

Proceedings of the Cold-Formed Steel Research Consortium Colloquium 17-19 October 2022 (cfsrc.org)

Structural Design Narrative of the CFS-NHERI 10-story Test Building for Multi-dimensional Shake Table Testing

A. Singh¹, T.C. Hutchinson², S. Torabian³, B.W. Schafer⁴, K.D. Peterman⁵, L. Padgett⁶, H. Jones⁷

Abstract

Cold-formed steel (CFS) framing is a popular choice for construction of low to mid-rise structures because it provides significant cost benefits through use of prefabricated assemblies and produces lightweight structures with high durability and ductility. It is manufactured from recycled materials, exhibits consistent material behavior offering a high strength-to-weight ratio and is resistant to corrosion. Benefits of CFS framing align well with the system resiliency needs in moderate to high seismic zones from a performance perspective. However, the use of CFS framing for construction of mid to high-rise structures in the North American construction industry is severely restricted due to a lack of available full-scale system level test data documenting both earthquake and post-earthquake fire response of CFS-framed buildings. To address this issue, a 10-story CFS-framed building, herein referred to as the *CFS-NHERI* test building, is planned to be tested under increasing earthquake motion intensity, and subsequently subjected to live fire testing, at the NHERI 6-DOF Large High-Performance Outdoor Shake Table (LHPOST6) facility at University of California, San Diego. This paper documents the structural design and detailing decisions adopted for the gravity and lateral force resisting systems of the CFS-NHERI test building, which will have a floor plan of 11.0 m×6.9 m (36 ft×22.5 ft) and consistent 3.05 m (10 ft) story height. This building will also be the first to integrate architectural finishes and will have a 30.5 m (100 ft) building height which exceeds the height limitations set by the ASCE 7 design standards.

1. Introduction

The use of cold-formed steel (CFS) in North American building construction industry has seen a significant growth in the past 25 years. Even though the predominant application of CFS framing thus far has been for the construction of interior partition walls and exterior curtain walls, the use of CFS framing for both gravity and lateral force resisting systems (LFRS) in buildings is becoming prominent. The need for low-cost, multi-hazard resilient, mid-rise buildings has pushed for the development of fully CFS-framed building solutions. CFS framing offers significant cost benefits through low installation costs, particularly when prefabricated assemblies are used, and low maintenance costs, due to its resistance to corrosion [1]. CFS framing is a lightweight framing option which offers high durability and ductility, uses a high strength-to-weight ratio material that resists fire spread in case of accidents due to its non-combustible nature. CFS-framed buildings have significant potential for improved seismic resiliency and post-earthquake fire performance needed in moderate to high seismic zones.

Research conducted on the various components such as shear walls, floor diaphragms, and nonstructural partition walls, additionally complemented by investigation of screw connection and member buckling behavior, which are utilized in CFS framing has led to the development of codes and standards such as AISI S100 [2], S240 [3], S400 [4] to component-level design. Although these support experimental studies have significantly contributed to advance understanding of the behavior of CFS framing components, investigations of the system-level performance of CFS-framed buildings have only begun more recently. Due to the paucity of available full-scale system-level benchmark test data, documenting both seismic and post-

¹ Ph.D. Candidate, Department of Structural Engineering, University of California, San Diego, La Jolla, CA, ams082@eng.ucsd.edu

² Professor, Department of Structural Engineering, University of California, San Diego, La Jolla, CA, tara@ucsd.edu

³ Adjunct Associate Research Scientist, Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, torabian@jhu.edu ⁴ Professor, Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, schafer@jhu.edu

⁵ Assistant Professor, Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA, kdpeterman@umass.edu

⁶ Project Manager, ClarkDietrich Engineering Services, Warren, OH, lynn.padgett@clarkdietrich.com

⁷ Principal, DCI Engineers, Denver, CO, hjones@dci-engineers.com

earthquake fire response of CFS-framed buildings, is a barrier to bringing the potential benefits of this system to the community. Only two shake table test programs have investigated the full building seismic performance: and demonstrated that the necessary seismic structural performance can be achieved. Peterman et al. [5] documented the seismic response of a two-story CFS-framed building within the CFS-NEES project. Hutchinson et al. [6] discussed the earthquake and post-fire earthquake response of a six-story CFS-framed building within the CFS-NEES project. These tests highlighted the crucial importance of the overstrength provided by the nonseismic wall and/or finish elements to the unique behavior of repetitively framed systems.

1.1 CFS-NHERI scope

In an effort to complement prior CFS research contributions, and in particular system-level investigations of their seismic behavior, the CFS-NHERI project: Seismic Resiliency of Repetitively Framed Mid-Rise Cold-Formed Steel Buildings, funded through the National Science Foundation (NSF), is being undertaken as a multi-university-industry collaborative effort. CFS-NHERI intends to advance the knowledge of the seismic performance of mid-rise CFS-framed building systems and to use this knowledge to support improvements in the seismic design codes for such systems: ASCE 7-16 [7], ASCE 41-17 [8], AISI S400 etc. Namely, this effort identifies two important facets that are not well understood: 1) the full impact of architectural finishes, both exterior and interior on CFS wall systems, and 2) the impact of gravity framing and all other framing that is along the same wall line as the LFRS. In addition, details required for these CFSframed systems to move from a few stories to full mid-rise (>6 stories) are not universally agreed upon and in some cases traditional details, e.g., use of large built-up packs of CFS studs for shear wall chord studs, are known to be inefficient. To further our understanding of these issues, a 10-story CFS-framed building will be constructed and tested at the newly upgraded NHERI 6-DOF Large High-Performance Outdoor Shake Table Facility (LHPOST6) (nheri.ucsd.edu). This experimental program will also provide a unique opportunity to evaluate the postearthquake fire performance of the earthquake damaged building. Notably unique to this tall building will be the integration of architectural finishes and a building height exceeding the height limitation set by current design standards. The experiments will provide vital full-scale system-level benchmark test data for a state-of-the-art CFS building under multidirectional seismic inputs leading to seismic design code improvements. It will also advance knowledge of the post-earthquake fire and post-fire earthquake (aftershock) performance of mid-rise CFS construction.

The present effort was a collaboration with practicing engineering, with ClarkDietrich Engineering Services leading the overall development of design calculations and construction drawings, and DCI Engineers contributing the tie-rod detailing design. The structural design criteria was defined based on engagements between the research team and industry partners. This paper documents the decisions taken during the design of the CFS-NHERI test building. It also discusses the design of the gravity and lateral force resisting systems and lays out a roadmap of near-term activities planned as part of preparations for the CFS-NHERI capstone experiments.

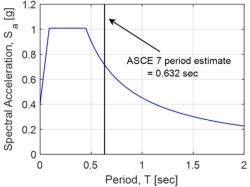
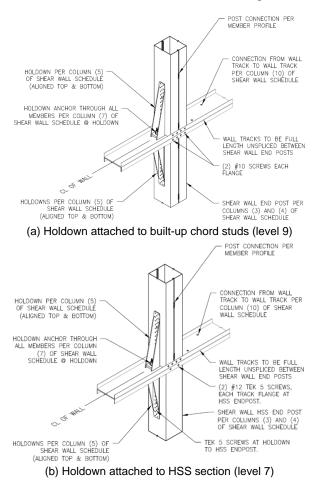
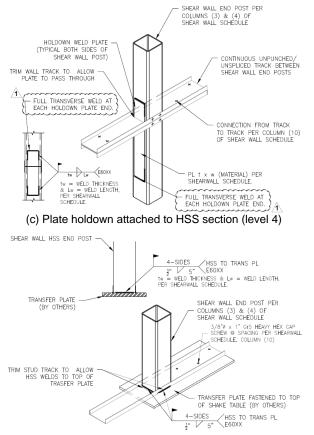
2. Design Decisions

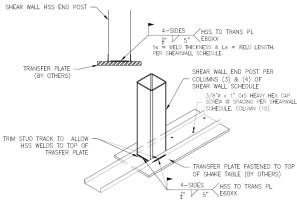
2.1 Design criteria and beyond-code provisions

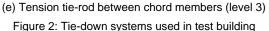
The 10-story test building was designed as a CFS-framed building at a hypothetical location in a high seismic region near Irvine, California (coordinates: 33.69°N, -117.83°W) and a corresponding NEHRP Site Class: C (very dense soil and soft rock) condition. Gravity and lateral loads were determined as per the 2018 edition of the International Building Code (IBC) [9] based on this location. As a result, the following design parameters were assumed in accordance with ASCE 7-16: risk category: II, spectral acceleration at short periods, $S_s = 1.261g$, spectral acceleration at a period of 1s, $S_1 = 0.452g$, and design spectral accelerations, $S_{DS} = 1.009g$ and $S_{D1} = 0.452g$. Figure 1 shows the pseudo-acceleration elastic response spectrum for the selected site. The LFRS of the test building consisted of Type I shear walls with single-sided steel sheet sheathing and ledger framing for floor-to-wall connections. The seismic design parameters R (response modification coefficient), Ω_{\circ} (over-strength factor) and C_d (deflection amplification factor) for light-frame (cold-formed steel) walls sheathed with steel sheets were taken as 6.5, 3.0 and 4.0, respectively as per ASCE 7-16. Lateral requirements of seismic design, based on the chosen hypothetical location, were allowed to govern the design of LFRS. Wind design of the LFRS was based on the measured wind speeds which did not exceed 30 kmph (19 mph) at the shake table test site of LHPOST6 in San Diego, California, and did not govern the LFRS design. The overall building design complied with current code provisions within ASCE 7-16 Minimum Design Loads for Buildings and Other Structures, AISI S100-15 North American Specification for the Design of Cold-formed Steel Structural Members, AISI S240-15 North American Standard for Cold-Formed Steel Structural Framing, and AISI S400-15 North American standard for seismic design of cold-formed steel structural systems.

The test structure was designed to have a building height of 30.5 m (100 ft), which exceeds the height limitation of 19.8 m (65 ft) set by the current ASCE 7-16 design standard. This building height was selected to push the limits of current

engineering practice and eliminate barriers for mid-rise CFS buildings. Increasing the height of the building increases the shear and overturning moment demands on the shear walls. Torabian et al. [10] assessed the application of current design specifications to low-rise to high-rise buildings located in a high-seismic zone with CFS-framed gravity and lateral force resisting systems, and showed its limitations, such as the need for large built-up chord stud packs, even for 6-story buildings. Similarly, the shear wall seismic shear demands for a 10-story building require tight fastener spacing for shear walls at mid-height levels and are often beyond the tabulated steel sheet shear wall capacities provided in AISI S400 for lower levels [11]. Such issues can lead to an inefficient and/or impractical design. In the current test building design, these issues are addressed by extending the shear wall capacities beyond AISI S400 using recently available experimental data, where larger capacity shear walls with steel sheet sheathing have been documented [12]-[14]. Additionally, to overcome the chord stud capacity limitation for taller CFS buildings, the lower stories of the test building use HSS sections as chord members to meet the overturning moment demand, as shown in Figure 2b. The screw connection behavior to support the use of steel sheet sheathing with HSS sections was investigated through connection tests conducted by Zhang et al. [15] within the CFS-NHERI project.


Figure 1: Psuedo-acceleration response spectrum for selected site


Holdowns have been traditionally used in light-frame construction as the overturning and uplift restraint system. Holdowns transfer chord member forces through anchors to the floor or building foundation. However, design of shear walls can often be limited due to holdown capacity available where large lateral capacity is required. In such cases, a plate holdown can be used to transfer chord stud forces through the building floor by welding the plate to the chord members of two adjacent stories. Another increasingly popular overturning and uplift restraint system for multi-story construction is the continuous tension tie-rod system. A tension tie-down system consists of a combination of rods, coupler nuts, bearing plates and shrinkage compensation devices which work together to create a continuous load path to the foundation. At the system level, Wang and Hutchinson [16] have highlighted the benefits of such continuous rod tie-down systems in multi-story buildings in effectively resisting building collapse as they facilitate redistribution of loads and framing action. Additionally, the tie-down available capacity issue is usually not encountered while designing with tension tie-rods. Recent testing by Singh et al. [17] aimed at characterizing the lateral behavior of wall-line assemblies demonstrated that wall-lines using holdowns achieved higher lateral strength. However, this was accompanied by undesirable failure in the holdowns at larger drift demands, while tension tie-rods remained essentially linear elastic. Due to the importance of determining the viability of both holdowns and tension tie-rods in mid-rise construction, the test building was designed to incorporate both tie-down systems. The LFRS in the longitudinal direction is detailed with shear walls with holdowns or plate holdowns, while the LFRS in transverse direction is detailed with shear walls with a floor-to-floor continuous tension tie-rod system. Figure 2 shows the different tie-down detailing systems used in the two directions at different stories of the test building.

(d) HSS section welded to transfer plate on shake table (level 1)

2.2 Archetype building

A CFS-framed archetype building was designed having a $35.4 \text{ m} \times 14.6 \text{ m}$ (116 ft $\times 48 \text{ ft}$) typical floor plan based on the plan provided in Example-1 of the IBC SEAOC Structural/Seismic Design Manual Vol. 2: Four story wood light-frame structure [18]. Given the size limitations of the shake table, a slice of the archetype building that may be accommodated within the shake table platen area of

12.2 m \times 7.6 m (40 ft \times 25 ft) was selected and redesigned as the test building, see Figure 3.

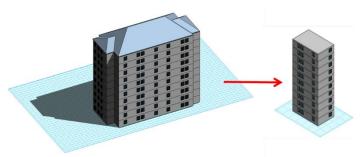


Figure 3: Conceptual sketch of CFS-NHERI 10-story CFS-framed archetype (left) and test building (right)

Selecting the optimal slice of the archetype building got consideration as a test building was a point of active discussion amongst the research-industry team. Figure 4 shows the different slice options of the archetype building. each with its advantages and disadvantages. Option 1 (shown in red) was a symmetric slice which included interior, exterior and corridor shear walls. But it required significant changes to the floor plan to fit the shake table footprint. Option 3 (shown in yellow) similarly offered a mix of interior, exterior and corridor shear walls without changing the floor plan. However, it was an asymmetric slice of the archetype with significantly different centers of mass and rigidity. Such an issue was not seen in the complete archetype floor plan or usual building plans. Intentional introduction of torsion into the building slice was considered undesirable. Option 2 (shown in green) was chosen as the floor plan for the test building slice. It offered the benefits of options 1 and 3, without the asymmetry or required floor plan changes. Moreover, the availability of a shear wall in the center of plan allowed for floor-based wall behavior comparisons, or introduction of a standalone prefabricated or another specialty designed CFS wall bracing system such as a hardy CFS moment frame system [19], preferably at the upper levels.

Figure 5 shows the floor plan of the test building. The test building was redesigned with slight modifications to the chosen floor plan. To bring the center of rigidity further closer to center of mass, lines 1 and 2 were revised to have equal shear wall lengths. Shear walls on every floor were targeted to have similar lengths and seismic demands as calculated during the design of the archetype building. In addition, to incorporate both tie-down detailing systems, shear walls in the east-west direction were designed with holdowns or plate holdowns, while shear walls in north-south direction (lines C, D and E) were designed with tension tie-rods. Lengths of shear wall along lines C, D and E were further suitably modified to allow for locations of the tension tie-rods to fall directly on the 0.6 m \times 0.6 m (2 ft \times 2 ft) shake table

tie-down pattern. The location of doors in the corridor (line 2) were moved towards the center of the wall-line where a 31.7 m (104 ft) tall self-supporting stair tower, which is unattached from the shake table and test building, is planned to provide direct access to each floor of the building. Floor-to-floor access via the stair tower will be facilitated using platforms which can be removed during testing. Additional doors were introduced in lines C and E to allow access to all parts of the floor. To account for the eliminated corridor floor, supplemental mass was added on wall line 2.

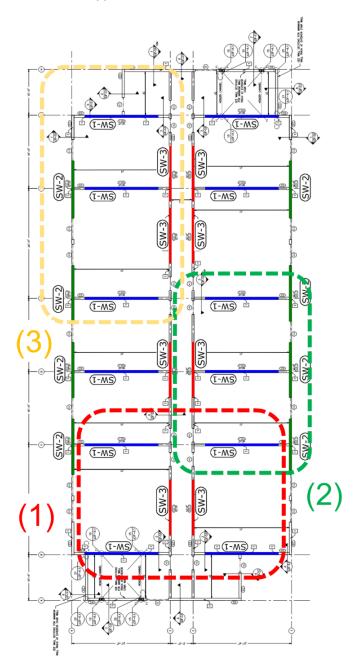


Figure 4: Archetype building slice options (color regions overlaid with original archetype building plan set)

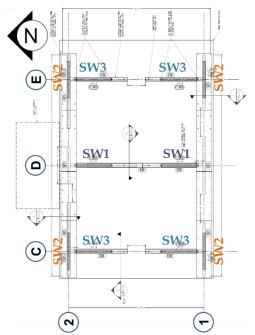


Figure 5: Floor plan of the 10-story CFS building test specimen

It can be seen from Figure 5 that the building uses symmetric wall lines with Type I steel sheet sheathed shear walls on each end. Additionally, wall lines C, D, E and 2 will have fire-rated gypsum board finish, typical of interior walls. Similarly, wall line 1 will have exterior insulation finishing system (EIFS). These wall-lines are similar to the wall-lines specimens tested in a recently concluded experimental program within the CFS-NHERI project. In this program, Singh et al [20]-[23] tested 4.88 m long (16 ft) and 2.74 m (9 ft) tall wall-line assemblies both using the unidirectional shake table at the time and quasi-static (top loaded) reversed cyclic loading. These various configurations included specimens in an unfinished or finished, symmetrical or unsymmetrical, Type I or Type II shear wall detailing configuration, tension tie-rods or holdowns as anchorage detailing, and with or without a window opening. Finish application on an exterior wall-line increased the wall lateral strength by 14.66 kN/m (1,005 lb/ft) [24]. The behavior of wall-lines used within the test building at a component level is derived from these results. Similarly, the test building will also adopt a light gauge steel frame (LSF) floor system, built using CFS channel section joists with fire-resistant cement board subfloor panels. Within the CFS-NHERI project, Castaneda [25] recently tested floor diaphragm assemblies using CFS joists and various panels to characterize the lateral performance of such floor systems at component level. The system level tests will build on the learnings from the connection-level and component levels tests performed within the CFS-NHERI project. Finally, it is notable that the test building will adopt use of prefabricated CFS wall-lines and floor diaphragms for rapid construction at the test site.

3. Design Summary

Appendix 1 contains the design calculation package, while Appendix 2 contains the design drawings. Member designations are used as per SSMA/SFIA standards.

3.1 Gravity system

The building will use the ledger framing system which attaches floor and roof joists to the inside flanges of the loadbearing studs via a combination of track and clip angles. Studs are broken at the top of each floor level and capped with a track. Walls above are stacked on the lower wall top track. These details are shown in detail 4 and 6 of LSF-6.0 in Appendix 2. Floor/roof joists ran in the transverse direction (north-south direction), see Figure 5.

3.1.1 Floor and roof joists

Floor joists were designed as simple span members with distributed loads. Roof joists were designed as simple span members with uniform loading. End rigidity of the attachment to the stud walls was not considered in the joist design. Design loads for floors included 1.0 kPa (21 psf) dead load, and 2.39 kPa (50 psf) live load which included 0.48 kPa (10 psf) partition load to account for partitions that may be moved at various times during the structure's life span. Floor joist deflection was limited to L/480 for live load and L/240 for total loads. Design loads for roof included 1.15 kPa (24 psf) dead load, 0.96 kPa (20 psf) live load and wind uplift per IBC requirements. Roof joist deflection was limited to L/360 for live load and L/240 for total loads. Note that the $k\phi$ for distortional buckling was taken as zero. Based on these loads and a maximum clear span of 6.55 m (21.5 ft), 1200S250-68 for floor joists and 1200S250-54 for roof joists at 0.41 m (16 in) on center were selected. The compression flange of the joists was considered continuously braced via attachment of cement board panel. Blocking and/or bridging were specified in order to minimize joist rotation. Figure 6 shows the joist bridging and blocking details. Because the web height-to-thickness for the selected roof joists exceeded 200, web stiffeners were required at member ends. Stiffening was accomplished with clip angles screwed to the joist and to the rim (ledger) track. This method transfers the reaction from the joist web to the support in direct shear rather than bearing, thus precluding web crippling failure in the joists. Similarly, due to the higher end reactions and relatively short bearing length, web stiffeners were required at floor joist ends. Stiffening was accomplished in the same way as at the roof, but with additional fasteners required due to higher loads. Drawings related to floor and roof joists can be found in LSF-3.0, LSF-6.0 and LSF-6.1 in Appendix 2.

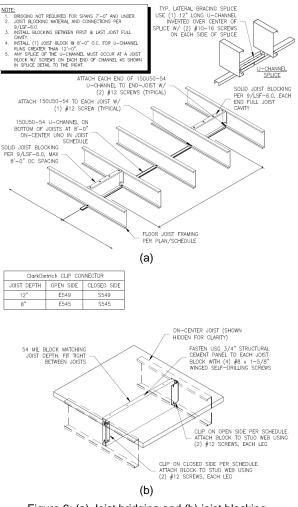


Figure 6: (a) Joist bridging and (b) joist blocking

3.1.2 Load-bearing walls

Load-bearing walls are present on all wall lines around the door and window openings and in between shear walls These walls are sheathed with 16 mm (5/8 in) gypsum panels on both sides of the framing using #6 screws at 10.2 cm (4 in) perimeter spacing and 15.2 cm (6 in) field spacing. This fastener spacing changed to 20.3 cm (8 in) perimeter and field spacing when gypsum panels are installed away from wall corner zones. Studs are placed at 0.61 m (24 in) on center spacing within the gravity walls. Appendix 2 provides the stud sizes used in the gravity walls at different levels in the test building. Wall track was selected to have the depth and thickness to match the on-center stud. It should be noted that the 0.61 m stud spacing is different from the 0.41 m joist spacing. Due to this, some joists did not have an in-line connection to the stud. For such an off-module connection to stud additional screws were used to connect the rim track to the studs adjacent to the joist location. Details used at typical floor and roof locations are provided in Appendix 2. Wall-lines C and E had a 2.18 m

(7 ft 2 in) tall and 1.02 m (3 ft 4 in) wide door opening in the middle of the shear walls. Wall-line 2 has two same sized door openings in between the load-bearing walls. Wall-line 1 has two 1.22 m (4 ft) tall and 1.42 m (4 ft 8 in) wide window openings. Appendix 2 provides the details of the jamb stud, cripple stud, head and sill track framing members used in the window and door openings, with drawings provided in LSF-2.1, LSF-2.2 and LSF-4.0

3.2 LFRS

Seismic demand is defined, per ASCE 7, using the site characteristics of the hypothetical project location of Irvine, California. Based on the structural system and building height, building fundamental period is estimated, per ASCE 7, as 0.632 s. A base shear coefficient C_s is calculated as 0.110. The effective seismic weight, W used in ASCE 7-16 Eq'n 12.8-1 was estimated as 1460.1 kN (328.24 kip), based on estimated weights of roof, floor and exterior walls. Seismic base shear force was calculated as 160.5 kN (36.09 kip). The vertical distribution of the calculated shear demand, based on ASCE 7-16 section 12.8.3, is shown in Appendix 2. To account for the weight of certain architectural features excluded from the construction (e.g., flooring, insulation etc.), additional cement panels are proposed for installation on the floor diaphragm at each floor from the second floor through the roof. For example, a stack of two 19 mm (3/4 in) cement panels provides an estimated weight of 0.58 kPa (12.0 psf) which may be added as supplement weight on all the floors excluding roof. For the roof, a stack of three cement panels with an estimated weight of 0.76 kPa (15.9 psf) is planned for use as supplement weight. To account for the eliminated corridor floor, supplemental mass in the form of 32 mm (1.25 in) thick steel plate nestled inside the rim track on wall line 2 is detailed to supplement the 0.73 kN/m(50 plf) corridor tributary weight.

3.2.1 Shear walls

As shown in Figure 5, two 1.83 m (6 ft) long shear walls were placed in the longitudinal direction (east-west direction) along both lines 1 and 2 (SW2). Similarly, two 1.83 m (6 ft) long shear walls were placed in the transverse direction along lines C, D and E (SW1 and SW3). The story shear demands were distributed to the different shear walls based on their tributary areas and stiffness. Based on this shear distribution, wall details were selected using AISI S400 and recent experimental data on larger capacity shear walls. It should be noted that in this analysis, the wall stiffness did not include additional stiffness that will be provided by interior (gypsum panels) and/or exterior finishes (EIFS). Analysis of shear walls in both directions can be found in Appendix 1. Shear walls SW1 and SW2 used 0.686 mm (27 mil) thick steel sheet for levels 8-10, and 0.838 mm (33 mil) thick steel sheet for levels 1-7. Shear wall SW3 used 0.686 mm thick steel sheet for levels 6-10, and 0.838 mm thick steel sheet for levels 1-5. Shear walls in both directions with the thicker sheet detailing used #10 screws and were also fully blocked. Shear walls in both directions with the thinner sheet detailing used #8 screws. Edge fastener spacing and minimum framing member thickness varied at different levels of the building. Appendix 2 shows the detailing variation for all Type I shear walls at different levels of the building. Shear wall drawings can be found in LSF-2.0, LSF-2.1, LSF-2.2, and LSF-5.0 in Appendix 2.

3.2.2 Shear wall chord studs/compression post

Shear wall chord studs were designed for load combinations per ASCE 7-16, section 2.4.1 including dead, live and both lateral and vertical seismic loads. Eccentric moment due to both gravity (ledger on inside face of stud) and seismic (shear panels on outside face of stud) loads were included. Chords were sized based on ASD load combinations in addition to the strength requirements of AISI S400, E2.4.1.2. Chord stud strength was checked at the minimum of the amplified seismic load, or the maximum seismic load the system can deliver as allowed in AISI S400. Chord stud analysis can be found in Appendix 1. Chord studs for shear walls SW2 in the longitudinal direction on levels 7-10 were detailed as built-up stud-packs, while levels 1-6 used HSS A500 steel tube as end post. HSS posts had a square 15.2 cm×15.2 cm (6 in×6 in) cross-section with thickness varying from 4.76 mm (3/16 in) at level 6 to 9.53 mm (3/8 in) at level 1. In the transverse direction, shear walls contain a pair of tie-down subassemblies consisting of tension tie-rods connected by couplers sandwiched between compression posts made of built-up stud packs. The compression posts vary from a single stud at level 10 to a 3-ply stud built-up section at level 1 for shear walls SW3. Due to higher seismic shear demand on shear walls SW1, the compression posts vary from a single stud at level 10 to a 4-ply stud built-up section at level 1. Drawings, and detailing variation at different levels, for the chord studs/compression post in the longitudinal direction can be found in Appendix 2, sheet LSF-5.0.

3.2.3 Holdowns and tension tie-rods

As mentioned earlier, the shear walls in the longitudinal direction of the building are detailed with holdowns or plate holdowns, while the shear walls in the transverse direction are detailed with a continuous tension tie-rod system. Shear walls SW2 use holdowns on levels 7-10 which will be attached to the chord stud pack or HSS post using screws. Due to higher demands than available holdown capacities, plate holdowns are used in shear wall SW2 on levels 1-6 instead and will be attached to the HSS post by welding. Two different types of steel rods will be used for the tie-down system: (1) all-thread rods, and (2) Z-rods which have threads at both ends to facilitate connection using a coupler. These steel rods will be fabricated using either ASTM A36

or ASTM A193 Grade B7 (zinc-coated) steel material. The tie-rod diameter will vary from 16 mm (5/8 in) at level 10 to 51 mm (2 in) at level 1 for both SW1 and SW3 shear walls. Drawings and detailing variation at different levels can be found in Appendix 2, sheet LSF-5.0.

3.2.4 Diaphragms

Analysis of the gravity loads suggests optimal support at the floor levels can be accomplished with 1200S250-68 members used as typical floor joists and 1200S250-54 members used as roof joists. The floor joists are connected to a 1200TD125/250-68 rim track using S547 angle clip with #12 screws vertically spaced over the flange. Similarly, the roof joists were connected to a 1200TD125/250-54 rim track using S547 angle clip with #12 screws. A 19 mm (3/4 in) cement panel with fasteners at 15.2 cm (6 in) on center at supported edges and 30.5 cm (12 in) on center in the field was selected for all floors and the roof. Figure 7 shows the connection of the typical floor diaphragm with cement panel to the wall framing. Drawings for the floor and roof diaphragm can be found in LSF-6.0 in Appendix 2.

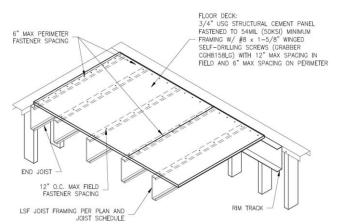


Figure 7: Typical floor diaphragm connection to wall framing

4. Roadmap of Near-term Activities

The CFS-NHERI capstone 10-story building shake table experiments will provide a unique opportunity to characterize the seismic behavior of the state-of-the-art CFS-designed building and in particular understand the impact of architectural finishes, non-designated systems, such as gravity walls or window/door framing, and nonstructural components on building behavior. Test protocols for the system-level shake table test programs often consist of a sequence of earthquake tests of increasing intensity, which progressively damage the test specimen. To develop a suitable test protocol for the CFS-NHERI test building, multiple numerical modeling approaches such as lumped mass model, shear dominated pancake-style 2D model [26], and simplified 3D model are

currently being pursued by the research team. These numerical models, being developed in OpenSeesPv [27]. use hysteretic elements for structural members such as shear walls which have been validated using available component level test. The aim of such pre-test numerical modeling is to provide predictions of the test building seismic behavior, which can guide earthquake motion selection and a motion scaling strategy for defining the test protocol. Complemented with an on-the-fly motion scaling parameter adjustment methodology, such as the one developed by Wang et al [28], which can account for the evolution of dynamic properties during testing, a test protocol sufficiently developed such that it is possible to assess the seismic performance of structural and nonstructural components at multiple predefined performance levels, for example: elastic (service), guasi-elastic, design, and above design. The test protocol will also include ambient vibration and low-amplitude white-noise tests conducted durina construction, as well as before and after earthquake tests, to track the dynamic characteristics of the building specimen through system identification during its life on the shake table. The building specimen will be densely instrumented to capture accelerations, forces, and displacements. In addition, digital still and video imagery will be captured throughout construction, testing and de-erection.

Finally, the test protocol will include several controlled live-fire tests, possibly followed by subsequent scaled earthquake motion tests to evaluate the post-earthquake fire performance and post-fire earthquake (aftershock) performance of the damaged test building. While under normal (non-earthquake) conditions, fire protective covering (e.g., stucco) over combustible insulation can provide resistance to fire spread, there is no research into the performance of such exterior systems on CFS-framed structures during and following earthquake. The test protocol will help determine the impact damage to various fire-rated construction features (e.g., walls, doors, floors), combustible components (e.g., EIFS layer), window/door framing etc. has on potential fire spread and life safety. The test building will be instrumented with thermocouples, smoke sensors, and cameras, with a focus on compartment temperatures, transmission of smoke and hot gasses through compartment barriers, and performance of egress systems.

Based on IBC and AISI requirements, the CFS-NHERI 10story test building was designed for multi-dimensional shake table testing. Several decisions that were taken during the design process have been discussed in this paper. A design summary of the gravity and lateral force resisting systems has been provided. The drawings and calculation package produced have been included as appendices herewith. Several key steps such as the development of test protocol instrumentation material takeoffs and plans, and procurement/delivery, preparing shop drawings for

construction etc. will be taken in the upcoming weeks. This experimental program offers an opportunity for industry collaborations for incorporating novel proprietary systems into the test building LFRS. Similarly, it provides an opportunity for researchers or engineers to bring forth creative payload testing ideas. The CFS-NHERI capstone experiment program will generate valuable knowledge leading to improvements in the seismic design codes for CFS-framed building.

5. Acknowledgments

The research presented is funded through the National Science Foundation (NSF) grants CMMI 1663569 and CMMI 1663348, project entitled: Collaborative Research: Seismic Resiliency of Repetitively Framed Mid-Rise Cold-Formed Steel Buildings. Complementary post-earthquake live fire testing is being undertaken by Professor Richard Emberley at CalPoly-San Luis Obispo with support of the California Seismic Safety Commission. The efforts of NHERI operations manager Dr. Koorosh Lotfizadeh in test program planning and 2021 NHERI REU student Jessé Hernández-González from University of Puerto Rico - Mayagüez in developing test building renders are greatly appreciated. Findings, opinions, and conclusions are those of the authors and do not necessarily reflect those of the sponsoring organizations.

References

- [1] B. W. Schafer. "Cold-formed steel structures around the world: A review of recent advances in applications, analysis and design," *Steel Constr.*, vol. 4, no. 3, pp. 141-149, Aug. 2011, doi: 10.1002/stco.201110019.
- [2] AISI S100-16, North American specification for the design of cold-formed steel structural members. Washington, DC, USA.: AISI, 2016.
- [3] AISI S240-15, North American standard for cold-formed steel structural framing. Washington, DC, USA.: AISI, 2020.
- [4] AISI S400-15, North American standard for seismic design of cold-formed steel structural systems. Washington, DC, USA.: AISI, 2020.
- [5] K. D. Peterman, M. J. Stehman, R. L. Madsen, S. G. Buonopane, N. Nakata, and B. W. Schafer. "Experimental seismic response of a full-scale cold-formed steel-framed building. I: System-level response," *ASCE J. Struct. Eng.*, vol. 142, no. 12, pp. 04016127, Dec. 2016, doi: 10.1061/(ASCE)ST.1943-541X .0001577.
- [6] T. C. Hutchinson, X. Wang, G. Hegemier, P. Kamath, and B. Meacham. "Earthquake and post-earthquake fire testing of a midrise cold-formed steel-framed building. I: Building response and physical damage," ASCE J. Struct. Eng., vol. 147, no. 9, pp. 04021125, Sep. 2021, doi: 10.1061/(ASCE)ST.1943-541X.0003097.

- [7] ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures. Reston, VA, USA.: ASCE/SEI, 2016.
- [8] ASCE/SEI 41-17, Seismic evaluation and retrofit of existing buildings. Reston, VA, USA.: ASCE/SEI, 2017.
- [9] IBC 2018, International building code.: International Code Council, 2018.
- [10] S. Torabian, S. Z. Nia, and B. W. Schafer. "An archetype mid-rise building for novel complete cold-formed steel buildings," in *Proc. Wei-Wen Yu Int. Specialty Conf. on Cold-Formed Steel Structures*, Baltimore, MD, USA, Nov. 9-10, 2016.
- [11] A. Singh, X. Wang, S. Torabian, T. C. Hutchinson, K. D. Peterman, and B. W. Schafer. "Seismic Performance of Symmetric Unfinished CFS In-Line Wall Systems," in *Proc. ASCE Structures Congress 2020*, Reston, VA, USA, 2020, pp. 629-642, doi: 10.1061/9780784482896 .058.
- [12] R. Rizk. "Higher strength cold-formed steel framed/steel shear walls for mid-rise construction," Master's thesis, Dept. of Civil Engineering and Applied Mechanics, McGill Univ. (Canada), 2017.
- [13] V. Santos. "Higher Capacity Cold-formed Steel Sheathed and Framed Shear Walls for Mid-rise Buildings: Part 1," Master's thesis, Dept. of Civil Engineering and Applied Mechanics, McGill Univ. (Canada), 2017.
- [14] V. Briere. "Higher Capacity Cold-formed Steel Sheathed and Framed Shear Walls for Mid-rise Buildings: Part 2," Master's thesis, Dept. of Civil Engineering and Applied Mechanics, McGill Univ. (Canada), 2017.
- [15]Z. Zhang, A. Singh, F. Derveni, S. Torabian, K. D. Peterman, T. C. Hutchinson, and B. W. Schafer. "Cyclic experiments on isolated steel sheet connections for CFS framed steel sheet sheathed shear walls with new configurations," *Eng. Struct.*, vol. 244, no. 11, pp. 112805, Oct. 2021, doi: 10.1016/j.engstruct.2021. 112805.
- [16] X. Wang and T. C. Hutchinson. "Earthquake and postearthquake fire testing of a midrise cold-formed steelframed building. II: Shear wall behavior and design implications," ASCE J. Struct. Eng., vol. 147, no. 9, pp. 04021126, Sep. 2021, doi: 10.1061/(ASCE)ST.1943 -541X.0003098.
- [17] A. Singh, X. Wang, Z. Zhang, F. Derveni, H. Castaneda, K. D. Peterman, B. W. Schafer, and T. C. Hutchinson. " Steel sheet sheathed cold-formed steel framed in-line wall systems. I: Impact of structural detailing," ASCE J. Struct. Eng., 2022, in press.
- [18] IBC 2018, IBC SEAOC Structural/Seismic Design Manual Vol. 2: Four story wood light-frame structure.: International Code Council, 2018.
- [19] MiTek. "Hardy CFS moment frames." hardyframe.com. https://www.hardyframe.com/cold-formed-steel (accessed Aug. 20, 2022).

- [20] A. Singh, X. Wang, and T. C. Hutchinson. "Lateral response of cold-formed steel framed steel sheathed inline wall systems detailed for mid-rise buildings. Part I: Shake table test phase," in "Structural Systems Research Project," Univ. of California, San Diego, La Jolla, CA, USA, Rep. No. SSRP-19/05, Apr. 2021.
- [21] A. Singh and T. C. Hutchinson. "Lateral response of cold-formed steel framed steel sheathed in-line wall systems detailed for mid-rise buildings. Part II: Quasistatic test phase," in "Structural Systems Research Project," Univ. of California, San Diego, La Jolla, CA, USA, Rep. No. SSRP-19/06, May 2022.
- [22] A. Singh, T. Hutchinson, X. Wang, Z. Zhang, B. Schafer, F. Derveni, H. Castaneda, and K. Peterman. "Wall line tests: Phase 1 – Shake table tests," 2021, CFS-NHERI: Seismic resiliency of repetitively framed mid-rise coldformed steel buildings, DesignSafe-CI, doi: 10.17603/ ds2-mvj8-8386.
- [23] A. Singh, T. Hutchinson, X. Wang, Z. Zhang, B. Schafer,
 F. Derveni, H. Castaneda, and K. Peterman. "Wall line tests: Phase 2 Quasi-static tests," 2022, CFS-NHERI: Seismic resiliency of repetitively framed mid-rise cold-

formed steel buildings, DesignSafe-CI, doi: 10.17603/ ds2-encf-vj32.

- [24] A. Singh, X. Wang, Z. Zhang, F. Derveni, H. Castaneda, K. D. Peterman, B. W. Schafer, and T. C. Hutchinson. " Steel sheet sheathed cold-formed steel framed in-line wall systems. II: Impact of nonstructural detailing," ASCE J. Struct. Eng., 2022, in press.
- [25] H. Castaneda. "Seismic performance of cold-formed steel diaphragms," Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of Massachusetts, Amherst, MA, 2022.
- [26] J. Zhang, A. Singh, and T. C. Hutchinson. "Seismic analysis of the 10-Story CFS-NHERI building," in *Proc. Cold-Formed Steel Research Consortium Colloquium*, Oct. 17-19, 2022.
- [27] M. Zhu, F. McKenna, M. H. Scott. "OpenSeesPy: Python library for the OpenSees finite element framework," *SoftwareX*, vol. 7, pp. 6-11, 2018, doi: 10.1016/j.softx .2017.10.009.
- [28] X. Wang, A. Singh, and T. C. Hutchinson. "Development of a shake table test protocol for seismic performance evaluation," *J. Earthquake Eng.*, 2022, in review.

2262 Rutherford Road Carlsbad, CA 92008

877-832-3206 p.

<u>COLD-FORMED STEEL</u> FRAMING COMPUTATIONS

Project Information:

2150200882-1 CFS-NHERI 10 Story Test Portion

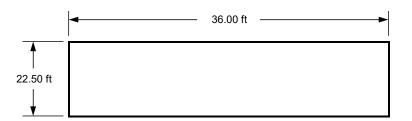
Project Location:

San Diego, CA

Prepared For:

Cold-Formed Steel Research Consortium CFSRC - 208 Latrobe Hall - Civil Eng. 3400 N. Charles St. Baltimore, MD 21218

Submittal Date: **Apr. 20, 2022**


ClarkDietrich Engineering Services

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

CDES NUMBER:	2150200882
PROJECT NAME:	CFS-NHERI 10 Story Test Portion
SITE LOCATION:	Irvine, CA
CDES OFFICE:	West
STATUS:	10-Story Test Portion Design

BUILDING PROPERTIES

BUILDING WIDTH:	36.00 ft
BUILDING BREADTH:	22.50 ft
MEAN ROOF HEIGHT:	h = 100.00 ft
ROOF ANGLE:	Θ =

ENGINEER:	L. Padgett
DATE:	3/22/2022
CHECKER:	LAP
CHECK DATE:	

ROOF HEIGHT = 3.75 ft

R	<u> </u>	100.00 ft
	10.00 ft	
10		90.00 ft
9	10.00 ft	80.00 ft
0	10.00 ft	00.00 11
8		70.00 ft
7	10.00 ft	60.00 ft
	10.00 ft	00.00 1
6		50.00 ft
5	10.00 ft	40.00 ft
5	10.00 ft	40.00 11
4		30.00 ft
0	10.00 ft	20.00 #
3	10.00 ft	20.00 ft
2		10.00 ft
	10.00 ft	
1 —	l	

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 CHECKER:
 LAP

2262 Rutherford Road, Suite 104Phone: (877) 832-3206Carlsbad, California 92008www.ClarkDietrich.com

DESIGN CRITERIA

		SEI	SMIC LOADING	
DESIGN CODE / SPECIFICATION:	2018 IBC	CBC 2016	SITE CLASSIFICATION	SITE CLASS C
RISK CATEGORY:	CATEGORY II		DESIGN ACCELERATION	S _{DS} = 1.0088
			DESIGN ACCELERATION	S _{D1} = 0.4520
AISI SPECIFICATION:	2016 NAS - US (ASD)	2012 NAS - US (ASD)	RESPONSE MODIFICATION	$R_{TRANS} = 6.5$
				$R_{LONG} = 6.5$
ASD WIND LOADING			SEISMIC DESIGN CATEGORY	D
BASIC WIND SPEED: Vasd =	= 90 mph	Vnom = 115 mph		
EXPOSURE CATEGORY:	EXPOSURE C			
ENCLOSURE TYPE:	ENCLOSED	SNO	DW LOADING	
			GROUND SNOW LOAD:	p _g =
ASD VELOCITY PRESSURE AT h:	14.43 psf		FLAT ROOF SNOW LOAD:	p _f =
ASD PEAK MWFRS PRESSURE:	18.80 psf		SLOPED ROOF SNOW LOAD:	p _s =
INTERNAL PRESSURE:	5.00 psf			

PROJECT NOTES

Coordination Items:

- Archetype building is generally based on the SEAOC Structural/Seismic Design Manual Vol. 2: Four story wood light-frame structure.

- 10ft level heights, 3ft parapets, EIFS exterior cladding

- U-channel bridging at 3ft & 7ft, strongback locations at brace force of 675 lb max to be shown on plans. Call out on wall sections 3ft and 7ft punchouts when ordering.

- flat roof and floors with C-shape joist and 3/4" USG cement board. G556 floor fire assembly, P561 roof fire assembly.

- C-shape unit joist at 16" oc from corridor to exterior, public and corridor joist at 24" oc from corridor to corridor.

- 2" minimum joist flange for cement panel fastener space. Cement panel diaphragm and installation per USG instructions and PER-14076 roof and

PER-13067 floor. 18ga minimum, but with 50Ksi minimum - so we'll use 16ga minimum. - Typical sheet steel shearwalls as needed in exterior, corridor, and demising walls

Design loads based on real world rigid insulation, floor topping, partitions, MEP, cladding...

- Drop-in stairs, c-shape joist landings

- CDES to design the full 48' x 116' building design, then a slice of it will be installed on the 25' x 40' shake table.

- Windows and doors may be actually installed.

- Cement board floor panels start and stop at ledger framing, each side of wall. shear flow transfer through rim - wall track - rim.

- Rim-Track and Rim-Channel options.

- Wind and Seismic designed for the worse case of 2018 IBC / ASCE 7-16 and 2016 CBC / ASCE 7-10.

Test Portion

- 22.5' x 36' symmetric shearwall layout

- Shearwall lengths based on the actual test portion area and mass + supplemental mass to acheive archetype loads, then length of SW's adjusted to

impose loads similar to the archetype, but satisfying typical industry accepted aspect ratio h/w < or = 2.0.

- Joist span is a bit longer (from 20'-9" to 21'-6"). 21'-6". 1200S250-68 @ 16" oc 82% TL defl = L/408.

- Fasten weight to top of corridor side of W5 wall (DL=50plf), might disregard. This can be 1.25" steel plate nested inside rim-channel.

- 36' exterior walls in front only (E-W), demising walls only (N-S). Wall weights over 855 sf = 13.83 psf. Seismic DL = 21psf + 14psf = 35psf without additional exterior wall load.

- Base connection plates to the 2ft x 2ft threaded hole grids. PAF's similar to wall bottom track at oc studs, and 3/8" hex head cap screws with predrilled/tapped holes similar to the 3/8 concrete screws in track for shearwalls and posts. SW endpost weld plate holdowns to base connection plates - but threaded hole in base connection plate where using threaded rod tie-down.

- Added Fully Blocked -33 sheet steel capacity for 16ga to 12ga framing at 2:1 aspect ratio. Added 2-sided -27 sheet capacity for 12ga framing. Rogers sheet thickness has a wide range of thicknesses but we are using standard 22ga and 20ga thicknesses?

- Since we're only 38ft wide, but with full wind - the ASCE 7 wind load is over half of the archetype longitude shearwalls. Allowing seismic to govern and then backing out the wind to specify the design wind speed we are acheiving. Longitude wind approximately equivalent to the seismic is 75 mph Exposure C, 8 windward psf + 2.4 leeward psf. Transverse wind approximately equivalent to the SW-1 and SW-3 Demising seismic is 63 mph

2262 Rutherford Road, Suite 104Phone: (877) 832-3206Carlsbad, California 92008www.ClarkDietrich.com

DESIGN CODE CRITERIA

DESIGN CODE / SPECIFICATION: RISK CATEGORY:	2018 IBC CATEGORY II		2016 CBC	
AISI SPECIFICATION:	2016 NAS - US (ASI	D)	2012 NAS - US (AS	SD)
ASD WIND LOADING BASIC WIND SPEED: EXPOSURE CATEGORY: ENCLOSURE TYPE:	vasd = 85 mph ۲ EXPOSURE C ENCLOSED	/nom = 110 mph	Vasd= 90 mph	Vnom= 115 mph
INTERNAL PRESSURE:	5.00 psf			
ASD VELOCITY PRESSURE AT h:	14.43 psf			
LE LE	/EL 9: 18.50 psf /EL 8: 18.10 psf /EL 7: 17.70 psf /EL 6: 17.30 psf	LEVEL 5: 16.8 LEVEL 4: 16.2 LEVEL 3: 15.5 LEVEL 2: 14.5 LEVEL 1: 13.9	0 psf 0 psf 0 psf	
ASD MWFRS LL PRESSURE LEV	≟L 10: 5.35 pst			
SNOW LOADING GROUND SNOW LOAD:	p _g = 0 psf			
EXPOSURE FACTOR: THERMAL FACTOR: IMPORTANCE FACTOR: ROOF SLOPE FACTOR:	Ce = 1.00Ct = 1.00I = 1.00Cs = 1.00			
FLAT ROOF SNOW LOAD: MINIMUM FLAT ROOF SNOW LOAI	$p_f = 0 psf$ $p_f = 0 psf$			
SLOPED ROOF SNOW LOAD:	p _s = 0 psf			
SEISMIC DESIGN CRITERIA OCCUPANCY CATEGORY IMPORTANCE FACTOR SITE CLASSIFICATION	CATEGORY II I = 1.00 SITE CLASS C			
MCE SPECTRAL RESPONSE ACCE MCE SPECTRAL RESPONSE ACCE		OD $S_s = 1.26$ $S_1 = 0.45$		gure 1613.3.1(1) gure 1613.3.1(2)
SHORT-PERIOD SITE COEFFICIEN LONG-PERIOD SITE COEFFICIENT	r	$F_{a} = 1.20$ $F_{v} = 1.50$		ble 1613.3.3(1) ble 1613.3.3(2)
DESIGN SPECTRAL RESPONSE AG DESIGN SPECTRAL RESPONSE AG	CELERATION, 1 SECOND PI			uation 16-39 juation 16-40

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	ME: CFS-NHERI 10 Story Test Portion	
PROJECT NUMBE	2150200882	
ENGINEER: L.P	dgett DATE: 3/22/2022	
CHECKER: LAP	LAP DATE:	
SUBJECT: Wall Types and Floor/Ceiling Types		

GRAVITY LOADING

WALL TYPES

WALL TYPE	WIND LOAD	DEAD LOAD	DEFLECTION
INTERIOR WALL	5.00 psf	12 psf	L / 240
EXTERIOR WALL (EIFS)	18.80 psf	15 psf	L / 360

FLOOR / CEILING TYPES

FLOOR TYPE	DEAD	SNOW	LIVE LOAD			TOTAL LOAD	
FLOOR TIPE	LOAD	LOAD	LIVE	ROOF LIVE	DEFL.	LOAD	DEFL.
ROOF	24 psf			20 psf	L / 360	44 psf	L / 240
UNIT	21 psf		50 psf		L / 480	71 psf	L / 240
CORRIDOR	21 psf		40 psf		L / 480	61 psf	L / 240
PUBLIC	21 psf		100 psf		L / 480	121 psf	L / 240

¹ 10psf PARTITION LOADING IS INCLUDED IN THE UNITFLOOR LIVE LOAD

ROOF DEAD LOAD DEVELOPMENT		
COMPONENT	DEAD LOAD	
ROOFING MEMBRANE	1.50 psf	
RIGID INSULATION	5.00 psf	
3/4 CEMENT PANEL ROOF DECK	5.30 psf	
CFS ROOF JOIST	3.00 psf	
INSULATION	1.00 psf	
5/8" GYP. BOARD W/FURRING	3.00 psf	
MECHANICAL	5.00 psf	
TOTAL:	23.80 psf	

EXTERIOR WALL DEAD LOAD DEVELOPMENT		
COMPONENT	DEAD LOAD	
EIFS CLADDING	2.50 psf	
5/8 EXTERIOR GYPSUM	3.00 psf	
CFS WALL STUDS	3.50 psf	
INSULATION	1.00 psf	
5/8" GYP. BOARD	2.50 psf	
MISC	2.00 psf	
TOTAL:	14.50 psf	

FLOOR DEAD LOAD DEVELOPMENT		
COMPONENT	DEAD LOAD	
FINISH FLOORING	3.00 psf	
3/4 CEMENT PANEL SUBFLOOR	5.30 psf	
CFS FLOOR JOIST	3.50 psf	
INSULATION	1.00 psf	
5/8" GYP. BOARD W/FURRING	3.00 psf	
MECHANICAL / OTHER	5.00 psf	
TOTAL:	20.80 psf	

INTERIOR WALL DEAD LOAD DEVELOPMENT			
COMPONENT	DEAD LOAD		
5/8 GYP. BOARD	2.50 psf		
CFS WALL STUDS	3.50 psf		
INSULATION	1.00 psf		
5/8" GYP. BOARD	2.50 psf		
MISC	2.00 psf		
TOTAL:	11.50 psf		

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion
PROJECT NUMBER	2150200882
ENGINEER: L. Pa	dgett DATE: 3/22/2022
CHECKER: LAP	DATE:
SUBJECT: Seisr	nic LFRS Loading

SEISMIC LOADING PER ASCE 7-16 & CBC 2016 (EQUIVALENT LATERAL FORCE PROCEDURE)

SEISMIC DESIGN CRITERIA

IMPORTANCE FACTOR	l _e = 1.00	TABLE 11.5-1
DESIGN SPECTRAL RESPONSE ACCELERATION, SHORT PERIOD	S _{DS} = 1.0088	EQUATION 11.4-3
DESIGN SPECTRAL RESPONSE ACCELERATION, 1 SECOND PERIOD	S _{D1} = 0.4520	EQUATION 11.4-4

SEISMIC DESIGN CATEGORY - D

APPROXIMATE BUILDING PERIOD

$h_n = 100.00 \text{ ft}$	HEIGHT FROM BASE TO HIGHEST LEVEL	
T _a = 0.632 SEC	EQUATION 12.8-7, $T_a = C_T * h_n^x$	C _T = 0.02
		x = 0.75
0.8 T _S = 0.358 SEC	SECTION 11.4.5, $T_S = S_{D1} / S_{DS}$	

BUILDING SEISMIC RESPONSE - TRANSVERSE DIRECTION

RESPONSE MODIFICATION COEFFICIEN SYSTEM OVERSTRENGTH FACTOR REDUNDANCY FACTOR GOVERNING SEISMIC RESPONSE COEF		$\label{eq:2.1} \begin{array}{l} {\sf R} = \ 6.5 \\ \Omega_0 = \ 3.0 \\ \rho = \ 1.0 \\ {\sf C}_{{\sf S},{\sf TRANS}} = \ 0.110 \end{array}$		ing wall system, 16. light-frame sheathed with steel sheets TERMINATION BELOW
SEISMIC RESPONSE COEFFICIENT	Cs = S _{DS} / (R / I) Cs NEED NOT EX	XCEED S _{D1} / T (R / I)	Cs = 0.155 Cs ≤ 0.110	
	Cs SHALL NOT E	BE LESS THAN 0.01	Cs ≥ 0.010	EQUATION 12.8-5

BUILDING SEISMIC RESPONSE - LONGITUDINAL DIRECTION

RESPONSE MODIFICATION COEFFICIEN	Т	R = 6.5	TABLE 12.2-1	
SYSTEM OVERSTRENGTH FACTOR		$\Omega_0 = 3.0$	TABLE 12.2-1	
REDUNDANCY FACTOR		ρ = 1.0	SECTION 12.3.4	
GOVERNING SEISMIC RESPONSE COEFI	FICIENT	$C_{S, LONG} = 0.110$	SECTION 12.8.1, SEE DETER	RMINATION BELOW
SEISMIC RESPONSE COEFFICIENT	$Cs = S_{DS} / (R / I)$		Cs = 0.155	EQUATION 12.8-2
	Cs NEED NOT E	XCEED S _{D1} / T (R / I)	Cs ≤ 0.110	EQUATION 12.8-3
	Cs SHALL NOT E	BE LESS THAN 0.01	Cs ≥ 0.010	EQUATION 12.8-5

SEISMIC LOADING PER ASCE 7-16 & CBC 2016 (EQUIVALENT LATERAL FORCE PROCEDURE)

FLOOR DEAD LOAD

LEVEL	WEIGHT	FLOOR AREA	FLOOR WEIGHT
	psf	sf	kips
ROOF	24.0	810	19.44
10	42.4	810	34.31
9	42.4	810	34.31
8	42.4	810	34.31
7	42.4	810	34.31
6	42.4	810	34.31
5	42.4	810	34.31
4	42.4	810	34.31
3	42.4	810	34.31
2	42.4	810	34.31
TOTAL FLOOR DEAD LOAD =			328.24 k

Note: Seismic DL includes partitions and exterior cladding GL 2 - 36' x 10' x 12psf Int Wall = 4320 lb GL C, D, E - 21.5' x 10' x 12psf In Wall = 7740lb GL 1 - 36' x 10' x 15psf Ext Wall = 5400 lb Total Wall Seismic Weight = 17460lb/810sf = 21.6psf Total Floor Seismic Weight = 20.8 psf

VERTICAL DISTRIBUTION OF SEISMIC FORCES

BUILDING EFFECTIVE SEISMIC WEIGHT	W = 328.24 k	SECTION 12.7.2
SEISMIC BASE SHEAR	V _{TRANS} = 36.09 k V _{LONG} = 36.09 k	EQUATION 12.8-1 EQUATION 12.8-1

			k = 1.07	1	TRANSVERSE	LONGITUDINAL
LEVEL	ELEVATION - h _x	WEIGHT - w _x	w _x h _x ^k	Cv	F _x	F _x
	ft	kips			kips	kips
ROOF	100.00	19.44	2637	0.1154	4.165	4.165
10	90.00	34.31	4160	0.1821	6.571	6.571
9	80.00	34.31	3669	0.1606	5.795	5.795
8	70.00	34.31	3182	0.1393	5.026	5.026
7	60.00	34.31	2700	0.1182	4.264	4.264
6	50.00	34.31	2223	0.0973	3.511	3.511
5	40.00	34.31	1752	0.0767	2.768	2.768
4	30.00	34.31	1289	0.0564	2.037	2.037
3	20.00	34.31	837	0.0366	1.322	1.322
2	10.00	34.31	400	0.0175	0.631	0.631
1						

CFS Version 10.0.0 Section: 1200S250-68.sct 1200S250-68, 50 ksi Stud SSMA Library Rev. Date: 1/22/2011 8:58:01 AM By: RSG Software Printed: 10/27/2021 9:56:55 AM

ClarkDietrich Building Systems ClarkDietrich Building Systems

Section Inputs

-----Material: A653 SQ Grade 50/1 Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi 65 ksi Tensile Strength, Fu 0 in^6 Warping Constant Override, Cw Torsion Constant Override, J 0 in^4 Net Section Ratio (Lnet/L) 0.1 Stud, Thickness 0.0713 in (14 Gage) Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web (in) (deg) (in) k Hole Size Distance Coef. (in) (in) (in)(deg)(in)Coef.(in)0.625270.0000.10700 None0.0000.0002.500180.0000.10700 Single0.0000.00012.00090.0000.10700 Cee0.0001.5002.5000.0000.10700 Single0.0000.0000.625-90.0000.10700 None0.0000.000 1 0.313 2 1.250 3 6.000 4 1.250 5 0.313

CFS Version 10.0.0 Analysis: 21-6 Test Unit Floor Joist @ 16 OC.cfsa 21-6 Unit Floor Joist @ 16 OC 200882 CFS-NHERI 10-Story Archetype Rev. Date: 6/3/2021 12:29:52 PM By: ClarkDietrich Building Systems Printed: 10/27/2021 9:56:55 AM

ClarkDietrich Building Systems ClarkDietrich Building Systems

H Analysis Inputs Members Revision Date and Time Section File 1 1200S250-68.sct 1/22/2011 8:58:01 AM Start Loc. End Loc. Braced R kφ Lm (ft) (ft) Flange (lb) (ft) 1 0.000 21.500 Top 0.0000 0.0000 8.000 ex ey (in) (in) 1 0.000 0.000 Supports Туре Location Bearing Fastened Κ (ft) (in) 1 XYT 0.000 2.00 Yes 1.0000 2 XT 1.0000 6.000 1.00 No 3 XT 14.000 1.00 1.0000 No 4 XYT 21.500 2.00 Yes 1.0000 Loading: Dead Load Angle Start Loc. End Loc. Start End Туре Magnitude Magnitude (deg) (ft) (ft) 1 Distributed 270.000 0.000 21.500 28.000 28.000 lb/ft Loading: Live Load Туре Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude -90.000 67.000 lb/ft 1 Distributed 0.000 21.500 67.000 Load Combination: D+L Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Live Load 1.000

CFS Version 10.0.0 Analysis: 21-6 Test Unit Floor Joist @ 16 OC.cfsa ClarkDietrich Building Systems 21-6 Unit Floor Joist @ 16 OC ClarkDietrich Building Systems 200882 CFS-NHERI 10-Story Archetype Rev. Date: 6/3/2021 12:29:52 PM By: ClarkDietrich Building Systems Printed: 10/27/2021 9:56:55 AM Load Combination: Live Load Deflection Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Live Load 1.000 2 Roof Live Load 1.000 Load Combination: D+0.75(Lr+S)+0.75*W pos Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Factor Loading 1 Dead Load 1.000 0.750 2 Roof Live Load 3 Wmwf pos 0.750 4 Snow Load 0.750 Load Combination: D+0.75(Lr+L) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 0.750 3 Live Load 0.750 Load Combination: D + Lr Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 1.000 Load Combination: D + Wcc (Down) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 1.000 2 Wc&c pos Load Combination: 0.6D + Wcc (Uplift) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 0.600 2 Wc&c neg 1.000 Load Combination: D + Wmwf pos Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Wmwf pos 1.000

Analysis: 21-6 Test Unit Floor 2 21-6 Unit Floor Joist @ 16 OC 200882 CFS-NHERI 10-Story / Rev. Date: 6/3/2021 12:29:52 F By: ClarkDietrich Building Syste Printed: 10/27/2021 9:56:55 AN	Archetype PM ems		Building Systems	
Member Check - 2016 No	orth American Spe	ecification - U	S (ASD)	
Load Combination: D+L Design Parameters at 10 Lx 21.500 ft Kx 1.0000		00 ft Lt 00 Kt		ft
Section: 1200S200-68.sc Material Type: A653 SQ Cbx 1.0209 Cmx 1.0000 Braced Flange: Top Red. Factor, R: 0	Grade 50/1, Fy= Cby 1.00 Cmy 1.00 k¢	00 ex		
Loads: P (1b) Total 0.0 Applied 0.0 Strength 5171.1 Effective section prope Ae 1.13807 in^2	(lb-in) (65871 65871 75438 277 erties at applie	1b) (1b-i 0.0 0.0 0.2 93 d loads:	My Vx (lb) 0 0 0.0 0 0.0 375 4394.0	in^4
Interaction Equations NAS Eq. H1.2-1 (P, M NAS Eq. H2-1 (N	Sxe(t) 3.49 Sxe(b) 3.66 Mx, My) 0.000 + Mx, Vy) Sqrt	71 in^3 Sy 21 in^3 Sy 0.873 + 0.0 (0.571 + 0.0	<pre>ve(1) 1.1933 ve(r) 0.2949 000 = 0.873 <= 1 000) = 0.756 <= 1 000) = 0.000 <= 1 </pre>	in^3 in^3
	-,, ,, ,, , , , , , , , , , , , , , , ,	,		

Maximum Shears, Moments, and Deflections

Load Combination: D+L, Y Direction

CFS Version 10.0.0

Analysis: 21-6 Test Unit Floor Joist @ 16 OC.cfsa

Location	Shear(1)	Shear(r)	Reaction	
(ft)	(1b)	(lb)	(lb)	
0.000	0.0	1021.3	1021.3	
21.500	-1021.3	0.0	1021.3	
Location (ft) 10.750	Moment (lb-in) 65871	Location (ft) 10.750	Deflection (in) -0.63232	Inflections (ft)

Maximum Shears, Moments, and Deflections

Load Combination: Live Load Deflection, Y Direction

Location	Shear(l)	Shear(r)	Reaction
(ft)	(lb)	(lb)	(lb)
0.000	0.00	720.25	720.25
21.500	-720.25	0.00	720.25

Page 3

ClarkDietrich Building Systems ClarkDietrich Building Systems

CFS Version 10.0.0 Analysis: 21-6 Test Unit Floor Joist @ 16 OC.cfsa 21-6 Unit Floor Joist @ 16 OC 200882 CFS-NHERI 10-Story Archetype Rev. Date: 6/3/2021 12:29:52 PM By: ClarkDietrich Building Systems Printed: 10/27/2021 9:56:55 AM

Location Moment Location Deflection Inflections (ft) (lb-in) (ft) (in) (ft) 10.750 46456 10.750 -0.44595 CFS Version 10.0.0 Section: 1200T150-68.sct 1200T150-68, 50 ksi Track SSMA Library Rev. Date: 1/1/2003 1:54:12 PM By: RSG Software Printed: 10/27/2021 10:22:33 AM

ClarkDietrich Building Systems ClarkDietrich Building Systems

f

Section Inputs

Material: A653 SQ Grade 50/1 Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi 65 ksi Tensile Strength, Fu 0 in^6 Warping Constant Override, Cw Torsion Constant Override, J 0 in^4 Track, Thickness 0.0713 in (14 Gage) Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape k Hole Size Distance LengthAngleRadiusWebkHole Size(in)(deg)(in)Coef.(in) (in) (1n)(deg)(1n)(deg)(1n)1.500180.0000.10700 Single0.0000.00012.25090.0000.10700 Cee0.0000.0001.5000.0000.10700 Single0.0000.000 1 0.750 2 6.125 3 0.750 CFS Version 10.0.0 Analysis: Unit Floor Rim-Header.cfsa Rim-Header, Unit Floor Joist 200882 CFS-NHERI 10-Story Archetype Rev. Date: 10/27/2021 10:08:45 AM By: ClarkDietrich Building Systems Printed: 10/27/2021 10:22:33 AM

↓					
Analysis Inputs					
Analysis Inputs					
Members Section Fi 1 1200T150-6				Revision Da 1/1/2003 1:	
Start Loc. (ft) 1 0.0000	End Loc. (ft) 3.3300	Flange	k¢ (1b) 0.0000	· · ·	
ex (in) 1 0.000	ey (in) 0.000				
Supports					
Туре	Location (ft)	Bearing Fast (in)	tened	K	
1 XYT 2 XYT	0.0000 3.3300	2.00 2.00		.0000	
Loading: Dead	Load				
Туре	Angl	e Start Loc.	End Loc.	Start	End
1 Distribute	(deg d -90.00		(ft) 3.3300	Magnitude 60.000	Magnitude 60.000 lb/ft
2 Concentrat			NA	301.00	NA 1b
		1		ing Length	1.00 in
3 Concentrat	ed -90.00	0 1.6600	NA Bear	301.00 ing Length	NA lb 1.00 in
4 Concentrat	ed -90.00	0 3.0000	NA	301.00	NA lb
			Bear	ing Length	1.00 in
Loading: Live					
Туре	Angl (deg	e Start Loc.	End Loc. (ft)	Start Magnitude	End Magnitude
1 Concentrat			(IC) NA	720.00	NA lb
2 Concentrat	ed -90.00	0 1.6600	Bear NA	ing Length 720.00	1.00 in NA lb
2 COncentrat	eu -90.00	0 1.0000		ing Length	1.00 in
3 Concentrat	ed -90.00	0 3.0000	NA	720.00 ing Length	NA lb 1.00 in
			Deal	ING DENGUN	T.00 III

CFS Version 10.0.0 Analysis: Unit Floor Rim-Header.cfsa ClarkDietrich Building Systems Rim-Header, Unit Floor Joist ClarkDietrich Building Systems 200882 CFS-NHERI 10-Story Archetype Rev. Date: 10/27/2021 10:08:45 AM By: ClarkDietrich Building Systems Printed: 10/27/2021 10:22:33 AM Load Combination: D+L Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Live Load 1.000 Load Combination: Live Load Deflection Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Live Load 1.000 2 Roof Live Load 1.000 Load Combination: D+0.75(Lr+S)+0.75*W pos Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 0.750 0.750 3 Wmwf pos 4 Snow Load 0.750 Load Combination: D+0.75(Lr+L) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 0.750 3 Live Load 0.750 Load Combination: D + Lr Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 1.000 Load Combination: D + Wcc (Down) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Wc&c pos 1.000 Load Combination: 0.6D + Wcc (Uplift) 2012 North American Specification - US (ASD) Specification: Inflection Point Bracing: No Factor Loading 1 Dead Load 0.600 2 Wc&c neg 1.000 Load Combination: D + Wmwf pos Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 1.000 2 Wmwf pos

Member (Check - 2016 N	North Americ	an Specificatio	on - US (AS	D)			
Material Cbx Cmx	1200T150-68. Type: A653 S 1.1989 1.0000 ange: Top tor, R: 0		1, Fy=50 ksi 1.0000 1.0000 0 lb 1.3300 ft	ex ey	0.0000 in 0.0000 in			
Loads: Total Applied Strength	P (1b) 0.0 0.0 3702.5	Mx (lb-in) 5620 5620 59533	Vy (1b) 1615.6 1615.6 2712.1	My (lb-in) 0 1746	Vx (1b) 0.0 0.0 3533.9			
Effective section properties at applied loads: Ae 1.06840 in^2 Ixe 18.149 in^4 Iye 0.128 in^4 Sxe(t) 2.9632 in^3 Sye(1) 0.7139 in^3 Sxe(b) 2.9632 in^3 Sye(r) 0.0967 in^3								
	12-1		Sqrt(0.009	+ 0.355)=	0.094 <= 1.0 0.603 <= 1.0 0.000 <= 1.0			

Maximum Shears, Moments, and Deflections

Load Combination: D+L, Y Direction

Location	Shear(l)	Shear(r)	Reaction	
(ft)	(lb)	(lb)	(1b)	
0.0000	0.0	1632.9	1632.9	
3.3300	-1629.9	0.0	1629.9	
Location (ft) 1.6601	Moment (lb-in) 15113	(ft)		Inflections (ft)

Maximum Shears, Moments, and Deflections

Load Combination: Live Load Deflection, Y Direction

Location	Shear(l)	Shear(r)	Reaction
(ft)	(lb)	(lb)	(lb)
0.0000	0.0	1081.1	1081.1
3.3300	-1078.9	0.0	1078.9

CFS Version 10.0.0 Analysis: Unit Floor Rim-Header.cfsa Rim-Header, Unit Floor Joist 200882 CFS-NHERI 10-Story Archetype Rev. Date: 10/27/2021 10:08:45 AM By: ClarkDietrich Building Systems Printed: 10/27/2021 10:22:33 AM

ClarkDietrich Building Systems ClarkDietrich Building Systems

Location	Moment	Location	Deflection	Inflections
(ft)	(lb-in)	(ft)	(in)	(ft)
1.6601	9953.9	1.6638	-0.0028360	

ClarkDietrich Building Systems ClarkDietrich Building Systems

Member Check	- 2016 North An	nerican Specifi	cation - US (A	SD)		
Load Combination: D+L Design Parameters at 1.6601 ft: Lx 3.3300 ft Ly 3.3300 ft Lt 3.3300 ft Kx 1.0000 Ky 1.0000 Kt 1.0000						
Section: 1200T Material Type: Cbx 1.19 Cmx 1.00 Braced Flange: Red. Factor, R	A653 SQ Grade 89 Cby 00 Cmy Top k¢	50/1, Fy=50 1.0000 1.0000 0 1.3300	ex ey lb	0.0000 0.0000		
Loads: Total Applied Strength 3	P M (1b) (1b-i 0.0 151 0.0 151 702.5 595	n) (1b) 13 0.0 13 0.0	(lb-in) 0 0	Vx (1b) 0.0 0.0 3533.9		
Effective section properties at applied loads: Ae 1.06840 in^2 Ixe 18.149 in^4 Iye 0.128 in^4 Sxe(t) 2.9632 in^3 Sye(1) 0.7139 in^3 Sxe(b) 2.9632 in^3 Sye(r) 0.0967 in^3						
Interaction Eq NAS Eq. H1.2-1 NAS Eq. H2-1 NAS Eq. H2-1) Sqrt(0.	254 + 0.000 = 064 + 0.000) = 000 + 0.000) =	= 0.254 <= 1	.0	

CFS Version 10.0.0 Section: 1200S250-54.sct 1200S250-54, 50 ksi Stud SSMA Library Rev. Date: 1/22/2011 8:58:01 AM By: RSG Software Printed: 10/27/2021 3:09:40 PM

ClarkDietrich Building Systems ClarkDietrich Building Systems

Section Inputs

Material: A653 SQ Grade 50/1 Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 Net Section Ratio (Lnet/L) 0.1					
Stud, Thickness 0.0566 in Placement of Part from Or.					
X to center of gravity	5				
Y to center of gravity					
Outside dimensions, Open					
Length Angle	Radius Web	k	Hole Size	Distance	
(in) (deg)	(in)	Coef.	(in)	(in)	
1 0.625 270.000	0.084900 None	0.000	0.000	0.313	
2 2.500 180.000	0.084900 Single	0.000	0.000	1.250	
3 12.000 90.000	0.084900 Cee	0.000	1.500	6.000	
	0.084900 Single	0.000	0.000	1.250	
5 0.625 -90.000	0.084900 None	0.000	0.000	0.313	

CFS Version 10.0.0 Analysis: 21-6 Test Unit Roof Joist @ 16 OC.cfsa 21-6 Roof Joist @ 16 OC 200882 CFS-NHERI 10-Story Archetype Rev. Date: 10/27/2021 3:08:14 PM By: ClarkDietrich Building Systems Printed: 10/27/2021 3:09:40 PM

ClarkDietrich Building Systems ClarkDietrich Building Systems

Analysis Inputs -----Members Revision Date and Time Section File 1 1200S250-54.sct 1/22/2011 8:58:01 AM Start Loc. End Loc. Braced R kφ Lm (ft) (ft) Flange (lb) (ft) 1 21.500 Top 0.0000 0.0000 0.000 8.000 ex еy (in) (in) 1 0.000 0.000 Supports Location Bearing Fastened Κ Туре (ft) (in) 1 XYT 0.000 2.00 Yes 1.0000 2 XT 6.000 1.00 No 1.0000 3 XT 14.000 1.00 1.0000 No 4 XYT 21.500 2.00 Yes 1.0000 Loading: Dead Load Angle Start Loc. End Loc. Start End Type Magnitude Magnitude (deg) (ft) (ft) 1 Distributed 270.000 0.000 21.500 32.000 32.000 lb/ft Loading: Roof Live Load Туре Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 270.000 0.000 21.500 27.000 27.000 lb/ft Loading: Wmwf pos End Loc. Angle Start Loc. Start End Туре (deg) (ft) (ft) Magnitude Magnitude 0.000 1 Distributed 270.000 21.500 1.330 1.330 lb/ft Loading: Wmwf neg Type Angle Start Loc. End Loc. Start End (deq) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.000 21.500 37.440 37.440 lb/ft

CFS Version 10.0.0 Page 2 Analysis: 21-6 Test Unit Roof Joist @ 16 OC.cfsa **ClarkDietrich Building Systems** 21-6 Roof Joist @ 16 OC ClarkDietrich Building Systems 200882 CFS-NHERI 10-Story Archetype Rev. Date: 10/27/2021 3:08:14 PM By: ClarkDietrich Building Systems Printed: 10/27/2021 3:09:40 PM Loading: Wc&c neg Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 7.000 0.000 90.000 68.450 68.450 lb/ft 1 Distributed 2 Distributed 90.000 7.000 21.500 43.320 43.320 lb/ft Load Combination: D+L Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Live Load 1.000 Load Combination: Live Load Deflection Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Live Load 1.000 2 Roof Live Load 1.000 Load Combination: D+0.75(Lr+S)+0.75*W pos Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 0.750 2 Roof Live Load 3 Wmwf pos 0.750 4 Snow Load 0.750 Load Combination: D+0.75(Lr+L) Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 0.750 3 Live Load 0.750 Load Combination: D + Lr Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 1.000 Load Combination: D + Wcc (Down) Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Wc&c pos 1.000 Load Combination: 0.6D + Wmwf (Uplift) Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 0.600 1.000 2 Wmwf neg

CFS Version 10.0.0 Page 3 Analysis: 21-6 Test Unit Roof Joist @ 16 OC.cfsa 21-6 Roof Joist @ 16 OC 200882 CFS-NHERI 10-Story Archetype Rev. Date: 10/27/2021 3:08:14 PM By: ClarkDietrich Building Systems Printed: 10/27/2021 3:09:40 PM					
Load Combination: D + Wmwf pos Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Wmwf pos 1.000					
Member Checl	k - 2016 Nor	th American	Specificatio	on - US (AS	D)
		.750 ft: Ly	8.000 ft 1.0000	Lt Kt	8.000 ft 1.0000
	: A653 SQ (209 000 : Top	Grade 50/1, Cby	Fy=50 ksi 1.0000 1.0000 0 lb 8.000 ft	ex ey	0.0000 in 0.0000 in
Loads: Total Applied Strength	P (1b) 0.0 0.0 4955.8	Mx (lb-in) 40909 40909 48042	Vy (1b) 0.0 0.0 1101.6	My (lb-in) 0 11145	Vx (1b) 0.0 0.0 4705.6
Effective sec Ae 0.95	tion proper 528 in^2	Ixe Sxe(t)	plied loads 19.189 in^4 3.1125 in^3 3.2887 in^3	4 Iye 3 Sye(1)	0.670 in^4 1.2388 in^3 0.3419 in^3
Interaction E NAS Eq. H1.2- NAS Eq. H2-1 NAS Eq. H2-1	1 (P, Mz (Mz	k, Vy)	Sqrt(0.603	+ 0.000) =	0.852 <= 1.0 0.776 <= 1.0 0.000 <= 1.0
Stud element 3 h/t exceeds 200.					

Maximum Shears, Moments, and Deflections

Load Combination: D + Lr, Y Direction

Location	Shear(l)	Shear(r)	Reaction	
(ft)	(lb)	(lb)	(lb)	
0.000	0.00	634.25	634.25	
21.500	-634.25	0.00	634.25	
Location	Moment	Location	Deflection	Inflections
(ft)	(lb-in)	(ft)	(in)	(ft)
10.750	40909	10.750	-0.48855	

ClarkDietrich Building Systems ClarkDietrich Building Systems

Maximum Shears, Moments, and Deflections

Load Combination: Live Load Deflection, Y Direction

Location	Shear(1)	Shear(r)	Reaction	
(ft)	(1b)	(lb)	(1b)	
0.000	0.00	290.25	290.25	
21.500	-290.25	0.00	290.25	
Location (ft) 10.750	Moment (lb-in) 18721	Location (ft) 10.750	Deflection (in) -0.22357	Inflections (ft)

Maximum Shears, Moments, and Deflections

Load Combination: 0.6D + Wmwf (Uplift), Y Direction

Location	Shear(1)	Shear(r)	Reaction	
(ft)	(1b)	(lb)	(1b)	
0.000	0.00	-196.08	-196.08	
21.500	196.08	0.00	-196.08	
Location (ft) 10.750	Moment (lb-in) -12647	Location (ft) 10.750	Deflection (in) 0.15104	Inflections (ft)

CFS Version 10.0.0 Section: 1200T150-54.sct 1200T150-54, 50 ksi Track SSMA Library Rev. Date: 1/1/2003 1:54:12 PM By: RSG Software Printed: 10/27/2021 1:34:17 PM

ClarkDietrich Building Systems ClarkDietrich Building Systems

Section Inputs

Apply st Modulus Yield St Tensile Warping	crength is of Elast crength, I Strength Constant	Fу	m cold wor 29 Cw	rk of f 9500 ks 50 ks 65 ks 0 in 0 in	i i ^6		
Track,	Thickness	0.0566 in	(16 Gage)				
Placeme	nt of Par	t from Orig	in:				
X to cer	nter of g	ravity	0 ir	r			
Y to cer	nter of g	ravity	0 ir	ı			
Outside	dimensio	ns, Open sh	ape				
	Length	Angle	Radius	Web	k	Hole Size	Distance
	(in)	(deg)	(in)		Coef.	(in)	(in)
1	1.500	180.000	0.084900	Single	0.000	0.000	0.750
2	12.198	90.000	0.084900	Cee	0.000	0.000	6.099
3	1.500	0.000	0.084900	Single	0.000	0.000	0.750

CFS Version 10.0.0 Analysis: Unit Roof Rim-Header.cfsa Rim-Header, Unit Roof Joist 200882 CFS-NHERI 10-Story Archetype Rev. Date: 10/27/2021 1:32:55 PM By: ClarkDietrich Building Systems Printed: 10/27/2021 1:34:17 PM

Analysis Inputs -----Members Revision Date and Time Section File 1 1200T150-54.sct 1/1/2003 1:54:12 PM Start Loc. End Loc. Braced R kφ Lm (ft) (ft) Flange (lb) (ft) 1 0.0000 3.3300 None 0.0000 0.0000 20.0000 ex еy (in) (in) 1 0.000 0.000 Supports Туре Location Bearing Fastened Κ (ft) (in) 1.0000 1 XYT 0.0000 2.00 Yes 2 XYT 2.00 1.0000 3.3300 Yes Loading: Dead Load Angle Start Loc. End Loc. Start End Туре (deg) (ft) Magnitude Magnitude (ft) 1 Concentrated -90.000 0.3300 344.00 NA lb NA Bearing Length 1.00 in 2 Concentrated -90.000 1.6600 344.00 NA NA lb Bearing Length 1.00 in 3 Concentrated -90.000 3.0000 NA 344.00 NA lb Bearing Length 1.00 in Loading: Live Load End Loc. Start Angle Start Loc. End Туре (ft) Magnitude Magnitude (deg) (ft) 1 Concentrated -90.000 0.3300 290.00 NA lb NA 1.00 in Bearing Length 2 Concentrated -90.000 1.6600 NA 290.00 NA lb 1.00 in Bearing Length 3 Concentrated -90.000 3.0000 NA 290.00 NA lb Bearing Length 1.00 in

CFS Version 10.0.0 Analysis: Unit Roof Rim-Header.cfsa ClarkDietrich Building Systems Rim-Header, Unit Roof Joist ClarkDietrich Building Systems 200882 CFS-NHERI 10-Story Archetype Rev. Date: 10/27/2021 1:32:55 PM By: ClarkDietrich Building Systems Printed: 10/27/2021 1:34:17 PM Load Combination: D+L Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Live Load 1.000 Load Combination: Live Load Deflection Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Live Load 1.000 2 Roof Live Load 1.000 Load Combination: D+0.75(Lr+S)+0.75*W pos Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 0.750 0.750 3 Wmwf pos 4 Snow Load 0.750 Load Combination: D+0.75(Lr+L) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 0.750 3 Live Load 0.750 Load Combination: D + Lr Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 1.000 Load Combination: D + Wcc (Down) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Wc&c pos 1.000 Load Combination: 0.6D + Wcc (Uplift) 2012 North American Specification - US (ASD) Specification: Inflection Point Bracing: No Factor Loading 1 Dead Load 0.600 2 Wc&c neg 1.000 Load Combination: D + Wmwf pos Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 1.000 2 Wmwf pos

CFS Version 10.0.0 Analysis: Unit Roof Rim-Header.cfsa Rim-Header, Unit Roof Joist 200882 CFS-NHERI 10-Story Archetype Rev. Date: 10/27/2021 1:32:55 PM By: ClarkDietrich Building Systems Printed: 10/27/2021 1:34:17 PM

ClarkDietrich Building Systems ClarkDietrich Building Systems

Member C	Member Check - 2012 North American Specification - US (ASD)										
	pination: D+L rameters at 3.3300 ft 1.0000		3.3300 ft 1.0000	Lt Kt	3.3300 ft 1.0000						
Material Cbx Cmx	ange: None	Q Grade 50/ Cby Cmy	1.0000	ex ey	0.0000 in 0.0000 in						
Loads: Total Applied Strength	P (1b) 0.0 0.0 3878.9	Mx (lb-in) 3294 3294 28903	Vy (1b) 952.0 952.0 1083.3	My (lb-in) 0 1011	Vx (1b) 0.0 0.0 2883.4						
Effective section properties at applied loads: Ae 0.84831 in^2 Ixe 14.378 in^4 Iye 0.103 in^4 Sxe(t) 2.3575 in^3 Sye(1) 0.5941 in^3 Sxe(b) 2.3575 in^3 Sye(r) 0.0774 in^3											
NAS Eq. C NAS Eq. C	on Equations 5.2.1-1 (P, 5.2.1-2 (P, 3.3.1-1 3.3.1-1	Mx, My) (0.000 + 0.114 Sqrt(0.010	4 + 0.000 = 0 + 0.772) =	0.114 <= 1.0 0.114 <= 1.0 0.884 <= 1.0 0.000 <= 1.0						

Track element 2 h/t exceeds 200.

Member Check - 2012 North American Specification - US (ASD)											
			3.3300 ft 1.0000	Lt Kt	3.3300 ft 1.0000						
Section: 120 Material Typ Cbx 1. Cmx 1. Braced Flang Red. Factor,	e: A653 SQ 2035 0000 e: None	Grade 50/1 Cby Cmy k¢	1.0000	ex ey	0.0000 in 0.0000 in						
Loads:	P (lb)	Mx (lb-in)	Vy (lb)	My (lb-in)	Vx (lb)						
Total Applied Strength	0.0 0.0 3878.9	8765 8765 28903	0.0 0.0 1083.3	0 0 1011	0.0 0.0 2883.4						

Page 3

Track element 2 h/t exceeds 200.

Maximum Shears, Moments, and Deflections

Load Combination: D+L, Y Direction

Location	Shear(1)	Shear(r)	Reaction	
(ft)	(1b)	(lb)	(1b)	
0.0000	0.00	951.95	951.95	
3.3300	-950.05	0.00	950.05	
Location (ft) 1.6601	Moment (lb-in) 8765.0	(ft)	Deflection (in) -0.0031521	Inflections (ft)

Maximum Shears, Moments, and Deflections

Load Combination: Live Load Deflection, Y Direction

Location	Shear(1)	Shear(r)	Reaction	
(ft)	(1b)	(lb)	(1b)	
0.0000	0.00	435.44	435.44	
3.3300	-434.56	0.00	434.56	
Location (ft) 1.6601	Moment (lb-in) 4009.2	(ft)	Deflection (in) -0.0014418	Inflections (ft)

CFS Version 10.0.0 Analysis: Guardrail Stud.cfsa Guardrail Stud CFS-NHERI Rev. Date: 10/26/2021 1:21:07 PM By: ClarkDietrich Building Systems Printed: 10/26/2021 1:22:14 PM

∲			0			0
Analysis Inputs						
Members Section Fil 1 600S250-68.	-				Revision Da 1/22/2011 8	te and Time :58:01 AM
Start Loc. (ft) 1 0.0000	End Loc. E (ft) F 4.7500 N			k¢ (1b) 0.0000		
ex (in) 1 0.000	ey (in) 0.000					
Supports Type L 1 XYT 2 XYT 3 T 4 T	ocation E (ft) 0.0000 0.7500 2.7500 4.7500	Bearing F (in) 1.00 1.00 1.00 1.00	astened Yes Yes No No	1 1 1	K .0000 .0000 .0000 .0000	
Loading: Dead L Type 1 Axial		-)	Loc. (ft) .5000		End Magnitude 100.00 lb
Loading: Produc Type 1 Concentrate	Angle (deg)	-)	Loc. (ft) NA Bear	Start Magnitude 200.00 ing Length	End Magnitude NA lb 5.00 in
Loading: Wind M Type 1 Concentrate 2 Concentrate	Angle (deg) d 0.000	2.750) O	NA	Start Magnitude 30.00 ing Length 30.00	End Magnitude NA lb 5.00 in NA lb
				Ded1	ing Length	5.00 in

Page 1

CFS Version 10.0.0 Page 2 Analysis: Guardrail Stud.cfsa ClarkDietrich Building Systems Guardrail Stud ClarkDietrich Building Systems **CFS-NHERI** Rev. Date: 10/26/2021 1:21:07 PM By: ClarkDietrich Building Systems Printed: 10/26/2021 1:22:14 PM Loading: Wind C&C Start Type Angle Start Loc. End Loc. End (ft) Magnitude Magnitude (deg) (ft) NA 50.00 0.000 NA lb 1 Concentrated 2.7500 Bearing Length 5.00 in NA lb 2 Concentrated 0.000 4.5000 NA 50.00 Bearing Length 5.00 in Load Combination: D+L Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1.000 1 Dead Load 2 Live Load 1.000 3 Product Load 1.000 Load Combination: D+Lr Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 1.000 Load Combination: D+S Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Snow Load 1.000 Load Combination: D+0.75(L+Lr) Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Live Load 0.750 3 Product Load 0.750 4 Roof Live Load 0.750 Load Combination: D+0.75(L+S) Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Live Load 0.750 3 Product Load 0.750 4 Snow Load 0.750 Load Combination: D+W Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Wind MWFRS 1.000 3 Product Load 1.000

CFS Version 10.0.0 Analysis: Guardrail Stud.cfsa Guardrail Stud CFS-NHERI Rev. Date: 10/26/2021 1:21:07 P By: ClarkDietrich Building System Printed: 10/26/2021 1:22:14 PM		ClarkDietrich Building S ClarkDietrich Building S	
Load Combination: 0.6D+W Specification: 2007 No Inflection Point Bracing: Loading 1 Dead Load 2 Wind MWFRS		pecification - US	(ASD)
Load Combination: Wind C& Specification: 2007 No Inflection Point Bracing: Loading 1 Wind C&C	orth American S	pecification - US	(ASD)
Member Check - 2016 Nort	h American Spe	cification - US (ASE))
	500 ft, Right s Ly 4.000 Ky 2.000	00 ft Lt	2.0000 ft 1.0000
Cmx 1.0000 Braced Flange: None	rade 50/1, Fy=5 Cby 1.666 Cmy 1.000 kφ Lm 2.000	57 ex D0 ey 0 lb	0.0000 in 0.0000 in
Loads: P (1b) (1 Total 100.0 Applied 100.0 Strength 7708.6	lb-in) (1 0 (Jy My lb) (lb-in) 0.0 11070 0.0 11070 9.7 13373	Vx (1b) -260.0 -260.0 5730.9
	Ixe 4.72 Sxe(t) 1.576	d loads: 79 in^4 Iye 50 in^3 Sye(1) 50 in^3 Sye(r)	0.6889 in^4 0.9090 in^3 0.3954 in^3
	, Vy) Sqrt	0.000 + 0.828 = 0 (0.000 + 0.000) = 0 (0.685 + 0.002) = 0	0.000 <= 1.0

Maximum Shears, Moments, and Deflections

Load Combination: D+W, X Direction

Location	Shear(l)	Shear(r)	Reaction
(ft)	(lb)	(lb)	(lb)
0.0000	0.0	1230.0	1230.0
0.7500	1230.0	-260.0	-1490.0

CFS Version 10.0.0 Analysis: Guardrail Stud.cfsa Guardrail Stud CFS-NHERI Rev. Date: 10/26/2021 1:21:07 PM By: ClarkDietrich Building Systems Printed: 10/26/2021 1:22:14 PM

ClarkDietrich Building Systems ClarkDietrich Building Systems

Location Moment Location Deflection Inflections (ft) (lb-in) (ft) (in) (ft) 0.7500 11070 0.4330 -0.00283 4.7500 0.47367

Phone: (877) 832-3206 www.ClarkDietrich.com PROJECT NAME: **CFS-NHERI 10 Story Test Portion** PROJECT NUMBER: 2150200882 ENGINEER: L. Padgett DATE: 10/29/2021 CHECKER: LAP DATE: SUBJECT: W1 EXTERIOR JOIST BEARING WALL

W1 EXTERIOR JOIST BEARING WALL

DESIGNED PER THE REQUIREMENTS OF AISI: 2016 NAS - US (ASD)

WALL NOTES

DEFAULT FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER	21.50 ft UNIT SIMPLE SPAN 1.00	RIGHT SPAN RIGHT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER	0.00 ft UNIT SIMPLE SPAN 1.00
FLOOR SYSTEM DEPTH FLOOR FRAMING TYPE	12 in LEDGER FRAMED		
DEFAULT WALL DETAILS WALL TYPE STUD DEPTH STUD OC SPACING	EXTERIOR WALL (EIFS) 6.000 in 24 in	FLANGE BRACING BRACING Lt =	

FOUNDATION LINE LOADS

		D	L	Lr	S	W	(plf)	E
		plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
SE	RVICE LEVEL LOADS	3758	4838	215	0	0	0	758

Phone: (877) 832-3206 www.ClarkDietrich.com

W1 EXTERIOR JOIST BEARING WALL, LEVEL 10

ROOF DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft ROOF SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEROOFSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 10 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	24 in
WALL DL	150.0 plf	OC LOAD FACTOR	2.000
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

LINE LOAD (plf) 44 0		D	L	Lr	S	V	V	E
LINE LOAD (plf) 44 0 0 0 0 0 0	_					DOWN (+)	UPLIFT (-)	
	LINE LOAD (plf)	44	0	0	0	0	0	0

parapet

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	258	0	215	0	0	0	52
CENTERLINE OF WALL (plf)	75	0	0	0	0	0	15
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	377	0	215	0	0	0	67
TOTAL AXIAL LOAD (lb)	753	0	430	0	0	0	134

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

ASD WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRES	SURE	37.60 plf
Gcpi =	0.180	ZONE 4		-15.13 psf -30.25 plf
ZONE 4 GCp =	-0.868			
ZONE 5 GCp =	-1.673	ZONE 5	P =	-26.74 psf
			w =	-53.48 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 W1 EXTERIOR JOIST BEARING WALL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 10

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft
------	----------

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S162	68 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb		ft-lb	
D + L	753	1548	2.056		0		0	
D + Lr	1183	2838	2.399		0		0	
D + 0.75L + 0.75Lr	1076	2516	2.339		0		0	
D + W	753	1548	2.056	37.60	188		470	
D + 0.7E	847	1767	2.086		0		0	
D + 0.75L + 0.75W + .75Lr	1076	2516	2.339	28.20	141		353	
D + 0.75L + 0.525E + .75Lr	1146	2679	2.338		0		0	
0.6D + W	452	929	2.056	37.60	188		470	
0.6D - 0.7E	358	710	1.985		0		0	
ZONE 4 BENDING				30.25	151		378	
ZONE 5 BENDING				53.48	267		668	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs)	7
	plf	lb	ft-lb			Prb =	83 lb
ZONE 4 DEFLECTION	21.18	106	265			y Brdg Rows = 2	
ZONE 5 DEFLECTION	37.43	187	468				

DesignPro Wall Designer Output

Version 6.0.2.0

Project Name: Project Number: Wall: Date/Time:	215020 W1: Le	HERI 10 Story 00882-0 evel 10 - Test 2021 / 4:11 PI			Cor	npany: itact Name: ine Number:	ClarkDietri Lynn Padg 678.304.55			
Inputs										
Building Code:		CBC 2016			Deflection Limit	t:	L/360		¥	
Design Option:		Typical			0.7 Deflection l		Yes			
Member Spacing:		24 in								
Bracing Distance:		4' O.C. Max (FB68-1)		Dead Load:		0 psf			0
Knockout:		Punched	,		Z:		100 ft			
Parapet Continuo	us:	Yes							3' - 9"	
Parapet Porosity:		Porous			Under Hang Po	prosity:	NA			
Wind Pressu	res									
Typical Zone:									<u>+</u>	
Parapet Suction:		-43.27 psf								
Parapet Pressure	e:	73.86 psf								0
Span Suction:		-22.91 psf								Ň
Span 1 Pressure	:	22.41 psf								
Point and Dis	tribute	d Loads								
Load Type	Load Ca	ase Direc	tion Lo	c.(Start)	Load(Start)	Loc.(End	l) Load	l(End)		0
Axial Point	Suction(typical) Globa	al FY	10.00 ft	-1183.00 lbs	. N		ŇÁ		
Axial Point	Pressure		al FY	10.00 ft	-1183.00 lbs	N	A	NA		
Moment	Suction(typical) Globa	al Mz	9.50 ft	-2838 lb-in Ċ	N	A	NA		
Moment	Pressur	e Globa	al Mz	9.50 ft	-2838 lb-in Ċ	N	A	NA	ا 10' - 0''	0
Specified Me	mbor									ľ
(1) 600S162-68 5		24" O.C.								
Stud Design	Resulte									0
Interaction Chec		Actual	Allowable	Capacity	Location	Controlle	d Bv	Pass/Fail		ľ
Moment: Strength		-13259 lb-in	39839 lb-in	33.28%	9.50 ft	TP / OH		Pass		
Moment: Stability		-13259 lb-in	30864 lb-in	42.96%	9.50 ft	TP / OH		Pass		
Moment: Dist. Bu		-13259 lb-in	32755 lb-in	40.48%	9.50 ft	TP / OH		Pass		0
Shear	•	554 lbs	2879 lbs	19.24%	10.00 ft	TP / OH		Pass		
V/M Interaction		0.37	1	36.73%	10.00 ft	TP / OH		Pass		
Axial Stability		-1183 lbs	7563 lbs	15.64%	0.00 ft	DL		Pass	\star	
P/M Interaction		0.60	1	59.93%	9.50 ft	TP / OH		Pass		
Moment of Inertia		1.365 in^4	3.525 in^4	38.72%	13.75 ft	TP / OH		Pass		
Span Deflection		0.063 in	0.333 in	L/1905	5.00 ft	TS		Pass		
OH + Adj Span ∆		0.174 in	0.45 in	L/930	13.75 ft	TP / OH		Pass		
Web Crippling		-221 lbs	1389 lbs	15.87%	C1	Suction		Pass		
Specified Co	nnectio	ons								
C2: Wir	nd: If	Rx = -590.82 lbs	Rx = 9	905.57 lbs			I	Ry = 0 lbs		
			10 - Test - C2		· ·			-		
		•								
C1: Wir	nd: F	Rx = -220.53 lbs	Rx = 1	168.72 lbs			6	Ry = 1183 lbs	1	

DesignPro Rigid Clip Designer Output Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Clip:	W1: Level 10 - Test - C2 - typical
Date/Time:	10/28/2021 / 4:11 PM

Inputs

Connection Design:	Bypass
Support Leg	51
Structure:	68-50 L.S.F.
Anchor/Structure Edge:	6 in
Loaded Leg	
L.S.F. 1:	68-50
L.S.F. 2:	None

Clip: Clip Loadeo Clip Suppor
Clip Quantit Clip Thickne

Wind Pressure Reactions

Shear:	634 lbs
Tension:	591 lbs
Compression:	591 lbs

Clip Design

Clip:S681Clip Loaded Leg Width:1.5 inClip Support Leg Width:1.5 inClip Quantity:1Clip Thickness68 MilsClip Length:11 in

Company:

Contact Name: Phone Number:

Support Leg Design Results

Wind Pressure Reactions				
Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	634 lbs	8467 lbs	7%	Pass
Clip Strong Moment	634 lbs	38115 lbs	2%	Pass
Clip Weak Bending	591 lbs	932 lbs	63%	Pass
Clip Axial Stress	0.651	1	65%	Pass
Clip Axial Shear Stress	0.429	1	43%	Pass
Clip Weak-Axis Deflection	591 lbs	4338 lbs	14%	Pass
Screw Shear	163 lbs	667 lbs	24%	Pass
Screw Tension	148 lbs	926 lbs	16%	Pass
Screw Shear-Tension	0.31	1	31%	Pass
Tilting/Bearing	163 lbs	805 lbs	20%	Pass
Pullout	148 lbs	284 lbs	52%	Pass
Pullover	148 lbs	362 lbs	41%	Pass
Tilting-Pullout	0.385	1	39%	Pass
Bearing-Pullover	0.103	1	10%	Pass

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	634 lbs	7842 lbs	8%	Pass
Clip Moment	634 lbs	38115 lbs	2%	Pass
Clip Compression	591 lbs	2038 lbs	29%	Pass
Clip Tension	591 lbs	15499 lbs	4%	Pass
Clip Compression Stress	0.307	1	31%	Pass
Clip CompShear Stress	0.101	1	10%	Pass
Screw Shear	238 lbs	667 lbs	36%	Pass
Tilting/Bearing	238 lbs	805 lbs	30%	Pass

Phone: (877) 832-3206 www.ClarkDietrich.com

W1 EXTERIOR JOIST BEARING WALL, LEVEL 9

10th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 9 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	24 in
WALL DL	150.0 plf	OC LOAD FACTOR	2.000
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	W		Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	527	0	215	0	0	0	106
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	752	538	215	0	0	0	152
TOTAL AXIAL LOAD (Ib)	1505	1075	430	0	0	0	304

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	37.00 plf
Gcpi =	0.180		-15.13 psf -30.25 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P =	-26.74 psf -53.48 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion				
PROJECT NUM	MBER:	2150200882				
ENGINEER:	L. Padg	ett	DATE:	10/29/2021		
CHECKER:	LAP		DATE:			
SUBJECT:	W1 EXT	ERIOR JOIST BEAR	NG WAI	LL		

NONE

W1 EXTERIOR JOIST BEARING WALL, LEVEL 9

MEMBER DESIGN PARAMETERS

Ly = 4.00 ft

- -,
- Lt = 4.00 ft

	1	600	S200	54 (50)
--	---	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	еу	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	2580	4580	1.775		0		0	
D + Lr	1935	1355	0.700		0		0	
D + 0.75L + 0.75Lr	2633	3773	1.433		0		0	
D + W	1505	1355	0.900	37.00	185		463	
D + 0.7E	1717	1546	0.900		0		0	
D + 0.75L + 0.75W + .75Lr	2633	3773	1.433	27.75	139		347	
D + 0.75L + 0.525E + .75Lr	2793	3917	1.403		0		0	
0.6D + W	903	813	0.900	37.00	185		463	
0.6D - 0.7E	690	621	0.900		0		0	
ZONE 4 BENDING				30.25	151		378	
ZONE 5 BENDING				53.48	267		668	

FLANGE BRACING

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n st	uds) 7
	plf	lb	ft-lb		Check	Prb =	195 lb
ZONE 4 DEFLECTION	21.18	106	265			y Brdg Rows =	2
ZONE 5 DEFLECTION	37.43	187	468				

DesignPro Wall Designer Output

Version 6.0.2.0

Project Nan Project Nun Wall: Date/Time:	nber: 21 W	-S-NHERI 10 50200882-0 1: Level 09 - ⁻ /28/2021 / 4	Test	уре		Cor	npany: ntact Name: one Number:		etrich Engineering dgett, P.E. .5525	Services LLC	
Inputs Building Co Design Opti Member Sp Bracing Dis Knockout: Parapet Po	ion: acing: tance:	CBC 20 Typical 24 in 4' O.C. Punche NA	Max (FB43-2	2)		Deflection Limi 0.7 Deflection I Dead Load: z: Under Hang Po	Jsed:	L/360 Yes 0 psf 100 ft NA		¥	0
Wind Pre Typical Zon Span Sucti Span 1 Pre	e: on:	-22.91 22.56									
		uted Load			(011)	L ((04t))				10' - 0''	0
Load Type Axial Point Axial Point Moment Moment	Suc Pre Suc	d Case tion(typical) ssure tion(typical) ssure	Direction Global FY Global FY Global Mz Global Mz	Loc	c.(Start) 10.00 ft 10.00 ft 9.50 ft 9.50 ft	Load(Start) -2793.00 lbs -2793.00 lbs -4580 lb-in Ċ -4580 lb-in Ċ	Loc.(End N/ N/ N/ N/	Á 4 4	ad(End) NA NA NA NA		0
Specified (1) 600S200 Stud Des	0-54 50 ks	i @ 24" O.C.									0
Interaction Moment: St Moment: Di Shear V/M Interac Axial Stabili P/M Interac Moment of	Check rength ability st. Buckling tion ty tion Inertia	Actual -9346 II -9346 II -9346 II -267 Ib 0.31 -2793 II 0.75 1.024 ii	b-in 303 b-in 296 b-in 2738 s 194 s 194 bs 7386 1 n^4 3.31	6 lbs 9 in^4	Capacity 30.75% 31.54% 34.12% 13.73% 30.75% 37.82% 74.70% 30.86%	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft 5.00 ft	Controller Suction Suction Suction Suction DL Suction Suction	d By	Pass/Fail Pass Pass Pass Pass Pass Pass Pass	*	
Span Defleo Web Crippli	ng	0.103 ii -267 lb:			L/1167 28.73%	5.00 ft C1	Suction Suction		Pass Pass		
Specified	d Conne	ctions									
C2:	Wind:	Rx = -190.	93 lbs	Rx = 2	63.77 lbs				Ry = 0 lbs		
L		nce Clip : W1:				<u> </u>					
C1:	Wind:	Rx = -267.2	27 lbs	Rx = 1	87.43 lbs				Ry = 2793 lbs		
U 1.											

DesignPro **Rigid Clip Designer Output** Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Clip:	W1: Level 09 - Test - C2 - typical
Date/Time:	10/28/2021 / 4:15 PM

Inputs

Connection Design:	Тор
Support Leg	54-50
Anchor/Structure Edge:	6 in
Loaded Leg	
L.S.F. 1:	54-50
L.S.F. 2:	None

Wind Pressure Reactions

lbs

Shear:	1021 lbs
Tension:	262 lbs
Compression:	262 lbs

Clip Design

Clip:	S541
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	54 Mils
Clip Length:	11 in

~ ...

Company:

Contact Name: Phone Number:

Support Leg Design Results

Wind Pressure Reactions				
Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5987 lbs	17%	Pass
Clip Strong Moment	1021 lbs	22767 lbs	4%	Pass
Clip Weak Bending	262 lbs	529 lbs	50%	Pass
Clip Axial Stress	0.541	1	54%	Pass
Clip Axial Shear Stress	0.321	1	32%	Pass
Clip Weak-Axis Deflection	262 lbs	2348 lbs	11%	Pass
Screw Shear	356 lbs	467 lbs	76%	Pass
Screw Tension	87 lbs	645 lbs	14%	Pass
Screw Shear-Tension	0.691	1	69%	Pass
Tilting/Bearing	356 lbs	534 lbs	67%	Pass
Pullout	87 lbs	198 lbs	44%	Pass
Pullover	87 lbs	287 lbs	30%	Pass
Tilting-Pullout	0.326	1	33%	Pass
Bearing-Pullover	0.077	1	8%	Pass

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5738 lbs	18%	Pass
Clip Moment	1021 lbs	22767 lbs	4%	Pass
Clip Compression	262 lbs	1262 lbs	21%	Pass
Clip Tension	262 lbs	12730 lbs	2%	Pass
Clip Compression Stress	0.252	1	25%	Pass
Clip CompShear Stress	0.095	1	10%	Pass
Screw Shear	387 lbs	467 lbs	83%	Pass
Tilting/Bearing	387 lbs	534 lbs	73%	Pass

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W1 EXTERIOR JOIST BEARING WALL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 8

9th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 8 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	24 in
WALL DL	150.0 plf	OC LOAD FACTOR	2.000
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	902	538	215	0	0	0	182
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	1128	1075	215	0	0	0	228
TOTAL AXIAL LOAD (lb)	2256	2150	430	0	0	0	455

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRE	SSURE	36.20 plf
Gcpi =	0.180	ZONE 4		-15.13 psf -30.25 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5	P = w =	-26.74 psf -53.48 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Stor	y Test P	ortion
PROJECT NUMB	ER: 2150200882		
ENGINEER: L.	Padgett	DATE:	10/29/2021
CHECKER: LA	P	DATE:	
SUBJECT: W1	1 EXTERIOR JOIST BEARI	NG WAI	LL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 8

MEMBER DESIGN PARAMETERS

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S300	54 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	4406	4580	1.039		0		0	
D + Lr	2686	1355	0.504		0		0	
D + 0.75L + 0.75Lr	4191	3773	0.900		0		0	
D + W	2256	1355	0.600	36.20	181		453	
D + 0.7E	2575	1546	0.600		0		0	
D + 0.75L + 0.75W + .75Lr	4191	3773	0.900	27.15	136		339	
D + 0.75L + 0.525E + .75Lr	4430	3917	0.884		0		0	
0.6D + W	1354	813	0.600	36.20	181		453	
0.6D - 0.7E	1035	621	0.600		0		0	
ZONE 4 BENDING				30.25	151		378	
ZONE 5 BENDING				53.48	267		668	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n st	uds) 6
	plf	lb	ft-lb		Check	Prb =	266 lb
ZONE 4 DEFLECTION	21.18	106	265			y Brdg Rows =	2
ZONE 5 DEFLECTION	37.43	187	468				

DesignPro Wall Designer Output

Version 6.0.2.0

Project Name: Project Number: Wall: Date/Time:	CFS-NHERI 10 2150200882-0 W1: Level 08 - 10/28/2021 / 4	Test	уре		Con	npany: tact Name: ne Number:		trich Engineering dgett, P.E. 5525	g Services LLC
Inputs Building Code: Design Option: Member Spacing: Bracing Distance: Knockout: Parapet Porosity:	CBC 2 Typica 24 in 4' O.C Punch NA	al . Max (FB43-2	2)	([2	Deflection Limit 0.7 Deflection L Dead Load: :: Jnder Hang Po	Jsed:	L/360 Yes 0 psf 100 ft NA		
Wind Pressure Typical Zone: Span Suction: Span 1 Pressure:	-22.91 22.56								
Point and Dist	ributed Loa	ds Direction	Loc.(St	art) Lo	oad(Start)	Loc.(End	l) Lo	ad(End)	10' - 0''
Axial Point S Axial Point I Moment S	Suction(typical) Pressure Suction(typical) Pressure	Global FY Global FY	10.0 10.0 9.5	00 ft -4 00 ft -4 50 ft -	430.00 lbs 430.00 lbs 4580 lb-in Ċ 4580 lb-in Ċ	NA NA NA NA	Á A A	NA NA NA NA	
Specified Men (1) 600S300-54 50	0 ksi @ 24" O.C								
Stud Design R									
Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buck Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling	-9346 -9346	Ib-in 3312 Ib-in 3312 Ib-in 2962 os 1947 Ibs 7866 1 in^4 4.01 in 0.33	29 lb-in 28 29 lb-in 28 28 lb-in 31 7 lbs 13 6 lbs 56 5 lbs 56 5 in^4 25 3 in L/	apacity 3.21% 3.21% 1.54% 3.73% 3.21% 3.32% 1.03% 5.52% 1411 3.73%	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft C1	Controller Suction Suction Suction Suction DL Suction Suction Suction Suction	d By	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas	¥
Specified Con	nections								
C2: Wind	1: Rx = -190	.93 lbs	Rx = 263.7	7 lbs				Ry = 0 lbs	
	erence Clip : W1	I: Level 08 - Te	est - C2 - typ	ical	·			<u>.</u> -	
Rele									

DesignPro Rigid Clip Designer Output Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Clip:	W1: Level 08 - Test - C2 - typical
Date/Time:	10/28/2021 / 4:19 PM

Inputs

Connection Design:TopSupport Leg ..Structure:Structure:54-50 L.S.F.Anchor/Structure Edge:6 inLoaded Leg ..L.S.F. 1:L.S.F. 1:54-50L.S.F. 2:None

Wind Pressure Reactions

Support Leg Design Results

Wind Pressure Reactions

Shear:	1021 lbs
Tension:	264 lbs
Compression:	264 lbs

Clip Design

Clip:	S541
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	54 Mils
Clip Length:	11 in

Company:

Contact Name:

Phone Number:

Loaded Leg Design Results

0

0

¢

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5738 lbs	18%	Pass
Clip Moment	1021 lbs	22767 lbs	4%	Pass
Clip Compression	264 lbs	1262 lbs	21%	Pass
Clip Tension	264 lbs	12730 lbs	2%	Pass
Clip Compression Stress	0.254	1	25%	Pass
Clip CompShear Stress	0.096	1	10%	Pass
Screw Shear	388 lbs	467 lbs	83%	Pass
Tilting/Bearing	388 lbs	534 lbs	73%	Pass

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5987 lbs	17%	Pass
Clip Strong Moment	1021 lbs	22767 lbs	4%	Pass
Clip Weak Bending	264 lbs	529 lbs	50%	Pass
Clip Axial Stress	0.544	1	54%	Pass
Clip Axial Shear Stress	0.325	1	33%	Pass
Clip Weak-Axis Deflection	264 lbs	2348 lbs	11%	Pass
Screw Shear	356 lbs	467 lbs	76%	Pass
Screw Tension	88 lbs	645 lbs	14%	Pass
Screw Shear-Tension	0.692	1	69%	Pass
Tilting/Bearing	356 lbs	534 lbs	67%	Pass
Pullout	88 lbs	198 lbs	44%	Pass
Pullover	88 lbs	287 lbs	31%	Pass
Tilting-Pullout	0.328	1	33%	Pass
Bearing-Pullover	0.077	1	8%	Pass

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W1 EXTERIOR JOIST BEARING WALL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 7

8th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 7 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	24 in
WALL DL	150.0 plf	OC LOAD FACTOR	2.000
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	W		Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	1278	1075	215	0	0	0	258
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	1504	1613	215	0	0	0	303
TOTAL AXIAL LOAD (Ib)	3008	3225	430	0	0	0	607

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	35.40 plf
Gcpi =	0.180		-15.13 psf -30.25 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P = w =	-26.74 psf -53.48 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NA	PROJECT NAME: CFS-NHERI 10 Stor			ortion	
PROJECT NU	JMBER:	2150200882			
ENGINEER:	L. Padg	jett	DATE:	10/29/2021	
CHECKER:	LAP		DATE:		
SUBJECT:	W1 EXTERIOR JOIST BEARING WALL				

W1 EXTERIOR JOIST BEARING WALL, LEVEL 7

MEMBER DESIGN PARAMETERS

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

1	600	S200	68 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	6233	4580	0.735		0		0	
D + Lr	3438	1355	0.394		0		0	
D + 0.75L + 0.75Lr	5749	3773	0.656		0		0	
D + W	3008	1355	0.450	35.40	177		443	
D + 0.7E	3432	1546	0.450		0		0	
D + 0.75L + 0.75W + .75Lr	5749	3773	0.656	26.55	133		332	
D + 0.75L + 0.525E + .75Lr	6067	3917	0.646		0		0	
0.6D + W	1805	813	0.450	35.40	177		443	
0.6D - 0.7E	1380	621	0.450		0		0	
ZONE 4 BENDING				30.25	151		378	
ZONE 5 BENDING				53.48	267		668	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n st	uds) 6
	plf	lb	ft-lb		Check	Prb =	374 lb
ZONE 4 DEFLECTION	21.18	106	265			y Brdg Rows =	2
ZONE 5 DEFLECTION	37.43	187	468				

DesignPro Wall Designer Output

Version 6.0.2.0

Project Name: Project Number: Wall: Date/Time:	CFS-NHERI 10 2150200882-0 W1: Level 07 - 10/28/2021 / 4	Test	e	Cor	ntact Name: Lyr	rkDietrich Engineering 3 in Padgett, P.E. 3.304.5525	Services LLC
Inputs Building Code: Design Option: Member Spacing:	CBC 2 Typica 24 in			Deflection Limi 0.7 Deflection			
Bracing Distance: Knockout: Parapet Porosity:		. Max (FB68-1) ed		Dead Load: z: Under Hang Po	0 psf 100 ft prosity: NA		
Wind Pressure Typical Zone: Span Suction: Span 1 Pressure:	-22.91 22.56						
	ributed Load Load Case Suction(typical)	ds Direction Global FY	Loc.(Start) 10.00 ft	Load(Start) -6233.00 lbs	Loc.(End) NA	Load(End) NA	10' - 0'' (
Axial Point F Moment S	Pressure Suction(typical) Pressure	Global FY Global Mz Global Mz	10.00 ft 9.50 ft 9.50 ft	-6233.00 lbs -4580 lb-in Ċ -4580 lb-in Ċ	NA NA NA	NA NA NA	(
Specified Mem (1) 600S200-68 50							
Stud Design R	esults						
Interaction Check Moment: Strength Moment: Stability	Actual -9346 -9346	lb-in 44384	lb-in 21.06%	Location 6.00 ft 6.00 ft	Controlled By Suction Suction	Pass/Fail Pass Pass	¥ Ľ
Moment: Dist. Buck Shear	ding -9346 l -267 lb	lb-in 37000 s 2879 ll	lb-in 25.26% os 9.28%	6.00 ft 0.00 ft	Suction Suction	Pass Pass	
V/M Interaction Axial Stability P/M Interaction	0.21 -6233 I 0.93	1	92.75%	6.00 ft 0.00 ft 6.00 ft	Suction DL Suction	Pass Pass Pass	
Moment of Inertia Span Deflection Web Crippling	1.024 i 0.083 i -267 lb	n 0.333 i	n L/1441	5.00 ft 5.00 ft C1	Suction Suction Suction	Pass Pass Pass	
	nections						
Specified Con			Rx = 263.77 lbs			Ry = 0 lbs	
Specified Con	: Rx = -190.	.93 lbs					
C2: Wind	: Rx = -190. erence Clip : W1						

DesignPro Rigid Clip Designer Output Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Clip:	W1: Level 07 - Test - C2 - typical
Date/Time:	10/28/2021 / 4:24 PM

Inputs

Connection Design:	Тор
Support Leg	
Structure:	54-50 L.S.F.
Anchor/Structure Edge:	6 in
Loaded Leg	
L.S.F. 1:	68-50
L.S.F. 2:	None

Wind Pressure Reactions

Shear:	<u>1021 lbs</u>
Tension:	264 lbs
Compression:	<u>264 lbs</u>

Clip Design

Clip:	S541
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	54 Mils
Clip Length:	11 in

~ ...

Company:

Contact Name: Phone Number:

0

0

Support Leg Design Results

Wind Pressure Reactions							
Interaction Check	Actual	Allowable	Capacity	P/F			
Clip Shear	1021 lbs	5987 lbs	17%	Pass			
Clip Strong Moment	1021 lbs	22767 lbs	4%	Pass			
Clip Weak Bending	264 lbs	529 lbs	50%	Pass			
Clip Axial Stress	0.544	1	54%	Pass			
Clip Axial Shear Stress	0.325	1	33%	Pass			
Clip Weak-Axis Deflection	264 lbs	2348 lbs	11%	Pass			
Screw Shear	356 lbs	467 lbs	76%	Pass			
Screw Tension	88 lbs	645 lbs	14%	Pass			
Screw Shear-Tension	0.692	1	69%	Pass			
Tilting/Bearing	356 lbs	534 lbs	67%	Pass			
Pullout	88 lbs	198 lbs	44%	Pass			
Pullover	88 lbs	287 lbs	31%	Pass			
Tilting-Pullout	0.328	1	33%	Pass			
Bearing-Pullover	0.077	1	8%	Pass			

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5738 lbs	18%	Pass
Clip Moment	1021 lbs	22767 lbs	4%	Pass
Clip Compression	264 lbs	1262 lbs	21%	Pass
Clip Tension	264 lbs	12730 lbs	2%	Pass
Clip Compression Stress	0.254	1	25%	Pass
Clip CompShear Stress	0.096	1	10%	Pass
Screw Shear	388 lbs	467 lbs	83%	Pass
Tilting/Bearing	388 lbs	629 lbs	62%	Pass

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W1 EXTERIOR JOIST BEARING WALL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 6

7th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 6 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	24 in
WALL DL	150.0 plf	OC LOAD FACTOR	2.000
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	1654	1613	215	0	0	0	334
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	1880	2150	215	0	0	0	379
TOTAL AXIAL LOAD (Ib)	3759	4300	430	0	0	0	758

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	35.40 plf
Gcpi =	0.180		-15.13 psf -30.25 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P = w =	-26.74 psf -53.48 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion			
PROJECT NU	JMBER:	2150200882			
ENGINEER:	L. Padg	ett	DATE:	10/29/2021	
CHECKER:	LAP		DATE:		
SUBJECT:	W1 EX1	ERIOR JOIST BEARIN		_L	

W1 EXTERIOR JOIST BEARING WALL, LEVEL 6

MEMBER DESIGN PARAMETERS

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S300	68 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	8059	4580	0.568		0		0	
D + Lr	4189	1355	0.323		0		0	
D + 0.75L + 0.75Lr	7307	3773	0.516		0		0	
D + W	3759	1355	0.360	35.40	177		443	
D + 0.7E	4290	1546	0.360		0		0	
D + 0.75L + 0.75W + .75Lr	7307	3773	0.516	26.55	133		332	
D + 0.75L + 0.525E + .75Lr	7705	3917	0.508		0		0	
0.6D + W	2255	813	0.360	35.40	177		443	
0.6D - 0.7E	1725	621	0.360		0		0	
ZONE 4 BENDING				30.25	151		378	
ZONE 5 BENDING				53.48	267		668	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n stu	uds) 6
	plf	lb	ft-lb		Check	Prb =	484 lb
ZONE 4 DEFLECTION	21.18	106	265			y Brdg Rows =	2
ZONE 5 DEFLECTION	37.43	187	468				

DesignPro Wall Designer Output

Version 6.0.2.0

Project Name: Project Number: Wall: Date/Time:	CFS-NHERI 10 2150200882-0 W1: Level 06 - 1 10/28/2021 / 4			Cor	ntact Name: Ly	arkDietrich Engineering S nn Padgett, P.E. 8.304.5525	Services LLC
Inputs Building Code: Design Option: Member Spacing: Bracing Distance: Knockout: Parapet Porosity:	CBC 20 Typical 24 in 4' O.C. Punche NA	Max (FB68-1)		Deflection Limi 0.7 Deflection I Dead Load: z: Under Hang Po	Jsed: Yes 0 psf 100 ff		
Wind Pressur Typical Zone: Span Suction: Span 1 Pressure:	-22.91						
	tributed Load Load Case Suction(typical)	ls Direction Global FY	Loc.(Start) 10.00 ft	Load(Start) -8059.00 lbs	Loc.(End) NA	Load(End) NA	10' - 0"
Axial Point Moment	Pressure Suction(typical) Pressure	Global FY Global Mz Global Mz	10.00 ft 9.50 ft 9.50 ft	-8059.00 lbs -4580 lb-in ℃ -4580 lb-in ℃	NA NA NA	NA NA NA	
Specified Men (1) 600S300-68 50							
Stud Design F	Results						
Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability	-9346 II -9346 II -9346 II -267 Ibs 0.22 -8059 II 1.00 1.024 ir	b-in 43300 lb b-in 43300 lb b-in 40535 lb s 2879 lbs 1 bs 11017 lb 1 n^4 5.222 in/	-in 21.58% -in 21.58% -in 23.06% 9.28% 21.59% s 73.15% 99.77% 4 19.62% L/1835	Location 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft 6.00 ft 5.00 ft 5.00 ft C1	Controlled By Suction Suction Suction Suction DL Suction Suction Suction Suction	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas	¥,— L
Moment of Inertia Span Deflection	0.065 ir -267 lbs	s 1389 lbs	19.24%	01			
Moment of Inertia Span Deflection Web Crippling	-267 lbs	s 1389 lbs	19.24%				
Moment of Inertia Span Deflection Web Crippling Specified Con	-267 lbs		19.24% x = 263.77 lbs			Ry = 0 lbs	
	-267 lbs	93 lbs	x = 263.77 lbs			Ry = 0 lbs	

DesignPro **Rigid Clip Designer Output** Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

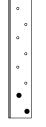
Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Clip:	W1: Level 06 - Test - C2 - typical
Date/Time:	10/28/2021 / 4:26 PM

Connection Design:	Тор
Support Leg	
Structure:	54-50
Anchor/Structure Edge:	6 in
Loaded Leg	
L.S.F. 1:	68-50
L.S.F. 2:	None

Wind Pressure Reactions

Shear:	<u>1021 lbs</u>
Tension:	264 lbs
Compression:	<u>264 lbs</u>

Clip Design



Clip:	S541
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	54 Mils
Clip Length:	11 in

~ ...

Company:

Contact Name: Phone Number:

Support Leg Design Results

Wind Pressure Reactions				
Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5987 lbs	17%	Pass
Clip Strong Moment	1021 lbs	22767 lbs	4%	Pass
Clip Weak Bending	264 lbs	529 lbs	50%	Pass
Clip Axial Stress	0.544	1	54%	Pass
Clip Axial Shear Stress	0.325	1	33%	Pass
Clip Weak-Axis Deflection	264 lbs	2348 lbs	11%	Pass
Screw Shear	356 lbs	467 lbs	76%	Pass
Screw Tension	88 lbs	645 lbs	14%	Pass
Screw Shear-Tension	0.692	1	69%	Pass
Tilting/Bearing	356 lbs	534 lbs	67%	Pass
Pullout	88 lbs	198 lbs	44%	Pass
Pullover	88 lbs	287 lbs	31%	Pass
Tilting-Pullout	0.328	1	33%	Pass
Bearing-Pullover	0.077	1	8%	Pass

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5738 lbs	18%	Pass
Clip Moment	1021 lbs	22767 lbs	4%	Pass
Clip Compression	264 lbs	1262 lbs	21%	Pass
Clip Tension	264 lbs	12730 lbs	2%	Pass
Clip Compression Stress	0.254	1	25%	Pass
Clip CompShear Stress	0.096	1	10%	Pass
Screw Shear	388 lbs	467 lbs	83%	Pass
Tilting/Bearing	388 lbs	629 lbs	62%	Pass

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W1 EXTERIOR JOIST BEARING WALL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 5

6th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 5 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	24 in
WALL DL	150.0 plf	OC LOAD FACTOR	2.000
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	2030	2150	215	0	0	0	409
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	2255	2688	215	0	0	0	455
TOTAL AXIAL LOAD (Ib)	4511	5375	430	0	0	0	910

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRES	SURE	35.40 plf
Gcpi =	0.180	ZONE 4		-15.13 psf -30.25 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5	P = w =	-26.74 psf -53.48 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion			
PROJECT NU	JMBER:	2150200882			
ENGINEER:	L. Padg	ett	DATE:	10/29/2021	
CHECKER:	LAP		DATE:		
SUBJECT:	W1 EXTERIOR JOIST BEARING WALL				

W1 EXTERIOR JOIST BEARING WALL, LEVEL 5

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft	
------	----------	--

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

1		600	S200	97 (50)
	•			

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	9886	4580	0.463		0		0	
D + Lr	4941	1355	0.274		0		0	
D + 0.75L + 0.75Lr	8864	3773	0.426		0		0	
D + W	4511	1355	0.300	35.40	177		443	
D + 0.7E	5148	1546	0.300		0		0	
D + 0.75L + 0.75W + .75Lr	8864	3773	0.426	26.55	133		332	
D + 0.75L + 0.525E + .75Lr	9342	3917	0.419		0		0	
0.6D + W	2706	813	0.300	35.40	177		443	
0.6D - 0.7E	2069	621	0.300		0		0	
ZONE 4 BENDING				30.25	151		378	
ZONE 5 BENDING				53.48	267		668	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n st	uds) 6
	plf	lb	ft-lb		Check	Prb =	593 lb
ZONE 4 DEFLECTION	21.18	106	265			y Brdg Rows =	2
ZONE 5 DEFLECTION	37.43	187	468]	

DesignPro Wall Designer Output

Version 6.0.2.0

Project Number: Wall: Date/Time:	CFS-NHERI 2150200882 W5: Level 0' 10/28/2021	-0 1 - Test			Con	tact Name: Ly	arkDietrich Engineering S nn Padgett, P.E. 8.304.5525	Services LLC
Inputs	000	2 2040			Deflection Lineit			ς.
Building Code: Design Option:	Cus				Deflection Limit 0.7 Deflection L			
Member Spacing: Bracing Distance: Knockout:		n .C. Max (F ched	B68-1)		Dead Load: z:	0 psf 100 f	t	0
Wind Pressures Custom Pressures Span Pressure:) psf						
Axial Point	tributed Lo Load Case Pressure Pressure	bads Direct Global Global	IFY	.oc.(Start) 10.00 ft 9.66 ft	Load(Start) -19018.00 lbs -3756 lb-in Č	Loc.(End) NA NA	Load(End) NA NA	10' - 0" ()
		.C.						
(1) 600S350-97 56 Stud Design F	i0 ksi @ 24" O Results							0
(1) 600S350-97 50 Stud Design F Interaction Check	i0 ksi @ 24" O Results k Acti	ual	Allowable	Capacity	Location	Controlled By	Pass/Fail	0
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength	i0 ksi @ 24" O Results k Actu -343	u al 31 lb-in	77650 lb-in	4.42%	9.66 ft	Custom	Pass	0
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability	i0 ksi @ 24" O Results k Acte -343 -343	u al 31 lb-in 31 lb-in	77650 lb-in 77650 lb-in	4.42% 4.42%	9.66 ft 9.66 ft	Custom Custom	Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc	i0 ksi @ 24" O Results k Acte -343 -343	ual 31 lb-in 31 lb-in 31 lb-in	77650 lb-in	4.42% 4.42%	9.66 ft	Custom	Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear	i0 ksi @ 24" O Results k Acti -343 -343 ckling -343	ual 31 lb-in 31 lb-in 31 lb-in lbs	77650 lb-in 77650 lb-in 78371 lb-in	4.42% 4.42% 4.38%	9.66 ft 9.66 ft 9.66 ft	Custom Custom Custom	Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction	0 ksi @ 24" O Results k Actu -343 -341 -343 -341	ual 31 lb-in 31 lb-in 31 lb-in lbs 5 018 lbs	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs	4.42% 4.42% 4.38% 2.14% 4.87% 81.40%	9.66 ft 9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft	Custom Custom Custom Custom DL	Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction	0 ksi @ 24" O Results k Actu -343 -343 -343 -841 0.05 -190 0.87	ual 31 lb-in 31 lb-in 31 lb-in lbs 5)18 lbs	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90%	9.66 ft 9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft	Custom Custom Custom Custom DL Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia	i0 ksi @ 24" O Results k Actu -343 -345 -343 -345 -34	ual 31 lb-in 31 lb-in 31 lb-in lbs 5)18 lbs 7 33 in^4	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07%	9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft	Custom Custom Custom Custom DL Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection	i0 ksi @ 24" O Results k Actu -343 -343 -343 -81 0.05 -190 0.87 0.09 0.00	ual 31 lb-in 31 lb-in 1bs 5 5 118 lbs 7 93 in^4 95 in	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4 0.5 in	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07% L/22359	9.66 ft 9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft	Custom Custom Custom Custom DL Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
Specified Men (1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling	i0 ksi @ 24" O Results k Actu -343 -345 -343 -345 -34	ual 31 lb-in 31 lb-in 1bs 5 18 lbs 7 18 lbs 7 18 lbs 7 18 lbs 7 18 lbs 7	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07%	9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft	Custom Custom Custom Custom DL Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling	i0 ksi @ 24" O Results k Actu -343 -343 -343 -81 0.05 -190 0.87 0.09 0.00 81 ll 19 ll	ual 31 lb-in 31 lb-in 1bs 5 18 lbs 7 18 lbs 7 18 lbs 7 18 lbs 7 18 lbs 7	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4 0.5 in 2572 lbs	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07% L/22359 3.16%	9.66 ft 9.66 ft 9.66 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft C2	Custom Custom Custom Custom DL Custom Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling	i0 ksi @ 24" O Results k Actu -343 -343 -343 -343 -81 0.05 -190 0.87 0.09 0.00 81 ll 19 ll nnections	ual 31 lb-in 31 lb-in lbs 5 18 lbs 7 33 in^4 55 in 55 55	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4 0.5 in 2572 lbs	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07% L/22359 3.16%	9.66 ft 9.66 ft 9.66 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft C2	Custom Custom Custom Custom DL Custom Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling Specified Con C2: Winc	i0 ksi @ 24" O Results k Actu -343 -343 -343 -81 0.05 -190 0.87 0.09 0.00 81 ll 19 ll nnections d: Rx = 8	ual 31 lb-in 31 lb-in 1bs 5 18 lbs 7 33 in^4 55 in 55 s 55 s 1.3 lbs	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4 0.5 in 2572 lbs 2572 lbs	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07% L/22359 3.16% 0.73%	9.66 ft 9.66 ft 9.66 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft C2	Custom Custom Custom Custom DL Custom Custom Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W1 EXTERIOR JOIST BEARINE WALL
 DATE:

W1 EXTERIOR JOIST BEARING WALL, LEVEL 4

5th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 4 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	24 in
WALL DL	150.0 plf	OC LOAD FACTOR	2.000
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	2405	2688	215	0	0	0	485
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	2631	3225	215	0	0	0	531
TOTAL AXIAL LOAD (lb)	5262	6450	430	0	0	0	1062

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	35.40 plf
Gcpi =	0.180		-15.13 psf -30.25 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P =	-26.74 psf -53.48 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NA	AME:	CFS-NHERI 10 Stor	y Test P	ortion
PROJECT NU	JMBER:	2150200882		
ENGINEER:	L. Padg	ett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT:	W1 EXT	ERIOR JOIST BEARI	NG WA	LL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 4

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft	
	10.00 1	

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

1	600	S200	97 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	еу	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	11712	4580	0.391		0		0	
D + Lr	5692	1355	0.238		0		0	
D + 0.75L + 0.75Lr	10422	3773	0.362		0		0	
D + W	5262	1355	0.257	35.40	177		443	
D + 0.7E	6005	1546	0.257		0		0	
D + 0.75L + 0.75W + .75Lr	10422	3773	0.362	26.55	133		332	
D + 0.75L + 0.525E + .75Lr	10979	3917	0.357		0		0	
0.6D + W	3157	813	0.257	35.40	177		443	
0.6D - 0.7E	2414	621	0.257		0		0	
ZONE 4 BENDING				30.25	151		378	
ZONE 5 BENDING				53.48	267		668	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n st	uds) 6
	plf	lb	ft-lb		Check	Prb =	703 lb
ZONE 4 DEFLECTION	21.18	106	265			y Brdg Rows =	2
ZONE 5 DEFLECTION	37.43	187	468				

DesignPro Wall Designer Output

Version 6.0.2.0

Wall: Date/Time:	nber: 2150 W1:	S-NHERI 10 Sto 0200882-0 Level 04 - Tes 28/2021 / 4:33	t		Cor	ntact Name: Lyni	kDietrich Engineering S n Padgett, P.E. .304.5525	ervices LLC	
Inputs Building Coo Design Opti		CBC 2016 Typical			Deflection Limi 0.7 Deflection I			<u>}</u>	Г
Member Spa Bracing Dist Knockout:	acing: tance:	24 in 4' O.C. Ma Punched	x (FB68-1)		Dead Load: z:	0 psf 100 ft			0
Parapet Por	rosity:	NA			Under Hang Po	prosity: NA			
Wind Pre	ssures								
Typical Zon		00.04							
Span Suction Span 1 Pre		-22.91 psf 22.56 psf							
		Ited Loads						10' - 0''	0
Load Type			rection	Loc.(Start)	Load(Start)	Loc.(End)	Load(End)		1
Axial Point			obal FY	10.00 ft	-11712.00 lbs	NA	NA		
Axial Point	Press	ure Gl	obal FY	10.00 ft	-11712.00 lbs	NA	NA		
Moment	Suctio	on(typical) Glo	obal Mz	9.50 ft	-4580 lb-in Ċ	NA	NA		
Moment	Press	sure Glo	obal Mz	9.50 ft	-4580 lb-in Č	NA	NA		
Specified	d Member								
•	0-97 50 ksi (
	inn Deen	lte							0
Stud Des	sian kesu	11.5		• •	Location	Controlled By	Pass/Fail	×	L
	-		Allowable	e Capacity					
Interaction	Check	Actual -9346 lb-in	Allowable 64543 lb-i		6.00 ft	Suction	Pass	· ·	
Interaction Moment: Str	Check rength	Actual	64543 lb-i	n 14.48%			Pass Pass	,	
Interaction Moment: Str Moment: Str	Check rength ability	Actual -9346 lb-in	64543 lb-i 53868 lb-i	n 14.48% n 17.35%	6.00 ft	Suction		,	
Interaction Moment: Str Moment: Str Moment: Dis	Check rength ability	Actual -9346 lb-in -9346 lb-in	64543 lb-i 53868 lb-i	n 14.48% n 17.35%	6.00 ft 6.00 ft	Suction Suction	Pass	·	
Interaction Moment: Sti Moment: Sta Moment: Dis Shear V/M Interact	Check rength ability st. Buckling tion	Actual -9346 lb-in -9346 lb-in -9346 lb-in	64543 lb-i 53868 lb-i 56022 lb-i	n 14.48% n 17.35% n 16.68%	6.00 ft 6.00 ft 6.00 ft	Suction Suction Suction	Pass Pass	·	
Interaction Moment: Sti Moment: Sta Moment: Dis Shear V/M Interact	Check rength ability st. Buckling tion	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs	64543 lb-i 53868 lb-i 56022 lb-i 3805 lbs 1	n 14.48% n 17.35% n 16.68% 7.02% 14.48% 76.54%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft	Suction Suction Suction Suction Suction DL	Pass Pass Pass		
Interaction Moment: Str Moment: Dis Shear V/M Interact Axial Stabilit P/M Interact	Check rength ability st. Buckling tion ty tion	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -11712 lbs 0.98	64543 lb-i 53868 lb-i 56022 lb-i 3805 lbs 1 15302 lbs 1	n 14.48% n 17.35% n 16.68% 7.02% 14.48% 76.54% 97.85%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft 6.00 ft	Suction Suction Suction Suction DL Suction	Pass Pass Pass Pass Pass Pass		
Interaction Moment: Str Moment: Dis Shear V/M Interact Axial Stabilit P/M Interact Moment of I	Check rength ability st. Buckling tion ty tion	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -11712 lbs 0.98 1.024 in^4	64543 lb-i 53868 lb-i 56022 lb-i 3805 lbs 1 15302 lbs 1 5.613 in^4	n 14.48% n 17.35% n 16.68% 7.02% 14.48% 76.54% 97.85% 18.25%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft 6.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction	Pass Pass Pass Pass Pass Pass Pass		
Interaction Moment: Sta Moment: Dia Shear V/M Interact Axial Stabilit P/M Interact Moment of I Span Deflect	Check rength ability st. Buckling tion ty tion nertia ction	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -11712 lbs 0.98 1.024 in^4 0.061 in	64543 lb-i 53868 lb-i 56022 lb-i 3805 lbs 1 15302 lbs 1 5.613 in^4 0.333 in	n 14.48% n 17.35% n 16.68% 7.02% 14.48% 76.54% 97.85% 4 18.25% L/1972	6.00 ft 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction Suction	Pass Pass Pass Pass Pass Pass Pass Pass		
Interaction Moment: Sta Moment: Dia Shear V/M Interact Axial Stabilit P/M Interact Moment of I Span Deflect	Check rength ability st. Buckling tion ty tion nertia ction	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -11712 lbs 0.98 1.024 in^4	64543 lb-i 53868 lb-i 56022 lb-i 3805 lbs 1 15302 lbs 1 5.613 in^4	n 14.48% n 17.35% n 16.68% 7.02% 14.48% 76.54% 97.85% 18.25%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft 6.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction	Pass Pass Pass Pass Pass Pass Pass		
Interaction Moment: Str Moment: Dis Shear V/M Interact Axial Stabilit P/M Interact Moment of I Span Deflec Web Crippli	Check rength ability st. Buckling tion ty ion lnertia ction ng	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -11712 lbs 0.98 1.024 in^4 0.061 in -267 lbs	64543 lb-i 53868 lb-i 56022 lb-i 3805 lbs 1 15302 lbs 1 5.613 in^4 0.333 in	n 14.48% n 17.35% n 16.68% 7.02% 14.48% 76.54% 97.85% 4 18.25% L/1972	6.00 ft 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction Suction	Pass Pass Pass Pass Pass Pass Pass Pass		
Interaction Moment: Str Moment: Str Moment: Dis Shear V/M Interact Axial Stabilit P/M Interact Moment of I Span Deflect Web Cripplit Specifiect	Check rength ability st. Buckling tion ty ion lnertia ction ng	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -11712 lbs 0.98 1.024 in^4 0.061 in -267 lbs	64543 lb-i 53868 lb-i 56022 lb-i 3805 lbs 1 15302 lbs 1 5.613 in^4 0.333 in 2197 lbs	n 14.48% n 17.35% n 16.68% 7.02% 14.48% 76.54% 97.85% 4 18.25% L/1972	6.00 ft 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction Suction	Pass Pass Pass Pass Pass Pass Pass Pass		
Interaction Moment: Str Moment: Str Moment: Dis Shear V/M Interact Axial Stabilit P/M Interact Moment of I Span Deflect Web Cripplit Specifiect	Check rength ability st. Buckling tion inertia ction ng d Connec	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -11712 lbs 0.98 1.024 in^4 0.061 in -267 lbs tions	64543 lb-i 53868 lb-i 56022 lb-i 3805 lbs 1 15302 lbs 1 5.613 in^4 0.333 in 2197 lbs	n 14.48% n 17.35% n 16.68% 7.02% 14.48% 76.54% 97.85% 18.25% L/1972 12.17% = 263.77 lbs	6.00 ft 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction Suction	Pass Pass Pass Pass Pass Pass Pass Pass		
Stud Des Interaction Moment: Sta Moment: Dis Shear V/M Interact Axial Stabilit P/M Interact Moment of I Span Deflec Web Cripplit Specifiec C2:	Check rength ability st. Buckling tion inertia ction ng d Connec	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -11712 lbs 0.98 1.024 in^4 0.061 in -267 lbs tions	64543 lb-i 53868 lb-i 56022 lb-i 3805 lbs 1 15302 lbs 1 5.613 in^4 0.333 in 2197 lbs os Rx vel 04 - Test - 0	n 14.48% n 17.35% n 16.68% 7.02% 14.48% 76.54% 97.85% 18.25% L/1972 12.17% = 263.77 lbs	6.00 ft 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction Suction	Pass Pass Pass Pass Pass Pass Pass Pass		

DesignPro Rigid Clip Designer Output Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

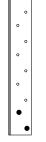
Inputs

Connection Design:	Тор
Support Leg	
Structure:	54-50
Anchor/Structure Edge:	6 in
Loaded Leg	
L.S.F. 1:	97-50
L.S.F. 2:	None

Wind Pressure Reactions

Shear:	1021 lbs
Tension:	264 lbs
Compression:	<u>264 lbs</u>

Clip Design



Clip:	S541
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	54 Mils
Clip Length:	11 in

~ ...

