from PCA and R a rotation matrix satisfying RRT = I, then the

covariance matrix re-constructed from the mapping RL is (RL)TRL = LTL, identical to the

original. The fact that this rotation is arbitrary, and may vary over time as we perform the

analysis on a rolling basis, introduces unnecessary variability into our factor data which may

affect the subsequent dimensionality reduction.

With that caveat aside, we turn our attention to the nonlinear latent factors extracted by

our manifold embedding algorithms. Unlike the linear PCA-based factors, the latent factors

extracted from these algorithms are a nonlinear (and nonparameteric) function of the data,

and so do not correspond to portfolios. As a result, there is no instrinsic scale on which

to compare the data; we instead focus on how the embeddings vary over time and across

different choices of parameters.

Figure 6 shows an example of the latent factors extracted for the first cross-validation fold.

The top figure shows the UMAP embeddings. We can see that although they are locally

smooth, they appear to be strongly oscillatory. Compared to the PCA-based factors, there

is no strong ordering of the latent factors in terms of their time-series variation. Large jumps

in the embeddings may correspond to windowing effects from our rolling covariance matrix.

The bottom chart shows the same set of factors extracted by diffusion maps, using the same

set of parameters. In contrast to UMAP, the latent factors extracted by diffusion maps do

not appear to strongly oscillate. We again see windowing effects such as the late 1980s,
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wherein all factors appear to change significantly at the same time.

Figures 7 and 8 let us examine how the embedding changes as a function of the local-

ization parameters ϵ and Nknn, focusing on the first latent dimension identified. Beginning

with Figure 7 on the left, we can see that most values of Nknn behave similarity. There

appears to be a discontinuity between using 60% and 80% of observations, where we see

qualitatively different behavior. On the right chart of the same figure, we see less variation

in the embedding as we vary the kernel bandwidth parameter. For very high values of ϵ,

which would indicate a higher threshold for measuring local similarity, we see that the val-

ues appear to be significantly more oscillatory. This may indicate that distances between

distributions which are farther away are subject to a greater degree of measurement noise, a

problem we will investigate further later on. Figure 8 provides a similar comparison for the

diffusion map embeddings. Relative to UMAP, the situation is reversed. The embedding

seems largely invariant to the choice of Nknn, but there is a qualitative shift in behavior as

the kernel bandwidth ϵ parameter is increased, which causes the entire time-series of em-

beddings to flip sign. This may again indicate a kind of rotational invariance in the latent

factor extraction, which could pose challenges for fitting an asset pricing model.

4.5.2 Asset pricing performance

We now investigate the performance of asset pricing models which use the latent factors we

examined in the previous section. For each market, we follow the cross-validation procedure

as discussed prior, so that the latent factors used to explain returns are constructed without

reference to the markets on which they are evaluated. This gives us a set of pricing model er-

rors for each choice of the embedding parameters ϵ andNknn, which we now consider in detail.

The explanatory power of the models is illustrated in Figure 9, which shows the perfor-

mance metric R2
Total for each pair of parameters considered. Although it was difficult to
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Figure 6: An example of factors extracted from the linear PCA factors using UMAP (top)
and diffusion map (bottom). Both algorithms appear to extract factors with oscillatory
behavior. Unlike principal-component factors, the different factors do not appear to have
dramatically different volatilities.

27



Figure 7: An example of the first factor extracted by UMAP for various KNN parameters
(left) and bandwidth parameters (right).

Figure 8: An example of the first factor extracted by diffusion map for various KNN
parameters (left) and bandwidth parameters (right).
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tease out the influence of the embedding parameters on the latent trajectories, we see that

for both UMAP and Diffusion Map it appears that parameter sets emphasizing fine-grained,

local structure (smaller values of ϵ and Nknn) produce marginal improvements to the ex-

planatory power of the model. By comparing the two figures, we also see that for each

choice of parameters diffusion maps offers a higher explanatory R2, although the difference

between the two is fairly small.

Turning to predictive performance, shown in Figure 10, the picture is far less rosy. All

parameter choices have a negative R2
Pred, indicating that the variance of the rolling-average-

based predictions is larger than the variance of the market returns themselves. The R2
Pred

values for UMAP are of course consistently negative but within a realistic range, while those

of diffusion map are massive, which may indicate numerical precision issues. Focusing on

UMAP for this reason, we also make an observation that parameter sets emphasizing small-

scale local structure – which produced better explanatory performance – here appear to result

in more negative predictive performance. Leaning on the intuition of Kelly et al. (2021), it

could be that the higher-localization specifications allow for greater flexibility in the pricing

model, which will tend to make the predictive R2 more negative.

