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Abstract 

 

Problem Statement 

The opioid crisis has had a devastating impact on the United States that will span 

generations. Public health agencies are increasingly looking toward data-driven solutions to 

understand risk factors, identify high-risk individuals, and direct interventions. Leveraging 

data captured by public health, healthcare, and other social and human service agencies will 

be increasingly common, as will applying sophisticated risk modeling to predict outcomes. 

This dissertation examines risk factors and models in the literature, compares multivariate 

predictive models with existing threshold-based risk identification, and measures the impact 

patient matching algorithms have on understanding risk when linking disparate patient-level 

datasets together.  

Methods 

A comprehensive review of the literature from 2008-2018 examined predictive model 

variables and performance related to opioid overdose using prescription history and other 

data sources. Using 2015 Maryland Prescription Drug Monitoring Program (PDMP) data 

and 2015-2016 death data, multiple risk identification methods for fatal opioid overdose 

were quantified and compared, including a multivariate risk model and common 

prescription-based thresholds. Finally, criminal justice data from 2013-2015 were matched 

with PDMP data at the patient-level using three matching algorithms to understand the 

impact on risk indicator prevalence and performance of a risk model.  
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Results 

Risk models are increasingly being explored in the literature in recent years, although most 

use a payer-specific cohort and risk factor and measure definitions were inconsistent. 

Generally, risk models identified more individuals at risk of a fatal opioid overdose than 

simple risk thresholds, however, there may be value in combining the risk model with simple 

thresholds to identify high-risk individuals. Finally, the probabilistically matched population 

resulted in the highest degree of matching with arrest and death data, although risk model 

performance was comparable across all algorithms.  

Conclusions 

These results illustrate the ways predictive models based on PDMP data can assist with 

identifying high-risk individuals as a standalone tool or in combination with other risk 

stratification methods. The matching technique used to link person-level data across 

disparate data together affects the risk prevalence and factors, although model performance 

indicates a basic deterministic matching algorithm may be a suitable approach depending on 

resource constraints and scope of analysis.  
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Introduction 
 

Opioid addiction and overdose have taken a substantial toll on the health and welfare of the 

United States population. Between 1999 and 2017, the number of prescription opioid-related 

deaths grew over five-fold, reaching epidemic proportions.3 In 2017, the total number of 

deaths due to drug overdose in the U.S. was 70,237, of which 47,600 (67.8%) involved 

opioids.1 It is estimated that the aggregate societal cost of prescription opioid use disorder, 

including health care utilization, criminal justice spending, and lost work productivity, is 

$78.5 billion (2013 dollars).4 The devastating impact of opioid abuse on individuals, families, 

and institutions has substantially increased the need for effective data-driven solutions for 

the purpose of deploying evidence-based interventions.  

Addressing the epidemic requires a multi-faceted approach. According to the Centers for 

Disease Control and Prevention (CDC), overdose deaths are best prevented though 

improved prescribing of opioids, preventing individuals from developing an opioid use 

disorder, reversing overdoses through the use of naloxone, and providing treatment to 

individuals with opioid use disorder.5 Public health strategies build upon these concepts by 

highlighting the importance of capturing data across service systems, engaging and reforming 

criminal justice to offer treatment in jails and prisons, expanding programs that divert 

individuals to treatment instead of incarceration, and aligning regulations with evidence-

based best practices.6 Deploying evidence-based strategies to combat the opioid epidemic 

rely upon data inputs to identify underlying risk factors and appropriately respond to the 

unique conditions of the target population.  

Historically, data analyses have largely utilized payer claims or electronic health record 

(EHR) datasets when evaluating risk factors due to ease of accessibility and availability.7-10 
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However, use of statewide datasets will allow for a more complete picture of risk. State 

Prescription Drug Monitoring Programs (PDMPs), which collect controlled substance 

histories from in-state and mail-order pharmacies, are increasingly being leveraged as a 

source of data to understand risk factors.11 Operationally, many PDMP programs have 

existing processes to identify high risk patients that meet simple thresholds, such as 

exceeding average daily morphine milligram equivalents or interacting with multiple unique 

prescribers and dispensers in a specific time period. The identities of patients identified as 

high risk according to the thresholds are communicated by the PDMP program to the 

healthcare practitioners interacting with the patient to bring attention to potential misuse or 

abuse. Advancing this concept, predictive models are being explored in the literature as a 

way to compound multiple risk factors for an individual into a calculated score that is 

quantifiable and comparable for a particular outcome.7-12 The potential for predictive models 

to accurately identify high-risk populations holds promise for better direct interventions to 

those in need.  