Company:

Contact Name: Phone Number:

Support Leg Design Results

Wind Pressure Reactions							
Interaction Check	Actual	Allowable	Capacity	P/F			
Clip Shear	1021 lbs	5987 lbs	17%	Pass			
Clip Strong Moment	1021 lbs	22767 lbs	4%	Pass			
Clip Weak Bending	264 lbs	529 lbs	50%	Pass			
Clip Axial Stress	0.544	1	54%	Pass			
Clip Axial Shear Stress	0.325	1	33%	Pass			
Clip Weak-Axis Deflection	264 lbs	2348 lbs	11%	Pass			
Screw Shear	356 lbs	467 lbs	76%	Pass			
Screw Tension	88 lbs	645 lbs	14%	Pass			
Screw Shear-Tension	0.692	1	69%	Pass			
Tilting/Bearing	356 lbs	534 lbs	67%	Pass			
Pullout	88 lbs	198 lbs	44%	Pass			
Pullover	88 lbs	287 lbs	31%	Pass			
Tilting-Pullout	0.328	1	33%	Pass			
Bearing-Pullover	0.077	1	8%	Pass			

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5738 lbs	18%	Pass
Clip Moment	1021 lbs	22767 lbs	4%	Pass
Clip Compression	264 lbs	1262 lbs	21%	Pass
Clip Tension	264 lbs	12730 lbs	2%	Pass
Clip Compression Stress	0.254	1	25%	Pass
Clip CompShear Stress	0.096	1	10%	Pass
Screw Shear	388 lbs	467 lbs	83%	Pass
Tilting/Bearing	388 lbs	629 lbs	62%	Pass

Phone: (877) 832-3206 www.ClarkDietrich.com

W1 EXTERIOR JOIST BEARING WALL, LEVEL 3

4th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 3 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	24 in
WALL DL	150.0 plf	OC LOAD FACTOR	2.000
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	2781	3225	215	0	0	0	561
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	3007	3763	215	0	0	0	607
TOTAL AXIAL LOAD (Ib)	6014	7525	430	0	0	0	1213

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	35.40 plf
Gcpi =	0.180		-15.13 psf -30.25 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P = w =	-26.74 psf -53.48 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT N/	NAME: CFS-NHERI 10 Story Test Portion			
PROJECT N	JMBER:	2150200882		
ENGINEER:	L. Padg	jett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT: W1 EXTERIOR JOIST BEARING WALL				LL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 3

MEMBER DESIGN PARAMETERS

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S250	97 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	13539	4580	0.338		0		0	
D + Lr	6444	1355	0.210		0		0	
D + 0.75L + 0.75Lr	11980	3773	0.315		0		0	
D + W	6014	1355	0.225	35.40	177		443	
D + 0.7E	6863	1546	0.225		0		0	
D + 0.75L + 0.75W + .75Lr	11980	3773	0.315	26.55	133		332	
D + 0.75L + 0.525E + .75Lr	12617	3917	0.310		0		0	
0.6D + W	3608	813	0.225	35.40	177		443	
0.6D - 0.7E	2759	621	0.225		0		0	
ZONE 4 BENDING				30.25	151		378	
ZONE 5 BENDING				53.48	267		668	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs)	
	plf	lb	ft-lb		Check	Prb =	812 lb
ZONE 4 DEFLECTION	21.18	106	265			y Brdg Rows =	2
ZONE 5 DEFLECTION	37.43	187	468]	

DesignPro Wall Designer Output

Version 6.0.2.0

Project Name: Project Number Wall: Date/Time:	:: 21502 W1: L	NHERI 10 Stor 200882-0 .evel 03 - Test /2021 / 4:47 I			Cor		ClarkDietrich Engineering S Lynn Padgett, P.E. 678.304.5525	ervices LLC
Inputs Building Code: Design Option: Member Spacir Bracing Distand Knockout: Parapet Porosit	ce:	CBC 2016 Typical 24 in 4' O.C. Max Punched NA	(FB68-1)		Deflection Limi 0.7 Deflection Dead Load: z: Under Hang Po	Jsed: Ye 0 p 10	osf 0 ft	
Wind Press Typical Zone: Span Suction: Span 1 Pressu		-22.91 psf 22.56 psf						
Point and D Load Type	Load C	Case Dire		oc.(Start)	Load(Start)	Loc.(End)	Load(End)	10' - 0" (
Axial Point Axial Point Moment Moment	Pressu	re Glo n(typical) Glo	bal FY bal FY bal Mz bal Mz	10.00 ft 10.00 ft 9.50 ft 9.50 ft	-13539.00 lbs -13539.00 lbs -4580 lb-in Ċ -4580 lb-in Ċ	NA NA NA NA	NA NA NA NA	
Specified M (1) 600S250-97	′50 ksi @							
Stud Desig								
Interaction Ch Moment: Streng Moment: Stabil Moment: Dist. E	gth ity	Actual -9346 lb-in -9346 lb-in -9346 lb-in	Allowable 69935 lb-in 62257 lb-in 61581 lb-in	Capacity 13.36% 15.01% 15.18%	6.00 ft 6.00 ft 6.00 ft	Controlled E Suction Suction Suction	Pass Pass Pass	<u>+</u> L
Shear V/M Interaction Axial Stability P/M Interaction		-267 lbs 0.13 -13539 lbs 0.95	3805 lbs 1 17754 lbs 1	7.02% 13.37% 76.26% 94.89%	0.00 ft 6.00 ft 0.00 ft 6.00 ft	Suction Suction DL Suction	Pass Pass Pass Pass	
Moment of Iner Span Deflectior Web Crippling	tia	1.024 in^4 0.053 in -267 lbs	6.497 in^4 0.333 in 2197 lbs	15.77% L/2283 12.17%	5.00 ft 5.00 ft C1	Suction Suction Suction	Pass Pass Pass	
Specified C	onnecti	ons						
C2:	Vind:	Rx = -190.93 lb	s Rx =	263.77 lbs			Ry = 0 lbs	
· · · · · ·	Reference	Clip : W1: Lev	el 03 - Test - C2	- typical				
C1:	Vind:	Rx = -267.27 lb	s Rx =	187.43 lbs			Ry = 13539 lbs	

DesignPro **Rigid Clip Designer Output** Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Clip:	W1: Level 03 - Test - C2 - typical
Date/Time:	10/28/2021 / 4:47 PM

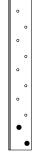
Connection Design:	Тор
Support Leg	
Structure:	54-50
Anchor/Structure Edge:	6 in
Loaded Leg	
L.S.F. 1:	97-50
L.S.F. 2:	None

Wind Pressure Reactions

lbs

Shear:	1021 lbs
Tension:	264 lbs
Compression:	264 lbs

Clip Design



Clip:	S541
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	54 Mils
Clip Length:	11 in

~ ...

Company:

Contact Name: Phone Number:

Support Leg Design Results

Wind Pressure Reactions				
Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5987 lbs	17%	Pass
Clip Strong Moment	1021 lbs	22767 lbs	4%	Pass
Clip Weak Bending	264 lbs	529 lbs	50%	Pass
Clip Axial Stress	0.544	1	54%	Pass
Clip Axial Shear Stress	0.325	1	33%	Pass
Clip Weak-Axis Deflection	264 lbs	2348 lbs	11%	Pass
Screw Shear	356 lbs	467 lbs	76%	Pass
Screw Tension	88 lbs	645 lbs	14%	Pass
Screw Shear-Tension	0.692	1	69%	Pass
Tilting/Bearing	356 lbs	534 lbs	67%	Pass
Pullout	88 lbs	198 lbs	44%	Pass
Pullover	88 lbs	287 lbs	31%	Pass
Tilting-Pullout	0.328	1	33%	Pass
Bearing-Pullover	0.077	1	8%	Pass

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5738 lbs	18%	Pass
Clip Moment	1021 lbs	22767 lbs	4%	Pass
Clip Compression	264 lbs	1262 lbs	21%	Pass
Clip Tension	264 lbs	12730 lbs	2%	Pass
Clip Compression Stress	0.254	1	25%	Pass
Clip CompShear Stress	0.096	1	10%	Pass
Screw Shear	388 lbs	467 lbs	83%	Pass
Tilting/Bearing	388 lbs	629 lbs	62%	Pass

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W1 EXTERIOR JOIST BEARING WALL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 2

3rd FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 2 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	24 in
WALL DL	150.0 plf	OC LOAD FACTOR	2.000
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	3157	3763	215	0	0	0	637
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	3383	4300	215	0	0	0	682
TOTAL AXIAL LOAD (lb)	6765	8600	430	0	0	0	1365

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	35.40 plf
Gcpi =	0.180		-15.13 psf -30.25 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P = w =	-26.74 psf -53.48 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Stor	y Test P	ortion
PROJECT NUMBE	R: 2150200882		
ENGINEER: L.P	adgett	DATE:	10/29/2021
CHECKER: LAF)	DATE:	
SUBJECT: W1	EXTERIOR JOIST BEARI	ING WA	LL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 2

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft
------	----------

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S300	97 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	15365	4580	0.298		0		0	
D + Lr	7195	1355	0.188		0		0	
D + 0.75L + 0.75Lr	13538	3773	0.279		0		0	
D + W	6765	1355	0.200	35.40	177		443	
D + 0.7E	7720	1546	0.200		0		0	
D + 0.75L + 0.75W + .75Lr	13538	3773	0.279	26.55	133		332	
D + 0.75L + 0.525E + .75Lr	14254	3917	0.275		0		0	
0.6D + W	4059	813	0.200	35.40	177		443	
0.6D - 0.7E	3104	621	0.200		0		0	
ZONE 4 BENDING				30.25	151		378	
ZONE 5 BENDING				53.48	267		668	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n st	uds) 6
	plf	lb	ft-lb		Check	Prb =	922 lb
ZONE 4 DEFLECTION	21.18	106	265			y Brdg Rows =	2
ZONE 5 DEFLECTION	37.43	187	468]	

DesignPro Wall Designer Output

Version 6.0.2.0

Wall: Date/Time:	nber: 215 W1:	S-NHERI 10 Sto 0200882-0 : Level 02 - Test 28/2021 / 4:50	t ,		Con	ntact Name: Lyni	kDietrich Engineering S n Padgett, P.E. .304.5525	Services LLC	
Inputs Building Co	do.	CBC 2016			Deflection Limit	t: L/360		ς.	
Design Opti		Typical			0.7 Deflection Limit				
Member Sp		24 in				Jseu. Tes			
Bracing Dis		4' O.C. Ma	x (FB68-1)		Dead Load:	0 psf			(
Knockout:		Punched	()		Z:	100 ft			
Parapet Po	rosity:	NA			Under Hang Po	prosity: NA			
Wind Pre	essures								
Typical Zon									
Span Sucti	ion:	-22.91 psf							
Span 1 Pre		22.56 psf							
Point an	d Distribu	uted Loads						10' - 0''	0
Load Type	Load	Case Dir	rection	Loc.(Start)	Load(Start)	Loc.(End)	Load(End)		
Axial Point	Sucti		obal FY	10.00 ft	-15365.00 lbs	ŇÁ	ŇÁ		
Axial Point	Press		obal FY	10.00 ft	-15365.00 lbs	NA	NA		
Moment			obal Mz	9.50 ft	-4580 lb-in Č	NA	NA		
Moment	Press	sure Glo	obal Mz	9.50 ft	-4580 lb-in Č	NA	NA		
Specifie	d Membei	r							
(1) 600\$30	0-97 50 ksi	@ 24" O.C.							
	ian Boou	ilts							
Stud Des	sign Resu	11.5	Allowable	e Capacity	Location	Controlled By	Pass/Fail	<u>+</u>	L
	-	Actual	Allowable	, oupdoily					
Interaction	Check				6.00 ft	Suction	Pass		
Interaction Moment: St	trength	Actual -9346 lb-in -9346 lb-in	67292 lb-i 67292 lb-i	n 13.89% n 13.89%	6.00 ft 6.00 ft		Pass Pass		
Interaction Moment: St Moment: St Moment: Di	trength	Actual -9346 lb-in -9346 lb-in -9346 lb-in	67292 lb-i 67292 lb-i 64684 lb-i	n 13.89% n 13.89% n 14.45%	6.00 ft 6.00 ft 6.00 ft	Suction Suction Suction	Pass Pass		
Interaction Moment: St Moment: St Moment: Di Shear	trength tability ist. Buckling	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs	n 13.89% n 13.89% n 14.45% 7.02%	6.00 ft 6.00 ft 6.00 ft 0.00 ft	Suction Suction Suction Suction	Pass Pass Pass		
Interaction Moment: St Moment: St Moment: Di Shear V/M Interac	Check trength tability ist. Buckling	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs 1	n 13.89% n 13.89% n 14.45% 7.02% 13.89%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft	Suction Suction Suction Suction Suction	Pass Pass Pass Pass		
Interaction Moment: St Moment: Di Shear V/M Interac Axial Stabili	Check trength tability ist. Buckling tion	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -15365 lbs	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs 1 18943 lbs	n 13.89% n 13.89% n 14.45% 7.02% 13.89% 81.11%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft	Suction Suction Suction Suction Suction DL	Pass Pass Pass Pass Pass		
Interaction Moment: St Moment: Di Shear V/M Interac Axial Stabili P/M Interac	Check trength tability ist. Buckling tion ity tion	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -15365 lbs 0.99	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs 1 18943 lbs 1	n 13.89% n 13.89% n 14.45% 7.02% 13.89% 81.11% 98.85%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft 6.00 ft	Suction Suction Suction Suction DL Suction	Pass Pass Pass Pass Pass Pass		
Interaction Moment: St Moment: Di Shear V/M Interac Axial Stabili P/M Interac Moment of	Check trength tability ist. Buckling ttion ity ttion Inertia	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -15365 lbs 0.99 1.024 in^4	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs 1 18943 lbs 1 7.281 in^4	n 13.89% n 13.89% n 14.45% 7.02% 13.89% 81.11% 98.85% I 14.07%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft 6.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction	Pass Pass Pass Pass Pass Pass Pass		
Interaction Moment: St Moment: Di Shear V/M Interac Axial Stabili P/M Interac Moment of Span Deflec	Check trength tability ist. Buckling tion ity tion Inertia ction	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -15365 lbs 0.99 1.024 in^4 0.047 in	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs 1 18943 lbs 1 7.281 in^4 0.333 in	n 13.89% n 13.89% n 14.45% 7.02% 13.89% 81.11% 98.85% 4 14.07% L/2559	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction Suction	Pass Pass Pass Pass Pass Pass Pass Pass		
Interaction Moment: St Moment: Di Shear V/M Interac Axial Stabili P/M Interac Moment of Span Deflea Web Crippli	Check trength tability ist. Buckling tion ity ution Inertia ction ing	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -15365 lbs 0.99 1.024 in^4 0.047 in -267 lbs	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs 1 18943 lbs 1 7.281 in^4	n 13.89% n 13.89% n 14.45% 7.02% 13.89% 81.11% 98.85% I 14.07%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft 6.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction	Pass Pass Pass Pass Pass Pass Pass		
Interaction Moment: St Moment: Di Shear V/M Interac Axial Stabili P/M Interac Moment of Span Deflea Web Crippli	Check trength tability ist. Buckling tion ity tion Inertia ction	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -15365 lbs 0.99 1.024 in^4 0.047 in -267 lbs	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs 1 18943 lbs 1 7.281 in^4 0.333 in	n 13.89% n 13.89% n 14.45% 7.02% 13.89% 81.11% 98.85% 4 14.07% L/2559	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction Suction	Pass Pass Pass Pass Pass Pass Pass Pass		
Interaction Moment: St Moment: Di Shear V/M Interac Axial Stabili P/M Interac Moment of Span Deflec Web Crippli Specified	Check trength tability ist. Buckling tion ity ution Inertia ction ing	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -15365 lbs 0.99 1.024 in^4 0.047 in -267 lbs	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs 1 18943 lbs 1 7.281 in^4 0.333 in 2197 lbs	n 13.89% n 13.89% n 14.45% 7.02% 13.89% 81.11% 98.85% 4 14.07% L/2559	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction Suction	Pass Pass Pass Pass Pass Pass Pass Pass		
Interaction Moment: St Moment: Di Shear V/M Interac Axial Stabili P/M Interac Moment of Span Deflec Web Crippli Specified	Check trength tability ist. Buckling tion ity stion Inertia ction ing d Connec	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -15365 lbs 0.99 1.024 in^4 0.047 in -267 lbs tions	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs 1 18943 lbs 1 7.281 in^4 0.333 in 2197 lbs	n 13.89% n 13.89% n 14.45% 7.02% 13.89% 81.11% 98.85% 14.07% L/2559 12.17%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction Suction	Pass Pass Pass Pass Pass Pass Pass Pass		
Shear V/M Interac Axial Stabili P/M Interac Moment of Span Deflee Web Crippli	Check trength tability ist. Buckling tion ity stion Inertia ction ing d Connec	Actual -9346 lb-in -9346 lb-in -9346 lb-in -267 lbs 0.14 -15365 lbs 0.99 1.024 in^4 0.047 in -267 lbs tions Rx = -190.93 lb	67292 lb-i 67292 lb-i 64684 lb-i 3805 lbs 1 18943 lbs 1 7.281 in^4 0.333 in 2197 lbs	n 13.89% n 13.89% n 14.45% 7.02% 13.89% 81.11% 98.85% 14.07% L/2559 12.17%	6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Suction Suction Suction Suction DL Suction Suction Suction	Pass Pass Pass Pass Pass Pass Pass Pass		

DesignPro **Rigid Clip Designer Output** Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Clip:	W1: Level 02 - Test - C2 - typical
Date/Time:	10/28/2021 / 4:50 PM

Inputs

Connection Design:	Тор
Support Leg	
Structure:	54-50
Anchor/Structure Edge:	6 in
Loaded Leg	
L.S.F. 1:	97-50
L.S.F. 2:	None

Wind Pressure Reactions

lbs

Shear:	1021 lbs
Tension:	264 lbs
Compression:	264 lbs

Clip Design

Clip:	S541
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	54 Mils
Clip Length:	11 in

~ ...

Company:

Contact Name: Phone Number:

0

Support Leg Design Results

Wind Pressure Reactions				
Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5987 lbs	17%	Pass
Clip Strong Moment	1021 lbs	22767 lbs	4%	Pass
Clip Weak Bending	264 lbs	529 lbs	50%	Pass
Clip Axial Stress	0.544	1	54%	Pass
Clip Axial Shear Stress	0.325	1	33%	Pass
Clip Weak-Axis Deflection	264 lbs	2348 lbs	11%	Pass
Screw Shear	356 lbs	467 lbs	76%	Pass
Screw Tension	88 lbs	645 lbs	14%	Pass
Screw Shear-Tension	0.692	1	69%	Pass
Tilting/Bearing	356 lbs	534 lbs	67%	Pass
Pullout	88 lbs	198 lbs	44%	Pass
Pullover	88 lbs	287 lbs	31%	Pass
Tilting-Pullout	0.328	1	33%	Pass
Bearing-Pullover	0.077	1	8%	Pass

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5738 lbs	18%	Pass
Clip Moment	1021 lbs	22767 lbs	4%	Pass
Clip Compression	264 lbs	1262 lbs	21%	Pass
Clip Tension	264 lbs	12730 lbs	2%	Pass
Clip Compression Stress	0.254	1	25%	Pass
Clip CompShear Stress	0.096	1	10%	Pass
Screw Shear	388 lbs	467 lbs	83%	Pass
Tilting/Bearing	388 lbs	629 lbs	62%	Pass

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W1 EXTERIOR JOIST BEARING WALL

W1 EXTERIOR JOIST BEARING WALL, LEVEL 1

2nd FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 1 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	24 in
WALL DL	150.0 plf	OC LOAD FACTOR	2.000
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	3533	4300	215	0	0	0	713
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	3758	4838	215	0	0	0	758
TOTAL AXIAL LOAD (lb)	7517	9675	430	0	0	0	1517

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	35.40 plf
Gcpi =	0.180		-15.13 psf -30.25 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P =	-26.74 psf -53.48 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion			
PROJECT NU	JMBER:	2150200882			
ENGINEER:	L. Padg	jett	DATE:	10/29/2021	
CHECKER:	LAP		DATE:		
SUBJECT:	W1 EX1	ERIOR JOIST BEAR		LL	

W1 EXTERIOR JOIST BEARING WALL, LEVEL 1

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft	

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S350	97 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	17192	4580	0.266		0		0	
D + Lr	7947	1355	0.170		0		0	
D + 0.75L + 0.75Lr	15095	3773	0.250		0		0	
D + W	7517	1355	0.180	35.40	177		443	
D + 0.7E	8578	1546	0.180		0		0	
D + 0.75L + 0.75W + .75Lr	15095	3773	0.250	26.55	133		332	
D + 0.75L + 0.525E + .75Lr	15891	3917	0.246		0		0	
0.6D + W	4510	813	0.180	35.40	177		443	
0.6D - 0.7E	3448	621	0.180		0		0	
ZONE 4 BENDING				30.25	151		378	
ZONE 5 BENDING				53.48	267		668	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n s	tuds) 6
	plf	lb	ft-lb		Check	Prb =	1031 lb
ZONE 4 DEFLECTION	21.18	106	265			y Brdg Rows =	2
ZONE 5 DEFLECTION	37.43	187	468				

DesignPro Wall Designer Output

Version 6.0.2.0

Project Number: Wall: Date/Time:	CFS-NHERI 1 2150200882-(W1: Level 01 10/28/2021 /	- Test	hetype		Con	npany: itact Name: ine Number:	ClarkDietrich Engine Lynn Padgett, P.E. 678.304.5525	eering Services LLC
Inputs Building Code: Design Option: Member Spacing: Bracing Distance: Knockout: Parapet Porosity:		al C. Max (FB6	68-1)		Deflection Limit 0.7 Deflection U Dead Load: z: Under Hang Po	Jsed: Y 0 11	/360 /es psf 00 ft IA	
Wind Pressur Typical Zone: Span Suction: Span 1 Pressure:	-22.9							
Point and Dis								10' - 0"
Load Type Axial Point Axial Point Moment	Load Case Suction(typical) Pressure Suction(typical)	Global F	Y Y	oc.(Start) 10.00 ft 10.00 ft 9.50 ft	Load(Start) -17192.00 lbs -17192.00 lbs -4580 lb-in Č	Loc.(End) NA NA NA	NÁ NA NA	
Moment	Pressure	Global M	Z	9.50 ft	-4580 lb-in Ċ	NA	NA	
Moment Specified Mer (1) 600S350-97 5 Stud Design I	Pressure mber 50 ksi @ 24" O.C Results	<u>).</u>						
	Pressure mber 50 ksi @ 24" O.C Results k Actua	C. al A	z .llowable 7650 lb-in	9.50 ft Capacity 12.04%	-4580 lb-in ℂ Location 6.00 ft	NA Controlled Suction		
Moment Specified Mer (1) 600S350-97 5 Stud Design I Interaction Chec Moment: Strength Moment: Strength	Pressure mber 50 ksi @ 24" O.C Results k Actua -9346 -9346	al A ilb-in 7 ilb-in 7	llowable 7650 lb-in 7650 lb-in	Capacity 12.04% 12.04%	Location 6.00 ft 6.00 ft	Controlled Suction Suction	By Pass/Fai Pass Pass	
Moment Specified Mer (1) 600S350-97 5 Stud Design I Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Buc	Pressure mber 50 ksi @ 24" O.C Results k Actua -9346 -9346 ckling -9346	2. al A i Ib-in 7 i Ib-in 7 i Ib-in 7	.llowable 7650 lb-in 7650 lb-in 8371 lb-in	Capacity 12.04% 12.04% 11.93%	Location 6.00 ft 6.00 ft 6.00 ft	Controlled Suction Suction Suction	By Pass/Fai Pass Pass Pass Pass	
Moment Specified Mer (1) 600S350-97 5 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buck Shear	Pressure mber 50 ksi @ 24" O.C Results k Actua -9346 -9346 -9346 -9346 -9346 -9346 -9346 -9346 -9346 -9346 -9346 -9346	al A ilb-in 7 ilb-in 7 ilb-in 7 bs 3	llowable 7650 Ib-in 7650 Ib-in 8371 Ib-in 805 Ibs	Capacity 12.04% 12.04% 11.93% 7.02%	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft	Controlled Suction Suction Suction Suction	By Pass/Fai Pass Pass Pass Pass Pass	
Moment Specified Mer (1) 600S350-97 5 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buck Shear V/M Interaction	Pressure mber 50 ksi @ 24" O.C Results k Actua -9346 -9346 -9346 -9346 -267 l 0.12	al A ilb-in 7 ilb-in 7 ilb-in 7 bs 3 1	Ilowable 7650 Ib-in 7650 Ib-in 8371 Ib-in 805 Ibs	Capacity 12.04% 12.04% 11.93% 7.02% 12.04%	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft	Controlled Suction Suction Suction Suction Suction	By Pass/Fai Pass Pass Pass Pass Pass Pass Pass	
Moment Specified Mer (1) 600S350-97 5 Stud Design F Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability	Pressure mber 50 ksi @ 24" O.C Results k Actua -9346 -9346 -9346 -267 l 0.12 -1719	al A ilb-in 7 ilb-in 7 ilb-in 7 bs 3 1	Ilowable 7650 Ib-in 7650 Ib-in 8371 Ib-in 805 Ibs 3364 Ibs	Capacity 12.04% 12.04% 11.93% 7.02% 12.04% 73.58%	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft	Controlled Suction Suction Suction Suction Suction DL	By Pass/Fai Pass Pass Pass Pass Pass Pass Pass Pa	
Moment Specified Mer (1) 600S350-97 5 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buck Shear V/M Interaction	Pressure mber 50 ksi @ 24" O.C Results k Actua -9346 -9346 -9346 -267 l 0.12 -1719 0.88	2. al A b-in 7 ib-in 7 ib-in 7 bs 3 1 2 lbs 2 1 2 lbs 2	Ilowable 7650 Ib-in 7650 Ib-in 8371 Ib-in 805 Ibs 3364 Ibs	Capacity 12.04% 12.04% 11.93% 7.02% 12.04%	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft	Controlled Suction Suction Suction Suction Suction	By Pass/Fai Pass Pass Pass Pass Pass Pass Pass	
Moment Specified Mer (1) 600S350-97 5 Stud Design F Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection	Pressure mber 50 ksi @ 24" 0.0 Results k Actua -9346 -9346 -9346 -267 l 0.12 -1719 0.88 1.024 0.04 i	2. i Ib-in 7 i Ib-in 7 i Ib-in 7 i Ib-in 7 bs 3 1 2 Ibs 2 1 in^4 8 n 0	Ilowable 7650 lb-in 7650 lb-in 8371 lb-in 805 lbs 3364 lbs .632 in^4 .333 in	Capacity 12.04% 12.04% 11.93% 7.02% 12.04% 73.58% 88.21% 11.87% L/3034	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Controlled Suction Suction Suction Suction DL Suction Suction Suction	By Pass/Fai Pass Pass Pass Pass Pass Pass Pass Pa	
Moment Specified Mer (1) 600S350-97 5 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buck Shear V/M Interaction Axial Stability P/M Interaction	Pressure mber 50 ksi @ 24" O.0 Results k Actua -9346 -9346 -267 l 0.12 -1719 0.88 1.024	2. i Ib-in 7 i Ib-in 7 i Ib-in 7 i Ib-in 7 bs 3 1 2 Ibs 2 1 in^4 8 n 0	Ilowable 7650 lb-in 7650 lb-in 8371 lb-in 805 lbs 3364 lbs .632 in^4	Capacity 12.04% 12.04% 11.93% 7.02% 12.04% 73.58% 88.21% 11.87%	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 0.00 ft 6.00 ft 5.00 ft	Controlled Suction Suction Suction Suction DL Suction Suction	By Pass/Fai Pass Pass Pass Pass Pass Pass Pass Pa	
Moment Specified Mer (1) 600S350-97 5 Stud Design I Interaction Checl Moment: Strength Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling	Pressure mber 50 ksi @ 24" O.C Results k Actua -9346 -9346 -9346 -9346 -267 l 0.12 -1719 0.88 1.024 0.04 i -267 l	2. i Ib-in 7 i Ib-in 7 i Ib-in 7 i Ib-in 7 bs 3 1 2 Ibs 2 1 in^4 8 n 0	Ilowable 7650 lb-in 7650 lb-in 8371 lb-in 805 lbs 3364 lbs .632 in^4 .333 in	Capacity 12.04% 12.04% 11.93% 7.02% 12.04% 73.58% 88.21% 11.87% L/3034	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Controlled Suction Suction Suction Suction DL Suction Suction Suction	By Pass/Fai Pass Pass Pass Pass Pass Pass Pass Pa	
Moment Specified Mer (1) 600S350-97 5 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buck Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Specified Cor	Pressure mber 50 ksi @ 24" O.C Results k Actua -9346 -9346 -9346 -9346 -267 l 0.12 -1719 0.88 1.024 0.04 i -267 l mnections	al A ilb-in 7 ilb-in 7 bs 3 12 lbs 2 1 in^4 8 n 0 bs 2	Ilowable 7650 lb-in 7650 lb-in 8371 lb-in 805 lbs 3364 lbs .632 in^4 .333 in 197 lbs	Capacity 12.04% 12.04% 11.93% 7.02% 12.04% 73.58% 88.21% 11.87% L/3034 12.17%	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Controlled Suction Suction Suction Suction DL Suction Suction Suction	By Pass/Fai Pass Pass Pass Pass Pass Pass Pass Pa	
Moment Specified Mer (1) 600S350-97 5 Stud Design I Interaction Checl Moment: Strength Moment: Strength Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Specified Cor C2: Win	Pressure mber 50 ksi @ 24" O.C Results k Actua -9346 -9346 -9346 -9346 -267 l 0.12 -1719 0.88 1.024 0.04 i -267 l mnections	al A i Ib-in 7 i Ib-in 7 ib-in 7 bs 3 12 Ibs 2 1 in^4 8 n 0 bs 2 0.93 Ibs	Ilowable 7650 lb-in 7650 lb-in 8371 lb-in 805 lbs 3364 lbs .632 in^4 .333 in 197 lbs	Capacity 12.04% 12.04% 11.93% 7.02% 12.04% 73.58% 88.21% 11.87% L/3034 12.17% 263.77 lbs	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Controlled Suction Suction Suction Suction DL Suction Suction Suction	By Pass/Fai Pass Pass Pass Pass Pass Pass Pass Pa	
Moment Specified Mer (1) 600S350-97 5 Stud Design I Interaction Checl Moment: Strength Moment: Strength Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Specified Cor C2: Win	Pressure mber 50 ksi @ 24" 0.0 Results k Actual -9346 -9346 -9346 -9346 -267 l 0.12 -1719 0.88 1.024 0.04 i -267 l mnections nd: Rx = -19 ference Clip : W	al A i Ib-in 7 i Ib-in 7 bs 3 12 Ibs 2 11 in^4 8 n 0 bs 2 0.93 Ibs 1: Level 01	Ilowable 7650 lb-in 7650 lb-in 8371 lb-in 805 lbs 3364 lbs .632 in^4 .333 in 197 lbs 	Capacity 12.04% 12.04% 11.93% 7.02% 12.04% 73.58% 88.21% 11.87% L/3034 12.17% 263.77 lbs	Location 6.00 ft 6.00 ft 6.00 ft 0.00 ft 6.00 ft 6.00 ft 5.00 ft 5.00 ft	Controlled Suction Suction Suction Suction DL Suction Suction Suction	By Pass/Fai Pass Pass Pass Pass Pass Pass Pass Pa	

DesignPro Rigid Clip Designer Output Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Clip:	W1: Level 01 - Test - C2 - typical
Date/Time:	10/28/2021 / 4:53 PM

Inputs

Connection Design:	Тор
Support Leg	
Structure:	54-50
Anchor/Structure Edge:	6 in
Loaded Leg	
L.S.F. 1:	97-50
L.S.F. 2:	None

Wind Pressure Reactions

Shear:	<u>1021 lbs</u>
Tension:	264 lbs
Compression:	<u>264 lbs</u>


Clip Design

Clip:	S541
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	54 Mils
Clip Length:	11 in

Company:

Contact Name: Phone Number:

Support Leg Design Results

Wind Pressure Reactions				
Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5987 lbs	17%	Pass
Clip Strong Moment	1021 lbs	22767 lbs	4%	Pass
Clip Weak Bending	264 lbs	529 lbs	50%	Pass
Clip Axial Stress	0.544	1	54%	Pass
Clip Axial Shear Stress	0.325	1	33%	Pass
Clip Weak-Axis Deflection	264 lbs	2348 lbs	11%	Pass
Screw Shear	356 lbs	467 lbs	76%	Pass
Screw Tension	88 lbs	645 lbs	14%	Pass
Screw Shear-Tension	0.692	1	69%	Pass
Tilting/Bearing	356 lbs	534 lbs	67%	Pass
Pullout	88 lbs	198 lbs	44%	Pass
Pullover	88 lbs	287 lbs	31%	Pass
Tilting-Pullout	0.328	1	33%	Pass
Bearing-Pullover	0.077	1	8%	Pass

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1021 lbs	5738 lbs	18%	Pass
Clip Moment	1021 lbs	22767 lbs	4%	Pass
Clip Compression	264 lbs	1262 lbs	21%	Pass
Clip Tension	264 lbs	12730 lbs	2%	Pass
Clip Compression Stress	0.254	1	25%	Pass
Clip CompShear Stress	0.096	1	10%	Pass
Screw Shear	388 lbs	467 lbs	83%	Pass
Tilting/Bearing	388 lbs	629 lbs	62%	Pass

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT N/	AME:	CFS-NHERI 10 Stor	y Test P	ortion
PROJECT N	JMBER:	2150200882		
ENGINEER:	L. Padg	jett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT: W3 DEMISING BEARING WALL				

W3 DEMISING BEARING WALL

DESIGNED PER THE REQUIREMENTS OF AISI: 2016 NAS - US (ASD)

WALL NOTES

GL C, D, E, & F

DEFAULT FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER	1.33 ft UNIT SIMPLE SPAN 1.00	RIGHT SPAN RIGHT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER	1.33 ft UNIT SIMPLE SPAN 1.00
FLOOR SYSTEM DEPTH FLOOR FRAMING TYPE	12 in LEDGER FRAMED		
DEFAULT WALL DETAILS WALL TYPE STUD DEPTH STUD OC SPACING	INTERIOR WALL 6.000 in 24 in	FLANGE BRACING BRACING Lt	

FOUNDATION LINE LOADS

	D	L	Lr	S	W ((plf)	E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
SERVICE LEVEL LOADS	1376	599	27	0	0	0	278

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME: CFS-NHERI 10 Stor		Test P	ortion	
PROJECT NUMBER:	2150200882			
ENGINEER: L. Padg	gett	DATE:	10/29/2021	
CHECKER: LAP		DATE:		
SUBJECT: W3 DE	UBJECT: W3 DEMISING BEARING WALL			

W3 DEMISING BEARING WALL, LEVEL 10

ROOF DETAILS

LEFT SPAN LENGTH1.33LEFT LOADING TYPEROOSPAN TYPESIMLINE LOAD MODIFIER1.00

1.33 ft ROOF SIMPLE SPAN 1.00 RIGHT SPAN1.33 ftRIGHT LOADING TYPEROOFSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 10 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

D	L	Lr	S	W	(plf)	E
plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
16	0	13	0	0	0	3
58	0	0	0	0	0	12
16	0	13	0	0	0	3
89	0	27	0	0	0	18
179	0	53	0	0	0	36
	16 58 16 89	16 0 58 0 16 0 89 0	16 0 13 58 0 0 16 0 13 89 0 27	16 0 13 0 58 0 0 0 16 0 13 0 89 0 27 0	plf plf plf plf DOWN (+) 16 0 13 0 0 58 0 0 0 0 16 0 13 0 0 89 0 27 0 0	16 0 13 0 0 0 58 0 0 0 0 0 0 16 0 13 0 0 0 0 16 0 13 0 0 0 0 89 0 27 0 0 0

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NA	CT NAME: CFS-NHERI 10 Story Test Po			ortion
PROJECT NU	JMBER:	2150200882		
ENGINEER:	L. Padg	ett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT: W3 DEMISING BEARING WALL				

W3 DEMISING BEARING WALL, LEVEL 10

MEMBER DESIGN PARAMETERS

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

|--|

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb		ft-lb	
D + L	179	0	0.000	10.00	50		125	
D + Lr	232	0	0.000	10.00	50		125	
D + 0.75L + 0.75Lr	219	0	0.000	10.00	50		125	
D + W	179	0	0.000	10.00	50		125	
D + 0.7E	204	0	0.000	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	219	0	0.000	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	238	0	0.000	10.00	50		125	
0.6D + W	107	0	0.000	10.00	50		125	
0.6D - 0.7E	82	0	0.000	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs)	10
	plf	lb	ft-lb			Prb =	24 lb
DEFLECTION	10.00	50	125			Brdg Rows = 2	

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion					
PROJECT NUMBER:	2150200882					
ENGINEER: L. Padg	gett DATE: 10/29/2021					
CHECKER: LAP	DATE:					
SUBJECT: W3 DEI	W3 DEMISING BEARING WALL					

W3 DEMISING BEARING WALL, LEVEL 9

10th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 1.33 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN1.33 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 9 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

D	L	Lr	S	W (plf)		E
plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
14	33	0	0	0	0	3
204	0	27	0	0	0	41
14	33	0	0	0	0	3
232	67	27	0	0	0	47
465	133	53	0	0	0	94
	14 204 14 232	14 33 204 0 14 33 232 67	14 33 0 204 0 27 14 33 0 232 67 27	14 33 0 0 204 0 27 0 14 33 0 0 232 67 27 0	plf plf plf plf DOWN (+) 14 33 0 0 0 204 0 27 0 0 14 33 0 0 0 232 67 27 0 0	plf plf plf plf DOWN (+) UPLIFT (-) 14 33 0 0 0 0 0 204 0 27 0 0 0 0 14 33 0 0 0 0 0 0 204 0 277 0 0 0 0 0 14 33 0

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion					
PROJECT NU	JMBER:	2150200882					
ENGINEER:	L. Padg	ett	DATE:	10/29/2021			
CHECKER:	LAP		DATE:				
SUBJECT:	W3 DEMISING BEARING WALL						

NONE

W3 DEMISING BEARING WALL, LEVEL 9

MEMBER DESIGN PARAMETERS

.00 11

- Ly = 4.00 ft
- Lt = 4.00 ft

Lx =

1 600 S162 4	3 (33)
--------------	--------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	598	0	0.000	10.00	50		125	
D + Lr	518	0	0.000	10.00	50		125	
D + 0.75L + 0.75Lr	604	0	0.000	10.00	50		125	
D + W	465	0	0.000	10.00	50		125	
D + 0.7E	530	0	0.000	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	604	0	0.000	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	654	0	0.000	10.00	50		125	
0.6D + W	279	0	0.000	10.00	50		125	
0.6D - 0.7E	213	0	0.000	10.00	50		125	

FLANGE BRACING

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs)	10
	plf	lb	ft-lb			Prb =	65 lb
DEFLECTION	10.00	50	125			Brdg Rows = 2	

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBER:	2150200882				
ENGINEER: L. Padg	gett DATE: 10/29/2021				
CHECKER: LAP	DATE:				
SUBJECT: W3 DEI	MISING BEARING WALL				

W3 DEMISING BEARING WALL, LEVEL 8

9th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 1.33 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN1.33 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 8 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

D	L	Lr	S	W (plf)		E
plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
14	33	0	0	0	0	3
347	67	27	0	0	0	70
14	33	0	0	0	0	3
375	133	27	0	0	0	76
751	266	53	0	0	0	151
	14 347 14 375	14 33 347 67 14 33 375 133	14 33 0 347 67 27 14 33 0 375 133 27	plf plf plf plf 14 33 0 0 347 67 27 0 14 33 0 0 347 67 27 0 14 33 0 0 375 133 27 0	plf plf plf plf DOWN (+) 14 33 0 0 0 347 67 27 0 0 14 33 0 0 0 347 67 27 0 0 347 133 27 0 0	plf plf plf plf DOWN (+) UPLIFT (-) 14 33 0 0 0 0 347 67 27 0 0 0 14 33 0 0 0 0 347 67 27 0 0 0 14 33 0 0 0 0 375 133 27 0 0 0

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion					
PROJECT NU	JMBER:	2150200882					
ENGINEER:	L. Padg	ett	DATE:	10/29/2021			
CHECKER:	LAP		DATE:				
SUBJECT:	W3 DEM	MISING BEARING WA					

W3 DEMISING BEARING WALL, LEVEL 8

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

|--|

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	1017	0	0.000	10.00	50		125	
D + Lr	804	0	0.000	10.00	50		125	
D + 0.75L + 0.75Lr	990	0	0.000	10.00	50		125	
D + W	751	0	0.000	10.00	50		125	
D + 0.7E	857	0	0.000	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	990	0	0.000	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	1069	0	0.000	10.00	50		125	
0.6D + W	450	0	0.000	10.00	50		125	
0.6D - 0.7E	344	0	0.000	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs) 10
	plf	lb	ft-lb		Check	Prb =	107 lb
DEFLECTION	10.00	50	125			Brdg Rows = 2	2

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBER:	2150200882				
ENGINEER: L. Pade	gett DATE	10/29/2021			
CHECKER: LAP	DATE	:			
SUBJECT: W3 DE	MISING BEARING WALL				

W3 DEMISING BEARING WALL, LEVEL 7

8th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER

1.33 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN1.33 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 7 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	14	33	0	0	0	0	3
CENTERLINE OF WALL (plf)	490	133	27	0	0	0	99
RIGHT SIDE OF WALL (plf)	14	33	0	0	0	0	3
TOTAL LINE LOAD (plf)	518	200	27	0	0	0	105
TOTAL AXIAL LOAD (lb)	1036	399	53	0	0	0	209

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion				
PROJECT NU	JMBER:	2150200882				
ENGINEER:	L. Padg	ett	DATE:	10/29/2021		
CHECKER:	LAP		DATE:			
SUBJECT:	W3 DEN	ISING BEARING WA				

W3 DEMISING BEARING WALL, LEVEL 7

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft	
LA -	10.00 1	

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

1	600	S162	54 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	1435	0	0.000	10.00	50		125	
D + Lr	1090	0	0.000	10.00	50		125	
D + 0.75L + 0.75Lr	1376	0	0.000	10.00	50		125	
D + W	1036	0	0.000	10.00	50		125	
D + 0.7E	1183	0	0.000	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	1376	0	0.000	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	1485	0	0.000	10.00	50		125	
0.6D + W	622	0	0.000	10.00	50		125	
0.6D - 0.7E	475	0	0.000	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs)) 10
	plf	lb	ft-lb		Check	Prb =	149 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows = 2	2

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBER:	2150200882				
ENGINEER: L. Padg	gett DATE: 10/29/2021				
CHECKER: LAP	DATE:				
SUBJECT: W3 DEI	MISING BEARING WALL				

W3 DEMISING BEARING WALL, LEVEL 6

7th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 1.33 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN1.33 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 6 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	14	33	0	0	0	0	3
CENTERLINE OF WALL (plf)	633	200	27	0	0	0	128
RIGHT SIDE OF WALL (plf)	14	33	0	0	0	0	3
TOTAL LINE LOAD (plf)	661	266	27	0	0	0	133
TOTAL AXIAL LOAD (Ib)	1322	532	53	0	0	0	267

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion				
PROJECT NU	JMBER:	2150200882				
ENGINEER:	L. Padg	ett	DATE:	10/29/2021		
CHECKER:	LAP		DATE:			
SUBJECT:	W3 DEMISING BEARING WALL					

W3 DEMISING BEARING WALL, LEVEL 6

MEMBER DESIGN PARAMETERS

1 x = 10.00 ft	Lx =	10.00 ft	
-----------------	------	----------	--

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

	1	600	S162	54 (50)
--	---	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	1854	0	0.000	10.00	50		125	
D + Lr	1375	0	0.000	10.00	50		125	
D + 0.75L + 0.75Lr	1761	0	0.000	10.00	50		125	
D + W	1322	0	0.000	10.00	50		125	
D + 0.7E	1509	0	0.000	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	1761	0	0.000	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	1901	0	0.000	10.00	50		125	
0.6D + W	793	0	0.000	10.00	50		125	
0.6D - 0.7E	607	0	0.000	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs)	10
	plf	lb	ft-lb		Check	Prb =	190 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows = 2	

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBER:	2150200882				
ENGINEER: L. Padg	gett DATE: 10/29/2021				
CHECKER: LAP	DATE:				
SUBJECT: W3 DEI	W3 DEMISING BEARING WALL				

W3 DEMISING BEARING WALL, LEVEL 5

6th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 1.33 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN1.33 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 5 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	W		Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	14	33	0	0	0	0	3
CENTERLINE OF WALL (plf)	776	266	27	0	0	0	157
RIGHT SIDE OF WALL (plf)	14	33	0	0	0	0	3
TOTAL LINE LOAD (plf)	804	333	27	0	0	0	162
TOTAL AXIAL LOAD (Ib)	1608	665	53	0	0	0	324

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 W3 DEMISING BEARING WALL

W3 DEMISING BEARING WALL, LEVEL 5

MEMBER DESIGN PARAMETERS

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

	1	600	S162	54 (50)
--	---	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	2273	0	0.000	10.00	50		125	
D + Lr	1661	0	0.000	10.00	50		125	
D + 0.75L + 0.75Lr	2147	0	0.000	10.00	50		125	
D + W	1608	0	0.000	10.00	50		125	
D + 0.7E	1835	0	0.000	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	2147	0	0.000	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	2317	0	0.000	10.00	50		125	
0.6D + W	965	0	0.000	10.00	50		125	
0.6D - 0.7E	738	0	0.000	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs) 10
	plf	lb	ft-lb		Check	Prb =	232 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows =	2

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBER:	2150200882				
ENGINEER: L. Padg	gett	DATE:	10/29/2021		
CHECKER: LAP		DATE:			
SUBJECT: W3 DE	W3 DEMISING BEARING WALL				

W3 DEMISING BEARING WALL, LEVEL 4

5th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 1.33 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN1.33 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 4 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	W		Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

D	L	Lr	S	W (plf)		Е
plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
14	33	0	0	0	0	3
919	333	27	0	0	0	185
14	33	0	0	0	0	3
947	399	27	0	0	0	191
1894	798	53	0	0	0	382
	14 919 14 947	14 33 919 333 14 33 947 399	14 33 0 919 333 27 14 33 0 947 399 27	plf plf plf plf 14 33 0 0 919 333 27 0 14 33 0 0 919 333 27 0 14 33 0 0 947 399 27 0	plf plf plf plf DOWN (+) 14 33 0 0 0 919 333 27 0 0 14 33 0 0 0 919 333 27 0 0 947 399 27 0 0	plf plf plf plf DOWN (+) UPLIFT (-) 14 33 0 0 0 0 0 919 333 27 0 0 0 0 14 33 0 0 0 0 0 919 333 27 0 0 0 0 947 399 27 0 0 0 0

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion					
PROJECT NU	JMBER:	2150200882					
ENGINEER:	L. Padg	ett	DATE:	10/29/2021			
CHECKER:	LAP		DATE:				
SUBJECT:	W3 DEMISING BEARING WALL						

W3 DEMISING BEARING WALL, LEVEL 4

MEMBER DESIGN PARAMETERS

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

|--|

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	2692	0	0.000	10.00	50		125	
D + Lr	1947	0	0.000	10.00	50		125	
D + 0.75L + 0.75Lr	2532	0	0.000	10.00	50		125	
D + W	1894	0	0.000	10.00	50		125	
D + 0.7E	2161	0	0.000	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	2532	0	0.000	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	2733	0	0.000	10.00	50		125	
0.6D + W	1136	0	0.000	10.00	50		125	
0.6D - 0.7E	869	0	0.000	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs) 10
	plf	lb	ft-lb		Check	Prb =	273 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows = 2	2

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion					
PROJECT NUMBER:	2150200882					
ENGINEER: L. Padg	gett DATE: 10/29/2021					
CHECKER: LAP	DATE:					
SUBJECT: W3 DEI	W3 DEMISING BEARING WALL					

W3 DEMISING BEARING WALL, LEVEL 3

4th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 1.33 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN1.33 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 3 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	W		E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	14	33	0	0	0	0	3
CENTERLINE OF WALL (plf)	1062	399	27	0	0	0	214
RIGHT SIDE OF WALL (plf)	14	33	0	0	0	0	3
TOTAL LINE LOAD (plf)	1090	466	27	0	0	0	220
TOTAL AXIAL LOAD (Ib)	2180	931	53	0	0	0	440

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion				
PROJECT NU	JMBER:	2150200882				
ENGINEER:	L. Padg	ett	DATE:	10/29/2021		
CHECKER:	LAP		DATE:			
SUBJECT:	W3 DEMISING BEARING WALL					

W3 DEMISING BEARING WALL, LEVEL 3

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

1	600	S162	54 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	3111	0	0.000	10.00	50		125	
D + Lr	2233	0	0.000	10.00	50		125	
D + 0.75L + 0.75Lr	2918	0	0.000	10.00	50		125	
D + W	2180	0	0.000	10.00	50		125	
D + 0.7E	2488	0	0.000	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	2918	0	0.000	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	3149	0	0.000	10.00	50		125	
0.6D + W	1308	0	0.000	10.00	50		125	
0.6D - 0.7E	1000	0	0.000	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs)	10
	plf	lb	ft-lb		Check	Prb =	315 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows = 2	

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion					
PROJECT NUMBER:	R: 2150200882					
ENGINEER: L. Padg	gett DATE: 10/29/2021					
CHECKER: LAP	DATE:					
SUBJECT: W3 DEI	W3 DEMISING BEARING WALL					

W3 DEMISING BEARING WALL, LEVEL 2

3rd FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 1.33 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN1.33 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 2 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	14	33	0	0	0	0	3
CENTERLINE OF WALL (plf)	1205	466	27	0	0	0	243
RIGHT SIDE OF WALL (plf)	14	33	0	0	0	0	3
TOTAL LINE LOAD (plf)	1233	532	27	0	0	0	249
TOTAL AXIAL LOAD (lb)	2466	1064	53	0	0	0	497

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 W3 DEMISING BEARING WALL

W3 DEMISING BEARING WALL, LEVEL 2

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft	
L^ -	10.00 1	

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S162	54 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	3530	0	0.000	10.00	50		125	
D + Lr	2519	0	0.000	10.00	50		125	
D + 0.75L + 0.75Lr	3304	0	0.000	10.00	50		125	
D + W	2466	0	0.000	10.00	50		125	
D + 0.7E	2814	0	0.000	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	3304	0	0.000	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	3565	0	0.000	10.00	50		125	
0.6D + W	1479	0	0.000	10.00	50		125	
0.6D - 0.7E	1131	0	0.000	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs)) 10
	plf	lb	ft-lb		Check	Prb =	356 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows = 2	2

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Stor	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBER:	UMBER: 2150200882					
ENGINEER: L. Pade	gett	DATE:	10/29/2021			
CHECKER: LAP		DATE:				
SUBJECT: W3 DE	W3 DEMISING BEARING WALL					

W3 DEMISING BEARING WALL, LEVEL 1

2nd FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 1.33 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN1.33 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 1 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	14	33	0	0	0	0	3
CENTERLINE OF WALL (plf)	1348	532	27	0	0	0	272
RIGHT SIDE OF WALL (plf)	14	33	0	0	0	0	3
TOTAL LINE LOAD (plf)	1376	599	27	0	0	0	278
TOTAL AXIAL LOAD (lb)	2752	1197	53	0	0	0	555
				0	0	0	555

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 W3 DEMISING BEARING WALL

W3 DEMISING BEARING WALL, LEVEL 1

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S162	54 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	3949	0	0.000	10.00	50		125	
D + Lr	2805	0	0.000	10.00	50		125	
D + 0.75L + 0.75Lr	3689	0	0.000	10.00	50		125	
D + W	2752	0	0.000	10.00	50		125	
D + 0.7E	3140	0	0.000	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	3689	0	0.000	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	3981	0	0.000	10.00	50		125	
0.6D + W	1651	0	0.000	10.00	50		125	
0.6D - 0.7E	1262	0	0.000	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION Unity Check		Brace Force (n studs)	10
	plf	lb	ft-lb		Check	Prb =	398 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows = 2	

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 W5 CORRIDOR BEARING WALL

4.00 ft

Lt =

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

W5 CORRIDOR BEARING WALL

DESIGNED PER THE REQUIREMENTS OF AISI: 2016 NAS - US (ASD)

WALL NOTES

Need 50plf at top of wall, corridor flange to simulate the corridor joist DL.

24 in

DEFAULT FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER	AN TYPE CORRIDOR		21.50 ft UNIT SIMPLE SPAN 1.00
FLOOR SYSTEM DEPTH FLOOR FRAMING TYPE	12 in LEDGER FRAMED		
DEFAULT WALL DETAILS WALL TYPE STUD DEPTH	INTERIOR WALL 6.000 in	FLANGE BRACING BRACING Ly =	NONE 4.00 ft

FOUNDATION LINE LOADS

STUD OC SPACING

	D	L	Lr	S	W	(plf)	E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
SERVICE LEVEL LOADS	3862	5648	260	0	0	0	779

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion					
PROJECT NUMBER:	2150200882					
ENGINEER: L. Padg	gett DATE: 10/29/2021					
CHECKER: LAP	DATE:					
SUBJECT: W5 CO	RRIDOR BEARING WALL					

W5 CORRIDOR BEARING WALL, LEVEL 10

ROOF DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER

4.50 ft ROOF SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEROOFSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 10 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	54	0	45	0	0	0	11
CENTERLINE OF WALL (plf)	58	0	0	0	0	0	12
RIGHT SIDE OF WALL (plf)	258	0	215	0	0	0	52
TOTAL LINE LOAD (plf)	370	0	260	0	0	0	75
TOTAL AXIAL LOAD (Ib)	739	0	520	0	0	0	149

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W5 CORRIDOR BEARING WALL
 DATE:
 DATE:

W5 CORRIDOR BEARING WALL, LEVEL 10

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft	
LX -	10.00 IL	

FLANGE BRACING

- Ly = 4.00 ft
- Lt = 4.00 ft

|--|

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb		ft-lb	
D + L	739	1224	1.656	10.00	50		125	
D + Lr	1259	2244	1.782	10.00	50		125	
D + 0.75L + 0.75Lr	1129	1989	1.762	10.00	50		125	
D + W	739	1224	1.656	10.00	50		125	
D + 0.7E	843	1397	1.656	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	1129	1989	1.762	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	1207	2119	1.755	10.00	50		125	
0.6D + W	443	734	1.656	10.00	50		125	
0.6D - 0.7E	339	562	1.656	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs) 17
	plf	lb	ft-lb			Prb =	214 lb
DEFLECTION	10.00	50	125			Brdg Rows = 2	2

DesignPro Wall Designer Output

Version 6.0.2.0

Project Name: Project Number: Wall: Date/Time:	CFS-NHERI 10 2150200882-0 W5: Level 10 - 10/28/2021 /	Test	be	Co	ntact Name: Ly	larkDietrich Engineering /nn Padgett, P.E. 78.304.5525	Services LLC
Inputs Building Code: Design Option: Member Spacing: Bracing Distance: Knockout:	CBC 2 Custo 24 in 4' O.C Punch	m 2. Max (FB43-1)		Deflection Lim 0.7 Deflection Dead Load: z:		f	0
Wind Pressures Custom Pressures Span Pressure:		osf					
Axial Point	tributed Loa Load Case Pressure Pressure	ds Direction Global FY Global Mz	Loc.(Start) 10.00 ft 9.66 ft	Load(Start) -1259.00 lbs -2244 lb-in c	Loc.(End) NA NA	Load(End) NA NA	10' - 0" ()
Specified Men (1) 600S162-43 33							0
Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling Specified Con	 Actua -1971 -1971 -69 lb: 0.13 -1259 0.51 0.025 0.005 69 lbs 31 lbs 	Ib-in 16781 Ib-in 14623 Ib-in 13562 s 1240 I Ibs 3522 I in^4 2.316 in 0.5 in 410 lb 410 lb	Ib-in 11.74% Ib-in 13.48% Ib-in 14.53% bs 5.54% 12.87% bs 35.74% 51.01% in^4 1.07% L/22469 s 16.75%	9.66 ft 9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft 3.00 ft	Controlled By Custom Custom Custom Custom DL Custom Custom Custom Custom Custom Custom	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas	
- Wind	d: Rx = 68.7					Ry = 0 lbs	
600	T125-43 33 ksi	Track w/ (1) Bui	dex #10-16 T3 to	54-50 L.S.F. at 16'	0.C 17% Capa	city	
C1: Wind	d: Rx = 31.3		1			Ry = 1259 lbs	

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion			
PROJECT NUMBER:	2150200882			
ENGINEER: L. Padg	gett DATE: 10/29/2021			
CHECKER: LAP	DATE:			
SUBJECT: W5 CO	RRIDOR BEARING WALL			

W5 CORRIDOR BEARING WALL, LEVEL 9

10th FLOOR DETAILS

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 9 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	485	0	260	0	0	0	98
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	758	628	260	0	0	0	153
TOTAL AXIAL LOAD (Ib)	1515	1255	520	0	0	0	306

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion				
PROJECT NU	JMBER:	2150200882				
ENGINEER:	L. Padg	ett	DATE:	10/29/2021		
CHECKER:	LAP		DATE:			
SUBJECT:	W5 COF	RRIDOR BEARING W	ALL			

NONE

W5 CORRIDOR BEARING WALL, LEVEL 9

MEMBER DESIGN PARAMETERS

10.00 II

- Ly = 4.00 ft
- Lt = 4.00 ft

	1	600	S200	43 (33)
--	---	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	2770	3756	1.356	10.00	50		125	
D + Lr	2035	1071	0.526	10.00	50		125	
D + 0.75L + 0.75Lr	2846	3085	1.084	10.00	50		125	
D + W	1515	1071	0.707	10.00	50		125	
D + 0.7E	1729	1222	0.707	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	2846	3085	1.084	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	3007	3198	1.064	10.00	50		125	
0.6D + W	909	643	0.707	10.00	50		125	
0.6D - 0.7E	695	491	0.707	10.00	50		125	

FLANGE BRACING

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs) 6
	plf	lb	ft-lb			Prb =	180 lb
DEFLECTION	10.00	50	125			Brdg Rows = 2	2

Version 6.0.2.0

Project Nai Project Nui Wall: Date/Time:	mber:	CFS-NHERI 1 2150200882-0 W5: Level 09 10/28/2021 /	- Test	rpe		Cor		ClarkDietrich Engineering Lynn Padgett, P.E. 678.304.5525	Services LLC	
Inputs Building Co Design Op Member Sp Bracing Dis Knockout:	tion: pacing:	CBC Custo 24 in 4' O.C Puncl	om C. Max (FB43-1)		Deflection Limi 0.7 Deflection I Dead Load: z:	Jsed: No	240) osf 0 ft		_ 0
Wind Pr Custom Pr Span Pres	essures:	s 5.00 p	osf							
Point an Load Type Axial Point Moment	e Lo	ibuted Loa oad Case ressure ressure	I ds Direction Global FY Global Mz		.(Start) 10.00 ft 9.66 ft	Load(Start) -3007.00 lbs -3756 lb-in Ċ	Loc.(End) NA NA	Load(End) NA NA	10' - 0"	0
Specifie (1) 600S20		ber ksi @ 24" O.C	2.							0
Stud Des Interaction	n Check	Actua			Capacity	Location	Controlled I	By Pass/Fail		
Moment: S		-3431		4 lb-in	19.90%	9.66 ft	Custom	Pass		0
Moment: S		-3431		4 lb-in	19.90%	9.66 ft	Custom	Pass		×
Moment: D Shear	NSI. BUCKI	ing -3431 -81 lb		2 lb-in	22.29% 6.56%	9.66 ft 10.00 ft	Custom Custom	Pass Pass		/
V/M Intera	ction	-0110	s 1240 1	103	20.87%	9.66 ft	Custom	Pass		
Axial Stabi		-3007		lbs	68.75%	0.00 ft	DL	Pass		
P/M Interac	,	0.94	1		93.52%	9.66 ft	Custom	Pass		
Moment of		0.093		in^4	3.45%	7.00 ft	Custom	Pass		
Span Defle		0.017	in 0.5 in		L/6949	7.00 ft	Custom	Pass		
Web Cripp		81 lbs			19.83%	C2	Custom	Pass		
Web Cripp	ling	19 lbs	s 410 l	os	4.56%	C1	Custom	Pass		
Specifie	d Conn	ections								
			lbe					Ry = 0 lbs		
-	Wind:	Rx = 81.3	5 10 5							
•			-	ildex #10)-16 T3 to 54	1-50 L.S.F. at 16"	O.C 21% Cap	bacity		
C2:			Track w/ (1) Bu	ildex #10)-16 T3 to 54	4-50 L.S.F. at 16"	O.C 21% Cap	Ry = 3007 lbs		

600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at 16" O.C. - 5% Capacity

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBER:	2150200882				
ENGINEER: L. Padg	gett DATE: 10/29/2021				
CHECKER: LAP	DATE:				
SUBJECT: W5 CO	W5 CORRIDOR BEARING WALL				

W5 CORRIDOR BEARING WALL, LEVEL 8

9th FLOOR DETAILS

4.50 ft CORRIDOR SIMPLE SPAN 1.00

RIGHT SPAN 21.50 ft RIGHT LOADING TYPE UNIT SPAN TYPE SIMPLE SPAN 1.00 LINE LOAD MODIFIER

FLOOR SYSTEM DEPTH 12 in

LEVEL 8 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L Lr S W		(plf)	E		
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	873	628	260	0	0	0	176
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	1146	1255	260	0	0	0	231
TOTAL AXIAL LOAD (Ib)	2291	2510	520	0	0	0	462

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W5 CORRIDOR BEARING WALL
 DATE:
 DATE:

NONE

W5 CORRIDOR BEARING WALL, LEVEL 8

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft
------	----------

Ly = 4.00 ft

_y 4.00 ft

Lt = 4.00 ft

	1		600	S200	54 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	4801	3756	0.782	10.00	50		125	
D + Lr	2811	1071	0.381	10.00	50		125	
D + 0.75L + 0.75Lr	4564	3085	0.676	10.00	50		125	
D + W	2291	1071	0.467	10.00	50		125	
D + 0.7E	2615	1222	0.467	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	4564	3085	0.676	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	4806	3198	0.665	10.00	50		125	
0.6D + W	1375	643	0.467	10.00	50		125	
0.6D - 0.7E	1051	491	0.467	10.00	50		125	

FLANGE BRACING

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n stud	s) 6
	plf	lb	ft-lb		Check	Prb =	288 lb
DEFLECTION	10.00	50	125			Brdg Rows =	2

Version 6.0.2.0

Project Number:	CFS-NHERI 10 Sto 2150200882-0 W5: Level 08 - Tes 10/28/2021 / 5:04	t ,		Con	tact Name: Ly	arkDietrich Engineering \$ /nn Padgett, P.E. 78.304.5525	Services LLC
Inputs Building Code: Design Option: Member Spacing: Bracing Distance: Knockout:	CBC 2016 Custom 24 in 4' O.C. Ma Punched	x (FB43-1)		Deflection Limit 0.7 Deflection L Dead Load: z:			
Wind Pressure Custom Pressures: Span Pressure:	-						
Axial Point F	.oad Case Dir Pressure Glo	rection Lo obal FY obal Mz	oc.(Start) 10.00 ft 9.66 ft	Load(Start) -4806.00 lbs -3756 lb-in c	Loc.(End) NA NA	Load(End) NA NA	10' - 0" ()
Specified Mem (1) 600S200-54 50	ksi @ 24" O.C.						0
Stud Design R Interaction Check Moment: Strength Moment: Dist. Buck Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling	Actual -3431 lb-in -3431 lb-in	29636 lb-in	Capacity 11.29% 11.58% 12.53% 4.18% 11.98% 65.07% 79.45% 2.79% L/8598 8.74% 2.01%	Location 9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft C2 C1	Controlled By Custom Custom Custom Custom DL Custom Custom Custom Custom Custom Custom	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas	
Specified Coni						Ry = 0 lbs	
6001	125-43 33 ksi Tracl	x w/ (1) Buildex #	10-16 T3 to 54	4-50 L.S.F. at 16"	O.C 21% Capac	city	
C1: Wind	Rx = 18.7 lbs	1				Ry = 4806 lbs	

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	ME: CFS-NHERI 10 Story Test Portion						
PROJECT NUMBER:	2150200882						
ENGINEER: L. Padg	gett DATE: 10/29/2021						
CHECKER: LAP	DATE:						
SUBJECT: W5 CO	RRIDOR BEARING WALL						

W5 CORRIDOR BEARING WALL, LEVEL 7

8th FLOOR DETAILS

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 7 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	1261	1255	260	0	0	0	254
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	1534	1883	260	0	0	0	309
TOTAL AXIAL LOAD (lb)	3067	3765	520	0	0	0	619

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W5 CORRIDOR BEARING WALL
 DATE:
 DATE:

W5 CORRIDOR BEARING WALL, LEVEL 7

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft	
---------------	--

) ft

FLANGE BRACING

NONE

Ly = 4.00 ft

Lt = 4.00 ft

	1		600	S350	54 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	6832	3756	0.550	10.00	50		125	
D + Lr	3587	1071	0.299	10.00	50		125	
D + 0.75L + 0.75Lr	6281	3085	0.491	10.00	50		125	
D + W	3067	1071	0.349	10.00	50		125	
D + 0.7E	3500	1222	0.349	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	6281	3085	0.491	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	6606	3198	0.484	10.00	50		125	
0.6D + W	1840	643	0.349	10.00	50		125	
0.6D - 0.7E	1407	491	0.349	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs) 6
	plf	lb	ft-lb		Check	Prb =	410 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows = 2	2

Version 6.0.2.0

Imputs Likiting Code: CBC 2016 Definiting Code: L/240 Design Option: Custom 0.7 Definiting: No Bracing Distance: 24 in Dead Load: 0 psf Bracing Distance: 4 'O.C. Max (FB43-1) Dead Load: 0 psf Knockout: Punched z: 100 ft Winder Surse: Custom Pressures: 5.00 psf Custom Pressures: Coad Case Direction Loc.(Start) Load(Start) Load(End) Na Moment Pressure Global FY 10.00 ft -3756 lb-in C NA NA Specified Member Case 24" O.C. Start 10.00 ft -3756 lb-in C NA NA Moment: Strength -3431 lb-in 39976 lb-in 8.58% 9.66 ft Custom< Pass Moment: Strength -3431 lb-in 39976 lb-in 8.58% 9.66 ft Custom< Pass Moment: Strength -3431 lb-in 39976 lb-in 9.47% 9.66 ft Custom< Pass <t< th=""><th>Services LLC</th><th>></th></t<>	Services LLC	>
Wind Pressures: Span Pressure:5.00 psfPoint and Distributed LoadsLoad Type Axial PointLoad Case PressureDirection Global FYLoc.(Start) 10.00 ftLoad(Start) -6832.00 lbsLoc.(End) NALoad(End)Axial Point MomentPressure PressureGlobal FY Global Mz10.00 ft 9.66 ft-6832.00 lbs -3756 lb-in cNANASpecified Member (1) 600S350-54 50 ksi @ 24" O.C.Stud Design ResultsInteraction Check Moment: Strength -3431 lb-in -39976 lb-inAllowable 8.58% 9.66 ftCapacity Location LocationControlled By Custom Pass 9.66 ftPass/Fail Custom Pass 9.66 ftMoment: Strength Moment: Dist. Buckling Shear -431 lb-in -681 lbs1947 lbs 1947 lbs4.18% 4.18%10.00 ftCustom Custom Pass 9.66 ftPass Pass PassV/M Interaction Moment of Inertia DO.09 Moment of Inertia0.093 in'4 4.722 in'49.66 ftCustom Pass Pass Arial 540 lbs0.0057 lbs 6.7.94%0.00 ftL Pass Pass Pass Pass Moment of Inertia 0.093 in'44.722 in'4 4.96%9.66 ftCustom Pass Pass Pass Pass Pass Pass Pass Pass PassPass Pass Pass PassPass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass PassPass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass PassPass Pass Pass Pass <b< th=""><th><u> </u></th><th>0</th></b<>	<u> </u>	0
Custom Pressures: Span Pressure: 5.00 psf Point and Distributed Loads Load Type Load Case Direction Loc.(Start) Load(Start) Loc.(End) Load(End) Axial Point Pressure Global FY 10.00 ft -6832.00 lbs NA NA Moment Pressure Global Mz 9.66 ft -3756 lb-in C NA NA Specified Member (1) 600S350-54 50 ksi @ 24" O.C. Stud Design Results Interaction Check Actual Allowable Capacity Location Controlled By Pass/Fail Moment: Strength -3431 lb-in 39976 lb-in 8.58% 9.66 ft Custom Pass Moment: Stability -3431 lb-in 39976 lb-in 8.58% 9.66 ft Custom Pass Moment: Stability -3431 lb-in 39976 lb-in 8.58% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 36566 lb-in 9.38% 9.66 ft Custom Pass Shear -81 lbs 1947 lbs 4.18% 10.00 ft Custom Pass Shear -81 lbs 1947 lbs 4.18% 10.00 ft Custom Pass Na Pass Axial Stability -6832 lbs 10057 lbs 67.94% 0.00 ft DL Pass P/M Interaction 0.79 1 78.61% 9.66 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Web Crippling 81 lbs 930 lbs 8.74% C2 Custom Pass Web Crippling 19 lbs 930 lbs 2.01% C1 Custom Pass		
Load Type Axial PointLoad Case PressureDirection Global FY Global MzLoc.(Start) 10.00 ft 9.66 ftLoad(Start) -6832.00 lbs -3756 lb-in CLoc.(End) NALoad(End) NASpecified Member (1) 600S350-54 50 ksi @ 24" O.C.Stud Design ResultsInteraction Check Moment: StrengthActual -3431 lb-inAllowable 39976 lb-inCapacity 8.58%Location 9.66 ftControlled By CustomPass/Fail PassMoment: Strength Moment: Stability-3431 lb-in -3431 lb-in39976 lb-in 39976 lb-inLocation 8.58%Custom 9.66 ftPassShear Y/M Interaction-81 lbs -3431 lb-in1947 lbs -947%4.18% 9.66 ftCustom CustomPassV/M Interaction Axial Stability0.09 -6832 lbs10057 lbs -67.94%0.00 ft -7.00 ftDL - PassPassV/M Interaction Moment of Inertia Span Deflection0.09 in^4 -4.722 in^47.861% -930 lbs9.66 ft - CustomCustom - PassMoment of Inertia Span Deflection0.01 in -65 in -1.95%1.96% -7.00 ftCustom - PassPass - PassWeb Crippling Web Crippling81 lbs -930 lbs930 lbs -0.1%2.01%C1Custom - Pass		
(1) 600S350-54 50 ksi @ 24" O.C.Stud Design ResultsInteraction CheckActualAllowableCapacityLocationControlled ByPass/FailMoment: Strength-3431 lb-in39976 lb-in8.58%9.66 ftCustomPassMoment: Stability-3431 lb-in39976 lb-in8.58%9.66 ftCustomPassMoment: Dist. Buckling-3431 lb-in36566 lb-in9.38%9.66 ftCustomPassShear-81 lbs1947 lbs4.18%10.00 ftCustomPassV/M Interaction0.0919.47%9.66 ftCustomPassAxial Stability-6832 lbs10057 lbs67.94%0.00 ftDLPassP/M Interaction0.79178.61%9.66 ftCustomPassSpan Deflection0.01 in0.5 inL/122307.00 ftCustomPassSpan Deflection0.01 in0.5 inL/122307.00 ftCustomPassWeb Crippling81 lbs930 lbs8.74%C2CustomPassWeb Crippling19 lbs930 lbs2.01%C1CustomPass	10' - 0''	0
Interaction CheckActualAllowableCapacityLocationControlled ByPass/FailMoment: Strength-3431 lb-in39976 lb-in8.58%9.66 ftCustomPassMoment: Stability-3431 lb-in39976 lb-in8.58%9.66 ftCustomPassMoment: Dist. Buckling-3431 lb-in36566 lb-in9.38%9.66 ftCustomPassShear-81 lbs1947 lbs4.18%10.00 ftCustomPassV/M Interaction0.0919.47%9.66 ftCustomPassAxial Stability-6832 lbs10057 lbs67.94%0.00 ftDLPassP/M Interaction0.79178.61%9.66 ftCustomPassSpan Deflection0.01 in0.5 inL/122307.00 ftCustomPassWeb Crippling81 lbs930 lbs8.74%C2CustomPassWeb Crippling19 lbs930 lbs2.01%C1CustomPass		0
Moment: Strength -3431 lb-in 39976 lb-in 8.58% 9.66 ft Custom Pass Moment: Stability -3431 lb-in 39976 lb-in 8.58% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 36566 lb-in 9.38% 9.66 ft Custom Pass Shear -81 lbs 1947 lbs 4.18% 10.00 ft Custom Pass V/M Interaction 0.09 1 9.47% 9.66 ft Custom Pass Axial Stability -6832 lbs 10057 lbs 67.94% 0.00 ft DL Pass P/M Interaction 0.79 1 78.61% 9.66 ft Custom Pass Span Deflection 0.03 in^4 4.722 in^4 1.96% 7.00 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Web Crippling 81 lbs 930 lbs 8.74% C2 Custom Pass Web Crippling 19 lbs		
Moment: Stability -3431 lb-in 39976 lb-in 8.58% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 36566 lb-in 9.38% 9.66 ft Custom Pass Shear -81 lbs 1947 lbs 4.18% 10.00 ft Custom Pass V/M Interaction 0.09 1 9.47% 9.66 ft Custom Pass Axial Stability -6832 lbs 10057 lbs 67.94% 0.00 ft DL Pass P/M Interaction 0.79 1 78.61% 9.66 ft Custom Pass Span Deflection 0.093 in^4 4.722 in^4 1.96% 7.00 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Web Crippling 81 lbs 930 lbs 8.74% C2 Custom Pass Web Crippling 19 lbs 930 lbs 2.01% C1 Custom Pass		
Moment: Dist. Buckling -3431 lb-in 36566 lb-in 9.38% 9.66 ft Custom Pass Shear -81 lbs 1947 lbs 4.18% 10.00 ft Custom Pass V/M Interaction 0.09 1 9.47% 9.66 ft Custom Pass Axial Stability -6832 lbs 10057 lbs 67.94% 0.00 ft DL Pass P/M Interaction 0.79 1 78.61% 9.66 ft Custom Pass Span Deflection 0.093 in^4 4.722 in^4 1.96% 7.00 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Web Crippling 81 lbs 930 lbs 8.74% C2 Custom Pass Web Crippling 19 lbs 930 lbs 2.01% C1 Custom Pass		0
Shear -81 lbs 1947 lbs 4.18% 10.00 ft Custom Pass V/M Interaction 0.09 1 9.47% 9.66 ft Custom Pass Axial Stability -6832 lbs 10057 lbs 67.94% 0.00 ft DL Pass P/M Interaction 0.79 1 78.61% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 4.722 in^4 1.96% 7.00 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Web Crippling 81 lbs 930 lbs 8.74% C2 Custom Pass Web Crippling 19 lbs 930 lbs 2.01% C1 Custom Pass		
V/M Interaction 0.09 1 9.47% 9.66 ft Custom Pass Axial Stability -6832 lbs 10057 lbs 67.94% 0.00 ft DL Pass P/M Interaction 0.79 1 78.61% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 4.722 in^4 1.96% 7.00 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Web Crippling 81 lbs 930 lbs 8.74% C2 Custom Pass Web Crippling 19 lbs 930 lbs 2.01% C1 Custom Pass		
Axial Stability -6832 lbs 10057 lbs 67.94% 0.00 ft DL Pass P/M Interaction 0.79 1 78.61% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 4.722 in^4 1.96% 7.00 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Web Crippling 81 lbs 930 lbs 8.74% C2 Custom Pass Web Crippling 19 lbs 930 lbs 2.01% C1 Custom Pass	★	
P/M Interaction 0.79 1 78.61% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 4.722 in^4 1.96% 7.00 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Web Crippling 81 lbs 930 lbs 8.74% C2 Custom Pass Web Crippling 19 lbs 930 lbs 2.01% C1 Custom Pass		
Moment of Inertia 0.093 in^4 4.722 in^4 1.96% 7.00 ft Custom Pass Span Deflection 0.01 in 0.5 in L/12230 7.00 ft Custom Pass Web Crippling 81 lbs 930 lbs 8.74% C2 Custom Pass Web Crippling 19 lbs 930 lbs 2.01% C1 Custom Pass		
Span Deflection0.01 in0.5 inL/122307.00 ftCustomPassWeb Crippling81 lbs930 lbs8.74%C2CustomPassWeb Crippling19 lbs930 lbs2.01%C1CustomPass		
Web Crippling81 lbs930 lbs8.74%C2CustomPassWeb Crippling19 lbs930 lbs2.01%C1CustomPass		
Web Crippling19 lbs930 lbs2.01%C1CustomPass		
Specified Connections		
C2: Wind: Rx = 81.3 lbs Ry = 0 lbs		
600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at 16" O.C 21% Capacity		
C1: Wind: Rx = 18.7 lbs Ry = 6832 lbs	7	

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion
PROJECT NUMBER:	2150200882
ENGINEER: L. Padg	gett DATE: 10/29/2021
CHECKER: LAP	DATE:
SUBJECT: W5 CO	RRIDOR BEARING WALL

W5 CORRIDOR BEARING WALL, LEVEL 6

7th FLOOR DETAILS

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 6 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W ((plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	1649	1883	260	0	0	0	333
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	1922	2510	260	0	0	0	388
TOTAL AXIAL LOAD (lb)	3843	5020	520	0	0	0	775

Phone: (877) 832-3206 www.ClarkDietrich.com PROJECT NAME: **CFS-NHERI 10 Story Test Portion** PROJECT NUMBER: 2150200882 ENGINEER: L. Padgett DATE: 10/29/2021 CHECKER: LAP DATE: SUBJECT: **W5 CORRIDOR BEARING WALL**

NONE

W5 CORRIDOR BEARING WALL, LEVEL 6

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft
------	----------

- Ly = 4.00 ft
- Lt = 4.00 ft

|--|

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	8863	3756	0.424	10.00	50		125	
D + Lr	4363	1071	0.245	10.00	50		125	
D + 0.75L + 0.75Lr	7998	3085	0.386	10.00	50		125	
D + W	3843	1071	0.279	10.00	50		125	
D + 0.7E	4386	1222	0.279	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	7998	3085	0.386	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	8405	3198	0.381	10.00	50		125	
0.6D + W	2306	643	0.279	10.00	50		125	
0.6D - 0.7E	1763	491	0.279	10.00	50		125	

FLANGE BRACING

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs	s) 6
	plf	lb	ft-lb		Check	Prb =	532 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows =	2

Version 6.0.2.0

Project Number: Wall: Date/Time:	CFS-NHERI 10 2150200882-0 W5: Level 06 - 10/28/2021 /	- Test	ie	Cor	ntact Name: Lyr	arkDietrich Engineering \$ nn Padgett, P.E. 8.304.5525	Services LLC
Inputs Building Code: Design Option: Member Spacing: Bracing Distance: Knockout:		c. Max (FB68-1)		Deflection Limi 0.7 Deflection I Dead Load: z:			
Wind Pressur Custom Pressures Span Pressure:		osf					
Axial Point	tributed Loa Load Case Pressure Pressure	I ds Direction Global FY Global Mz	Loc.(Start) 10.00 ft 9.66 ft	Load(Start) -8863.00 lbs -3756 lb-in さ	Loc.(End) NA NA	Load(End) NA NA	10' - 0''
Specified Mer (1) 600S250-68 5 Stud Design F	i0 ksi @ 24" O.C						
Interaction Check Moment: Strength	k Actua	lb-in 41495 lb-in 41495	lb-in 8.27%	y Location 9.66 ft 9.66 ft	Controlled By Custom Custom	Pass/Fail Pass Pass	
Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling	ckling -3431 -81 lbs 0.09 -8863 0.92 0.093 0.01 in 81 lbs	s 2879 II 1 Ibs 10865 1 in^4 4.724 i n 0.5 in s 1389 II	bs 2.82% 8.70% lbs 81.57% 92.11% in^4 1.96% L/12235 bs 5.85%	C2	Custom Custom DL Custom Custom Custom Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	Ļ [
Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling Specified Cor	ckling -3431 -81 lbs 0.09 -8863 0.92 0.093 0.01 in 81 lbs 19 lbs	s 2879 II 1 1 108 10865 1 in^4 4.724 i n 0.5 in 3 1389 II 5 1389 II	bs 2.82% 8.70% lbs 81.57% 92.11% in^4 1.96% L/12235 bs 5.85%	10.00 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft	Custom Custom DL Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	[
Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling Specified Cor	ckling -3431 -81 lbs 0.09 -8863 0.92 0.093 0.01 in 81 lbs 19 lbs nnections	s 2879 II 1 1 108 10865 1 in^4 4.724 i n 0.5 in 3 1389 II 3 lbs	bs 2.82% 8.70% lbs 81.57% 92.11% in^4 1.96% L/12235 bs 5.85% bs 1.35%	10.00 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft C2	Custom Custom DL Custom Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion					
PROJECT NUMBER:	2150200882					
ENGINEER: L. Padg	gett DATE: 10/29/2021					
CHECKER: LAP	DATE:					
SUBJECT: W5 CO	W5 CORRIDOR BEARING WALL					

W5 CORRIDOR BEARING WALL, LEVEL 5

6th FLOOR DETAILS

4.50 ft CORRIDOR SIMPLE SPAN 1.00

RIGHT SPAN 21.50 ft RIGHT LOADING TYPE UNIT SPAN TYPE SIMPLE SPAN 1.00 LINE LOAD MODIFIER

FLOOR SYSTEM DEPTH 12 in

LEVEL 5 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	W		Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	2037	2510	260	0	0	0	411
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	2310	3138	260	0	0	0	466
TOTAL AXIAL LOAD (Ib)	4619	6275	520	0	0	0	932

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W5 CORRIDOR BEARING WALL
 DATE:
 DATE:

W5 CORRIDOR BEARING WALL, LEVEL 5

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft
------	----------

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

1		600	S350	68 (50)
	-			

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	10894	3756	0.345	10.00	50		125	
D + Lr	5139	1071	0.208	10.00	50		125	
D + 0.75L + 0.75Lr	9715	3085	0.318	10.00	50		125	
D + W	4619	1071	0.232	10.00	50		125	
D + 0.7E	5271	1222	0.232	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	9715	3085	0.318	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	10205	3198	0.313	10.00	50		125	
0.6D + W	2771	643	0.232	10.00	50		125	
0.6D - 0.7E	2119	491	0.232	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs	s) 6
	plf	lb	ft-lb		Check	Prb =	654 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows =	2

Version 6.0.2.0

Inputs Building Code: CBC 2016 Deflection Limit: L/240 Design Option: Custom 0.7 Deflection Used: No Bracing Distance: 4' O.C. Max (FB68-1) Dead Load: 0 psf Knockout: Punched z: 100 ft Wind Pressures: Stone Pressure: 5.00 psf Point and Distributed Loads Load(Start) Loc.(End) Load(End) Load Type Load Case Direction Load(Start) Loc.(End) Load(End) Axial Point Pressure Global FY 10.00 ft -10894.00 lbs NA NA Specified Member Clobal FY 10.00 ft -10894.00 lbs NA NA NA (1) 600S350-68 50 ksi (g 24° 0.C. Stud Design Results Na NA NA NA Interaction Check Actual Allowable Capacity Location Controlled By Pass/Fail Moment: Dist. Buckling -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 53018 lb-in 6.47% 9.66 ft	Project Name Project Numb Wall: Date/Time:	oer: 215 W5	S-NHERI 1 50200882-0 5: Level 05 - 28/2021 /	Test	rchetype		Co	ntact Name:	ClarkDietrich Engineering Lynn Padgett, P.E. 678.304.5525	Services LLC	
Custom Pressures: Span Pressure: 5.00 psf Point and Distributed Loads Load Case Direction Loc.(Start) Load(Start) Loc.(End) Load(End) Axial Point Pressure Global FY 10.00 ft -10894.00 lbs NA	Building Code Design Option Member Space Bracing Dista	n: cing:	Custo 24 in 4' O.C	m C. Max (Fl	B68-1)		0.7 Deflection Dead Load:	Used: No 0 p	sf	\	0
Load TypeLoad CaseDirectionLoc.(Start)Load(Start)Loc.(End)Load(End)Axial PointPressureGlobal FY10.00 ft-10894.00 lbsNANANA10"-0"0MomentPressureGlobal Mz9.66 ft-3756 lb-in CNANANA0"0Specified Member(1) 600S350-68 50 ksi @ 24" O.C.Stud Design ResultsImeraction CheckActualAllowableCapacityLocationControlled ByPass/Fail0Interaction CheckActualAllowableCapacityLocationCustomPass0Moment: Strength-3431 lb-in53018 lb-in6.47%9.66 ftCustomPass0Moment: Dist. Buckling-3431 lb-in53018 lb-in6.47%9.66 ftCustomPassMoment: Dist. Buckling-3431 lb-in53018 lb-in6.90%9.66 ftCustomPassMoment: Dist. Buckling-3431 lb-in53018 lb-in6.90%9.66 ftCustomPassMoment: Dist. Buckling-3431 lb-in6.90%9.66 ftCustomPassMoment of Inertia0.0717.01%9.66 ftCustomPassPM Interaction0.08 in1.4473 lbs75.27%0.00 ftDLPassMoment of Inertia0.993 in^46.167 in^41.50%7.00 ftCustomPassSpan Deflection0.008 in0.5 inL/159747.00 ftCustomPassWeb Crippling19 l	Custom Pres	sures:	5.00 p	osf							
(1) 600S350-68 50 ksi @ 24" O.C. Stud Design Results Allowable Capacity Location Controlled By Pass/Fail Moment: Strength -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Stability -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Stability -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 49703 lb-in 6.90% 9.66 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass V/M Interaction 0.07 1 7.01% 9.66 ft Custom Pass Axial Stability -10894 lbs 14473 lbs 75.27% 0.00 ft DL Pass P/M Interaction 0.83 1 83.44% 9.66 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 1.35% C1 Custom	Load Type Axial Point	Load Pres	d Case sure	Directi Global	FY	10.00 ft	-10894.00 lbs	ŇÁ	ŇÁ	10' - 0''	0
Interaction Check Moment: StrengthActual -3431 lb-inAllowable 53018 lb-inCapacity 6.47%Location 9.66 ftControlled By CustomPass/Fail PassMoment: Stability-3431 lb-in53018 lb-in6.47%9.66 ftCustomPassMoment: Dist. Buckling-3431 lb-in49703 lb-in6.90%9.66 ftCustomPassShear-81 lbs2879 lbs2.82%10.00 ftCustomPassV/M Interaction0.0717.01%9.66 ftCustomPassAxial Stability-10894 lbs14473 lbs75.27%0.00 ftDLPassP/M Interaction0.83183.44%9.66 ftCustomPassSpan Deflection0.008 in0.5 inL/159747.00 ftCustomPassWeb Crippling81 lbs1389 lbs5.85%C2CustomPassSpecified Connections1389 lbs1.35%C1CustomPassRx = 81.3 lbs											0
Moment: Strength -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Stability -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 49703 lb-in 6.90% 9.66 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass V/M Interaction 0.07 1 7.01% 9.66 ft Custom Pass Axial Stability -10894 lbs 14473 lbs 75.27% 0.00 ft DL Pass P/M Interaction 0.83 1 83.44% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections Ry = 0 lbs		-		.1	Allowable	Capacity	Location		by Bass/Eail		
Moment: Stability -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 49703 lb-in 6.90% 9.66 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass V/M Interaction 0.07 1 7.01% 9.66 ft Custom Pass Axial Stability -10894 lbs 14473 lbs 75.27% 0.00 ft DL Pass P/M Interaction 0.83 1 83.44% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Specified Connections 1389 lbs 1.35% C1 Custom Pass C2: Wind: Rx = 81.3 lbs Ry = 0 lbs Ry = 0 lbs Ry = 0 lbs											
Moment: Dist. Buckling -3431 lb-in 49703 lb-in 6.90% 9.66 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass V/M Interaction 0.07 1 7.01% 9.66 ft Custom Pass Axial Stability -10894 lbs 14473 lbs 75.27% 0.00 ft DL Pass P/M Interaction 0.83 1 83.44% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Specified Connections Isso 1.35% C1 Custom Pass Ry = 0 lbs											0
Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass V/M Interaction 0.07 1 7.01% 9.66 ft Custom Pass Axial Stability -10894 lbs 14473 lbs 75.27% 0.00 ft DL Pass P/M Interaction 0.83 1 83.44% 9.66 ft Custom Pass P/M Interaction 0.83 1 83.44% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Specified Connections 1389 lbs 1.35% C1 Custom Pass Ry = 0 lbs								Custom			
Axial Stability -10894 lbs 14473 lbs 75.27% 0.00 ft DL Pass P/M Interaction 0.83 1 83.44% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Specified Connections 19 lbs 1389 lbs 1.35% C1 Custom Pass		0						Custom	Pass	¥	
P/M Interaction 0.83 1 83.44% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Web Crippling 19 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections	V/M Interaction	on	0.07		1	7.01%	9.66 ft	Custom	Pass		
Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Web Crippling 19 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections Rx = 81.3 lbs Ry = 0 lbs Ry = 0 lbs Ry = 0 lbs Ry = 0 lbs	,			4 lbs							
Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Web Crippling 19 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections Ry = 0 lbs											
Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Web Crippling 19 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections Rx = 81.3 lbs Rx = 81.3 lbs Ry = 0 lbs Ry = 0 lbs											
Web Crippling 19 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections Ry = 0 lbs Ry											
Specified Connections C2: Wind: Rx = 81.3 lbs Ry = 0 lbs											
C2: Wind: Rx = 81.3 lbs Ry = 0 lbs	wen onhhimi	Э	19105		1009 108	1.33%		Custom	F 832		
	Specified	Connec	ctions								
	C2:	Wind:	Rx = 81.3	B lbs					Ry = 0 lbs		
					(1) Buildex	#10-16 T3 to 5	4-50 L.S.F. at 16'	' O.C 10% Cap	,	1	
C1: Wind: Rx = 18.7 lbs Ry = 10894 lbs	C1:	Wind:	Rx = 18.7	' lbs					Ry = 10894 lbs		

600T125-68 50 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at 16" O.C. - 2% Capacity

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion					
PROJECT NUMBER:	2150200882					
ENGINEER: L. Padg	gett DATE: 10/29/2021					
CHECKER: LAP	DATE:					
SUBJECT: W5 CO	W5 CORRIDOR BEARING WALL					

W5 CORRIDOR BEARING WALL, LEVEL 4

5th FLOOR DETAILS

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 4 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	2425	3138	260	0	0	0	489
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	2698	3765	260	0	0	0	544
TOTAL AXIAL LOAD (Ib)	5395	7530	520	0	0	0	1088

Phone: (877) 832-3206 www.ClarkDietrich.com PROJECT NAME: **CFS-NHERI 10 Story Test Portion** PROJECT NUMBER: 2150200882 ENGINEER: L. Padgett DATE: 10/29/2021 CHECKER: LAP DATE: SUBJECT: **W5 CORRIDOR BEARING WALL**

NONE

W5 CORRIDOR BEARING WALL, LEVEL 4

MEMBER DESIGN PARAMETERS

- Ly = 4.00 ft
- Lt = 4.00 ft

1	600	S350	68 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	12925	3756	0.291	10.00	50		125	
D + Lr	5915	1071	0.181	10.00	50		125	
D + 0.75L + 0.75Lr	11433	3085	0.270	10.00	50		125	
D + W	5395	1071	0.199	10.00	50		125	
D + 0.7E	6157	1222	0.199	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	11433	3085	0.270	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	12004	3198	0.266	10.00	50		125	
0.6D + W	3237	643	0.199	10.00	50		125	
0.6D - 0.7E	2475	491	0.199	10.00	50		125	

FLANGE BRACING

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs	s) 6
	plf	lb	ft-lb		Check	Prb =	776 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows =	2

Version 6.0.2.0

Inputs Deflection Limit: L/240 Deflection Used: No Building Code: CBC 2016 0.7 Deflection Used: No No Bracing Distance: 4' O.C. Max (FB68-1) Dead Load: 0.psf Knockout: Punched z: 100 ft Wind Pressures: Soor psf Systems: Soor psf Point and Distributed Loads Load(Start) Loc.(End) Load(End) Axial Point Pressure Global FY 10.00 ft -12925.00 lbs NA NA NA Specified Member (1) 6005350-68 50 ksi @ 24" O.C. Stud Design Results Interaction Check Actual Allowable Capacity Location Controlled By Pass/Fail Moment: Strength -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 6.47% 9.66 ft Custom Pass VM Interaction 0.07 1 7.01% 9.66 ft Custom Pass VM Interaction	ces LLC	
Design Option: Custom 0.7 Deflection Used: No Member Spacing: 24 in Bracing Distance: 4 'O.C. Max (FB68-1) Dead Load: 0 psf Knockout: Punched z: 100 ft Wind Pressures Custom Pressures: 5.00 psf Point and Distributed Loads Load Type Load Case Direction Loc.(Start) Load(Start) Loc.(End) Load(End) Axial Point Pressure Global FY 10.00 ft -12925.00 lbs NA NA 10" Moment Pressure Global FY 10.00 ft -12925.00 lbs NA NA NA 10" Specified Member (1) 600S350-68 50 ksi @ 24" O.C. Stud Design Results Interaction Check Actual Allowable Capacity Location Controlled By Pass/Fail Moment: Strength -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Strength -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -981 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -981 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -981 lbs 1389 lbs 5.85% C2 Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pa		
Bracing Distance: 4' O.C. Max (FB68-1) Dead Load: 0 psf Knockout: Punched z: 100 ft Wind Pressures: Span Pressure: 5.00 psf Point and Distributed Loads Load Type Load Case Direction Loc.(Start) Load(Start) Loc.(End) Load(End) Axial Point Pressure Global FY 10.00 ft -12925.00 lbs NA NA 10' Moment Pressure Global Mz 9.66 ft -3756 lb-in C NA NA 10' Specified Member (1) 600S350-68 50 ksi @ 24" O.C. Stud Design Results Interaction Check Actual Allowable Capacity Location Controlled By Pass/Fail Moment: Stability -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Stability -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Miletraction 0.07 1 7.01% 9.66 ft Custom Pass Moment of Inertia 0.098 1 97.77% 9.66 ft Custom Pass P/M Interaction 0.98 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.098 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.098 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.098 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.098 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.098 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.098 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.098 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.098 1 39.05% 0.00 ft DL Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C1 Custom Pass Spacelfied Connections		
Custom Pressures: Span Pressure: 5.00 psf Point and Distributed Loads Load Case Direction Loc.(Start) Load(Start) Loc.(End) Load(End) Axial Point Pressure Global FY 10.00 ft -12925.00 lbs NA		0
Load Type Axial PointLoad Case PressureDirection Global FYLoc.(Start) 10.00 ft 9.66 ftLoad(Start) -12925.00 lbsLoc.(End) NALoad(End)MomentPressureGlobal Mz9.66 ft-3756 lb-in CNANANANASpecified Member (1) 600S350-68 50 ksi @ 24" O.C.Stud Design ResultsInteraction CheckActualAllowableCapacityLocationControlled ByPass/FailMoment:System-3431 lb-in53018 lb-in6.47%9.66 ftCustomPassMoment:Stability-3431 lb-in53018 lb-in6.47%9.66 ftCustomPassMoment:Stability-3431 lb-in53018 lb-in6.90%9.66 ftCustomPassShear-81 lbs2879 lbs2.82%10.00 ftCustomPassAxial Stability-12925 lbs14473 lbs89.30%0.00 ftDLPassVM Interaction0.0717.01%9.66 ftCustomPassPassPassMoment of Inertia0.993 in^46.167 in^41.50%7.00 ftCustomPassMoment of Inertia0.008 in0.5 inL/159747.00 ftCustomPassSpan Deflection0.008 in0.5 inL/159747.00 ftCustomPassWeb Crippling81 lbs1389 lbs1.85%C1CustomPassSpecified Connections19 lbs1389 lbs1.35%C1 <td></td> <td></td>		
Specified Member (1) 600S350-68 50 ksi @ 24" O.C. Stud Design Results Interaction Check Actual -3431 lb-in Allowable 53018 lb-in Capacity 6.47% Location 9.66 ft Controlled By Custom Pass/Fail Moment: Strength Moment: Stability -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass Axial Stability -12925 lbs 14473 lbs 89.30% 0.00 ft DL Pass P/M Interaction 0.98 1 97.77% 9.66 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Specified Connections 19 lbs 1.35% C1 Custom Pass	10' - 0''	0
Moment: Strength -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Stability -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 49703 lb-in 6.90% 9.66 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass V/M Interaction 0.07 1 7.01% 9.66 ft Custom Pass Axial Stability -12925 lbs 14473 lbs 89.30% 0.00 ft DL Pass P/M Interaction 0.98 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Specified Connections 1 1.35% C1 Custom Pass		0
Moment: Stability -3431 lb-in 53018 lb-in 6.47% 9.66 ft Custom Pass Moment: Dist. Buckling -3431 lb-in 49703 lb-in 6.90% 9.66 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass V/M Interaction 0.07 1 7.01% 9.66 ft Custom Pass Axial Stability -12925 lbs 14473 lbs 89.30% 0.00 ft DL Pass P/M Interaction 0.98 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Specified Connections 1389 lbs 1.35% C1 Custom Pass Stability 19 lbs 1389 lbs 1.35% C1 Custom Pass		
Moment: Dist. Buckling -3431 lb-in 49703 lb-in 6.90% 9.66 ft Custom Pass Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass V////////////////////////////////////		0
Shear -81 lbs 2879 lbs 2.82% 10.00 ft Custom Pass V/M Interaction 0.07 1 7.01% 9.66 ft Custom Pass Axial Stability -12925 lbs 14473 lbs 89.30% 0.00 ft DL Pass P/M Interaction 0.98 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Specified Connections 1.35% C1 Custom Pass Ry = 0 lbs		
V/M Interaction 0.07 1 7.01% 9.66 ft Custom Pass Axial Stability -12925 lbs 14473 lbs 89.30% 0.00 ft DL Pass P/M Interaction 0.98 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Specified Connections 19 lbs 1389 lbs 1.35% C1 Custom Pass		
Axial Stability -12925 lbs 14473 lbs 89.30% 0.00 ft DL Pass P/M Interaction 0.98 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Web Crippling 19 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections	'\	
P/M Interaction 0.98 1 97.77% 9.66 ft Custom Pass Moment of Inertia 0.093 in^4 6.167 in^4 1.50% 7.00 ft Custom Pass Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Web Crippling 19 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections Ry = 0 lbs		
Span Deflection 0.008 in 0.5 in L/15974 7.00 ft Custom Pass Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Web Crippling 19 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections Ry = 0 lbs		
Web Crippling 81 lbs 1389 lbs 5.85% C2 Custom Pass Web Crippling 19 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections Rx = 81.3 lbs Rx = 0 lbs Ry = 0 lbs Ry = 0 lbs Ry = 0 lbs		
Web Crippling 19 lbs 1389 lbs 1.35% C1 Custom Pass Specified Connections Ry = 0 lbs Ry		
Specified Connections C2: Wind: Rx = 81.3 lbs Ry = 0 lbs		
C2: Wind: Rx = 81.3 lbs Ry = 0 lbs		
600T125-68 50 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 S.F. at 16" O.C 10% Capacity		
C1: Wind: Rx = 18.7 lbs Ry = 12925 lbs		

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	ME: CFS-NHERI 10 Story Test Portion					
PROJECT NUMBER:	2150200882					
ENGINEER: L. Padg	gett DATE: 10/29/2021					
CHECKER: LAP	DATE:					
SUBJECT: W5 CO	W5 CORRIDOR BEARING WALL					

W5 CORRIDOR BEARING WALL, LEVEL 3

4th FLOOR DETAILS

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 3 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	2813	3765	260	0	0	0	567
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	3086	4393	260	0	0	0	623
TOTAL AXIAL LOAD (Ib)	6171	8785	520	0	0	0	1245

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W5 CORRIDOR BEARING WALL
 DATE:
 DATE:

W5 CORRIDOR BEARING WALL, LEVEL 3

MEMBER DESIGN PARAMETERS

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

	1	600	S250	97 (50)
--	---	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	14956	3756	0.251	10.00	50		125	
D + Lr	6691	1071	0.160	10.00	50		125	
D + 0.75L + 0.75Lr	13150	3085	0.235	10.00	50		125	
D + W	6171	1071	0.174	10.00	50		125	
D + 0.7E	7043	1222	0.174	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	13150	3085	0.235	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	13803	3198	0.232	10.00	50		125	
0.6D + W	3703	643	0.174	10.00	50		125	
0.6D - 0.7E	2831	491	0.174	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs	s) 6
	plf	lb	ft-lb		Check	Prb =	897 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows =	2

Version 6.0.2.0

Project Name: Project Number: Wall: Date/Time:	CFS-NHERI 1/ 2150200882-0 W5: Level 03 - 10/28/2021 /	Test	e	Coi	ntact Name: L	ClarkDietrich Engineering S ynn Padgett, P.E. 78.304.5525	ervices LLC
Inputs Building Code: Design Option: Member Spacing: Bracing Distance: Knockout:	CBC 2 Custo 24 in 4' O.C Punct	m 2. Max (FB68-1)		Deflection Limi 0.7 Deflection Dead Load: z:		f	
Wind Pressur Custom Pressures Span Pressure:		osf					
Axial Point	tributed Loa Load Case Pressure Pressure	ds Direction Global FY Global Mz	Loc.(Start) 10.00 ft 9.66 ft	Load(Start) -14956.00 lbs -3756 lb-in こ	Loc.(End) NA NA	Load(End) NA NA	10' - 0''
Specified Mer (1) 600S250-97 5							
Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling Specified Con	kling -3431 -3431 -3431 -81 lbs 0.05 -1495 0.91 0.093 0.007 81 lbs 19 lbs	Ib-in 69935 Ib-in 62257 Ib-in 61581 s 3805 lb 1 1 6 lbs 17754 in^4 6.497 i in 0.5 in 2572 lb	Ib-in 4.91% Ib-in 5.51% Ib-in 5.57% vs 2.14% 5.32% 5.32% Ibs 84.24% 91.25% n^4 L/16828 vs vs 3.16%	y Location 9.66 ft 9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft C2 C1	Controlled By Custom Custom Custom Custom DL Custom Custom Custom Custom Custom Custom	 Pass/Fail Pass 	
C2: Wind		Blbs				Ry = 0 lbs	
	T125-68 50 ksi	Track w/ (1) Build	dex #10-16 T3 to	54-50 L.S.F. at 16"	O.C 10% Capa	city	

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion
PROJECT NUMBER:	2150200882
ENGINEER: L. Padg	gett DATE: 10/29/2021
CHECKER: LAP	DATE:
SUBJECT: W5 CO	RRIDOR BEARING WALL

W5 CORRIDOR BEARING WALL, LEVEL 2

3rd FLOOR DETAILS

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 2 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	3201	4393	260	0	0	0	646
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	3474	5020	260	0	0	0	701
TOTAL AXIAL LOAD (Ib)	6947	10040	520	0	0	0	1402

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W5 CORRIDOR BEARING WALL
 DATE:
 DATE:

W5 CORRIDOR BEARING WALL, LEVEL 2

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S300	97 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	16987	3756	0.221	10.00	50		125	
D + Lr	7467	1071	0.143	10.00	50		125	
D + 0.75L + 0.75Lr	14867	3085	0.207	10.00	50		125	
D + W	6947	1071	0.154	10.00	50		125	
D + 0.7E	7928	1222	0.154	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	14867	3085	0.207	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	15603	3198	0.205	10.00	50		125	
0.6D + W	4168	643	0.154	10.00	50		125	
0.6D - 0.7E	3187	491	0.154	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n stu	ıds) 6
	plf	lb	ft-lb		Check	Prb =	1019 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows =	2

Version 6.0.2.0

Project Number: Wall:	CFS-NHERI 10 St 2150200882-0 W5: Level 02 - Tes 10/28/2021 / 5:13	st		Cor	ntact Name: L	ClarkDietrich Engineering S ynn Padgett, P.E. 78.304.5525	ervices LLC
Inputs Building Code: Design Option: Member Spacing: Bracing Distance: Knockout:	CBC 2016 Custom 24 in 4' O.C. Ma Punched) ax (FB68-1)		Deflection Limi 0.7 Deflection I Dead Load: z:		f	
Wind Pressure Custom Pressures: Span Pressure:				ζ.	100	n.	
Axial Point P	oad Case Di ressure G	i rection Iobal FY Iobal Mz	Loc.(Start) 10.00 ft 9.66 ft	Load(Start) -16987.00 lbs -3756 lb-in Ĉ	Loc.(End) NA NA	Load(End) NA NA	10' - 0" ()
Specified Mem (1) 600\$300-97 50	ksi @ 24" O.C.						0
Stud Design Ro Interaction Check Moment: Strength	esults Actual -3431 lb-ii	Allowable n 67292 lb-i		Location 9.66 ft	Controlled By Custom	/ Pass/Fail Pass	
Moment: Stability Moment: Dist. Buck	-3431 lb-ii	n 67292 lb-i	n 5.10%	9.66 ft 9.66 ft	Custom Custom Custom	Pass Pass Pass	0
Shear	-81 lbs	3805 lbs	2.14%	10.00 ft	Custom	Pass	
V/M Interaction	0.05	1	5.49%	9.66 ft	Custom	Pass	IX.
Axial Stability	-16987 lbs			0.00 ft	DL	Pass	
P/M Interaction	0.96	1	96.35%	9.66 ft	Custom	Pass	
Moment of Inertia	0.093 in^4			7.00 ft	Custom	Pass	
Span Deflection	0.006 in	0.5 in	L/18859	7.00 ft	Custom	Pass	
Web Crippling	81 lbs	2572 lbs	3.16%	C2	Custom	Pass	
Web Crippling	19 lbs	2572 lbs	0.73%	C1	Custom	Pass	
Specified Conr	nections						
C2: Wind:	Rx = 81.3 lbs					Ry = 0 lbs	
	125 68 50 kei Tro	k w/ (1) Builde	#10-16 T3 to 5	4-50 L.S.F. at 16"	O.C 10% Capa	city	
600T	125-00 50 KSI 11au						
600T						Ry = 16987 lbs	

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Stort rest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L Padget
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 W5 CORRIDOR BEARING WALL
 DATE:

W5 CORRIDOR BEARING WALL, LEVEL 1

2nd FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 1 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 24 in OC LOAD FACTOR 2.000

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	3589	5020	260	0	0	0	724
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	3862	5648	260	0	0	0	779
TOTAL AXIAL LOAD (Ib)	7723	11295	520	0	0	0	1558

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Storrest Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 10/29/2021

 CHECKER:
 LAP
 DATE:
 DATE:

 SUBJECT:
 W5 CORRIDOR BEARING WALL
 DATE:
 DATE:

W5 CORRIDOR BEARING WALL, LEVEL 1

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

1 600 S350 97 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	19018	3756	0.197	10.00	50		125	
D + Lr	8243	1071	0.130	10.00	50		125	
D + 0.75L + 0.75Lr	16584	3085	0.186	10.00	50		125	
D + W	7723	1071	0.139	10.00	50		125	
D + 0.7E	8814	1222	0.139	10.00	50		125	
D + 0.75L + 0.75W + .75Lr	16584	3085	0.186	10.00	50		125	
D + 0.75L + 0.525E + .75Lr	17402	3198	0.184	10.00	50		125	
0.6D + W	4634	643	0.139	10.00	50		125	
0.6D - 0.7E	3543	491	0.139	10.00	50		125	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n stu	uds) 6
	plf	lb	ft-lb		Check	Prb =	1141 lb
ZONE 4 DEFLECTION	10.00	50	125			Brdg Rows =	2

Version 6.0.2.0

Project Number: Wall: Date/Time:	CFS-NHERI 2150200882 W5: Level 0' 10/28/2021	-0 1 - Test			Con	tact Name: Ly	arkDietrich Engineering S nn Padgett, P.E. 8.304.5525	Services LLC
Inputs	0.00	2 2040			Deflection Lineit			ς.
Building Code: Design Option:	Cus				Deflection Limit 0.7 Deflection L			
Member Spacing: Bracing Distance: Knockout:		n .C. Max (F ched	B68-1)		Dead Load: z:	0 psf 100 f	t	0
Wind Pressures Custom Pressures Span Pressure:) psf						
Axial Point	tributed Lo Load Case Pressure Pressure	bads Direct Global Global	IFY	.oc.(Start) 10.00 ft 9.66 ft	Load(Start) -19018.00 lbs -3756 lb-in Č	Loc.(End) NA NA	Load(End) NA NA	10' - 0" ()
		.C.						
(1) 600S350-97 56 Stud Design F	i0 ksi @ 24" O Results							0
(1) 600S350-97 50 Stud Design F Interaction Check	i0 ksi @ 24" O Results k Acti	ual	Allowable	Capacity	Location	Controlled By	Pass/Fail	0
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength	i0 ksi @ 24" O Results k Actu -343	u al 31 lb-in	77650 lb-in	4.42%	9.66 ft	Custom	Pass	0
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability	i0 ksi @ 24" O Results k Acte -343 -343	u al 31 lb-in 31 lb-in	77650 lb-in 77650 lb-in	4.42% 4.42%	9.66 ft 9.66 ft	Custom Custom	Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc	i0 ksi @ 24" O Results k Acte -343 -343	ual 31 lb-in 31 lb-in 31 lb-in	77650 lb-in	4.42% 4.42%	9.66 ft	Custom	Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear	i0 ksi @ 24" O Results k Acti -343 -343 ckling -343	ual 31 lb-in 31 lb-in 31 lb-in lbs	77650 lb-in 77650 lb-in 78371 lb-in	4.42% 4.42% 4.38%	9.66 ft 9.66 ft 9.66 ft	Custom Custom Custom	Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction	0 ksi @ 24" O Results k Actu -343 -341 -343 -341	ual 31 lb-in 31 lb-in 31 lb-in lbs 5 018 lbs	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs	4.42% 4.42% 4.38% 2.14% 4.87% 81.40%	9.66 ft 9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft	Custom Custom Custom Custom DL	Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction	0 ksi @ 24" O Results k Actu -343 -343 -343 -841 0.05 -190 0.87	ual 31 lb-in 31 lb-in 31 lb-in lbs 5)18 lbs	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90%	9.66 ft 9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft	Custom Custom Custom Custom DL Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia	i0 ksi @ 24" O Results k Actu -343 -345 -34	ual 31 lb-in 31 lb-in 31 lb-in lbs 5)18 lbs 7 33 in^4	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07%	9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft	Custom Custom Custom Custom DL Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection	i0 ksi @ 24" O Results k Actu -343 -343 -343 -81 0.05 -190 0.87 0.09 0.00	ual 31 lb-in 31 lb-in 1bs 5 5 118 lbs 7 93 in^4 95 in	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4 0.5 in	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07% L/22359	9.66 ft 9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft	Custom Custom Custom Custom DL Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
Specified Men (1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling	i0 ksi @ 24" O Results k Actu -343 -345 -34	ual 31 lb-in 31 lb-in 1bs 5 18 lbs 7 18 lbs 7 18 lbs 7 18 lbs 7 18 lbs 7	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07%	9.66 ft 9.66 ft 10.00 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft	Custom Custom Custom Custom DL Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling	i0 ksi @ 24" O Results k Actu -343 -343 -343 -81 0.05 -190 0.87 0.09 0.00 81 ll 19 ll	ual 31 lb-in 31 lb-in 1bs 5 18 lbs 7 18 lbs 7 18 lbs 7 18 lbs 7 18 lbs 7	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4 0.5 in 2572 lbs	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07% L/22359 3.16%	9.66 ft 9.66 ft 9.66 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft C2	Custom Custom Custom Custom DL Custom Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling	i0 ksi @ 24" O Results k Actu -343 -343 -343 -343 -81 0.05 -190 0.87 0.09 0.00 81 ll 19 ll nnections	ual 31 lb-in 31 lb-in lbs 5 18 lbs 7 33 in^4 55 in 55 55	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4 0.5 in 2572 lbs	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07% L/22359 3.16%	9.66 ft 9.66 ft 9.66 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft C2	Custom Custom Custom Custom DL Custom Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	
(1) 600S350-97 50 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling Specified Con C2: Winc	i0 ksi @ 24" O Results k Actu -343 -343 -343 -81 0.05 -190 0.87 0.09 0.00 81 ll 19 ll nnections d: Rx = 8	ual 31 lb-in 31 lb-in 1bs 5 18 lbs 7 33 in^4 55 in 55 s 55 s 1.3 lbs	77650 lb-in 77650 lb-in 78371 lb-in 3805 lbs 1 23364 lbs 1 8.632 in^4 0.5 in 2572 lbs 2572 lbs	4.42% 4.42% 4.38% 2.14% 4.87% 81.40% 86.90% 1.07% L/22359 3.16% 0.73%	9.66 ft 9.66 ft 9.66 ft 9.66 ft 0.00 ft 9.66 ft 7.00 ft 7.00 ft C2	Custom Custom Custom Custom DL Custom Custom Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass	

Phone: (877) 832-3206 www.ClarkDietrich.com PROJECT NAME: **CFS-NHERI 10 Story Test Portion** PROJECT NUMBER: 2150200882 ENGINEER: L. Padgett DATE: 10/29/2021 CHECKER: LAP DATE: SUBJECT: H1: 3'-4" OPENING JOIST BEARING WALL

H1: 3'-4" OPENING JOIST BEARING WALL

DESIGNED PER THE REQUIREMENTS OF AISI: 2016 NAS - US (ASD)

WALL NOTES

3x7 doors at Corridor/Unit Walls

DEFAULT FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER	4.50 ft CORRIDOR SIMPLE SPAN 1.00	RIGHT SPAN RIGHT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER	21.50 ft UNIT SIMPLE SPAN 1.00
FLOOR SYSTEM DEPTH FLOOR FRAMING TYPE	12 in LEDGER FRAMED		
DEFAULT WALL DETAILS WALL TYPE STUD DEPTH STUD OC SPACING	INTERIOR WALL 6.000 in 32 in	FLANGE BRACING BRACING Lt =	NONE 4.00 ft 4.00 ft

FOUNDATION LINE LOADS

	D	L	Lr	S	W	(plf)	E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
SERVICE LEVEL LOADS	3862	5648	260	0	0	0	779

Phone: (877) 832-3206 www.ClarkDietrich.com

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 10

ROOF DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 4.50 ft ROOF SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEROOFSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 10 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 32 in OC LOAD FACTOR 2.667

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	54	0	45	0	0	0	11
CENTERLINE OF WALL (plf)	58	0	0	0	0	0	12
RIGHT SIDE OF WALL (plf)	258	0	215	0	0	0	52
TOTAL LINE LOAD (plf)	370	0	260	0	0	0	75
TOTAL AXIAL LOAD (Ib)	985	0	693	0	0	0	199
	200	3	000	•	5	3	100

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion	
PROJECT NUMBER:	2150200882	
ENGINEER: L. Padg	gett DATE: 10/29/2021	
CHECKER: LAP	DATE:	
SUBJECT: H1: 3'-4	" OPENING JOIST BEARING WALL	

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 10

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft
LA -	10.00 1

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

1 600 S162 43 (33)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb		ft-lb	
D + L	985	1632	1.656	13.33	67		167	
D + Lr	1679	2992	1.782	13.33	67		167	
D + 0.75L + 0.75Lr	1505	2652	1.762	13.33	67		167	
D + W	985	1632	1.656	13.33	67		167	
D + 0.7E	1124	1862	1.656	13.33	67		167	
D + 0.75L + 0.75W + .75Lr	1505	2652	1.762	13.33	67		167	
D + 0.75L + 0.525E + .75Lr	1610	2825	1.755	13.33	67		167	
0.6D + W	591	979	1.656	13.33	67		167	
0.6D - 0.7E	452	749	1.656	13.33	67		167	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs) 17
	plf	lb	ft-lb			Prb =	285 lb
DEFLECTION	13.33	67	167			Brdg Rows = 2	2

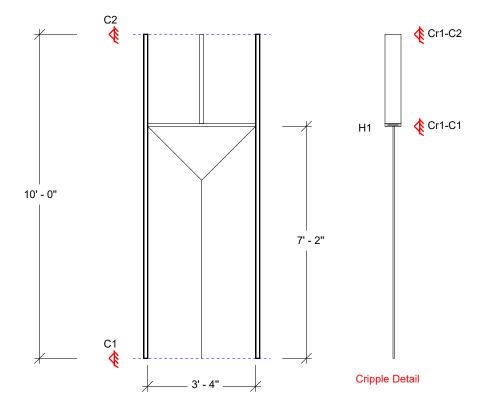
DesignPro Opening Designer Output Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 10 - Test 10/29/2021 / 9:10 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	---	--	--

Inputs

Building Code:	CE
Wind Zone:	Cu
Stud Spacing:	24
Bracing Distance:	4'
Z:	10

BC 2016 Custom 4" O.C. ' O.C. Max 00 ft


I
psf
in
5 in
240
D
240

Wind Pressures		Opening Dead Load	d Add'l Head Dead Load
Span(1) Pressure: Opening(1) Pressure:	5.00 psf 5.00 psf	Opening(1): -8 psf	Head(1): 0 plf

Combination Loads

Combinatio								
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Pressure	Global FY	NA	10.00 ft	-1679.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-2992 lb-in	Yes	No	No

Design

CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 10 - Test

10/29/2021 / 9:10 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

Project Name:

Project Number: Opening: Date/Time:

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

	Track Member		(1) 600T125-4	3 33		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх	210 lb-in	9114 lb-in	2.31%	1.67 ft	Custom	PASS
Vx	19 lbs	1377 lbs	1.36%	0.00 ft	Custom	PASS
VMx	0.02	1	2.31%	1.59 ft	Custom	PASS
lx	0.007 in4	1.768 in4	0.40%	1.67 ft	Custom	PASS
Δx	0.001 in	0.167 in	L/60689	1.67 ft	Custom	PASS
My	377 lb-in	487 lb-in	77.49%	1.67 ft	DL	PASS
Vý	38 lbs	1265 lbs	2.98%	0.00 ft	DL	PASS
VMy	0.77	1	77.49%	1.59 ft	DL	PASS
ly	0.013 in4	0.044 in4	29.31%	1.67 ft	DL	PASS
Δy	0.049 in	0.167 in	L/819	1.67 ft	DL	PASS
Mx+My	0.80	1	79.79%	1.67 ft	Custom	PASS
Vx+Vy	0.00	1	0.11%	0.00 ft	Custom	PASS
Mx+My+Vx+Vy	0.64	1	63.78%			PASS

Head Connection to Jamb: Rx = 19 lbs, Ry = 38 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

DesignPro Opening Designer Output Version 6.0.2.0

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H1: Level 10 - Test
Date/Time:	10/29/2021 / 9:10 AM

Company:
Contact Name:
Phone Number:
FIIONE NUMBEL.