We have seen a highly mixed picture in terms of performance, which varies considerably

with the choice of parameters. To condense our analysis and get an upper bound on the

performance of the embedding models, we focus on the best-performing set of parameters

for each of our performance metrics. Recall that we look at two benchmarks. The full linear

model uses the 50 principal component factors directly, without performing any dimension-

ality reduction, providing an upper bound on the information content in the compressed

representation. The restricted linear model, in contrast, uses only the first five principal

components, so that it is constrained to the same level of flexibility as the manifold-based

models but can only identify linear structure in the data.
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Figure 9: A comparison of the total R2 for the pricing models which use manifold
embeddings to identify latent factors. This measure captures the abiliy of the pricing
models to explain variation in contemporaneous returns. UMAP is shown on the left, and
diffusion map on the right. Each entry corresponds to one choice of the two key embedding
parameters, the kernel bandwidth ϵ and the number of nearest neighbors Nknn.

The results are shown in Table 2. Starting with predictive R2, we can see that the manifold

embedding models are in good company, as the full linear model – which is afforded signifi-

cant explanatory power – also has negative performance. On the other hand, the restricted

linear model manages a small positive R2
Pred. Now looking at the total R2, we can see that

manifold embedding algorithms (again, in the best case) are able to extract slightly more ex-

planatory power from their five dimensions than the comparable linear benchmark. However,

the full linear model, which uses 50 factors, is able to capture almost all of the cross-sectional

variation in the data. We stress that this is an extremely high degree of flexibility, as these

50 latent factors are used to describe the returns of only 200 markets, and so this model

gives us only an upper bound on the information content which can be captured. Its strong

performance would suggest either that there simply is no lower-dimensional nonlinear struc-

ture for the algorithms to identify, or that measurement noise or other estimation challenges

prevent them from being captured in a way that adds significant value to the pricing model.
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Figure 10: A comparison of the predictive R2 for the pricing models which use manifold
embeddings to identify latent factors. This measure captures the extent to which factor
return premia are persistent. UMAP is shown on the left, and diffusion map on the right.
Each entry corresponds to one choice of the two key embedding parameters, the kernel
bandwidth ϵ and the number of nearest neighbors Nknn.

R2 comparison

Metric Predictive Total
Diffusion Map - 0.541
UMAP - 0.527
Restricted Linear Model 0.012 0.471
Full Linear Model - 0.946

Table 2: A comparison of the asset pricing performance of our models. For UMAP and
Diffusion Map, we show the best performer across the range of embedding parameters
Nknn and ϵ considered. Negative R2 values are suppressed.
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4.5.3 Characteristics-based extension

We now discuss the extension of the model which uses characteristic portfolios, rather than

principal components analysis, to perform the initial dimensionality reduction. This differ-

ence aside, all aspects of our study are the same.

We begin by again examining a heatmap which shows R2
Total and R2

Pred for each choice of em-

bedding parameters. Looking first at Figure 11, which shows the explanatory performance,

our results seem qualitatively simillar and marginally better than the models using PCA-

based factors. We again see that Diffusion Map performs marginally better than UMAP, and

that parameterizations emphasizing local structure outperform those which which measure

similarity at a coarser scale.

Our motivation for performing this characteristics-based extension is the study of Kelly

et al. (2019), who find that incorporating exogenous information via characteristics brings

a dramatic increase to the predictive power of asset pricing models. In particular, in their

study a PCA-type model applied to market returns has negative R2
Pred, while their IPCA

based model has positive performance. Unfortunately, this is not the case here, as we can see

in Figure 12. As in our original model, it appears that the diffusion map model is destabilized

and produces huge negative R2
Pred values. The UMAP model appears to perform significantly

better with characteristic information – compare the top-left corner here of −0.16 to −3 in

Figure 10 – but all values remain negative.

