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Abstract

The acceleration of the universe at late cosmic times is one of the fundamental

questions in astrophysics today. Larger and larger samples of Type Ia supernovae

(SNe Ia) have been compiled to measure the expansion history of the universe and

in so doing deduce the nature of the dark energy driving the expansion. The goals

of this thesis are to improve SN Ia classification, better understand the relationship

between SNe Ia and their host galaxy properties, and measure the dark energy equa-

tion of state parameter, w, with the largest current sample of SNe Ia. First, I present

observations of a SN Ia at redshift 1.914, one of the most distant SNe Ia to be dis-

covered. I develop new methods to classify this SN using both its light curve and

spectrum, and discuss the unique challenges of determining SN types at high redshift.

Second, I study the dependence of SNe Ia on the star formation environment near the

progenitor. It has been suggested that this dependence is a possible source of large

systematic uncertainties on w. I find no evidence of a relationship between SNe Ia

and their local star formation environments. Third, I measure spectroscopic host

galaxy redshifts for over 3,000 SNe discovered in the Pan-STARRS survey, ∼1,150 of
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which can be used to measure cosmological parameters. These SNe can be used to

measure cosmological parameters if precise redshifts are known. I develop a Bayesian

framework to marginalize over the contaminating distribution of core-collapse (CC)

SNe and find that even with significant CCSN contamination, I can measure w with

a bias of just 0.004 (8% of its statistical uncertainty). Finally, I use these methods to

combine 1,345 SNe from Pan-STARRS and low-redshift compilations with constraints

from the cosmic microwave background, baryon acoustic oscillations, and the locally

measured Hubble constant to measure w.

Primary Reader: Adam Riess
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Chapter 1

Introduction

In the decades since Edwin Hubble first discovered the expanding Universe, the

mystery of its expansion has become greater than he could ever have anticipated.

With the discovery that the Universe is not just expanding but accelerating, it is now

known that the late time evolution of the Universe is dominated by the influence of

“dark energy” (Riess et al., 1998; Perlmutter et al., 1999).

In general relativity, the expansion of a universe comprised of matter, radiation,

and dark energy is governed by the Friedmann equation:

H(a)2 = H2
0 (
ΩR

a4
+

ΩM

a3
+

Ωk

a2
+ ΩΛa

−3(1+w)). (1.1)

As a function of the scale factor of the Universe, a, the Friedmann equation models

the expansion rate of the Universe using the Hubble parameter H(a) = ȧ
a
. H0 is the

Hubble constant, and ΩR, ΩM , Ωk and ΩΛ are the present day energy densities of
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If dark energy is not a cosmological constant, another possible explanation is a

dynamic scalar field, often referred to as “quintessence” dark energy, which would

yield w ≥ −1 depending on the nature of the field. A w less than -1 would imply

so-called “phantom” dark energy, which is thought to be unphysical at the quantum

level and as such would require very exotic physics (Amendola et al., 2013). Finally,

if the equations of General Relativity require modification at long distances, crossing

of the phantom boundary from w > −1 to w < −1 (or vice versa) could be possible

as redshift changes (Bamba et al., 2011).

Insight into these models can be gained through precise measurements of the late

time expansion history of the Universe using Type Ia supernovae (SNe Ia). SNe Ia

are formed by the detonation of a Carbon-Oxygen white dwarf after it has accreted

matter from a binary companion (Livio, 2001). The nature of this binary companion

is unclear (Maoz et al., 2014), as are the physics of the explosion (Hillebrandt &

Niemeyer, 2000). Even the traditionally accepted hypothesis that SN Ia detonation

typically occurs just below 1.39M�, the Chandrasekhar limit for the maximum mass

of a white dwarf, is a subject of considerable debate (e.g. Howell, 2011). In spite

of this uncertainty, the homogeneity of SNe Ia and their excellent accuracy as cosmic

distance indicators is unambiguous, once two empirical relationships have been taken

into account: the relation between light curve width and SN luminosity (Phillips,

1993) and the relation between light curve color and SN luminosity (Tripp, 1998; Riess

et al., 1996). After correcting for these relationships, SNe Ia can be used to measure
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distances with up to ∼6% accuracy and are luminous enough to be discovered at up

to z ∼ 2 with current telescopes (Jones et al., 2013; Rodney et al., 2015).

SNe Ia are the best probe of cosmic expansion during the dark-energy dominated

phase of the Universe, z . 0.5, but measuring w precisely also requires constraints

on the cosmic matter density. These constraints can be determined from the CMB

temperature power spectrum, which gives constraints on ΩM at z ∼ 1090 (Planck

Collaboration et al., 2015). Matter-dominated cosmic epochs are largely independent

of evolving or non-constant dark energy (see Figure 1.1). Baryon acoustic oscillations,

the size of the acoustic wave imprint on the galaxy density correlation function,

complement SN Ia distances at z & 0.3. At z . 0.3, measurements of the acoustic

peak are limited by the weak BAO signal, which requires enormous cosmic volumes

for a precise measurement (Weinberg et al., 2013). The BAO feature is proportional

to the Hubble parameter H(z).

In conjunction with improvements in CMB and BAO data, larger and larger sam-

ples of accurate SN Ia distances have been compiled over the last 20 years, beginning

in the mid-1990s with 29 SNe Ia from Calan/Tololo (Hamuy et al., 1996) and 22 from

the CfA1 survey (Riess et al., 1999). The most recent measurement of w uses a com-

pilation of 740 SNe Ia, including those early SN samples, additional low-z SN data

(Jha et al., 2006; Hicken et al., 2009c,a; Contreras et al., 2010; Folatelli et al., 2010),

Sloan Digital Sky Survey (SDSS) SNe Ia (Alam et al., 2015; Kessler et al., 2009a),

and SuperNova Legacy Survey (SNLS) SNe Ia out to z ∼ 1. It also uses SNe Ia out
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to z ∼ 2 discovered by the Hubble Space Telescope (Riess et al., 2007). High-z SNe

can give new insights into possible variations of the dark energy equation of state in

(likely) matter-dominated epochs (Rodney et al., 2012). In Chapter 2, I present the

discovery of one such SN Ia, focusing primarily on the unique challenges of classifying

SNe Ia at z > 1.5.

Combined with the most recent BAO constraints (Anderson et al., 2014; Ross

et al., 2015), CMB temperature and lensing data from Planck Collaboration et al.

(2015), and SNe Ia from Betoule et al. (2014), the best current measurement of w is

w = −1.006 ± 0.045. Statistical and systematic uncertainties on this measurement

are approximately equal. The primary goal of current efforts in SN Ia cosmology is

to reduce both the statistical and systematic uncertainties on w.

Calibration of the photometric system has long been the dominant systematic

uncertainty on w, but several important systematic uncertainties due to SN physics

are just beginning to be studied and included in the measurement error. In particular,

it has been suggested that the relationship between SN color and luminosity could

evolve with redshift (Conley et al., 2011). Furthermore, our understanding of SN

physics has been complicated by the discovery of a relationship between SN luminosity

(after shape and color correction) and the mass of the SN host galaxy (the mass step;

Kelly et al., 2010; Lampeitl et al., 2010; Sullivan et al., 2010). The underlying cause of

the mass step is unclear, though hypotheses exist (e.g. Hayden et al., 2013; Childress

et al., 2014). Also unclear is whether the uncertain nature of the mass step contributes
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significantly to the systematic uncertainty on w. For example, it has been suggested

that the size of the mass step could change with redshift due to the changing mean

ages of SN progenitors (Childress et al., 2014), thereby biasing SN Ia distances, and

also that perhaps the host galaxy environment within a ∼few kpc of the SN might

better correlate with the SN luminosity (Rigault et al., 2013, 2015).

In this thesis, I present one aspect of SN Ia systematic uncertainties. In Chapter 3,

I discuss whether the local SN environment indeed correlates with SN Ia luminosity,

and whether this effect could cause suggest unforeseen systematic uncertainties in not

just the dark energy equation of state but also H0.

In addition to systematic uncertainties, statistical uncertainties will be reduced

with the thousands of new SNe that were discovered by Pan-STARRS (Kaiser et al.,

2010), are currently being discovered by the Dark Energy Survey (Bernstein et al.,

2012), and will soon be discovered by the Large Synoptic Survey Telescope. Un-

fortunately, obtaining spectroscopic classifications for so many SNe − previously a

prerequisite for cosmological analyses with SNe Ia − will be prohibitively expensive.

Without spectroscopic classifications, core-collapse (CC) SNe will contaminate the

SN Ia sample and bias measurements of cosmological parameters.

To address this complication, in Chapters 4 and 5 I present the Pan-STARRS

SN Ia sample. Pan-STARRS observed 5,200 SNe over its 4 years of operation, but

obtained spectroscopic classifications for just 10%. With my collaborators, I measured

spectroscopic host galaxy redshifts for over 3,000 of these SNe in order to use them

6
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to measure w.

The Pan-STARRS sample consists of ∼90% SNe Ia, which are excellent distance

indicators, and ∼10% core-collapse (CC) SNe, which are not. In Chapter 4, I present

a Bayesian framework for marginalizing over the CCSNe in the data and measuring

accurate SN Ia distances from this contaminated sample. I test the method on simula-

tions, finding that it can be used to give a measurement of w with negligible bias due

to CCSN contamination. In Chapter 5, I use these methods to measure cosmological

parameters by combining SNe, cosmic microwave background measurements, baryon

acoustic oscillations, and local measurements of the Hubble constant.

Chapters 2 and 3 have been published in The Astrophysical Journal (ApJ), and

Chapter 4 is currently in press for publication in ApJ. Chapter 5 is in preparation for

publication and will be submitted in 2017.
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Chapter 2

The Discovery of the Most Distant

Known Type Ia Supernova at

Redshift 1.914

2.1 Abstract

We present the discovery of a Type Ia supernova (SN) at redshift z = 1.914 from

the CANDELS multi-cycle treasury program on the Hubble Space Telescope (HST).

This SN was discovered in the infrared using the Wide-Field Camera 3, and it is

the highest-redshift Type Ia SN yet observed. We classify this object as a SN Ia by

comparing its light curve and spectrum with those of a large sample of Type Ia and

core-collapse SNe. Its apparent magnitude is consistent with that expected from the
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ΛCDM concordance cosmology. We discuss the use of spectral evidence for classifica-

tion of z > 1.5 SNe Ia using HST grism simulations, finding that spectral data alone

can frequently rule out SNe II, but distinguishing between SNe Ia and SNe Ib/c can

require prohibitively long exposures. In such cases, a quantitative analysis of the light

curve may be necessary for classification. Our photometric and spectroscopic classi-

fication methods can aid the determination of SN rates and cosmological parameters

from the full high-redshift CANDELS SN sample.

2.2 Introduction

Over the past decade, measurements of Type Ia supernovae (SNe) at redshift

z & 1 have extended the observed population to a time when the universe was matter

dominated (Riess et al., 2001, 2004, 2007; Suzuki et al., 2012; Rodney et al., 2012;

Rubin et al., 2012). At these lookback times of & 7Gyr, the predicted effects of dark

energy are small, while the typical conditions under which SNe form are increasingly

different from local environments.

These characteristics may allow observations at high redshift to constrain an evo-

lutionary change in SN Ia brightness independent of our understanding of dark energy.

This type of systematic shift in magnitude could be caused by changing metallicity

or progenitor masses (e.g., Domı́nguez et al., 2001). Such an effect could be present

at a lower level in intermediate-redshift SN samples (0.2 . z . 1.0), and therefore
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be a source of uncertainty in the determination of the dark energy equation-of-state

parameter (w = P/(ρc2); Riess & Livio, 2006).

Observations of high-redshift SNe Ia could also place constraints on the binary

companions of SN progenitors. The two most likely SN Ia progenitor models are the

single-degenerate scenario, where a white dwarf accretes matter from a main-sequence

or giant companion, and the double-degenerate scenario, where SNe occur through the

merging of two carbon-oxygen (C-O) white dwarfs. A substantial difference between

these mechanisms, however, is the typical time interval from progenitor formation to

explosion; progenitors would likely take & 109 yr to reach the Chandrasekhar limit

by mass transfer from a nondegenerate companion, but would more often take less

time in a system of two C-O white dwarfs (for a recent review of SN Ia progenitors,

see Wang & Han, 2012). The distribution of times between formation and explosion,

known as the delay-time distribution (DTD), can therefore be used to set constraints

on SN progenitor models. Observations of SN rates measure the convolution of the

DTD with the cosmic star-formation history, and high-redshift rates are the most

sensitive to delay times (Strolger et al., 2010; Graur et al., 2011).

Due to the high sensitivity and angular resolution of the Hubble Space Telescope

(HST), its Advanced Camera for Surveys (ACS) has been an effective instrument for

observing and monitoring SNe out to z ≈ 1.5. To find SNe at higher redshifts in the

rest-frame optical, where they are brightest and we understand them best, searching

in the near-infrared (IR) with the recently installed Wide-Field Camera 3 (WFC3)

10



CHAPTER 2. LOCAL SN ENVIRONMENT

WFC3 F160W + F125W Discovery Image

SN Location

2010 Dec 30.7

SN �: 02:17:46
      �: -05:15:23

N

E

Grism dispersion directions

1 arcsec

Difference 
   Image

Figure 2.1: The WFC3 F160W + F125W discovery and difference images (using a late-time, SN-

free template) for SN UDS10Wil. The SN is located ∼ 0′′.1 from the center of the host galaxy (2

ACS pixels). The contours plotted on the difference image of the SN (upper left) show the regions

containing 68% and 95% of the host galaxy light. The center of the nearest neighboring galaxy,

which causes minimal lensing of the SN (see §2.5.1), is located ∼ 1′′.5 away.

allows SN surveys to reach unprecedented depths not accessible from the ground

(F160W limiting Vega magnitude ∼ 25.5, equal to the peak observed brightness of a

typical SN Ia at z ≈ 2.5).

In this paper we present observations of a SN Ia at z = 1.91 (SN UDS10Wil),

the highest-redshift SN Ia discovered to date. It was found in the Cosmic Assembly

Near-infrared Deep Extragalactic Legacy Survey (CANDELS, PI: Faber & Ferguson;

Grogin et al., 2011; Koekemoer et al., 2011). The full CANDELS SN sample is

designed to measure SN rates and to study SN systematics at redshifts greater than
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1.5. Similar to SN Primo, a z = 1.55 WFC3-discovered SN (Rodney et al., 2012;

Frederiksen et al., 2012), UDS10Wil also has spectroscopic evidence for classification.

We present the discovery of SN UDS10Wil in §2. Section 3 discusses its classification

from photometry and HST grism spectroscopy. In §4 we estimate the brightness

correction due to gravitational lensing and fit the light curve. We discuss our results

and the HST spectral classification in §5, and our conclusions are given in §6.

2.3 Discovery

SN UDS10Wil was discovered in the second epoch of CANDELS observations of

the UKIDSS Ultra-Deep Survey field (UDS; Lawrence et al., 2007; Cirasuolo et al.,

2007) on 2010 December 30, after subtracting the images obtained in the first epoch

(2010 November 11). It was detected at high significance in both F160W and F125W

difference images, while a flux decrement was seen at the same location in the ACS

filter F814W difference image (detected at ∼ 2.5σ). The SN searching is performed

by eye in the difference images, and in this case we could only subtract the first epoch

of UDS observations (50 days before) from the second epoch, as no earlier WFC3 data

were available. The F814W flux decrement suggests that pre-maximum SN light was

present in the first epoch of UDS observations. Thus, the SN was brighter in the

pre-maximum, shorter-wavelength ACS imaging.

The WFC3 (F125W + F160W) discovery-epoch image of SN UDS10Wil is shown
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Table 2.1. Photometric Observations

UT Date MJD Filter Exposure Time Flux (counts s−1) Vega Mag

2010 Nov. 08.8 55508.1 ACS/F814W 3517.0 0.143 ± 0.054 27.635 ± 0.413

2010 Nov. 11.2 55511.2 WFC3/F160W 1605.8 0.517 ± 0.074 25.221 ± 0.156

2010 Nov. 11.2 55511.2 WFC3/F125W 955.9 0.698 ± 0.096 25.535 ± 0.149

2010 Dec. 28.0∗ 55557.4 ACS/F814W 3817.0 −0.063 ± 0.041 ...

2010 Dec. 30.7∗ 55560.7 WFC3/F160W 1705.9 1.22 ± 0.079 24.290 ± 0.070

2010 Dec. 30.8∗ 55560.8 WFC3/F125W 955.9 1.403 ± 0.102 24.776 ± 0.079

2011 Jan. 12.6 55573.6 WFC3/F160W 3617.6 0.901 ± 0.063 24.616 ± 0.076

2011 Jan. 12.8 55573.8 WFC3/F125W 3617.6 0.759 ± 0.062 25.443 ± 0.089

2011 Jan. 13.6 55574.6 ACS/F850LP 1994.0 −0.018 ± 0.035 ...

2011 Jan. 23.4 55584.3 WFC3/F160W 3667.6 0.780 ± 0.061 24.774 ± 0.085

2011 Jan. 23.4 55584.4 WFC3/F125W 3867.6 0.535 ± 0.059 25.823 ± 0.118

2011 Feb. 04.2 55596.1 WFC3/F160W 3767.6 0.441 ± 0.061 25.392 ± 0.150

2011 Feb. 04.2 55596.1 WFC3/F125W 3717.6 0.437 ± 0.062 26.043 ± 0.154

2011 Feb. 16.1 55608.1 WFC3/F160W 4973.5 0.309 ± 0.058 25.779 ± 0.205

2011 Feb. 16.3 55608.2 WFC3/F125W 4973.5 0.183 ± 0.057 26.989 ± 0.337

2011 Jan. 12.7 55573.7 G141 39088.0 (grism obs) ...

∗Discovery epoch.
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in Figure 2.1, using a late-time (2011 December), SN-free template for the difference

imaging. The J2000 SN coordinates are α = 02h17m46s, δ = −05◦15′23′′. It was

∼ 0′′.1 from the center of its host galaxy (∼ 2 ACS pixels, ∼ 0.9 kpc in distance),

making it highly probable that this galaxy was the host and unlikely that the object

was an active galactic nucleus.

At the time of discovery, we determined the photometric redshift of the host galaxy

to be > 1.5, although this was measured before SN-free WFC3 host-galaxy images

were available. At this redshift, the SN colors (F160W − F814W 3σ upper limit,

and F125W − F160W) were consistent with those expected for a SN Ia at z > 1.5

and inconsistent with a core-collapse (CC) SN, so we triggered follow-up observations

with the X-shooter spectrograph on the ESO Very Large Telescope (VLT) to obtain

a spectroscopic redshift of the host.1

Moreover, we monitored the SN with the HST SN Multi-Cycle Treasury follow-up

program (GO-12099; PI: Riess). We imaged the SN with HST (20 orbits, to obtain

the light curve as well as SN-free template observations) and we obtained G141 grism

spectroscopy (15 orbits, for resolution R ≈ 130).

To measure the photometry of the SN, we subtracted the late-time template im-

ages from the UDS/SN follow-up observations. We measured the flux within a fixed

aperture of 3-pixel radius and estimated errors in the flux from the sky noise of the

nearby background-subtracted image. Details of the HST observations are listed in

1Based on observations made with ESO telescopes at the La Silla Paranal Observatory under
program IDs 086.A-0660 and 089.A-0739.
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Table 2.1, and the grism spectrum is discussed along with the SN classification in

§2.4.2.

2.3.1 Redshift

We remeasured the spectral energy distribution (SED) of the SN UDS10Wil host

galaxy, including photometry from late-time WFC3 and ACS templates as well as

Subaru, UKIRT, and IRAC data. The Balmer break is between the Subaru z band

and the WFC3 J band, making the most likely redshift between 1.8 and 2.2 (see the

lower-left panel of Fig. 2.3). Using the X-shooter spectrum, we narrowed this result

by identifying [O 2] and [O 3] doublets in the host-galaxy spectrum, giving a precise

redshift of 1.914.

The result is also consistent with the HST G141 grism spectrum, which contains

a clear detection of [O 3] λλ4959, 5007. However, the grism spectrum cannot resolve

the doublet, as the spectrum is convolved with both the shape of the host galaxy

and the point-spread function (PSF; combined full width at half-maximum intensity

∼ 116 Å) and sampled at a resolution of only 46.5 Å pixel−1. The VLT spectrum, along

with an analysis of the late-type host galaxy of SN UDS10Wil, will be presented by

Frederiksen et al. (in preparation).
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2.4 Classification

We classified SN UDS10Wil by analyzing its light curve and spectrum, informed by

the host redshift. As detailed below, we first examined the light curve, finding that it

is consistent only with a SN Ia. In particular, the combination of its early-time colors

with its rapid late-time decline rate does not agree with CC SN models. We then

used the spectrum to independently rule out SNe II. While the spectral absorption

features alone are unable to convincingly distinguish between a SN Ia and a SN Ib/c,

SNe II have features that are inconsistent with the data (see Filippenko, 1997 for a

review of SN spectra).

2.4.1 Photometric Classification

To classify SN UDS10Wil we compared the observed UDS10Wil light curve against

Monte Carlo simulations of Type Ia and CC SNe at redshift 1.91, generated with the

SuperNova ANAlysis software (SNANA2; Kessler et al., 2009a). We used a least-

squares fit to scale the magnitude of the simulated light curves to match our data,

thus allowing us to examine how our data compare to the shapes and colors of simu-

lated SNe while removing any assumptions on cosmology or intrinsic SN luminosity.

We then measured the χ2 statistic for each simulated SN compared to our data and

converted these χ2 values into a Type Ia SN classification probability using a sim-

ple Bayesian framework, similar to Poznanski et al. (2007), Kuznetsova & Connolly

2http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/.
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(2007), and Sako et al. (2011). The full Bayesian formalism, along with a description

of the simulations and our Bayesian priors, is presented in the Appendix.

Our procedure gives us a very high probability that SN UDS10Wil is a SN Ia. As

such, varying our priors on parameters such as shape, color, AV , RV , or SN rates

has a very minor effect on the outcome. The reliance on only 43 CCSN templates

constitutes the greatest uncertainty in our procedure. However, using a classification

procedure very similar to ours, Sako et al. (2011) found that classification using only

8 CCSN templates still returns SN Ia classification purities of & 90%.

We find that the probability of a SN Ia was 99.98%, with a SN Ib/c probability of

2.1 × 10−4 (ruled out at ∼3.7σ) and a SN II probability of 1.0 × 10−7 (ruled out at

∼5.3σ). This indicates that the Type Ia model dominates the probability calculation,

and no CCSN models can adequately describe the observed photometric data.

Figure 2.2 shows the best-fit light curves, along with the flux range of simulated

SN light curves encompassing 95% of the Bayesian evidence for each SN type. The

best-fit light curves for Types Ia, Ib/c, and II SNe return χ2/ν values of 18.6/11,

35.5/11, and 51.1/11, respectively. Note that these χ2 values are only illustrative

of the quality of the match for each model. They represent the best match from

a large but limited number of random simulations, so one cannot use these values

in χ2 goodness-of-fit tests for model rejection. By contrast, the final classification

probability relies on the weight of evidence from all realizations of each model.

Our best-fit x1 and C values for the Type Ia model were −1.56 and −0.12, re-

17





CHAPTER 2. LOCAL SN ENVIRONMENT

spectively. These values are fully consistent with the SALT2 parameters derived from

light-curve fitting in §2.5.2 (x1 = −1.50± 0.51 and C = −0.07± 0.11). We note that

if we increase the errors such that the SN Ia χ2/ν ≈ 1 (accounting for the possibility

that we underestimated the uncertainties), the Type Ia probability is still as high as

99.84%. Figure 2.2 shows that the nearly 100% probability of classification as a SN Ia

(and the superior best-fit χ2 value) arises because the SN Ib/c and SN II light-curve

fits are unable to match the combination of SN UDS10Wil’s high signal-to-noise ratio

(S/N) discovery-epoch colors and its rapid light-curve decline rate.

As a verification of this light-curve classification, we used the Photometric Super-

Nova IDentification software (PSNID; Sako et al., 2008), finding that it also prefers a

SN Ia with a slightly higher 4.1σ confidence. The difference in probability is primarily

due to our conservative CC model uncertainties (see the Appendix), which reduce the

χ2 values of CCSNe. Although it only uses 8 CCSNe, the purity of PSNID classifi-

cations has been robustly tested using Sloan Digital Sky Survey (SDSS) SNe, and it

obtained the highest figure of merit in the SN Photometric Classification Challenge

(Kessler et al., 2010).

2.4.2 Spectrum

Spectroscopic confirmation of SNe has proven challenging at these redshifts (see

the discussions in Rodney et al., 2012 and Rubin et al., 2012), due to the difficulty of

obtaining high S/N observations and the paucity of defining features in the available
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window (for UDS10Wil, ∼ 1.12–1.65µm; rest frame ∼ 3840–5660 Å). In the case of

SN UDS10Wil, the SN was separated from its host galaxy by only ∼ 0′′.1, contami-

nating the SN spectrum with host-galaxy light. We removed the host galaxy from the

spectrum by subtracting a section of the galaxy free from SN light, but the combined

noise from the SN and host-galaxy spectra made a spectral classification inconclusive,

even with substantial host-galaxy smoothing.

As an alternative approach that avoids adding additional host-galaxy noise to

the SN spectrum, we generated a synthetic host spectrum that was not subject to

observational noise. We fit SEDs, using a library of spectral templates, to optical and

near-IR Subaru, ACS, WFC3, and UKIRT host-galaxy photometry following Dahlen

et al. (2010). We then simulated the observed grism host spectrum with the aXeSim

software package.3 The aXeSim software convolves the SED with the shape of the

host galaxy and HST PSF and samples the spectrum at the G141 spectral resolution

of 46.5 Å pixel−1.

One would not necessarily expect emission lines to be the same strength in the

template as in the real galaxy due to its differing metallicity, star formation rate,

and population of massive stars. Therefore, we replaced the pixels covering the [O 3]

line in our simulated host galaxy with those covering the prominent [O 3] line from

the grism spectrum. We omitted these pixels (the shaded region in Fig. 2.3) when

we later fit spectral templates to the SN spectrum, as we did not have a SN-free

3http://axe.stsci.edu/axesim/.
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line measurement to subtract from the observations. We then rescaled the aXeSim

output spectrum to match the F160W magnitude of the host galaxy as measured in

the last epoch of follow-up imaging after the SN had faded. Our simulated host-galaxy

spectrum is shown in Figure 2.3 (upper left).

After subtracting the host-galaxy model from the SN spectrum contaminated with

host light, we used the Supernova Identification (SNID) code4 from Blondin & Tonry

(2007) to match the UDS10Wil spectrum with Type Ia, Type Ib/c, and Type II SN

template spectra to determine the best-fit spectrum for each class. For SN Ia fits,

we only used templates within ±3 rest-frame days of the age of the SN UDS10Wil

spectrum. The age is based on the SALT2 fit in §4.2, which gives ∼ 12± 1 day after

maximum (rest frame). For CCSN fits, we used any templates which put the time

of maximum between the first two epochs of observation (the same as our prior in

§3.1). When fitting the spectrum to templates, SNID removes the continuum using

a high-order polynomial fit and only matches the spectral features, making the fit

independent of reddening and brightness.

SNID returns the r lap parameter, which is meant to quantify the quality of the

correlation (see Blondin & Tonry, 2007 for details). Blondin & Tonry (2007) suggest

that r lap values less than 5 are inconclusive. Note that SNID does not apply a

broadening symmetric function (Tonry & Davis, 1979), which should be used when

the widths of SN features are comparable to the resolution of the spectrum. As the

4http://www.oamp.fr/people/blondin/software/snid/index.html.
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rest-frame G141 resolution is ∼ 16 Å pixel−1 and significant SN features have a typical

width ∼ 50 Å, this is not a major concern. However, the inclusion of this function

for grism data could improve future SNID classifications, especially those at lower

redshift.

The right side of Figure 2.3 shows the best-fit Type Ia, Ib/c, and II SN templates

with r lap values of 4.8, 2.7, and 1.9, respectively. We show median bins to emphasize

the spectral features, but we fit spectra to the unbinned data. The data can be fit by

6 other normal SNe Ia with rlap values of at least 4. Five other SN Ib/c fits have an

rlap of at least 2, and only two other SN II fits have an rlap of greater than 1.5.

The χ2 values for the fits, now including continuum, to Type Ia, Ib/c, and II SNe

are 95.9, 97.9, and 104.0 (respectively) with 106 degrees of freedom. We note that

both SNe Ia and SNe Ib/c can provide good fits, although the former give a slightly

better match. However, all SN II templates yield a poor correlation; the rest-frame

features at ∼ 4600 and ∼ 5200 Å (which are created by neighboring Fe 2, Fe 3, Si 2,

and S 2 absorption in SNe Ia; Filippenko, 1997) are not well fit by the spectra of

SNe II. We note that although not all of the SNID SNe II are as featureless as the

best-fit spectrum shown in Figure 2.3, they all have difficulty matching the strength

or location of the spectral features. Even Type II-P templates, which typically have

stronger features, have a maximum rlap of only 1.4.

Because the best rlap value is less than 5, this SN cannot be considered to be

spectroscopically confirmed. In addition, the “lap” parameter, which describes the
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overlap in wavelength space between the template and SN spectrum, is 0.39 for each

of the best-fit SN Ia and CCSN templates. This is below the minimum lap of 0.4 used

by Blondin & Tonry (2007) for spectral confirmation. However, the SN UDS10Wil

spectrum still favors classification as a SN Ia and its rlap is comparable to that of

other high-redshift SNe Ia. SN Primo (Rodney et al., 2012; z = 1.55) had an rlap of

only 3.7. We also fit the spectrum of SN SCP-0401 (Rubin et al., 2012; z = 1.71),

finding that it is best matched by featureless SNID Type Ia and Type Ib/c spectra.

However, if we require a match to at least one spectral feature or a lap value greater

than 0.1, the maximum SN Ia rlap is 4.6 (SN 1993ac, +7 days; lap of 0.2). SNID

templates begin at λrest = 2500 Å, so the first ∼ 500 Å of the SN SCP-0401 spectrum

were not included in the SNID fit.

2.5 Analysis

Taken together, the photometric evidence suggests that UDS10Wil is a SN Ia

with high confidence. The spectroscopic evidence independently favors a Type Ia

classification. We now proceed to derive its shape and color-corrected magnitude,

taking into account the possibility that the SN light has been gravitationally lensed

by foreground structure.
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2.5.1 Lensing

Our ability to use SNe Ia as accurate distance indicators to constrain cosmological

parameters requires us to determine the impact of foreground-matter inhomogeneities

on the flux of the SN (e.g., Jönsson et al., 2006). Even without multiple images,

gravitational lensing can significantly magnify the SN, altering our measurement of

its distance. SN UDS10Wil is close in projection to another galaxy (see Fig. 2.1)

separated by only 1′′.54. Therefore, it is necessary to estimate the possible magnifi-

cation of the SN which could lead to a bias in the derived SN Ia distance. All other

foreground sources are greater than 4′′.5 away and cause negligible magnification.

We fit the SED of the lens galaxy as described by Wiklind et al. (2008) to char-

acterize its physical properties. We used a Chabrier initial mass function (IMF;

Chabrier, 2003) rather than the Salpeter IMF cited by Wiklind et al. (2008); the

former gives a slightly smaller stellar mass but is a more accepted model. To account

for photometric uncertainties, we drew Monte Carlo samples for the measured pho-

tometry of the galaxy and used the best-fitting SED models to characterize the SED.

The SED fit indicates a low-mass galaxy with a photometric redshift 0.283 ± 0.080

and a stellar mass log(M∗/M�) = 7.968± 0.222. We used these parameters to create

a plausible mass model of the galaxy and estimate the magnification of the SN.

We modeled the stellar component of the galaxy as an exponential disk using

parameters measured from GALFIT (Peng et al., 2002) and the dark-matter halo

using a Navarro-Frenk-White (NFW) profile (Navarro et al., 1997). We used the
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broken power law given by Yang et al. (2012) to relate the stellar mass M∗ to the

halo mass and the mass-concentration relation given by Macciò et al. (2008) when

modeling the halo.

Both the mass-concentration and stellar-to-halo mass relations have significant

scatter around the median relations. To account for this scatter, we took 10,000

Monte Carlo realizations of lensing potentials to calculate the expected magnification

distribution. We also drew a photo-z and stellar mass distribution from the Monte

Carlo realizations of our SED fits.

Despite the proximity of the galaxy, its low mass makes magnification a minor

effect. The median magnification from the above analysis is 2.8+2.3
−1.2%, where the lower

and upper uncertainties represent the 16th and 84th percentiles (±1σ), respectively.

These models do assume a spherical NFW profile, but adding ellipticity to the halo

does not significantly change our results. This analysis shows that the systematic

offset due to lensing is much smaller than the photometric uncertainties; we applied

the lensing correction to our derived magnitude, but it does not have a significant

effect on our distance modulus.

2.5.2 Light-curve Fit

We fit the light curve using the SALT2 implementation (Guy et al., 2010) con-

tained in SNANA (Fig. 5.7). Note that although the ACS data provide a valuable

color constraint for classification purposes, we have omitted them from our cosmolog-
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ical analysis. At z = 1.914, the ACS bands sample rest-frame wavelengths of 2400–

3300 Å, where SNe Ia are more heterogeneous (Ellis et al., 2008) and may evolve with

redshift (Foley et al., 2012). Furthermore, the rest-frame UV has been problematic

for SN Ia light-curve fitters (Kessler et al., 2009b). Given these concerns, we discarded

the ACS data for our light-curve fitting in order to avoid introducing a bias in the

derived distance. The ACS observations provided only a single measurement with

positive flux (F814W at MJD = 55801.1), so this does not exclude a large fraction of

useful data.

The light-curve parameters for SN UDS10Wil are typical of SNe Ia; we derive

values of x1 = −1.50 ± 0.51 and C = −0.071 ± 0.11, which are consistent with

the parameters described by Kessler et al. (2009b) (C̄ = 0.04, σC = 0.13, x̄1 =

−0.13, σx1 = 1.24). SNANA also gives a peak magnitude m∗
B = 26.20 ± 0.11. We

then converted our SALT2 values into SiFTO values (Conley et al., 2008), using the

relations of Guy et al. (2010), in order to use the shape and color constants from

SNLS (α = 1.367, β = 3.179; Sullivan et al., 2011). We derived a light-curve shape

and color-corrected magnitude (mcorr) using

mcorr = m∗
B + α× (s− 1)− β × C, (2.1)

where mcorr is equal to the distance modulus plus the SN absolute magnitude, M .

Herem∗
B is the peak SN magnitude, s is the SiFTO stretch parameter, and C describes

the color; also, m∗
B includes the lensing correction of 0.030+0.024

−0.013 mag.
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This analysis gives a corrected magnitude of 26.15 ± 0.39. We compare to the

corrected magnitude for ΛCDM, mΛCDM , by using the cosmological parameters from

Sullivan et al. (2011) (ΩΛ = 0.73, ΩM = 0.27, w = −1, H0 = 71.6 km s−1Mpc−1) and

a least-squares fit to the Conley et al. (2011) SNe. We added an offset of 0.27 mag to

the value of mB for the Conley et al. (2011) SNe in order to match the normalization

of the SALT2 fitter contained in SNANA, finding mΛCDM = 26.46 mag (including

the offset, this gives an absolute SN magnitude M = −19.39). SN UDS10Wil is less

than 1σ from ΛCDM.

We also fit the light curve with MLCS (Jha, Riess, & Kirshner, 2007), after using

SDSS SNe to determine, and correct for, the mcorr offset between MLCS and SALT2

fits. MLCS gives the same corrected magnitude with a somewhat smaller uncertainty,

mcorr = 26.15 ± 0.27 mag (with ∆ = 0.30 ± 0.18 and AV = 0.01 ± 0.05mag). This

value is slightly brighter than expected from ΛCDM, but consistent at 1.15σ. We

verified that the MLCS and SALT2 parameters are consistent with each other using

relations from Kessler et al. (2009b).

2.6 Discussion

The observations of SN UDS10Wil presented here demonstrate that the HST

WFC3 now allows the cosmological study of SNe Ia at higher redshifts than ever

before. The analysis presented above is enabled by the photometric classification
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Figure 2.5: The number of HST orbits necessary to rule out the possibility of a SN II or SN Ib/c

90% of the time when observing a SN Ia. Using aXeSim, we simulated a variety of exposure times in

the redshift range 1.5–2.3. We found that ∼5–10 orbits can rule out a SN II, but that the number of

orbits required to rule out a SN Ib/c possibility is significantly greater. The number of orbits to rule

out a SN Ib/c is much lower in the region where Si 2 and Ca 2 H&K are completely visible. These

results indicate the need for photometric evidence in SN Ia classification at high redshift, although

the HST grism can also be valuable in determining SN redshifts.
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methods we employ. However, SN science, especially cosmology, has in the past

relied heavily on spectroscopic evidence for classification.