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results Punch		Punched Crippl	Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.	
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1)	120 lb-in	16781 lb-in	0.72%	1.42 ft	Custom	PASS
M_str M_stb	120 lb-in	15254 lb-in	0.79%	1.42 ft	Custom	PASS
M_dist V	120 lb-in 14 lbs	13562 lb-in 1240 lbs	0.89% 1.14%	1.42 ft 0.00 ft	Custom Custom	PASS PASS
V/M P	0.01 45 lbs	1 4062 lbs	1.14% 1.12%	0.00 ft 0.00 ft	Custom DL	PASS PASS
P/M	0.02	1	1.53%	0.99 ft	Custom	PASS
l_req Span ∆	0.003 in4 0 in	2.316 in4 0.142 in	0.15% L/160077	1.42 ft 1.42 ft	Custom Custom	PASS PASS
Web Crippling	14	410	3.46%	C2	Custom	PASS

00T125-43	3 33 ksi Track w/ (1) Build	ex #10-16 T3 to 54-50 L.	S.F. at 24" O.C 5% Capacity	
Wind:	$R_{\rm Y} = 14$ lbs			Rv = 45 lbs
				00T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at 24" O.C 5% Capacity Vind: Rx = 14 lbs

DesignPro Opening Designer Output Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 10 - Test 10/29/2021 / 9:10 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud Track Member:		(1) 600S162-4 (0) None	3 33		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M_str	-2992 lb-in	16781 lb-in	17.83%	10.00 ft	Custom	PASS
M_stb	-2992 lb-in	14623 lb-in	20.46%	10.00 ft	Custom	PASS
M_dist	-2992 lb-in	13562 lb-in	22.06%	10.00 ft	Custom	PASS
v ⁻	-80 lbs	1240 lbs	6.46%	10.00 ft	Custom	PASS
V/M	0.19	1	18.97%	10.00 ft	Custom	PASS
Р	1797 lbs	3522 lbs	51.01%	0.00 ft	DL	PASS
P/M	0.71	1	71.25%	10.00 ft	Custom	PASS
l req	0.03 in4	2.316 in4	1.31%	3.00 ft	Custom	PASS
Span Δ	0.007 in	0.5 in	L/18370	3.00 ft	Custom	PASS
Web Crippling	80	410	19.55%	C2	Custom	PASS
Web Crippling	41	205	20.15%	C1	Custom	PASS

C2:	Wind:	Rx = 80 lbs			Ry = 0 lbs	
600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 30% Capacity						
					1=	
C1:	Wind:	Rx = 41 lbs			Ry = 1797 lbs	

Phone: (877) 832-3206 www.ClarkDietrich.com

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 9

10th FLOOR DETAILS

LEFT SPAN LENGTH
LEFT LOADING TYPE
SPAN TYPE
LINE LOAD MODIFIER

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 9 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 32 in OC LOAD FACTOR 2.667

USER SPECIFIED LOADS

	D	L	Lr	S	V		Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	485	0	260	0	0	0	98
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	758	628	260	0	0	0	153
TOTAL AXIAL LOAD (Ib)	2020	1673	693	0	0	0	408

PROJECT NA	AME:	CFS-NHERI 10 Stor	10 Story Test Portion				
PROJECT NU	JMBER:	2150200882					
ENGINEER:	L. Padg	ett	DATE:	10/29/2021			
CHECKER:	LAP		DATE:				
SUBJECT:	H1: 3'-4	" OPENING JOIST B	EARING	WALL			

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion				
PROJECT NU	JMBER:	2150200882				
ENGINEER:	L. Padg	ett	DATE:	10/29/2021		
CHECKER:	LAP		DATE:			
SUBJECT:	H1: 3'-4	" OPENING JOIST B	EARING	WALL		

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 9

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

|--|

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	3693	5008	1.356	13.33	67		167	
D + Lr	2713	1428	0.526	13.33	67		167	
D + 0.75L + 0.75Lr	3795	4113	1.084	13.33	67		167	
D + W	2020	1428	0.707	13.33	67		167	
D + 0.7E	2305	1630	0.707	13.33	67		167	
D + 0.75L + 0.75W + .75Lr	3795	4113	1.084	13.33	67		167	
D + 0.75L + 0.525E + .75Lr	4009	4264	1.064	13.33	67		167	
0.6D + W	1212	857	0.707	13.33	67		167	
0.6D - 0.7E	927	655	0.707	13.33	67		167	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs) 6
	plf	lb	ft-lb			Prb =	241 lb
DEFLECTION	13.33	67	167			Brdg Rows = 2	2

DesignPro Opening Designer Output Version 6.0.2.0


Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 09 - Test 10/29/2021 / 9:12 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	---	--	--

Inputs Building Code: Wind Zone: Stud Spacing: Bracing Distance:	CBC 2016 Custom 24" O.C. 4' O.C. Max	0. D	Vind Load Deflection Limit: .7 Wind Load Deflection Used: lead Load Deflection Limit: lead Load Deflection Limit (in):	L/240
Z:	100 ft		ertical Slip Allowance:	1 in -8 psf
Wind Pressures Span(1) Pressure: Opening(1) Pressure:	5.00 psf 5.00 psf	Opening Dead Load Opening(1): -8 psf	Add'l Head Dead Head(1): 0 plf	Load
• • • • • •				

Combination Loads

Combinatio								
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Pressure	Global FY	NA	10.00 ft	-4009.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-5008 lb-in	Yes	No	No

Design

Project Name:CFS-NHERI 10 Story ArchetypeProject Number:2150200882-0Opening:H1: Level 09 - TestDate/Time:10/29/2021 / 9:12 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

	Track Member		(1) 600T125-4	(1) 600T125-43 33			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Мх	210 lb-in	9114 lb-in	2.31%	1.67 ft	Custom	PASS	
Vx	19 lbs	1377 lbs	1.36%	0.00 ft	Custom	PASS	
VMx	0.02	1	2.31%	1.59 ft	Custom	PASS	
lx	0.007 in4	1.768 in4	0.40%	1.67 ft	Custom	PASS	
Δx	0.001 in	0.167 in	L/60689	1.67 ft	Custom	PASS	
My	377 lb-in	487 lb-in	77.49%	1.67 ft	DL	PASS	
Vý	38 lbs	1265 lbs	2.98%	0.00 ft	DL	PASS	
VMy	0.77	1	77.49%	1.59 ft	DL	PASS	
ly	0.013 in4	0.044 in4	29.31%	1.67 ft	DL	PASS	
Δy	0.049 in	0.167 in	L/819	1.67 ft	DL	PASS	
Mx+My	0.80	1	79.79%	1.67 ft	Custom	PASS	
Vx+Vy	0.00	1	0.11%	0.00 ft	Custom	PASS	
Mx+My+Vx+Vy	0.64	1	63.78%			PASS	

Head Connection to Jamb: Rx = 19 lbs, Ry = 38 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

H1: Level 09 - Test 10/29/2021 / 9:12 AM

Project Name: Project Number: Opening: Date/Time:

CFS-NHERI 10 Story Archetype 2150200882-0

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripp	le Member:	(1) 600S162-4			
Interaction Ch	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1) M_str M_stb M_dist V V/M		120 lb-in 120 lb-in 120 lb-in 14 lbs 0.01	16781 lb-in 15254 lb-in 13562 lb-in 1240 lbs 1	0.72% 0.79% 0.89% 1.14% 1.14%	1.42 ft 1.42 ft 1.42 ft 0.00 ft 0.00 ft	Custom Custom Custom Custom Custom	PASS PASS PASS PASS PASS
P P/M I_req Span Δ Web Crippling Web Crippling		45 lbs 0.02 0.003 in4 0 in 14 14	4062 lbs 1 2.316 in4 0.142 in 269 269	1.12% 1.53% 0.15% L/160077 5.27% 5.27%	0.00 ft 0.99 ft 1.42 ft 1.42 ft C2 C1	DL Custom Custom Custom Custom	PASS PASS PASS PASS PASS PASS
C2:	Wind: Connecti	Rx = 14 lbs				Ry = 0 lbs	
C1:	Wind:	Rx = 14 lbs				Ry = 45 lbs	

Connection:

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 09 - Test 10/29/2021 / 9:12 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

Punched Stud Member: Track Member:			(1) 600S162-54 50 (0) None				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
M_str	-5008 lb-in	30714 lb-in	16.31%	10.00 ft	Custom	PASS	
M_stb	-5008 lb-in	24925 lb-in	20.09%	10.00 ft	Custom	PASS	
M_dist	-5008 lb-in	24235 lb-in	20.66%	10.00 ft	Custom	PASS	
v	-97 lbs	1947 lbs	4.98%	10.00 ft	Custom	PASS	
V/M	0.17	1	17.05%	10.00 ft	Custom	PASS	
Р	4127 lbs	5728 lbs	72.05%	0.00 ft	DL	PASS	
P/M	0.94	1	93.60%	10.00 ft	Custom	PASS	
l req	0.128 in4	2.86 in4	4.49%	7.00 ft	Custom	PASS	
Span Δ	0.022 in	0.5 in	L/5343	7.00 ft	Custom	PASS	
Web Crippling	97	930	10.42%	C2	Custom	PASS	
Web Crippling	25	465	5.27%	C1	Custom	PASS	

C2:	Wind:	Rx = 97 lbs		Ry = 0 lbs
	600T125	-43 33 ksi Track w/ (1)	Buildex #10-16 T3 to 54-50 L.	S.F. at each Jamb - 37% Capacity
		- T		
C1:	Wind:	Rx = 25 lbs		Ry = 4127 lbs

Phone: (877) 832-3206 www.ClarkDietrich.com

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 8

9th FLOOR DETAILS

LEFT SPAN LENGTH
LEFT LOADING TYPE
SPAN TYPE
LINE LOAD MODIFIER

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 8 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 32 in OC LOAD FACTOR 2.667

USER SPECIFIED LOADS

	D	L	Lr	S	W		E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	873	628	260	0	0	0	176
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	1146	1255	260	0	0	0	231
TOTAL AXIAL LOAD (lb)	3055	3347	693	0	0	0	616

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

PROJECT N/	AME:	CFS-NHERI 10 Story	y Test P	ortion
PROJECT N	JMBER:	2150200882		
ENGINEER:	L. Padg	jett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT:	H1: 3'-4	OPENING JOIST BE	EARING	WALL

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NA	AME:	CFS-NHERI 10 Stor	y Test P	ortion
PROJECT NU	JMBER:	2150200882		
ENGINEER:	L. Padg	ett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT:	H1: 3'-4	" OPENING JOIST B	EARING	WALL

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 8

MEMBER DESIGN PARAMETERS

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

1	600	S350	54 (50)

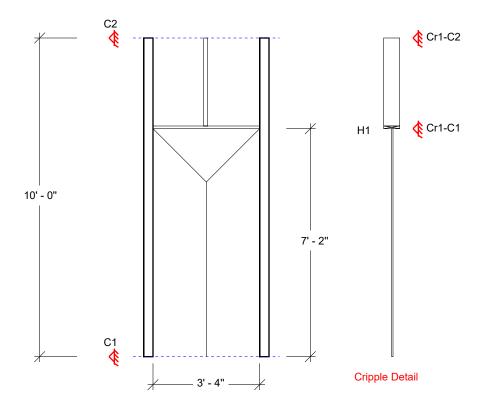
ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	6401	5008	0.782	13.33	67		167	
D + Lr	3748	1428	0.381	13.33	67		167	
D + 0.75L + 0.75Lr	6085	4113	0.676	13.33	67		167	
D + W	3055	1428	0.467	13.33	67		167	
D + 0.7E	3486	1630	0.467	13.33	67		167	
D + 0.75L + 0.75W + .75Lr	6085	4113	0.676	13.33	67		167	
D + 0.75L + 0.525E + .75Lr	6408	4264	0.665	13.33	67		167	
0.6D + W	1833	857	0.467	13.33	67		167	
0.6D - 0.7E	1401	655	0.467	13.33	67		167	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs) 6
	plf	lb	ft-lb		Check	Prb =	384 lb
DEFLECTION	13.33	67	167			Brdg Rows =	2

Inputs

Building Code:
Wind Zone:
Stud Spacing:
Bracing Distance:
Z:

CBC 2016 Custom 24" O.C. 4' O.C. Max 100 ft


Dead I	Load Deflection Limit: Load Deflection Limit (in): al Slip Allowance: Load:	L/240 0.5 in 1 in -8 psf
0.7 Wi	oad Deflection Limit: nd Load Deflection Used:	L/240 No

Wind Pressures		Opening De	ead Load	Add'l Head	I Dead Load
Span(1) Pressure: Opening(1) Pressure:	5.00 psf 5.00 psf	Opening(1):	-8 psf	Head(1):	0 plf

Combination Loads

Combinatic								
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Pressure	Global FY	NA	10.00 ft	-6408.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-5008 lb-in	Yes	No	No

Design

Version o

Project Name:CFSProject Number:2150Opening:H1:Date/Time:10/2

CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 08 - Test 10/29/2021 / 9:14 AM Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

	Track Member	÷	(1) 600T125-4	3 33		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх	210 lb-in	9114 lb-in	2.31%	1.67 ft	Custom	PASS
Vx	19 lbs	1377 lbs	1.36%	0.00 ft	Custom	PASS
VMx	0.02	1	2.31%	1.59 ft	Custom	PASS
lx	0.007 in4	1.768 in4	0.40%	1.67 ft	Custom	PASS
Δx	0.001 in	0.167 in	L/60689	1.67 ft	Custom	PASS
My	377 lb-in	487 lb-in	77.49%	1.67 ft	DL	PASS
Vý	38 lbs	1265 lbs	2.98%	0.00 ft	DL	PASS
VMy	0.77	1	77.49%	1.59 ft	DL	PASS
ly	0.013 in4	0.044 in4	29.31%	1.67 ft	DL	PASS
Δy	0.049 in	0.167 in	L/819	1.67 ft	DL	PASS
Mx+My	0.80	1	79.79%	1.67 ft	Custom	PASS
Vx+Vy	0.00	1	0.11%	0.00 ft	Custom	PASS
Mx+My+Vx+Vy	0.64	1	63.78%			PASS

Head Connection to Jamb: Rx = 19 lbs, Ry = 38 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

DesignPro Opening Designer Output

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H1: Level 08 - Test
Date/Time:	10/29/2021 / 9:14 AM

Company:
Contact Name:
Discus Alexade au
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripp	le Member:	(1) 600S162-4	DS162-43 33 @ 24" O.C.		
Interaction Che	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1)							
M_str		120 lb-in	16781 lb-in	0.72%	1.42 ft	Custom	PASS
M_stb		120 lb-in	15254 lb-in	0.79%	1.42 ft	Custom	PASS
M_dist		120 lb-in	13562 lb-in	0.89%	1.42 ft	Custom	PASS
V		14 lbs	1240 lbs	1.14%	0.00 ft	Custom	PASS
V/M		0.01	1	1.14%	0.00 ft	Custom	PASS
Р		45 lbs	4062 lbs	1.12%	0.00 ft	DL	PASS
P/M		0.02	1	1.53%	0.99 ft	Custom	PASS
l_req		0.003 in4	2.316 in4	0.15%	1.42 ft	Custom	PASS
Span ∆		0 in	0.142 in	L/160077	1.42 ft	Custom	PASS
Web Crippling		14	269	5.27%	C2	Custom	PASS
Web Crippling		14	269	5.27%	C1	Custom	PASS
C2:	Wind:	Rx = 14 lbs				Ry = 0 lbs	
	Connecti	on:					
C1:	Wind:	Rx = 14 lbs				Ry = 45 lbs	

Connection:

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 08 - Test 10/29/2021 / 9:14 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud Track Member:		(1) 600S350-5 (0) None	(1) 600S350-54 50 (0) None				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL		
M str	-5008 lb-in	39976 lb-in	12.53%	10.00 ft	Custom	PASS		
M_stb	-5008 lb-in	39976 lb-in	12.53%	10.00 ft	Custom	PASS		
M_dist	-5008 lb-in	36566 lb-in	13.70%	10.00 ft	Custom	PASS		
v ⁻	-97 lbs	1947 lbs	4.98%	10.00 ft	Custom	PASS		
V/M	0.13	1	13.48%	10.00 ft	Custom	PASS		
Р	6526 lbs	10057 lbs	64.89%	0.00 ft	DL	PASS		
P/M	0.79	1	79.17%	10.00 ft	Custom	PASS		
l req	0.128 in4	4.722 in4	2.72%	7.00 ft	Custom	PASS		
Span Δ	0.014 in	0.5 in	L/8819	7.00 ft	Custom	PASS		
Web Crippling	97	930	10.42%	C2	Custom	PASS		
Web Crippling	25	465	5.27%	C1	Custom	PASS		

C2:	Wind:	Rx = 97 lbs			Ry = 0 lbs		
600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 37% Capacity							
C1:	Wind:	Rx = 25 lbs			Ry = 6526 lbs		

Phone: (877) 832-3206 www.ClarkDietrich.com

8th FLOOR DETAILS

LEFT SPAN LENGTH
LEFT LOADING TYPE
SPAN TYPE
LINE LOAD MODIFIER

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 7 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 32 in OC LOAD FACTOR 2.667

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	1261	1255	260	0	0	0	254
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	1534	1883	260	0	0	0	309
TOTAL AXIAL LOAD (Ib)	4089	5020	693	0	0	0	825

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

PROJECT NAME:		CFS-NHERI 10 Story Test Portion				
PROJECT NU	JMBER:	2150200882				
ENGINEER:	L. Padg	ett	DATE:	10/29/2021		
CHECKER:	LAP		DATE:			
SUBJECT:	H1: 3'-4	" OPENING JOIST BI	EARING	WALL		

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBER:	2150200882				
ENGINEER: L. Padg	pett DATE: 10/29/2021				
CHECKER: LAP	DATE:				
SUBJECT: H1: 3'-4	" OPENING JOIST BEARING WALL				

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 7

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft
------	----------

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

1	600	S300	68 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	9109	5008	0.550	13.33	67		167	
D + Lr	4783	1428	0.299	13.33	67		167	
D + 0.75L + 0.75Lr	8374	4113	0.491	13.33	67		167	
D + W	4089	1428	0.349	13.33	67		167	
D + 0.7E	4667	1630	0.349	13.33	67		167	
D + 0.75L + 0.75W + .75Lr	8374	4113	0.491	13.33	67		167	
D + 0.75L + 0.525E + .75Lr	8807	4264	0.484	13.33	67		167	
0.6D + W	2454	857	0.349	13.33	67		167	
0.6D - 0.7E	1876	655	0.349	13.33	67		167	

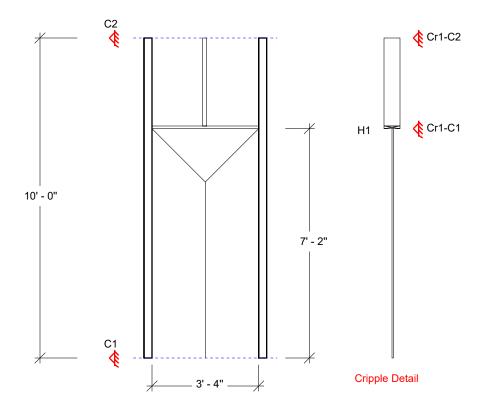
SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs	s) 6
	plf	lb	ft-lb		Check	Prb =	547 lb
ZONE 4 DEFLECTION	13.33	67	167			Brdg Rows =	2

Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 07 - Test 10/29/2021 / 9:16 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	---	--	--

Inputs

Building Code:	0
Wind Zone:	(
Stud Spacing:	2
Bracing Distance:	4
Z:	1

CBC 2016 Custom 24" O.C. 4' O.C. Max 100 ft


Dead Load:	-8 psf
Vertical Slip Allowance:	1 in
Dead Load Deflection Limit (in)	0.5 in
Dead Load Deflection Limit:	L/240
0.7 Wind Load Deflection Used	No
Wind Load Deflection Limit:	L/240
Wind Load Deflection Limit	1/240

Wind Pressures		Opening Do	ead Load	Add'l Head	d Dead Load
Span(1) Pressure: Opening(1) Pressure:	5.00 psf 5.00 psf	Opening(1):	-8 psf	Head(1):	0 plf

Combination Loads

Combinatio								
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Pressure	Global FY	NA	10.00 ft	-9109.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-5008 lb-in	Yes	No	No

Design

CFS-NHERI 10 Story Archetype Project Name: Project Number: Opening: Date/Time: 2150200882-0 H1: Level 07 - Test

10/29/2021 / 9:16 AM

Company: Contact Name: Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

		(1) 600T125-43 33				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх	210 lb-in	9114 lb-in	2.31%	1.67 ft	Custom	PASS
Vx	19 lbs	1377 lbs	1.36%	0.00 ft	Custom	PASS
VMx	0.02	1	2.31%	1.59 ft	Custom	PASS
lx	0.007 in4	1.768 in4	0.40%	1.67 ft	Custom	PASS
Δx	0.001 in	0.167 in	L/60689	1.67 ft	Custom	PASS
My	377 lb-in	487 lb-in	77.49%	1.67 ft	DL	PASS
Vý	38 lbs	1265 lbs	2.98%	0.00 ft	DL	PASS
VMy	0.77	1	77.49%	1.59 ft	DL	PASS
ly	0.013 in4	0.044 in4	29.31%	1.67 ft	DL	PASS
Δy	0.049 in	0.167 in	L/819	1.67 ft	DL	PASS
Mx+My	0.80	1	79.79%	1.67 ft	Custom	PASS
Vx+Vy	0.00	1	0.11%	0.00 ft	Custom	PASS
Mx+My+Vx+Vy	0.64	1	63.78%			PASS

Head Connection to Jamb: Rx = 19 lbs, Ry = 38 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

DesignPro Opening Designer Output

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H1: Level 07 - Test
Date/Time:	10/29/2021 / 9:16 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripp	Punched Cripple Member: (1) 600S162-43 33			3 @ 24" O.C.	
Interaction Ch	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1) M_str M_stb M_dist V V/M P P/M I_req Span Δ Web Crippling		120 lb-in 120 lb-in 120 lb-in 14 lbs 0.01 45 lbs 0.02 0.003 in4 0 in 14	16781 lb-in 15254 lb-in 13562 lb-in 1240 lbs 1 4062 lbs 1 2.316 in4 0.142 in 269	0.72% 0.79% 0.89% 1.14% 1.14% 1.12% 1.53% 0.15% L/160077 5.27%	1.42 ft 1.42 ft 1.42 ft 0.00 ft 0.00 ft 0.90 ft 1.42 ft 1.42 ft C2	Custom Custom Custom Custom DL Custom Custom Custom Custom	PASS PASS PASS PASS PASS PASS PASS PASS
Web Crippling		14	269	5.27%	C1	Custom	PASS
C2:	Wind: Connect	Rx = 14 lbs				Ry = 0 lbs	
C1:	Wind:	Rx = 14 lbs				Ry = 45 lbs	

Connection:

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 07 - Test 10/29/2021 / 9:16 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud Member: Track Member:		(1) 600S300-6 (0) None			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-5008 lb-in	43300 lb-in	11.57%	10.00 ft	Custom	PASS
M_stb	-5008 lb-in	43300 lb-in	11.57%	10.00 ft	Custom	PASS
M_dist	-5008 lb-in	40535 lb-in	12.35%	10.00 ft	Custom	PASS
v	-97 lbs	2879 lbs	3.37%	10.00 ft	Custom	PASS
V/M	0.12	1	12.05%	10.00 ft	Custom	PASS
Р	9227 lbs	11017 lbs	83.75%	0.00 ft	DL	PASS
P/M	0.97	1	97.24%	10.00 ft	Custom	PASS
l req	0.128 in4	5.222 in4	2.46%	7.00 ft	Custom	PASS
Span Δ	0.012 in	0.5 in	L/9754	7.00 ft	Custom	PASS
Web Crippling	97	1047	9.26%	C2	Custom	PASS
Web Crippling	25	524	4.68%	C1	Custom	PASS

C2:	Wind:	Rx = 97 lbs			Ry = 0 lbs	
600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 37% Capacity						
C1:	Wind:	Rx = 25 lbs			Ry = 9227 lbs	

Phone: (877) 832-3206 www.ClarkDietrich.com

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 6

7th FLOOR DETAILS

LEFT SPAN LENGTH
LEFT LOADING TYPE
SPAN TYPE
LINE LOAD MODIFIER

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 6 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 32 in OC LOAD FACTOR 2.667

USER SPECIFIED LOADS

	D	L	Lr	S	W		E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	1649	1883	260	0	0	0	333
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	1922	2510	260	0	0	0	388
TOTAL AXIAL LOAD (Ib)	5124	6693	693	0	0	0	1034

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

PROJECT NAME:		CFS-NHERI 10 Story Test Portion		
PROJECT NU	JMBER:	2150200882		
ENGINEER:	L. Padg	ett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT:	H1: 3'-4" OPENING JOIST BEARING WALL			

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion			
PROJECT NUMBER:		2150200882			
ENGINEER:	L. Padg	ett	DATE:	10/29/2021	
CHECKER:	LAP		DATE:		
SUBJECT:	H1: 3'-4" OPENING JOIST BEARING WALL				

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 6

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft
------	----------

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

1		600	S350	68 (50)
	-			

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	11817	5008	0.424	13.33	67		167	
D + Lr	5817	1428	0.245	13.33	67		167	
D + 0.75L + 0.75Lr	10664	4113	0.386	13.33	67		167	
D + W	5124	1428	0.279	13.33	67		167	
D + 0.7E	5848	1630	0.279	13.33	67		167	
D + 0.75L + 0.75W + .75Lr	10664	4113	0.386	13.33	67		167	
D + 0.75L + 0.525E + .75Lr	11207	4264	0.381	13.33	67		167	
0.6D + W	3074	857	0.279	13.33	67		167	
0.6D - 0.7E	2351	655	0.279	13.33	67		167	

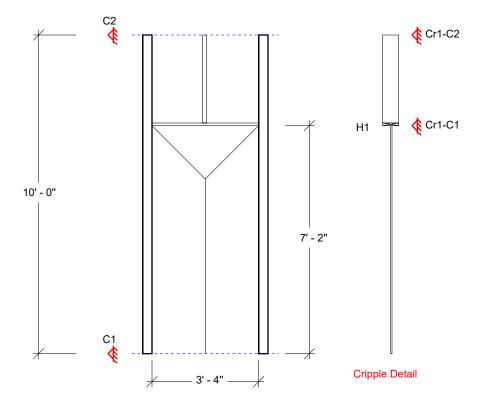
SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs	s) 6
	plf	lb	ft-lb		Check	Prb =	709 lb
ZONE 4 DEFLECTION	13.33	67	167			Brdg Rows =	2

Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 06 - Test 10/29/2021 / 9:17 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	---	--	--

Inputs

Building Code:
Wind Zone:
Stud Spacing:
Bracing Distance:
Z:

CBC 2016 Custom 24" O.C. 4' O.C. Max 100 ft


	Add'l Hood Dood	
C	Dead Load:	-8 psf
	/ertical Slip Allowance:	1 in
0	Dead Load Deflection Limit (in):	0.5 in
	Dead Load Deflection Limit:	L/240
0	0.7 Wind Load Deflection Used:	No
V	Vind Load Deflection Limit:	L/240

Wind Pressures		Opening Do	ead Load	Add'l Head	d Dead Load
Span(1) Pressure: Opening(1) Pressure:	5.00 psf 5.00 psf	Opening(1):	-8 psf	Head(1):	0 plf
	0.00 p3				

Combination I	Loads
---------------	-------

•••••••••••••••••••••••••••••••••••••••								
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Pressure	Global FY	NA	10.00 ft	-11817.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-5008 lb-in	Yes	No	No

Design

Version 6.0.2.0

CFS-NHERI 10 Story Archetype Project Name: Project Number: Opening: Date/Time: 2150200882-0 H1: Level 06 - Test 10/29/2021 / 9:17 AM

Company: Contact Name: Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

	Track Member	:	(1) 600T125-4	3 33		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Mx	210 lb-in	9114 lb-in	2.31%	1.67 ft	Custom	PASS
Vx	19 lbs	1377 lbs	1.36%	0.00 ft	Custom	PASS
VMx	0.02	1	2.31%	1.59 ft	Custom	PASS
lx	0.007 in4	1.768 in4	0.40%	1.67 ft	Custom	PASS
Δx	0.001 in	0.167 in	L/60689	1.67 ft	Custom	PASS
My	377 lb-in	487 lb-in	77.49%	1.67 ft	DL	PASS
Vý	38 lbs	1265 lbs	2.98%	0.00 ft	DL	PASS
VMy	0.77	1	77.49%	1.59 ft	DL	PASS
ly	0.013 in4	0.044 in4	29.31%	1.67 ft	DL	PASS
Δy	0.049 in	0.167 in	L/819	1.67 ft	DL	PASS
Mx+My	0.80	1	79.79%	1.67 ft	Custom	PASS
Vx+Vy	0.00	1	0.11%	0.00 ft	Custom	PASS
Mx+My+Vx+Vy	0.64	1	63.78%			PASS

Head Connection to Jamb: Rx = 19 lbs, Ry = 38 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

H1: Level 06 - Test 10/29/2021 / 9:17 AM

Project Name: Project Number: Opening: Date/Time:

CFS-NHERI 10 Story Archetype 2150200882-0

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripp	le Member:	(1) 600S162-4			
Interaction Ch	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1)							
M_str		120 lb-in	16781 lb-in	0.72%	1.42 ft	Custom	PASS
M_stb		120 lb-in	15254 lb-in	0.79%	1.42 ft	Custom	PASS
M_dist		120 lb-in	13562 lb-in	0.89%	1.42 ft	Custom	PASS
V		14 lbs	1240 lbs	1.14%	0.00 ft	Custom	PASS
V/M		0.01	1	1.14%	0.00 ft	Custom	PASS
Р		45 lbs	4062 lbs	1.12%	0.00 ft	DL	PASS
P/M		0.02	1	1.53%	0.99 ft	Custom	PASS
l req		0.003 in4	2.316 in4	0.15%	1.42 ft	Custom	PASS
Span Δ		0 in	0.142 in	L/160077	1.42 ft	Custom	PASS
Web Crippling		14	269	5.27%	C2	Custom	PASS
Web Crippling		14	269	5.27%	C1	Custom	PASS
C2:	Wind:	Rx = 14 lbs				Ry = 0 lbs	
V2.						1 ty = 0 lbs	
	Connecti	on:					
C1:	Wind:	Rx = 14 lbs				Ry = 45 lbs	

Connection:

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 06 - Test 10/29/2021 / 9:17 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud Member: Track Member:		(1) 600S350-6 (0) None	(1) 600S350-68 50 (0) None			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
M str	-5008 lb-in	53018 lb-in	9.45%	10.00 ft	Custom	PASS	
M_stb	-5008 lb-in	53018 lb-in	9.45%	10.00 ft	Custom	PASS	
M_dist	-5008 lb-in	49703 lb-in	10.08%	10.00 ft	Custom	PASS	
v ⁻	-97 lbs	2879 lbs	3.37%	10.00 ft	Custom	PASS	
V/M	0.10	1	10.03%	10.00 ft	Custom	PASS	
Р	11935 lbs	14473 lbs	82.46%	0.00 ft	DL	PASS	
P/M	0.94	1	93.77%	10.00 ft	Custom	PASS	
l req	0.128 in4	6.167 in4	2.08%	7.00 ft	Custom	PASS	
Span Δ	0.01 in	0.5 in	L/11519	7.00 ft	Custom	PASS	
Web Crippling	97	1047	9.26%	C2	Custom	PASS	
Web Crippling	25	524	4.68%	C1	Custom	PASS	

C2:	Wind:	Rx = 97 lbs			Ry = 0 lbs	
600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 37% Capacity						
					[]	
C1:	Wind:	Rx = 25 lbs			Ry = 11935 lbs	

Phone: (877) 832-3206 www.ClarkDietrich.com

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 5

6th FLOOR DETAILS

LEFT SPAN LENGTH
LEFT LOADING TYPE
SPAN TYPE
LINE LOAD MODIFIER

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 5 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 32 in OC LOAD FACTOR 2.667

USER SPECIFIED LOADS

	D	L	Lr	S	W		Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	2037	2510	260	0	0	0	411
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	2310	3138	260	0	0	0	466
TOTAL AXIAL LOAD (Ib)	6159	8367	693	0	0	0	1243

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

PROJECT NAME:	CFS-NHERI 10 Story Test Portion
PROJECT NUMBER	2150200882
ENGINEER: L. Pa	lgett DATE: 10/29/2021
CHECKER: LAP	DATE:
SUBJECT: H1: 3	4" OPENING JOIST BEARING WALL

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NA	AME:	CFS-NHERI 10 Stor	ortion			
PROJECT NU	JMBER:	2150200882				
ENGINEER:	L. Padg	ett	DATE:	10/29/2021		
CHECKER:	LAP		DATE:			
SUBJECT:	H1: 3'-4	" OPENING JOIST B	EARING	WALL		

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 5

MEMBER DESIGN PARAMETERS

FLANGE BRACING

NONE

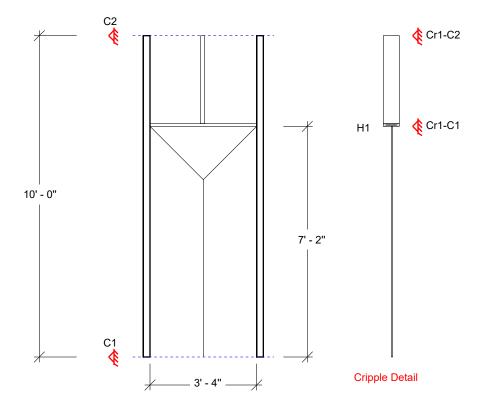
Ly = 4.00 ft

Lt = 4.00 ft

	1		600	S250	97 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	14525	5008	0.345	13.33	67		167	
D + Lr	6852	1428	0.208	13.33	67		167	
D + 0.75L + 0.75Lr	12954	4113	0.318	13.33	67		167	
D + W	6159	1428	0.232	13.33	67		167	
D + 0.7E	7028	1630	0.232	13.33	67		167	
D + 0.75L + 0.75W + .75Lr	12954	4113	0.318	13.33	67		167	
D + 0.75L + 0.525E + .75Lr	13606	4264	0.313	13.33	67		167	
0.6D + W	3695	857	0.232	13.33	67		167	
0.6D - 0.7E	2825	655	0.232	13.33	67		167	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n studs	6)
	plf	lb	ft-lb		Check	Prb =	872 lb
ZONE 4 DEFLECTION	13.33	67	167			Brdg Rows =	2


Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 05 - Test 10/29/2021 / 9:22 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	---	--	--

Inputs Building Code: Wind Zone: Stud Spacing: Bracing Distance: z:	CBC 2016 Custom 24" O.C. 4' O.C. Max 100 ft		Wind Load Deflection Limit: 0.7 Wind Load Deflection Used: Dead Load Deflection Limit: Dead Load Deflection Limit (in): Vertical Slip Allowance: Dead Load:	L/240 No L/240 0.5 in 1 in -8 psf
Wind Pressures Span(1) Pressure: Opening(1) Pressure:	5.00 psf 5.00 psf	Opening Dead Load Opening(1): -8 psf		- 1

Combination Loads

Combinatio								
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Pressure	Global FY	NA	10.00 ft	-14525.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-5008 lb-in	Yes	No	No

Design

Version 6.0.2.0

CFS-NHERI 10 Story Archetype Project Name: Project Number: Opening: Date/Time: 2150200882-0 H1: Level 05 - Test 10/29/2021 / 9:22 AM

Company: Contact Name: Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

	Track Member	:	(1) 600T125-4	(1) 600T125-43 33				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL		
Мх	210 lb-in	9114 lb-in	2.31%	1.67 ft	Custom	PASS		
Vx	19 lbs	1377 lbs	1.36%	0.00 ft	Custom	PASS		
VMx	0.02	1	2.31%	1.59 ft	Custom	PASS		
lx	0.007 in4	1.768 in4	0.40%	1.67 ft	Custom	PASS		
Δx	0.001 in	0.167 in	L/60689	1.67 ft	Custom	PASS		
My	377 lb-in	487 lb-in	77.49%	1.67 ft	DL	PASS		
Vý	38 lbs	1265 lbs	2.98%	0.00 ft	DL	PASS		
VMy	0.77	1	77.49%	1.59 ft	DL	PASS		
ly	0.013 in4	0.044 in4	29.31%	1.67 ft	DL	PASS		
Δy	0.049 in	0.167 in	L/819	1.67 ft	DL	PASS		
Mx+My	0.80	1	79.79%	1.67 ft	Custom	PASS		
Vx+Vy	0.00	1	0.11%	0.00 ft	Custom	PASS		
Mx+My+Vx+Vy	0.64	1	63.78%			PASS		

Head Connection to Jamb: Rx = 19 lbs, Ry = 38 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H1: Level 05 - Test
Date/Time:	10/29/2021 / 9:22 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripp	Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.	
Interaction Check	Actual	Allowable	Capacity	Location	Pass/FAIL	
Cripple (1)						
M_str	120 lb-in	16781 lb-in	0.72%	1.42 ft	Custom	PASS
M_stb	120 lb-in	15254 lb-in	0.79%	1.42 ft	Custom	PASS
M_dist	120 lb-in	13562 lb-in	0.89%	1.42 ft	Custom	PASS
v ⁻	14 lbs	1240 lbs	1.14%	0.00 ft	Custom	PASS
V/M	0.01	1	1.14%	0.00 ft	Custom	PASS
Р	45 lbs	4062 lbs	1.12%	0.00 ft	DL	PASS
P/M	0.02	1	1.53%	0.99 ft	Custom	PASS
l req	0.003 in4	2.316 in4	0.15%	1.42 ft	Custom	PASS
Span Δ	0 in	0.142 in	L/160077	1.42 ft	Custom	PASS
Web Crippling	14	269	5.27%	C2	Custom	PASS
Web Crippling	14	269	5.27%	C1	Custom	PASS
C2: Wind:	Rx = 14 lbs				Ry = 0 lbs	
Connec			I			
C1: Wind:	Rx = 14 lbs				Ry = 45 lbs	

Connection:

DesignPro Opening Designer Output Ve

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 05 - Test 10/29/2021 / 9:22 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud Track Member:		(1) 600S250-9 (0) None	(1) 600S250-97 50 (0) None					
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL			
M str	-5008 lb-in	69935 lb-in	7.16%	10.00 ft	Custom	PASS			
M_stb	-5008 lb-in	62257 lb-in	8.04%	10.00 ft	Custom	PASS			
M_dist	-5008 lb-in	61581 lb-in	8.13%	10.00 ft	Custom	PASS			
v ⁻	-97 lbs	3805 lbs	2.55%	10.00 ft	Custom	PASS			
V/M	0.08	1	7.60%	10.00 ft	Custom	PASS			
Р	14643 lbs	17754 lbs	82.48%	0.00 ft	DL	PASS			
P/M	0.92	1	91.97%	10.00 ft	Custom	PASS			
l req	0.128 in4	6.497 in4	1.98%	7.00 ft	Custom	PASS			
Span Δ	0.01 in	0.5 in	L/12135	7.00 ft	Custom	PASS			
Web Crippling	97	1047	9.26%	C2	Custom	PASS			
Web Crippling	25	524	4.68%	C1	Custom	PASS			

C2:	Wind:	Rx = 97 lbs			Ry = 0 lbs
	600T125	-43 33 ksi Track w/ (1)) Buildex #10-16 T3 to 54-50 L.	S.F. at each Jamb - 37% Capacity	
					r
C1:	Wind:	Rx = 25 lbs			Ry = 14643 lbs

Phone: (877) 832-3206 www.ClarkDietrich.com

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 4

5th FLOOR DETAILS

LEFT SPAN LENGTH
LEFT LOADING TYPE
SPAN TYPE
LINE LOAD MODIFIER

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 4 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 32 in OC LOAD FACTOR 2.667

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	2425	3138	260	0	0	0	489
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	2698	3765	260	0	0	0	544
TOTAL AXIAL LOAD (Ib)	7193	10040	693	0	0	0	1451

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

PROJECT NAME:	CFS-NHERI 10 Story Test Portion
PROJECT NUMBER	2150200882
ENGINEER: L. Pa	dgett DATE: 10/29/2021
CHECKER: LAP	DATE:
SUBJECT: H1: 3	-4" OPENING JOIST BEARING WALL

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NA	AME: CFS-NHERI 10 Stor		y Test P	ortion
PROJECT NU	JMBER:	2150200882		
ENGINEER:	L. Padg	ett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT:	H1: 3'-4	" OPENING JOIST B	EARING	WALL

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 4

MEMBER DESIGN PARAMETERS

FLANGE BRACING

NONE

Ly = 4.00 ft

Lt = 4.00 ft

	1		600	S350	97 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	17233	5008	0.291	13.33	67		167	
D + Lr	7887	1428	0.181	13.33	67		167	
D + 0.75L + 0.75Lr	15243	4113	0.270	13.33	67		167	
D + W	7193	1428	0.199	13.33	67		167	
D + 0.7E	8209	1630	0.199	13.33	67		167	
D + 0.75L + 0.75W + .75Lr	15243	4113	0.270	13.33	67		167	
D + 0.75L + 0.525E + .75Lr	16005	4264	0.266	13.33	67		167	
0.6D + W	4316	857	0.199	13.33	67		167	
0.6D - 0.7E	3300	655	0.199	13.33	67		167	

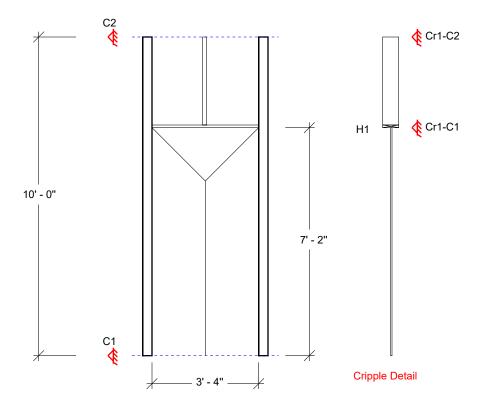
SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n stu	uds) 6
	plf	lb	ft-lb		Check	Prb =	1034 lb
ZONE 4 DEFLECTION	13.33	67	167			Brdg Rows =	2

Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 04 - Test 10/29/2021 / 9:23 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	---	--	--

Inputs

Building Code:	C
Wind Zone:	C
Stud Spacing:	2
Bracing Distance:	4
Z:	1

CBC 2016 Custom 24" O.C. 4' O.C. Max 100 ft


Dead Load:	-8 psf
Vertical Slip Allowance:	1 in
Dead Load Deflection Limit (in):	0.5 in
Dead Load Deflection Limit:	L/240
0.7 Wind Load Deflection Used:	No
Wind Load Deflection Limit:	L/240

Wind Pressures		Opening Dea	d Load	Add'l Head	Dead Load
Span(1) Pressure: Opening(1) Pressure:	5.00 psf 5.00 psf	Opening(1): -	8 psf	Head(1):	0 plf

Combination Loads

Combinatio								
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Pressure	Global FY	NA	10.00 ft	-17233.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-5008 lb-in	Yes	No	No

Design

CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 04 - Test

10/29/2021 / 9:23 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

Project Name:

Project Number: Opening: Date/Time:

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Track Member:			(1) 600T125-43 33			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх	210 lb-in	9114 lb-in	2.31%	1.67 ft	Custom	PASS
Vx	19 lbs	1377 lbs	1.36%	0.00 ft	Custom	PASS
VMx	0.02	1	2.31%	1.59 ft	Custom	PASS
lx	0.007 in4	1.768 in4	0.40%	1.67 ft	Custom	PASS
Δx	0.001 in	0.167 in	L/60689	1.67 ft	Custom	PASS
My	377 lb-in	487 lb-in	77.49%	1.67 ft	DL	PASS
Vý	38 lbs	1265 lbs	2.98%	0.00 ft	DL	PASS
VMy	0.77	1	77.49%	1.59 ft	DL	PASS
ly	0.013 in4	0.044 in4	29.31%	1.67 ft	DL	PASS
Δy	0.049 in	0.167 in	L/819	1.67 ft	DL	PASS
Mx+My	0.80	1	79.79%	1.67 ft	Custom	PASS
Vx+Vy	0.00	1	0.11%	0.00 ft	Custom	PASS
Mx+My+Vx+Vy	0.64	1	63.78%			PASS

Head Connection to Jamb: Rx = 19 lbs, Ry = 38 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

Project Number: 2 Opening: I	CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 04 - Test 10/29/2021 / 9:23 AM
---------------------------------	---

Company:
Contact Name:
• • • • • • • • • • • • • • • • • • • •
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Crippl	le Member:	(1) 600S162-4	(1) 600S162-43 33 @ 24" O.C.			
Interaction Chee	ck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Cripple (1) M_str M_stb M_dist V V/M P P/M I_req Span Δ Web Crippling Web Crippling		120 lb-in 120 lb-in 120 lb-in 14 lbs 0.01 45 lbs 0.02 0.003 in4 0 in 14 14	16781 lb-in 15254 lb-in 13562 lb-in 1240 lbs 1 4062 lbs 1 2.316 in4 0.142 in 269 269	0.72% 0.79% 0.89% 1.14% 1.14% 1.53% 0.15% L/160077 5.27% 5.27%	1.42 ft 1.42 ft 1.42 ft 0.00 ft 0.00 ft 0.99 ft 1.42 ft 1.42 ft C2 C1	Custom Custom Custom Custom DL Custom Custom Custom Custom Custom	PASS PASS PASS PASS PASS PASS PASS PASS	
C2:	Wind:	Rx = 14 lbs				Ry = 0 lbs		
	Connectio	n:						
C1:	Wind:	Rx = 14 lbs				Ry = 45 lbs		

Connection:

DesignPro Opening Designer Output Ve

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 04 - Test 10/29/2021 / 9:23 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

Punched Stud Member: Track Member:			(1) 600S350-9 (0) None	(1) 600S350-97 50 (0) None				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL		
M str	-5008 lb-in	77650 lb-in	6.45%	10.00 ft	Custom	PASS		
M_stb	-5008 lb-in	77650 lb-in	6.45%	10.00 ft	Custom	PASS		
M_dist	-5008 lb-in	78371 lb-in	6.39%	10.00 ft	Custom	PASS		
v ⁻	-97 lbs	3805 lbs	2.55%	10.00 ft	Custom	PASS		
V/M	0.07	1	6.93%	10.00 ft	Custom	PASS		
Р	17351 lbs	23364 lbs	74.26%	0.00 ft	DL	PASS		
P/M	0.82	1	81.60%	10.00 ft	Custom	PASS		
l req	0.128 in4	8.632 in4	1.49%	7.00 ft	Custom	PASS		
Span Δ	0.007 in	0.5 in	L/16123	7.00 ft	Custom	PASS		
Web Crippling	97	1047	9.26%	C2	Custom	PASS		
Web Crippling	25	524	4.68%	C1	Custom	PASS		

C2:	Wind:	Rx = 97 lbs			Ry = 0 lbs			
600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 37% Capacity								
					_			
C1:	Wind:	Rx = 25 lbs			Ry = 17351 lbs			

Phone: (877) 832-3206 www.ClarkDietrich.com

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 3

4th FLOOR DETAILS

LEFT SPAN LENGTH
LEFT LOADING TYPE
SPAN TYPE
LINE LOAD MODIFIER

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 3 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 32 in OC LOAD FACTOR 2.667

USER SPECIFIED LOADS

	D	L	Lr	S	W		Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	2813	3765	260	0	0	0	567
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	3086	4393	260	0	0	0	623
TOTAL AXIAL LOAD (Ib)	8228	11713	693	0	0	0	1660

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

PROJECT NAME:		CFS-NHERI 10 Story Test Portion			
PROJECT NU	JMBER:	2150200882			
ENGINEER:	L. Padg	ett	DATE:	10/29/2021	
CHECKER:	LAP		DATE:		
SUBJECT:	H1: 3'-4" OPENING JOIST BEARING WALL				

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion			
PROJECT NU	JMBER:	2150200882			
ENGINEER:	L. Padg	ett	DATE:	10/29/2021	
CHECKER:	LAP		DATE:		
SUBJECT:	H1: 3'-4" OPENING JOIST BEARING WALL				

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 3

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft	
	10.00 10	

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S350	97 (50)
--	---	--	-----	------	---------

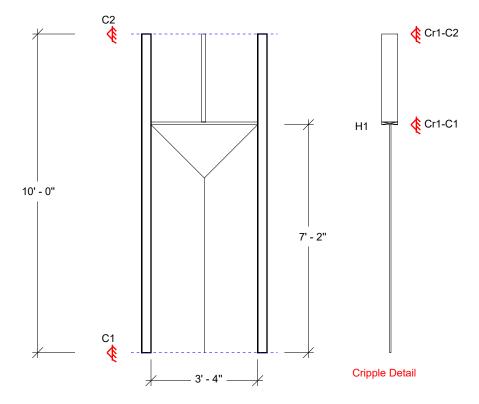
ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	19941	5008	0.251	13.33	67		167	
D + Lr	8921	1428	0.160	13.33	67		167	
D + 0.75L + 0.75Lr	17533	4113	0.235	13.33	67		167	
D + W	8228	1428	0.174	13.33	67		167	
D + 0.7E	9390	1630	0.174	13.33	67		167	
D + 0.75L + 0.75W + .75Lr	17533	4113	0.235	13.33	67		167	
D + 0.75L + 0.525E + .75Lr	18405	4264	0.232	13.33	67		167	
0.6D + W	4937	857	0.174	13.33	67		167	
0.6D - 0.7E	3775	655	0.174	13.33	67		167	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n stu	ids) 6
	plf	lb	ft-lb		Check	Prb =	1196 lb
ZONE 4 DEFLECTION	13.33	67	167			Brdg Rows =	2

Inputs

Building Code:	C
Wind Zone:	C
Stud Spacing:	2
Bracing Distance:	4
Z:	1

CBC 2016 Custom 24" O.C. 4' O.C. Max 100 ft


Dead Load:	-8 psf
	1 in
Dead Load Deflection Limit (in):	0.5 in
Dead Load Deflection Limit:	L/240
0.7 Wind Load Deflection Used:	No
Wind Load Deflection Limit:	L/240
Wind Load Doflaction Limit:	1/240
	0.7 Wind Load Deflection Used: Dead Load Deflection Limit:

Wind Pressures		Opening Dead Load	Add'l Head Dead Load		
Span(1) Pressure: Opening(1) Pressure:	5.00 psf 5.00 psf	Opening(1): -8 psf	Head(1): 0 plf		

Combination Loads

Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel	
Axial Point	Pressure	Global FY	NA	10.00 ft	-19941.00 lbs	Yes	No	No	
Moment	Pressure	Global Mz	NA	10.00 ft	-5008 lb-in	Yes	No	No	

Design

Version 6.0.2.0

CFS-NHERI 10 Story Archetype Project Name: Project Number: Opening: Date/Time: 2150200882-0 H1: Level 03 - Test 10/29/2021 / 9:25 AM

Company: Contact Name: Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

	Track Member		(1) 600T125-43 33					
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL		
Мх	210 lb-in	9114 lb-in	2.31%	1.67 ft	Custom	PASS		
Vx	19 lbs	1377 lbs	1.36%	0.00 ft	Custom	PASS		
VMx	0.02	1	2.31%	1.59 ft	Custom	PASS		
lx	0.007 in4	1.768 in4	0.40%	1.67 ft	Custom	PASS		
Δx	0.001 in	0.167 in	L/60689	1.67 ft	Custom	PASS		
My	377 lb-in	487 lb-in	77.49%	1.67 ft	DL	PASS		
Vý	38 lbs	1265 lbs	2.98%	0.00 ft	DL	PASS		
VMy	0.77	1	77.49%	1.59 ft	DL	PASS		
ly	0.013 in4	0.044 in4	29.31%	1.67 ft	DL	PASS		
Δy	0.049 in	0.167 in	L/819	1.67 ft	DL	PASS		
Mx+My	0.80	1	79.79%	1.67 ft	Custom	PASS		
Vx+Vy	0.00	1	0.11%	0.00 ft	Custom	PASS		
Mx+My+Vx+Vy	0.64	1	63.78%			PASS		

Head Connection to Jamb: Rx = 19 lbs, Ry = 38 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

DesignPro Opening Designer Output

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H1: Level 03 - Test
Date/Time:	10/29/2021 / 9:25 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripple Member: (1) 600S162			2-43 33 @ 24" O.C.		
Interaction Ch	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1)							
M_str		120 lb-in	16781 lb-in	0.72%	1.42 ft	Custom	PASS
M_stb		120 lb-in	15254 lb-in	0.79%	1.42 ft	Custom	PASS
M_dist		120 lb-in	13562 lb-in	0.89%	1.42 ft	Custom	PASS
V ⁻		14 lbs	1240 lbs	1.14%	0.00 ft	Custom	PASS
V/M		0.01	1	1.14%	0.00 ft	Custom	PASS
Р		45 lbs	4062 lbs	1.12%	0.00 ft	DL	PASS
P/M		0.02	1	1.53%	0.99 ft	Custom	PASS
l req		0.003 in4	2.316 in4	0.15%	1.42 ft	Custom	PASS
Span Δ		0 in	0.142 in	L/160077	1.42 ft	Custom	PASS
Web Crippling		14	269	5.27%	C2	Custom	PASS
Web Crippling		14	269	5.27%	C1	Custom	PASS
C2:	Wind:	Rx = 14 lbs				Ry = 0 lbs	
	Connectio	n:					
C1:	Wind:	Rx = 14 lbs				Ry = 45 lbs	

Connection:

DesignPro Opening Designer Output Ve

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 03 - Test 10/29/2021 / 9:25 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud Track Member:		(1) 600S350-9 (0) None	7 50		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-5008 lb-in	77650 lb-in	6.45%	10.00 ft	Custom	PASS
M stb	-5008 lb-in	77650 lb-in	6.45%	10.00 ft	Custom	PASS
M_dist	-5008 lb-in	78371 lb-in	6.39%	10.00 ft	Custom	PASS
v ⁻	-97 lbs	3805 lbs	2.55%	10.00 ft	Custom	PASS
V/M	0.07	1	6.93%	10.00 ft	Custom	PASS
Р	20059 lbs	23364 lbs	85.85%	0.00 ft	DL	PASS
P/M	0.93	1	93.47%	10.00 ft	Custom	PASS
l req	0.128 in4	8.632 in4	1.49%	7.00 ft	Custom	PASS
 Span Δ	0.007 in	0.5 in	L/16123	7.00 ft	Custom	PASS
Web Crippling	97	1047	9.26%	C2	Custom	PASS
Web Crippling	25	524	4.68%	C1	Custom	PASS

)S	Ry = 0 lbs			Rx = 97 lbs	Wind:	C2:	
600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 37% Capacity							
)59 lbs	Ry = 20059 lbs			Rx = 25 lbs	Wind:	C1:	
	200	I.S.F. at each Jamb - 9% Capacity	uildex			01.	

Phone: (877) 832-3206 www.ClarkDietrich.com

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 2

3rd FLOOR DETAILS

LEFT SPAN LENGTH
LEFT LOADING TYPE
SPAN TYPE
LINE LOAD MODIFIER

4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 2 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 32 in OC LOAD FACTOR 2.667

USER SPECIFIED LOADS

	D	L	Lr	S	W		Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	3201	4393	260	0	0	0	646
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	3474	5020	260	0	0	0	701
TOTAL AXIAL LOAD (Ib)	9263	13387	693	0	0	0	1869

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

PROJECT NA	ME:	CFS-NHERI 10 Stor	y Test P	ortion
PROJECT NU	JMBER:	2150200882		
ENGINEER:	L. Padg	ett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT:	H1: 3'-4	" OPENING JOIST BI	EARING	WALL

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion					
PROJECT NU	JMBER:	2150200882					
ENGINEER:	L. Padg	ett	DATE:	10/29/2021			
CHECKER:	LAP		DATE:				
SUBJECT:	H1: 3'-4" OPENING JOIST BEARING WALL						

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 2

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft

1

FLANGE BRACING

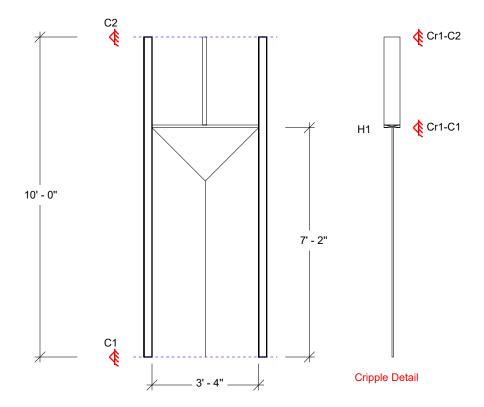
NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

600 HDS300 97 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	22649	5008	0.221	13.33	67		167	
D + Lr	9956	1428	0.143	13.33	67		167	
D + 0.75L + 0.75Lr	19823	4113	0.207	13.33	67		167	
D + W	9263	1428	0.154	13.33	67		167	
D + 0.7E	10571	1630	0.154	13.33	67		167	
D + 0.75L + 0.75W + .75Lr	19823	4113	0.207	13.33	67		167	
D + 0.75L + 0.525E + .75Lr	20804	4264	0.205	13.33	67		167	
0.6D + W	5558	857	0.154	13.33	67		167	
0.6D - 0.7E	4249	655	0.154	13.33	67		167	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity Brace Force (n studs		uds) 6
	plf	lb	ft-lb		Check	Prb =	1359 lb
ZONE 4 DEFLECTION	13.33	67	167			Brdg Rows =	2


Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 02 - Test 10/29/2021 / 9:27 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	---	--	--

Inputs Building Code: Wind Zone: Stud Spacing: Bracing Distance: z:	CBC 2016 Custom 24" O.C. 4' O.C. Max 100 ft		Wind Load Deflection Limit: 0.7 Wind Load Deflection Used: Dead Load Deflection Limit: Dead Load Deflection Limit (in): Vertical Slip Allowance: Dead Load:	L/240 No L/240 0.5 in 1 in -8 psf
Wind Pressures Span(1) Pressure: Opening(1) Pressure:	5.00 psf 5.00 psf	Opening Dead Load Opening(1): -8 psf	Add'l Head Dead Head(1): 0 plf	Load

Combination Loads

Combinatio								
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Pressure	Global FY	NA	10.00 ft	-22649.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-5008 lb-in	Yes	No	No

Design

CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 02 - Test

10/29/2021 / 9:27 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

Project Name:

Project Number: Opening: Date/Time:

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

	Track Member	r:	(1) 600T125-43 33				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Mx	210 lb-in	9114 lb-in	2.31%	1.67 ft	Custom	PASS	
Vx	19 lbs	1377 lbs	1.36%	0.00 ft	Custom	PASS	
VMx	0.02	1	2.31%	1.59 ft	Custom	PASS	
lx	0.007 in4	1.768 in4	0.40%	1.67 ft	Custom	PASS	
Δx	0.001 in	0.167 in	L/60689	1.67 ft	Custom	PASS	
My	377 lb-in	487 lb-in	77.49%	1.67 ft	DL	PASS	
Vý	38 lbs	1265 lbs	2.98%	0.00 ft	DL	PASS	
VMy	0.77	1	77.49%	1.59 ft	DL	PASS	
ly	0.013 in4	0.044 in4	29.31%	1.67 ft	DL	PASS	
Δy	0.049 in	0.167 in	L/819	1.67 ft	DL	PASS	
Mx+My	0.80	1	79.79%	1.67 ft	Custom	PASS	
Vx+Vy	0.00	1	0.11%	0.00 ft	Custom	PASS	
Mx+My+Vx+Vy	0.64	1	63.78%			PASS	

Head Connection to Jamb: Rx = 19 lbs, Ry = 38 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

•	1013011	0.0

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H1: Level 02 - Test
Date/Time:	10/29/2021 / 9:27 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Crippl	e Member:	(1) 600S162-4	(1) 600S162-43 33 @ 24" O.C.		
Interaction Che	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1) M_str M_stb M_dist V V/M P P/M I_req Span Δ Web Crippling Web Crippling		120 lb-in 120 lb-in 120 lb-in 14 lbs 0.01 45 lbs 0.02 0.003 in4 0 in 14 14	16781 lb-in 15254 lb-in 13562 lb-in 1240 lbs 1 4062 lbs 1 2.316 in4 0.142 in 269 269	0.72% 0.79% 0.89% 1.14% 1.14% 1.12% 1.53% 0.15% L/160077 5.27% 5.27%	1.42 ft 1.42 ft 1.42 ft 0.00 ft 0.00 ft 0.99 ft 1.42 ft 1.42 ft C2 C1	Custom Custom Custom Custom DL Custom Custom Custom Custom Custom	PASS PASS PASS PASS PASS PASS PASS PASS
C2:	Wind:	Rx = 14 lbs				Ry = 0 lbs	
	Connectio	n:					
C1:	Wind:	Rx = 14 lbs				Ry = 45 lbs	

Connection:

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 02 - Test 10/29/2021 / 9:27 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Unpunched HE Track Member:		(1) 600HDS30 (0) None	0-97 50		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-5008 lb-in	91817 lb-in	5.45%	10.00 ft	Custom	PASS
M_stb	-5008 lb-in	83195 lb-in	6.02%	10.00 ft	Custom	PASS
M_dist	-5008 lb-in	75993 lb-in	6.59%	10.00 ft	Custom	PASS
v ⁻	-97 lbs	10471 lbs	0.93%	10.00 ft	Custom	PASS
V/M	0.06	1	5.53%	10.00 ft	Custom	PASS
Р	22767 lbs	33236 lbs	68.50%	0.00 ft	DL	PASS
P/M	0.77	1	76.84%	10.00 ft	Custom	PASS
l req	0.128 in4	8.336 in4	1.54%	7.00 ft	Custom	PASS
Span Δ	0.008 in	0.5 in	L/15570	7.00 ft	Custom	PASS
Web Crippling	97	1047	9.26%	C2	Custom	PASS
Web Crippling	25	524	4.68%	C1	Custom	PASS

C2:	Wind:	Rx = 97 lbs		Ry = 0 lbs			
600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 37% Capacity							
C1:	Wind:	Rx = 25 lbs		Ry = 22767 lbs			

Phone: (877) 832-3206 www.ClarkDietrich.com

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 1

2nd FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 4.50 ft CORRIDOR SIMPLE SPAN 1.00 RIGHT SPAN21.50 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 1 WALL DETAILS

WALL TYPE	INTERIOR WALL
STORY HEIGHT	10.00 ft
WALL DL	115.0 plf
DEFLECTION LIMIT	L / 240

DEPTH 6.000 in STUD OC SPACING: 32 in OC LOAD FACTOR 2.667

USER SPECIFIED LOADS

	D	L	Lr	S	W		Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	47	90	0	0	0	0	10
CENTERLINE OF WALL (plf)	3589	5020	260	0	0	0	724
RIGHT SIDE OF WALL (plf)	226	538	0	0	0	0	46
TOTAL LINE LOAD (plf)	3862	5648	260	0	0	0	779
TOTAL AXIAL LOAD (Ib)	10297	15060	693	0	0	0	2078

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

PROJECT NAME:	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBER:	2150200882				
ENGINEER: L. Pad	gett DATE: 10/29/2021				
CHECKER: LAP	DATE:				
SUBJECT: H1: 3'-	4" OPENING JOIST BEARING WALL				

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion				
PROJECT NU	JMBER:	2150200882				
ENGINEER:	L. Padg	jett	DATE:	10/29/2021		
CHECKER:	LAP		DATE:			
SUBJECT:	H1: 3'-4" OPENING JOIST BEARING WALL					

H1: 3'-4" OPENING JOIST BEARING WALL, LEVEL 1

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft

1

FLANGE BRACING

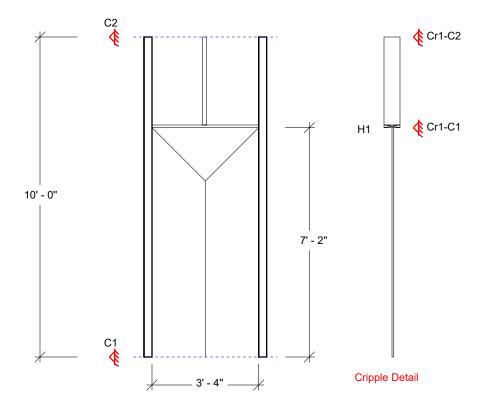
NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

600 HDS300 97 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
	lb	in-lb	in	plf	lb	Check		Check
D + L	25357	5008	0.197	13.33	67		167	
D + Lr	10991	1428	0.130	13.33	67		167	
D + 0.75L + 0.75Lr	22112	4113	0.186	13.33	67		167	
D + W	10297	1428	0.139	13.33	67		167	
D + 0.7E	11752	1630	0.139	13.33	67		167	
D + 0.75L + 0.75W + .75Lr	22112	4113	0.186	13.33	67		167	
D + 0.75L + 0.525E + .75Lr	23203	4264	0.184	13.33	67		167	
0.6D + W	6178	857	0.139	13.33	67		167	
0.6D - 0.7E	4724	655	0.139	13.33	67		167	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n stu	ds) 6
	plf	lb	ft-lb		Check	Prb =	1521 lb
ZONE 4 DEFLECTION	13.33	67	167			Brdg Rows =	2


Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 01 - Test 10/29/2021 / 9:28 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	---	--	--

Inputs Building Code: Wind Zone: Wind Load Deflection Limit: 0.7 Wind Load Deflection Used: CBC 2016 L/240 Custom No Stud Spacing: Bracing Distance: 24" O.C. Dead Load Deflection Limit: L/240 4' O.C. Max Dead Load Deflection Limit (in): 0.5 in Z: 100 ft Vertical Slip Allowance: 1 in Dead Load: -8 psf Opening Dead Load Opening(1): -8 psf Add'l Head Dead Load Head(1): 0 plf Wind Pressures Span(1) Pressure: Opening(1) Pressure: 5.00 psf 5.00 psf

Combination Loads

Compinatio	II LUaus							
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Pressure	Global FY	NA	10.00 ft	-25357.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-5008 lb-in	Yes	No	No

Design

Version 6.0.2.0

CFS-NHERI 10 Story Archetype Project Name: Project Number: Opening: Date/Time: 2150200882-0 H1: Level 01 - Test 10/29/2021 / 9:28 AM

Company: Contact Name: Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

	Track Member:			(1) 600T125-43 33				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL		
Мх	210 lb-in	9114 lb-in	2.31%	1.67 ft	Custom	PASS		
Vx	19 lbs	1377 lbs	1.36%	0.00 ft	Custom	PASS		
VMx	0.02	1	2.31%	1.59 ft	Custom	PASS		
lx	0.007 in4	1.768 in4	0.40%	1.67 ft	Custom	PASS		
Δx	0.001 in	0.167 in	L/60689	1.67 ft	Custom	PASS		
My	377 lb-in	487 lb-in	77.49%	1.67 ft	DL	PASS		
Vý	38 lbs	1265 lbs	2.98%	0.00 ft	DL	PASS		
VMy	0.77	1	77.49%	1.59 ft	DL	PASS		
ly	0.013 in4	0.044 in4	29.31%	1.67 ft	DL	PASS		
Δy	0.049 in	0.167 in	L/819	1.67 ft	DL	PASS		
Mx+My	0.80	1	79.79%	1.67 ft	Custom	PASS		
Vx+Vy	0.00	1	0.11%	0.00 ft	Custom	PASS		
Mx+My+Vx+Vy	0.64	1	63.78%			PASS		

Head Connection to Jamb: Rx = 19 lbs, Ry = 38 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H1: Level 01 - Test
Date/Time:	10/29/2021 / 9:28 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Crip	pple Res	sults	Punched Cripp	le Member:	(1) 600S162-4	3 33 @ 24" O.C.	
Interaction Che	ck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1)							
M_str		120 lb-in	16781 lb-in	0.72%	1.42 ft	Custom	PASS
M_stb		120 lb-in	15254 lb-in	0.79%	1.42 ft	Custom	PASS
M_dist V		120 lb-in	13562 lb-in	0.89%	1.42 ft	Custom	PASS
V		14 lbs	1240 lbs	1.14%	0.00 ft	Custom	PASS
V/M		0.01	1	1.14%	0.00 ft	Custom	PASS
Р		45 lbs	4062 lbs	1.12%	0.00 ft	DL	PASS
P/M		0.02	1	1.53%	0.99 ft	Custom	PASS
l req		0.003 in4	2.316 in4	0.15%	1.42 ft	Custom	PASS
Span Δ		0 in	0.142 in	L/160077	1.42 ft	Custom	PASS
Web Crippling		14	269	5.27%	C2	Custom	PASS
Web Crippling		14	269	5.27%	C1	Custom	PASS
C2:	Wind:	Rx = 14 lbs				Ry = 0 lbs	
	Connectio	on:					
C1:	Wind:	Rx = 14 lbs				Ry = 45 lbs	

Connection:

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H1: Level 01 - Test 10/29/2021 / 9:28 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Unpunched HD Track Member:		(1) 600HDS30 (0) None	0-97 50		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-5008 lb-in	91817 lb-in	5.45%	10.00 ft	Custom	PASS
M_stb	-5008 lb-in	83195 lb-in	6.02%	10.00 ft	Custom	PASS
M_dist	-5008 lb-in	75993 lb-in	6.59%	10.00 ft	Custom	PASS
v ⁻	-97 lbs	10471 lbs	0.93%	10.00 ft	Custom	PASS
V/M	0.06	1	5.53%	10.00 ft	Custom	PASS
P	25475 lbs	33236 lbs	76.65%	0.00 ft	DL	PASS
P/M	0.85	1	85.33%	10.00 ft	Custom	PASS
l req	0.128 in4	8.336 in4	1.54%	7.00 ft	Custom	PASS
Span Δ	0.008 in	0.5 in	L/15570	7.00 ft	Custom	PASS
Web Crippling	97	1047	9.26%	C2	Custom	PASS
Web Crippling	25	524	4.68%	C1	Custom	PASS

C2:	Wind:	Rx = 97 lbs			Ry = 0 lbs					
	600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 37% Capacity									
C1:	Wind:	Rx = 25 lbs			Ry = 25475 lbs					

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 4'-8" EXT OPENING JOIST BEARING WALL

Lt = 4.00 ft

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

4'-8" EXT OPENING JOIST BEARING WALL

DESIGNED PER THE REQUIREMENTS OF AISI: 2016 NAS - US (ASD)

40 in

WALL NOTES

4'-8" W x 4'-0" H Window w/ 2'-8" Sill (At Units)

DEFAULT FLOOR DETAILS

LEFT LO/ SPAN TY	AN LENGTH ADING TYPE PE AD MODIFIER	21.50 ft UNIT SIMPLE SPAN 1.00	RIGHT SPAN RIGHT LOADING TY SPAN TYPE LINE LOAD MODIFIE		0.00 ft UNIT SIMPLE SPAN 1.00	
	YSTEM DEPTH RAMING TYPE	12 in LEDGER FRAMED				
DEFAULT WAL WALL TY STUD DE	PE	EXTERIOR WALL (EIFS) 6.000 in	FLANGE BRACING BRACING	Ly =	NONE 4.00 ft	

FOUNDATION LINE LOADS

STUD OC SPACING

	D	L	Lr	S	W (plf)		E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
SERVICE LEVEL LOADS	3758	4838	215	0	0	0	758

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 4'-8" EXT OPENING JOIST BEARING WALL

CFS-NHERI 10 Story Test Portion

PROJECT NAME:

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 10

ROOF DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft ROOF SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEROOFSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 10 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	40 in
WALL DL	150.0 plf	OC LOAD FACTOR	3.333
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	W		E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	44	0	0	0	0	0	0

parapet

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	258	0	215	0	0	0	52
CENTERLINE OF WALL (plf)	75	0	0	0	0	0	15
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	377	0	215	0	0	0	67
TOTAL AXIAL LOAD (Ib)	1255	0	717	0	0	0	224

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

ASD WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRES	SURE	62.67 plf
Gcpi =	0.180	ZONE 4		-15.13 psf -50.42 plf
ZONE 4 GCp =	-0.868			
ZONE 5 GCp =	-1.673	ZONE 5	P =	-26.74 psf
			w =	-89.13 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion				
PROJECT NU	UMBER: 2150200882					
ENGINEER:	L. Padg	ett	DATE:	10/29/2021		
CHECKER:	LAP		DATE:			
SUBJECT:	4'-8" EXT OPENING JOIST BEARING WALL					

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 10

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft
------	----------

FLANGE BRACING

NONE

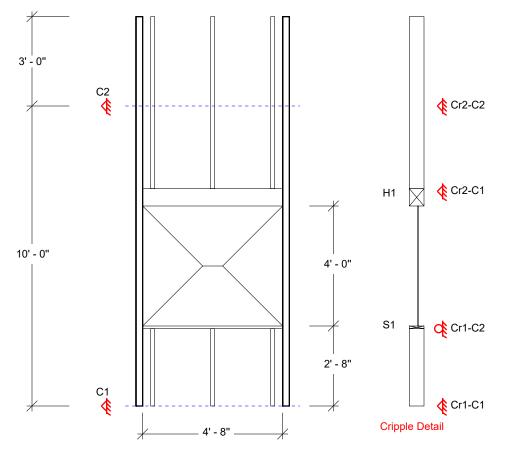
- Ly = 4.00 ft
- Lt = 4.00 ft

|--|

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb		ft-lb	
D + L	1255	2580	2.056		0		0	
D + Lr	1972	4730	2.399		0		0	
D + 0.75L + 0.75Lr	1793	4193	2.339		0		0	
D + W	1255	2580	2.056	62.67	313		783	
D + 0.7E	1412	2944	2.086		0		0	
D + 0.75L + 0.75W + .75Lr	1793	4193	2.339	47.00	235		588	
D + 0.75L + 0.525E + .75Lr	1910	4466	2.338		0		0	
0.6D + W	753	1548	2.056	62.67	313		783	
0.6D - 0.7E	596	1184	1.985		0		0	
ZONE 4 BENDING				50.42	252		630	
ZONE 5 BENDING				89.13	446		1114	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n stud	ls) 7
	plf	lb	ft-lb			Prb =	138 lb
ZONE 4 DEFLECTION	35.29	176	441			y Brdg Rows =	2
ZONE 5 DEFLECTION	62.39	312	780]	

Project Number: 2150200882-0	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
------------------------------	--	--


Inputs Building Code: Wind Zone:	CBC 2016 Typical			oad Deflection Limit: nd Load Deflection U	_,
Stud Spacing:	24" O.C.		Dead L	oad Deflection Limit	L/360
Bracing Distance:	None			oad Deflection Limit	(in): 0.5 in
Z:	100 ft		Vertica Dead L	l Slip Allowance: oad:	NA 0 psf
Parapet Continuous:	Yes				
Parapet Porosity:	Porous		Under I	Hang Porosity:	NA
Wind Pressures Typical Zone:		Opening Dead	d Load	Add'l Head D	ead Load
Parapet Suction:	-43.27 psf	Opening(1): -	15 psf	Head(1): 0) plf

Parapet Suction: Parapet Pressure: Span Suction: Span(1) Pressure:

-43.27 psf 73.86 psf -22.91 psf 22.44 psf **Combination Loads**

Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Suction	Global FY	24 in. O.C.	10.00 ft	-634.00 lbs	No	Yes	No
Moment	Suction	Global Mz	24 in. O.C.	10.00 ft	-2739 lb-in	No	Yes	No
Axial Point	Pressure	Global FY	24 in. O.C.	10.00 ft	-634.00 lbs	No	Yes	No
Moment	Pressure	Global Mz	24 in. O.C.	10.00 ft	-2739 lb-in	No	Yes	No
Moment	Suction	Global Mz	NA	10.00 ft	-2838 lb-in	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-2838 lb-in	Yes	No	No

Design

DesignPro Opening Designer Output Versid

Version 6.0.2.0

Project Name:CFS-IProject Number:21502Opening:H4: LoDate/Time:10/29

CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 10 - Test 10/29/2021 / 9:47 AM Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Track Member: Unpunched Gravity Member: (2) 600T125-54 50 (2) 600S162-54 50

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Mx_Top	-4033 lb-in	17147 lb-in	23.52%	2.33 ft	Pressure / OH	PASS
Vx Top	-319 lbs	2728 lbs	11.71%	0.00 ft	Pressure / OH	PASS
VMx Top	0.24	1	23.52%	2.23 ft	Pressure / OH	PASS
Ix Top	0.197 in4	2.241 in4	8.80%	2.33 ft	Pressure / OH	PASS
Δx Top	0.014 in	0.155 in	L/4091	2.33 ft	Pressure / OH	PASS
My .	11374 lb-in	48471 lb-in	23.47%	2.33 ft	DL	PASS
Vý	1058 lbs	5645 lbs	18.74%	0.00 ft	DL	PASS
VMy	0.23	1	23.47%	2.23 ft	DL	PASS
ly	0.769 in4	5.721 in4	13.45%	2.33 ft	DL	PASS
Δy	0.021 in	0.155 in	L/2677	2.33 ft	DL	PASS
Web Crippling	634 lbs	1394 lbs	45.49%	0.07 ft	DL	PASS
Web Crippling/Moment	0.39	1	39.24%	3.90 ft	Suction + DL	PASS
Mx Bottom	-1313 lb-in	17147 lb-in	7.65%	2.33 ft	Suction	PASS
Vx Bottom	-74 lbs	2728 lbs	2.72%	0.00 ft	Suction	PASS
VMx Bottom	0.08	1	7.65%	2.22 ft	Suction	PASS
Ix Bottom	0.063 in4	2.241 in4	2.82%	2.33 ft	Suction	PASS
Δx _Bottom	0.004 in	0.155 in	L/12750	2.33 ft	Suction	PASS

Box Header Clip Connection to Jamb: Rx(top) = -319 lbs Rx(bottom) = -74 lbs (2) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 33% Capacity

Box Header Track Connection to Jamb: Ry = 1058 lbs

4" L, 600T125-43 33 trk pc w/ (4) Buildex #10-16 T3 screws to Head, (4) Buildex #10-16 T3 screws to Jamb - 92% Capacity

Sill (S1) Design Results

IMPORTANT NOTE: Sill tracks must be continuous. Splicing of tracks is not allowed.

Track Member:			(1) 600T125-4	(1) 600T125-43 33				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL		
Mx Vx VMx Ix Deflection	-2118 lb-in -132 lbs 0.23 0.103 in4 0.009 in	9114 lb-in 1377 lbs 1 1.768 in4 0.155 in	23.25% 9.58% 23.25% 5.85% L/6157	2.33 ft 0.00 ft 2.22 ft 2.33 ft 2.33 ft	Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS		

Sill Connection to Jamb: Rx = -132 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Sill, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H4: Level 10 - Test
Date/Time:	10/29/2021 / 9:47 AM

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripple Member:		(1) 600S162-4		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAI
Cripple (1)						
M str	-486 lb-in	16781 lb-in	2.90%	1.33 ft	Suction	PASS
M stb	-486 lb-in	15254 lb-in	3.19%	1.33 ft	Suction	PASS
M_dist	-486 lb-in	13562 lb-in	3.59%	1.33 ft	Suction	PASS
v ⁻	61 lbs	1240 lbs	4.91%	2.66 ft	Suction	PASS
V/M	0.05	1	4.91%	2.66 ft	Suction	PASS
Р	120 lbs	4132 lbs	2.90%	0.00 ft	DL	PASS
P/M	0.06	1	6.49%	1.33 ft	Suction	PASS
l req	0.014 in4	2.316 in4	0.60%	1.33 ft	Suction	PASS
Span Δ	0.001 in	0.089 in	L/60357	1.33 ft	Suction	PASS
Web Crippling	-61	410	14.86%	C1	Suction	PASS

C2:	Wind:	Rx = -61 lbs	Rx = 60 lbs		Ry = 0 lbs		
	Cripple C	onnection to Sill Trad	ck @ 15% Capacity				
		-					
C1:	Wind:	Rx = -61 lbs	Rx = 60 lbs		Ry = 120 lbs		

600T125-54 50 ksi Track w/ (1) Buildex #10-16 T3 to 43-33 L.S.F. at 24" O.C. - 23% Capacity

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H4: Level 10 - Test
Date/Time:	10/29/2021 / 9:47 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripp	le Member:	(1) 600S162-4	(1) 600S162-43 33 @ 24" O.C.		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Cripple (2)							
M_str	-7977 lb-in	16781 lb-in	47.54%	2.84 ft	Pressure / OH	PASS	
M_stb	-7977 lb-in	15254 lb-in	52.29%	2.84 ft	Pressure / OH	PASS	
M_dist	-7977 lb-in	13562 lb-in	58.82%	2.84 ft	Pressure / OH	PASS	
v ⁻	443 lbs	1240 lbs	35.74%	2.84 ft	Pressure / OH	PASS	
V/M	0.59	1	59.47%	2.84 ft	Pressure / OH	PASS	
Р	0 lbs	4060 lbs	0.00%		DL	PASS	
P/M	0.59	1	58.82%	2.84 ft	Pressure / OH	PASS	
l req	0.53 in4	2.316 in4	22.87%	5.84 ft	Pressure / OH	PASS	
Span Δ	0.005 in	0.095 in	L/6271	1.70 ft	Pressure / OH	PASS	
OH + Adj Span Δ	0.063 in	0.276 in	L/1574	5.84 ft	Pressure / OH	PASS	

C2:	Wind:	Rx = -462 lbs	Rx = 741 lbs		Ry = 0 lbs		
Reference Clip : H4: Level 10 - Test - Cr2.1-C2							
		•					
C1:	Wind:	Rx = -170 lbs	Rx = 72 lbs		Ry = 0 lbs		

Attach Track to Header using (2) Buildex #10-16 T3 @ 24" O.C. - 42% Capacity

Non-Uniform Cripple Results		Punched Cripp	le Member:	(1) 600S162-43 33 @ 24" O.C.		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (2.1)						
M str	-10716 lb-in	16781 lb-in	63.86%	2.84 ft	Pressure / OH	PASS
M_stb	-10716 lb-in	15254 lb-in	70.25%	2.84 ft	Pressure / OH	PASS
M [_] dist	-10716 lb-in	13562 lb-in	79.01%	2.84 ft	Pressure / OH	PASS
v ⁻	443 lbs	1240 lbs	35.74%	2.84 ft	Pressure / OH	PASS
V/M	0.71	1	70.77%	2.84 ft	Pressure / OH	PASS
Р	634 lbs	4060 lbs	15.62%	0.00 ft	DL	PASS
P/M	0.95	1	94.79%	2.84 ft	Pressure / OH	PASS
l req	0.644 in4	2.316 in4	27.79%	5.84 ft	Pressure / OH	PASS
Span Δ	0.008 in	0.095 in	L/4532	1.70 ft	Pressure / OH	PASS
OH + Adj Span Δ	0.077 in	0.276 in	L/1295	5.84 ft	Pressure / OH	PASS

C2:	Wind:	Rx = -381 lbs	Rx = 821 lbs	Ry = 0 lbs
	Reference	Clip : H4: Level 10 - Test	t - Cr2.2-C2	
C1:	Wind:	Rx = -251 lbs	Rx = 0 lbs	Ry = 634 lbs

Attach Track to Header using (2) Buildex #10-16 T3 @ 24" O.C. - 61% Capacity

DesignPro Rigid Clip Designer Output Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Clip:	H4: Level 10 - Test - Cr2.1-C2
Date/Time:	10/29/2021 / 9:47 AM

Inputs

Connection Design:	Bypass
Support Leg Structure: Anchor/Structure Edge:	68-50 0 in
Loaded Leg	0 111
L.S.F. 1: L.S.F. 2:	43-33 None

Wind Pressure Reactions

Shear:	<u>914 lbs</u>
Tension:	462 lbs
Compression:	<u>741 lbs</u>

Clip Design

Clip:	S681
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	68 Mils
Clip Length:	11 in

~ ...

Company:

Contact Name: Phone Number:

0

0

Support Leg Design Results

Wind Pressure Reactions						
Interaction Check	Actual	Allowable	Capacity	P/F		
Clip Shear	914 lbs	8467 lbs	11%	Pass		
Clip Strong Moment	914 lbs	27473 lbs	3%	Pass		
Clip Weak Bending	462 lbs	699 lbs	66%	Pass		
Clip Axial Stress	0.694	1	69%	Pass		
Clip Axial Shear Stress	0.494	1	49%	Pass		
Clip Weak-Axis Deflection	462 lbs	1830 lbs	25%	Pass		
Screw Shear	466 lbs	667 lbs	70%	Pass		
Screw Tension	231 lbs	926 lbs	25%	Pass		
Screw Shear-Tension	0.73	1	73%	Pass		
Tilting/Bearing	466 lbs	805 lbs	58%	Pass		
Pullout	231 lbs	284 lbs	81%	Pass		
Pullover	231 lbs	362 lbs	64%	Pass		
Tilting-Pullout	0.602	1	60%	Pass		
Bearing-Pullover	0.161	1	16%	Pass		

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	914 lbs	7842 lbs	12%	Pass
Clip Moment	914 lbs	27473 lbs	3%	Pass
Clip Compression	741 lbs	2000 lbs	37%	Pass
Clip Tension	462 lbs	15499 lbs	3%	Pass
Clip Compression Stress	0.404	1	40%	Pass
Clip CompShear Stress	0.177	1	18%	Pass
Screw Shear	650 lbs	667 lbs	97%	Pass
Tilting/Bearing	650 lbs	805 lbs	81%	Pass

DesignPro Rigid Clip Designer Output Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Clip:	H4: Level 10 - Test - Cr2.2-C2
Date/Time:	10/29/2021 / 9:47 AM

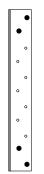
Inputs

Connection Design:	Bypass
Support Leg	
Structure:	68-50
Anchor/Structure Edge:	0 in
Loaded Leg	
L.S.F. 1:	43-33
L.S.F. 2:	None

Wind Pressure Reactions

Shear:	<u>914 lbs</u>
Tension:	<u>381 lbs</u>
Compression:	<u>821 lbs</u>

Clip Design


Clip:	S681
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	68 Mils
Clip Length:	11 in

~ ...

Company:

Contact Name:

Phone Number:

Support Leg Design Results

Wind Pressure Reactions				
Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	914 lbs	8467 lbs	11%	Pass
Clip Strong Moment	914 lbs	27473 lbs	3%	Pass
Clip Weak Bending	381 lbs	699 lbs	55%	Pass
Clip Axial Stress	0.578	1	58%	Pass
Clip Axial Shear Stress	0.346	1	35%	Pass
Clip Weak-Axis Deflection	381 lbs	1830 lbs	21%	Pass
Screw Shear	466 lbs	467 lbs	100%	Pass
Screw Tension	190 lbs	645 lbs	30%	Pass
Screw Shear-Tension	0.995	1	100%	Pass
Tilting/Bearing	466 lbs	755 lbs	62%	Pass
Pullout	190 lbs	249 lbs	76%	Pass
Pullover	190 lbs	362 lbs	53%	Pass
Tilting-Pullout	0.564	1	56%	Pass
Bearing-Pullover	0.133	1	13%	Pass

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	914 lbs	8114 lbs	11%	Pass
Clip Moment	914 lbs	38115 lbs	2%	Pass
Clip Compression	821 lbs	2038 lbs	40%	Pass
Clip Tension	381 lbs	16036 lbs	2%	Pass
Clip Compression Stress	0.427	1	43%	Pass
Clip CompShear Stress	0.195	1	19%	Pass
Screw Shear	338 lbs	467 lbs	72%	Pass
Tilting/Bearing	338 lbs	755 lbs	45%	Pass

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 10 - Test 10/29/2021 / 9:47 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud M Track Member:	Леmber:	(1) 600S250-6 (0) None	8 50		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-12649 lb-in	41495 lb-in	30.48%	5.50 ft	Suction	PASS
M_stb	-12649 lb-in	24472 lb-in	51.69%	5.50 ft	Suction	PASS
M_dist	-12649 lb-in	39078 lb-in	32.37%	5.50 ft	Suction	PASS
v ⁻	-338 lbs	2879 lbs	11.74%	0.00 ft	Suction	PASS
V/M	0.30	1	30.48%	5.50 ft	Suction	PASS
Р	1118 lbs	4553 lbs	24.56%	0.00 ft	DL	PASS
P/M	0.77	1	77.17%	5.50 ft	Suction	PASS
l req	1.704 in4	4.724 in4	36.08%	13.00 ft	Suction	PASS
Span Δ	0.097 in	0.333 in	L/1240	5.00 ft	Suction	PASS
OH + Adj Span Δ	0.192 in	0.533 in	L/998	13.00 ft	Suction	PASS
Web Crippling	-338	1389	24.32%	C1	Suction	PASS
C2: Wind:	Rx = -413 lbs	Rx = 325 lb			Ry = 0 lbs	

		Reference	Clip : H4: Level 10 - Test	- C2	
[C1:	Wind:	Rx = -338 lbs	Rx = 224 lbs	Ry = 1118 lbs

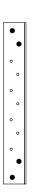
600T125-54 50 ksi Track w/ (2) Buildex #10-16 T3 to 43-33 L.S.F. at each Jamb - 64% Capacity

DesignPro **Rigid Clip Designer Output** Version 6.0.2.0

ClarkDietrich Engineering Services LLC

Lynn Padgett, P.E. 678.304.5525

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Clip:	H4: Level 10 - Test - C2
Date/Time:	10/29/2021 / 9:47 AM


Inputs

Connection Design:	Bypass
Support Leg	
Structure:	68-50 L.S.F.
Anchor/Structure Edge:	6 in
Loaded Leg	
L.S.F. 1:	68-50
L.S.F. 2:	None

Wind Pressure Reactions

Shear:	1118 lbs
Tension:	413 lbs
Compression:	325 lbs

Clip Design

Clip:	S681
Clip Loaded Leg Width:	1.5 in
Clip Support Leg Width:	1.5 in
Clip Quantity:	1
Clip Thickness	68 Mils
Clip Length:	11 in

~ ...

Company:

Contact Name: Phone Number:

> 0 0 ¢

Support Leg Design Results

Wind Pressure Reactions				
Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1118 lbs	8467 lbs	13%	Pass
Clip Strong Moment	1118 lbs	38115 lbs	3%	Pass
Clip Weak Bending	413 lbs	932 lbs	44%	Pass
Clip Axial Stress	0.472	1	47%	Pass
Clip Axial Shear Stress	0.241	1	24%	Pass
Clip Weak-Axis Deflection	413 lbs	4338 lbs	10%	Pass
Screw Shear	287 lbs	667 lbs	43%	Pass
Screw Tension	103 lbs	926 lbs	11%	Pass
Screw Shear-Tension	0.416	1	42%	Pass
Tilting/Bearing	287 lbs	805 lbs	36%	Pass
Pullout	103 lbs	284 lbs	36%	Pass
Pullover	103 lbs	362 lbs	29%	Pass
Tilting-Pullout	0.269	1	27%	Pass
Bearing-Pullover	0.072	1	7%	Pass

Loaded Leg Design Results

Wind Pressure Reactions

Interaction Check	Actual	Allowable	Capacity	P/F
Clip Shear	1118 lbs	7842 lbs	14%	Pass
Clip Moment	1118 lbs	33860 lbs	3%	Pass
Clip Compression	325 lbs	2027 lbs	16%	Pass
Clip Tension	413 lbs	15499 lbs	3%	Pass
Clip Compression Stress	0.193	1	19%	Pass
Clip CompShear Stress	0.058	1	6%	Pass
Screw Shear	445 lbs	667 lbs	67%	Pass
Tilting/Bearing	445 lbs	805 lbs	55%	Pass

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 4'-8" EXT OPENING JOIST BEARING WALL

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 9

10th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 9 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	40 in
WALL DL	150.0 plf	OC LOAD FACTOR	3.333
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	Е
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	527	0	215	0	0	0	106
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	752	538	215	0	0	0	152
TOTAL AXIAL LOAD (lb)	2508	1792	717	0	0	0	506

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRES	SURE	61.67 plf
Gcpi =	0.180	ZONE 4		-15.13 psf -50.42 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5	P =	-26.74 psf
			w =	-89.13 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion			
PROJECT NUM	IBER:	2150200882			
ENGINEER: L	Padg	ett	DATE:	10/29/2021	
CHECKER: L	_AP		DATE:		
SUBJECT: 4	4'-8" EXT OPENING JOIST BEARING WALL				

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 9

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft

FLANGE BRACING

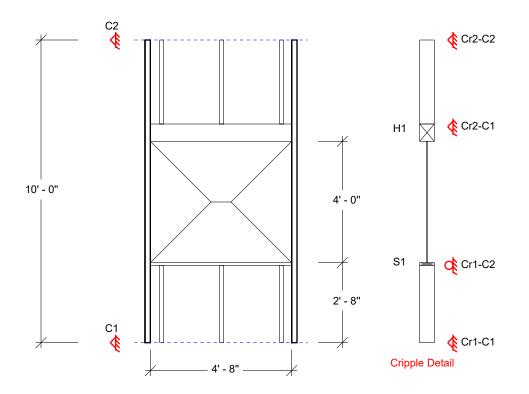
NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

1	600	S200	68 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	4299	7633	1.775		0		0	
D + Lr	3224	2258	0.700		0		0	
D + 0.75L + 0.75Lr	4389	6289	1.433		0		0	
D + W	2508	2258	0.900	61.67	308		771	
D + 0.7E	2862	2576	0.900		0		0	
D + 0.75L + 0.75W + .75Lr	4389	6289	1.433	46.25	231		578	
D + 0.75L + 0.525E + .75Lr	4654	6528	1.403		0		0	
0.6D + W	1505	1355	0.900	61.67	308		771	
0.6D - 0.7E	1150	1036	0.900		0		0	
ZONE 4 BENDING				50.42	252		630	
ZONE 5 BENDING				89.13	446		1114	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity Brace Forc		tuds) 7
	plf	lb	ft-lb		Check	Prb =	326 lb
ZONE 4 DEFLECTION	35.29	176	441			y Brdg Rows =	2
ZONE 5 DEFLECTION	62.39	312	780				



Inputs Building Code: Wind Zone: Stud Spacing: Bracing Distance: z:	CBC 2016 Typical 24" O.C. 4' O.C. Max 100 ft		Wind Load Deflection Limit: 0.7 Wind Load Deflection Used: Dead Load Deflection Limit: Dead Load Deflection Limit (in): Vertical Slip Allowance: Dead Load:	L/360 Yes L/360 0.5 in 1 in 0 psf
Parapet Porosity:	NA		Under Hang Porosity:	NA
Wind Pressures Typical Zone:		Opening Dead Load	Add'l Head Dead	Load
Span Suction: Span(1) Pressure:	-22.91 psf 22.56 psf	Opening(1): -15 psf	Head(1): 0 plf	

Combination Loads

Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Suction	Global FY	NA	10.00 ft	-1972.00 lbs	Yes	No	No
Moment	Suction	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Pressure	Global FY	NA	10.00 ft	-1972.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Suction	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Suction	Global Mz	24 in. O.C.	10.00 ft	-3780 lb-in	No	Yes	No
Axial Point	Pressure	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Pressure	Global Mz	24 in. O.C.	10.00 ft	-3780 lb-in	No	Yes	No

Design

DesignPro Opening Designer Output Versid

Version 6.0.2.0

Project Name: CFS-N Project Number: 21502 Opening: H4: Le Date/Time: 10/29/

CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 09 - Test 10/29/2021 / 9:54 AM Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Track Member: Unpunched Gravity Member: (2) 600T125-54 50 (2) 600S162-54 50

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх Тор	-3236 lb-in	17147 lb-in	18.87%	2.33 ft	Suction	PASS
Vx Top	-274 lbs	2728 lbs	10.05%	0.00 ft	Suction	PASS
VMx Top	0.19	1	18.88%	2.23 ft	Suction	PASS
Ix Top	0.156 in4	2.241 in4	6.97%	2.33 ft	Suction	PASS
Δx Top	0.011 in	0.155 in	L/5164	2.33 ft	Suction	PASS
My	18317 lb-in	48471 lb-in	37.79%	2.33 ft	DL	PASS
Vý	1704 lbs	5645 lbs	30.19%	0.00 ft	DL	PASS
VMy	0.38	1	37.79%	2.23 ft	DL	PASS
ly	1.239 in4	5.721 in4	21.66%	2.33 ft	DL	PASS
Δy	0.034 in	0.155 in	L/1662	2.33 ft	DL	PASS
Web Crippling	1021 lbs	1394 lbs	73.25%	0.07 ft	DL	PASS
Web Crippling/Moment	0.63	1	63.11%	3.90 ft	Suction + DL	PASS
Mx Bottom	-1313 lb-in	17147 lb-in	7.65%	2.33 ft	Suction	PASS
Vx Bottom	-74 lbs	2728 lbs	2.72%	0.00 ft	Suction	PASS
VMx Bottom	0.08	1	7.65%	2.22 ft	Suction	PASS
Ix Bottom	0.063 in4	2.241 in4	2.82%	2.33 ft	Suction	PASS
Δx _Bottom	0.004 in	0.155 in	L/12750	2.33 ft	Suction	PASS

Box Header Clip Connection to Jamb: Rx(top) = -274 lbs Rx(bottom) = -74 lbs (2) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 29% Capacity

Box Header Track Connection to Jamb: Ry = 1704 lbs

4" L, 600T125-54 50 trk pc w/ (4) Buildex #10-16 T3 screws to Head, (4) Buildex #10-16 T3 screws to Jamb - 96% Capacity

Sill (S1) Design Results

IMPORTANT NOTE: Sill tracks must be continuous. Splicing of tracks is not allowed.

	Track Member:		(1) 600T125-4	(1) 600T125-43 33			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Mx Vx VMx Ix Deflection	-2118 lb-in -132 lbs 0.23 0.103 in4 0.009 in	9114 lb-in 1377 lbs 1 1.768 in4 0.155 in	23.25% 9.58% 23.25% 5.85% L/6157	2.33 ft 0.00 ft 2.22 ft 2.33 ft 2.33 ft	Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS	

Sill Connection to Jamb: Rx = -132 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Sill, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H4: Level 09 - Test
Date/Time:	10/29/2021 / 9:54 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripp	Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.	
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1)						
M str	-486 lb-in	16781 lb-in	2.90%	1.33 ft	Suction	PASS
M_stb	-486 lb-in	15254 lb-in	3.19%	1.33 ft	Suction	PASS
M_dist	-486 lb-in	13562 lb-in	3.59%	1.33 ft	Suction	PASS
v ⁻	61 lbs	1240 lbs	4.91%	2.66 ft	Suction	PASS
V/M	0.05	1	4.91%	2.66 ft	Suction	PASS
Р	120 lbs	4132 lbs	2.90%	0.00 ft	DL	PASS
P/M	0.06	1	6.49%	1.33 ft	Suction	PASS
l req	0.014 in4	2.316 in4	0.60%	1.33 ft	Suction	PASS
Span Δ	0.001 in	0.089 in	L/60357	1.33 ft	Suction	PASS
Web Crippling	-61	410	14.86%	C1	Suction	PASS

C2:	Wind:	Rx = -61 lbs	Rx = 60 lbs	Ry = 0 lbs					
	Cripple Connection to Sill Track @ 15% Capacity								
C1:	Wind:	Rx = -61 lbs	Rx = 60 lbs	Ry = 120 lbs					
600T125.54.50 kci Track w/ (1) Buildex #10.16 T3 to 43.33 L S E at 24" O C _ 23% Capacity									

600T125-54 50 ksi Track w/ (1) Buildex #10-16 T3 to 43-33 L.S.F. at 24" O.C. - 23% Capacity

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H4: Level 09 - Test
Date/Time:	10/29/2021 / 9:54 AM

Company:
Contact Name:
Phone Number:
Thome Number.

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Crippl	Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.	
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (2)						
M str	-554 lb-in	16781 lb-in	3.30%	1.42 ft	Suction	PASS
M_stb	-554 lb-in	15254 lb-in	3.63%	1.42 ft	Suction	PASS
M_dist	-554 lb-in	13562 lb-in	4.09%	1.42 ft	Suction	PASS
v ⁻	65 lbs	1240 lbs	5.25%	2.84 ft	Suction	PASS
V/M	0.05	1	5.25%	2.84 ft	Suction	PASS
Р	0 lbs	4060 lbs	0.00%		DL	PASS
P/M	0.04	1	4.09%	1.42 ft	Suction	PASS
l req	0.017 in4	2.316 in4	0.73%	1.42 ft	Suction	PASS
Span Δ	0.001 in	0.095 in	L/49593	1.42 ft	Suction	PASS
Web Crippling	-65	410	15.87%	C2	Suction	PASS

C2:	Wind:	Rx = -65 lbs	Rx = 64 lbs		Ry = 0 lbs
	600T125-54	4 50 ksi Track w/ (1) Build	lex #10-16 T3 to 54-50 L.S	S.F. at 24" O.C 12% Capacity	

C1:	Wind:	Rx = -65 lbs	Rx = 64 lbs		Ry = 0 lbs
	Attach Trac	ck to Header using (2) Bui	ldex #10-16 T3 @ 24" O.0	C - 16% Capacity	

Attach Track to Header using (2) Buildex #10-16 T3 @ 24" O.C. - 16% Capacity

e Results	ts Punched Cripple Member:		(1) 600S162-4		
Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
-3780 lb-in	16781 lb-in	22.53%	2.84 ft	Pressure	PASS
-3780 lb-in	15254 lb-in	24.78%	2.84 ft	Pressure	PASS
-3780 lb-in	13562 lb-in	27.87%	2.84 ft	Pressure	PASS
-176 lbs	1240 lbs	14.19%	0.00 ft	Suction	PASS
0.27	1	26.58%	2.84 ft	Pressure	PASS
1021 lbs	4060 lbs	25.15%	0.00 ft	DL	PASS
0.53	1	53.11%	2.84 ft	Pressure	PASS
0.087 in4	2.316 in4	3.76%	1.56 ft	Suction	PASS
0.004 in	0.095 in	L/9586	1.56 ft	Suction	PASS
175	410	42.68%	C2	Suction	PASS
	Actual -3780 lb-in -3780 lb-in -3780 lb-in -176 lbs 0.27 1021 lbs 0.53 0.087 in4 0.004 in	ActualAllowable-3780 lb-in16781 lb-in-3780 lb-in15254 lb-in-3780 lb-in13562 lb-in-176 lbs1240 lbs0.2711021 lbs4060 lbs0.5310.087 in42.316 in40.004 in0.095 in	ActualAllowableCapacity-3780 lb-in16781 lb-in22.53%-3780 lb-in15254 lb-in24.78%-3780 lb-in13562 lb-in27.87%-176 lbs1240 lbs14.19%0.27126.58%1021 lbs4060 lbs25.15%0.53153.11%0.087 in42.316 in43.76%0.004 in0.095 inL/9586	Actual Allowable Capacity Location -3780 lb-in 16781 lb-in 22.53% 2.84 ft -3780 lb-in 15254 lb-in 24.78% 2.84 ft -3780 lb-in 13562 lb-in 27.87% 2.84 ft -3780 lb-in 13562 lb-in 27.87% 2.84 ft -176 lbs 1240 lbs 14.19% 0.00 ft 0.27 1 26.58% 2.84 ft 1021 lbs 4060 lbs 25.15% 0.00 ft 0.53 1 53.11% 2.84 ft 0.087 in4 2.316 in4 3.76% 1.56 ft 0.004 in 0.095 in L/9586 1.56 ft	Actual Allowable Capacity Location Controlled By -3780 lb-in 16781 lb-in 22.53% 2.84 ft Pressure -3780 lb-in 15254 lb-in 24.78% 2.84 ft Pressure -3780 lb-in 15254 lb-in 24.78% 2.84 ft Pressure -3780 lb-in 13562 lb-in 27.87% 2.84 ft Pressure -176 lbs 1240 lbs 14.19% 0.00 ft Suction 0.27 1 26.58% 2.84 ft Pressure 1021 lbs 4060 lbs 25.15% 0.00 ft DL 0.53 1 53.11% 2.84 ft Pressure 0.087 in4 2.316 in4 3.76% 1.56 ft Suction 0.004 in 0.095 in L/9586 1.56 ft Suction

C2:	Wind:	Rx = 46 lbs	Rx = 175 lbs	Ry = 0 lbs
	600T125-	54 50 ksi Track w/ (1)	Buildex #10-16 T3 to 54-50 L.S.F. at 24" O.C.	33% Capacity

Attach Track to Header using (2) Buildex #10-16 T3 @ 24" O.C. - 43% Capacity

DesignPro Opening Designer Output Ve

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 09 - Test 10/29/2021 / 9:54 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud Member: Track Member:		(1) 600S200-6 (0) None			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-17434 lb-in	44384 lb-in	39.28%	6.66 ft	Suction	PASS
M_stb	-17434 lb-in	38793 lb-in	44.94%	6.66 ft	Suction	PASS
M_dist	-17434 lb-in	37000 lb-in	47.12%	6.66 ft	Suction	PASS
v ⁻	-401 lbs	2879 lbs	13.94%	0.00 ft	Suction	PASS
V/M	0.40	1	40.25%	7.16 ft	Suction	PASS
P	3736 lbs	9810 lbs	38.08%	0.00 ft	DL	PASS
P/M	0.89	1	88.90%	6.66 ft	Suction	PASS
l req	1.826 in4	4.101 in4	44.54%	5.00 ft	Suction	PASS
Span Δ	0.148 in	0.333 in	L/808	5.00 ft	Suction	PASS
Web Crippling	-400	1389	28.79%	C2	Suction	PASS
Web Crippling	-401	1389	28.87%	C1	Suction	PASS

C2:	Wind:	Rx = -400 lbs	Rx = 259 lbs	Ry = 0 lbs
	600T125	-54 50 ksi Track w/ (2)	Buildex #10-16 T3 to 54-50 L.S.F. at ead	ch Jamb - 37% Capacity
		()		
C1:	Wind:	Rx = -401 lbs	Rx = 236 lbs	Ry = 3736 lbs

Phone: (877) 832-3206 www.ClarkDietrich.com

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 8

9th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 8 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	40 in
WALL DL	150.0 plf	OC LOAD FACTOR	3.333
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	W		E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	902	538	215	0	0	0	182
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	1128	1075	215	0	0	0	228
TOTAL AXIAL LOAD (Ib)	3760	3583	717	0	0	0	759

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSUR	E 60.33 plf
Gcpi =	0.180		= -15.13 psf = -50.42 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673		= -26.74 psf = -89.13 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:		CFS-NHERI 10 Story Test Portion		
PROJECT N	JMBER:	2150200882		
ENGINEER:	L. Padg	jett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT:	4'-8" E)	T OPENING JOIST B	EARING	WALL

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 8

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft
------	----------

FLANGE BRACING

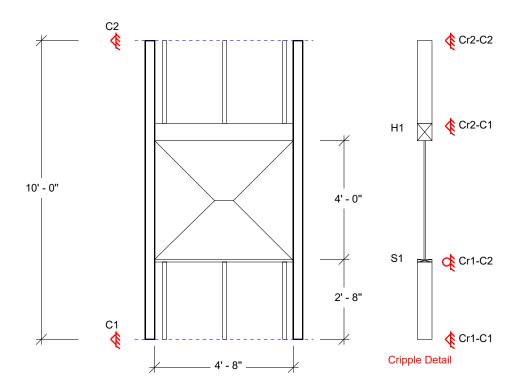
NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

	1		600	S350	68 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	7343	7633	1.039		0		0	
D + Lr	4477	2258	0.504		0		0	
D + 0.75L + 0.75Lr	6985	6289	0.900		0		0	
D + W	3760	2258	0.600	60.33	302		754	
D + 0.7E	4291	2576	0.600		0		0	
D + 0.75L + 0.75W + .75Lr	6985	6289	0.900	45.25	226		566	
D + 0.75L + 0.525E + .75Lr	7383	6528	0.884		0		0	
0.6D + W	2256	1355	0.600	60.33	302		754	
0.6D - 0.7E	1725	1036	0.600		0		0	
ZONE 4 BENDING				50.42	252		630	
ZONE 5 BENDING				89.13	446		1114	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n st	uds) 6
	plf	lb	ft-lb		Check	Prb =	443 lb
ZONE 4 DEFLECTION	35.29	176	441			y Brdg Rows =	2
ZONE 5 DEFLECTION	62.39	312	780]	


Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 08 - Test 10/29/2021 / 10:00 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	--	--	--

Inputs				
Building Code:	CBC 2016		Wind Load Deflection Limit:	L/360
Wind Zone:	Typical		0.7 Wind Load Deflection Used:	Yes
Stud Spacing:	24" O.C.		Dead Load Deflection Limit:	L/360
Bracing Distance:	4' O.C. Max		Dead Load Deflection Limit (in):	0.5 in
Z:	100 ft		Vertical Slip Allowance:	1 in
			Dead Load:	0 psf
Parapet Porosity:	NA		Under Hang Porosity:	NA
Wind Pressures Typical Zone:		Opening Dead Load	d Add'l Head Dead	Load
Span Suction: Span(1) Pressure:	-22.91 psf 22.56 psf	Opening(1): -15 psf	Head(1): 0 plf	

Combination Loads

Combinatio	JII LUaus							
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Suction	Global FY	NA	10.00 ft	-4654.00 lbs	Yes	No	No
Moment	Suction	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Pressure	Global FY	NA	10.00 ft	-4654.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Suction	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Suction	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
Axial Point	Pressure	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Pressure	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
Moment Axial Point	Suction Pressure	Global Mz Global FY	24 in. O.C. 24 in. O.C.	10.00 ft 10.00 ft	-4580 lb-in -1021.00 lbs	No No	Yes Yes	No

Design

DesignPro Opening Designer Output Versid

Version 6.0.2.0

Project Name:CFS-NHERI 10 Story ArchetypeProject Number:2150200882-0Opening:H4: Level 08 - TestDate/Time:10/29/2021 / 10:00 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Track Member: Unpunched Gravity Member: (2) 600T125-54 50 (2) 600S162-54 50

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх Тор	-3657 lb-in	17147 lb-in	21.33%	2.33 ft	Suction	PASS
Vx Top	-313 lbs	2728 lbs	11.49%	0.00 ft	Suction	PASS
VMx Top	0.21	1	21.33%	2.23 ft	Suction	PASS
Ix Top	0.176 in4	2.241 in4	7.86%	2.33 ft	Suction	PASS
Δx Top	0.012 in	0.155 in	L/4579	2.33 ft	Suction	PASS
My .	18317 lb-in	48471 lb-in	37.79%	2.33 ft	DL	PASS
Vý	1704 lbs	5645 lbs	30.19%	0.00 ft	DL	PASS
VMy	0.38	1	37.79%	2.23 ft	DL	PASS
ly	1.239 in4	5.721 in4	21.66%	2.33 ft	DL	PASS
Δy	0.034 in	0.155 in	L/1662	2.33 ft	DL	PASS
Web Crippling	1021 lbs	1394 lbs	73.25%	0.07 ft	DL	PASS
Web Crippling/Moment	0.63	1	63.11%	3.90 ft	Suction + DL	PASS
Mx Bottom	-1313 lb-in	17147 lb-in	7.65%	2.33 ft	Suction	PASS
Vx Bottom	-74 lbs	2728 lbs	2.72%	0.00 ft	Suction	PASS
VMx Bottom	0.08	1	7.65%	2.22 ft	Suction	PASS
Ix Bottom	0.063 in4	2.241 in4	2.82%	2.33 ft	Suction	PASS
Δx _Bottom	0.004 in	0.155 in	L/12750	2.33 ft	Suction	PASS

Box Header Clip Connection to Jamb: Rx(top) = -313 lbs Rx(bottom) = -74 lbs (2) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 33% Capacity

Box Header Track Connection to Jamb: Ry = 1704 lbs

4" L, 600T125-43 33 trk pc w/ (8) Buildex #10-16 T3 screws to Head, (8) Buildex #10-16 T3 screws to Jamb - 96% Capacity

Sill (S1) Design Results

IMPORTANT NOTE: Sill tracks must be continuous. Splicing of tracks is not allowed.

	Track Member:		(1) 600T125-43 33			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Mx Vx VMx Ix Deflection	-2118 lb-in -132 lbs 0.23 0.103 in4 0.009 in	9114 lb-in 1377 lbs 1 1.768 in4 0.155 in	23.25% 9.58% 23.25% 5.85% L/6157	2.33 ft 0.00 ft 2.22 ft 2.33 ft 2.33 ft	Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS

Sill Connection to Jamb: Rx = -132 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Sill, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

DesignPro Opening Designer Output

Version 6.0.2.0

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 08 - Test
Date/Time:	10/29/2021 / 10:00 AM

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripp	le Member:	(1) 600S162-4	3 33 @ 24" O.C.		
Interaction Check	ζ.	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1)							
M_str		-486 lb-in	16781 lb-in	2.90%	1.33 ft	Suction	PASS
M_stb		-486 lb-in	15254 lb-in	3.19%	1.33 ft	Suction	PASS
M_dist		-486 lb-in	13562 lb-in	3.59%	1.33 ft	Suction	PASS
V		61 lbs	1240 lbs	4.91%	2.66 ft	Suction	PASS
V/M		0.05	1	4.91%	2.66 ft	Suction	PASS
Р		120 lbs	4132 lbs	2.90%	0.00 ft	DL	PASS
P/M		0.06	1	6.49%	1.33 ft	Suction	PASS
I_req		0.014 in4	2.316 in4	0.60%	1.33 ft	Suction	PASS
Span ∆		0.001 in	0.089 in	L/60357	1.33 ft	Suction	PASS
Web Crippling		-61	245	-24.87%	C2	Suction	PASS
Web Crippling		-61	269	-22.67%	C1	Suction	PASS
C2 : W	Vind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 0 lbs	
Co	onnectio	n:					
C1: W	Vind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 120 lbs	

Connection:

larkDietrich. ENGINEERING SERVICES

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 08 - Test
Date/Time:	10/29/2021 / 10:00 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Ry = 0 lbs

Uniform Cripple Results		Punched Cripp	le Member:	(1) 600S162-4	3 33 @ 24" O.C.	
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (2)						
M_str	-554 lb-in	16781 lb-in	3.30%	1.42 ft	Suction	PASS
M_stb	-554 lb-in	15254 lb-in	3.63%	1.42 ft	Suction	PASS
M_dist V	-554 lb-in	13562 lb-in	4.09%	1.42 ft	Suction	PASS
V ⁻	65 lbs	1240 lbs	5.25%	2.84 ft	Suction	PASS
V/M	0.05	1	5.25%	2.84 ft	Suction	PASS
Р	0 lbs	4060 lbs	0.00%		DL	PASS
P/M	0.04	1	4.09%	1.42 ft	Suction	PASS
l req	0.017 in4	2.316 in4	0.73%	1.42 ft	Suction	PASS
Span Δ	0.001 in	0.095 in	L/49593	1.42 ft	Suction	PASS
Web Crippling	-65	269	-24.20%	C2	Suction	PASS
Web Crippling	-65	269	-24.20%	C1	Suction	PASS
C2: Win	d: Rx = -65 lbs	Rx = 64 lbs			Ry = 0 lbs	
Con	nection:					

Rx = 64 lbs

Wind:

C1:

Connection:

Rx = -65 lbs

Non-Uniform Cripple Results		Punched Cripp	le Member:	: (1) 600S162-43 33 @ 24" O.C.			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Cripple (2.1)							
M str	-4580 lb-in	16781 lb-in	27.29%	2.84 ft	Suction	PASS	
M_stb	-4580 lb-in	15254 lb-in	30.02%	2.84 ft	Suction	PASS	
M_dist	-4580 lb-in	13562 lb-in	33.77%	2.84 ft	Suction	PASS	
v ⁻	-199 lbs	1240 lbs	16.08%	0.00 ft	Suction	PASS	
V/M	0.32	1	31.64%	2.84 ft	Pressure	PASS	
Р	1021 lbs	4060 lbs	25.15%	0.00 ft	DL	PASS	
P/M	0.59	1	59.03%	2.84 ft	Suction	PASS	
l req	0.102 in4	2.316 in4	4.40%	1.56 ft	Suction	PASS	
Span Δ	0.004 in	0.095 in	L/8185	1.56 ft	Suction	PASS	
Web Crippling	198	269	73.81%	C2	Pressure	PASS	
Web Crippling	-199	269	-74.18%	C1	Suction	PASS	

C2:	Wind:	Rx = 69 lbs	Rx = 198 lbs	Ry = 0 lbs			
	Connection:						
C1:	Wind:	Rx = -199 lbs	Rx = 0 lbs	Ry = 1021 lbs			
	Commont						

Connection:

DesignPro Opening Designer Output Ve

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 08 - Test 10/29/2021 / 10:00 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud Member: Track Member:		(1) 600S350-6 (0) None	(1) 600S350-68 50 (0) None		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-18323 lb-in	53018 lb-in	34.56%	6.66 ft	Suction	PASS
M_stb	-18323 lb-in	53018 lb-in	34.56%	6.66 ft	Suction	PASS
M_dist	-18323 lb-in	49703 lb-in	36.86%	6.66 ft	Suction	PASS
v ⁻	428 lbs	2879 lbs	14.87%	10.00 ft	Suction	PASS
V/M	0.36	1	36.32%	7.16 ft	Suction	PASS
Р	6418 lbs	14473 lbs	44.34%	0.00 ft	DL	PASS
P/M	0.85	1	84.62%	6.66 ft	Suction	PASS
l req	1.903 in4	6.167 in4	30.85%	5.00 ft	Suction	PASS
Span Δ	0.103 in	0.333 in	L/1167	5.00 ft	Suction	PASS
Web Crippling	-428	1389	30.81%	C2	Suction	PASS
Web Crippling	-412	1389	29.67%	C1	Suction	PASS

C2:	Wind:	Rx = -428 lbs	Rx = 242 lbs	Ry = 0 lbs				
	600T125-54 50 ksi Track w/ (2) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 40% Capacity							
		()						
C1:	Wind:	Rx = -412 lbs	Rx = 229 lbs	Ry = 6418 lbs				

Phone: (877) 832-3206 www.ClarkDietrich.com

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 7

8th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 7 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	40 in
WALL DL	150.0 plf	OC LOAD FACTOR	3.333
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	W		E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	1278	1075	215	0	0	0	258
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	1504	1613	215	0	0	0	303
TOTAL AXIAL LOAD (Ib)	5013	5375	717	0	0	0	1011

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE		59.00 plf
Gcpi =	0.180	ZONE 4	P = w =	-15.13 psf -50.42 plf
ZONE 4 GCp =	-0.868			
ZONE 5 GCp =	-1.673	ZONE 5	P =	-26.74 psf
			w =	-89.13 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT N/	AME:	CFS-NHERI 10 Story Test Portion			
PROJECT N	JMBER:	2150200882			
ENGINEER:	L. Padg	jett	DATE:	10/29/2021	
CHECKER:	LAP		DATE:		
SUBJECT:	4'-8" E)	T OPENING JOIST B	EARING	WALL	

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 7

MEMBER DESIGN PARAMETERS

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

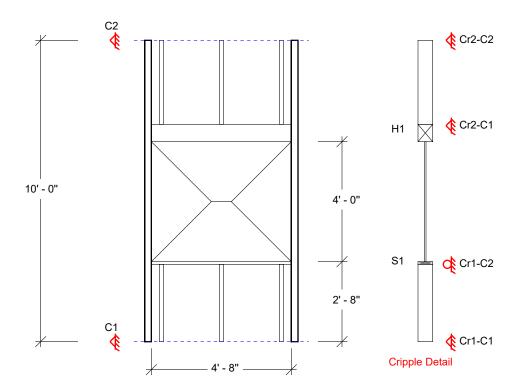
1	600	S250	97 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	10388	7633	0.735		0		0	
D + Lr	5729	2258	0.394		0		0	
D + 0.75L + 0.75Lr	9581	6289	0.656		0		0	
D + W	5013	2258	0.450	59.00	295		738	
D + 0.7E	5720	2576	0.450		0		0	
D + 0.75L + 0.75W + .75Lr	9581	6289	0.656	44.25	221		553	
D + 0.75L + 0.525E + .75Lr	10112	6528	0.646		0		0	
0.6D + W	3008	1355	0.450	59.00	295		738	
0.6D - 0.7E	2300	1036	0.450		0		0	
ZONE 4 BENDING				50.42	252		630	
ZONE 5 BENDING				89.13	446		1114	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n st	tuds) 6
	plf	lb	ft-lb		Check	Prb =	623 lb
ZONE 4 DEFLECTION	35.29	176	441			y Brdg Rows =	2
ZONE 5 DEFLECTION	62.39	312	780				

Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 07 - Test 10/29/2021 / 10:04 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	--	--	--

Inputs


Building Code:	CBC 2016		Wind Load Deflection Limit:	L/360
Wind Zone:	Typical		0.7 Wind Load Deflection Used:	Yes
Stud Spacing:	24" O.C.		Dead Load Deflection Limit:	L/360
Bracing Distance:	4' O.C. Max		Dead Load Deflection Limit (in):	0.5 in
Z:	100 ft		Vertical Slip Allowance:	1 in
			Dead Load:	0 psf
Parapet Porosity:	NA		Under Hang Porosity:	NÁ
Wind Pressures Typical Zone:		Opening Dead Load	Add'l Head Dead	Load

Span Suction: Span(1) Pressure:	-22.91 psf 22.56 psf	Opening(1):	-15 psf	Head(1):	0 plf
------------------------------------	-------------------------	-------------	---------	----------	-------

Combination Loads

Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Suction	Global FY	NA	10.00 ft	-7383.00 lbs	Yes	No	No
Moment	Suction	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Pressure	Global FY	NA	10.00 ft	-7383.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Suction	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Suction	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
Axial Point	Pressure	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Pressure	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
Moment	Pressure	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	Ν

Design

DesignPro **Opening Designer Output**

2150200882-0

H4: Level 07 - Test

10/29/2021 / 10:04 AM

Version 6.0.2.0

CFS-NHERI 10 Story Archetype

Company: Contact Name: Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Project Name:

Opening:

Date/Time:

Project Number:

Track Member: Unpunched Gravity Member: (2) 600T125-54 50 (2) 600S162-54 50

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх Тор	-3657 lb-in	17147 lb-in	21.33%	2.33 ft	Suction	PASS
Vx Top	-313 lbs	2728 lbs	11.49%	0.00 ft	Suction	PASS
VMx Top	0.21	1	21.33%	2.23 ft	Suction	PASS
lx_Top	0.176 in4	2.241 in4	7.86%	2.33 ft	Suction	PASS
Δx Top	0.012 in	0.155 in	L/4579	2.33 ft	Suction	PASS
My .	18317 lb-in	48471 lb-in	37.79%	2.33 ft	DL	PASS
Vý	1704 lbs	5645 lbs	30.19%	0.00 ft	DL	PASS
VMy	0.38	1	37.79%	2.23 ft	DL	PASS
ly	1.239 in4	5.721 in4	21.66%	2.33 ft	DL	PASS
Δy	0.034 in	0.155 in	L/1662	2.33 ft	DL	PASS
Web Crippling	1021 lbs	1394 lbs	73.25%	0.07 ft	DL	PASS
Web Crippling/Moment	0.63	1	63.19%	3.90 ft	Suction + DL	PASS
Mx Bottom	-1313 lb-in	17147 lb-in	7.65%	2.33 ft	Suction	PASS
Vx Bottom	-74 lbs	2728 lbs	2.72%	0.00 ft	Suction	PASS
VMx Bottom	0.08	1	7.65%	2.22 ft	Suction	PASS
Ix Bottom	0.063 in4	2.241 in4	2.82%	2.33 ft	Suction	PASS
∆x_Bottom	0.004 in	0.155 in	L/12750	2.33 ft	Suction	PASS

Box Header Clip Connection to Jamb: Rx(top) = -313 lbs Rx(bottom) = -74 lbs (2) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 33% Capacity

Box Header Track Connection to Jamb: Ry = 1704 lbs

4" L, 600T125-54 50 trk pc w/ (4) Buildex #10-16 T3 screws to Head, (4) Buildex #10-16 T3 screws to Jamb - 96% Capacity

Sill (S1) Design Results

IMPORTANT NOTE: Sill tracks must be continuous. Splicing of tracks is not allowed.

Track Member:			(1) 600T125-4	(1) 600T125-43 33				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL		
Mx Vx VMx Ix Deflection	-2118 lb-in -132 lbs 0.23 0.103 in4 0.009 in	9114 lb-in 1377 lbs 1 1.768 in4 0.155 in	23.25% 9.58% 23.25% 5.85% L/6157	2.33 ft 0.00 ft 2.22 ft 2.33 ft 2.33 ft	Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS		

Sill Connection to Jamb: Rx = -132 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Sill, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

DesignPro Opening Designer Output

Version 6.0.2.0

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 07 - Test
Date/Time:	10/29/2021 / 10:04 AM

Company:
Contact Name:
• • • • • • • • • • • • • • • • • • • •
Phone Number

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripple Member:		(1) 600S162-4			
Interaction Che	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1) M str		-486 lb-in	16781 lb-in	2.90%	1.33 ft	Suction	PASS
M_stb		-486 lb-in	15254 lb-in	3.19%	1.33 ft	Suction	PASS
M_dist		-486 lb-in	13562 lb-in	3.59%	1.33 ft	Suction	PASS
v ⁻		61 lbs	1240 lbs	4.91%	2.66 ft	Suction	PASS
V/M		0.05	1	4.91%	2.66 ft	Suction	PASS
Р		120 lbs	4132 lbs	2.90%	0.00 ft	DL	PASS
P/M		0.06	1	6.49%	1.33 ft	Suction	PASS
l_req		0.014 in4	2.316 in4	0.60%	1.33 ft	Suction	PASS
Span ∆		0.001 in	0.089 in	L/60357	1.33 ft	Suction	PASS
Web Crippling		-61	245	-24.87%	C2	Suction	PASS
Web Crippling		-61	269	-22.67%	C1	Suction	PASS
C2:	Wind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 0 lbs	
	Connecti	on:					
C1:	Wind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 120 lbs	

Connection:

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 07 - Test
Date/Time:	10/29/2021 / 10:04 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Cripple (2)							
M_str	-554 lb-in	16781 lb-in	3.30%	1.42 ft	Suction	PASS	
M stb	-554 lb-in	15254 lb-in	3.63%	1.42 ft	Suction	PASS	
M_dist	-554 lb-in	13562 lb-in	4.09%	1.42 ft	Suction	PASS	
v ⁻	65 lbs	1240 lbs	5.25%	2.84 ft	Suction	PASS	
V/M	0.05	1	5.25%	2.84 ft	Suction	PASS	
Р	0 lbs	4060 lbs	0.00%		DL	PASS	
P/M	0.04	1	4.09%	1.42 ft	Suction	PASS	
l req	0.017 in4	2.316 in4	0.73%	1.42 ft	Suction	PASS	
Span Δ	0.001 in	0.095 in	L/49593	1.42 ft	Suction	PASS	
Web Crippling	-65	269	-24.20%	C2	Suction	PASS	
Web Crippling	-65	269	-24.20%	C1	Suction	PASS	
C2: Wind	1: Rx = -65 lbs	Rx = 64 lbs			Ry = 0 lbs		
Conn	ection:						

C1:	Wind:	Rx = -65 lbs	Rx = 64 lbs	Ry = 0 lbs
	Connection			· •

Connection:

Non-Uniform Cripple Results		Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Cripple (2.1)							
M_str	-4580 lb-in	16781 lb-in	27.29%	2.84 ft	Suction	PASS	
M_stb	-4580 lb-in	15254 lb-in	30.02%	2.84 ft	Suction	PASS	
M_dist	-4580 lb-in	13562 lb-in	33.77%	2.84 ft	Suction	PASS	
v ⁻	-199 lbs	1240 lbs	16.08%	0.00 ft	Suction	PASS	
V/M	0.32	1	31.64%	2.84 ft	Pressure	PASS	
Р	1021 lbs	4060 lbs	25.15%	0.00 ft	DL	PASS	
P/M	0.59	1	59.03%	2.84 ft	Suction	PASS	
I req	0.102 in4	2.316 in4	4.40%	1.56 ft	Suction	PASS	
Span Δ	0.004 in	0.095 in	L/8185	1.56 ft	Suction	PASS	
Web Crippling	198	269	73.81%	C2	Pressure	PASS	
Web Crippling	-199	269	-74.18%	C1	Suction	PASS	

C2:	Wind:	Rx = 69 lbs	Rx = 198 lbs	Ry = 0 lbs
	Connectio	n:		
				 <u>[]</u>
C1:	Wind:	Rx = -199 lbs	Rx = 0 lbs	Ry = 1021 lbs
	Connectio	n:		

DesignPro Opening Designer Output Ve

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 07 - Test 10/29/2021 / 10:04 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud M Track Member:	(1) 600S250-97 50 (0) None				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-18323 lb-in	69935 lb-in	26.20%	6.66 ft	Suction	PASS
M stb	-18323 lb-in	62257 lb-in	29.43%	6.66 ft	Suction	PASS
M_dist	-18323 lb-in	61581 lb-in	29.75%	6.66 ft	Suction	PASS
v ⁻	428 lbs	3805 lbs	11.25%	10.00 ft	Suction	PASS
V/M	0.28	1	27.53%	7.16 ft	Suction	PASS
Р	9147 lbs	17754 lbs	51.52%	0.00 ft	DL	PASS
P/M	0.85	1	85.29%	6.66 ft	Suction	PASS
l req	1.903 in4	6.497 in4	29.28%	5.00 ft	Suction	PASS
Span Δ	0.098 in	0.333 in	L/1229	5.00 ft	Suction	PASS
Web Crippling	-428	2197	19.48%	C2	Suction	PASS
Web Crippling	-412	2197	18.77%	C1	Suction	PASS

C2:	Wind:	Rx = -428 lbs	Rx = 242 lbs	Ry = 0 lbs
	600T125	-54 50 ksi Track w/ (2)	Buildex #10-16 T3 to 54-50 L.S.F. a	t each Jamb - 40% Capacity
		()		
C1:	Wind:	Rx = -412 lbs	Rx = 229 lbs	Ry = 9147 lbs

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 4'-8" EXT OPENING JOIST BEARING WALL

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 6

7th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 6 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	40 in
WALL DL	150.0 plf	OC LOAD FACTOR	3.333
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	W		E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	E
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	1654	1613	215	0	0	0	334
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	1880	2150	215	0	0	0	379
TOTAL AXIAL LOAD (lb)	6265	7167	717	0	0	0	1264

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	59.00 plf
Gcpi =	0.180	ZONE 4 P = w =	-15.13 psf -50.42 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P = w =	-26.74 psf -89.13 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT N/	AME:	CFS-NHERI 10 Stor	y Test P	ortion
PROJECT N	JMBER:	2150200882		
ENGINEER:	L. Padg	jett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT:	4'-8" E)	T OPENING JOIST B	EARING	WALL

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 6

MEMBER DESIGN PARAMETERS

Lx = 10.00 ft	
---------------	--

FLANGE BRACING

NONE

- Ly = 4.00 ft
- Lt = 4.00 ft

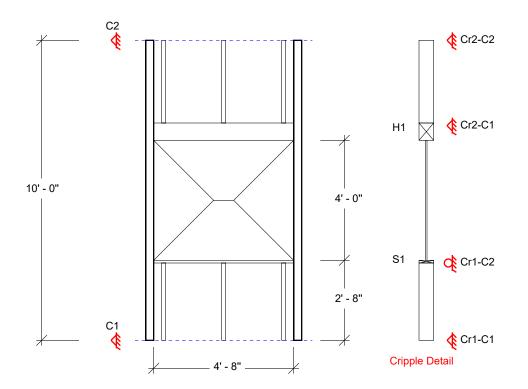
	1		600	S300	97 (50)
--	---	--	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	еу	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	13432	7633	0.568		0		0	
D + Lr	6982	2258	0.323		0		0	
D + 0.75L + 0.75Lr	12178	6289	0.516		0		0	
D + W	6265	2258	0.360	59.00	295		738	
D + 0.7E	7150	2576	0.360		0		0	
D + 0.75L + 0.75W + .75Lr	12178	6289	0.516	44.25	221		553	
D + 0.75L + 0.525E + .75Lr	12841	6528	0.508		0		0	
0.6D + W	3759	1355	0.360	59.00	295		738	
0.6D - 0.7E	2874	1036	0.360		0		0	
ZONE 4 BENDING				50.42	252		630	
ZONE 5 BENDING				89.13	446		1114	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n st	uds) 6
	plf	lb	ft-lb		Check	Prb =	806 lb
ZONE 4 DEFLECTION	35.29	176	441			y Brdg Rows =	2
ZONE 5 DEFLECTION	62.39	312	780]	

Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 06 - Test 10/29/2021 / 10:06 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	--	--	--

Inputs


Building Code:	CBC 2016		Wind Load Deflection Limit:	L/360
Wind Zone:	Typical		0.7 Wind Load Deflection Used:	Yes
Stud Spacing:	24" O.C.		Dead Load Deflection Limit:	L/360
Bracing Distance:	4' O.C. Max		Dead Load Deflection Limit (in):	0.5 in
Z:	100 ft		Vertical Slip Allowance:	1 in
			Dead Load:	0 psf
Parapet Porosity:	NA		Under Hang Porosity:	NÁ
Wind Pressures Typical Zone:		Opening Dead Load	Add'l Head Dead	Load

Span Suction: -22.91 psf Openin Span(1) Pressure: 22.56 psf	g(1): -15 psf Head(1): 0 pl
---	-----------------------------

Combination Loads

Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Suction	Global FY	NA	10.00 ft	-10388.00 lbs	Yes	No	No
Moment	Suction	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Pressure	Global FY	NA	10.00 ft	-10388.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Suction	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Suction	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
Axial Point	Pressure	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Pressure	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
		÷·····						-

Design

ClarkDietrich.

Project Name:CFS-NHERI 10 Story ArchetypeProject Number:2150200882-0Opening:H4: Level 06 - TestDate/Time:10/29/2021 / 10:06 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Track Member: Unpunched Gravity Member: (2) 600T125-54 50 (2) 600S162-54 50

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх Тор	-3657 lb-in	17147 lb-in	21.33%	2.33 ft	Suction	PASS
Vx_Top	-313 lbs	2728 lbs	11.49%	0.00 ft	Suction	PASS
VMx Top	0.21	1	21.33%	2.23 ft	Suction	PASS
Ix Top	0.176 in4	2.241 in4	7.86%	2.33 ft	Suction	PASS
Δx Top	0.012 in	0.155 in	L/4579	2.33 ft	Suction	PASS
My ·	18317 lb-in	48471 lb-in	37.79%	2.33 ft	DL	PASS
Vý	1704 lbs	5645 lbs	30.19%	0.00 ft	DL	PASS
VMy	0.38	1	37.79%	2.23 ft	DL	PASS
ly	1.239 in4	5.721 in4	21.66%	2.33 ft	DL	PASS
Δy	0.034 in	0.155 in	L/1662	2.33 ft	DL	PASS
Web Crippling	1021 lbs	1394 lbs	73.25%	0.07 ft	DL	PASS
Web Crippling/Moment	0.63	1	63.11%	3.90 ft	Suction + DL	PASS
Mx Bottom	-1313 lb-in	17147 lb-in	7.65%	2.33 ft	Suction	PASS
Vx Bottom	-74 lbs	2728 lbs	2.72%	0.00 ft	Suction	PASS
VMx Bottom	0.08	1	7.65%	2.22 ft	Suction	PASS
Ix Bottom	0.063 in4	2.241 in4	2.82%	2.33 ft	Suction	PASS
Δx _Bottom	0.004 in	0.155 in	L/12750	2.33 ft	Suction	PASS

Box Header Clip Connection to Jamb: Rx(top) = -313 lbs Rx(bottom) = -74 lbs (2) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 33% Capacity

Box Header Track Connection to Jamb: Ry = 1704 lbs

4" L, 600T125-54 50 trk pc w/ (4) Buildex #10-16 T3 screws to Head, (4) Buildex #10-16 T3 screws to Jamb - 96% Capacity

Sill (S1) Design Results

IMPORTANT NOTE: Sill tracks must be continuous. Splicing of tracks is not allowed.