Relative to our previous study, here the restricted linear benchmark, rather than using

some of the return-based factors directly, performs a PCA on the full set of characteristic

portfolio returns, extracting the top five principal components. Following the same route as

our earlier analysis, we contextualize our results by comparing with the benchmark linear

models shown in Table 3. The results are qualitatively the same: the manifold models have
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Figure 11: A comparison of the total R2 for the pricing models which use manifold
embeddings to identify latent factors, and use characteristic portfolios as the input rather
than principal component factors. This measure captures the abiliy of the pricing models
to explain variation in contemporaneous returns. UMAP is shown on the left, and diffusion
map on the right. Each entry corresponds to one choice of the two key embedding
parameters, the kernel bandwidth ϵ and the number of nearest neighbors Nknn.

explanatory performance which is competitive with, but does not significantly outperform,

the restricted linear model which is constrained only to identify linear structure in the data.

We again see that the full linear model is able to explain nearly 100% of the variation in the

return cross-section, and that the restricted model has a small but positive predictive R2.

R2 comparison

Metric Predictive Total
Diffusion Map - 0.565
UMAP - 0.470
Restricted Linear Model 0.009 0.481
Full Linear Model - 0.954

Table 3: A comparison of the asset pricing performance for the characteristics-based
model, where the return of characteristic portfolios is used, rather than PCA-based factors,
to compute the embeddings. For UMAP and Diffusion Map, we show the best performer
across the range of embedding parameters Nknn and ϵ considered. Negative R2 values are
suppressed.
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Figure 12: A comparison of the predictive R2 for the pricing models which use manifold
embeddings to identify latent factors, and use characteristic portfolios as the input rather
than principal component factors. This measure captures the extent to which factor return
premia are persistent. UMAP is shown on the left, and diffusion map on the right. Each
entry corresponds to one choice of the two key embedding parameters, the kernel
bandwidth ϵ and the number of nearest neighbors Nknn.

4.5.4 Example results at the market and date level

We have now seen that in both model structures we have studied, the manifold embedding

models fail to identify latent structure that would lead to strong asset pricing performance.

Given this, in the following two sections we perform some exploratory analysis which may

provide some insight into the weaknesses of these models and areas for potential improve-

ment.

We begin with a closer look at the performance of the models at the individual market

level. Throughout, we focus on the UMAP model with return-based factors, where Nknn

is set to be 20% of the total observations, and ϵ the 10th percentile of the off-diagonals of

the distance matrix. Our choice is ad hoc but necessary given that there are 100 models

(two algorithms, two types of compression (PCA or characteristic portfolios), and twenty-

five parameter sets); we prefer the parameters tuned for the most localized level of structure

because this presents in a sense the most flexible model. Recall that this set of parameters
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tended to have relatively better explanatory performance and worse predictive performance.

We focus on UMAP given the apparent numerical issues with Diffusion Map, a problem we

will investigate in the next section.

Beginning with the explanatory performance, we recalculate the R2
Total, restricting our com-

putation to the observations in a given month across all markets, or to a given market across

all time. In the latter case, we drop any markets with less than 12 observations (one year of

data) to stabilize the calculations; no such filtering is necessary for the calculation over time

since there are generally close to the full 1000 available. The results are shown in Figure

13. On the left, we see that the explanatory R2 is very noisy, but it does not appear that

there is any one period which performs particularly well (or poorly). On the right, we show

a histogram of the explanatory R2 by market. The distribution is roughly normal, with a

peak around 55% and a fat left tail – unsurprising given that this metric is bounded above

(at 1), but not below. It appears that the “average” market performs well, and that the

explanatory performance for almost all markets is positive.

Turning our attention now to predictive performance in Figure 14, we present the same

analysis by date and by market. We see that there are two periods – around the end of the

dot com era in the mid 2000s as well as in the post financial crisis era of the early 2010s

– when R2
Pred turned steeply negative. These market turning points may present unique

challenges to the pricing models, because there may be a significant change in the market

covariance structure as well as a large number of names coming into or going out of the

market set due to delistings or firm consolidation. However, even outside these periods we

see that the performance was still consistently negative. The market-level analysis affirms

this conclusion. We again see a long left tail in the performance of individual markets, but

it appears that the vast majority of markets have R2
Pred < 0. This, unfortunately, suggests

that the challenges to the model are broad-based and not an issue of bad data or a few
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Figure 13: Explanatory R2 over time and by market for a pricing model computed at the
month-level (left), and market level (right).The pricing model here uses UMAP for the
embeddings and return (PCA-based) factors. Nknn is set to be 20% of the total
observations, and ϵ the 10th percentile of the off-diagonals of the distance matrix.

poorly-behaved markets skewing our metrics. Either our methodology is not data-efficient

enough to identify latent structure in the data, or there simply is no such nonlinear structure

to exploit.