At z > 1.5, deriving a spectral classification with HST requires a large number of

orbits to obtain a high S/N. In addition, the HST IR grisms cover a relatively small

rest-frame wavelength range. In the case of SN UDS10Wil, the G141 grism wavelength

range (∼ 1.12–1.65µm; rest frame ∼ 3840–5660 Å) does not include either the Si 2

absorption at ∼ 6150 Å or the Ca 2 H&K trough at ∼ 3750 Å, which are some of the

deepest SN Ia features (the features have equivalent widths ∼ 100 Å). This means that

spectral classifications of high-redshift SNe using SNID will have lower-significance

correlations with SN Ia template spectra, and thus often yield rlap values much less

than the suggested minimum of 5 (Blondin & Tonry, 2007).

Host-galaxy contamination can be a significant source of noise in high-z SN grism

spectra. In this work we have used aXeSim to remove host-galaxy light from the

SN+host spectrum. However, even in a situation where a SN is well separated from

its host galaxy, spectral evidence alone may not be enough to unequivocally classify

the SN as Type Ia. Figure 2.5 shows the number of HST orbits with the G141 IR

grism that are needed for SNID to correctly distinguish a SN Ia from a SN Ib/c or a

SN II 90% of the time, in the redshift range 1.5–2.3. For this figure, we used aXeSim

to simulate 100 SN Ia observations per unit redshift with 2.6 ks per orbit, from 0

to 100 orbits (2-orbit intervals). The background flux was set to 95 e− s−1, and the

simulated SN magnitude was fixed at the peak magnitude of SN Primo (an F160W
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Vega magnitude of 23.98; Primo was observed closer to maximum than UDS10Wil).

Each simulated grism spectrum was then processed with SNID, and the classification

was deemed correct if the best rlap for a SN Ia template was larger than the best

SN Ib/c or SN II rlap (we allow rlap < 5).

Figure 2.5 shows that, similar to the case of SN UDS10Wil, ruling out a SN II

possibility requires only ∼5–10 orbits (1.5 < z < 2.3). For a large program like CAN-

DELS, with 200 follow-up orbits and a desired sample of ∼10 SNe, this is a feasible

number. Ruling out a SN Ib/c, however, can require up to 25 orbits, becoming most

costly at those redshifts where Si 2 and Ca 2 H&K are not completely visible. At

very high redshift, such as z ≈ 2.2–2.3, Figure 2.5 shows that the G141 exposure

time required to distinguish a SN Ia from a SN Ib/c begins to drop. The value of

spectroscopic confirmation for such high-redshift SNe may warrant the necessary in-

vestment of orbits, especially if additional high-value targets can be simultaneously

observed within the grism field of view. We note that simulating CCSN observations

shows that SNID can occasionally misclassify CCSNe as SNe Ia, an effect we have

not taken into account in this analysis.

The G102 grism can also be useful for picking out features such as Si 2 and Ca 2

H&K in the redshift ranges where the G141 grism does not contain them. Unfor-

tunately, the consequence of its more limited wavelength range (∼ 0.8–1.15µm; rest

frame ∼ 2750–3950 Å at z = 1.91) is that a SN Ib/c template is more likely to match

a SN Ia G102 spectrum well.
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HST grism spectroscopy can be good at determining SN redshifts or host-galaxy

properties. However, for reliable SN classification, photometric evidence is often

important. In the case of SN UDS10Wil we improved upon the photometric methods

of Rodney et al. (2012) by introducing a quantitative Bayesian method that returns

probabilities for each SN type. With both photometric and spectroscopic methods,

we can be confident in our classification and subsequent analysis.

2.7 Conclusions

At a redshift of 1.914, SN UDS10Wil is the most distant SN Ia yet known. Clas-

sification of this SN rests on photometry and grism spectroscopy, which rules out

the possibility of a CC SN. The spectral evidence alone disfavors the possibility of a

SN II, while supporting a SN Ia or SN Ib/c hypothesis. The combined SN colors and

rapid decline rate are inconsistent with a CC SN and in good agreement with a SN Ia

model.

We find that SN UDS10Wil is not significantly lensed, and its light-curve fit (with

SALT2) is consistent with ΛCDM. An alternative fit with MLCS (Jha et al., 2007) is

slightly brighter than ΛCDM, but consistent at 1.15σ.

When the full analysis of the CANDELS SNe is complete and combined with

the data from the Cluster Lensing and Supernova survey with Hubble (PI: Postman;

Postman et al., 2012), we expect that SN UDS10Wil will be one of a sample of
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∼ 10 SNe Ia above a redshift of 1.5 to be found by these programs. This SN is an

example of an object in a new area of SN cosmology, one which has only begun to be

explored in the last few years with the advent of WFC3 on HST and one with unique

classification challenges. However, with the full sample of SNe at redshift greater

than 1.5, new limits on the evolution of dark energy, the DTD, and the evolution of

the SN Ia population will become possible.

2.8 Appendix: Photometric Classification

Method

We began our classification procedure by using SNANA (Kessler et al., 2009a) to

generate a Monte Carlo simulation of 30,000 SNe at redshift 1.91. 10,000 simulated

SNe Ia were based on the SALT2 model (Guy et al., 2010), with values of the shape

parameter x1 drawn uniformly in the range −3 to 3 and the color parameter C from

−0.4 to 0.6. These ranges cover the observed distribution of SALT2 parameter values

(Kessler et al., 2009b), and the C term accounts for both intrinsic SN color and

host-galaxy extinction (Guy et al., 2007). The remaining 20,000 simulated SNe were

split evenly between the two principal CCSN classes, with light curves based on 16

Type Ib/c and 27 Type II SN templates that comprise the SNANA non-SN Ia library

(including subtypes Ib, Ic, II-P, IIn, and II-L). Host-galaxy reddening was applied to

each simulated CCSN using RV = 3.1, with a random draw of AV in the range 0
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to 7mag using the Cardelli et al. (1989) reddening law. For both the SN Ia and the

CCSN simulations we chose random values for the date of the light-curve peak, using

a range spanning the first to the second epoch of UDS10Wil observations.

To compare each of the 30,000 synthetic light curves to the N = 15 photometric

observations of SN UDS10Wil, we computed the χ2 statistic given by

χ2 =
N∑

i=1

(Fobs,i − A× Fsim,i)
2

σ2
obs,i + σ2

sim,i

, (2.2)

where Fobs,i and σobs,i are the fluxes and uncertainties for each observation. Here

Fsim,i and σsim,i are the fluxes and uncertainties (respectively) for a single simulated

SN on each observation date. The variable A is a scaling parameter, described below.

For SNe Ia, most of their intrinsic variability can be described by the SALT2 model’s

shape and color parameters. Additional variability causes scatter about the Hubble

diagram, and is given by Guy et al. (2010) as 8.7% in distance modulus. We treat

this variability as approximately equal to the model uncertainty, which in flux space

translates to σsimIa,i = 0.08A× Fsim,i.

CCSNe have greater heterogeneity, such that our relatively small set of discrete

templates cannot describe the entire population. By setting a nonzero σsimCC,i, our

limited CCSN template library can more accurately represent this diverse class. Con-

sidering a similar problem, Rodney & Tonry (2009) estimated σsimCC,i by measuring

the flux difference between all possible pairwise comparisons of templates of the same

subclass and taking the median. We classify SN UDS10Wil using more templates
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than Rodney & Tonry (2009), such that the CCSN population is better sampled and

less uncertainty is present. However, we adopt their value of σsimCC,i = 0.15A×Fsim,i

as a conservative estimate.

We next chose the optimal distance or absolute magnitude of every simulated SN,

therefore removing the assumptions on cosmology and SN luminosity functions that

are built into the SNANA simulations. Here we have multiplied Fsim,i by A, a free

parameter that introduces a coherent flux scaling across all bands. We find a separate

value for A with each of the 30,000 comparisons, using χ2 minimization to match the

simulated magnitudes to the data with the equation

A =

N∑

i=1

Fsim,iFobs,i/σ
2
obs,i

N∑

i=1

F 2
sim,i/σ

2
obs,i

. (2.3)

We then converted the measured χ2 values into a Type Ia SN classification proba-

bility using a simple Bayesian framework, similar to Poznanski et al. (2007), Kuznetsova

& Connolly (2007), and Sako et al. (2011). The likelihood that the data (D) match

a simulated SN of type Tj with parameters θ (shape x1, color C for SN Ia or AV for

CCSN types, and time of maximum light) is given by

p(D|θ, Tj) =
e−χ2/2

N∏

i=1

√

2π(σ2
obs,i + σ2

sim,i)

, (2.4)

where χ2 is given in Equation 1. Multiplying by prior probability distributions for

each of the model parameters then gives us the posterior probability for each point
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in parameter space, p(θ|Tj)p(D|θ, Tj). As we are interested in model selection, not

parameter estimation, we can marginalize over all of the nuisance parameters θ.

Approximating the marginalization integral with a discrete sum, the probability of

SN type Tj given the model is

p(D|Tj) =
Nsim(Tj)∑

i=1

p(θ|Tj)p(D|θ, Tj)δθ. (2.5)

For SN Ia parameters x1 and C, we applied Gaussian priors based on the values given

by Kessler et al. (2009b) (C̄ = 0.04, σC = 0.13, x̄1 = −0.13, σx1 = 1.24). For the

CC SNe parameter AV , we used the Monte Carlo recipe provided by Riello & Patat

(2005) and implemented by Dahlen et al. (2012) for a random galaxy orientation.

The distribution is peaked at AV = 0 mag and falls off quickly such that AV & 3mag

is very unlikely. We used a flat prior for the time of peak brightness.

Note that for computational efficiency we have used SNANA to sample the multi-

dimensional model parameter space using a Monte Carlo simulation with uniform

sampling distributions (instead of the more typical approach, using a grid of param-

eter values). Thus, we must approximate δθ – the vector of step sizes along each

dimension of parameter space – using the range over which each parameter is sam-

pled:

δθ =
1

Nj

Nθ∏

k=1

∆θk, (2.6)

where ∆θk is each range, Nj is the number of simulated SNe in the class (we used
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10,000), and the product is over Nθ, the number of parameters θ for the model: 3 for

SNe Ia (x1, c, tpk) and 2 for CCSNe (AV , tpk).

Lastly, we multiplied each model by a SN rate prior P (Tj). This prior is the

fraction of SNe at redshift 1.91 that we expect to be a given type. We began by

adopting the rate measurement from Dahlen et al. (2008) for SNe Ia and the local

rates from Li et al. (2011) for CCSNe. We scaled the CCSN rates according to

the cosmic star-formation history of Hopkins & Beacom (2006) using the form of

Cole et al. (2001) and a modified Salpeter IMF (Baldry & Glazebrook, 2003). The

normalized rates showed, as an estimate, that one could expect only ∼ 2% of SNe at

this redshift to be of Type Ia. The SN UDS10Wil host galaxy SED (§3.2) is consistent

with a starburst galaxy, so it is possible that these average rates overestimate the

SN Ia rate in this galaxy. In addition, SN rates are very uncertain at this redshift,

and the Dahlen et al. (2008) rates at this redshift are consistent with 0 SNe Ia;

however, we note that lowering this rates prior by an order of magnitude still returns

a classification probability greater than 99%. Thus the result is largely independent

of the uncertainty in SN Ia rates.

Applying Bayes’ theorem gives the final probability that SN UDS10Wil is of Type

Ia:

p(Ia|D) =
p(D|Ia)p(Ia)

∑

j

p(D|Tj)p(Tj)
, (2.7)

where the summation is over Type Ia, Ib/c, and II SN models (Tj). In the case of
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SN UDS10Wil, our likelihood function is sufficiently narrow that the priors have only

a minor effect. Thus, we found that allowing RV , SALT2 parameters α and β, or

parameter ranges to vary does not substantially alter the high probability that this

SN is of Type Ia.
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Chapter 3

Reconsidering the Effects of Local

Star Formation on Type Ia

Supernova Cosmology

3.1 Abstract

Recent studies found a correlation with ∼3σ significance between the local star

formation measured by GALEX in Type Ia supernova (SN Ia) host galaxies and the

distances or dispersions derived from these SNe. We search for these effects by using

data from recent cosmological analyses to greatly increase the SN Ia sample; we in-

clude 179 GALEX-imaged SN Ia hosts with distances from the JLA and Pan-STARRS

SN Ia cosmology samples and 157 GALEX-imaged SN Ia hosts with distances from
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the Riess et al. (2011) H0 measurement. We find little evidence that SNe Ia in lo-

cally star-forming environments are fainter after light curve correction than SNe Ia

in locally passive environments. We find a difference of 0.000±0.018 (stat+sys) mag

for SNe fit with SALT2 and 0.029±0.027 (stat+sys) mag for SNe fit with MLCS2k2

(RV = 2.5), which suggests that proposed changes to recent measurements of H0 and

w are not significant and numerically smaller than the parameter measurement un-

certainties. We measure systematic uncertainties of ∼0.01-0.02 mag by performing

several plausible variants of our analysis. We find the greatly reduced significance of

these distance modulus differences compared to Rigault et al. (2013) and Rigault et al.

(2015) result from two improvements with fairly equal effects, our larger sample size

and the use of JLA and Riess et al. (2011) sample selection criteria. Without these

improvements, we recover the results of Rigault et al. (2015). We find that both pop-

ulations have more similar dispersion in distance than found by Rigault et al. (2013),

Rigault et al. (2015), and Kelly et al. (2015), with slightly smaller dispersion for lo-

cally passive (log(ΣSFR) < −2.9 dex) SNe Ia fit with MLCS, the opposite of the effect

seen by Rigault et al. (2015) and Kelly et al. (2015). We caution that measuring the

local environments of SNe Ia in the future may require a higher-resolution instrument

than GALEX and that SN Ia sample selection has a significant effect on local star

formation biases.
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3.2 Introduction

Type Ia supernovae (SNe Ia) have been a key component in measuring the dark

energy equation of state, w, with .6% uncertainty Betoule et al. (2014) and the

Hubble Constant, H0, with 3.3% uncertainty Riess et al. (2011, hereafter R11). With

such small error budgets, unknown systematic uncertainties affecting SNe Ia shape-

and color-corrected absolute magnitudes could have serious consequences for our un-

derstanding of dark energy, neutrino properties, and the global geometry of space.

Although SNe Ia remain accurate distance indicators with ∼10% uncertainty per

SN, there are concerns about their ability to remain standardizable in galaxies that

vary in mass, metallicity, star formation, age, and dust properties Sullivan et al.

(2010); Rigault et al. (2013); Johansson et al. (2013); Childress et al. (2013). Even

a small dependence of SN Ia luminosities on host galaxy properties may have a non-

negligible effect on w due to the redshift evolution of galaxies or differences in sample

selection. Such an effect could also bias H0 due to the different demographics of

Cepheid host galaxies compared to SN Ia hosts. The lack of detection of such an effect

at >3σ with samples of ∼102 SNe suggests that such effects are . 10%√
100

×3 . 0.06 mag,

or that they result from galaxy properties that are difficult to measure robustly. These

investigations are hampered by an inability to define the nature of the SN Ia correction

a priori, complicating the interpretation of the significance of the correlations found

a posteriori. If enough sources for a possible correlation are examined, a 3σ result

will always be found.
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The first widely accepted effect of host galaxy properties on SNe Ia was confirmed

by the detection of a∼0.07 mag difference in mean corrected magnitude of SNe Ia with

host masses >1010M�. Identified by several independent studies including Lampeitl

et al. (2010), Sullivan et al. (2010), and Kelly et al. (2010), this effect has now been

detected at >5σ by Betoule et al. (2014) with a sample of 740 SNe Ia.

Because it is unclear how the physics of a SN Ia distances could depend on its host

galaxy mass, the most likely explanation is that host galaxy mass is merely tracing

another physical property that could affect SN luminosity, such as metallicity, stellar

age, or dust. Domı́nguez et al. (2001) suggested that progenitor metallicity could

affect the SN luminosity by changing the Carbon-Oxygen ratio in the progenitor white

dwarf, thus resulting in a lower Nickel mass synthesized in the explosion. Hayden

et al. (2013) found that a correction using a star formation-based metallicity indicator

reduced Hubble diagram residuals more than a simple host mass correction. Childress

et al. (2013) found that dust and stellar age are also plausible explanations because

they evolve with host galaxy mass.

Different SN Ia progenitor ages could also exhibit systematic differences in cor-

rected magnitude due to the effects of metallicity or explosion mechanism on 56Ni

production Maoz et al. (2014). Childress et al. (2014) suggested that progenitor age

could be the source of the host mass step, as older progenitors preferentially oc-

cur in non star-forming host galaxies. Because progenitor age evolves with redshift,

Childress et al. (2014) modeled a potential redshift-dependent bias in cosmological
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analyses.

SN Ia light curve fitters may also create biases by assuming a universal relation-

ship between color and absolute magnitude, independent of the dust composition of

different SN Ia hosts. Some preliminary evidence has supported these ideas; Scolnic

et al. (2014b) found that the correlation between SN Ia color and absolute magnitude

has two different slopes for bluer and redder SNe, which may in part be due to dust

properties.

If the host mass step is indicative of one or more of these biases, galaxy prop-

erties in the vicinity of SN explosions could be more strongly correlated with SN

corrected magnitude than properties of the galaxies as a whole. Three recent studies

used ∼60−85 nearby SNe Ia to look at such properties and found that they affect

the distances derived from SNe Ia. Rigault et al. (2013) and Rigault et al. (2015)

found a correlation between local star formation and SN Ia Hubble residuals from

the Nearby Supernova factory Aldering et al. (2002) and the CfA SN survey (Hicken

et al., 2009b, hereafter H09) by using the local star formation rate density (ΣSFR)

to separate SNe Ia into those with locally passive (SN Iaε) and locally star-forming

(SN Iaα) environments. Rigault et al. (2015) (hereafter R15) found a mean difference

in Hubble residuals between SNe Iaε and Iaα (hereafter referred to as the LSF step)

of ∼0.09−0.17 mag at 2-4σ significance with different light curve fitters.

The fraction of SNe Iaε is different in the nearby Cepheid-calibrated SN Ia sample

compared to the Hubble-flow SN Ia sample, and R15 found that SNe Iaε have mean

44





CHAPTER 3. LOCAL STAR FORMATION

corrected magnitudes ∼0.15 mag brighter than SNe Iaα when fit with the MLCS light

curve fitter and assuming the same RV as the R11 H0 baseline analysis. They derived

a correction to H0:

log(Hcorr
0 ) = log(H0)−

1

5
(ψHF − ψC)× δ〈M corr

B 〉SF,
︸ ︷︷ ︸

LSF bias correction

(3.1)

where ψHF is the fraction of SNe Iaε in the Hubble-flow SN sample and ψC is the

fraction of SNe Iaε in the Cepheid-calibrated sample. δ〈M corr
B 〉SF is the LSF step of

0.155 mag. By estimating ψHF (52.1±2.3%) and ψC (7.0%), R15 estimate that the

true value of H0 is reduced by ∼3%.

R15 also found that SNe in highly star-forming regions fit by MLCS Jha et al.

(2007); Riess et al. (1996) have lower dispersion in their Hubble residuals than SNe

in locally passive environments. Kelly et al. (2015) came to the same conclusion by

examining SNe Ia with high local star formation (Their ΣSFR boundary is ∼0.7 dex

higher than the R15 Iaε/Iaα cut-off). R13 first found this effect using the SALT2

light curve fitter Guy et al. (2007), but they could not reproduce this result with H09

data.
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Table 3.1. Studies using local SF data

SALT2 MLCS

SN Surveys SNe µversion β SNe µversion P(AV ) RV

Rigault+13 SNfactorya 82 G07b · · · c · · · · · · · · · · · ·

Rigault+15 CfA3 77 G07b 2.48+0.10
−0.12 84 v0.06 e−AV /0.457 1.7,2.5,3.1

Kelly+15 LOSSd,CfA2-4,CSP · · · · · · · · · 61 v0.07e e−AV /0.3 ∗ N (σ = 0.02)f 1.8,3.1

This Work CfA1-4,CSP,CTg,SDSS,SNLS,PS1 187 G10h 3.097± 0.062 154 v0.06 e−AV /0.457 2.0,2.5,3.1

aAldering et al. (2002).

bGuy et al. (2007).

cThe value of β was blinded in Rigault et al. (2013).

dThe Lick Observatory Supernova Search Li et al. (2011).

eMLCS v0.07 used new spectral templates from Hsiao et al. (2007). This version was implemented in the SuperNova ANAlysis software (Kessler

et al., 2009b, SNANA).

fAn exponential convolved with a normal distribution having σ = 0.02 mag.

gCalan/Tololo Hamuy et al. (1996).

hGuy et al. (2010) had improved uncertainty propagation and handling of residual scatter, a new SN Ia spectral energy distribution regularization

scheme, and used a larger training sample with higher-z SNe (see their Appendix A for details).
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Both R15 and Kelly et al. (2015) used GALEX FUV data to measure the star

formation rate within a few kpc of SNe Ia positions. In this work, we use a similar

method to examine whether the significance of the LSF step and reduced dispersion

from SNe in locally star-forming host galaxies is reduced when we use the most current

vintage SNe Ia distance estimates, use a much larger sample size, and vary the priors

and assumptions used in the original analyses.

Table 3.1 shows the sizes of the SN samples used in Rigault et al. (2013), R15,

Kelly et al. (2015), and this work, along with the light curve fitters used, the SALT2

color parameters, and the MLCS prior on AV . Rigault et al. (2013) used 82 SNfactory

SNe with star formation estimated using local Hα from integral field spectroscopy.

Rigault et al. (2015) used ∼100 SNe from the CfA3 sample of H09, with ∼80 passing

GALEX sample cuts. Kelly et al. (2015) used several surveys but made strict sample

cuts and only used SNe with Hubble residuals < 0.3 mag, which would amount to a

∼1.3σ cut for R11 data.

By using a sample size ∼2-3 times as large as those in the analyses above, we hope

to obtain a robust measurement of the magnitude and uncertainty of the effect of local

star-formation on SN Ia corrected magnitudes. §3.3 presents our sample selection, and

§3.4 discusses our LSF step and dispersion analysis. In §3.5 and §3.6 we present our

results and discuss their significance, and our conclusions are in §3.7.
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3.3 Data

We used two samples of SNe for this analysis, one from the R11 measurement of

H0 and the other from the dark energy equation of state measurements of Betoule

et al. (2014) and Pan-STARRS Rest et al. (2014); Scolnic et al. (2014a, PS1; Scolnic

et al. 2015, in prep). These two samples rely on many of the same SNe, but R11

use the MLCS light curve fitter to perform their baseline analysis while Betoule et al.

(2014) and PS1 use SALT2 (Guy et al., 2010; Betoule et al., 2014, version 2.4). Each

sample is ∼2-3 times as large as the R15 and Kelly et al. (2015) GALEX-imaged host

samples and removes the possibility of biases between our sample and the samples

used in the most recent measurements of cosmological parameters.

3.3.1 Riess et al. (2011) SNe

The H0 determination of R11 use the MLCS2k2 light curve fitter for their baseline

analysis. We use only their MLCS2k2 distance moduli, as JLA+PS1 consists of a

larger SALT2-fit SN Ia sample with more robust light curve cuts and an updated

SALT2 model and color parameter, β. The R11 sample consists of 140 SNe between

0.023 < z < 0.1 from Hicken et al. (2009a) and Ganeshalingam et al. (2010). As one

of the variants in their systematics section, R11 extend the lower bound of the redshift

range to 0.01 after making peculiar velocity corrections (using results from Neill et al.

(2007) and the Pike & Hudson (2005) dipole), giving 240 SNe (with peculiar velocity
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uncertainties added in quadrature to the distances). Adopting this redshift range

raises H0 by 0.8 km s−1 Mpc−1, or 0.26σ. We adopt this lower redshift limit of 0.01

as it allows us to add more SNe Ia to our sample, although these nearby SNe have

less weight in the likelihood approach outlined in §3.4.1 due to their included peculiar

velocity uncertainties. In §3.5.1, we examine the effect of restricting the redshift range

to z > 0.023. R11 remove 4σ Hubble diagram outliers but make no sample cuts based

on light curve shape, AV , or MLCS χ2.

MLCS2k2 determines the distance modulus for each SN Ia by fitting for the light

curve shape and extinction assuming an extinction prior and a value for the total-to-

selective extinction ratio, RV . Common extinction priors include exponential distri-

butions (e−AV /τ ; see Table 3.1), exponential distributions convolved with gaussians, a

flat prior (with or without negative AV allowed), and priors based on host galaxy in-

formation. R11 consider the latter two priors in their systematic uncertainty analysis,

and use an exponential with scale length 0.457 mag for their baseline analysis. R11

consider dust reddening laws with RV = 1.5, 2.0, 2.5, and 3.1, using RV = 2.5 for their

baseline analysis. RV = 3.1 corresponds to the Milky Way reddening law Cardelli

et al. (1989). We exclude RV = 1.5 from our analysis as such a low value is not typi-

cally used in cosmological analyses (e.g. Kessler et al. (2009a) adopt RV = 2.18± 0.5

for SDSS cosmology); although highly reddened SNe Ia tend to favor low values of

RV Burns et al. (2014), these SNe are usually excluded from samples used to measure

cosmological parameters. H09, for example, use only SNe with AV < 0.5.
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We queried GALEX1 for FUV images at the locations of these SNe, keeping only

those with a angular distance from the field of view center (FOV radius) < 0.55 deg

to ensure accurate photometry and avoid reflection artifacts and distortion of the

PSF near the detector edge. Of the 240 SNe used in R11, we found 187 SN host

images meeting this criterion, 157 of which remained after the sample cuts described

in §3.4.1. A Hubble diagram of the R11 SN Ia sample is shown in Figure 3.1. There

is less than 0.01 mag difference in mean Hubble residual between the full sample and

the GALEX-detected sample. No bias is expected for SNe with GALEX host images.

3.3.2 Betoule et al. (2014) and Pan-STARRS SNe

The most recent measurements of w Betoule et al. (2014); Rest et al. (2014) use

the SALT2 light curve fitter, and compute distance moduli using the equation Tripp

(1998):

µ = m∗
B + α×X1 − β × C −M, (3.2)

where µ is the SN distance modulus, m∗
B is the peak SN B band magnitude, X1 is the

light curve stretch parameter, and C is the light curve color parameter. SALT2 adopts

a linear relation between SN Ia color and luminosity with no prior. For consistency

with the JLA cosmological analysis, we only use the SALT2 fitter with these data.

The nuisance parameters α, β, andM (in this analysis, a single value independent

1http://galex.stsci.edu/GalexView/
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of host galaxy mass) are simultaneously fit to the full supernova sample. In recent

work, the value of β has risen due to changes in the SALT2 model and larger SN Ia

samples. The value found by Betoule et al. (2014) is β = 3.102± 0.075, a difference

of ∼0.6 relative to the H09 value of 2.48+0.10
−0.12 (used by R15). This could have an

important impact on measuring the LSF step, which we discuss further in §3.6.1. In

this analysis, we simultaneously fit JLA and PS1 data together, finding β = 3.097±

0.062. In contrast to Betoule et al. (2014) and following the R15 claim that the LSF

step replaces the host mass step, we did not apply the host mass step in deriving this

value.

We limited the Betoule et al. (2014) Joint Light-curve Analysis (JLA) to z <

0.1 because the large GALEX PSF makes the star formation measurement non-local

with FWHM ∼8 kpc. This low-z sample includes data from low-redshift surveys such

as CfA1-3 Riess et al. (1999); Jha et al. (2006); Hicken et al. (2009a), the Carnegie

Supernova Project Hamuy et al. (2006); Stritzinger et al. (2011) and Calan/Tololo

Hamuy et al. (1996), and surveys extending to higher z such as SDSS (Kessler et al.,

2009a, 25 SNe after sample cuts) and SNLS (Conley et al., 2011, no SNe after sample

cuts). We added low-z CfA4 SNe from Hicken et al. (2012, used in the PS1 analysis),

PS1 SNe from Rest et al. (2014) and the upcoming 4-year PS1 cosmological analysis

(12 SNe after sample cuts; Scolnic et al. 2015, in prep). For both JLA and PS1,

peculiar velocities are corrected following Neill et al. (2007) based on the Hudson

et al. (2004) model.
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The cuts applied to these data are listed in Betoule et al. (2014, their Table 6

and Appendix A). They make light curve shape, color, and SALT2 fit probability

cuts (requiring a fit probability >0.01). We applied these same cuts to PS1 SNe, and

removed 3.5σ outliers from the full sample, including the 4 >3σ outliers removed by

Betoule et al. (2014).

The JLA and PS1 samples with 0.01< z < 0.1 contain a total of 249 SNe. 207 were

found in GALEX with FOV radius <0.55 deg and 179 remained after the sample cuts

described in §3.4.1. We found no significant difference (<0.01 mag) between mean

Hubble residual of the GALEX-detected sample and the full sample.

Figure 3.1 shows a Hubble diagram for SNe in both samples with and without

GALEX imaging. Our cosmological fits used ΩM = 0.3, ΩΛ = 0.7, w = −1, H0 = 70

km s−1 Mpc−1 and determined the absolute SN magnitude M from a least squares

fit to the Hubble residuals.

3.4 Measuring the Star Formation Den-

sity

R15 used the following procedure to measure the local star formation density,

ΣSFR, and its relation to SN distance estimates. We summarize the principal steps

below and describe the differences in our analysis in §3.4.1. §3.4.2 discusses our

systematic error treatment. Table 3.2 gives a summary of the quality cuts applied to
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Table 3.2. SN Selection Cuts

JLA+PS1 R11

No. SNe Ia RV =2.0 RV =2.5 RV = 3.1

Initial Sample 249 240 239 237

GALEX FUV data exist 212 189 188 187

FOV radius < 0.55 deg 207 181 180 179

Global SFR known 207 178 177 176

Inclined SNe Removed 179 157 156 155

our SN Ia sample and the number of SNe remaining after each cut.

1. R15 measured GALEX FUV aperture photometry at the location of the SN

using a 4 kpc aperture diameter. They applied Milky Way dust corrections

from Schlegel et al. (1998), where the FUV extinction AFUV is 7.9×E(B − V )

(R15; Cardelli et al. (1989)).

2. The photometry was corrected for host galaxy extinction in the FUV based on

the measured FUV−NUV colors, which were converted to extinction using the

relation from Salim et al. (2007). A Bayesian prior of AFUV = 2.0 ± 0.6 for

star-forming galaxies was also applied (the final AFUV was a weighted mean of

the prior and the measured AFUV ). R15 made no dust correction for passive

galaxies.

To determine whether each galaxy was globally star-forming or passive, they
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used ΣSFR measurements from Neill et al. (2009, ΣSFR > −10.5 is star-forming),

who fit synthetic templates to the SN host UV+optical spectral energy distri-

butions (SEDs). Because Neill et al. (2009) SED fits were unavailable for ∼40%

of their hosts, R15 used morphology for these, treating galaxy types Sa and

later as star-forming (a less accurate method).

3. To minimize the effects of locally passive regions projected on top of locally

star-forming regions (see R15, Appendix B.2), R15 removed SNe with host

inclination angles >80◦ from their sample.

4. Based on their photometric and dust correction uncertainties, R15 calculated

the probability of a SN Ia being above (P(Iaα)) or below (P(Iaε)) the log(ΣSFR)

= −2.9.

5. R15 used a maximum likelihood approach (outlined in §3.8.1) to determine the

difference in corrected magnitude and dispersion between SNe Iaα and Iaε.

3.4.1 Our Analysis

We largely used the same methodology as R15, but improved the following aspects

of the analysis:

1. We used the Schlafly & Finkbeiner (2011) dust corrections instead of the Schlegel

et al. (1998) corrections used by R15, resulting in a ∼14% reduction in our ex-

tinction values.
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2. We used SDSS NUV−r color instead of morphology as a diagnostic of global

SFR when UV+optical SED fits were unavailable.

3. For SNe outside the isophotal radii of their host, we did not make a dust cor-

rection as we expect these SNe to be minimally affected by extinction.

4. We made a slightly more conservative inclination cut, removing galaxies with

inclinations >70◦.

5. Using our maximum likelihood model, we fit for both SN Iaα and SN Iaε dis-

persion when determining the LSF step to allow for the possibility that these

two quantities are significantly different and affect the magnitude of the step.

We discuss our changes and methodology in further detail below. However, these

changes have only minor significance on our results (see §3.5.6). Our method of

maximum likelihood estimation for calculating the LSF step is described in detail in

the Appendix.

3.4.1.1 FUV Aperture Photometry

We used the same baseline 4 kpc aperture diameter as R15 for our photometry but

corrected for Milky Way FUV extinction using the Schlafly & Finkbeiner (2011) dust

corrections2 instead of the Schlegel et al. (1998) corrections used by R15. Schlafly &

Finkbeiner (2011) derive a ∼14% correction for the Schlegel et al. (1998) dust maps

2http://irsa.ipac.caltech.edu/applications/DUST/
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based on the expected vs. measured colors of SDSS stars.

Using GALEX to estimate local star formation, as in Rigault et al. (2015) and

Kelly et al. (2015) is complicated by the large GALEX PSF, 5.4′′ full width at half

maximum (FWHM) in the NUV and 4.5′′ in the FUV, which serves as a lower limit

to the size of the local region that we can measure. Kelly et al. (2015) used a 10 kpc

aperture diameter to measure local star formation, while Rigault et al. (2015) used a

4 kpc diameter. We adopt the R15 4 kpc diameter in this work.

Figure 3.2 shows representative hosts from our sample with FUV-based log(ΣSFR)

≥ −2.9 contours to demonstrate the size of these apertures relative to their star-

forming regions. A 4 kpc aperture appears to be a reasonable approximation to the

local SN Ia environment in these cases, while a 10 kpc aperture radius encompasses

the majority of the SN 2006en host. In the case of SN 2002ha, it is unclear whether

either aperture is small enough to capture the star formation environment at the SN

location.

3.4.1.2 Host Galaxy Extinction Correction

There are three principal differences between our local dust correction and that of

R15. First, for galaxies without star formation rates (SFRs) from Neill et al. (2009)

(45% of our sample), R15 used morphological information to determine whether or

not a galaxy was globally star-forming. However, GALEX NUV - SDSS r magnitude

is a more reliable discriminator between passive and star-forming galaxies (e.g. Salim
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outside the isophotal radius of their host galaxy (R > 3; Sullivan et al. (2006)), we

did not correct for local dust regardless of the Salim et al. (2007) extinction estimate,

which does not apply for passive, low-dust regions. R15 dust-corrected all SNe in

globally star-forming hosts, regardless of the location of the SN. Figure 3.3 shows two

examples of spiral host galaxies and their approximate isophotal radii.

In total, our decision to apply or not to apply a dust correction was different from

that of R15 for 14% of H09 SNe (13/92 SNe). For 7 of these 13 SNe, we did not apply

a dust correction because the SN was outside the isophotal radius of its host. The

other 6 SNe had morphology-based SF classifications that disagreed with our NUV-r

data.

Finally, we adopted a slightly more conservative inclination cut, removing galaxies

with inclinations >70◦ based on the Tully & Fisher (1977) axial ratio method. This

removes an additional 16 SNe from the JLA+PS1 sample and 11 from the R11 sample.

In total, the inclination cut removes ∼13% of our sample.

3.4.2 Varying the Baseline Analysis

For a robust result, we performed several plausible variants of our baseline analysis

(R15 used a similar method to evaluate the robustness of the LSF step). We used

the standard deviation of the measured LSF step from all variations to estimate our

systematic error.

Our FUV−NUV color measurements have a median signal-to-noise ratio of 3.02.
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Due to such large photometric uncertainties, the dust correction and resulting ΣSFR

is heavily affected by the 2 mag AFUV prior (e.g. SN 2003ic in Figure 3.2). Because

using this prior to correct for dust local to the SN Ia can have up to a ∼1 dex effect

on the measured ΣSFR, we examined the effect of changing the Bayesian dust prior to

AFUV = 1.0 ± 0.6 and AFUV = 3.0 ± 0.6. These values span the full range of AFUV

in blue galaxies measured by Salim et al. (2007, see their Figure 13). Changing this

prior serves as a way to alleviate some of the uncertainty associated with our global

SFR determination; lowering this prior by 1 mag changes ∼10 SNe in our sample

from Iaα to Iaε.

