On the Power of Probabilistic Polynomial Time: (extended Abstract)

Richard Beigel
Lane A. Hemachandra
and
Gerd Wechsung

Department of Computer Science
Johns Hopkins University
Baltimore, MD 21218

June, 1989
Report JHU-89/07
On the Power of Probabilistic Polynomial Time:
\(\mathsf{P}^{\mathsf{NP}[\log]} \subseteq \mathsf{PP} \)
(Extended Abstract)

Richard Beigel \(^{*}\) Lane A. Hemachandra \(^{†}\) Gerd Wechsung \(^{†}\)

Abstract

We show that probabilistic polynomial time is closed under polynomial-time parity reductions. Therefore every set polynomial-time truth-table reducible to SAT (every set in the \(\Theta^p_2 \) level of the polynomial hierarchy) is accepted by a probabilistic polynomial-time Turing machine. Equivalently, \(\mathsf{P}^{\mathsf{NP}[\log]} \subseteq \mathsf{PP} \).

1 Main Results

Comparing the power of various computational paradigms is a core concern of computational complexity theory. In this paper, we study which classes in the polynomial hierarchy are contained in probabilistic polynomial time, \(\mathsf{PP} \).

Near the bottom of the polynomial hierarchy sits \(\mathsf{P}^{\mathsf{NP}[\log]} \), the class of languages accepted by polynomial-time Turing machines allowed \(O(\log n) \) calls to an NP oracle, which was first studied by Papadimitriou and Zachos in [PZ83]. Recently, the class has taken on new importance. The class \(\mathsf{P}^{\mathsf{NP}[\log]} \) defines the \(\Theta^p_2 \) level of Wagner’s refined polynomial hierarchy, has natural complete sets [Kre88, KSW86, Kad87, Wag87a], is equal to the class of sets polynomial-time truth-table reducible to SAT [Hem87, Wag87b, BH88], and is the level to which the polynomial hierarchy collapses under the assumption that \(\mathsf{NP} \) has sparse Turing-complete sets [Kad87].

In [Gil77], Gill showed that \(\mathsf{NP} \) is contained in \(\mathsf{PP} \). In [Rus85], Russo showed that the class \(\mathsf{PP} \) is closed under symmetric difference. Using this observation, Papadimitriou and Yannakakis [PY84] showed that \(\mathsf{DP} \subseteq \mathsf{PP} \), and Balcazar, Diaz, and Gabarro [BDG88] showed that the entire Boolean hierarchy is contained in \(\mathsf{PP} \).\(^1\)

In this paper we extend Russo’s approach, by showing that \(\mathsf{PP} \) is closed under polynomial-time truth-table reductions in which the truth-table implements the parity operation. This yields the corollary that \(\mathsf{P}^{\mathsf{NP}[\log]} \subseteq \mathsf{PP} \).

Definition 1 A set \(A \) is polynomial-time parity reducible to \(B \) (denoted \(A \leq^p_{\text{parity}} B \)) if \(A \leq^p_{\text{tt}} B \) via a truth-table that tests whether an odd number of its inputs belong to \(B \).

Theorem 2 \(\mathsf{PP} \) is closed under \(\leq^p_{\text{parity}} \) reductions.

Proof: Suppose that \(B \in \mathsf{PP} \) via Turing machine \(N \), and that \(A \leq^p_{\text{parity}} B \). We define a machine \(N' \) accepting \(A \) that behaves as follows on input \(x \).

i. Simulate the \(\leq^p_{\text{parity}} \)-reduction from \(A \) to \(B \), until it produces a list of strings \(x_1, \ldots, x_k \) such that \(x \in A \) if and only if an odd number of those strings belong to \(B \).

ii. Guess paths \(\rho_1, \ldots, \rho_k \) of machine \(N \). (This is possible because \(k \) is bounded by a polynomial in \(|x| \).)

iii. Compute the number of strings \(x \) such that \(\rho_i \) is an accepting path of machine \(N \) on input \(x \). Accept if that number is odd.

Though \(N' \) is defined in a most naive fashion, it nonetheless accepts the language \(A \). We proceed to prove this claim. By standard techniques [Gil77], we may assume that \(N \) accepts if more than one-half of

\(^1\)This improved on a result by Papadimitriou and Zachos, who showed that the Boolean hierarchy is contained in \(\mathsf{P}^{\mathsf{NP}[1]} \) [PZ83].

*Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218 USA. Research supported by NSF grant CCR-8808949.

†Department of Computer Science, University of Rochester, Rochester, NY 14627 USA. Research supported by NSF grant CCR-8809174 and a Hewlett-Packard Corporation equipment grant. This author performed some of this research while at Columbia University and while visiting Jen.

‡Sektion Mathematik, Friedrich-Schiller-Universität, Jena, German Democratic Republic.
its paths accept, and that \(N \) rejects if less than one-half of its paths accept. Let \(r_i = \frac{1}{2}(1 - p_i) \) denote the probability that a path of \(N \) accepts input \(x_i \). We define an operation on real numbers as follows

\[
r_1 \circ r_2 = r_1(1 - r_2) + r_2(1 - r_1).
\]

Note that \(r_1 \circ r_2 \) is the probability that exactly one of two randomly chosen paths \(p_1, p_2 \) of machine \(N \) accepts its input string \(x \). It is easily verified that

\[
\frac{1}{2}(1 - p_1) \circ \frac{1}{2}(1 - p_2) = \frac{1}{2}(1 - p_1 p_2).
\]

Hence \(\circ \) is isomorphic to real multiplication, and a simple induction shows that

\[
\frac{1}{2}(1 - p_1) \circ \cdots \circ \frac{1}{2}(1 - p_k) = \frac{1}{2}(1 - p_1 \cdots p_k).
\]

Moreover, that is the probability that a path of \(N \) accepts \(x \). Thus \(N \) accepts \(x \) if and only if an odd number of the real numbers \(p_i \) are negative. Equivalently, \(N \) accepts \(x \) if and only if an odd number of the probabilities \(r_i \) are greater than one-half. In other words \(N \) accepts \(x \) if and only if an odd number of the strings \(x_1, \ldots, x_k \) are accepted by \(N \). Thus \(N \) accepts the language \(A \).

Klaus Wagner has reported a clever proof of Corollary 3 (personal communication). That result can also be obtained as corollary to work by Toda [Tod88].

The results in this paper, [Tod88], and [Gil77] relativize, as do the results of Köbler, Schöning, Toda, and Torán[KSTTT9]. Therefore, Hoene has noted that \(\text{PP} \) contains \(\text{NP} \)-hardness.

\[
\{ A : (\exists B \in \text{P}^{\text{NP}^\text{Hierarchies}})[A \leq^p_{\text{parity}} B] \},
\]

and in particular \(\text{PP} \) contains \(\text{NP}^{\text{P}^\text{Hard}} \).

Acknowledgements

For helpful conversations we are very grateful to Gerhard Buntrock, Mike Fischer, Zvi Galil, Albrecht Hoene, and Dirk Siefkes.

References

[KSTTT9] Johannes Köbler, Uwe Schöning, Seinosuke Tada, and Jacobo Torán. Turing machines with few accepting computations and low sets for \(\text{PP} \).