Efforts to combat the crisis have evolved to encompass more multidisciplinary 

interventions, increasing the need to share person-level data maintained by various public 

health, health, and human service agencies. Statutory mandates that require multiple agencies 

to share and analyze person-level data to better understand risk, inform policy decisions, and 

direct interventions have begun to emerge in states, as seen with the Massachusetts Chapter 

55 and Maryland Chapter 211 efforts.13,14 Utilizing risk factors and outcomes from multiple 

datasets is also present in the literature, often combining prescription history (PDMP or 

claims) with death data and/or hospital data.11,15,16  
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With the emergence of national guidelines and policy initiatives supportive of increased data 

exploration and sharing across disciplines, attention will need to be paid to the risk 

identification strategies and how person-level data are combined for analysis. Results of this 

study will provide public health insight into opioid overdose predictive model variables and 

performance, compare different techniques to identify individuals at risk of fatal opioid 

overdose; and provide insight into the importance of how datasets from multiple domains 

come together.  

Thesis Contributions 

Public health’s ability to identify individuals at risk to better direct resources is crucial to 

curbing fatal opioid overdose. The epidemic requires a data-driven public health response 

that considers the unique circumstances of a geographically defined population. The 

availability of statewide datasets, such as PDMPs, and the push toward cross-disciplinary 

data sharing has advanced this cause. Public health has the opportunity to apply 

sophisticated approaches to risk identification and data matching that can maximize available 

resources and deploy interventions in the most efficient manner. Understanding the impact 

of different approaches in these domains is vital when making critical decisions in a 

resource-constrained environment. The primary objectives of this study are to: 1) summarize 

and quantify predictive models based on opioid-related overdose risk factors in the literature; 

2) compare the performance of multiple risk identification methods for fatal opioid 

overdose, including a sophisticated predictive risk model and several simplistic threshold-

based risk indicators; and 3) quantify the impact of using a probabilistic versus two variations 

of deterministic matching algorithms has on identifying persons at risk of fatal opioid 

overdose when combining disparate person-level datasets together.  
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Paper 1: Using Electronic Pharmacy and Health Care Data to Identify Persons at 
Risk of Opioid-Related Overdose – A Review of the Predictive Modeling Literature 

 

Abstract 

Background: The opioid crisis has taken a substantial toll on the U.S. population. As clinical 

and public health professionals gain access to increasing volumes of electronic patient data, 

more sophisticated approaches to identifying individuals at risk of overdose should be 

explored. Predictive models leverage multiple variables in an individual’s historical data to 

distill risk into a consumable message that can assist agencies and providers with better 

directing resources and interventions to those at highest risk in a data rich world. 

Understanding the landscape of literature on models predictive of opioid overdose is a 

necessary step prior to using one operationally.  

Objective: The aim of this review is to synthesize and compare predictive model variables and 

performance in a variety of ways and discuss practical implications.  

Data Sources and Eligibility: PubMed, Embase, and PsychINFO databases were searched for 

studies conducted July 2008-2018 that identify risk factors and predictive models based on 

electronic prescription history and other medical record or claims data to identify U.S. 

patients at risk of nonfatal or fatal drug- or opioid-related overdose. Studies were reviewed 

to identify risk factors, analytic model approach, and validation performance.  