Following R15, we tried an additional 3 local aperture diameters between 2 and

6 kpc because the choice of a 4 kpc aperture is somewhat arbitrary and other rea-

sonable choices exist. In part, the FWHM of the FUV PSF determines the minimum

spatial scale we can probe with GALEX, which is approximately 2 kpc at our median

redshift. However, Figure 3.2 shows that it is still possible that a local aperture will

encompass components of a galaxy with different star-forming environments. The

higher-resolution star formation maps of M33 in Boquien et al. (2015) show large

ΣSFR variation on much smaller, sub-kpc scales. Nevertheless, we might hope that

star-formation within a ∼few kpc aperture is still much better correlated with the

SN progenitor environment than a global measurement due to the significant fraction

of prompt progenitors and low velocity dispersions of young stars de Zeeuw et al.

(1999).
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The boundary between SNe Iaα and Iaε is also somewhat arbitrary. We used values

of log(ΣSFR) between -3.1 and -2.7. For direct comparison to Kelly et al. (2015), we

also examined the boundary between star-forming and passive of log(ΣSFR) = −1.7

and -1.85 (accounting for a ∼0.4 dex offset between our SFR measurements and Kelly

et al. (2015)) when discussing Hubble residual dispersion.

Finally, we tried using global rather than local star formation (global star for-

mation is a less noisy measurement), and with or without 2.5σ-clipping. Our list of

analysis variations is given in §3.5, Table 3.5.

3.5 Results

We used 179 GALEX-detected SNe from JLA+PS1 and 157 SNe from R11 to

measure the LSF step and distance dispersion. Although for certain variants of the

analysis, we see differences between SNe Iaε and Iaα at the level of∼1-3σ, the evidence

for the LSF step is generally weak.

Although certain peculiar SNe (e.g. SN 1991bg-like and SN 1991T-like) are not

explicitly identified and removed from these samples, the shape and color cuts applied

by JLA and R11 are sufficient to remove many of them. However, we make no effort

to exclude peculiar SNe that JLA/R11 have determined to be cosmologically useful

so that we can directly assess the affect of local SF on the JLA/R11 cosmological

analyses. In contrast, Rigault et al. (2013) and R15 remove identified SN 1991T
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explicitly (∼3% of their sample).

In this section, we do not examine the effect of correcting for the relationship

between host mass and SN distance Sullivan et al. (2010) on the LSF step as only

∼15% of our SNe are low-mass hosts (log(M�) < 10; R15 similarly found that few

H09 SNe are in low-mass hosts). However, we briefly consider its effect on H0 in

§3.6.2. A complete table with our GALEX measurements and Hubble residuals is

available online4, with the first 25 rows given in Table 3.4.

3.5.1 The Local Star Formation Step

We find a greatly reduced LSF step compared to R15 for all light curve fitters and

values of RV . Using SALT2, we find an LSF step of 0.000±0.018 mag. With MLCS

RV = 2.5 (the value used in the R11 baseline analysis), we find 0.029±0.027 mag.

However, we do find mild evidence for an offset of 0.059±0.025 mag with RV = 2.0

(2.4σ significance). For RV = 3.1, we found a value of 0.013±0.030 mag. Our error

budget includes systematic errors, which we estimated by measuring the standard

deviation of several variants of our analysis.

Figure 3.4 presents our baseline measurement of the LSF step and Hubble residual

dispersion for SNe Ia in locally passive and locally star-forming environments (SNe Iaε

and SNe Iaα, respectively), with colors indicating the probability incorporated in our

likelihood model that a given SN Ia has a locally passive environment, P(Iaε). We

4http://www.pha.jhu.edu/~djones/lsfstep.html
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find that 47.2% of R11 SNe in our sample are Iaε and 46.0% of JLA+PS1 SNe in

our sample are Iaε. The overall intrinsic dispersion for our full MLCS sample (∼0.13-

0.17 mag; 0.14 for RV = 2.5) is higher than for SALT2 (0.12 mag), likely due to the

lack of recent calibration of MLCS2k2. Intrinsic dispersion can also be affected by

the distribution of light curve parameters in the sample and the robustness of the

photometric measurements.

We find no significant difference in dispersion between SNe Iaα and SNe Iaε in

SALT2. In the R11 MLCS sample, however, we find some evidence that SNe Iaε have

lower dispersion (σIaε) than SNe Iaα. For RV = 3.1, the LSF step is the lowest and

σIaα is the highest (0.09 mag > σIaε; 2.6σ with sys. error). These results disagree

with R15 at the 3σ level. For MLCS with RV = 2.5, σIaε is ∼0.05 mag less than

σIaα (1.9σ significance). For RV = 2.0 we detected only a ∼0.03 mag difference in

dispersion (1.3σ). Our full results for each analysis variant are presented in Table 3.6.

We found that if we restrict to z > 0.023 (the R15 minimum z), we see more

evidence for the LSF step. After this cut, there are 135 SALT2 SNe Ia and 104 MLCS

SNe Ia. The increased significance of these results is expected because ∼3/4 of our

MLCS sample is from R15 when we apply this redshift cut. For MLCS RV = 2.0, 2.5,

and 3.1 we find LSF steps of 0.086±0.028 (3.1σ), 0.076±0.030 (∼50% of R15; 2.5σ),

and 0.064±0.037 (35% of R15; 1.8σ). For SALT2, we only find a very small offset,

0.017±0.019 (18% of the R15 result) at 0.9σ significance. The MLCS LSF steps are

∼50% of those found by R15. Except in the case of MLCS with RV = 2.0, the low-z
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data alone (0.01 < z < 0.023) show slightly brighter SNe Iaα by ∼0.02-0.03 mag but

with only 0.5σ significance for MLCS (0.06 mag with 1.4σ for SALT2). This effect

is mostly due to ∼5 bright low-z SNe, which do not have a large effect on the final

result (see the 2.5σ-clipping in Table 3.5). If the peculiar velocity corrections and

uncertainties for low-z SNe were in error, we would expect, but do not observe, a

significant increase in uncertainty-weighted M corr
B dispersion below z = 0.023 (we see

.0.015 mag difference). We did not find evidence that our highest-z data (z > 0.07)

were having a significant effect on our results.

3.5.2 Systematic Uncertainties

Several different variants of our analysis are consistent with the baseline result.

The JLA+PS1 variants are shown visually in Figure 3.5, and the R11 variants are

shown in Figure 3.6. For the LSF step, the full results from both data sets are

presented in Table 3.5 and our dispersion results are presented in Table 3.6. We have

added the standard deviation of the LSF step from all variants in quadrature to our

measured values (giving each type of variant, e.g. aperture size, SFR boundary, etc.,

equal weight). Because using the global SFR is not truly a local measurement, we

have excluded it from our error computation but include it in our list of variants for

comparison.

For nearly all samples, our most significant detections of the LSF step were at a

log(ΣSFR) boundary of -3.1 and a 3 kpc aperture radius. For a log(ΣSFR) boundary
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of -3.1, with SALT2 and MLCS RV = 2.5 (the most relevant versions for cosmology),

we detected steps of 0.023±0.019 and 0.044±0.029, respectively. These are ∼25% of

R15 values and insignificant.

For MLCS with RV = 2.5 and 3.1, our most significant detections came from the

variant with 2.5σ-clipping. They had values of 0.060±0.026 mag (2.3σ) for RV = 2.5

and 0.046±0.028 (1.6σ) for RV = 3.1. This may mean that outliers are affecting our

measurement. However, we also expect that they affect the R11 H0 measurement in

the same way, and note that RV = 2.0 2.5σ-clipping has no significant effect.

The variant with the smallest LSF step was the one based only upon global SFR

instead of local. However, the significance of the difference is only .1σ except in

the case of RV = 2.0. The difference may stem from the fact that 25% of SNe with

globally star-forming environments in our samples had locally passive environments

(P(Iaε) > 50%). Only 5% of SNe with globally passive environments had a >50%

probability of being locally SF. Qualitatively, this agrees with Hα data from Rigault

et al. (2013, their Figure 5), who found that globally star-forming hosts often had

locally passive regions.

Even after adding the systematic error in quadrature, the MLCS RV = 2.0 LSF

step is detected at 2.4σ (0.059±0.025 mag). Future cosmology analyses using MLCS

with low RV should measure the LSF step in their samples to evaluate its effect on

cosmology.

The difference in the dispersion between the two SN populations in MLCS is
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greatest in those same analysis variants discussed above, but as with our baseline

analysis, we see the opposite effect that R15 found. We don’t detect any difference

in dispersion for SALT2 with the exception of using global instead of local SFR, for

which we find a 0.05±0.018 mag (2.8σ) reduction in dispersion for passive hosts. For

MLCS RV = 2.5 and 3.1, we find a reduction in dispersion for locally passive SNe

of ∼0.05−0.1 mag (∼1-3σ) for a log(ΣSFR) boundary of -3.1 and a 3 kpc aperture

radius.

3.5.3 Consistency with R15

R15 measured a much larger LSF step of 0.094±0.037 with SALT2, 0.155±0.041

with MLCS2k2 RV = 2.5 and 0.171±0.040 with MLCS2k2 RV = 3.1. We did not

directly compare to their RV = 1.7 data, but our RV = 2.0 offset is 50% smaller

than theirs. Our measured SALT2 LSF step has a 2.3σ discrepancy with the R15

measurement, our MLCS2k2 RV = 2.5 LSF step has a 2.6σ discrepancy, and our

MLCS2k2 RV = 3.1 LSF step has a 3.2σ discrepancy.

Table 3.3 demonstrates the step by step impact of changes in the R15 analysis

or data, showing the effects of using the JLA+PS1 and R11 light curve cuts, the

JLA+PS1 and R11 distance moduli (with an updated SALT2 light curve fitter for

JLA+PS1), our improved log(ΣSFR) measurements, and using a larger SN Ia sample

(with and without the R15 z > 0.023 cut).

Updated distance moduli greatly decrease the significance of the LSF step in
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Table 3.3. The Effect of Step-by-Step Changes in R15 Data, Distances, SFR

Measurements, and Sample Cuts

Measurements SALT2 MLCS RV =2.5

SN SN

sample µresid ΣSFR cuts SNe δ(Mcorr
B )SF

a Sig. σIaα − σIaε
b Sig. SNe δ(Mcorr

B )SF
a Sig. σIaα − σIaε

b Sig.

H09 H09 R15 H09 77 0.093±0.026 3.5σ -0.034±0.073 -0.5σ 81 0.169±0.026 6.5σ 0.057±0.033 1.7σ

H09 H09 R15 JPRc,H09 59 0.129±0.030 4.3σ 0.012±0.047 0.2σ 74 0.144±0.025 5.6σ 0.038±0.034 1.1σ

H09 JPR R15 JPR,H09 59 0.062±0.032 1.9σ 0.030±0.031 1.0σ 74 0.149±0.025 5.9σ 0.023±0.031 0.7σ

H09 JPR Hered JPR,H09 59 0.071±0.033 2.2σ 0.009±0.031 0.3σ 74 0.119±0.026 4.5σ -0.010±0.030 -0.3σ

H09 JPR Here JPR 63 0.045±0.033 1.3σ 0.015±0.030 0.5σ 78 0.097±0.027 3.6σ -0.029±0.030 -1.0σ

JPRe JPR Here JPR,z >

0.023

135 0.017±0.019 0.9σ -0.020±0.019 -1.1σ 103 0.076±0.029 2.6σ -0.041±0.029 -1.4σ

JPRe JPR Here JPR 179 0.000±0.018 0.0σ -0.013±0.018 -0.7σ 156 0.029±0.025 1.2σ -0.053±0.024 -2.2σ

aδ(Mcorr
B )SF denotes the magnitude of the LSF step.

bThe difference in uncertainty-weighted dispersion between SNe Iaε and Iaα (using the standard deviation of the maximum likelihood

gaussians; σε and σα in Equation 3.3).

cJLA+PS1 Mcorr
B for SALT2, R11 Mcorr

B for RV = 2.5.

dMeasurements of ΣSFR from this work (see §3.4.1).

eThe full JLA+PS1 (SALT2) and R11 (MLCS) SN samples.

Note. — We show the difference between our analysis and R15 by improving one element of the analysis at a time. We start with

the R15 results and sequentially show the effect of adding light curve cuts from JLA+PS1/R11, using JLA/R11 distance moduli, using

our updated SFR measurements, using only JLA/R11 (not H09) light curve cuts, and finally adding in the full SN samples with and

without the R15 redshift cut of z > 0.023. The biggest differences come from adding the full sample for both SALT2 and

MLCS and using improved SALT2 distance moduli. The R11 SN light curve cuts also make a 1σ difference in the MLCS results.

For consistency, we have used the likelihood minimizer used in the rest of this study to reproduce the R15 results (The SciPy Optimize

package). This minimizer returns smaller uncertainties than Minuit, which was used in R15, but we find negligible differences in the

maximum likelihood values themselves. The difference in LSF step we find for R15 data with MLCS (our value is 0.014 mag higher) is

because we adopt two separate dispersions for SNe Iaα and SNe Iaε whereas R15 use a single value for the full sample.
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JLA+PS1 data in SALT2, a 50% reduction (a change in significance of 2.4σ). The

version of SALT2 used in recent analyses has an improved SN Ia model and un-

certainty propagation, a larger training sample, and an updated value for β. R11

distances are nearly identical to H09 distances, so using these has no significant effect

on the LSF step.

Using our ΣSFR measurements increases the significance of the LSF step by 0.3σ

for SALT2 and reduces it by 1.4σ (∼20%) for MLCS. Between our data and the R15

data, there is significant scatter in probability for 10% < P(Iaε) < 90%, in large part

due to our modest changes in dust correction methodology. However, we find only

3% median offset in P(Iaε) between our data and R15 and in §3.5.6 we find that our

method of ΣSFR measurement has little impact on the final results. Our full set of

ΣSFR measurements can be compared to R15 using the data we provide online and in

Table 3.4.

There are 4 SNe in R11 and 4 SNe in JLA that pass R11/JLA light curve cuts but

do not pass H09 cuts (SNe 1992j, 1993h, 1999aw, 2001ic, 2006bd, 2006gt, 2007ba, and

2007cg). We found that including them reduces the SALT2 LSF step by a significant

37% (0.9σ) and reduces the MLCS LSF step by ∼15% (0.9σ). When applying any

LSF-dependent effect to cosmology, it is appropriate to match the cuts used in the

cosmological analysis to those used in the measurement.

For both the LSF step and the dispersion in MLCS, there is a >1σ change when

we use the full SN Ia sample. Although the total statistical change from 3.6σ to 1.2σ
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is large, we do not expect this to be a result of peculiar velocity bias from our low-z

data. Some of the change may result from a greater sample dispersion, which reduces

the significance of small offsets. A dispersion term is typically added in quadrature to

distance modulus uncertainties in cosmological analyses, including R11 and Betoule

et al. (2014), and has the same effect. In addition, Table 3.3 does not incorporate

systematic error, which may have an impact; high-z data effectively have a larger

aperture size due to a PSF width that is a greater fraction of the 4 kpc aperture

diameter. Figure 3.6 shows that aperture variations may have up to a 1σ effect on

the measured LSF step, and to expand our sample size we have preferentially added

low-z data with smaller effective apertures (0.01 < z < 0.023).

Table 3.3 shows that the MLCS increase in Iaα dispersion is mostly caused by the

addition of new SNe rather than to our ΣSFR measurements or new distance moduli.

The surveys that comprise our sample typically have larger dispersion than H09, which

reduces the significance of the H09 sample. There are a number of possible sources

for increased dispersion of a SN Ia sample, including underestimating photometric

difference image uncertainties near bright hosts and nightly or absolute photometric

calibration uncertainties Scolnic et al. (2014a). For MLCS, R11 may also have higher

sample dispersion because they make no cut on the χ2 of the MLCS light curve fits,

while H09 remove SNe with reduced χ2 > 1.5.
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3.5.4 The Effect of MLCS Sample Cuts

In MLCS, the total difference of ∼0.14 mag between our analysis and R15 may

appear surprising, but in addition to the possible reasons discussed above, much of

the change between the R15 measurement and ours appears to arise from the different

demographics of the two samples and the peculiarities of the MLCS light curve fitter.

H09 find that for both high-AV SNe and high-∆ SNe, MLCS tends to overcorrect

leading to negative residuals, and these negative residuals are not subtle. In our RV =

2.5 sample, SNe with AV > 0.5 have a mean residual of -0.22 mag, which has been seen

elsewhere as evidence for a lower RV in high extinction environments. Likewise, SNe

with ∆ > 0.7, where the relation between light curve shape and luminosity becomes

non-linear and is poorly sampled especially when MLCS2k2 was trained, have a mean

residual of -0.23 mag. Accordingly, the balance of rare high AV SNe to rare high ∆

SNe can affect an apparent LSF step as the frequency of these objects correlates with

host properties.

Passive hosts have preferentially higher ∆ than SF hosts (H09, their Figure 19),

while SF hosts have preferentially higher AV . In R15, the H09 data that have GALEX

imaging and pass their cuts contain several SNe with large ∆ but only two SNe with

AV > 0.45 for RV = 1.7 (for RV = 3.1, only two SNe with AV > 0.7). Therefore

a sample like R15 without high-AV hosts but with high-∆ hosts will have brighter

passive SNe Ia on average, producing a larger apparent LSF step.

One approach to decrease sensitivity to MLCS Hubble residual trends is to first
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remove the trends, and then determine the LSF step. In Figure 3.7, we fit a simple

linear model to MLCS Hubble residuals as a function of ∆ and AV , using R11 SNe in

H09 (with AV < 1.5 and ∆ < 1.5 to match H09). When we correct for those slopes,

we see that the measured SF step using R11 SNe in H09 shrinks by a factor of 2.5

and is reduced from 4.5σ to 1.6σ significance.

SALT2 does not have the strong residual trends with X1 and C that MLCS does

with AV and ∆, and we also find that restricting our sample to the H09 “best” SALT2

cuts (−0.1 < C < 0.2) does not introduce an LSF step (but changing β may; see

§3.6.1). However, it is likely that recent substantial improvements to the SALT2

model have removed some of the biases in its derived distances. Due to the lower

dispersion of SALT2-fit SNe, the lack of these residual trends, and because MLCS fits

assume an extinction law, it is likely that SALT2 is more effective at standardizing

SNe Ia.

In a future update of MLCS using a larger training sample, it would be important

to verify that these trends with host, AV and ∆ are diminished.

3.5.5 Kelly et al. (2015) Scatter

Using MLCS, Kelly et al. (2015) see reduced Hubble residual scatter of only 3.5%

in distance in highly star-forming regions (log(ΣSFR) > -2.1 and log(ΣSFR) > -2.25).

Due to differences in methodology, there is a ∼0.4 dex offset in ΣSFR measurements

between our data and Kelly et al. (2015). Because of this, we adopt log(ΣSFR) > -1.7
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and log(ΣSFR) > -1.85 as our ΣSFR boundaries for comparison.

In part, the low scatter seen by Kelly et al. (2015) is because they explicitly remove

SNe with Hubble diagram residuals >0.3 mag (>15% in distance). Because of this

and because the R11 sample does not cut SNe with high extinction or large ∆, our

unweighted standard deviation is a significantly larger ∼0.25 (12% in distance) for

the R11 sample at log(ΣSFR) > -1.7 and log(ΣSFR) > -1.85. For SALT2, the standard

deviation is a slightly lower 0.20 mag, or 10% in distance, with no difference between

SNe in locally passive/locally star-forming environments.

We also see no difference in uncertainty-weighted dispersion for these ΣSFR bound-

aries in SALT2, and we find that the dispersion for SNe in both passive and star-

forming environments in SALT2 data is smaller than the lowest dispersions we observe

with MLCS. The scatter in our sample is much higher than in Kelly et al. (2015),

and we find a .0.02 mag (∼14%; ∼0.1-0.5σ) reduction in dispersion for MLCS with

RV = 2.0. SNe in star-forming environments have higher dispersion with low sig-

nificance for MLCS RV = 2.5. For RV = 3.1, SNe in star-forming environments

have ∼0.07 mag higher dispersion at ∼1σ significance. A summary of our intrinsic

dispersion measurements are in Table 3.7.

If we apply H09 ∆ and AV cuts to our data, we still see the opposite effect as

Kelly et al. (2015). We can only reproduce the Kelly et al. (2015) results using their

strict ∆ and AV cuts, which have not been used in any cosmological analysis to date.

However, these cuts may prove useful in the future if this low-scatter population
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persists when additional SNe are added to the data.

3.5.6 Additional Consistency Checks

We performed several consistency checks to verify that individual SN datasets and

differences between our analysis and R15 did not bias our results. First, we removed

SNe discovered prior to the year 2000, leaving 130 SNe from JLA/PS1 and 116 SNe

from R11. Our results were consistent with our baseline analysis; we measured a

SALT2 LSF step of 0.010±0.025 mag and an MLCS RV = 2.5 step of 0.040±0.031

mag. The RV = 2.0 step was a slightly higher, but consistent, 0.079±0.030 mag

(2.7σ). The dispersion of SNe in highly SF regions was not significantly reduced.

Second, the photometry and calibration from low-z surveys is not as robust as re-

cent data from SDSS and PS1. The JLA/PS1 sample has 37 SNe with redshifts less

than 0.1 that have GALEX data and pass our cuts, while the R11 sample includes no

SDSS/PS1 SNe as it predates them. For comparison, we fit SDSS and PS1 SNe with

MLCS to see if the LSF step derived from these surveys alone are consistent with

the R11 results. With SALT2, we find an LSF step of 0.034±0.028 mag with lower

SF dispersion by 0.049±0.024 mag (2.0σ). With MLCS, we find a large LSF step

with 35 SNe of ∼0.14±0.055 mag with 1.7-2.9σ significance. As the sample consists

of only ∼10-15 locally passive SNe, this step could still be caused by low statistics

or a limited range of light curve parameters comprising the sample. As discussed in

§3.5.4, the trends MLCS residuals have with different light curve parameters may be
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a factor, as the size and significance of the LSF step is somewhat reduced when this

sample is restricted to low ∆ and AV . This step is also unlikely to affect recent cosmo-

logical analyses, which are based on SALT2 or comprised mainly of low-z data (e.g.

R11, H09). However, it is an interesting result that should be explored further with

photometric PS1 SNe and future DES data. This sample is too small at log(ΣSFR) >

-1.85 for a reliable check on our Kelly et al. (2015) comparison.

If we make a host galaxy inclination cut at >80◦ following R15 (instead of our

more conservative cut of>70◦), the results are consistent with our baseline result, with

MLCS LSF steps ranging from 0.00 mag (RV = 3.1) to 0.045 mag (RV = 2.0) with

uncertainties ∼0.025 mag. The SALT2 LSF step is -0.016 mag (<1σ significance).

Finally, we apply a dust correction to the FUV flux from all SN regions in star-

forming hosts when determining ΣSFR, now including the 20 R11 SNe and 25 JLA/PS1

SNe with R > 3 (see §3.4.1.2). We again find a comparable result; the SALT2 LSF

step is 0.012±0.019 mag, and the MLCS RV = 2.5 LSF step is 0.040±0.028 mag.

3.6 Discussion

We find that local star formation has at little to no effect on SN Ia distances in

the R11 and JLA+PS1 samples. Our results have several important implications for

cosmological analyses, H0, and future measurements of relationships between SNe Ia

and their host galaxy properties.
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3.6.1 The Effect of β and RV on SN Ia Distances

Although the modest differences we observe in mean magnitude and dispersion for

MLCS with certain values of RV could be due to the relation between SN Ia progenitor

properties and derived distances, we consider it much more likely that host galaxy

extinction, which is highly correlated with star formation, is causing any observed

bias. We propose that some of the effects seen in R15, Kelly et al. (2015), and our

data may be due to dust rather than to a secondary effect such as the progenitor age

(e.g. Childress et al. (2014)).

With MLCS, the LSF step we found is 0.046±0.039 mag higher assuming RV = 2.0

than assuming RV = 3.1 (systematic errors added). The RV = 2.0 LSF dispersion is

0.053±0.044 (stat+sys) mag lower than RV = 3.1. It has been observed by several

groups (e.g. Burns et al. (2014)) that SNe Ia in high-extinction environments have

lower values of RV . Because of this, it seems likely that the RV = 3.1 extinction law

is failing to properly correct for the dust in some star-forming regions.

For SALT2, our value of β has a value ∼0.6 higher in the latest cosmological

analyses than the value found in H09. This can have an important effect on the

measured LSF step. For example, a SNe Ia in a locally star-forming environment

with ∼0.17 magnitudes of AV , would have its corrected magnitude shifted by 0.1

mag with this new value of β. For comparison, R15 SNe with locally star-forming

environments have a mean fitted AV = 0.25 for RV = 3.1 and AV = 0.22 for RV = 1.7.

We don’t see such a large effect in our data, and would not expect β to have the exact
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effect of RV , but we do find that using a lowered β of 2.5 (the value used in H09) in

our analysis raises the SALT2 LSF step to 0.024±0.018 (1.3σ significance).

In future cosmological analyses, it may be possible to separate star-forming and

passive hosts and fit for two different values of β or RV . This could reduce scatter

and provide more precise SN Ia distances for subsets of the population, provided the

systematic uncertainties in such an analysis are well-understood.

The SALT2 light curve fitter shows the least difference between SNe Iaε and

SNe Iaα M corr
B and also has the lowest dispersion in both star-forming and passive

regions. The lowest dispersion we find using MLCS is still higher than the SALT2

dispersion for both SNe Iaε and Iaα. For this reason, SALT2 may be a more reliable

light curve fitter for cosmological analyses. In its current version, MLCS fails to stan-

dardize SNe Ia to the extent that SALT2 does and has fitter biases that correlate with

host properties (such as Hubble residual nonlinearities with high ∆ and an assumed

value for RV ). Perhaps a re-trained version of MLCS that incorporates terms such

as random SN color scatter Scolnic et al. (2014b) would reduce the MLCS outlier

fraction and provide more precise distances.

3.6.2 The Effect on Measuring H0

Because our final measurement of the LSF step with RV = 2.5 is only a 1.2σ

detection, there are no grounds in the Bayesian sense to correct H0 for the LSF step.

However, a useful test of systematic uncertainties in the future will be to use only
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star-forming hosts in the Hubble flow sample, which have similar physical properties

to the nearby Cepheid-calibrated sample and will better control for unknown biases

in metallicity, dust, or progenitor age.

Adopting the 47.2% SN Iaε fraction we find for R11 and the 7.0% SN Iaε fraction

found by R15 for the Cepheid sample with Equation 3.1, we find no evidence for a

reduced value of H0. Following R15, if we were to replace the host mass step with

the LSF step, our measurement suggests a 0.1% increase in H0 because the size of the

LSF correction is slightly less than the size of the host mass correction.

One caveat is that R11 added the MLCS intrinsic SN Ia dispersion but not the

full apparent intrinsic dispersion in quadrature to the distance modulus uncertainties

in their Hubble flow SNe. We find that forcing our maximum likelihood gaussian

model to use only the MLCS intrinsic dispersion of 0.08 mag raises the magnitude

of the RV = 2.5 LSF step we derive to 0.045±0.019 (a 2.4σ detection, but 2.1σ with

systematic uncertainty added). This could be because it allows outliers to have a

greater effect on the measurement. However, applying this correction after removing

the host mass step still only results in a reduction in H0 of 0.11 km s−1 Mpc−1.

The R11 value for H0 is within the 1σ uncertainty of the LSF step. The highest

LSF step we are able to find using all our analysis variants with 0.08 mag dispersion

is 0.066±0.22 mag (the 2.5σ-clipped variant), and even this extreme measurement

lowers H0 by only 0.4 km s−1 Mpc−1.

Finally, if we measure the LSF step after host mass correction using masses from
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Neill et al. (2009, 53% of the R11 sample) and again using a dispersion of 0.08 mag,

we find a LSF step of 0.023±0.027 (stat+sys) mag for RV = 2.5. This results in a

small reduction of 0.3 km s−1 Mpc−1. Because we detect this effect at <1σ (with

systematic error added in quadrature), we do not believe a correction is justified.

3.6.3 Future Measurement of the LSF Step

Although we have only detected the LSF step at low significance with GALEX

FUV data, GALEX alone is not the best tool for studying local regions due to its

large PSF width and the uncertain UV extinction correction. The LSF step would be

best identified in local Hα (e.g. Rigault et al. (2013)), high-resolution UV data from

the Hubble Space Telescope (HST), or local SED fitting.

Table 3.3 shows that sample selection has a significant effect on our results. We

suggest that studies examining host galaxy effects use the same SN Ia samples and

selection criteria as the latest cosmology analyses when possible. It may be possible to

detect the LSF step or differences in dispersion at higher significance using different

light curve or distance modulus cuts, but the results of such analyses would not

necessarily apply to typical measurements of cosmological parameters.

Local SED fitting may be the optimal approach for studying the relation between

host galaxy properties and SN Ia distances, as it can put simultaneous (albeit some-

times degenerate) constraints on a number of parameters that may correlate with

SN Ia distances such as stellar age, extinction, star formation history, and mass con-
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tained in a local region. Approaches that don’t depend entirely on GALEX data will

also be able to measure local regions at higher redshifts and put better contraints on

possible redshift-dependent biases.

The size of the samples with which we can examine the effects of host galaxy

properties on SN Ia corrected magnitudes will increase dramatically in the next few

years. The PS1 photometric sample alone will consist of up to ∼2,000 SNe Ia with

cosmologically-useful light curves. The Dark Energy Survey (DES) will contribute

thousands more up to redshifts of∼1. Although measurements of local regions become

more difficult at high-z, a ground-based optical survey with PSF FWHM ∼1 arcsec

will be able to use a much larger SN sample provided the absence of UV data is not

prohibitive. Surveys such as PS1 or DES are able to examine local regions of 5 kpc

diameter, similar in size to the apertures used in this study, up to z ' 0.35.

3.7 Conclusions

Analyzing the same SNe Ia used to determine the most recent values of w and H0,

we find little evidence for a LSF step, which suggests that correcting cosmological

parameters for this effect is not necessary. There is only 1.1σ evidence for the LSF

step in R11 MLCS data assuming RV = 2.5 (the RV R11 used in their baseline

analysis) and 0.0σ evidence for the LSF step in JLA+PS1 SALT2 data. Our most

significant detection uses MLCS data assuming RV = 2.0, for which we find 2.4σ
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evidence for a step. The sizes of both of these steps are greatly reduced compared to

the measurement of R15. Lower values of β in SALT2 and RV in MLCS may increase

the size and the significance of the LSF step.

Compared to R15, differences in our ΣSFR measurement and dust correction tech-

nique reduced the size of the MLCS LSF step by ∼20% and increased the SALT2

LSF step by ∼15%. Using MLCS sample cuts from R11 reduced the offset by an

additional ∼20% and adding the full R11 sample reduced the offset to 0.029±0.027

mag, likely due to the higher dispersion and better statistics of the full sample. Using

new distance moduli and sample cuts from only Betoule et al. (2014) (and not H09)

reduced the SALT2 LSF step by 60% and using the full JLA+PS1 sample reduced

the SALT2 step to a value of 0.000±0.018 mag.

MLCS sample cuts have a significant impact on the results. MLCS Hubble di-

agram residuals are more negative at greater AV and ∆, which must be carefully

taken into account in cosmological analyses. In particular, passive hosts are known

to have preferentially higher ∆ but lower AV (H09). We suspect that because the

R15 sample had few high-AV SNe but a wide range of ∆, their locally star-forming

SNe had preferentially fainter Hubble residuals.

We found that JLA+PS1 SNe fit with SALT2 had lower dispersion than MLCS-fit

R11 SNe in star-forming or passive environments. We also found that locally star-

forming SNe in our sample did not have lower dispersion at log(ΣSFR) > -2.9. In

MLCS with RV = 3.1, SNe Ia in locally passive environments have lower dispersion
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than those in locally star-forming environments by ∼0.09 mag, a 2.5σ result. Using

MLCS with RV = 2.5, we see a 0.053±0.029 mag difference.

The lowest SN Ia dispersions come from using SALT2 distance moduli. In contrast

to Kelly et al. (2015), with MLCS we found no evidence that SNe in highly star-

forming environments have lower dispersion than locally passive SNe using RV =

2.0. With RV = 3.1 we found that SNe in star-forming environments had greater

dispersion (∼1-2σ significance), but note that we did not make the Kelly et al. (2015)

sample cuts. We can only reproduce the Kelly et al. (2015) results by using their

strict cuts on the SN light curve parameters ∆ and AV and removing SNe with

Hubble residuals >0.3 mag, which restricts our sample to largely the same data as

Kelly et al. (2015).

The LSF step may also be difficult to detect because of the large PSF width of

GALEX and it may also be that the LSF step is only apparent in analyses with

certain types of light curve selection or outlier rejection. Future studies with local

Hα, SED fitting, or HST UV observations will have an improved ability to detect

local effects. Our results also show that certain SN sample cuts may inadvertently

increase biases in cosmology. We expect that with the large SN Ia samples from PS1

and DES that will be published in the next few years, the systematic uncertainties

on H0 and the dark energy equation of state will come into clearer focus.
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3.8 Appendix

3.8.1 Calculation of Probabilities and Maximum

Likelihood Estimation

The only significant difference between our method of measuring the maximum

likelihood LSF step and Hubble residual dispersions and the R15 method is that we

allowed the intrinsic dispersion of both SN Ia populations (Iaε and Iaα) to be fit by

our maximum likelihood model. We describe our full procedure below.

We first converted the dust-corrected FUV flux into ΣSFR following R15 (their

Equation 1). We set the boundary between the locally star-forming and locally pas-

sive population at log(ΣSFR) = −2.9 as in R15, and measured the probability that

the SN Ia exploded in a locally passive environment based on the full probability

distribution from our dust-corrected photometric measurements.

We used these probabilities to construct a maximum likelihood model assuming

two gaussian populations of SNe with different mean Hubble residuals and dispersions.

The likelihood is determined by the equation:

Li = P (Iaα)× 1
√

2π(σ2
i + σ2

α)
exp(−

(M corr
B,i − µα)

2

2(σ2
i + σ2

α)
)

+P (Iaε)× 1
√

2π(σ2
i + σ2

ε )
exp(−

(M corr
B,i − µε)

2

2(σ2
i + σ2

ε )
),

(3.3)

whereM corr
B,i is the corrected magnitude and σi is the corrected magnitude uncertainty

of a given SN Ia. P(Iaα) and P(Iaε) are the probabilities that the SN environment
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is locally star-forming or locally passive, respectively. µα, µε, σα and σε are free

parameters equal to the means and standard deviations of the normal distributions

of SNe Iaα and Iaε. To determine what these parameters are, we found the maximum

likelihood model by minimizing:

log(L) = −2
N∑

i=1

log(Li) (3.4)

where N is the number of SNe Ia in the sample.

Instead of adding an intrinsic dispersion term in quadrature to the Hubble residu-

als such that the reduced χ2 of the sample is 1, as is commonly done in cosmological

analyses (and in R15), we fit to the standard deviations of our gaussian maximum

likelihood model for SNe Iaα and Iaε. We verified that allowing the dispersion to be

fit by our model instead of specifying it beforehand does not affect our results.
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Table 3.4. The LSF Step Sample

Name Surveya z JLA+PS1 R11 MLCS2k2 ∆Mcorr
B GALEX data Global Rb Dust Corr. log(ΣSFR) P(Iaε) Cuts

SALT2 ∆Mcorr
B RV =2.0 RV =2.5 RV = 3.1 Exp. FUV Host Class

(s) (mag) (M�kpc−2yr−1) (%)

010010 PS1 0.100 0.270±0.113 · · · · · · · · · 10629 24.90±0.21 SF 5.37 N −3.072+0.081
−0.076 98 Incl

010026 PS1 0.032 0.092±0.159 · · · · · · · · · 16222 21.75±0.04 SF 1.28 Y −2.239+0.054
−0.050 0 · · ·

070242 PS1 0.064 0.167±0.129 · · · · · · · · · 92341 28.82±1.09 SF 35.00 N −4.898+0.259
−0.460 100 · · ·

10028 SDSS 0.064 -0.102±0.117 · · · · · · · · · 3272 25.68±0.60 Pa 0.46 N −3.712+0.194
−0.223 100 · · ·

10805 SDSS 0.044 -0.198±0.128 · · · · · · · · · 8006 21.02±0.04 SF 0.88 Y −1.501+0.062
−0.053 0 · · ·

1241 SDSS 0.088 -0.092±0.108 · · · · · · · · · 1670 26.04±1.50 SF 4.84 N −3.321+0.254
−0.422 97 · · ·

12779 SDSS 0.079 0.055±0.122 · · · · · · · · · 206 24.47±2.07 SF 1.91 Y −1.983+0.384
−0.592 15 · · ·

12781 SDSS 0.083 0.191±0.119 · · · · · · · · · 3354 >26.43 Pa 3.34 N < −3.670 100 · · ·
12898 SDSS 0.083 0.002±0.107 · · · · · · · · · 1627 23.38±0.24 SF 0.94 Y −2.166+0.170

−0.295 4 · · ·
12950 SDSS 0.081 0.078±0.102 · · · · · · · · · 4954 22.01±0.08 SF 0.55 Y −1.817+0.112

−0.105 0 · · ·
130308 PS1 0.082 0.037±0.123 · · · · · · · · · 4024 24.99±0.32 ∼SF 0.90 Y −2.451+0.208

−0.329 12 Incl

17240 SDSS 0.071 -0.159±0.143 · · · · · · · · · 3053 >27.31 Pa 4.15 N < −3.970 100 · · ·
17258 SDSS 0.088 -0.188±0.118 · · · · · · · · · 4130 23.73±0.20 SF 0.88 Y −1.900+0.159

−0.251 1 · · ·
17745 SDSS 0.062 -0.000±0.117 · · · · · · · · · 1643 23.34±0.26 SF 0.89 Y −1.973+0.176

−0.271 2 · · ·
18241 SDSS 0.094 0.176±0.165 · · · · · · · · · 544 24.19±0.95 SF 1.07 Y −1.888+0.292

−0.403 5 · · ·
19899 SDSS 0.090 -0.048±0.107 · · · · · · · · · 2147 25.57±0.92 SF 5.88 N −3.220+0.187

−0.334 96 · · ·
1990af JRK07 0.050 -0.063±0.160 -0.213±0.170 -0.204±0.178 -0.205±0.188 336 >24.09 Pa 1.77 N < −3.230 100 · · ·
1990o JRK07 0.031 -0.107±0.150 -0.071±0.140 -0.050±0.144 -0.037±0.147 145 22.13±0.67 SF 2.95 Y −2.156+0.300

−0.422 9 · · ·

Note. — The full table is available online at http://www.pha.jhu.edu/~djones/lsfstep.html.

aJRK refers to the Jha et al. (2007) sample, which includes SNe from the CfA1, CfA2, and Calan/Tololo SN surveys Riess et al. (1999); Jha et al. (2006); Hamuy

et al. (1996).

bSN separation from the host galaxy, normalized by the SExtractor-measured host galaxy size Sullivan et al. (2006). We did not apply a local dust correction for

SNe with R > 3, as these are outside the isophotal radius of the host.