Track Member:		(1) 600T125-4	(1) 600T125-43 33				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Mx Vx VMx Ix Deflection	-2118 lb-in -132 lbs 0.23 0.103 in4 0.009 in	9114 lb-in 1377 lbs 1 1.768 in4 0.155 in	23.25% 9.58% 23.25% 5.85% L/6157	2.33 ft 0.00 ft 2.22 ft 2.33 ft 2.33 ft	Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS	

Sill Connection to Jamb: Rx = -132 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Sill, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

DesignPro Opening Designer Output

Version 6.0.2.0

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 06 - Test
Date/Time:	10/29/2021 / 10:06 AM

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripple Member:		(1) 600S162-4			
Interaction Check	ζ.	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1)							
M_str		-486 lb-in	16781 lb-in	2.90%	1.33 ft	Suction	PASS
M_stb		-486 lb-in	15254 lb-in	3.19%	1.33 ft	Suction	PASS
M_dist		-486 lb-in	13562 lb-in	3.59%	1.33 ft	Suction	PASS
V		61 lbs	1240 lbs	4.91%	2.66 ft	Suction	PASS
V/M		0.05	1	4.91%	2.66 ft	Suction	PASS
Р		120 lbs	4132 lbs	2.90%	0.00 ft	DL	PASS
P/M		0.06	1	6.49%	1.33 ft	Suction	PASS
I_req		0.014 in4	2.316 in4	0.60%	1.33 ft	Suction	PASS
Span ∆		0.001 in	0.089 in	L/60357	1.33 ft	Suction	PASS
Web Crippling		-61	245	-24.87%	C2	Suction	PASS
Web Crippling		-61	269	-22.67%	C1	Suction	PASS
C2 : W	Vind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 0 lbs	
Co	onnectio	n:					
C1: W	Vind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 120 lbs	

Connection:

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 06 - Test
Date/Time:	10/29/2021 / 10:06 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripp	le Member:	(1) 600S162-43 33 @ 24" O.C.		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (2)						
M str	-554 lb-in	16781 lb-in	3.30%	1.42 ft	Suction	PASS
M_stb	-554 lb-in	15254 lb-in	3.63%	1.42 ft	Suction	PASS
M_dist	-554 lb-in	13562 lb-in	4.09%	1.42 ft	Suction	PASS
v ⁻	65 lbs	1240 lbs	5.25%	2.84 ft	Suction	PASS
V/M	0.05	1	5.25%	2.84 ft	Suction	PASS
Р	0 lbs	4060 lbs	0.00%		DL	PASS
P/M	0.04	1	4.09%	1.42 ft	Suction	PASS
l req	0.017 in4	2.316 in4	0.73%	1.42 ft	Suction	PASS
Span Δ	0.001 in	0.095 in	L/49593	1.42 ft	Suction	PASS
Web Crippling	-65	269	-24.20%	C2	Suction	PASS
Web Crippling	-65	269	-24.20%	C1	Suction	PASS
C2: Wind:	Rx = -65 lbs	Rx = 64 lbs			Ry = 0 lbs	
Conne	ction:					

Rx = -65 lbs C1: Wind: Rx = 64 lbs Ry = 0 lbs

Connection:

Non-Uniform Cripple Results		Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAII	
Cripple (2.1)							
M str	-4580 lb-in	16781 lb-in	27.29%	2.84 ft	Suction	PASS	
M_stb	-4580 lb-in	15254 lb-in	30.02%	2.84 ft	Suction	PASS	
M_dist	-4580 lb-in	13562 lb-in	33.77%	2.84 ft	Suction	PASS	
v ⁻	-199 lbs	1240 lbs	16.08%	0.00 ft	Suction	PASS	
V/M	0.32	1	31.64%	2.84 ft	Pressure	PASS	
Р	1021 lbs	4060 lbs	25.15%	0.00 ft	DL	PASS	
P/M	0.59	1	59.03%	2.84 ft	Suction	PASS	
l req	0.102 in4	2.316 in4	4.40%	1.56 ft	Suction	PASS	
Span Δ	0.004 in	0.095 in	L/8185	1.56 ft	Suction	PASS	
Web Crippling	198	269	73.81%	C2	Pressure	PASS	
Web Crippling	-199	269	-74.18%	C1	Suction	PASS	

C2:	Wind:	Rx = 69 lbs	Rx = 198 lbs	Ry = 0 lbs
	Connecti	on:		
C1:	Wind:	Rx = -199 lbs	Rx = 0 lbs	Ry = 1021 lbs
	Connecti	on:		

DesignPro Opening Designer Output Ve

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 06 - Test 10/29/2021 / 10:06 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud M Track Member:		(1) 600S300-97 50 (0) None			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-18323 lb-in	67292 lb-in	27.23%	6.66 ft	Suction	PASS
M_stb	-18323 lb-in	67292 lb-in	27.23%	6.66 ft	Suction	PASS
M_dist	-18323 lb-in	64684 lb-in	28.33%	6.66 ft	Suction	PASS
v ⁻	428 lbs	3805 lbs	11.25%	10.00 ft	Suction	PASS
V/M	0.28	1	28.48%	7.16 ft	Suction	PASS
Р	12152 lbs	18943 lbs	64.15%	0.00 ft	DL	PASS
P/M	0.97	1	97.11%	6.66 ft	Suction	PASS
l req	1.903 in4	7.281 in4	26.13%	5.00 ft	Suction	PASS
Span Δ	0.087 in	0.333 in	L/1378	5.00 ft	Suction	PASS
Web Crippling	-428	2197	19.48%	C2	Suction	PASS
Web Crippling	-412	2197	18.77%	C1	Suction	PASS

C2:	Wind:	Rx = -428 lbs	Rx = 242 lbs	Ry = 0 lbs	
	600T125	-54 50 ksi Track w/ (2)	Buildex #10-16 T3 to 54-50	S.F. at each Jamb - 40% Capacity	
C1:	Wind:	Rx = -412 lbs	Rx = 229 lbs	Ry = 12152 lbs	

Phone: (877) 832-3206 www.ClarkDietrich.com

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 5

6th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 5 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	40 in
WALL DL	150.0 plf	OC LOAD FACTOR	3.333
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	W		E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W	(plf)	Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	2030	2150	215	0	0	0	409
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	2255	2688	215	0	0	0	455
TOTAL AXIAL LOAD (lb)	7518	8958	717	0	0	0	1517

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	59.00 plf
Gcpi =	0.180	ZONE 4 P = w =	-15.13 psf -50.42 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P = w =	-26.74 psf -89.13 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion
PROJECT NUMBER:	2150200882
ENGINEER: L. Padg	gett DATE: 10/29/2021
CHECKER: LAP	DATE:
SUBJECT: 4'-8" EX	KT OPENING JOIST BEARING WALL

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 5

MEMBER DESIGN PARAMETERS

Lx =	10.00 ft	FLANGE BRACING	NONE
Ly =	4.00 ft		

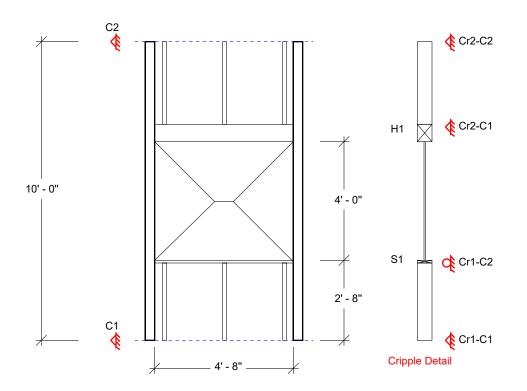
Lt = 4.00 ft

1 600 S350 97 (50)

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	16476	7633	0.463		0		0	
D + Lr	8234	2258	0.274		0		0	
D + 0.75L + 0.75Lr	14774	6289	0.426		0		0	
D + W	7518	2258	0.300	59.00	295		738	
D + 0.7E	8579	2576	0.300		0		0	
D + 0.75L + 0.75W + .75Lr	14774	6289	0.426	44.25	221		553	
D + 0.75L + 0.525E + .75Lr	15570	6528	0.419		0		0	
0.6D + W	4511	1355	0.300	59.00	295		738	
0.6D - 0.7E	3449	1036	0.300		0		0	
ZONE 4 BENDING				50.42	252		630	
ZONE 5 BENDING				89.13	446		1114	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Unity Brace Force (n studs)	
	plf	lb	ft-lb		Check	Prb =	989 lb
ZONE 4 DEFLECTION	35.29	176	441			y Brdg Rows =	2
ZONE 5 DEFLECTION	62.39	312	780				

Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 05 - Test 10/29/2021 / 10:08 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	--	--	--


Inputs

Building Code:	CBC 2016		Wind Load Deflection Limit:	L/360
Wind Zone:	Typical		0.7 Wind Load Deflection Used:	Yes
Stud Spacing:	24" O.C.		Dead Load Deflection Limit:	L/360
Bracing Distance:	4' O.C. Max		Dead Load Deflection Limit (in):	0.5 in
Z:	100 ft		Vertical Slip Allowance:	1 in
			Dead Load:	0 psf
Parapet Porosity:	NA		Under Hang Porosity:	NA
Wind Pressures Typical Zone:		Opening Dead Lo	oad Add'l Head Dead	Load
Span Suction: Span(1) Pressure:	-22.91 psf 22.56 psf	Opening(1): -15 p	esf Head(1): 0 plf	

Combination Loads

Combinatio								
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Suction	Global FY	NA	10.00 ft	-13432.00 lbs	Yes	No	No
Moment	Suction	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Pressure	Global FY	NA	10.00 ft	-13432.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Suction	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Suction	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
Axial Point	Pressure	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Pressure	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No

Design

DesignPro Opening Designer Output Versid

Version 6.0.2.0

Project Name:CFS-NHERI 10 Story ArchetypeProject Number:2150200882-0Opening:H4: Level 05 - TestDate/Time:10/29/2021 / 10:08 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Track Member: Unpunched Gravity Member: (2) 600T125-54 50 (2) 600S162-54 50

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх Тор	-3657 lb-in	17147 lb-in	21.33%	2.33 ft	Suction	PASS
Vx Top	-313 lbs	2728 lbs	11.49%	0.00 ft	Suction	PASS
VMx_Top	0.21	1	21.33%	2.23 ft	Suction	PASS
Ix Top	0.176 in4	2.241 in4	7.86%	2.33 ft	Suction	PASS
$\Delta x Top$	0.012 in	0.155 in	L/4579	2.33 ft	Suction	PASS
My .	18317 lb-in	48471 lb-in	37.79%	2.33 ft	DL	PASS
Vý	1704 lbs	5645 lbs	30.19%	0.00 ft	DL	PASS
VMy	0.38	1	37.79%	2.23 ft	DL	PASS
ly	1.239 in4	5.721 in4	21.66%	2.33 ft	DL	PASS
Δy	0.034 in	0.155 in	L/1662	2.33 ft	DL	PASS
Web Crippling	1021 lbs	1394 lbs	73.25%	0.07 ft	DL	PASS
Web Crippling/Moment	0.63	1	63.11%	3.90 ft	Suction + DL	PASS
Mx Bottom	-1313 lb-in	17147 lb-in	7.65%	2.33 ft	Suction	PASS
Vx Bottom	-74 lbs	2728 lbs	2.72%	0.00 ft	Suction	PASS
VMx Bottom	0.08	1	7.65%	2.22 ft	Suction	PASS
Ix Bottom	0.063 in4	2.241 in4	2.82%	2.33 ft	Suction	PASS
Δx _Bottom	0.004 in	0.155 in	L/12750	2.33 ft	Suction	PASS

Box Header Clip Connection to Jamb: Rx(top) = -313 lbs Rx(bottom) = -74 lbs (2) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 33% Capacity

Box Header Track Connection to Jamb: Ry = 1704 lbs

4" L, 600T125-54 50 trk pc w/ (4) Buildex #10-16 T3 screws to Head, (4) Buildex #10-16 T3 screws to Jamb - 96% Capacity

Sill (S1) Design Results

IMPORTANT NOTE: Sill tracks must be continuous. Splicing of tracks is not allowed.

	Track Member:		(1) 600T125-4	3 33		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Mx Vx VMx Ix Deflection	-2118 lb-in -132 lbs 0.23 0.103 in4 0.009 in	9114 lb-in 1377 lbs 1 1.768 in4 0.155 in	23.25% 9.58% 23.25% 5.85% L/6157	2.33 ft 0.00 ft 2.22 ft 2.33 ft 2.33 ft	Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS

Sill Connection to Jamb: Rx = -132 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Sill, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

DesignPro Opening Designer Output

Version 6.0.2.0

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 05 - Test
Date/Time:	10/29/2021 / 10:08 AM

-
Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cri	pple Res	sults	Punched Crippl	e Member:	(1) 600S162-4	3 33 @ 24" O.C.	
Interaction Che	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1)		-486 lb-in	16781 lb-in	2.90%	1.33 ft	Suction	PASS
M_str M_stb		-486 lb-in	15254 lb-in	3.19%	1.33 ft	Suction	PASS
M_dist		-486 lb-in	13562 lb-in	3.59%	1.33 ft	Suction	PASS
V		61 lbs	1240 lbs	4.91%	2.66 ft	Suction	PASS
V/M		0.05	1	4.91%	2.66 ft	Suction	PASS
Р		120 lbs	4132 lbs	2.90%	0.00 ft	DL	PASS
P/M		0.06	1	6.49%	1.33 ft	Suction	PASS
I_req		0.014 in4	2.316 in4	0.60%	1.33 ft	Suction	PASS
Span ∆		0.001 in	0.089 in	L/60357	1.33 ft	Suction	PASS
Web Crippling		-61	245	-24.87%	C2	Suction	PASS
Web Crippling		-61	269	-22.67%	C1	Suction	PASS
		1					
C2:	Wind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 0 lbs	
	Connectio	on:					
C1:	Wind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 120 lbs	

Connection:

ClarkDietrich.

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 05 - Test
Date/Time:	10/29/2021 / 10:08 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Ry = 0 lbs

Uniform Cripple I	Results	Punched Cripp	le Member:	(1) 600S162-4	3 33 @ 24" O.C.	
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (2)						
M_str	-554 lb-in	16781 lb-in	3.30%	1.42 ft	Suction	PASS
M_stb	-554 lb-in	15254 lb-in	3.63%	1.42 ft	Suction	PASS
M_dist	-554 lb-in	13562 lb-in	4.09%	1.42 ft	Suction	PASS
V^{-}	65 lbs	1240 lbs	5.25%	2.84 ft	Suction	PASS
V/M	0.05	1	5.25%	2.84 ft	Suction	PASS
Р	0 lbs	4060 lbs	0.00%		DL	PASS
P/M	0.04	1	4.09%	1.42 ft	Suction	PASS
I_req	0.017 in4	2.316 in4	0.73%	1.42 ft	Suction	PASS
Span ∆	0.001 in	0.095 in	L/49593	1.42 ft	Suction	PASS
Web Crippling	-65	269	-24.20%	C2	Suction	PASS
Web Crippling	-65	269	-24.20%	C1	Suction	PASS
C2: Wind	: Rx = -65 lbs	Rx = 64 lbs			Ry = 0 lbs	
L		11/2 = 04 103			U U U U U	
Conne	ection:					

Wind: | Connection:

Rx = -65 lbs

C1:

Non-Uniform Cripple Results (1) 600S162-43 33 @ 24" O.C. Punched Cripple Member: **Interaction Check** Actual Allowable Capacity Location **Controlled By** Pass/FAIL Cripple (2.1) -4580 lb-in 16781 lb-in 27.29% 2.84 ft PASS M_str Suction M stb -4580 lb-in 15254 lb-in 30.02% 2.84 ft Suction PASS -4580 lb-in 13562 lb-in 33.77% 2.84 ft Suction PASS M_dist -199 lbs 16.08% PASS V 1240 lbs 0.00 ft Suction V/M 0.32 31.64% 2.84 ft Pressure PASS 1 Р 1021 lbs 4060 lbs 25.15% 0.00 ft DL PASS P/M 0.59 59.03% 2.84 ft Suction PASS 1 0.102 in4 2.316 in4 4.40% 1.56 ft Suction PASS I_req Span Δ 0.004 in 0.095 in L/8185 1.56 ft Suction PASS Web Crippling 198 269 73.81% C2 Pressure PASS Web Crippling -199 269 -74.18% C1 Suction PASS

Rx = 64 lbs

C2:	Wind:	Rx = 69 lbs	Rx = 198 lbs	Ry = 0 lbs
	Connectio	n:		
C1:	Wind:	Rx = -199 lbs	Rx = 0 lbs	Ry = 1021 lbs
	Connectio	n.		

DesignPro Opening Designer Output

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 05 - Test 10/29/2021 / 10:08 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Punched Stud M Track Member:		(1) 600S350-9 (0) None	7 50		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-18323 lb-in	77650 lb-in	23.60%	6.66 ft	Suction	PASS
M stb	-18323 lb-in	77650 lb-in	23.60%	6.66 ft	Suction	PASS
M_dist	-18323 lb-in	78371 lb-in	23.38%	6.66 ft	Suction	PASS
v ⁻	428 lbs	3805 lbs	11.25%	10.00 ft	Suction	PASS
V/M	0.25	1	25.14%	7.16 ft	Suction	PASS
Р	15196 lbs	23364 lbs	65.04%	0.00 ft	DL	PASS
P/M	0.93	1	92.84%	6.66 ft	Suction	PASS
l req	1.903 in4	8.632 in4	22.04%	5.00 ft	Suction	PASS
Span Δ	0.073 in	0.333 in	L/1633	5.00 ft	Suction	PASS
Web Crippling	-428	2197	19.48%	C2	Suction	PASS
Web Crippling	-412	2197	18.77%	C1	Suction	PASS

C2:	Wind:	Rx = -428 lbs	Rx = 242 lbs	Ry = 0 lbs
	600T125	-54 50 ksi Track w/ (2)	Buildex #10-16 T3 to 54-50 L.S.F. at ea	ach Jamb - 40% Capacity
		()		
C1:	Wind:	Rx = -412 lbs	Rx = 229 lbs	Ry = 15196 lbs

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 4'-8" EXT OPENING JOIST BEARING WALL

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 4

5th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 4 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	40 in
WALL DL	150.0 plf	OC LOAD FACTOR	3.333
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	2405	2688	215	0	0	0	485
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	2631	3225	215	0	0	0	531
TOTAL AXIAL LOAD (lb)	8770	10750	717	0	0	0	1769

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	59.00 plf
Gcpi =	0.180	ZONE 4 P = w =	-15.13 psf -50.42 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P = w =	-26.74 psf -89.13 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion					
PROJECT NUMBER: 2150200882						
ENGINEER: L. Padg	gett DATE: 10/29/2021					
CHECKER: LAP	DATE:					
SUBJECT: 4'-8" EX	JECT: 4'-8" EXT OPENING JOIST BEARING WALL					

NONE

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 4

MEMBER DESIGN PARAMETERS

1

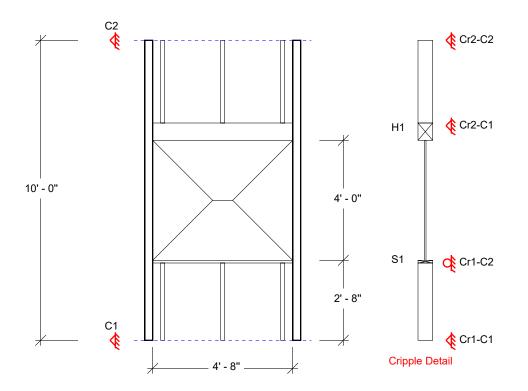
- Ly = 4.00 ft
- Lt = 4.00 ft

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	19520	7633	0.391		0		0	
D + Lr	9487	2258	0.238		0		0	
D + 0.75L + 0.75Lr	17370	6289	0.362		0		0	
D + W	8770	2258	0.257	59.00	295		738	
D + 0.7E	10009	2576	0.257		0		0	
D + 0.75L + 0.75W + .75Lr	17370	6289	0.362	44.25	221		553	
D + 0.75L + 0.525E + .75Lr	18299	6528	0.357		0		0	
0.6D + W	5262	1355	0.257	59.00	295		738	
0.6D - 0.7E	4023	1036	0.257		0		0	
ZONE 4 BENDING				50.42	252		630	
ZONE 5 BENDING				89.13	446		1114	

FLANGE BRACING

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n s	tuds) 6
	plf	lb	ft-lb		Check	Prb =	1171 lb
ZONE 4 DEFLECTION	35.29	176	441			y Brdg Rows =	2
ZONE 5 DEFLECTION	62.39	312	780				

Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 04 - Test 10/29/2021 / 10:11 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	--	--	--


Inputs				
Building Code:	CBC 2016		Wind Load Deflection Limit:	L/360
Wind Zone:	Typical		0.7 Wind Load Deflection Used:	Yes
Stud Spacing:	24" O.C.		Dead Load Deflection Limit:	L/360
Bracing Distance:	4' O.C. Max		Dead Load Deflection Limit (in):	0.5 in
Z:	100 ft		Vertical Slip Allowance:	1 in
			Dead Load:	0 psf
Parapet Porosity:	NA		Under Hang Porosity:	NÀ
Wind Pressures Typical Zone:		Opening Dead Load	Add'l Head Dead	Load
	00.04			

Span Suction: Span(1) Pressure: -22.91 psf 22.56 psf Opening(1): -15 psf Head(1): 0 plf

Combination Loads

Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Suction	Global FY	NA	10.00 ft	-16476.00 lbs	Yes	No	No
Moment	Suction	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Pressure	Global FY	NA	10.00 ft	-16476.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Suction	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Suction	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
Axial Point	Pressure	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Pressure	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No

Design

DesignPro Opening Designer Output Versic

ClarkDietrich

Version 6.0.2.0

Project Name:CFS-NHERI 10 Story ArchetypeProject Number:2150200882-0Opening:H4: Level 04 - TestDate/Time:10/29/2021 / 10:11 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Track Member: Unpunched Gravity Member: (2) 600T125-54 50 (2) 600S162-54 50

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх Тор	-3657 lb-in	17147 lb-in	21.33%	2.33 ft	Suction	PASS
Vx Top	-313 lbs	2728 lbs	11.49%	0.00 ft	Suction	PASS
VMx Top	0.21	1	21.33%	2.23 ft	Suction	PASS
Ix Top	0.176 in4	2.241 in4	7.86%	2.33 ft	Suction	PASS
Δx Top	0.012 in	0.155 in	L/4579	2.33 ft	Suction	PASS
My ·	18317 lb-in	48471 lb-in	37.79%	2.33 ft	DL	PASS
Vý	1704 lbs	5645 lbs	30.19%	0.00 ft	DL	PASS
VMy	0.38	1	37.79%	2.23 ft	DL	PASS
ly	1.239 in4	5.721 in4	21.66%	2.33 ft	DL	PASS
Δy	0.034 in	0.155 in	L/1662	2.33 ft	DL	PASS
Web Crippling	1021 lbs	1394 lbs	73.25%	0.07 ft	DL	PASS
Web Crippling/Moment	0.63	1	63.11%	3.90 ft	Suction + DL	PASS
Mx Bottom	-1313 lb-in	17147 lb-in	7.65%	2.33 ft	Suction	PASS
Vx Bottom	-74 lbs	2728 lbs	2.72%	0.00 ft	Suction	PASS
VMx Bottom	0.08	1	7.65%	2.22 ft	Suction	PASS
Ix Bottom	0.063 in4	2.241 in4	2.82%	2.33 ft	Suction	PASS
Δx _Bottom	0.004 in	0.155 in	L/12750	2.33 ft	Suction	PASS

Box Header Clip Connection to Jamb: Rx(top) = -313 lbs Rx(bottom) = -74 lbs (2) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 33% Capacity

Box Header Track Connection to Jamb: Ry = 1704 lbs

4" L, 600T125-54 50 trk pc w/ (4) Buildex #10-16 T3 screws to Head, (4) Buildex #10-16 T3 screws to Jamb - 96% Capacity

Sill (S1) Design Results

IMPORTANT NOTE: Sill tracks must be continuous. Splicing of tracks is not allowed.

Track Member:		(1) 600T125-4	(1) 600T125-43 33				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Mx Vx VMx Ix Deflection	-2118 lb-in -132 lbs 0.23 0.103 in4 0.009 in	9114 lb-in 1377 lbs 1 1.768 in4 0.155 in	23.25% 9.58% 23.25% 5.85% L/6157	2.33 ft 0.00 ft 2.22 ft 2.33 ft 2.33 ft	Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS	

Sill Connection to Jamb: Rx = -132 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Sill, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

Project Name: Project Number: Opening: Date/Time:

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results			Punched Crippl	Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.		
Interaction Check Actual		Allowable	Capacity	Location	Controlled By	Pass/FAIL		
Cripple (1) M_str M_stb M_dist V V/M P P/M I_req Span Δ Web Crippling Web Crippling		-486 lb-in -486 lb-in -486 lb-in 61 lbs 0.05 120 lbs 0.06 0.014 in4 0.001 in -61 -61	16781 lb-in 15254 lb-in 13562 lb-in 1240 lbs 1 4132 lbs 1 2.316 in4 0.089 in 245 269	2.90% 3.19% 3.59% 4.91% 2.90% 6.49% 0.60% L/60357 -24.87% -22.67%	1.33 ft 1.33 ft 1.33 ft 2.66 ft 2.66 ft 0.00 ft 1.33 ft 1.33 ft 1.33 ft C2 C1	Suction Suction Suction Suction DL Suction Suction Suction Suction	PASS PASS PASS PASS PASS PASS PASS PASS	
C2:	Wind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 0 lbs		
	Connecti	on:						
C1:	Wind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 120 lbs		

Connection:

larkDietrich. ENGINEERING SERVICES

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 04 - Test
Date/Time:	10/29/2021 / 10:11 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple R	esults	Punched Cripp	le Member:	(1) 600S162-4		
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (2)						
M_str	-554 lb-in	16781 lb-in	3.30%	1.42 ft	Suction	PASS
M stb	-554 lb-in	15254 lb-in	3.63%	1.42 ft	Suction	PASS
M_dist	-554 lb-in	13562 lb-in	4.09%	1.42 ft	Suction	PASS
v ⁻	65 lbs	1240 lbs	5.25%	2.84 ft	Suction	PASS
V/M	0.05	1	5.25%	2.84 ft	Suction	PASS
Р	0 lbs	4060 lbs	0.00%		DL	PASS
P/M	0.04	1	4.09%	1.42 ft	Suction	PASS
l req	0.017 in4	2.316 in4	0.73%	1.42 ft	Suction	PASS
Span Δ	0.001 in	0.095 in	L/49593	1.42 ft	Suction	PASS
Web Crippling	-65	269	-24.20%	C2	Suction	PASS
Web Crippling	-65	269	-24.20%	C1	Suction	PASS
C2: Wind:	Rx = -65 lbs	Rx = 64 lbs			Ry = 0 lbs	
Connee	ction:	·				

Wind: Rx = -65 lbs Rx = 64 lbs Ry = 0 lbs C1:

Connection:

Non-Uniform Cripp	ole Results	Punched Cripp	le Member:	(1) 600S162-4	-3 33 @ 24" O.C.	
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (2.1)						
M str	-4580 lb-in	16781 lb-in	27.29%	2.84 ft	Suction	PASS
M stb	-4580 lb-in	15254 lb-in	30.02%	2.84 ft	Suction	PASS
M_dist	-4580 lb-in	13562 lb-in	33.77%	2.84 ft	Suction	PASS
v ⁻	-199 lbs	1240 lbs	16.08%	0.00 ft	Suction	PASS
V/M	0.32	1	31.64%	2.84 ft	Pressure	PASS
Р	1021 lbs	4060 lbs	25.15%	0.00 ft	DL	PASS
P/M	0.59	1	59.03%	2.84 ft	Suction	PASS
l req	0.102 in4	2.316 in4	4.40%	1.56 ft	Suction	PASS
Span Δ	0.004 in	0.095 in	L/8185	1.56 ft	Suction	PASS
Web Crippling	198	269	73.81%	C2	Pressure	PASS
Web Crippling	-199	269	-74.18%	C1	Suction	PASS

C2:	Wind:	Rx = 69 lbs	Rx = 198 lbs	Ry = 0 lbs	
	Connectio	n:			
C1:	Wind:	Rx = -199 lbs	Rx = 0 lbs	Ry = 1021 lbs	
	Connectio				

Connection:

DesignPro Opening Designer Output

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 04 - Test 10/29/2021 / 10:11 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

		(1) 600HDS30 (0) None	0-97 50		
Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
-18323 lb-in	91817 lb-in	19.96%	6.66 ft	Suction	PASS
-18323 lb-in	83195 lb-in	22.02%	6.66 ft	Suction	PASS
-18323 lb-in	75993 lb-in	24.11%	6.66 ft	Suction	PASS
428 lbs	10471 lbs	4.09%	10.00 ft	Suction	PASS
0.20	1	19.97%	7.16 ft	Suction	PASS
18240 lbs	33236 lbs	54.88%	0.00 ft	DL	PASS
0.85	1	84.69%	6.66 ft	Suction	PASS
1.903 in4	8.336 in4	22.82%	5.00 ft	Suction	PASS
0.076 in	0.333 in	L/1577	5.00 ft	Suction	PASS
-428	2197	19.48%	C2	Suction	PASS
-412	2197	18.77%	C1	Suction	PASS
	Track Member: Actual -18323 lb-in -18323 lb-in -18323 lb-in 428 lbs 0.20 18240 lbs 0.85 1.903 in4 0.076 in -428	-18323 lb-in 91817 lb-in -18323 lb-in 83195 lb-in -18323 lb-in 75993 lb-in -18323 lb-in 75993 lb-in 428 lbs 10471 lbs 0.20 1 18240 lbs 33236 lbs 0.85 1 1.903 in4 8.336 in4 0.076 in 0.333 in -428 2197	Track Member:(0) NoneActualAllowableCapacity-18323 lb-in91817 lb-in19.96%-18323 lb-in83195 lb-in22.02%-18323 lb-in75993 lb-in24.11%428 lbs10471 lbs4.09%0.20119.97%18240 lbs33236 lbs54.88%0.85184.69%1.903 in48.336 in422.82%0.076 in0.333 inL/1577-428219719.48%	Track Member: (0) None Actual Allowable Capacity Location -18323 lb-in 91817 lb-in 19.96% 6.66 ft -18323 lb-in 83195 lb-in 22.02% 6.66 ft -18323 lb-in 75993 lb-in 24.11% 6.66 ft 0.20 1 19.97% 7.16 ft 18240 lbs 33236 lbs 54.88% 0.00 ft 0.85 1 84.69% 6.66 ft 1.903 in4 8.336 in4 22.82% 5.00 ft 0.076 in 0.333 in L/1577 5.00 ft -428 2197 19.48% C2	Track Member: (0) None Actual Allowable Capacity Location Controlled By -18323 lb-in 91817 lb-in 19.96% 6.66 ft Suction -18323 lb-in 83195 lb-in 22.02% 6.66 ft Suction -18323 lb-in 75993 lb-in 22.02% 6.66 ft Suction -18323 lb-in 75993 lb-in 24.11% 6.66 ft Suction -18323 lb-in 75993 lb-in 24.11% 6.66 ft Suction -18323 lb-in 75993 lb-in 24.11% 6.66 ft Suction -18224 lbs 10471 lbs 4.09% 10.00 ft Suction 0.20 1 19.97% 7.16 ft Suction 18240 lbs 33236 lbs 54.88% 0.00 ft DL 0.85 1 84.69% 6.66 ft Suction 1.903 in4 8.336 in4 22.82% 5.00 ft Suction 0.076 in 0.333 in L/1577 5.00 ft Suction -428 2197

C2:	Wind:	Rx = -428 lbs	Rx = 242 lbs	Ry = 0 lbs				
	600T125-54 50 ksi Track w/ (2) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 40% Capacity							
C1:	Wind:	Rx = -412 lbs	Rx = 229 lbs	Rv = 18240 lbs				

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 4'-8" EXT OPENING JOIST BEARING WALL

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 3

4th FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 3 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	40 in
WALL DL	150.0 plf	OC LOAD FACTOR	3.333
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	W		E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	2781	3225	215	0	0	0	561
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	3007	3763	215	0	0	0	607
TOTAL AXIAL LOAD (Ib)	10023	12542	717	0	0	0	2022

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	59.00 plf
Gcpi =	0.180	ZONE 4 P = w =	-15.13 psf -50.42 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P = w =	-26.74 psf -89.13 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBE	R: 2150200882				
ENGINEER: L.P	dgett DATE: 10/29/2021				
CHECKER: LAP	DATE:				
SUBJECT: 4'-8'	EXT OPENING JOIST BEARING WALL				

NONE

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 3

MEMBER DESIGN PARAMETERS

1

Lx = 10.00 ft	
---------------	--

- Ly = 4.00 ft
- Lt = 4.00 ft

600 HD

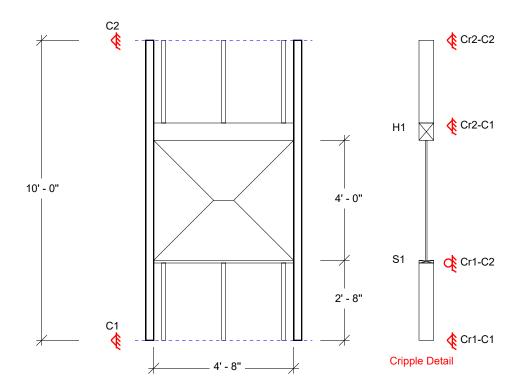
S300	97 (50)

FLANGE BRACING

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	22564	7633	0.338		0		0	
D + Lr	10739	2258	0.210		0		0	
D + 0.75L + 0.75Lr	19966	6289	0.315		0		0	
D + W	10023	2258	0.225	59.00	295		738	
D + 0.7E	11438	2576	0.225		0		0	
D + 0.75L + 0.75W + .75Lr	19966	6289	0.315	44.25	221		553	
D + 0.75L + 0.525E + .75Lr	21028	6528	0.310		0		0	
0.6D + W	6014	1355	0.225	59.00	295		738	
0.6D - 0.7E	4598	1036	0.225		0		0	
ZONE 4 BENDING				50.42	252		630	
ZONE 5 BENDING				89.13	446		1114	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n s	tuds) 6
	plf	lb	ft-lb		Check	Prb =	1354 lb
ZONE 4 DEFLECTION	35.29	176	441			y Brdg Rows =	2
ZONE 5 DEFLECTION	62.39	312	780				

Project Name: Project Number: Opening: Date/Time:	CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 03 - Test 10/29/2021 / 10:13 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	--	--	--


Inputs

Building Code:	CBC 2016			Wind Load Deflection Limit:	L/360
Wind Zone:	Typical			0.7 Wind Load Deflection Used:	Yes
Stud Spacing:	24" O.C.			Dead Load Deflection Limit:	L/360
Bracing Distance:	4' O.C. Max			Dead Load Deflection Limit (in):	0.5 in
Z:	100 ft			Vertical Slip Allowance:	1 in
				Dead Load:	0 psf
Parapet Porosity:	NA			Under Hang Porosity:	NA
Wind Pressures Typical Zone:		Opening Dea	ad Load	Add'l Head Dead	Load
Span Suction: Span(1) Pressure:	-22.91 psf 22.56 psf	Opening(1):	-15 psf	Head(1): 0 plf	

Combination Loads

n Luaus							
Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Suction	Global FY	NA	10.00 ft	-19520.00 lbs	Yes	No	No
Suction	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Pressure	Global FY	NA	10.00 ft	-19520.00 lbs	Yes	No	No
Pressure	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Suction	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Suction	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
Pressure	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Pressure	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
	Load Case Suction Suction Pressure Pressure Suction Suction Pressure	Load CaseDirectionSuctionGlobal FYSuctionGlobal MzPressureGlobal FYPressureGlobal MzSuctionGlobal FYSuctionGlobal MzPressureGlobal MzPressureGlobal Mz	Load CaseDirectionLocationSuctionGlobal FYNASuctionGlobal MzNAPressureGlobal FYNAPressureGlobal MzNASuctionGlobal FY24 in. O.C.SuctionGlobal Mz24 in. O.C.PressureGlobal FY24 in. O.C.PressureGlobal FY24 in. O.C.	Load CaseDirectionLocationElevationSuctionGlobal FYNA10.00 ftSuctionGlobal MzNA10.00 ftPressureGlobal FYNA10.00 ftPressureGlobal MzNA10.00 ftSuctionGlobal MzNA10.00 ftSuctionGlobal MzNA10.00 ftSuctionGlobal FY24 in. O.C.10.00 ftSuctionGlobal Mz24 in. O.C.10.00 ftPressureGlobal FY24 in. O.C.10.00 ft	Load Case Direction Location Elevation Load Suction Global FY NA 10.00 ft -19520.00 lbs Suction Global Mz NA 10.00 ft -4580 lb-in Pressure Global Mz NA 10.00 ft -4580 lb-in Pressure Global Mz NA 10.00 ft -4580 lb-in Suction Global Mz NA 10.00 ft -4580 lb-in Suction Global Mz NA 10.00 ft -4580 lb-in Suction Global Mz 24 in. O.C. 10.00 ft -4580 lb-in Pressure Global Mz 24 in. O.C. 10.00 ft -4580 lb-in Pressure Global FY 24 in. O.C. 10.00 ft -1021.00 lbs	Load CaseDirectionLocationElevationLoadTo JambSuctionGlobal FYNA10.00 ft-19520.00 lbsYesSuctionGlobal MzNA10.00 ft-4580 lb-inYesPressureGlobal FYNA10.00 ft-19520.00 lbsYesPressureGlobal MzNA10.00 ft-4580 lb-inYesSuctionGlobal MzNA10.00 ft-4580 lb-inYesSuctionGlobal FY24 in. O.C.10.00 ft-1021.00 lbsNoSuctionGlobal Mz24 in. O.C.10.00 ft-4580 lb-inNoPressureGlobal FY24 in. O.C.10.00 ft-1021.00 lbsNo	Load CaseDirectionLocationElevationLoadTo JambTo CrippleSuctionGlobal FYNA10.00 ft-19520.00 lbsYesNoSuctionGlobal MzNA10.00 ft-4580 lb-inYesNoPressureGlobal FYNA10.00 ft-4580 lb-inYesNoPressureGlobal MzNA10.00 ft-4580 lb-inYesNoSuctionGlobal FY24 in. O.C.10.00 ft-4580 lb-inYesNoSuctionGlobal Mz24 in. O.C.10.00 ft-4580 lb-inNoYesPressureGlobal Mz24 in. O.C.10.00 ft-4580 lb-inNoYesPressureGlobal FY24 in. O.C.10.00 ft-4580 lb-inNoYesPressureGlobal FY24 in. O.C.10.00 ft-1021.00 lbsNoYes

Design

Project Name:CFS-NHERI 10 Story ArchetypeProject Number:2150200882-0Opening:H4: Level 03 - TestDate/Time:10/29/2021 / 10:13 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Track Member: Unpunched Gravity Member: (2) 600T125-54 50 (2) 600S162-54 50

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх Тор	-3657 lb-in	17147 lb-in	21.33%	2.33 ft	Suction	PASS
Vx Top	-313 lbs	2728 lbs	11.49%	0.00 ft	Suction	PASS
VMx Top	0.21	1	21.33%	2.23 ft	Suction	PASS
Ix Top	0.176 in4	2.241 in4	7.86%	2.33 ft	Suction	PASS
Δx Top	0.012 in	0.155 in	L/4579	2.33 ft	Suction	PASS
My .	18317 lb-in	48471 lb-in	37.79%	2.33 ft	DL	PASS
Vý	1704 lbs	5645 lbs	30.19%	0.00 ft	DL	PASS
VMy	0.38	1	37.79%	2.23 ft	DL	PASS
ly	1.239 in4	5.721 in4	21.66%	2.33 ft	DL	PASS
Δy	0.034 in	0.155 in	L/1662	2.33 ft	DL	PASS
Web Crippling	1021 lbs	1394 lbs	73.25%	0.07 ft	DL	PASS
Web Crippling/Moment	0.63	1	63.11%	3.90 ft	Suction + DL	PASS
Mx Bottom	-1313 lb-in	17147 lb-in	7.65%	2.33 ft	Suction	PASS
Vx Bottom	-74 lbs	2728 lbs	2.72%	0.00 ft	Suction	PASS
VMx Bottom	0.08	1	7.65%	2.22 ft	Suction	PASS
Ix Bottom	0.063 in4	2.241 in4	2.82%	2.33 ft	Suction	PASS
Δx _Bottom	0.004 in	0.155 in	L/12750	2.33 ft	Suction	PASS

Box Header Clip Connection to Jamb: Rx(top) = -313 lbs Rx(bottom) = -74 lbs (2) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 33% Capacity

Box Header Track Connection to Jamb: Ry = 1704 lbs

4" L, 600T125-54 50 trk pc w/ (4) Buildex #10-16 T3 screws to Head, (4) Buildex #10-16 T3 screws to Jamb - 96% Capacity

Sill (S1) Design Results

IMPORTANT NOTE: Sill tracks must be continuous. Splicing of tracks is not allowed.

	Track Member:		(1) 600T125-43 33			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Mx Vx VMx Ix Deflection	-2118 lb-in -132 lbs 0.23 0.103 in4 0.009 in	9114 lb-in 1377 lbs 1 1.768 in4 0.155 in	23.25% 9.58% 23.25% 5.85% L/6157	2.33 ft 0.00 ft 2.22 ft 2.33 ft 2.33 ft	Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS

Sill Connection to Jamb: Rx = -132 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Sill, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 03 - Test
Date/Time:	10/29/2021 / 10:13 AM

Company:
Contact Name:
Discus Alexade au
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results			Punched Cripp	le Member:	(1) 600S162-4	13 33 @ 24" O.C.	
Interaction Che	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1) M_str M_stb M_dist V V/M P P/M L_req Span Δ		-486 lb-in -486 lb-in 61 lbs 0.05 120 lbs 0.06 0.014 in4 0.001 in	16781 lb-in 15254 lb-in 13562 lb-in 1240 lbs 1 4132 lbs 1 2.316 in4 0.089 in	2.90% 3.19% 3.59% 4.91% 2.90% 6.49% 0.60% L/60357	1.33 ft 1.33 ft 1.33 ft 2.66 ft 2.66 ft 0.00 ft 1.33 ft 1.33 ft 1.33 ft	Suction Suction Suction Suction DL Suction Suction Suction	PASS PASS PASS PASS PASS PASS PASS PASS
Web Crippling Web Crippling		-61 -61	245 269	-24.87% -22.67%	C2 C1	Suction Suction	PASS PASS
C2:	Wind: Connectio	Rx = -61 lbs	Rx = 60 lbs			Ry = 0 lbs	
C1:	Wind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 120 lbs	

Connection:

larkDietrich. ENGINEERING SERVICES

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 03 - Test
Date/Time:	10/29/2021 / 10:13 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results			Punched Cripple	e Member:	(1) 600S162-4	3 33 @ 24" O.C.	
Interaction Chec	:k	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (2) M_str M_dist V V/M P P/M I_req Span Δ Web Crippling Web Crippling		-554 lb-in -554 lb-in -554 lb-in 65 lbs 0.05 0 lbs 0.04 0.017 in4 0.001 in -65 -65	16781 lb-in 15254 lb-in 13562 lb-in 1240 lbs 1 4060 lbs 1 2.316 in4 0.095 in 269 269	3.30% 3.63% 4.09% 5.25% 5.25% 0.00% 4.09% 0.73% L/49593 -24.20% -24.20%	1.42 ft 1.42 ft 1.42 ft 2.84 ft 2.84 ft 1.42 ft 1.42 ft 1.42 ft C2 C1	Suction Suction Suction Suction DL Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS PASS PASS PASS
C2:	Wind:	Rx = -65 lbs	Rx = 64 lbs			Ry = 0 lbs	
(Connectio	n:					
C1:	Wind:	Rx = -65 lbs	Rx = 64 lbs			Ry = 0 lbs	

Wind:

Connection:

Non-Uniform Cripple Results		Punched Cripp	Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.	
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (2.1)						
M str	-4580 lb-in	16781 lb-in	27.29%	2.84 ft	Suction	PASS
M_stb	-4580 lb-in	15254 lb-in	30.02%	2.84 ft	Suction	PASS
M_dist	-4580 lb-in	13562 lb-in	33.77%	2.84 ft	Suction	PASS
v ⁻	-199 lbs	1240 lbs	16.08%	0.00 ft	Suction	PASS
V/M	0.32	1	31.64%	2.84 ft	Pressure	PASS
Р	1021 lbs	4060 lbs	25.15%	0.00 ft	DL	PASS
P/M	0.59	1	59.03%	2.84 ft	Suction	PASS
l req	0.102 in4	2.316 in4	4.40%	1.56 ft	Suction	PASS
Span Δ	0.004 in	0.095 in	L/8185	1.56 ft	Suction	PASS
Web Crippling	198	269	73.81%	C2	Pressure	PASS
Web Crippling	-199	269	-74.18%	C1	Suction	PASS

C2:	Wind:	Rx = 69 lbs	Rx = 198 lbs		Ry = 0 lbs				
	Connection:								
		1		1					
C1:	Wind:	Rx = -199 lbs	Rx = 0 lbs		Ry = 1021 lbs				
	Connection:								

DesignPro Opening Designer Output

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 03 - Test 10/29/2021 / 10:13 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

	Unpunched HDS Member: Track Member:		(1) 600HDS30 (0) None	0-97 50			
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
M str	-18323 lb-in	91817 lb-in	19.96%	6.66 ft	Suction	PASS	
M_stb	-18323 lb-in	83195 lb-in	22.02%	6.66 ft	Suction	PASS	
M_dist	-18323 lb-in	75993 lb-in	24.11%	6.66 ft	Suction	PASS	
v ⁻	428 lbs	10471 lbs	4.09%	10.00 ft	Suction	PASS	
V/M	0.20	1	19.97%	7.16 ft	Suction	PASS	
Р	21284 lbs	33236 lbs	64.04%	0.00 ft	DL	PASS	
P/M	0.95	1	95.11%	6.66 ft	Suction	PASS	
l req	1.903 in4	8.336 in4	22.82%	5.00 ft	Suction	PASS	
Span Δ	0.076 in	0.333 in	L/1577	5.00 ft	Suction	PASS	
Web Crippling	-428	2197	19.48%	C2	Suction	PASS	
Web Crippling	-412	2197	18.77%	C1	Suction	PASS	

C2:	Wind:	Rx = -428 lbs	Rx = 242 lbs	Ry = 0 lbs					
	600T125-54 50 ksi Track w/ (2) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 40% Capacity								
C1:	Wind	$B_{\rm X} = 412$ lbo	By - 220 lba	$P_{\rm V} = 21284$ lbs					
C1:	Wind:	Rx = -412 lbs	Rx = 229 lbs	Ry = 21284 lbs					

Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 4'-8" EXT OPENING JOIST BEARING WALL

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 2

3rd FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 2 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	40 in
WALL DL	150.0 plf	OC LOAD FACTOR	3.333
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	3157	3763	215	0	0	0	637
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	3383	4300	215	0	0	0	682
TOTAL AXIAL LOAD (Ib)	11275	14333	717	0	0	0	2275

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFRS PRESSURE	59.00 plf
Gcpi =	0.180	ZONE 4 P = w =	-15.13 psf -50.42 plf
ZONE 4 GCp = ZONE 5 GCp =	-0.868 -1.673	ZONE 5 P = w =	-26.74 psf -89.13 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME:	CFS-NHERI 10 Story Test Portion					
PROJECT NUMBER: 2150200882						
ENGINEER: L. Padg	ett DATE: 10/29/2021					
CHECKER: LAP	DATE:					
SUBJECT: 4'-8" EX	4'-8" EXT OPENING JOIST BEARING WALL					

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 2

MEMBER DESIGN PARAMETERS

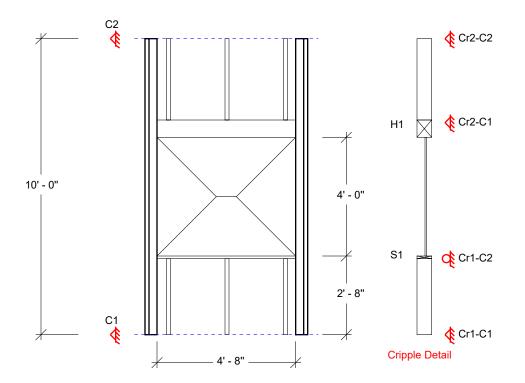
Lx =	10.00 ft	FLANGE BRACING	NONE
Ly =	4.00 ft		
Lt =	4.00 ft		

1 600 HDS300 97	50) &	600	S162	54 (50)	
-----------------	-------	-----	------	---------	--

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	25608	7633	0.298		0		0	
D + Lr	11992	2258	0.188		0		0	
D + 0.75L + 0.75Lr	22563	6289	0.279		0		0	
D + W	11275	2258	0.200	59.00	295		738	
D + 0.7E	12867	2576	0.200		0		0	
D + 0.75L + 0.75W + .75Lr	22563	6289	0.279	44.25	221		553	
D + 0.75L + 0.525E + .75Lr	23757	6528	0.275		0		0	
0.6D + W	6765	1355	0.200	59.00	295		738	
0.6D - 0.7E	5173	1036	0.200		0		0	
ZONE 4 BENDING				50.42	252		630	
ZONE 5 BENDING				89.13	446		1114	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n st	tuds) 6
	plf	lb	ft-lb		Check	Prb =	1537 lb
ZONE 4 DEFLECTION	35.29	176	441			y Brdg Rows =	2
ZONE 5 DEFLECTION	62.39	312	780				

Project Number: 215020 Opening: H4: Le	200882-0	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
---	----------	--	--


Inputs

Building Code:	CBC 2016			Wind Load Deflection Limit:	L/360
Wind Zone:	Typical			0.7 Wind Load Deflection Used:	Yes
Stud Spacing:	24" O.C.			Dead Load Deflection Limit:	L/360
Bracing Distance:	4' O.C. Max			Dead Load Deflection Limit (in):	0.5 in
Z:	100 ft			Vertical Slip Allowance:	1 in
				Dead Load:	0 psf
Parapet Porosity:	NA			Under Hang Porosity:	NA
Wind Pressures Typical Zone:		Opening Dea	ad Load	Add'l Head Dead	Load
Span Suction: Span(1) Pressure:	-22.91 psf 22.56 psf	Opening(1):	-15 psf	Head(1): 0 plf	

Combination Loads

Combinatio	JII LUaus							
Load Type	Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Axial Point	Suction	Global FY	NA	10.00 ft	-22564.00 lbs	Yes	No	No
Moment	Suction	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Pressure	Global FY	NA	10.00 ft	-22564.00 lbs	Yes	No	No
Moment	Pressure	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Axial Point	Suction	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Suction	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
Axial Point	Pressure	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Moment	Pressure	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No

Design

Project Name:CFS-NHERI 10 Story ArchetypeProject Number:2150200882-0Opening:H4: Level 02 - TestDate/Time:10/29/2021 / 10:16 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Track Member: Unpunched Gravity Member: (2) 600T125-54 50 (2) 600S162-54 50

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх Тор	-3657 lb-in	17147 lb-in	21.33%	2.33 ft	Suction	PASS
Vx Top	-313 lbs	2728 lbs	11.49%	0.00 ft	Suction	PASS
VMx Top	0.21	1	21.33%	2.23 ft	Suction	PASS
Ix Top	0.176 in4	2.241 in4	7.86%	2.33 ft	Suction	PASS
Δx Top	0.012 in	0.155 in	L/4579	2.33 ft	Suction	PASS
My	18317 lb-in	48471 lb-in	37.79%	2.33 ft	DL	PASS
Vý	1704 lbs	5645 lbs	30.19%	0.00 ft	DL	PASS
VMy	0.38	1	37.79%	2.23 ft	DL	PASS
ly	1.239 in4	5.721 in4	21.66%	2.33 ft	DL	PASS
Δy	0.034 in	0.155 in	L/1662	2.33 ft	DL	PASS
Web Crippling	1021 lbs	1394 lbs	73.25%	0.07 ft	DL	PASS
Web Crippling/Moment	0.63	1	63.11%	3.90 ft	Suction + DL	PASS
Mx_Bottom	-1313 lb-in	17147 lb-in	7.65%	2.33 ft	Suction	PASS
Vx_Bottom	-74 lbs	2728 lbs	2.72%	0.00 ft	Suction	PASS
VMx_Bottom	0.08	1	7.65%	2.22 ft	Suction	PASS
Ix_Bottom	0.063 in4	2.241 in4	2.82%	2.33 ft	Suction	PASS
Δx_Bottom	0.004 in	0.155 in	L/12750	2.33 ft	Suction	PASS

Box Header Clip Connection to Jamb: Rx(top) = -313 lbs Rx(bottom) = -74 lbs (2) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 33% Capacity

Box Header Track Connection to Jamb: Ry = 1704 lbs

4" L, 600T125-54 50 trk pc w/ (4) Buildex #10-16 T3 screws to Head, (4) Buildex #10-16 T3 screws to Jamb - 96% Capacity

Sill (S1) Design Results

IMPORTANT NOTE: Sill tracks must be continuous. Splicing of tracks is not allowed.

	Track Member:			(1) 600T125-43 33					
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL			
Mx Vx VMx Ix Deflection	-2118 lb-in -132 lbs 0.23 0.103 in4 0.009 in	9114 lb-in 1377 lbs 1 1.768 in4 0.155 in	23.25% 9.58% 23.25% 5.85% L/6157	2.33 ft 0.00 ft 2.22 ft 2.33 ft 2.33 ft	Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS			

Sill Connection to Jamb: Rx = -132 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Sill, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 02 - Test
Date/Time:	10/29/2021 / 10:16 AM

Company:
Contact Name:
Discus Alexade au
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripp	Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.		
Interaction Che	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (1) M_str M_stb M_dist V V/M P P/M I_req Span Δ Web Crippling Web Crippling		-486 lb-in -486 lb-in 61 lbs 0.05 120 lbs 0.06 0.014 in4 0.001 in -61 -61	16781 lb-in 15254 lb-in 13562 lb-in 1240 lbs 1 4132 lbs 1 2.316 in4 0.089 in 245 269	2.90% 3.19% 3.59% 4.91% 4.91% 2.90% 6.49% 0.60% L/60357 -24.87% -22.67%	1.33 ft 1.33 ft 1.33 ft 2.66 ft 2.66 ft 0.00 ft 1.33 ft 1.33 ft 1.33 ft 1.33 ft C2 C1	Suction Suction Suction Suction DL Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS PASS PASS PASS
C2:	Wind: Connectio		Rx = 60 lbs			Ry = 0 lbs	
C1:	Wind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 120 lbs	

Connection:

larkDietrich. ENGINEERING SERVICES

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H4: Level 02 - Test
Date/Time:	10/29/2021 / 10:16 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results			Punched Crippl	e Member:	(1) 600S162-4	(1) 600S162-43 33 @ 24" O.C.		
Interaction Che	eck	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Cripple (2) M_str M_stb M_dist V		-554 lb-in -554 lb-in -554 lb-in 65 lbs	16781 lb-in 15254 lb-in 13562 lb-in 1240 lbs	3.30% 3.63% 4.09% 5.25%	1.42 ft 1.42 ft 1.42 ft 2.84 ft	Suction Suction Suction Suction	PASS PASS PASS PASS	
V/M P P/M I_req Span Δ Web Crippling Web Crippling		0.05 0 lbs 0.04 0.017 in4 0.001 in -65 -65	1 4060 lbs 1 2.316 in4 0.095 in 269 269	5.25% 0.00% 4.09% 0.73% L/49593 -24.20% -24.20%	2.84 ft 1.42 ft 1.42 ft 1.42 ft C2 C1	Suction DL Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS PASS PASS	
C2:	Wind: Connection	Rx = -65 lbs on:	Rx = 64 lbs			Ry = 0 lbs		
C1:	Wind:	Rx = -65 lbs	Rx = 64 lbs			Ry = 0 lbs		

Wind:

Connection:

Non-Uniform Cripple Results		Punched Cripp	Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.	
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Cripple (2.1)						
M str	-4580 lb-in	16781 lb-in	27.29%	2.84 ft	Suction	PASS
M_stb	-4580 lb-in	15254 lb-in	30.02%	2.84 ft	Suction	PASS
M_dist	-4580 lb-in	13562 lb-in	33.77%	2.84 ft	Suction	PASS
v ⁻	-199 lbs	1240 lbs	16.08%	0.00 ft	Suction	PASS
V/M	0.32	1	31.64%	2.84 ft	Pressure	PASS
Р	1021 lbs	4060 lbs	25.15%	0.00 ft	DL	PASS
P/M	0.59	1	59.03%	2.84 ft	Suction	PASS
l req	0.102 in4	2.316 in4	4.40%	1.56 ft	Suction	PASS
Span Δ	0.004 in	0.095 in	L/8185	1.56 ft	Suction	PASS
Web Crippling	198	269	73.81%	C2	Pressure	PASS
Web Crippling	-199	269	-74.18%	C1	Suction	PASS

C2:	Wind: Rx = 69 lbs Rx		Rx = 198 lbs		Ry = 0 lbs		
	Connectio	n:					
C1:	Wind:	Rx = -199 lbs	Rx = 0 lbs		Ry = 1021 lbs		
	Connection						

Connection:

ClarkDietrich.

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 02 - Test 10/29/2021 / 10:16 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

Unpunched HDS Member: Punched Stud Member: Track Member: (1) 600HDS300-97 50 (1) 600S162-54 50 (0) None

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-18323 lb-in	122530 lb-in	14.95%	6.66 ft	Suction	PASS
M_stb	-18323 lb-in	108120 lb-in	16.95%	6.66 ft	Suction	PASS
M_dist	-18323 lb-in	100229 lb-in	18.28%	6.66 ft	Suction	PASS
v ⁻	428 lbs	12418 lbs	3.45%	10.00 ft	Suction	PASS
V/M	0.15	1	15.03%	7.16 ft	Suction	PASS
Р	24328 lbs	38963 lbs	62.44%	0.00 ft	DL	PASS
P/M	0.87	1	87.02%	6.66 ft	Suction	PASS
l req	1.903 in4	11.197 in4	16.99%	5.00 ft	Suction	PASS
Span Δ	0.057 in	0.333 in	L/2118	5.00 ft	Suction	PASS
Web Crippling	-428	3127	13.69%	C2	Suction	PASS
Web Crippling	-412	3127	13.18%	C1	Suction	PASS

C2:	Wind:	Rx = -428 lbs	Rx = 242 lbs	Ry = 0 lbs				
	600T125-54 50 ksi Track w/ (2) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 40% Capacity							
C1: Wind: Rx = -412 lbs Rx = 229 lbs Ry = 24328 lbs								

600T125-54 50 ksi Track w/ (2) Buildex #10-16 T3 to 43-33 L.S.F. at each Jamb - 78% Capacity

Phone: (877) 832-3206 www.ClarkDietrich.com

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 1

2nd FLOOR DETAILS

LEFT SPAN LENGTH LEFT LOADING TYPE SPAN TYPE LINE LOAD MODIFIER 21.50 ft UNIT SIMPLE SPAN 1.00 RIGHT SPAN0.00 ftRIGHT LOADING TYPEUNITSPAN TYPESIMPLE SPANLINE LOAD MODIFIER1.00

FLOOR SYSTEM DEPTH 12 in

LEVEL 1 WALL DETAILS

WALL TYPE	EXTERIOR WALL (EIFS)	DEPTH	6.000 in
STORY HEIGHT	10.00 ft	STUD OC SPACING:	40 in
WALL DL	150.0 plf	OC LOAD FACTOR	3.333
DEFLECTION LIMIT	L / 360		

USER SPECIFIED LOADS

	D	L	Lr	S	V	V	E
					DOWN (+)	UPLIFT (-)	
LINE LOAD (plf)	0	0	0	0	0	0	0

SERVICE AXIAL LOADS

	D	L	Lr	S	W (plf)		Е
	plf	plf	plf	plf	DOWN (+)	UPLIFT (-)	plf
LEFT SIDE OF WALL (plf)	226	538	0	0	0	0	46
CENTERLINE OF WALL (plf)	3533	4300	215	0	0	0	713
RIGHT SIDE OF WALL (plf)	0	0	0	0	0	0	0
TOTAL LINE LOAD (plf)	3758	4838	215	0	0	0	758
TOTAL AXIAL LOAD (Ib)	12528	16125	717	0	0	0	2528

*ROOF LIVE LOADS EXCEED SNOW LOADS AND WILL BE USED AS THE ROOF TRANSIENT

WIND LATERAL LOADS

EFFECTIVE AREA	33 sf	MWFR	S PRESSURE	59.00 plf
Gcpi =	0.180	ZONE		-15.13 psf -50.42 plf
ZONE 4 GCp =	-0.868			
ZONE 5 GCp =	-1.673	ZONE	5 P=	-26.74 psf
			w =	-89.13 plf

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NA	AME:	CFS-NHERI 10 Stor	ortion	
PROJECT NU	JMBER:	2150200882		
ENGINEER:	L. Padg	ett	DATE:	10/29/2021
CHECKER:	LAP		DATE:	
SUBJECT:	4'-8" EX	T OPENING JOIST B	EARING	WALL

4'-8" EXT OPENING JOIST BEARING WALL, LEVEL 1

MEMBER DESIGN PARAMETERS

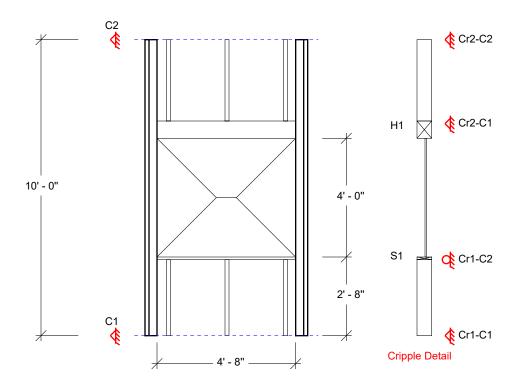
Lx =	10.00 ft	FLANGE BRACING	NONE
Ly =	4.00 ft		
Lt =	4.00 ft		

1 600 HDS300 97 (50) & 600 S162 54 (50	1	600	HDS300	97 (50)	&	600	S162	54 (50)
--	---	-----	--------	---------	---	-----	------	---------

ASD LOAD COMBINATION	Axial	Ecc. Moment	ey	Wind	Vy,max	Unity	Mx,max	Unity
Wasd	lb	in-lb	in	plf	lb	Check		Check
D + L	28653	7633	0.266		0		0	
D + Lr	13244	2258	0.170		0		0	
D + 0.75L + 0.75Lr	25159	6289	0.250		0		0	
D + W	12528	2258	0.180	59.00	295		738	
D + 0.7E	14297	2576	0.180		0		0	
D + 0.75L + 0.75W + .75Lr	25159	6289	0.250	44.25	221		553	
D + 0.75L + 0.525E + .75Lr	26486	6528	0.246		0		0	
0.6D + W	7517	1355	0.180	59.00	295		738	
0.6D - 0.7E	5747	1036	0.180		0		0	
ZONE 4 BENDING				50.42	252		630	
ZONE 5 BENDING				89.13	446		1114	

SERVICEABILITY	Wind	Vy,max	Mx,max	DEFLECTION	Unity	Brace Force (n s	tuds) 6
	plf	lb	ft-lb		Check	Prb =	1719 lb
ZONE 4 DEFLECTION	35.29	176	441			y Brdg Rows =	2
ZONE 5 DEFLECTION	62.39	312	780				

Project Name:CFS-NHERI 10 Story ArchetypeProject Number:2150200882-0Opening:H4: Level 01 - TestDate/Time:10/29/2021 / 10:18 AM	Company: Contact Name: Phone Number:	ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525
--	--	--


Inputs

Building Code:	CBC 2016		Wind Load Deflection Limit:	L/360
Wind Zone:	Typical		0.7 Wind Load Deflection Used:	Yes
Stud Spacing:	24" O.C.		Dead Load Deflection Limit:	L/360
Bracing Distance:	4' O.C. Max		Dead Load Deflection Limit (in):	0.5 in
Z:	100 ft		Vertical Slip Allowance:	1 in
			Dead Load:	0 psf
Parapet Porosity:	NA		Under Hang Porosity:	NA
Wind Pressures Typical Zone:		Opening Dead Lo	ad Add'l Head Dead	Load
Span Suction: Span(1) Pressure:	-22.91 psf 22.56 psf	Opening(1): -15 ps	f Head(1): 0 plf	

Span Suction: Span(1) Pressure: **Combination Loads**

n Loaus							
Load Case	Direction	Location	Elevation	Load	To Jamb	To Cripple	To Lintel
Suction	Global FY	NA	10.00 ft	-25608.00 lbs	Yes	No	No
Suction	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Pressure	Global FY	NA	10.00 ft	-25608.00 lbs	Yes	No	No
Pressure	Global Mz	NA	10.00 ft	-4580 lb-in	Yes	No	No
Suction	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Suction	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
Pressure	Global FY	24 in. O.C.	10.00 ft	-1021.00 lbs	No	Yes	No
Pressure	Global Mz	24 in. O.C.	10.00 ft	-4580 lb-in	No	Yes	No
	Load Case Suction Suction Pressure Pressure Suction Suction Pressure	SuctionGlobal FYSuctionGlobal MzPressureGlobal FYPressureGlobal MzSuctionGlobal FYSuctionGlobal MzPressureGlobal MzPressureGlobal FY	Load CaseDirectionLocationSuctionGlobal FYNASuctionGlobal MzNAPressureGlobal FYNAPressureGlobal MzNASuctionGlobal FY24 in. O.C.SuctionGlobal Mz24 in. O.C.PressureGlobal FY24 in. O.C.PressureGlobal FY24 in. O.C.	Load CaseDirectionLocationElevationSuctionGlobal FYNA10.00 ftSuctionGlobal MzNA10.00 ftPressureGlobal FYNA10.00 ftPressureGlobal FYNA10.00 ftSuctionGlobal MzNA10.00 ftSuctionGlobal MzNA10.00 ftSuctionGlobal FY24 in. O.C.10.00 ftSuctionGlobal Mz24 in. O.C.10.00 ftPressureGlobal FY24 in. O.C.10.00 ft	Load Case Direction Location Elevation Load Suction Global FY NA 10.00 ft -25608.00 lbs Suction Global Mz NA 10.00 ft -4580 lb-in Pressure Global FY NA 10.00 ft -4580 lb-in Pressure Global Mz NA 10.00 ft -4580 lb-in Suction Global Mz NA 10.00 ft -4580 lb-in Suction Global Mz NA 10.00 ft -4580 lb-in Suction Global Mz 24 in. O.C. 10.00 ft -1021.00 lbs Suction Global Mz 24 in. O.C. 10.00 ft -1021.00 lbs Pressure Global FY 24 in. O.C. 10.00 ft -1021.00 lbs	Load CaseDirectionLocationElevationLoadTo JambSuctionGlobal FYNA10.00 ft-25608.00 lbsYesSuctionGlobal MzNA10.00 ft-4580 lb-inYesPressureGlobal FYNA10.00 ft-4580 lb-inYesPressureGlobal MzNA10.00 ft-4580 lb-inYesSuctionGlobal MzNA10.00 ft-4580 lb-inYesSuctionGlobal FY24 in. O.C.10.00 ft-1021.00 lbsNoSuctionGlobal Mz24 in. O.C.10.00 ft-4580 lb-inNoPressureGlobal FY24 in. O.C.10.00 ft-1021.00 lbsNo	Load CaseDirectionLocationElevationLoadTo JambTo CrippleSuctionGlobal FYNA10.00 ft-25608.00 lbsYesNoSuctionGlobal MzNA10.00 ft-4580 lb-inYesNoPressureGlobal FYNA10.00 ft-4580 lb-inYesNoPressureGlobal MzNA10.00 ft-25608.00 lbsYesNoPressureGlobal MzNA10.00 ft-4580 lb-inYesNoSuctionGlobal FY24 in. O.C.10.00 ft-1021.00 lbsNoYesSuctionGlobal Mz24 in. O.C.10.00 ft-4580 lb-inNoYesPressureGlobal FY24 in. O.C.10.00 ft-1021.00 lbsNoYes

Design

DesignPro Opening Designer Output Versic

ClarkDietrich

Version 6.0.2.0

Project Name:CFS-NHERI 10 Story ArchetypeProject Number:2150200882-0Opening:H4: Level 01 - TestDate/Time:10/29/2021 / 10:18 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Head (H1) Design Results

IMPORTANT NOTE: Head tracks must be continuous. Splicing of tracks is not allowed.

Track Member: Unpunched Gravity Member: (2) 600T125-54 50 (2) 600S162-54 50

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
Мх Тор	-3657 lb-in	17147 lb-in	21.33%	2.33 ft	Suction	PASS
Vx Top	-313 lbs	2728 lbs	11.49%	0.00 ft	Suction	PASS
VMx Top	0.21	1	21.33%	2.23 ft	Suction	PASS
Ix Top	0.176 in4	2.241 in4	7.86%	2.33 ft	Suction	PASS
Δx Top	0.012 in	0.155 in	L/4579	2.33 ft	Suction	PASS
My	18317 lb-in	48471 lb-in	37.79%	2.33 ft	DL	PASS
Vý	1704 lbs	5645 lbs	30.19%	0.00 ft	DL	PASS
VMy	0.38	1	37.79%	2.23 ft	DL	PASS
ly	1.239 in4	5.721 in4	21.66%	2.33 ft	DL	PASS
Δy	0.034 in	0.155 in	L/1662	2.33 ft	DL	PASS
Web Crippling	1021 lbs	1394 lbs	73.25%	0.07 ft	DL	PASS
Web Crippling/Moment	0.63	1	63.11%	3.90 ft	Suction + DL	PASS
Mx Bottom	-1313 lb-in	17147 lb-in	7.65%	2.33 ft	Suction	PASS
Vx_Bottom	-74 lbs	2728 lbs	2.72%	0.00 ft	Suction	PASS
VMx_Bottom	0.08	1	7.65%	2.22 ft	Suction	PASS
Ix_Bottom	0.063 in4	2.241 in4	2.82%	2.33 ft	Suction	PASS
Δx_Bottom	0.004 in	0.155 in	L/12750	2.33 ft	Suction	PASS

Box Header Clip Connection to Jamb: Rx(top) = -313 lbs Rx(bottom) = -74 lbs (2) S545 w/ (2) Buildex #10-16 T3 screws to Head, (2) Buildex #10-16 T3 screws to Jamb - 33% Capacity

Box Header Track Connection to Jamb: Ry = 1704 lbs

4" L, 600T125-54 50 trk pc w/ (4) Buildex #10-16 T3 screws to Head, (4) Buildex #10-16 T3 screws to Jamb - 96% Capacity

Sill (S1) Design Results

IMPORTANT NOTE: Sill tracks must be continuous. Splicing of tracks is not allowed.

	Track Member:		(1) 600T125-4	(1) 600T125-43 33				
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL		
Mx Vx VMx Ix Deflection	-2118 lb-in -132 lbs 0.23 0.103 in4 0.009 in	9114 lb-in 1377 lbs 1 1.768 in4 0.155 in	23.25% 9.58% 23.25% 5.85% L/6157	2.33 ft 0.00 ft 2.22 ft 2.33 ft 2.33 ft	Suction Suction Suction Suction Suction	PASS PASS PASS PASS PASS		

Sill Connection to Jamb: Rx = -132 lbs

(1) S545 w/ (2) Buildex #10-16 T3 screws to Sill, (2) Buildex #10-16 T3 screws to Jamb - 28% Capacity

Project Name: Project Number:	CFS-NHERI 10 Story Archetype 2150200882-0
Opening:	H4: Level 01 - Test
Date/Time:	10/29/2021 / 10:18 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple Results		Punched Cripple	Punched Cripple Member:		(1) 600S162-43 33 @ 24" O.C.		
Interaction Che	eck	Actual	Allowable	Capacity	Location	n Controlled By	y Pass/FAIL
Cripple (1) M_str M_stb M_dist V V/M P P/M L_req Span Δ Web Crippling Web Crippling		-486 lb-in -486 lb-in -486 lb-in 61 lbs 0.05 120 lbs 0.06 0.014 in4 0.001 in -61 -61	16781 lb-in 15254 lb-in 13562 lb-in 1240 lbs 1 4132 lbs 1 2.316 in4 0.089 in 245 269	2.90% 3.19% 3.59% 4.91% 2.90% 6.49% 0.60% L/60357 -24.87% -22.67%	1.33 ft 1.33 ft 2.66 ft 2.66 ft 0.00 ft 1.33 ft 1.33 ft C2 C1	Suction Suction Suction Suction DL Suction Suction Suction Suction	PASS PASS PASS PASS PASS PASS PASS PASS
C2:	Wind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 0 I	bs
	Connectio	n:					
C1:	Wind:	Rx = -61 lbs	Rx = 60 lbs			Ry = 12	0 lbs

Connection:

larkDietrich. ENGINEERING SERVICES

Project Name:	CFS-NHERI 10 Story Archetype
Project Number:	2150200882-0
Opening:	H4: Level 01 - Test
Date/Time:	10/29/2021 / 10:18 AM

Company:
Contact Name:
Phone Number:

ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Uniform Cripple R	esults	Punched Cripp	le Member:	(1) 600S162-4	(1) 600S162-43 33 @ 24" O.C.	
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAII
Cripple (2)						
M str	-554 lb-in	16781 lb-in	3.30%	1.42 ft	Suction	PASS
M stb	-554 lb-in	15254 lb-in	3.63%	1.42 ft	Suction	PASS
M_dist	-554 lb-in	13562 lb-in	4.09%	1.42 ft	Suction	PASS
v ⁻	65 lbs	1240 lbs	5.25%	2.84 ft	Suction	PASS
V/M	0.05	1	5.25%	2.84 ft	Suction	PASS
Р	0 lbs	4060 lbs	0.00%		DL	PASS
P/M	0.04	1	4.09%	1.42 ft	Suction	PASS
l req	0.017 in4	2.316 in4	0.73%	1.42 ft	Suction	PASS
Span Δ	0.001 in	0.095 in	L/49593	1.42 ft	Suction	PASS
Web Crippling	-65	269	-24.20%	C2	Suction	PASS
Web Crippling	-65	269	-24.20%	C1	Suction	PASS
C2: Wind:	Rx = -65 lbs	Rx = 64 lbs			Ry = 0 lbs	
Conne	ction:	·	·			

Wind: Rx = -65 lbs Rx = 64 lbs Ry = 0 lbs C1:

Connection:

Interaction Check							
Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL	
Cripple (2.1)							
M str	-4580 lb-in	16781 lb-in	27.29%	2.84 ft	Suction	PASS	
M_stb	-4580 lb-in	15254 lb-in	30.02%	2.84 ft	Suction	PASS	
M_dist	-4580 lb-in	13562 lb-in	33.77%	2.84 ft	Suction	PASS	
v ⁻	-199 lbs	1240 lbs	16.08%	0.00 ft	Suction	PASS	
V/M	0.32	1	31.64%	2.84 ft	Pressure	PASS	
Р	1021 lbs	4060 lbs	25.15%	0.00 ft	DL	PASS	
P/M	0.59	1	59.03%	2.84 ft	Suction	PASS	
l req	0.102 in4	2.316 in4	4.40%	1.56 ft	Suction	PASS	
Span Δ	0.004 in	0.095 in	L/8185	1.56 ft	Suction	PASS	
Web Crippling	198	269	73.81%	C2	Pressure	PASS	
Web Crippling	-199	269	-74.18%	C1	Suction	PASS	

C2:	Wind:	Rx = 69 lbs	Rx = 198 lbs	Ry = 0 lbs
	Connectio	on:		
C1:	Wind:	Rx = -199 lbs	Rx = 0 lbs	Ry = 1021 lbs
	Connoctiv			

Connection:

DesignPro Opening Designer Output

Version 6.0.2.0

Project Name: Project Number: Opening: Date/Time: CFS-NHERI 10 Story Archetype 2150200882-0 H4: Level 01 - Test 10/29/2021 / 10:18 AM

Company: Contact Name: Phone Number: ClarkDietrich Engineering Services LLC Lynn Padgett, P.E. 678.304.5525

Jamb Results

Unpunched HDS Member: Punched Stud Member: Track Member: (1) 600HDS300-97 50 (1) 600S162-54 50 (0) None

Interaction Check	Actual	Allowable	Capacity	Location	Controlled By	Pass/FAIL
M str	-18323 lb-in	122530 lb-in	14.95%	6.66 ft	Suction	PASS
M_stb	-18323 lb-in	108120 lb-in	16.95%	6.66 ft	Suction	PASS
M_dist	-18323 lb-in	100229 lb-in	18.28%	6.66 ft	Suction	PASS
v ⁻	428 lbs	12418 lbs	3.45%	10.00 ft	Suction	PASS
V/M	0.15	1	15.03%	7.16 ft	Suction	PASS
Р	27372 lbs	38963 lbs	70.25%	0.00 ft	DL	PASS
P/M	0.96	1	95.96%	6.66 ft	Suction	PASS
l req	1.903 in4	11.197 in4	16.99%	5.00 ft	Suction	PASS
 Span Δ	0.057 in	0.333 in	L/2118	5.00 ft	Suction	PASS
Web Crippling	-428	3127	13.69%	C2	Suction	PASS
Web Crippling	-412	3127	13.18%	C1	Suction	PASS

C2:	Wind:	Rx = -428 lbs	Rx = 242 lbs		Ry = 0 lbs		
600T125-54 50 ksi Track w/ (2) Buildex #10-16 T3 to 54-50 L.S.F. at each Jamb - 40% Capacity							
C1:	Wind	Rx = -412 lbs	Rx = 229 lbs		Rv = 27372 lbs		

600T125-54 50 ksi Track w/ (2) Buildex #10-16 T3 to 43-33 L.S.F. at each Jamb - 78% Capacity

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

ASD SEISMIC LOAD ANALYSIS ON SHEATHED SHEAR WALL

SW-1 TRANSVERSE DIRECTION

NOTES

- R>3, AISI S400-15 Sheathed Shearwall, Blocked Sheet Steel Capacity from Recent Roger's Study.
- 33Ksi Sheet Steel, Fy must be less than 50 Ksi
- No Gypsum Sheathing (R=2)
- Max aspect ratio = 2:1, but then 2w/h reduction up to 4:1
- Governing locations GL D, Interior W3 Demising Wall, 315sf / 810sf No Wind Design, compare to Archetype 913plf base shear

SHEAR WALL SUMMARY

HEIGHT ft	LEVEL	SHEATHING TYPE	FASTENER SPACING	MINIMUM STUD GAUGE	POST TYPE	BOTTOM ANCHORAGE	OPTIONAL SHEATHING
10.00	10	27 MIL STEEL (33Ksi)	6 / 12	18	Tension Rod System	Tension Rod System	
10.00	9	27 MIL STEEL (33Ksi)	6 / 12	18	Tension Rod System	Tension Rod System	
10.00	8	27 MIL STEEL (33Ksi)	4 / 12	18	Tension Rod System	Tension Rod System	
10.00	7	33 MIL STEEL (Blkg, #10) (33Ksi)	6 / 12	16	Tension Rod System	Tension Rod System	
10.00	6	33 MIL STEEL (Blkg, #10) (33Ksi)	4 / 12	16	Tension Rod System	Tension Rod System	
10.00	5	33 MIL STEEL (Blkg, #10) (33Ksi)	4 / 12	16	Tension Rod System	Tension Rod System	
10.00	4	33 MIL STEEL (Blkg, #10) (33Ksi)	3 / 12	16	Tension Rod System	Tension Rod System	
10.00	3	33 MIL STEEL (Blkg, #10) (33Ksi)	3 / 12	16	Tension Rod System	Tension Rod System	
10.00	2	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	16	Tension Rod System	Tension Rod System	
10.00	1	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	16	Tension Rod System	Tension Rod System	

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett

 DATE:
 3/22/2022

 CHECKER:
 LAP

 DATE:
 SUBJECT:

SUBJECT: ASD Seismic LFRS Loading

Carlsbad, California 92008

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME: CFS-NHERI 10 Story Test Portion PROJECT NUMBER: 2150200882 ENGINEER: L. Padgett DATE: CHECKER: LAP DATE: SUBJECT: ASD Seismic LFRS Loading

LATERAL FORCE RESISTING SYSTEM SEISMIC LOAD ANALYSIS

BUILDING BAY AREA: 315 sf TOTAL BUILDING AREA: 810 sf SAFETY FACTOR: 2.5 S400-15 E2.3.2 SHEAR WALL LENGTH: 6 ft QUANTITY PER BAY: 2

	4 47 1-		R	LRFD SHEAR= 810 lb	135 lb/ft	
	4.17 k —		100.00	ASD SHEAR= 567 lb	94 lb/ft	DIAPHRAGM
						TOTAL BAY
#12 Trk -		ft		SHEATHING: 27 MIL STE	EL (33Ksi)	
Trk Max Screw		0.00 ft		END POST: Tension F	Rod System	EXPECTED
Spacing		10		ANCHORAGE: Tension F	Rod System	
opaong	24 in					
	6.57 k —	-	10	LRFD SHEAR= 2088 lb	348 lb/ft	
	0.57 K -		90.00	ASD SHEAR= 1461 lb	244 lb/ft	DIAPHRAGM
#40 Tak						TOTAL BAY
#12 Trk - Trk Max		, H		SHEATHING: 27 MIL STE		
Screw		0.00 ft		END POST: Tension F		EXPECTED
Spacing		7		ANCHORAGE: Tension F	Rod System	
	14 in					
	5.80 k —		9	LRFD SHEAR= 3214 lb	536 lb/ft	
	0.00 K	-	80.00	ASD SHEAR= 2250 lb	375 lb/ft	DIAPHRAGM
#12 Trk -						TOTAL BAY
Trk Max		10.00 ft		SHEATHING: 27 MIL STE		
Screw		0.0		END POST: Tension F		EXPECTED
Spacing		7		ANCHORAGE: Tension F	Rod System	
	9 in		_			
	5.03 k —		8	LRFD SHEAR= 4192 lb	699 lb/ft	
			70.00	ASD SHEAR= 2934 lb	489 lb/ft	DIAPHRAGM
#12 Trk -						TOTAL BAY
Trk Max		0.00 ft		SHEATHING: 33 MIL STE		EVELOTER
Screw		0.0		END POST: Tension F	•	EXPECTED
Spacing		~		ANCHORAGE: Tension F	kod System	
	14 in		-			
	4.26 k —		7 60.00	LRFD SHEAR= 5021 lb ASD SHEAR= 3515 lb	837 lb/ft 586 lb/ft	DIAPHRAGM
			60.00	ASD SHEAR= 3515 ID	580 ID/II	TOTAL BAY
#12 Trk -		<u>ب</u>		SHEATHING: 33 MIL STE	EL (Blkg #10) (TOTAL DAT
Trk Max		0.00 ft		END POST: Tension F		EXPECTED
Screw		0.0		ANCHORAGE: Tension F		EXPECTED
Spacing	12 in	``		ANCHORAGE. TENSION	tou bystem	
	12 11		6	LRFD SHEAR= 5704 lb	951 lb/ft	
	3.51 k —		50.00	ASD SHEAR= 3993 lb	665 lb/ft	DIAPHRAGM
			00.00		000 15/11	TOTAL BAY
#12 Trk -		Ŧ		SHEATHING: 33 MIL STE	EL (Blkg. #10) (
Trk Max		0.00 ft		END POST: Tension F		EXPECTED
Screw		10.1		ANCHORAGE: Tension F	•	
Spacing	10 in					
	10 11		II			II

EXPECTED STRENGTH = 1941 lb/ft DIAPHRAGM SHEAR (Q_E) = 2555 lb

SHEAR (Q_E) = 1620 lb SHEAR (Q_E) = 1620 lb

SHEAR (Q_E) = 4175 lb

EXPECTED STRENGTH = 1941 lb/ft

DIAPHRAGM SHEAR $(Q_E) = 2254 \text{ lb}$ TOTAL BAY SHEAR $(Q_E) = 6429 \text{ lb}$

EXPECTED STRENGTH = 3000 lb/ft

DIAPHRAGM SHEAR (Q_E) = 1955 lb TOTAL BAY SHEAR (Q_E) = 8384 lb

EXPECTED STRENGTH = 4095 lb/ft

DIAPHRAGM SHEAR (Q_E) = 1658 lb TOTAL BAY SHEAR (Q_E) = 10042 lb

EXPECTED STRENGTH = 5139 lb/ft

DIAPHRAGM SHEAR (Q_E) = 1365 lb TOTAL BAY SHEAR (Q_E) = 11407 lb

EXPECTED STRENGTH = 5139 lb/ft

SW-1

#12 Trk -Trk Max

#12 Trk -Trk Max

#12 Trk -Trk Max

Screw Spacing

3/8" x 2 1/2" Kwik-

HUS-EZ= (600lb)

Screw Spacing

Screw Spacing Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

PROJECT NAME:	CFS-NHERI 10 Story Test Portion				
PROJECT NUMBER:	2150200882				
ENGINEER: L. Padg	jett	DATE:	3/22/2022		
CHECKER: LAP		DATE:			
SUBJECT: ASD Se	eismic LFRS Loading				

2.77 k —	_	5	LRFD SHEAR=	6242 lb	1040 lb/ft	
2.11 K —		10.00	ASD SHEAR=	4369 lb	728 lb/ft	DIAPHF
						ΤΟΤΑΙ
	Ŧ		SHEATHING:	33 MIL STEE	EL (Blkg, #10) (
	10.00 ft		END POST:			EXPE
	10		ANCHORAGE:	Tension R	od System	
9 in						
2.04 k —		4	LRFD SHEAR=		1106 lb/ft	
2.04 K	-	10.00	ASD SHEAR=	4646 lb	774 lb/ft	DIAPHF
						ΤΟΤΑΙ
	0 ft		SHEATHING:			
	10.00 ft		END POST:			EXPE
	Ę		ANCHORAGE:	Tension R	od System	
9 in						
1.32 k —	-	3	LRFD SHEAR=		1149 lb/ft	
		10.00	ASD SHEAR=	4826 lb	804 lb/ft	DIAPHF
						ΤΟΤΑΙ
	0 ft		SHEATHING:			EVE
	10.00 ft		END POST:		,	EXPE
0 1.	-		ANCHORAGE:	I ension R	od System	
8 in		•	LRFD SHEAR=	7010 16	1170 lb/ft	
0.63 k —	•	2	ASD SHEAR=		819 lb/ft	DIAPHE
			ASD SHEAR-	491210	01910/11	τοται
	بر		SHEATHING:	33 MIL STEE	El (Blkg #10)/	10174
	0.00 ft		END POST:			EXPE
	10.0		ANCHORAGE:		-	
9 in			ANOTOTAOL.		ou cystom	
0 111		1				

SW-1

DIAPHRAGM SHEAR (Q_E) = 1076 lb TOTAL BAY SHEAR (Q_E) = 12484 lb EXPECTED STRENGTH = 5886 lb/ft DIAPHRAGM SHEAR (Q_E) = 792 lb TOTAL BAY SHEAR (Q_E) = 13276 lb EXPECTED STRENGTH = 5886 lb/ft DIAPHRAGM SHEAR (Q_E) = 514 lb TOTAL BAY SHEAR (Q_E) = 13790 lb EXPECTED STRENGTH = 6330 lb/ft DIAPHRAGM SHEAR (Q_E) = 245 lb TOTAL BAY SHEAR (Q_E) = 14035 lb EXPECTED STRENGTH = 6330 lb/ft

Carlsbad, California 92008

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

DESIGN SPECTRAL RESPONSE ACCELLERATION, SHORT PEF S_{DS} = 1.0088 SYSTEM OVERSTRENGTH FACTOR (TRANSVERSE DIRECTION Ω_0 = 3.0 REDUNDANCY FACTOR (TRANSVERSE DIRECTION) $\rho = 1.0$

INDIVIDUAL LOADS

		UNFACTC	RED ON-CENT LOADS	END-POST LOADS FROM HORIZONTAL LOADING											
HEIGHT	LEVEL	P _{DL}	P _{DL} FOR UPLIFT	P _{LL}	Q _E	EXPECTED STRENGTH									
ft		lb	lb	lb	lb	lb									
10.00	10	179	179	53	1350	19410									
10.00	10	175	175	55	1350	19410									
10.00	9	465	465	133	3479	19410									
10.00	5	405	405	155	4829	38820									
10.00	8	751	751	266	5357	30000									
10.00	0	751	751	200	10187	68820									
10.00	7	1036	1036	399	6986	40950									
10.00	7	1030	1030	399	17173	109770									
10.00	6	1322	1322	532	8368	51390									
10.00	0	1322	1322	552	25541	161160									
10.00	5	1608	1608	665	9506	51390									
10.00	5	1000	1000	005	35047	212550									
10.00	4	1894	1894	798	10403	58860									
10.00	4	1094	1094	790	45451	271410									
10.00	3	2180	2180	931	11063	58860									
10.00	3	2100	2100	931	56514	271410									
10.00	2	2466	2466	1064	11491	63300									
10.00	2	2400	2400	1004	68005	275850									
10.00	1	2752	2752	1197	11696	63300									
10.00	1	2152	2752 2752 1197		79701	334710									
			Ancho	r LRFD Uplift=	-77224 lb										

PROJECT NAME:		CFS-NHERI 10 Story Test Portion				
PROJECT NU	JMBER:	2150200882				
ENGINEER:	L. Padge	ett	DATE:	3/22/2022		
CHECKER:	LAP		DATE:			
SUBJECT:	ASD Sei	smic LFRS Loading				

GOVERNING LOADS CONVERTED TO ASD

00							
ASD END-POST AND HOLDOWN LOADS							
ASD Post	ASD HD						
Compression	Tension						
lb (FS=1.8)	lb (FS=3)						
2419	-1308						
8485	-4721						
17710	-10012						
29650	-16932						
43894	-25234						
60034	-34673						
77669	-45010						
96404	-56006						
115853	-67431						
135643	-79061						
S100-12							

S100-12, Section C4.1

FS=1.8 FS=3.0

SW-1

Carlsbad, California 92008

Phone: (877) 832-3206 www.ClarkDietrich.com

SW-1

LATERAL FORCE RESISTING SYSTEM SEISMIC LOAD COMBINATION SUMMARY

		L		D-POST EISMIC LOADING	3	NOMINAL END-POST LOADS FROM EXPECTED STRENGTH OR AMPLIFIED SEISMIC LOADING (Ω_0Q_E)			
HEIGHT	LEVEL	CASE 5 ^a COMPRESS.	CASE 6 ^b COMPRESS.	GOVERNING COMPRESS.	CASE 8 ^C TENSION	CASE 5 ^d COMPRESS.	CASE 7 ^e TENSION	NOMINAL ^f COMPRESS.	NOMINAL [†] TENSION
ft		lb	lb	lb	lb	lb	lb	lb	lb
10.00	10	1124	927	1124	-838	4354	-3925	4354	-3925
10.00	9	3845	3100	3845	-3101	15273	-14163	15273	-14163
10.00	8	7882	6299	7882	-6680	31879	-30036	31879	-30036
10.00	7	13057	10351	13057	-11400	53370	-50796	53370	-50796
10.00	6	19201	15130	19201	-17086	79009	-75701	79009	-75701
10.00	5	26141	20507	26141	-23568	108061	-104020	108061	-104020
10.00	4	33709	26354	33709	-30679	139805	-135029	139805	-135029
10.00	3	41740	32548	41740	-38252	173528	-168019	173528	-168019
10.00	2	50070	38967	50070	-46124	208536	-202293	208536	-202293
10.00	1	58543	45493	58543	-54140	244158	-237182	244158	-237182
					ASD			NOM	INAL

^a FROM CASE 5, SECTION 2.4.1: D + 0.7 Q_E

^b FROM CASE 6, SECTION 2.4.1: D + 0.75 (0.7 Q_E) + 0.75 L

 $^{\rm c}\,$ FROM CASE 8, SECTION 2.4.1: 0.6 D - 0.7 $\rm Q_{E}$

 $^d\,$ FROM CASE 5, SECTION 12.4.3.2: (1.2 + 0.2 $S_{DS})$ D + $\Omega_0\,Q_E$ + L + 0.2S

 $^{e}\,$ FROM CASE 7, SECTION 12.4.3.2: (0.9 - 0.2 SDS) D - $\,\Omega 0$ Q $_{E}$ +1.6H

^f REQUIRED NOMINAL STRENGTH = LESSER OF EXPECTED STRENGTH OR OVERSTRENGTH AMPLIFIED SEISMIC

BASED ON AISI S400-15 SECTIONS E2.4.1.2, END-POSTS, HOLDOWNS, AND CONNECTIONS THAT ARE NOT PART OF THE ENERGY DISSIPATI SYSTEM (SHEATHING AND FASTENERS) MUST HAVE THE <u>NOMINAL</u> STRENGTH TO RESIST THE LESSER OF THE EXPECTED STRENGTH OR THE AMPLIFIED SEISMIC LOAD EFFECTS INCLUDING OVERSTRENGTH.

Q_E IS THE UNFACTORED COMPONENT FORCE RESULTING FROM A HORIZONTAL SEISMIC LOAD

SHEATHING IS EVALUATED BASED ON 0.7 Q_E COMPARED TO THE ALLOWABLE SHEATHING CAPACITY (NOMINAL SHEATHING CAPACITY DIVIDED BY Ω FACTOR OF SAFETY).

ASD SHEAR	NOMINAL	NOMINAL	MAXIMUM	ALLOWABLE	ITEM #
DEMAND	DEMAND	CAPACITY	ASPECT RATIO	ASPECT RATIO	11 EIVI #
94 lb/ft	236 lb/ft	647 lb/ft	1.667	2.000	18
244 lb/ft	609 lb/ft	647 lb/ft	1.667	2.000	18
375 lb/ft	938 lb/ft	1000 lb/ft	1.667	2.000	33
489 lb/ft	1223 lb/ft	1365 lb/ft	1.667	2.000	30
586 lb/ft	1464 lb/ft	1713 lb/ft	1.667	2.000	29
665 lb/ft	1664 lb/ft	1713 lb/ft	1.667	2.000	29
728 lb/ft	1821 lb/ft	1962 lb/ft	1.667	2.000	28
774 lb/ft	1936 lb/ft	1962 lb/ft	1.667	2.000	28
804 lb/ft	2011 lb/ft	2110 lb/ft	1.667	2.000	27
819 lb/ft	2047 lb/ft	2110 lb/ft	1.667	2.000	27

Sheathing Selection (See Reference Page)

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

ASD WIND LOAD ANALYSIS ON SHEATHED SHEAR WALL

PROJECT NAME: CFS-NHERI 10 Story Test Portion PROJECT NUMBER: 2150200882 ENGINEER: L. Padgett DATE: CHECKER: LAP DATE:

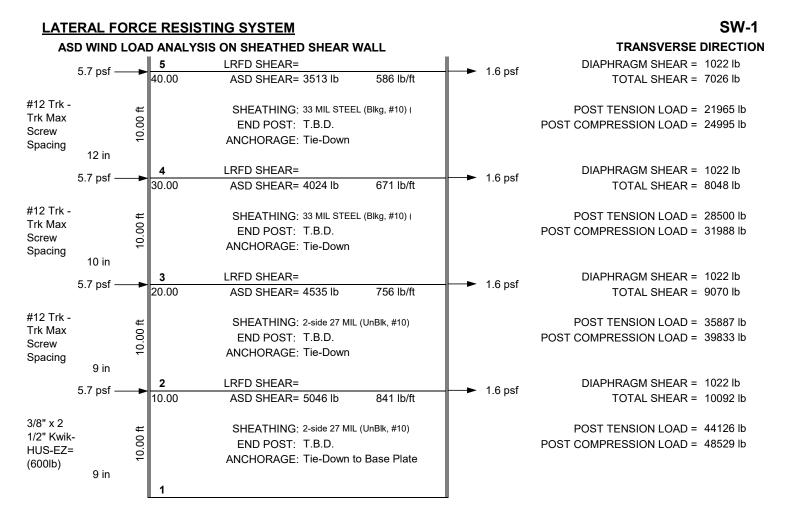
SUBJECT: ASD Wind LFRS Loading

SW-1

TRANSVERSE DIRECTION

NOTES

- S240-15 Section B5.2, Blocked Sheet Steel Capacity from Recent Roger's Study.
- Max aspect ratio = 2:1, but then 2w/h reduction up to 4:1
- Governing locations GL D, W3 Demising Wall, 14' Trib Width


• Transverse wind approximately equivalent to the SW-1 and SW-3 Demising seismic is 63 mph Exp C = 5.7 windward psf + 1.6 leeward psf.

LATERAL FORCE RESISTING SYSTEM

ASD WIND LOAD ANALYSIS ON SHEATHED SHEAR WALL

ASD WIND LOAD ANALYSIS

LATERAL FORCE RESISTING SYSTEM

SW-1 TRANSVERSE DIRECTION

ASD WIND LOAD ANALYSIS ON SHEATHED SHEAR WALL

		UNFACTORED GRAVITY LOADS AT BRACED WALL END-POST			END-POST	ASD LEVEL TENSION & COMPRESSION LOADS AT BRACED WALL END-POST			-
HEIGHT	LEVEL	P _{DL}	P _{DL} FOR UPLIFT	P _{LL}	LOAD (FROM WIND ONLY)	CASE 5 ^{°a} COMPRESS.	CASE 6 ^b COMPRESS.	GOVERNING COMPRESS.	CASE 8 ^C TENSION
ft		lb	lb	lb	lb	lb	lb	lb	lb
10.00	10	179	179	53	745 745	924	778	924	-638
10.00	9	465	465	133	1597 2342	2807	2321	2807	-2063
10.00	8	751	751	266	2449 4791	5542	4543	5542	-4340
10.00	7	1036	1036	399	3300 8091	9127	7403	9127	-7469
10.00	6	1322	1322	532	4152 12243	13565	10903	13565	-11450
10.00	5	1608	1608	665	5004 17246	18854	15041	18854	-16281
10.00	4	1894	1894	798	5855 23101	24995	19819	24995	-21965
10.00	3	2180	2180	931	6707 29808	31988	25235	31988	-28500
10.00	2	2466	2466	1064	7559 37367	39833	31289	39833	-35887
10.00	1	2752	2752	1197	8410 45777	48529	37983	48529	-44126
							Ancho	r I RFD Unlift =	-73818 lb

Anchor LRFD Uplift = -73818 lb

ALL LOADS ARE EVALUATED BASED ON THE ALLOWABLE STRESS REQUIREMENTS OF ASCE 7.

^a FROM CASE 5, SECTION 2.4.1: D + Wasd

^b FROM CASE 6, SECTION 2.4.1: D + 0.75 Wasd + 0.75 L

^c FROM CASE 7, SECTION 2.4.1: 0.6 D - Wasd

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

ASD SEISMIC LOAD ANALYSIS ON SHEATHED SHEAR WALL

SW-2 LONGITUDINAL DIRECTION

DATE:

DATE: 3/22/2022

CFS-NHERI 10 Story Test Portion

2150200882

ASD Seismic LFRS Loading

NOTES

- R>3, AISI S400-15 Sheathed Shearwall, Blocked Sheet Steel Capacity from Recent Roger's Study.
- 33Ksi Sheet Steel, Fy must be less than 50 Ksi
- No Gypsum Sheathing (R=2)
- Max aspect ratio = 2:1, but then 2w/h reduction up to 4:1

• Exterior GL 1. Endpost compression and tension based on 2ft oc W1 studs. No wind design. Compare to Archetype base shear 761 plf

PROJECT NAME:

CHECKER:

SUBJECT:

PROJECT NUMBER:

ENGINEER: L. Padgett

LAP

SHEAR WALL SUMMARY

HEIGHT ft	LEVEL	SHEATHING TYPE	FASTENER SPACING	MINIMUM STUD GAUGE	POST TYPE	BOTTOM ANCHORAGE	OPTIONAL SHEATHING
10.00	10	27 MIL STEEL (33Ksi)	6 / 12	18	600S250-43	S/PHD4	
10.00	9	27 MIL STEEL (33Ksi)	4 / 12	18	600HDS300-54	CD8	
10.00	8	27 MIL STEEL (33Ksi)	2 / 12	18	600HDS300-97	CD10	
10.00	7	33 MIL STEEL (Blkg, #10) (33Ksi)	4 / 12	16	(2) 600HDS300-68	(2) CD15	
10.00	6	33 MIL STEEL (Blkg, #10) (33Ksi)	3 / 12	16	HSS 6x6x3/16	1/4" x 5" A36 Plate	
10.00	5	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	16	HSS 6x6x3/16	3/8" x 5" A36 Plate	
10.00	4	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	14	HSS 6x6x3/16	1/2" x 5" A36 Plate	
10.00	3	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	14	HSS 6x6x3/16	1/2" x 5" A572 Gr50 P	
10.00	2	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	14	HSS 6x6x3/16	1/2" x 5" A572 Gr50 P	
10.00	1	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	12	3/8" x 5" A36 Plate	Weld Direct to Transfe	

Carlsbad, California 92008

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM SEISMIC LOAD ANALYSIS

BUILDING BAY AREA: 383 sf TOTAL BUILDING AREA: 810 sf SAFETY FACTOR: 2.5 S400-15 E2.3.2 SHEAR WALL LENGTH: 6 ft QUANTITY PER BAY: 2

	4 4 7 1		R	LRFD SHEAR=	984 lb	164 lb/ft	
	4.17 k –		100.00	ASD SHEAR=	688 lb	115 lb/ft	DIAPHRAGM SHEAR (Q _E) = 1967 lb
							TOTAL BAY SHEAR (Q_E) = 1967 lb
#12 Trk -		ft		SHEATHING:	27 MIL STEE	L (33Ksi)	
Trk Max Screw		10.00 ft		END POST:	600S250-4	3	EXPECTED STRENGTH = 1941 lb/ft
Spacing		10		ANCHORAGE:	S/PHD4		
opuoling	24 in						
	6.57 k –		10	LRFD SHEAR=	2535 lb	422 lb/ft	
	0.57 K -		90.00	ASD SHEAR=	1774 lb	296 lb/ft	DIAPHRAGM SHEAR (Q_E) = 3103 lb
#40 Tak							TOTAL BAY SHEAR (Q_E) = 5070 lb
#12 Trk - Trk Max		10.00 ft		SHEATHING:	27 MIL STEE	L (33Ksi)	
Screw		00.00		END POST:	600HDS30	0-54	EXPECTED STRENGTH = 3000 lb/ft
Spacing		10		ANCHORAGE:	CD8		
	11 in						
	5.80 k –	•	9	LRFD SHEAR=		651 lb/ft	
	0.00 K	-	80.00	ASD SHEAR=	2732 lb	455 lb/ft	DIAPHRAGM SHEAR (Q_E) = 2737 lb
#12 Trk -							TOTAL BAY SHEAR (Q_E) = 7807 lb
Trk Max		0 ft		SHEATHING:			
Screw		10.00 ft		END POST:		0-97	EXPECTED STRENGTH = 3510 lb/ft
Spacing		7		ANCHORAGE:	CD10		
	15 in						
	5.03 k –	•	8	LRFD SHEAR=		848 lb/ft	
			70.00	ASD SHEAR=	3563 lb	594 lb/ft	DIAPHRAGM SHEAR $(Q_E) = 2374 \text{ lb}$
#12 Trk -							TOTAL BAY SHEAR $(Q_E) = 10180$ lb
Trk Max		10.00 ft		SHEATHING:			
Screw		0.0		END POST:		5300-68	MP1.8 EXPECTED STRENGTH = 5139 lb/ft
Spacing	44 5-	-		ANCHORAGE:	(2) CD15		
	11 in		-		6007 lb	1016 lb/ft	
	4.26 k -		7 60.00	LRFD SHEAR= ASD SHEAR=		711 lb/ft	DIAPHRAGM SHEAR (Q _E) = 2014 lb
			60.00	ASD SHEAR=	4200 ID		TOTAL BAY SHEAR (Q_E) = 12194 lb
#12 Trk -		Ļ,		SHEATHING:	33 MIL STEE	l (Blkg #10)/	TOTAL DAT STILLAR $(Q_E) = 12194$ ib
Trk Max		0.00 ft		END POST:			EXPECTED STRENGTH = 5886 lb/ft
Screw		10.0		ANCHORAGE:			EXFECTED STRENGTH - 5000 lb/lt
Spacing	10 in	ì		ANCHONAGE.	1/4 × 5 ∧		
	10 111		6	LRFD SHEAR=	6926 lh	1154 lb/ft	
	3.51 k –	-	50.00	ASD SHEAR=		808 lb/ft	DIAPHRAGM SHEAR (Q _E) = 1658 lb
			00.00	AGD GHEAN-	101010	000 15/11	TOTAL BAY SHEAR $(Q_E) = 13852$ lb
#12 Trk -		Ħ		SHEATHING:	33 MIL STEE	L (Blka, #10) (
Trk Max		10.00 ft		END POST:			EXPECTED STRENGTH = 6330 lb/ft
Screw		10.		ANCHORAGE:			
Spacing	8 in						
			11				II

SW-2

LATERAL FORCE RESISTING SYSTEM

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME: CFS-NHERI 10 Story Test Portion PROJECT NUMBER: 2150200882 ENGINEER: L. Padgett DATE: 3/22/2022 CHECKER: LAP DATE: DATE: SUBJECT: ASD Seismic LFRS Loading DATE: DATE:

SW-2

	2.77 k -		5	LRFD SHEAR= 7579 lb 1263 lb/ft
	2.11 K -		10.00	ASD SHEAR= 5306 lb 884 lb/ft
#12 Trk -				
Trk Max		0 ft		SHEATHING: 33 MIL STEEL (Blkg, #10) (
Screw		0.00 ft		END POST: HSS 6x6x1/4
Spacing		~		ANCHORAGE: 1/2" x 5" A36 Plate
	8 in			
	2.04 k –		4 10.00	LRFD SHEAR= 8060 lb 1343 lb/ft ASD SHEAR= 5642 lb 940 lb/ft
			10.00	ASU SHEAR- 3042 ID 940 ID/IL
#12 Trk -		Ł		SHEATHING: 33 MIL STEEL (Blkg, #10) (
Trk Max		0.00 ft		END POST: HSS 6x6x5/16
Screw		10.		ANCHORAGE: 1/2" x 5" A572 Gr50 Plate
Spacing	7 in			
	1.32 k -		3	LRFD SHEAR= 8372 lb 1395 lb/ft
	1.32 K -	-	10.00	ASD SHEAR= 5861 lb 977 lb/ft
#12 Trk -				
#12 Trk - Trk Max) ft		SHEATHING: 33 MIL STEEL (Blkg, #10) (
Screw		0.00 ft		END POST: HSS 6x6x3/8
Spacing		1		ANCHORAGE: 1/2" x 5" A572 Gr50 Plate
	7 in		_	
	0.63 k –		2	LRFD SHEAR= 8521 lb 1420 lb/ft
				ASD SHEAR= 5965 lb 994 lb/ft
3/8" x 2		ب.		SHEATHING: 33 MIL STEEL (Bikg, #10) (
1/2" Kwik-		0.00 ft		END POST: HSS 6x6x1/2
HUS-EZ=		10.0		ANCHORAGE: Weld Direct to Transfer PL
(600lb)	7 in			
	,		1	
	_		•	

DIAPHRAGM SHEAR (Q_E) = 1307 lb TOTAL BAY SHEAR (Q_E) = 15159 lb EXPECTED STRENGTH = 7392 lb/ft DIAPHRAGM SHEAR (Q_E) = 962 lb TOTAL BAY SHEAR (Q_E) = 16120 lb EXPECTED STRENGTH = 7392 lb/ft DIAPHRAGM SHEAR (Q_E) = 624 lb TOTAL BAY SHEAR (Q_E) = 16745 lb EXPECTED STRENGTH = 7392 lb/ft DIAPHRAGM SHEAR (Q_E) = 16745 lb EXPECTED STRENGTH = 7392 lb/ft

EXPECTED STRENGTH = 8415 lb/ft

Carlsbad, California 92008

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

DESIGN SPECTRAL RESPONSE ACCELLERATION, SHORT PEF S_{DS} = 1.0088 SYSTEM OVERSTRENGTH FACTOR (LONGITUDINAL DIRECTIC Ω_0 = 3.0 REDUNDANCY FACTOR (LONGITUDINAL DIRECTION) $\rho = 1.0$

INDIVIDUAL LOADS

H-4 Ext Openir	ng Jambs	UNFACTC	RED ON-CEN LOADS	END-POST LOADS FROM HORIZONTAL LOADING		
HEIGHT	LEVEL	P _{DL}	P _{DL} FOR UPLIFT	P _{LL}	Q _E	EXPECTED STRENGTH
ft		lb	lb	lb	lb	lb
10.00	10	753	753	430	1639	19410
10.00	10	755	755	430	1639	19410
10.00	9	1505	1505	1075	4225	30000
10.00	5	1505	1505	1075	5864	49410
10.00	8	2256	2256	2150	6505	35100
10.00	0	2250	2250	2150	12370	84510
10.00	7	3008	3008	3225	8483	51390
10.00	7	5000	3008 3225	5225	20853	135900
10.00	6	3759	3759	4300	10162	58860
10.00	0	5759	5759	4300	31014	194760
10.00	5	4511	4511	5375	11543	63300
10.00	5	4011	4311	3373	42558	258060
10.00	4	5262	5262	6450	12632	73920
10.00	ť	5202	5202	0450	55190	331980
10.00	3	6014	6014	7525	13434	73920
10.00	5	0014	0014	7525	68624	331980
10.00	2	6765	6765	8600	13954	73920
10.00	2	0705	0705	0000	82578	331980
10.00	1	7517	7517	9675	14202	84150
10.00	1	7317	7317	9075	96780	416130
	-90015 lb					

Anchor LRFD Uplill= -90015 lb

PROJECT NA	ME:	CFS-NHERI 10 Stor	y Test P	ortion
PROJECT NU	JMBER:	2150200882		
ENGINEER:	L. Padg	ett	DATE:	3/22/2022
CHECKER:	LAP		DATE:	
SUBJECT:	ASD Se	ismic LFRS Loading		

GOVERNING LOADS CONVERTED TO ASD

00		
ASD END-I	POST AND	
HOLDOW	N LOADS	
ASD Post	ASD HD	
Compression	Tension	
lb (FS=1.8)	lb (FS=3)	
3557	-1464	
11543	-5514	
23567	-11844	
38889	-20153	
57007	-30140	HD Plate
77429	-41508	HD Plate
99664	-53965	HD Plate
123237	-67224	HD Plate
147675	-81003	HD Plate
172529	-95030	HD Plate
S100-12,		
Section C4.1		
FS=1.8	FS=3.0	

SW-2

Carlsbad, California 92008

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM SEISMIC LOAD COMBINATION SUMMARY

SW-2

		ASD END-POST LOADS FROM SEISMIC LOADING			NOMINAL END-POST LOADS FROM EXPECTED STRENGTH OR AMPLIFIED SEISMIC LOADING (Ω_0Q_E)				
HEIGHT	LEVEL	CASE 5 ^a COMPRESS.	CASE 6 ^b COMPRESS.	GOVERNING COMPRESS.	CASE 8 ^C TENSION	CASE 5 ^d COMPRESS.	CASE 7 ^e TENSION	NOMINAL ^f COMPRESS.	NOMINAL [†] TENSION
ft		lb	lb	lb	lb	lb	lb	lb	lb
10.00	10	1900	1936	1936	-696	6403	-4392	6403	-4392
10.00	9	5610	5390	5610	-3202	20777	-16541	20777	-16541
10.00	8	10915	10363	10915	-7305	42421	-35533	42421	-35533
10.00	7	17605	16375	17605	-12792	70000	-60458	70000	-60458
10.00	6	25469	23267	25469	-19455	102613	-90419	102613	-90419
10.00	5	34301	30885	34301	-27084	139371	-124523	139371	-124523
10.00	4	43895	39074	43895	-35476	179396	-161896	179396	-161896
10.00	3	54051	47685	54051	-44428	221826	-201672	221826	-201672
10.00	2	64569	56568	64569	-53745	265816	-243009	265816	-243009
10.00	1	75263	65583	75263	-63236	310552	-285091	310552	-285091
			ASD]		NOM	INAL		

^a FROM CASE 5, SECTION 2.4.1: D + 0.7 Q_E

^b FROM CASE 6, SECTION 2.4.1: D + 0.75 (0.7 Q_E) + 0.75 L

 $^{\rm c}\,$ FROM CASE 8, SECTION 2.4.1: 0.6 D - 0.7 $\rm Q_{E}$

 $^d\,$ FROM CASE 5, SECTION 12.4.3.2: (1.2 + 0.2 $S_{DS})$ D + $\Omega_0\,Q_E$ + L + 0.2S

 $^{e}\,$ FROM CASE 7, SECTION 12.4.3.2: (0.9 - 0.2 SDS) D - $\,\Omega 0$ Q $_{E}$ +1.6H

^f REQUIRED NOMINAL STRENGTH = LESSER OF EXPECTED STRENGTH OR OVERSTRENGTH AMPLIFIED SEISMIC

BASED ON AISI S400-15 SECTIONS E2.4.1.2, END-POSTS, HOLDOWNS, AND CONNECTIONS THAT ARE NOT PART OF THE ENERGY DISSIPATI SYSTEM (SHEATHING AND FASTENERS) MUST HAVE THE <u>NOMINAL</u> STRENGTH TO RESIST THE LESSER OF THE EXPECTED STRENGTH OR THE AMPLIFIED SEISMIC LOAD EFFECTS INCLUDING OVERSTRENGTH.

Q_E IS THE UNFACTORED COMPONENT FORCE RESULTING FROM A HORIZONTAL SEISMIC LOAD

SHEATHING IS EVALUATED BASED ON 0.7 Q_E COMPARED TO THE ALLOWABLE SHEATHING CAPACITY (NOMINAL SHEATHING CAPACITY DIVIDED BY Ω FACTOR OF SAFETY).

ASD SHEAR	NOMINAL	NOMINAL	MAXIMUM	ALLOWABLE	
DEMAND	DEMAND	CAPACITY	ASPECT RATIO	ASPECT RATIO	ITEM #
115 lb/ft	287 lb/ft	647 lb/ft	1.667	2.000	18
296 lb/ft	739 lb/ft	1000 lb/ft	1.667	2.000	33
455 lb/ft	1138 lb/ft	1170 lb/ft	1.667	2.000	31
594 lb/ft	1485 lb/ft	1713 lb/ft	1.667	2.000	29
711 lb/ft	1778 lb/ft	1962 lb/ft	1.667	2.000	28
808 lb/ft	2020 lb/ft	2110 lb/ft	1.667	2.000	27
884 lb/ft	2211 lb/ft	2464 lb/ft	1.667	2.000	26
940 lb/ft	2351 lb/ft	2464 lb/ft	1.667	2.000	26
977 lb/ft	2442 lb/ft	2464 lb/ft	1.667	2.000	26
994 lb/ft	2485 lb/ft	2805 lb/ft	1.667	2.000	25

Sheathing Selection (See Reference Page)

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

ASD WIND LOAD ANALYSIS ON SHEATHED SHEAR WALL

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

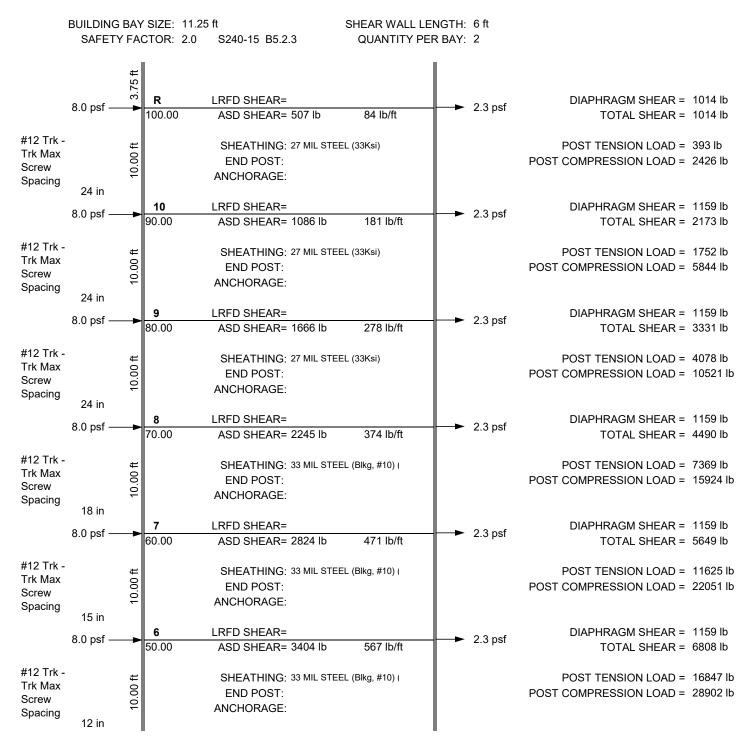
 ENGINEER:
 L. Padgett
 DATE:
 3/22/2022

 CHECKER:
 LAP
 DATE:
 DATE:

SUBJECT: ASD Wind LFRS Loading

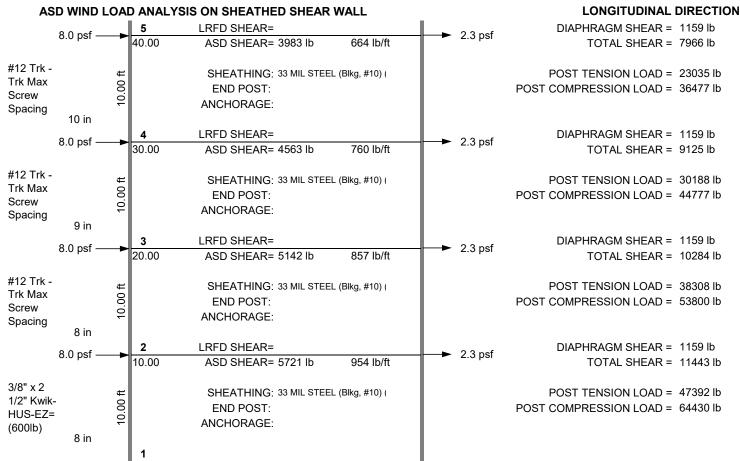
5

LONGITUDINAL DIRECTION


SW-2

NOTES

- S240-15 Section B5.2, Blocked Sheet Steel Capacity from Recent Roger's Study.
- Max aspect ratio = 2:1, but then 2w/h reduction up to 4:1
- Exterior GL 1 between wall openings. Endpost compression and tension based on 2ft oc W1 studs.
- Longitude wind approximately equivalent to the seismic is 75 mph Exposure C, 8 windward psf + 2.4 leeward psf.


LATERAL FORCE RESISTING SYSTEM

ASD WIND LOAD ANALYSIS

LATERAL FORCE RESISTING SYSTEM

SW-2

ASD WIND LOAD ANALYSIS ON SHEATHED SHEAR WALL

HEIGHT LEVEL PDL PD				ORED GRAVIT		END-POST LOAD (FROM	LOA	DS AT BRACE	ON & COMPRES D WALL END-P	OST
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	HEIGHT	LEVEL	P _{DL}	P _{DL} P _L W			CASE 5 °	CASE 6 ^b COMPRESS.		CASE 8 ^C TENSION
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ft		lb	lb	lb	lb	lb	lb	lb	lb
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.00	10	1255	753	717		2100	2426	2426	-393
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10.00	9	2508	1505	1792	-	5163	5844	5844	-1752
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10.00	8	3760	2256	3583	-	9192	10521	10521	-4078
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10.00	7	5013	3008	5375	-	14186	15924	15924	-7369
10.00 5 7518 4511 8958 19554 27072 28902 28902 -16 10.00 4 8770 5262 10750 6639 34963 36477 36477 -23	10.00	6	6265	3759	7167	-	20146	22051	22051	-11625
	10.00	5	7518	4511	8958		27072	28902	28902	-16847
26193	10.00	4	8770	5262	10750	6639 26193	34963	36477	36477	-23035
10.00 3 10023 6014 12542 7604 33797 43820 44777 44777 -30	10.00	3	10023	6014	12542		43820	44777	44777	-30188
10.00 2 11275 6765 14333 8570 42367 53642 53800 53800 -38	10.00	2	11275	6765	14333		53642	53800	53800	-38308
10.00 1 12528 7517 16125 9536 51902 64430 63549 64430 -47	10.00	1	12528 7517 16125			64430	63549	64430	-47392	

Anchor LRFD Uplift = -79739 lb

ALL LOADS ARE EVALUATED BASED ON THE ALLOWABLE STRESS REQUIREMENTS OF ASCE 7.

^a FROM CASE 5, SECTION 2.4.1: D + Wasd

^b FROM CASE 6, SECTION 2.4.1: D + 0.75 Wasd + 0.75 L

^c FROM CASE 7, SECTION 2.4.1: 0.6 D - Wasd

2262 Rutherford Road, Suite 104 Phone: (877) 832-3206 Carlsbad, California 92008 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

SW-2 LONGITUDINAL DIRECTION

DATE:

DATE: 3/22/2022

CFS-NHERI 10 Story Test Portion

ASD SEISMIC LOAD ANALYSIS ON SHEATHED SHEAR WALL

NOTES

• R>3, AISI S400-15 Sheathed Shearwall, Blocked Sheet Steel Capacity from Recent Roger's Study.

• 33Ksi Sheet Steel, Fy must be less than 50 Ksi

• No Gypsum Sheathing (R=2)

• Max aspect ratio = 2:1, but then 2w/h reduction up to 4:1

Corridor GL 2. Endpost compression and tension based on 2ft oc W5 studs - No wind design, compare to archetype base shear 976
 plf

PROJECT NAME:

CHECKER: LAP

SUBJECT:

ENGINEER: L. Padgett

PROJECT NUMBER: 2150200882

ASD Seismic LFRS Loading

SHEAR WALL SUMMARY

HEIGHT ft	LEVEL	SHEATHING TYPE	FASTENER SPACING	MINIMUM STUD GAUGE	POST TYPE	BOTTOM ANCHORAGE	OPTIONAL SHEATHING
10.00	10	27 MIL STEEL (33Ksi)	6 / 12	18	600S250-43	S/PHD4	
10.00	9	27 MIL STEEL (33Ksi)	4 / 12	18	600HDS300-54	CD8	
10.00	8	27 MIL STEEL (33Ksi)	2 / 12	18	600HDS300-97	CD10	
10.00	7	33 MIL STEEL (Blkg, #10) (33Ksi)	4 / 12	16	(2) 600HDS300-68	(2) CD15	
10.00	6	33 MIL STEEL (Blkg, #10) (33Ksi)	3 / 12	16	HSS 6x6x3/16	1/4" x 5" A36 Plate	
10.00	5	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	16	HSS 6x6x3/16	3/8" x 5" A36 Plate	
10.00	4	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	14	HSS 6x6x3/16	1/2" x 5" A36 Plate	
10.00	3	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	14	HSS 6x6x3/16	1/2" x 5" A572 Gr50 P	
10.00	2	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	14	HSS 6x6x3/16	1/2" x 5" A572 Gr50 P	
10.00	1	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	12	3/8" x 5" A36 Plate	Weld Direct to Transfe	

2262 Rutherford Road, Suite 104 Carlsbad, California 92008

ENGINEERING SERVICES Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

SEISMIC LOAD ANALYSIS

BUILDING BAY AREA: 383 sf TOTAL BUILDING AREA: 810 sf SAFETY FACTOR: 2.5 S400-15 E2.3.2 SHEAR WALL LENGTH: 6 ft QUANTITY PER BAY: 2

			R	LRFD SHEAR= 984 lb	164 lb/ft	
	4.17 k —	-	100.00	ASD SHEAR= 688 lb	115 lb/ft	DIAPHRAGM SHEAR $(Q_F) = 1967$ lb
						TOTAL BAY SHEAR $(Q_F) = 1967$ lb
#12 Trk -		Ŧ		SHEATHING: 27 MIL STEE	EL (33Ksi)	
Trk Max		10.00 ft		END POST: 600S250-4		EXPECTED STRENGTH = 1941 lb/ft
Screw Spacing		10.		ANCHORAGE: S/PHD4		
Spacing	24 in					
	0.571		10	LRFD SHEAR= 2535 lb	422 lb/ft	
	6.57 k —		90.00	ASD SHEAR= 1774 lb	296 lb/ft	DIAPHRAGM SHEAR (Q _E) = 3103 lb
						TOTAL BAY SHEAR $(Q_E) = 5070$ lb
#12 Trk -		Ŧ		SHEATHING: 27 MIL STEE	EL (33Ksi)	
Trk Max Screw		10.001		END POST: 600HDS30	00-54	EXPECTED STRENGTH = 3000 lb/ft
Spacing		9		ANCHORAGE: CD8		
3	11 in					
	5.80 k —	_	9	LRFD SHEAR= 3903 lb	651 lb/ft	
	0.00 K	-	80.00	ASD SHEAR= 2732 lb	455 lb/ft	DIAPHRAGM SHEAR (Q_E) = 2737 lb
#12 Trk -						TOTAL BAY SHEAR (Q_E) = 7807 lb
Trk Max		0 ft		SHEATHING: 27 MIL STEE		
Screw		10.001		END POST: 600HDS30	0-97	EXPECTED STRENGTH = 3510 lb/ft
Spacing		1		ANCHORAGE: CD10		
	7 in					
	5.03 k —		8	LRFD SHEAR= 5090 lb	848 lb/ft	
			70.00	ASD SHEAR= 3563 lb	594 lb/ft	DIAPHRAGM SHEAR (Q_E) = 2374 lb
#12 Trk -						TOTAL BAY SHEAR $(Q_E) = 10180$ lb
Trk Max		10.00 ft		SHEATHING: 33 MIL STEE		
Screw		0.0		END POST: (2) 600HD	5300-68	EXPECTED STRENGTH = 5139 lb/ft
Spacing	44 :	-		ANCHORAGE: (2) CD15		
	11 in		7	LRFD SHEAR= 6097 lb	1016 lb/ft	
	4.26 k —		7 60.00	ASD SHEAR= 4268 lb	711 lb/ft	DIAPHRAGM SHEAR (Q _E) = 2014 lb
			00.00	ASD SHEAR- 4200 ID	71110/10	TOTAL BAY SHEAR (Q_F) = 12194 lb
#12 Trk -		÷		SHEATHING: 33 MIL STEE	-I (Blka #10)(
Trk Max		0.00 ft		END POST: HSS 6x6x		EXPECTED STRENGTH = 5886 lb/ft
Screw		10.		ANCHORAGE: 1/4" x 5" A		
Spacing	10 in					
			6	LRFD SHEAR= 6926 lb	1154 lb/ft	
	3.51 k —		50.00	ASD SHEAR= 4848 lb	808 lb/ft	DIAPHRAGM SHEAR (Q _E) = 1658 lb
						TOTAL BAY SHEAR (Q_F) = 13852 lb
#12 Trk -		Ħ		SHEATHING: 33 MIL STEE	EL (Blkg, #10) (
Trk Max		10.00 ft		END POST: HSS 6x6x		EXPECTED STRENGTH = 6330 lb/ft
Screw Spacing		10.		ANCHORAGE: 3/8" x 5" A	36 Plate	
opacing	8 in					
						n

PROJECT NAME: **CFS-NHERI 10 Story Test Portion** PROJECT NUMBER: 2150200882 ENGINEER: L. Padgett DATE: 3/22/2022 CHECKER: LAP DATE: SUBJECT: ASD Seismic LFRS Loading

			Dietrich ERING SERVICES Phone: (877) 832-32 www.ClarkDietrich.cc		PROJECT I ENGINEER CHECKER: SUBJECT:
LATE	RAL FO	ORCE RESIS	TING SYSTEM		
	0.771	5	LRFD SHEAR= 7579 lb	1263 lb/ft	1
	2.77 k —	10.00	ASD SHEAR= 5306 lb	884 lb/ft	DIAI
110 T 1					то
ŧ12 Trk - Γrk Max		H.	SHEATHING: 33 MIL STEE	L (Blkg, #10) (
Screw		10.00 ft	END POST: HSS 6x6x1	/4	ΕX
Spacing		10	ANCHORAGE: 1/2" x 5" A3	36 Plate	
	8 in				
	2.04 k —	4	LRFD SHEAR= 8060 lb	1343 lb/ft	
	K	10.00	ASD SHEAR= 5642 lb	940 lb/ft	DIA
±12 Trk -					то

PROJECT NAME: **CFS-NHERI 10 Story Test Portion** NUMBER: 2150200882 R: L. Padgett DATE: 3/22/2022 DATE: R: LAP ASD Seismic LFRS Loading

	2.77 k –		5	LRFD SHEAR=	7579 lb	1263 lb/ft	
	2.77 K —	•	10.00	ASD SHEAR=	5306 lb	884 lb/ft	DIAPHRAGM SHEAR (Q_E) = 1307 lb
							TOTAL BAY SHEAR (Q _E) = 15159 lb
#12 Trk -		ft		SHEATHING:	33 MIL STEEL (Blkg, #10) (
Trk Max Screw		10.00 ft		END POST:	HSS 6x6x1/4		EXPECTED STRENGTH = 7392 lb/ft
Spacing		10		ANCHORAGE:	1/2" x 5" A36	Plate	
opaolig	8 in						
	2.04 k –	-	4	LRFD SHEAR=	8060 lb	1343 lb/ft	
	2.04 K -		10.00	ASD SHEAR=	5642 lb	940 lb/ft	DIAPHRAGM SHEAR (Q_E) = 962 lb
1140 T I							TOTAL BAY SHEAR $(Q_E) = 16120$ lb
#12 Trk - Trk Max		ft		SHEATHING:	33 MIL STEEL (Blkg, #10) (
Screw		10.00 ft		END POST:	HSS 6x6x5/1	6	EXPECTED STRENGTH = 7392 lb/ft
Spacing		10		ANCHORAGE:	1/2" x 5" A57	2 Gr50 Plate	
1 5	7 in						
	1.32 k –	-	3	LRFD SHEAR=	8372 lb	1395 lb/ft	
	1.02 K		10.00	ASD SHEAR=	5861 lb	977 lb/ft	DIAPHRAGM SHEAR (Q_E) = 624 lb
#12 Trk -							TOTAL BAY SHEAR (Q_E) = 16745 lb
Trk Max		10.00 ft		SHEATHING:	33 MIL STEEL (Blkg, #10) (
Screw		0.00			HSS 6x6x3/8		EXPECTED STRENGTH = 7392 lb/ft
Spacing		10		ANCHORAGE:	1/2" x 5" A57	2 Gr50 Plate	
	7 in						
	0.63 k —	•	2	LRFD SHEAR=	8521 lb	1420 lb/ft	
	0.00 K	-		ASD SHEAR=	5965 lb	994 lb/ft	DIAPHRAGM SHEAR (Q_E) = 298 lb
3/8" x 2							TOTAL BAY SHEAR (Q_E) = 17043 lb
3/6 X Z 1/2" Kwik-		10.00 ft		SHEATHING:			
HUS-EZ=)0.C			HSS 6x6x1/2		EXPECTED STRENGTH = 8415 lb/ft
(600lb)		10		ANCHORAGE:	Weld Direct t	o Transfer PL	
. ,	7 in						
	_		1				

ClarkDietrich. ENGINEERING SERVICES

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

 $\begin{array}{ll} \mbox{Design spectral response accelleration, short per} & S_{\rm DS} = 1.0088 \\ \mbox{system overstrength factor (longitudinal directic)} & \Omega_0 = 3.0 \\ \mbox{redundancy factor (longitudinal direction)} & \rho = 1.0 \\ \end{array}$

INDIVIDUAL LOADS

		UNFACTO	RED ON-CEN LOADS	FER STUD		OADS FROM AL LOADING
HEIGHT	LEVEL	P _{DL}	P _{DL} FOR UPLIFT	P _{LL}	Q _E	EXPECTED STRENGTH
ft		lb	lb	lb	lb	lb
10.00	10	739	739	520	1639	19410
10.00	10	739	739	520	1639	19410
10.00	9	1515	1515	1255	4225	30000
10.00	5	1515	1313	1255	5864	49410
10.00	8	2291	2291	2510	6505	35100
10.00	0	2291	2291	2010	12370	84510
10.00	7	3067	3067	3765	8483	51390
10.00	Ĩ	5007	3007	3705	20853	135900
10.00	6	3843	3843	5020	10162	58860
10.00	0	5045	5045	5020	31014	194760
10.00	5	4619	4619	6275	11543	63300
10.00	5	4013	4013	0275	42558	258060
10.00	4	5395	5395	7530	12632	73920
10.00	7	5585	5595	7550	55190	331980
10.00	3	6171	6171	8785	13434	73920
10.00	5	0171	0171	0705	68624	331980
10.00	2	6947	6947	10040	13954	73920
10.00	2	0947	0947	10040	82578	331980
10.00	1	7723	7723	11295	14202	84150
10.00		1125	1125	11295	96780	416130
			Anche	r I RED Unlift=	-89829 lb	

Anchor LRFD Uplift= -89829 lb

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:
 3/22/2022

 CHECKER:
 LAP
 DATE:
 SUBJECT:

GOVERNING LOADS CONVERTED TO ASD ASD END-POST AND HOLDOWN LOADS ASD Post ASD HD Compression Tension lb (FS=1.8) lb (FS=3) 3596 -1467 11650 -5511 23794 -11836 39235 -20139 57472 -30120 78013 -41483 100368 -53934 124059 -67187 148617 -80961 173589 -94982 S100-12,

Section C4.1

FS=1.8 FS=3.0

ClarkDietrich.