Article Review Process: For those articles meeting the defined criteria, the following items were 

extracted: details on the data source, time period, study design, target population and size for 

the derivation and validation cohorts, outcome, key strengths and limitations, patient 

matching methods (if applicable), risk factors and effect sizes, and model performance 

measures. 
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Synthesis Results: Of the 2,806 studies identified and screened, nine studies with seven unique 

models met the inclusionary criteria and were included in the full review. All studies used 

different outcome definitions, except two published by the same author. Most studies used 

payer-based populations and subpopulations. Only two studies externally validated the 

model; one of which saw improved performance with adjustments to accommodate the 

population and data source. Model area under the curve statistics ranged from 0.71-0.90. 

Conclusions: Most models were developed using payer-specific cohorts, which have 

implications on selection of variables, performance, and generalizability. More statewide 

databases should be leveraged to develop and validate overdose predictive models. If 

implementing a model, adaptations should be considered for the target population, data 

source and variables available, and outcome of interest.  
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Introduction 

The number of opioid-related overdoses has quintupled between 1999 and 2016, reaching an 

average of 115 daily opioid-overdose deaths per day nationally.1 The country has experienced 

three overlapping waves of opioid-related epidemics: prescription opioids beginning in the 

1990s, heroin beginning after 2010, and most recently from synthetic opioids (i.e., illicit 

fentanyl).1 The economic cost to society of overdose mortality and other associated harms 

reached $504.0 billion in 2015, representing 2.8% of the national GDP.2  

Addressing the prescription opioid epidemic requires a comprehensive response,3 a portion 

of which will need to rely upon a better understanding risk factors associated with negative 

opioid-related outcomes at a more localized level. Health insurance claims data have been a 

common source for identifying risk factors for opioid use disorder and overdose, but more 

recently, electronic health record (EHR) and statewide prescription drug monitoring 

programs (PDMPs) have become an important source of data.4-6 PDMPs collect controlled 

substances dispensed in a state across all payers for monitoring, analysis, and reporting 

purposes and have been adopted by all states (except Missouri, which is a county-level 

PDMP), the District of Columbia, and Guam.7,8 Public health officials, prescribers, and other 

healthcare professionals play an important role in monitoring for signs of misuse or abuse 

using monitored prescription opioids data.9 Approaches to transforming the substantial 

volume of data into actionable information that can guide overdose prevention efforts, such 

as classifying individuals into certain levels of risk, are increasingly needed.  

While much of the literature that identifies risk factors for opioid overdose are descriptive, a 

subset has developed predictive models. Predictive models are statistical algorithms designed 

to predict future outcomes using historical data.10 The hallmark of predictive models is that 
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they can provide the quantitative basis for assigning risk scores to individual subjects, and 

these diagnostics can be statistically assessed for sensitivity, specificity, and other predictive 

properties. Predictive analytics have historically been utilized in many applications in 

healthcare, including risk assessment, disease management, and billing anomalies.11 Applying 

predictive modeling to the opioid epidemic to identify those at risk can support clinical and 

public health interventions, including informed prescribing, co-prescribing of naloxone, 

enrollment in treatment, and improved targeting of public health programs.9 This review 

aims to synthesize and compare predictive model variables and performance and discuss 

practical implications of deploying the models in real world setting.  

Methods 

Search Strategy 

Searches were performed in the PubMed, PsychINFO, and Embase databases on July 30, 

2018 for the period July 2008 through July 2018. Key term searches were conducted and 

were evaluated by an informationist from the Johns Hopkins Bloomberg School of Public 

Health. Where possible, both Medical Subject Heading (MeSH) terminology and key terms 

were searched (Appendix A). The first search focused on opioids, including terms such as 

“analgesic, opioid”, “prescription drug”, and “narcotic”. The second search focused on 

identifying risk factors and predictive models in the literature by searching on terms such as 

“risk”, “risk factor”, and “predictive modeling” or “prediction.” The third search focused on 

the outcome of overdose, with terms including “overdose”, or “respiratory depression.” The 

search strings were combined, and studies were reviewed that met all three term searches.  