∗Visual inspection found that this SN Ia was within the isophotal radius of it’s host. A dust correction was applied.
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Table 3.5. Local Star Formation Step

SALT2 MLCS RV =2.0 MLCS RV =2.5 MLCS RV =3.1

Analysis Change SNe δ(Mcorr
B )SF Sig. SNe δ(Mcorr

B )SF Sig. SNe δ(Mcorr
B )SF Sig. SNe δ(Mcorr

B )SF Sig.

None 179 0.000±0.018 0.0σ (0.0σ) 157 0.059±0.023 2.6σ (2.5σ) 156 0.029±0.025 1.2σ (1.0σ) 155 0.013±0.028 0.5σ (0.4σ)

P (AFUV )=1.0±0.6 179 -0.008±0.017 -0.4σ (-0.4σ) 157 0.062±0.023 2.7σ (2.6σ) 156 0.029±0.025 1.1σ (1.0σ) 155 0.012±0.028 0.4σ (0.4σ)

P (AFUV )=3.0±0.6 179 0.005±0.018 0.3σ (0.3σ) 157 0.060±0.023 2.6σ (2.5σ) 156 0.031±0.025 1.3σ (1.1σ) 155 0.016±0.027 0.6σ (0.5σ)

ΣSFR boundary = -3.1 179 0.017±0.018 1.0σ (0.9σ) 157 0.071±0.023 3.1σ (2.9σ) 156 0.044±0.025 1.8σ (1.6σ) 155 0.028±0.027 1.0σ (0.9σ)

ΣSFR boundary = -2.7 179 -0.005±0.018 -0.3σ (-0.3σ) 157 0.067±0.022 3.0σ (2.8σ) 156 0.031±0.025 1.3σ (1.1σ) 155 0.009±0.028 0.3σ (0.3σ)

1 kpc aper. radius 179 -0.005±0.018 -0.3σ (-0.3σ) 157 0.051±0.023 2.2σ (2.1σ) 156 0.018±0.025 0.7σ (0.6σ) 155 0.005±0.029 0.2σ (0.2σ)

3 kpc aper. radius 179 0.022±0.018 1.2σ (1.2σ) 157 0.057±0.024 2.4σ (2.3σ) 156 0.031±0.025 1.3σ (1.1σ) 155 0.016±0.027 0.6σ (0.5σ)

4 kpc aper. radius 179 0.007±0.019 0.4σ (0.4σ) 157 0.034±0.025 1.4σ (1.3σ) 156 0.012±0.026 0.5σ (0.4σ) 155 -0.001±0.028 -0.0σ (-0.0σ)

Global instead of local SFR 179 -0.001±0.019 -0.1σ (-0.1σ) 157 -0.013±0.023 -0.6σ (-0.5σ) 156 0.002±0.025 0.1σ (0.1σ) 155 0.008±0.029 0.3σ (0.2σ)

2.5σ-clipping 171 0.005±0.016 0.3σ (0.3σ) 151 0.047±0.021 2.2σ (2.1σ) 147 0.046±0.022 2.1σ (1.8σ) 148 0.039±0.024 1.6σ (1.4σ)

Sys. Errora 0.004 0.007 0.014 0.014

aThe systematic error is computed from the standard deviation of each type of variant (e.g. aperture size variants, SFR boundary variants, etc.). The global

SFR variant is excluded.
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Table 3.6. Star Formation Dispersion

SALT2 MLCS RV =2.0 MLCS RV =2.5 MLCS RV =3.1

Analysis Change SNe σSF − σpassive Sig. SNe σSF − σpassive Sig. SNe σSF − σpassive Sig. SNe σSF − σpassive Sig.

None 179 -0.013±0.018 -0.7σ (-0.7σ) 157 -0.033±0.024 -1.4σ (-1.2σ) 156 -0.053±0.024 -2.2σ (-1.8σ) 155 -0.086±0.026 -3.3σ (-2.5σ)

P (AFUV )=1.0±0.6 179 -0.003±0.017 -0.2σ (-0.2σ) 157 -0.035±0.024 -1.5σ (-1.3σ) 156 -0.061±0.025 -2.5σ (-2.1σ) 155 -0.096±0.027 -3.6σ (-2.8σ)

P (AFUV )=3.0±0.6 179 -0.016±0.018 -0.9σ (-0.9σ) 157 -0.028±0.024 -1.2σ (-1.1σ) 156 -0.047±0.024 -1.9σ (-1.6σ) 155 -0.077±0.026 -3.0σ (-2.3σ)

ΣSFR boundary = -3.1 179 -0.006±0.018 -0.3σ (-0.3σ) 157 -0.032±0.024 -1.3σ (-1.2σ) 156 -0.054±0.025 -2.1σ (-1.8σ) 155 -0.087±0.026 -3.3σ (-2.6σ)

ΣSFR boundary = -2.7 179 -0.017±0.018 -1.0σ (-0.9σ) 157 -0.031±0.024 -1.3σ (-1.1σ) 156 -0.053±0.025 -2.2σ (-1.8σ) 155 -0.087±0.026 -3.3σ (-2.6σ)

1 kpc aper. radius 179 -0.004±0.018 -0.2σ (-0.2σ) 157 0.024±0.023 1.0σ (0.9σ) 156 -0.009±0.025 -0.4σ (-0.3σ) 155 -0.058±0.027 -2.1σ (-1.7σ)

3 kpc aper. radius 179 -0.003±0.019 -0.2σ (-0.2σ) 157 -0.023±0.024 -0.9σ (-0.8σ) 156 -0.042±0.025 -1.7σ (-1.4σ) 155 -0.074±0.026 -2.9σ (-2.2σ)

4 kpc aper. radius 179 -0.016±0.021 -0.8σ (-0.8σ) 157 -0.016±0.025 -0.6σ (-0.6σ) 156 -0.029±0.026 -1.1σ (-1.0σ) 155 -0.057±0.027 -2.1σ (-1.7σ)

Global instead of local SFR 179 -0.038±0.018 -2.1σ (-2.1σ) 157 0.013±0.023 0.6σ (0.5σ) 156 0.025±0.024 1.0σ (0.9σ) 155 0.012±0.026 0.4σ (0.3σ)

2.5σ-clipping 173 -0.015±0.017 -0.9σ (-0.9σ) 153 -0.008±0.022 -0.3σ (-0.3σ) 151 -0.018±0.023 -0.8σ (-0.6σ) 151 -0.032±0.025 -1.3σ (-1.0σ)

Sys. Errora 0.003 0.013 0.016 0.022

aThe systematic error is computed from the standard deviation of each type of variant (e.g. aperture size variants, SFR boundary variants, etc.). The global SFR

variant is excluded.
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Table 3.7. Star Formation Dispersion with Kelly et al. (2015) SFR Boundaries

SALT2 MLCS RV =2.0 MLCS RV =2.5 MLCS RV =3.1

ΣSFR boundary SNe σpassive σSF Sig. SNe σpassive σSF Sig. SNe σpassive σSF Sig. SNe σpassive σSF Sig.

-1.7 dex 179 0.127±0.010 0.118±0.034 0.3σ 157 0.145±0.013 0.141±0.046 0.1σ 156 0.193±0.014 0.138±0.065 0.9σ 155 0.198±0.014 0.265±0.061 -1.1σ

-1.85 dex 179 0.114±0.010 0.118±0.026 -0.1σ 157 0.146±0.013 0.129±0.035 0.5σ 156 0.169±0.014 0.171±0.040 -0.0σ 155 0.177±0.014 0.256±0.044 -1.8σ
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CHAPTER 4. PAN-STARRS METHODS

Supernova Contamination

4.1 Abstract

The Pan-STARRS (PS1) Medium Deep Survey discovered over 5,000 likely super-

novae (SNe) but obtained spectral classifications for just 10% of its SN candidates.

We measured spectroscopic host galaxy redshifts for 3,147 of these likely SNe and

estimate that ∼1,000 are Type Ia SNe (SNe Ia) with light-curve quality sufficient for

a cosmological analysis. We use these data with simulations to determine the im-

pact of core-collapse SN (CCSN) contamination on measurements of the dark energy

equation of state parameter, w. Using the method of Bayesian Estimation Applied

to Multiple Species (BEAMS), distances to SNe Ia and the contaminating CCSN dis-

tribution are simultaneously determined. We test light-curve based SN classification

priors for BEAMS as well as a new classification method that relies upon host galaxy

spectra and the association of SN type with host type. By testing several SN classi-

fication methods and CCSN parameterizations on large SN simulations, we estimate

that CCSN contamination gives a systematic error on w (σCC
w ) of 0.014, 29% of the

statistical uncertainty. Our best method gives σCC
w = 0.004, just 8% of the statistical

uncertainty, but could be affected by incomplete knowledge of the CCSN distribution.

This method determines the SALT2 color and shape coefficients, α and β, with ∼3%
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bias. However, we find that some variants require α and β to be fixed to known values

for BEAMS to yield accurate measurements of w. Finally, the inferred abundance

of bright CCSNe in our sample is greater than expected based on measured CCSN

rates and luminosity functions.

4.2 Introduction

Since the discovery of cosmic acceleration (Riess et al., 1998; Perlmutter et al.,

1999), measuring the properties of dark energy with Type Ia supernovae (SNe Ia)

has been predicated on the spectroscopic confirmation of SN Ia candidates. However,

as the size of individual SN Ia samples surpasses 1,000 SNe, obtaining spectra for

each Type Ia candidate is becoming prohibitively expensive. Only a small fraction of

SNe Ia from current and future surveys such as the Dark Energy Survey (DES) and

the Large Synoptic Survey Telescope (LSST) will have spectroscopic classification.

Without spectroscopic classification, core-collapse SN (CCSN) contamination can

bias our estimates of cosmological parameters (Falck et al., 2010, Kunz, Bassett, &

Hlozek, 2007).

Without SN spectroscopy, the shape and color of a photometric SN light curve

can be used as a less precise diagnostic of the type. Campbell et al. (2013) used SDSS

ugriz light curves to classify 752 SNe as likely Type Ia, enough to measure the dark

energy equation of state, w, with ∼10% statistical uncertainty. Their sample was
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selected from light curve properties and a classifier that compares each observed light

curve to SN Ia and CCSN templates (PSNID; Sako et al., 2011). Their final sample

comprised just 3.9% CCSNe. While Campbell et al. (2013) is the only SN Ia-based

measurement of w to date that does not use spectroscopic classification for its SNe,

the measurement did not include systematic uncertainties. In addition, contaminating

CCSNe bias their measurements of SN Ia dispersion and the correlation between SN

luminosity and light curve rise/decline rate by ∼60%.

Many light curve classifiers use the “näıve Bayes” approximation, which assumes

all observables that indicate SN type are uncorrelated. Machine learning techniques

can often outperform these classifiers, yielding higher SN Ia classification efficiency

(the fraction of SNe Ia classified correctly) and lower CCSN contamination (Lochner

et al., 2016; Möller et al., 2016). On SDSS SN data, the Sako et al. (2014) kd-tree

nearest neighbor (NN) method has a purity comparable to Campbell et al. (2013) but

accurately classifies ∼1.4 times as many real SNe Ia in a given sample.

An important caveat is that nearly all classifiers are optimized on simulations with

little evaluation on real data. Simulations, in turn, depend on CCSN templates and

knowledge of the CCSN luminosity functions (LFs) and rates. CCSNe are diverse,

far more so than SNe Ia, and only a limited number of high-quality templates are

publicly available. Training a classifier directly on survey data is possible but can

be sub-optimal due to limited numbers of CCSNe observed and the dependence of

classifier results on the specific survey characteristics (e.g. observing cadences, filters,
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and signal-to-noise ratios).

We can make SN classification less dependent on CCSN templates, LFs, and rates

by incorporating host galaxy data. Because many SNe Ia have a &1 Gyr delay time

between progenitor formation and explosion (Rodney et al., 2014), they are the only

type of SNe found in early-type galaxies (with very few known exceptions; Suh et al.,

2011). Foley & Mandel (2013) found that it was possible to accurately classify the

∼20% of SNe Ia found in elliptical galaxies if the morphology of their host galaxy is

known.

Though these results are encouraging, light curve and host galaxy classification

alone may not be enough to enable a measurement of w as precise as measurements

using spectroscopically classified SNe (e.g. Betoule et al., 2014, w = −1.027± 0.055).

A difference in w of 5% corresponds to a change of 0.02 mag from z = 0 to z = 0.5; if

CCSNe are 1 mag fainter than SNe Ia on average, a bias of 0.02 mag can be induced by

just 2% CCSN contamination in a high-z sample such as PS1. If the contaminating

distribution of CCSNe is more than 1 mag fainter (this depends on survey Malmquist

bias), it takes even fewer CCSNe to bias w by an equivalent amount.

A Bayesian method, however, could use the probabilities that SNe are of type Ia

as priors to simultaneously determine distances to Ia and CCSNe without bias. We

refer to this method as Bayesian Estimation Applied to Multiple Species (BEAMS)

following Kunz, Bassett, & Hlozek (2007) (hereafter KBH07; see also Press, 1997 and

Rubin et al., 2015). KBH07 test BEAMS on a simplistic SN simulation and find that
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it gives near-optimal accuracy and uncertainties on SN Ia distances.

Hlozek et al. (2012) test BEAMS further with Monte Carlo simulations of the

Sloan Digital Sky Survey SN survey (SDSS-SN; Frieman et al., 2008; Kessler et al.,

2009a). BEAMS biases measurements of the cosmic matter and dark energy densities,

ΩM and ΩΛ, by less than the statistical uncertainties measured from their simula-

tions. Their results demonstrated that SDSS SNe without spectroscopic classification

can significantly improve cosmological constraints relative to the SDSS spectroscopic

sample (Kessler et al., 2009a). Hlozek et al. (2012) did not measure the systematic

uncertainties from their method.

As with SDSS, Pan-STARRS (PS1) discovered far more SNe Ia than could be

observed spectroscopically. Spectroscopically-confirmed SNe Ia from the first ∼1/3 of

PS1 have been used to measure cosmological parameters but constitute only a small

fraction of the available data (Rest et al., 2014, hereafter R14; Scolnic et al., 2014b).

In this study, we use PS1 SNe with and without spectroscopic classification as a

tool for testing SN classifiers, understanding CCSN contaminants and measuring the

systematic error due to CCSN contamination. In total, PS1 has 1,145 SNe with high

quality light curves and spectroscopic redshifts − both host galaxy and SN redshifts

− that can be used to measure cosmological parameters (including a ∼few percent

CCSN contamination). Here, we focus on the 1,020 likely SNe Ia with spectroscopic

host galaxy redshifts, 143 of which are spectroscopically confirmed, in order to study

a sample with fewer selection biases (§4.3.1).
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The goal of this study is to develop the methods necessary to measure cosmological

parameters robustly using PS1 SNe without spectroscopic classifications (hereafter

referred to as photometric SNe). Our full cosmological results from these data will

be presented in a future analysis.

In §4.3, we present the sample and our host galaxy redshift followup survey.

§5.3.2.1 discusses our SNANA simulations of the PS1 sample and our assumptions

about the CCSN population. §4.5 describes our Bayesian parameter estimation

methodology. In §4.6 we test BEAMS on simulations and subsamples of PS1 pho-

tometric SNe. In §4.7 we test the robustness of these results by exploring several

variants of the method. The uncertainties in our simulations and methodology are

discussed in §4.8 and our conclusions are in §5.10.

4.3 The Pan-STARRS Photometric Super-

nova Sample

The Pan-STARRS medium deep survey covers 10 7-square degree fields in five

broadband filters, with typical grizP1 observational cadences of 6 images per 10 days

and a 5 day gap during bright time during which yP1 images are taken. Typical 5σ

detection limits are ∼23 AB mag for grizP1, albeit with significant variation. For a

complete description of the PS1 survey, see Kaiser et al. (2010) and R14.

PS1 images are processed using an image subtraction pipeline that is described
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in detail in Rest et al. (2005) and R14. To measure final light curves for the PS1

photometric sample (and the full spectroscopic sample; Scolnic et al. in prep), we

made several improvements to that pipeline. We more than doubled the typical

number of images that are combined to create a deep template for subtraction, we

refined our method of selecting stars to build the point spread function (PSF) model,

and we improved the zeropoint calibration. These improvements will be described in

detail in Scolnic et al. (in prep.).

Pan-STARRS discovered 5,235 likely SNe during its four years of operation and

obtained spectra for 520 SNe. We collected 3,147 spectroscopic host galaxy redshifts

of these likely SNe (§4.3.1). In addition to SN candidates, we observed spectra for

thousands of variable stars, AGN, flaring M dwarfs, and other transients that will be

published in future work.

4.3.1 Host Galaxy Redshift Survey

During the PS1 survey, many SN host redshifts were measured using the Hectospec

multi-fiber instrument on the MMT (Fabricant et al., 2005; Mink et al., 2007). Near

the end of PS1 operations, we began an additional survey with Hectospec to obtain

redshifts for as many host galaxies as possible. Redshifts were also obtained with the

Apache Point Observatory 3.5m telescope1 (APO), the WIYN telescope2, and for the

1http://www.apo.nmsu.edu/arc35m/
2The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana

University, the National Optical Astronomy Observatory and the University of Missouri.
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Table 4.1. Redshift Follow-up Summary

Telescope Instrument SN Redshiftsa λmin − λmax Avg. Exp. Time Approx. Resolution zmedian

Å min. Å pix−1

AAT AAOmega 512 3700 − 8500 180 6 0.15

APO DIS 10 3500 − 9800 60 2.5 0.24

MMT Hectospec 2348 3700 − 9200 90 5 0.33

SDSS BOSS 250 3800 − 9200 45 2.5 0.20

WIYN Hydra 45 3700 − 6500 180 4.5 0.34

Otherb · · · 361 · · · · · · · · · 0.19

Total · · · 3,147 · · · · · · · · · 0.30

Note. — Some transient hosts were observed with multiple telescopes. Numbers include host galaxy observations of

both spectroscopically confirmed and unconfirmed SN candidates.

aNumber of SN candidates with reliable redshifts.

bIncludes redshifts from 2dFGRS (Colless et al., 2003), 6dFGS (Jones et al., 2009), DEEP2 (Newman et al., 2013),

VIPERS (Scodeggio et al., 2016), VVDS (Le Fèvre et al., 2005), WiggleZ (Blake et al., 2008) and zCOSMOS (Lilly

et al., 2007).
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To estimate the fraction of SNe for which we incorrectly determined which galaxy

was the host, we compared redshifts derived from the spectroscopic redshifts of SNe

to the spectroscopic redshifts of their most likely host galaxies. We found that only

2 of 169 hosts with reliable redshifts had evidence of a host galaxy mismatch, |zSN −

zhost| > 0.02. Both of these hosts had multiple large, nearby galaxies with R < 5.

This mismatch fraction suggests that 1.2±0.5% of our redshifts are incorrect due to

mismatched hosts.

Compared to spectroscopically confirmed SNe, it is unlikely that photometric SNe

have a higher fraction of mismatched hosts. The spectroscopic targeting preferentially

followed SNe with a larger separation from the center of their host galaxies or SNe

with fainter hosts, as these SNe have spectra with less galaxy light contamination.

Just 11% of photometrically classified SNe are outside the isophotal radii of their host

galaxies compared to 24% of the 169 SN-host pairs. However, we also note that the

169 SN-host pairs have preferentially brighter hosts than the full sample and have a

median redshift of 0.21 compared to the median redshift of 0.3 for the full sample.

It may be somewhat easier to mismatch a host galaxy at high-z as galaxies are more

difficult to detect, but we expect this to be a subdominant effect as Gupta et al. (2016)

finds the fraction of mismatched hosts to be approximately constant at z < 0.6 in a

DES-like survey (which has similar depth to PS1 templates).

The other source of incorrect redshifts is the measurement of velocities from host

galaxy spectra. We measured redshifts by cross-correlating our spectra with galaxy
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templates (The RVSAO package; Kurtz & Mink, 1998) and visually inspecting the

results. Over the course of the survey, we observed over 1,500 transient hosts multiple

times. For ∼250 of these hosts, at least one observation yielded a redshift with a high

Tonry & Davis (1979) cross-correlation parameter (TDR; & 9− 10).

By restricting our sample to hosts with TDR > 4 and redshifts of 0.01 < z < 0.75,

we measure a false redshift fraction of 1.4 ± 1.3%. At z > 0.75, few SNe could be

discovered by PS1 or have their host redshifts measured with our program (Figure

4.1). Including mismatched hosts, the total percent of incorrect redshifts we expect

is 2.6± 1.4%. In §5.3.2.1 we simulate this fraction of false redshifts so that this effect

will be incorporated in our BEAMS systematic error budget.

In total, we observed 3,930 host galaxies and have 3,147 reliable redshifts. The

telescopes and instruments comprising our redshift survey are summarized in Table

4.1. Figure 4.1 shows the r magnitudes, redshifts, and best-fit SED model for the PS1

photometric sample. 87% of PS1 SNe with detectable host galaxies were observed

with our redshift follow-up program and reliable redshifts were measured for 73% of

those galaxies. We measured redshifts for a large number of both emission-line and

absorption-line galaxies. These data have a median redshift of 0.30.

4.3.2 SALT2 Selection Requirements

Throughout this work, we use the SALT2.4 model (Guy et al., 2010, implemented

in B14) to measure SN light curve parameters. We use these light curve parameters
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Table 4.2. Sequential PS1 Data Cuts

Removed Remaining This Cut Only Without This Cut Comments

Total candidates · · · 5235 · · · · · · · · ·

Host Sep. R < 5 774 4461 · · · · · · likely host galaxy can be identified

Good host redshifts 1314 3147 · · · · · · · · ·

Fit by SALT2 457 2690 · · · · · · SALT2 parameter fitting succeeds

Possible AGN 96 2594 2594 1040 separated from center or no long-term variability

−3.0 < X1 < 3.0 540 2054 2119 1092 SALT2 light curve shape

−0.3 < C < 0.3 467 1587 1903 1215 SALT2 light curve color

σpeakMJD < 2 30 1557 2630 1021 uncertainty in time of max. light (rest frame days)

σX1
< 1 379 1178 1930 1386 X1 uncertainty

fit prob. ≥ 0.001 158 1020 2096 1178 χ2 and Ndof -based prob. from SALT2 fitter

E(B-V)MW > 0.15 0 1020 2690 1020 Milky Way reddening

to standardize SNe Ia and select the SNe Ia that can best measure cosmological pa-

rameters. The Tripp estimator uses SALT2 light curve parameters to infer the SN

distance modulus, µ (Tripp, 1998):

µ = mB + α×X1 − β × C −M. (4.1)

mB is the log of the light curve amplitude, X1 is the light curve stretch parameter,

and C is the light curve color parameter. These parameters are all measured by the

SALT2 fitting program, but deriving the distance modulus from them depends on the

nuisance parameters α, β, and M . M is degenerate with the Hubble Constant, H0,

and will be marginalized over during cosmological parameter estimation.

To avoid unexpected biases in our sample selection, we use light curve selection

requirements (cuts) from previous analyses using spectroscopically confirmed SNe.
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We make the same series of cuts to PS1 SN light curves as Betoule et al. (2014)

and add one additional cut on the SALT2 fit probability following R14. These cuts

include uncertainty-based cuts that ensure the shape and time of maximum light of

each SN is well-measured, and shape and color cuts that restrict our sample to SNe Ia

for which the SALT2 model is well-trained. Our cuts are summarized in Table 5.1 and

Figure 4.2. Out of 3,147 SNe with reliable host redshifts, SALT2 fits run successfully

on 2,690 SNe (SALT2 parameter fitting often fails due to lack of light curve data

before or after maximum). 1,020 SNe pass all of our cuts.

Omitting the SALT2 σX1 cut has the largest single impact on our final sample.

Without it, there would be nearly 1,400 SNe in the sample but also twice as many SNe

with Hubble residuals > 0.5 mag (poorly measured SNe Ia or CCSNe). The cut with

the second largest reduction is the cut on C, without which there would be ∼1,200

SNe (though many would be CCSNe). Although it may be possible to increase the

SN sample size with relaxed cuts, the extent to which SNe Ia with low signal-to-noise

ratio (SNR) and unusual colors are standardizable is not well characterized.

In addition to the Betoule et al. (2014) cuts, we implement an additional set of

cuts to remove possible AGN that were not flagged during the PS1 transient search.

We tuned our long-term variability criteria to find known AGN in PS1 data. We

found that sources where >25% of background epochs have 2σ deviations from 0

are likely AGN (we define background epochs as <20 days before or >60 days after

the discovery epoch). 86 SNe with both evidence of long-term variability and SN
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positions within 0.5′′ of their host centers were removed. After light curve cuts,

removing likely AGN reduces our sample by just 18 SNe. To have a sample with

uniform selection, we make these cuts (and all cuts) regardless of whether or not a

given SN Ia is spectroscopically confirmed.

4.3.3 Low-z SNe

Cosmological parameter constraints are greatly improved when a large, low-z SN Ia

sample is included to anchor the Hubble diagram. We use the same 197 low-z SNe Ia

used in R14 though we anticipate adding additional low-z SNe in our full cosmological

analysis. These SNe are spectroscopically confirmed and are assumed to have no

CCSN contamination.

The R14 PS1 cosmology analysis has a low-z sample with higher intrinsic dis-

persion than the PS1 sample. The intrinsic dispersion, σint, is defined as the value

added in quadrature to the SN Ia distance modulus uncertainty such that the Hubble

diagram reduced χ2 is equal to 1 (Guy et al., 2007). Differences in SN Ia intrinsic

dispersion from survey to survey are typical, with the likely source of the variation

including underestimated photometric difference image uncertainties and excess scat-

ter from bright host galaxy subtractions (as seen in R14 and Kessler et al., 2015).

Redshift evolution of the SN Ia population could also play a role. We added 0.05 mag

in quadrature to the mB uncertainties of the low-z SNe to resolve the discrepancy.

Once added, this additional uncertainty term gives both the PS1 and low-z SNe from
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R14 the same intrinsic dispersion of ∼0.115 mag.

4.4 Simulating the Pan-STARRS Sample

To robustly determine how CCSN contamination affects PS1 measurements of w,

we require a simulation that encapsulates as many elements of the PS1 SN survey

as possible. We used the SuperNova ANAlysis software (SNANA4; Kessler et al.,

2009b) to generate Monte Carlo realizations of the PS1 survey. SNANA simulates

a sample of SNe Ia and CCSNe using real observing conditions, host galaxy noise,

selection effects, SN rates, and incorrect redshifts from host galaxy mismatches or

measurement error. Simulations assume a flat ΛCDM cosmology with H0 = 70 km

s−1 Mpc−1, ΩM = 0.3, ΩΛ = 0.7, and w = −1.

We choose not to simulate one significant effect: the correlation between SN lu-

minosity and host mass (the host mass bias; Kelly et al., 2010; Lampeitl et al., 2010).

We do not simulate the host mass bias because R14 did not include it (finding it

had low significance in their sample), and we wish to compare our PS1 photometric

results directly to R14. This effect has been identified at >5σ by Betoule et al. (2014)

and we will include it in our future cosmological analysis with these data.

Each major component of our simulation is discussed in detail below:

1. Observing conditions. SNANA generates SN observations based on a simu-

4http://snana.uchicago.edu/
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lation library file with observation dates, filters, sky noise, zeropoints, and PSF

sizes that we measure from PS1 nightly images.

2. Host galaxies. The observed flux scatter of SNe found in bright galaxies

exceeds what is expected from Poisson noise alone (R14; Kessler et al., 2015).

To correct for this, SNANA adds host galaxy noise to SN flux uncertainties by

placing each SN in a simulated host galaxy. The SN is placed at a random

location that has been weighted by the galaxy surface brightness profile. The

distribution of PS1 host galaxies was determined from PS1 data; we measured

the magnitudes and shape parameters of PS1 SN host galaxies using SExtractor,

with zeropoints measured from the PS1 pipeline. We then use the noise model

from Kessler et al. (2015, their Equation 4):

σ̃flux = σflux ×Rσ, (4.2)

where Rσ is a function of host galaxy surface brightness (the vertical axis of

Figure 4.3). We determine Rσ for PS1 by comparing host surface brightness to

the flux error scaling that gives light curve epochs without SN flux a reduced

χ2 = 1.

3. Selection effects. Two primary selection effects come into play in a photomet-

ric SN Ia survey. The first is detection efficiency, the fraction of single-epoch

detections as a function of the photometric SNR. The detection efficiency is

computed by dividing the number of epochs detected by PS1 at a given SNR by

111





CHAPTER 4. PAN-STARRS METHODS

the total number of epochs at that SNR. SNANA uses the efficiency vs. SNR,

measured by PS1, to determine which simulated epochs are detected. SNANA

then applies the PS1 survey requirement of three detections to “discover” a SN.

The PS1 detection efficiency is ∼50% for epochs with a SNR of 5 in the final

light curves.

The second effect is host galaxy redshift selection. To model this effect, we

incorporated a redshift-dependent “host galaxy efficiency” distribution in our

simulations, which we adjusted such that the redshift distribution of the simu-

lations matched our data.

4. Uncertainty adjustment. SNANA allows its simulated uncertainties to be

scaled as a function of SNR such that the mean uncertainties in simulations

match the mean uncertainties of our data. In PS1, this requires a modest

∼ 5− 10% noise increase at low SNR (after excess host galaxy noise is added).

This adjustment is necessary due to the non-Gaussian wings of the PS1 PSF

and the PSF fitting radius used by the PS1 pipeline.

5. Mismatched host galaxies and incorrect redshifts. As discussed in §4.3.1,

we expect 2.6 ± 1.4% of our redshifts to be incorrect due to mismatched host

galaxies and redshift measurement uncertainties. We used SNANA to simulate

incorrect host redshifts by assigning false, “measured” redshifts to 2.6% of our

SNe. These redshifts are drawn from a flat, random distribution between z =
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0.01 and z = 0.75. This is the range of redshifts at which PS1 can discover SNe,

with the exception of rare superluminous SNe. Superluminous SNe typically

have hosts too faint for our follow-up survey to measure their redshifts (Lunnan

et al., 2015).

We find that ∼50% of SNe with incorrect redshifts fail our sample cuts, giving

a final contamination fraction of ∼1 − 1.5%. In large part, this reduction is

due to cuts on the SALT2 color parameter. If a SN has an incorrect redshift,

SALT2 is twice as likely to infer that its observed-frame colors are inconsistent

with normal SNe Ia when transformed to the wrong rest frame.

6. SN Ia model. The SN Ia model used in these simulations is the Guy et al.

(2010) model with SN Ia nuisance parameters from R14 (SALT2 α = 0.147,

β = 3.13). The parent X1 and C distributions were determined by Scolnic

& Kessler (2016) for the PS1 spectroscopic sample. We adjusted the parent

means of the X1 and C distributions by 1σ to better match our data, making

X1 lower by 0.17 and C higher by 0.023. This difference is likely physical; on

average, X1 is lower and C is higher in massive host galaxies (e.g. Childress

et al., 2013). Our host follow-up program preferentially obtained redshifts of

massive galaxies.

7. CCSN templates and diversity. CCSNe are simulated based on a library

of 43 templates in SNANA. The templates we use were originally created for
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the SN Photometric Classification Challenge (Kessler et al., 2010) and also used

by Bernstein et al. (2012). Templates are based on bright, spectroscopically-

confirmed SDSS, SuperNova Legacy Survey (SNLS; Conley et al., 2011; Sullivan

et al., 2011), and Carnegie Supernova Project (Hamuy et al., 2006; Stritzinger

et al., 2011) CCSNe with well-sampled light curves. Templates were created

from the light curves by warping a model spectrum for each SN subtype to

match the light curve fluxes in every broadband filter (see §4.10.1.1).

SNANA has 24 II-P templates, 2 IIn templates, 1 II-L template, 7 Ib templates

and 9 Ic templates. In this work, we make the assumption that reddening in

the templates is approximately equal to reddening in our data. This assump-

tion allows us to use the Li et al. (2011) LFs, which have not been corrected

for reddening, and SNANA templates, which also include intrinsic reddening.

Correcting these templates, the Li et al. (2011) rates and the Li et al. (2011)

LFs for reddening is an important avenue for future work.

We added a subtype-specific magnitude offset to each CCSN template such that

the mean simulated absolute magnitude of the subtype matched the mean of its

Li et al. (2011) luminosity function (LF). By applying a uniform offset to every

template in a subtype, the brightness of different templates relative to their

subtype is incorporated in our simulations5. We also matched the dispersions

5We tweaked this procedure for SNe Ib, which had one anomalously bright template. All SN Ib
templates were adjusted by individual magnitude offsets such that each template matched the mean
magnitude of SNe Ib given by Li et al. (2011).
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of the Li et al. (2011) LFs by adding an additional, random magnitude offset

to each simulated CCSN. This offset was drawn from a Gaussian with a width

we adjusted such that the dispersion of simulated absolute magnitudes for each

subtype matched Li et al. (2011).

8. SN Rates. SNANA creates a combined SN Ia+CC simulation, with each

SN type normalized by its rate. The redshift-dependent SN rates used in this

work are the same as the baseline model of Rodney et al. (2014). SNe Ia follow

measured rates, while CCSNe follow the cosmic star formation history. Relative

rates of SN types and subtypes are anchored at z = 0 by Li et al. (2011) and

evolve ∝ (1 + z)γ, where γ is a free parameter tuned to match theory and

observations (only a single value for γ is needed over the redshift range of PS1).

We used γIa = 2.15 and γCC = 4.5 (Rodney et al., 2014).

Figure 4.4 compares our simulations to the data after fitting all SNe with the

SALT2 model. Note that CCSN information in this simulation is obtained without

any PS1 analysis or input. SALT2 fitting is an effective way to examine both SNe Ia

and the light curve parameters of Ia-like CCSNe. Discrepancies in Figure 4.4 indicate

potential biases when measuring cosmological parameters with a CCSN-contaminated

sample.

Our simulations agree closely with the data for most light curve parameters. The

maximum SNR of simulated light curves matches the data (4.4B), as does the dis-

tribution of SALT2 X1 (4.4C). However, there are too few simulated SNe with red
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SALT2 colors (4.4D). The simulated redshift evolution of X1 and C matches the data

well (4.4F and 4.4G).

Though most simulated light curve parameters match our data well, the Hubble

residuals (4.4A) show a discrepancy. We see ∼3 times more SNe than expected

between 0.5 . µ − µΛCDM < 1.5 mag (these SNe are fainter than SNe Ia at their

redshifts). For this reason, we used light curve-based classifications of our data to

adjust the CCSN luminosity functions. The details of this procedure are discussed

in Appendix 4.10. We find that the peak of the CCSN LF must be brightened by 1.2

mag for SNe Ib/c and 1.1 mag for SNe II in order for our simulations to match our

data (Figure 4.5). The dispersion of CCSN templates must be reduced by 55% for

SN Ib/c. We also add four 1991bg-like SN Ia templates and four SN IIb template to

SNANA to include a broader range of SN types.