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

SUBJECT: ASD Seismic LFRS Loading

LATERAL FORCE RESISTING SYSTEM

SW-2

SEISMIC LOAD COMBINATION SUMMARY

		L		ID-POST EISMIC LOADING	6			FROM EXPECTE MIC LOADING (0	
HEIGHT	LEVEL	CASE 5 ^a COMPRESS.	CASE 6 ^b COMPRESS.		CASE 8 ^C TENSION	CASE 5 ^d COMPRESS.	CASE 7 ^e TENSION	NOMINAL ^f COMPRESS.	NOMINAL ^f TENSION
ft		lb	lb	lb	lb	lb	lb	lb	lb
10.00	10	1886	1990	1990	-704	6473	-4402	6473	-4402
10.00	9	5620	5535	5620	-3196	20971	-16534	20971	-16534
10.00	8	10950	10668	10950	-7284	42830	-35509	42830	-35509
10.00	7	17664	16839	17664	-12757	70623	-60417	70623	-60417
10.00	6	25553	23891	25553	-19404	103450	-90360	103450	-90360
10.00	5	34409	31668	34409	-27019	140423	-124448	140423	-124448
10.00	4	44028	40017	44028	-35396	180662	-161803	180662	-161803
10.00	3	54208	48787	54208	-44334	223306	-201562	223306	-201562
10.00	2	64751	57830	64751	-53636	267511	-242882	267511	-242882
10.00	1	75469	67004	75469	-63112	312460	-284947	312460	-284947
					ASD			NOM	INAL

^a FROM CASE 5, SECTION 2.4.1: D + 0.7 Q_E

^b FROM CASE 6, SECTION 2.4.1: D + 0.75 (0.7 Q_E) + 0.75 L

 $^{\rm c}\,$ FROM CASE 8, SECTION 2.4.1: 0.6 D - 0.7 $\rm Q_{E}$

 $^d\,$ FROM CASE 5, SECTION 12.4.3.2: (1.2 + 0.2 $S_{DS})$ D + $\Omega_0\,Q_E$ + L + 0.2S

 $^{e}\,$ FROM CASE 7, SECTION 12.4.3.2: (0.9 - 0.2 SDS) D - $\,\Omega0$ Q_{E} +1.6H

^f REQUIRED NOMINAL STRENGTH = LESSER OF EXPECTED STRENGTH OR OVERSTRENGTH AMPLIFIED SEISMIC

BASED ON AISI S400-15 SECTIONS E2.4.1.2, END-POSTS, HOLDOWNS, AND CONNECTIONS THAT ARE NOT PART OF THE ENERGY DISSIPATI SYSTEM (SHEATHING AND FASTENERS) MUST HAVE THE <u>NOMINAL</u> STRENGTH TO RESIST THE LESSER OF THE EXPECTED STRENGTH OR THE AMPLIFIED SEISMIC LOAD EFFECTS INCLUDING OVERSTRENGTH.

 Q_E IS THE UNFACTORED COMPONENT FORCE RESULTING FROM A HORIZONTAL SEISMIC LOAD

SHEATHING IS EVALUATED BASED ON 0.7 Q_E COMPARED TO THE ALLOWABLE SHEATHING CAPACITY (NOMINAL SHEATHING CAPACITY DIVIDED BY Ω FACTOR OF SAFETY).

ASD SHEAR	NOMINAL	NOMINAL	MAXIMUM	ALLOWABLE	ITEM #
DEMAND	DEMAND	CAPACITY	ASPECT RATIO	ASPECT RATIO	
115 lb/ft	287 lb/ft	647 lb/ft	1.667	2.000	18
296 lb/ft	739 lb/ft	1000 lb/ft	1.667	2.000	33
455 lb/ft	1138 lb/ft	1170 lb/ft	1.667	2.000	31
594 lb/ft	1485 lb/ft	1713 lb/ft	1.667	2.000	29
711 lb/ft	1778 lb/ft	1962 lb/ft	1.667	2.000	28
808 lb/ft	2020 lb/ft	2110 lb/ft	1.667	2.000	27
884 lb/ft	2211 lb/ft	2464 lb/ft	1.667	2.000	26
940 lb/ft	2351 lb/ft	2464 lb/ft	1.667	2.000	26
977 lb/ft	2442 lb/ft	2464 lb/ft	1.667	2.000	26
994 lb/ft	2485 lb/ft	2805 lb/ft	1.667	2.000	25

Sheathing Selection (See Reference Page)

Version 6.0.2.0

Project Name: Project Number: Wall: Date/Time:	2150200 SW-2 En	ERI 10 Story 882-0 d Post: Leve 21 / 1:38 Pl	el 10 - Test		Cor	npany: ntact Name: one Number:	ClarkDietrich Engineering Lynn Padgett, P.E. 678.304.5525	Services LLC
Inputs Building Code:	(CBC 2016			Deflection Limi	t: L/	/240	¥
Design Option:		Custom			0.7 Deflection	Used: N	0	Ň
Member Spacing: Bracing Distance:		24 in 4' O.C. Max ((FB43-1)		Dead Load:	0	psf	0
Knockout:		Punched	(10101)		Z:		DO ft	
Wind Pressu	res							
Custom Pressure		- 00 - 1						
Span Pressure:	:	5.00 psf						
Point and Dis								
Load Type Axial Point	Load Case Pressure		ction L al FY	.oc.(Start) 10.00 ft	Load(Start) -3896.00 lbs	Loc.(End) NA	Load(End) NA	10' - 0"
Stud Design			••• ••					0
Interaction Chec Moment: Strength		Actual 1500 lb-in	Allowable 18140 lb-ir		Location 5.00 ft	Controlled Custom	By Pass/Fail Pass	
Moment: Stability		1500 lb-in	18140 lb-ir		5.00 ft	Custom	Pass	
Moment: Dist. Bu	ckling ^r	1500 lb-in	16211 lb-ir		5.00 ft	Custom	Pass	0
Shear		50 lbs	1240 lbs	4.03%	0.00 ft	Custom	Pass	
V/M Interaction	-	0.08	1	8.27%	5.00 ft	Custom	Pass	\leftarrow
Axial Stability P/M Interaction		-3896 lbs).93	4724 lbs 1	82.47% 92.89%	0.00 ft 5.00 ft	DL Custom	Pass Pass	
Moment of Inertia		0.93 0.153 in^4	3.083 in^4	4.95%	5.00 ft	Custom	Pass	
Span Deflection		0.025 in	0.5 in	L/4850	5.00 ft	Custom	Pass	
Web Crippling		50 lbs	410 lbs	12.19%	C2	Custom	Pass	
Web Crippling	Ę	50 lbs	410 lbs	12.19%	C1	Custom	Pass	
Specified Co	nnection	S						
C2: Wir	nd: Rx	= 50 lbs					Ry = 0 lbs	
	DT125-43 3	3 ksi Track v	v/ (1) Buildex	#10-16 T3 to 5	4-50 L.S.F. at 16"	O.C 13% Ca		
C1: Wir	d By	= 50 lbs					Ry = 3896 lbs	

600T125-43 33 ksi Track w/ (1) Buildex #10-16 T3 to 54-50 L.S.F. at 16" O.C. - 13% Capacity

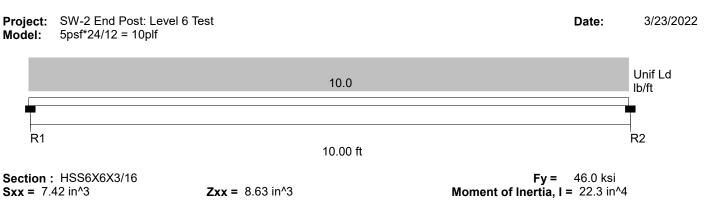
Version 6.0.2.0

Project Name Project Numl Wall: Date/Time:	ber: 215 SW-	CFS-NHERI 10 Story Archetype 2150200882-0 SW-2 End Post: Level 09 - Test 10/28/2021 / 1:40 PM		Cor	npany: ntact Name: one Number:	ClarkDietrich Engineerir Lynn Padgett, P.E. 678.304.5525	ng Services LLC	
Inputs Building Cod Design Optic Member Spa Bracing Dista Knockout:	on: icing:	CBC 2016 Custom 24 in 4' O.C. Max Punched	(FB43-2)		Deflection Limi 0.7 Deflection Dead Load: z:	Jsed:	L/240 No 0 psf 100 ft	0
Wind Pres Custom Pres Span Pressu	sures:	5.00 psf						
Point and Load Type Axial Point			ction Loo bal FY	c.(Start) 10.00 ft	Load(Start) -11859.00 lbs	Loc.(End N/		10' - 0" 0
Specified (1) 600HDS3		• ksi @ 24" O.C.						
Stud Desi	ign Resu	lts						0
Interaction (Moment: Stra Moment: Sta Moment: Dis Shear V/M Interacti Axial Stability P/M Interacti Moment of Ir Span Deflect Web Cripplin Web Cripplin	ength bility t. Buckling on von nertia cion g g g	Actual 1500 lb-in 1500 lb-in 50 lbs 0.03 -11859 lbs 0.86 0.153 in^4 0.016 in 50 lbs 50 lbs	Allowable 43347 lb-in 43347 lb-in 35155 lb-in 1947 lbs 1 14748 lbs 1 4.75 in^4 0.5 in 930 lbs 930 lbs	Capacity 3.46% 3.46% 4.27% 2.57% 3.46% 80.41% 85.86% 3.21% L/7474 5.37% 5.37%	Location 5.00 ft 5.00 ft 5.00 ft 0.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft C2 C1	Controlled Custom Custom Custom Custom Custom Custom Custom Custom Custom	d By Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas	
Specified	Connec	tions						
00	Wind:	Rx = 50 lbs					Ry = 0 lbs	
C2:								
62:	600T125	-43 33 ksi Track	w/ (1) Buildex #1	0-16 T3 to 5	4-50 L.S.F. at 16"	O.C 13% C	apacity	

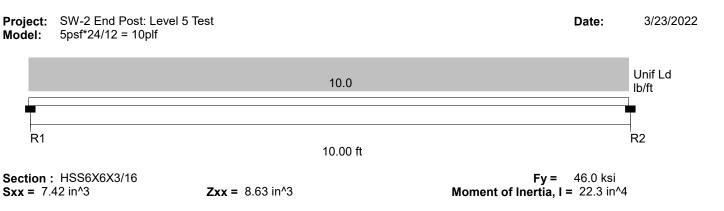
Version 6.0.2.0

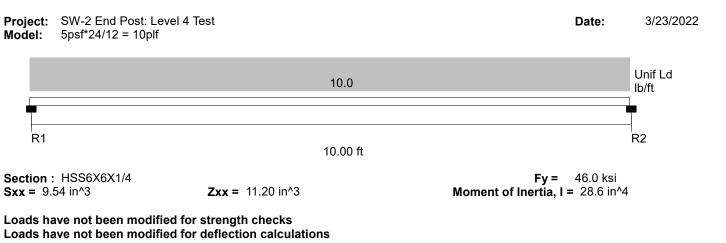
Project Name: Project Number: Wall: Date/Time:	ect Number: 2150200882-0 l: SW-2 End Post: Level 08 - Test e/Time: 10/28/2021 / 1:42 PM		Cor	Company: ClarkDietrich Engineering Serv Contact Name: Lynn Padgett, P.E. Phone Number: 678.304.5525			Services LLC			
Inputs Building Code: Design Option: Member Spacing: Bracing Distance:	Cu 24	BC 2016 Istom in O.C. Max			Deflection Limi 0.7 Deflection Dead Load:	Used: N	_/240 No) psf			0
Knockout:		nched			Z:		100 ft			
Wind Pressures Custom Pressures Span Pressure:	s:	00 psf								
Point and Dis Load Type Axial Point	Stributed L Load Case Pressure	oads Direc Globa		o c.(Start) 10.00 ft	Load(Start) -23594.00 lbs	Loc.(End		Load(End) NA	10' - 0''	0
Specified Mer	mber									
(1) 600HDS300-9	07 50 ksi @ 24	4" O.C.								0
(1) 600HDS300-9 Stud Design I Interaction Chec	97 50 ksi @ 24 Results sk Ac	tual	Allowable	Capacity		Controllec	i By	Pass/Fail		0
(1) 600HDS300-9 Stud Design I Interaction Check Moment: Strength	97 50 ksi @ 24 Results 5 k Ac 1 150	tual 00 lb-in	91817 lb-in	1.63%	5.00 ft	Custom	i By	Pass		0
(1) 600HDS300-9 Stud Design F Interaction Checl Moment: Strength Moment: Stability	97 50 ksi @ 24 Results sk Ac 1 150 150	t ual 00 lb-in 00 lb-in	91817 lb-in 83195 lb-in	1.63% 1.80%	5.00 ft 5.00 ft	Custom Custom	i By			0
(1) 600HDS300-9 Stud Design I Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Buc	7 50 ksi @ 2 Results k Ac 1 150 150 ckling 150	tual 00 lb-in	91817 lb-in	1.63%	5.00 ft	Custom	l By	Pass Pass		
(1) 600HDS300-9 Stud Design I Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buck Shear V/M Interaction	7 50 ksi @ 2 Results k Ac 15 ckling 156 50 0.0	tual 00 lb-in 00 lb-in 00 lb-in lbs 02	91817 lb-in 83195 lb-in 75993 lb-in 3805 lbs 1	1.63% 1.80% 1.97% 1.31% 1.63%	5.00 ft 5.00 ft 5.00 ft 0.00 ft 5.00 ft	Custom Custom Custom Custom Custom	i By	Pass Pass Pass Pass Pass Pass		
(1) 600HDS300-9 Stud Design I Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buck Shear V/M Interaction Axial Stability	7 50 ksi @ 2 Results k Ac 156 ckling 156 50 0.0 -23	t ual 00 lb-in 00 lb-in 00 lb-in lbs)2 3594 lbs	91817 lb-in 83195 lb-in 75993 lb-in 3805 lbs 1 30290 lbs	1.63% 1.80% 1.97% 1.31% 1.63% 77.89%	5.00 ft 5.00 ft 5.00 ft 0.00 ft 5.00 ft 0.00 ft	Custom Custom Custom Custom Custom DL	i By	Pass Pass Pass Pass Pass Pass Pass		
(1) 600HDS300-9 Stud Design F Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction	7 50 ksi @ 2 Results k Ac 1 156 ckling 156 50 0.0 -23 0.8	tual 00 lb-in 00 lb-in 00 lb-in lbs 02 3594 lbs 31	91817 lb-in 83195 lb-in 75993 lb-in 3805 lbs 1 30290 lbs 1	1.63% 1.80% 1.97% 1.31% 1.63% 77.89% 80.53%	5.00 ft 5.00 ft 5.00 ft 0.00 ft 5.00 ft 0.00 ft 5.00 ft	Custom Custom Custom Custom DL Custom	i By	Pass Pass Pass Pass Pass Pass Pass Pass		
(1) 600HDS300-9 Stud Design F Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia	7 50 ksi @ 2 Results k Ac 156 156 ckling 156 50 0.0 0.23 0.8 0.1	tual 00 lb-in 00 lb-in 00 lb-in lbs 02 0594 lbs 01 53 in^4	91817 lb-in 83195 lb-in 75993 lb-in 3805 lbs 1 30290 lbs 1 8.336 in^4	1.63% 1.80% 1.97% 1.31% 1.63% 77.89% 80.53% 1.83%	5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 0.00 ft 5.00 ft 5.00 ft	Custom Custom Custom Custom DL Custom Custom	i By	Pass Pass Pass Pass Pass Pass Pass Pass		
(1) 600HDS300-9 Stud Design I Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection	7 50 ksi @ 2 Results k Ac 150 150 150 0.0 0.0 0.23 0.8 0.1 0.0	tual 00 lb-in 00 lb-in lbs 02 3594 lbs 31 53 in^4 009 in	91817 lb-in 83195 lb-in 75993 lb-in 3805 lbs 1 30290 lbs 1 8.336 in^4 0.5 in	1.63% 1.80% 1.97% 1.31% 1.63% 77.89% 80.53% 1.83% L/13115	5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft	Custom Custom Custom Custom DL Custom Custom Custom	l By	Pass Pass Pass Pass Pass Pass Pass Pass		
(1) 600HDS300-9 Stud Design F Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling	7 50 ksi @ 2 Results k Ac 150 150 150 0.00 -23 0.8 0.1 0.0 50 50 0.50 0.50	tual 00 lb-in 00 lb-in 00 lb-in lbs 02 0594 lbs 01 53 in^4	91817 lb-in 83195 lb-in 75993 lb-in 3805 lbs 1 30290 lbs 1 8.336 in^4	1.63% 1.80% 1.97% 1.31% 1.63% 77.89% 80.53% 1.83% L/13115 2.28%	5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 0.00 ft 5.00 ft 5.00 ft	Custom Custom Custom Custom DL Custom Custom	I By	Pass Pass Pass Pass Pass Pass Pass Pass		
(1) 600HDS300-9 Stud Design F Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling	7 50 ksi @ 2 Results k Ac 1 156 ckling 156 50 0.0 -23 0.8 0.1 0.0 50 50 50 50	tual 00 lb-in 00 lb-in lbs 02 3594 lbs 31 53 in^4 099 in lbs	91817 lb-in 83195 lb-in 75993 lb-in 3805 lbs 1 30290 lbs 1 8.336 in^4 0.5 in 2197 lbs	1.63% 1.80% 1.97% 1.31% 1.63% 77.89% 80.53% 1.83% L/13115	5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft	Custom Custom Custom Custom DL Custom Custom Custom Custom	i By	Pass Pass Pass Pass Pass Pass Pass Pass		
(1) 600HDS300-9 Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Buck Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling Specified Cor	7 50 ksi @ 2 Results k Ac 156 ckling 156 50 0.0 -23 0.8 0.1 0.0 50 50 50 50 50 50 50 50 50 5	tual 00 lb-in 00 lb-in lbs 02 3594 lbs 31 153 in^4 009 in lbs lbs	91817 lb-in 83195 lb-in 75993 lb-in 3805 lbs 1 30290 lbs 1 8.336 in^4 0.5 in 2197 lbs	1.63% 1.80% 1.97% 1.31% 1.63% 77.89% 80.53% 1.83% L/13115 2.28%	5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft	Custom Custom Custom Custom DL Custom Custom Custom Custom	1 By	Pass Pass Pass Pass Pass Pass Pass Pass		
Specified Mer (1) 600HDS300-9 Stud Design I Interaction Checl Moment: Strength Moment: Strength Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling Specified Cor	7 50 ksi @ 2 Results k Ac h 156 ckling 156 ckling 156 ckling 156 0.0 -23 0.8 0.1 0.0 50 50 50 nnections 50	tual 00 lb-in 00 lb-in lbs 12 3594 lbs 31 53 in^4 009 in lbs lbs	91817 lb-in 83195 lb-in 75993 lb-in 3805 lbs 1 30290 lbs 1 8.336 in^4 0.5 in 2197 lbs 2197 lbs	1.63% 1.80% 1.97% 1.31% 1.63% 77.89% 80.53% 1.83% L/13115 2.28% 2.28%	5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft C2 C1	Custom Custom Custom Custom DL Custom Custom Custom Custom		Pass Pass Pass Pass Pass Pass Pass Pass		
(1) 600HDS300-9 Stud Design F Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Buc Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Web Crippling Web Crippling Specified Cor C2: Win	7 50 ksi @ 2 Results k Ac h 156 ckling 156 ckling 156 ckling 156 0.0 -23 0.8 0.1 0.0 50 50 50 nnections 50	tual 00 lb-in 00 lb-in lbs 12 3594 lbs 31 53 in^4 009 in lbs lbs	91817 lb-in 83195 lb-in 75993 lb-in 3805 lbs 1 30290 lbs 1 8.336 in^4 0.5 in 2197 lbs 2197 lbs	1.63% 1.80% 1.97% 1.31% 1.63% 77.89% 80.53% 1.83% L/13115 2.28% 2.28%	5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft	Custom Custom Custom Custom DL Custom Custom Custom Custom		Pass Pass Pass Pass Pass Pass Pass Pass		

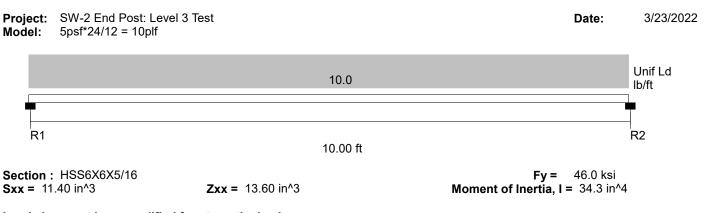
Version 6.0.3.5

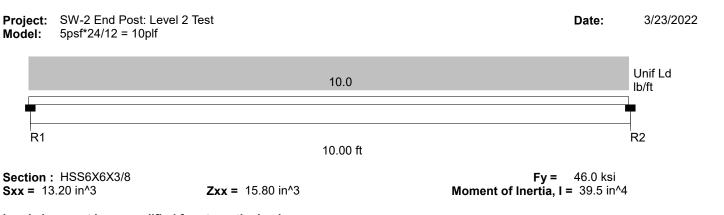


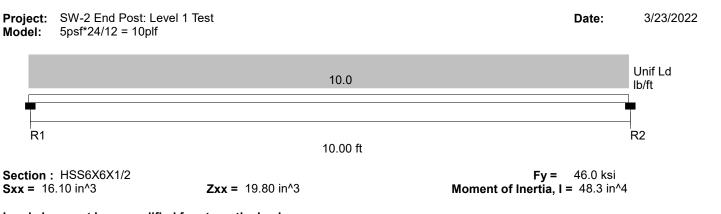
Project Name: Project Number: Wall: Date/Time:	CFS-NHERI 10 Sta 2150200882-0 SW-2 End Post: Le 3/23/2022 / 8:28	evel 07 - Test		Cor	npany: ntact Name: one Number:	ClarkDietrich Engineering So Lynn Padgett, P.E. 678.304.5525	ervices LLC	-
Inputs Building Code: Design Option: Member Spacing: Bracing Distance: Knockout:	CBC 2016 Custom 24 in 4' O.C. Ma Punched			Deflection Limi 0.7 Deflection I Dead Load: z:	Jsed: No	240 5 psf 0 ft		€c2
Wind Pressures Custom Pressures Span Pressure:								
Load Type		rection Loo obal FY	c.(Start) 10.00 ft	Load(Start) -38889.00 lbs	Loc.(End) NA	Load(End) NA	10' - 0"	0
Specified Mer (2) 600HDS300-68	nber 8 50 ksi @ 24'' O.C.							0
Stud Design F Interaction Checl Moment: Strength Moment: Stability Moment: Dist. Bud Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Stud-to-Track Stud-to-Track Stud-to-Track Stud-to-Track C2: Win 600	k Actual 1500 lb-in 1500 lb-in 1500 lb-in 50 lbs 0.01 -38889 lbs 0.97 0.153 in^4 0.006 in 50 lbs 50 lbs 50 lbs	1 12.051 in^4 0.5 in 2094 lbs 2094 lbs	Capacity 1.30% 1.30% 1.56% 0.87% 1.30% 95.04% 97.24% 1.27% L/18960 2.39% 2.39%	5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft C2 C1	Controlled I Custom Custom Custom Custom Custom Custom Custom Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass		0
C1: Win 600	d: Rx = 50 lbs)T125-43 33 ksi Trac	k w/ (1) Buildex #1	0-16 T3 to 5	4-50 L.S.F. at 16"	O.C 13% Cap	Ry = 38889 lbs		


Version 6.0.3.5


Project Name: Project Number: Wall: Date/Time:	CFS-NHERI 10 S 2150200882-0 SW-2 End Post: I 3/23/2022 / 8:30	evel 06 - Test		Cor	npany: ntact Name: one Number:	ClarkDietrich Engineering S Lynn Padgett, P.E. 678.304.5525	ervices LLC	_
Inputs Building Code: Design Option: Member Spacing: Bracing Distance: Knockout:	CBC 201 Custom 24 in 4' O.C. M Punched			Deflection Limi 0.7 Deflection I Dead Load: z:	Jsed: No	240 5 psf 0 ft		
Wind Pressures Custom Pressures Span Pressure:								
			c.(Start) 10.00 ft	Load(Start) -57007.00 lbs	Loc.(End) NA	Load(End) NA	10' - 0"	0
Specified Mer (2) 600HDS300-9	nber 7 50 ksi @ 24'' O.C).						0
Stud Design F Interaction Check Moment: Strength Moment: Stability Moment: Dist. Bud Shear V/M Interaction Axial Stability P/M Interaction Moment of Inertia Span Deflection Stud-to-Track Stud-to-Track Stud-to-Track Specified Cor	k Actual 1500 lb-i 1500 lb-i 1500 lb-i 50 lbs 0.01 -57007 lb 0.96 0.153 in^ 0.005 in 50 lbs 50 lbs 1005 in 50 lbs 1005 in 50 lbs 1005 in 50 lbs 1005 in 50 lbs 1005 in 50 lbs 1000 lb-i 1500 lb-i 150 lb-i	n 166389 lb-in n 151987 lb-in 7611 lbs 1 s 60580 lbs 1	Capacity 0.82% 0.90% 0.66% 0.82% 94.10% 95.52% 0.91% L/26231 2.39% 2.39%	5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft 5.00 ft C2 C1	Controlled Custom Custom Custom DL Custom Custom Custom Custom Custom Custom	Pass Pass Pass Pass Pass Pass Pass Pass		0 0
C1: Win 600		ck w/ (1) Buildex #1	0-16 T3 to 5	54-50 L.S.F. at 16"	O.C 13% Caj	Ry = 57007 lbs		


	Mmax			Мр	Seff	Ма	Def	lection
Span		langes	Webs	in-k	in^3	in-k	(in)	Ratio
Center Span	1.5 Nor	n Compact	Compact	397.0	NA	221.8	0.003	L/35085
Support Reaction	Lo	ad						
Reaction		b)						
R1		50						
R2	5	50						
Allowable Shear								
Reaction or	Vn	nax					Va	
Pt Load	()	b) ł	n/tw	(Kv*E/Fy)^0.5	Cv		(lb)	Vmax/Va
R1			1.48	56.14	1.000		31506.1	0.00
R2	50).0 3	1.48	56.14	1.000		31506.1	0.00
Combined Bendir	ng and Axial Loa	ad						
Span Center Span	Axial Ld (lb) 57472.0 (c)	Bracing (in) KyLy None	Max KL/r 51	Slender? No	Qa NA	B1 1.262	Pn/Omega Pc (lb) 92263	Intr. Value 0.63


	Mmax			Мр	Seff	Ма	Def	lection
Span	in-k	Flanges	Webs	in-k	in^3	in-k	(in)	Ratio
Center Span	1.5 N	Ion Compact	Compact	397.0	NA	221.8	0.003	L/35085
Support Reaction	<u>IS</u>							
Reaction R1 R2		Load (lb) 50 50						
Allowable Shear								
Reaction or	• ·	Vmax					Va	
Pt Load		(lb)	h/tw	(Kv*E/Fy)^0.5	Cv		(lb)	Vmax/Va
R1		50.0	31.48	56.14	1.000		31506.1	0.00
R2		50.0	31.48	56.14	1.000		31506.1	0.00
Combined Bendi	ng and Axial L	<u>_oad</u>						
Span Center Span	Axial Ld (Ib) 78013.0 (c	Bracing (i KyLy) None	n) Max KL/r 51	Slender? No	Qa NA	B1 1.392	Pn/Omega Pc (lb) 92263	Intr. Value 0.85


Span		langes	Webs	Mp in-k	Seff in^3	Ma in-k	(in)	lection Ratio
Center Span	1.5 C	ompact	Compact	515.2	NA	308.5	0.003	L/44997
Support Reaction	<u>s</u> Loa	ad						
Reaction R1 R2	(1k 5) 5)	o) 0						
Allowable Shear								
Reaction or	Vm	ax					Va	
Pt Load	(lk		n/tw	(Kv*E/Fy)^0.5	Cv		(lb)	Vmax/Va
R1 R2	50 50		2.75 2.75	56.14 56.14	1.000 1.000		40826.0 40826.0	0.00 0.00
Combined Bendin			2.10	00.14	1.000		40020.0	0.00
Span Center Span	Axial Ld (Ib) 100368.0 (c)	Bracing (in) KyLy None	Max KL/r 51	Slender? No	Qa NA	B1 1.394	Pn/Omega Pc (lb) 120933	Intr. Value 0.84

	Mmax			Мр	Seff	Ма	Def	lection
Span		Flanges	Webs	in-k	in^3	in-k	(in)	Ratio
Center Span	1.5 (Compact	Compact	625.6	NA	374.6	0.002	L/53965
Support Reaction	S							
Reaction R1 R2	()	bad Ib) 50 50						
Allowable Shear								
Reaction or	· Vr	nax					Va	
Pt Load		- 1	h/tw	(Kv*E/Fy)^0.5	Cv		(lb)	Vmax/Va
R1			17.62	56.14	1.000		49315.0	0.00
R2	5	0.0 1	17.62	56.14	1.000		49315.0	0.00
Combined Bendi	ng and Axial Lo	<u>ad</u>						
Span Center Span	Axial Ld (Ib) 124059.0 (c)	Bracing (in) KyLy None	Max KL/r 52	Slender? No	Qa NA	B1 1.411	Pn/Omega Pc (lb) 147712	Intr. Value 0.84

	Mmax			Мр	Seff	Ма	Def	lection
Span	in-k	Flanges	Webs	in-k	in^3	in-k	(in)	Ratio
Center Span	1.5	Compact	Compact	726.8	NA	435.2	0.002	L/62146
Support Reaction	IS							
		Load						
Reaction		(lb)						
R1		50 50						
R2		50						
Allowable Shear								
Reaction o	•	Vmax					Va	
Pt Load		(lb)	h/tw	(Kv*E/Fy)^0.5	Cv		(lb)	Vmax/Va
R1		50.0	14.19	56.14	1.000		57136.9	0.00
R2		50.0	14.19	56.14	1.000		57136.9	0.00
Combined Bendi	ng and Axial I	_oad						
Span	Axial Ld (lb)	Bracing (i KyLy	n) Max KL/r	Slender?	Qa	B1	Pn/Omega Pc (lb)	Intr. Value
Center Span	148617.0 (53	No	NA	1.434	173295	0.86

	Mmax			Мр	Seff	Ма	Def	lection
Span		langes	Webs	in-k	in^3	in-k	(in)	Ratio
Center Span	1.5 0	Compact	Compact	910.8	NA	545.4	0.002	L/75991
Support Reaction	<u>s</u>							
Reaction R1 R2	(I 5	b) 50 50						
Allowable Shear								
Reaction or	Vn	nax					Va	
Pt Load		· /	h/tw	(Kv*E/Fy)^0.5	Cv		(lb)	Vmax/Va
R1			9.90	56.14	1.000		70779.1	0.00
R2	50	0.0	9.90	56.14	1.000		70779.1	0.00
Combined Bendir	ig and Axial Loa	ad						
Span Center Span	Axial Ld (lb) 173589.0 (c)	Bracing (in) KyLy None	Max KL/r 54	Slender? No	Qa NA	B1 1.407	Pn/Omega Pc (lb) 220803	Intr. Value 0.79

Subject:

Project Number: _____

Project Name: _____

Eng. Name: _____

Date: _____

																_		_								
															-								_			
																							_			
															_								_			
															-								_			
											 				_		_						_			
			_									_		_	_	_				_					_	
		_	_								 		_	_					_							
			_									_		_							_					
	\vdash																									++-
					++-		+++	+					++						++	++						+-+
\vdash	\vdash	+		++-	++-		+++			++										++	++					+++
\vdash				++-			+ + +	+														+ + +				 +-+
\vdash	\vdash	+					+++													++						+++
- -							+							_												
\vdash	\vdash	+			++		+ $+$ $+$						\rightarrow					\rightarrow	\rightarrow	++	++	+	_			
		\rightarrow											-						-							
																		_								
												_														
																		_								
															_								_			
														_	_	_							_			
										_			_	_	_		_		_	_			_			
			_							_		_	_	_	_		_	_	_	_						
												_		_	_					_	_					
					_	_						_								_						
							+++																			+
													+						+							
																										+++
	+-+			++	++			+																		++
																				++						+
							+													++						+-+
\vdash		++																								+++
\vdash				+			+															+ $+$ $+$				 +
\vdash		+			++-		+ + +	+					\rightarrow						\rightarrow	++		+ $+$ $+$	_			 ++-
\vdash							+++						\rightarrow						\rightarrow	++			_			++
\vdash		+					+-+			\rightarrow										++						
													-						-							+
		\rightarrow																		\rightarrow						
																				$ \downarrow \downarrow$						
																				+						
TO BE	E AP	PRO\	'ED BY	OWN	ER'S A	ARCHI	TECT AN	D ENG	INEER																	

Neither ClarkDietrich Engineering LLP, ClarkDietrich Engineering Services LLC nor its parent, Clarkwestern Dietrich Building Systems LLC dba ClarkDietrich Building Systems, assume any liability for a failure and serviceability claim resulting from the incorrect application or installation of the steel framing system described herein. The project owner's Architect and Engineer of Record shall verify the design loads, deflection criteria, and dimensions used herein prior to construction.

Subject:

Project Number: _____

Project Name: _____

Eng. Name: _____

Date: _____

																_		_								
																							_			
																							_			
															_								_			
															_								_			
											 				_		_						_			
			_									_		_	_	_		_		_					_	
		_	_								 	_	_	_					_							
			_									_		_							_					
																										++-
				++	++-		+++						++						++	++						+-+
\vdash	\vdash	+		++-	++-		+++			+										++	++					+++
\vdash				++-			+ $+$ $+$															+ + +				 +-+
\vdash	\vdash						+++													++						+++
- -							+							_			_									
\vdash	\vdash	+			++		+ $+$ $+$						\rightarrow					\rightarrow	\rightarrow	++	++	+	_			
		\rightarrow											-						-							
																		_								
															_								_			
														_	_	_							_			
										_			_	_	_		_		_	_			_			
			_							_		_	_	_	_		_	_	_	_						
												_		_	_					_	_					
					_	_						_								_						
							+++																			+
													+						+							
																										+++
	+-+			++	++			+																		++
																				++						+
																				++						+-+-
\vdash	\vdash	++																								+++
\vdash				+			+															+ $+$ $+$				 +
\vdash		+			++-		+ $+$ $+$	+					\rightarrow						\rightarrow	++		+	_			 ++-
\vdash							+++						\rightarrow						\rightarrow	++			_			++
\vdash		+					+			\rightarrow										++						
													-						-							+
		\rightarrow																		\rightarrow						
																				$ \downarrow \downarrow$						
																				+						
TO BE	E AP	PRO\	'ED BY	OWN	ER'S A	ARCHI	TECT AN	D ENG	INEER																	

Neither ClarkDietrich Engineering LLP, ClarkDietrich Engineering Services LLC nor its parent, Clarkwestern Dietrich Building Systems LLC dba ClarkDietrich Building Systems, assume any liability for a failure and serviceability claim resulting from the incorrect application or installation of the steel framing system described herein. The project owner's Architect and Engineer of Record shall verify the design loads, deflection criteria, and dimensions used herein prior to construction.

Subject:

Project Number: _____

Project Name: _____

Eng. Name: _____

Date: _____

																_		_								
																							_			
																							_			
															_								_			
															_								_			
											 				_		_						_		 	
			_									_		_	_	_	_			_						
			_								 	_	_	_					_				_			
			_									_		_												
																										++-
				++	++-		+++						++						++	++						+-+
\vdash	\vdash	+		++-	++-		+++			++										++	++					+++
\vdash				++-			+ $+$ $+$															+ + +			 	+-+
\vdash	\vdash	+					+++													++						+++
\vdash							+							_											 	
\vdash	\vdash	+			++		+ $+$ $+$						\rightarrow					\rightarrow	\rightarrow	++	++	+	_			
		\rightarrow											-						-							
																		_								
																		_								
															-								_			
														_	_	_							_		 	
										_			_	_	_		_		_	_			_			
			_							_		_	_	_	_		_	_	_	_						
												_		_	_					_						
					_	_						_								_						
		_					+++																			+
													+						+							
																										+++
	+-+			++	++			+																		++
																				++						+
							+													++						+-+-
\vdash		++																								+++
\vdash				+			+															+ $+$ $+$			 	+
\vdash		+			++-		+ + +	+					\rightarrow						\rightarrow	++		+ $+$ $+$	_			++-
							+++						\rightarrow						\rightarrow	++			_			++
\vdash		+					+-+			\rightarrow										++						
													-						-							+
		\rightarrow																		\rightarrow						
																				$ \downarrow \downarrow$						
																				+						
TO BE	E AP	PRO\	'ED BY	OWN	ER'S A	ARCHI	TECT AN	D ENG	INEER																	

Neither ClarkDietrich Engineering LLP, ClarkDietrich Engineering Services LLC nor its parent, Clarkwestern Dietrich Building Systems LLC dba ClarkDietrich Building Systems, assume any liability for a failure and serviceability claim resulting from the incorrect application or installation of the steel framing system described herein. The project owner's Architect and Engineer of Record shall verify the design loads, deflection criteria, and dimensions used herein prior to construction.

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

ASD WIND LOAD ANALYSIS ON SHEATHED SHEAR WALL

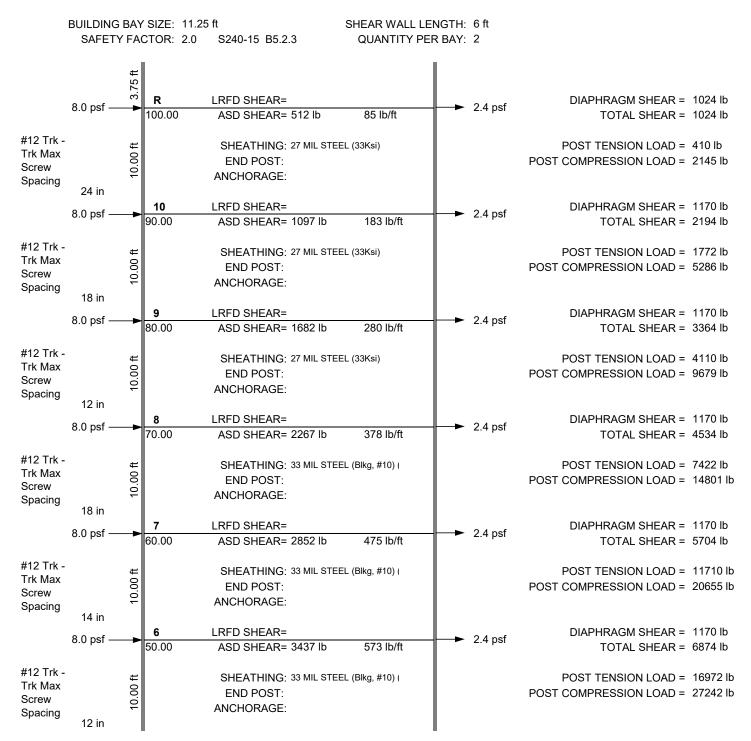
 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

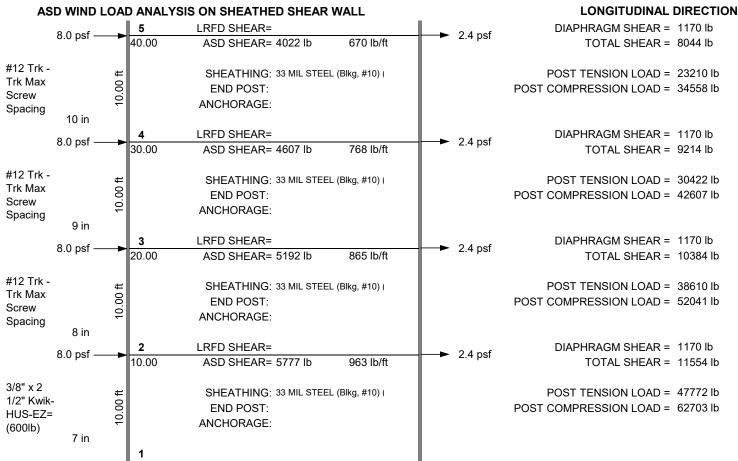
 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

SUBJECT: ASD Wind LFRS Loading


SW-2


LONGITUDINAL DIRECTION

NOTES

- S240-15 Section B5.2, Blocked Sheet Steel Capacity from Recent Roger's Study.
- Max aspect ratio = 2:1, but then 2w/h reduction up to 4:1
- Governing location GL 2. Endpost compression and tension based on 2ft oc W5 studs.
- Longitude wind approximately equivalent to the seismic is 75 mph Exposure C, 8 windward psf + 2.4 leeward psf.

ASD WIND LOAD ANALYSIS

ASD WIND LOAD ANALYSIS ON SHEATHED SHEAR WALL

HEIGHT ft	LEVEL	P _{DL}	P _{DL}			-		D WALL END-P	-
ft				P_{LL}	LOAD (FROM WIND ONLY)	CASE 5 ^a COMPRESS.	CASE 6 ^b COMPRESS.	GOVERNING COMPRESS.	CASE 8 ^C TENSION
		lb	lb	lb	lb	lb	lb	lb	lb
10.00	10	985	739	693	853 853	1838	2145	2145	-410
10.00	9	2020	1515	1673	1828 2681	4701	5286	5286	-1772
10.00	8	3055	2291	3347	2803 5484	8539	9679	9679	-4110
10.00	7	4089	3067	5020	3778 9263	13352	14801	14801	-7422
10.00	6	5121	3843	6697	4753 14016	19137	20655	20655	-11710
10.00	5	6159	4619	8367	5728 19744	25903	27242	27242	-16972
10.00	4	7193	5395	10040	6703 26447	33640	34558	34558	-23210
10.00	3	8228	6171	11713	7678 34125	42353	42607	42607	-30422
10.00	2	9263	6947	13387	8653 42778	52041	51387	52041	-38610
10.00	1	10297	7723	15060	9628 52406	62703	60897	62703	-47772

Anchor LRFD Uplift = -80393 lb

ALL LOADS ARE EVALUATED BASED ON THE ALLOWABLE STRESS REQUIREMENTS OF ASCE 7.

^a FROM CASE 5, SECTION 2.4.1: D + Wasd

^b FROM CASE 6, SECTION 2.4.1: D + 0.75 Wasd + 0.75 L

^c FROM CASE 7, SECTION 2.4.1: 0.6 D - Wasd

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

ASD SEISMIC LOAD ANALYSIS ON SHEATHED SHEAR WALL

SW-3 TRANSVERSE DIRECTION

DATE:

DATE: 3/22/2022

CFS-NHERI 10 Story Test Portion

2150200882

ASD Seismic LFRS Loading

NOTES

- R>3, AISI S400-15 Sheathed Shearwal. Blocked Sheet Steel Capacity from Recent Roger's Study.
- 33Ksi Sheet Steel, Fy must be less than 50 Ksi
- No Gypsum Sheathing (R=2)
- Max aspect ratio = 2:1, but then 2w/h reduction up to 4:1
- GL C & E, Interior W3 Demising Wall, 270sf / 855sf . Endpost compression per 3ft opening, tension per W3 stud. No Wind Design, compare to Archetype 913plf base shear

PROJECT NAME:

CHECKER:

SUBJECT:

PROJECT NUMBER:

ENGINEER: L. Padgett

LAP

SHEAR WALL SUMMARY

HEIGHT ft	LEVEL	SHEATHING TYPE	FASTENER SPACING	MINIMUM STUD GAUGE	POST TYPE	BOTTOM ANCHORAGE	OPTIONAL SHEATHING
10.00	10	27 MIL STEEL (33Ksi)	6 / 12	18	Tension Rod System	Tension Rod System	
10.00	9	27 MIL STEEL (33Ksi)	6 / 12	18	Tension Rod System	Tension Rod System	
10.00	8	27 MIL STEEL (33Ksi)	4 / 12	18	Tension Rod System	Tension Rod System	
10.00	7	27 MIL STEEL (33Ksi)	4 / 12	18	Tension Rod System	Tension Rod System	
10.00	6	27 MIL STEEL (33Ksi)	2 / 12	18	Tension Rod System	Tension Rod System	
10.00	5	33 MIL STEEL (Blkg, #10) (33Ksi)	6 / 12	16	Tension Rod System	Tension Rod System	
10.00	4	33 MIL STEEL (Blkg, #10) (33Ksi)	4 / 12	16	Tension Rod System	Tension Rod System	
10.00	3	33 MIL STEEL (Blkg, #10) (33Ksi)	4 / 12	16	Tension Rod System	Tension Rod System	
10.00	2	33 MIL STEEL (Blkg, #10) (33Ksi)	4 / 12	16	Tension Rod System	Tension Rod System	
10.00	1	33 MIL STEEL (Blkg, #10) (33Ksi)	4 / 12	16	Tension Rod System	Tension Rod System	

Phone: (877) 832-3206 www.ClarkDietrich.com

PROJECT NAME: **CFS-NHERI 10 Story Test Portion** PROJECT NUMBER: 2150200882 ENGINEER: L. Padgett DATE: 3/22/2022 CHECKER: LAP DATE: SUBJECT: ASD Seismic LFRS Loading

LATERAL FORCE RESISTING SYSTEM SEISMIC LOAD ANALYSIS

BUILDING BAY AREA: 248 sf TOTAL BUILDING AREA: 810 sf SAFETY FACTOR: 2.5 S400-15 E2.3.2 SHEAR WALL LENGTH: 6 ft QUANTITY PER BAY: 2

			R	LRFD SHEAR= 636 lb	106 lb/ft	
	4.17 k —		100.00	ASD SHEAR= 445 lb	74 lb/ft	DIAPHRAGM SHEAR (Q _E) = 1273 lb
			100.00	AGD GHEAR HIG	7416/10	TOTAL BAY SHEAR (Q_E) = 1273 lb
#12 Trk -		÷		SHEATHING: 27 MIL STEI	-1 (33Ksi)	
Trk Max		10.00 ft		END POST: Tension R		EXPECTED STRENGTH = 1941 lb/ft
Screw		0		ANCHORAGE: Tension R	•	
Spacing	24 in					
			10	LRFD SHEAR= 1640 lb	273 lb/ft	
	6.57 k —	-	90.00	ASD SHEAR= 1148 lb	191 lb/ft	DIAPHRAGM SHEAR (Q _E) = 2008 lb
						TOTAL BAY SHEAR (Q _E) = 3281 lb
#12 Trk -		Ħ		SHEATHING: 27 MIL STEI	EL (33Ksi)	(_/
Trk Max		10.00 ft		END POST: Tension R	od System	EXPECTED STRENGTH = 1941 lb/ft
Screw Spacing		10		ANCHORAGE: Tension R	od System	
opacing	17 in				-	
	5 00 k		9	LRFD SHEAR= 2526 lb	421 lb/ft	
	5.80 k —		80.00	ASD SHEAR= 1768 lb	295 lb/ft	DIAPHRAGM SHEAR (Q _E) = 1771 lb
						TOTAL BAY SHEAR (Q_E) = 5051 lb
#12 Trk -		#		SHEATHING: 27 MIL STEI	EL (33Ksi)	
Trk Max Screw		10.00 ft		END POST: Tension R	od System	EXPECTED STRENGTH = 3000 lb/ft
Spacing		9		ANCHORAGE: Tension R	od System	
	11 in					
	5.03 k —	_	8	LRFD SHEAR= 3294 lb	549 lb/ft	
	0.00 K		70.00	ASD SHEAR= 2305 lb	384 lb/ft	DIAPHRAGM SHEAR (Q_E) = 1536 lb
#12 Trk -						TOTAL BAY SHEAR $(Q_E) = 6587$ lb
Trk Max		10.00 ft		SHEATHING: 27 MIL STEI		
Screw		<u> </u>		END POST: Tension R	•	EXPECTED STRENGTH = 3000 lb/ft
Spacing		Ę		ANCHORAGE: Tension R	od System	
	9 in					
	4.26 k —		7	LRFD SHEAR= 3945 lb	658 lb/ft	
			60.00	ASD SHEAR= 2762 lb	460 lb/ft	DIAPHRAGM SHEAR (Q_E) = 1303 lb
#12 Trk -						TOTAL BAY SHEAR $(Q_E) = 7890$ lb
Trk Max		0.00 ft		SHEATHING: 27 MIL STE		
Screw		0.0		END POST: Tension R		EXPECTED STRENGTH = 3510 lb/ft
Spacing		~		ANCHORAGE: Tension R	od System	
	15 in				7 4 7 11 (5)	
	3.51 k —		6 50.00	LRFD SHEAR= 4481 lb	747 lb/ft	DIAPHRAGM SHEAR (Q _E) = 1073 lb
			50.00	ASD SHEAR= 3137 lb	523 lb/ft	
#12 Trk -		<u>ب</u>				TOTAL BAY SHEAR $(Q_E) = 8963$ lb
Trk Max		10.00 ft		SHEATHING: 33 MIL STE		
Screw		0.0		END POST: Tension R ANCHORAGE: Tension R		EXPECTED STRENGTH = 4095 lb/ft
Spacing	12 :	~		ANUTURAGE: Tension R	ou system	
	13 in		I			II

2262 Rutherford Road, Suite 104 Carlsbad, California 92008 Phone: (877) 832-3206 www.ClarkDietrich.com

п

LATERAL FORCE RESISTING SYSTEM

	2.77 k		5	LRFD SHEAR=	4904 lb	817 lb/ft
	2.11 K		10.00	ASD SHEAR=	3433 lb	572 lb/ft
#12 Trk - Trk Max Screw Spacing	12 in	10.00 ft		SHEATHING: END POST: ANCHORAGE:	Tension Rod	System
	2.04 k		4	LRFD SHEAR=	5215 lb	869 lb/ft
	2.04 K		10.00	ASD SHEAR=	3651 lb	608 lb/ft
#12 Trk - Trk Max Screw Spacing	11 in	10.00 ft		SHEATHING: END POST: ANCHORAGE:	Tension Rod	System
	4 00 1		3	LRFD SHEAR=	5417 lb	903 lb/ft
	1.32 k		10.00	ASD SHEAR=	3792 lb	632 lb/ft
#12 Trk - Trk Max Screw Spacing	11 in	10.00 ft		SHEATHING: END POST: ANCHORAGE:	Tension Rod	System
	0.63 k		2	LRFD SHEAR=	5514 lb	919 lb/ft
	0.03 K			ASD SHEAR=	3860 lb	643 lb/ft
3/8" x 2 1/2" Kwik- HUS-EZ= (600lb)	11 in	10.00 ft		Sheathing: End Post: Anchorage:	Tension Rod	System
	_		1			

 PROJECT NAME:
 CFS-NHERI 10 Story Test Portion

 PROJECT NUMBER:
 2150200882

 ENGINEER:
 L. Padgett
 DATE:

 CHECKER:
 LAP
 DATE:

 SUBJECT:
 ASD Seismic LFRS Loading

SW-3

DIAPHRAGM SHEAR $(Q_E) = 846 \text{ lb}$ TOTAL BAY SHEAR $(Q_E) = 9809 \text{ lb}$ EXPECTED STRENGTH = 5139 lb/ft DIAPHRAGM SHEAR $(Q_E) = 622 \text{ lb}$ TOTAL BAY SHEAR $(Q_E) = 10431 \text{ lb}$ EXPECTED STRENGTH = 5139 lb/ft DIAPHRAGM SHEAR $(Q_E) = 404 \text{ lb}$ TOTAL BAY SHEAR $(Q_E) = 10835 \text{ lb}$ EXPECTED STRENGTH = 5139 lb/ft

DIAPHRAGM SHEAR (Q_E) = 193 lb TOTAL BAY SHEAR (Q_E) = 11028 lb

EXPECTED STRENGTH = 5139 lb/ft

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

DESIGN SPECTRAL RESPONSE ACCELLERATION, SHORT PEF S_{DS} = 1.0088 SYSTEM OVERSTRENGTH FACTOR (TRANSVERSE DIRECTION Ω_0 = 3.0 REDUNDANCY FACTOR (TRANSVERSE DIRECTION) $\rho = 1.0$

INDIVIDUAL LOADS

		UNFACTC	UNFACTORED ON-CENTER STUD LOADS			END-POST LOADS FROM HORIZONTAL LOADING		
HEIGHT	LEVEL	P _{DL}	P _{DL} FOR UPLIFT	P _{LL}	Q _E	EXPECTED STRENGTH		
ft		lb	lb	lb	lb	lb		
10.00	10	238	179	71	1061	19410		
10.00	10	230	175	7.1	1061	19410		
10.00	9	620	465	177	2734	19410		
10.00	9	020	405	177	3794	38820		
10.00	8	1001	751	355	4209	30000		
10.00	0	1001	751	300	8004	68820		
10.00	7	1382	1036	532	5489	30000		
10.00	1	1302	1030	552	13493	98820		
10.00	6	1763	1322	709	6575	35100		
10.00	0	1703	1322	709	20068	133920		
10.00	5	2144	1608	887	7469	40950		
10.00	5	2144	1000	007	27537	174870		
10.00	4	2525	1894	1064	8174	51390		
10.00	4	2525	1094	1004	35711	226260		
10.00	3	2906	2180	1241	8692	51390		
10.00	3	2900	2100	1241	44404	226260		
10.00	2	3288	2466	1419	9029	51390		
10.00	2	3200	2400	1419	53433	226260		
10.00	1	3669	2752	1596	9190	51390		
10.00	1	3009	2192	1090	62622	277650		
Anchor LRFD Uplift= -60145 lb								

PROJECT NAME:		CFS-NHERI 10 Story Test Portion					
PROJECT NU	JMBER:	2150200882					
ENGINEER:	L. Padg	ett	DATE:	3/22/2022			
CHECKER:	LAP		DATE:				
SUBJECT:	ASD Se	ismic LFRS Loading					

GOVERNING LOADS
CONVERTED TO ASD

SW-3

ASD END-POST AND HOLDOWN LOADS						
ASD Post	ASD HD					
Compression	Tension					
lb (FS=1.8)	lb (FS=3)					
1993	-1005					
6905	-3650					
14316	-7771					
23860	-13171					
35214	-19658					
48058	-27038					
62076	-35123					
76958	-43727					
92403	-52667					
108114	-61768					
S100-12,	•					

S100-12, Section C4.1

FS=1.8

FS=3.0

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM SEISMIC LOAD COMBINATION SUMMARY

SW-3

								FROM EXPECTED STRENGTH MIC LOADING ($\Omega_0 Q_E$)	
HEIGHT	LEVEL	CASE 5 ^a COMPRESS.	CASE 6 ^b COMPRESS.	GOVERNING COMPRESS.	CASE 8 ^C TENSION	CASE 5 ^d COMPRESS.	CASE 7 ^e TENSION	NOMINAL ^f COMPRESS.	NOMINAL [†] TENSION
ft		lb	lb	lb	lb	lb	lb	lb	lb
10.00	10	980	848	980	-635	3587	-3016	3587	-3016
10.00	9	3276	2745	3276	-2377	12429	-10950	12429	-10950
10.00	8	6604	5469	6604	-5152	25770	-23313	25770	-23313
10.00	7	10827	8865	10827	-8824	42948	-39514	42948	-39514
10.00	6	15811	12831	15811	-13255	63385	-58974	63385	-58974
10.00	5	21420	17266	21420	-18311	86504	-81115	86504	-81115
10.00	4	27523	22071	27523	-23861	111737	-105370	111737	-105370
10.00	3	33989	27149	33989	-29775	138525	-131182	138525	-131182
10.00	2	40691	32404	40691	-35923	166326	-158002	166326	-158002
10.00	1	47505	37743	47505	-42184	194606	-185305	194606	-185305
	·				ASD			NOM	INAL

^a FROM CASE 5, SECTION 2.4.1: D + 0.7 Q_E

^b FROM CASE 6, SECTION 2.4.1: D + 0.75 (0.7 Q_E) + 0.75 L

 $^{\rm c}\,$ FROM CASE 8, SECTION 2.4.1: 0.6 D - 0.7 $\rm Q_{E}$

 $^d\,$ FROM CASE 5, SECTION 12.4.3.2: (1.2 + 0.2 $S_{DS})$ D + $\Omega_0\,Q_E$ + L + 0.2S

 $^{e}\,$ FROM CASE 7, SECTION 12.4.3.2: (0.9 - 0.2 SDS) D - $\,\Omega 0$ Q $_{E}$ +1.6H

^f REQUIRED NOMINAL STRENGTH = LESSER OF EXPECTED STRENGTH OR OVERSTRENGTH AMPLIFIED SEISMIC

BASED ON AISI S400-15 SECTIONS E2.4.1.2, END-POSTS, HOLDOWNS, AND CONNECTIONS THAT ARE NOT PART OF THE ENERGY DISSIPATI SYSTEM (SHEATHING AND FASTENERS) MUST HAVE THE <u>NOMINAL</u> STRENGTH TO RESIST THE LESSER OF THE EXPECTED STRENGTH OR THE AMPLIFIED SEISMIC LOAD EFFECTS INCLUDING OVERSTRENGTH.

Q_E IS THE UNFACTORED COMPONENT FORCE RESULTING FROM A HORIZONTAL SEISMIC LOAD

SHEATHING IS EVALUATED BASED ON 0.7 Q_E COMPARED TO THE ALLOWABLE SHEATHING CAPACITY (NOMINAL SHEATHING CAPACITY DIVIDED BY Ω FACTOR OF SAFETY).

ASD SHEAR	NOMINAL	NOMINAL	MAXIMUM	ALLOWABLE	ITEM #
DEMAND	DEMAND	CAPACITY	ASPECT RATIO	ASPECT RATIO	11 EIVI #
74 lb/ft	186 lb/ft	647 lb/ft	1.667	2.000	18
191 lb/ft	478 lb/ft	647 lb/ft	1.667	2.000	18
295 lb/ft	737 lb/ft	1000 lb/ft	1.667	2.000	33
384 lb/ft	961 lb/ft	1000 lb/ft	1.667	2.000	33
460 lb/ft	1151 lb/ft	1170 lb/ft	1.667	2.000	31
523 lb/ft	1307 lb/ft	1365 lb/ft	1.667	2.000	30
572 lb/ft	1430 lb/ft	1713 lb/ft	1.667	2.000	29
608 lb/ft	1521 lb/ft	1713 lb/ft	1.667	2.000	29
632 lb/ft	1580 lb/ft	1713 lb/ft	1.667	2.000	29
643 lb/ft	1608 lb/ft	1713 lb/ft	1.667	2.000	29

Sheathing Selection (See Reference Page)

Phone: (877) 832-3206 www.ClarkDietrich.com

LATERAL FORCE RESISTING SYSTEM

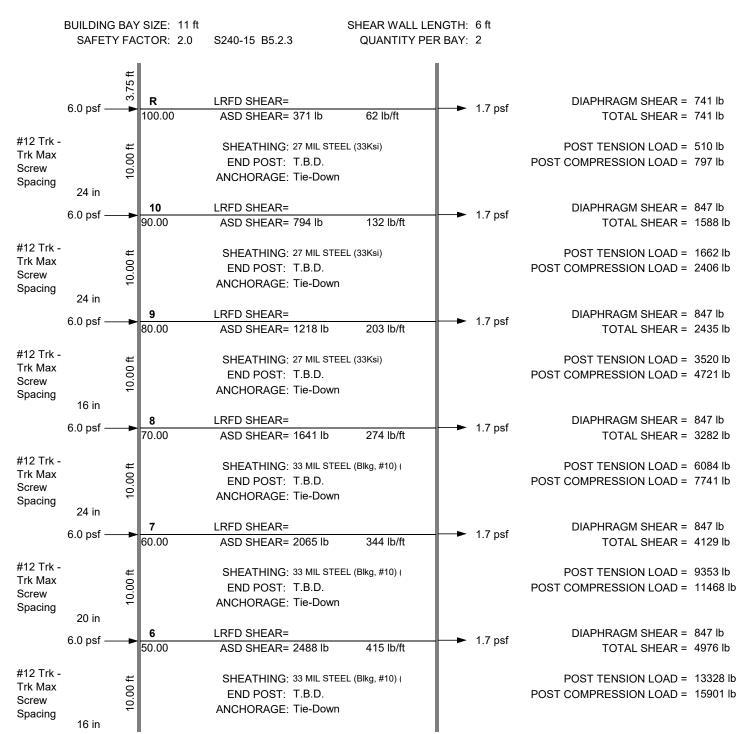
ASD WIND LOAD ANALYSIS ON SHEATHED SHEAR WALL

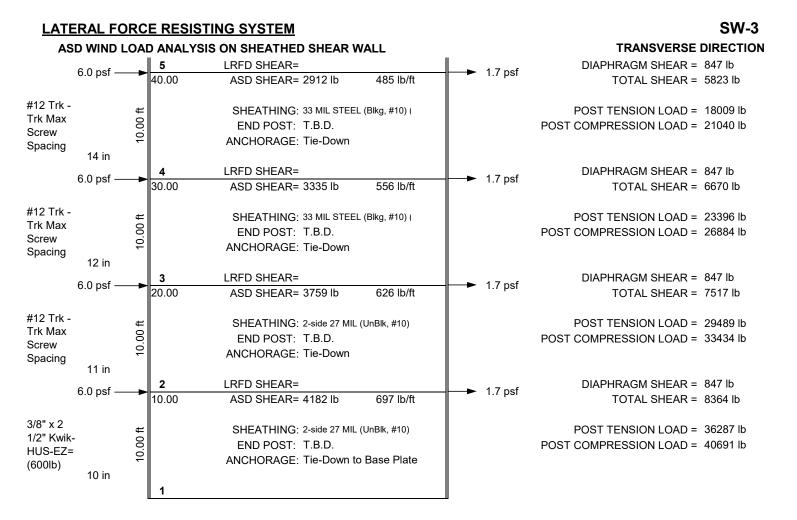
PROJECT NAME: CFS-NHERI 10 Story Test Portion PROJECT NUMBER: 2150200882 ENGINEER: L. Padgett DATE: CHECKER: LAP DATE:

SUBJECT: ASD Wind LFRS Loading

]

SW-3 TRANSVERSE DIRECTION


NOTES


- S240-15 Section B5.2, Blocked Sheet Steel Capacity from Recent Roger's Study.
- Max aspect ratio = 2:1, but then 2w/h reduction up to 4:1
- Governing locations GL C & E, W3 Demising Wall, 11' Trib Width

Transverse wind approximately equivalent to the SW-1 and SW-3 Demising seismic is 65 mph Exp C = 6 windward psf + 1.7 leeward psf.

ASD WIND LOAD ANALYSIS ON SHEATHED SHEAR WALL

ASD WIND LOAD ANALYSIS

SW-3 TRANSVERSE DIRECTION

ASD WIND LOAD ANALYSIS ON SHEATHED SHEAR WALL

HEIGHT LEVEL PDL PDL PDL PDL FOR UPLIFT PLL WIND ONLY) ft lb lb		CASE 6 ^b COMPRESS. Ib 682 2021	GOVERNING COMPRESS. Ib 797	CASE 8 ^C TENSION Ib -510
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	797	682		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			797	-510
10.00 9 465 465 133 1941 10.00 8 751 751 266 2029	2406	2021		
		2021	2406	-1662
3970	4721	3928	4721	-3520
10.00 7 1036 1036 399 2735 6705	7741	6364	7741	-6084
10.00 6 1322 1322 532 3441 10146	11468	9331	11468	-9353
10.00 5 1608 1608 665 4147 14293	15901	12827	15901	-13328
10.00 4 1894 1894 798 4853 19146	21040	16852	21040	-18009
10.00 3 2180 2180 931 5558 24704	26884	21406	26884	-23396
10.00 2 2466 2466 1064 6264 30968	33434	26490	33434	-29489
10.00 1 2752 2752 1197 6970 37939	40691	32104	40691	-36287

Anchor LRFD Uplift = -60754 lb

ALL LOADS ARE EVALUATED BASED ON THE ALLOWABLE STRESS REQUIREMENTS OF ASCE 7.

^a FROM CASE 5, SECTION 2.4.1: D + Wasd

^b FROM CASE 6, SECTION 2.4.1: D + 0.75 Wasd + 0.75 L

^c FROM CASE 7, SECTION 2.4.1: 0.6 D - Wasd

SHEAR WALL SHEATHING TYPES

		FASTENER	FASTENER NOMINAL		MAXIMUM	
ITEM	SHEATHING TYPE	PATTERN	CAPACITY	STUD GAUGE	SPECT RATIO	
1	NOT ADEQUATE	ERROR	50000	ERROR	ERROR	
2	27 MIL STEEL (33Ksi)	6 / 12	647	18	2	
3	(2) Gypsum	4 / 4	850	20	2	
4	15/32 PLYWOOD Blkg	6 / 12	1065	18	2	
5	15/32 PLYWOOD 7/16 OSB Blkg	4 / 12	1410	18	2	
6	15/32 PLYWOOD 7/16 OSB Blkg	3 / 12	1735	18	2	
7	2-side 27 MIL (UnBlk, #10) (33Ksi)	2 / 12	4231	12	2	
8	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	2805	12	2	
9	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	2464	14	2	
10	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	2110	16	2	
11	33 MIL STEEL (Blkg, #10) (33Ksi)	3 / 12	1962	16	2	
12	33 MIL STEEL (Blkg, #10) (33Ksi)	4 / 12	1713	16	2	
13	33 MIL STEEL (Blkg, #10) (33Ksi)	6 / 12	1365	16	2	
14	27 MIL STEEL (33Ksi)	2 / 12	1170	18	2	
15	27 MIL STEEL (33Ksi)	3 / 12	1085	18	2	
16	27 MIL STEEL (33Ksi)	4 / 12	1000	18	2	
17	NOT ADEQUATE	ERROR	50000	ERROR	ERROR	
18	27 MIL STEEL (33Ksi)	6 / 12	647	18	2	
19	(2) Gypsum	4 / 4	850	20	2	
20	15/32 PLYWOOD 7/16 OSB Blkg	6 / 12	825	18	2	
21	15/32 PLYWOOD 7/16 OSB Blkg	4 / 12	1235	18	2	
22	15/32 PLYWOOD 7/16 OSB Blkg	3 / 12	1760	16	2	
23	15/32 PLYWOOD Blkg	2 / 12	2190	16	2	
24	2-side 27 MIL (UnBlk, #10) (33Ksi)	2 / 12	4231	12	2	
25	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	2805	12	2	
26	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	2464	14	2	
27	33 MIL STEEL (Blkg, #10) (33Ksi)	2 / 12	2110	16	2	
28	33 MIL STEEL (Blkg, #10) (33Ksi)	3 / 12	1962	16	2	
29	33 MIL STEEL (Blkg, #10) (33Ksi)	4 / 12	1713	16	2	
30	33 MIL STEEL (Blkg, #10) (33Ksi)	6 / 12	1365	16	2	
31	27 MIL STEEL (33Ksi)	2 / 12	1170	18	2	
32	27 MIL STEEL (33Ksi)	3 / 12	1085	18	2	
33	27 MIL STEEL (33Ksi)	4 / 12	1000	18	2	
34	NOT ADEQUATE	ERROR	50000	ERROR	ERROR	
35	(2) SURE-BOARD	2 / 12	5011	16	2.25	
36	SURE-BOARD	2 / 12	3460	16	2.25	
37	SURE-BOARD	3 / 12	2895	16	2.25	
38	SURE-BOARD	2 / 12	2360	18	2.25	
39	SURE-BOARD	3 / 12	2145	18	2.25	
40	SURE-BOARD	4 / 12	1925	18	2.25	
41	SURE-BOARD	6 / 12	1405	18	2.25	

Note: When a

SHEATHING (SEISMIC)

SHEATHING (WIND)

Note: When a

SUREBOARD ONLY

Product Categories / Fasteners / Bolts / Cap Screws & Hex Bolts / 3/8"-16, Hex Head Cap Screw, 1 in Fastener Le...

FABORY

GRAINGERCHOICE (

3/8"-16, Hex Head Cap Screw, 1 in Fastener Length, Grade 5 Steel, PK 50

Item #22RZ37	Mfr. U
	Model
	#

Mfr. **U01000.037.0100** Model #

UNSPSC #31161501 Catalog Page #2058

Country of Origin Varies. Country of Origin is subject to change.

The thick, hexagonal head design on these steel cap screws is engineered for tightening with a wre h. Use in

Add to Cart
O Pickup
O Pickup
ve Wed. Oct 27.
Change
2.127 lbs
ns

Chat with an Agent

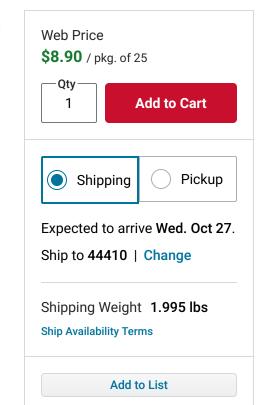
ltem	Hex Head Cap Screw	Fastener Thread Style	Fully Threaded
System of Measurement	Inch	Fastener Industry Standards	ASME B18.2.1
Cap Screw Type	Hex Head Cap		
	Screw	Head Type	Hex
Basic Material	Steel	Min. Thread Length	1 in
Material Grade	Grade 5		
Fastener Finish	Plain	Head Height	15/64 in
		Head Width	0.5625 in
Dia./Thread Size	3/8"-16	Proof Load	74.000 to
5120		PIOOI LOau	74,000 to 85,000 psi
Fastener Length	1 in		
Fastener	Right Hand	Tensile Strength	105,000 to 120,000 psi
Thread Direction		Rockwell Hardness	C19 to C30
Fastener	UNC (Coarse)		
Thread Type			

Product Categories / Fasteners / Bolts / Cap Screws & Hex Bolts / 3/8"-16, Hex Head Cap Screw, 2 1/4 in Fastene...

FABORY

GRAINGERCHOICE

3/8"-16, Hex Head Cap Screw, 2 1/4 in Fastener Length, Grade 5 Steel, PK 25



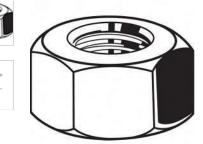
Item #22RZ42	Mfr. U01000.037.0225
	Model
	#

UNSPSC #31161501 Catalog Page #N/A

Country of Origin Varies. Country of Origin is subject to change.

The thick, hexagonal head design on these steel cap screws is engineered for tightening with a wre h. Use in

ltem	Hex Head Cap Screw	Fastener Thread Style	Partially Threaded
System of Measurement	Inch	Fastener Industry Standards	ASME B18.2.1
Cap Screw Type	Hex Head Cap	otandardo	
	Screw	Head Type	Hex
Basic Material	Steel	Min. Thread Length	1 in
Material Grade	Grade 5	Head Height	15/64 in
Fastener Finish	Plain	Thead Theight	10/04 11
Nie (Threed	2/0" 16	Head Width	0.5625 in
Dia./Thread Size	3/8"-16	Proof Load	74,000 to 85,000 psi
Fastener Length	2 1/4 in	Tanaila Ctranath	105 000 to
Fastener	Right Hand	Tensile Strength	105,000 to 120,000 psi
Thread Direction		Rockwell Hardness	C19 to C30
Fastener Thread Type	UNC (Coarse)		



Product Categories / Fasteners / Nuts / Hex Nuts / Hex Nut, Hex Nut, Steel, Grade 5, Zinc Plat...

FABORY

GRAINGERCHOICE

Hex Nut, Hex Nut, Steel, Grade 5, Zinc Plated, 3/8"-16 Dia./Thread Size, Right Hand, PK 100

Item #3HEF1	Mfr. U01300.037.0001 Model #
UNSPSC #31161727	Catalog Page #2080

Country of Origin Varies. Country of Origin is subject to change.

Item	Hex Nut
Nut Style	Hex Nut
System of Measurement	Inch
Basic Material	Steel
Material Grade	Grade 5
Fastener Finish	Zinc Plated

Fastener Thread Direction	Right Hand
Dia./Thread Size	3/8"-16
Fastener Thread Type	UNC (Coarse)
Width Across Flats	9/16 in
Nut Height	21/64 in
Nut Standards	ASME B18.2.2

g Pickup
rrive Wed. Oct 27
Change
ht 1.517 lbs

Part Number 1094000, Teks® with Wings Wood-to-Metal Self-Drilling Screws - TEKS® 4 3PFH W/WINGS SPEX™ 12-24 X 2-3/...

<u>marketing@itwbuildex.com</u> ategories > Screws > Self-Drilling Screws > Wood-to-Metal Self-Drilling Screws > Teks® 4 W

<u>All Categories</u> > <u>Screws</u> > <u>Self-Drilling Screws</u> > <u>Wood-to-Metal Self-Drilling Screws</u> > <u>Teks® 4 WTM with Wings Wood-to-Metal Self-Drilling Screws</u> > Part Number 1094000

Part Number 1094000, Teks® with Wings Wood-to-Metal Self-Drilling Screws - TEKS® 4 3PFH W/WINGS SPEX™ 12-24 X 2-3/4"

larger image

- Teks Drill Point
 - Non-walking, cutting edges, pigtail reduction
 - · Engages material faster, drills with less effort, safer installation
- Cutting wings
 - Ream a hole in fastened wood
 - · Prevents thread engagement in fastened wood while drilling
- Choice of Phillips Wafer head, Flat head, Square Driv flat head
 - Allows installer a choice of drivers
 - No need to switch drives, saves time
- Gray Climaseal[™] Coating
 - Provides excellent corrosion resistance
 - Lasts longer

Size	12-24 x 2-3/4"
Point Style	Teks® 4 - with wings
Drive Style	Phillips 3
Coating	Gray Climaseal™
Material	Carbon Steel
Material Attachment Range	3/4"-1-5/8" Wood, .125"250" Steel
Product Name	Teks® 4 with Wings
Steel Grade	C1022
Screw Color	Gray
Head Style	Flat
Head Style	Phillips 3 Flat
Wood Attachment Range	3/4-1-5/8 "
Installation Tool	Installation Tool
Screw Diameter	#12
Threads Per Inch	24
Thread Size	12 "

10/27/21, 9:50 AM

Part Number 1094000, Teks® with Wings Wood-to-Metal Self-Drilling Screws - TEKS® 4 3PFH W/WINGS SPEX™ 12-24 X 2-3/...

Thread Style	Standard
Length Under Head to Point	2-3/4 "
Max. Material Attachments	3/4"-1-5/8"
Drill & Tap Capacity	.125250 "
Tensile Strength	3,165 lb
Shear Stress	2,200 lb
Torque	150 in-lb
Product Family	Teks® SDF 12
Box Quantity	1,500
Carton Weight	34.19 lb
Country of Origin	Produced in the USA from Canadian Steel

Print Back

Product Categories / Fasteners / Threaded Rods and Studs / Fully Threaded Rods and Studs / Steel Fully Threaded Rods and Studs / Fully Threaded Rod, Steel, 1-3/4"-12, 1 ft L...

GRAINGER APPROVED **GRAINGERCHOICE**

Fully Threaded Rod, Steel, 1-3/4"-12, 1 ft Length

Item #10W543

Mfr. LC.13401201.PL.ע Model #

UNSPSC #31161618 Catalog Page #N/A

Country of Origin USA. Country of Origin is subject to change.

Low-strength steel fully threaded rods and studs provide good strength and durability for everyday f; ening

Technical Specs

ltem	Fully Threaded Rod	Thread Direction	Right Hand		
System of Measurement	Inch	Threaded Rod Thread Type	UNF		
Threaded Rod Material	Steel	Min. Tensile Strength	60,000 psi		
Threaded Rod Finish	Plain	Rockwell Hardness	B85 Min		
Thread Size	1-3/4"-12	Thread Class	1A		
Length	1 ft	Yield Strength	45,000 psi		

Web Price

\$26.39 / each

Qty

1

Add to Cart

Image: Constant of the second seco

Product Categories / Fasteners / Washers / Flat Washers / Steel Flat Washer, Plain Fastener Finish, Fit...

FABORY

GRAINGERCHOICE

Steel Flat Washer, Plain Fastener Finish, Fits Bolt Sizes 1-3/4 in, 4 in Washer Outside Dia.

Item # 42JX97	Mfr. B38402.175.0001 Model #
UNSPSC #31161807	Catalog Page #2088

Country of Origin Varies. Country of Origin is subject to change.

Fabory Flat Washers feature 2 flat surfaces that distribute force and stress over a wider surface area, and

Technical Specs

Dia.

Item	Flat Washer	Thickness	0.18 in		
Flat Washer Type	Flat Washer	Temp. (F)	-58 Degrees to 302 Degrees F		
Washer Basic Material	Steel	Color	Silver		
System of	Inch	Application	General Purpose		
Measurement		Washer	ASME B18.22.1		
Washer Material Grade	Low Carbon	Standards	ASIVIL DT0.22.1		
		Package Weight	19.85		
Fastener Finish	Plain		40		
Fits Bolt Sizes	1-3/4 in	Approx. Pkg. Qty.	40		
Washer Inside Dia.	1 7/8 in	Package Quantity	40		
Washer Outside	4 in				

Qty 1	Add to Cart
Shipping	O Pickup
Expected to arri Ship to 44410	
Shipping Weight	t 19.75 lbs

Product Categories / Fasteners / Nuts / Hex Nuts / Hex Nut, Hex Nut, Steel, Grade 8, Plain, 1...

GRAINGER APPROVED GRAINGERCHOICE

Hex Nut, Hex Nut, Steel, Grade 8, Plain, 1-3/4"-12 Dia./Thread Size, Right Hand, PK 30

Item #4VPK3Mfr. Model #4VPK3UNSPSC #31161727Catalog Page #N/A

Country of Origin Varies. Country of Origin is subject to change.

Web Price \$252.17 / pkg. of 30 Qty 1 Add to Cart
Shipping Pickup Expected to arrive Wed. Oct 27. Ship to 44410 Change
Shipping Weight 45.3 lbs Ship Availability Terms
Add to List

Hex Nut
Hex Nut
Inch
Steel
Grade 8
Plain

Fastener Thread Direction	Right Hand
Dia./Thread Size	1-3/4"-12
Fastener Thread Type	UNF (Fine)
Width Across Flats	2 5/8 in
Nut Height	1 15/32 in
Nut Standards	ASME B18.2.2

ClarkDietrich Holdown (CD Series)

Secure and hold down shearwalls to the structure foundation.

ClarkDietrich holdowns provide cost-effective shearwall attachment and are used to transfer tension loads between floors or from structural members to the foundation. Twopiece welded construction comes in three sizes for optimal performance. Installation is made easy with prepunched holes.

ALTERNATIVE PRODUCTS

EasyClip[™] T-Series[™] Tall Anchor Clip

PRODUCT DIMENSIONS

CD8: 2-5/8" x 11" CD10: 2-5/8" x 13-1/2" CD15: 2-5/8" x 19"

MATERIAL SPECIFICATIONS

Gauge: 7 gauge (179 mils) With 1/2" bearing plate Steel Thickness: 0.1793 inches

ASTM: A36, A1011

Reference section R603.9.4.2 of the International Residential Code (IRC) for holdown requirements in residential applications. Consult the engineer of record for commercial applications.

INSTALLATION

- Install the holdowns using anchor bolts or alternate anchorage calculated to resist the tension load for your specific application.
- Use steel nylon locking nuts or thread adhesive to minimize the chance of nut spin. Anchor bolt washer is not required.

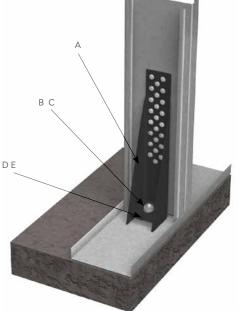
ClarkDietrich HOLDOWNS

Product	Simpson		Thick	iness	C: (')	D I I	
code	reference	Gauge	Gauge Mils Design thickness (in)		Size (in)	Packaging	
CD8	S/HD8S	7	179	0.188	2-5/8 x 11	Deservations	
CD10	10 S/HD10S 7		179	0.188	2-5/8 x 13-1/2	Dependent on Order Quantity	
CD15	S/HD15S	7	179	0.188	2-5/8 x 19		

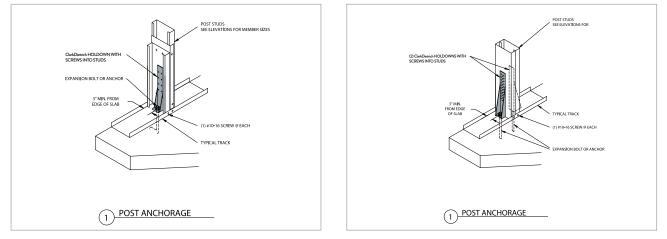
INSTALLATION (CONTINUED)

- Secure the CD holdown to the steel framing member by filling all the prepunched holes with #14 screws to achieve listed capacities.
- Boundary members (back-to-back studs) shall be designed by a qualified professional. To tie back-to-back stud members together, the Designer must determine the fasteners required to bind members to act as one unit.
- CD holdowns can be welded per Designer's recommendation and specification.
- Welding procedures shall be qualified as specified in AWS D1.3.
- Welded connections used for cold-formed steel structural members in which the thickness of the thinnest connected part is 0.18 inch or less shall comply to AISI S100-2012 specification Section E2.

ClarkDietrich CD8, CD10, CD15 HOLDOWNS


		Fast	eners	Student and an	AS	D	LRF	D	Nominal tensior	
Product code	Height	Anchor diameter	Stud fasteners	Stud member thickness	Tension load (lbs)	Deflection at ASD load	Tension load (lbs)	Deflection at LRFD load	load (lbs)	
				2-33mil (2-20ga)	6,962	0.080	11,139	0.119	20,885	
				2-43mil (2-18ga)	8,164	0.070	13,062	0.124	24,492	
CD8	11"	7/8"	(17) #14	2-54mil (2-16ga)	11,253	0.083	18,005	0.126	33,759	
				2-68mil (2-14ga)	12,240	0.095	19,585	0.135	36,721	
				2-97mil (2-12ga)	12,240	0.095	19,585	0.135	36,721	
		7/8"	(23) #14	2-33mil (2-20ga)	7,293	0.120	11,669	0.160	21,880	
				2-43mil (2-18ga)	9,314	0.068	14,902	0.106	27,941	
CD10	13-1/2"			2-54mil (2-16ga)	12,502	0.083	20,004	0.125	37,507	
				2-68mil (2-14ga)	12,899	0.083	20,638	0.127	38,697	
				2-97mil (2-12ga)	12,899	0.083	20,638	0.127	38,697	
				2-33mil (2-20ga)	7,610	0.098	12,177	0.125	22,831	
				2-43mil (2-18ga)	9,235	0.067	14,776	0.104	27,705	
CD15	19"	1"	(32) #14	2-54mil (2-16ga)	13,532	0.088	21,650	0.128	40,595	
				2-68mil (2-14ga)	13,695	0.063	21,911	0.096	41,084	
				2-97mil (2-12ga)	13,695	0.063	21,911	0.096	41,084	

Notes:


- 1 Designer shall specify the foundation anchor material type, length, embedment and configuration. Tabulated loads may exceed anchor bolt ASTM A36 or A307 tension capacities.
- 2 Stud design by qualified professional. Tabulated loads are based on a minimum stud thickness for fastener connection.
- **3** 1/4" self-drilling screws can be substituted for #14.
- 4 Deflection at ASD and LRFD loads includes fastener slip, holdown elongation and anchor bolt elongation.
- 5 Nominal tension load is based on the average ultimate (peak) load from tests. AISI Lateral Design standard requires holdown to have nominal strength to resist lesser of amplified seismic load or what the system can deliver.

Sources of deflection at the shearwall holdown connections:

- A Eccentricity in stud—when a holdown is installed on only one side of the stud, an eccentricity exists during loading that can cause additional movement in the shearwall system.
- B Nut spin—unrestrained anchor bolt nuts can spin loose during cyclic loading: the use of steel nylon locking nuts or thread adhesive may prevent nut spin.
- C Lack of nut tightening—additional movement can occur when nuts are not tightened sufficiently.
- D Deflection of the holdown-deflection can occur in the holdown under load caused by stresses due to earthquake or high wind.
- E Vertical deflection at the holdown seat caused by stud rotation—lateral displacement at the top of the wall rotates the stud around its base causing the holdown base plate to displace vertically.

Typical Construction Details

Visit our CAD Library at clarkdietrich.com to view or download construction details in .dwg, .dxf, and .pdf formats.

July 10, 2009

Re: TENSION LOADS FOR SIMPSON S/HDS HOLDOWNS ATTACHED TO SINGLE DIETRICH HDS $^{\oplus}$ HEAVY DUTY STUDS

To Whom It May Concern:

Table 1 provides tension loads for Simpson Strong-Tie S/HDS series holdowns attached to the flat side of single HDS[®] heavy duty studs manufactured by Dietrich Industries, Inc. as shown in Figure 1 below.

		Fast	eners	Dietrich Stud	A	SD.	L.	Ð		
Model No.	н	Fdn Stud Anchor Dia Fastener		Member Thickness mll (ga)	Tension Load	Deflection at ASD Load	Tension Load	Deflection at LRFD Load	Nominal Tension Load	
7			17 - #14	33 (20ga)	3080	0.075	4920	0.124	5760	
S/HD8S		7/8		43 (18ga)	4125	0.101	6590	0.177	7720	
	11			54 (16ga)	7285	0.098	11160	0.173	13925	
				68 (14ga)	7285	0.085	11160	0.141	17855	
				97 (12ga)	10065	0.100	16075	0.147	24655	
			22 - #14	43 (18ga)	5060	0.059	8085	0.100	9465	
S/HD10S	13½	7/8		54 (16ga)	8675	0.095	13855	0.162	16220	
0110103	1,572	110	22-#14	68 (14ga)	8840	0.088	14120	0.147	21655	
				97 (12ga)	12225	0.088	19530	0.143	29955	
S/HD15S	17	4	30 - #14	68 (14ga)	13495	0.087	21550	0.147	25235	
0110100	*/		JV - #14	97 (12ga)	14025	0.096	22400	0.142	34355	

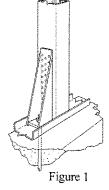
Table 1 - Tension Loads for Simpson S/HDS Holdowns attached to Single Dietrich HDS® Heavy Duty Studs

1. Dietrich HDS® heavy duty studs manufactured by Dietrich Industries, Inc. See evaluation reportE SR-2374.

Designer shall specify the foundation anchor material type, le ngth, e mbedment and configuration. T abulated loads may exceed typical anchor bolt of ASTM A36 or A307 tension capacities.

3. Stud design by Specifier. Tabulated loads are based on a minimum stud thickness for fastener connection.

4. 1/4" self-drilling screws can be substituted for #14.


5. Deflection at ASD and LRFD Loads is the deflection of the holdown measured between the anchor bolt and strap portion of the holdown when loaded to the ASD and LRFD load respectively. This movement is strictly due to the holdown deformation under a static load test attached to members listed in the table above.

6. Nominal Tension Load is based on the average ultimate (peak) load from tests. AISI Lateral Design standard requires holdown to have nominal strength to resist lesser of amplified seismic load or what the system can deliver.

Please note: the information in this letter is valid until 12/31/2010 when it will be reevaluated by Simpson Strong-Tie. Refer to the current Simpson Strong-Tie *Cold-Formed Steel Connectors* catalog for additional pertinent information. If you have any other questions or need further assistance regarding this matter, please contact the engineering department of Simpson Strong-Tie at 1-800-999-5099.

Sincerely,

SIMPSON STRONG-TIE CO., INC.

				Dimensi	ons (in))		Faster	ner Sch	edule		Metal Stud	AS	SD (Lbs.)	LR	FD (Lbs.)									
USP		Steel					Ancl	hor Bolt ¹	Min/	95	Stud	Member ⁴	Tension	Deflection at	Tension	Deflection at									
Stock No.	Ref. No.	Gauge	W	н	D	CL	Qty	Qty Dia (in) Max		Qty	Type ³	Mils (Gauge)	Load	ASD Load (in)	Load	LRFD Load (in)									
											6 #14	2-33 (20Ga)	2255	0.080	3605	0.118									
									Min	6		2-43 (18Ga)	3145	0.103	5035	0.148									
S/PHD4	S/HDU4	14	2-3/8	7-3/4	3-1/4	1-3/8	1	5/8				2-54 (16Ga)	4355	0.140	6970	0.205									
3/F11D4	3/11004	14	2-3/0	1-3/4	3-1/4	1-5/0	· ·	5/0					2-33 (20Ga)	2960	0.088	4740	0.133								
															Max	Max	Max	Max	Max 8	#14	2-43 (18Ga)	4345	0.076	6950	0.131
												2-54 (16Ga)	5385	0.138	8620	0.216									
										n 12		2-33 (20Ga)	4965	0.102	7945	0.177									
									Min		12	12	12	12	12	12	#14	2-43 (18Ga)	5490	0.104	8785	0.160			
S/PHD6	S/HDU6	14	2-3/8	10-3/8	3-1/4	1-3/8	1	5/8				2-54 (16Ga)	7345	0.120	11750	0.214									
3/11100	3/11000	14	2-3/0	10-5/0	J-1/4	1-3/0	'	5/0				2-33 (20Ga)	5440	0.088	8700	0.168									
									Max	14	#14	2-43 (18Ga)	6275	0.096	10040	0.156									
												2-54 (16Ga)	7350	0.127	11755	0.218									
												2-33 (20Ga)	6495	0.096	10390	0.154									
S/PHD9	S/HDU9	12	2-3/8	12-3/4	3-1/4	1-3/8	1	7/8		18	#14	2-43 (18Ga)	8875	0.112	14195	0.191									
												2-54 (16Ga)	10850	0.103	17365	0.165									

The designer must specify the anchor bolt type, length and embedment.
 Deflections are derived from static, monotonic load tests of device connected to a 2-ply cold formed steel stud and include fastener slip, holdown elongation and anchor bolt elongation (L = 4").
 #14 screws are self-drilling tapping screws for cold-formed steel construction.
 The designer must specify the metal stud size and mil thickness.

Subject Screw/Weld Design Values Screw/Weld Facility _____ Sheet No. _____ Of _____

By _____ Date _____

Allowable Weld/Screw Design Values (lb.)

	Design			W	elds	#1	0 Screws	s (.19" D	ia.)	#1	2 Screw	s (.21" C	Dia.)	1/4" Dia. Screws			
	Thk	Fy	Fu		Flare		Pullover			Pullover				Pullover			
Gage	(in.)	(ksi	(ksi)	Fillet	Groove	Shear	1-Side	2-Side	Pullout	Shear	1-Side	2-Side	Pullout	Shear	1-Side	2-Side	Pullout
25	0.0188	33	45			71	79	159	46	75	106	212	50	80	106	212	58
22	0.0283	33	45			131	119	239	69	138	159	319	76	147	159	319	87
20-Drywall	0.0312	33	45			151	131	263	75	159	175	351	83	170	175	351	95
25-UltraSTEEL	0.0158	40	55			67	81	163	47	70	109	217	52	75	109	217	59
20-UltraSTEEL	0.0263	40	55			143	136	271	78	151	181	362	86	161	181	362	98
20X-UltraSTEEL	0.0295	40	55			170	152	304	87	179	203	405	96	191	203	405	110
20	0.0346	33	45			177	146	292	84	186	195	390	93	199	195	390	106
18	0.0451	33	45	499	543	263	190	380	109	276	253	507	121	295	253	507	138
16	0.0566	33	45	627	683	370	239	478	137	389	319	637	152	416	319	637	173
10	0.0500	50	65	905	986	467	345	690	198	562	460	920	219	601	460	920	250
14	0.0713	33	45	789	859	467	301	601	173	549	401	802	191	587	401	802	218
14	0.0713	50	65	1139	1241	467	434	700	249	667	579	933	276	848	579	1158	315
12	0.1017	33	45	1125	897	467	429	700	246	667	572	933	272	867	572	1144	311
12	0.1017	50	65	1269	897	467	620	700	356	667	826	933	393	867	826	1283	449
10	0.1242	33	45	1550	1096	467	524	700	301	667	699	933	333	867	699	1283	380
10	0.1242	50	65	1550	1096	467	700	700	435	667	933	933	480	867	1009	1283	549

	Design			#	8 Screws	s (.16" Di	a.)	#7	/ Screws	(.15" Di	a.)
	Thk	Fy	Fu		Pullo	over			Pullo	over	
Gage	(in.)	(ksi	(ksi)	Shear	1-Side	2-Side	Pullout	Shear	1-Side	2-Side	Pullout
25	0.0188	33	45	65	53	106	38	63	53	106	36
22	0.0283	33	45	120	80	159	58	116	80	159	54
20-Drywall	0.0312	33	45	139	88	175	64	134	88	175	60
25-UltraSTEEL	0.0158	40	55	61	54	109	39	59	54	109	37
20-UltraSTEEL	0.0263	40	55	131	90	181	66	127	90	181	62
20X-UltraSTEEL	0.0295	40	55	156	101	203	73	151	101	203	69
20	0.0346	33	45	162	97	195	71	157	97	195	66
18	0.0451	33	45	241	127	253	92	233	127	253	86
16	0.0566	33	45	333	159	319	116	290	159	319	108
10	0.0500	50	65	333	230	460	167	290	230	460	156
14	0.0713	33	45	333	200	401	145	290	200	401	136
14	0.0713	50	65	333	290	525	210	290	290	460	197
12	0.1017	33	45	333	286	525	207	290	286	460	194
12	0.1017	50	65	333	413	525	300	290	413	460	281
10	0.1242	33	45	333	349	525	253	290	349	460	238
10	0.1242	50	65	333	505	525	366	290	460	460	343

 Notes:

 1) All values are calculated per the 2001 AISI Specification with 2004 Supplement

 2) Weld strength is given in lb./in.

 3) Weld strength is based on E60XX electodes.

 4) Shear strength for #7, # 8, #10, #12, and 1/4" screws must be greater than or equal to 870 lb., 1000 lb., 1400 lb., 2000 lb., and 2600 lb. respectively.

 5) Tension strength for #7, # 8, #10, #12, and 1/4" screws must be greater than or equal to 1380 lb., 1575 lb., 2100 lb., and 3850 lb. respectively.

 6) The minimum head diameter for #7 and #8 screws is 1/4". The minimum head diameter for #10 screws is 3/8". The minimum head diameter for #12 and 1/4" screws is 1/2".

S

Structural Properties of TradePoady® Rim Track

SECTION	DIM	ENSION				FULLY EF	FECTIVE	GROSS	SECTIO	N PROPE	RTIES				NET SECTI	ON PROPERTIES	CA	PACITY @ HOL	E
ID	A, in.	t, in.	Area, in ²	Weight, Ib/ft	lx, in⁴	ly, in⁴	Sx , in ³	Sy, in ³	X, in	Xo, in	J, in⁴	Cw, in ⁶	Ro, in	β	Area', in ²	Ix', in ⁴	Mpos, in-Ibs.	Mneg, in-Ibs.	Va, Ibs
TD 7.25 x 18	7.34	0.0451	0.493	1.612	3.550	0.196	0.868	0.092	0.350	-0.738	0.000334	0.822	3.500	1.060	0.312	3.260	8829	9040	591
TD 7.25 x 16	7.36	0.0566	0.617	2.019	4.448	0.244	1.085	0.115	0.349	-0.736	0.000659	1.020	3.503	1.060	0.391	4.083	17414	17861	1173
TD 7.25 x 14	7.39	0.0713	0.776	2.537	5.591	0.305	1.358	0.144	0.347	-0.732	0.001314	1.265	3.506	1.060	0.490	5.131	26184	27334	2335
TD 7.25 x 12	7.45	0.1017	1.103	3.610	7.974	0.427	1.921	0.203	0.343	-0.722	0.003804	1.755	3.517	1.058	0.697	7.316	46644	51102	5875
TD 8 x 18	8.09	0.0451	0.526	1.722	4.506	0.200	1.007	0.093	0.328	-0.698	0.000357	1.028	3.824	1.048	0.346	4.215	9754	9954	597
TD 8 x 16	8.11	0.0566	0.660	2.158	5.646	0.249	1.258	0.116	0.326	-0.695	0.000704	1.276	3.827	1.047	0.433	5.280	19241	19671	1185
TD 8 x 14	8.14	0.0713	0.829	2.712	7.097	0.311	1.575	0.145	0.325		0.001405	1.058	3.831	1.047	0.544	6.635	29049	30211	2362
TD 8 x 12	8.20	0.1017	1.180	3.859	10.117	0.436	2.229	0.205	0.321	-0.682	0.004067	2.194	3.843	1.046	0.773	9.456	52239	56911	6588
TD 9.25 x 18	9.34	0.0451	0.583	1.907	6.434	0.205	1.257	0.094	0.296	-0.640	0.000395	1.429	4.376	1.033	0.402	6.141	11230	11423	584
TD 9.25 x 16	9.36	0.0566	0.730	2.389	8.060	0.256	1.571	0.118	0.295	-0.637	0.000780	1.772	4.380	1.033	0.504	7.692	22157	22578	1161
TD 9.25 x 14	9.39	0.0713	0.918	3.004	10.131	0.320	1.968	0.147	0.293	-0.634	0.001556	2.113	4.717	1.028	0.633	9.666	33594	34805	2317
TD 9.25 x 12	9.45	0.1017	1.307	4.275	14.435	0.448	2.786	0.207	0.290		0.004505		4.399	1.032	0.900	13.770	61000	66079	6737
TD 10 x 16	10.11	0.0566	0.773	2.528	9.779	0.260	1.773	0.118	0.279		0.000825	2.113	4.717	1.027	0.433	8.632	24471	25145	788
TD 10 x 14	10.14	0.0713	0.972	3.179	12.291	0.324	2.221	0.148	0.277	-0.631	0.001647	2.621	4.722	1.028	0.544	10.844	36997	38669	1567
TD 10 x 12	10.20	0.1017	1.383	4.525	17.510	0.454	3.146	0.209	0.274	-0.595	0.004768	3.631	4.738	1.026	0.773	15.444	66707	72999	4544
TD 11.25 x 16	11.36	0.0566	0.844	2.760	13.132	0.265	2.133	0.119	0.255	-0.563	0.000901	2.753	5.286	1.020	0.504	11.986	27453	28117	811
TD 11.25 x 14	11.39	0.0713	1.061	3.471	16.505	0.330	2.674	0.149	0.254	-0.559	0.001798	3.415	5.292	1.020	0.633	15.060	41675	43395	1615
TD 11.25 x 12	11.45	0.1017	1.510	4.941	23.508	0.463	3.789	0.210	0.251	-0.551	0.005206	4.729	5.311	1.020	0.900	21.444	75860	82560	4689
TD 12 x 16	12.11	0.0566	0.886	2.899	15.457	0.267	2.364	0.120	0.243	-0.539	0.000946	3.181	5.630	1.017	0.546	14.311	29181	29849	811
TD 12 x 14	12.14	0.0713	1.114	3.645	19.427	0.334	2.964	0.150	0.242	-0.536	0.001888	3.946	5.637	1.017	0.686	17.982	44370	46135	1617
TD 12 x 12	12.20	0.1017	1.586	5.190	27.667	0.467	4.201	0.211	0.239	-0.528	0.005469	5.462	5.657	1.016	0.976	25.603	81073	88046	4698
TD 14 x 14	14.14	0.0713	1.257	4.112	28.791	0.341	3.803	0.152	0.214		0.002130	5.561	6.567	1.011	0.829	27.346	51330	53261	1574
TD 14 x 12	14.20	0.1017	1.790	5.856	40.996	0.478	5.392	0.214	0.211	-0.474	0.006171	7.693	6.590	1.011	1.180	38.936	94430	102214	4577
Notes: Ix	_			Fully Eff	fective Mo	ment of In	teria ahou	it V avie											
ly	-			,		ment of In								1.3	25		1.25		
Sx	_			,		ction Modu			mali flan	de)			-		- Pr-	-			
Sy	-					ction Modu							t	\sim	— 	Ť	/- r=1.5t		
×	-					Centroid				- /				:			/		
Xo	-					Centroid			-										
J	-					nal Consta								ł					
Cw	-			Warping	Constan	t								í i			TAB		
IX'	-				-	ment of In	ertia at Ki	nockout a	bout X a	kis			Ą	j o	ç	Ą	DEPTH		
Mpos	-										Compression			_rt			1		
Mneg	-			Fully Bra	aced Allov	vable Morr	nent at Ho	le when L	arge Fla	nge is in	Compression			sc	- Xo		Ļ		
Va	-			Allowab	le Shear a	t Hole			-	~				ť					
Fy	-			33 ksi fo	or 18 ga. a	ind 50 ksi	for 16, 14	, 12, and	10 ga.						- t		- -t		c
T - 1.				1.00	h	da a bita a sur t	0.05						•			_ *		1	
Tab de	ptň	=				depth upto									2.5		 - −2.5	1	
				6.00 inc	nes (joist	depth grea	ater than s	9.25 inche	es)					GRO	SS SECTION		NET SECTION	N	

1.12

IMPORTANT INFORMATION

				Dimensi	ons (in))		Faster	ner Sch	edule		Metal Stud	AS	SD (Lbs.)	LR	FD (Lbs.)
USP		Steel					Ancl	hor Bolt ¹	Min/	95	Stud	Member ⁴	Tension	Deflection at	Tension	Deflection at
Stock No.	Ref. No.	Gauge	W	н	D	CL	Qty	Dia (in)	Max	Qty	Type ³	Mils (Gauge)	Load	ASD Load (in)	Load	LRFD Load (in)
												2-33 (20Ga)	2255	0.080	3605	0.118
									Min	6	#14	2-43 (18Ga)	3145	0.103	5035	0.148
S/PHD4	S/HDU4	14	2-3/8	7-3/4	3-1/4	1-3/8	1	5/8				2-54 (16Ga)	4355	0.140	6970	0.205
3/F11D4	3/11004	14	2-3/0	1-3/4	3-1/4	1-5/0	· ·	5/0				2-33 (20Ga)	2960	0.088	4740	0.133
									Max	8	#14	2-43 (18Ga)	4345	0.076	6950	0.131
												2-54 (16Ga)	5385	0.138	8620	0.216
												2-33 (20Ga)	4965	0.102	7945	0.177
									Min	12	#14	2-43 (18Ga)	5490	0.104	8785	0.160
S/PHD6	S/HDU6	14	2-3/8	10-3/8	3-1/4	1-3/8	1	5/8				2-54 (16Ga)	7345	0.120	11750	0.214
3/11100	3/11000	14	2-3/0	10-5/0	J-1/4	1-3/0	'	5/0				2-33 (20Ga)	5440	0.088	8700	0.168
									Max	14	#14	2-43 (18Ga)	6275	0.096	10040	0.156
												2-54 (16Ga)	7350	0.127	11755	0.218
												2-33 (20Ga)	6495	0.096	10390	0.154
S/PHD9	S/HDU9	12	2-3/8	12-3/4	3-1/4	1-3/8	1	7/8		18	#14	2-43 (18Ga)	8875	0.112	14195	0.191
												2-54 (16Ga)	10850	0.103	17365	0.165

The designer must specify the anchor bolt type, length and embedment.
 Deflections are derived from static, monotonic load tests of device connected to a 2-ply cold formed steel stud and include fastener slip, holdown elongation and anchor bolt elongation (L = 4").
 #14 screws are self-drilling tapping screws for cold-formed steel construction.
 The designer must specify the metal stud size and mil thickness.

Subject Screw/Weld Design Values Screw/Weld Facility _____ Sheet No. _____ Of _____

By _____ Date _____

Allowable Weld/Screw Design Values (lb.)

	Design			W	elds	#1	0 Screws	s (.19" D	ia.)	#1	2 Screw	s (.21" C	Dia.)		1/4" Dia	a. Screw	s
	Thk	Fy	Fu		Flare		Pulle	over			Pulle	over			Pull	over	
Gage	(in.)	(ksi	(ksi)	Fillet	Groove	Shear	1-Side	2-Side	Pullout	Shear	1-Side	2-Side	Pullout	Shear	1-Side	2-Side	Pullout
25	0.0188	33	45			71	79	159	46	75	106	212	50	80	106	212	58
22	0.0283	33	45			131	119	239	69	138	159	319	76	147	159	319	87
20-Drywall	0.0312	33	45			151	131	263	75	159	175	351	83	170	175	351	95
25-UltraSTEEL	0.0158	40	55			67	81	163	47	70	109	217	52	75	109	217	59
20-UltraSTEEL	0.0263	40	55			143	136	271	78	151	181	362	86	161	181	362	98
20X-UltraSTEEL	0.0295	40	55			170	152	304	87	179	203	405	96	191	203	405	110
20	0.0346	33	45			177	146	292	84	186	195	390	93	199	195	390	106
18	0.0451	33	45	499	543	263	190	380	109	276	253	507	121	295	253	507	138
16	0.0566	33	45	627	683	370	239	478	137	389	319	637	152	416	319	637	173
10	0.0500	50	65	905	986	467	345	690	198	562	460	920	219	601	460	920	250
14	0.0713	33	45	789	859	467	301	601	173	549	401	802	191	587	401	802	218
14	0.0713	50	65	1139	1241	467	434	700	249	667	579	933	276	848	579	1158	315
12	0.1017	33	45	1125	897	467	429	700	246	667	572	933	272	867	572	1144	311
12	0.1017	50	65	1269	897	467	620	700	356	667	826	933	393	867	826	1283	449
10	0.1242	33	45	1550	1096	467	524	700	301	667	699	933	333	867	699	1283	380
10	0.1242	50	65	1550	1096	467	700	700	435	667	933	933	480	867	1009	1283	549

	Design			#	8 Screws	s (.16" Di	a.)	#7	/ Screws	(.15" Di	a.)
	Thk	Fy	Fu		Pullo	over			Pullo	over	
Gage	(in.)	(ksi	(ksi)	Shear	1-Side	2-Side	Pullout	Shear	1-Side	2-Side	Pullout
25	0.0188	33	45	65	53	106	38	63	53	106	36
22	0.0283	33	45	120	80	159	58	116	80	159	54
20-Drywall	0.0312	33	45	139	88	175	64	134	88	175	60
25-UltraSTEEL	0.0158	40	55	61	54	109	39	59	54	109	37
20-UltraSTEEL	0.0263	40	55	131	90	181	66	127	90	181	62
20X-UltraSTEEL	0.0295	40	55	156	101	203	73	151	101	203	69
20	0.0346	33	45	162	97	195	71	157	97	195	66
18	0.0451	33	45	241	127	253	92	233	127	253	86
16	0.0566	33	45	333	159	319	116	290	159	319	108
10	0.0500	50	65	333	230	460	167	290	230	460	156
14	0.0713	33	45	333	200	401	145	290	200	401	136
14	0.0713	50	65	333	290	525	210	290	290	460	197
12	0.1017	33	45	333	286	525	207	290	286	460	194
12	0.1017	50	65	333	413	525	300	290	413	460	281
10	0.1242	33	45	333	349	525	253	290	349	460	238
10	0.1242	50	65	333	505	525	366	290	460	460	343

 Notes:

 1) All values are calculated per the 2001 AISI Specification with 2004 Supplement

 2) Weld strength is given in lb./in.

 3) Weld strength is based on E60XX electodes.

 4) Shear strength for #7, # 8, #10, #12, and 1/4" screws must be greater than or equal to 870 lb., 1000 lb., 1400 lb., 2000 lb., and 2600 lb. respectively.

 5) Tension strength for #7, # 8, #10, #12, and 1/4" screws must be greater than or equal to 1380 lb., 1575 lb., 2100 lb., and 3850 lb. respectively.

 6) The minimum head diameter for #7 and #8 screws is 1/4". The minimum head diameter for #10 screws is 3/8". The minimum head diameter for #12 and 1/4" screws is 1/2".

S

Structural Properties of TradePoady® Rim Track

SECTION	DIM	ENSION				FULLY EF	FECTIVE	GROSS	SECTIO	N PROPE	RTIES				NET SECTI	ON PROPERTIES	CA	PACITY @ HOL	E
ID	A, in.	t, in.	Area, in ²	Weight, Ib/ft	lx, in⁴	ly, in⁴	Sx , in ³	Sy, in ³	X, in	Xo, in	J, in⁴	Cw, in ⁶	Ro, in	β	Area', in ²	Ix', in ⁴	Mpos, in-Ibs.	Mneg, in-Ibs.	Va, Ibs
TD 7.25 x 18	7.34	0.0451	0.493	1.612	3.550	0.196	0.868	0.092	0.350	-0.738	0.000334	0.822	3.500	1.060	0.312	3.260	8829	9040	591
TD 7.25 x 16	7.36	0.0566	0.617	2.019	4.448	0.244	1.085	0.115	0.349	-0.736	0.000659	1.020	3.503	1.060	0.391	4.083	17414	17861	1173
TD 7.25 x 14	7.39	0.0713	0.776	2.537	5.591	0.305	1.358	0.144	0.347	-0.732	0.001314	1.265	3.506	1.060	0.490	5.131	26184	27334	2335
TD 7.25 x 12	7.45	0.1017	1.103	3.610	7.974	0.427	1.921	0.203	0.343	-0.722	0.003804	1.755	3.517	1.058	0.697	7.316	46644	51102	5875
TD 8 x 18	8.09	0.0451	0.526	1.722	4.506	0.200	1.007	0.093	0.328	-0.698	0.000357	1.028	3.824	1.048	0.346	4.215	9754	9954	597
TD 8 x 16	8.11	0.0566	0.660	2.158	5.646	0.249	1.258	0.116	0.326	-0.695	0.000704	1.276	3.827	1.047	0.433	5.280	19241	19671	1185
TD 8 x 14	8.14	0.0713	0.829	2.712	7.097	0.311	1.575	0.145	0.325		0.001405	1.058	3.831	1.047	0.544	6.635	29049	30211	2362
TD 8 x 12	8.20	0.1017	1.180	3.859	10.117	0.436	2.229	0.205	0.321	-0.682	0.004067	2.194	3.843	1.046	0.773	9.456	52239	56911	6588
TD 9.25 x 18	9.34	0.0451	0.583	1.907	6.434	0.205	1.257	0.094	0.296	-0.640	0.000395	1.429	4.376	1.033	0.402	6.141	11230	11423	584
TD 9.25 x 16	9.36	0.0566	0.730	2.389	8.060	0.256	1.571	0.118	0.295	-0.637	0.000780	1.772	4.380	1.033	0.504	7.692	22157	22578	1161
TD 9.25 x 14	9.39	0.0713	0.918	3.004	10.131	0.320	1.968	0.147	0.293	-0.634	0.001556	2.113	4.717	1.028	0.633	9.666	33594	34805	2317
TD 9.25 x 12	9.45	0.1017	1.307	4.275	14.435	0.448	2.786	0.207	0.290		0.004505		4.399	1.032	0.900	13.770	61000	66079	6737
TD 10 x 16	10.11	0.0566	0.773	2.528	9.779	0.260	1.773	0.118	0.279		0.000825	2.113	4.717	1.027	0.433	8.632	24471	25145	788
TD 10 x 14	10.14	0.0713	0.972	3.179	12.291	0.324	2.221	0.148	0.277	-0.631	0.001647	2.621	4.722	1.028	0.544	10.844	36997	38669	1567
TD 10 x 12	10.20	0.1017	1.383	4.525	17.510	0.454	3.146	0.209	0.274	-0.595	0.004768	3.631	4.738	1.026	0.773	15.444	66707	72999	4544
TD 11.25 x 16	11.36	0.0566	0.844	2.760	13.132	0.265	2.133	0.119	0.255	-0.563	0.000901	2.753	5.286	1.020	0.504	11.986	27453	28117	811
TD 11.25 x 14	11.39	0.0713	1.061	3.471	16.505	0.330	2.674	0.149	0.254	-0.559	0.001798	3.415	5.292	1.020	0.633	15.060	41675	43395	1615
TD 11.25 x 12	11.45	0.1017	1.510	4.941	23.508	0.463	3.789	0.210	0.251	-0.551	0.005206	4.729	5.311	1.020	0.900	21.444	75860	82560	4689
TD 12 x 16	12.11	0.0566	0.886	2.899	15.457	0.267	2.364	0.120	0.243	-0.539	0.000946	3.181	5.630	1.017	0.546	14.311	29181	29849	811
TD 12 x 14	12.14	0.0713	1.114	3.645	19.427	0.334	2.964	0.150	0.242	-0.536	0.001888	3.946	5.637	1.017	0.686	17.982	44370	46135	1617
TD 12 x 12	12.20	0.1017	1.586	5.190	27.667	0.467	4.201	0.211	0.239	-0.528	0.005469	5.462	5.657	1.016	0.976	25.603	81073	88046	4698
TD 14 x 14	14.14	0.0713	1.257	4.112	28.791	0.341	3.803	0.152	0.214		0.002130	5.561	6.567	1.011	0.829	27.346	51330	53261	1574
TD 14 x 12	14.20	0.1017	1.790	5.856	40.996	0.478	5.392	0.214	0.211	-0.474	0.006171	7.693	6.590	1.011	1.180	38.936	94430	102214	4577
Notes: Ix	_			Fully Eff	fective Mo	ment of In	teria ahou	it V avie											
ly	-			,		ment of In								1.3	25		1.25		
Sx	_			,		ction Modu			mali flan	de)			-		- Pr-	-			
Sy	-					ction Modu							t	\sim	— 	Ť	/- r=1.5t		
×	-					Centroid				- /				:			/		
Xo	-					Centroid			-										
J	-					nal Consta								ł					
Cw	-			Warping	Constan	t								r i			TAB		
IX'	-				-	ment of In	ertia at Ki	nockout a	bout X a	kis			Ą	j o	ç	Ą	DEPTH		
Mpos	-										Compression			_rt			1		
Mneg	-			Fully Bra	aced Allov	vable Morr	nent at Ho	le when L	arge Fla	nge is in	Compression			sc	- Xo		Ļ		
Va	-			Allowab	le Shear a	t Hole			-	~				ť					
Fy	-			33 ksi fo	or 18 ga. a	ind 50 ksi	for 16, 14	, 12, and	10 ga.						- t		- -t		c
T - 1.				1.00	h	da a bita a sur t	0.05						•			_ *		1	
Tab de	ptň	=				depth upto									2.5		 - −2.5	1	
				6.00 inc	nes (joist	depth grea	ater than s	9.25 inche	es)					GRO	SS SECTION		NET SECTION	N	

1.12

IMPORTANT INFORMATION

Cement Board

Product #290 GRABBER[®] USG[®] Structural Panel fastener (1 OF 2)

Wafer

Head

Drill Point

LOX #2

Designed for USG Structural Panels.

Finish - GRABBERGARD

▶ For attachment of sheathing, siding, OSB or plywood to steel.

PRODUCT FEATURES

- The USG Structural Panel screw has "reamer nibs" under the head to ease countersinking and leave smooth clean edges.
- Wings allow the screw to drill into the metal without clogging the threads and racking/lifting the material before it penetrates through the metal.

SPECIFICATIONS

- ▶ Gauge #8
- Length 1-1/4" to 2-3/8"
- ▶ Head Type Thin Wafer
- ▶ Recess Type LOX® #2
- Thread Type Single Lead
- Finish GRABBERGARD
- Head diameter .362 inch
- GRABBER screws are manufactured in an ISO 9001 and ISO 14001 certified and approved factory, and are approved by ICC ESR report ESR-4223.

INSTALLATION GUIDELINES

- Use a standard screwgun with a depth-sensitive nose piece. Suggested screwgun specification for optimal performance – 4 amps minimum and RPM range of 0 to 4,000.
- > Proper depth setting is paramount in this application.
- Overdriving may result in failure of the fastener or stripout of the work surface.
- The fastener must penetrate beyond the metal a minimum of three thread pitches.

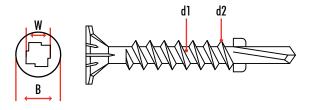
Cement Board

Product #290

GRABBER® USG® Structural Panel fastener (2 OF 2)

PRODU	CT SIZES AN	D ORDERIN	G INFORMATIO	N
Catalog No.	Gauge/Length	Length Metric	Quantity Per Carton	Weight Per Carton
CGH8114LG	#8x1-1/4"	32 mm	1 M	
CGH8158LG	#8x1-5/8"	41 mm	1 M	
CGH8238LG	#8x2-3/8"	63 mm	1 M	
GH8114LG	#8x1-1/4"	32 mm	5 M	32.00(lbs)
GH8158LG	#8x1-5/8"	41 mm	4 M	30.00(lbs)
GH8238LG	#8x2-3/8"	63 mm	3 M	30.00(lbs)
	-			

*Collated screw packaging option available on selected items.


PR	ODUCT I	DIMENS	SIONS (MI	LLIMETE	RS)		
Gauge	B Head Dia		W Gauging Width	d Shank Dia	d1 Minor Dia	d2 Major Dia	TPI
#8	7.77	1.80	#2	3.28	2.85	4.05	18
	8.18	2.46		3.32	3.05	4.25	

STANDARD CORROSION TEST RESULTS

Finish	Test	Standard/Protocol	Results
GRABBERGARD	Salt Spray Results	ASTM B117	1,000 hours, no red rust
GRABBERGARD	Kesternich Results	DIN 50018, 2.0L	15 cycles, no red rust

Pull-out	and Shear 1	est Data**	
Screw Gauge	Metal Gauge	Tension (Ibs.)	Shear (Ibs.)
#8	14	450	1012
	16	442	955
	18	340	1045

**GRABBER fasteners are not categorized as structural bolts. The figures listed above are ultimate average values achieved under independent laboratory conditions, and apply to GRABBER Line fasteners only. An appropriate safety factor must be determined by a qualified professional for design purposes.

DRILLII	NG CAPACITY	Y	
Screw Gauge	Drill Point	Max Panel Thickness	Steel Thickness Gauge Range
8	3	0.100-0.140	20-12

All GRABBER® screw products are manufactured in facilities that are ISO 9001 certified. The fasteners comply with ASTM C1513 and are listed in ICC ESR-4223. ©2012 GRABBER Construction Products, Inc. GRABBER®, STREAKER®, DRIVALL®, LOX®, GRABBERGARD® and SCAVENGER® are registered trademarks of Grabber Construction Products, Inc.

The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 17.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines. US: <u>http://submittals.us.hilti.com/PTGVol2/</u> CA: http://submittals.us.hilti.com/PTGVol2CA/

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST. US: 877-749-6337 or <u>HNATechnicalServices@hilti.com</u> CA: 1-800-363-4458, ext. 6 or <u>CATechnicalServices@hilti.com</u>

1-800-879-8000 www.hilti.com

3.3.6.1 Product description

KWIK HUS-EZ (KH-EZ) anchors are comprised of a body with hex washer head. The anchor is manufactured from carbon steel and is heat treated. It has a minimum 0.0003 inch (8 um) zinc coating in accordance with DIN EN ISO 4042. The KWIK HUS-EZ (KH-EZ) system is available in a variety of lengths with diameters of 1/4-, 3/8-, 1/2-, 5/8- and 3/4-in. The hex head is larger than the diameter of the anchor and is formed with serrations on the underside. The anchor body is formed with threads running most of the length of the anchor body. The anchor is installed in a predrilled hole with a powered impact wrench or torque wrench. The anchor threads cut into the concrete on the sides of the hole and interlock with the base material during installation. Applicable base materials include normal-weight concrete, structural lightweight concrete, lightweight concrete over metal deck, and grout-filled concrete masonry.

Guide specifications

Screw anchors shall be KWIK HUS-EZ as supplied by Hilti, Inc. Anchors shall be manufactured from heat treated carbon steel material, zinc plated to a minimum thickness of 8 µm. Anchor head shall display name of manufacturer, product name, diameter and length. Anchors shall be installed using a drill bit of same nominal diameter as anchor.

Product features

- Suitable for seismic and nonseismic loads.
- Quick and easy to install.
- Length and diameter identification clearly stamped on head facilitates quality control and inspection after installation.
- Through fixture installation improves productivity and accurate installation.
- Thread design enables quality setting and exceptional load values in wide variety of base material strengths.
- Anchor is fully removable
- Anchor size is same as drill bit size.
- Suitable for reduced edge distances and spacing.

3.3.6.2 Material specifications

Hilti KWIK HUS-EZ anchors are manufactured from carbon steel. The anchors are bright zinc plated to a minimum thickness of 8 µm.

3.3.6.3 Technical data

3.3.6.3.1 ACI 318-14 Chapter 17 design

The technical data contained in this section are Hilti Simplified Design Tables. The load values were developed using the Strength Design parameters and variables of ESR-3027 and the equations within ACI 318-14 Chapter 17. For a detailed explanation of the Hilti Simplified Design Method, refer to section 3.1.8. Data tables from ESR-3027 are not contained in this section, but can be found on www.icc-es.org or at www.hilti.com.

3.3.6.1	Product description
3.3.6.2	Material specifications
3.3.6.3	Technical data
3.3.6.4	Installation instructions
3.3.6.5	Ordering information

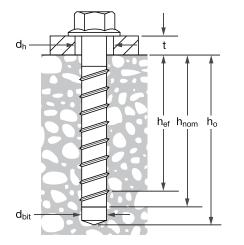
Listings/Approvals

ICC-ES (International Code Council) ESR-3027 Cracked and Uncracked Concrete ESR-3056 Grout-filled concrete masonry City of Los Angeles Research Report No. 25897

Independent code evaluation

IBC [®] / IRC [®] 2015
IBC [®] / IRC [®] 2012
IBC [®] / IRC [®] 2009
IBC [®] / IRC [®] 2006
IBC [®] / IRC [®] 2003

Setting							Nom	inal anc	hor dian	neter				
information	Symbol	Units	1,	/4		3/8			1/2		5	/8	3,	/4
Nominal bit diameter	d _{bit}		1,	/4		3/8			1/2		5	/8	3,	/4
Minimum nominal embedment	h _{nom}	in.	1-5/8	2-1/2	1-5/8	2-1/2	3-1/4	2-1/4	3	4-1/4	3-1/4	5	4	6-1/4
Minimum effective embedment	h _{ef}	in.	1.18	1.92	1.11	1.86	2.50	1.50	2.16	3.22	2.39	3.88	2.92	4.84
Minimum hole depth	h _。	in.	2	2-7/8	1-7/8	2-3/4	3-1/2	2-5/8	3-3/8	4-5/8	3-5/8	5-3/8	4-4/8	6-5/8
Fixture hole diameter	d _h	in.	3,	/8		1/2			5/8		3	/4	7,	/8
Anchor Length = $h_{nom} + t$	l						See	ordering	informa	ation				
Installation torque	Ŧ	ft-lb	1	8	19	4	0		45		8	5	1.	15
concrete	I inst	(Nm)	(2	4)	(26)	(5	4)		(61)		(1	15)	(1	55)
Maximum impact wrench	-	ft-lb	114	137	114	45	50	137	45	50	4	50	4	50
torque rating concrete ²	I impact,max	(Nm)	(154)	(185)	(154)	(60	08)	(185)	(60	08)	(6)	08)	(60	08)
Installation torque	т	ft-lb	2	1		22			34		3	8	7	0
masonry	T _{inst}	(Nm)	(2	8)		(30)			(46)		(5	2)	(9	5)
Maximum impact wrench	т	ft-lb	1.	14	1	14	332		332		33	32	33	32
torque rating masonry ^{2,3}	I impact,max	(Nm)	(15	55)	(15	55)	(450)		(450)		(4	50)	(4	50)
Wrench size		in.	7,	/16		9/16			3/4		15	/16	1-1	1/8


Table 1 - Hilti KWIK HUS-EZ specifications¹

 $1 - T_{_{inst}}$ is the maximum installation torque that may be applied with a torque wrench.

2 Because of variability in measurement procedures, the published torque of an impact tool may not correlate properly with the above setting torques. Over torquing can damage the anchor and/or reduce its holding capacity.

3 For more information on KWIK HUS-EZ installed in masonry, see ESR-3056 and section 3.3.6.3.3.

Figure 1 - Hilti KWIK HUS-EZ specifications

Table 2 - Hilti KWIK HUS-EZ desi	an strenath with concrete	e/pullout failure in uncracked concrete ¹	,2,3,4,5

Nominal	Nie weinen		Tensio	n - φN _n			Shear	r - φV _n	
anchor diameter in.	Nominal embed. in. (mm)	f' _c = 2,500 psi lb (kN)	f' _c = 3,000 psi lb (kN)	f' _c = 4,000 psi lb (kN)	f' _c = 6,000 psi lb (kN)	f' _c = 2,500 psi lb (kN)	f' _c = 3,000 psi lb (kN)	f' _c = 4,000 psi lb (kN)	f' _c = 6,000 psi lb (kN)
	1-5/8	585	620	675	765	1,075	1,180	1,360	1,670
	(41)	(2.6)	(2.8)	(3.0)	(3.4)	(4.8)	(5.2)	(6.0)	(7.4)
1/4	2-1/2	1,525	1,670	1,930	2,365	2,235	2,450	2,825	3,460
	(64)	(6.8)	(7.4)	(8.6)	(10.5)	(9.9)	(10.9)	(12.6)	(15.4)
	1-5/8	910	1,000	1,155	1,415	980	1,075	1,245	1,520
	(41)	(4.0)	(4.4)	(5.1)	(6.3)	(4.4)	(4.8)	(5.5)	(6.8)
3/8	2-1/2	1,980	2,165	2,505	3,065	2,130	2,335	2,695	3,300
3/0	(64)	(8.8)	(9.6)	(11.1)	(13.6)	(9.5)	(10.4)	(12.0)	(14.7)
	3-1/4	3,085	3,375	3,900	4,775	6,640	7,275	8,400	10,290
	(83)	(13.7)	(15.0)	(17.3)	(21.2)	(29.5)	(32.4)	(37.4)	(45.8)
	2-1/4	1,645	1,800	2,080	2,550	1,770	1,940	2,240	2,745
	(57)	(7.3)	(8.0)	(9.3)	(11.3)	(7.9)	(8.6)	(10.0)	(12.2)
1/2	3	2,785	3,050	3,525	4,315	3,000	3,285	3,795	4,645
1/2	(76)	(12.4)	(13.6)	(15.7)	(19.2)	(13.3)	(14.6)	(16.9)	(20.7)
	4-1/4	5,070	5,555	6,415	7,855	10,920	11,965	13,815	16,920
	(108)	(22.6)	(24.7)	(28.5)	(34.9)	(48.6)	(53.2)	(61.5)	(75.3)
	3-1/4	3,240	3,550	4,100	5,025	3,490	3,825	4,415	5,410
5/8	(83)	(14.4)	(15.8)	(18.2)	(22.4)	(15.5)	(17.0)	(19.6)	(24.1)
5/6	5	6,705	7,345	8,485	10,390	14,445	15,825	18,270	22,380
	(127)	(29.8)	(32.7)	(37.7)	(46.2)	(64.3)	(70.4)	(81.3)	(99.6)
	4	4,380	4,795	5,540	6,785	9,430	10,330	11,930	14,610
3/4	(102)	(19.5)	(21.3)	(24.6)	(30.2)	(41.9)	(45.9)	(53.1)	(65.0)
5/4	6-1/4	9,345	10,235	11,820	14,475	20,125	22,045	25,455	31,175
	(159)	(41.6)	(45.5)	(52.6)	(64.4)	(89.5)	(98.1)	(113.2)	(138.7)

Table 3 - Hilti KWIK HUS-EZ design strength with concrete/pullout failure in cracked concrete^{1,2,3,4,5}

Nominal	Nie weinen		Tensio	n - φN _n			Shear	- φV _n	
anchor diameter in.	Nominal embed. in. (mm)	f' _c = 2,500 psi lb (kN)	f' _c = 3,000 psi lb (kN)	f' _c = 4,000 psi lb (kN)	f' _c = 6,000 psi lb (kN)	f' _c = 2,500 psi lb (kN)	f' _c = 3,000 psi lb (kN)	f' _c = 4,000 psi lb (kN)	f' _c = 6,000 psi lb (kN)
	1-5/8	300	315	345	390	765	835	965	1,180
	(41)	(1.3)	(1.4)	(1.5)	(1.7)	(3.4)	(3.7)	(4.3)	(5.2)
1/4	2-1/2	760	830	960	1,175	1,585	1,735	2,000	2,450
	(64)	(3.4)	(3.7)	(4.3)	(5.2)	(7.1)	(7.7)	(8.9)	(10.9)
	1-5/8	475	520	600	730	695	760	880	1,080
	(41)	(2.1)	(2.3)	(2.7)	(3.2)	(3.1)	(3.4)	(3.9)	(4.8)
3/8	2-1/2	1,400	1,535	1,775	2,170	1,510	1,655	1,910	2,340
3/0	(64)	(6.2)	(6.8)	(7.9)	(9.7)	(6.7)	(7.4)	(8.5)	(10.4)
	3-1/4	2,185	2,390	2,765	3,385	4,705	5,155	5,950	7,285
	(83)	(9.7)	(10.6)	(12.3)	(15.1)	(20.9)	(22.9)	(26.5)	(32.4)
	2-1/4	1,035	1,135	1,310	1,605	1,115	1,220	1,410	1,725
	(57)	(4.6)	(5.0)	(5.8)	(7.1)	(5.0)	(5.4)	(6.3)	(7.7)
1/2	3	1,755	1,920	2,220	2,715	1,890	2,070	2,390	2,925
1/2	(76)	(7.8)	(8.5)	(9.9)	(12.1)	(8.4)	(9.2)	(10.6)	(13.0)
	4-1/4	3,190	3,495	4,040	4,945	6,875	7,530	8,695	10,650
	(108)	(14.2)	(15.5)	(18.0)	(22.0)	(30.6)	(33.5)	(38.7)	(47.4)
	3-1/4	2,040	2,235	2,580	3,165	2,200	2,410	2,780	3,405
5/8	(83)	(9.1)	(9.9)	(11.5)	(14.1)	(9.8)	(10.7)	(12.4)	(15.1)
5/0	5	4,225	4,625	5,340	6,540	9,095	9,965	11,505	14,090
	(127)	(18.8)	(20.6)	(23.8)	(29.1)	(40.5)	(44.3)	(51.2)	(62.7)
	4	2,755	3,020	3,485	4,270	5,940	6,505	7,510	9,200
3/4	(102)	(12.3)	(13.4)	(15.5)	(19.0)	(26.4)	(28.9)	(33.4)	(40.9)
0/4	6-1/4	5,885	6,445	7,440	9,115	12,670	13,880	16,030	19,630
	(159)	(26.2)	(28.7)	(33.1)	(40.5)	(56.4)	(61.7)	(71.3)	(87.3)

1 See section 3.1.8.6 to convert design strength value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Apply spacing, edge distance, and concrete thickness factors in table 6 to 15 as necessary. Compare to the steel values in table 4. 3

The lesser of the values is to be used for the design

Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: 4 for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$

5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by the following reduction factors:

1/4-in diameter by 1-5/8-in nominal embedment depth - $\alpha_{_{\text{seis}}}$ = 0.60

All other sizes - α_{seis} = 0.75

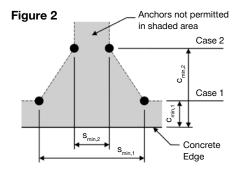
No reduction needed for seismic shear. See section 3.1.8.7 for additional information on seismic applications.