4.5.5 Conditioning problems in the covariance matrix

Recall that our embedding algorithms perform dimensionality reduction in the space of dis-

tributions using the K-L divergence. For the rolling normal model which we fit to the data,

this metric requires inverting the sample covariance matrix. If this covariance matrix is

ill-conditioned, this implies that our distance metrics may lose considerable precision. This

appears to be the case and may explain why the manifold embedding models do not outper-

form the simple benchmarks.

We begin our exploration of this issue with a simple exercise whose result is shown in Figure

15. At the end of 1995, we construct the market covariance matrix using the last five years

of observations. Because the number of markets being used vastly exceeds the number of

observations, this matrix is by construction not positive definite. However, the compression

to principal components - a low rank approximation - can be. For a varying number of
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Figure 14: Predictive R2 over time and by market for a pricing model computed at the
month-level (left), and market level (right).The pricing model here uses UMAP for the
embeddings and return (PCA-based) factors. Nknn is set to be 20% of the total
observations, and ϵ the 10th percentile of the off-diagonals of the distance matrix.

principle components, we compute the compression and the resulting covariance matrix of

principal components, finally computing its condition number. As seen in Figure 15, we

can see that the condition number increases steadily as more principal components are used.

This indicates that as we reach further into the structure of the market covariance matrix, we

are able to measure covariances with less and less precision. This is unsurprising, since each

additional principal component we add has, by definition, lower variance than the others

being used. This would also be apparent examining the eigenvalue spectrum of this matrix,

which decays rapidly.

Having built some intuition about the situation, we now confirm that this is a practical

issue in Figure 16, which compares the condition number of the fold zero covariance ma-

trix over time in both the PCA-based model and the characteristic-based extension. The

result is unambigous: in both cases, the linear factor covariance matrix is very poorly con-

ditioned. Using the rule of thumb that the number of digits lost is log 10 of the condition

number, in the return-based case we lose between three and four digits of precision, and the

characteristics-based case even more, between seven and eight. By definition our principal

component factors are uncorrelated to within numerical error, but this is not the case for
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Figure 15: An example of the condition number of the market covariance matrix,
compressed to a given number of principle components.

Figure 16: A comparison of the condition numbers of the factor covariance matrices for
fold zero, for the market return (PCA-based) factors,on the left, and characteristic
portfolios, on the right.
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the characteristic portfolios. It is likely that collinearity of individual characteristics is what

drives the condition number significantly higher. In either case, we see that there is likely

substantial loss in precision when inverting the linear factor covariance matrices. This means

that the input to the embedding algorithms, which must invert these covariance matrices

to compute distance, are also subject to substantial losses in precision, which may explain

some of the disappointing performance.

The intention for using a very large number (50) of linear factors was to avoid prematurely

constraining the manifold embedding algorithms, but this appears to come with a severe

tradeoff. One simple solution would simply be to use a smaller number of linear factors,

perhaps chosen as the largest number which avoids a worst-case condition number, which

will reduce model flexibility but also mitigate the numerical issues. An alternative approach

would be to precondition the matrix before calculating the K-L divergence in order to iden-

tify a sparse approximation which will be more numerically well-behaved. A complementary

measure would be to shrink the off-diagonals (particularly in the characteristics extension)

in order to reduce the influence of potentially large and unstable sample correlations on the

inversion.

We further explore this issue in appendix B. We re-fit the model with smaller numbers

of latent factors, with the idea that this will reduce the ill-conditioning problem which in-

troduces numerical noise during the embedding step. While we do see an improvement in

conditioning, this does not translate to significantly better predictive performance. For mod-

els with fewer linear factors (smaller Nl), the numerical blow-up in the Diffusion Map R2
Pred

is resolved, but we continue to see negative predictive performance across the board for the

manifold embedding-based pricing models.
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5 Future work and conclusion

We have seen from our empirical study that the manifold learning-based techniques do

not offer a substantial improvement over their more constrained, linear counterparts. We

conclude this work with some additional thoughts on the drivers of this underperformance,

and suggestions for future work which could improve on the model and our understanding

of the problem.