The CCSNe LFs in our adjusted simulation are ∼5σ brighter than Li et al. (2011).

However, these results do not necessarily imply that the true LFs of CCSNe show a

∼5σ inconsistency with Li et al. (2011). Rather, they indicate that our SALT2-based

shape and color cuts isolate a region of CCSN parameter space that is not the average.

Although we find it plausible that the CCSNe with shapes and colors most similar

to SNe Ia have brighter and lower-dispersion LFs than CCSNe as a whole, further

work is required to understand the diversity of CCSN sub-populations. Larger sets

of high-cadence, high quality spectral time series from which to construct templates

are also necessary. An additional factor is that the low statistics in the LOSS volume-
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inating our data (KBH07). The implementation of BEAMS suggested in KBH07

solved for distances and cosmological parameters in a single step; here, we first use

BEAMS to solve for binned SN Ia distances and then use CosmoMC (Lewis & Bridle,

2002) to determine cosmological parameters. This procedure will allow us to more

easily combine SN data with complementary CMB and BAO data in our forthcoming

cosmological analysis. We summarize the method below.

BEAMS simultaneously determines Ia and CCSN distances by sampling a pos-

terior probability distribution that includes both SN Ia and CCSN populations in

the likelihood. The BEAMS posterior, the probability of the free parameters θ given

the data, D, is proportional to the product of the individual likelihoods for each SN

multiplied by the priors on the free parameters:

P (θ|D) ∝ P (θ)×
N∏

i=1

Li. (4.3)

The simplest suggested likelihood from KBH07 uses Gaussian distributions to

represent CCSN and SN Ia populations:

Li = Pi(Ia)×
1

√

2π(σ2
i,Ia + σ2

Ia)
exp(−(µi,Ia − µIa(zi))

2

2(σ2
i,Ia + σ2

Ia)
)

+Pi(CC)×
1

√

2π(σ2
i,CC + σCC(zi)2)

exp(− (µi,CC − µCC(zi))
2

2(σ2
i,CC + σCC(zi)2)

).

(4.4)

Pi(Ia) is the prior probability that the ith SN is of type Ia. Pi(CC), the probability

that the SN is a CCSN, is equal to 1 − Pi(Ia). µi,Ia, µi,CC and σi,Ia, σi,CC are the
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as “control points” following Betoule et al. (2014)6. Between two control points,

the distance modulus (and dispersion) is interpolated by a linear function of log(z)

defined by:

µ(z) = (1− ξ)µb + ξµb+1

ξ = log(z/zb)/log(zb+1/zb),

(4.5)

where µb is the distance modulus at redshift zb.

Betoule et al. (2014) fit to a set of 30 log-spaced redshift control points, and

found that the difference between ΛCDM and the interpolation is always smaller

than 1 mmag. We used 25 control points for the smaller PS1 redshift range of 0.01 <

z < 0.7 (we restrict our sample to z < 0.7, as very few PS1 SNe can be found at

higher redshifts). In Figure 4.6, we compare the cosmological constraints from 1,000

individual SNe Ia to the approximate results derived from the SN Ia distances at 25

control points (P(Ia) = 1 for all SNe Ia). We find that the cosmological constraints

are nearly identical.

We use 5 log-spaced redshift control points for CCSNe. If true SN type proba-

bilities are known, 5 CCSN control points allows BEAMS enough flexibility to avoid

biasing the Ia likelihood with a poor determination of the CCSN distribution. We al-

low the intrinsic width of the CCSN Gaussian distribution (σCC) to vary with redshift,

but keep the intrinsic width of the SN Ia Gaussian fixed. By using the SALT2mu pro-

6Note that Betoule et al. (2014) use this method to increase computational efficiency when
combining SN Ia data with Planck priors. However, their method of reducing SN data to a set of
distances at redshift control points is well-suited for a BEAMS-like algorithm.
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cedure (Marriner et al., 2011), we verified that the (simulated) uncertainty-weighted

dispersion of SNe Ia does not change with redshift for PS1 (this is also a typical

assumption in cosmological analyses; Guy et al., 2010). This physically realistic as-

sumption gives BEAMS more leverage to discriminate between SNe Ia and CCSNe,

which have much higher dispersion than SNe Ia.

In total, our baseline implementation of BEAMS has 38 free parameters: 25 SN Ia

distance moduli at Ia control points, 5 CCSN distance moduli at CC control points,

5 CCSN dispersion parameters, 1 SN Ia dispersion parameter7, and the SALT2 nui-

sance parameters α and β which are used to compute µi and σi (discussed below).

BEAMS free parameters can be efficiently estimated by sampling the logarithm of

the posterior with a Markov Chain Monte Carlo (MCMC) algorithm. This work uses

emcee8, a Python MCMC implementation (Foreman-Mackey et al., 2013). We use

emcee’s Parallel-Tempered Ensemble Sampler to explore the multimodal peaks of the

likelihood robustly. Figure 4.7 illustrates the Hubble residual diagram from BEAMS

using simulated SNe and correct prior probabilities (all SNe Ia with correct redshifts

have P(Ia) = 1 and all other SNe have P(Ia) = 0). Note that if few or no CCSNe

are in a given redshift bin, the magnitude and uncertainty of CCSN distances are

primarily determined by the priors.

We apply loose Gaussian priors on most BEAMS free parameters, but find that

7Throughout, we have written this dispersion parameter as σIa to distinguish it from σint, the
global uncertainty term used in many previous analyses. σint, defined in §4.3.3, has a different
definition than the BEAMS free parameter σIa.

8http://dan.iel.fm/emcee/current/
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with samples of 1,000 SNe or more, the difference between Gaussian and flat priors is

negligible. For SN Ia distances, we apply flat priors. Though we assume some prior

knowledge of the CCSN distribution, our priors on CCSN distance (µCC in Eq. 5.3)

are very loose; we use broad Gaussians of width 3 mag that are centered at 2 mag

fainter than SNe Ia at each control point. SALT2 nuisance parameters have Gaussian

priors of width 5 times the uncertainties from R14. Our code is available online9.

4.5.1 SALT2 Light Curve Parameters

We use a SALT2 fitting program to measure SN light curve parameters for our

sample. However, SALT2 parameters do not directly measure the distance modu-

lus (Eq. 5.1). For BEAMS to measure distances using SALT2 light curve fits, the

nuisance parameters α and β must either be fixed to the value from a spectroscopic

sample or incorporated into BEAMS as free parameters. We allow α and β to be free

parameters here as it is a more general test of the method. Different survey meth-

ods, detection efficiencies, and selection criteria can significantly bias recovered SN

parameters (Scolnic & Kessler, 2016), which could make it necessary for future anal-

yses to be able to fit for these parameters. In the CCSN component of the BEAMS

likelihood, we fixed α and β to the nominal value for SN Ia spectroscopic samples

(allowing them to float has no effect on our results).

Because we include α and β as free parameters, the likelihood presented in Eq.

9See Jones (2017), with recent updates at https://github.com/djones1040/BEAMS. Example
input files are also provided.
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5.3 has a term in the Gaussian normalization factor, σi, that depends on α and β.

The result is a significant bias in the derived SN parameters (March et al., 2011).

This bias grows for larger SN samples (see Appendix B of Conley et al., 2011 and

Kelly, 2007 for details). The solution adopted in Conley et al. (2011) is to neglect

the normalization term when determining α, β, and σint by using a simple likelihood

L ∝ exp(−χ2/2). For 1,000 SNe, Conley et al. (2011) find that the bias from this

likelihood is well below the statistical error. Though we cannot use this solution

without biasing determinations of the CCSN and SN Ia distributions, we use an

alternative formalism and treat the uncertainties on the distance modulus as fixed

in the denominator of the normalization term (independent of α and β). Fixing

distance modulus uncertainties in the denominator does not bias α, β, or w and is

a very modest approximation; in the PS1 sample, varying α and β within their 1σ

errors from R14 gives a mean change in uncertainty of only 2 mmag. No individual

SN has its uncertainty change by >20 mmag. See Kessler & Scolnic, 2017, §8.1 for

an alternative solution.

4.5.2 Prior Probabilities

The BEAMS formalism requires an estimate of the prior probability that a given

SN is of Type Ia. This prior can be measured by a SN classifier or it can be as

simple as setting P(Ia) = 1/2 for all SNe. For our baseline analysis, we adopt the

PSNID light curve fitter, as implemented in SNANA (Sako et al., 2011, 2014). In
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PSNID, observed SN light curves are fit with perfect, noise-free simulations of the

SALT2 SN Ia model and SNANA’s CCSN templates to determine the probability

that each SN is of type Ia10. PSNID estimates P(Ia) from the χ2 of the fit and

includes type, redshift, and luminosity priors. The set of SNe with P(Ia) > 0.5 has

2.9% contamination by CCSNe while including 92% of real SNe Ia.

We allow a re-mapping of the PSNID prior probabilities by adding two parameters

to BEAMS: one that re-normalizes the probabilities, and a second that shifts them

linearly. The first parameter is a scaling factor that corrects for globally skewed

prior probabilities following Hlozek et al. (2012). This normalization term allows

BEAMS to correct for effects such as incorrect redshift-dependent SN rates, inaccurate

classifier training, or other P(Ia) biases. The second parameter is a global, linear shift

in probability to handle incorrect typing near P(Ia) = 0 or P(Ia) = 1 (but requiring

0 < P(Ia) < 1). This is necessary in cases where uncertainty in P(Ia) ' 1 or P(Ia) '

0 is significant (KBH07). The relationship between the normalization factor, A, the

shift parameter, S, and the probability P(Ia) is given by:

P̃ (Ia) =
A× (P(Ia) + S)

1− (P(Ia) + S) + A× (P(Ia) + S)

0 < P̃ (Ia) < 1.

(4.6)

Another solution suggested by KBH07 that could be explored in future work is adding

10Because the simulated CCSN models in SNANA are the same as the CCSN models in the
PSNID template library, we used an option in PSNID (SNANA v10 47m and later) that ensures a
CCSN simulated using a given template cannot be classified using a noise-free version of that same
template. This option increases the CCSN contamination by ∼1%.
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a probability uncertainty term to the likelihood.

4.5.3 Malmquist Bias

µi,Ia, the SALT2-derived distance modulus for the ith SN, is subject to Malmquist

bias for magnitude-limited surveys such as PS1. We account for the SN Ia Malmquist

bias using PS1 and low-z simulations to determine the redshift-dependent bias of

derived SN Ia distances. We used Monte Carlo simulations of &10,000 SNe and non-

parametric spatial averaging to determine and correct for the trend in distance mod-

ulus. Our spatial averaging algorithm uses local polynomial smoothing to interpolate

the mean distance modulus trend across the redshift range.

Our simulations of the spectroscopically-confirmed low-z SN sample follow R14,

who use the same α and β as our PS1 simulations. The details of these low-z simu-

lations and the determination of the spectroscopic selection function are discussed in

detail in Scolnic et al. (2014a, see their Figure 6 for a comparison between simulations

and data).

Figure 4.8 shows the simulated, redshift-dependent measurement bias in distance

modulus, mB, αX1, and −βC. The average high-z distance modulus bias in PS1

is nearly identical to the bias measured for PS1 spectroscopically-confirmed SNe by

R14. One difference is that the Malmquist bias is almost negligible in our sample until

z ∼ 0.35. Some differences in bias are expected because the R14 bias is dominated

by their spectroscopic SN follow-up selection function.

128



CHAPTER 4. PAN-STARRS METHODS

At z > 0.5, we find the bias in X1, C, and µ becomes large as flux uncertainties

near the epoch of peak brightness are up to a factor of 2 larger than in the lower-z

data. Greater than 50% of the mB and C bias at these redshifts is due to our cut

on X1 uncertainty, which is effectively a SNR cut that increases the selection bias.

Distance biases due to cuts on X1 and C are also expected as the data become noisier

and statistical fluctuations cause more SNe that fall outside the luminosity-correlated

range to appear on our Hubble diagram (Scolnic & Kessler, 2016, see their Figure 4).

Our simulations also show that requiring lowerX1 uncertainty tends to select narrower

measured light curve shapes. Accordingly, Figure 4.4F shows that the measured X1

distribution remains largely flat with redshift; though SNe with larger X1 values are

intrinsically more luminous and thus more likely to be discovered, the measurement

bias shown in Figure 4.8 has an opposite, and approximately equal, effect.

A discussion of systematic error in Malmquist bias determination will be presented

in our forthcoming cosmological analysis. This will include incorporating α and β

uncertainties, which can cause differences in the distance bias of ∼5 mmag at z > 0.5.

Although Scolnic et al. (2014a) found that the Malmquist bias is not one of the

dominant sources of error, the photometric sample may be subject to different biases

than a typical spectroscopic sample due to its lower average SNR.

We correct all SNe, but only for the SN Ia Malmquist bias (we do not attempt bias

corrections based on P(Ia)). It is not necessary to correct for the CCSN Malmquist

bias, as CCSNe are not used to derive cosmological parameters. However, we im-
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plicitly model the CCSN Malmquist bias using BEAMS because BEAMS allows the

CCSN mean and dispersion to vary with redshift.

4.5.4 Cosmological Parameter Fitting

Finally, once distance moduli at the 25 redshift control points have been measured

with BEAMS, BEAMS distances and distance covariance matrices can be used as

inputs into the Cosmological Monte Carlo software for cosmological parameter fitting

(CosmoMC; Lewis & Bridle, 2002). For computational efficiency, we did not use the

full Planck chains in this analysis and instead ran CosmoMC on our BEAMS results

with a Planck-like prior of ΩM = 0.30± 0.02.

4.6 Cosmological Results from BEAMS

4.6.1 Tests with Simulated Data

We generated 25 simulations of 1,000 PS1 SNe each (25,000 total SNe) in order to

test BEAMS on samples the size of the PS1 photometric sample. We add simulated

low-z samples of 250 SNe Ia each, the approximate number that will be included in

our forthcoming cosmological analysis. The results presented here use the J17 CCSN

simulations (Appendix 4.10), as they have CCSN LFs that match our data.

To focus on biases from CCSN contamination, we define the CCSN bias ∆ and
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Table 4.3. Results from BEAMS

PS1 Simulations PS1 Data

bias σbias
a σstat

b bias/σstat ∆σstat bias σbias
a,c σstat

b bias/σstat ∆σstat

µd 0.000 0.001 0.031 0.0 0.001 (3%) -0.040 0.019(±0.09) 0.074 -0.4 0.010 (14%)

α 0.004 0.000 0.006 0.6 0.000 (3%) 0.001 0.001(±0.005) 0.012 0.1 0.001 (5%)

β 0.088 0.008 0.073 1.2 0.004 (6%) 0.199 0.018(±0.10) 0.154 1.4 0.009 (6%)

w -0.005 0.004 0.048 -0.1 0.002 (3%) -0.040 0.012(±0.084) 0.095 -0.4 0.008 (8%)

Note. — Bias and increase in uncertainty due to CCSN contamination. All quantities shown are taken from

the median of 25 samples. Bias is defined in Eq. 4.7 for simulations and Eq. 4.8 for data (bias in data is relative

to R14 parameter measurements).

aUncertainty on the median bias.

bStatistical uncertainty on each parameter from a single sample.

cIn parentheses, we show the estimated uncertainty on the R14 values. Because our PS1 data are correlated

with R14 (they share the low-z sample), we take Monte Carlo samples of 100 simulated PS1 SNe and combine

each with the R14 low-z sample, taking the standard deviation of measurements from these combined data as

the uncertainty.

dAveraged over 0.08 < z < 0.7.
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the increase in statistical uncertainty due to CCSNe, ∆σstat, for a given parameter

P :

∆ = Pm − PIa,

∆σstat = σ(Pm)− σ(PIa)

(4.7)

where Pm is the measured parameter from the BEAMS method and PIa is the mea-

sured parameter from the BEAMS method using SNe Ia alone and setting all prior

probabilities equal to one. For the 25 simulated samples, the average wIa value is

-1.001±0.009. The RMS of wIa is 0.045, consistent with the mean statistical uncer-

tainty (0.048).

We compare the Ia-only distances, SN parameters, and w measurements against

our results from the BEAMS method in Table 4.3. Figure 4.9 shows that the binned

distances are biased by less than 20% of their uncertainties with the exception of the

final control point. Typical biases are ∼3 mmag and the largest average bias from the

25 samples (aside from the final high-uncertainty control point) is 6 mmag at z ' 0.6.

The SN parameters α and β are biased by 3%, or 1-1.5 times the average statistical

error. σIa is biased by 4%, 0.3 times the average statistical error. Note that σIa (in

Eq. 5.3) is functionally similar to the SN intrinsic dispersion, σint. These biases are

small enough that they would be difficult to measure in real data. A possible cause of

these biases is that Ia-like CCSNe have color laws more consistent with Milky Way

dust (β ∼ 4.1) and different shape-luminosity correlations.
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We find w has a median bias of -0.005±0.004 due to CCSN contamination, 10%

of the statistical error on w. While our analysis is consistent with no bias, we assign

a systematic uncertainty on w of 0.005+0.004 = 0.009, though the true systematic

uncertainty could be higher due to uncertainties in CCSN simulations (§4.7). The

statistical uncertainty on w in this case is just 3% higher than the statistical uncer-

tainty from SNe Ia alone. This result is consistent with KBH07, who find that BEAMS

can yield nearly optimal uncertainties (we discuss BEAMS uncertainties further in

§4.8.3).

If we compare the bias on w to a näıve method of measuring w with photometri-

cally classified SNe, the advantage of using BEAMS is obvious. For our 25 1,000-SN

samples, we take likely SNe Ia (PPSNID(Ia) > 0.5) and estimate cosmological pa-

rameters assuming that all of these SNe are Type Ia (Campbell et al., 2013 used a

similar method of cutting the sample based on PSNID classifications). Making this

cut removes 8% of true SNe Ia in our sample and yields a final sample contaminated

by 2.9% CCSNe. In spite of having a sample comprised of >97% SNe Ia, the average

bias on w is -0.025±0.004, a factor of five higher than our BEAMS results. The bias

is >50% of the statistical uncertainty on w and has 6σ significance, while the BEAMS

result is consistent with no bias. The statistical uncertainty on w from this method

is 6% higher, compared to 3% higher from BEAMS. Even a cut of PPSNID(Ia) > 0.9

yields a bias on w of 0.011±0.003 (>3σ significance) at the cost of removing 17% of

real SNe Ia. Furthermore, while BEAMS allows these probabilities to be adjusted by
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the method, treating them as fixed in this simplistic method increases the possibil-

ity of biased classifications due to incompleteness in the CCSN template library. It

is clear that BEAMS outperforms this simple cut-based analysis, though this näıve

method could still be effective with significantly improved classification methods.

4.6.2 Comparing Real Pan-STARRS Photometric

Supernovae to Rest et al. (2014)

Rather than analyzing the full PS1 sample, we analyze 25 random draws of PS1

SNe to compare R14 measurements − and uncertainties − directly to measurements

from CCSN-contaminated samples of the same size. Because 96 R14 SNe Ia pass our

sample cuts, we draw samples of 104 photometric SNe in order that our subsamples

each contain an average of 96 SNe Ia (and 8 CCSNe; we also use reprocessed R14 light

curves). We don’t explicitly require these random samples to have the same redshift

distribution as the PS1 spectroscopic sample. However, the redshift distribution of

the PS1 photometric sample is similar to that of R14 (a nearly identical range and

median redshift, though the photometric sample does include more faint SNe Ia with

red colors).

For subsamples of PS1 data, we report parameter biases relative to R14:
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∆ = Pm − PR14

∆σstat = σ(Pm)− σ(PR14)

(4.8)

where PR14 and σ(PR14) refer to a parameter and its uncertainties from R14.

Although R14 does not have enough SNe to test for small biases in w, the data still

allow for a consistency check that is independent of the myriad assumptions made in

simulations. In addition, the 96 SNe from R14 with low-z SNe can provide constraints

on the bias of nuisance parameters α, β, and σIa due to the BEAMS method. We

include low-z SNe because BEAMS is more robust when it has a spectroscopically-

confirmed sample as part of the data and has difficulty measuring accurate SN Ia

dispersions for small samples.

We find that measured distances, SN nuisance parameters α and β, and w are

consistent with R14 (Table 4.3). We may be seeing the same hints of a bias toward

higher values of β that we find in simulations but they have under 2σ significance.

The bias in α is not statistically significant (0.1σ).

The average of w from 25 104-SN samples is consistent with the measurements

from reprocessed R14 light curves (0.4σ lower, where σ is the statistical uncertainty

from R14). The uncertainties on w are 15% higher and distance modulus uncertainties

are 14% higher, likely due to the lower average SNR of photometric PS1 light curves.

The median SNR at peak is 22 for all PS1 SNe, compared to a median SNR at peak

of 38 for spectroscopically classified SNe.
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4.7 Results from BEAMS Variants

The BEAMS method measures w with no significant bias due to CCSN contam-

ination and a statistically insignificant bias in PS1 data. However, the reliability of

these results could depend on the assumptions that we made when generating CCSN

simulations and implementing BEAMS. We now expand our study of systematic un-

certainties in simulations by applying alternative SN classification methods, including

ones with less dependence on the accuracy of our CCSN simulations, and adjusting

the CCSN likelihood model.

4.7.1 Analysis Variants

In total, we test three additional methods of determining the prior probability

P(Ia) (Eq. 5.3) − the Nearest Neighbor, Fitprob, and GalSNID classifiers − and two

additional CCSN models. The two additional CCSN models include a two-Gaussian

model and a single, asymmetric Gaussian model. Nearest Neighbor (NN) and Fitprob

are light curve-based classification methods. NN uses SALT2 light curve parameters

to classify SNe based on whether they lie nearer to simulated SNe Ia or simulated

CCSNe in X1, C and redshift space while Fitprob uses the χ2 and degrees of freedom

of the SALT2 light curve fit to measure a probability. GalSNID (Foley & Mandel,

2013) uses the fact that, unlike CCSNe, many SNe Ia explode in galaxies with old

stellar populations, and thus uses only host galaxy properties to derive a SN type
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probability. We expand the GalSNID method to use observables from host galaxy

spectroscopy in addition to photometric observations. PSNID is the best method;

NN yields a sample with 6.5% contamination at P(Ia) > 0.5 and 3.8% contamination

at P(Ia) > 0.9, Fitprob yields a sample with 6.1% contamination at P(Ia) > 0.5 (4.1%

at P(Ia) > 0.9) and GalSNID gives a sample with 9.3% contamination (7.2% at P(Ia)

> 0.9; the total contamination in the sample is 9.7%). The details of these variants

are given in Appendix 5.5.

We note that the best approach would be a hybrid one that takes advantage of all

classifiers. Though we keep these classifiers as separate here in order to explore the

effect of different classification assumptions, Kessler & Scolnic (2017), for example,

combine a Fitprob > 0.05 cut with the NN classifier. Combining GalSNID priors with

a light curve-based classifier is another promising option for future work.

We test each variant on 25 samples of 1,000 simulated PS1 SNe. Though we

discuss the ways in which distances and nuisance parameters are affected by these

variants, we focus primarily on measurements of w. The RMS of these variants gives

an estimate of the systematic uncertainty on w, σCC
w , an error which could be reduced

in the future by improved SN classification methods. It could also be reduced by

testing our best single classifier on a robust set of CC+Ia SN simulations that include

a larger set of CCSN templates and several methods of adjusting CCSN rates and

LFs to match the data.
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4.7.2 Systematic Uncertainty on w

We examine two situations in this section: one where α and β are measured by

the BEAMS method, and one where α and β are fixed to the values measured from

spectroscopic samples. In the case where α and β are measured by the BEAMS

method, Figure 4.10 shows the bias on α and β from each classifier. β biases in

particular can cause large distance biases at z > 0.5, as the average SN color at these

redshifts is ∼-0.1 (for a bias in β of 0.2, ∆β × C = 20 mmag).

If α and β are fixed, BEAMS requires very little information to give robust mea-

surements of w. We test the effect of fixing α and β for all variants and also compare

to the case where BEAMS has minimal prior information: we set P(Ia) = 1/2 for

all photometric SNe while still fixing P(Ia) = 1 for low-z SNe. If α and β are fixed,

the largest absolute bias on w is -0.018 (the Fitprob classifier) and the P(Ia) = 1/2

case gives a w-bias of only -0.011. The biases are approximately twice as high if we

instead allow BEAMS to fit for α and β, and four times as high for the P(Ia) = 1/2

case, worse than all other methods (a w-bias of -0.043).

Table 4.4 and Figure 5.3 show the median bias and increase in uncertainty on w

due to each P(Ia) method and CCSN model. Figure 5.3 shows the bias before and

after fixing α and β. We find that alternate CCSN models have only a small effect

on the measurement of w. Our lowest w-bias of -0.001±0.003 comes from the skewed

Gaussian CCSN model; however, the results from these three CCSN treatments are

statistically consistent (with the exception of the two-Gaussian model with α and β
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fixed, which appears to have difficulty robustly measuring both CCSN Gaussians).

Using all variants, σCC
w has an average value of 0.014±0.007 (30% of the statis-

tical error) if α and β are fixed for the NN, GalSNID, and Fitprob classifiers (these

classifiers give twice the bias on α and β as PSNID does). The uncertainty is due

to the dispersion of the systematic uncertainty from sample to sample. BEAMS dis-

tances (Figure 4.11) and nuisance parameters (Figure 4.10) are consistent to within

1σ, regardless of the method.

We note that in some cases fixing α and β may subject the sample to additional

systematic uncertainty. For example, α and β could be different in a photometric

sample because the host galaxy spectroscopic follow-up selects bright hosts. Host

properties correlate with shape and color, which in turn can affect measured α and

β (Scolnic et al., 2014b). However, these biases are well-known and can in principle

be simulated and corrected for (see Scolnic & Kessler, 2016).

Current measurements of w (e.g. B14) have approximately equal statistical and

systematic uncertainties. Therefore, a measurement of w biased by less than ∼half

the statistical uncertainty (0.024 in this work), such as the value of σCC
w = 0.014

measured here, does not prohibit a robust measurement of w. Any bias larger than

that − such as the alternative classifiers discussed in this section without α and β

fixed − will dominate the systematic error budget and make it unlikely that photo-

metric SN samples can be competitive with spectroscopically classified samples. For

future surveys, such as DES and LSST, this bias may be approximately equal to the
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Table 4.4. Cosmological Results from BEAMS Variants

Method ∆wa σstat
b ∆w/σstat ∆σstat

one Gaussianc -0.005±0.004 0.050 -0.1 0.002 (3%)

two Gaussiansc 0.004±0.004 0.051 0.1 0.003 (6%)

skewed Gaussianc -0.001±0.003 0.050 -0.0 0.001 (2%)

P(Ia) Methodd

∆w σstat ∆w/σstat ∆σw

PSNID -0.005±0.004 0.050 -0.1 0.002 (3%)

NNe -0.009±0.004 0.047 -0.2 -0.001 (-2%)

Fitprobe -0.018±0.004 0.047 -0.4 -0.001 (-1%)

GalSNIDe -0.011±0.004 0.048 -0.2 -0.000 (0%)

aThe median bias on w and its uncertainty.

bThe statistical uncertainty on w from a single sample of 1,000 PS1

SNe.

cUsing PSNID for the P(Ia) prior probabilities.

dUsing a single Gaussian CCSN model.

eFor these classifiers, we keep α and β fixed to their known values.

∆σw is negative in some cases, because fixing α and β neglects the

contribution of nuisance parameter uncertainties to the uncertainty on

w.

Note. — Bias of w in simulations from each CCSN model and prior

probability method. We take the median of 25 samples of 1,000 PS1

SNe. For each increase in uncertainty (∆σw), we show its percent

increase in parentheses. Methods with the lowest bias are highlighted

in bold.
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statistical error and must be reduced through improved classification methods or a

better understanding of CCSNe to yield accurate results.

4.8 Discussion

The PS1 photometric SN sample is the largest SN Ia sample, but using it to opti-

mally measure cosmological parameters − particularly if nuisance parameters α and

β are unknown or observationally biased − requires accurate SN type probabilities.

These in turn rely on our understanding of the PS1 sample and the CCSNe in it.

Evaluating how our incomplete knowledge of CCSNe could bias the results is diffi-

cult. In this section, we discuss how CCSN simulations could be improved in the

future. We also present alternatives to our implementation of BEAMS and measure

the degree to which different methods and priors affect the statistical uncertainty on

w.

4.8.1 Generating Reliable CCSN Simulations

Evaluating the reliability of our method would be subject to fewer uncertainties

if CCSN simulations were more robust. These simulations are currently subject to

two primary limiting factors: the assumption that the CCSN LF is Gaussian with

measured mean and RMS from Li et al. (2011) and the limited CCSN template

diversity.
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Figure 4.13 shows that the assumption of the shape of CCSN LFs could have a

strong impact on the fraction of bright CCSNe. While the Malmquist bias for SNe Ia

is ∼0.1 mag at maximum, Type II SNe observed at the median PS1 survey redshift

are up to 3 magnitudes − and 2-3 standard deviations − brighter than the peak

of their LF. Determining the frequency of such bright CCSNe requires measuring

the shapes of their LFs with better precision than what is currently available from

volume-limited surveys such as Li et al. (2011). Due to low statistics, our current

simulations treat the LFs of each SN subtype as Gaussian, a flawed assumption.

Generating more robust simulations also requires additional, diverse CCSN tem-

plates. Our simulations sample the luminosity, shape, and color distribution of most

CCSN subtypes with just a few templates. In addition, the luminosity distribution of

these templates is heavily biased; nearly all CCSNe currently used as templates are

much brighter than the mean luminosity of their subtypes. Our method makes these

bright templates fainter to match the Li et al. (2011) LFs, implicitly assuming that

faint CCSNe have similar light curves to bright CCSNe. A better approach would be

based on CCSN templates that sample the full range of luminosity space for CCSNe.

We note that additional high-SNR CCSN light curves and spectra exist, but re-

quire careful smoothing, interpolation, and spectral mangling to be a reliable addition

to the SNANA template library. We have added SNe Ia-91bg and SN IIb templates to

SNANA (Appendix 4.10.1.1), but assembling and mangling all available CCSN light

curves and templates is beyond the scope of this work.
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In the absence of additional templates and improved LF measurements, we can

use GalSNID and Fitprob classifications to give measurements of w some degree of

independence from these sources of uncertainty. Though these classifiers are sub-

optimal compared to classifiers such as PSNID, they give a unique set of probabilities

that do not rely on simulations for training (though Fitprob is implicitly dependent on

the nature of CCSN light curves contaminating our sample). Fitprob and GalSNID

explicitly depend on simulations only through their rates priors. Adjusting these

priors by a factor of 2 biases w by ∼20% of the statistical uncertainty or less.

4.8.2 Alternatives in Implementing BEAMS

In determining cosmological parameters with the BEAMS method we made a

set of choices with a modest number of free parameters that reproduced the full

cosmological parameter likelihoods. We found that most choices, e.g. varying priors

or adding additional CCSN bins, made little difference provided that we had a large

number of MCMC steps and few enough parameters.

Two additional choices can improve the systematic error due to CCSN contami-

nation. First, though fixing α and β does not improve the accuracy of the BEAMS

method when using PSNID priors, it does improve the accuracy when using NN,

Fitprob and GalSNID, methods with less accurate classifications. With α and β

fixed, NN, Fitprob and GalSNID are competitive with the more sophisticated light

curve based methods. If we choose to either keep α and β fixed when measuring w
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from these classifiers, we find that the σCC
w decreases by ∼30% on average. In Pan-

STARRS, spectroscopically-confirmed SNe can measure these parameters with low

uncertainty, and fixing them for our future cosmology analysis in some or all methods

could be advantageous.

The second method of improving BEAMS is by cutting additional likely CCSNe

from the sample. Following Kessler & Scolnic (2017), we tested a cut on the NN

prior probability by requiring 0.5 < PNN(Ia) < 1. Our simulations show that this

cut removes ∼33% of contaminants but just 5% of SNe Ia. The rejected sample

has ∼40% CCSN contamination. We found that an NN probability cut yields no

improvements to our results using the NN classifier. However, when this cut is added

to our other classification methods, it reduces σCC
w by ∼30% on average. We have not

included this cut in our systematic error analysis (§4.7) as it makes our classification

methods more correlated and adds an additional dependence on uncertain simulations

to the measured systematic error. However, it is likely that this cut will increase

the consistency of the full PS1 cosmological results. Kessler & Scolnic (2017) use a

hybrid classification approach by requiring Fitprob > 0.05. In our simulations, this

cut reduces the CCSN contamination by an additional 30% compared to using the

NN classifier alone.

A third option for BEAMS is to estimate SN Ia distances with a more strict CCSN

model. Kessler & Scolnic (2017) adopt an approach where BEAMS CCSN distribu-

tions are determined directly from simulations. For our PS1 analysis, we have adopted
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a more general approach to CCSNe at the cost of several additional parameters to

marginalize over and a simpler form of the likelihood (Kessler & Scolnic, 2017 also

suggest free CCSN parameters as a possible improvement to their method). Tests

show our parameterization is capable of marginalizing over the simulated CCSNe

such that the Ia likelihood is recovered, and our method is slightly more general than

a simulation-based method. A simulation-based mapping of CCSNe may be more

robust, but validating it thoroughly is beyond the scope of this paper. In particular,

the influence of inaccurate simulations on its recovered results must be explored fully.

4.8.3 Uncertainties in BEAMS Distances

By setting P(Ia) = 1/2 for all photometric SNe, the BEAMS method measures

w with a bias of -0.01, 0.2 times the statistical uncertainty on w. The statistical

uncertainty on w from setting P(Ia) = 1/2, even with no prior information as to

which SNe are of Type Ia, is just 5% higher than using SNe Ia alone (comparing to

SNe Ia alone in a case where α and β are fixed to known values). This is primarily

due to two factors: the loose priors we employ and the fact that we include a sample

of low-z spectroscopically-confirmed SNe Ia for which P(Ia) is fixed to 1. These low-z

SNe Ia help to set the SN Ia dispersion and the SN parameters α and β, which are

fixed as a function of redshift.

If we remove the low-z sample, distance and SN parameter biases increase. Dis-

tance uncertainties, which are higher by just ∼5% when using the P(Ia) = 1/2 prior,
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increase by nearly 50%. Nevertheless, BEAMS does remarkably well at determining

the Gaussian distributions of SNe Ia and CCSNe with relatively little information.

This is helped by the fact that because SNe Ia have a factor of ∼20 lower dispersion

than CCSNe, a loose prior on BEAMS free parameters is sufficient to find the most

probable Gaussian distributions.

If we use a more flexible CCSN model (a two Gaussian or skewed Gaussian CCSN

model), the requirements on our prior probabilities must become more stringent to

yield precise distances. In the case of the two Gaussian model, prior probabilities

can no longer be re-normalized or shifted (Eq. 4.6) − these are parameters which

can greatly improve the results for alternative prior probability methods. Second,

our prior probabilities must be significantly more accurate to yield results with low

uncertainties. With the two-Gaussian CCSN model, the uncertainty on w increases

by 20% when using GalSNID priors and by 100% when setting P(Ia) = 1/2 for all

photometric SNe. Using the skewed Gaussian model, GalSNID and P(Ia) = 1/2 priors

increase the uncertainties by 13% and 27%, respectively.

Fortunately, a single Gaussian model for CCSNe appears to yield unbiased dis-

tances even though the simulated distribution is not perfectly Gaussian. In essence,

BEAMS attempts only to determine the Gaussian distributions of two types of SNe

and fortunately, those distributions are relatively well-separated in dispersion even if

they are not always well-separated in distance.
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4.9 Conclusions

We measured spectroscopic redshifts for 3,147 SN host galaxies in Pan-STARRS,

over 1,000 of which are cosmologically-useful, likely SNe Ia. When combined with

the full PS1 spectroscopic sample (Scolnic et al. in prep.), we will have 1,145

cosmologically-useful SNe Ia from PS1.

We find that currently available CCSN templates and luminosity functions are

biased or incomplete. Our results suggest there are too few bright CCSNe in our

simulations.

We generate 25 simulations that closely resemble the PS1 sample. Each has 1,000

photometric PS1 SNe and 250 low-z spectroscopically-confirmed SNe Ia. These simu-

lations show that our method can measure w with a bias due to CCSN contamination

as low as -0.001±0.003. This equates to a systematic uncertainty on w of just 0.004,

8% of the statistical uncertainty, but this uncertainty could be affected by incomplete

knowledge of the CCSN distribution. The SN Ia dispersion, σIa, is biased by -0.005

(∼0.5σ), the SALT2 shape parameter α is biased by ∼0.005 (∼1σ), and the color

parameter β is biased by ∼0.1 (∼1.5σ). The statistical uncertainties on w are nearly

equivalent to those using only SNe Ia.