3.3.6

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

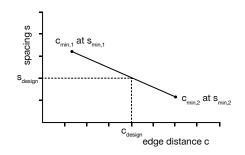
Table 4 - Steel design strength for Hilti KWIK HUS-EZ anchors^{1,2}

Nominal anchor diameter in.	Nc	ominal embe in. (mm)		Tensile	Shear ϕV_{sa}^4 Ib (kN)	Seismic shear $\phi V_{_{sa,eq}}{}^5$ Ib (kN)
1/4	1-5/8 (41)		2-1/2 (64)	3,945 (17.5)	930 (4.1)	835 (3.7)
2 /9		1-5/8 (41)		5,980 (26.6)	2,200 (9.8)	2,200 (9.8)
3/8 -	2-1/2 (64)		3-1/4 (83)	6,720 (29.9)	3,110 (13.8)	1,865 (8.3)
1/2	2-1/4 (57)	3 (76)	4-1/4 (108)	11,780 (52.4)	5,545 (24.7)	3,330 (14.8)
5/8	(37) (3-1/4 (83)		5 (127)	15,735 (70.0)	6,735 (30.0)	4,040 (18.0)
3/4	4 (102)		6-1/4 (159)	20,810 (92.6)	9,995 (44.5)	6,935 (30.8)


See section 3.1.8.6 to convert design strength value to ASD value. 1

KWIK HUS-EZ anchors are to be considered brittle steel elements. 2

Tensile $\phi N_{sa} = \phi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17. 3


4

Shear values determined by static shear tests with $\varphi V_{sa} < \varphi 0.60 A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17. Seismic shear values determined by seismic shear tests with $\varphi V_{sa,eq} < \varphi 0.60 A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17. See section 3.1.8.7 for additional information on seismic applications. 5

For a specific edge distance, the permitted spacing is calculated as follows:

$$s \ge s_{min,2} + \frac{(s_{min,1} - s_{min,2})}{(c_{min,1} - c_{min,2})} (c - c_{min,2})$$

Table 5 - Hilti KWIK HUS-EZ specifications

Sotting information	Symbol	Units					Nomi	nal anc	hor diaı	neter				
Setting information	Symbol	Units	1,	/4		3/8			1/2		5/	/8	3	/4
Effective minimum embedment	h _{ef}	in.	1.18	1.92	1.11	1.86	2.50	1.50	2.16	3.22	2.39	3.88	2.92	4.84
Minimum member thickness	h _{min}	in.	3-1/4	4.125	3-1/4	4	4-7/8	4-1/2	4 3/4	6-3/4	5	7	6	8-1/8
Case 1	C _{min,1}	in.			1.50						1.75			
Case I	for s _{min,1} ≥	in.				3	3					2	1	
Case 2	C _{min,2}	in.	2	2.78	2.63	2.92	3.75	2.75	3.75	5.25	3.63	5.81	4.41	7.28
Uase 2	for $s_{min,2} \ge$	in.	1.	50		2.25					3			

1 Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2. Linear interpolation for a specific edge .distance c, where $c_{min,1} < c < c_{min,2}$ will determine the permissible spacings.

Table 6 - Load adjustment factors for 1/4-in. diameter Hilti KWIK HUS-EZ in uncracked concrete^{1,2}

									E	dge distar	nce in shea	ar		
	/4 in 1/11 [-7		g factor	-	istance		g factor			II to an			nickness
	/4-in. KH-E		in ter			tension	in sh			rd edge		edge	factor in	
unc	racked con	crete	J	AN	J,	RN	J	AV	f	RV		RV	J	HV
Embed	ment h _{nom}	in.	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2
LINDEU	nom nom	(mm)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)
	1-1/2	(38)	0.71	0.63	0.78	0.65	0.59	0.56	0.40	0.21	0.78	0.42	n/a	n/a
	2	(51)	0.78	0.67	1.00	0.77	0.62	0.58	0.61	0.33	1.00	0.65	n/a	n/a
	2-1/2	(64)	0.85	0.72		0.90	0.65	0.60	0.86	0.46		0.90	n/a	n/a
ste	3	(76)	0.92	0.76		1.00	0.68	0.62	1.00	0.60		1.00	n/a	n/a
lore	3-1/4	(83)	0.96	0.78			0.70	0.63		0.68			0.88	n/a
cor	3-1/2	(89)	0.99	0.80			0.71	0.64		0.76			0.92	n/a
distance (c _a)/concrete s (h) - in. (mm)	4	(102)	1.00	0.85			0.74	0.66		0.92			0.98	n/a
ы С	4-1/8	(105)		0.86			0.75	0.66		0.97			1.00	0.81
ance - in.	4-1/2	(114)		0.89			0.77	0.68		1.00				0.84
dist (h)	5	(127)		0.93			0.80	0.70						0.89
ge (5-1/2	(140)		0.98			0.83	0.72						0.93
(s)/edge dist thickness (h)	6	(152)		1.00			0.86	0.74						0.97
(s)/edge thickness	7	(178)					0.92	0.78						1.00
bu	8	(203)					0.98	0.82						
Spacing t	9	(229)					1.00	0.86						
ş	10	(254)						0.89						
	11	(279)						0.93						
	12	(305)						0.97						
	14	(356)						1.00						

Table 7 - Load adjustment factors for 1/4-in. diameter Hilti KWIK HUS-EZ in cracked concrete^{1,2}

									E	dge distar	nce in shea	ar		
			Spacing	g factor	Edge d	istance	Spacing	g factor			ll to an	d away	Conc. th	nickness
1	/4-in. KH-E	Z	in ter	nsion	factor in	tension	in sh	near ³	⊥ towa	rd edge		edge	factor in	n shear4
cra	icked conc	rete	f_{j}	AN	f_{i}	RN	f_{j}	AV	f	RV	f	RV	f_{1}	HV
Empload	mont h	in.	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2
Emped	ment h _{nom}	(mm)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)
	1-1/2	(38)	0.71	0.63	0.88	0.65	0.59	0.56	0.40	0.21	0.80	0.43	n/a	n/a
	2	(51)	0.78	0.67	1.00	0.77	0.62	0.58	0.62	0.33	1.00	0.66	n/a	n/a
	2-1/2	(64)	0.85	0.72		0.90	0.65	0.60	0.87	0.46		0.90	n/a	n/a
ete	3	(76)	0.92	0.76		1.00	0.68	0.62	1.00	0.60		1.00	n/a	n/a
distance (c _a)/concrete s (h) - in. (mm)	3-1/4	(83)	0.96	0.78			0.70	0.63		0.68			0.89	n/a
co	3-1/2	(89)	0.99	0.80			0.71	0.64		0.76			0.92	n/a
e (c _a)/c (mm)	4	(102)	1.00	0.85			0.74	0.66		0.93			0.98	n/a
) e (4-1/8	(105)		0.86			0.75	0.66		0.97			1.00	0.81
ance - in.	4-1/2	(114)		0.89			0.77	0.68		1.00				0.85
dist (h)	5	(127)		0.93			0.80	0.70						0.89
	5-1/2	(140)		0.98			0.83	0.72						0.93
kne	6	(152)		1.00			0.86	0.74						0.98
Spacing (s)/edge dist thickness (h)	7	(178)					0.92	0.78						1.00
ng	8	(203)					0.98	0.82						
aci	9	(229)					1.00	0.86						
Sp	10	(254)						0.90						
	11	(279)						0.94						
	12	(305)						0.98						
	14	(356)						1.00						

1 Linear interpolation not permitted.

4

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations.

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 8 - Load adjustment factors for 3/8-in. diameter Hilti KWIK HUS-EZ in uncracked concrete^{1,2}

													Ed	ge distar	nce in she	ear				
3/	'8-in. KH-	F7		acing fac in tensior			ge distar or in ten			acing fac in shear ^s		⊥t	oward e	dae		and a om edg			thicknes: in shear	
,	acked cor			f_{AN}			$f_{\rm BN}$			f_{AV}			$f_{_{\rm RV}}$	<u> </u>		f _{BV}			$f_{_{\rm HV}}$	
-		in.	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4
Embedr	nent h _{nom}	(mm)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)
	1-1/2	(38)	n/a	(04) n/a	(00) n/a	0.58	0.63	0.57	(+1) n/a	(04) n/a	(00) n/a	0.49	0.25	0.08	0.58	0.50	0.17	(+1) n/a	(04) n/a	(00) n/a
	2	(50)	n/a	n/a	n/a	0.36	0.05	0.66	n/a	n/a	n/a	0.45	0.23	0.00	0.76	0.30	0.17	n/a	n/a	n/a
	2-1/4	(57)	0.84	0.70	0.65	0.86	0.81	0.70	0.65	0.60	0.55	0.90	0.46	0.16	0.90	0.81	0.31	n/a	n/a	n/a
	2-1/2	(64)	0.88	0.72	0.67	0.95	0.88	0.75	0.67	0.61	0.55	1.00	0.54	0.18	1.00	0.88	0.37	n/a	n/a	n/a
	3	(76)	0.95	0.77	0.70	1.00	1.00	0.85	0.71	0.63	0.56	1.00	0.71	0.24	1.00	1.00	0.48	n/a	n/a	n/a
e	3-1/4	(83)	0.99	0.79	0.72			0.90	0.72	0.64	0.57		0.80	0.27			0.54	0.95	n/a	n/a
(c _a)/concrete (mm)	3-1/2	(89)	1.00	0.81	0.73			0.95	0.74	0.65	0.58		0.89	0.30			0.61	0.98	n/a	n/a
noo	4	(102)		0.86	0.77			1.00	0.78	0.68	0.59		1.00	0.37			0.74	1.00	0.84	n/a
(mm)	4-1/2	(114)		0.90	0.80				0.81	0.70	0.60			0.44			0.88		0.89	n/a
се (с	4-3/4	(121)		0.93	0.82				0.83	0.71	0.60			0.48			0.96		0.91	0.64
ance - in.	5	(127)		0.95	0.83				0.84	0.72	0.61			0.52			1.00		0.94	0.66
distance s (h) - in. (6	(152)		1.00	0.90				0.91	0.76	0.63			0.68					1.00	0.72
(s)/edge dist thickness (h)	7	(178)			0.97				0.98	0.81	0.65			0.86						0.78
/ed ckn	8	(203)			1.00				1.00	0.85	0.67			1.00						0.83
g (s) thi	9	(229)								0.90	0.69									0.88
ciné	10	(254)								0.94	0.71									0.93
Spacing (s)/edge thickness	11	(279)								0.98	0.74									0.97
0,	12 14	(305)								1.00	0.76									1.00
	14	(406)									0.80									
	18	(400)									0.84									
	20	(508)									0.03									
	24	(610)									1.00									

Table 9 - Load adjustment factors for 3/8-in. diameter Hilti KWIK HUS-EZ in cracked concrete^{1,2}

													Ed	ge distar	ice in she	ear				
			Sp	acing fac	tor	Ed	qe distar	nce	Spa	acing fac	tor				ll to	and a	way	Conc.	thicknes	s factor
3/	8-in. KH-	F7	·	n tensior	ı	fact	or in ten	sion		in shear [:]		⊥t	oward ed	dge	fro	om edg	je		in shear	1
,	cked cond			f_{AN}			$f_{\rm BN}$			f_{AV}			$f_{\rm RV}$	0		$f_{_{\rm RV}}$			f_{HV}	
		in.	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4
Embedr	nent h _{nom}	(mm)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)
	1-1/2	(38)	n/a	(01) n/a	(00) n/a	0.92	0.66	0.57	n/a	n/a	(00) n/a	0.49	0.25	0.09	0.92	0.50	0.17	n/a	(01) n/a	(00) n/a
	2	(51)	n/a	n/a	n/a	1.00	0.79	0.66	n/a	n/a	n/a	0.76	0.39	0.13	1.00	0.77	0.26	n/a	n/a	n/a
	2-1/4	(57)	0.84	0.70	0.65	1.00	0.85	0.70	0.66	0.60	0.55	0.90	0.46	0.16	1.00	0.85	0.31	n/a	n/a	n/a
	2-1/2	(64)	0.88	0.72	0.67	1.00	0.92	0.75	0.67	0.61	0.55	1.00	0.54	0.18	1.00	0.92	0.37	n/a	n/a	n/a
	3	(76)	0.95	0.77	0.70	1.00	1.00	0.85	0.71	0.63	0.56	1.00	0.71	0.24	1.00	1.00	0.48	n/a	n/a	n/a
e	3-1/4	(83)	0.99	0.79	0.72			0.90	0.73	0.64	0.57		0.80	0.27			0.55	0.95	n/a	n/a
distance (د ٍ)/concrete s (h) - in. (mm)	3-1/2	(89)	1.00	0.81	0.73			0.95	0.74	0.65	0.58		0.90	0.31			0.61	0.98	n/a	n/a
LOC	4	(102)		0.86	0.77			1.00	0.78	0.68	0.59		1.00	0.37			0.75	1.00	0.84	n/a
e (c_)/d (mm)	4-1/2	(114)		0.90	0.80				0.81	0.70	0.60			0.44			0.89		0.89	n/a
се (4-3/4	(121)		0.93	0.82				0.83	0.71	0.60			0.48			0.97		0.92	0.64
ance - in.	5	(127)		0.95	0.83				0.85	0.72	0.61			0.52			1.00		0.94	0.66
dist (h)	6	(152)		1.00	0.90				0.92	0.77	0.63			0.69					1.00	0.72
	7	(178)			0.97				0.98	0.81	0.65			0.86						0.78
(s)/edge dist thickness (h)	8	(203)			1.00				1.00	0.85	0.67			1.00						0.83
thi thi	9	(229)								0.90	0.69									0.88
cinç	10	(254)								0.94	0.72									0.93
Spacing (s)/edge thickness	11	(279)								0.99	0.74									0.97
0,	12 14	(305)								1.00	0.76									1.00
	14	(406)									0.80									
	18	(406)									0.85									
	20	(508)									0.89									
	20	(610)									1.00									

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, $f_{\mu\nu}$ assumes an influence of a nearby edge. If no edge exists, then $f_{\mu\nu}$ = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations.

Table 10 - Load adjustment factors for 1/2-in. diameter Hilti KWIK HUS-EZ in uncracked concrete^{1,2}

													Ec	lge distar	nce in she	ear				
				acing fac			ge dista			acing fac						o and av			hicknes	
	2-in. KH-		i	n tensior	ו	fact	or in ten	sion	i	n shear	3	⊥t	oward e	dge	fi	rom edg	е	i	n shear	1
uncra	cked cor	ncrete		f _{an}			f _{RN}			f _{AV}			f _{RV}			f _{RV}			f _{HV}	
Embedm	oont h	in.	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4
Linboan	nom nom	(mm)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)
	1-3/4	(44)	n/a	n/a	n/a	0.68	0.57	0.51	n/a	n/a	n/a	0.40	0.25	0.07	0.68	0.50	0.15	n/a	n/a	n/a
	2	(51)	n/a	n/a	n/a	0.75	0.62	0.54	n/a	n/a	n/a	0.48	0.31	0.09	0.75	0.61	0.18	n/a	n/a	n/a
	2-1/2	(64)	n/a	n/a	n/a	0.91	0.71	0.60	n/a	n/a	n/a	0.68	0.43	0.13	0.91	0.71	0.25	n/a	n/a	n/a
	3	(76)	0.83	0.73	0.66	1.00	0.81	0.66	0.65	0.61	0.55	0.89	0.56	0.17	1.00	0.81	0.33	n/a	n/a	n/a
0	3-1/2	(89)	0.88	0.77	0.68		0.93	0.73	0.68	0.63	0.56	1.00	0.71	0.21		0.93	0.42	n/a	n/a	n/a
(c _a)/concrete mm)	4	(102)	0.94	0.81	0.71		1.00	0.80	0.71	0.65	0.57		0.87	0.26		1.00	0.52	n/a	n/a	n/a
nc	4-1/2	(114)	0.99	0.85	0.73			0.87	0.73	0.67	0.58		1.00	0.31			0.62	0.96	n/a	n/a
°, ⊊	4-3/4	(121)	1.00	0.87	0.75			0.91	0.74	0.68	0.58			0.33			0.67	0.99	0.85	n/a
	5	(127)		0.89	0.76			0.95	0.76	0.69	0.58			0.36			0.72	1.00	0.87	n/a
ance - in.	6	(152)		0.96	0.81			1.00	0.81	0.73	0.60			0.47			0.95		0.95	n/a
distance s (h) - in. i	6-3/4	(171)		1.00	0.85				0.85	0.76	0.61			0.57			1.00		1.00	0.68
s (t	7	(178)			0.86				0.86	0.77	0.62			0.60						0.69
(s)/edge c thickness	8	(203)			0.91				0.91	0.80	0.64			0.73						0.73
s)/e lick	9	(229)			0.97				0.96	0.84	0.65			0.87						0.78
Spacing (s)/edge thickness	10	(254)			1.00				1.00	0.88	0.67			1.00						0.82
acin	11	(279)								0.92	0.69									0.86
Spa	12	(305)								0.95	0.70									0.90
	14	(356)								1.00	0.74									0.97
	16	(406)									0.77									1.00
	18	(457)									0.80									
	20	(508)									0.84									
	> 24	(610)									0.91									

Table 11 - Load adjustment factors for 1/2-in. diameter Hilti KWIK HUS-EZ in cracked concrete^{1,2}

													Ed	lge distar	nce in sh	ear				
	2-in. KH-l			acing fac n tension $f_{_{\rm AN}}$			ge distai or in ten f _{RN}			acing fac in shear $f_{\rm AV}$		⊥ te	oward e $f_{\rm RV}$	dge		o and av rom edg $f_{\rm RV}$	-		hicknes in shear $f_{_{\rm HV}}$	
Embedm	nent h _{nom}	in. (mm)	2-1/4 (57)	3 (76)	4-1/4 (108)	2-1/4 (57)	3 (76)	4-1/4 (108)	2-1/4 (57)	3 (76)	4-1/4 (108)	2-1/4 (57)	3 (76)	4-1/4 (108)	2-1/4 (57)	3 (76)	4-1/4 (108)	2-1/4 (57)	3 (76)	4-1/4 (108)
	1-3/4	(44)	n/a	n/a	n/a	0.82	0.66	0.55	n/a	n/a	n/a	0.45	0.28	0.08	0.82	0.57	0.17	n/a	n/a	n/a
	2	(51)	n/a	n/a	n/a	0.90	0.72	0.58	n/a	n/a	n/a	0.55	0.35	0.10	0.90	0.70	0.21	n/a	n/a	n/a
	2-1/2	(64)	n/a	n/a	n/a	1.00	0.83	0.65	n/a	n/a	n/a	0.77	0.49	0.14	1.00	0.83	0.29	n/a	n/a	n/a
	3	(76)	0.83	0.73	0.66	1.00	0.94	0.72	0.67	0.62	0.56	1.00	0.64	0.19	1.00	0.94	0.38	n/a	n/a	n/a
	3-1/2	(89)	0.88	0.77	0.68		1.00	0.79	0.70	0.64	0.56		0.80	0.24		1.00	0.48	n/a	n/a	n/a
distance (c _a)/concrete s (h) - in. (mm)	4	(102)	0.94	0.81	0.71		1.00	0.87	0.72	0.66	0.57		0.98	0.29		1.00	0.59	n/a	n/a	n/a
DUCI	4-1/2	(114)	0.99	0.85	0.73			0.95	0.75	0.69	0.58		1.00	0.35			0.70	1.00	n/a	n/a
°, €	4-3/4	(121)	1.00	0.87	0.75			0.99	0.77	0.70	0.59			0.38			0.76		0.88	n/a
ance (c _a)/c - in. (mm)	5	(127)		0.89	0.76			1.00	0.78	0.71	0.59			0.41			0.82		0.91	n/a
i, nce	6	(152)		0.96	0.81			1.00	0.84	0.75	0.61			0.54			1.00		0.99	n/a
stal h) -	6-3/4	(171)		1.00	0.85				0.88	0.78	0.62			0.64					1.00	0.70
(s)/edge dist thickness (h)	7	(178)			0.86				0.89	0.79	0.63			0.68						0.72
gg	8	(203)			0.91				0.95	0.83	0.65			0.83						0.77
s)/e	9	(229)			0.97				1.00	0.87	0.67			0.99						0.81
)g(10	(254)			1.00					0.91	0.68			1.00						0.86
Spacing (s)/edge thickness	11	(279)								0.95	0.70									0.90
Sp	12	(305)								0.99	0.72									0.94
	14	(356)			L					1.00	0.76									1.00
	16	(406)									0.79									
	18	(457)									0.83									
1		(1)																		
	20 > 24	(508) (610)									0.87 0.94									

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, $f_{_{HV}}$ assumes an influence of a nearby edge. If no edge exists, then $f_{_{HV}}$ = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations. 3.3.6

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 12 - Load adjustment factors for 5/8-in. diameter Hilti KWIK HUS-EZ in uncracked concrete^{1,2}

									E	dge distar	nce in shea	ar		
	5/8-in. KH-E		in ter		factor in		in sh	g factor 1ear ³	⊥ towa	rd edge		d away edge	Conc. th factor ir	
unc	racked con	crete	f_{j}	AN	f_{i}	RN	f	AV	f	RV	f	RV	f_{1}	HV
Embod	ment h _{nom}	in.	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5
Emped	ment n _{nom}	(mm)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)
	1-3/4	(44)	n/a	n/a	0.62	0.51	n/a	n/a	0.24	0.06	0.47	0.13	n/a	n/a
	2	(51)	n/a	n/a	0.67	0.54	n/a	n/a	0.29	0.08	0.57	0.15	n/a	n/a
	2-1/2	(64)	n/a	n/a	0.76	0.59	n/a	n/a	0.40	0.11	0.76	0.21	n/a	n/a
	3	(76)	0.71	0.63	0.86	0.65	0.61	0.55	0.53	0.14	0.86	0.28	n/a	n/a
distance (c ٍ)/concrete s (h) - in. (mm)	3-1/2	(89)	0.74	0.65	0.97	0.70	0.63	0.55	0.66	0.18	0.97	0.35	n/a	n/a
ло́с	4	(102)	0.78	0.67	1.00	0.76	0.65	0.56	0.81	0.22	1.00	0.43	n/a	n/a
S -	4-1/2	(114)	0.81	0.69		0.83	0.66	0.57	0.97	0.26		0.52	n/a	n/a
; (c _a)/c (mm)	5	(127)	0.85	0.71		0.89	0.68	0.58	1.00	0.30		0.60	0.85	n/a
<u> </u>	5-1/2	(140)	0.88	0.74		0.96	0.70	0.58		0.35		0.70	0.89	n/a
ance - in.	6	(152)	0.92	0.76		1.00	0.72	0.59		0.40		0.80	0.93	n/a
sta h) -	7	(178)	0.99	0.80			0.75	0.61		0.50		1.00	1.00	0.65
	8	(203)	1.00	0.84			0.79	0.62		0.61				0.69
(s)/edge thickness	9	(229)		0.89			0.83	0.64		0.73				0.74
ekr ekr	10	(254)		0.93			0.86	0.65		0.86				0.78
(s) thi	11	(279)		0.97			0.90	0.67		0.99				0.81
ing	12	(305)		1.00			0.94	0.68		1.00				0.85
Spacing t	14	(356)					1.00	0.71						0.92
Sc	16	(406)						0.74						0.98
	18	(457)						0.77						1.00
	20	(508)						0.80						
	24	(610)						0.86						
	> 30	(762)						0.95						

Table 13 - Load adjustment factors for 5/8-in. diameter Hilti KWIK HUS-EZ in cracked concrete^{1,2}

									E	dge distar	nce in shea	ar		
			Spacing	g factor	Edge d	istance	Spacing	g factor			II to an	d away	Conc. th	nickness
5	5/8-in. KH-E	Z	in ter	nsion	factor in	tension	in sh	iear ³	⊥ towa	rd edge	from	edge	factor ir	n shear4
cra	acked conc	rete	f_{μ}	AN	f_{F}	RN	f	AV	f	RV	f	- RV	f_{1}	HV
E		in.	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5
Embed	ment h _{nom}	(mm)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)
	1-3/4 (44) 2 (51)		n/a	n/a	0.63	0.51	n/a	n/a	0.27	0.07	0.53	0.14	n/a	n/a
	2 (51) 2-1/2 (64)		n/a	n/a	0.68	0.54	n/a	n/a	0.33	0.09	0.65	0.17	n/a	n/a
	2-1/2	(64)	n/a	n/a	0.77	0.59	n/a	n/a	0.46	0.12	0.77	0.24	n/a	n/a
	3	(76)	0.71	0.63	0.87	0.65	0.62	0.55	0.60	0.16	0.87	0.32	n/a	n/a
(c _a)/concrete mm)	3-1/2	(89)	0.74	0.65	0.98	0.70	0.64	0.56	0.75	0.20	0.98	0.40	n/a	n/a
lore	4	(102)	0.78	0.67	1.00	0.76	0.66	0.57	0.92	0.25	1.00	0.49	n/a	n/a
ō	4-1/2	(114)	0.81	0.69		0.83	0.68	0.57	1.00	0.29		0.59	n/a	n/a
(mm)	5	(127)	0.85	0.71		0.89	0.70	0.58		0.34		0.69	0.89	n/a
0 E	5-1/2	(140)	0.88	0.74		0.96	0.72	0.59		0.40		0.79	0.93	n/a
distance s (h) - in. (6	(152)	0.92	0.76		1.00	0.74	0.60		0.45		0.90	0.97	n/a
sta - (ι	7	(178)	0.99	0.80			0.78	0.61		0.57		1.00	1.00	0.68
(s)/edge dist thickness (h)	8	(203)	1.00	0.84			0.82	0.63		0.69				0.72
(s)/edge (thickness	9	(229)		0.89			0.86	0.65		0.83				0.77
ck /e	10	(254)		0.93			0.89	0.66		0.97				0.81
thi (s)	11	(279)		0.97			0.93	0.68		1.00				0.85
Spacing t	12	(305)		1.00			0.97	0.70						0.89
ac	14	(356)					1.00	0.73						0.96
Sp	16	(406)						0.76						1.00
	18	(457)						0.79						
	20	(508)						0.83						
	24	(610)						0.89						
	> 30	(762)						0.99						

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa).

Check with table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations.

Table 14 - Load adjustment factors for 3/4-in. diameter Hilti KWIK HUS-EZ in uncracked concrete^{1,2}

										Edge distar	nce in shea	r		
	3/4-in. KH-E cracked con		Spacing in ter f	nsion	factor in	listance tension	Spacing in sh f			rd edge	from	d away edge	tor in	kness fac- shear⁴
unc		01010								RV		RV		HV
Embed	ment h _{nom}	in. (mm)	4 (102)	6-1/4 (159)	4 (102)	6-1/4 (159)	4 (102)	6-1/4 (159)	4 (102)	6-1/4 (159)	4 (102)	6-1/4 (159)	4 (102)	6-1/4 (159)
	1-3/4	(44)	n/a	n/a	0.57	0.48	n/a	n/a	0.10	0.05	0.19	0.10	n/a	n/a
	2	(51)	n/a	n/a	0.61	0.50	n/a	n/a	0.12	0.06	0.23	0.12	n/a	n/a
	2-1/2	(64)	n/a	n/a	0.68	0.54	n/a	n/a	0.16	0.08	0.33	0.17	n/a	n/a
	3	(76)	0.67	0.60	0.76	0.58	0.56	0.54	0.21	0.11	0.43	0.22	n/a	n/a
	3-1/2	(89)	0.70	0.62	0.84	0.62	0.57	0.55	0.27	0.14	0.54	0.28	n/a	n/a
Φ	4	(102)	0.73	0.64	0.93	0.67	0.58	0.55	0.33	0.17	0.66	0.34	n/a	n/a
ret	4-1/2	(114)	0.76	0.65	1.00	0.72	0.59	0.56	0.39	0.20	0.79	0.41	n/a	n/a
ouc	5	(127)	0.79	0.67		0.76	0.60	0.56	0.46	0.24	0.92	0.48	n/a	n/a
Spacing (s)/edge distance (c _a)/concrete thickness (h) - in. (mm)	5-1/2	(140)	0.81	0.69		0.81	0.61	0.57	0.53	0.28	1.00	0.55	n/a	n/a
ance (c _a)/c - in. (mm)	6	(152)	0.84	0.71		0.86	0.62	0.58	0.61	0.31		0.63	0.69	n/a
i, ice	7	(178)	0.90	0.74		0.97	0.64	0.59	0.77	0.40		0.79	0.75	n/a
stal - (ر	8	(203)	0.96	0.78		1.00	0.66	0.60	0.94	0.48		0.97	0.80	n/a
(s)/edge dist thickness (h)	8-1/8	(206)	0.96	0.78			0.66	0.60	0.96	0.50		0.99	0.80	0.65
dge Jes	9	(229)	1.00	0.81			0.68	0.62	1.00	0.58		1.00	0.85	0.68
ickı	10	(254)		0.84			0.70	0.63		0.68			0.89	0.72
g (s	11	(279)		0.88			0.72	0.64		0.78			0.94	0.75
cini	12	(305)		0.91			0.74	0.65		0.89			0.98	0.79
pad	14	(356)		0.98			0.78	0.68		1.00			1.00	0.85
S	16	(406)		1.00			0.82	0.71						0.91
	18	(457)					0.86	0.73						0.96
	20	(508)					0.90	0.76						1.00
	24	(610)					0.98	0.81						
	30	(762)					1.00	0.89						
	> 36	(914)						0.96						

Table 15 - Load adjustment factors for 3/4-in. diameter Hilti KWIK HUS-EZ in cracked concrete^{1,2}

										Edge distar	nce in shea	r		
			Spacing	g factor	Edge d	istance		g factor			ll to an	d away	Conc. thic	kness fac-
	3/4-in. KH-E		in ter			tension		near ³	⊥ towa	rd edge		edge		shear ⁴
cr	acked conc	rete	f_{j}	AN	f	RN	f	AV	f	RV	f	RV	f	HV
Embed	ment h _{nom}	in.	4	6-1/4	4	6-1/4	4	6-1/4	4	6-1/4	4	6-1/4	4	6-1/4
Embod	nom	(mm)	(102)	(159)	(102)	(159)	(102)	(159)	(102)	(159)	(102)	(159)	(102)	(159)
	1-3/4	(44)	n/a	n/a	0.57	0.48	n/a	n/a	0.11	0.06	0.22	0.11	n/a	n/a
	2	(51)	n/a	n/a	0.61	0.50	n/a	n/a	0.13	0.07	0.27	0.14	n/a	n/a
	2-1/2	(64)	n/a	n/a	0.68	0.54	n/a	n/a	0.19	0.10	0.37	0.19	n/a	n/a
	3	(76)	0.67	0.60	0.76	0.58	0.57	0.54	0.24	0.13	0.49	0.25	n/a	n/a
	3-1/2	(89)	0.70	0.62	0.85	0.63	0.58	0.55	0.31	0.16	0.61	0.32	n/a	n/a
Ð	4	(102)	0.73	0.64	0.93	0.67	0.59	0.56	0.38	0.19	0.75	0.39	n/a	n/a
Spacing (s)/edge distance (c _a)/concrete thickness (n) - in. (mm)	4-1/2	(114)	0.76	0.65	1.00	0.72	0.60	0.56	0.45	0.23	0.90	0.46	n/a	n/a
ono	5	(127)	0.79	0.67		0.77	0.61	0.57	0.52	0.27	1.00	0.54	n/a	n/a
S S S S S S	5-1/2	(140)	0.81	0.69		0.81	0.62	0.58	0.60	0.31		0.63	n/a	n/a
<u> </u>	6	(152)	0.84	0.71		0.87	0.63	0.58	0.69	0.36		0.71	0.72	n/a
ance (c _a)/c - in. (mm)	7	(178)	0.90	0.74		0.97	0.65	0.60	0.87	0.45		0.90	0.78	n/a
sta - (ι	8	(203)	0.96	0.78		1.00	0.67	0.61	1.00	0.55		1.00	0.83	n/a
(s)/edge dist thickness (h)	8-1/8	(206)	0.96	0.78			0.68	0.61		0.56			0.84	0.67
dge Jes	9	(229)	1.00	0.81			0.70	0.63		0.66			0.88	0.71
icki	10	(254)		0.84			0.72	0.64		0.77			0.93	0.75
g (s	11	(279)		0.88			0.74	0.65		0.89			0.98	0.78
cine	12	(305)		0.91			0.76	0.67		1.00			1.00	0.82
ba	14	(356)		0.98			0.80	0.70						0.89
0	16	(406)		1.00			0.85	0.72						0.95
	18	(457)					0.89	0.75						1.00
	20	(508)					0.93	0.78						
	24	(610)					1.00	0.84						
	30	(762)						0.92						
	> 36	(914)						1.00						

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa).

Check with table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations.

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 16 - Hilti KWIK HUS-EZ in the soffit of uncracked lightweight concrete over metal deck^{1,2,3,4,5,6,7}

			Installation i	n lower flute			Installation i	n upper flute	
Nominal anchor	Nominal	Tensio	n - φN _n	Shear	r - φV _n	Tensio	n - φN _n	Shear	- φV _n
diameter in.	embedment in. (mm)	f' _c = 3,000 psi Ib (kN)	f' _c = 4,000 psi Ib (kN)	f' _c = 3,000 psi Ib (kN)	f' _c = 4,000 psi Ib (kN)	f' _c = 3,000 psi Ib (kN)	f' _c = 4,000 psi Ib (kN)	f' _c = 3,000 psi Ib (kN)	f' _c = 4,000 ps Ib (kN)
	1-5/8	545	595	725	725	670	730	725	725
1 /4	(41)	(2.4)	(2.6)	(3.2)	(3.2)	(3.0)	(3.2)	(3.2)	(3.2)
1/4	2-1/2	1,220	1,410	1,325	1,325	1,275	1,470	1,960	1,960
	(64)	(5.4)	(6.3)	(5.9)	(5.9)	(5.7)	(6.5)	(8.7)	(8.7)
	1-5/8	845	975	905	905	970	1,120	2,200	2,200
	(41)	(3.8)	(4.3)	(4.0)	(4.0)	(4.3)	(5.0)	(9.8)	(9.8)
0.0	2-1/2	1,455	1,680	905	905	1,900	2,195	3,655	3,655
3/8	(64)	(6.5)	(7.5)	(4.0)	(4.0)	(8.5)	(9.8)	(16.3)	(16.3)
	3-1/4	2,550	2,945	2,165	2,165		n /n		
	(83)	(11.3)	(13.1)	(9.6)	(9.6)	n/a	n/a	n/a	n/a
	2-1/4	850	980	965	965	905	1,045	4,710	4,710
	(57)	(3.8)	(4.4)	(4.3)	(4.3)	(4.0)	(4.6)	(21.0)	(21.0)
1/2	3	1,990	2,300	1,750	1,750	2/2	2/2	2/2	2/2
1/2	(76)	(8.9)	(10.2)	(7.8)	(7.8)	n/a	n/a	n/a	n/a
	4-1/4	3,485	4,025	2,155	2,155	2/2	2/2	2/2	2/0
	(108)	(15.5)	(17.9)	(9.6)	(9.6)	n/a	n/a	n/a	n/a
	3-1/4	2,715	3,135	2,080	2,080	n/a	n/a	n/a	2/2
E (0	(83)	(12.1)	(13.9)	(9.3)	(9.3)	n/a	n/a	n/a	n/a
5/8	5	6,170	7,125	2,515	2,515	2/2	2/2	2/2	2/2
	(127)	(27.4)	(31.7)	(11.2)	(11.2)	n/a	n/a	n/a	n/a
3/4	4	2,715	3,135	2,255	2,255	n/a	n/a	n/a	n/o
3/4	(102)	(12.1)	(13.9)	(10.0)	(10.0)	n/a	n/a	n/a	n/a

Table 17 - Hilti KWIK HUS-EZ in the soffit of cracked lightweight concrete over metal deck^{1,2,3,4,5,6}

			Installation i	n lower flute			Installation i	n upper flute	
Nominal anchor	Nominal	Tensior	n - φN _n ⁷	Shear	- φV _n ^{7,8}	Tensior	n - φN _n ⁷	Shear	- φV _n ^{7,8}
diameter in.	embedment in. (mm)	f' _c = 3,000 psi Ib (kN)	f' _c = 4,000 psi Ib (kN)	f' _c = 3,000 psi Ib (kN)	f' _c = 4,000 psi Ib (kN)	f' _c = 3,000 psi Ib (kN)	f' _c = 4,000 psi lb (kN)	f' _c = 3,000 psi Ib (kN)	f' _c = 4,000 psi lb (kN)
	1-5/8	280	305	725	725	340	370	725	725
1 /4	(41)	(1.2)	(1.4)	(3.2)	(3.2)	(1.5)	(1.6)	(3.2)	(3.2)
1/4	2-1/2	605	700	1,325	1,325	635	735	1,960	1,960
	(64)	(2.7)	(3.1)	(5.9)	(5.9)	(2.8)	(3.3)	(8.7)	(8.7)
	1-5/8	525	605	905	905	770	890	2,200	2,200
	(41)	(2.3)	(2.7)	(4.0)	(4.0)	(3.4)	(4.0)	(9.8)	(9.8)
3/8	2-1/2	1,035	1,195	905	905	1,345	1,555	3,655	3,655
3/8	(64)	(4.6)	(5.3)	(4.0)	(4.0)	(6.0)	(6.9)	(16.3)	(16.3)
	3-1/4	1,805	2,085	2,165	2,165	n/a	n/a	2/2	2/2
	(83)	(8.0)	(9.3)	(9.6)	(9.6)	n/a	n/a	n/a	n/a
	2-1/4	535	620	965	965	640	740	4,710	4,710
	(57)	(2.4)	(2.8)	(4.3)	(4.3)	(2.8)	(3.3)	(21.0)	(21.0)
1/0	3	1,255	1,450	1,750	1,750	n/a	n/a	2/2	2/2
1/2	(76)	(5.6)	(6.4)	(7.8)	(7.8)	n/a	n/a	n/a	n/a
	4-1/4	2,195	2,535	2,155	2,155	n/a	n/a	2/2	2/2
	(108)	(9.8)	(11.3)	(9.6)	(9.6)	n/a	n/a	n/a	n/a
	3-1/4	1,710	1,975	2,080	2,080	n/a	n/a	n/a	n/o
E (0	(83)	(7.6)	(8.8)	(9.3)	(9.3)	n/a	n/a	n/a	n/a
5/8	5	3,885	4,485	2,515	2,515	n/a	2/2	2/2	2/2
	(127)	(17.3)	(20.0)	(11.2)	(11.2)	n/a	n/a	n/a	n/a
3/4	4	1,710	1,975	2,255	2,255	n/a	n/a	n/a	n/a
3/4	(102)	(7.6)	(8.8)	(10.0)	(10.0)	n/a	n/a	n/a	n/a

1 See section 3.1.8.6 to convert design strength value to ASD value.

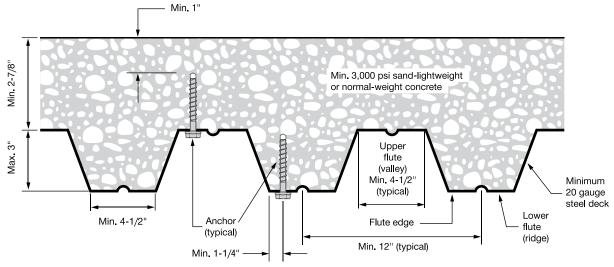
2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{nom} (nominal embedment). 3

Tabular values are lightweight concrete and no additional reduction factor is needed. 4

5 No additional reduction factors for spacing or edge distance need to be applied.

Comparison to steel values in table 4 is not required. Values in tables 16 and 17 control. 6


7 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension only by $\alpha_{N_{able}} = 0.75$. See section 3.1.8.7 for additional information on seismic applications.

8 For the following anchor sizes, an additional factor for seismic shear must be applied to the cracked concrete tabular values for seismic conditions:

1/4-inch diameter - $\alpha_{v,sels} = 0.75$ 3/8-inch diameter - $\alpha_{v,sels} = 0.60$ 1/2-inch diameter - $\alpha_{v,sels} = 0.60$ 5/8-inch diameter - $\alpha_{v,sels} = 0.60$ 3/4-inch diameter - $\alpha_{v,sels} = 0.70$

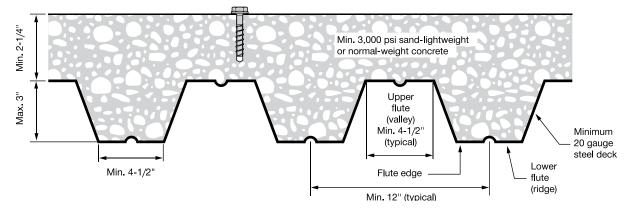

316 Hilti, Inc. (US) 1-800-879-8000 | www.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.com | Anchor Fastening Technical Guide Ed. 17

Figure 3 – Installation of Hilti KWIK HUS-EZ (KH-EZ) in soffit of concrete over steel deck floor and roof assemblies¹

1 Anchors may be placed in the upper or lower flute of the steel deck profile provided the minimum concrete cover above the drilled hole is satisfied. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from the center of the flute. The offset distance may be increased proportionally for profiles with lower flute widths greater than those shown provided the minimum lower flute edge distance is also satisfied.

Figure 4 – Installation of Hilti KWIK HUS-EZ on the top of sand-lightweight concrete over metal floor and roof assemblies

Hilti, Inc. (US) 1-800-879-8000 | www.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.com | Anchor Fastening Technical Guide Ed. 17 317

3.3.6

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 18 - Hilti KWIK HUS-EZ in the top of	uncracked concrete over metal deck ^{1,2,3,4,5}
--	---

Nominal	Nominal	Tensio	n - φN _n	Shear - φV _n				
anchor diameter in.	embed. depth in. (mm)	f' _c = 3,000 psi (20.7 MPa) Ib (kN)	f' _c = 4,000 psi (27.6 MPa) Ib (kN)	f'	f'			
1 /4	1-5/8	620	675	1,180	1,360			
1/4	(41)	(2.8)	(3.0)	(5.2)	(6.0)			
2./9	1-5/8	1,000	1,155	1,075	1,245			
3/8	(41)	(4.4)	(5.1)	(4.8)	(5.5)			

Table 19 - Hilti KWIK HUS-EZ in the top of cracked concrete over metal deck^{1,2,3,4,5}

Nominal	Nominal	Tensio	n - φN _n	Shear	- φV _n
anchor diameter in.	embed. depth in. (mm)	f'	f'	f'	f'
1 //	1-5/8	315	345	835	965
1/4	(41)	(1.4)	(1.5)	(3.7)	(4.3)
2.0	1-5/8	520	600	760	880
3/8	(41)	(2.3)	(2.7)	(3.4)	(3.9)

1 See section 3.1.8.6 to convert design strength value to ASD value.

Linear interpolation between embedment depths and concrete compressive strengths is not permitted. 2

Apply spacing, edge distance, and concrete thickness factors in tables 20 and 21 as necessary. Compare to 3 the steel values in table 4. The lesser of the values is to be used for the design.

4 Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λa as follows:

for sand-lightweight, λ_{a} = 0.68; for all-lightweight, λ_{a} = 0.60

5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by the following reduction factors: 1/4-inch diameter - $\alpha_{N,seis} = 0.60$ 3/8-inch diameter- $\alpha_{N,seis} = 0.75$.

No reduction needed for seismic shear. See section 3.1.8.7 for additional information on seismic applications.

Table 20 - Load adjustment factors for Hilti KWIK HUS-EZ in the top of uncracked concrete over metal deck^{1,2}

1/4-	-in. and 3/	'8-in.							E	dge distar	nce in shea	ar		
	KH-EZ		Spacing	5	Edge d		Spacing					d away		nickness
	acked cor		in ter			tension	in sh			rd edge		edge		n shear⁴
OVe	er metal d	eck	f,	AN	$f_{\mathfrak{f}}$	RN	f_{j}	AV	f	RV	f_1	RV	f	HV
	Anchor in. diameter d _a (mm		1/4	3/8	1/4	3/8	1/4	3/8	1/4	3/8	1/4	3/8	1/4	3/8
diam	ά (**		(6.4)	(9.5)	(6.4)	(9.5)	(6.4)	(9.5)	(6.4)	(9.5)	(6.4)	(9.5)	(6.4)	(9.5)
Nor	Nominal embed. h		1-5/8	1-5/8	1-5/8	1-5/8	1-5/8	1-5/8	1-5/8	1-5/8	1-5/8	1-5/8	1-5/8	1-5/8
embe	embed. h _{nom} (r 1-3/4 (r		(41)	(41)	(41)	(41)	(41)	(41)	(41)	(41)	(41)	(41)	(41)	(41)
	1-3/4	(44)	n/a	n/a	0.44	0.58	n/a	n/a	0.44	0.58	0.44	0.58	n/a	n/a
(D)	2	(51)	n/a	n/a	0.50	0.67	n/a	n/a	0.50	0.67	0.50	0.67	n/a	n/a
distance (c _a)/concrete \$ (h) - in. (mm)	2-1/2	(64)	n/a	n/a	0.63	0.83	n/a	n/a	0.63	0.83	0.63	0.83	0.78	0.83
ouc	3	(76)	0.92	0.95	0.75	1.00	0.68	0.71	0.75	1.00	0.75	1.00	0.85	0.91
Š€	3-1/4	(83)	0.96	0.99	0.81		0.70	0.72	0.81		0.81			
(c _a)/c (mm)	3-1/2	(89)	0.99	1.00	0.88		0.71	0.74	0.88		0.88			
in.	4	(102)	1.00		1.00		0.74	0.78	1.00		1.00			
staı h) -	4-1/2	(114)					0.77	0.81						
e di ss (5	(127)					0.80	0.84						
(s)/edge dist thickness (h)	5-1/2	(140)					0.83	0.88						
s)/e	6	(152)					0.86	0.91						
)g t	6-1/2	(165)					0.89	0.95						
Spacing t	7	(178)					0.92	0.98						
Spi	7-1/2	(191)					0.95	1.00						
	8	(203)					0.98							
	9	(229)					1.00							

Table 21 - Load adjustment factors for Hilti KWIK HUS-EZ in the top of cracked concrete over metal deck^{1,2}

in. and 3/	8-in.							E	dge distar	nce in shea	ar		
KH-EZ			-	-				⊥ towa	rd edge				nickness n shear⁴
er metal de	eck	f_{j}	AN	$f_{\scriptscriptstyle \mathrm{F}}$	RN	f_{j}	AV	f_{1}	RV	f_{1}	RV	f	HV
diameter d _a (r		1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)
Nominal embed. h _{nom}		1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)
1-3/4	(44)	n/a	n/a	0.99	1.00	n/a	n/a	0.51	0.62	0.99	1.00	n/a	n/a
2	(51)	n/a	n/a	1.00		n/a	n/a	0.62	0.76	1.00		n/a	n/a
,	· · /	n/a	n/a			n/a	n/a		1.00				0.83
-	、 /							1.00				0.85	0.91
1	、 /												
,	· · /		1.00										
	()	1.00											
1	(/					-							
-	(/												
	· /												
-	. ,												
,	· /												
1	· /												
	· /						1.00						
	. /												
	KH-EZ cked con r metal d hor eter d_a hinal d. h_{nom} 1-3/4	cked concrete r metal deck shor in. ster d_a (mm) ninal in. d. h_{nom} (mm) 1-3/4 (44) 2 (51) 2-1/2 (64) 3 (76) 3-1/2 (89) 4 (102) 4-1/2 (114) 5 (127) 5-1/2 (140) 6 (152) 6-1/2 (165) 7 (178) 7-1/2 (191) 8 (203)	KH-EZ Spacing in ter in ter cked concrete r metal deck f thor in. thor in. thor in. that in. thor in. that in. <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	KH-EZ Spacing factor in tension Edge distance factor in tension Spacing factor in shear ³ thor in. 1/4 3/8 1/4 3/8 1/4 3/8 thor in. 1/4 3/8 1/4 3/8 1/4 3/8 ther d _a (mm) (6.4) (9.5) (6.4) (9.5) (6.4) (9.5) ther d _a (mm) (41) (41) (41) (41) (41) (41) 1-5/8 1-5/8 1-5/8 1-5/8 1-5/8 1-5/8 1-5/8 1-hom (mm) (41) (41) (41) (41) (41) 1-3/4 (44) n/a n/a n/a n/a n/a 3 (76) 0.92 0.95 0.68 0.71 3 3-1/2 (89) 0.99 1.00 0.77 <	KH-EZ cked concrete r metal deckSpacing factor in tension f_{AN} Edge distance factor in tension f_{RN} Spacing factor in shear3 f_{AV} L towal f f d. 1/4thorin.1/43/81/43/81/43/81/4ther da(mm)(6.4)(9.5)(6.4)(9.5)(6.4)(9.5)(6.4)ther da(mm)(41)(41)(41)(41)(41)(41)(41)1-3/4(44)n/an/a0.991.00n/an/a0.512(51)n/an/a1.00n/an/a0.622-1/2(64)n/an/a1.00n/an/a0.622-1/2(64)n/an/a1.00n/an/a0.622-1/2(64)n/an/a1.00n/an/a0.622-1/2(64)n/an/a1.00n/an/a0.622-1/2(64)n/an/a1.00n/an/a0.622-1/2(64)n/an/a1.000.710.733(76)0.920.950.680.711.003-1/2(89)0.991.000.710.744(102)1.000.770.8115(127)0.860.830.886(152)0.880.890.926-1/2(165)0.920.980.987-1/2(191) <t< td=""><td>MARGO of Mark KH-EZ cked concrete r metal deck Spacing factor in tension f_{AN} Edge distance factor in tension f_{RN} Spacing factor in shear3 f_{AV} \bot toward edge f_{RV} whor in. $1/4$ $3/8$ $1/4$ $3/8$ $1/4$ $3/8$ f_{AV} \bot toward edge whor in. $1/4$ $3/8$ $1/4$ $3/8$ $1/4$ $3/8$ f_{RV} L toward edge whor in. $1.5/8$ $1.5/8$<</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<>	MARGO of Mark KH-EZ cked concrete r metal deck Spacing factor in tension f_{AN} Edge distance factor in tension f_{RN} Spacing factor in shear3 f_{AV} \bot toward edge f_{RV} whor in. $1/4$ $3/8$ $1/4$ $3/8$ $1/4$ $3/8$ f_{AV} \bot toward edge whor in. $1/4$ $3/8$ $1/4$ $3/8$ $1/4$ $3/8$ f_{RV} L toward edge whor in. $1.5/8$ <	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

- For concrete thickness greater than or equal to 3-1/4-inches, the anchor can be designed using either table 2 or table 3 of this section.

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

3.3.6.3.2 Canadian Limit State design

Limit State Design of anchors is described in the provisions of CSA A23.3-14 Annex D for post-installed anchors tested and assessed in accordance with ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors. This section contains the Limit State Design tables with unfactored characteristic loads that are based on the published loads in ICC Evaluation Services ESR-3027. These tables are followed by factored resistance tables. The factored resistance tables have characteristic design loads that are prefactored by the applicable reduction factors for a single anchor with no anchor-to-anchor spacing or edge distance adjustments for the convenience of the user of this document. All the figures in the previous ACI 318-14 Chapter 17 design section are applicable to Limit State Design and the tables will reference these figures.

For a detailed explanation of the tables developed in accordance with CSA A23.3-14 Annex D, refer to Section 3.1.8. Technical assistance is available by contacting Hilti Canada at (800) 363-4458 or at www.hilti.com.

Nominal anchor diameter in.	Nomi	nal er in. (r		ment	Tensile N _{sar} ³ Ib (KN)	Shear V _{sar} Ib (KN)	Seismic shear V _{sar,eq} ⁵ Ib (kN)		
1 /4	1-5/8		2-1/2		3,370	855	770		
1/4	(41)			(64)	(15.0)	(3.8)	(3.4)		
		1-5	5/8		5,475	2,025	2,025		
2 /9	(4		1)		(41)		(24.4)	(9.0)	(9.0)
3/8	2-1/2	2-1/2 3-1/4		6,150	2,865	1,720			
	(64)		(83)		(27.4)	(12.7)	(7.7)		
1/0	2-1/4	3	3	4-1/4	10,780	5,110	3,065		
1/2	(57)	(7	6)	(108)	(48.0)	(22.7)	(13.6)		
E /0	3-1/4			5	14,405	6,200	3,720		
5/8	(83)			(127)	(64.1)	(27.6)	(16.5)		
2/4	4			6-1/4	19,050	9,205	6,385		
3/4	(102)			(159)	(84.7)	(40.9)	(28.4)		

Table 22 - Steel resistance for Hilti KWIK HUS-EZ carbon steel screw anchor^{1,2}

1 See section 3.1.8.6 to convert design strength value to ASD value.

2 Hilti KWIK HUS-EZ carbon steel screw anchors are to be considered brittle steel elements.

3 Tensile $N_{sar} = A_{se,N} \phi_s f_{uta} R$ as noted in CSA A23.3-14 Annex D.

4 Shear determined by static shear tests with $V_{sar} < A_{seV} \phi_s 0.6 f_{uta} R$ as noted in CSA A23.3-14 Annex D.

5 Seismic shear values determined by seismic shear tests with $V_{sarreq} < A_{se,v} \varphi_s 0.6 f_{uta} R$ as noted in CSA A23.3-14 Annex D. See section 3.1.8.7 for additional information on seismic applications.

Design parameter

Nominal anchor diameter

Effective embedment²

4

KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor 3.3.6

3/8

0.375

(9.5)

1.86

(47)

1-5/8 2-1/2 3-1/4

2.50

(64)

Nominal anchor diameter

1.52

(39)

1/2

0.5

(12.7)

2.16

(55)

3.22

(82)

4-1/4

Table 23 - Hilti KWIK HUS-EZ design information in accordance with CSA A23.3-14 Annex D¹

1/4

0.25

(6.4)

1.92

(49)

2-1/2

1.11

(28)

1.18

(30)

Symbol

d

 \mathbf{h}_{ef}

Units

in.

(mm)

in.

(mm)

(D'				Ÿ
				Ref
5,	/8	3,	A23.3-14	
0.6	625	0.		
(15	5.9)	(19	9.1)	
2.39	3.88	2.92	4.84	
(61)	(99)	(74)	(123)	
3-1/4	5	4	6-1/4	
(83)	(127)	(102)	(159)	
5	7	6	8-1/8	
(127)	(178)	(152)	(206)	
3.63	5.82	4.41	7.28	

3.3.6

Min. nominal embedment ²	h	in.	1-5/8	2-1/2	1-5/8	2-1/2	3-1/4	2-1/4	3	4-1/4	3-1/4	5	4	6-1/4	
	h _{nom}	(mm)	(41)	(64)	(41)	(64)	(83)	(57)	(76)	(108)	(83)	(127)	(102)	(159)	
Minimum concrete thickness ³	h _{min}	in.	3-1/4	4-1/8	3-1/4	4	4-3/4	4-1/2	4-3/4	6-3/4	5	7	6	8-1/8	
	min	(mm)	(83)	(105)	(83)	(102)	(121)	(114)	(121)	(171)	(127)	(178)	(152)	(206)	
Critical edge distance	C _{ac}	in.	2 (51)	2.78 (71)	2.63	2.92 (74)	3.75 (95)	2.75 (70)	3.75 (95)	5.25 (133)	3.63 (92)	5.82 (148)	4.41 (112)	7.28 (185)	
Minimum spacing at critical edge		(mm) in.	(51)	· · /	(67)	2.25	(95)	(70)	(95)	(133)	(92)	(140)	(112)	(165)	
distance	S _{min,cac}	(mm)	(3	8)		(57)					(76)				
Minimum edge distance	C _{min}	in. (mm)			1.50 (38)						1.75 (44)				
Minimum anchor spacing at minimum edge distance	for s >	in. (mm)		3.0 4 (76) (102)											
at minimum euge distance		in.	2	2-7/8	1-7/8	2-3/4	o) 3-1/2	2-5/8	3-3/8	4-5/8	3-5/8	5-3/8	J2) 4-3/8	6-5/8	
Mininimum hole depth in concrete	h _o	(mm)	(51)	(73)	(48)	(70)	(89)	(67)	(86)	(117)	(92)	(137)	(111)	(168)	
Minimum specified	£	psi	125	,000	106,975	· /	,300		112,540	· · /	90,	180	` '	600	
ultimate strength	f _{uta}	(N/mm ²)	(86	60)	(738)	(82	29)		(776)		(62	22)	(56	63)	
Effective tensile stress area	Δ	in²	0.0)45		0.086			0.161		0.2	268	0.3	392	
	A _{se,N}	(mm²)	(29	9.0)		(55.5)			(103.9)		(17)	2.9)	(25	2.9)	
Steel embed. material resistance factor for reinforcement	$\Phi_{\rm s}$	-						0.8	85						8.4.3
Resistance modification factor for tension, steel failure modes ⁴	R	-						0.1	70						D.5.3
Resistance modification factor for shear, steel failure modes ⁴	R	-						0.0	65						D.5.3
Factored steel resistance in tension	N _{sar}	lb (kN)	3,3		5,475	,	150		10,780			405		050	D.6.1.2
		(KN) Ib	(15	55	(24.4) 2,030	,	7.4) 365		(48.0) 5,110		(64	1.1)	```	4.7) 205	
Factored steel resistance in shear	V _{sar}	(kN)	(3		2,030	, .	2.7)		(22.7)		,	200 7.6)	· · ·	205).9)	D.7.1.2
Factored steel resistance in shear.			,	.0) 70	2,030		/20		3,065		3,7	/	,	385	
seismic	$V_{\rm sar,eq}$	(kN)	(3		(9.0)	,	.7)		(13.6)		,	20 6.5)	(28		
Coeff. for factored conc. breakout resistance, uncracked concrete	k _{c.uncr}	lb	(0)	• •)	10	(/	,		(10.0)		11.25	,	(20	,	D.6.2.2
Coeff. for factored conc. breakout									_						
resistance, cracked concrete	k _{c,cr}	-						7	7						D.6.2.2
Modification factor for anchor resistance, tension, uncracked concrete ⁵	$\psi_{c,N}$	-						1.	.0						D.6.2.6
Anchor category	-	-	3						1						D.5.3 (c)
Concrete material resistance factor	Φ _c	-						0.0	65						8.4.2
Resistance modification factor for tension and shear, concrete failure modes, Condition B ⁶	R	-	0.75			1.00					D.5.3 (c)				
Factored pullout resistance in 20 MPa uncracked concrete ⁷	N _{pr,uncr}	lb (kN)	675 (3.0)	1640 (7.3)	NA						D.6.3.2				
Factored pullout resistance in 20 MPa cracked concrete ⁷	N _{pr,cr}	lb (kN)	340 (1.5)	810 (3.6)	515 (2.3)	NA						D.6.3.2			
Factored seismic pullout resistance in 20 MPa cracked concrete ⁷	N _{pr,eq}	lb (kN)	(1.3) 275 (1.2)	(3.6) 810 (3.6)	(2.3) 515 (2.3)					NA					D.6.3.2
1 Design information in this table is	talian fre	· · /	· · /					2 3 ar			tod for u		C6V V02	2 2 1 / 1	

Design information in this table is taken from ICC-ES ESR-3027, dated February, 2016, tables 2, 3, and 4, and converted for use with CSA A23.3-14 Annex D. 1

2 See figure 1 of this section.

For concrete over metal deck applications where the concrete thickness over the top flute is less than h_{min} in this table, see figure 4 and tables 28 and 29 3 of this section

4 The KWIK HUS-EZ is considered a brittle steel element as defined by CSA A23.3-14 Annex D section D.2.

For all design cases, $\psi_{c,N} = 1.0$. The appropriate coefficient for breakout resistance for cracked concrete ($k_{c,un}$) or uncracked concrete ($k_{c,unc}$) must be used. 5

For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 6 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

7 For all design cases, ψ_{cP} = 1.0. NA (not applicable) denotes that this value does not control for design. See section 4.1.4 of ESR-3027 for additional information.

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 24 - Hilti KWIK HUS-EZ carbon steel screw anchor factored resistance with concrete/pullout failure in uncracked concrete^{1,2,3,4,5}

÷

÷

Nominal				Tensio	on - N _r			Shea	ur - V _r	
anchor	Effective	Nominal	f' = 20 MPa	f' = 25 MPa	f' = 30 MPa	f' = 40 MPa	f' = 20 MPa	f' = 25 MPa	f' = 30 MPa	f' = 40 MPa
diameter	embed.	embed.	(2,900psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)
in.	in. (mm)	in. (mm)	Ib (kN)	lb (kN)	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)
1/4	1.18	1-5/8	665	710	750	820	805	900	985	1,135
	(30)	(41)	(3.0)	(3.2)	(3.3)	(3.6)	(3.6)	(4.0)	(4.4)	(5.1)
1/4	1.92	2-1/2	1,645	1,840	2,015	2,325	2,225	2,490	2,725	3,145
	(49)	(64)	(7.3)	(8.2)	(9.0)	(10.4)	(9.9)	(11.1)	(12.1)	(14.0)
	1.11	1-5/8	980	1,095	1,200	1,385	980	1,095	1,200	1,385
	(28)	(41)	(4.4)	(4.9)	(5.3)	(6.2)	(4.4)	(4.9)	(5.3)	(6.2)
3/8	1.86	2-1/2	2,120	2,375	2,600	3,000	2,120	2,375	2,600	3,000
	(47)	(64)	(9.4)	(10.6)	(11.6)	(13.3)	(9.4)	(10.6)	(11.6)	(13.3)
	2.50	3-1/4	3,305	3,695	4,050	4,675	3,305	3,695	4,050	4,675
	(64)	(83)	(14.7)	(16.4)	(18.0)	(20.8)	(14.7)	(16.4)	(18.0)	(20.8)
	1.52	2-1/4	1,765	1,970	2,160	2,495	1,765	1,970	2,160	2,495
	(39)	(57)	(7.8)	(8.8)	(9.6)	(11.1)	(7.8)	(8.8)	(9.6)	(11.1)
1/2	2.16	3	2,990	3,340	3,660	4,225	2,990	3,340	3,660	4,225
	(55)	(76)	(13.3)	(14.9)	(16.3)	(18.8)	(13.3)	(14.9)	(16.3)	(18.8)
	3.22	4-1/4	5,440	6,080	6,660	7,690	10,875	12,160	13,320	15,380
	(82)	(108)	(24.2)	(27.0)	(29.6)	(34.2)	(48.4)	(54.1)	(59.3)	(68.4)
5/8	2.39	3-1/4	3,475	3,890	4,260	4,920	3,475	3,890	4,260	4,920
	(61)	(83)	(15.5)	(17.3)	(18.9)	(21.9)	(15.5)	(17.3)	(18.9)	(21.9)
5/8	3.88	5	7,195	8,040	8,810	10,170	14,385	16,085	17,620	20,345
	(99)	(127)	(32.0)	(35.8)	(39.2)	(45.2)	(64.0)	(71.5)	(78.4)	(90.5)
3/4	2.92	4	4,695	5,250	5,750	6,640	9,390	10,500	11,505	13,280
	(74)	(102)	(20.9)	(23.4)	(25.6)	(29.5)	(41.8)	(46.7)	(51.2)	(59.1)
0/4	4.84	6-1/4	10,020	11,205	12,275	14,170	20,040	22,410	24,545	28,345
	(123)	(159)	(44.6)	(49.8)	(54.6)	(63.0)	(89.2)	(99.7)	(109.2)	(126.1)

Table 25 - Hilti KWIK HUS-EZ carbon steel screw anchor factored resistance with concrete/pullout failure
in cracked concrete ^{1,2,3,4,5}

Nominal				Tensio	on - N _r			Shea	ar - V _r	
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f'_ = 20 MPa (2,900psi) Ib (kN)	f' c = 25 MPa (3,625 psi) Ib (kN)	f' _c = 30 MPa (4,350 psi) Ib (kN)	f' = 40 MPa (5,800 psi) Ib (kN)	f' = 20 MPa (2,900 psi) Ib (kN)	f' c = 25 MPa (3,625 psi) Ib (kN)	f' _c = 30 MPa (4,350 psi) Ib (kN)	f' _c = 40 MPa (5,800 psi) Ib (kN)
	1.18	1-5/8	340	360	385	415	565	630	690	795
4 (4	(30)	(41)	(1.5)	(1.6)	(1.7)	(1.9)	(2.5)	(2.8)	(3.1)	(3.5)
1/4	1.92	2-1/2	815	910	1,000	1,155	1,560	1,740	1,910	2,205
	(49)	(64)	(3.6)	(4.1)	(4.4)	(5.1)	(6.9)	(7.7)	(8.5)	(9.8)
	1.11	1-5/8	510	570	620	720	685	765	840	970
	(28)	(41)	(2.3)	(2.5)	(2.8)	(3.2)	(3.0)	(3.4)	(3.7)	(4.3)
3/8	1.86	2-1/2	1,485	1,660	1,820	2,100	1,485	1,660	1,820	2,100
3/8	(47)	(64)	(6.6)	(7.4)	(8.1)	(9.3)	(6.6)	(7.4)	(8.1)	(9.3)
	2.50	3-1/4	2,315	2,590	2,835	3,275	2,315	2,590	2,835	3,275
	(64)	(83)	(10.3)	(11.5)	(12.6)	(14.6)	(10.3)	(11.5)	(12.6)	(14.6)
	1.52	2-1/4	1,095	1,225	1,345	1,550	1,095	1,225	1,345	1,550
	(39)	(57)	(4.9)	(5.5)	(6.0)	(6.9)	(4.9)	(5.5)	(6.0)	(6.9)
1/2	2.16	3	1,860	2,080	2,275	2,630	1,860	2,080	2,275	2,630
1/2	(55)	(76)	(8.3)	(9.2)	(10.1)	(11.7)	(8.3)	(9.2)	(10.1)	(11.7)
	3.22	4-1/4	3,385	3,785	4,145	4,785	6,765	7,565	8,290	9,570
	(82)	(108)	(15.1)	(16.8)	(18.4)	(21.3)	(30.1)	(33.7)	(36.9)	(42.6)
	2.39	3-1/4	2,165	2,420	2,650	3,060	2,165	2,420	2,650	3,060
5/8	(61)	(83)	(9.6)	(10.8)	(11.8)	(13.6)	(9.6)	(10.8)	(11.8)	(13.6)
5/6	3.88	5	4,475	5,005	5,480	6,330	8,950	10,005	10,965	12,660
	(99)	(127)	(19.9)	(22.3)	(24.4)	(28.2)	(39.8)	(44.5)	(48.8)	(56.3)
	2.92	4	2,920	3,265	3,580	4,130	5,845	6,535	7,155	8,265
2/4	(74)	(102)	(13.0)	(14.5)	(15.9)	(18.4)	(26.0)	(29.1)	(31.8)	(36.8)
3/4	4.84	6-1/4	6,235	6,970	7,635	8,820	12,470	13,945	15,275	17,635
	(123)	(159)	(27.7)	(31.0)	(34.0)	(39.2)	(55.5)	(62.0)	(67.9)	(78.4)

See section 3.1.8.6 to convert factored resistance value to ASD value. 1

Linear interpolation between embedment depths and concrete compressive strengths is not permitted. 2

3

4

Apply spacing, edge distance, and concrete thickness factors in tables 6 to 15 as necessary. Compare to the steel values in table 22. The lesser of the values is to be used for the design. Tablular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in 5 tension by the following reduction factors:

1/4-in diameter by 1-5/8-in nominal embedment depth - $\alpha_{N,seis} = 0.60$ All other sizes - $\alpha_{N,sein}$ = 0.75

No reduction needed for seismic shear. See section 3.1.8.7 for additional information on seismic applications.

÷

KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor 3.3.6

Table 26 - Hilti KWIK HUS-EZ in the soffit of uncracked lightweight concrete over metal deck^{1,2,3,4,5,6,7}

			Installation i	n lower flute			Installation i	n upper flute	
Nominal		Tensio	on - N _r	Shea	ar - V _r	Tensio	on - N _r	Shea	ar - V _r
anchor diameter in.	Nominal embedment in. (mm)	f' = 20 MPa (2,900psi) Ib (kN)	f' = 30 MPa (4,350psi) lb (kN)	f'_ = 20 MPa (2,900psi) Ib (kN)	f' = 30 MPa (4,350psi) Ib (kN)	f' = 20 MPa (2,900psi) lb (kN)	f' = 30 MPa (4,350psi) lb (kN)	f' = 20 MPa (2,900psi) lb (kN)	f' = 30 MPa (4,350psi) Ib (kN)
	1-5/8 (41)	585 (2.6)	660 (2.9)	665 (3.0)	665 (3.0)	720 (3.2)	810 (3.6)	665 (3.0)	665 (3.0)
1/4	2-1/2 (64)	1,200 (5.3)	1,470 (6.5)	1,220 (5.4)	1,220 (5.4)	1,255 (5.6)	1,535 (6.8)	1,805 (8.0)	1,805 (8.0)
	1-5/8 (41)	830 (3.7)	1,020 (4.5)	835 (3.7)	835 (3.7)	950 (4.2)	1,165 (5.2)	2,030 (9.0)	2,030 (9.0)
3/8	2-1/2 (64)	1,430 (6.4)	1,755 (7.8)	835 (3.7)	835 (3.7)	1,865 (8.3)	2,285 (10.2)	3,365 (15.0)	3,365 (15.0)
	3-1/4 (83)	2,505 (11.1)	3,070 (13.7)	1,990 (8.9)	1,990 (8.9)	n/a	n/a	n/a	n/a
	2-1/4 (57)	835 (3.7)	1,020 (4.5)	885 (3.9)	885 (3.9)	890 (4.0)	1,090 (4.8)	4,335 (19.3)	4,335 (19.3)
1/2	3 (76)	1,955 (8.7)	2,395 (10.7)	1,615 (7.2)	1,615 (7.2)	n/a	n/a	n/a	n/a
	4-1/4 (108)	3,425 (15.2)	4,195 (18.7)	1,985 (8.8)	1,985 (8.8)	n/a	n/a	n/a	n/a
- <i>(</i> 0	3-1/4 (83)	2,670 (11.9)	3,270 (14.5)	1,915 (8.5)	1,915 (8.5)	n/a	n/a	n/a	n/a
5/8	5 (127)	6,070 (27.0)	7,430 (33.1)	2,315 (10.3)	2,315 (10.3)	n/a	n/a	n/a	n/a
3/4	4 (102)	2,670 (11.9)	3,270 (14.5)	2,075 (9.2)	2,075 (9.2)	n/a	n/a	n/a	n/a

Table 27 - Hilti KWIK HUS-EZ in the soffit of cracked lightweight concrete over metal deck^{1,2,3,4,5,6,7,8}

			Installation i	n lower flute			Installation i	n upper flute	
Nominal		Tensio	on - N _r	Shea	ar - V _r	Tensio	on - N _r	Shea	ar - V _r
anchor diameter in.	Nominal embedment in. (mm)	f' = 20 MPa (2,900psi) lb (kN)	f'_ = 30 MPa (4,350psi) Ib (kN)	f' = 20 MPa (2,900psi) Ib (kN)	f'_ = 30 MPa (4,350psi) Ib (kN)	f' = 20 MPa (2,900psi) Ib (kN)	f' = 30 MPa (4,350psi) lb (kN)	f'_ = 20 MPa (2,900psi) Ib (kN)	f'_ = 30 MPa (4,350psi) Ib (kN)
	1-5/8	300	340	665	665	365	445	665	665
1/4	(41)	(1.3)	(1.5)	(3.0)	(3.0)	(1.6)	(2.0)	(3.0)	(3.0)
1/4	2-1/2 (64)	595 (2.6)	730 (3.2)	1,220 (5.4)	1,220 (5.4)	625 (2.8)	765 (3.4)	1,805 (8.0)	1,805 (8.0)
	1-5/8	520	635	835	835	755	930	2,030	2,030
	(41)	(2.3)	(2.8)	(3.7)	(3.7)	(3.4)	(4.1)	(9.0)	(9.0)
o /o	2-1/2	1,015	1,245	835	835	1,325	1,620	3,365	3,365
3/8	(64)	(4.5)	(5.5)	(3.7)	(3.7)	(5.9)	(7.2)	(15.0)	(15.0)
	3-1/4 (83)	1,775 (7.9)	2,175 (9.7)	1,990 (8.9)	1,990 (8.9)	n/a	n/a	n/a	n/a
	2-1/4	525	640	885	885	630	770	4,335	4,335
	(57)	(2.3)	(2.8)	(3.9)	(3.9)	(2.8)	(3.4)	(19.3)	(19.3)
1/2	3 (76)	1,235 (5.5)	1,510 (6.7)	1,615 (7.2)	1,615 (7.2)	n/a	n/a	n/a	n/a
	4-1/4 (108)	2,155 (9.6)	2,640 (11.7)	1,985 (8.8)	1,985 (8.8)	n/a	n/a	n/a	n/a
5 (0	3-1/4 (83)	1,680 (7.5)	2,060 (9.2)	1,915 (8.5)	1,915 (8.5)	n/a	n/a	n/a	n/a
5/8	5 (127)	3,820 (17.0)	4,680 (20.8)	2,315 (10.3)	2,315 (10.3)	n/a	n/a	n/a	n/a
3/4	4 (102)	1,680 (7.5)	2,060 (9.2)	2,075 (9.2)	2,075 (9.2)	n/a	n/a	n/a	n/a

1 See section 3.1.8.6 to convert design strength value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{nom} (nominal embedment). З

4 Tabular values are lightweight concrete and no additional reduction factor is needed.

No additional reduction factors for spacing or edge distance need to be applied. 5

6 Comparison of the tabular values to the steel strength is not necessary. Tabular values control.

Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular 7 values in tension by the following reduction factors:

1/4-in diameter by 1-5/8-in nominal embedment depth - $\alpha_{N,seis}$ = 0.60

All other sizes - $\alpha_{\rm N,seis}$ = 0.75. See section 3.1.8.7 for additional information on seismic applications.

For the following anchor sizes, an additional factor for seismic shear must be applied to the cracked concrete tabular values for seismic conditions: 8

1/4-inch diameter - $\alpha_{v,sels} = 0.75$ 3/8-inch diameter - $\alpha_{v,sels} = 0.60$ 1/2-inch diameter - $\alpha_{v,sels} = 0.60$ 5/8-inch diameter - $\alpha_{v,sels} = 0.60$ 3/4-inch diameter - $\alpha_{v,sels} = 0.70$

Hilti, Inc. (US) 1-800-879-8000 | www.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.com | Anchor Fastening Technical Guide Ed. 17 323

÷

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

÷ Table 28 - Hilti KWIK HUS-EZ carbon steel screw anchor factored resistance in the top of uncracked concrete over metal deck^{1,2,3,4,5}

Nominal			Tensio	on - N _r	Shear - V _r			
anchor diameter	Effective embed.	Nominal embed.	f' _c = 20 MPa (2,900psi)	f' _c = 30 MPa (4,350 psi)	f'	f' _c = 30 MPa (4,350 psi)		
in.	in. (mm)	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)		
1 //	1.18	1-5/8	665	750	805	985		
1/4	(30)	(41)	(3.0)	(3.3)	(3.6)	(4.4)		
2.0	1.11	1-5/8	980	1,200	980	1,200		
3/8	(28)	(41)	(4.4)	(5.3)	(4.4)	(5.3)		

÷ Table 29 - Hilti KWIK HUS-EZ carbon steel screw anchor factored resistance in the top of cracked concrete over metal deck^{1,2,3,4,5}

Nominal			Tensio	on - N _r	Shear - V _r		
anchor	Effective	Nominal	f'_ = 20 MPa	f'_ = 30 MPa	<i>f</i> ' _c = 20 MPa	f'_ = 30 MPa	
diameter	embed.	embed.	(2,900psi)	(4,350 psi)	(2,900 psi)	(4,350 psi)	
in.	in. (mm)	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	
1/4	1.18	1-5/8	340	385	565	690	
1/4	(30)	(41)	(1.5)	(1.7)	(2.5)	(3.1)	
2 /0	1.11	1-5/8	510	620	685	840	
3/8	(28)	(41)	(2.3)	(2.8)	(3.0)	(3.7)	

1 See Section 3.1.8.6 to convert design strength value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Apply spacing, edge distance, and concrete thickness factors in tables 20 and 21 as necessary. Compare to 3 the steel values in table 22. The lesser of the values is to be used for the design.

4 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows:

for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$

5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by the following reduction factors: 1/4-inch diameter - $\alpha_{N,seis} = 0.60$ 3/8-inch diameter- $\alpha_{N,seis} = 0.75$.

No reduction needed for seismic shear. See section 3.1.8.7 for additional information on seismic applications.

KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor 3.3.6

3.3.6.3.3 Allowable Stress Design for masonry

Table 30 – Allowable tension loads for Hilti KWIK HUS-EZ installed in grout-filled masonry walls (Ib)^{1,2,3,4,5}

Nominal				Spacing		Edge distance
anchor diameter in.	Embedment in.6	Loads @ c _{cr} and s _{cr}	Critical - s _{cr} in. ⁷	Minimum - s _{min} in. ⁷	Load reduction factor at s _{min} ⁸	Critical - c _{cr} in.9
1 /4	1-5/810	530	4	2	0.70	4
1/4	2-1/211	910	4	4	1.00	4
	1-5/811	535	4	2	0.70	
3/8	2-1/2	895	0		0.00	4
	3-1/4	1,210	6	4	0.80	
	2-1/4	710	4	2		
1/2	3	1,110	0	4	0.60	4
	4-1/4	1,515	8	4		
E /0	3-1/4	1,155	10	4	0.60	4
5/8	5	1,735	10	4	0.60	4
2/4	4	1,680	10	4	0.60	
3/4	6-1/4	2,035	12	4	0.60	4

Table 31 – Allowable shear loads for Hilti KWIK HUS-EZ installed in grout-filled masonry walls (Ib)^{1,2,3,4,5}

				Spacing			Edge	distance	
Nominal anchor					Load			Load reduction	n factor at c _{min}
diameter in.	Embedment in.6	Load at c _{cr} and s _{cr}	Critical - s _{cr} in. ⁷	Minimum - s _{min} in. ⁷		Critical - c _{cr} in.º	Minimum - c _{min} in. ⁹	perpendicular to edge	parallel to edge
1 /4	1-5/8	675	4	4	1 00	4	4	1.00	1.00
1/4	2-1/2	840	4	4	1.00	4	4	1.00	1.00
	1-5/8	1,140						0.61	1.00
3/8	2-1/2	1,165	6	4	0.94	6	4	0.70	1.00
	3-1/4	1,190						0.70	1.00
	2-1/4	1,845						0.50	1.00
1/2	3	2,055	8	4	0.88	8	4	0.45	0.94
	4-1/4	2,745						0.40	0.89
F (0	3-1/4	3,040	10	4	0.00	10	4	0.36	0.82
5/8	5	3,485	10	4	0.36	10	4	0.34	0.92
2/4	4	3,040	10	4	0.36	10	4	0.36	0.82
3/4	6-1/4	3,485	10	4	0.30	10	4	0.34	0.92

All values are for anchors installed in fully grouted masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units may be lightweight, 1 medium-weight or normal-weight.

2 Anchors may not be installed within one inch in any direction of a vertical joint.

Linear interpolation of load values between minimum spacing s_{min} and critical spacing s_{cr} and between minimum edge distance c_{min} and critical edge distance 3 c_{cr} is permitted. 150 /11 150 • • 1--

4 For combined loading: For 1/4-in. -
$$\frac{I_{applied}}{T_{allowable}} + \frac{V_{applied}}{V_{allowable}} \le 1$$
 For 3/8- through 3/4-in. - $\left(\frac{I_{applied}}{T_{allowable}}\right)^{3/2} + \left(\frac{V_{applied}}{V_{allowable}}\right)^{3/2} \le 1$
5. See figure 5 for applying locations

See figure 5 for anchor locations.

6 Embedment depth is measured from the outside face of the concrete masonry embedment.

- Critical spacing s, is the anchor spacing where full load values may be used. The minimum spacing s, is the minimum spacing for which values are available 7 and installation is recommended. Spacing is measured from the center of one anchor to the center of the adjacent anchor.
- Load reduction factors are multiplicative, both spacing and edge distance load reduction factors must be considered. Load values for anchors installed at less 8 than c_{cr} or s_{cr} must be multiplied by the appropriate load reduction factor based on actual edge distance (c) or spacing (s).
- The critical edge distance c_{cr} is the edge distance where full load values may be used. The minimum edge distance c_{min} is the minimum edge distance for which values are available and installation is recommended. For tension, c_{ar} equals c_{min}. Edge distance is measured from the center of the anchor to the closest edge.
- 10 Load values must be reduced by 21% for installations within 1-1/4 inches of the bed joint.
- 11 Load values must be reduced by 13% for installations within 1-1/4 inches of the bed joint.

Hilti, Inc. (US) 1-800-879-8000 | www.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.com | Anchor Fastening Technical Guide Ed. 17 325

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 32 – Hilti KWIK HUS-EZ allowable loads installed in top-of-grout-filled concrete masonry walls or horizontal members of wall openings^{1,2,3}

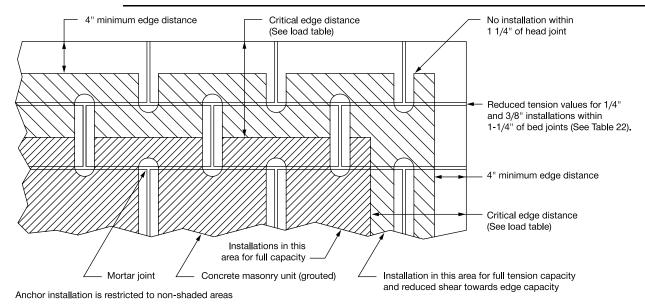
						She	ar Ib	
Nominal	inal Minimum			Minimum		Load direction		
anchor diameter in.	embedment depth in.	Edge distance⁴ in.	Critical spacing⁵ in.	end distance ⁶ in.	Tension Ib	Parallel to edge of masonry wall	Perpendicular to edge of masonry wall	
	1 5/8	1 1/2			205	180	135	
1/4	1 5/6	3 3/4	4	4	205	275	275	
1/4	0.1/0	1 1/2	4	4	355	345	155	
	2 1/2	3 3/4			390	415	330	
	1 5 /0	1 1/2			245	345	175	
0.0	1 5/8	3 3/4	6	c	245	345	345	
3/8	0.1/4	1 1/2	6	6	465	490	200	
	3 1/4	3 3/4			540	800	625	
	0.1/4	1 3/4			390	460	200	
1/0	2 1/4	3 3/4	8	8	610	525	500	
1/2	4 1 /4	1 3/4	0	0	540	885	245	
	4 1/4	3 3/4			750	1275	550	
E /9	5	1 3/4	10	10	975	930	245	
5/8	5	3 3/4	10	10	975	2190	630	
3/4	6 1/4	3 3/4	12	12	975	2430	630	

Table 33 – Hilti KWIK HUS-EZ allowable loads installed in end-of-wall or vertical members of wall openings^{1,2,3}

						She	ar Ib	
Nominal	Minimum			Minimum		Load direction		
anchor diameter in.	embedment depth in.	Edge distance⁴ in.	Critical spacing⁵ in.	end distance ⁶ in.	Tension Ib	Parallel to edge of masonry wall	Perpendicular to edge of masonry wall	
	1 5 /0	1 1/2			360	525	205	
1 /4	1 5/8	3 3/4	4	4	380	595	585	
1/4	2 1/2	1 1/2	4	4	590	610	225	
	2 1/2	3 3/4			755	635	585	
	1 5/8	1 1/2			355	725	215	
3/8	1 5/6	3 3/4	6	6	465	1010	825	
3/0	3 1/4	1 1/2	0	0	565	875	240	
	3 1/4	3 3/4			1020	1195	1050	
	2 1/4	1 3/4			500	855	260	
1/0	2 1/4	3 3/4	8	8	525	1100	1050	
1/2	4 1/4	1 3/4	0	0	650	925	280	
	4 1/4	3 3/4			1150	1240	1050	
5/8	5	3 3/4	10	10	1605	2215	1050	
3/4	6 1/4	3 3/4	12	12	1865	2550	1050	

1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units may be lightweight, medium-weight or normal-weight conforming to ASTM C90. Allowable loads are calculated using safety factor of 5.

2 See figure 6 and 7 for allowable anchor installation locations on the top of grout-filled concrete masonry walls. Anchors may not be installed within one inch of a vertical joint. See figure 7 for anchor installation locations in end-of-wall and vertical members of wall openings.


3 Anchors may not be installed within one inch in any direction of a vertical joint.

4 For load values at edge distances between listed values linear interpolation is permitted.

5 Critical spacing equals minimum spacing.

6 Minimum end distance applicable to top-of-wall and end-of-wall and does not apply for wall openings such as windows.

KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor 3.3.6

Figure 5 – Acceptable locations (shaded areas) for Hilti KWIK HUS-EZ anchors in grout-filled concrete masonry

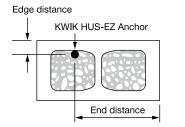
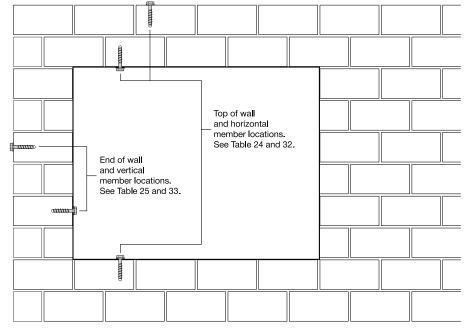
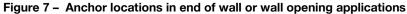




Figure 6 – Edge and end distances for the Hilti KWIK HUS-EZ anchor installed in the top of CMU masonry wall construction

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

3.3.6.4 Installation instructions

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at **www.hilti.com**. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

3.3.6.5 Ordering Information

Order Information

Description	Hole Diameter	Total Length without Anchor Head	Minimum Embedment Depth	Qty (pcs) / Box
KH-EZ 1/4"x1-7/8"	1/4"	1-7/8"	1-5/8"	100
KH-EZ 1/4"x2-5/8"	1/4"	2-5/8"	2-1/2"	100
KH-EZ 1/4"x3"	1/4"	3"	2-1/2"	100
KH-EZ 1/4"x3-1/2"	1/4"	3-1/2"	2-1/2"	100
KH-EZ 1/4"x4"	1/4"	4"	2-1/2"	100
KH-EZ 3/8"x1-7/8"	3/8"	1-7/8"	1-5/8"	50
KH-EZ 3/8"x2-1/8"	3/8"	2-1/8"	1-5/8"	50
KH-EZ 3/8"x3"	3/8"	3"	2-1/2"	50
KH-EZ 3/8"x3-1/2"	3/8"	3-1/2"	2-1/2"	50
KH-EZ 3/8"x4"	3/8"	4"	3-1/4"	50
KH-EZ 3/8"x5"	3/8"	5"	3-1/4"	30
KH-EZ 1/2"x2-1/2"	1/2"	2-1/2"	2-1/4"	30
KH-EZ 1/2"x3"	1/2"	3"	2-1/4"	30
KH-EZ 1/2"x3-1/2"	1/2"	3-1/2"	3"	25
KH-EZ 1/2"x4"	1/2"	4"	3"	25
KH-EZ 1/2"x4-1/2"	1/2"	4-1/2"	4 1/4"	25
KH-EZ 1/2"x5"	1/2"	5"	4 1/4"	25
KH-EZ 1/2"x6"	1/2"	6"	4-1/4"	25
KH-EZ 5/8"x3-1/2"	5/8"	3-1/2"	3-1/4"	15
KH-EZ 5/8"x4"	5/8"	4"	3-1/4"	15
KH-EZ 5/8"x5-1/2"	5/8"	5-1/2"	3-1/4"	15
KH-EZ 5/8"x6-1/2"	5/8"	6-1/2"	3-1/4"	15
KH-EZ 5/8"x8"	5/8"	8"	3-1/4"	15
KH-EZ 3/4"x4-1/2"	3/4"	4-1/2"	4"	10
KH-EZ 3/4"x5-1/2"	3/4"	5-1/2"	4"	10
KH-EZ 3/4"x7"	3/4"	7"	4"	10
KH-EZ 3/4"x8"	3/4"	8"	4"	10
KH-EZ 3/4"x9"	3/4"	9"	4"	10

UL Product **iQ**[™]

BXUV.G556

Design/System/Construction/Assembly Usage Disclaimer

- Authorities Having Jurisdiction should be consulted in all cases as to the particular requirements covering the installation and use of UL Certified products, equipment, system, devices, and materials.
- Authorities Having Jurisdiction should be consulted before construction.
- Fire resistance assemblies and products are developed by the design submitter and have been investigated by UL for compliance with applicable requirements. The published information cannot always address every construction nuance encountered in the field.
- When field issues arise, it is recommended the first contact for assistance be the technical service staff provided by the product manufacturer noted for the design. Users of fire resistance assemblies are advised to consult the general Guide Information for each product category and each group of assemblies. The Guide Information includes specifics concerning alternate materials and alternate methods of construction.
- Only products which bear UL's Mark are considered Certified.

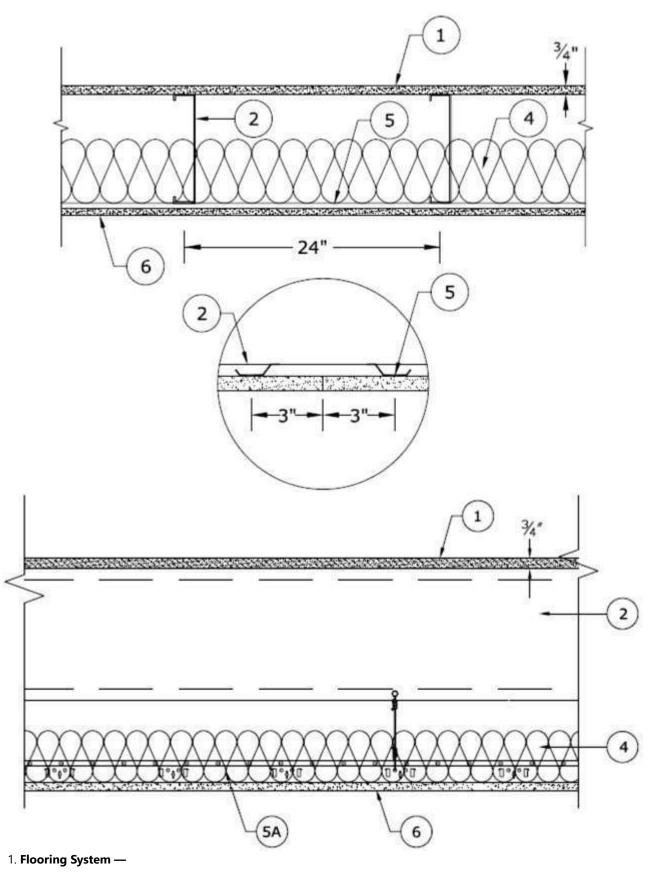
BXUV - Fire Resistance Ratings - ANSI/UL 263 Certified for United States

BXUV7 - Fire Resistance Ratings - CAN/ULC-S101 Certified for Canada

See General Information for Fire-resistance Ratings - ANSI/UL 263 Certified for United States Design Criteria and Allowable Variances

See General Information for Fire Resistance Ratings - CAN/ULC-S101 Certified for Canada Design Criteria and Allowable Variances

Design No. G556


November 12, 2019

Unrestrained Assembly Rating — 1, 1-1/2 and 2 Hr (See Item 1)

This design was evaluated using a load design method other than the Limit States Design Method (e.g., Working Stress Design Method). For jurisdictions employing the Limit States Design Method, such as Canada, a load restriction factor shall be used — See Guide BXUV or BXUV7

* Indicates such products shall bear the UL or cUL Certification Mark for jurisdictions employing the UL or cUL Certification (such as Canada), respectively.

Պ

1 or 1-1/2 Hr Rating

1A. Structural Cement-Fiber Units* — Nom 3/4 in. thick, with long edges tongue and grooved. Long dimension of panels to be perpendicular to joists with end joints staggered a min of 2 ft and centered over the joists. Panels secured to steel joists with 1-5/8 in. long No. 8 self-drilling, self-countersinking steel screws spaced a max of 12 in. OC in the field with a screw located 1 in. and 2 in. from each edge, and 8 in. OC on the perimeter with a screw located 2 in. from each edge, located 1/2 in. from the side edges of the panel.

Unrestrained Assembly Rating is 1 hour when Item 2A or 2B is used. Unrestrained Assembly Rating is 1-1/2 hour when Item 2 is used.

UNITED STATES GYPSUM CO — Types STRUCTO-CRETE, USGSP

2 Hr Rating System A

1A. **Structural Cement-Fiber Units*** — Nom 3/4 in. thick, with long edges tongue and grooved. Long dimension of panels to be perpendicular to joists with end joints staggered a min of 2 ft and centered over the joists. Panels secured to steel joists with 1-5/8 in. long No. 8 self-drilling, self-countersinking steel screws spaced a max of 12 in. OC in the field with a screw located 1 in. and 2 in. from each edge, and 8 in. OC on the perimeter with a screw located 2 in. from each edge, located 1/2 in. from the side edges of the panel.

UNITED STATES GYPSUM CO — Types STRUCTO-CRETE, USGSP

1B. **Gypsum Board* (Not Shown)** — Two layers of min 1/4 in. thick, 4 ft by 4 ft gypsum board underlayment, Classified as to Surface Burning Characteristics. Bonded and attached to each other with a mortar applied with a 1/4 in. by 1/4 in. notched trowel, and min 1/2 in. long staples spaced max 8 in. OC in the field and 4 in. OC along the perimeter. Joints between two layers of Gypsum Board staggered a min of 12 in. in both directions.

UNITED STATES GYPSUM CO — Type FRX-G

1C. **Floor Mat Materials*** — (Optional) — Floor mat material loosely laid over Structural Cement-Fiber Units (Item 1A). Gypsum Board Item 1B loosely laid over floor mat material with joints of bottom layer of Gypsum Board staggered a minimum of 12 in. in both directions.

KINETICS NOISE CONTROL INC — Type Soundmatt

PLITEQ INC — Types GenieMat RST02, GenieMat RST05

System B

1A. **Structural Cement-Fiber Units*** — Nom 3/4 in. thick, with long edges tongue and grooved. Long dimension of panels to be perpendicular to joists with end joints staggered a min of 2 ft and centered over the joists. Panels secured to steel joists with 1-5/8 in. long No. 8 self-drilling, self-countersinking steel screws spaced a max of 12 in. OC in the field with a screw located 1 in. and 2 in. from each edge, and 8 in. OC on the perimeter with a screw located 2 in. from each edge, located 1/2 in. from the side edges of the panel.

UNITED STATES GYPSUM CO — Types STRUCTO-CRETE, USGSP

1B. **Floor Topping Mixture*** — Min 3/4 in. thickness of floor topping mixture having a minimum compressive strength of 1800 psi. Refer to manufacturer's instructions accompanying the material for specific mix design. **UNITED STATES GYPSUM CO** — Types LRK, HSLRK, CSD

USG MEXICO S A DE C V — Types LRK, HSLRK, CSD

Floor Mat Materials* — (Optional) - Floor mat material loose laid over the subfloor. Refer to manufacturer's instructions regarding the minimum thickness of floor topping over each floor mat material.

UNITED STATES GYPSUM CO — Types SAM, LEVELROCK [®] Brand Sound Reduction Board, LEVELROCK [®] Brand Floor Underlayment SRM-25

Alternate Floor Mat Materials* — (Optional) - Floor mat material nom 3/8 in. thick loose laid over the subfloor. Floor topping thickness a min 3/4 in. over the floor mat. GRASSWORX L L C — Type SC50

2. **Steel Joists** — Channel-shaped, min 10 in. deep with min 1-5/8 in. wide flanges and 1/2 in. long stiffening flanges. Fabricated from min No. 16 MSG galv steel. Min yield strength of 50,000 psi. Joists spaced max 24 in. OC. Supplied with appropriate rim tracks of same size and gauge.

2A. **Steel Joists** — (Not Shown) -As an alternate to Item 2 - For maximum clear spans not exceeded 8 ft. Channel-shaped, min 6 in. deep with min 1-9/16 in. wide flanges and 3/8 in. long stiffening flanges. Fabricated from min No. 18 MSG galv steel. Min yield strength of 33,000 psi. Joists spaced max 24 in. OC. Supplied with appropriate rim tracks of same size and gauge.

2B. **Steel Joists** — (Not Shown) -As an alternate to Item 2 - Channel-shaped, min 8 in. deep with min 1-9/16 in. wide flanges and 3/8 in. long stiffening flanges. Fabricated from min No. 16 MSG galv steel. Min yield strength of 33,000 psi. Joists spaced max 24 in. OC. Supplied with appropriate rim tracks of same size and gauge.

2C. **Steel Joists** — As an alternate to item 2 only - The joists are channel-shaped, 10 in. min depth. Joists are fabricated from min No. 16 MSG galv steel. Joists spaced max 24 in. OC. Joists attached to rim joist with a minimum of three #10 3/4 in. long self-drilling screws at the rim track clip to the outside of the web joist, and a #10 1/2 in. long screw through the top and bottom flange of the joists to the top and bottom flange of the rim track. At rim joist splices bearing on supports, rim joists are connected using an overlapping section of a 12 in. long splice plate (a joist piece), with a minimum of six 3/4 in. long self-drilling #10 screws to each rim piece. For use with item 3C.

CALIFORNIA EXPANDED METAL PRODUCTS CO — Type SSCJ floor joists, SSRT rim joists or Type SSTT rim joists. When Type SSTT rim joists are used, secured to preformed clip tabs in accordance with manufacturers installation instructions.

2D. **Clip Angles** — No. 16 MSG, 9-3/4 in. long steel angles with 2 in. legs. Secured to track and joist with eight No.10, 3/4 in. long, self drilling, hex head screws, located 1 in. from each end of clip angle, with the other two screws on each leg evenly spaced. Only one clip angle per joist end.

2E. **Clip Angles** — (Not Shown) - As an alternate to Item 2C, for use with 6 or 8 in. deep joists (Item 2A or 2B). No. 16 MSG, 5-1/2 in. long steel angles with 1-1/2 in. legs for 6 in. deep joists and No. 18 MSG, 7-1/4 in. long steel angles with 1-1/2 in. legs for 8 in. deep joists. Secured to track and joist with six No.10, 3/4 in. long, self drilling, hex head screws, located 1 in. from each end of the clip angle and at the centerline. Only one clip angle per joist end.

2F. **Structural Steel Members*** — (Not Shown) - As an alternate to Item 2, 2a, 2b and 2c - Pre-fabricated light gauge steel truss system consisting of cold-formed, galv steel chord and web sections. Trusses fabricated in various sizes, depths and from various steel thickness spaced a maximum of 24 in. OC.

AEGIS METAL FRAMING, DIV OF MITEK — Ultra-Span, Pre-fabricated Light Gauge Steel Truss System

${\bf TRUSSTEEL, \, DIV \, OF \, ITW \, BUILDING \, COMPONENTS \, INC - {\rm TrusSteel}}$

2G. **Structural Steel Members*** — (Not Shown) - As an alternate to Item 2, 2a, 2b,2c and 2f - Pre-fabricated steel truss system consisting of cold-formed, galvanized steel chord and web sections. Truss top and bottom chords min. 4 in. high by 1-11/16 in. wide by 18 ga. Truss webs min. 1-1/2 in. by 1-1/2 in. by 20 ga. square tube bent and triangulated as shown. Chords and web connected by fillet welds. Overall truss depth min. 12 in. Trusses spaced a max of 24 in. OC. Truss ends placed over and secured to Bearing Seats (Item 2G1) with two min. #10 by 3/4 in. long screws on each side of Bearing Seats. Allowable loading must be

calculated so as to stress the steel trusses to a maximum of 98% of the stress calculated in accordance with the allowable stress design approach outlined in the manufacturer's load tables. **EISEN PANEL SYSTEMS L L C** — Type Gateway Panel pre-fabricated steel truss system.

2G1. **Bearing Seats*** — (Not Shown) — Galvanized steel tube, min. 1 in. by 2-1/2 in. by 13 ga., oriented vertically and welded to min. 4 in. by 4 in. by 10 ga., galvanized steel plate. Bearing seats spaced 24 in. OC and attached to bearing supports by welding or screw attaching the steel plate to the bearing supports.

EISEN PANEL SYSTEMS L L C — Type Gateway Panel bearing seat.

2G2. **Bracing** — (Not Shown) - For use with Item 2G — Galvanized channel-shaped steel sections, min. 1-1/2 in. wide with 1/4 in. flanges, min. 16 ga. Bracing attached to underside of trusses with min. #10 by 3/4 in. long screws through truss bottom chord. Bracing installed in truss cavities by scoring, bending and flattening the ends to form a tab for attachment to truss top and bottom chords. Two pieces of bracing crossed and tabs secured to truss chords with min. #10 by 3/4 in. long screws. Location and spacing of underside and crossed bracing to be specified on truss engineering.

2H. **Steel Trusses** — As an alternate to Items 2, 2A, 2B, 2C, 2F and 2G - Cold-formed galvanized steel truss chord and web sections manufactured from steel conforming to ASTM A653 Grade 33 or higher yield strength. Steel thickness of truss chord and web sections as required by design to meet governing code requirements. Truss members connected together with No. 10-16 (min size) self-drilling screws or equivalent. Truss chord and web members to be designed in accordance with the American Iron and Steel Institute's Specification for the Design of Cold-Formed Steel Structural Members, 1996 Edition. Trusses spaced a max of 24 in. OC. Where the truss intersects with the interior face of the exterior walls, the min truss depth shall be 12 in.

2I. Steel Joists — As an alternate to Items 2, 2A, 2B, 2C, 2F, 2G and 2H, minimum 12K1, spaced a max 24 in. OC.

2J. **Structural Steel Members*** — As an alternate to Item 2 - Limited to the 1 Hour Ratings. Pre-fabricated light gauge steel truss system consisting of cold-formed, galv steel cord and web sections. Trusses fabricated in various sizes, depths and from various steel thickness. Trusses spaced a max of 24 in. OC. Location of lateral bracing for truss chord and web sections to be specified on truss engineering. **TRUSS LINK INC** — Truss Link

3. Joist Bridging — (Not Shown) - For use with Item 2 and 2B - Installed immediately after joists are erected and before construction loads are applied. The bridging consisting of joist sections cut to length and placed between outer supports, adjacent to openings and at mid span with 8 ft OC max spacing. Bridging channels are screw-attached at each end to joist web using angle clips. V-bracing of 1-1/2 in. by 20-ga galvanized steel is screw-attached to bottom joist flange between bridging channels.

3A. **Joist Bridging** — (Not Shown) - For use with Item 2A - Installed immediately after joists are erected and before construction loads are applied. The bridging consisting of rim track sections cut to length, with two 4 in. long folded back flanges, and placed between outer supports, adjacent to openings and at mid span with 10 ft OC max spacing. Bridging channels are screw-attached to each of the four top and bottom joist flanges with two No. 8 by 1/2 in. long wafer head steel screws.

3B. **Joist Bridging** — (Not Shown) - For use with Item 2A and 2B - 1-1/2 in. wide strips formed from 20 MSG - The structural bridging is installed perpendicular to and on the bottom surface of the joists at mid-span with one #10 x 3/4 in. long hex head steel screw at each interface.

3C. **Joist Bridging** — Not shown — For use with item 2C. Installed immediately after joists are erected and before construction loads are applied. The structural bridging, Type CEMCO Sure Bridging, consisting of No. 18 MSG galv steel, 2-1/2 in. wide by 25-1/2 in. long with 1-5/16 in. long legs structural bridging staggered between the steel joists and attached to the bottom joist flange with two #10 1/2 in. long self-drilling screws at each end tab of bridging. Solid bridging consisting of cut

to length joist sections placed between outer joists and at center joist with 8 ft OC max spacing. Solid bridging is seated in the structural bridging and is screw-attached at joist web using Type CEMCO Sure-Support Clips (1-1/2 in. by 1-1/2 in. by 7 in. long, 16 MSG, min 50 ksi support clip) with three #10 3/4 in. long self-drilling screws per leg on one side and the other side with Type CEMCO Sure-Support Clips (4 in. by 1-1/2 in. by 7 in. long, 16 MSG, min 50 ksi support clip) with three #10 3/4 in. long self-drilling screws per leg.

3D. **Bridging** — (Not Shown)—For use with Item 2F - Location of lateral bracing for truss chord and web sections to be specified on truss engineering.

4. **Batts and Blankets*** — 3-5/8 in. thick glass fiber batt insulation draped over the resilient channels (Item 5) or suspension system grid (Item 5A). Any glass fiber batt insulation bearing the UL Classification Marking for Surface Burning Characteristics having a flame spread index of 25 or less and a smoke developed index of 50 or less may be used. See **Batts and Blankets** (BKNV) category in the Building Materials Directory for names of manufacturers.

5. **Resilient Channels** — Formed of No. 25 MSG galv steel, 1/2 in. deep, spaced max 12 in. OC, perpendicular to joists. Channel splices located beneath joists and overlapped 4 in. Channels secured to each joist with one 1/2 in. long Type S-12 low profile steel screw. Two channels, spaced 6 in. OC, oriented opposite each gypsum board end joint as shown on the illustration above. Additional channels shall extend min 6 in. beyond each side edge of board.

5A. **Steel Framing Members*** — (Optional, Not Shown) — When it is desired to drop the ceiling below the bottom plane of the structural steel members (Item 2), a suspension system may be used in lieu of the resilient channels. Main runners, cross tees, cross channels and wall angle as listed below:

a. **Main Runners** — Nom 10 or 12 ft long , 15/16 in. or 1-1/2 in. wide face, spaced 4 ft. OC. Main runners suspended by min 12 SWG galv steel hanger wires spaced 24 in. OC a min of 4 in. below bottom flange of joists, twist tied to #10 - 3/4 in. long screws installed in the web, 1/2 in. from the bottom flange of the steel joists. Hanger wires to be located adjacent to main runner/cross tee intersections.

b. **Cross Tees** — Nom 4 ft long, 1-1/2 in. wide face, installed perpendicular to the main runners, spaced 16 in. OC. Additional cross tees or cross channels used at 8 in. from each side of butted gypsum panel end joints. The cross tees or cross channels may be riveted or screw attached to the wall angle or channel to facilitate the ceiling installation.

c. Cross Channels — Nom 4 ft or 12 ft long, installed perpendicular to main runners, spaced 16 in. OC.

d. **Wall Angle or Channel** — Painted or galv steel angle with 1 in. legs or channel with 1 in. legs, 1-9/16 in. deep attached to walls at perimeter of ceiling with fasteners 16 in. OC. To support steel framing member ends and for screw-attachment of the gypsum panel. **CGC INC** — Type DGL or RX

USG INTERIORS LLC — Type DGL or RX.

5B. **Steel Framing Members*** — (Optional, Not Shown) — As an alternate to Item 5 — Furring channels and Steel Framing Members as described below:

a. **Furring channels** — Formed of No. 25 MSG galv steel, 2-3/8 in. wide by 7/8 in. deep, spaced 12 in. OC, perpendicular to joists. Channel secured to joists as described in Item b. Ends of adjoining channels overlapped 6 in. and tied together with double strand of No. 18 SWG galv steel wire near each end of overlap. Additional channels shall be positioned so that the distance from the end of the board to the center of the first channel is 3 in. and from the board end to the center of the next channel is 12 in.

b. **Steel Framing Members*** — Used to attach furring channels (Item a) to joists (Item 2). Clips spaced 48 in. OC and secured to the bottom chord of joists with min 1-5/8 in. long No. 8 self-drilling, self-tapping, bugle, flat or hex head screw through the center grommet. Furring channels are friction fitted into clips. Additional clips required to hold furring channel that supports the gypsum board butt joints.

PLITEQ INC — Type Genie Clip

5C. **Alternate Steel Framing Members*** — (Optional, Not Shown) — As an alternate to Items 5 to 5B, furring channels and Steel Framing Members as described below.

a. **Furring channels** — Formed of No. 25 MSG galv steel. 2-9/16 in. or 2-23/32 in. wide by 7/8 in. deep, spaced 12 in. OC, perpendicular to joists. Channels secured to joists as described in Item b. Ends of adjoining channels overlapped 6 in. and tied together with double strand of No. 18 SWG galv steel wire near each end of overlap.

b. **Steel Framing Members*** — Used to attach furring channels (Item a) to the steel joists (Item 2). Clips spaced a max of 48 in. OC. RSIC-1 and RSIC-1 (2.75) clips secured to alternating joists with No. 8 x 2-1/2 in. coarse drywall screw through the center grommet. Furring channels are friction fitted into clips. RSIC-1 clips for use with 2-9/16 in. wide furring channels. RSIC-1 (2.75) clips for use with 2-23/32 in. wide furring channels. Adjoining channels are overlapped as described in Item a. As an alternate, ends of adjoining channels may be overlapped 6 in. and secured together with two self-tapping No. 6 framing screws, min. 7/16 in. long at the midpoint of the overlap, with one screw on each flange of the channel. Additional clips required to hold furring channel that supports the wallboard butt joints, as described in Item 6.

PAC INTERNATIONAL L L C — Types RSIC-1 or RSIC-1 (2.75)

5D. **Steel Framing Members*** — (Optional, Not Shown) — As an alternate to Item 5 — Furring channels and Steel Framing Members as described below:

a. Furring channels —

Formed of No. 25 MSG galv steel, 2-1/2 in. wide by 7/8 in. deep, spaced 12 in. OC, perpendicular to joists. Channel secured to joists as described in Item b.

b. Steel Framing Members* ----

Used to attach furring channels (Item a) to the steel joists (Item 2). Clips spaced at 48 in. OC and secured to the bottom of the joists with one 2-1/2 in. Coarse Drywall Screw with 1 in. diam washer through the center hole. Furring channels are then friction fitted into clips. Ends of channels are overlapped 6" and tied together with double strand of No. 18 AWG galvanized steel wire. Additional clips are required to hold the Gypsum Butt joints as described in Item 6.

REGUPOL AMERICA — Type SonusClip

6. **Gypsum Board*** — One layer of nom 5/8 in. thick by 48 in. wide gypsum panels installed with long dimension perpendicular to resilient channels, furring channels or cross tees of suspension system. Gypsum panels secured to resilient/furring channels or drywall suspension system with 1 in. long Type S bugle-head screws spaced 8 in. OC, with screws located 4 in. from and on each side of the gypsum panel midspan, and 1-1/2 in. from side edges of the board. End joints secured to both resilient/furring channels as shown in end joint detail. When **Steel Framing Members** (Item 5B or 5C) are used, the butt joints in the gypsum board shall be supported by two furring channels. The two furring channels shall be spaced approximately 3-1/2 in. OC, and be attached to underside of the joist with one RSIC-1, RSIC-1 (2.75) or Genie clip at each end of the channel.

When **Steel Framing Members** (Item 5D) are used, one layer of nom 5/8 in. thick, 4 ft wide gypsum board is installed with long dimensions perpendicular to furring channels. Gypsum board secured to furring channels with nom 1 in. long Type S bugle-head steel screws spaced 8 in. OC in the field of the board. Gypsum board butted end joints shall be staggered minimum 48 in. and centered over main furring channels. At the gypsum board butt joints, an additional single length of furring channel shall be installed and be spaced approximately 3 in. from the butt joint (6 in. from the continuous furring channels) to support the floating end of the gypsum board. Each of these shorter sections of furring channel shall extend one joist beyond the width of the gypsum panel and be attached to the adjacent joists with one SonusClip at every joist involved with the butt joint.

CGC INC — Types C, IP-X2, IPC-AR, ULIX

UNITED STATES GYPSUM CO — Types C, IP-X2, IPC-AR, ULIX

USG BORAL DRYWALL SFZ LLC — Type C

USG MEXICO S A DE C V — Types C, IP-X2, IPC-AR

NATIONAL GYPSUM CO — Type FSW-C

6A. **Gypsum Board*** — For use when Steel Framing Members* (Item 5A) are used - One layer of 5/8 in. thick, 4 ft wide, installed with long dimension perpendicular to cross tees with side edges centered over main runners and joints centered over cross tees or channels. Fastened to cross tees or channels with 1 in. long Type S screws bugle-head screws spaced 8 in. OC with the screws located 4 in. from the midspan of the cross tee or channel, and 1-1/2 in. from side edges of gypsum panel. Fastened to main runners with 1 in. long Type S bugle-head screws spaced midway between cross tees or channels. End joints of gypsum panels shall be staggered not less than 4 ft OC with adjacent gypsum panels end joints. **CGC INC** — Types C, IP-X2, IPC-AR, ULIX

UNITED STATES GYPSUM CO — Types C, IP-X2, IPC-AR, ULIX

USG BORAL DRYWALL SFZ LLC — Type C

USG MEXICO S A DE C V — Types C, IP-X2, IPC-AR

NATIONAL GYPSUM CO — Type FSW-C

7. **Finishing System - (Not Shown)** — Vinyl, dry or premixed joint compound, applied in two coats to joints and screw-heads. Nom 2 in. wide paper tape embedded in first layer of compound over all joints. As an alternate, nom 3/32 in. thick veneer plaster may be applied to the entire surface of gypsum panels.

* Indicates such products shall bear the UL or cUL Certification Mark for jurisdictions employing the UL or cUL Certification (such as Canada), respectively.

Last Updated on 2019-11-12

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Certified and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained in the Online Certification Directory subject to the following conditions: 1. The Guide Information, Assemblies, Constructions, Designs, Systems, and/or Certifications (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from UL" must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "© 2020 UL LLC"

UL Product **iQ**[™]

BXUV.P561

Design/System/Construction/Assembly Usage Disclaimer

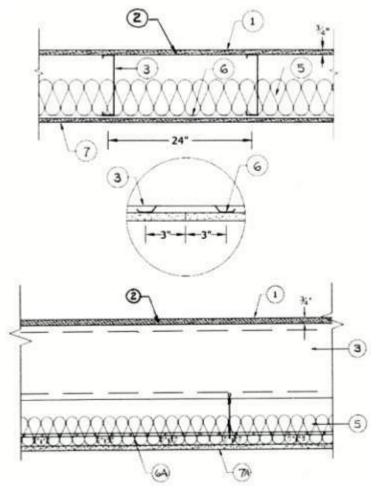
- Authorities Having Jurisdiction should be consulted in all cases as to the particular requirements covering the installation and use of UL Certified products, equipment, system, devices, and materials.
- Authorities Having Jurisdiction should be consulted before construction.
- Fire resistance assemblies and products are developed by the design submitter and have been investigated by UL for compliance with applicable requirements. The published information cannot always address every construction nuance encountered in the field.
- When field issues arise, it is recommended the first contact for assistance be the technical service staff provided by the product manufacturer noted for the design. Users of fire resistance assemblies are advised to consult the general Guide Information for each product category and each group of assemblies. The Guide Information includes specifics concerning alternate materials and alternate methods of construction.
- Only products which bear UL's Mark are considered Certified.

BXUV - Fire Resistance Ratings - ANSI/UL 263 Certified for United States

BXUV7 - Fire Resistance Ratings - CAN/ULC-S101 Certified for Canada

See General Information for Fire-resistance Ratings - ANSI/UL 263 Certified for United States Design Criteria and Allowable Variances

See General Information for Fire Resistance Ratings - CAN/ULC-S101 Certified for Canada Design Criteria and Allowable Variances


Design No. P561

November 18, 2019

Unrestrained Assembly Rating — 1, 1-1/2 and 2 Hr.

This design was evaluated using a load design method other than the Limit States Design Method (e.g., Working Stress Design Method). For jurisdictions employing the Limit States Design Method, such as Canada, a load restriction factor shall be used — See Guide BXUV or BXUV7

* Indicates such products shall bear the UL or cUL Certification Mark for jurisdictions employing the UL or cUL Certification (such as Canada), respectively.

1. **Roof Covering*** — Consisting of hot-mopped or cold-application materials which provide Class A, B or C coverings, directly applied to Structural Cement-Fiber Units(Item 2). See Roofing Materials and Systems Directory-Roof Covering Materials (TEVT).

1A **Roofing Membrane*** — (Not Shown) — In lieu of Item 1, single-ply membrane that is either ballasted, adhered or mechanically attached to Structural Cement-Fiber Units(Item 2). See Fire Resistance Directory-Roofing Membranes (CHCI) Category

Roofing System — 1 or 1-1/2 Hr Rating

2. **Structural Cement-Fiber Units*** — Nom 3/4 in. thick, with long edges tongue and grooved. Long dimension of panels to be perpendicular to joists with end joints staggered a min of 2 ft and centered over the joists. Panels secured to steel joists with 1-5/8 in. long No. 8 self-drilling, self-countersinking steel screws spaced a max of 12 in. OC in the field with a screw located 1 in. and 2 in. from each edge, and 8 in. OC on the perimeter with a screw located 2 in. from each edge, located 1/2 in. from the side edges of the panel.

Unrestrained Assembly Rating is 1 hour when Item 3A or 3B is used. Unrestrained Assembly Rating is 1-1/2 hour when Item 3, 3C, 3F, 3G, or 3H is used.

UNITED STATES GYPSUM CO — Types STRUCTO-CRETE, USGSP

2 Hr Rating

2. **Structural Cement-Fiber Units*** — Nom 3/4 in. thick, with long edges tongue and grooved. Long dimension of panels to be perpendicular to joists with end joints staggered a min of 2 ft and centered over the joists. Panels secured to steel joists with 1-5/8 in. long No. 8 self-drilling, self-countersinking steel screws spaced a max of 12 in. OC in the field with a screw located 1 in. and 2 in. from each edge, and 8 in. OC on the perimeter with a screw located 2 in. from each edge, located 1/2 in. from the side edges of the panel.

UNITED STATES GYPSUM CO — Types STRUCTO-CRETE, USGSP

2A. **Gypsum Board* (Not Shown)** — Min 1/2 in. thick gypsum board, Classified as to Surface Burning Characteristics. Boards loosely laid, adhered or mechanically attached to Structural Cement-Fiber Units. Joints between Structural Cement Fiber Units and of Gypsum Board staggered a min of 6 in. See Gypsum Board (BWFR) Category in the Building Materials Directory or Roofing Systems (TGFU) in the Roofing Material Directory or Gypsum Board (CKNX) Category in the Fire Resistance Directory. **UNITED STATES GYPSUM CO** — Type FRX-G

3. **Structural Steel Members** — Channel-shaped, min 10 in. deep with min 1-5/8 in. wide flanges and 1/2 in. long stiffening flanges. Fabricated from min No. 16 MSG galv steel. Min yield strength of 50,000 psi. Joists spaced max 24 in. OC. Supplied with appropriate rim tracks of same size and gauge.

3A. **Structural Steel Members** — (Not Shown) -As an alternate to Item 3 - For maximum clear spans not exceeded 8 ft. Channel-shaped, min 6 in. deep with min 1-9/16 in. wide flanges and 3/8 in. long stiffening flanges. Fabricated from min No. 18 MSG galv steel. Min yield strength of 33,000 psi. Joists spaced max 24 in. OC. Supplied with appropriate rim tracks of same size and gauge.

3B. **Structural Steel Members** — (Not Shown) -As an alternate to Item 3 - Channel-shaped, min 8 in. deep with min 1-9/16 in. wide flanges and 3/8 in. long stiffening flanges. Fabricated from min No. 16 MSG galv steel. Min yield strength of 33,000 psi. Joists spaced max 24 in. OC. Supplied with appropriate rim tracks of same size and gauge.

3C. **Structural Steel Members*** — (Not Shown) -As an alternate to item 3 only - The joists are channel-shaped, 10 in. min depth. Joists are fabricated from min No. 16 MSG galv steel. Joists spaced max 24 in. OC. Joists attached to rim joist with a minimum of three #10 3/4 in. long self-drilling screws at the rim track clip to the outside of the web joist, and a #10 1/2 in. long screw through the top and bottom flange of the joists to the top and bottom flange of the rim track. At rim joist splices bearing on supports, rim joists are connected using an overlapping section of a 12 in. long splice plate (a joist piece), with a minimum of six 3/4 in. long self-drilling #10 screws to each rim piece. For use with item 3C.

CALIFORNIA EXPANDED METAL PRODUCTS CO — Type SSCJ floor joists, SSRT rim joists or Type SSTT rim joists. When Type SSTT rim joists are used, secured to preformed clip tabs in accordance with manufacturers installation instructions.

3D. **Clip Angles** — (Not Shown) - No. 16 MSG, 9-3/4 in. long steel angles with 2 in. legs. Secured to track and joist with eight No.10, 3/4 in. long, self-drilling, hex head screws, located 1 in. from each end of clip angle, with the other two screws on each leg evenly spaced. Only one clip angle per joist end.

3E. **Clip Angles** — (Not Shown) - As an alternate to Item 3D, for use with 6 or 8 in. deep joists (Item 3A or 3B). No. 16 MSG, 5-1/2 in. long steel angles with 1-1/2 in. legs for 6 in. deep joists and No. 18 MSG, 7-1/4 in. long steel angles with 1-1/2 in. legs for 8 in. deep joists. Secured to track and joist with six No.10, 3/4 in. long, self-drilling, hex head screws, located 1 in. from each end of the clip angle and at the centerline. Only one clip angle per joist end.

3F. **Structural Steel Members*** — (Not Shown) -As an alternate to Item 3 only. The proprietary joists are channel-shaped, min 9-1/4 in. deep. Joists are fabricated from min No. 16 MSG galv steel. Joists spaced max 24 in. OC. Joists attached to joist rim with three 3/4 in. long No. 10 x 16 self-drilling steel TEK screws through tab to the outside of the web. At joist rim splices bearing on supports, joists rims are connected using an overlapping section of a 12 in. long splice plate (a joist piece), with four 3/4 in. long No. 10 x 16 self-drilling steel TEK screws to each rim piece.

CLARKDIETRICH BUILDING SYSTEMS — Type TDJ or TDW Floor Joists, TD24 Rim Joist

3G. **Structural Steel Members*** — (Not Shown) - As an alternate to Item 3, 3A, 3B, 3C and 3F - Pre-fabricated light gauge steel truss system consisting of cold-formed, galv steel chord and web sections. Trusses fabricated in various sizes, depths and from various steel thickness spaced a maximum of 24 in. OC.

AEGIS METAL FRAMING, DIV OF MITEK — Ultra-Span, Pre-fabricated Light Gauge Steel Truss System

TRUSSTEEL, DIV OF ITW BUILDING COMPONENTS INC — TrusSteel

3H. **Structural Steel Members*** — (Not Shown) - As an alternate to Item 3, 3A, 3B, 3C, 3F and 3G, - Pre-fabricated steel truss system consisting of cold-formed, galvanized steel chord and web sections. Truss top and bottom chords min. 4 in. high by 1-11/16 in. wide by 18 ga. Truss webs min. 1-1/2 in. by 1-1/2 in. by 20 ga. square tube bent and triangulated as shown. Chords and web connected by fillet welds. Overall truss depth min. 12 in. Trusses spaced a max of 24 in. OC. Truss ends placed over and secured to Bearing Seats (Item 3H1) with two min. #10 by 3/4 in. long screws on each side of Bearing Seats. Allowable loading must be calculated so as to stress the steel trusses to a maximum of 98% of the stress calculated in accordance with the allowable stress design approach outlined in the manufacturer's load tables. **EISEN PANEL SYSTEMS L L C** — Type Gateway Panel pre-fabricated steel truss system.

3H1. **Bearing Seats*** — ((Not Shown) — Galvanized steel tube, min. 1 in. by 2-1/2 in. by 13 ga., oriented vertically and welded to min. 4 in. by 4 in. by 10 ga., galvanized steel plate. Bearing seats spaced 24 in. OC and attached to bearing supports by welding or screw attaching the steel plate to the bearing supports. **EISEN PANEL SYSTEMS L L C** — Type Gateway Panel bearing seat.

3H2. **Bracing** — (Not Shown) - For use with Item 3H — Galvanized channel-shaped steel sections, min. 1-1/2 in. wide with 1/4 in. flanges, min. 16 ga. Bracing attached to underside of trusses with min. #10 by 3/4 in. long screws through truss bottom chord. Bracing installed in truss cavities by scoring, bending and flattening the ends to form a tab for attachment to truss top and bottom chords. Two pieces of bracing crossed and tabs secured to truss chords with min. #10 by 3/4 in. long screws. Location and spacing of underside and crossed bracing to be specified on truss engineering.

31. **Steel Trusses** — As an alternate to Items 3, 3A, 3B, 3C, 3F, 3G and 3H - Cold-formed galvanized steel truss chord and web sections manufactured from steel conforming to ASTM A653 Grade 33 or higher yield strength. Steel thickness of truss chord and web sections as required by design to meet governing code requirements. Truss members connected together with No. 10-16 (min size) self-drilling screws or equivalent. Truss chord and web members to be designed in accordance with the American Iron and Steel Institute's Specification for the Design of Cold-Formed Steel Structural Members, 1996 Edition. Trusses spaced a max of 24 in. OC. Where the truss intersects with the interior face of the exterior walls, the min truss depth shall be 12 in.

3J. Steel Joists — As an alternate to Items 3, 3A, 3B, 3C, 3F, 3G, 3H and 3I, minimum 12K1, spaced a max 24 in. OC.

3K. **Structural Steel Members*** — As an alternate to Item 3 - Limited to the 1 Hour Ratings. Pre-fabricated light gauge steel truss system consisting of cold-formed, galv steel cord and web sections. Trusses fabricated in various sizes, depths and from various steel thickness. Trusses spaced a max of 24 in. OC. Location of lateral bracing for truss chord and web sections to be specified on truss engineering.

TRUSS LINK INC — Truss Link

4. Joist Bridging — (Not Shown) - For use with Item 3 and 3B - Installed immediately after joists are erected and before construction loads are applied. The bridging consisting of joist sections cut to length and placed between outer supports, adjacent to openings and at mid span with 8 ft OC max spacing. Bridging channels are screw-attached at each end to joist web using angle clips. V-bracing of 1-1/2 in. by 20-ga galvanized steel is screw-attached to bottom joist flange between bridging channels.

4A. **Joist Bridging** — (Not Shown) - For use with Item 3A - Installed immediately after joists are erected and before construction loads are applied. The bridging consisting of rim track sections cut to length, with two 4 in. long folded back flanges, and placed between outer supports, adjacent to openings and at mid span with 10 ft OC max spacing. Bridging channels are screw-attached to each of the four top and bottom joist flanges with two No. 8 by 1/2 in. long wafer head steel screws.

4B. **Joist Bridging** — (Not Shown) - For use with Item 3A and 3B - 1-1/2 in. wide strips formed from 20 MSG - The structural bridging is installed perpendicular to and on the bottom surface of the joists at mid-span with one #10 x 3/4 in. long hex head steel screw at each interface.

4C. Joist Bridging — (Not shown) — For use with item 3C. Installed immediately after joists are erected and before construction loads are applied. The structural bridging, Type CEMCO Sure Bridging, consisting of No. 18 MSG galv steel, 2-1/2 in. wide by 25-1/2 in. long with 1-5/16 in. long legs structural bridging staggered between the steel joists and attached to the bottom joist flange with two #10 1/2 in. long self-drilling screws at each end tab of bridging. Solid bridging consisting of cut to length joist sections placed between outer joists and at center joist with 8 ft OC max spacing. Solid bridging is seated in the structural bridging and is screw-attached at joist web using Type CEMCO Sure-Support Clips (1-1/2 in. by 1-1/2 in. by 7 in. long, 16 MSG, min 50 ksi support clip) with three #10 3/4 in. long self-drilling screws per leg on one side and the other side with Type CEMCO Sure-Support Clips (4 in. by 1-1/2 in. by 7 in. long, 16 MSG, min 50 ksi support clip) with three #10 3/4 in. long self-drilling screws per leg.

4D. Joist Bridging — (Not Shown) — For use with Item 3F. Installed at the center of the joist span immediately after joists are erected and before construction loads are applied. The bridging (2-1/2 TDSB18) consists of No. 18 MSG galv steel channels, 2-1/2 in. wide by 1-1/4 in. deep by 21-3/4 in. long with 2-1/8 in. long web extensions at each end for screw-attachment to the bottom flange of the steel joists with a 3/4 in. long No. 10 x 16 self-drilling steel TEK screw. Solid bridging consisting of cut-tolength joist sections placed between the outermost joists and between the centermost joists with a max spacing of 8 ft OC. Solid bridging are screw-attached at joist web using a 1-1/2 by 1-1/2 by 7 in. long, No. 16 MSG, min 50 ksi steel support clip (EasyClip S-Series S547) with two 3/4 in. long No. 10 x 16 self-drilling steel TEK screws per leg on one side and on the other side with a 4 by 1-1/2 by 7 in. long No. 16 MSG, min 50 ksi steel support clip (EasyClip E-Series E547) with two 3/4 in. long No. 10 x 16 self-drilling steel TEK screws per leg.

4E. Bridging — (Not Shown)—For use with Item 3G - Location of lateral bracing for truss chord and web sections to be specified on truss engineering.

5. Batts and Blankets* — Glass fiber insulation, min 3-1/2 in. thick, bearing the UL Classification Marking for Surface Burning Characteristics. Min density of 0.5 pcf. The insulation shall be fitted in the concealed space, draped over the resilient channel (Item 6) or steel frame members (Item 6A) and gypsum board (Item 8) ceiling membrane. See Batts and Blankets (BKNV) category in the Building Materials Directory for names of manufacturers.

6. Resilient Channels — Formed of No. 25 MSG galv steel, 1/2 in. deep, spaced max 12 in. OC, perpendicular to joists. Channel splices located beneath joists and overlapped 4 in. Channels secured to each joist with one 1/2 in. long Type S-12 low profile steel screw. Two channels, spaced 6 in. OC, oriented opposite each gypsum board end joint as shown on the illustration above. Additional channels shall extend min 6 in. beyond each side edge of board.

6A. Steel Framing Members* — (Optional) — When it is desired to drop the ceiling below the bottom plane of the structural steel members (Item 3), a suspension system may be used in lieu of the resilient channels. Main runners, cross tees, cross channels and wall angle as listed below:

a. Main Runners — Nom 10 or 12 ft long , 15/16 in. or 1-1/2 in. wide face, spaced 4 ft. OC. Main runners suspended by min 12 SWG galv steel hanger wires spaced 24 in. OC a min of 4 in. below bottom flange of joists, twist tied to #10 -3/4 in. long screws installed in the web, 1/2 in. from the bottom flange of the steel joists. Hanger wires to be located adjacent to main runner/cross tee intersections.

b. Cross Tees — Nom 4 ft long, 1-1/2 in. wide face, installed perpendicular to the main runners, spaced 16 in. OC. Additional cross tees or cross channels used at 8 in. from each side of butted gypsum panel end joints. The cross tees or cross channels may be riveted or screw attached to the wall angle or channel to facilitate the ceiling installation.

c. Cross Channels — Nom 4 ft or 12 ft long, installed perpendicular to main runners, spaced 16 in. OC.

d. Wall Angle or Channel — Painted or galv steel angle with 1 in. legs or channel with 1 in. legs, 1-9/16 in. deep attached to walls at perimeter of ceiling with fasteners 16 in. OC. To support steel framing member ends and for screwattachment of the gypsum panel.

CGC INC — Type DGL or RX

USG INTERIORS LLC — Type DGL or RX.

6B. **Steel Framing Members*** — (Optional, Not Shown) — As an alternate to Item 6 — Furring channels and Steel Framing Members as described below:

a. **Furring channels** — Formed of No. 25 MSG galv steel, 2-3/8 in. wide by 7/8 in. deep, spaced 12 in. OC, perpendicular to joists. Channel secured to joists as described in Item b. Ends of adjoining channels overlapped 6 in. and tied together with double strand of No. 18 SWG galv steel wire near each end of overlap. Additional channels shall be positioned so that the distance from the end of the board to the center of the first channel is 3 in. and from the board end to the center of the next channel is 12 in.

b. **Steel Framing Members*** — Used to attach furring channels (Item a) to joists (Item 3). Clips spaced 48 in. OC and secured to the bottom chord of joists with min 1-5/8 in. long No. 8 self-drilling, self-tapping, bugle, flat or hex head screw through the center grommet. Furring channels are friction fitted into clips. Additional clips required to hold furring channel that supports the gypsum board butt joints.

PLITEQ INC — Type Genie Clip

6C. **Alternate Steel Framing Members*** — (Optional, Not Shown) — As an alternate to Items 6 to 6B, furring channels and Steel Framing Members as described below.

a. **Furring channels** — Formed of No. 25 MSG galv steel. 2-9/16 in. or 2-23/32 in. wide by 7/8 in. deep, spaced 12 in. OC, perpendicular to joists. Channels secured to joists as described in Item b. Ends of adjoining channels overlapped 6 in. and tied together with double strand of No. 18 SWG galv steel wire near each end of overlap.

b. **Steel Framing Members*** — Used to attach furring channels (Item a) to the steel joists (Item 3). Clips spaced a max of 48 in. OC. RSIC-1 and RSIC-1 (2.75) clips secured to alternating joists with No. 8 x 2-1/2 in. coarse drywall screw through the center grommet. Furring channels are friction fitted into clips. RSIC-1 clips for use with 2-9/16 in. wide furring channels. RSIC-1 (2.75) clips for use with 2-23/32 in. wide furring channels. Adjoining channels are overlapped as described in Item a. As an alternate, ends of adjoining channels may be overlapped 6 in. and secured together with two self-tapping No. 6 framing screws, min. 7/16 in. long at the midpoint of the overlap, with one screw on each flange of the channel. Additional clips required to hold furring channel that supports the wallboard butt joints, as described in Item 7.