5.1 Future work

5.1.1 Improved model tuning and parameter search

In our empirical study, the choice of model parameters was decidedly ad hoc. There are a

large number of parameters to choose, and while for many we may draw some analogy to

the empirical finance literature to guide our decision, for others - particularly the crucial

embedding parameters Nknn and ϵ - there is no obvious parallel or intuitive guide.

A more thoughtful approach would be to leverage techniques from stochastic search and

optimization to iteratively update parameters, directly optimizing the cross-validated ex-

planatory performance. Because the manifold embeddings do not have a closed functional

form from which to compute a gradient, the workhorse method from the neural network

literature – stochastic gradient descent – cannot be applied. The simultaneous perturbation

stochastic approximation (SPSA) algorithm of Spall (1992) provides an efficient approach to

estimate the gradient numerically using only two evaluations per iteration. It is likely that

a directed search using this technique, rather than our coarse “grid search”, could identify

a more promising range of parameters, even given the same limited budget of evaluations

(given the significant amount of time and computing power required to re-fit the model).

This would help mitigate the degree to which poor choices of parameters, rather than model

structure, prevents our approach from succeeding.
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5.1.2 Simulation studies

As we saw, the model investigated in this research failed to outperform more constrained

benchmarks. It is important to understand whether this is because, given the parameters

and structure of the model, it failed to converge, or whether there is simply no nontrivial

structure for the more complex manifold embedding algorithms to identify and utilize.

An avenue to address this issue would be to perform simulation or Monte Carlo studies.

The manifold embedding algorithms could be fit using inputs from a known data-generating

process, which has an embedded manifold structure and similar stylized properties as finan-

cial data (such as positive long-term drift, a sharply decaying covariance eigenvalue spectrum,

and volatility clustering). In such a study, the true structure would be known and could be

compared against the model fit. This would give insight into the speed of convergence and

finite-sample properties of the model. If the model performs extremely well on the simulated

data, it would suggest that the core assumption of an embedded manifold structure in the

cross-section is incorrect. If the model fails to converge even on idealized, simulated data,

further analysis may suggest areas for improvement.

5.1.3 Parameteric embeddings and manifold regularization

A limitation of our approach is that the embeddings produced by UMAP and Diffusion Map

are nonparameteric: we do not have a functional form that allows us to map new observa-

tions onto the set of latent dimensions. This is a well-known challenge and non-parametric

techniques have been developed in the literature. The Nyström extension method, follow-

ing the technique of Bengio et al. (2003), allows spectral methods such as diffusion map

to extend their learned embeddings to new observations. Similarly, the UMAP embedding

can be extended to new observations in a fairly straightforward manner using a similar

objective function to the original embedding. The primary stumbling block here is in the

implementation, as our use of a non-standard distance metric departs from the support of
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the high-quality libraries pydiffmap and umap.

A complementary area of research provides some synthesis between manifold embedding

algorithms and deep learning by learning a functional form for the embedding using a neural

network. Sainburg et al. (2021) develop such an algorithm for UMAP and find that the

in-sample performance is competitive with the non-parameteric embeddings, while allowing

new data to be mapped much more quickly. Duque et al. (2020) consider manifold learning

in general and show that this technique corresponds to a kind of geometric regularization,

which drives the neural network to prioritize identifying global structure in the crucial bot-

tleneck layer. This kind of regularization could be adapted to the technique of Gu et al.

(2021), which directly uses an autoencoder for asset pricing.

A functional form that can be used to compute out-of-sample embeddings would improve

the computation time of the algorithm. In addition, having a way to embed new data points

would also allow us to perform the temporal train/validate/test split which is more common

in the recent empirical finance literature, and to “walk forward” the model from one point

in time to the next, which would of course be crucial for applications in industry.

5.1.4 Factor-instrumented embeddings

A shortcoming of our approach is that it is qualitatively very “data hungry”: we first con-

sume return information to construct PC factors or characteristic portfolio returns, then use

the information in the time series dynamics to construct manifold embeddings. Because the

resulting embeddings have no functional form and do not represent investible portfolios, we

must then estimate the risk exposures of each market to each latent factor using a rolling

regression before computing asset pricing performance. Each of these steps consumes a large

amount of data and introduces sampling error, and so it is possible that our methodology

would perform well with arbitrarily large datasets but is simply not efficient enough to con-
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struct reasonable estimates given the limited amount of data available.