Using several variants of the method and a CMB-like prior on ΩM , we estimate

the systematic error introduced by CCSN contamination to be 0.014±0.007 (29% of

the statistical error). This systematic error would constitute only a 3% increase on

the uncertainty on w in a JLA-like analysis with CMB priors (σw = 0.057 (stat+sys),
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and
√
0.0572 + 0.0142 = 0.059). However, this systematic error assumes that α and

β can be fixed to known values from a spectroscopic sample for the alternate classi-

fication methods. If α and β are fixed, our least accurate classifiers − including an

uninformative prior probability P(Ia)=1/2 for all simulated PS1 SNe − give a median

bias on w between -0.01 and -0.02. Systematic error could be reduced further by us-

ing a cut on prior probabilities from one variant to reduce CCSNe in the sample for

the other variants. We caution that due to uncertainties in CCSN simulations and

statistical fluctuations, the CCSN contamination systematic affecting our forthcom-

ing cosmological results may be somewhat lower or higher than the one estimated in

this work. However, that analysis will also include a subset of PS1 SNe with known

(spectroscopic) classifications as part of the data, a scenario which will likely reduce

the systematic uncertainty due to CCSN contamination.

Included in these variants are a total of four different classification methods to

measure cosmology, including a host galaxy spectrum-based version of GalSNID (Fo-

ley & Mandel, 2013) that we introduce in this work (see Appendix 4.11.1.3). GalSNID

is based only on SN Ia host galaxy observables and a rates prior. GalSNID provides

a method of measuring w from photometric data that does not depend on SN light

curves and training on simulated data. Machine learning techniques may be able

to improve on the efficiency of this method in the future. We caution that even

with these multiple variants, if CCSN simulations are inaccurate it could cause the

systematic error to be underestimated in real data. Additional CCSN templates
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and a better measurement of the shape of CCSN luminosity functions could help to

ameliorate these concerns.

By drawing random samples from real PS1 data, we tested whether the BEAMS

method can work on real data within the confidence intervals of Rest et al. (2014).

We found that our measurements of w were fully consistent with Rest et al. (2014),

as were the SN nuisance parameters α and β.

Though our results are robust, w is an extremely sensitive measurement and the

burden of proof for BEAMS is high. Future validation tests could include SDSS

and SNLS photometric data, as well as simulated tests with a variety of CCSN LFs.

Additional light curve classification methods could also help to improve the reliability

of the BEAMS method.

Future SN Ia samples from DES and LSST will be unable to rely solely on spec-

troscopic classification to measure cosmological parameters. With the light curve

classification and Bayesian methodologies presented here, we validate some of the

techniques that will be used in future surveys, and anticipate that PS1 photometric

SNe can provide a robust measurement of w using the largest SN Ia sample to date.
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4.10 Appendix A: The Dearth of Simu-

lated CCSNe

4.10.1 Core-Collapse SNe

There are a few potential explanations for the difference in Hubble residuals (0.5

< µ − µΛCDM < 1.5) between simulations and data. In this Appendix, we attempt

to identify the cause of the discrepancy.

First, a large percentage (&20%) of inaccurate SN Ia redshifts could explain the

data. However, in addition to disagreeing with our measurements, this would give too

many simulated SNe with very bright and very faint Hubble residuals. Requiring a

high TDR minimum and a small separation between the SN location and host galaxy

center in our data does not resolve the conflict.

A second option is that the relative rates or magnitude distributions from Li

et al. (2011) are erroneous or are biased by the targeted nature of the survey (LOSS

searched for SNe in a set of pre-selected bright galaxies). These rates also do not take

into account that the relative fractions of different CCSN subtypes could change with

redshift. Modest adjustments, such as “tweaking” the mean magnitudes or dispersions

of CCSNe by .0.5 mag, cannot explain the discrepancy. Simulating CCSNe using

LFs from Richardson et al. (2014), which are typically ∼0.3-1.0 mag brighter than

Li et al. (2011), produces far too many bright CCSNe compared to our data. The
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effect of weak lensing on the data is expected to be an order of magnitude less than

the size of the offset we see here (Smith et al., 2014). It is also unlikely that strongly

lensed SNe contribute significantly to the discrepancy (Oguri & Marshall, 2010).

By re-classifying LOSS SNe, Shivvers et al. (2017) recently found that SN Ib rela-

tive rates were more than double the fraction found by Li et al. (2011). This change

could reduce the Hubble residual discrepancy by half or more. However, Shivvers

et al. (2017) determined these rates by re-classifying a number of LOSS SNe Ic as

SNe Ib, which in turn means that the SN Ib LF should be made fainter. Making the

SN Ib LF fainter will increase the discrepancy in Hubble residuals. We continue to

use Li et al. (2011) in this work, as we can be sure that the LFs and relative rates

are self-consistent.

Finally, we consider that our results could be biased if SNANA templates have

lower average reddening than PS1 data. There are likely substantial differences be-

tween the reddening distribution of the templates and the data. However, we find

that adding additional reddening to our simulations tends to make the magnitude

distribution of CCSNe more broad (we approximately adjust the Li et al., 2011 LFs

for dust following Rodney et al., 2014). This increases the discrepancy between simu-

lations and data. Correcting for the unknown intrinsic reddening of these templates is

an important future objective that can allow SNANA simulations to be more realistic.

See §4.8.1 for further discussion of biases in our simulations and templates.
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4.10.1.1 Adding New Supernova Templates to SNANA

Several CCSN or peculiar Ia subtypes are missing from the SNANA simulation

library but could be present in the PS1 data. Missing SN types include superluminous

SNe, SNe IIb, SNe Ibc-pec, and peculiar, faint SNe Ia such as 1991bg-like SNe Ia (Ia-

91bg) and SNe Iax (Foley et al., 2013). Superluminous SNe are unlikely to help

resolve the discrepancy, as they are brighter than SNe Ia and occur preferentially in

faint hosts for which redshifts are difficult to measure (Lunnan et al., 2015). SNe

Ibc-pec have similar LFs to SNe II-P but are much less common, so it is unlikely

that many would fall on the Hubble diagram so near the SN Ia distribution. SNe Iax

are red, fast-declining SNe that may be relatively common but have faint (albeit

uncertain) LFs more similar to SNe II-P and Ibc-pec. These also tend to be poorly

fit by SALT2, and would frequently fail our cuts.

SNe IIb and SNe Ia-91bg both have LFs only ∼1 mag fainter than SNe Ia, though

they are relatively uncommon and would need a high fraction to pass SALT2 light

curve cuts to be major contributors to our Hubble diagram. We investigated their

impact by adding Ia-91bg and IIb templates to SNANA.

To simulate CCSNe over a wide range of redshifts and passbands, SNANA tem-

plates require relatively high-SNR, high-cadence spectral and photometric sampling,

which exists for a paucity of CCSNe. Simulating SN light curves at high redshift of-

ten necessitates near-ultraviolet data as well. To create a template, an interpolated,

flux-calibrated spectral time series is “mangled” to match the observed photometry
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by using wavelength-dependent splines with knots at the effective wavelengths of the

photometric filters. Least-squares fitting determines the the best-fit spline that scales

the spectrum to match the photometry. Hsiao et al. (2007) describes the “mangling”

procedure in detail.

To improve the SNANA CCSN simulation, we add four SN IIb templates − SNe

1993J, 2008ax, 2008bo, and 2011dh − using spectra and light curves consolidated

by the Open Supernova Catalog (Guillochon et al., 2017)11. Each of these templates

have well-sampled spectra and optical light curves. We also add Ia-91bg templates

using the SN 1991bg spectrum from Nugent et al. (2002)12, warped to match SNe Ia-

91bg with well-sampled light curves before and after maximum (SNe 1991bg, 1998de,

1999by, 2005bl13). Using multiple SN templates helps us obtain better sampling of the

shape-luminosity relation for SNe 91bg (steeper than the relation for normal SNe Ia;

Taubenberger et al., 2008).

Figure 4.14 shows the interpolated light curves, mangled spectra and Hubble resid-

ual histograms for SNe IIb and Ia-91bg. For Ia-91bg, we assume their rates have the

same redshift dependence as SNe Ia. SNe Ia-91bg have magnitude distributions that

11References for the spectra and photometry are listed here. SN 1993J: Richmond et al. (1996);
Metlova et al. (1995); Barbon et al. (1995); Jerkstrand et al. (2015); Modjaz et al. (2014). SN
2008ax: Modjaz et al. (2014); Brown et al. (2014); Taubenberger et al. (2011); Tsvetkov et al.
(2009); Pastorello et al. (2008). SN 2008bo: Modjaz et al. (2014); Brown et al. (2014); Bianco
et al. (2014). SN 2011dh: Ergon et al. (2015, 2014); Shivvers et al. (2013); Arcavi et al. (2011).
Secondary sources: Yaron & Gal-Yam (2012); Richardson et al. (2001); Silverman et al. (2012) and
the Sternberg Astronomical Institute Supernova Light Curve Catalogue.

12https://c3.lbl.gov/nugent/nugent_templates.html
13References for the photometry are listed here. SN 1998de: Silverman et al. (2012); Gane-

shalingam et al. (2010); Modjaz et al. (2001). SN 1999by: Silverman et al. (2012); Ganeshalingam
et al. (2010); Garnavich et al. (2004). SN 2005bl: Contreras et al. (2010). Secondary sources: the
Sternberg Astronomical Institute Supernova Light Curve Catalogue.
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could explain the data, but their rates are inconsistent with the data. SNe IIb are far

too rare, as nearly all simulated SNe IIb have measured colors that are too red to be

SNe Ia. Though we find that Ia-91bg and IIb SNe are not frequent enough to resolve

the difference between PS1 data and simulations, we incorporate these subtypes in

our simulations hereafter.

4.10.1.2 Measuring CCSN Luminosity Functions with PSNID

There is an additional procedure by which PS1 data can inform CCSN LFs:

we use the PSNID light curve classifier (Sako et al., 2011, 2014) to separate the

likely contributions of SNe Ia, Ib/c, and II. The SNANA implementation of PSNID

compares the SALT2 SN Ia model and SNANA’s CCSN templates to the observed

data. PSNID determines the fit χ2- and prior-based probability that a given SN is

Type Ia, Type Ib/c, or Type II. Though the set of templates we use for PSNID is

the same set we use to generate CCSNe in our simulations, broad priors allow these

templates to be shifted in magnitude and extinction to fit our data.

We compare PSNID’s classifications of PS1 data and simulations by examining the

distribution of mB − µΛCDM , a proxy for absolute magnitude at peak (Figure 4.15).

We find that likely SNe Ib/c are much brighter and have lower dispersion than the

simulations. To bring our simulations into agreement with the data, we adjusted the

simulated SN Ib/c and II distributions such that the mean and standard deviations

of the simulated SNe that PSNID classified as Type Ib/c and II matched the mean
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and standard deviations of real PS1 SNe that PSNID classified as Type Ib/c and II.

This requires reducing the dispersion of CCSN templates by 55% for SNe Ib/c. It

also requires brightening the simulated LFs by 1.2 mag for SNe Ib/c and 1.1 mag for

SNe II. We made shape and color cuts (§4.3.2) in this analysis but neglected σX1 and

σpeakMJD cuts to increase our SN statistics.

Figure 4.15 shows the distributions of PSNID-classified PS1 SNe (P(SN Type) >

95%) compared to our simulations before and after absolute magnitude and dispersion

adjustments. We apply shape and color cuts but neglect additional cuts to increase

our CCSN sample size.

After these adjustments, simulated CC+Ia SNe are consistent with our data.

Figure 4.5 shows Hubble residual histograms before and after our PSNID-based ad-

justments. After correction, CCSNe are 8.9% of our final sample and SNe Ia-91bg

comprise 0.2%. Additional CCSNe can explain the red tail of the SALT2 C distribu-

tion in Figure 4.4C (Figure 4.16). No CCSN rate adjustments were made. Although

the simulated absolute magnitudes have been brightened by ∼1 mag, CCSN in the

adjusted simulations are only ∼0.5 mag brighter than the original simulation on aver-

age. This is because as we brighten the CCSN distribution, the number of detectable

faint SNe − which are nearer to the peak of the LF, and thus occur more frequently

− increases, reducing the mean absolute magnitude. Note that the ∼2-3σ discrep-

ancy on the left (bright) side of the Hubble diagram can be reduced by simulating

a nominal host mass correction, which tends to very slightly broaden the simulated

163





CHAPTER 4. PAN-STARRS METHODS

4.11.1 Additional P(Ia) Priors

In addition to the PSNID prior probabilities in our baseline method, we use three

additional methods of estimating P(Ia): Fitprob, NN, and GalSNID. The effectiveness

of each method is illustrated in Figure 4.17. The NN, Fitprob, and PSNID classifiers

all determine probabilities by fitting to the photometric SN light curve. Fitprob relies

on only the SALT2 model for fitting, while PSNID and NN depend on CCSN simula-

tions for templates and training, respectively. GalSNID uses host galaxy information

and depends on SNANA simulations only through the SN rates prior.

4.11.1.1 NN

The Nearest Neighbor (NN) classifier (Sako et al., 2014) uses a set of observ-

ables to define how close a given SN is to the CCSN and SN Ia populations. In our

implementation, we use the SALT2 color (C), stretch (X1), and redshift (z). The

equation:

d2i =
(z − zi)

2

∆z2max

+
(C − Ci)

2

∆C2
max

+
(X1 −X1,i)

2

∆X2
1,max

(4.9)

defines a list of NN distances between the ith SN and simulated training data. For the

ith SN, neighbors are defined as all simulated events with di < 1. NN training finds

the parameters ∆Cmax, ∆X1,max and ∆zmax that optimize the classification metric

(efficiency × purity) of simulated training data. NN is an efficient and accurate clas-

sifier in PS1 simulations: the set of SNe with PNN(Ia) > 0.9 has 3.8% contamination
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compared to 9.7% contamination for the full sample (including CCSNe and SNe Ia

with incorrect redshifts). This set includes 74% of all SNe Ia. See Kessler & Scolnic

(2017) for details on the NN classification method.

4.11.1.2 Fitprob

The Fitprob method estimates P(Ia) from the χ2 and number of degrees of freedom

of the SALT2 light curve fit (the SALT2 fit probability). Because the SALT2 fit χ2 has

no knowledge about the relative frequency of different SN types, we multiplied Pfp(Ia),

the Fitprob probability, by a redshift-dependent SN rates prior, P(Ia|z). P(Ia|z) is

the number of SNe Ia divided by the total number of SNe at a given redshift (after

sample cuts; measured using the J17 simulations):

P̃fp(Ia) =
P(Ia|z)Pfp(Ia)

P(CC|z)(1− Pfp(Ia)) + P(Ia|z)Pfp(Ia)
(4.10)

P(CC|z) = 1− P(Ia|z).

Compared to the PSNID (baseline) classifier, Fitprob has twice the fraction of con-

taminants at P(Ia) > 0.5. The fraction of CCSNe with high P(Ia) is also higher by

a factor of ∼2.
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4.11.1.3 GalSNID

SNe Ia have much longer average delay times between progenitor formation and

explosion than CCSNe. Because of this, SNe Ia are the only SN type found in early

type hosts. This allows methods such as GalSNID (Foley & Mandel, 2013) to classify

SNe with host galaxy information. The GalSNID method in Foley & Mandel (2013)

is based on photometric information and is highly dependent on host morphology.

Because measuring galaxy morphologies at typical PS1 redshifts requires ∼0.1′′ image

resolution, we modified the method by adding spectral observables. Though GalSNID

is a very inefficient classifier, it measures SN Ia probabilities in a way that is only

minimally subject to light curve and LF uncertainties.

To train GalSNID, we used 602 host galaxy spectra from the Lick Observatory

Supernova Search (LOSS; Leaman et al., 2011) and 354 host galaxy spectra of PS1

spectroscopically-confirmed SNe. The equivalent widths of spectral emission lines,

and Hα in particular, correlate with SN type. Another useful diagnostic is the tem-

plate that cross-correlates best with the observed host spectrum. Finally, we include

host galaxy R (labeled effective offset in Foley & Mandel, 2013), B − K colors and

absolute K magnitudes from Foley & Mandel (2013).

We trained GalSNID on spectral information using LOSS host galaxy spectra and

spectroscopically confirmed PS1 SNe for which we have host galaxy spectra. Relative

to the PS1 spectroscopic sample, LOSS has a greater number of total SNe, and a

greater diversity and number of CCSNe on which to train the data.
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Spectra for ∼1/3 of the LOSS sample are available from SDSS/BOSS (Alam et al.,

2015; 297 spectra), and we found an additional ∼1/3 (305 spectra) by querying the

NASA/IPAC Extragalactic Database. In total, 67% of the 905 SNe discovered by

LOSS have host galaxy spectra. In general, the SNR of these data are high (much

higher on average than our redshift survey data).

PS1 spectroscopically classified 520 SNe of which ∼150 are CCSNe and the rest

are SNe Ia. Of the CCSNe, ∼30 are SNe IIn (Drout et al. in prep), 76 are II-P or

II-L (Sanders et al., 2015) and ∼20-30 are SNe Ib or Ic. We obtained host galaxy

spectra for 354 of these SNe.

We searched for a number of prominent, observational galaxy diagnostics that

correlate with the age of the host, and found that the equivalent widths of bright

emission lines such as OII, OIII, Hα and Hβ are measurable in many of our spectra.

We required continuum SNR > 5 near a given line measurement for an observable to

be used in training or classification. As a way to incorporate additional information

in a single diagnostic, we included the best matched spectral template based on cross-

correlation as an observable.

Although these diagnostics are correlated, in this work we follow Foley & Mandel

(2013) in treating them as independent. Final probabilities for a given SN can there-

fore be computed by multiplying the probability of a Ia given each observable (Foley

& Mandel, 2013):
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P(Ia|D) = k−1P(Ia|z)
N∏

i=1

P(Di|Ia), (4.11)

where N is the number of observables and P(Di|Ia) is the probability of an observable

given that the SN is Type Ia (Table 4.5). P(Di|Ia) is easy to compute; it is the fraction

of SN Ia host galaxies that have observable Di. P(Ia|z) is a rates prior informed by our

SNANA simulations. k is a normalization factor that requires P(Ia|D) + P(CC|D) =

1. See Foley & Mandel (2013) for additional details on the methodology. In the

future, machine learning techniques may be able to improve our results by relaxing

the assumption that observables are uncorrelated.

The probabilities from our LOSS+PS1 training sample are provided in Table 4.5.

We also include effective offset, B − K colors, and K absolute magnitudes using

probabilities measured from Foley & Mandel (2013) and SED fits using PS1 host

galaxy photometry. Note that because Hα and Hβ are almost perfectly correlated

(the correlation coefficient is 0.94), we do not use Hβ as an observable when Hα is

present in optical spectra (z . 0.35). Figure 4.17 shows the GalSNID probabilities of

SNe Ia and CCSNe in PS1 and our simulations (we redshift and add noise to LOSS

spectra to determine simulated GalSNID probabilities). Figure 4.18 shows GalSNID

probabilities for real spectroscopically classified PS1 SNe.

To create GalSNID probabilities for the simulated sample, we artificially redshifted

LOSS host galaxy spectra, added noise to make them consistent with the SNR of PS1

host spectra, and used GalSNID to measure the probability that each host observed

169





CHAPTER 4. PAN-STARRS METHODS

a SN Ia. We took the distributions of GalSNID probabilities for the redshifted, noisy

spectra corresponding to LOSS SNe II, Ib/c and Ia hosts in each simulated redshift

bin and assigned the probabilities drawn from those distributions to simulated SNe

II, Ib/c and Ia. This gave our simulated SNe the same probability distributions as

the redshifted LOSS data. Figure 4.17 shows that GalSNID is a relatively imprecise

classifier, but it provides constraints that are independent of SN light curves and their

associated uncertainties. We have not taken into account the redshift evolution of SN

host galaxies in this work.

On PS1 data, GalSNID is by far the least efficient classifier. Because classifications

are highly influenced by the rates prior, GalSNID considers just 5% of contaminants

to be likely CCSNe. If we set a higher threshold of P(Ia) > 0.9, GalSNID removes

∼25% of CCSNe and keeps ∼70% of SNe Ia. GalSNID is also most effective at

z . 0.35, where Hα is present in our optical spectra (the best indicator of SN type in

our spectra). Unfortunately, the largest SN Ia distance biases are at z > 0.4, where

the CCSN distribution becomes blended with the SN Ia distribution.

GalSNID would also be useful as an additional prior on SN type in conjunction

with other methods. However, due to uncertainty in CCSN models and LFs, in the

present analysis we consider it most powerful as a stand-alone tool that can measure

SN Ia probabilities without using light curve data.
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4.11.2 Varying the CCSN Model

PS1 and other spectroscopic data show that SNe Ia are well-represented by a

Gaussian Hubble residual model, but CCSNe are not. We investigated replacing

the CCSN likelihood in Eq. 5.3 with two likelihoods that are more consistent with

our CCSN simulations. We tested a two-Gaussian model with ten additional free

parameters for CCSNe (the means and standard deviations of the second Gaussian

at five redshift control points). We also tested a single, asymmetric Gaussian model

with five additional free parameters (skewness at each CCSN control point).

If we allow BEAMS to shift and/or rescale the prior probabilities that a SN is of

type Ia (Eq. 4.6), BEAMS can give unphysical results. The alternative CCSN models

are significantly more flexible and that flexibility must be constrained by accurate,

fixed prior probabilities such as those from NN (see §4.8.3). We fix the parameters

that allow BEAMS to adjust the priors (A = 1 and S = 0 in Eq. 4.6) or else the

uncertainties on SN Ia distances will inflate to >0.1 mag for even our best-measured

redshift control points.
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Table 4.5. Probability of Host Properties Given Type

Bin P (Di|Ia) P (Di|Ibc) P (Di|II)

Cross-Correlation Template

absorption 0.502 +0.054
−0.048

0.256 +0.069
−0.055

0.286 +0.036
−0.033

ellipt+A stars 0.431 +0.050
−0.045

0.598 +0.097
−0.085

0.609 +0.051
−0.048

late-type 0.029 +0.017
−0.012

0.037 +0.035
−0.020

0.030 +0.015
−0.010

emission 0.029 +0.017
−0.012

0.098 +0.047
−0.034

0.071 +0.021
−0.016

Hα Equivalent Width

<-5.0 0.005 +0.011
−0.004

0.000 +0.033
−0.000

0.000 +0.010
−0.000

-5.0 – 0.0 0.323 +0.045
−0.039

0.054 +0.051
−0.029

0.116 +0.031
−0.024

0.0 – 5.0 0.219 +0.038
−0.033

0.250 +0.086
−0.066

0.217 +0.039
−0.034

5.0 – 10.0 0.095 +0.026
−0.022

0.125 +0.067
−0.046

0.143 +0.033
−0.027

>10.0 0.358 +0.047
−0.042

0.571 +0.120
−0.100

0.524 +0.058
−0.052

Hβ Equiva1ent Width

<-5.0 0.000 +0.007
−0.000

0.000 +0.026
−0.000

0.000 +0.007
−0.000

-5.0 – 0.0 0.504 +0.046
−0.043

0.338 +0.084
−0.068

0.333 +0.040
−0.035

0.0 – 5.0 0.399 +0.041
−0.038

0.451 +0.094
−0.079

0.441 +0.044
−0.041

5.0 – 10.0 0.069 +0.019
−0.016

0.070 +0.048
−0.030

0.149 +0.028
−0.023

>10.0 0.029 +0.014
−0.010

0.141 +0.060
−0.044

0.077 +0.021
−0.017

OII Equivalent Width

<-5.0 0.000 +0.027
−0.000

0.000 +0.183
−0.000

0.000 +0.056
−0.000

-5.0 – 0.0 0.103 +0.055
−0.038

0.000 +0.183
−0.000

0.152 +0.101
−0.066

0.0 – 5.0 0.676 +0.115
−0.098

0.400 +0.315
−0.191

0.545 +0.161
−0.126

5.0 – 10.0 0.132 +0.060
−0.043

0.300 +0.290
−0.163

0.182 +0.108
−0.072

>10.0 0.074 +0.049
−0.032

0.300 +0.290
−0.163

0.121 +0.096
−0.058

OIII Equivalent Width

<-5.0 0.000 +0.007
−0.000

0.000 +0.027
−0.000

0.000 +0.007
−0.000

-5.0 – 0.0 0.215 +0.032
−0.028

0.101 +0.055
−0.037

0.079 +0.021
−0.018

0.0 – 5.0 0.674 +0.054
−0.050

0.739 +0.118
−0.103

0.728 +0.058
−0.053

5.0 – 10.0 0.067 +0.019
−0.016

0.058 +0.046
−0.028

0.059 +0.019
−0.015

>10.0 0.041 +0.016
−0.012

0.101 +0.055
−0.037

0.134 +0.027
−0.023
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Measuring Dark Energy Properties

with Photometrically Classified

Pan-STARRS Supernovae. II.

Cosmological Parameters from

1,344 Supernovae

5.1 Abstract

We use over 1,100 photometrically classified supernovae (SNe) from Pan-STARRS

and ∼200 low-z (z < 0.1) SNe Ia to measure cosmological parameters. The current
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generation of wide-angle time domain surveys are discovering far more Type Ia super-

novae (SNe Ia) than can be classified with SN spectroscopy. However, in a previous

paper (I), we demonstrated that SNe without spectroscopic classifications can still

be used to infer unbiased cosmological parameters by using a Bayesian methodology

that marginalizes over core-collapse (CC) SN contamination. Our sample contains

71% more SNe than the largest previous compilation of SNe Ia. It has a redshift

range of 0.01 . z . 0.7 with a median survey redshift of ∼0.3 and we estimate that

∼95% of SNe in the sample are bona fide SNe Ia. From these data, we measure the

difference in derived SN Ia distances between low-mass and high-mass host galaxies to

be 0.101±0.026 mag (stat+sys), consistent with previous measurements. Combining

SNe with cosmic microwave background (CMB) constraints from the Planck satel-

lite, we measure the dark energy equation of state parameter w to be -1.018±0.063

(stat+sys). Combining these data with additional constraints from baryon acoustic

oscillations (BAO) and local H0 measurements yields w = -1.047±0.051. If we allow

w to evolve with redshift as w(a) = w0 +wa(1− a), we find w0 = −0.952± 0.147 and

wa = -0.185±0.445 from the combination of SNe, BAO, CMB, and local H0 measure-

ments. These results are consistent with the Joint Lightcurve Analysis constraints on

w and have ∼10% larger uncertainties due to noisier SN data and a more conservative

treatment of the selection bias systematics. We try four different photometric classi-

fication priors for Pan-STARRS SNe and two alternate ways of modeling the CCSN

contamination, finding that no variant gives a w that differs by more than 3.3% from
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the baseline measurement. Uncertainty in the CCSN contamination model is only the

fourth largest systematic uncertainty in this analysis (σCC
w = 0.010), after uncertainty

in the SN Ia dispersion model (σdisp
w = 0.028), photometric calibration (σcal

w = 0.028),

and the SALT2 model calibration uncertainty, all of which are not specific to pho-

tometrically classified SN samples. We also find ∼3σ evidence for evolution in the

correlation between SALT2 color and luminosity as a function of redshift, a potential

new source of systematic uncertainty that could become significant at z ∼ 0.5-1 (just

1σ evidence for evolution had been seen previously). Our data provide one of the

best current constraints on w, demonstrating that even samples with ∼5% CCSN

contamination can give competitive cosmological constraints when marginalized over

in a Bayesian framework.

5.2 Introduction

The cause of the universe’s accelerating expansion at late times is one of the

fundamental questions in astrophysics today. Twenty years ago, distances from Type

Ia supernovae (SNe Ia) revealed that approximately ∼70% of the energy in the present

day universe must consist of “dark energy” to explain its acceleration (Riess et al.,

1998; Perlmutter et al., 1999). In the time since this discovery, large SN surveys with

up to∼750 spectroscopically confirmed SNe Ia have measured the expansion history of

the universe at z . 1 with increasing precision (Riess et al., 2004; Kessler et al., 2009a;

176



CHAPTER 5. PAN-STARRS COSMOLOGY

Hicken et al., 2009b; Conley et al., 2011; Sullivan et al., 2011; Suzuki et al., 2012; Rest

et al., 2014; Betoule et al., 2014). Because SNe Ia are observed in the cosmic epochs

when dark energy is most dominant, they have more leverage to measure dark energy

than most other cosmological probes. In conjunction with baryon acoustic oscillation

(BAO) and cosmic microwave backround (CMB) constraints (e.g. Eisenstein et al.,

2005; Bennett et al., 2003; Anderson et al., 2014; Planck Collaboration et al., 2015),

these SNe Ia are used to infer the dark energy equation of state parameter w (its

pressure to density ratio, P/ρc2).

The simplest model of dark energy is a cosmological constant, a vacuum energy

that exerts a spatially and temporally constant negative pressure (w = −1). However,

if w is measured to be greater than -1 it would be an indication of “quintessence” dark

energy, a dynamic scalar field. A w of less than -1 would imply so-called “phantom”

dark energy, which requires extremely exotic physics (Amendola et al., 2013).

Nearly all SN Ia analyses have measured a dark energy equation of state consistent

with w = −1. The most precise measurement to date is that of Betoule et al. (2014,

hereafter B14), who combined 740 spectroscopically confirmed SNe Ia from the Sloan

Digital Sky Survey (SDSS; Alam et al., 2015), the SuperNova Legacy Survey (SNLS;

Astier et al., 2006) high-z SNe from HST (Riess et al., 2007) and low-z SNe (Hamuy

et al., 1996; Riess et al., 1999; Jha et al., 2006; Hicken et al., 2009c,a; Contreras et al.,

2010; Folatelli et al., 2010) to form the Joint Light-curve Analysis (JLA). JLA SNe Ia,

when combined with CMB data from the Planck satellite and BAO constraints from
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Anderson et al. (2014) and Ross et al. (2015), yield w = −1.006 ± 0.045 (Planck

Collaboration et al., 2015).

Statistical and systematic uncertainties on the JLA measurement of w are ap-

proximately equal. Though a great deal of recent progress has been made to lower

systematic uncertainties, including the leading systematic of photometric calibration

error (Scolnic et al., 2015), lower uncertainties are also possible just by adding more

SNe Ia. Although a significant reduction of the statistical uncertainty now requires

hundreds of additional SNe Ia, thousands of SNe Ia have already been discovered by

Pan-STARRS (PS1; Kaiser et al., 2010). Thousands more are currently being discov-

ered by the Dark Energy Survey (DES; Flaugher, 2005) and tens of thousands will

be discovered by the Large Synoptic Survey Telescope (LSST) in the near future.

Obtaining spectroscopic classifications for all of these SNe is prohibitively expen-

sive. SN Ia spectra cannot be efficiently obtained with multi-object spectroscopy as

they have a sparse density on the sky: their rate is ∼10 yr−1 deg−2 for those with

R . 22 and spectral classifications must be obtained within ∼2 weeks of maximum

light. At the median PS1 redshift of z ∼ 0.3, spectroscopic classifications also neces-

sitate ∼1 hour or more of 4m-class telescope time per SN. In addition, ∼30% of these

SNe Ia will fail sample selection requirements after their spectrum has been observed

and thus cannot be placed on the Hubble diagram (§5.3). Assuming poor weather on

∼30-50% of nights, 100 nights of 4m-class telescope time will result in a cosmologi-

cally useful sample of just ∼400 SNe Ia. In future surveys, such as LSST, the cost of
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obtaining tens of thousands of SN Ia will far exceed the available resources.

The alternative to spectroscopic classifications is using classifications based only

on photometric SN light curves, but this subjects the sample to contamination by

core-collapse (CC) SNe. However, if cosmological distances can be measured without

bias from CCSN contamination, photometrically classified SNe Ia could be used to

measure w without penalty. To this end, SN light curve classification algorithms have

improved greatly in the last few years. The advent of LSST has provided additional

motivation to develop quick, robust classification methods that rely only on limited

photometric data (e.g Saha et al., 2016). Machine learning algorithms in particular

have been found to yield both efficiencies (few bona fide SNe Ia are misclassified) and

sample purities &96% in cases where the classifier can be trained on a representative

SN sample (Sako et al., 2014; Lochner et al., 2016).

The first measurement of w with photometrically classified SNe, Campbell et al.

(2013), used 752 SDSS SNe lacking spectroscopic classifications to measure cosmo-

logical parameters. They reduced CCSN contamination using the PSNID Bayesian

light curve classifier (Sako et al., 2011), among other sample cuts, and estimated that

their final sample had 3.9% CCSN contamination. However, Campbell et al. (2013)

did not include a systematic uncertainty budget in their measurements. Because

CCSNe are 1-2 mag fainter than SNe Ia, a contamination fraction of just 2% would

shift the mean distance by 0.02-0.04 mag, equivalent to a 5-10% difference in w over

the redshift range 0 < z < 0.5.
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For this reason, Kunz, Bassett, & Hlozek (2007) proposed the Bayesian Estimation

Applied to Multiple Species (BEAMS) method to simultaneously determine the SN Ia

and CCSN distributions. BEAMS models photometrically selected SN samples as a

combination of SNe Ia and CCSNe, simultaneously fits for the contributions of each

and marginalizes over nuisance parameters to give cosmological parameters. BEAMS

should yield cosmological parameter measurements with less bias and nearly optimal

uncertainties (Kunz, Bassett, & Hlozek, 2007). Hlozek et al. (2012) used the BEAMS

method to measure the cosmic matter density ΩM from SDSS SNe lacking spectro-

scopic classifications, but again did not include a systematic uncertainty budget in

their measurements.

We expanded on this work in Jones et al. (2016, hereafter J17). J17 undertook

a series of MC simulations to test the application of a BEAMS-like algorithm to a

Pan-STARRS photometrically classified SN sample and made a first estimate of the

systematic uncertainty on w due to CCSN contamination. We found a small bias of

∆CC
w = 0.003 ± 0.002 and a modest systematic uncertainty of 0.014, which we esti-

mated using four different SN classification methods and three different contamination

models.

In the current work, we apply the J17 methodology to PS1 SNe to measure cos-

mological parameters with robust systematic uncertainties. To date, only 10% of

PS1 SNe Ia − half of the spectroscopically classified SN Ia sample − have been used

to measure cosmological parameters (Rest et al., 2014; Scolnic et al., 2014a). The
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present sample is drawn from 350 spectroscopically classified SNe Ia and 3,073 PS1

SNe with spectroscopic host galaxy redshifts and unknown classifications. We an-

chor our Hubble diagram with a compilation of spectroscopically confirmed low-z

SNe Ia from the CfA1-4 and Carnegie Supernova Project samples (Riess et al., 1999;

Jha et al., 2006; Hicken et al., 2009c,a; Contreras et al., 2010; Folatelli et al., 2010;

Stritzinger et al., 2011). We exclude SDSS and SNLS SNe from this sample in order

to give cosmological constraints that are independent of previous high-z data. Af-

ter applying conventional light curve cuts (e.g., B14), 1,344 PS1+low-z SNe remain.

Statistically, we expect ∼5% of these SNe to be CCSN contaminants (J17).

A companion paper, Scolnic et al. (in prep.; hereafter S17), combines spectroscop-

ically classified PS1 SNe with JLA SNe to give cosmological constraints from nearly

1,000 spectroscopically classified SNe Ia. S17 presents the PS1 spectroscopic sample,

including improvements in the PS1 pipeline that are used in this work. This work

also relies heavily on the detailed analysis and simulations of the low-z sample in S17

as well as their improvements to the relative and absolute photometric calibration of

all surveys.

The sample of PS1 SNe with host galaxy redshifts was presented in J17, and in

§2 we briefly discuss this sample and present the low-z and PS1 spectroscopically

classified SNe that are included in this analysis. We derive bias-corrected distance

measurements and estimate classification priors for these samples. In §3, we discuss

contributions to our systematic uncertainty budget and in §4 we summarize our cos-
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mological parameter estimation methodology. In §5, we perform consistency checks

on the methodology. In §6, we give measurements of ΩM and w from SN Ia+CMB

constraints. In §7 we present combined cosmological constraints after combining SNe

with CMB, BAO and local H0 measurements. In §8 we discuss possible biases in the

measurement and unknown sources of systematic error, and our conclusions are in §9.

5.3 Distances and Photometric Classifica-

tions from the Supernova Data

The PS1 medium deep survey covers 10 7-square degree fields in 5 filters, with

typical observing cadences in a given field of 6 observations per 10 days. The PS1 SN

discovery pipeline is described in detail in Rest et al. (2014). Likely SNe were flagged

based on three signal-to-noise ratio (SNR) ≥ 4 observations in the grizPS1 filters and

no previous detection of a SN at that position. The PS1 survey overview is given in

Kaiser et al. (2010).