Study Selection 
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All titles returned from the database searches were reviewed for relevance. Titles and 

abstracts that indicated risk identification for opioid overdose or severe respiratory 

depression among humans were retained for full review. During the full-text review, studies 

were selected if they included the development and/or validation of a risk model for opioid 

overdose or severe respiratory depression. Studies were excluded if they were conducted on 

populations outside the United States, were literature reviews, used data before July 2008, 

did not analyze risk factors, did not contain prescription history data as variables, only 

reported univariate results, or were based on self-reported data (i.e. surveys, interviews, 

questionnaires). Articles that were commentary of other studies, not accessible online, not 

available in English, not human-based research, or not related to opioid overdose were also 

excluded. Predictive model studies were selected based on evidence of evaluating the 

performance of a predictive model in the form of area under the receiver operating 

characteristic curve (AUC) or using a machine learning technique aimed at predicting or 

identifying individuals at risk of opioid overdose.  

Data Extraction and Synthesis 

General information extracted from each study included: data source, time period, study 

design, target population, size of the derivation and validation cohorts, outcome, key 

strengths and limitations, and whether multiple datasets were linked together. The target 

populations were extracted to assess implications for generalizability to other populations 

and model performance overall. Population denominators can affect model performance, for 

example, some populations may have higher underlying risk than others, making it more 

challenging to differentiate those at highest risk from others in the sample from relatively 

lower risk individuals. Analytic details were also extracted, including the statistical method 

and measure of association used, the model lookback time period, , risk factor details, and 
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model performance measures. Measure performance in the form of area under the curve 

(AUC) was extracted, which defines the ability of the model to discriminate between patients 

who truly experienced an outcome event from those who did not experience the event.12  

Results 

Study Selection 

A total of 2,806 articles qualified across the three database searches, 449 of which were 

duplicates. Of the remaining 2,357 non-duplicate studies screened, 2,254 were excluded 

based on the title and/or abstract. Full text reviews were performed on the remaining 103 

studies, 26 of which met the inclusion criteria for the review (Figure 1.1). Of the 26 studies 

included for review, nine evaluated the performance of the risk model. Two of the studies 

used the same model and population and thus were omitted from the synthesis to reduce 

duplicative results (Zedler et al. 2015 was summarized and Zedler et al. 2014 was omitted; 

Zedler et al. 2018 was summarized and Nadpara et al. 2017 was omitted), resulting in seven 

models synthesized in this review.   
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Figure 1.1: PRISMA flow chart of study selection. 

 

Data Sources and Outcome Definitions 

Overall, several studies linked claims or EHR data to death data to examine an outcome of 

fatal and/or non-fatal opioid overdose (Table 1.1).13-15 Zedler et al. (2018) leveraged a 

standalone claims or EHR database for opioid- or drug-related overdoses while Geissert et 

al. (2018) combined PDMP data, death data, and EHR data together for an outcome of fatal 

or non-fatal overdose. Boscarino et al. (2016) did not cite or describe the source of their 

overdose outcome definition,14 while the remaining studies based their definition on a 

previous study’s, or a synthesis of definitions from past publications and/or national 

guidelines for overdose coding, reporting and syndromic surveillance.  

All studies used the International Classification of Disease (ICD) version 9 or 10 codes to 

define the outcome, however, aside from studies building on previous work (Zedler et al. 
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2015; Zedler et al. 2018), the codes used to define the outcome were different in each study. 

Only studies linked claims or EHR data to death records examined fatalities, each with a 

different definition. Bohnert et al. (2016) looked at unintentional fatal opioid overdoses, 

including alcohol.13 Two studies combined both non-fatal and fatal overdoses together, but 

Geissert et al. (2018) focused specifically on prescription overdose whereas Glanz et al. 

(2018) focused on any opioid overdose and both included codes with different intentionality 

(i.e. unintentional, intentional and undetermined intent).15,16 Although Boscarino et al. (2016) 

linked EHR data to death data, cause of death was not included, therefore only the model 

predicting non-fatal opioid overdose was included in this analysis. Finally, Liang et al. (2017) 

examined unintentional and intentional drug overdoses without mention of fatal or non-fatal 

result.  



 

13 
 

 Table 1.1: Summary of model studies.  