The step of estimating risk factor exposures is particularly irksome, as the long lookback

required to produce stable beta estimates may prevent the dynamics of the latent factors

from factoring into the pricing model. With an additional twist, the parameterized embed-

dings discussed in section 5.1.3 could be used to circumvent this step. Rather than using

a neural network to parameterize the embedding in terms of the input data, we could use

a more general neural network which parameterizes the embedding directly in terms of the

linear factors. If a reasonable approximation can be obtained, this would give us a functional

form that allows us to express the market-level latent risk factor exposures (betas) as a non-

linear function of the factor (principal component loading or characteristic value) weights.

This would sidestep the beta-estimation step in our methodology, allowing the market risk

exposures to be estimated in a more efficient and consistent way, as well as allowing them

to immediately respond to changes in their principal component loadings or characteristics

without the auto-correlation imposed by a rolling regression calculation. This suggestion

borrows from the augmented autoencoder architecture developed by Gu et al. (2021), who

see large gains in predictive power from incorporating characteristic information and for

allowing nonlinearity in the mapping from observable market information to latent risks.

5.1.5 Analysis of other asset classes

If the model could be improved to show promise on equities data, it would be equally in-

teresting if not moreso to examine its performance modeling the cross-sectional variation of

other asset classes. The data-driven nature of this model reduces the risk of misspecification

compared to models which rely on factors hand-picked by a researcher, and (following some

of the paths suggested in the previous section) can even benefit from the vast literature

on proposed factors by using them as instruments. Statistical models have even more to

contribute in other asset classes where the factor structure is less well understood, and there
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are fewer proposed factors.

Two asset classes of particular interest would be the corporate bond market and curren-

cies. Corporate bonds share many similarities to cash equities and have a younger but

rapidly growing literature on cross-sectional return variation, see e.g. Kelly et al. (2020).

Our technique could contribute to this and perhaps even merge the information from cash eq-

uities and corporate bonds, using the flexibility of manifold embedding to bridge the strongly

coupled but nonlinear relationship between the two. Currencies (including foreign exchange,

cryptocurrencies, and precious metals), which lack an intuitive or fundamentally-motivated

factor structure, constitute an interesting area of study precisely because of their differences

with equities. Strong performance from empirical models in this realm could shed light on

a less-studied (and perhaps, more difficult) problem, and become a tool for developing and

testing macrofinancial theories.

5.2 Conclusion

This thesis develops an asset pricing model using modern manifold learning techniques. Our

approach takes a step closer to directly representing the latent linear structure articulated

in Ross (1976), but comes with significant estimation and numerical challenges. While the

model developed herein fails to outperform more constrained linear models, we hope that

this is an “interesting failure.” Further investigation could determine if the shortcomings

of this approach can be overcome, or perhaps if there simply is not compelling evidence of

latent manifold structure in the return cross-section. Either outcome would advance our

knowledge of this difficult and complex problem, and so constitutes a promising avenue for

future research.
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A Software

A.1 Python packages

The analysis was produced using Python 3.9 using the CPython interpreter. The standard

scientific packages numpy, scipy, and scikit-learn were used. pandas was used for data

analysis and matplotlib and seaborn for plotting. The libraries pydiffmap and umap-learn

were used for implementations of diffusion maps and UMAP, respectively.

A.2 Diffusion maps implementation

The pyDiffMap library provides an excellent implementation of the diffusion maps algorithm.

Unfortunately, it does not support passing a pre-computed distance matrix for the kernel

calculation. Because this matrix is T × T , where T is the number of days in the sample,

computing this matrix is extremely slow and makes running the algorithm many times (e.g.

for parameter tuning) infeasible.

As a workaround, the library was forked and the code modified to support passing a pre-

computed distance matrix. This drops the runtime substantially and was tested to produce

the same result to within machine precision. The forked repository is available publicly at:

https://github.com/michael-baeder/pyDiffMapPrecomputeDistance.

This implementation can be used by taking the following steps:

1. Create a local copy of the linked repository, either by downloading the files directly

from GitHub or cloning them to a local repository.

2. Open a command window which has access to pip.

3. From the command window, run pip install -e path\to\saved\files. This will

install the local version of the package.
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4. To verify that the files have been successfully installed, open a Python session and

run import pydiffmap followed by diffmap.__file__. This should return the same

location where the files were saved.