PAC INTERNATIONAL L L C — Types RSIC-1 or RSIC-1 (2.75)

7. Gypsum Board* — One layer of nom 5/8 in. thick by 48 in. wide gypsum panels installed with long dimension perpendicular to resilient/furring channels. Gypsum panels secured to resilient/furring channels with 1 in. long Type S buglehead screws spaced 8 in. OC, with screws located 4 in. from and on each side of the gypsum panel mid-span, and 1-1/2 in. from side edges of the board. End joints secured to both resilient/furring channels as shown in end joint detail. When Steel Framing Members (Item 6B or 6C) are used, the butt joints in the gypsum board shall be supported by two furring channels. The two furring channels shall be spaced approximately 3-1/2 in. OC, and be attached to underside of the joist with one RSIC-1, RSIC-1 (2.75) or Genie clip at each end of the channel. CGC INC — Types C, IP-X2, IPC-AR

CGC INC — Type ULIX

UNITED STATES GYPSUM CO — Types C, IP-X2, IPC-AR, ULIX

USG BORAL DRYWALL SFZ LLC — Type C

USG INTERIORS LLC — Types C, IP-X2, IPC-AR

7A. **Gypsum Board*** — For use when Steel Framing Members* (Item 6A) are used - One layer of 5/8 in. thick, 4 ft wide, installed with long dimension perpendicular to cross tees with side edges centered over main runners and joints centered over cross tees or channels. Fastened to cross tees or channels with 1 in. long Type S screws bugle-head screws spaced 8 in. OC

with the screws located 4 in. from the mid-span of the cross tee or channel, and 1-1/2 in. from side edges of gypsum panel. Fastened to main runners with 1 in. long Type S bugle-head screws spaced midway between cross tees or channels. End joints of gypsum panels shall be staggered not less than 4 ft OC with adjacent gypsum panels end joints. **CGC INC** — Types C, IP-X2, IPC-AR

CGC INC — Type ULIX

UNITED STATES GYPSUM CO — Types C, IP-X2, IPC-AR, ULIX

USG BORAL DRYWALL SFZ LLC — Type C

USG INTERIORS LLC — Types C, IP-X2, IPC-AR

8. **Finishing System** — (Not Shown) — Vinyl, dry or premixed joint compound, applied in two coats to joints and screw-heads. Nom 2 in. wide paper tape embedded in first layer of compound over all joints. As an alternate, nom 3/32 in. thick veneer plaster may be applied to the entire surface of gypsum panels.

* Indicates such products shall bear the UL or cUL Certification Mark for jurisdictions employing the UL or cUL Certification (such as Canada), respectively.

Last Updated on 2019-11-18

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Certified and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained in the Online Certification Directory subject to the following conditions: 1. The Guide Information, Assemblies, Constructions, Designs, Systems, and/or Certifications (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from UL" must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "© 2020 UL LLC"

Pri Evaluation Service®

Pei Evaluation Service[®] is an accredited ISO Standard 17065 Product Certifier, accredited by the IAS. This **Product Evaluation Report** represents a product that *Pei* ES has Evaluated. This product has a Product Evaluation Service Agreement & Follow-up Inspection Service Agreement. This **Product Evaluation Report** in no way implies warranty for this product or relieves **United States Gypsum Company** of their liabilities for this product. This **PER** is an official document if it is within one year of the Initial or Re-Approval date.

Report Owner United States Gypsum Company 700 North Highway 45

Libertyville, IL 60048

Product USG Structural Panel Concrete Subfloor

(a.k.a. 3/4" STRUCTO-CRETE[®] Structural Concrete Panels)

PER-13067

Initial Approval October, 2013 Re-Approved July, 2019

See all Pei ES Reports at: www.p-e-i.com

Approved Manufacturing Locations USG Structural Technologies, LLC 309 Hallberg Street Delavan, WI 53115

For Evaluation Report Questions USG Contact: Manny Hurtado, Building Codes Manager Phone: 847-970-5179 Email: mhurtado@usg.com

General Details

The approved manufacturing plant has an approved Q.C. Manual to manufacture **USG** Structural Panel Concrete Subfloor and is audited quarterly by *Progressive Engineering Inc.* **USG** Structural Panel Concrete Subfloor is also known as 3/4" STRUCTO-CRETE[®] Structural Concrete Panels, and the contents of this **PER** are applicable to both product names.

Product Description

USG Structural Panel Concrete Subfloor is a noncombustible concrete sheathing panel used in conjunction with cold-formed steel, wood, or hot-rolled steel framing to form a load bearing structural floor or wall system. **USG** Structural Panel Concrete Subfloor is a nominal 3/4" [19mm] thick x 4' [1220mm] wide x 8' [2440mm] long. The floor panels have a Tongue and Groove edge along the 8' [2440mm] sides and the wall panels are square edged. The panels have a maximum weight of 5.3psf [25.9 kg/m²] from the manufacturing plant. The panels are a composite material consisting of alkali-resistant fiberglass and a cementitious binder.

USG Structural Panel Concrete Subfloor are noncombustible per ASTM E136 (CAN CSA S114) and have a mold resistance value of no less than 10 per ASTM D3273 and a rating of 1 or less per ASTM G21. This products have also been shown to be termite resistant when tested in accordance with AWPA Standard E1-13 exposure C, and comply with the VOC emission requirements of the California Department of Public Health CDPH/EHLB/Standard Method Version 1.1 (Emission testing method for CA Specification 01350).

Product Application

USG Structural Panel Concrete Subfloor is used as a single floor or as the subfloor (Concrete Subfloor) in conjunction with an underlayment to form a structural floor system to resist gravity loading, floor diaphragm loading and concentrated loading as typically found in Residential and Commercial Type I or Type II Construction. Product may also be used in wall applications in accordance with Table 8 and Table 9.

Framing

Cold-formed steel framing shall comply with AISI and have minimum yield strength of 50 ksi [345 MPa], minimum 18 ga. [40mil] or 0.0403" [1.0236mm] thickness, and minimum G60 galvanized coating. Member flanges must have a minimum width of 1-5/8" [41.27mm]. As an alternative, SPF lumber, 1/8" [3mm] or 1/4" [6mm] steel framing may also be used in conjunction with the fasteners and edge distance listed in Table 2. Typical frame spacing ranges from 12" o.c. [305mm] to 24" o.c. [610mm] for floors. See Table 4 and Table 5 for floor diaphragm shear design values.

Compliance

Internation	nal Residential Code	Internat	ional Building Code	City of Los Angel	es Building Code (LABC)	Cali	fornia Building Code
2012 -	Section R301.1.3	2012 -	Section 703.5.1				Section 703.5.1
	Section R301.7		Section 703.5.2		Chapters 16 8 17		Section 703.5.2
2015 -	Section R301.1.3		Section 1607.1 (Table)	2017	Chapters 16 & 17 (As applicable)	2019	Table 1607.1
	Section R301.7		Section 1607.4		(As applicable)		Section 1607.3 & 1607.4
	Section R302.6						
2018 -	Section R301.1.3	2015	Section 703.5.1	City of Los Angeles Residential Code (LARC) California Residen		rnia Residential Code	
2010 -	Section R301.7		Section 703.5.2				
			Section 1607.1 (Table)				Section R301.1.3
			Section 1607.3 & 1607.4				
		2018	Section 703.5.1	2017	Section R301.1.3	2019	
			Section 703.5.2				Section R301.7
			Section 1607.1 (Table)				
			Section 1607.3 & 1607.4				

Meets or exceeds the requirements of ICC-ES AC 318 Structural Cementitious Floor Sheathing Panels, Effective July 1, 2009.
Meets or exceeds the requirements of ICC-ES AC 319 Horizontal Diaphragms Consisting of Structural Cementitious Floor Sheathing Panels Attached to Cold-formed Steel Framing—Approved June 2005, Editorially Revised January 2012.

• Meets the requirements of Table R301.7 Allowable Deflection of Structural Members for Joist Spacing of 24" [610mm] o.c. per the 2012, 2015 & 2018 IRC.

Compliance Continued

Meets or exceeds the requirements for noncombustible core in accordance with Section 703.5.1 of the 2012, 2015 & 2018 IBC.

 Meets or exceeds the requirements for materials having a structural base of noncombustible material when tested in accordance with ASTM E 136 as defined in 2012, 2015 & 2018 IBC Section 703.5.2 and CAN CSA S114.

• Meets the requirements of Section R301.1.3 Engineered Design for otherwise conventional construction for buildings per the 2012, 2015 & 2018 IRC.

• Meets the requirements of Section R301.1.3 Engineered Design for otherwise conventional construction for buildings per the 2019 California Residential Code.

• For Canadian applications suitability needs to be reviewed by Architect or Engineer of record prior to use.

• Meets or exceeds the requirements of the 2012, 2015 & 2018 IBC Table 1607.1, 2012 Ontario Building Code Table 4.1.5.9 and the 2019 California Building Code; Minimum Uniformly Distributed Live Loads and Minimum Concentrated Live Loads, when installed per manufacturer's instructions.

 Surface Burning Characteristics - Flame Spread Index of 0 / Smoke Development Index of 0 or less when tested in accordance with ASTM E 84.

 Meets & exceeds requirements for concentrated load per ICC AC318 when tested in accordance with ASTM E661 using a 1" [25mm] and 3" [76mm] loading diameter for Wet & Dry conditions.

• Meets and exceeds the requirements of the 2012, 2015 & 2018 IBC and the 2019 California Building Code Section 1607.3 Uniform live loads and Section 1607.4, Concentrated Live Load of 2,000 Lbs.

· Meets or exceeds the 2017 City of Los Angeles Building Code (LABC) - The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 & 17, as applicable.

· Meets or exceeds the requirements of the 2017 Los Angeles Residential Code (LARC) - Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.

General Product Installation

1. USG Structural Panel Concrete Subfloor is to be installed and maintained during construction following this report and the USG installation instructions. Installation instructions must be made easily available to the product installer.

2. When cutting USG Structural Panel Concrete Subfloor, safety glasses and a NIOSH approved N-95 dust mask should be worn at all times due to dust produced by the cutting of this product.

3. Fasteners shall be flush or slightly below the surface and care must be taken to not strip out in the framing. No fastener shall be installed within 2" [51mm] of the corner of a panel and shall not be closer than the minimum distance from panel edges indicated in Table 2 of this **PER**.

The tongue and groove joints shall be oriented perpendicular to the framing.

5. The 3/4" [19mm] USG Structural Panel Concrete Subfloor is fastened to the cold-formed steel, hot-rolled steel, or wood floor framing with the applicable fasteners indicated in Table 2 of this report.

6. Install panels in a running board pattern bridging a minimum of 2 framing spans. The minimum panel width, measured parallel to the framing, shall be no less than 24" [610mm].

7. Fasteners are applied as shown on the following Screw pattern A, B & C diagrams.

8. Up to a 6" [152mm] x 6" [152mm] cutout through the panels is allowed without blocking. Up to a 44" [1118mm] x 44" [1118mm] cutout is allowed with sufficient blocking around the perimeter of the opening. Larger openings shall be designed by the Engineer of record and are beyond the scope of this report.

9. USG Structural Panel Concrete Subfloor must be protected from construction abrasive wear and impact after panel installation until the floor has its final finish applied. Refer to the USG Installation Instructions.

10. USG Structural Panel Concrete Subfloor must have blocked edges for pabels that are less than 24" wide. The Katz blocking should be fastened through the panel and with the blocking into the joist with a recommended fastener.

Product Storage

USG Structural Panel Concrete Subfloor shall be stored in a dry location. Placement of the palletized product must be on level firm ground or a floor capable of carrying the approximate 3,400 lb. [1545kg] pallet weight. Pallets shall not be stacked more than three high and must be stacked with direct alignment on the pallet below it. If a dry location is unavailable, cover pallets with a waterproof tarp or covering. Sub-freezing temperature may cause the panels to freeze together. Should this happen, move the panels to a warmer location to thaw out. Do not use tools or chemicals to loosen the panels as this will cause damage to the panels and will void the performance ratings described in this PER.

Product Labeling

Each bundle shipped of USG Structural Panel Concrete Subfloor that are covered by this PER, must have a label attached with at least the following information:

- 1. USG Name and Location / Plant Number
- 2. Date of manufacture
- 3. This **PER** Number & *Pei* **ES** Logo

Acceptable Evaluation Marks

	Test Standard	Requirements	Tested Values
Concentrated Load Wat or Dry		550 lb [2.45 kN] Static	804 lb [3.58 kN] Static
Concentrated Load, Wet or Dry	ASTM E661	0.108" [2.7 mm] max. deflection @ 200lb [0.89 kN]	0.066" [1.7 mm] max. deflection @ 200lb [0.89 kN]
Fastener Lateral Resistance ¹	ASTM D1761	Dry >210 lb [0.93 kN]	Dry: 776 lb [3.45 kN]
Fastener Lateral Resistance	ASTWIDT/01	Wet >160 lb [0.71 kN]	Wet: 800 lb [3.56 kN]
Density - Oven Dried ²	ASTM C1185	minimun 75 lb/ft ³ [1200 kg/m ³]	78.6 lb/ft ³ [1258 kg/m ³]
Weight, 3/4" [19mm] Thickness as Delivered	ASTM D1037		5.3 lb/ft² [25.9 kg/m²]
pH Value	ASTM D1293		10.5
Linear Variation with Change in Moisture 25% to 90% Relative Humidity		<0.10%	0.06%
Thickness Swell	ASTM D1037	≤ 3.0%	0.04%
Freeze/Thaw resistance	ASTM C1185	Minimun of 75% retention of Physical Properties	100% Retention
Mold Resistance	ASTM D3273	10	10
Molu Resistance	ASTM G21	≤ 1	≤ 1
Water Absorption ³	ASTM C1185	<15.0%	9%
Noncombustibility	ASTM E136	Must Pass	Passed
Surface burning Characteristics	ASTM E84	0 Flame Spread / Smoke Developed Index 5	0 Flame Spread / Smoke Developed Index 0
Long Term Durability	ASTM C1185	min. 75% retention of physical properties	100%
Water Durability	ASTM C1185	min. 70% retention of physical properties	83%
Water Vapor Transmission (Method B)	ASTM E96		Permeance 1.4 Perm

Table 1: Physical and Mechanical Properties USG Structural Panel Concrete Subfloor

Notes: 1. Fastener Lateral Resistance measured with applicable fasteners in Table 2.

2. Density Measured at Equilibrium Conditioning per Section 5.2.3.1-Tested 28 days after manufacturing

3. Absorption Measured from Equilibrium Conditioning followed by immersion in Water for 48 hours

Table 2: Acceptable Diaphragm Fasteners¹

USG Structural Panel Concrete Subfloor

Minimum Framing	Minimum Edge Distance	Manufacturer	Part No.	Туре
16ga [1.438mm] Cold-	1/2"	Grabber Construction Products, Inc.	CGH8158LG	#8 x 1-5/8" winged self-drilling screw
Formed Steel	[13mm]	Simpson Strong-Tie Company, Inc.	CBSDQ158S	#8 x 1-5/8" winged self-drilling screw
18ga [1.0236mm] Cold-Formed Steel	1" [25mm]	Grabber Construction Products, Inc.	CGH8158LG	#8 x 1-5/8" winged self-drilling screw
		Aerosmith	5324HPG	.145" dia. x 1-1/4" lg. power actuated fastener
1/8" Hot Rolled Steel	1" [25mm]	Hilti	X-U 32MX	.157" dia. x 1-1/4" lg. power actuated fastener
min. 50 ksi		Grabber Construction Products, Inc.	CC12250LRG	#12 x 2-1/2" winged self-drilling screw
		DeWalt	50458-PWR	.157" dia. x 1-1/4" lg. power actuated fastener
		Grabber Construction Products, Inc.	CC12250LRG	#12 x 2-1/2" winged self-drilling screw
1/4" A36 Hot Rolled Steel	3/4" [19mm]	Muro North America	RSM645	M6 x 45mm winged self-drilling screw
		Simpson Strong-Tie Company, Inc.	TBG1260S	#12 x 2-3/8", Flat Head, Strong- Drive [®] TB WOOD-TO-STEEL screw
	5/8"	Grabber Construction Products, Inc.	C8200L2M	#8 x 2", Flat Head, Type 17, Nibs, GrabberGard,
SPF Lumber (Min. S.G. = 0.42)	[16mm]	Simpson Strong-Tie Company, Inc.	WSNTLG2S	#8 x 2", Flat Head,Twin threads, Nibs
	1/2" [13mm]	Senco ²	GL24AABF	8d Ring Shank Nails

Notes:

1. Fastener pull-through capacity of 581-lbs [2584N] may be applied to all listed fasteners. Capacity is based on ultimate tested value for all tabulated fasteners. The engineer or designer of record shall apply an appropriate safety factor (ASD) or resistance factor (LRFD).

2. Senco 8d ring shank nails are manufactured with a length of 2-3/8" [60mm], a head diameter of 0.266" [6.8mm], and a shank diameter of 0.113" [2.9mm]. Equivalent 8d ring shank nails meeting these dimensional requirements may be utilized when approved by the engineer or designer of 3. Screw lengths shown are minimums

Floor Usage

Table 3: Uniform Live Load Performance Rating²

USG Stru	ctural Panel Concrete	e Subfloor
Span Rating	Conditions	Live Load Rating ¹ (PSF)
12'' [305mm]	Dry or Wet	512 [24.5 kPa]
16'' [406mm]	Dry or Wet	283 [13.5 kPa]
24'' [610mm]	Dry or Wet	120 [5.7 kPa]
Nataa		

Notes:

1. Live load ratings have been determined from testing based upon a minimum 120 psf [5.7 Kpa] service live load for the 24" [610mm] span rating and a maximum panel live load deflection = L/360. A factor of safety of 3.0 applied.

2. A minimum of two framing spans required per panel piece.

3. Tabulated live load ratings are valid for a service level dead load of 10 psf [0.5 Kpa] or less.

Table 4 - 3	Table 4 - Salety Factors and Resistance Factors for Diaphragms								
	USG Structural Panel Concrete Subfloor								
	Earthquake Wind								

ofaty Faatara and Desistance Faatara far Die

			arinquak	le l	vvina			
Framing Type	Fastener Type	Ω	ф	ф	Ω	ф	ф	
		(ASD)	(LRFD)	(LSD) ⁴	(ASD)	(LRFD)	(LSD) ⁴	
Steel ¹	Screws	2.50	0.65	0.60	2.35	0.70	0.65	
Wood ^{2,3}	Screws or Nails	3.30	0.50		2.35	0.70	-	

Notes:

1. Tabulated values have been evaluated for horizontal diaphragm use only.

2. Safety factors and resistance factors for USG Structural Panel Concrete Subfloor diaphragms installed over cold-formed and hot-rolled steel framing are based upon Table D5 of AISI S100-2007.

3. Safety factors and resistance factors for USG Structural Panel Concrete Subfloor diaphragms installed over wood studs are based on the worst case of the standard factors from the American Wood Council Special Design Provisions for Wind and Seismic (AWC SDPWS-2008) and those tabulated for steel framing.

4. Earthquake factors for installations over wood construction are based upon the wind factors modified by a factor of 1.4 to match the general seismic strength reduction observed in Tables 4.2A, 4.2B, 4.2C, and 4.2D of AWC SDPWS-2008.

5. Limit States Design (LSD) shall be used in combination with the load combinations found in the National Building Code of Canada (NBCC).

	Spacing	Joist Spacing	Screw Pattern ^{2,3}	Pattern ^{2,3} Panel Blocking		х	Aspect Ratio	
Perimeter	Field				Strength (plf)			
4" [102mm]	12"	16"	В	None	1462 [21.3 kN/m]	0.443	3:1	
6" [152mm]	[305mm]	[407mm]	d	None	1395 [20.4 kN.m]	0.421	5.1	
4" [102mm]	12"	24"	В	None	1341 [19.6 kNm]	0.476	3:1	
6" [152mm]	[305mm]	[610mm]	В	None	1053 [15.4 kNm]	0.397	5.1	
6" [152mm]	12'' [305mm]	24'' [610mm]	С	4" [102mm] wide x 16ga. [1.438mm] Strap	1468 [21.4 kNm]	0.180	4:1	

Table 5: Simple Beam Diaphragm Testing

USG Structural Panel Concrete Subfloor

Notes:

1. Refer to Table 4 of this **PER** for applicable diaphragm safety (Ω) and load resistance (ϕ) factors corresponding to ASD, LRFD, and/or LSD design methods.

2. <u>Screw Pattern B</u> - Panel fasteners must be inset 2" [51mm] from the corners. Fastener edge distance at all panel edges must comply with distances in Table 2, as well as exception to the tongue and groove joints where the framing joists are perpendicular to the joint. The fasteners should be kept flush or slightly below the surface of the panel. At the T&G panel joists where the framing joists are perpendicular to the joint to the joint, one (1) panel fastener is required. One fastener should be 1" [25mm] and the other 2" [51mm] from the panel edge.

3. <u>Screw Pattern C</u> - Panels shall be fastened as described in Screw Pattern B with the addition of fasteners at 6" [152mm] o.c. along the metal Strap Blocking on both sides of seam .

Deflection Equation for Simple Beam Diaphragm

$$\Delta = \frac{5Vl^3}{8EAb} + \frac{Vl}{4Gt} + Xle_n$$

Where: V = Unit shear in the direction under consideration, plf

l = Diaphragm length, ft.

b = Diaphragm width, ft.

E = Elastic modulus of steel rim chords, 29,500,000psi

A = Net area of steel rim chord cross section, in^2

G = Shear modulus of USG Structural Panel Concrete Subfloor for shear, 285,714 psi

t = Effective thickness of USG Structural Panel Concrete Subfloor for shear, 0.73 in.

en = Screw joint slippage at load per screw on perimeter of interior panel

 $e_n @ 0.20S_u = 0.011$ $e_n @ 0.33S_u = 0.019$ $e_n @ 0.60S_u = 0.032$

X = Slip Co-efficient. See Table 5 above.

Fastene	er Spacing	Joist	Screw		S _u - Ultimate	
Perimeter	Field	Spacing	Pattern ^{3,4}	Panel Blocking	Shear Strength (plf)*	Х
6" [152mm]	12" [305mm]	24" [610mm]	В	None	487 [7.1 kN/m]	0.518
8" [203mm]	12" [305mm]	24" [610mm]	В	None	475 [6.9 kN/m]	0.511
4" [102mm]	12" [305mm]				713 [10.4 kN/m]	0.732
6" [152mm]	12" [305mm]	24" [610mm]	А	None	525 [7.7 kN/m]	0.625
8" [203mm]	12" [305mm]				465 [6.8 kN/m]	0.754
4" [102mm]	12" [305mm]				975 [14.2 kN/m]	0.833
6" [152mm]	12" [305mm]	16" [406mm]	А	None	915 [13.4 kN/m]	0.765
8" [203mm]	12" [305mm]				860 [12.6 kN/m]	0.702
4" [102mm]	12" [305mm]				1121 [16.4 kN/m]	0.759
6" [152mm]	12" [305mm]	12" [305mm]	А	None	940 [13.7 kN/m]	0.541
8" [203mm]	12" [305mm]				772 [11.3 kN/m]	0.484
6" [152mm]	12" [305mm]	24" [610mm]	С	4" [102mm] wide x 16ga. [1.438mm] Strap	1148 [19.8 kN/m]	0.354

USG Structural Panel Concrete Subfloor

Notes:

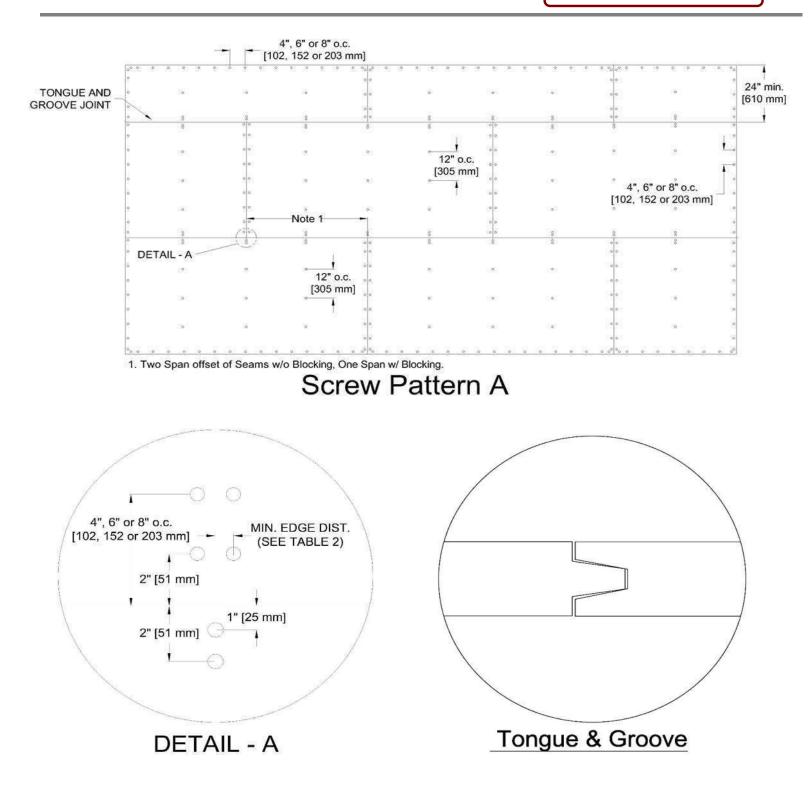
1. Refer to Table 4 of this **PER** for applicable diaphragm safety (Ω) and load resistance (ϕ) factors corresponding to ASD, LRFD, and/or LSD design methods.

2. 2 to 1 maximum Aspect Ratio

3. <u>Screw Pattern A & B</u> - Panel fasteners must be inset 2" [51mm] from the corners. Fastener edge distance at all panel edges must comply with Table 2 distances with exception to the tongue and groove joints where the framing joists are perpendicular to the joint. The fasteners should be kept flush or slightly below the surface of the panel. At the T&G panel joists where the framing joists are perpendicular to the joint, two (2) panel fasteners are required for Pattern A and one (1) fastener for Pattern B. One fastener should be 1" [25mm] and the other 2" [51mm] from the panel edge.

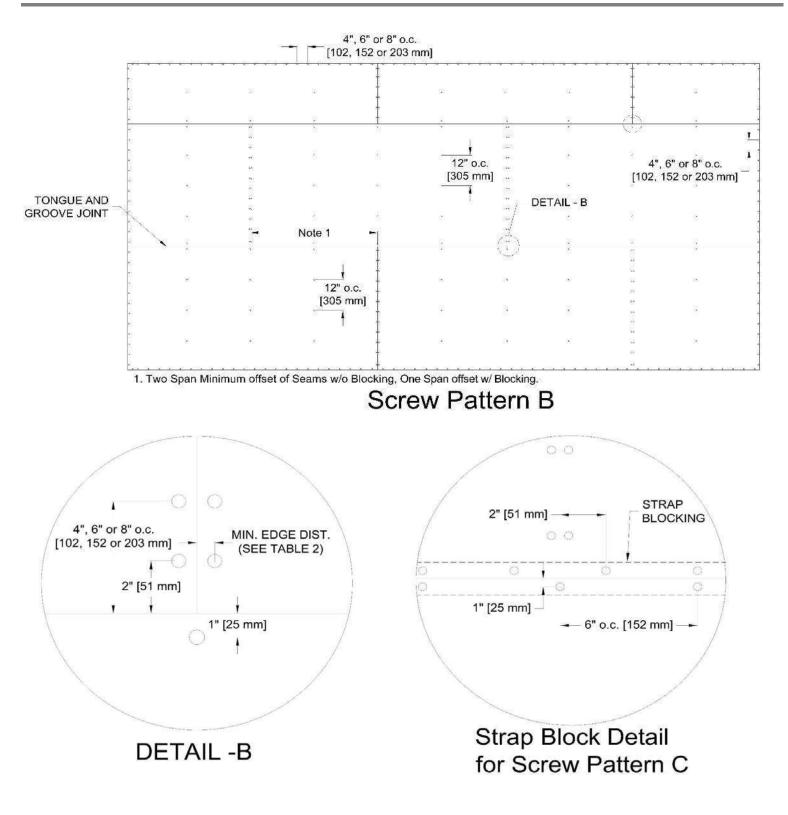
4. <u>Screw Pattern C</u> - Panels shall be fastened as described in Screw Pattern B with the addition of fasteners at 6" [152mm] o.c. along the metal Strap Blocking on both sides of seam .

Deflection Equation for Cantilever Diaphragm


$$\Delta = \frac{5V(2l)^3}{8EAb} + \frac{V(2l)}{4Gt} + X(2l)e_n$$

Where: V = Unit shear in the direction under consideration, plf

- *t* = Diaphragm length, ft.
- *b* = Diaphragm width, ft.
- E = Elastic modulus of steel rim chords, 29,500,000psi
- A = Net area of steel rim chord cross section, in²
- G = Shear modulus of USG Structural Panel Concrete Subfloor for shear, 285,714 psi
- t = Effective thickness of USG Structural Panel Concrete Subfloor for shear, 0.73 in.
- en = Screw joint slippage at load per screw on perimeter of interior panel
 - e_n @ 0.20S_u = 0.011
 - e_n @ 0.33S_u = 0.019


X = Slip Co-efficient. See Table 6 above.

PER-13067

PER-13067

Table 7: Floor Anchorage Options - USG Structural Panel Concrete Subfloor^{1,2,3}

Anchor Type	ASTM D 1037 Value	Subfloor Layers			Dis	stance Bet	ween Bolts	, d		
	(1 Layer)	er)	2"	4"	6"	8"	51mm	102mm	152mm	203mm
3/8" SnapToggle ^{®4}	1481 lb	1	927 lb	1072 lb	1154 lb	1166 lb	4124 N	4768 N	5133 N	5187 N
	[6588 N]	2	1719 lb*	1719 lb*	1719 lb*	1719 lb*	7646 N*	7646 N*	7646 N*	7646 N*
1/0" SpanTaggla ^{®5}	1616 lb	1	948 lb	1085 lb	1166 lb	1176 lb	4217 N	4826 N	5187 N	5231 N
1/2" SnapToggle ^{®⁵}	[7188 N]	2	1843 lb	2088 lb	2273 lb	2400 lb	8198 N	9287 N	10111 N	10676 N
1/4"x3" Peel Rivet ⁶	758 lb [3372 N]	1	636 lb	668 lb	668 lb	668 lb	2829 N	2971 N	2971 N	2971 N

Nominal Withdrawal Capacities per Anchor

For ASD designs use minimum Ω = 4.0; For LRFD designs use maximum φ = 0.40

Notes:

1. TOGGLER Anchor System and peel rivet capacity is based on random anchors purchased from a distributor and have not been evaluated for installations other than that described in Table 7 and Figure 3. This **PER** verifies the **USG** Structural Panel Concrete Subfloor capacity only, and actual toggler anchor capacity without panel failure shall be verified by the engineer or designer of record through the SnapToggle anchor or peel rivet manufacturer.

2. TOGGLER Anchor System shall be installed with a maximum torque setting of 200 in-lb [23 N-m].

3. Anchors have been evaluated for use general component connections to the USG Structural Panel Concrete Subfloor (i.e. auditorium seating, lightweight equipment, etc.). Final application must be reviewed and approved by the engineer or designer of record.

4. TOGGLER Anchor System 3/8" SnapToggle[®] (Item No. BC) w/ a Grade 8 Hex Head Bolt. Ultimate withdrawal occurred at a maximum tested shear per pair of 232 lb [1032 N] for one-layer and 430 lb [1913 N] for two layers.

5. TOGGLER Anchor System 1/2" SnapToggle[®] (Item No. BD) w/ a Grade 5 Hex Head Bolt. Ultimate withdrawal occurred at a maximum tested shear per pair of 294 lb [1308 N] for one-layer and 600 lb [2669 N] for two layers.

6. Peel Rivets manufactured by SFS Intec (Part No. TPR-L-6, 3x76). Ultimate withdrawal occurred at a maximum tested shear per pair of 167 lb [743 N] for a single layer of USG Structural Panel Concrete Subfloor.

* Denotes Toggler Failure by Strip out.

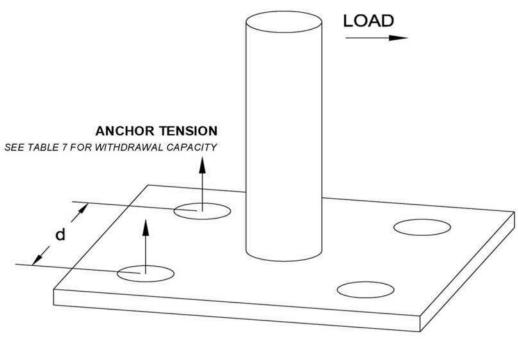


Figure 3 - Typical Toggler Bolt Application

Wall Usage

Table 8Tested Static Wall Shear Values using 16ga. [54mil] or 0.0538" [1.438mm] X 3-5/8" [92mm] flange SteelStuds 16" [406mm] o.c.

Studs 16 [406mm] o.c.								
Sides	Strap at	Sheathing	Fastener Spacing		Ultimate	G'	Ultimate	G'
Sheathed	Seam	Orientation	Perimeter	Field	Load in plf	Lbs./in	Load kN/m	N/mm
Single	no	Vertical	8" [203mm]	12" [305mm]	914	6185	13.3	1083
Single	no	Vertical	6" [152mm]	12" [305mm]	1320	7416	19.2	1299
Single	no	Vertical	4" [102mm]	12" [305mm]	1726	8647	25.1	1514
Single	yes	Horizontal	8" [203mm]	12" [305mm]	984	5535	14.3	969
Single	yes	Horizontal	6" [152mm]	12" [305mm]	1402	7269	20.4	1273
Single	yes	Horizontal	4" [102mm]	12" [305mm]	1821	9003	26.5	1577
Double	yes	Horizontal	8" [203mm]	12" [305mm]	1901	13287	27.7	2327
Double	yes	Horizontal	6" [152mm]	12" [305mm]	2625	22677	38.2	3971
Double	yes	Horizontal	4" [102mm]	12" [305mm]	3349	32067	48.8	5616

Note:

1. The Ultimate Load does not include a safety factor and walls have not been evaluated for cyclic design loads.

Table 9Tested Static Wall Shear Values using 16ga. [54mil] or 0.0538" [1.438mm] X 3-5/8" [92mm] flange SteelStuds 24" [610mm] o.c.

Sides	Strap at	Sheathing			Ultimate	G'	Ultimate	G'	
Sheathed	Seam	Orientation	Perimeter	Field	Load in plf	Lbs./in	Load kN/m	N/mm	
Single	no	Vertical	8" [203mm]	12" [305mm]	819	5882	11.9	1030	
Single	no	Vertical	6" [152mm]	12" [305mm]	1201	7736	17.5	1355	
Single	no	Vertical	4" [102mm]	12" [305mm]	1584	9590	23.1	1679	
Single	yes	Horizontal	8" [203mm]	12" [305mm]	906	5117	13.2	896	
Single	yes	Horizontal	6" [152mm]	12" [305mm]	1292	7384	18.8	1293	
Single	yes	Horizontal	4" [102mm]	12" [305mm]	1679	9590	24.5	1679	
Double	yes	Horizontal	8" [203mm]	12" [305mm]	1730	11684	25.2	2046	
Double	yes	Horizontal	6" [152mm]	12" [305mm]	2432	19945	35.4	3493	
Double	yes	Horizontal	4" [102mm]	12" [305mm]	3135	28207	45.7	4940	

Note:

1. The Ultimate Load does not include a safety factor and walls have not been evaluated for cyclic design loads.

Pri Evaluation Service

Pei Evaluation Service is an accredited ISO Standard 17065 Product Certifier, accredited by the IAS. This **Product Evaluation Report** represents a product that *Pei* ES has Evaluated. This product has a Product Evaluation Service Agreement & Follow-up Inspection Service Agreement. This **Product Evaluation Report** in no way implies warranty for this product or relieves **United States Gypsum Company** of their liabilities for this product. This **PER** is an official document if it is within one year of the initial or re-approval date.

Report Owner United States Gypsum Company 700 North Highway 45

Libertyville, IL 60048

Product

USG Structural Panel Concrete Roof Deck (a.k.a. 3/4" USG Securock[®] Concrete Roof Deck Panel)

PER-14076

Initial Approval November, 2014 Re-Approved July, 2019

See all Pei ES Reports at: www.p-e-i.com

Approved Manufacturing Locations USG Structural Technologies, LLC 309 Hallberg Street Delavan, WI 53115

For Evaluation Report Questions

USG Contact: Manny Hurtado, Building Codes Manager Phone: 847-970-5179 Email: mhurtado@usg.com

General Details

The approved manufacturing plant has an approved Quality Control Manual to manufacture **USG** Structural Panel Concrete Roof Deck and is audited quarterly by *Progressive Engineering Inc.* **USG** Structural Panel Concrete Roof Deck is also known as 3/4" **USG** Securock[®] Concrete Roof Deck Panels, and the contents of this **PER** are applicable to both product names.

Product Description

USG Structural Panel Concrete Roof Deck is a noncombustible concrete sheathing panel used in conjunction with cold-formed steel, wood, or hot rolled steel framing to form a load bearing structural roof system. **USG** Structural Panel Concrete Roof Deck is a nominal 3/4" [19mm] thick x 4' [1220mm] wide x 8' [2440mm] long. Roof deck panels have either a Tongue and Groove edge along the 8' [2440mm] sides or square edge. Panels are manufactured from a composite material consisting of alkali-resistant fiberglass and a cementitious binder, which create a maximum panel weight of 5.3psf [25.9 kg/m2] from the manufacturing plant.

USG Structural Panel Concrete Roof Deck are noncombustible per ASTM E136 (CAN CSA S114) and have a mold resistance value of no less than 10 per ASTM D3273 and a rating of 1 or less per ASTM G21. These panel products have also been shown to be termite resistant when tested in accordance with AWPA Standard E1-13 exposure C, and comply with the VOC emission requirements of the California Department of Public Health CDPH/EHLB/Standard Method Version 1.1 (Emission testing method for CA Specification

Product Application

USG Structural Panel Concrete Roof Deck is used as a roof deck sheathing to form a structural roof system to resist gravity loading, roof deck loading and concentrated loading as typically found in Residential and Commercial Type I or Type II Construction.

Roof Framing

Roof framing must be Cold-formed 50 ksi [345 MPa] steel framing complying with AISI and a minimum thickness of 18 ga. [40mil] or 0.0403" [1.0236mm] with a minimum G60 galvanized coating. Joist flanges supporting the **USG** Structural Panel Concrete Roof Deck must have a minimum width of 1-5/8" [41.27mm]. Roof frame spacing shall be no greater than 48" o.c. [1219mm]. As an alternative, SPF lumber, 1/8" [3mm] or 1/4" [6mm] steel framing may also be used in conjunction with the fasteners and edge distance listed in

Compliance

International Residential Code		International Building Code		City of Los Angeles Building Code (LABC)		California Building Code	
2012 -	Section R301.1.3	2012 -	Section 703.5.1		Chapters 16 & 17		Section 703.5.1
2015 -	Section R301.1.3	1	Section 703.5.2	2017	(As applicable)	2019	Section 703.5.2
	Section R302.6		Section 1607.4		(As applicable)		Section 1607.3
2018 -	Section R301.1.3	2015 -	Section 703.5.1	City of Los A	ngeles Residential Code (LARC)		Section 1607.4
2010 -	36010111301.1.3		Section 703.5.2			Califor	rnia Residential Code
			Section 1607.4				
		2018 -	Section 703.5.1	2017	Section R301.1.3		
			Section 703.5.2	2017	36010111301.1.3	2019	Section R301.1.3
			Section 1607.3				
		1	Section 1607.4				

Meets or exceeds the requirements of ICC-ES AC 318 Structural Cementitious Floor & Roof Sheathing Panels, Effective July 1, 2009.
 Meets or exceeds the requirements of ICC-ES AC 319 Horizontal Diaphragms Consisting of Structural Cementitious Floor Sheathing

Panels Attached to Cold-formed Steel Framing—Approved June 2005, Editorially Revised January 2012.

• Meets the requirements of Table R301.7 "Allowable Deflection of Structural Members" for Joist Spacing of 48" o.c. [1219mm] using L/240 per the 2012 & 2015 IRC.

• Meets or exceeds the requirements for noncombustible core in accordance with Section 703.5.1 of the 2012, 2015 & 2018 IBC.

• Meets or exceeds the requirements for materials having a structural base of noncombustible material when tested in accordance with ASTM E 136 as defined in 2012, 2015 & 2018 IBC, 2019 California Building Code Section 703.5.2. and CAN CSA S114.

• Meets or exceeds the nail withdrawal requirements of Table 6 of APA PS-2 for use as a roof sheathing.

Compliance Continued

• For Canadian applications suitability needs to be reviewed by Architect or Engineer of record prior to use.

• Meets the requirements of Section R301.1.3 Engineered Design for otherwise conventional construction for buildings per the 2012, 2015 & 2018 IBC and the 2019 California Residential Code.

• Surface Burning Characteristics - Flame Spread Index of 0 / Smoke Development Index of 0 when tested in accordance with ASTM E84.

• Meets & exceeds requirements for concentrated load per ICC AC318 when tested in accordance with ASTM E661 using a 1" [25mm] and 3" [76mm] loading diameter for Wet & Dry conditions.

• Meets or exceeds the 2017 City of Los Angeles Building Code (LABC) - The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 & 17, as applicable.

• Meets or exceeds the requirements of the 2017 Los Angeles Residential Code (LARC) - Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.

General Product Installation

1. **USG** Structural Panel Concrete Roof Deck is to be installed and maintained during construction following this report and the USG installation instructions. Installation instructions must be made easily available to the product installer.

2. USG Structural Panel Concrete Roof Deck must be allowed to acclimate to job site conditions for a minimum of 48 hours.

3. When cutting **USG** Structural Panel Concrete Roof Deck, safety glasses and a NIOSH approved N-95 dust mask should be worn at all times due to dust produced by the cutting of this product.

4. Fasteners shall be flush or slightly below the surface and care must be taken to not strip out in the framing. No fastener shall be installed within 2" [51mm] of the corner of a panel and shall not be closer than the minimum distance from panel edges indicated in Table 2 of this **PER**.

Product Installation for Roof Applications

1. The tongue and groove joints shall be oriented perpendicular to the framing.

2. The 3/4" [19mm] **USG** Structural Panel Concrete Roof Deck is fastened to the cold-formed steel, hot rolled steel, or wood framing with the applicable fasteners indicated in Table 2.

3. Install panels in a running bond pattern bridging a minimum of 2 framing spans. The minimum panel width, measured parallel to the framing, shall be no less than 48" [1219mm].

4. Fasteners are applied as shown in the Screw Pattern A, B, C, D, or E diagrams, on pages seven (7) and eight (8) of this report.

5. Up to a 6" [152mm] x 6" cutout through the panels is allowed without blocking. Up to a 44" [1118mm] x 44" [1118mm] cutout is allowed with sufficient blocking around the perimeter of the opening. Larger openings shall be designed by the Engineer of record and are beyond the scope of this report.

6. **USG** Structural Panel Concrete Roof Deck must be protected from construction abrasive wear and impact after panel installation until the final roof covering is applied. Refer to the USG Installation Instructions.

Product Storage

USG Structural Panel Concrete Roof Deck shall be stored in a dry location. Placement of the palletized product must be on level firm ground or a floor capable of carrying the approximate 3,400 lbs. [1545kg] pallet weight. Pallets shall not be stacked more than three high and must be stacked with direct alignment on the pallet below it. If a dry location is unavailable, cover pallets with a waterproof tarp or covering. Sub-freezing temperature may cause the panels to freeze together. Should this happen, move the panels to a warmer location to thaw out. Do not use tools or chemicals to loosen the panels as this will cause damage to the panels and will void the performance ratings described in this **PER**.

Product Labeling

Each bundle shipped of **USG** Structural Panel Concrete Roof Deck that is covered by this **PER**, must have a label attached with at least the following information:

- 1. USG Name and Location / Plant Number
- 2. Date of manufacture
- 3. This **PER** Number & *Pei* **ES** Logo

Acceptable Evaluation Marks

	_		T (1)/ 1
	Test Standard	Requirements	Tested Values
Concentrated Load, Wet or Dry	ASTM E661	550 lb [2.45 kN] Static	804 lb [3.58 kN] Static
Concentrated Load, Wet of Bry		0.108" [2.7 mm] max. deflection @ 200lb [0.89 kN]	0.066" [1.7 mm] max. deflection @ 200lb [0.89 kN]
Fastener Lateral Resistance ¹	ASTM D1761	Dry >210 lb [0.93 kN]	Dry: 776 lb [3.45 kN]
	AGIMBIIO	Wet >160 lb [0.71 kN]	Wet: 800 lb [3.56 kN]
Density - Oven Dried ²	ASTM C1185	minimun 75 lb/ft ³ [1200 kg/m ³]	78.6 lb/ft ³ [1258 kg/m ³]
Weight, 3/4" [19mm]			5 0 H /H ² [05 0 H = /H = ²]
Thickness as Delivered	ASTM D1037		5.3 lb/ft ² [25.9 kg/m ²]
pH Value	ASTM D1293		10.5
Linear Variation with Change in Moisture	ASTM C1185	<0.10%	0.06%
25% to 90% Relative Humidity	ASTM CT105	-0.1078	0.0078
Thickness Swell	ASTM D1037	≤ 3.0%	0.04%
Freeze/Thaw resistance	ASTM C1185	Minimun of 75% retention of Physical Properties	100% Retention
Mold Resistance	ASTM D3273	10	10
	ASTM G21	≤1	≤1
Water Absorption ³	ASTM C1185	<15.0%	9%
Noncombustibility	ASTM E136	Must Pass	Passed
Surface burning Characteristics	ASTM E84	0 Flame Spread / Smoke Developed Index 5	0 Flame Spread / Smoke Developed Index 0
Long Term Durability	ASTM C1185	min. 75% retention of physical properties	100%
Water Durability	ASTM C1185	min. 70% retention of physical properties	83%
Water Vapor Transmission (Method B)	ASTM E96		Permeance 1.4 Perm

Table 1: Physical and Mechanical Properties USG Structural Panel Concrete Roof Deck

Notes:

1. Fastener Lateral Resistance measured with applicable fasteners in Table 2.

2. Density Measured at Equilibrium Conditioning per Section 5.2.3.1-Tested 28 days after manufacturing

3. Absorption Measured from Equilibrium Conditioning followed by immersion in Water for 48 hours

Table 2: Acceptable Diaphragm Fasteners¹ USG Structural Panel Concrete Roof Deck

		G Structural Parlei Con		
Minimum Framing	Minimum Edge Distance	Manufacturer	Part No.	Туре
16ga [1.438mm]	1/2"	Grabber Construction Products, Inc.	CGH8158LG	#8 x 1-5/8" winged self-drilling screw
Cold-Formed Steel	[13mm]	Simpson Strong-Tie Company, Inc.	CBSDQ158S	#8 x 1-5/8" winged self-drilling screw
18ga [1.0236mm] Cold-Formed Steel	1" [25mm]	Grabber Construction Products, Inc.	CGH8158LG	#8 x 1-5/8" winged self-drilling screw
		Aerosmith	5324HPG	.145" dia. x 1-1/4" lg. power actuated fastener
1/8" Hot Rolled	1" [25mm]	Hilti	X-U 32MX	.157" dia. x 1-1/4" lg. power actuated fastener
Steel min. 50 ksi	i (zəninj	Grabber Construction Products, Inc.	CC12250LRG	#12 x 2-1/2" winged self-drilling screw
		DeWalt	50458-PWR	.157" dia. x 1-1/4" lg. power actuated fastener
		Grabber Construction Products, Inc.	CC12250LRG	#12 x 2-1/2" winged self-drilling screw
1/4" A36 Hot Rolled	3/4"	Muro North America	RSM645	M6 x 45mm winged self-drilling screw
Steel	[19mm]	Simpson Strong-Tie Company, Inc.	TBG1260S	#12 x 2-3/8", Flat Head, Strong- Drive [®] TB WOOD-TO-STEEL screw
	5/8"	Grabber Construction Products, Inc.	C8200L2M	#8 x 2", Flat Head, Type 17, Nibs, GrabberGard,
SPF Lumber (Min. S.G. = 0.42)	[16mm]	Simpson Strong-Tie Company, Inc.	WSNTLG2S	#8 x 2", Flat Head,Twin threads, Nibs
	1/2" [13mm]	Senco ²	GL24AABF	8d Ring Shank Nails

Notes:

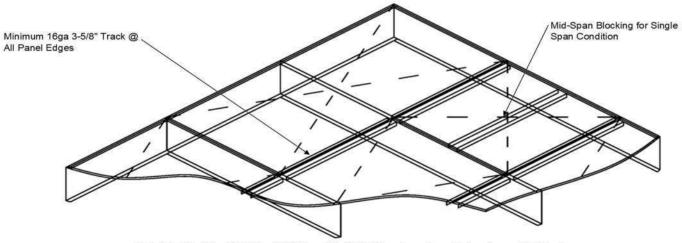
1. Fastener pull-through capacity of 581-lbs [2584N] may be applied to all listed fasteners. Capacity is based on **ultimate tested value** for all tabulated fasteners. The engineer or designer of record shall apply an appropriate safety factor (ASD) or resistance factor (LRFD).

Senco 8d ring shank nails are manufactured with a length of 2-3/8" [60mm], a head diameter of 0.266" [6.8mm], and a shank diameter of 0.113" [2.9mm]. Equivalent 8d ring shank nails meeting these dimensional requirements may be utilized when approved by the engineer or designer of record.
 Screw lengths shown are minimums

Span Rating ¹	Conditions	Live Load Rating ^{2,3} (PSF)	No	minal Uplift (Capacity ⁴ (PS	SF)
		. ,	8/12	8/8	6/6	4/4
12"	Dry or Wet	1320	513	770	1026	1320
[305mm]	Dry of wet	[63.2 kPa]	[24.6 kPa]	[36.9 kPa]	[49.1 kPa]	[63.2 kPa]
16"	Dry or Wet	744	385	577	744	744
[406mm]	Dry of wet	[35.6 kPa]	[18.4 kPa]	[27.6 kPa]	[35.6 kPa]	[35.6 kPa]
24"	Dry or Wot	516	257	330	330	330
[610mm]	Dry or Wet	[24.7 kPa]	[12.3 kPa]	[15.8 kPa]	[15.8 kPa]	[15.8 kPa]
32" *	Dry or Wet	240	192	240	240	240
[813mm]	Diy of wet	[11.5 kPa]	[9.2 kPa]	[11.5 kPa]	[11.5 kPa]	[11.5 kPa]
48" *	Dry or Wet	150	128	150	150	150
[1219mm]	Dry or Wet	[7.2 kPa]	[6.1 kPa]	[7.2 kPa]	[7.2 kPa]	[7.2 kPa]

Table 3: Uniform Load Performance USG Structural Panel Concrete Roof Deck

Notes:


1. Two framing spans minimum per panel piece for span ratings of 12" [305mm] through 24" [813mm].

2. For ASD designs use minimum Ω = 3.0; For LRFD designs use maximum ϕ = 0.50; For LSD designs use maximum ϕ = 0.40

3. The Nominal Load values are by engineering analysis based on flexural test results.

4. Nominal uplift capacity based upon the worst case of panel flexure, pull-over of a #8 wafer head screw with a head diameter of 0.306" [7.77mm], and #8 screw withdrawal from minimum 16ga with a minimum yield strength of 50 ksi. Screw nominal withdrawal capacity taken as 513 pounds based on AISI S100 Section E4.

* Blocking at all joints perpendicular to framing to be minimum 16 ga [54mil] or 0.0538" [1.438mm] thick 3-5/8" track. For sheathing installation where a single span condition exists, additional track blocking is required perpendicular to the framing located mid way between the edges of the panel. See Detail 1.

Detail 1 - Blocking Detail for 32"[813mm] & 48"[1219mm] o.c. Span Rating (Isometric View)

Table 4 - Safety Factors and Resistance Factors for Diaphragms	
USG Structural Panel Concrete Roof Deck	

			Earthquake	;		Wind	
Framing Type	Fastener Type	Ω	ф	ф	Ω	φ	ф
		(ASD)	(LRFD)	(LSD) ⁴	(ASD)	(LRFD)	(LSD) ⁴
Steel ¹	Screws	2.50	0.65	0.60	2.35	0.70	0.65
Wood ^{2,3}	Screws or Nails	3.30	0.50		2.35	0.70	

Notes:

1. Safety factors and resistance factors for USG Structural Panel Concrete Roof Deck diaphragms installed over cold-formed and hot-rolled steel framing are based upon Table D5 of AISI S100-2007.

2. Safety factors and resistance factors for **USG** Structural Panel Concrete Roof Deck diaphragms installed over wood studs are based on the worst case of the standard factors from the American Wood Council Special Design Provisions for Wind and Seismic (AWC SDPWS-2008) and those tabulated for steel framing.

3. Earthquake factors for installations over wood construction are based upon the wind factors modified by a factor of 1.4 to match the general seismic strength reduction observed in Tables 4.2A, 4.2B, 4.2C, and 4.2D of AWC SDPWS-2008.

4. Limit States Design (LSD) shall be used in combination with the load combinations found in the National Building Code of Canada (NBCC).

Table 5: Simple Beam Diaphragm Testing

				-			
Fastener	Spacing	Joist Spacing	Screw	Panel Blocking	S _u Ultimate		Aspect
Perimeter	Field	oolot opdollig	Pattern ^{2,3,4,5}	r anor Brooking	Strength (plf) ¹	Х	Ratio
4" [102mm]	12"	16"	В	None	1462 [21.3 kN/m]	0.443	- 3:1
6" [152mm]	[305mm]	[406mm]	в	None	1395 [20.4 kN.m]	0.421	5.1
4" [102mm]	12"	24"	В	None	1341 [19.6 kNm]	0.476	3:1
6" [152mm]	[305mm]	[610mm]	d	None	1053 [15.4 kNm]	0.397	0.1
6" [152mm]	12" [305mm]	24'' [610mm]	С	4" [102mm] wide x 16ga.[1.438mm] Strap	1468 [21.4 kNm]	0.180	4:1
4" [102mm]	12" [305mm]	32" or 48" [813mm or 1219mm]	D	4" [102mm] wide x 16ga.[1.438mm] C-Track	2036 [29.7 kNm]	0.415	2.1:1
8" [203mm]	12" [305mm]	32" or 48" [813mm or 1219mm]	E	4" [102mm] wide x 16ga.[1.438mm] C-Track	1318 [19.2 kNm]	0.301	2.1:1

Notes:

1. Refer to Table 4 of this **PER** for applicable diaphragm safety (Ω) and load resistance factors (ϕ) corresponding to ASD, LRFD, and/or LSD design methods.

2. <u>Screw Pattern</u> <u>B</u> - Panel fasteners must be inset 2" [51mm] from the corners. Fastener edge distance at all panel edges must comply with Table 2 distances with exception to the tongue and groove joints where the framing joists are perpendicular to the joint. The fasteners should be kept flush or slightly below the surface of the panel. At the T&G panel joints, where the framing joists are perpendicular to the joint, one (1) panel fastener is required. One fastener should be 1" [25mm] from the panel edge.

3. Screw Pattern C - Panels shall be fastened as described in Screw Pattern B with the addition of fasteners at 6" [152mm] o.c. along the metal Strap Blocking on both sides of seam .

4. <u>Screw Pattern</u> **D** - Panels shall be fastened as described in Screw Pattern B with the addition of fasteners at 4" [102mm] o.c. along the metal C-Track Blocking on both sides of seam. When framing is spaced at 32" o.c., 4" [102mm] by 16ga. [1.438mm] strap blocking may be used in place of the C-Track blocking.

5. <u>Screw Pattern E</u> - Panels shall be fastened as described in Screw Pattern B with the addition of fasteners at 8" [203mm] o.c. along the metal C-Track Blocking on both sides of seam. When framing is spaced at 32" o.c., 4" [102mm] by 16ga. [1.438mm] strap blocking may be used in place of the C-Track blocking.

Deflection Equation for Simple Beam Diaphragm

$$\Delta = \frac{5Vl^3}{8EAb} + \frac{Vl}{4Gt} + Xle_n$$

Where: V = Unit shear in the direction under consideration, plf

- l = Diaphragm length, ft.
- b = Diaphragm width, ft.
- E = Elastic modulus of steel rim chords, 29,500,000psi
- A = Net area of steel rim chord cross section, in^2
- G = Shear modulus of USG Structural Panel Concrete Roof Deck for shear, 285,714 psi
- t = Effective thickness of USG Structural Panel Concrete Roof Deck for shear, 0.73 in.
- e_n = Screw joint slippage at load per screw on perimeter of interior panel

- e_n @ 0.33S_u = 0.019
- e_n @ 0.60S_u = 0.032
- e_n @ S_u = 0.084
- X = Slip Co-efficient. See Table 5 above.

Fastene Perimeter	r Spacing Field	Joist Spacing	Screw Pattern ^{3,4,5,6}	Panel Blocking	S _u Ultimate Strength (plf) ¹	х
6" [152mm]	12" [305mm]	24" [610mm]	В	None	487 [7.1 kN/m]	0.518
8" [203mm]	12" [305mm]	24" [610mm]	В	None	475 [6.9 kN/m]	0.511
4" [102mm]	12" [305mm]	24"			713 [10.4 kN/m]	0.732
6" [152mm]	12" [305mm]	[610mm]	A	None	525 [7.7 kN/m]	0.625
8" [203mm]	12" [305mm]	[010IIIII]			465 [6.8 kN/m]	0.754
4" [102mm]	12" [305mm]	16"			975 [14.2 kN/m]	0.833
6" [152mm]	12" [305mm]	[406mm]	A	None	915 [13.4 kN/m]	0.765
8" [203mm]	12" [305mm]	[4001111]			860 [12.6 kN/m]	0.702
4" [102mm]	12" [305mm]	12"			1121 [16.4 kN/m]	0.759
6" [152mm]	12" [305mm]	[305mm]	A	None	940 [13.7 kN/m]	0.541
8" [203mm]	12" [305mm]	[3031111]			772 [11.3 kN/m]	0.484
6"	12"	24"	С	4" [102mm] wide x	1148 [19.8 kN/m]	0.354
[152mm]	[305mm]	[610mm]	U	16ga.[1.438mm] Strap	1140 [19.0 KN/III]	0.354
4"	12"	32" or 48"	D	4" [102mm] wide x 16ga.	1641 [23.9 kN/m]	0.426
[102mm]	[305mm]	[813mm or 1219mm]	D	[1.438mm] C-Track	1041 [20.9 KN/III]	0.420
8" [203mm]	12" [305mm]	32" or 48" [813mm or 1219mm]	E	4" [102mm] wide x 16ga. [1.438mm] C-Track	1098 [16.0 kN/m]	0.391

Table 6: Cantilever Diaphragm Testing USG Structural Panel Concrete Roof Deck

Notes:

1. Refer to Table 4 of this **PER** for applicable diaphragm safety (Ω) and load resistance factors (φ) corresponding to ASD, LRFD, and/or LSD design methods.

2. 2 to 1 maximum Aspect Ratio

3. <u>Screw Pattern A & B</u> - Panel fasteners must be inset 2" [51mm] from the corners. Fastener edge distance at all panel edges must comply with Table 2 distances with exception to the tongue and groove joints where the framing joists are perpendicular to the joint. The fasteners should be kept flush or slightly below the surface of the panel. At the T&G panel joists where the framing joists are perpendicular to the joint, two (2) panel fasteners are required for Pattern A and one (1) fastener for Pattern B. One fastener should be 1" [25mm] and the other 2" [51mm] from the panel edge.

4. <u>Screw Pattern C</u> - Panels shall be fastened as described in Screw Pattern B with the addition of fasteners at 6" [152mm] o.c. along the metal Strap Blocking on both sides of seam .

5. <u>Screw Pattern D</u> - Panels shall be fastened as described in Screw Pattern B with the addition of fasteners at 4" [102mm] o.c. along the C-Track Blocking on both sides of seam. When framing is spaced at 32" o.c., 4" [102mm] by 16ga. [1.438mm] strap blocking may be used in place of the C-Track blocking.

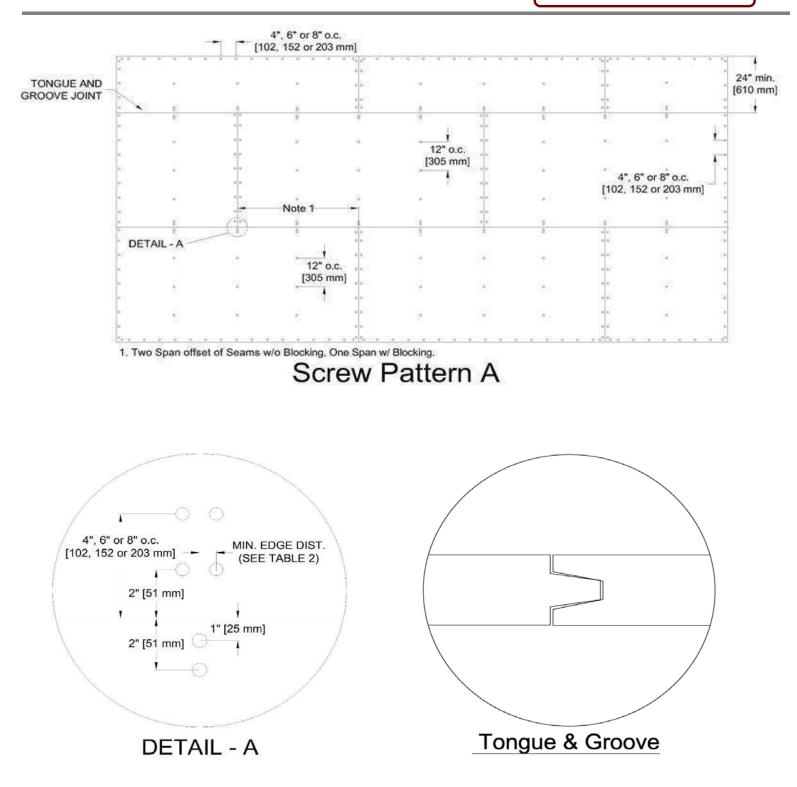
6. <u>Screw Pattern E</u> - Panels shall be fastened as described in Screw Pattern B with the addition of fasteners at 8" [203mm] o.c. along the C-Track Blocking on both sides of seam. When framing is spaced at 32" o.c., 4" [102mm] by 16ga. [1.438mm] strap blocking may be used in place of the C-Track blocking.

Deflection Equation for Cantilever Diaphragm

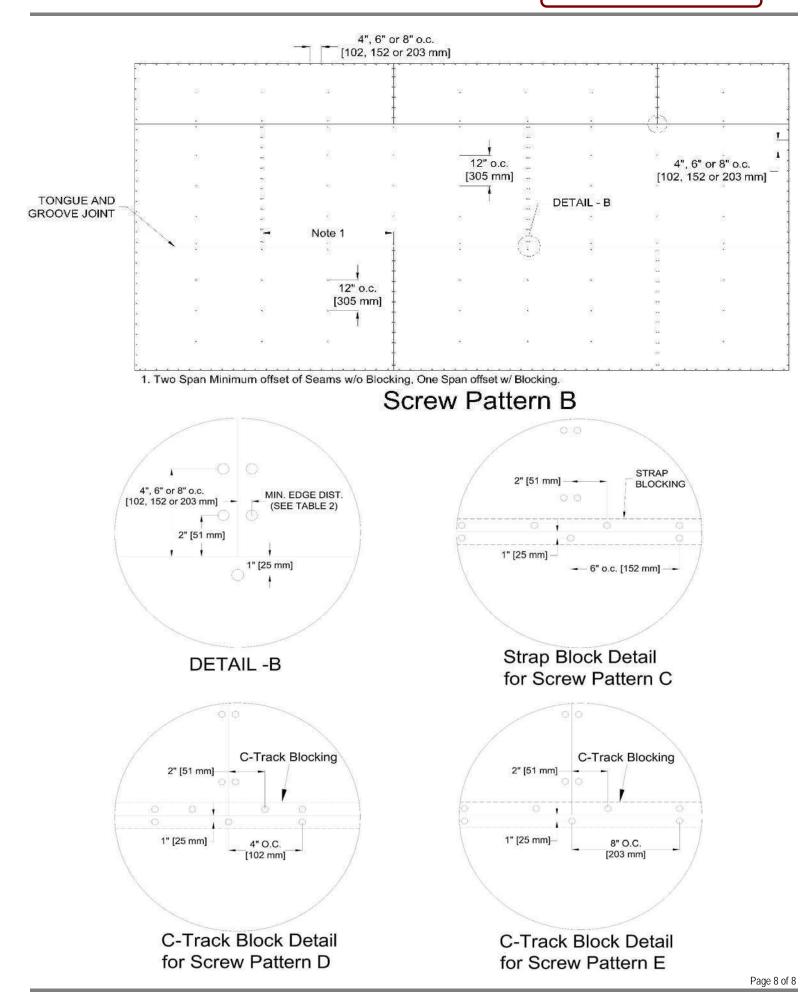
$$\Delta = \frac{5V(2l)^3}{8EAb} + \frac{V(2l)}{4Gt} + X(2l)e_n$$

Where: V = Unit shear in the direction under consideration, plf

{ = Diaphragm length, ft.


- b = Diaphragm width, ft.
- E = Elastic modulus of steel rim chords, 29,500,000psi
- A = Net area of steel rim chord cross section, in^2
- G = Shear modulus of USG Structural Panel Concrete Roof Deck for shear, 285,714 psi
- t = Effective thickness of USG Structural Panel Concrete Roof Deck for shear, 0.73 in.

e_n = Screw joint slippage at load per screw on perimeter of interior panel


 $e_n @ 0.20S_u = 0.011$ $e_n @ 0.33S_u = 0.019$ $e_n @ 0.60S_u = 0.032$

X = Slip Co-efficient. See Table 6 above.

PER-14076

PER-14076

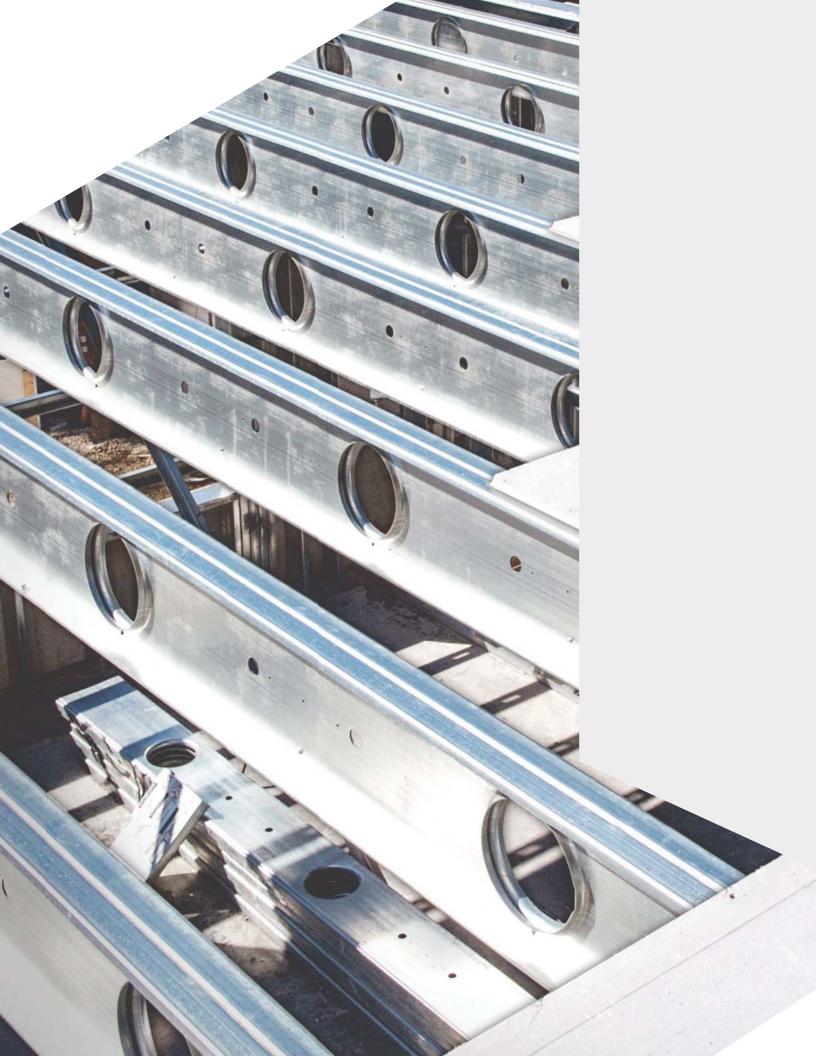
USG Structural Solutions

-3>

ŕ

1

)


USG STRUCTURAL PANEL CONCRETE ROOF DECK

FIELD INSTALLATION GUIDE

1357

USG STRUCTURAL PANEL CONCRETE ROOF DECK CONTACT INFORMATION

PRODUCT INFORMATION

See usg.com for the most up-to-date product information.

CUSTOMER SERVICE

800 621-9523

TECHNICAL SERVICE

800 USG.4YOU (874-4968)

SAMPLES, LITERATURE AND PRODUCT INFORMATION

usg.com/structural

USG STRUCTURAL SOLUTIONS CONTACTS:

Frank Pospisil Technical Sales Manager fpospisil@usg.com 312 436-7618 Mike Inman National Sales Manager minman@usg.com 312 436-4270 Tim Lucas Technical Sales Manager – Field tlucas@usg.com

312 436-5748

Julia Coyner

Associate Product Manager jcoyner@usg.com 312 436-4264

usgstructural@usg.com

USG Structural Solutions

USG STRUCTURAL PANEL RECOMMENDED TOOLS

USG Structural Panels are mechanically fastened to cold-formed steel joists, trusses or wood framing members. This document provides information regarding the recommended tools for proper installation of the panels, including recommended screws to attach the panels to the framing, as well as recommended tools for cutting the panels, creating penetrations, and attaching roof shingles.

To better secure and facilitate installation of USG Structural Panels to framing, USG recommends a variable-speed, high-torque drive with extension system. The use of ordinary high-speed, low torque drill guns are more likely to strip screw heads, thereby making it difficult to properly secure the panel to the steel framing. This may result in gapping between the panel and the supporting framing. Gaps formed by improper tightening of the fastener may result in the future settling of the panel onto the framing under normal floor loading, causing screw heads to rise up from the panel and protrude through underlayment and/or floor coverings.

USG recommends the following fasteners and fastening systems for the attachment of the screws listed above:

Framing Type	Compatible Fasteners ⁴	Manufacturer & Fastening Model No.	Bits
CFS'	CGH8158LG	Grabber Construction Products 7525XT Hitachi Power Tools W6vB3SD2	T2178LN
		Makita 6844 w. extension 194500-1	
	CBSDQ158S	Simpson Strong-Tie Company Quik Drive® PRO250 Subfloor System	BIT2SU
HRS ²	CC12250LRG	Grabber Construction Products 7525XT Hitachi Power Tools W6vB3SD2	T3178LN
		Makita 6844 w. extension 194500-1	
	TBG1260S	Simpson Strong-Tie Company Inc. Quik Drive® PROHSD60 or PROHSD75	BIT3SU
SPF Lumber ³	C8200L2M	Grabber Construction Products 7525XT	T2178LN
		Hitachi Power Tools W6vB3SD2	
		Makita 6844 w. extension 194500-1	
	WSNTLG2S	Simpson Strong-Tie Company Inc. Quik Drive® PRO250 Subfloor System	BIT3SU
	GL24AABF ⁴	SENCO ⁵ SCN65XP	-

Notes:

- 1. Cold-formed steel shall comply with AISI-General, with a minimum 54 mils or .0538-inch base metal thickness (No.16 gauge) and a minimum C60 galvanized coating. (1/2 in. [13 mm] Min. Edge Distance)
- 2. HRS Hot-Rolled Steel shall be 1/4 in. (6.5 mm); A36 Hot-Rolled Steel (3/4 in. [19 mm] Min. Edge Distance)
- 3. SPF Lumber 5/8 in. (16 mm) Min. Edge Distance
- 4. Fastener pull-through capacities can be found in PER 13067
- 5. SENCO 8d ring shank nails are manufactured with a length of 2-3/8 in. (60 mm), head diameter of 0.266 in. (6.75 mm) and a shank diameter of 0.113 in. (2.87 mm). Equivalent 8d ring shank nails meeting these dimensional requirements may be utilized when approved by the engineer or designer of record.

General Notes: In accordance with PER-13067, the minimum screw pattern is 6 in. (153 mm) o.c. along the perimeter of the panels and 12 in. (305 mm) o.c. in the field of the panels. Do not use a larger size screw unless specified by the structural engineer. A qualified architect or engineer should review and approve calculations, framing and fastener spacing for all projects.

RECOMMENDED FASTENERS WITH FASTENING SYSTEMS

CUTTING SYSTEM	Cutting the USG Structural Panel requires a carbide-tipped saw blade and a circular saw equipped with dust collection or suppression to control airborne dust.
	The dust collection systems can be:
	 Festool® Dust Extractor CT36 with HEPA filter
	 Makita Model no. 5057KB – Circular Saw with Dust Collector
	DEWALT DWE575DC Dust Collection Adapter for DWE575/DWE575SB
	DEWALT DWS520SK Track Saw with Dust Collection
	Note: Do not use wet-blades or diamond-blades, as these will not efficiently cut the USG Structural Panel.
DDITIONAL TOOLS	For penetrations, USG recommends the use of a common circular metal hole saw to make penetrations for pipe and conduit installation.
	For electrical outlet openings and cut-outs, USG recommends the use of rotary tools, such as RotoZip® with 1/8 (3.25 mm) carbide steel spiral saw zip bit.
	For the attachment of shingles, USG recommends the use of electro-galvanized collated roofing nails delivered by a professional grade pneumatic nailer with an air supply between 100 to 120 psi.
	For floor anchorage, USG recommends the use of Toggler® Brand SNAPTOGGLE® Toggle bolts or SFS Intec (part no. TPR-L-6) for the attachment of anchors to USG Structural Panels. In accordance with PER-13067, a qualified architect or engineer should review and approve withdrawal capacities, anchor type and spacing for all projects.
	For personal protection, USG recommends wearing safety glasses and a NIOSH-Approved N95 dust mask when cutting the panel. Dispose of collected dust in a safe manner and in compliance

with local, state and federal laws and regulations. The contractor, installer, or other professionals who are responsible for the job site and familiar with its conditions shall be responsible for compliance with applicable health and safety laws.

Departments	Name	Phone	Email
Sales - West	Jennifer Link	951 373-4994	jlink@usg.com
Sales - South Central	Breton Betz	720 665-3759	bbetz@usg.com
Sales - North East	Jim Ramsthaler	201625-5170	jramsthaler@usg.com
Sales – South East	Stephen Sieger	321594-8226	ssieger@usg.com
Sales - Midwest	Jose Estrada	312 436-4260	jmestrada@usg.com

PRODUCT INFORMATION See usg.com for the most up-to-date product information.

DANGER

Causes skin irritation. Causes serious eye damage. May cause an allergic skin reaction. May cause respiratory irritation. May cause cancer by inhalation of respirable crystalline silica. Do not handle until all safety precautions have been read and understood. Avoid breathing dust. Use only in a well-ventilated area, wear a NIOSH/MSHA approved respirator. Wear protective gloves/protective clothing/eye protection. If in eyes: rinse cautiously with water for several minutes. Remove contact lenses and continue rinsing. Immediately call a poison center/doctor. If on skin: wash with plenty of water. Take off contaminated clothing and wash before reuse. Contaminated work clothing should not be allowed out of the workplace. If skin irritation or rash occurs, or otherwise exposed or concerned: get medical attention. Store locked up. Dispose of in accordance with local, state, and federal regulations. For more information call Product Safety: 800 507-8899 or see the SDS at usg.com. KEEP OUT OF REACH OF CHILDREN.

CONTACT INFO

TRADEMARKS

The trademarks USG, IT'S YOUR WORLD. BUILD IT., the USG logo, the design elements and colors, and related marks are trademarks of USG Corporation or its affiliates.

FESTOOL is a trademark of Festool GmbH.

QUIK DRIVE is a trademark of Simpson Strong-Tie Company, Inc.

TOGGLER and SNAPTOGGLE are trademarks of Mechanical Plastics Corp.

RotoZip is a trademark of Robert Bosch Tool Corporation.

800 USG.4YOU 800 (874-4968) usg.com/structural

Manufactured by United States Gypsum Company 550 West Adams Street Chicago, IL 60661

MSRP based upon full truckload delivered to jobsite: Roof Deck: \$5.40/sf

SCP26-USA-ENG/rev. 10-18 © 2018 USG Corporation and/or its a iliates. All rights reserved. Printed in USA

USG Structural Solutions

DESCRIPTION

USG STRUCTURAL PANEL CONCRETE ROOF DECK

A concrete roof deck that can be combined with other noncombustible materials to create 1- and 2-hour fire-rated roof-ceiling assemblies.

- The only cementitious structural panel approved by Factory Mutual (FM)—FM Approval Standard 4472
- Strong, durable concrete panel; great uplift ratings
- Dimensionally stable; panel will not buckle or warp like wood sheathing; no moisture issues like structural concrete
- Installs fast and easy with appropriate dust collection
- Meets the criteria of ASTM E136-16 for use in all types of noncombustible construction
- Made in the USA

USG Structural Panel Concrete Roof Deck is mechanically fastened to cold-formed steel joists, trusses or wood framing members; to create a structural substrate for ideal as low- and steep-slope roof systems, canopies and/or balconies. This roof system is designed to carry gravity and lateral loads. Roof membranes may be applied directly over USG Structural Panel Concrete Roof Decks. For retrofit or renovation projects, Concrete Roof Deck can also be installed on wood-joists, trusses or bar joists. See recommended fasteners within this submittal sheet.

USG Structural Panel Concrete Roof Decks can carry a total load, live and dead, of 150 psf (7.2 kPa) on cold-formed steel framing is spaced 48 in. (1,220 mm) o.c.

USG Structural Panel Concrete Roof Decks have a linear variation with change in moisture content of less than 0.10%. This means that the panels will not buckle or warp like wood sheathing.

Cutting USG Structural Panel Concrete Roof Decks require a carbide-tipped saw blade and a circular saw equipped with dust collection or suppression and control of airborne dust. Fastening is also conventional, using a screw gun and self-drilling No. 8-gauge screws. Because these panels are so durable, they may be installed in most weather conditions, including mild precipitation (rain or snow) and temperatures from 0°F to 125°F (-18°C to 52°C).

Refer to roof system manufacturer's written instructions, local code requirements and Factory Mutual Global (FMG) and/or Underwriters Laboratories (UL) requirements for proper installation techniques. For the attachment of shingles, USG recommends the use of electro-galvanized collated roofing nails installed by a professional grade pneumatic nailer with an air supply between 100 to 120 psi.

- UL Classified (Type USGSP) for noncombustibility in accordance with ASTM E136-16 (CAN/ULC-S114)
- UL Classified (Type USGSP) as to Surface Burning Characteristics in accordance with ASTM E84 (CAN/ULC-S102)—Flame Spread 0 and Smoke Developed 0
- Class A, in accordance with UL790 (CAN/ULC-S107); see the UL Building Materials Directory for more information

Description	Reference	
FM Approved		
Meets FM Class 1	 Complies with requirements of FM 4472 	
Code Report	PER-14076	
Ultimate Uniform Load ^a	150 psf (7.2 kPa) @ 48" (1,220 mm) o.c.; see table	
Shear Diaphragm Ratings	1641 plf ^b (23.9 kN/m)	
UL 1-, 1.5-, 2-Hour Fire Resistance Designs	P561, P562, P573	
UL Roofing System, Uplift Resistance	TGIK.R25352	

(a) On steel framing.

(b) Joists spaced 48" (1219.2 mm) o.c. and fasteners spaced 4" (102 mm) o.c. at the perimeter and 12" (305 mm) o.c. in field, fully blocked. See the Progressive Engineering Inc. Product Evaluation Report PER-14076.

SYSTEM PERFORMANCE

FIRE PERFORMANCE

WARNING	USG Structural Pa or weather-resistiv			ould not be l	eft in service w	vithout an ap	propriate roof
INSTALLATION	To perform in the according to USG set of specification As with all types of installers from per lung irritation. Care must be take roof framing. A pa 3/4 in. x 4 ft. x 8 ft actual width of 47 exceed limits whe units next to struct <i>Roof Deck Field In</i>	specification ns, email usg of construction sonal injurie an when place illet of USG S t. panels (19 -3/4 in. [1,213 n loading pa tural walls w	ns, using only the structural@usg on, appropriate s resulting from ing pallets of U Structural Panel mm x 1,220 mn 3 mm]), and we llets or panels of where the joists	ne listed mate g.com. safety proce n lifting incor SG Structura I Concrete Ro n x 2,440 mn eighs approxi on open fram meet the wa	erials and comp edures must be rectly, falling, a bof Decks consi n) nominal (the mately 3,400 II ing or complet II. See USG Stru	followed to p and eye, hand te Roof Deck sts of 20 she T&G panels b. (1,542 kg). red roof asser uctural Panel	a complete protect and s on ets of our have an Do not mblies. Store
RECOMMENDED FASTENERS	USG recommends structural framing Manufacturer		ormed Steel	the installati		ctural Panels 1/4 in. (6.5 mm Hot-Rolled Ste	A36 al (3/4 in.
		Min. Edge Dist Part #	Fastener	Min. Edge Dist	ance) Fastener	[19 mm] Min. E Part #	dge Distance) Fastener
			Pull-Through ¹		Pull-Through ¹		Pull-Through'
	Grabber Construction Products, Inc.	CGH8158LG	581 lb. (264 kg)	C8200L2M	581 lb. (264 kg)	CC12250LRG	581 lb. (264 kg)
	Simpson Strong-Tie Company Inc.	CBSDQ158S	581 lb. (264 kg)	WSNTLG2S	581 lb. (264 kg)	TBG1260S	581 lb. (264 kg)
	SENCO ²	-	-	GL24AABF ³	581 lb. (264 kg)	-	-
	 Notes: 1. Fastener pull-through capacities are based upon the minimum average ultimate The engineer or designer of record shall apply an appropriate safety factor (ASD 2. SENCO 8d ring shank nails are manufactured with a length of 2-3/8 in. (60 mm), and a shank diameter of 0.113 in. (2.87 mm). Equivalent 8d ring shank nails meeti be utilized when approved by the engineer or designer of record. 3. Minimum edge distance for nails is 1/2 in. (13 mm). General Notes: In accordance with PER-14076, the minimum screw pattern is 6 in. 1 panels and 12 in. (305 mm) o.c. in the field of the panels. Do not use a larger size sci A qualified architect or engineer should review and approve calculations, framing 	or (ASD) or resistand 0 mm), head diamet 5 meeting these dim 5 6 in. (153 mm) o.c size screw unless sp	ce factor (LRFD). er of 0.266 in (6. eensional require . along the perim pecified by the st	75 mm), ments may eter of the ructural engineer.			
FRAMING	The steel roof fran in the contract doo (41 mm) wide with framing must be a than 48 in. (1,220 recommendations	cuments. The at least 3/4 minimum 16 mm) o.c. Fol	e attachment fl in. (19mm) of gauge (54mil low the contrac	ange or bear the panel bea ls, or 0.0538 ct documents	ing edge must aring on the su in. [1.36 mm]) a s and the steel	be a minimu pporting flan and spaced n	m 1-5/8 in. ge. Metal o greater
TRAFFIC PROTECTION	Place sheathing m high traffic areas t Roof Deck Field In	o protect ne	wly installed co	oncrete roof	decks. See USG	i Structural Po	
APPLICATION	Cut panels to size device or a water- and a NIOSH-appr manner and in cor	dispensing d oved N95 du	levice that limit ust mask when	s the amoun cutting this p	t of airborne du banel. Dispose	ust. Wear safe	ety glasses

APPLICATION CONT.	 framing. Apply the panel with after it has been placed following panels in a running bond patter and are staggered by at least the Tongue and groove joints show panels less than 24 in. (610 mm) formed from steel complying wire metal thickness (no. 16 gauge) or bearing edge must be at leas must bear on the supporting flexible in the stallation Guideline (SCP43). Installed panels shall not be exavoid accumulation of snow and removal whenever possible. Examples the attem stress to melt the affect Roof Decks, never expose the panels in a running stress to melt the affect Roof Decks, never expose the panels and the support of the	posed to weather for more than 90 day id/or ice on installed panels. Brooms sho cessive shoveling or scraping may dam mulations of snow and/or ice, use indire ted areas. To prevent damage to USG S panels to direct flame for the purpose o uld salts, fertilizers or other chemicals b	installer. Fasten each panel contract documents. Install of the framing members fall in the adjacent rows. without any gapping. For all ocking. Blocking must be cold- (0.0538 inch or 1.36 mm) base g. The attachment flange (4 in. (19 mm) of the panel <i>Concrete Roof Deck Field</i>) rs. Care must be taken to ould be used for snow age installed panel surface. ect heat from temporary structural Panel Concrete f snow removal and/or
ROOFING SYSTEM	application of roof materials. B	s and the roof system manufacturer's re refore the application of roof materials, tener head driven flush or slightly belov	ensure that all panels are
PRODUCT DATA	 weighs approximately 170 lb. (Panel Concrete Roof Decks are Availability: USG Structural Panel Email usgstructural@usg.com Storage: USG Structural Panel be stored in a horizontal positive in unprotected areas. Excessive moisture and freezin units. Therefore, care should be are not exposed to excessive me together within a unit, the unit the ice to melt naturally. Never should not be used at any time easy way to avoid panels freezing maintenance: USG Structural Panel except to remove standing wat should be replaced with sound the fastening schedule prescrib must be a minimum of 24 in. (6 replacement panel must be full 	nel Concrete Roof Decks are sold throug for information on availability and a dea Concrete Roof Decks are shipped in 20- on and uniformly supported. Panels mu- ng temperatures may result in panels sti- e taken to ensure units of USG Structure noisture, ice and snow. In the event that needs to be brought to a temperature a physically pry panels apart. Salt, fertiliz c. Covering the units completely with tar	two people. USG Structural gh any USG distributor. aler in your area. piece units. Panels should st be covered when stored cking together within the al Panel Concrete Roof Decks panels do become frozen above 32°F (0°C) to allow zer or other deicing agents rps or similar coverings is an e any regular maintenance cracked or broken panels is that are secured following . The replacement panels n of two supports. If not, the
TEST DATA	Physical and Mechanical Properties	Test Standard	Typical Values Standard (Metric)
	Noncombustibility	ASTM E136-16 (unmodified) CAN/ULC-S114	Passed
	Surface-burning characteristics (flame spread/smoke developed)	ASTM E84 CAN/ULC-S102	0/0
	Weight at 3/4 in. (19 mm) thickness	ASTM D1037	5.3 lb./ft. ² (26 kg/m ²)
	Density ^a	ASTM C1185	75 lb./ft. ³ (1,201 kg/m ³)
	Mold resistance	ASTM D3273 ASTM G21	10 0
	Tormito registance		
	Termite resistance	AWPA Standard E1-13	9.8 Compliant
	LOW VOL EMISSIONS	L CDED/EHLB/Standard Method V U-2010°	Loupliant

TEST DATA CONT.

Physical and Mechanical Properties	Test Standard	Typical Values Standard (Metric)
Concentrated load	ASTM E661	550 lb. (2.45 kN) static 0.108 in. (2.7 mm) max. deflection @ 200 lb. (0.89 kN)
Fastener lateral resistance ^c	ASTM D1761, Sec. 10.2	>210 lb. (0.93 kN) dry >160 lb. (0.71 kN) wet
pH value	ASTM D1293	10.5
Linear variation with change in moisture (25% to 90% relative humidity)	ASTM C1185, Sec. 8	<0.10%
Thickness swell	ASTM D1037, B	Max. 3.0%
Freeze/thaw resistance	ASTM C1185	Passed (50 cycles)
Water absorption ^d	ASTM C1185, Sec. 5.2.3.1	<15.0%
Long-term durability	ASTM C1185, Sec. 13	Min. 75% retention of physical properties
Water durability	ASTM C1185, Sec. 5	Min. 70% retention of physical properties

(a) Density measured at equilibrium conditioning per Section 5.2.3.1., 28 days after manufacturing.
(b) Reference Standard: California Department of Public Health CDPH/EHLB/Standard Method Version 1.1, 2010

The following table represents the Load Capacity of USG Structural Panel Concrete Roof Decks. The uplift capacities in this table represent the attachment of the Concrete Roof Deck to the structural framing members. The values for a roofing system are obtained from the roofing system manufacturer's testing and specific installation instructions. For the most up-to-date load tables, see the Progressive Engineering Inc. Product Evaluation Report PER-14076. For technical questions, email usgstructural@usg.com. A qualified architect or engineer should review and

(Emission testing method for CA Specification 01350).

(c) Fastener lateral resistance measured with #8, 1-5/8 in. (41 mm), winged, self-drilling screw.

(d) Absorption measured from equilibrium conditioning followed by immersion in water for 48 hours.

LOAD TABLE

PRODUCT INFORMATION

See usg.com for the most up-to-date product information.

DANGER

Causes skin irritation. Causes serious eve damage. May cause an allergic skin reaction. May cause respiratory irritation. May cause cancer by inhalation of respirable crystalline silica. Do not handle until all safety precautions have been read and understood. Avoid breathing dust. Use only in a well-ventilated area, wear a NIOSH/MSHAapproved respirator. Wear protective gloves/protective clothing/eye protection. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses and continue rinsing. Immediately call a poison center/doctor. If on skin: Wash with plenty of water. Take off contaminated clothing and wash before reuse. Contaminated work clothing should not be allowed out of the workplace. If skin irritation or rash occurs, or otherwise exposed or concerned: Get medical attention. Store locked up. Dispose of in accordance with local, state, and federal regulations. For more information call Product Safety: 800 507-8899 or see the SDS at usg.com. KEEP OUT OF REACH OF CHILDREN.

TRADEMARKS

The trademarks USG, IT'S YOUR WORLD. BUILD IT., the USG logo, the design elements and colors, and related marks are trademarks of USG Corporation or its affiliates.

NOTICE

We shall not be liable for incidental and consequential damages, directly or indirectly sustained, nor for any loss caused by application of these goods not in accordance with current printed instructions or for other than the intended use. Our liability is expressly limited to replacement of defective goods. Any claim shall be deemed waived unless made in writing to us within thirty (30) days from date it was or reasonably should have been discovered.

SAFETY FIRST!

Follow good safety/industrial hygiene practices during installation. Wear appropriate personal protection equipment. Read SDS and literature before specification and installation.

approve calculations, framing and fastener spacing for all projects. Ultimate Load Capacity for USG Structural Panel Concrete Roof Deck

Joist Spacing - inches (mm)	Uniform Load - psf	Uplift Capacity – psf (kPa) ^{1,2,3} Fastener spacing (edge/field)				
	(kPa) ^{1,2,3}					
		8/12	8/8	6/6	4/4	
12 inch (304.8 mm)	1,320 (63.2)	513 (24.6)	770 (36.9)	1,026 (49.1)	1,320 (63.2)	
16 inch (406.4 mm)	744 (35.6)	385 (18.4)	557 (27.6)	744 (35.6)	744 (35.6)	
24 inch (609.6 mm)	330 (15.8)	257 (12.3)	330 (15.8)	330 (15.8)	330 (15.8)	
32 inch (812.8 mm)	240 (11.5)	192 (9.19)	240 (11.5)	240 (11.5)	240 (11.5)	
48 inch (1,220 mm)⁴	150 (7.2)	128 (6.1)	150 (7.2)	150 (7.2)	150 (7.2)	

For SI: 1 inch = 25.4 mm, 1 psf = 47.88 Pa.

(1) Ultimate Load Values have no safety factor included.

(2) Two framing spans minimum per panel piece.

(3) Ultimate Uniform Load Table for general reference only.

For complete load capacities, consult Progressive Engineering Inc. Product Evaluation Report PER-14076
 Blocking at all joints perpendicular to framing to be a minimum of 16 gauge (54 mils, or 0.0538 inch [1.37 mm]), 3-5/8 in (92 mm) wide track. For sheathing installation where a single span condition exists, additional track blocking is required perpendicular to the framing located midway between the edges of the panel.

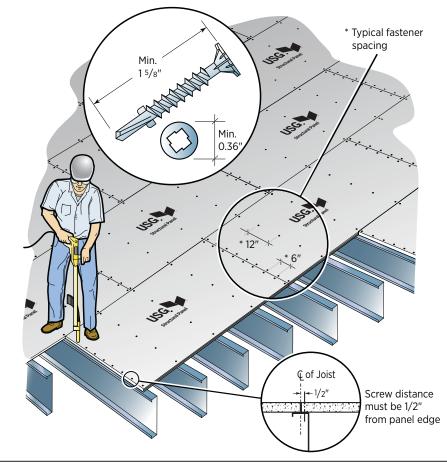
SUBMITTAL APPROVALS

Job Name	
Contractor	Date

800 USG.4YOU 800 (874-4968) usg.com/structural

Manufactured by United States Gypsum Company 550 West Adams Street Chicago, IL 60661

MSRP based upon full truckload delivered to jobsite: Roof Deck: \$5.40/sf


SCP35-USA-ENG/rev. 10-18 © 2018 USG Corporation and/or its affiliates. All rights reserved. Printed in USA

USG STRUCTURAL PANEL CONCRETE ROOF DECK PANEL FASTENING

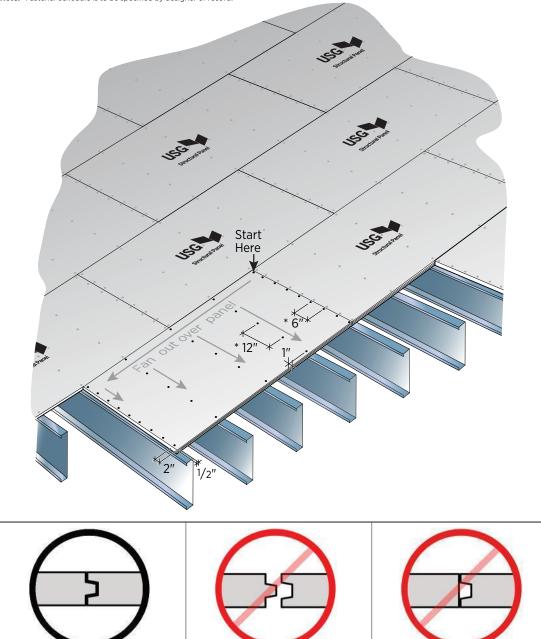
- · Proper fall restraint equipment required.
- Use only #8 screw with 1-5/8" (41 mm) joist flange.
- Apply screws with a stand-up gun to reduce fatigue.
- Follow fastening schedule in contract documents.

Note: *Fastener schedule is to be specified by designer of record.

USG recommends the following fasteners for the installation of USG Structural Panels to structural framing:

Manufacturer		a. Cold-Formed Steel in. [13 mm] Min. Edge Distance)		SPF Lumber (5/8 in. [16 mm] Min. Edge Distance)		1/4 in. (6.5 mm) A36 Hot-Rolled Steel (3/4 in. [19 mm] Min. Edge Distance)	
Part #	Part #	Fastener Pull-Through ¹	Part #	Fastener Pull-Through ¹	Part #	Fastener Pull-Through ¹	
Grabber Construction Products, Inc.	CGH8158LG	581 lb. (264 kg)	C8200L2M	581 lb. (264 kg)	CC12250LRG	581 lb. (264 kg)	
Simpson Strong-Tie Company Inc.	CBSDQ158S	581 lb. (264 kg)	WSNTLG2S	581 lb. (264 kg)	TBG1260S	581 lb. (264 kg)	
SENCO ²	-	-	GL24AABF ³	581 lb. (264 kg)	-	-	

Notes:


1. Fastener pull-through capacities are based upon the minimum average ultimate tested capacity for all tabulated fasteners. The engineer or designer of record shall apply an appropriate safety factor (ASD) or resistance factor (LRFD).

 SENCO 8d ring shank nails are manufactured with a length of 2-3/8 in. (60 mm), head diameter of 0.266 in (6.75 mm), and a shank diameter of 0.113 in. (2.87 mm). Equivalent 8d ring shank nails meeting these dimensional requirements may be utilized when approved by the engineer or designer of record.
 Minimum edge distance for nails is 1/2 in. (13 mm).

General Notes: In accordance with PER-14076, the minimum screw pattern is 6 in. (153 mm) o.c. along the perimeter of the panels and 12 in. (305 mm) o.c. in the field of the panels. Do not use a larger size screw unless specified by the structural engineer. A qualified architect or engineer should review and approve calculations, framing and fastener spacing for all projects.

USG STRUCTURAL PANEL CONCRETE ROOF DECK FASTENING THE PANEL

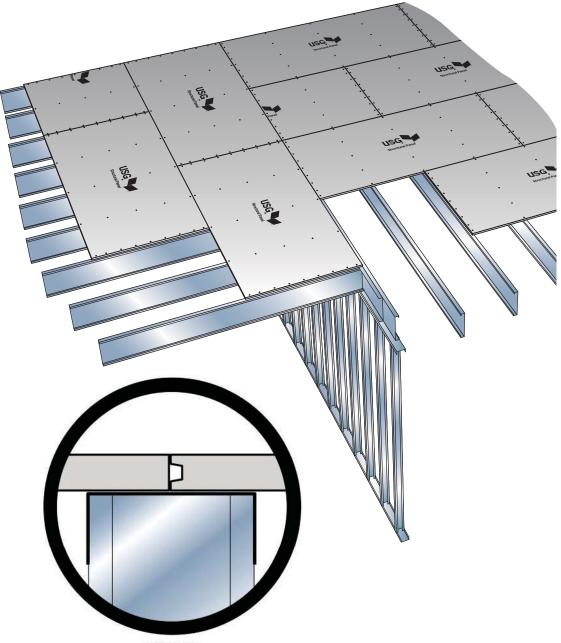
Note: *Fastener schedule is to be specified by designer of record.

When connecting the tongue and groove, the tongue from the loose panel should be engaged into the groove of the already affixed panel.

INCORRECT

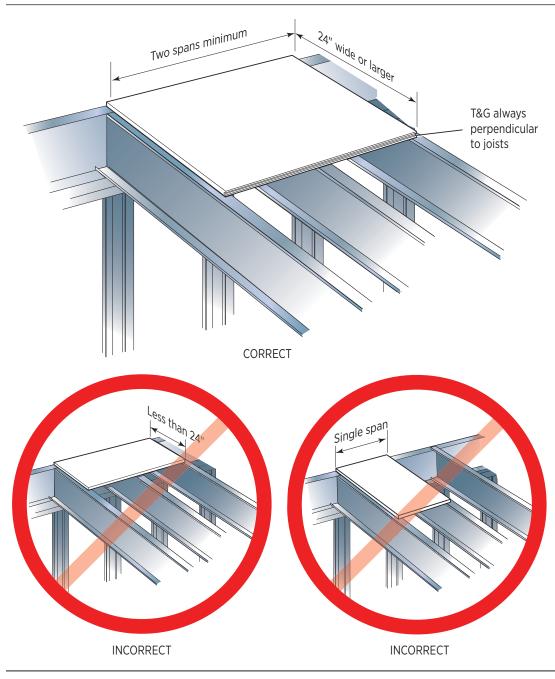
To ensure proper panel application, be sure to:

- 1. Lay board down.
- 2. Engage tongue and groove (T&G).


CORRECT

- 3. Fasten one corner.
- 4. Fan out over the panel.

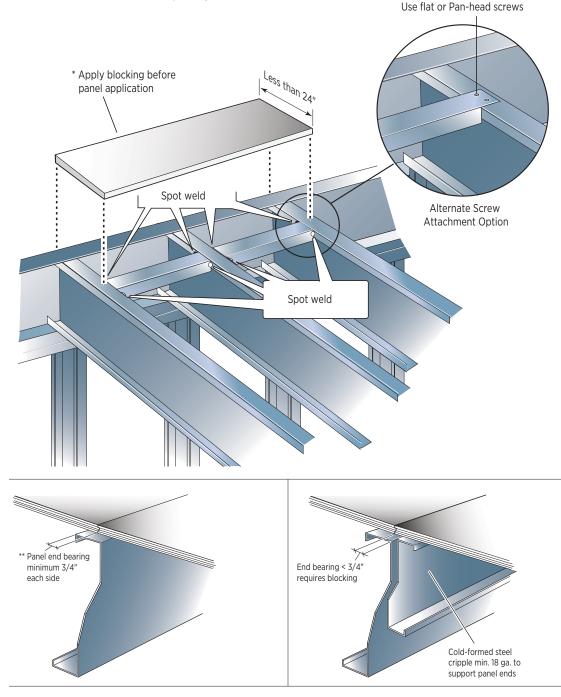
INCORRECT


USG STRUCTURAL PANEL CONCRETE ROOF DECK FRAMING DIRECTION CHANGE

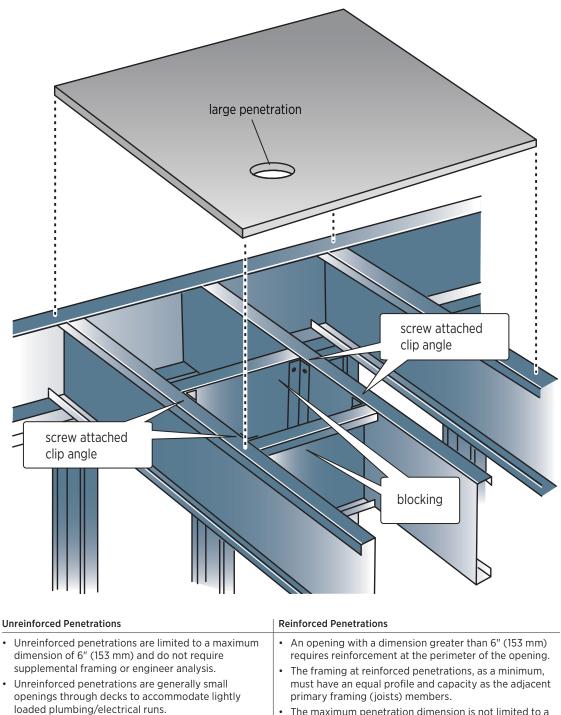
• Always lay panels perpendicular to supporting joists.

CORRECT

USG STRUCTURAL PANEL CONCRETE ROOF DECK PANEL LAYOUT: TWO-SPAN CONDITION


See Panel Blocking—Page 12

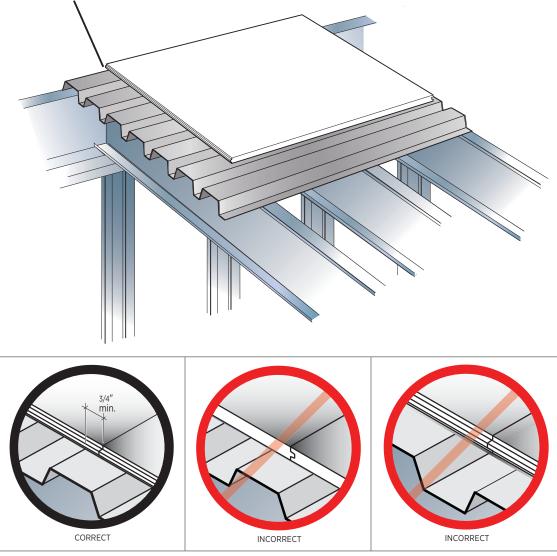
USG STRUCTURAL PANEL CONCRETE ROOF DECK PANEL BLOCKING


- Block edges that are less than 24" (610 mm) wide.
- Field welding to cold-formed framing members must be performed by certified welder and approved by structural engineer of record.
- If screws are used, do not use hex head screws, as they will raise the panel.

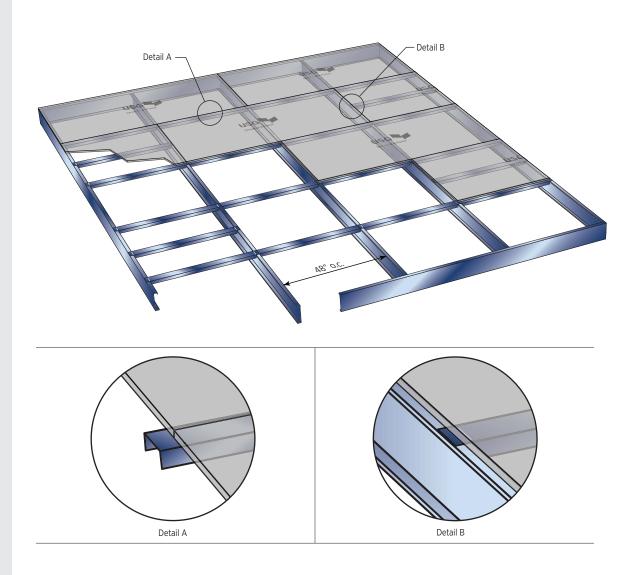
Note:

*Panel Blocking must be specified by designer of record. **Panels must bear at least 3/4" (19 mm) over joist flange.

USG STRUCTURAL PANEL CONCRETE ROOF DECK PANEL PENETRATION

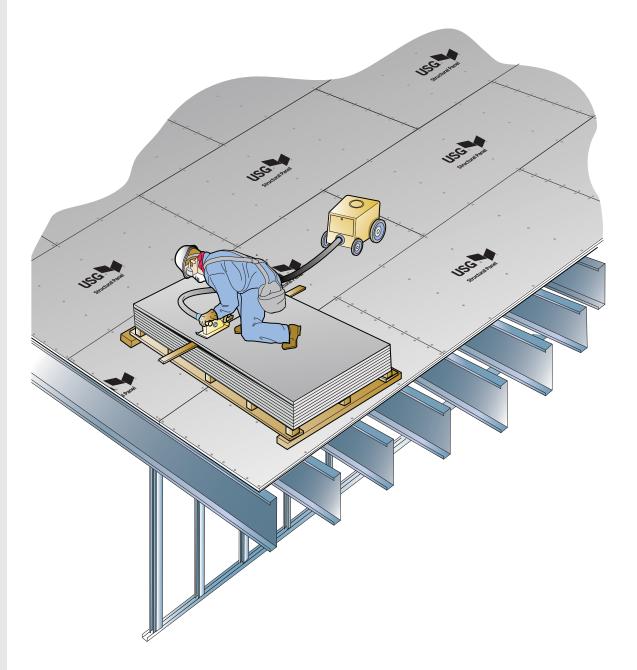


 The maximum penetration dimension is not limited to a single opening, but also includes group effect of multiple, closely spaced openings.

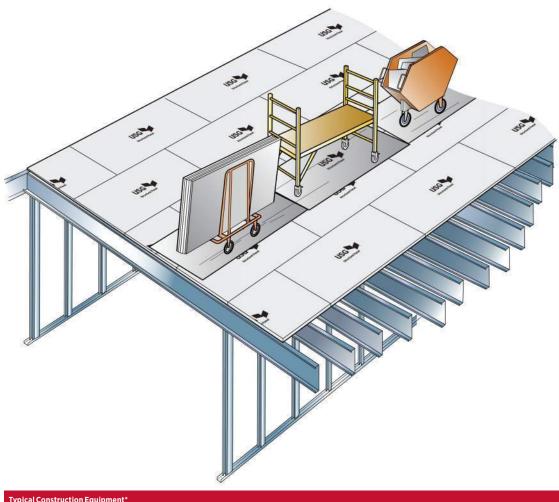

USG STRUCTURAL PANEL CONCRETE ROOF DECK PANEL LAYOUT: OVER FLUTED DECK

- The concrete roof deck on fluted deck is always considered an underlayment.
- The concrete roof deck is not considered a structural component.
- There is no composite action between fluted deck and the concrete roof deck.

T&G always perpendicular to flutes



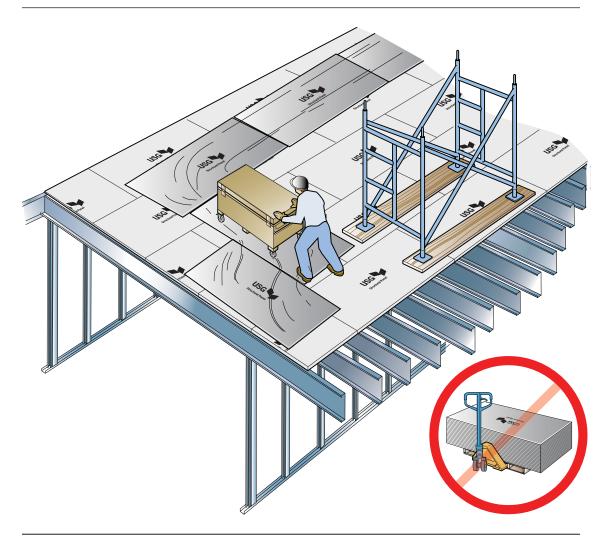
USG STRUCTURAL PANEL CONCRETE ROOF DECK PANEL LAYOUT: 48" O.C. JOISTS



USG STRUCTURAL PANEL CONCRETE ROOF DECK PANEL CUTTING

- Use a dust vacuum.
- Wear appropriate respiratory protection.
- Wear safety glasses.
- Wear gloves.
- Proper fall restraint equipment required.
- Review the Safety Data Sheet (SDS) for use of proper Personal Protective Equipment (PPE).

USG STRUCTURAL PANEL CONCRETE ROOF DECK EQUIPMENT LOADING

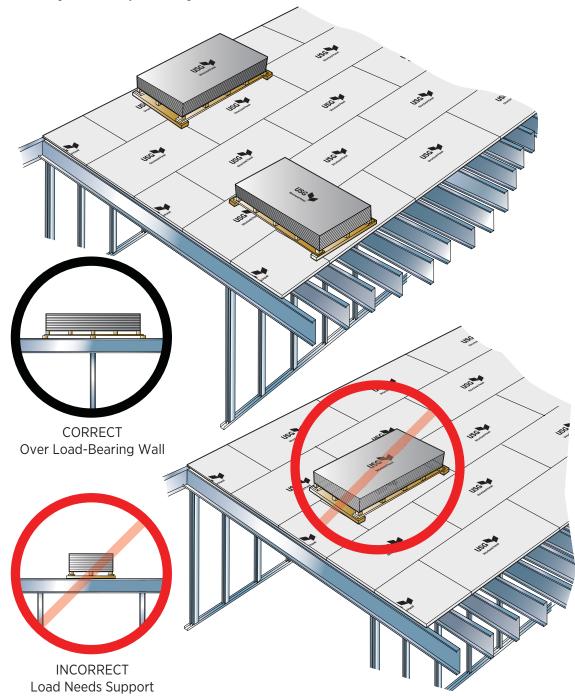


Typical construction Equipment	
Drywall Carts	10 Sheets of 5/8" x 4' x 12' (16 mm x 1,220 mm x 3,660 mm) Gypsum Panels max. 1,200 lb. (544 kg)
	7 Sheets of 3/4" x 4' x 8' (19 mm x 1,220 mm x 2,440 mm) USG Structural Panels max. 1,200 lb. (544 kg)
Rolling Trash Carts	1,000 lb. max. (453 kg)
Rolling Scaffolds	750 lb. max. (340 kg)

Note: Secure the cart. *Loads applicable to 24" (610 mm) o.c. maximum framing spacing.

See Panel Protection—Page 18

USG STRUCTURAL PANEL CONCRETE ROOF DECK PANEL PROTECTION



To protect installed panels during construction:

- Place load spreader planks perpendicular to joists for fixed scaffolding.
- Place additional USG Structural Panels or plywood on the floor in high-traffic construction pathways for rolling gang boxes, two-wheel mason carts and trash boxes.
- Avoid rolling carts near protector panel edges.
- Do not use a pallet jack on the roof deck.
- Consult with designer of record for load limits and proper support for all construction loads.
- Proper fall restraint equipment required.
- High traffic areas must be protected, consider supporting T&G in corridors.
- If T&G is damaged, it must be fixed.

USG STRUCTURAL PANEL CONCRETE ROOF DECK PALLET PLACEMENT*

Note: *Loading must be verified by a structural engineer.

USG STRUCTURAL PANEL CONCRETE ROOF DECK PROPER PALLET STORAGE

- Ensure unit covers are secure.
- Use plastic edge shovel for snow removal.
- Freezing may result in panels sticking together.
- Allow panels to thaw naturally if frozen.
- Only use sand when iced over. Do not use salt, fertilizer or ice melt.

NOTES

PRODUCT INFORMATION

See usg.com for the most up-to-date product information.

CUSTOMER SERVICE

800 USG.4YOU (874-4968)

EMAIL

usgstructural@usg.com

WEBSITE

usg.com/structural

MANUFACTURED BY

United States Gypsum Company 550 West Adams Street Chicago, IL 60661

USG AN Structural Parte

MSRP BASED UPON FULL TRUCKLOAD DELIVERED TO JOBSITE: ROOF DECK: \$5.40/SF

DANGER

Causes skin irritation. Causes serious eye damage. May cause an allergic skin reaction. May cause respiratory irritation. May cause cancer by inhalation of respirable crystalline silica. Do not handle until all safety precautions have been read and understood. Avoid breathing dust. Use only in a well-ventilated area and wear a NIOSH/MSHA approved respirator. Wear protective gloves/protective clothing/eye protection. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses and continue rinsing. Immediately call a poison center/doctor. If on skin: Wash with plenty of water. Take off contaminated clothing and wash before reuse. Contaminated work clothing should not be allowed out of the workplace. If skin irritation or rash occurs, or otherwise exposed or concerned: Get medical attention. Store locked up. Dispose of in accordance with local, state and federal regulations. For more information call Product Safety: 800 507-8899 or see the SDS

For more information call Product Safety: 800 507-8899 or see the at usg.com. KEEP OUT OF REACH OF CHILDREN.

NOTICE

We shall not be liable for incidental and consequential damages, directly or indirectly sustained, nor for any loss caused by applications of these goods not in accordance with current printed instructions or for other than the intended use. Our liability is expressly limited to replacement of defective goods. Any claim shall be deemed waived unless made in writing to us

within 30 days from date it was or reasonably should have been discovered.

SAFETY FIRST!

Follow good safety/industrial hygiene practices during installation. Wear appropriate personal protective equipment. Read SDS and literature before specification and installation.

USG Structural Panel

SCP33-USA-ENG/rev.10-18 e 2018 USG Corporation and/or its affiliates. All rights reserved. Printed in the USA. The trademarks USG, IT'S YOUR WORLD. BUILD IT, the USG logo, the design elements and color and related marks are trademarks of USG Corporation or its affiliates.

USG Structural Solutions

USG STRUCTURAL PANEL CONCRETE ROOF DECK

A concrete roof deck that can be combined with other noncombustible materials to create 1- and 2-hour fire-rated roof-ceiling assemblies.

- The only cementitious structural panel approved by Factory Mutual (FM) FM Approval Standard 4472
- Strong, durable concrete panel; great uplift ratings
- Dimensionally stable; panel will not buckle or warp like wood sheathing; no moisture issues like structural concrete
- Installs fast and easy with appropriate dust collection
- Meets the criteria of active ASTM standard E136 for use in all types of noncombustible construction
- Made in the USA

USG Structural Panel Concrete Roof Deck, also known as USG Structo-Crete® Panels, mechanically fastened to cold-formed steel joists, trusses or wood framing members; to create a structural substrate ideal as low- and steep-slope roof systems, canopies and/or balconies. This roof system is designed to carry gravity and lateral loads. Roof membranes may be applied directly over USG Structural Panel Concrete Roof Decks. For retrofit or renovation projects, Concrete Roof Deck can also be installed on wood-joists, trusses or bar joists. See *USG Structural Recommended Fasteners (SCP95)*.

USG Structural Panel Concrete Roof Decks can carry a total load, live and dead, of 150 psf (7.2 kPa) on cold-formed steel framing is spaced 48 in. (1220mm) o.c.

USG Structural Panel Concrete Roof Decks have a linear variation with change in moisture content of less than 0.10%. This means that the panels will not buckle or warp like wood sheathing.

Cutting USG Structural Panel Concrete Roof Decks require a carbide-tipped saw blade and a circular saw equipped with dust collection or suppression and control of airborne dust. Fastening is also conventional, using a screw gun and self-drilling No. 8-gauge screws. Because these panels are so durable, they may be installed in most weather conditions, including mild precipitation (rain or snow) and temperatures from 0°F to 125°F (-18°C to 52°C).

Refer to roof system manufacturer's written instructions, local code requirements and Factory Mutual Global (FMG) and/or Underwriters Laboratories (UL) requirements for proper installation techniques. For the attachment of shingles, USG recommends the use of electro-galvanized collated roofing nails installed by a professional grade pneumatic nailer with an air supply between 100 to 120 psi.

FIRE PERFORMANCE

DESCRIPTION

- UL Classified (Type USGSP) for noncombustibility in accordance with active ASTM standard E136 (CAN/ULC-S114)
- UL Classified (Type USGSP) as to Surface Burning Characteristics in accordance with ASTM E84 (CAN/ULC-S102). — Flame Spread 0 and Smoke Developed 0
- Class A, in accordance with UL790 (CAN/ULC-S107). See the UL Building Materials Directory for more information

Description	Reference
FM Approved	
Meets FM Class 1	Complies with requirements of FM 4472
Code Report	PER-14076
Ultimate Uniform Load ^a	150psf (7.2kPa) @ 48" o.c. (1220mm). See Table
Shear Diaphragm Ratings	1641plf ^b (23.9kN/m)
UL 1-, 1.5-, 2-Hour Fire Resistance Designs	P561, P562, P573
UL Roofing System, Uplift Resistance	TGIK.R25352

(a) On steel framing.

(b) Joists spaced 48" (1219.2mm) o.c. and fasteners spaced 4" (102mm) o.c. at the perimeter and 12" (305mm) o.c. in field, fully blocked. See the Progressive Engineering Inc. Product Evaluation Report PER-14076.

WARNING	USG Structural Panel Concrete Roof Decks should not be left in service without an appropriate roof, or weather-resistive membrane covering.
INSTALLATION	To perform in the expected manner, USG Structural Panel Concrete Roof Decks must be installed according to USG specifications, using only the listed materials and components. For a complete set of specifications, email usgstructural@usg.com.
	As with all types of construction, appropriate safety procedures must be followed to protect installers from personal injuries resulting from lifting incorrectly, falling, and eye, hand and lung irritation.
	Care must be taken when placing pallets of USG Structural Panel Concrete Roof Decks on roof framing. A pallet of USG Structural Panel Concrete Roof Decks consists of 20 sheets of our 3/4 in. x 4 ft. x 8 ft. panels (19mm x 1220mm x 2440mm) nominal [The T&G panels have an actual width of 47-3/4 in. (1213mm)], and weighs approximately 3,400 lbs. (1542 kg). Do not exceed limits when loading pallets or panels on open framing or completed roof assemblies. Store units next to structural walls where the joists meet the wall. See <i>USG Structural Panel Concrete Roof Deck Field Installation Guideline (SCP43)</i> for additional information.
MENDED FASTENERS	Refer to <i>USG Structural Recommended Fasteners (SCP95)</i> for specific fastener recommendations for the various types of framing used for installing USG Structural Panel Concrete Roof Deck. The recommended fasteners meet several criteria to insure they have adequate pull-out, pull-through, and slip performance. These fasteners also meet or exceed 1000 hours corrosion resistance requirement when tested in accordance with ASTM B117. High corrosion resistance is critical because of the panel pH level. When coupled with any moisture exposure, including high humidity, this elevated pH may deteriorate a non-corrosion resistant fastener.
	General Note: In accordance with PER-14076 , the minimum screw pattern is 6 in. (153 mm) o.c. along the perimeter of the panels and 12 in. (305 mm) o.c. in the field of the panels. Do not use a larger size screw unless specified by the structural engineer.
	A qualified architect or engineer should review and approve calculations, framing and fastener spacing for all projects.
FRAMING	The steel roof framing must be designed to meet the strength and deflection criteria specified in the contract documents. The attachment flange or bearing edge must be a minimum 1-5/8 in. (41mm) wide with at least 3/4 in. (19mm) of the panel bearing on the supporting flange. Metal framing must be a minimum 16 gauge (54 mils, or 0.0538 in. [1.36mm]) and spaced no greater than 48 in. (1220mm) o.c. Follow the contract documents and the steel framing manufacturer's recommendations for the proper installation and bracing of the framing.
RAFFIC PROTECTION	Place sheathing materials (i.e. additional layer of USG Structural Panel or plywood) on the roof in high traffic areas to protect newly installed concrete roof decks. See <i>USG Structural Panel</i> <i>Concrete Roof Deck Field Installation Guideline (SCP43)</i> for additional information.
APPLICATION	Cut panels to size with a circular saw equipped with carbide-tipped blade and a dry dust collection device or a water-dispensing device that limits the amount of airborne dust. Wear safety glasses and a NIOSH-approved N95 dust mask when cutting this panel. Dispose of collected dust in a safe

APPLICATION CONT.	after it has been placed followin panels in a running bond patterr are staggered by at least two su and groove joints should be fre less than 24 in. (610mm) wide, a formed from steel complying wit base metal thickness (no. 16 gau flange or bearing edge must be panel must bear on the supporti <i>Field Installation Guideline (SCF</i> Installed panels shall not be exp avoid accumulation of snow and removal whenever possible. Exco In the event of significant accum space heaters to melt the affector Roof Decks, never expose the pa	e print markings facing up to g the fastening schedule liste n so that end joints fall over t pports from where the end jo e of debris and fitted tightly II edges must be supported to th AISI General, with a minim ge) and a minimum G60 galv at least 1-5/8 in. (41mm) wide ng flange or edge. See <i>USG</i> 3 243) for additional information osed to weather for more that /or ice on installed panels. B essive shoveling or scraping mulations of snow and/or ice, ed areas. To prevent damage anels to direct flame for the p d salts, fertilizers or other ch	oward the installer. Fasten each panel ed in the contract documents. Install he center of the framing members and bints fall in the adjacent rows. Tongue without any gapping. For all panels by blocking. Blocking must be cold- ium 54 mils (0.0538 inch or 1.36mm) vanized coating. The attachment e and at least 3/4 in. (19mm) of the <i>Structural Panel Concrete Roof Deck</i> on. an 90 days. Care must be taken to rooms should be used for snow may damage installed panel surface. use indirect heat from temporary to USG Structural Panel Concrete
ROOFING SYSTEM	application of roof materials. Be	fore the application of roof m	turer's recommendations for the naterials, ensure that all panels are htly below the surface of the panels.
PRODUCT DATA	 approximately 170 lbs. (77kg) an Panel Concrete Roof Decks are p Availability: USG Structural Panel Email usgstructural@usg.com fc Storage: USG Structural Panel Co be stored in a horizontal position in unprotected areas. Excessive moisture and freezing units. Therefore, care should be are not exposed to excessive mo together within a unit, the unit n the ice to melt naturally. Never p should not be used at any time. I easy way to avoid panels freezing Maintenance: USG Structural Panel except to remove standing wate should be replaced with sound U the fastening schedule prescribe- must be a minimum of 24 in. (610) 	In the original installation do a concrete Roof Decks are so a concrete Roof Decks are so a concrete Roof Decks are shipp and uniformly supported. P temperatures may result in p taken to ensure units of USG pisture, ice and snow. In the e eds to be brought to a temp shysically pry panels apart. S Covering the units completed g together. The Concrete Roof Decks do r r and repair damage from ab SG Structural Panel Concreted d in the original installation do Domm) wide and must span a blocked on all sides. See US	bld through any USG distributor. and a dealer in your area. bed in 20-piece units. Panels should anels must be covered when stored banels sticking together within the Structural Panel Concrete Roof Decks vent that panels do become frozen berature above 32°F (0°C) to allow alt, fertilizer or other deicing agents y with tarps or similar coverings is an not require any regular maintenance puse. Any cracked or broken panels Roof Decks that are secured following pocuments. The replacement panels minimum of two supports. If not, the <i>G Structural Panel Concrete Roof</i>
TEST DATA	Physical and Mechanical Properties	Test Standard	Typical Values Standard (Metric)
	Noncombustibility	ASTM E136 (unmodified) CAN/ULC-S114	Passed
	Surface-burning characteristics (flame spread/smoke developed)	ASTM E84 CAN/ULC-S102	0/0
	Weight at 3/4 in. (19 mm) thickness	ASTM D1037	5.3 lbs./ft. ² (26 kg/m ²)
	Density ^a	ASTM C1185	75 lbs./ft. ³ (1,201 kg/m ³)
	Mold resistance	ASTM D3273 ASTM G21	10 0
	Termite resistance	AWPA Standard E1-13	9.8
	Low VOC emissions	CDPH/EHLB/Standard Method V1.1-2010 ^b	Compliant

TEST DATA CONT.

Physical and Mechanical Properties	Test Standard	Typical Values Standard (Metric)
Concentrated load	ASTM E661	550 lbs. (2.45 kN) static 0.108 in. (2.7mm) max. deflection @ 200 lbs. (0.89 kN)
Fastener lateral resistance ^c	ASTM D1761, Sec. 10.2	>210 lbs. (0.93 kN) dry >160 lbs. (0.71 kN) wet
pH value	ASTM D1293	10.5
Linear variation with change in moisture (25% to 90% relative humidity)	ASTM C1185, Sec. 8	<0.10%
Thickness swell	ASTM D1037, B	Max. 3.0%
Freeze/thaw resistance	ASTM C1185	Passed (50 cycles)
Water absorption ^d	ASTM C1185, Sec. 5.2.3.1	<15.0%
Long-term durability	ASTM C1185, Sec. 13	Min. 75% retention of physical properties
Water durability	ASTM C1185, Sec. 5	Min. 70% retention of physical properties

(a) Density measured at equilibrium conditioning per Section 5.2.3.1., 28 days after manufacturing.
 (b) Reference Standard: California Department of Public Health CDPH/EHLB/Standard Method Version 1.1, 2010

The following table represents the Load Capacity of USG Structural Panel Concrete Roof Decks. The uplift capacities in this table represent the attachment of the Concrete Roof Deck to the structural framing members. The values for a roofing system are obtained from the roofing system manufacturer's testing and specific installation instructions. For the most up-to-date load tables, see the Progressive Engineering Inc. report, **PER-14076**. For technical questions, email usgstructural@usg.com. A qualified architect or engineer should review and approve

(Emission testing method for CA Specification 01350). (c) Fastener lateral resistance measured with #8, 1-5/8 in. (41mm).)

(c) Fastener lateral resistance measured with #8, 1-5/8 in. (41mm), winged, self-drilling screw.

(d) Absorption measured from equilibrium conditioning followed by immersion in water for 48 hours.

LOAD TABLE

PRODUCT INFORMATION

See usg.com for the most up-to-date product information.

DANGER

Causes skin irritation. Causes serious eye damage. May cause an allergic skin reaction. May cause respiratory irritation. May cause cancer by inhalation of respirable crystalline silica. Do not handle until all safety precautions have been read and understood. Avoid breathing dust. Use only in a well-ventilated area, wear a NIOSH/MSHAapproved respirator. Wear protective gloves/protective clothing/eye protection. If in eves: Rinse cautiously with water for several minutes. Remove contact lenses and continue rinsing Immediately call a poison center/doctor. If on skin: Wash with plenty of water. Take off contaminated clothing and wash before reuse. Contaminated work clothing should not be allowed out of the workplace. If skin irritation or rash occurs, or otherwise exposed or concerned; Get medical attention. Store locked up. Dispose of in accordance with local, state, and federal regulations. For more information call Product Safety: 800 507-8899 or see the SDS at usg.com. KEEP OUT OF REACH OF CHILDREN.

TRADEMARKS

The trademarks USG, IT'S YOUR WORLD. BUILD IT., the USG logo, the design elements and colors, and related marks are trademarks of USG Corporation or its affiliates.

GRABBERGARD is a registered trademark of Grabber Construction Products, Inc.

NOTICE

We shall not be liable for incidental and consequential damages, directly or indirectly sustained, nor for any loss caused by application of these goods not in accordance with current printed instructions or for other than the intended use. Our liability is expressly limited to replacement of defective goods. Any claim shall be deemed waived unless made in writing to us within thirty (30) days from date it was or reasonably should have been discovered.

SAFETY FIRST!

Follow good safety/industrial hygiene practices during installation. Wear appropriate personal protection equipment. Read SDS and literature before specification and installation.

Illtimate Load Canacity for USG Structural Danel Concrete Doof Deck

calculations, framing and fastener spacing for all projects.

Joist Spacing - inches (mm)	Uniform Load	Uplift Capacity – psf (kPa) ^{1,2,3}					
	- psf (kPa) ^{1,2,3}	Fastener spacing (edge/field)					
		8/12	8/8	6/6	4/4		
12 inch (304.8mm)	1320 (63.2)	513 (24.6)	770 (36.9)	1026 (49.1)	1320 (63.2)		
16 inch (406.4mm)	744 (35.6)	385 (18.4)	557 (27.6)	744 (35.6)	744 (35.6)		
24 inch (609.6mm)	330 (15.8)	257 (12.3)	330 (15.8)	330 (15.8)	330 (15.8)		
32 inch (812.8mm)	240 (11.5)	192 (9.19)	240 (11.5)	240 (11.5)	240 (11.5)		
48inch (1219mm)⁴	150 (7.2)	128 (6.1)	150 (7.2)	150 (7.2)	150 (7.2)		

For SI: 1 inch = 25.4mm, 1 psf = 47.88 Pa.

(1) Ultimate Load Values have no safety factor included.

(2) Two framing spans minimum per panel piece.(3) Ultimate Uniform Load Table for general refer

) Ultimate Uniform Load Table for general reference only.

For complete load capacities, consult Progressive Engineering Inc. Product Evaluation Report PER-14076
 (4) Blocking at all joints perpendicular to framing to be a minimum of 16 gauge (54 mils, or 0.0538 inch [1.37 mm]), 3-5/8 in (92 mm) wide track. For sheathing installation where a single span condition exists, additional track blocking is required perpendicular to the framing located mid-way between the edges of the panel.

SUBMITTAL APPROVALS

Job Name	
Contractor	Date

800 USG.4YOU 800 (874-4968) usg.com/structural

Manufactured by United States Gypsum Company 550 West Adams Street Chicago, IL 60661

MSRP based upon full truckload delivered to jobsite: Roof Deck: \$5.40/sf

SCP35-USA-ENG/rev. 2-20 © 2020 USG Corporation and/or its affiliates. All rights reserved. Printed in USA

USG Structural Solutions

USG STRUCTURAL PANEL CONCRETE SUBFLOOR

A concrete subfloor that can be combined with other noncombustible materials to create 1-, 2- and 3-hour fire-rated floor-ceiling assemblies.