Source Population 
Data 
Source 

Cohort Outcome Model Performance 

Bohnert 
et al. 
2016 

VHA patients 
with opioid 
prescription & 
chronic pain 
diagnosis 

EHR  
Death  

D: 211 cases, 
211 controls 
V: Not 
defined 

Fatal opioid 
overdose 
(unintentional) 

Logistic 
regression  

AUC: 0.71 (0.66–
0.76)  

Boscarin
o et al. 
2016 

Medical IP, 
OP, or ED 
patients 10-95 
years with 
multiple 
overdose 
events 

EHR  
Deaths  

D: 2,039 
cases, 
1,174,120 
patients 
V: Not 
defined 

Non-fatal 
opioid 
overdose 
(undetermined) 

b 

Logistic 
regression  

AUC: 0.71 

Geissert 
et al. 
2018 

Oregon 
residents 12+ 
years with 
opioid 
prescription 

PDMP  
Deaths  
EHR  

D (2013 data):   
1,409 cases,  
879,402 
patients 
V (2012 data): 
similar 
population 

Prescription 
opioid 
overdose (non-
fatal & fatal 
combined) 
(unintentional 
& intentional) 

Logistic 
regression  

d-AUC: 0.8198 
v-AUC: 0.8236 
Sens.: 63.2% 
Spec.: 82.1% 
PPV: 0.006 

Glanz et 
al. 2018 

Kaiser 
Permanente 
Colorado 
patients 18+ 
years with 
chronic opioid 
therapy.  

EHR  
Deaths  

D: 121 cases, 
42,828 
patients 
V: 118 cases, 
10,708 
patients 

Opioid 
overdose  
(non-fatal & 
fatal combined)  
(unintentional, 
intentional, 
undetermined) 

Cox prop. 
hazards  

Internal v-AUC: 
0.75 (0.70–0.79), 
Sens.: 66.1%, 
Spec.: 66.6%, 
PPV: 0.56% 
External v-AUC: 
0.75 (0.70–0.80), 
Sens.: 82.2%, 
Spec.: 49.5%, 
PPV 1.8% 

Liang et 
al. 2016 a 

Privately 
insured 18-64 
years, non-
cancer pain, 
2+ Schedule 
II/III opioid 
prescriptions.  

Claims D: Split half: 
1,386 cases  
206,869 
patients 
(89,397 men; 
117,472 
women) 
V: same 

Drug overdose  
(unintentional 
& intentional) 

Logistic 
regression  

Women final 
model: 
d-AUC: 0.8 
v-AUC: 0.8 
Men final model: 
d-AUC: 0.79 
v-AUC: 0.8 

Zedler et 
al. 2015  

VHA patients 
with an opioid 
prescription.  

EHR  D: 817 cases, 
8,170 controls  
V: Not 
defined 

Opioid 
overdose & 
adverse events  
(unintentional) 

Logistic 
regression 

d-AUC: 0.88 

Zedler et 
al. 2018  

Commercially 
insured 
patients 18+ 
years with 
opioid 
pharmacy 
claim.  

EHR  D (VHA):  
817 cases,  
8,170 controls 
V (CIP data): 
7,234 cases, 
28,932 
controls  

Opioid 
overdose & 
adverse events  
(unintentional) 

Logistic 
regression 

VHA model on 
CIP v-AUC: 0.85 
adjusted VHA 
model on CIP v-
AUC: 0.90 

Abbreviations: VHA=Veteran’s Health Administration, CIP=Commercial Insurance Payer, IP=inpatient, 
OP=outpatient, ED=emergency department, EHR=electronic health record, PDMP=prescription drug 
monitoring program, , PPV=positive predictive value, D=derivation, V=validation, AUC=area under the 
curve d-AUC=derivation AUC, v-AUC=validation AUC, Sens.=sensitivity, Spec=specificity 
a Other versions of sex-specific models are not represented; only the final reduced model is summarized.  
b Fatalities were studied but cause of death was not available and was therefore omitted from this study.  
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Target Populations 

Most studies defined population based on insurance (five studies). The Veterans Health 

Administration (VHA) was the most studied population (three studies),13 while other studies 

developed models using commercially or privately insured payer populations,18 or a single-

state integrated health system population (Kaiser Permanente Colorado).15 Zedler et al. 