Over its four years of operation PS1 flagged 5,200 likely SNe. Spectroscopic fol-

lowup was triggered for ∼10% of SNe, typically those with r . 22 mag, on a wide

variety of spectroscopic instruments (see Rest et al., 2014). For 520 of these candi-

dates, spectroscopic observations of the SN near maximum light allowed their type to

be determined. ∼350 of these 520 were spectroscopically classified as Type Ia (S17).

During the last year of PS1, we began a survey to obtain spectroscopic host galaxy
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Table 5.1. SALT2-Based Data Cuts

Number of SNe Comments

PS1 Host-z PS1 Spec-z Low-z

Total candidates 5235 160 316 · · ·

Host Sep R < 5 4461 · · · · · · likely host galaxy can be identified

Good host redshifts 3147 · · · · · · · · ·

Fit by SALT2 2602 · · · · · · SALT2 parameter fitting succeeds

Not an AGN 2513 · · · · · · separated from center or no long-term variability

−3.0 < X1 < 3.0 1978 153 297 SALT2 light curve shape

−0.3 < C < 0.3 1563 147 259 SALT2 light curve color

σpeakMJD < 2 1538 146 255 uncertainty in time of max. light (rest frame days)

σX1
< 1 1175 134 254 x1 uncertainty

fit prob. ≥ 0.001 1038 125 181 χ2 and Ndof -based prob. from SALT2 fitter

E(B-V)MW < 0.15 1038 125 181 Milky Way reddening
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redshifts for the majority of the sample, both those with SN spectra and those with-

out. We chose targets independent of SN type in order to build a sample without any

color or shape selection bias. Of 3,930 targets, 3,073 SN candidates had strong enough

spectral features and high enough SNR to yield reliable spectroscopic redshifts. An

estimated 1.4% incorrect redshift fraction contributes to the “contamination” sys-

tematic uncertainty and is discussed in J17. Though our sample contains a mix of

galaxy types (and comprises ∼25% absorption line galaxies), we are unable to obtain

redshifts for SNe in low surface brightness hosts. The preponderance of bright, mas-

sive host galaxies gives our sample significantly different SN and host demographics

compared to previous high-z data, but makes it more similar to the targeted nature

of the current low-z sample.

After SN discovery and redshift follow-up, the PS1 light curves were reprocessed

with an enhanced version of the discovery pipeline that included a more accurate

(non-Gaussian) PSF model. The PS1 photometric pipeline has been improved fur-

ther for this analysis and the complementary analysis of S17. The improvements

include deeper templates, more accurate astrometric alignment, and better PSF mod-

eling. The zeropoint calibration has also been improved by using the Ubercal process

(Schlafly et al., 2012; Padmanabhan et al., 2008). Ubercal uses repeat observations

of stars in PS1 to solve for the system throughput, atmospheric transparency and de-

tector flat field in the grizPS1 filters. It has a photometric accuracy of better than 1%

over the entire PS1 3π survey area. Pipeline improvements are discussed in further
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detail in S17.

We use a compilation of low-z SNe observed over the last ∼20 years to anchor the

Hubble diagram. Nearly all of these SNe are all included in the JLA analysis, including

the CfA1-3 SN samples (Riess et al., 1999; Jha et al., 2006; Hicken et al., 2009c,a) and

Carnegie Supernova Project SNe from the first data release (CSP; Contreras et al.,

2010; Folatelli et al., 2010)1. We exclude Calan/Tololo SNe (Hamuy et al., 1996) as

most lie below the PS1 3π survey area and therefore cannot take advantage of the

PS1-based photometric calibration system we use in this paper (Supercal; Scolnic

et al., 2015). We also include the most recent CfA SN compilation (CfA4; Hicken

et al., 2012) and the second CSP data release (Stritzinger et al., 2011), which were not

included in the JLA analysis but are used in the Rest et al. (2014) PS1 cosmological

analysis.

5.3.1 SALT2 Model

To derive distances from the SNe in this sample, we use the SALT2 light curve

fitter (Guy et al., 2010, hereafter G10) to measure the light curve parameters of SNe Ia

and to restrict our sample to SNe that can be well standardized. We use the most

recent version of SALT2, which was re-trained by B14 to include additional high-z

SNe and improve the photometric calibration (SALT2.4).

We restrict our sample to SNe with shapes and colors consistent with normal

1See B14 for a detailed description of these data and their respective photometric systems.
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SNe Ia (−0.3 < c < 0.3, −3 < x1 < 3) and well-measured shapes and times of max-

imum light. As measuring cosmological parameters from SNe without spectroscopic

classifications adds the potential for new biases to this work, we strive for consistency

with previous cosmological analyses whenever possible. For this reason, our cuts are

identical to those of B14 with the exception of one additional cut on the χ2 and

degrees of freedom of the SALT2 light curve fit (SALT2 fit probability >0.001) that

was applied by Rest et al. (2014). This cut serves to remove CCSNe as well as SNe Ia

with poor light curve fits.

These cuts reduce the PS1 spectroscopically confirmed SNe Ia sample by ∼30%.

They reduce the number of PS1 SNe Ia without spectroscopic classifications by 60%,

as these SNe have lower average signal-to-noise ratios (SNRs; thus more frequently

failing the shape uncertainty cut2) and, due to high initial CCSN contamination, a

much lower fraction with SN Ia-like shapes and colors. The effect of each sample cut

is shown in Table 5.1, including both the cuts described in J17 on the separation

between the SN and its likely host galaxy (the R parameter, Sullivan et al., 2006)

and removal of possible active galactic nuclei (AGN).

Once light curve parameters have been measured with SALT2, we use the Tripp

estimator (Tripp, 1998) to infer the SN distance modulus from these light curve

parameters:

2In PS1, SNe with x1 uncertainty < 1 have a mean SNR at maximum light of 15.6. SNe with x1

uncertainty > 1 have a mean SNR at maximum light of 8.3.
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µ = mB −M+ α× x1 − β × c+∆M +∆B. (5.1)

x1 is the light curve stretch parameter, c is the light curve color parameter, and mB

is the log of the light curve amplitude (approximately the peak SN magnitude in B).

The distance to a given SN also depends on the global nuisance parameters α, β,

and M. M, a combination of the absolute SN magnitude and the Hubble constant,

α, and β are typically marginalized over when fitting to the cosmological parameters

(e.g. B14, Conley et al., 2011). ∆M is a correction based on the mass of the SN host

galaxy, discussed in §5.3.1.1, and ∆B is the distance bias correction, often referred to

as the selection bias or Malmquist bias (§5.3.2.2).

After fitting with SALT2, SNe Ia have ∼10% scatter in shape- and color-corrected

magnitude even after their photometric uncertainties are taken into account. This

is traditionally referred to as the intrinsic dispersion, σint (Guy et al., 2007). σint

is defined as the global uncertainty that must be added in quadrature to the dis-

tance errors σµ of each SN such that the reduced χ2 of the Hubble residuals equals

1. We follow B14 and Conley et al. (2011) in correcting for the intrinsic dispersion

of the low-z samples separately from high-z data; the current low-z compilation may

have underestimated photometric difference image uncertainties or uncorrected scat-

ter from bright host galaxies, and has a measured σint that is ∼0.02 mag higher than

PS1. Therefore, we increase the mB uncertainties of low-z SNe from SALT2 light

curve fits (effectively increasing the uncertainties on the inferred distances) so that
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they have the same σint as the PS1 spectroscopically confirmed SN Ia sample. The

distance uncertainties must also include redshift uncertainty and lensing uncertainty

(σlens = 0.055z; Jönsson et al., 2010).

5.3.1.1 Host Galaxy Masses

It has been shown that SNe Ia after shape and color correction are ∼ 0.05-0.1 mag

brighter in high mass host galaxies (log(M∗/M�) > 10) than lower-mass host galaxies

(the mass step; Kelly et al., 2010; Lampeitl et al., 2010; Sullivan et al., 2010). The

difference in inferred distance between SNe Ia in low-mass versus high mass hosts has

recently been measured at >3σ significance in photometrically classified SN samples

even though such samples (including PS1) have strong selection biases toward high-

mass host galaxies (Campbell et al., 2016; Wolf et al., 2016). We model the mass step

using the parameter ∆M , the difference in inferred distance modulus between SNe Ia

in low-mass versus high-mass hosts. Because the underlying physics behind the mass

step are unclear, we allow it to evolve with redshift in our systematic error analysis

(§5.5.7).

Computing ∆M robustly requires measuring the host galaxy masses of every SN in

a self-consistent way. We measured host masses using the SED-fitting method of Pan

et al. (2014) with PS1 and low-z host galaxy photometry. For PS1, we use SExtractor

(Bertin & Arnouts, 1996) to measure the photometry from PS1 templates. The PS1

templates use ∼3 years of co-added PS1 data, omitting only the year in which the
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SN Ia occurred. The likely host of each SN is assumed to be the galaxy with the lowest

R parameter relative to the SN position, as discussed in J17. The R parameter defines

a separation between the SN and a galaxy center and is normalized by the size of

the galaxy in the direction of the SN3. If the nearest host has R > 5 (i.e, the SN

spectrum gives the only redshift), we assume the true host was undetected following

Sullivan et al. (2006). Undetected galaxies of spectroscopically classified SNe Ia are

placed in the log(M∗/M�) < 10 bin. Because we cannot be sure these SNe have

log(M∗/M�) < 10, we add a systematic uncertainty of 0.07 mag in quadrature to

their distance uncertainties following B14.

For the low-z sample, we use ugrizBV RIJHK photometry from 2MASS (Skrut-

skie et al., 2006) and SDSS. Following B14 and S17, low-z SNe without nearby photo-

metric catalog matches are likely hostless and are assumed to have log(M∗/M�) < 10.

To these low-z SNe, we again add 0.07 mag in quadrature to their distance uncer-

tainties.

Finally, we use the low-z and PS1 host galaxy photometry to estimate M∗ with

the Z-PEG SED-fitting code (Le Borgne & Rocca-Volmerange, 2002), which in turn is

based on spectral synthesis models from PEGASE.2 (Fioc & Rocca-Volmerange, 1997).

Galaxy SED templates correspond to spectral types SB, Im, Sd, Sc, Sbc, Sa, S0 and

E. We simultaneously marginalize over E(B-V), which is allowed to vary from 0 to

0.2 mag. Uncertainties are determined from the range of model parameters that are

3We predict that for ∼1% of SNe, this method will incorrectly determine the host galaxy, but in
J17 we determined that this fraction of mismatches does not bias the cosmology.
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able to fit the data with similar χ2, and are typically ∼0.1-0.3 dex.

5.3.2 Supernova Selection Bias

5.3.2.1 Simulating Pan-STARRS and Low-z Supernovae

A magnitude-limited sample of SNe will have a distance bias, frequently referred

to as a Malmquist or selection bias, that is typically measured from rigorous simu-

lations of the survey (see, e.g., B14, Scolnic et al., 2014a, Conley et al., 2011). We

use three survey simulations in this analysis: simulations of the set of PS1 SNe with

redshifts from their host galaxies (the host-z sample), the set of PS1 SNe Ia with

redshifts from SN spectroscopy alone (the SN-z sample; these SNe have been spec-

troscopically classified), and the compilation of low-z SNe Ia. We use the SNANA

software (Kessler et al., 2010) to simulate SNe Ia based on the SALT2 model, with

detection efficiencies, zeropoints, PSF sizes, sky noise, and other observables from the

real surveys. Simulations of the PS1 host-z sample are presented in J17 (including

CCSN contamination, which we discuss in detail in J17), while the SN-z and low-z

samples are presented in S17.

Because SN spectroscopy is only attempted for bright SNe, a lower magnitude

limit than the PS1 survey detection limit comes into play for the SN-z sample. The

SN-z sample includes only the portion of our data without host galaxy redshifts and

thus is comprised almost entirely of rpk < 22, spectroscopically classified SNe in faint
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hosts. On the other hand, the host-z sample consists of SNe in brighter (r . 22-23)

hosts. SN Ia distances are a function of the biased host galaxy demographics in these

samples, and we must correct them using the host mass step (∆M ; variants given in

the systematic error analysis, §4).

The host-z sample is host galaxy magnitude-limited. Because SN shape and color

correlate with host galaxy brightness (e.g. Childress et al., 2013), the SN shape

and color distribution in the host-z sample has a z dependence that is difficult to

model. Similarly, the SN-z sample consists of spectroscopically classified SNe for

which host galaxy redshifts could not be measured, and therefore will also have a

biased, z-dependent host galaxy distribution. Because of this, we add one additional

component to the host-z and SN-z simulations: we allow the means of the simulated

SALT2 parameters x1 and c to evolve slightly with redshift to better match the data.

We discuss the details and impact of this method in the Appendix, and find that it

changes the distance bias by up to ∼0.02 mag in the highest redshift bins.

For each survey, the simulations are compared to the data in Figure 5.1 and 5.2.

The distributions of x1, c and their redshift dependences are consistent with the data,

as is the maximum SNR distribution. The biggest discrepancies between simulation

and data are found in the low-z simulations. The low-z surveys are exceptionally

difficult to model due to the heterogeneous nature of the surveys, multiple photo-

metric systems and analysis pipelines, their semi-arbitrary spectroscopic selection

functions, and their targeting of NGC galaxies. Because of this, we also simulate a
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“volume-limited” variant of the low-z survey, which matches the observed data with a

“host galaxy targeting” selection function − fraction of hosts observed as a function

of redshift − instead of a selection function due to SN spectroscopy. We improve

the simulations using redshift-dependent x1 and c distributions due to the redshift-

dependent host galaxy properties (x1/c and host properties are correlated; Childress

et al., 2013). These simulations are discussed in more detail in S17, and are included

in our systematic error analysis (§4).

5.3.2.2 Using Simulations to Correct for Selection Bias

Due to their intrinsic dispersion, SNe Ia in magnitude-limited surveys become

preferentially brighter at greater distance even after shape and color correction. Even

the low-z SN Ia surveys used here may be biased toward selecting brighter targets

(see B14, their Figure 5). The bias in distance is given by the SNANA simulations

discussed above and is defined by (Mosher et al., 2014):

∆B(z) = 〈µfit − µsim〉z. (5.2)

For low-z surveys, the bias can be up to ∼0.035 mag (z > 0.05), while PS1 has

distance biases of nearly 0.1 mag at z > 0.5.

The host-z and SN-z biases are very similar, which is surprising given that the

SN-z sample has a much lower magnitude limit. The reason is that the lower average

SNR of the host-z sample exacerbates a bias due to the x1 uncertainty cut. At a
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given SNR, SNe with narrower (measured) light curve shapes are fit with lower x1

uncertainties by SALT2, introducing this non-intuitive bias in the case where many x1

uncertainties are near the cutoff point of 1. As discussed in J17 (see their Figure 8), a

σx1 < 1 sample cut biases the recovered values of x1 by up to α(x1−x1,sim) = −0.1 at

high-z. This bias has the opposite effect of the mB bias of spectroscopically confirmed

SNe Ia (a difference of ∼0.05 mag at z ∼ 0.5 between SN-z and host-z simulations).

Uncertainty in the intrinsic dispersion model is the dominant uncertainty in the

bias corrections. The uncertainty is encapsulated by two primary scatter models that

are both consistent with the data. First, the G10 SALT2 model assumes that 70%

of the ∼0.1 mag intrinsic dispersion in derived SN Ia distances is uncorrelated with

the shape or color of the SN (achromatic dispersion). An alternative model is that of

Chotard et al. (2011, hereafter C11), which finds an equally good fit to SN data by

assuming 75% of SN dispersion can be attributed to chromatic variation.

The SALT2 nuisance parameter β is 25% higher in the C11 model than the G10

model (Scolnic & Kessler, 2016), and these two models can give very different predic-

tions for the distance bias as a function of redshift (Figure 5.3). Due to the chromatic

nature of the C11 dispersion, the difference in bias is a strong function of the (z-

dependent) SN c distribution in a given survey. This is especially apparent when

examining the difference between the G10/C11 biases for the different samples. Low-

z and photometrically classified SNe have median c between -0.01 and 0.01, giving an

average βC11c− βG10c = 0.015 mag for low-z and 0.003 mag for PS1 photometrically
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classified SNe. In contrast, PS1 spectroscopically confirmed SNe Ia have a median c

of -0.04, giving an average difference of βC11c− βG10c = -0.028 mag in distance.

Unfortunately, there are not enough spectroscopically classified SNe to distinguish

between the G10/C11 scatter models in our data. As we have no reason to prefer

the C11 model over the G10 model or vice versa, we take the average of the two as

our baseline bias correction for cosmology analysis. We incorporate the difference

between these model predictions in our systematic error budget.

5.3.3 Photometric Classification

We use PSNID (Sako et al., 2014) to classify each SN in this sample as Type Ia,

Ib/c or II based on its light curve. PSNID matches observed SN light curves to sim-

ulated SN Ia and CCSN light curves to determine the χ2 and prior-based probability

that each SN is of type Ia. We use the version of PSNID that has been implemented

in SNANA4, which uses the SALT2 model as its SN Ia template. For CCSNe, PSNID

marginalizes over 51 CCSN templates when classifying SNe and includes a grid of

reddening values for each template (because templates have not been de-reddened,

we allow just 0 < AV < 1 of additional reddening).

We also use three alternate classification methods, including two light curve-based

methods, NN (Sako et al., 2014) and Fitprob. The NN classifier uses the proximity

of a given SN to the SALT2 x1, c, and redshift of simulated CC and Ia SNe to

4Version 10.48l.
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determine the likely SN type. Fitprob is simply the fit probability from the SALT2

light curve fit multiplied by a redshift-dependent SN type prior based on the CCSN

and SN Ia rates. One additional method, GalSNID (Foley & Mandel, 2013; J17),

estimates the type probability using only host galaxy properties by taking advantage

of the paucity of CCSNe in low-star formation environments. Fitprob and GalSNID

are sub-optimal but independent of uncertainties in CCSN simulations. In J17, we

suggest that uncertainties in the shape of CCSN luminosity functions and the dearth

of CCSN templates for several subtypes necessitate the use of methods that do not

rely on simulations.

Figure 5.4 shows classification probabilities for three PS1 SNe with ambigous

types. For SN 570024 (top panel), all light curve-based classification methods agree

that this SN is most likely a CCSN due to its unusual z-band light curve. GalSNID,

however, finds that this is most likely a bona fide Ia due to the lack of strong star

formation indicators in its host galaxy spectrum. For SN 500025 (middle panel),

PSNID and Fitprob agree that the SN is of Type Ia due to the low χ2 of its light

curve fit. However, the NN classifier finds it most likely to be a CCSN due to its very

red SALT2 color. For SN 550152 (bottom panel), the shapes/colors are consistent

with a SN Ia but the light curve fit χ2 is too high to definitively prefer a SN Ia. This

diversity in classifications adds robustness to our methodology. We revisit the effect

of different classifiers on our results in §5.6.
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With these data, we measure cosmological parameters from the 1,163 PS1 SNe

and 181 low-z SNe Ia in two steps: (1) marginalizing over CCSNe and reducing the

data to a set of distance measurements at 25 redshifts (log-spaced between 0.01 < z <

0.7) and (2) using those distances, redshifts, uncertainties and covariances to infer

cosmological parameters with the cosmological Monte Carlo software (CosmoMC;

Lewis & Bridle, 2002). CosmoMC allows us to easily include the latest CMB, BAO,

and/or H0 priors in our cosmological constraints. This two-step procedure also follows

B14 (see their Appendix E).

5.4.1 The Likelihood Model

The SN likelihood model used here is discussed and tested comprehensively in

J17 and is based on the Bayesian Estimation Applied to Multiple Species (BEAMS)

algorithm presented in Kunz, Bassett, & Hlozek (2007). We summarize the model

below.

To measure distances from SNe Ia, we sample a posterior distribution P (θ|D) that

is proportional to a set of priors P (θ) and the product over N SNe of the likelihoods

(of the model given the data) for each individual SN. D is the data, while θ is the

set of free parameters in the model. The specific free parameters comprising θ are

discussed in the paragraphs below.

We use a three-Gaussian form of the SN likelihood, L. SNe Ia are represented

by two Gaussians: one for SNe Ia in low-mass hosts, LIa,M<10
i , and one for SNe Ia
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in high-mass hosts, LIa,M>10
i . CCSNe are represented by the third Gaussian, LCC

i

(alternative CCSN models are given in §5.5.5):

P (θ|D) ∝ P (θ)×
N
∏

i=1

(LIa,M<10
i + LIa,M>10

i + LCC
i ),

LIa,M<10
i =

Pi(M < 10)Pi(Ia)
√

2π(σ2
i,Ia +Σ2

Ia)
exp

[

−
(mcorr

i,Ia +∆M − f(zi))
2

2(σ2
i,Ia +Σ2

Ia)

]

,

LIa,M>10
i =

Pi(M > 10)Pi(Ia)
√

2π(σ2
i,Ia +Σ2

Ia)
exp

[

−
(mcorr

i,Ia − f(zi))
2

2(σ2
i,Ia +Σ2

Ia)

]

,

LCC
i =

Pi(CC)
√

2π(σ2
i,CC +ΣCC(zi)2)

exp
[

−
(mcorr

i,CC − g(zi))
2

2(σ2
i,CC +ΣCC(zi)2)

]

.

(5.3)

mcorr
i,Ia andmcorr

i,CC (in the exponential terms) are shape- and color-corrected magnitudes

for the ith SN that we compute from the SALT2 parameters mB, x1, c, and ∆B

using the Tripp estimator. They depend on nuisance parameters α and β (Eq. 5.1;

mcorr
i,Ia = µi + M). Because we only wish to measure SALT2 nuisance parameters

from SNe Ia, we allow separate values of α and β in the Ia and CC components of the

likelihood. mcorr
i,Ia values are computed using free parameters αIa and βIa. m

corr
i,CC values

use αCC and βCC , which are fixed to the values for SNe Ia given by B14 (allowing these

to be free parameters does not improve the robustness of the cosmological results).

σi,Ia and σi,CC are the uncertainties on the corrected magnitudes of the ith SN using

(αIa, βIa) or (αCC , βCC), respectively.

∆M , the mass step, is a free parameter that adjusts the magnitudes of SNe Ia

in low-mass hosts to match those in high-mass hosts. In the LIa,M<10
i and LIa,M>10

i

terms above, Pi(M > 10) and Pi(M < 10) = 1−Pi(M > 10) are the probabilities

from our host masses and host mass measurement uncertainties that a given SN has a
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host galaxy with mass >10 dex or <10 dex, respectively. We treat the uncertainties as

Gaussian, an approximation that predominantly affects only the minority (∼25%) of

SNe that have host masses within 1σ of log(M∗/M�) = 10. In previous cosmological

analyses (e.g. B14), the uncertainties on log(M∗/M�) were neglected.

f(zi) is the variable of interest for cosmological parameter estimation. It is the

continuous, z-dependent model for the SN Ia corrected magnitudes − the mean of

the SN Ia Gaussian − and is allowed to vary across the redshift range of the survey

(0.01 < z < 0.7). We evaluate the model at any z across this redshift range by

choosing a fixed set of 25 log-spaced redshift “control points” (~zb; ∆log10(z) = 0.077)

at which the corrected SN Ia magnitudes f(~zb) = µ(~zb) + M are free parameters.

For any redshift zi, we interpolate between the redshift control points below (zb) and

above (zb+1):

µ(zi) = (1− ξ)µb + ξµb+1

ξ = log(zi/zb)/log(zb+1/zb),

(5.4)

where µb is the distance modulus at redshift zb. Interpolating with a simple linear

model instead of ΛCDM produces differences of <1 mmag at all redshifts. The SN Ia

dispersion ΣIa plays the same role as the intrinsic dispersion and is kept fixed at all

redshifts.

The z-dependent mean and standard deviation of the CCSN Gaussian model

(g(zi) and ΣCC(zi)) are interpolated between 10 log-spaced redshift control points.
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Unlike SNe Ia, the dispersion of the heterogeneous CCSN population changes drasti-

cally with redshift due to to strong detection biases at high z.

Each Gaussian is multiplied by the prior probability (Pi(Ia) and Pi(CC) = 1−Pi(Ia))

that a given SN is or is not of type Ia. We use the PSNID classifier to estimate these

probabilities. Alternative classification methods are included as part of our systematic

error budget (§5.5.5).

For those SNe without spectroscopic classifications, our method allows the type

priors to be shifted and scaled to account for incorrect classifications (see J17). For

spectroscopically classified SNe Ia, we set the prior probabilities, Pi(Ia), equal to one

and do not allow them to be adjusted. We include broad Gaussian priors on all free

parameters with the exception of SN Ia corrected magnitudes. We apply no priors

(i.e. flat priors) to the SN Ia control point magnitudes f(~zb) to avoid any possibility

of cosmological bias.

We estimate the free parameters by sampling the log of the posterior with a

Markov Chain Monte Carlo (MCMC) algorithm. As in J17, we use the Parallel-

Tempered Ensemble Sampler from emcee as our MCMC method (Foreman-Mackey

et al., 2013).

5.4.2 Constraining Cosmological Parameters

From the methods presented above, we infer the corrected magnitudes of SNe Ia

at 25 redshift control points, f(~zb), using the baseline SN light curve parameters,
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bias corrections, and J17 methodology. We also generate f(~zb) for each systematic

uncertainty (§5.5). From these values, a systematic error covariance matrix Csys is

created (Scolnic et al., 2014a; Conley et al., 2011):

Cjk
sys =

N∑

n=1

∂f(zj)

∂Sn

∂f(zk)

∂Sm

σ(S2
n). (5.5)

The sum is over all N systematics and
∂f(zj)

∂Sn
is the change in corrected magnitude

after applying a single systematic Sm to the individual light curves. σ(Sn) is the size

of each systematic uncertainty. The systematic covariance matrix is then combined

with the statistical covariance matrix:

Ctot = Dstat + Csys. (5.6)

Note that the statistics-only covariance matrix, Dstat, includes both diagonal and

off-diagonal components because the corrected magnitudes from BEAMS are anti-

correlated with the corrected magnitudes at neighboring control points:

Dij
stat =

NMCMC∑

k

(fk(zb,i)− f(zb,i))(fk(zb,j)− f(zb,j))

NMCMC

. (5.7)

NMCMC is the length of the MCMC chain that samples free parameters f(~zb). fk(zb,i)

is the value of f at the ith control point from the kth MCMC sample. f(zb,i) is the

mean of f at the ith control point from the full MCMC chain. Figure 5.5 shows

the correlation matrices from statistical uncertainties alone (left) and statistical and

systematic uncertainties combined (right).
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We then use the cosmological Monte Carlo software (CosmoMC; Lewis & Bridle,

2002) to measure cosmological parameters by minimizing the following χ2:

χ2 = (µ′(~zb)− µΛCDM(~zb; ΩM , w, ...))
†C−1

tot

(µ′(~zb)− µΛCDM(~zb; ΩM , w, ...)), (5.8)

where µ′(~zb) = f(~zb) −M (we marginalize over M using CosmoMC). The vector of

model distances, µΛCDM = 5log(dL)− 5, is a function of the cosmology:

dL(z, w,ΩM ,ΩΛ,ΩK) = (1 + z)
c

H0

∫ z

0

dz

E(z)
,

E(z) = [ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ(1 + z)3(1+w)]1/2.

(5.9)

ΩM is the cosmic matter density, ΩΛ is the dark energy density, and Ωk is the curvature

of space. w is the redshift-independent dark energy equation of state parameter (z-

dependence will be added in §5.7).

5.5 Systematic Uncertainties

The SNe in this sample are affected by systematic uncertainties that can broadly

be attributed to 8 sources of error: Milky Way extinction, distance bias correction,

photometric calibration, SALT2 model calibration, CCSN contamination, low-z pe-

culiar velocity corrections, the redshift dependence of SN nuisance parameters, and
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selection efficiency (for the PS1 SN-z sample) such that SNR at maximum light for

simulated SNe matches the data with a ∼20% higher reduced χ2 (a 1σ difference).

These efficiencies are well-contrained by the data; the detection efficiency adjustment

for the host-z sample corresponds to lowering the magnitude limit of the survey by

just ∼4 mmag.

For the low-z distance bias, which is measured from low-z simulations that are a

less convincing match to the data, we use the “volume-limited” simulations discussed

in §5.3.2.1 for the systematic uncertainty. The volume limited variant has <0.01

mag distance bias using the G10 scatter model (small biases due to the correlation of

Hubble residuals with x1 and c still arise; Scolnic & Kessler, 2016), and a bias of ∼0.02

mag using the C11 model because βfit − βsim = 0.7. The systematic uncertainty due

to the detection limit and spectroscopic follow-up selection function is subdominant

to the G10/C11 systematic uncertainty.

5.5.3 Photometric Calibration Uncertainties

In this work, the systematic uncertainties in the photometric calibration are the

same as the S17 analysis. They are due to uncertainty in the survey filter functions,

uncertainty in the calibration of HST CALSPEC standard stars, and uncertainty in

the calibration of the PS1/low-z photometric systems relative to HST.

Uncertainties in the survey filter functions are modeled as uncertainties in the

zeropoints and effective wavelengths of each filter. PS1 has a nominal effective wave-
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length uncertainty of 7Å per filter (Scolnic et al., 2015). The low-z filter uncertainties

are typically ∼6−7Å but are survey- and filter-dependent. They can be as high as

25−37Å (exact values are given in Scolnic et al., 2015; see their Table 1).

The relative calibration uncertainties are given by the Supercal method. Supercal

uses the excellent (sub-1%) relative calibration of PS1 across 3π steradians to compare

the photometry of tertiary standard stars in previous SN surveys to their photometry

on the PS1 system. Typical corrections are on the order of 1%, but can be up to

2.5% for B band low-z data. Uncertainties in the Supercal procedure are typically

3-4 mmag per filter but can be up to 10 mmag for low-z surveys such as CfA1.

Finally, there is uncertainty in the AB magnitude system itself as measured using

HST CALSPEC standard stars. We follow B14 by assuming a global 0.5% slope

uncertainty for the flux as a function of wavelength, which was determined by com-

paring white dwarf models to the HST data (Bohlin, 2014; Betoule et al., 2013). In

total, we use 62 individual systematic uncertainties to describe the uncertainty in

the photometric calibration. Most are due to the relative calibration: there is one

systematic for the filter zeropoint and the filter λeff × number of surveys × number

of filters per survey.

5.5.4 SALT2 Model Calibration Uncertainties

The training of the SALT2 model is subject to the same photometric calibration

uncertainties discussed above. B14 created variants of the SALT2.4 light curve fitter
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by applying zeropoint and filter function shifts to the training data and subsequently

re-training SALT2. These account for 10 individual systematics, which are averaged

to give the SALT2 model systematic error. These uncertainties are discussed in §5.4

of B14.

Re-training SALT2 using the improved calibration from Supercal will lower the

SALT2 systematic uncertainty in future analyses. However, we do not re-train the

SALT2 light curve fitter for this analysis, as the SALT2 training data are not public.

5.5.5 Core-Collapse Supernova Contamination

Systematic error due to marginalizing over the ∼5% CCSN contamination in our

sample is a new source of uncertainty caused by our use of photometrically classi-

fied SNe. Our method of measuring distances from SNe Ia while marginalizing over

CCSNe is subject to errors in the prior probabilities that a given SN is of type Ia

and differences between the CCSN model and the true distribution of CCSNe. The

systematic error estimation from CCSN contamination was presented in detail in J17

and relies on varying these components.

We use the four methods of estimating prior probability discussed above (§5.3.3)

and three parametric models for the CCSN distribution. The baseline likelihood

model for CCSNe, LCC
i (Eq. 5.3), is a Gaussian with a mean and standard deviation

− g(zi) and ΣCC(zi) for the ith SN − that are both functions of redshift. The

two alternate CCSN parametric models are a two-Gaussian and skewed Gaussian
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model. We demonstrated in J17 that these models typically agree well with single

Gaussian results; all three CCSN distributions tend to be much broader than the

SN Ia distribution, therefore encompassing most outliers.

5.5.6 Peculiar Velocity Correction

The magnitude of SN peculiar velocities − due to bulk flows and nearby super-

clusters − becomes &5% of the Hubble flow at z . 0.03. We correct for peculiar

velocities using the nearby galaxy density field measured by the 2M++ catalog from

2MASS (Lavaux & Hudson, 2011). The uncorrelated uncertainty associated with

each correction is ±150 km s−1. The peculiar velocity model is parameterized by the

equation βI = Ω0.55
M /bI , where bI describes the light-to-matter bias. (βI is unrelated

to the SALT2 nuisance parameter). Carrick et al. (2015) measure βI = 0.43± 0.021.

We adopt a conservative ±0.1 systematic on βI for our peculiar velocity systematic

uncertainty. Peculiar velocity uncertainty is one of the smallest systematics in most

SN cosmology analyses.

5.5.7 SN Ia Demographic Shifts

Though SN Ia have been shown to be excellent standardizable candles at low-z,

it has been suggested that the relationship between their luminosities, colors, or host

galaxy properties may change with redshift. We address these possibilities by adding
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two systematic tests. For these tests, we add two additional parameters to our model

for estimating cosmological parameters (§5.4). The first is to allow a linear evolution

of the mass step as a function of redshift. Mass step evolution was proposed by

Childress et al. (2014), and could be observed if the mass step is caused by physical

differences in SNe Ia with different progenitor ages. The second is to allow a linear

evolution in the SALT2 shape and color standardization parameters, α and β, as a

function of redshift. This was suggested as a possible concern by Conley et al. (2011).

∆M and β in Equations 5.1 and 5.3 then become:

∆M = ∆M,0 +∆M,1 × z,

β = β0 + β1 × z.

(5.10)

∆M,0, ∆M,1, β0 and β1 are free parameters. They are measured simultaneously with

SN Ia distances in §5.6.

An additional potential systematic is the relation between SN Ia corrected magni-

tudes and their local host galaxy environments. Several papers have recently asserted

that SN Ia corrected magnitudes are correlated with their local star formation en-

vironments on a scale of ∼1-2 kpc (the LSF step; Rigault et al., 2013, 2015). Due

to the ∼1′′ PSF of PS1 and the lack of ultraviolet or u-band observations for much

of our sample, it is impossible to measure robust local star formation rates over the

PS1 redshift range. However, Jones, Riess, & Scolnic (2015) re-examined the evi-

dence for the LSF step, finding that the re-training of SALT2 in B14/G10 reduced or
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eliminated many of the biases in the SALT2 model. Jones, Riess, & Scolnic (2015)

found no evidence for a LSF step in the B14 low-z sample. Though our data are not

optimal for investigating local properties, we plan to use PS1 data to more robustly

determine the relationship between SNe Ia and their global host galaxy properties

in future work. We discuss the potential for other evolutionary systematics in the

discussion (§5.9).

5.6 First Results and Consistency Checks

The PS1+low-z Hubble diagram is shown in Figure 5.7 and the SN Ia distances

from our likelihood model are compared to the JLA sample in Figure 5.8 (using the

correlated bins given in B14, Appendix F). The agreement is close, with a difference

in median Hubble residual of just 9 mmag at z > 0.2. At low-z, our distances are just

5 mmag fainter. This difference can also be explained by improvements in the bias

correction methodology as well as the addition of CfA4 SNe, which are not included

in B14. CfA4 SNe are ∼26 mmag fainter than the other low-z SNe on average and

comprise 24% of the low-z sample. Light curve parameters for our full sample are

given in Table 5.7.

Our likelihood model is simultaneously used to measure α, β, and the dispersion

σIa, which are given in Table 5.2. α is higher than measured by previous analyses

by up to ∼2.5σ. It is unclear whether this could be due to observational bias or
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another cause, but PS1 spectroscopically confirmed SNe and SDSS spectroscopically

confirmed SNe (measured with the SALT2mu procedure; Marriner et al., 2011) prefer

α of ∼0.15-0.16. The systematic error on β is higher than other nuisance parameters

due to the predicted biases on β found by J17 when using the GalSNID and Fitprob

SN classification methods (see §5.6.1).

In J17, we predicted that our method would give α and β that are biased by +3%.

This gives a prediction that the α and β measured here will be higher than the α and

β measured from spectroscopically confirmed SN Ia alone. Table 5.2 shows that this

may indeed be the case; α and β are 4% higher than the values from spectroscopically

confirmed PS1+low-z SNe Ia (though at <1σ significance if we neglect the partial

correlations between these two samples).

We also recover the mass step at nearly 4σ significance (nearly 7σ from statistical

errors alone). Our measurement of 0.101±0.026 is consistent with B14 (0.07±0.023).