B Additional studies

In this appendix, we briefly expand on the results presented in Section 4 to consider pricing

models based on different numbers of linear factors. We saw in that section that the very

large number (N l = 50) used in the primary study leads to numerical precision problems in

the linear factor covariance matrix, a crucial input to the manifold embedding step. There

is a tradeoff inherent in this process – using large N l affords the manifold embedding a great

deal of flexibility, but also makes the method more sensitive to numerical precision issues.

Our results suggest that the conditioning problem is indeed resolved by using a smaller

number of linear factors, with a marked improvement with N l = 25, a number still rel-

atively large compared to the latent dimensions (Nn = 5) recovered. Unfortunately, the

improvement in conditioning does not have a large impact on explanatory power and does

not produce positive predictive performance. While we do see improvement in R2
Pred across

all models when using fewer linear factors, the values are still consistently negative, and

hence continue to underperform the restricted linear benchmark.

B.1 Study parameters

Our parameters follow exactly as in 5.1.3 with one difference: we vary the number of linear

factors Nl created in the pre-embedding step. This process is straightforward, as it merely

means selecting fewer principal components or characteristics. We repeat our analysis for

Nl = 5, 10 and 25.
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B.2 Results

B.2.1 Ill-conditioning

Figure 17 compares the condition numbers of the linear factor covariance matrices by Nl,

for both the return and characteristics-based models. We can see from these figures that the

ill-conditioning problem is substantially reduced when we use fewer factors. In both models,

the expected precision improvement (roughly log10 κ) is around 2 digits for going from 50

to 25 linear factors, with a more marginal improvement for reducing the factor set further.

This improvement suggests we may still be able to use a fairly flexible set of inputs while

avoiding the numerical issues with the N l = 50 case presented in our main study.

B.2.2 Asset pricing performance

We now turn our attention to the asset pricing performance. As in Section 4, we report

the performance of the best-performing choice of parameters for UMAP and Diffusion Maps,

which is an upper bound on their expected performance. We omit the full linear model

for brevity, as its role was primarily to provide an upper bound on model flexibility which

was achieved in the main study. Figure 13 compares the R2
Total for each model as we vary

the N l parameter. In all cases except for the characteristic-based UMAP model, we see a

general upward trend in performance as the number of linear factors is increased. This is

intuitive, as the additional factors afford the models greater flexibility in uncovering latent

common factors. Note that we see basically no change in performance for the restricted

linear model of returns, which is intuitive: since that model simply subsets to the Nn = 5

principal components with the largest variance, its representation of the latent factors is not

affected by changing the dimension of the input set.

Table 4 presents the predictive performance. Unfortunately, despite the fact that using

smaller values of N l addresses the conditioning problem, this does not result in positive
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Figure 17: A comparison of the condition number for the linear factor covariance matrix for
fold zero in the additional studies. We use a log-scale to make the results easier to compare.
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Figure 18: A comparison of R2
Total values for the additional studies. For the manifold

embedding models, we show the best performer among the set of parameters considered.
Note that the y-axis range is fairly small. See section B.1 for additional details on the
parameters.
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R2
Pred comparison

5 Factors 10 Factors 25 Factors 50 Factors

Best of UMAP, return-based -1.11E+01 -9.89E+00 -3.77E+00 -1.24E-01
Best of UMAP, char-based -4.10E+00 -1.75E+00 -1.73E+00 -4.43E-02
Best of Diffusion Map, return-based -8.32E+00 -2.82E+01 -2.23E+00 -2.48E+05
Best of Diffusion Map, char-based -2.30E+00 -7.70E-01 -2.20E+00 -2.20E+07
Restricted Linear, return-based 1.12E-02 1.25E-02 1.18E-02 1.18E-02
Restricted Linear, char-based 1.05E-02 1.08E-02 1.09E-02 8.86E-03

Table 4: A comparison of R2
Pred values for the additional studies. Rows indicate the model

(algorithm used to construct pricing factors, and the way that linear factors are
constructed), while the columns indicate the number of factors used in the linear
pre-processing step. For the manifold embedding models, we show the best performer
among the set of parameters considered. See section B.1 for additional details on the
parameters.

predictive performance. Focusing particularly on N l = 25 versus 50, we see R2
Pred is dramat-

ically improved for Diffusion Map, reflecting the influence of numerical precision issues on

our initial study. In the case of UMAP, the picture is less clear, as using a smaller number

of factors appears to hurt the predictive performance. Across the board, we again see that

the manifold embedding models fail to achieve a positive R2
Pred and lag behind the restricted

linear benchmark.
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