(2015) developed a risk model for unintentional opioid overdose among a VHA population, 

then performed external validation of the original and updated version of the model on a 

population of commercially insured health plan patients with at least one opioid dispense.18 

The only two studies with non-payer populations used individuals with a prescription in the 

statewide Oregon PDMP16 and individuals with an inpatient, outpatient, or emergency room 

(ER) visit for overdose at a single health system.14  

Beyond payer-based populations, many studies focused on subpopulations based on various 

criteria. The most common denominator were individuals with at least one prior opioid 

prescription, regardless of formulation.16,18,19 However, other subpopulations included 

individuals with a pain or chronic pain diagnosis,13 receiving chronic opioid therapy (three 

prescriptions within 90 days),15 or a prior overdose event.14 Nearly all studies examined 

individuals aged 18 or older, including the VHA populations, although VHA populations 

were heavily skewed toward the older adult population (65 years or older). Exceptions to this 

included Boscarino et al. (2016), which purposefully examined patients aged 10 to 95 years 

with the reasoning of remaining consistent with national studies of drug misuse, and Geissert 

et al. (2018), which looked at patients aged 12 years or older.  

Model Predictors 
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A comprehensive summary of the categories of predictors found in the models included in 

this review is summarized in Table 1.2 (a detailed account of risk and protective factors is in 

Appendix 1.2). The predictors used in the models fell into one of four general categories: 1) 

demographics, 2) diagnoses, 3) prescription variables, or 4) healthcare utilization. Age, 

medical or mental/behavioral health diagnoses, types of non-opioid prescriptions, and 

opioid prescription formulation and dose were the most common predictors included in the 

models. Of the included predictors, several in each category stood out as the strongest 

candidates if implementing a model for applied use, as described below and in Table 1.3. 

Demographics. Age was the most commonly explored demographic, however, age and age 

groups were defined and applied differently, with mixed findings. Two studies using 

privately insured health data or integrated health system data found each year increase in age 

to be a slightly protective factor.15,20 Geissert et al. (2018) demonstrated monotonically 

increasing risk with every 10-years of age using a statewide population and two studies found 

older individuals to be at higher risk.18 Only Zedler et al. (2018) included sex as a variable in 

the multivariate model, although it was not found to be statistically significant.18 Liang et al. 

(2016) created sex-specific models and therefore did not use sex as a predictor and 

Boscarino et al. (2016) used sex descriptively but not in the model.  

Diagnoses. Approximately 64 different clinical, mental/behavioral health, and pain-related 

diagnoses were evaluated across six studies, with 55 diagnoses represented in the final 

models. The mental health/behavioral health diagnoses variables yielded the greatest risk of 

overdose, specifically substance use disorder or alcohol abuse,15,18,20 bipolar disorder or 

schizophrenia,18 or a mental health disorder diagnosis broadly.15 Clinical diagnoses with the 
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strongest effect sizes using multivariate analysis included non-malignant pancreatic disease 

and heart failure.18  

Prescription. Patients with a buprenorphine prescription were at highest risk for fatal opioid 

overdose, according to one study, which likely reflects the history of opioid use disorder that 

is common in this population.14 Maximum morphine equivalent daily dose (MMEDD) was 

one of the most commonly evaluated prescription dose predictors (six studies), however, 

only four included dose in the final model.13,15,18,19 The second most common prescription 

variable included in the risk models were extended release/long-acting opioids,15,16,18,19 three 

of which demonstrated increased risk of opioid overdose.16,18,19 Finally, methadone18,19 and 

benzodiazepine (prescription or total days’ supply)16,18-20 prescriptions had the next highest 

odds of overdose in several studies.  

Other. Only two studies included all-cause utilization in a risk model, however, both ≥1 

hospitalization days and ≥1 ER visits significantly increased risk of opioid overdose.18,19  

Risk Factors Not Included Models  

A review of the literature for risk factors beyond those included in the predictive models was 

also conducted to determine if studies contained other variables of interest than included in 

this review. The descriptive studies evaluated only a handful of associations for diagnosis 

and prescription-based variables that did not appear in any risk models, including a 

composite score for total number of diagnoses,21,22 prescription fill frequency,23,24 multiple 

provider episodes (number of unique prescribers and dispensers within a specific 

timeframe), patterns within the prescription history,25,26 method of payment for 

prescriptions,26 and indicator of out-of-state prescriber or pharmacy.27 
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Table 1.2 - Categories of predictors used in risk 

model studies. 