Interestingly, the host mass step ∆M is higher in the full PS1+low-z sample than in the

sample of spectroscopically classified SNe Ia alone (1.9σ significance from statistical

uncertainties alone, but these measurements are not independent). It’s unclear if this

could be due to statistical fluctuation, a bias from the method, or the presence of

broader light curve shapes and redder colors in the full sample. x1 and c correlate

with both host mass and Hubble residual (Scolnic & Kessler, 2016) − and could

increase the size of the step (S17). We will use simulations to investigate whether our

method of marginalizing over CCSN contamination could bias determinations of the
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host mass step in future work.

5.6.1 Impact of Different Classification Methods

Figure 5.9 illustrates the prior probabilities that go into the likelihood model,

which in turn is used to infer SN Ia distances. We show the PS1 Hubble residual

histograms for likely SNe Ia and likely CCSNe as determined by each of the four

classification methods considered in this work. Figure 5.9 shows that PSNID, our

most reliable classifier from J17, classifies nearly three times as many SNe as likely

CCSNe compared to the other methods.

In spite of these large differences in classifier results, the BEAMS measurements

of SN Ia distances are remarkably consistent (Figure 5.10). Nearly all distances are

within 1σ of distances derived from the PS1 spectroscopically classified SN Ia sample.

Additionally, distances from 0.2 . z . 0.5, where most of our data lie, show few

discrepancies between the different methods. Even the test case of using an unin-

formative prior of P(Ia) = 1/2 for all photometrically classified SNe (bottom panel)

yields distances within 1σ of the spectroscopic sample in all bins but one. We note

that close agreement is predicted by J17; even in a sample without spectroscopically

confirmed SNe Ia, J17 predict biases of <10 mmag due to the method. We will revisit

this prediction in §?? to test whether our methodology remains robust and consistent

in the case of an “ideal” photometrically classified SN sample; i.e., a sample without

spectroscopic classifications.
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The nuisance parameters α and β are also more consistent than expected from

J17, varying by 30-50% less than the simulation-based predictions in J17 (in this

work we observe differences of ∆β ∼ 0.07 and ∆α ∼ 0.004 between the four different

classification methods). In Figure 5.11, we use one of the least accurate classification

methods (Fitprob) to provide a possible explanation for why our results are more

consistent than expected. J17 simulations included no subset of spectroscopically

classified PS1 SNe, while our data consist of ∼20% spectroscopically classified PS1

SNe. Because of this, we used simulations of the PS1 host-z and SN-z samples

(§5.3.2.1) to predict the effect of adding spectroscopically classified subsets of SNe to

the data. We find that the predicted biases on α and β due to marginalizing over

CCSNe decrease by 30-40% when the PS1 data consist of just 20% spectroscopically

classified SNe.

Similarly, the median absolute biases on both low-z and high-z distances decrease

by ∼30-40% when 20% of PS1 SNe are spectroscopically classified (low-z distances are

not subject to CCSN contamination but can be biased by incorrect α and β). Simu-

lations predict that our best method, PSNID, has no statistically significant bias even

in the case where there are no spectroscopically classified PS1 SNe (J17). However,

including a subset of spectroscopically classified SNe as part of the data could greatly

reduce bias and improve consistency if PSNID classifications are systematically biased

or if suboptimal classification methods are used.
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Table 5.2. Nuisance Parameters

All SNe Spec. Class. SNe

σstat σstat+sys σstat

α 0.165 0.007 0.019 0.154 0.008

β 3.118 0.069 0.143 3.013 0.089

σIa 0.112 0.011 0.047 0.119 0.023

∆M 0.100 0.013 0.027 0.057 0.018

Note. — Nuisance parameters from PS1+low-z SNe. Note

that the systematic uncertainty on β is likely overestimated

due to the biases from the GalSNID and Fitprob classification

methods discussed in J17.

5.6.2 Evolution of Nuisance Parameters

Using Equation 5.10 to add linear mass step (∆M) evolution to BEAMS, we find

no evolution in ∆M as a function of redshift (we use the baseline classifier, PSNID).

However, our uncertainties are large (0.08 mag) due to lack of low-mass hosts at high

redshift5. In Figure 5.12, we estimate the redshift dependence of the mass step by

clipping Hubble residuals at −0.5 < HR < 0.5 to remove most CCSNe and plotting

the maximum likelihood mass step in redshift bins of 0.1. This is an incomplete

removal of CCSN contamination, but doubles as a simple sanity check on BEAMS.

We see possible hints that the high-z mass step is smaller, but find no statistically

5S17, however, finds evidence of mass step evolution. The discrepancy could be due to the larger
SNLS redshift range and additional SNe Ia in low-mass hosts at z > 0.5.
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significant measurement of mass step evolution.

We do see 3σ evidence for evolution of the β parameter, however. Fortunately,

this does not constitute a significant contribution to our systematic error budget as it

predominantly affects the highest survey redshifts where few SNe are found (Figure

5.6). Evidence for β evolution was seen in SNLS data (Conley et al., 2011) and

S17, though its significance is disputed in B14. We caution that blue (c < 0) SNe Ia

have lower observed β (SNe primarily appear blue due to noise and selection biases;

(Scolnic & Kessler, 2016)), and our high-z data are dominated by blue SNe (Figure

5.1). However, our methodology does not recover any significant evolution of β when

tested on simulated SN samples with a constant β. If this evolution is confirmed, it

could suggest an evolution in dust properties or the evolution of SN progenitors with

redshift and could contribute significantly to the error budget at z > 0.5.

5.7 Cosmological Constraints from Super-

nova and CMB Data

We first constrain ΩM using the SN Ia data alone and assuming a flat ΛCDM

cosmology. We find ΩM = 0.308 ± 0.041, consistent with B14 (0.295±0.034). These

results are independent of, but in agreement with, the Planck constraints on ΩM

(ΩM = 0.308± 0.012).

We combine these data with CMB constraints from the Planck full-mission data
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Table 5.3. Summary of Systematic Uncertainties on w

Error w ∆σw
a Rel. to σstat

w

Stat. -1.008±0.039 0.000 0.000

All Sys. -1.001±0.062 0.048 1.248

Phot. Cal. -1.010±0.048 0.028 0.731

Bias Corr. -1.019±0.048 0.028 0.733

SALT2 Model -1.007±0.040 0.011 0.287

CCSN Contam. -1.007±0.040 0.010 0.269

MW E(B-V) -1.018±0.039 0.009 0.225

Beta Evol. -1.012±0.039 0.008 0.217

Mass Step -1.011±0.038 0.000 0.000

Pec. Vel. -1.005±0.038 0.000 0.000

aThe additional uncertainty added in quadrature from

each source of systematic error.
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(Planck Collaboration et al., 2015). In contrast to the Planck Collaboration et al.

(2014) constraints used in B14, the full-mission Planck data does not require WMAP

polarization measurements. Planck provides the full likelihoods for the CMB spec-

trum, which can then be combined with SNe Ia using CosmoMC. Planck data greatly

improve our constraints on w through the CMB temperature power spectrum, which

gives a precise constraint on the cosmic matter density at z ∼ 1090. Constraints

from a matter-dominated cosmic epoch are largely independent of an evolving or

non-cosmological constant dark energy, which affects cosmic evolution only at the

late times probed by SNe Ia and BAO measurements.

With Planck priors, we measure w = -1.018±0.063 (stat+sys). Systematic uncer-

tainties on this measurement are 25% higher than statistical uncertainties (Table 5.3).

Though we have substantially more SNe than B14 and S17, our uncertainty budget

is 9% higher than B14. There are three primary reasons for this. First, we have fewer

independent surveys to reduce the photometric calibration systematic. Second, we

have estimated a more conservative systematic uncertainty on the selection bias cor-

rection. Lastly, PS1 photometrically classified SNe have much lower SNR (for PS1,

SNR at maximum is an average of 17 for photometrically classified SNe and 39 for

spectroscopically classified SNe Ia), and PS1 SNe, unlike SNLS SNe, cannot be found

at z ∼ 0.7− 1. However, PS1 SNe have the added benefit of being independent from

all previous high-z SN samples.

We also use these data to constrain the two-parameter redshift evolution of w
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using the most common parameterization:

w = w0 + waz/(1 + z). (5.11)

Eq. 5.11 is a first order Taylor series expansion of w as a function of scale factor

a (Linder, 2003). We find w0 = −0.952 ± 0.147 and wa =-0.408±0.815. These

constraints are slightly better than those of B14, which is due to our use of the most

recent chains from Planck. We find much tighter constraints after combining with

BAO (§5.8).

5.7.1 Systematic Uncertainties on w

Contributions to the systematic uncertainties on w are summarized in Table 5.3.

In spite of recent improvements, the photometric calibration remains tied with the

selection bias uncertainty as the largest systematic uncertainty. It was reduced by

∼20% using the Supercal procedure (Scolnic et al., 2014a find a systematic of 0.035

on w for PS1+low-z SNe). Continued improvements will come from a new network

of white dwarf standards (Narayan et al., 2016).

The systematic uncertainty on the selection bias of 0.028 is is dominated by the

difference between the G10 and C11 scatter models and the uncertain spectroscopic

selection function of the low-z surveys. It may be that re-training SALT2 assuming

the C11 scatter model, e.g. Mosher et al. (2014), will reduce this systematic (SALT2

training data are not publicly available). This may be an important avenue for future
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Table 5.4. w with Different Photometric Classification Priors

Method w ∆w

PSNID -1.008±0.038 · · ·

PSNID, Skewed Gaussian CC Model -1.002±0.038 0.008±0.000

PSNID, 2-Gaussian CC Model -0.977±0.042 0.031±0.018

NN -1.001±0.036 0.007±0.000

GalSNID -1.003±0.037 0.005±0.000

Fitprob -1.023±0.037 -0.015±0.000

Note. — “SkG” and “2G” and refer to the skewed Gaussian CCSN

parameterization and the two-Gaussian CCSN parameterization. The

classification systematic error due to CCSNe is lower than expected from

J17, likely because our photometric sample comprises ∼25% spectroscop-

ically confirmed SNe.

work. The SALT2 model calibration is also a significant systematic, but can be

reduced with larger training samples, new data from surveys such as Foundation, and

re-training SALT2 after applying the Supercal calibration.

The systematic due to marginalizing over CCSNe is just the fourth largest system-

atic− approximately equal in size to MW reddening and the SALT2 model calibration

− and is 35% lower than predicted in J17 in spite of the fact that we allow α and β

to be fit by BEAMS for all methods. Table 5.4 shows the value of w measured from

each variant of the classification priors and the CCSN parameterization discussed in

§4. All measurements of w agree to within ∼3% or better.
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The better-than-expected consistency on w may be due to sample-to-sample vari-

ations, but is more likely explained by tighter constraints on ΩM from the full Planck

chains and the fact that a sizeable portion (∼20%) of our high-z data are spectro-

scopically classified SNe Ia. With simulations, we found that a subset of SNe with

known types can greatly help the BEAMS method to constrain distances and SN Ia

nuisance parameters (§5.6). If the amount of CCSN contamination was overestimated

in J17, that could also help to explain the low contamination systematic. The mag-

nitude of the CCSN contamination systematic can be further reduced by improved

validation of classifiers and a better understanding of the diversity of CCSNe, their

luminosity functions, and the inclusion of additional CCSN templates in classifier

training as discussed in J17. We expect that within a few years, the advantage of

using photometrically classified SNe will be unequivocal.

5.8 Cosmological Constraints with BAO

and H0 Priors

We now combine Planck and PS1+low-z SNe with baryon acoustic oscillation

(BAO) constraints and a local prior on the value of H0 from Riess et al. (2016). The

BAO feature, the evolving size of the imprint of acoustic waves on the distribution of

cosmic matter, serves as a standard ruler that is independent of SN Ia measurements.

The BAO scale is proportional to a combination of the angular diameter distance to
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a given redshift and the Hubble parameter H(z) at that redshift. Following Planck

Collaboration et al. (2015), we use BAO constraints from the SDSS Main Galaxy

Sample (MGS; Ross et al., 2015) and the combination of the Baryon Oscillation

Spectroscopic Survey (BOSS) and CMASS survey (Anderson et al., 2014). The BAO

constraints used here give measurements of the BAO scale to z = 0.15, 0.32, and 0.57.

There is a notable internal conflict between these priors: a 3.4σ discrepancy be-

tween local and CMB-inferred values of H0 (Riess et al., 2016). The difference could

be due to systematic uncertainties in one or both datasets (e.g. Addison et al., 2016),

>3 neutrino species, non-Λ dark energy, or more exotic phenomena. We show this dis-

crepancy in Figure 5.14 for a standard ΛCDM cosmology (reionization optical depth

τ = 0.078; Planck Collaboration et al., 2016). PS1+low-z SNe have no significant

impact on the disparity in a standard ΛCDM cosmological model.

Following B14, we use SN data to constrain three cosmological models: the o-

ΛCDM model removes the assumption of flatness (Ωk = 0), the w-CDM model allows

a fixed, non-cosmological constant value of w, and the wa-CDM model allows w to

evolve with redshift. The constraints on these three models are presented in Table

5.5. All measurements of w and wa are consistent with ΛCDM (Figures 5.15 and

5.16). With SNe+Planck+BAO+H0 constraints, we find w = -1.047±0.051 for the

w-CDM model and wa = -0.185±0.445 for the wa-CDM model (Figure 5.16). With

just SNe, Planck, and BAO data, we find w = -1.003±0.051 for the w-CDM model

and wa = -0.191±0.418 for the wa-CDM model.
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Nearly all measurements of Ωk are consistent with a flat universe. The lone excep-

tion is the combination of SNe, Planck and H0 without BAO constraints. This choice

of priors gives 2.3σ evidence for positive curvature, but the result is entirely due to

the local/CMB H0 discrepancy and becomes insignificant when BAO constraints are

added.

As shown from the H0 measurements in Table 5.5, PS1+low-z SNe and the non-

ΛCDM models considered here do not explain the local/CMB H0 discrepancy. When

H0 priors are omitted, all measurements of H0 are inconsistent with Riess et al. (2016)

at the ∼2-3σ level. When only CMB and H0 priors are included, we measure values

of H0 that are consistent with Riess et al. (2016) only when allowing for positive

curvature or evolving w. When we combine with CMB, H0 and BAO priors, all

measurements of H0 are inconsistent at the 2.6σ to 2.8σ level even though H0 priors

are included. Therefore, SNe Ia and the models considered here do not favor a non-

ΛCDM universe and cannot currently resolve the H0 discrepancy.

5.9 Possible Biases

Our Hubble diagram (Figure 5.7) and measurements of w and ΩM show excellent

agreement with B14. For the flat wCDM model, Table 5.6 shows the drift in the

values of w we measure with respect to B14. All values are consistent within 0.25σ.

Though these measurements are correlated, as B14 use many of the low-z SNe that
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Table 5.5. Cosmological Parameters from PS1, BAO, CMB, and H0

o− ΛCDM Constraints

ΩM ΩΛ Ωk H0

PS1+Planck+BAO+H0 0.306±0.007 0.692±0.008 0.002±0.003 68.390±0.704

PS1+Planck 0.318±0.047 0.683±0.037 -0.001±0.011 67.540±5.206

PS1+Planck+BAO 0.310±0.008 0.689±0.008 0.001±0.003 67.894±0.731

PS1+Planck+H0 0.271±0.018 0.720±0.015 0.009±0.004 72.671±2.319

w-CDM Constraints

ΩM w H0

PS1+Planck+BAO+H0 0.302±0.009 -1.031±0.050 68.595±1.092

PS1+Planck 0.314±0.018 -1.001±0.062 67.503±1.781

PS1+Planck+BAO 0.311±0.010 -0.992±0.049 67.539±1.105

PS1+Planck+H0 0.293±0.014 -1.061±0.055 69.633±1.530

wa-CDM Constraints

ΩM w0 wa H0

PS1+Planck+BAO+H0 0.304±0.010 -0.983±0.101 -0.251±0.419 68.608±1.084

PS1+Planck 0.308±0.027 -0.952±0.147 -0.342±0.807 68.184±2.849

PS1+Planck+BAO 0.313±0.011 -0.940±0.106 -0.251±0.411 67.535±1.157

PS1+Planck+H0 0.280±0.015 -0.863±0.126 -1.090±0.616 71.319±1.699
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we do (with the exception of CfA4), and we combine both SN datasets with the same

CMB, BAO, and H0 data, such close agreement is somewhat surprising. Nevertheless,

it is prudent to consider whether changes in methodology relative to B14 could be

biasing this measurement.

J17 found that CCSN contamination could bias the determination of w, and that

these biases are almost always negative. However, even with the least informative

classification methods, our simulations showed that the absolute bias on w is .0.035.

We expect the bias to be lower still in this work because we include spectroscopically

classified SNe as part of the data and a stronger constraint on ΩM from the full Planck

chains. We also test our results by keeping α and β fixed − an option which results

in lower biases in J17 − and find that the difference in w is just 0.003.

Our photometric pipeline could cause unexpected systematic uncertainty, but the

effectiveness of this pipeline and its calibration have been demonstrated and tested in

S17, Rest et al. (2014), and Scolnic et al. (2014a). The Supercal procedure (Scolnic

et al., 2015) predicts a 2.6% lower w due to improved calibration (this offset is not

tailored to the PS1+low-z survey), but this is well within the statistical uncertainty

of our measurement. We also see good agreement between photometric SNe Ia and

spectroscopically confirmed SNe Ia; spectroscopically confirmed PS1+low-z SNe give

w = −0.997± 0.046 (stat. errors only).

The results presented here remain subject to uncertainty in the population of

CCSNe contaminating the SN data. However, our cosmological parameter measure-
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ments remain consistent when using several uncorrelated methods as part of the

BEAMS framework. The consistency of these results with measurements from spec-

troscopically confirmed PS1 SNe gives us additional confidence in its robustness. In

the next few years, we expect additional CCSN templates and better constraints on

CCSN luminosity functions will lead to even more robust simulation-based tests for

this method and other similar methods.

5.9.1 Evolution of SNe Ia

We include two new systematics in this analysis pertaining to the possible evolu-

tion of SN characteristics with redshift. These include evolution of the mass step and

evolution of β. However, we find that these have a negligible effect on the cosmology,

even though one of them (β evolution) is significant. β evolution could have a greater

impact at z ∼ 1, and should be taken into account in future analyses. It may cause

a change in the B14 results.

Another optional test for evolutionary systematics could include changing the lo-

cation of the mass step. We do not include this here as it is not evident in the data

(see Figure 12 of B14). Other possible systematics include replacing the mass step

with a host galaxy star formation rate, stellar age, or stellar metallicity step (e.g.

Rigault et al., 2013; Hayden et al., 2013; Childress et al., 2014), and these possibili-

ties will be evaluated in detail in future work. The correlation of global host galaxy

properties with these physical parameters has only been found to be more significant
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than the mass step at the 1-2σ level, and could be due to statistical fluctuations or dif-

ferences in analysis (Jones, Riess, & Scolnic, 2015). We plan to undertake a separate

analysis to determine which of them could affect the determination of cosmological

parameters. Note, however, that evolutionary systematics have a reduced effect in

our data compared to the JLA sample, whose larger redshift range could result in

larger evolutionary effects.

5.9.2 Observational Biases

The well-measured dependence of β on SN color could cause bias at high-z, where

PS1 SNe are predominantly blue. We tested a variant of our analysis that uses a

different color law for blue SNe Ia and red SNe Ia. This β difference is most likely due

to sample selection cuts rather than SN physics as it can be recovered in simulations

of the SALT2 model (Scolnic & Kessler, 2016). However, if the simulations of our

redshift-dependent color distribution have some error, a two-slope relation between

color and luminosity will reduce bias. This two-slope relation favors a nearly identical

w of -1.006 ± 0.038 (stat. error). While it is not clear if additional biases could

arise from crudely treating color via a two-slope relation (or a more sophisticated

treatment; ?), a SN light curve fitter that takes selection criteria into account would

be a valuable addition to cosmology analyses.

One such method exists already: the “BEAMS with Bias Corrections” (BBC)

method of Kessler & Scolnic (2016) uses SN simulations to correct for observational
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Table 5.6. Comparison to Betoule et al. (2014)

w (This Work) w (JLA) Difference

SNe+Planck -1.001±0.062 -1.017±0.056 0.016±0.083 (0.19σ)

SNe+Planck+BAO -0.992±0.049 -1.003±0.047 0.011±0.068 (0.16σ)

SNe+Planck+H0 -1.061±0.055 -1.064±0.051 0.003±0.075 (0.03σ)

SNe+Planck+BAO+H0 -1.031±0.050 -1.038±0.047 0.007±0.068 (0.10σ)

wa (This Work) wa (JLA) Difference

SNe+Planck -0.342±0.807 -0.608±0.748 0.266±1.100 (0.24σ)

SNe+Planck+BAO -0.251±0.411 -0.280±0.433 0.029±0.597 (0.05σ)

SNe+Planck+H0 -1.090±0.616 -1.055±0.586 -0.035±0.850 (0.04σ)

SNe+Planck+BAO+H0 -0.251±0.419 -0.290±0.443 0.039±0.610 (0.06σ)

Note. — Comparison of our results to the JLA measurements after applying updated

Planck, H0 and BAO priors to the JLA sample.

biases in c, x1, mB, α and β, while simultaneously marginalizing over CCSN contam-

ination. This approach is promising, and as measurements on w are refined further

such a method can help to reduce both the statistical and systematic uncertainties

on w. For the present analysis, we consider its treatment of CCSN contamination to

be somewhat too rigid given current uncertainties in the CCSN luminosity functions

(J17). As this is the first measurement of w with a BEAMS-like methodology, we

also favor an approach with more consistency to recent analyses such as B14.
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5.9.3 Impact of an Unblinded Analysis

In carrying out this analysis, we note that we did not blind ourselves to the

cosmological results. A blinded analysis, such as that of S17, would remove any

subconscious bias on the part of the authors to acheive agreement (or disagreement)

with ΛCDM cosmology. We note, however that all of the photometry and many

of the bias correction simulations were undertaken before the cosmological results

were examined. Furthermore, we have strived for consistency with previous analyses

whenever possible, which serves to limit the number of qualitative choices that can be

tuned to yield a preferred cosmology. Future analyses, such as DES SN Ia cosmology,

will be fully blinded. As cosmology with photometrically classified SNe Ia becomes a

more mature subject area, the authors will feel more comfortable undertaking blinded

analyses.

5.10 Conclusions

The 1,344 cosmologically useful, likely SNe Ia from the PS1 medium deep fields

and low-z surveys constitute the largest set of SNe Ia assembled to date. Though the

smaller redshift range and lower SNR of these data yield nearly equivalent constraints

to the JLA compilation, they are independent of many of the systematic uncertainties

that affect SNLS or SDSS. In the future, these data can be used in conjunction

with the Foundation low-z SN sample (Foley et al., in prep.) to give independent
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constraints on w using only the well-calibrated PS1 photometric system.

The PS1 SNe in this sample do not have spectroscopic classifications, necessitating

the use of a BEAMS-like algorithm (J17) to marginalize over the CCSN population.

Our SN Ia distances from BEAMS (z > 0.2) differ from the JLA compilation by just

9 mmag on average. J17 finds that CCSNe in a PS1-like sample bias w by just

0.003±0.002.

After combining with CMB data, we find that these data are fully consistent with

a flat ΛCDM cosmology, with w =-1.018±0.063. If we allow w to be parameterized

by a constant component (w0) and a component that evolves with redshift (wa), we

find no evidence for a changing value of w. Combining SNe with CMB and BAO

constraints gives w = -1.003±0.051 and wa = -0.191±0.418. Finally, adding H0

constraints yields w = -1.047±0.051 and wa = -0.185±0.445. Our constraints differ

from those of B14 by <0.25σ regardless of whether CMB, BAO, and/or H0 priors are

included.

CCSN contamination is currently our fourth-largest systematic uncertainty, and

this can be improved with new SN classification algorithms and better training sam-

ples, as discussed in J17. In future work, our dominant systematics − selection biases

and calibration − can be reduced by combining PS1 data with Foundation and/or

SNLS and SDSS data.

We recover a mass step of 0.101±0.026, consistent with that of B14 (0.07±0.023).

We find no evidence for evolution of the mass step with redshift (e.g. Childress et al.,
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2014) but ∼3σ evolution in the SALT2 β parameter (the correlation between SN color

and luminosity).

In future years, SN samples from the Dark Energy Survey (DES) and the Large

Synoptic Survey Telescope (LSST) will measure w with larger, higher-SNR samples

of SNe without spectroscopic classifications. Though CCSN contamination is the

third-largest source of systematic uncertainty on w in this analysis, we expect that

the systematic uncertainty on w from CCSN contamination will be greatly reduced in

the next few years. Improvements will be due to larger samples of CCSN templates

that can be used to train SN classification algorithms and a better understanding of

the shape of the CCSN luminosity function. We hope that the methods presented

here will demonstrate the robustness of measuring w from such samples as we continue

to gain a better understanding of the nature of dark energy.

5.11 Appendix

In this appendix, we discuss the improvement to the PS1 simulations due to al-

lowing the mean simulated x1 and c to evolve with redshift. We consider the standard

approach of fixed x1 and c populations insufficient for our analysis, because the PS1

host-z sample has a redshift-dependent host mass distribution due to our magnitude-

limited host galaxy redshift follow-up program. Similarly, the SN-z sample consists

of SNe not included in the host-z sample and therefore also has a z-dependent bias.
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Table 5.7. PS1 Coordinates and Light Curve Parameters

SN α δ zSN
CMB zHost

CMB tpeak x1 c mB PNN (Ia) log(MHost/M�) ∆µbias

050298 16:12:38.025 55:43:14.67 · · · 0.522 55346.10(0.60) -0.126(0.557) -0.081(0.052) 22.499(0.014) 0.9906 10.860(0.319) -0.055

050598 12:16:11.728 46:11:48.97 · · · 0.293 55372.50(1.10) 0.419(0.811) 0.099(0.050) 21.435(0.088) 0.1725 11.514(0.206) 0.006

050625 16:07:18.198 53:49:47.78 · · · 0.333 55373.70(0.40) -0.070(0.440) 0.057(0.041) 21.963(0.055) 1.0000 11.158(0.043) 0.000

050665 16:10:34.502 54:57:25.53 · · · 0.588 55363.40(0.90) 0.596(0.759) -0.085(0.047) 22.943(-0.017) 1.0000 11.636(0.210) -0.076

051109 16:12:11.537 54:00:32.46 · · · 0.230 55304.60(0.50) -1.153(0.261) -0.031(0.035) 21.047(0.048) 1.0000 9.874(0.266) 0.009

060015 16:03:50.262 54:12:36.58 · · · 0.385 55385.20(0.40) 0.480(0.418) -0.004(0.042) 22.138(0.040) 0.9911 11.108(0.140) -0.011

060141 16:09:39.092 54:16:08.95 · · · 0.190 55393.40(0.20) -1.382(0.174) -0.107(0.035) 20.427(0.048) 1.0000 10.781(0.080) 0.010

060169 16:13:15.442 54:26:35.95 · · · 0.406 55390.90(0.50) 0.299(0.475) -0.067(0.042) 22.241(0.038) 1.0000 9.692(0.276) -0.016

060238 22:14:42.32 00:47:51.71 · · · 0.323 55375.10(2.60) 0.471(0.509) 0.016(0.069) 21.470(0.193) 0.7533 11.466(0.036) 0.002

060249 22:19:51.404 00:53:51.82 0.329 0.329 55374.80(0.50) -1.641(0.672) -0.189(0.082) 21.699(0.166) 0.7112 10.974(0.085) 0.001

061192 02:20:30.796 -04:59:51.58 · · · 0.235 55401.90(2.10) -0.773(0.452) 0.028(0.068) 21.336(0.155) 1.0000 10.580(0.180) 0.008

061197 02:21:54.589 -04:11:18.99 0.329 0.330 55415.40(0.90) -0.728(0.565) 0.030(0.042) 21.805(0.049) 0.9997 11.127(0.194) 0.001

070071 22:19:56.443 -00:26:30.93 · · · 0.369 55421.10(0.40) -0.703(0.488) -0.239(0.039) 21.782(0.043) 1.0000 11.716(0.169) -0.008

070110 02:21:07.819 -05:06:01.50 · · · 0.280 55412.40(1.10) 0.048(0.447) 0.209(0.045) 22.230(0.077) 1.0000 10.875(0.473) 0.006

070175 16:07:36.819 54:48:35.16 · · · 0.548 55408.50(1.50) -1.244(0.874) -0.070(0.026) 23.251(0.026) · · · 11.373(0.070) -0.063

070200 02:26:38.462 -03:36:57.83 · · · 0.437 55413.30(1.50) -1.271(0.771) 0.060(0.058) 22.663(0.044) 0.9999 11.562(0.251) -0.026

070264 22:13:47.572 00:26:28.25 · · · 0.332 55426.30(0.20) 0.041(0.234) -0.038(0.030) 21.873(0.043) · · · 9.879(0.385) 0.001

070402 16:13:33.837 54:18:07.88 · · · 0.316 55428.80(0.20) 0.047(0.257) -0.019(0.034) 21.658(0.048) 1.0000 10.949(0.109) 0.004

070470 02:19:48.006 -03:42:10.47 · · · 0.353 55429.90(0.10) 1.359(0.229) 0.003(0.029) 21.872(0.032) 1.0000 9.528(0.360) -0.004

070515 02:25:51.16 -05:24:17.60 0.475 0.475 55423.80(0.60) 0.760(0.472) -0.006(0.036) 22.488(0.003) 1.0000 9.470(0.123) -0.039

070612 16:18:30.721 54:23:11.37 · · · 0.554 55423.90(0.90) -0.332(0.766) -0.011(0.077) 23.373(0.011) 0.9919 11.626(0.262) -0.065

070719 23:25:53.735 -00:32:13.90 · · · 0.609 55422.70(0.90) -1.527(0.782) -0.067(0.068) 23.284(-0.013) 0.9994 10.495(0.303) -0.083

070986 23:33:16.318 -00:31:19.64 · · · 0.345 55442.00(0.30) 0.030(0.234) -0.067(0.028) 21.756(0.034) 1.0000 9.141(0.284) -0.002

071060 16:01:16.064 55:28:38.25 · · · 0.181 55442.20(0.40) -2.403(0.504) 0.012(0.038) 21.323(0.052) · · · 9.679(0.105) 0.011

071113 16:11:44.234 55:08:51.77 · · · 0.492 55432.70(0.70) -1.178(0.689) 0.064(0.078) 23.045(0.040) 0.7881 11.312(0.281) -0.045

080012 22:14:08.482 -00:10:06.88 · · · 0.526 55444.30(0.50) 0.787(0.483) -0.010(0.048) 22.888(-0.005) 0.9857 10.961(0.291) -0.056

080023 23:26:39.152 -00:43:01.94 · · · 0.459 55448.40(0.50) -1.103(0.197) 0.172(0.265) 23.132(0.124) 0.9318 10.997(0.078) -0.034

080031 23:28:17.68 -00:14:59.28 0.293 0.293 55439.70(0.50) 0.798(0.472) 0.282(0.047) 22.668(0.071) 0.0174 9.615(0.117) 0.006

080048 02:24:25.255 -05:00:44.34 0.322 0.322 55442.10(0.10) -1.454(0.315) -0.029(0.043) 21.747(0.057) 1.0000 11.471(0.059) 0.003

080087 16:18:28.314 55:14:37.46 · · · 0.344 55442.30(0.70) -0.241(0.740) 0.192(0.050) 22.806(0.057) 0.0000 10.733(0.045) -0.002

080146 03:31:19.116 -26:51:52.43 · · · 0.457 55449.80(0.80) 0.604(0.540) -0.065(0.037) 22.351(0.003) 1.0000 10.191(0.160) -0.033

080241 03:28:32.442 -28:04:17.73 · · · 0.308 55456.10(0.30) 0.326(0.278) -0.024(0.029) 21.602(0.041) 1.0000 10.821(0.100) 0.005

080257 03:37:43.958 -27:19:15.27 · · · 0.187 55436.00(0.80) 0.414(0.723) 0.170(0.064) 21.092(0.119) 1.0000 11.410(0.007) 0.010

080295 02:24:43.482 -04:09:34.95 · · · 0.625 55452.10(0.20) 1.182(0.730) -0.003(0.055) 23.145(-0.028) 1.0000 9.816(0.655) -0.077

080363 03:26:38.822 -27:55:14.34 · · · 0.317 55448.60(0.80) -0.006(0.534) 0.232(0.044) 22.095(0.060) 1.0000 11.141(0.133) 0.004

080546 02:21:23.685 -04:00:25.51 0.614 0.614 55448.60(0.50) 1.988(0.609) -0.168(0.041) 23.037(-0.035) · · · 9.849(0.370) -0.082

080555 02:21:35.496 -03:39:28.37 0.240 0.240 55445.60(0.80) -2.210(0.523) -0.003(0.050) 21.149(0.066) 1.0000 11.209(0.052) 0.008

080689 02:25:37.504 -05:14:38.51 0.311 0.310 55454.40(1.10) 0.245(0.922) -0.004(0.064) 22.647(0.076) 0.0003 10.577(0.297) 0.005

Note. — The full table is available online.
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Postman, M., Coe, D., Beńıtez, N., et al. 2012, ApJS, 199, 25

255



BIBLIOGRAPHY

Poznanski, D., Maoz, D., & Gal-Yam, A. 2007, AJ, 134, 1285

Press, W. H. 1997, in Unsolved Problems in Astrophysics, ed. J. N. Bahcall & J. P.

Ostriker, 49–60

Rest, A., Stubbs, C., Becker, A. C., et al. 2005, ApJ, 634, 1103

Rest, A., Scolnic, D., Foley, R. J., et al. 2014, ApJ, 795, 44

Richardson, D., Jenkins, III, R. L., Wright, J., & Maddox, L. 2014, AJ, 147, 118

Richardson, D., Thomas, R. C., Casebeer, D., et al. 2001, in Bulletin of the American

Astronomical Society, Vol. 33, American Astronomical Society Meeting Abstracts,

1428

Richmond, M. W., Treffers, R. R., Filippenko, A. V., & Paik, Y. 1996, AJ, 112, 732

Riello, M., & Patat, F. 2005, MNRAS, 362, 671

Riess, A. G., & Livio, M. 2006, ApJ, 648, 884

Riess, A. G., Press, W. H., & Kirshner, R. P. 1996, ApJ, 473, 88

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009

Riess, A. G., Kirshner, R. P., Schmidt, B. P., et al. 1999, AJ, 117, 707

Riess, A. G., Nugent, P. E., Gilliland, R. L., et al. 2001, ApJ, 560, 49

Riess, A. G., Strolger, L.-G., Tonry, J., et al. 2004, ApJ, 607, 665

256



BIBLIOGRAPHY

Riess, A. G., Strolger, L.-G., Casertano, S., et al. 2007, ApJ, 659, 98

Riess, A. G., Macri, L., Casertano, S., et al. 2011, ApJ, 730, 119

Riess, A. G., Macri, L. M., Hoffmann, S. L., et al. 2016, ApJ, 826, 56

Rigault, M., Copin, Y., Aldering, G., et al. 2013, A&A, 560, A66

Rigault, M., Aldering, G., Kowalski, M., et al. 2015, ApJ, 802, 20

Rodney, S. A., & Tonry, J. L. 2009, ApJ, 707, 1064

Rodney, S. A., Riess, A. G., Dahlen, T., et al. 2012, ApJ, 746, 5

Rodney, S. A., Riess, A. G., Strolger, L.-G., et al. 2014, AJ, 148, 13

Rodney, S. A., Riess, A. G., Scolnic, D. M., et al. 2015, AJ, 150, 156

Ross, A. J., Samushia, L., Howlett, C., et al. 2015, MNRAS, 449, 835

Rubin, D., Knop, R. A., Rykoff, E., et al. 2012, arXiv:1205.3494

Rubin, D., Aldering, G., Barbary, K., et al. 2015, ApJ, 813, 137

Saha, A., Wang, Z., & Zaidi, T. 2016, in Proc. SPIE, Vol. 9910, Observatory Opera-

tions: Strategies, Processes, and Systems VI, 99100F

Sako, M., Bassett, B., Becker, A., et al. 2008, AJ, 135, 348

Sako, M., Bassett, B., Connolly, B., et al. 2011, ApJ, 738, 162

257



BIBLIOGRAPHY

Sako, M., Bassett, B., Becker, A. C., et al. 2014, ArXiv e-prints

Salim, S., Rich, R. M., Charlot, S., et al. 2007, ApJS, 173, 267

Sanders, N. E., Soderberg, A. M., Gezari, S., et al. 2015, ApJ, 799, 208

Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103

Schlafly, E. F., Finkbeiner, D. P., Jurić, M., et al. 2012, ApJ, 756, 158
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