- Strong, durable concrete panel
- Dimensionally stable; panel will not buckle or warp like wood sheathing
- Installs like wood sheathing; circular saw for cutting, screws for fastening
- Meets the criteria of active ASTM standard E136 for use in all types of noncombustible construction

DESCRIPTION USG Structural Panel Concrete Subfloor, also known as USG Structo-Crete® Panels, mechanically fastened to cold-formed steel joists, trusses or other framing members. A noncombustible ceiling assembly is attached to the bottom of the floor joists to complete the construction. USG Structural Panel Concrete Subfloor can carry a total load, live and dead, of 120 psf (5.8 kPa) when support framing is spaced 24" (610 mm) o.c. Floor diaphragm design capacities up to 1,468 plf (21.4 kNm) allow this panel to be used as a shear diaphragm in the structural design of the building. Cutting the concrete subfloor requires a standard framing, carbide-tipped saw blade and a circular saw equipped with dust collection or suppression to control airborne dust. Fastening is also conventional, using a screw gun and self-drilling, corrosion resistant, fasteners. Refer to USG Structural Recommended Fasteners (SCP95) for details. Because these panels are so durable, they may be installed in most weather conditions, including mild precipitation (rain or snow), and temperatures from 0°F to 125°F (-18°C to 52°C). LIMITATIONS USG Structural Panel Concrete Subfloor is not intended for use on balconies, roofs, or other exterior applications. Only to be used in protected interior locations. USG Structural Panel Concrete Subfloors should not be left in service without an appropriate floor covering such as ceramic tile, vinyl, wood, carpet or other approved materials. Adhesive application of floor covering directly to the panel is not recommended as future removal may damage the USG Structural Panel subfloor. • Use of an underlayment is recommended under all flooring coverings except carpet and pad. Do not gap USG Structural Panels. · Panel layout should be designed to minimize cutting and ensure that all square cut ends and panel openings greater than 6" in any direction are supported by appropriate framing. · A qualified engineer should review and approve calculations, framing, and fastener spacing for all projects. INSTALLATION To perform in the expected manner, USG Structural Panel Concrete Subfloor must be installed according to USG specifications, using only the listed materials and components. For a complete set of specifications, email usgstructural@usg.com. As with all types of construction, appropriate safety procedures must be followed to protect installers from personal injuries resulting from lifting incorrectly, falling, and eye, hand and lung irritation from dust. Care must be taken when placing pallets of USG Structural Panel Concrete Subfloor on floor framing. A pallet of USG Structural Panel Concrete Subfloor, 20 sheets, 3/4" x 4' x 8' (19 mm x 1,220 mm x 2,440 mm) weighs approximately 3,400 lb. (1,542 kg). Do not exceed floor limits when loading pallets or panels on open framing or completed floor assemblies. Store units next to structural walls where the joists meet the wall. See USG Structural Panel Concrete Subfloor Field Installation Guideline (SCP14) for additional information. FRAMING The steel floor framing must be designed to meet the strength and deflection criteria specified in the contract documents. The attachment flange or bearing edge must be a minimum 1-5/8" (41 mm) wide, with at least 3/4" (19 mm) of the panel bearing on the supporting flange. The size of the framing flange required will vary based on the specified mil thickness/gauge and fastener selected. Metal framing must be a minimum 43 mil (18 gauge) and spaced no greater than 24" (610 mm) o.c. When significant diaphragm capacity is required, 54 mil (16 gauge) may be required. Follow the contract documents and the steel framing manufacturer's recommendations for the proper installation and bracing of the framing.

INSTALLATION CONT. RECOMMENDED FASTENERS	Refer to <i>USG Structural Recommended Fasteners (SCP95)</i> for specific fastener recommendations for the various types of framing used for installing USG Structural Panel Concrete Subfloor. The recommended fasteners meet several criteria to insure they have adequate pull-out, pull-through, and slip performance. These fasteners also meet or exceed 1000 hours corrosion resistance requirement when tested in accordance with ASTM B117. High corrosion resistance is critical because of the panel pH level. When coupled with any moisture exposure, including high humidity, this elevated pH may deteriorate a non-corrosion resistant fastener.	
	General Fastener Notes: In accordance with PER-13067 , the minimum screw pattern is 6 in. (153 mm) o.c. along the perimeter of the panels and 12 in. (305 mm) o.c. in the field of the panels. Do not use a larger size screw unless specified by the structural engineer.	
	A qualified architect or engineer should review and approve calculations, framing and fastener spacing for all projects.	
TRAFFIC PROTECTION	Place sheathing materials (i.e. additional layer of USG Structural Panel or min 3/8 in [10 mm] plywood) on the floor in high traffic areas to protect newly installed concrete subfloors. See USG Structural Panel Concrete Subfloor Field Installation Guideline (SCP14) for additional information.	
APPLICATION	Cut panels to size with a circular saw equipped with standard framing carbide-tipped blade and a dry dust collection device or a water-dispensing device that controls the amount of airborne dust. Wear safety glasses and a NIOSH-approved N95 dust mask when cutting this panel. Dispose of collected dust in a safe manner and in compliance with local, state and federal ordinances.	
	Install USG Structural Panel Concrete Subfloor with the long edges perpendicular to the framing. Apply the panel with the print markings facing up toward the installer. Fasten each panel after it has been placed following the fastening schedule listed in the contract documents. The use of adhesives in addition to screw attachment is not required. Install panels in a running bond pattern so that end joints fall over the center of the framing members and are staggered by at least two supports from where the end joints fall in the adjacent rows, except where panels less than 8 ft (2440 mm) are used, an offset of one framing member is allowed. Tongue and groove joints should be free of debris and fitted tightly without any gapping. For all panels less than 24" (610 mm) wide, all edges must be supported by blocking. Blocking must be cold-formed from steel complying with AISI-General, with a minimum 54 mils (0.0538 inch or 1.37 mm) base metal thickness (No.16 gauge) and a minimum G60 galvanized coating. The attachment flange or bearing edge must be at least 1-5/8" (41 mm) wide and at least 3/4" (19 mm) of the panel must bear on the supporting flange or edge. The size of the framing flange required will vary based on the specified mil thickness/gauge and fastener selected. See <i>USG Structural Panel Concrete Subfloor Field Installation Guideline (SCP14)</i> for additional information.	
	Installed panels shall not be exposed to weather for more than 90 days. Care must be taken to avoid accumulation of snow and/or ice on installed panels. Brooms or leaf blowers should be used for snow removal whenever possible. Excessive shoveling or scraping may damage installed panel surface.	
	In the event of significant accumulations of snow and/or ice, use indirect heat from temporary space heaters to melt the affected areas. To prevent damage to USG Structural Panel Concrete Subfloor, never expose the panels to direct flame for the purpose of snow removal and/or de-icing efforts. At no time should salts, fertilizers or other chemicals be used on the panels for anti-icing and/or de-icing purposes.	
FLOOR FINISH	Follow the contract documents and the floor finish manufacturer's recommendations for the application of finished flooring. Note that most floor finishes will require an underlayment. Before the application of floor finish materials, ensure that all panels are properly fastened, with the fastener head driven flush or slightly below the surface of the panels.	
CEILING CONSTRUCTION	For fire- and sound-rated assemblies, the installed ceiling must comply with the UL-listed Design and USG recommendations. Follow the contract documents and the ceiling manufacturer's instructions for the ceiling installations. A USG Sheetrock® Brand Firecode® C Panels (UL Type C), USG Sheetrock® Brand EcoSmart Panels Firecode® (UL Type ULIX™) or a plaster ceiling should be applied to resilient channels that are fastened to the joists. A drywall or acoustical suspended ceiling system may also be used to enhance sound performance. For a complete list of UL designs visit USGStructuralUL.com or see the USG Structural Fire and Acoustic Manual (SCP100).	

PRODUCT DATA

TEST DATA

Sizes and Packaging: 3/4" x 4' x 8' (19 mm x 1,220 mm x 2,440 mm) panels. Each panel weighs approximately 170 lb. (77 kg) and is intended to be handled by two people. USG Structural Panel Concrete Subfloor are packaged in 20 piece units.

Availability: USG Structural Panel Concrete Subfloor is sold through any USG distributor. Email **usgstructural@usg.com** for information on availability and a dealer in your area.

Storage: USG Structural Panel Concrete Subfloor is shipped in 20 piece units. Panels should be stored in a horizontal position and uniformly supported. Panels must be covered when stored in unprotected areas.

Excessive moisture and freezing temperatures may result in panels sticking together within the units. Therefore, care should be taken to ensure units of USG Structural Panel Concrete Subfloor are not exposed to excessive moisture, ice and snow. In the event that panels do become frozen together within a unit, the unit needs to be brought to a temperature above 32°F (0°C) to allow the ice to melt naturally. Salt, fertilizer or other de-icing agents should not be used at any time. Covering the units completely with tarps or similar coverings is an easy way to avoid panels freezing together.

Maintenance: USG Structural Panel Concrete Subfloor does not require any regular maintenance except to remove standing water and repair damage from abuse. Any cracked or broken panels should be replaced with sound USG Structural Panel Concrete Subfloor that are secured following the fastening schedule prescribed in the original installation documents. The replacement panels must be a minimum of 24" (610 mm) wide and must span a minimum of two supports. If not, the replacement panel must be fully blocked on all sides. See USG *Structural Panel Concrete Subfloor Field Installation Guideline (SCP14)* for additional information.

Repairs: Installed USG Structural Panel Concrete Subfloor with T&G damage up to 10% of the edge length may be repaired using the recommendations located in *USG Structural Panel Concrete Subfloor Repair Manual (SCP76)*. Panels with more significant damage shall be replaced.

Physical and Mechanical Properties	Test Standard (Min. Values)	Test Values Standard (Metric)
Concentrated load	ASTM E661 (550 lb., .108")	804 lb. (3.58 kN) static 0.066" (1.7 mm) max. deflection @ 200 lb. (0.89 kN)
Fastener lateral resistance ^A	ASTM D1761, Sec. 10.2 (dry >210 lbf, wet >160 lbf)	776 lbf (3.45 kN) dry 800 lbf (3.56 kN) wet
Density ^B	ASTM C1185 (75 lb./ft3)	78.6 lb./ft³ (1,258 kg/m³)
Weight at 3/4" (19 mm) thickness	ASTM D1037	5.3 lb./ft² (26 kg/m²)
pH value	ASTM D1293	10.5
Linear variation with change in moisture (25% to 90% relative humidity)	ASTM C1185, Sec. 8 (<.10%)	0.06 %
Thickness swell	ASTM D1037, B (≤3.0%)	0.04 %
Freeze / thaw resistance	ASTM C1185 (75%)	100% properties retention
Mold resistance	ASTM D3273 (10) ASTM G21 (≤1)	10 0
Water absorption ^c	ASTM C1185, Sec. 5.2.3.1 (<15%)	9.0 %
Noncombustibility	ASTM E136 (unmodified) CAN/ULC-S114	Passed Passed
Surface-burning characteristics (flame spread/smoke developed)	ASTM E84 (0/0) CAN/ULC-S102 (0/0)	0/0 0/0
Long-term durability	ASTM C1185, Sec. 13 (75%)	100% properties retention
Water durability	ASTM C1185, Sec. 5 (70%)	83% properties retention
Termite resistance	AWPA Standard E1-13	9.8
Low VOC emissions	CDPH/EHLB/Standard Method V1.1-2010 ^D	Compliant

(A) Fastener lateral resistance measured with #8, 1-5/8" (41 mm) Hi-Low screw.

(B) Density measured at equilibrium conditioning per Section 5.2.3.1., 28 days after manufacturing.

(C) Absorption measured from equilibrium conditioning followed by immersion in water for 48 hours.

(D) Reference Standard: California Department of Public Health CDPH/EHLB/Standard Method Version 1.1, 2010 (Emission testing method for CA Specification 01350).

SYSTEM PERFORMANCE

Description	Reference
Code Reports	ICC ESR-1792; PER-13067
City Code Approvals	Los Angeles: LARR # 25682
Ultimate Uniform Load (total DL and LL)	Refer to PER-13067
Shear Diaphragm Ratings	1,468 plf (21.4 kNm) ^A
UL 1-, 1.5-, 2-Hour Fire Resistance Designs ^c	G535, G536, G556, G557, G558, G562, G588, L521, L541, L550, L569, L570, M502, M506, M515, M521, M527, H505, H501 ™
ULC 1-,1.5-, 2-Hour Fire Resistance Designs ^c	I526, I527, I528, I529, M520, M521
UL 2-, 3-Hour Load-Bearing Walls ^c	V465, V471
UL/ULC Metal and Plastic Through-Penetration Firestop Systemsc	F-E-1023, F-E-1032, F-E-2045,
Acoustical Ratings	>65 IICb >56 STC b

(A) Joists spaced 24" (610 mm) o.c. and fasteners spaced 6" (153 mm) o.c. at the perimeter and 12" (305 mm) o.c. in field, blocked. See the Progressive Engineering Inc. Product Evaluation Report PER-13067.

(B) Carpet and pad over USG Structural Panel Concrete Subfloor attached to cold-formed steel framing with a ceiling consisting of resilient channels spaced 12" (305 mm) o.c., 3-1/2" (89 mm) of fiberglass insulation in the joist cavity and a single layer of 5/8" (16 mm) USG Sheetrock® Brand Firecode® C Gypsum Panel gypsum panel.

(C) For the most up-to-date UL/ULC Designations, visit USGStructuralUL.com.

LOAD TABLE

PRODUCT INFORMATION

See usg.com for the most up-to-date product information.

DANGER

Causes skin irritation. Causes serious eye damage. May cause an allergic skin reaction. May cause respiratory irritation. May cause cancer by inhalation of respirable crystalline silica. Do not handle until all safety precautions have been read and understood. Avoid breathing dust. Use only in a well-ventilated area, wear a NIOSH/MSHAapproved respirator. Wear protective gloves/ protective clothing/eye protection. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses and continue rinsing. Immediately call a poison center/doctor. If on skin: Wash with plenty of water. Take off contaminated clothing and wash before reuse. Contaminated work clothing should not be allowed out of the workplace. If skin irritation or rash occurs, or otherwise exposed or concerned: Get medical attention. Store locked up. Dispose of in accordance with local, state, and federal regulations. For more information call Product Safety: 800 507-8899 or see the SDS at usg.com. KEEP OUT OF REACH OF CHILDREN.

TRADEMARKS

The trademarks USG, FIRECODE, SHEETROCK, H501, IT'S YOUR WORLD. BUILD IT, the USG logo, the design elements and colors and related marks are trademarks of USG Corporation or its affiliates.

NOTICE

We shall not be liable for incidental and consequential damages, directly or indirectly sustained, nor for any loss caused by applications of these goods not in accordance with current printed instructions or for other than the intended use. Our liability is expressly limited to replacement of defective goods. Any claim shall be deemed waived unless made in writing to us within 30 days from date it was or reasonably should have been discovered.

SAFETY FIRST!

Follow good safety/industrial hygiene practices during installation. Wear appropriate personal protective equipment. Read SDS and literature before specification and installation. For the most up-to-date load tables, see the Progressive Engineering Inc. Product Evaluation Report PER-13067 (www.PER13067.com), or for technical questions, email usgstructural@usg.com.

SUBMITTAL APPROVALS

Job Name	
Contractor	Date

USG.4YOU 800 (874-4968) usg.com/structural

Manufactured by United States Gypsum Company 550 West Adams Street Chicago, IL 60661 MSRP based upon full truckload delivered to jobsite: Subfloor Panels \$4.50/sf

SCP3-USA-ENG/rev. 1-20 © 2020 USG Corporation and/or its affiliates. All rights reserved. Printed in U.S.A.

USG Structural Panel

USG SERICIUSI Panel

USG Structural Solutions

FIELD INSTALLATION GUIDE

USG STRUCTURAL PANEL CONCRETE SUBFLOOR CONTACT INFORMATION

PRODUCT INFORMATION

See usg.com for the most up-to-date product information.

CUSTOMER SERVICE

800 621-9523

TECHNICAL SERVICE

800 USG.4YOU (874-4968)

SAMPLES, LITERATURE AND PRODUCT INFORMATION

usg.com/structural

USG STRUCTURAL SOLUTIONS CONTACTS:

Frank Pospisil Technical Sales Manager fpospisil@usg.com 312 436-7618

Tim Lucas

Technical Sales Manager - Field tlucas@usg.com 312 436-5748

Mike Inman

National Sales Manager minman@usg.com 312 436-4270

Julia Coyner

Associate Product Marketing Manager jcoyner@usg.com 312 436-4264

usgstructural@usg.com

USG STRUCTURAL PANEL RECOMMENDED FASTENERS

Fastening USG Structural Concrete Panels, also known as USG Structo-Crete[™] Panels, properly to wood, cold-formed or hot-rolled steel framing is key to ensuring their long-term performance as a structural component. The recommended fasteners meet several criteria to insure they have adequate pull-out, pull-through, and slip performance. Furthermore, these fasteners meet or exceed 1000 hours corrosion resistance requirement when tested in accordance with ASTM B117. High corrosion resistance is critical because of the panel pH, and when coupled with any moisture exposure, including high humidity, this may deteriorate a non-corrosion resistant fastener.

Framing Type ¹	Min. End Distance⁴	Min. Flange Width	Fastener Manufacturer	Part Number	Fastener Description ^{5, 6, 7}
54-97 mil (16-12 ga) CFS ²	1/2" [13mm]	1-5/8″ [41mm]	Grabber Construction Products, Inc.	CGH8158LG	#8 x 1-5/8" Winged Flat Wafer Head Self-Drilling Screw
			Simpson Strong-Tie Company, Inc.	CBSDQ158S	#8 x 1-5/8" Winged Self-Drilling Screw
33 ³ -43 mil (20 ³ -18 ga) CFS	1″ [25mm]	2-5/8″ [67mm]	Grabber Construction Products, Inc.	CGH8158LG	#8 x 1-5/8" Winged Flat Wafer Head Self-Drilling Screw
SPF Lumber	5/8″ [16mm]	'	Grabber Construction Products, Inc.	C8200L2M	#8 x 2" Flat Head Type 17 Nibs, GrabberGard
			Simpson Strong-Tie Company, Inc.	WSNTLG2S	#8 x 2" Flat Head Twin Threads Nibs
_	1/2" [13mm]	1-5/8" [41mm]	SENCO Brands, Inc.	GL24AABF	8d Ring Shank Nails
118 mil (10 ga) CFS& 1/4" A36 A36 HRS	3/4" 1-7/8" [19mm] [48mm]		Simpson Strong-Tie Company, Inc	TBG1260S	#12 x 2-3/8" Flat Head, Strong-Drive® TB Wood-to-Steel Screw
			Muro North America, Inc.	RSM645WFL -GY	M6.0 x 45 mm Winged Self-Drilling Screw

Table Notes:

- CFS = cold-formed structural steel; HRS = hot-rolled structural steel; Lumber = specific gravity 0.42 or greater. Gauge/thickness of steel, fastener min. end distance, and joist min. flange width is identified for each fastener. Project specific framing gauge, size and type is deter mined by the engineer, architect or design professional of record.
- 2. Cold-formed steel shall comply with AISI-General, with a minimum 54 mils or .0538-inch base metal thickness (No.16 gauge) and a minimum C60 galvanized coating.
- 3. 33 mil (structural 20 ga) is for gravity loads only.
- 4. Represents the minimum distance from the end (square cut) of the panel a fastener may be inserted.
- 5. Fastener pull-through is 581 lbs. (264 kg) and is the minimum average ultimate tested capacity for all tabulated fasteners.
- 6. The engineer or designer of record shall apply an appropriate safety factor (ASD) or resistance factor (LRFD).
- 7. Any length of the approved fasteners may be used provided a minimum of 3 full threads penetrate the steel framing.
- 8. SENCO 8d ring shank nails are manufactured with a length of 2-3/8 in., head diameter of 0.266 in. and a shank diameter of 0.113 in. Equivalent 8d ring shank nails meeting these dimensional requirements may be utilized when approved by the engineer or designer of record.

Notes:

- In accordance with code reports: PER-13067 for Subfloor, PER-14076 for Roof Deck, PER-15092 for Foundation Wall, and ESR-1792 for Subfloor.
- Use only fasteners recommended by USG and are corrosion resistant for use with USG Structural Panels to insure the system being installed will perform as expected as a structural component of your project.
- Install using the recommended spacing and distance from the ends (square cut) and edges (tongue & groove) of the panel.
- Do not use a larger diameter fastener unless specified by the design professional of record for the project.

Tips:

- Use a stand-up screw gun for ease of installation.
- Allow the gun and screw to do the work don't force it.
- Change drive bits regularly.
- Fasteners should be set flush with the surface of the panel.
- Insert fasteners as close to vertical as possible.
- Do not use hex head screws on surfaces where USG Structural Panels will be applied to prevent panel damage. Use pan heads or similar.
- Clean stand-up gun head regularly with clean, dry air. No oil, graphite or other lubricants.

A qualified architect or engineer should review and approve calculations, framing, and fastener spacing for all projects.

PRODUCT INFORMATION

See usg.com for the most up-to-date product information.

DANGER

The following are warnings when installing the panels.Causes skin irritation. Causes serious eye damage. May cause an allergic skin reaction. May cause respiratory irritation. May cause cancer by inhalation of respirable crystalline silica. Do not handle until all safety precautions have been read and understood. Avoid breathing dust. Use only in a well-ventilated area, wear a NIOSH/MSHA approved respirator. Wear protective gloves/ protective clothing/eye protection. If in eyes: rinse cautiously with water for several minutes. Remove contact lenses and continue rinsing. Immediately call a poison center/doctor. If on skin: wash with plenty of water. Take off contaminated clothing and wash before reuse. Contaminated work clothing should not be allowed out of the workplace. If skin irritation or rash occurs, or otherwise exposed or concerned: getmedical attention. Store locked up. Dispose of in accordance with local, state, and federal regulations.For more information cal Product Safety: 800 507-8899 or see the SDS at usg.com

KEEP OUT OF REACH OF CHILDREN.

TRADEMARKS

The trademarks USG, IT'S YOUR WORLD. BUILD IT., the USG logo, STRUCTO-CRETE, the design elements and colors, and related marks are trademarks of USG Corporation or its affiliates.

GRABBER, SUPERDRIVE and LOX are trademarks of Grabber Construction Products, Inc.

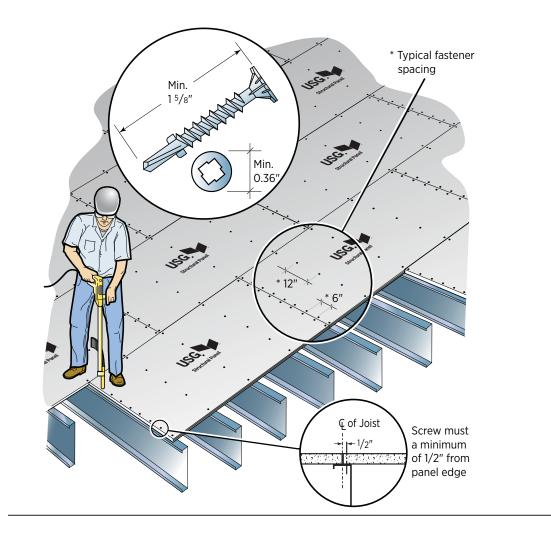
USG.4YOU 800 (874-4968) usg.com/structural

Manufactured by United States Gypsum Company 550 West Adams Street Chicago, IL 60661

MSRP based upon full truckload delivered to jobsite: Subfloor: \$4.50/sf Roof Deck: \$5.40/sf Foundation Wall SD: \$4.90/sf Foundation Wall XD: \$7.50/sf

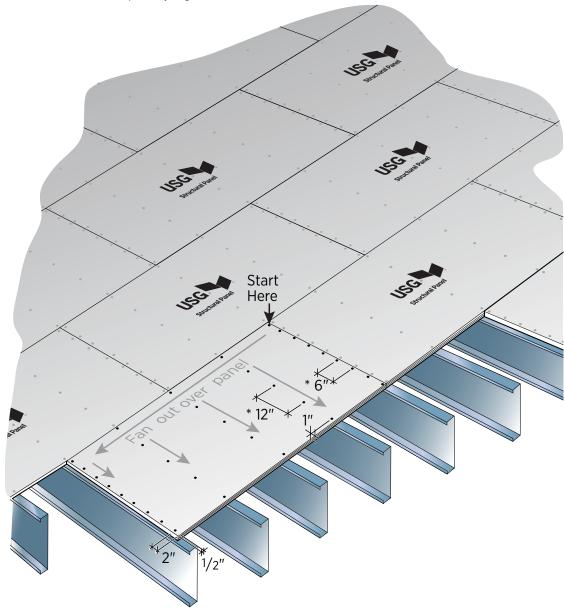
SCP95-USA-ENG/rev. 4-19 © 2019 USG Corporation and/or its affiliates. All rights reserved. Printed in U.S.A.

USG STRUCTURAL PANEL CONCRETE SUBFLOOR PANEL LAYOUT BASICS


- T&G must run perpendicular to framing
- Every non-T&G joint must be supported by framing.
- Any panel not at least 24" wide must be supported by katz blocking or fall on framing member.
- Every panel must span 2 frame openings, falling on 3 framing members.
- Firmly engage T&G edges and butt panel ends together prior to fastening.
- Panels must bear a minimum of 3/4" on framing.
- Damaged ends and edges up to 10% of their length may be repaired per SCP76 USG Structural Panel Concrete Subfloor Repair Manual (www.USG.com/StructuralRepairManual)

4

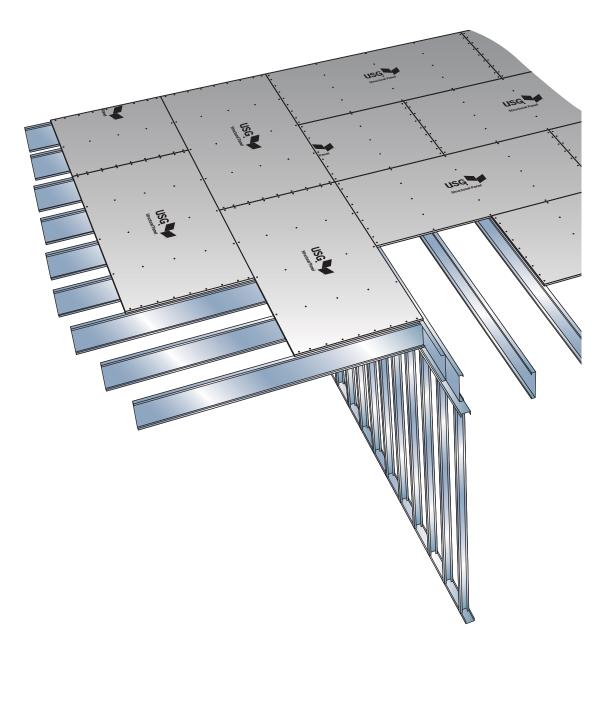
USG STRUCTURAL PANEL CONCRETE SUBFLOOR PANEL FASTENING


- Use only USG recommended fasteners
- Proper fall restraint equipment required
- Use only #8 screw with 1-5/8" (41 mm) joist flange
- Apply screws with a stand-up gun to reduce fatigue
- Follow fastening schedule in contract documents

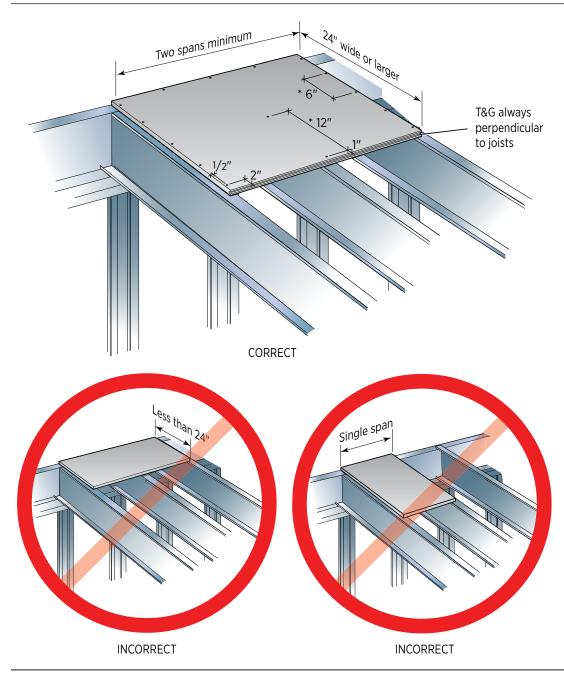
Note: *Fastener schedule is to be specified by designer of record.

USG STRUCTURAL PANEL CONCRETE SUBFLOOR FASTENING THE PANEL

Note: *Fastener schedule is to be specified by designer of record.


When connecting the tongue and groove, the tongue from the loose panel should be engaged into the groove of the already affixed panel.

To ensure proper panel application, be sure to:

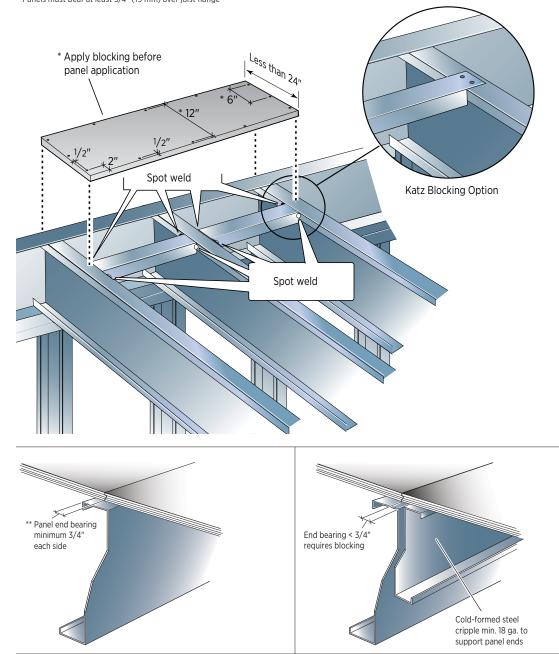

- 1. Lay board down adjacent to already fastened panel, careful to not damage T&G.
- 2. Butt square cut ends firmly together.
- 3. Engage T&G.
- 4. Fasten one corner and fan out over entire panel.
- **5.** Fastener inset will vary based on the selected fasteber but must be a minimum of 1/2" in from square cut ends and 1" in from T&G edges.

USG STRUCTURAL PANEL CONCRETE SUBFLOOR FRAMING DIRECTION CHANGE

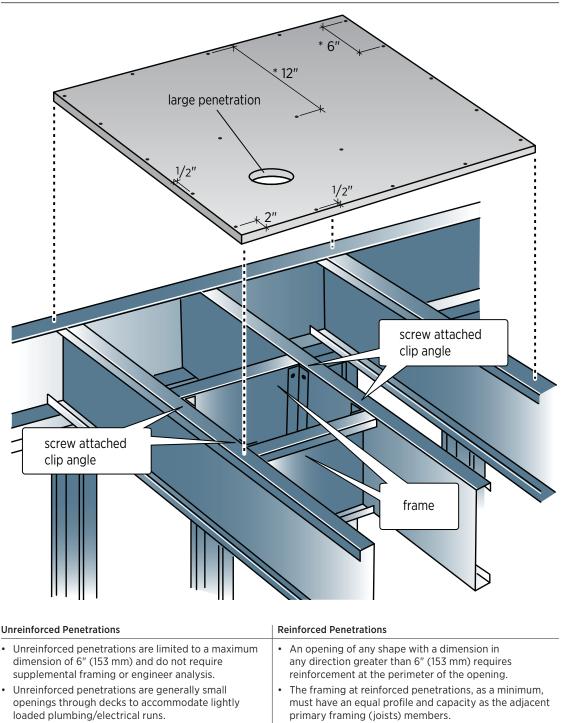
• Always lay panels perpendicular to supporting joists.

USG STRUCTURAL PANEL CONCRETE SUBFLOOR PANEL LAYOUT: TWO-SPAN CONDITION

See Panel Blocking—Page 9


USG STRUCTURAL PANEL CONCRETE SUBFLOOR PANEL BLOCKING

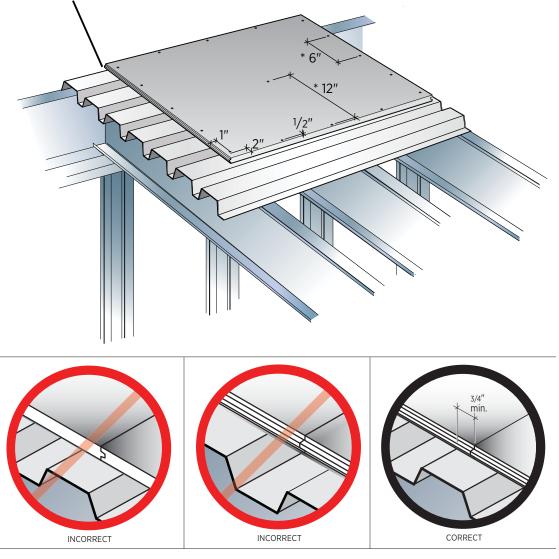
• Block edges that are less than 24" (610 mm) wide


- Spot weld method used with structural stud blocking is only intended to hold stud in place until panel is fastened through it.
- Field welding to cold-formed framing members must be performed by certified welder and approved by structural
 engineer of record
- Katz blocking is not fastened independently. Position katz blocking evenly between adjacent panels, place panels over blocking and framing, and fasten through the panel & blocking into joist with a recommended fastener.

Note:

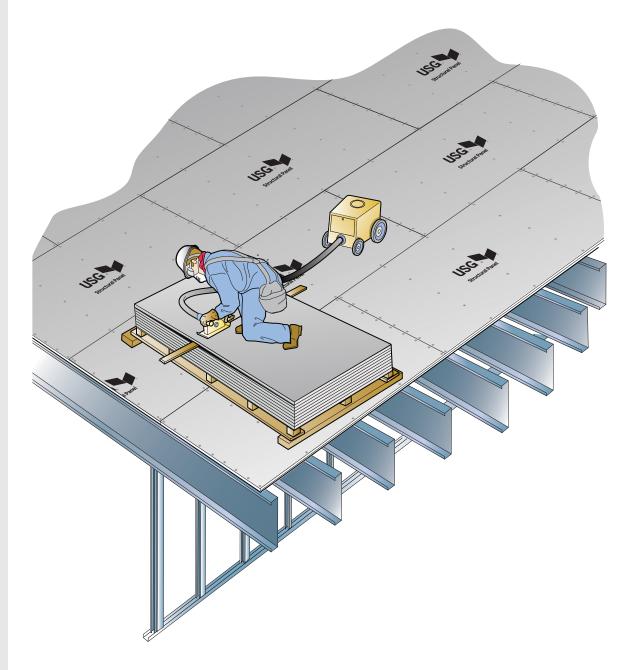
*Panel Blocking must be specified by designer of record. **Panels must bear at least 3/4" (19 mm) over joist flange

USG STRUCTURAL PANEL CONCRETE SUBFLOOR PANEL PENETRATION

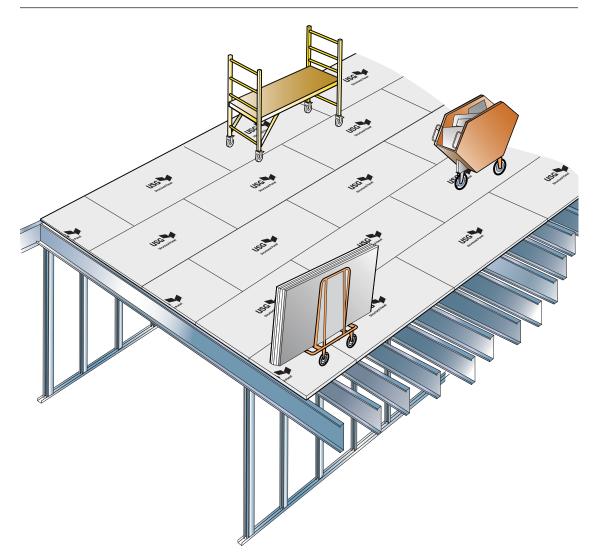


• The maximum penetration dimension is not limited to a single opening, but also includes group effect of multiple, closely spaced openings.

USG STRUCTURAL PANEL CONCRETE SUBFLOOR PANEL LAYOUT: OVER FLUTED DECK


- The concrete subfloor on fluted deck is always considered an underlayment
- The concrete subfloor is not considered a structural component in this application.
- There is no composite action between fluted deck and the concrete subfloor

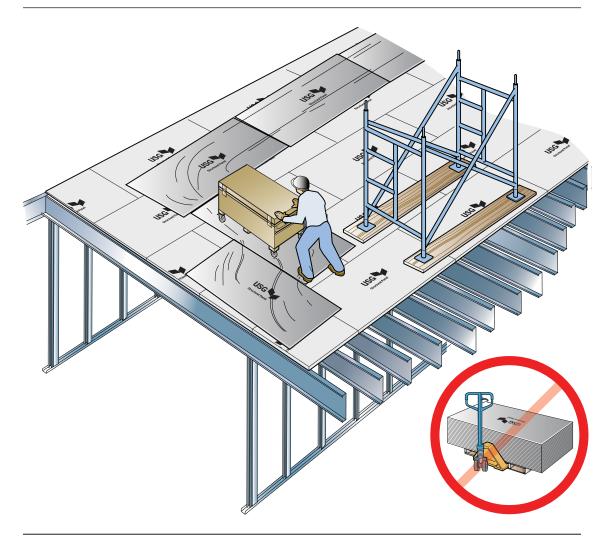
T&G always perpendicular to flutes



USG STRUCTURAL PANEL CONCRETE SUBFLOOR PANEL CUTTING

- Use a circular saw with a standard carbide tipped framing blade and a dust collection system.
- Wear appropriate respiratory protection
- Wear safety glasses
- Wear gloves
- Proper fall restraint equipment required
- Review the Safety Data Sheet (SDS) for use of proper Personal Protective Equipment (PPE).

USG STRUCTURAL PANEL CONCRETE SUBFLOOR EQUIPMENT LOADING

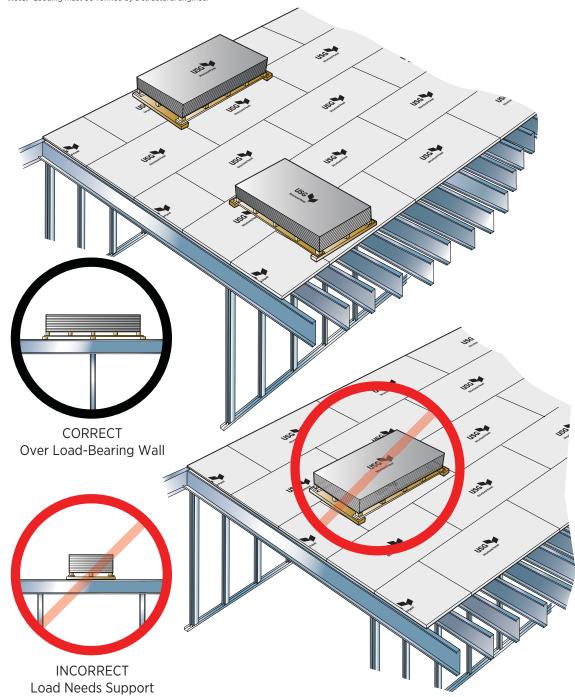


Typical Construction Equipment*	
Drywall Carts	10 Sheets of 5/8" x 4' x 12' (16 mm x 1220 mm x 3660 mm) Gypsum Panels max. 1,200 lbs. (544 kg)
	7 Sheets of 3/4" x 4' x 8' (19 mm x 1220 mm x 2440 mm) USG Structural Panels max. 1,200 lbs. (544 kg)
Rolling Trash Carts	1,000 lbs. max. (453 kg)
Rolling Scaffolds	750 lbs. max. (340 kg)

Note: Secure the cart. *Loads applicable to 24" (610 mm) o.c. maximum framing spacing.

See Panel Protection—Page 14

USG STRUCTURAL PANEL CONCRETE SUBFLOOR PANEL PROTECTION



To protect installed panels during construction:

- Place load spreader planks perpendicular to joists for fixed scaffolding.
- Place additional USG Structural Panels or minimum 3/8" plywood on the floor in high-traffic construction pathways for rolling gang boxes, two-wheel mason carts and trash boxes.
- Avoid rolling carts near protector panel edges.
- Do not use a pallet jack on the floor.
- Consult with designer of record for load limits and proper support for all construction loads.
- Proper fall restraint equipment required.

USG STRUCTURAL PANEL CONCRETE SUBFLOOR PALLET PLACEMENT*

Note: *Loading must be verified by a structural engineer

USG STRUCTURAL PANEL CONCRETE SUBFLOOR PROPER PALLET STORAGE

- Ensure unit covers are secure
- Use plastic edge shovel for snow removal
- Freezing may result in panels sticking together
- Allow panels to thaw naturally if frozen
- Only use sand when iced over. Do not use salt, fertilizer or ice melt.

NOTES

PRODUCT INFORMATION

See usg.com for the most up-to-date product information.

CUSTOMER SERVICE

800 USG.4YOU (874-4968)

EMAIL

usgstructural@usg.com

WEBSITE

Bill Schule Area

usg.com/structural

MANUFACTURED BY

United States Gypsum Company 550 West Adams Street

MSRP based upon full truckload delivered to jobsite: Subfloor: \$4.50/sf

DANGER

DANGER Causes skin irritation. Causes serious eye damage. May cause an allergic skin reaction. May cause respiratory irritation. May cause cancer by inhalation of respirable crystalline silica. Do not handle until all safety precautions have been read and understood. Avoid breathing dust, Use only in a well-ventilated area and wear a NIOSH/MSHA approved respirator. Wear protective gloves/protective clothing/eye protection. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses and continue rinsing. Immediately call a poison center/doctor. If on skin: Wash with plenty of water. Take off contaminated clothing and wash before reuse. Contaminated work clothing should not be allowed out of the workplace. If skin irritation or rash occurs, or otherwise exposed or concerned: Get medical attention. Store locked up. Dispose of in accordance with local, state and federal regulations. state and federal regulations. For more information call Product Safety: 800 507-8899 or see the SDS at

KEEP OUT OF REACH OF CHILDREN.

NOTICE

156 Stututed panel

or propration and/or its affiliates. All rights reserved. Printed in U.S.A. Ks USG, IT'S YOUR WORLD. BUILD IT., the USG logo, the design elements and colors, and related marks are trademarks of USG Corporation

We shall not be liable for incidental and consequential damages, directly or indirectly sustained, nor for any loss caused by applications of these goods not in accordance with current printed instructions or for other than the intended use. Our liability is expressly limited to replacement of defective goods. Any claim shall be deemed waived unless made in writing to us within 30 days from date it was or reasonably should have been discovered.

SAFETY FIRST!

Follow good safety/industrial hygiene practices during installation. Wear appropriate personal protective equipment. Read SDS and literature before specification and installation.

CONTRACTOR OF STATE

100

15

.00	PRODUCT IDENTIFICATION	4.00	SUBMITTAL					
1.01	The American Iron and Steel Institute standards are used in this package. Any manufacturer whose product geometries meets or exceed AISI standards and who is part of a code compliance program that includes third party physical audits is acceptable to comply with the design intent. Manufacturers who are currently approved in a compliance program can be found at www.archtest.com/certification.	4.01						
	Web Size Thickness(mils)	4.02						
1.02	Member Type Flange Size The last two numbers indicate the steel thickness:		Preliminary drawings should not be submitted for approval. It is intended that the preliminary drawing be reviewed by the Framing Contractor and returned with comments prior to finalizing signed and sealed approval drawing package for approval. If an unsigned and sealed drawing					
1.02	Gage Design Minimum AISI Color Coding		package is mistakenly submitted for approval, please notify CDED.					
	200.0346"0.0329"33 milsWhite180.0451"0.0428"43 milsYellow160.0566"0.0538"54 milsGreen140.0713"0.0677"68 milsOrange	4.03	For all conditions listed herein and/or required for this project, it is the General Contractor's, Architect's, and Engineer of Record's responsibility to mark drawings according to actual design requirements, coordination with other Work, and differing field conditions that exist at time of in creation of this drawings package.					
	12 0.1017" 0.0966" 97 mils Red	4.04	The contents of this shop drawing submittal show the intended application of cold formed					
1.03	Basis of Design Material for this project by:	5.00	components and the connections of these components to each other and to the primary structur. The construction methodology chosen, field framed or shop fabricated, is a decision that is made others and not by CDED. If the option for shop fabrication or panelization should be chosen as construction methodology, any and all drawings related to fabrication of such panels should be considered as a separate submittal from this shop drawing package.					
		5.01	All screw connections are based on NASPEC section E4, which outlines the AISI specification					
2.00 2.01	<u>STUD FRAMING</u> All field cutting of studs must be done by sawing, shearing, or plasma cutting. Other torch cutting methods of cold-formed members are unacceptable.	5.02	steel members when the edge is perpendicular to the direction of the applied force and 1.5 x					
2.02	No notching or coping of studs is allowed, unless detailed within this drawing package.		Screw Diameter when the edge is parallel to the direction of the applied force. A minimum of 3 Screw Diameter on-center spacing must be maintained between adjacent screws.					
2.03 2.04	Splicing of wall studs is not allowed, unless otherwise detailed within this drawing package. Framing fabricator is to ensure punch out alignment when assembling lateral bracing and field	5.03	D3 If required, all welded connections are to be performed in accordance with the latest version AWS D1.3 specifications for Welding Sheet Steel in Structures. Consult AWS D19.0 Weld Coated Steel and ANSI standard Z49.1 for information regarding safe welding procedures.					
	cutting studs to length. Lateral bracing must be installed at the time the wall is erected. Failure to install bracing at this time may compromise the structural integrity of the building.	5.04	Suggested weld metal and process for shop welding are 60 ksi weld metal strength (min., u.n.o.) Suggested methods for field welding are 1/8" (u.n.o.) E60xx (min., u.n.o.) electrode-SMAW, or					
2.05	Design assumes condition to be in final location and stabilized. Temporary bracing (by others) or other means of stabilization may be required until framing is in its stable and final condition.		"gasless" MIG. Minimum weld throat thickness (t) must match or exceed the base steel thicknes of the thinnest connected part unless noted otherwise.					
2.06	Spandrel wall studs framing above a window, and having connections to the top and bottom of the same beam, or having a single connection to a beam, and a kicker to another structural element, may require slip connections at the head of the window. In such situations, the engineer of record	5.05	 5.05 In welding, the zinc coating on steel framing will be burned away; therefore, a zinc rich paint r be applied to the weld area to provide corrosion resistance. 5.06 Any substitution of fasteners with equivalent properties (head/shank diameter, load carrying 					
2.07	shall verify that the window system is designed accordingly. Use minimum of two studs at the corner of all walls addressed in this submittal unless noted	5.00	capacities, edge distances, fastener spacing, etc.) must be submitted to CDED for review and approval prior to installation.					
.08	otherwise in the contract documents or this drawing package. Use minimum of three studs at the intersection of all load bearing walls (exterior/or interior) unless noted otherwise in the contract documents or this drawing package.	5.07	It is the responsibility of others to verify that fasteners are installed according to manufacturer's instructions. It is also the responsibility of others to verify and ensure the quality of fastener connections.					
.09	Joist or roof member must bear directly over stud. If not, a structural distribution member (designed accordingly) is required on top of runner track for proper bearing and anchorage.	5.08	Drift connection necessity to allow for primary structure movement is the responsibility of the Engineer of Record. If the contract documents do not indicate this requirement, this drawing					
2.10	Studs from floor above must bear directly over studs or joists. If not, a structural distribution	E 00	package will not include drift connections.					
.11	member (designed accordingly) is required on top of joist for proper bearing. All headers/built-up beams are to be constructed with UNPUNCHED material only.	5.09	All powder actuated fasteners (PAF) shall be those as manufactured and tested by HILTI or each The following minimum edge distances and fastener spacings apply:					
.12	Splicing of headers is not allowed, unless otherwise detailed within this drawing package.		Pin Min. Edge Distance Min. Spacing Penetration IC					
.13	If additional holes are required in the metal studs or joists, contact a licensed professional engineer for guidance before cutting holes.		Diameter Steel Concrete Steel Concrete Steel Concrete Num 0.157"Ø 1/2" 3" 1" 4" Full Varies ESR-2					
.14	Per the AISI Standard for Cold-Formed Framing - Wall Design, the maximum allowable gap (measured between the web of the stud and the web of the track) for a stud seated in a track is		Specify the following fastener types when ordering:					
	1/4" for non-axial load bearing conditions and 1/8" for axial load bearing conditions (U.N.O.). Pressure should be applied to nest the studs into the tracks until the tolerances listed above are achieved. Failure to do so could result in serviceability problems in the future.		PAF Attachment to Structural Steel Attachment to Concrete 0.157"Ø X-U X-U					
00	JOIST AND RAFTER							
5.01	Platform framed joist or rafter member must bear directly over stud. If not, a structural distribution member (designed accordingly) is required on top of runner track for proper bearing and anchorage.							
.02	Ledger framed joist or rafter member may be installed "in-line" with on-center studs or "off-module" to on-center studs. For off-module, the joist rim-track or rim-channel will be deisgned and used as a structural distribution member.							
.03	All splice requirements for joists and rafters must be determined through engineering analysis.							
04	All field holes must be pre-approved by ClarkDietrich Engineering. No notching or coping of joists or rafters is allowed unless detailed in this shop drawing package.							
.05	Joist or rafter bridging must be installed at the time the floor or roof is erected. Failure to install bracing at this time may compromise the structural integrity of the building. Temporary construction bracing is by others.							

CFS-NHERI 10-Story Test Portion

fornia

6.00 GENERAL

6.01	Design performed in accordance Formed Steel Structural Membe
6.02	The latest edition of the America Cold-Formed Steel Structural Fr
6.03	Dimensions shown in this shop of should be used in determining e

p drawing package are for design reference only. Contract Drawings exact distances and all conditions should be field verified before erection. Plan view layout and/or Elevation in this drawing package are for general conformance only. Framing Contractor is directed to the Contract Drawings for specific section callouts, façade requirements, and any other details not shown herein. ClarkDietrich Engineering Design Inc. (CDED) is not responsible for additional requirements or similar section references that conflict with the Contract Drawings.

- foundation design.
- assembly requirements.
- 6.07 Removed.
- loads have not been considered in these recommendations.
- is based on this interpretation.
- package or in the accompanying calculation set.
- is released from design responsibility and liability for this project.
- attachment clips, etc.).

- function of the total architectural assembly.
 - of the structure above the foundation or podium.

ce with the AISI S100-16 "Specification for the Design of Cold ers".

can Iron and Steel Institute "Code of Standard Practice for Framing" shall be used as the reference of standard practices.

6.04 CDED does not assume any responsibility for the adequacy of the primary structure and

6.05 Contents of this drawing package show the intended application of cold-formed components. Framing Contractor is to refer to the project contract documents for additional construction

6.06 All connections shall be complete as per the plans and specifications at the time of installation. Failure to promptly complete connections may compromise the structural integrity of the building.

6.08 Precautions must be taken to avoid construction loads exceeding design live loads. Construction

6.09 Unless noted otherwise in this drawing package, CDED interprets all concrete and roof edge angles to be structural with a minimum thickness of 0.25". Fastener and connection performance

6.10 CDED interprets all concrete to be at least 3000 psi, unless noted otherwise in this drawing

6.11 CDED interprets specifications that have a requirement for a specialty engineer to provide shop drawings that include signed and sealed calculations and drawings by a Professional Engineer, to mean that the Architect and EOR are giving CDED design responsibility for the cold-formed metal framing. Should the Architect and/or EOR mark-up CDED's design in a manner that is not consistent with given design limitations, standards, and/or CDED's recommendations, then CDED

6.12 Framing design assumes all cladding is uniformly laterally attached to each framing member and is limited to a uniform distribution of load to the framing member. The design does not include review of the effects of local forces resulting from the attachment of any cladding (brick ties,

6.13 All window and door units are assumed to apply load to the surrounding metal framing uniformly unless information is provided that details a different load application.

6.14 Conflicting or missing information on the Contract Drawings will be noted in this drawing package for clarification during the review and approval process. Any information that is not noted herein as conflicting or missing does not relieve all reviewing parties from providing such information. CDED is not responsible to note all conflicting or missing information and does not purport to have included all conditions that are in conflict or missing in this drawing package. The Framing Contractor is advised to completely review the Contract Drawings and compare to this drawing package for conflicting and/or missing information prior to ordering material and/or construction.

6.15 For specific requirements and warranty information on systems or materials connected and appurtenant to the cold-formed framing including but not limited to windows, caulking and flashing, refer to manufacturer's data. The integrity of the building envelope, including but not limited to siding, flashing, fasteners, etc, to prevent water penetration and or damage, is not the responsibility of CDED. CDED assumes no responsibility for the proper construction and/or

6.16 Calculations and shop drawings included in this technical recommendation set specifies the required shearwalls, diaphragm, and all relevant connections to provide the overall lateral stability

DESIGN CRITERIA

ARCH./E.O.R. PLEASE VERIFY ALL DESIGN CRITERIA.

Location: Design Based on: Building Risk Category:	Irvine, CA IBC 2018, CBC 2 II
Wind Load: Components and Cladding Basic Wind Speed (V) = Importance Factor (Iw) = Exposure = Mean Roof Height (h) = Least Building Width (Wb) = Corner Zone Distance (a) =	115 mph 1.0 C 100'-0" 48'-0" 5'-0"
Dead Loads Interior LB Wall Dead Load = Exterior LB Wall Dead Load (EIFS) = Roof Dead Load = Unit Floor Dead Load = Corridor Dead Load = Public Dead Load =	12 psf 15 psf 24 psf 21 psf 21 psf 21 psf
<u>Live Loads</u> Roof Live Load = Unit Floor Live Load = * 10 psf partition load in unit areas Corridor Live Load = Public Live Load =	20 psf 50 psf * 40 psf 100 psf
Seismic Criteria Seismic Design Category = Importance Factor (Ie) = Component Importance Factor (Ip) = Site Class = SDS = SD1 = R = [†] Light-Framed (CFS) walls sheathed with	D 1.00 1.00 C 1.009g 0.452g 6.5 [†] th steel sheets
Deflection Criteria: Roof Joist Live Load = Roof Joist Total Load = Floor Joist Live Load = Floor Joist Total Load =	L/360 L/240 L/480 L/240

This Drawing Package is based on Contract Drawing Set: SEAOC SSDM Vol. 2 Example 3

{100% - FOR CONSTRUCTION

L/240

L/360

SHEET INDEX

LSF-1.0 LSF-3.0 LSF-4.0 LSF-5.0 LSF-6.0 to 6.1

Interior Wall =

Exterior Wall (EIFS) =

GENERAL NOTES LSF-1.1 to 1.2 MATERIAL SCHEDULES LSF-2.0 to 2.4 REFERENCE/FRAMING PLANS WALL SECTIONS OPENING FRAMING SHEARWALL ELEV. & DETAILS FRAMING DETAILS

	WALL STUD SCHEDULE																			
WALL TYPE	LEVEL 1		LEVEL 2		LEVEL 3		LEVEL 4		LEVEL 5		LEVEL 6		LEVEL 7		LEVEL 8		LEVEL 9		LEVEL 10	
	DESCRIPTION	PROFILE																		
W1 EXTERIOR JB (6", 24" OC)	600S350-97 (50KSI)	MP1.1	600S300-97 (50KSI)	MP1.1	600S300-97 (50KSI)	MP1.1	600S200-97 (50KSI)	MP1.1	600S200-97 (50KSI)	MP1.1	600S300-68 (50KSI)	MP1.1	600S200-68 (50KSI)	MP1.1	600S300-54 (50KSI)	MP1.1	600S200-54 (50KSI)	MP1.1	600S162-68 (50KSI)	MP1.1
W3 INTERIOR DEMISING NJB (6", 24" OC)	600S162-54 (50KSI)	MP1.1	600S162-43 (33KSI)	MP1.1	600S162-43 (33KSI)	MP1.1	600S162-43 (33KSI)	MP1.1												
W5 INTERIOR CORRIDOR JB (6", 24" OC)	600S350-97 (50KSI)	MP1.1	600S300-97 (50KSI)	MP1.1	600S250-97 (50KSI)	MP1.1	600S350-68 (50KSI)	MP1.1	600S350-68 (50KSI)	MP1.1	600S250-68 (50KSI)	MP1.1	600S350-54 (50KSI)	MP1.1	600S200-54 (50KSI)	MP1.1	600S200-43 (33KSI)	MP1.1	600S162-43 (33KSI)	MP1.1

NOTES: *NOTES BELOW APPLY TO ALL WALLS AT ALL LEVELS.

1. WALL STUDS TO BE SPACED AT 24" ON-CENTER.

2. WALL TRACK TO BE 1 ¹/₄" LEG MINIMUM, WITH DEPTH & MATERIAL TO MATCH THE ON-CENTER STUD UNO ON PLAN AND DETAILS. EXCEPT WALL TRACK FOR WALL TYPE W2 TO BE 600T250-97 (50KSI).

3. ALL WALL TRACK SHALL SEATED WELL AND FASTENED TO STUDS, JAMBS & POSTS PER SCHEDULES AND DETAIL 3/LSF-6.0 EXCEPT WHERE OTHERWISE NOTED IN DETAILS.

4. BOTTOM WALL TRACK TO BE FASTENED TO 1st FLOOR CONCRETE PER DETAIL 10/LSF-6.0 EXCEPT WHERE OTHERWISE NOTED IN DETAILS.

5. BRACE STUDS LATERALLY PER WALL SECTIONS AND DETAIL 1/LSF-6.0 AT 3ft & 7ft PUNCHOUTS.

PANEL, FASTEN THE BRIDGING PER 1A/LSF-6.0. ROTATED ON-CENTER STUDS CAN BE USED IN-LIEU OF STRONGBACKS, SEE DETAIL13/LSF-6.0.

6. WALL TRACK SHALL BE CONTINUOUS ALONG THE ENTIRE WALL LENGTH. WHERE A SPLICE IS REQUIRED, SEE DETAIL 11/LSF-6.0. 7. LONG WALL PANEL LENGTHS (>10ft) REQUIRE STRONGBACK BRACING OR ROTATED ON-CENTER STUDS. SEE PLAN NOTE 1 FOR APPROXIMATE STRONGBACK LOCATIONS AND DETAIL 12/LSF-6.0 FOR CONFIGURATION AND STRONGBACK MEMBER. WHERE A COLUMN IS AT THE END OF A WALL 8. SEE DETAIL 14/LSF-6.0 FOR TYPICAL EXTERIOR SHEATHING FASTENER PATTERN. GYPSUM SHEATHING IS NOT A NAILING SURFACE. CLADDING SYSTEM SHALL BE FASTENED THROUGH THE SHEATHING AND TO THE WALL STUD FRAMING (BY OTHERS, MIN 3-SCREW THREADS THRU LSF).

					WALL ()F
(1)	(2)					
HEADER TYPE	APPROX. WIDTH					
(ELEVATION)	HEIGHT	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	
H-1 (1/LSF-4.0) 1st - 10th	3'-4" 7'-2"	600HDS300-97 (50 KSI) (MP1.6)	600HDS300-97 (50 KSI) (MP1.6)	600S350-97 (50 KSI) (MP1.1)	600S350-97 (50 KSI) (MP1.1)	
H-4 (4/LSF-4.0) 1st - 10th	4'-8" 4'-0"	600HDS300-97 (50 KSI) & 600S162-54 (50 KSI) (MP1.7)	600HDS300-97 (50 KSI) & 600S162-54 (50 KSI) (MP1.7)	600HDS300-97 (50 KSI) (MP1.6)	600HDS300-97 (50 KSI) (MP1.6)	

NOTES: *NOTES 1 THROUGH 8 BELOW APPLY TO ALL OPENINGS AT ALL LEVELS.

1. JAMBS MUST BE CONTINUOUS FROM TOP OF WALL TO FLOOR SLAB. JAMBS MUST ALIGN FROM LEVEL-TO-LEVEL.

2. SEE WALL OPENING ELEVATIONS FOR CRIPPLE STUDS. ALL DIMENSIONS ARE FOR STRUCTURAL REFERENCE ONLY AND SHALL BE VERIFIED WITH CONTRACT DRAWINGS FOR ACTUAL ROUGH OPENINGS.

4. REFER TO ARCHITECTURAL DRAWINGS FOR ACTUAL ROUGH OPENING SIZE REQUIREMENTS. DIMENSIONS SHOWN ARE FOR STRUCTURAL REFERENCE ONLY.

5. ALL HEADER, HEAD, SILL, AND JAMB MEMBERS MUST BE FULL LENGTH. NO SPLICES ARE PERMITTED. SEE WALL OPENING ELEVATIONS.

6. WALL TOP TRACKS MUST BE CONTINUOUS OVER OPENINGS. NO SPLICES ARE PERMITTED. SIZE AND MATERIAL PER WALL SCHEDULE.

7. CONNECT LATERAL BRACING TO JAMBS AT SPACING MATCHING WALL O.C. STUDS PER DETAIL 1/LSF-6.0. JAMBS MAY BE CONTRIBUTING TO OC STUD BRACING.

8. BOX HEAD, BOX HEADERS, AND BACK-TO-BACK HEADERS MUST BE UNPUNCHED MATERIAL. END-JOIST HEADERS MAY BE PUNCHED, EXCEPT NO PUNCH-OUTS WITHIN 9" OF EACH END CONNECTION. 9. FASTEN SHEATHING TO POSTS AND JAMBS SIMILAR TO THE OC WALL STUDS. SEE DETAIL 14/LSF-6.0.

				C-SHAPE JOIST	SCHEDULE
JOIST TYPE	(1)	(2)	(3)	(4)	
	JOIST DESCRIPTION	PROFILE	RIM-TRACK / TAB (MP1.5)	RIM-CHANNEL / ANGLE (MP1.4)	IN-
J1 (16" O.C.)	1200S250-68 (50 KSI)	MP1.3	1200TD125/250-68 (50 KSI) WITH CONN. TAB @ 16" OC	1200T150-68 (50 KSI) WITH (1) S547 ANGLE CLIP @ 16" OC	RIM-TRACK ((6) # (3) #12
J4 (16" O.C.)	1200S250-54 (50 KSI)	MP1.3	1200TD125/250-54 (50 KSI) WITH CONN. TAB @ 16" OC	1200T150-54 (50 KSI) WITH (1) S547 ANGLE CLIP @ 16" OC	RIM-TRACK 0 (4) # (2) #12
			1	1	l

NOTES:

1. JOISTS SPACING VARIES (12", 16" OR 24" ON-CENTER) AND IS LISTED IN THIS SCHEDULE WITH THE JOIST TYPE, UNLESS OTHERWISE INDICATED ON PLAN.

2. JOIST CONNECTIONS TO -43 MIL STUDS LOADBEARING WALLS WILL REQUIRE MORE SCREWS THAN CONNECTIONS TO -54 MIL OR GREATER STUDS. AT ROOF JOIST TO PARAPET STUD CONNECTIONS, SEE WALL SECTION FOR MINIMUM SCREWS.

3. JOIST AND RIM SHALL BE MANUFACTURED BY CLARKDIETRICH BUILDING SYSTEMS.

4. EACH JOIST MAY ALIGN DIRECTLY WITH A WALL STUD (IN-LINE FRAMING) OR IN-BETWEEN OC STUDS (OFF-MODULE) AS LONG AS APPROPRIATE CONNECTIONS ARE USED.

5. JOIST FLOOR AND ROOF DECK IS 3/4" USG STRUCTURAL CEMENT PANEL (TONGUE & GROOVE) ON 16GA MINIMUM FRAMING. SEE DETAILS 5/LSF-6.0 & 6/LSF-6.0. 6. JOIST MATERIAL MUST BE UNPUNCHED WITHIN 6" FROM CUT ENDS AND BEARING LOCATIONS.

7. END-JOIST MATERIAL MAY BE UNPUNCHED OR STANDARD C-SHAPE MEMBERS TO AVOID TRADEREADY PUNCHOUTS OCCURRING AT ON-CENTER STUDS, JAMBS AND LADDER BLOCKING.

8. JOIST BLOCKING AT 8'-0" ON-CENTER MAXIMUM SPACING. SEE DETAIL 7/LSF-6.0. LADDER BLOCKING IS REQUIRED AT EXTERIOR NON-JOIST BEARING WALLS. SEE WALL SECTIONS AND DETAIL 8/LSF-6.0.

E			
(5)	(6)	(7)	GOVERNING LOCATION
I-LINE CONN. TO STUD	OFF-MODULE CONN. TO STUD	JOIST CONN. @ TAB OR CLIP	
OR CLIP THROUGH RIM-CHANNEL #12 SCREWS TO -43 STUD 12 TO -54 & HEAVIER STUD	RIM TO STUD CONNECTION (7) #12 SCREWS TO -43 STUD (4) #12 TO -54 & HEAVIER STUD	(3) #12 SCREWS TO JOIST	UNIT FLOOR UP TO 21'-6" SPANS
OR CLIP THROUGH RIM-CHANNEL #12 SCREWS TO -43 STUD 12 TO -54 & HEAVIER STUD	RIM TO STUD CONNECTION (4) #12 SCREWS TO -43 STUD (2) #12 TO -54 & HEAVIER STUD	(2) #12 SCREWS TO JOIST	UNIT ROOF UP TO 21'-6" SPANS

600S250-97 (50 KSI) 600S350-68 (50 KSI) 600S300-68 (50 KSI) 600S350-54 (50 KSI) 600S162-54 (50 KSI) 600S162-43 (33 KSI) (MP1.1) (MP1.1) (MP1.1) (MP1.1) (MP1.1) (MP1.1) 600S300-97 (50 KSI) 600S250-97 (50 KSI) 600S200-68 (50 KSI) 600S250-68 (50 KSI) 600S350-97 (50 KSI) 600S350-68 (50 KSI) (MP1.1) (MP1.1) (MP1.1) (MP1.1) (MP1.1) (MP1.1)

LEVEL 8

LEVEL 7

WALL OPENING JAMB PER LEVEL (MPx.x MEMBER PROFILE UNO) LEVEL 5 LEVEL 6

(3)

OPENING JAMB SCHEDULE *

LEVEL 10

LEVEL 9

	MEMBER PROFILES									
PROFILE	CONFIGURATION	PROFILE	CONFIGURATION	PROFILE	CONFIGURATION	PROFILE	CONFIGURATION	PROFILE	CONFIGURATI	
MP1.1	STUD	MP1.2	WALL TRACK	MP1.3	C-SHAPE JOIST	MP1.4	RIM-CHANNEL	MP1.5	TRADERE RIM-TRAC	
MP1.6	HEAVY DUTY STUD	STUD - MP1.7	(2) #10 SCREWS @ 16" O.C. HEAVY DUTY STUD	MP1.8	HEAVY DUTY STUD					
								MPC.1	HSS	

ONFIGURATION RIM-TRACK

TRADEREADY

					SHEAR WALL SC	HEDULE *				
	(1)	(2)	END POSTS		HOLDOWNS AT BO	TTOM OF WALL (TOP	OF LEVEL BELOW)	SHEA	THING	BOTTOM CONNECTION
SHEARWALL TYPE		SHEAR WALL MINIMUM	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(DETAILS)	LEVEL	ON-CENTER STUD & TRACK MATERIAL	END POSTS MEMBER	PROFILE	TYPE	DETAIL (BOTTOM OF WALL)	THREADED ROD ANCHOR	TYPE	FASTENER PATTERN	WALL BOTTOM TO TOP TRACK FASTENERS
	10	43-MIL (33 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	27 MIL STEEL SHEET (33Ksi)	6 / 12	#12 SCREW AT 24" ON-CENTER
	9	43-MIL (33 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	27 MIL STEEL SHEET (33Ksi)	6 / 12	#12 SCREW AT 12" ON-CENTER
	8	43-MIL (33 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	27 MIL STEEL SHEET (33Ksi)	4/12	#12 SCREW AT 9" ON-CENTER
- AT W3 D	7	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEEL SHEET (33Ksi BLOCKED)	6 / 12	#12 SCREW AT 12" ON-CENTER
/-1 /ALL / INE D	6	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEEL SHEET (33Ksi BLOCKED)	4 / 12	#12 SCREW AT 12" ON-CENTER
SW-1 TERIOR WALL GRIDLINE D	5	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEEL SHEET (33Ksi BLOCKED)	4 / 12	#12 SCREW AT 9" ON-CENTER
	4	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEEL SHEET (33Ksi BLOCKED)	3 / 12	#12 SCREW AT 9" ON-CENTER
	3	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEEL SHEET (33Ksi BLOCKED)	3 / 12	#12 SCREW AT 9" ON-CENTER
	2	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEEL SHEET (33Ksi BLOCKED)	2 / 12	#12 SCREW AT 6" ON-CENTER
	1	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEÉL SHEET (33Ksi BLOCKED)	2 / 12	3/8" DIA x 1" Gr5 HEX HEAD CAP SCREW AT 9" OC TO BASEPLATE
	10	43-MIL (33 KSI) MIN	(1) 600S250-43 (33 KSI)	MP1.1	USP S/PHD4 (8) #14 SCREWS	5/LSF-5.0	5/8"Ø F1554 Gr36, (2) HVY HN's & FW's	27 MIL STEEL SHEET (33Ksi)	6 / 12	#12 SCREW AT 24" ON-CENTER
	9	43-MIL (33 KSI) MIN	(1) 600HDS300-54 (50 KSI)	MP1.6	CD8 (17) #14 SCREWS	5/LSF-5.0	7/8"Ø F1554 Gr36, (2) HVY HN's & FW's	27 MIL STEEL SHEET (33Ksi)	4 / 12	#12 SCREW AT 9" ON-CENTER
5 WALL	8	43-MIL (33 KSI) MIN	(1) 600HDS300-97 (50 KSI)	MP1.6	CD10 (23) #14 SCREWS	5/LSF-5.0	7/8"Ø F1554 Gr36, (2) HVY HN's & FW's	27 MIL STEEL SHEET (33Ksi)	2/12	#12 SCREW AT 12" ON-CENTER
0R W5 x 2	7	54-MIL (50 KSI) MIN	(2) 600HDS300-68 (50 KSI)	MP1.8	(2) CD15 (30) #14 SCREWS	6/LSF-5.0	1"Ø F1554 Gr36, (2) HVY HN's & FW's	33 MIL STEEL SHEET (33Ksi BLOCKED)	4 / 12	#12 SCREW AT 9" ON-CENTER
SW-2 CORRIDC LINES 1 &	6	54-MIL (50 KSI) MIN	$ \begin{array}{c} HSS 6 x 6 x \frac{3}{16} \\ (A500 GR.B) \end{array} $	MPC.1	$\begin{cases} \frac{1}{4} \times 5 \text{ w A36 PLATE,} \\ \text{tw} = \frac{3}{16} \text{ Lw} = 4 \text{ w} \end{cases}$	7/LSF-5.0	1	33 MIL STEEL SHEET (33Ksi BLOCKED)	3/12	#12 SCREW AT 9" ON-CENTER
SW SC SV SV	5	54-MIL (50 KSI) MIN	HSS 6 x 6 x $\frac{3}{16}$ (A500 GR.B)	MPC.1	$\begin{cases} \frac{3}{8} \times 5 \text{ w A36 PLATE,} \\ \text{tw} = \frac{1}{4} \text{ Lw} = 4 \text{ w} \end{cases}$	7/LSF-5.0		33 MIL STEÉL SHEET (33Ksi BLOCKED)	2 / 12	#12 SCREW AT 6" ON-CENTER
S SR W1 & (GRIDL	4	68-MIL (50 KSI) MIN	HSS 6 x 6 x ¹ / ₄ (A500 GR.B)	MPC.1	$\begin{cases} \frac{1}{2} x 5 w A36 PLATE, \\ tw = \frac{5}{16} Lw = 4 \end{cases}$	7/LSF-5.0		33 MIL STEEL SHEET (33Ksi BLOCKED)	2 / 12	#12 SCREW AT 6" ON-CENTER
EXTERIC	3	68-MIL (50 KSI) MIN	HSS 6 x 6 x ⁵ / ₁₆ (A500 GR.B)	MPC.1	$\begin{cases} \frac{1}{2} x 5 w A572 Gr50 \\ PL, tw = \frac{3}{8} Lw = 5 \end{cases}$	7/LSF-5.0		33 MIL STEEL SHEET (33Ksi BLOCKED)	2 / 12	#12 SCREW AT 6" ON-CENTER
Ë	2	68-MIL (50 KSI) MIN	$ \begin{array}{c} HSS 6 x 6 x \frac{3}{8} \\ (A500 GR.B) \end{array} $	MPC.1	$\begin{cases} \frac{1}{2} x 5'' w A572 Gr50 \\ PL, tw = \frac{3}{8} Lw = 5'' \end{cases}$	7/LSF-5.0		33 MIL STEEL SHEET (33Ksi BLOCKED)	2 / 12	#12 SCREW AT 6" ON-CENTER
	1	97-MIL (50 KSI) MIN	HSS 6 x 6 x ³ / ₈ (A500 GR.B)	MPC.1	(4) $\frac{5}{16}$ " x 5"w Weld HSS @ Transfer PL	8/LSF-5.0		33 MIL STEEL SHEET (33Ksi BLOCKED)	2 / 12	3/8" DIA x 1" Gr5 HEX HEAD CAP SCREW AT 6" OC TO BASEPLATE
	10	43-MIL (33 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	27 MIL STEEL SHEET (33Ksi)	6 / 12	#12 SCREW AT 24" ON-CENTER
	9	43-MIL (33 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	27 MIL STEEL SHEET (33Ksi)	6 / 12	#12 SCREW AT 16" ON-CENTER
	8	43-MIL (33 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	27 MIL STEEL SHEET (33Ksi)	4 / 12	#12 SCREW AT 9" ON-CENTER
AT W3 & E	7	43-MIL (33 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	27 MIL STEEL SHEET (33Ksi)	4 / 12	#12 SCREW AT 9" ON-CENTER
/-3 /ALL / ES C {	6	43-MIL (33 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	27 MIL STEEL SHEET (33Ksi)	2/12	#12 SCREW AT 12" ON-CENTER
SW-3 INTERIOR WALL / GRIDLINES C 8	5	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEEL SHEET (33Ksi BLOCKED)	6/12	#12 SCREW AT 12" ON-CENTER
NTER GRI	4	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEĖL SHEET (33Ksi BLOCKED)	4 / 12	#12 SCREW AT 12" ON-CENTER
	3	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEEL SHEET (33Ksi BLOCKED)	4 / 12	#12 SCREW AT 9" ON-CENTER
	2	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEEL SHEET (33Ksi BLOCKED)	4/12	#12 SCREW AT 9" ON-CENTER
	1	54-MIL (50 KSI) MIN	SEE TENSION ROD SYSTEM BY OTHERS				TENSION ROD BY OTHERS	33 MIL STEEL SHEET (33Ksi BLOCKED)	4 / 12	3/8" DIA x 1" Gr5 HEX HEAD CAP SCREW AT 9" OC TO BASEPLATE

NOTES:

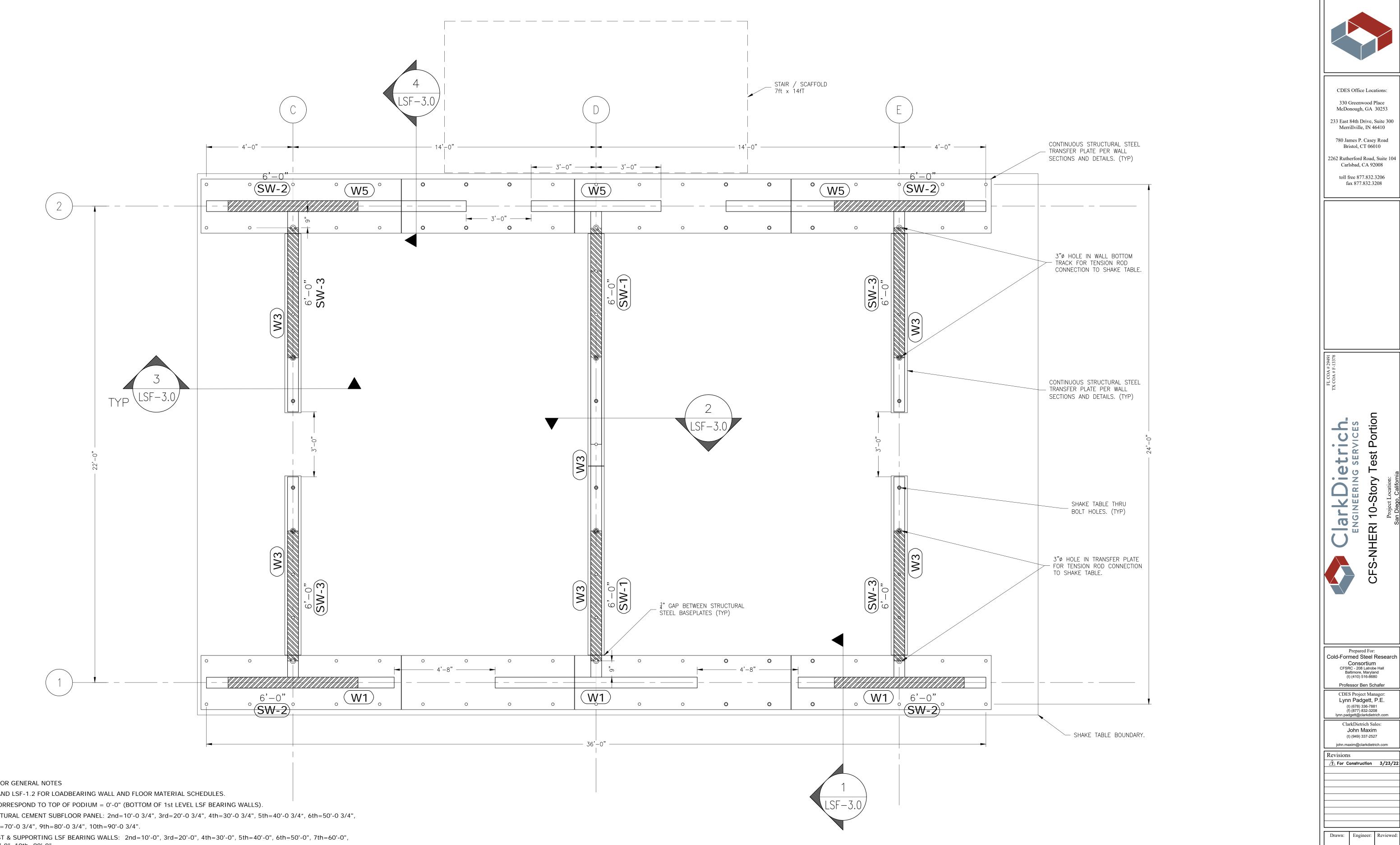
1. BRACE ALL STUDS LATERALLY PER DETAIL 1/LSF-6.0 AT SPACING INDICATED IN WALL SCHEDULE.

2. -27 STEEL SHEETS TO BE ATTACHED WITH #8 SCREWS AND -33 STEEL SHEET TO BE ATTACHED WITH #10 SCREWS. USE A WAFER HEAD OR OTHER LOW PROFILE. 3. ALL HOLDOWN DEVICES INDICATED IN COLUMN (5) SHALL BE THOSE SUPPLIED BY CLARKDIETRICH CLIP EXPRESS. FLAT PLATE IS A36 BAR STOCK BY OTHERS.

4. FASTENER PATTERN REPRESENTS THE PERIMETER FASTENER SPACING / FIELD FASTENER SPACING IN INCHES.

5. 27 MIL AND 33 MIL STEEL SHEETS TO BE ASTM A1003 STRUCTURAL GRADE 33 (ST33H) MINIMUM BUT NOT GREATER THAN GRADE 50 (ST50H). 6. HOLDOWN EMBEDMENT PLATES / ANCHORS INSTALLED AT THE TOP OF SHAKE TABLE SHALL BE ATTACHED TO A REMOVABLE STRUCTURAL STEEL BASEPLATE COMPONENT. THE HSS ENDPOST MAY BE WELDED DIRECTLY TO THE BASEPLATE WITHOUT HOLDOWN PLATES. STEEL BASEPLATE IS DESIGNED BY OTHERS.

7. ALL-THREAD ROD ANCHORS SHALL HAVE (1) A194 GR.2H HEX NUT AND (1) F436 FLAT WASHER EACH END. HEX NUTS TO BE INSTALLED TO A SNUG TIGHT CONDITION. 8. SHEARWALL LOCATIONS AND LENGTHS ARE SHOWN ON PLAN. NOTE THAT HOLDOWNS ABOVE AND BELOW EACH FLOOR MUST ALIGN. FOR END OF SHEARWALLS AT OPENINGS, FURRING TRACK MAY BE NEEDED TO CREATE THE CORRECT ROUGH OPENING.


9. SHEARWALL MINIMUM ON-CENTER STUD MATERIAL IN COLUMN (2) ARE FOR SHEATHING CAPACITY. USE THE WALL SCHEDULE MATERIAL IF HEAVIER. 9. SW-1 AND SW-3 TENSION ROD SYSTEM SHALL BE DESIGNED AND DETAILED BY OTHERS.

	MEMBER PROFILES								
PROFILE	CONFIGURATION	PROFILE	CONFIGURATION	PROFILE	CONFIGURATION	PROFILE	CONFIGURATION	PROFILE	CONFIGURATION
MP1.1	STUD	MP1.2	WALL TRACK	MP1.3	C-SHAPE JOIST	MP1.4	RIM-CHANNEL	MP1.5	RIM-TRACK
MP1.6	HEAVY DUTY STUD	STUD - MP1.7	(2) #10 SCREWS @ 16" O.C. HEAVY DUTY STUD	MP1.8	HEAVY DUTY STUD	MPG.1	(2) #12 SCREWS @ 16" O.C. JOIST BACK-TO-BACK		
								MPC.1	HSS

ONFIGURATION
TRADEREAD RIM-TRACK

DRAWING NOTES

- 1. REFER TO LSF-1.0 FOR GENERAL NOTES
- 2. REFER TO LSF-1.1 AND LSF-1.2 FOR LOADBEARING WALL AND FLOOR MATERIAL SCHEDULES.
- 3. ALL ELEVATIONS CORRESPOND TO TOP OF PODIUM = 0'-0" (BOTTOM OF 1st LEVEL LSF BEARING WALLS).
- 4. TOP OF 3/4" STRUCTURAL CEMENT SUBFLOOR PANEL: 2nd=10'-0 3/4", 3rd=20'-0 3/4", 4th=30'-0 3/4", 5th=40'-0 3/4", 6th=50'-0 3/4", 7th=60'-0 3/4", 8th=70'-0 3/4", 9th=80'-0 3/4", 10th=90'-0 3/4".
- 5. TOP OF FLOOR JOIST & SUPPORTING LSF BEARING WALLS: 2nd=10'-0", 3rd=20'-0", 4th=30'-0", 5th=40'-0", 6th=50'-0", 7th=60'-0", 8th=70'-0", 9th=80'-0", 10th=90'-0".
- 6. TOP OF 3/4" STRUCTURAL CEMENT ROOF PANEL = 100'-0 3/4".
- 7. TOP OF ROOF JOIST & 10th LEVEL LSF BEARING WALLS = 100'-0", ROOFTOP PARAPET ELEVATION = 103'-0".
- 8. STAIR AND SCAFFOLD SYSTEM IS BY OTHERS. SEE SCAFFOLD SUPPLIER/INSTALLER DRAWINGS.
- 9. C-SHAPE JOIST FRAMING, FLOOR AND ROOF DECK DIAPHRAGM IS SPECIFIED IN THESE LSF PLANS. FLOOR AND ROOF DECK IS 9/16" X 22GA FORMED DECK FASTENED TO LSF FRAMING PER DETAILS WITHIN THESE DRAWINGS.
- 10. VERTICAL LATERAL FORCE RESISTING SYSTEM IS LSF SHEET STEEL SHEARWALLS WITH A COMBINATION OF LSF ENDPOSTS WITH HOLDOWNS, OR HSS HOLDOWNS WITH WELD OR BOLT-ON TENSION PLATES. COMPONENTS AND DETAILS ARE PROVIDED IN THESE DRAWINGS.
- 11. ALL DIMENSIONS ARE SHOWN FOR ENGINEERING AND CONSTRUCTION PURPOSES. UNIVERSITY OF CALIFORNIA SAN DIEGO SHAKE TABLE LAYOUT IS BASIS OF DESIGN FOR THE TEST PORTION LAYOUT.
- 12. TRANSFER PLATE MATERIAL, THICKNESS, AND THREADED ROD CONNECTIONS ARE BY UNIVERSITY OF CALIFORNIA SAN DIEGO.

1 = 1ST LEVEL LSF BEARING WALLS ON SHAKE TABLE1/2" = 1'-0"KEYED NOTES 1. STRONGBACK STUD BRACING LOCATION. SEE DETAIL 12/LSF-6.0.

(N)

DRAWING LEGEND	

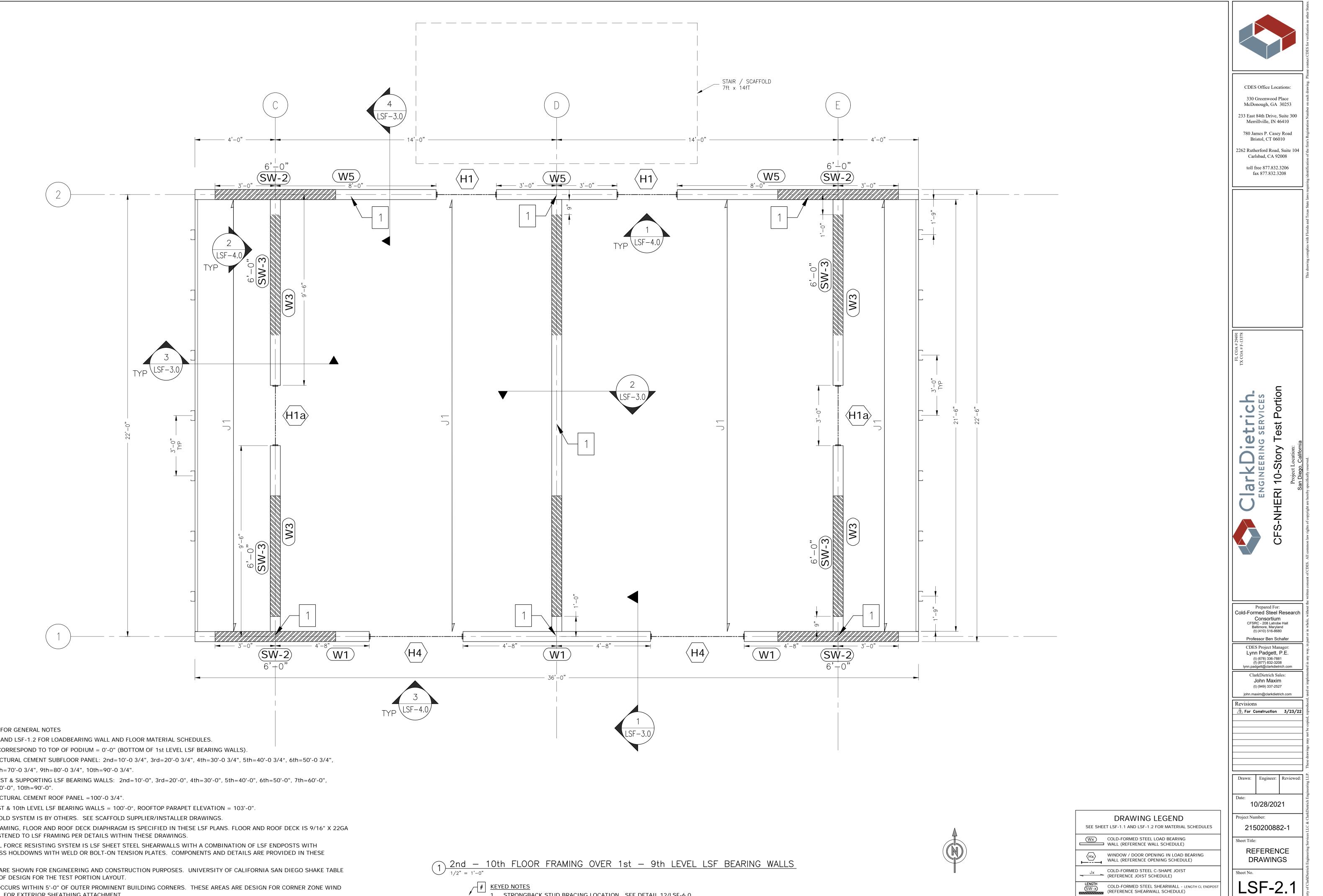
10/28/2021

2150200882-1

REFERENCE

DRAWINGS

LSF-2.0

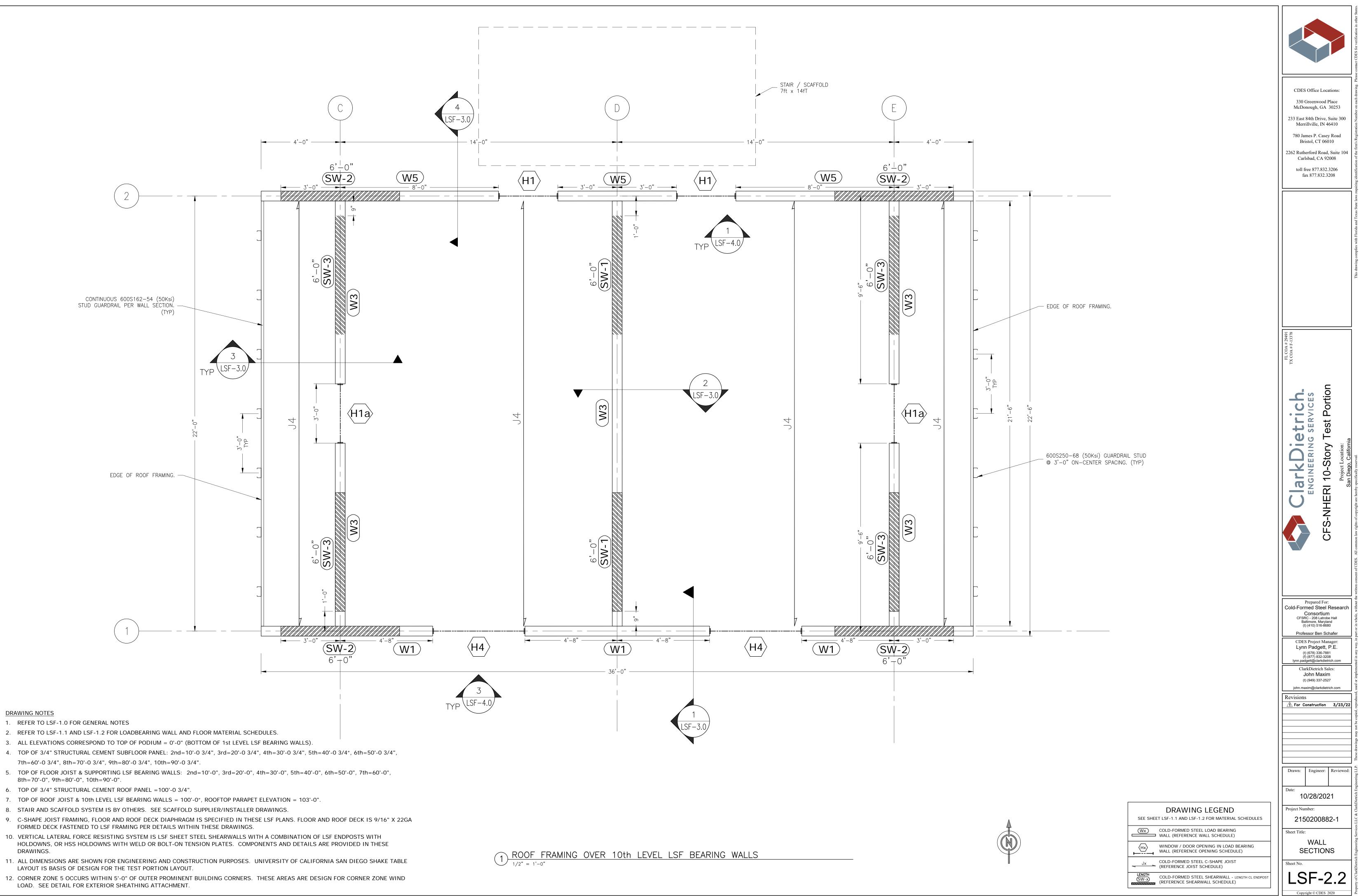

Copyright © C

roject Number:

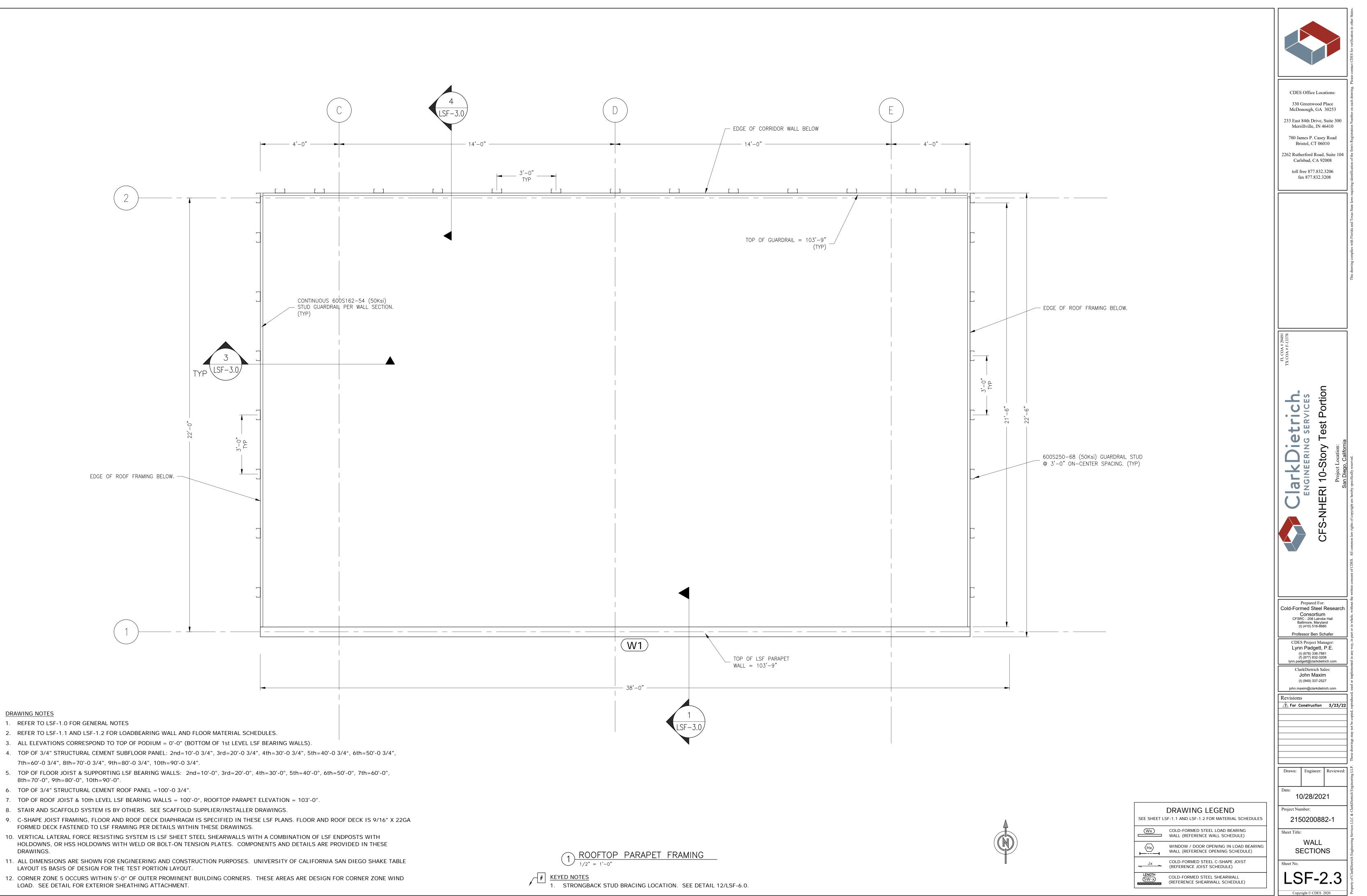
Sheet Title:

Sheet No.

SEE SHEE	T LSF-1.1 AND LSF-1.2 FOR MATERIAL SCHEDULES
	COLD-FORMED STEEL LOAD BEARING WALL (REFERENCE WALL SCHEDULE)
0	SHAKE TABLE 1 $\frac{3}{4}$ "Ø x 8" FINE THREAD HOLE - (24" ON-CENTER GRID)
0	SHAKE TABLE 2"Ø x 4ft THRU BOLT HOLE - (24" ON-CENTER GRID)
•	SHAKE TABLE 2"Ø x 7ft THRU BOLT HOLE - (24" ON-CENTER GRID)
LENGTH SW-X	COLD-FORMED STEEL SHEARWALL - LENGTH CL ENDPOST (REFERENCE SHEARWALL SCHEDULE)

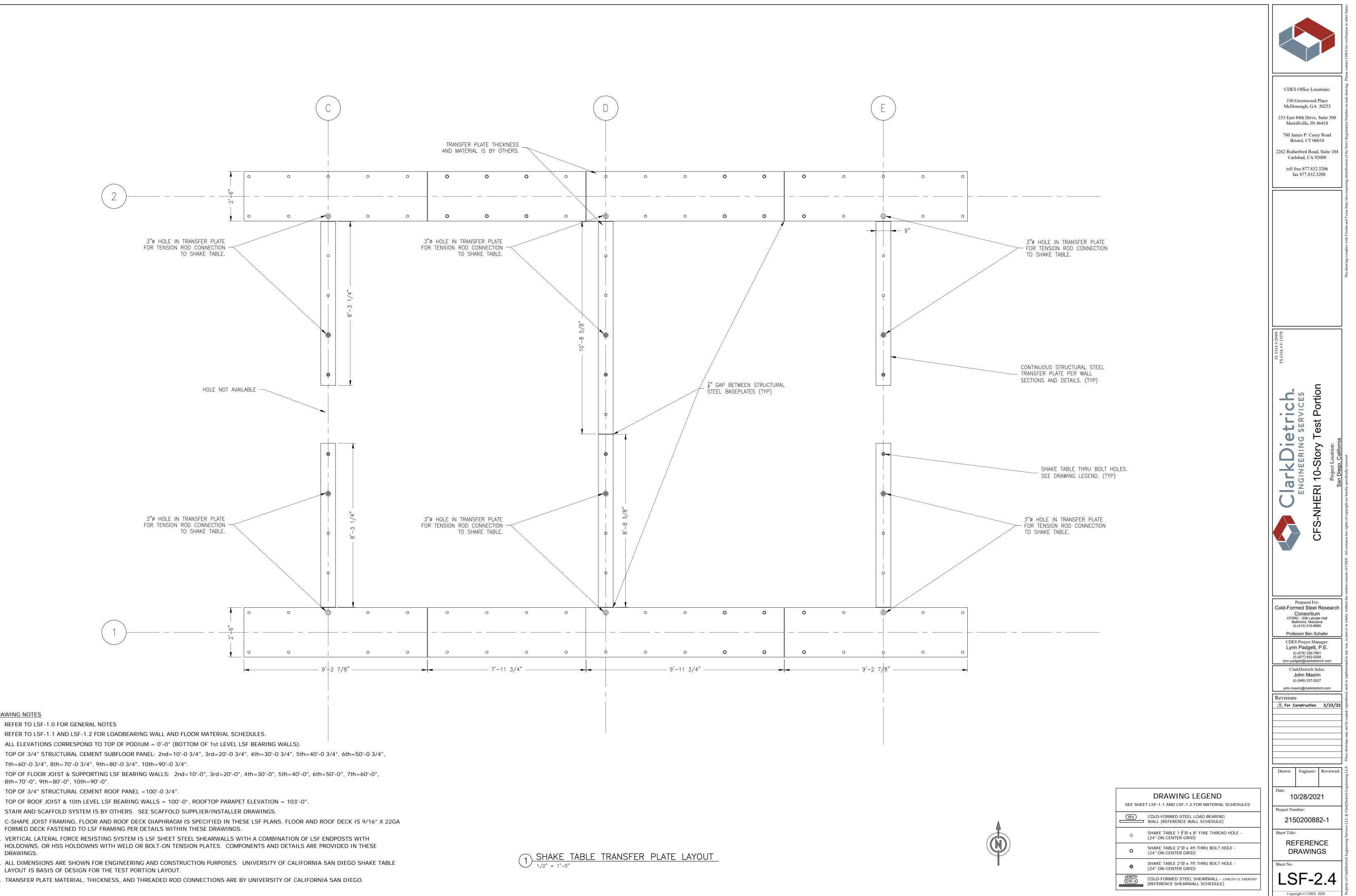


DRAWING NOTES

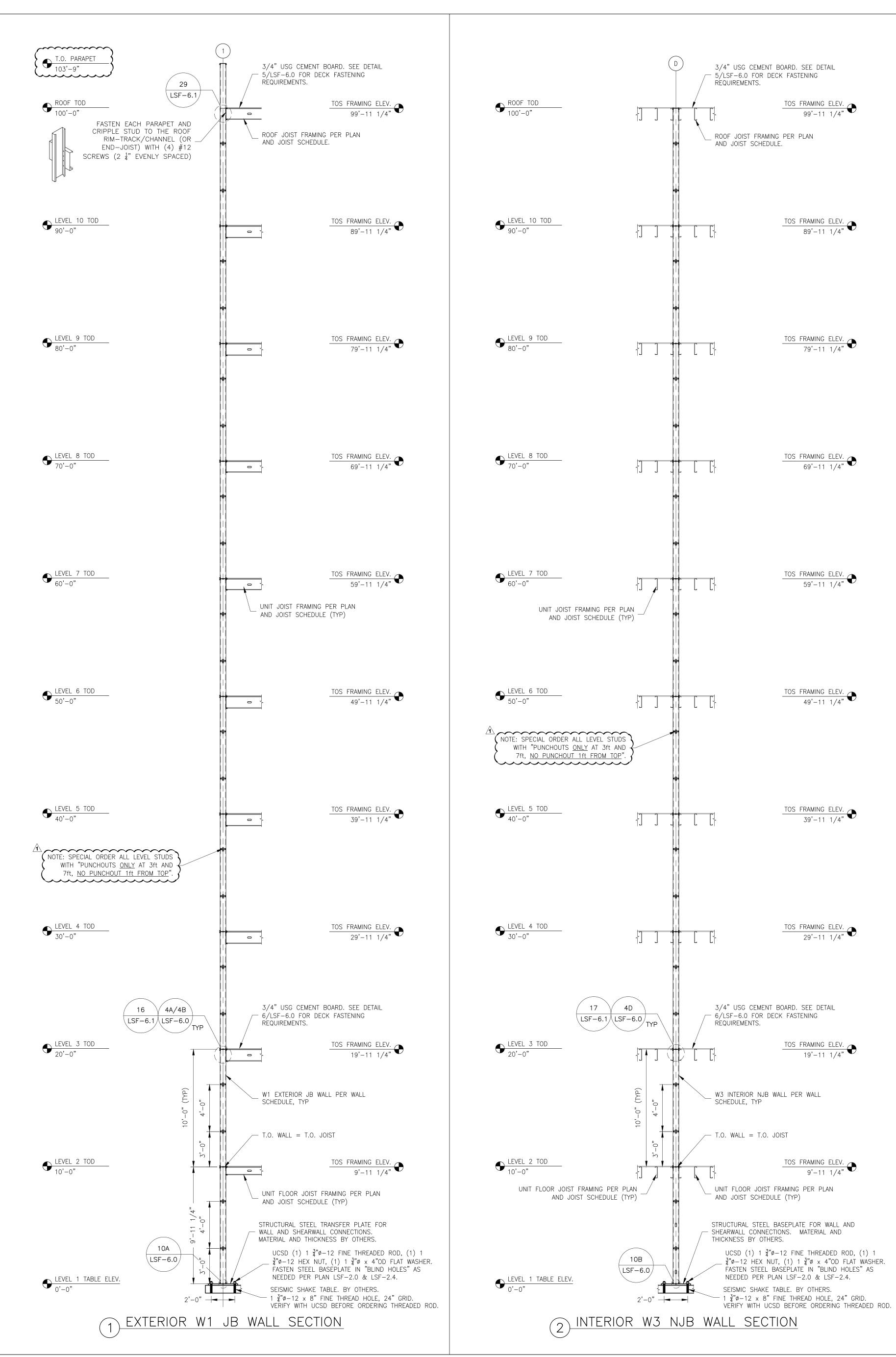

- 1. REFER TO LSF-1.0 FOR GENERAL NOTES
- 2. REFER TO LSF-1.1 AND LSF-1.2 FOR LOADBEARING WALL AND FLOOR MATERIAL SCHEDULES.
- 3. ALL ELEVATIONS CORRESPOND TO TOP OF PODIUM = 0'-0" (BOTTOM OF 1st LEVEL LSF BEARING WALLS).
- 4. TOP OF 3/4" STRUCTURAL CEMENT SUBFLOOR PANEL: 2nd=10'-0 3/4", 3rd=20'-0 3/4", 4th=30'-0 3/4", 5th=40'-0 3/4", 6th=50'-0 3/4", 7th=60'-0 3/4", 8th=70'-0 3/4", 9th=80'-0 3/4", 10th=90'-0 3/4".
- 5. TOP OF FLOOR JOIST & SUPPORTING LSF BEARING WALLS: 2nd=10'-0", 3rd=20'-0", 4th=30'-0", 5th=40'-0", 6th=50'-0", 7th=60'-0", 8th=70'-0", 9th=80'-0", 10th=90'-0".
- 6. TOP OF 3/4" STRUCTURAL CEMENT ROOF PANEL =100'-0 3/4".
- 7. TOP OF ROOF JOIST & 10th LEVEL LSF BEARING WALLS = 100'-0", ROOFTOP PARAPET ELEVATION = 103'-0".
- 8. STAIR AND SCAFFOLD SYSTEM IS BY OTHERS. SEE SCAFFOLD SUPPLIER/INSTALLER DRAWINGS.
- 9. C-SHAPE JOIST FRAMING, FLOOR AND ROOF DECK DIAPHRAGM IS SPECIFIED IN THESE LSF PLANS. FLOOR AND ROOF DECK IS 9/16" X 22GA FORMED DECK FASTENED TO LSF FRAMING PER DETAILS WITHIN THESE DRAWINGS.
- 10. VERTICAL LATERAL FORCE RESISTING SYSTEM IS LSF SHEET STEEL SHEARWALLS WITH A COMBINATION OF LSF ENDPOSTS WITH HOLDOWNS, OR HSS HOLDOWNS WITH WELD OR BOLT-ON TENSION PLATES. COMPONENTS AND DETAILS ARE PROVIDED IN THESE DRAWINGS.
- 11. ALL DIMENSIONS ARE SHOWN FOR ENGINEERING AND CONSTRUCTION PURPOSES. UNIVERSITY OF CALIFORNIA SAN DIEGO SHAKE TABLE LAYOUT IS BASIS OF DESIGN FOR THE TEST PORTION LAYOUT.
- 12. CORNER ZONE 5 OCCURS WITHIN 5'-0" OF OUTER PROMINENT BUILDING CORNERS. THESE AREAS ARE DESIGN FOR CORNER ZONE WIND LOAD. SEE DETAIL FOR EXTERIOR SHEATHING ATTACHMENT.

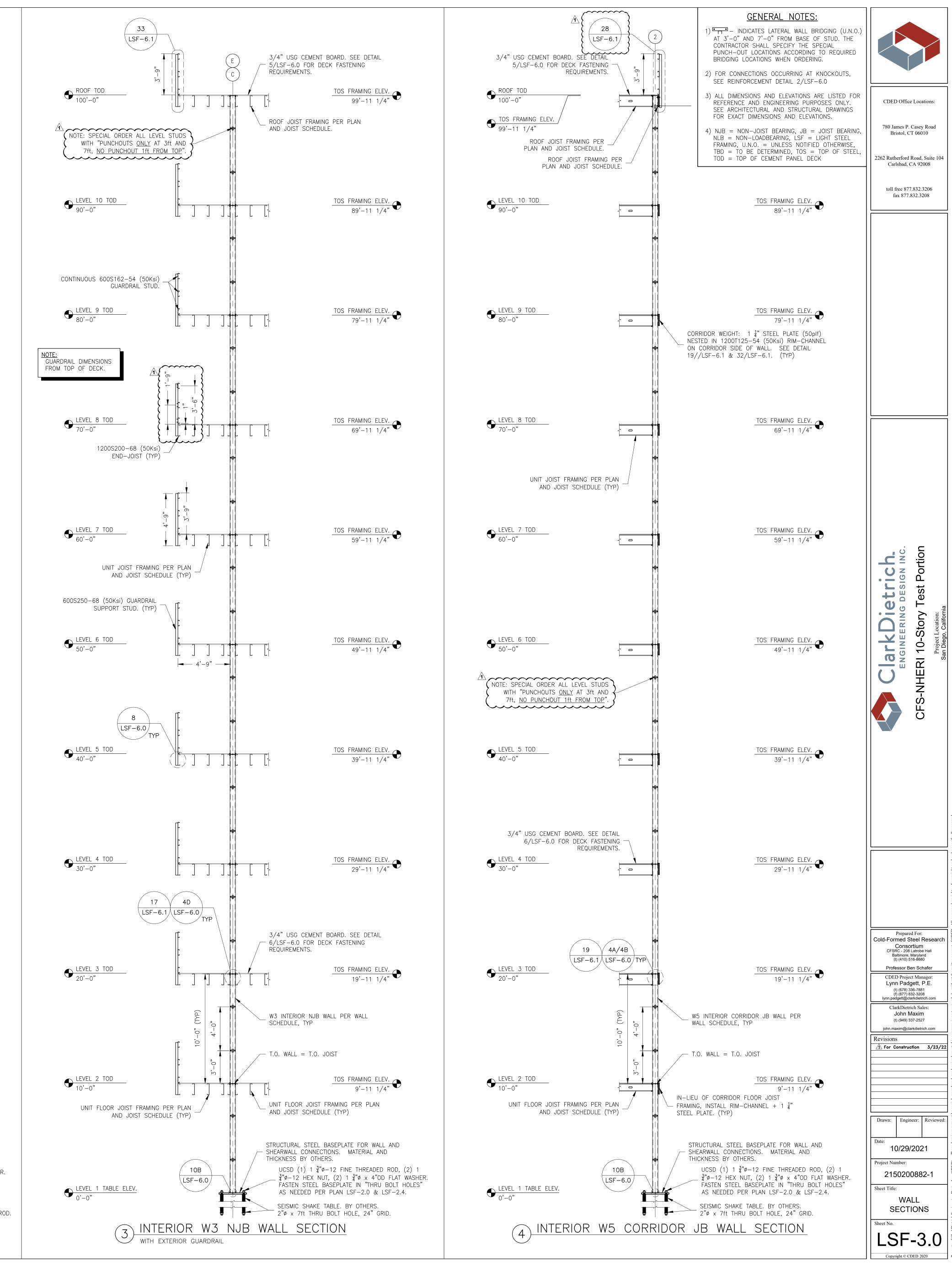
KEYED NOTES 1. STRONGBACK STUD BRACING LOCATION. SEE DETAIL 12/LSF-6.0.

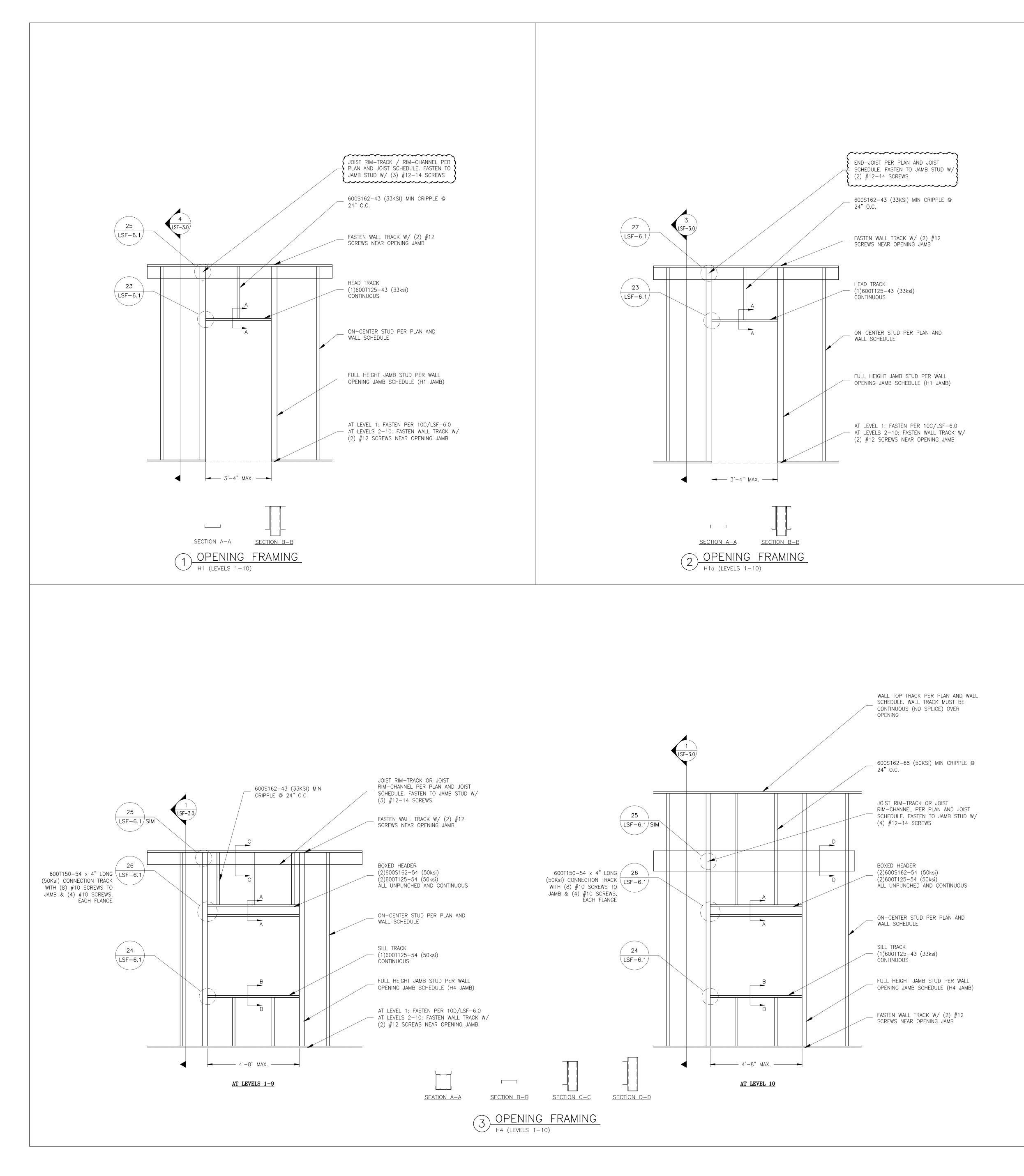
Copyright © CDES 2020



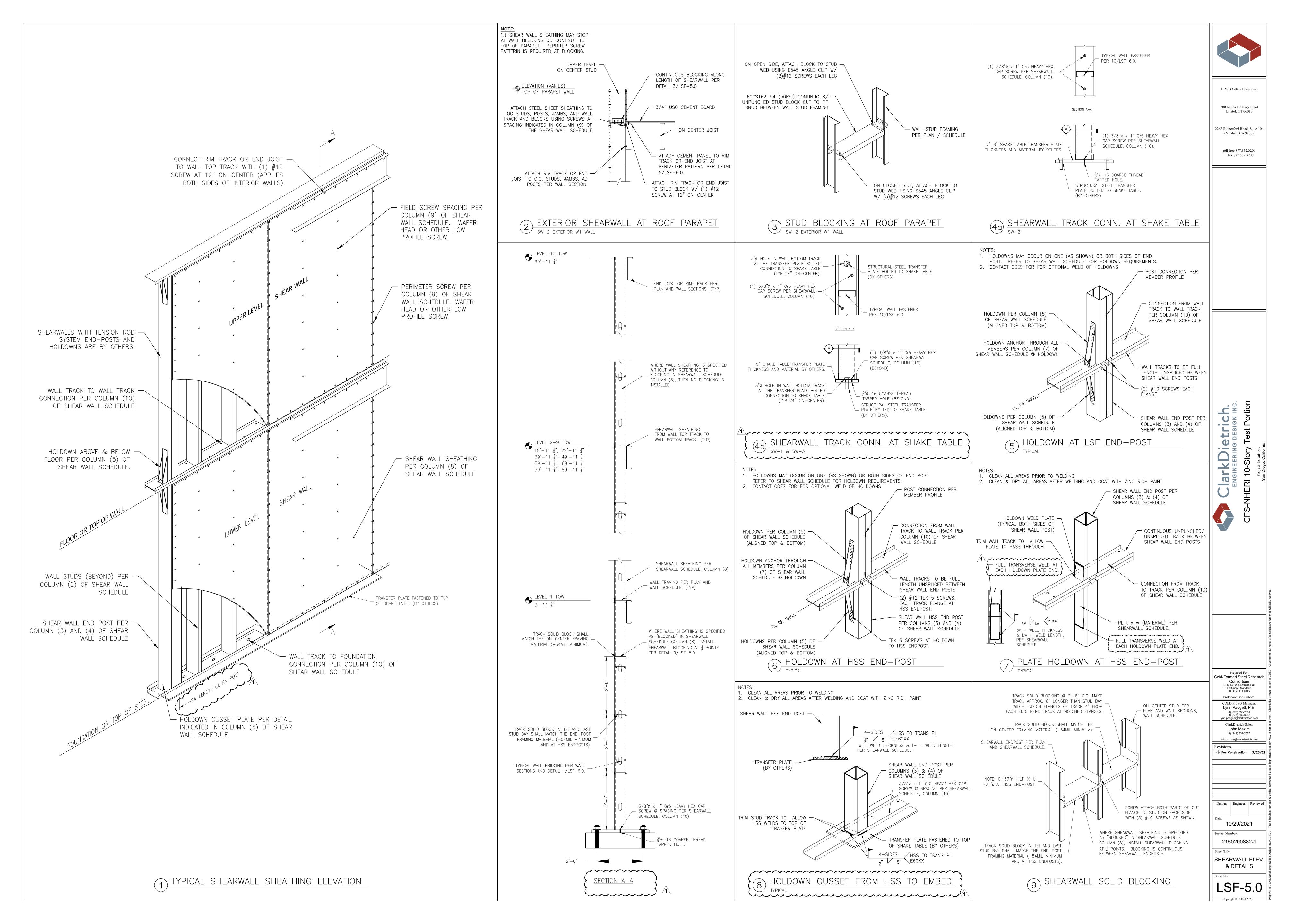
- 4. TOP OF 3/4" STRUCTURAL CEMENT SUBFLOOR PANEL: 2nd=10'-0 3/4", 3rd=20'-0 3/4", 4th=30'-0 3/4", 5th=40'-0 3/4", 6th=50'-0 3/4",
- 5. TOP OF FLOOR JOIST & SUPPORTING LSF BEARING WALLS: 2nd=10'-0", 3rd=20'-0", 4th=30'-0", 5th=40'-0", 6th=50'-0", 7th=60'-0", 8th=70'-0", 9th=80'-0", 10th=90'-0".
- 6. TOP OF 3/4" STRUCTURAL CEMENT ROOF PANEL = 100'-0 3/4".
- 7. TOP OF ROOF JOIST & 10th LEVEL LSF BEARING WALLS = 100'-0", ROOFTOP PARAPET ELEVATION = 103'-0".
- 8. STAIR AND SCAFFOLD SYSTEM IS BY OTHERS. SEE SCAFFOLD SUPPLIER/INSTALLER DRAWINGS.
- 9. C-SHAPE JOIST FRAMING, FLOOR AND ROOF DECK DIAPHRAGM IS SPECIFIED IN THESE LSF PLANS. FLOOR AND ROOF DECK IS 9/16" X 22GA FORMED DECK FASTENED TO LSF FRAMING PER DETAILS WITHIN THESE DRAWINGS.
- 10. VERTICAL LATERAL FORCE RESISTING SYSTEM IS LSF SHEET STEEL SHEARWALLS WITH A COMBINATION OF LSF ENDPOSTS WITH HOLDOWNS, OR HSS HOLDOWNS WITH WELD OR BOLT-ON TENSION PLATES. COMPONENTS AND DETAILS ARE PROVIDED IN THESE DRAWINGS.
- 11. ALL DIMENSIONS ARE SHOWN FOR ENGINEERING AND CONSTRUCTION PURPOSES. UNIVERSITY OF CALIFORNIA SAN DIEGO SHAKE TABLE LAYOUT IS BASIS OF DESIGN FOR THE TEST PORTION LAYOUT.
- 12. CORNER ZONE 5 OCCURS WITHIN 5'-0" OF OUTER PROMINENT BUILDING CORNERS. THESE AREAS ARE DESIGN FOR CORNER ZONE WIND LOAD. SEE DETAIL FOR EXTERIOR SHEATHING ATTACHMENT.

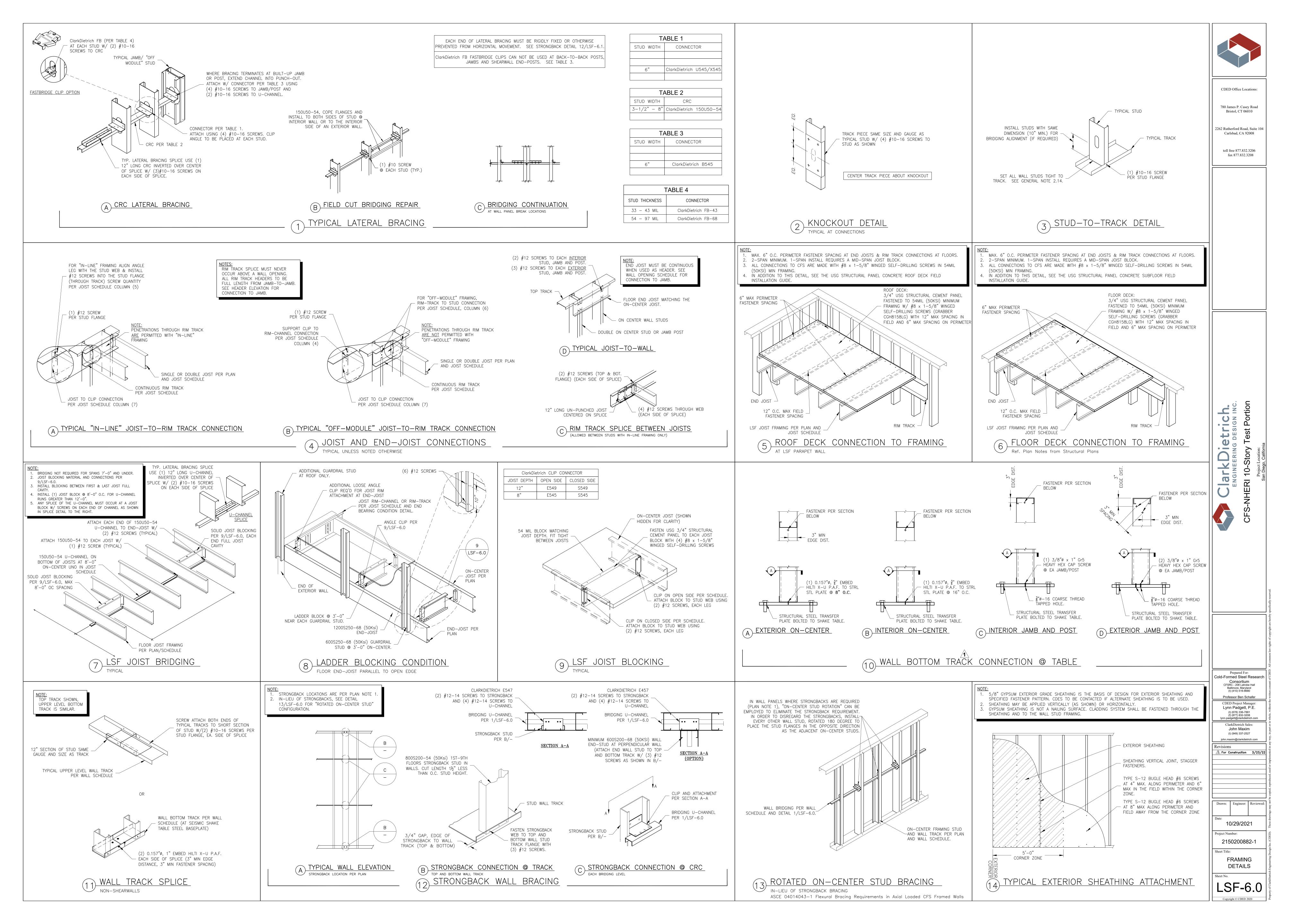

5. TOP OF FLOOR JOIST & SUPPORTING LSF BEARING WALLS: 2nd=10'-0", 3rd=20'-0", 4th=30'-0", 5th=40'-0", 6th=50'-0", 7th=60'-0", 8th=70'-0", 9th=80'-0", 10th=90'-0".

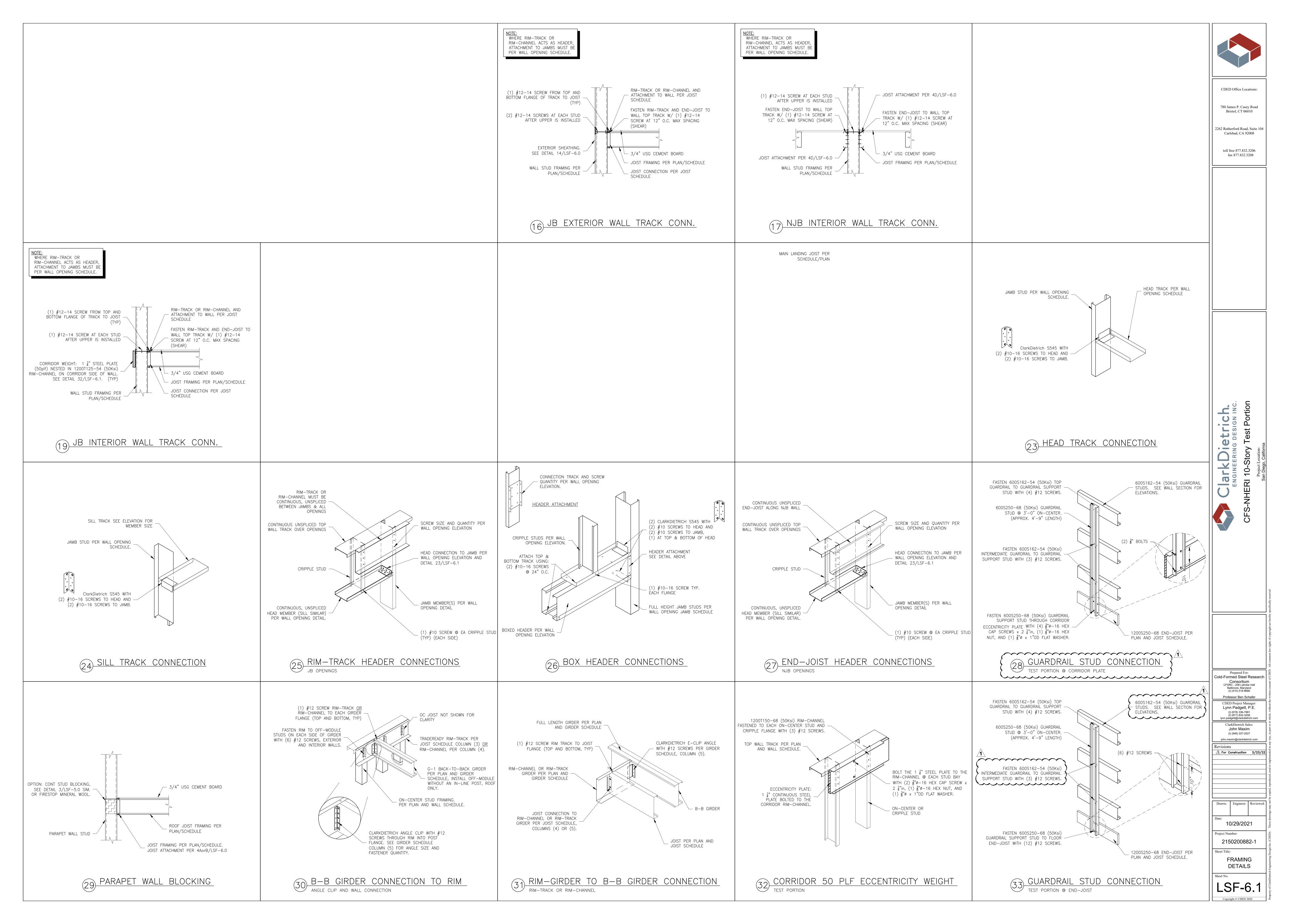

- 6. TOP OF 3/4" STRUCTURAL CEMENT ROOF PANEL =100'-0 3/4".
- 7. TOP OF ROOF JOIST & 10th LEVEL LSF BEARING WALLS = 100'-0", ROOFTOP PARAPET ELEVATION = 103'-0".
- 8. STAIR AND SCAFFOLD SYSTEM IS BY OTHERS. SEE SCAFFOLD SUPPLIER/INSTALLER DRAWINGS.
- 9. C-SHAPE JOIST FRAMING, FLOOR AND ROOF DECK DIAPHRAGM IS SPECIFIED IN THESE LSF PLANS. FLOOR AND ROOF DECK IS 9/16" X 22GA FORMED DECK FASTENED TO LSF FRAMING PER DETAILS WITHIN THESE DRAWINGS.
- 10. VERTICAL LATERAL FORCE RESISTING SYSTEM IS LSF SHEET STEEL SHEARWALLS WITH A COMBINATION OF LSF ENDPOSTS WITH HOLDOWNS, OR HSS HOLDOWNS WITH WELD OR BOLT-ON TENSION PLATES. COMPONENTS AND DETAILS ARE PROVIDED IN THESE DRAWINGS.
- 11. ALL DIMENSIONS ARE SHOWN FOR ENGINEERING AND CONSTRUCTION PURPOSES. UNIVERSITY OF CALIFORNIA SAN DIEGO SHAKE TABLE LAYOUT IS BASIS OF DESIGN FOR THE TEST PORTION LAYOUT.
- 12. CORNER ZONE 5 OCCURS WITHIN 5'-0" OF OUTER PROMINENT BUILDING CORNERS. THESE AREAS ARE DESIGN FOR CORNER ZONE WIND LOAD. SEE DETAIL FOR EXTERIOR SHEATHING ATTACHMENT.


DRAWING NOTES

- 1. REFER TO LSF-1.0 FOR GENERAL NOTES
- 2. REFER TO LSF-1.1 AND LSF-1.2 FOR LOADBEARING WALL AND FLOOR MATERIAL SCHEDULES.
- 3. ALL ELEVATIONS CORRESPOND TO TOP OF PODIUM = 0'-0" (BOTTOM OF 1st LEVEL LSF BEARING WALLS).
- 4. TOP OF 3/4" STRUCTURAL CEMENT SUBFLOOR PANEL: 2nd=10'-0 3/4", 3rd=20'-0 3/4", 4th=30'-0 3/4", 5th=40'-0 3/4", 6th=50'-0 3/4",
- 5. TOP OF FLOOR JOIST & SUPPORTING LSF BEARING WALLS: 2nd=10'-0", 3rd=20'-0", 4th=30'-0", 5th=40'-0", 6th=50'-0", 7th=60'-0", 8th=70'-0", 9th=80'-0", 10th=90'-0".
- 6. TOP OF 3/4" STRUCTURAL CEMENT ROOF PANEL =100'-0 3/4".
- 7. TOP OF ROOF JOIST & 10th LEVEL LSF BEARING WALLS = 100'-0", ROOFTOP PARAPET ELEVATION = 103'-0".
- 8. STAIR AND SCAFFOLD SYSTEM IS BY OTHERS. SEE SCAFFOLD SUPPLIER/INSTALLER DRAWINGS.
- 9. C-SHAPE JOIST FRAMING, FLOOR AND ROOF DECK DIAPHRAGM IS SPECIFIED IN THESE LSF PLANS. FLOOR AND ROOF DECK IS 9/16" X 22GA FORMED DECK FASTENED TO LSF FRAMING PER DETAILS WITHIN THESE DRAWINGS.
- 10. VERTICAL LATERAL FORCE RESISTING SYSTEM IS LSF SHEET STEEL SHEARWALLS WITH A COMBINATION OF LSF ENDPOSTS WITH HOLDOWNS, OR HSS HOLDOWNS WITH WELD OR BOLT-ON TENSION PLATES. COMPONENTS AND DETAILS ARE PROVIDED IN THESE DRAWINGS.
- 11. ALL DIMENSIONS ARE SHOWN FOR ENGINEERING AND CONSTRUCTION PURPOSES. UNIVERSITY OF CALIFORNIA SAN DIEGO SHAKE TABLE LAYOUT IS BASIS OF DESIGN FOR THE TEST PORTION LAYOUT.
- 12. TRANSFER PLATE MATERIAL, THICKNESS, AND THREADED ROD CONNECTIONS ARE BY UNIVERSITY OF CALIFORNIA SAN DIEGO.




rkDietrich Engineering Design Inc. (CDED). These drawings may not be copied, reproduced, used or implemented in any way, in part or in whole, without the written consent of CDED. All common law rights of copyright are hereby specifically reserved.



	GENERAL	N
REFERENCE ARCHITECTU	IONS AND ELEV, AND ENGINEERII RAL AND STRUC NSIONS AND ELI	N
	UD SIZE, GAUGI ID CONNECTION: AS WALL STUDS J.N.O.).	
	CTIONS OCCURF ENT DETAIL 2/L	
NLB = NON FRAMING, U. TBD = TO I	I–JOIST BEARING, –LOADBEARING, N.O. = UNLESS BE DETERMINED, OF CEMENT PA	,