Risk Model Studies (n=7) 
   

Predictor Category In Final 
Model 

Evaluated, 
Omitted 

Not 
Evaluated 

D
em

o
gr

ap
h

ic
s 

Age 614-16,18-20 0 113 

Geographic Region/Setting 218,19 216,20 313-15 

Sex a 214,18 0 513,15,16,19,20 

Race/Ethnicity 119 114 513,15,16,18,20 

Marital status 119 114 513,15,16,18,20 

Employment status 0  114 613,15,16,18-20 

Education status N/A N/A N/A 

D
ia

gn
o

s

es
 

Diagnoses - total number chronic conditions N/A N/A N/A 

Diagnoses - clinical 414,15,18,19 0 313,16,20 

Diagnoses - mental/behavioral health 415,18,19,28 114 213,16 

Diagnoses - pain-related 218,19 214,20 313,15,16 

P
re

sc
ri

p
ti

o
n

 

Prescription type - nonopioid 414,16,18,19 115 213,20 

Prescription type - opioid 218,19 214,15 313,16,20 

Prescription dose (MMED daily, true peak) 413,18-20 215,16 114 

Prescription formulation (ER/LA) b 415,16,18,19 0 313,14,20 

Prescription route 218,19 0 613-16,20 

Prescription fill days (by drug type or number) 120 0 613-16,18,19 

Prescription overlap 0 116 613-15,18-20 

Number of pharmacies 116 0 613-15,18-20 

Number of prescribers 116 0 613-15,18-20 

Number of prescriptions (total, by drug class) 119 116 513-15,18,20 

O
th

er
 All-cause healthcare utilization  218,19 0 513-16,20 

Other - prior risk indicators 
(overdose/suicide/treatment) 

0 0 613-16,18,19 

Abbreviations: MMED=Maximum Morphine Equivalent Dose, ER/LA=extended release/long-acting.  
a Liang et al. developed sex-specific models and therefore was not used as a predictor 
b Garg et al. 2017 limited the opioid drug formulation to schedule II prescriptions only  
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Table 1.3: Risk factors for use in a multivariable model based on literature data availability. 

Category Risk Factor Effect Size Author 

Demographics 

Age or age group 
aOR/OR 1.16-4.99 (1.04-
4.02, 1.29-6.19) 

Boscarino 2016; 
Geissert 2018; Glanz 
2018; Liang 2016; 
Zedler 2015, Zedler 
2018 

Sex OR 1.03-1.40 (0.95, 1.11) 
Boscarino 2016; 
Zedler 2018;  

Diagnosis-
MH/BH 

Opioid dependence OR 4.54 (3.12, 6.63) Zedler 2015 

Alcohol or substance use disorder 
or dependence a 

aHR 3.47-12.74 (2.25-
11.46, 5.36-14.16) 

Glanz 2018; Liang 
2016; Zedler 2018 

Mental health diagnosis aHR 3.39 (2.32, 4.96) Glanz 2018 

Depression or psychotic disorder 
aOR 3.04-3.23 (2.27-2.41, 
3.82-4.54) 

Liang 2016  

Bipolar disorder/schizophrenia 
OR 1.95-2.85 (1.43-2.44, 
2.67-3.32) 

Zedler 2015; Zedler 
2018 

Diagnosis-
clinical 

Liver disease (mild) OR 2.42 (1.39, 4.19) Zedler 2015 

Non-malignant pancreatic disease 
OR 2.07-2.13 (1.06-1.56, 
2.75-4.25) 

Zedler 2015, Zedler 
2018 

Heart failure OR 2.06 (1.74, 2.44) Zedler 2018 

Prescription 

Prescription: Buprenorphine 
prescription 

OR 12.30 (5.92, 25.53) Boscarino 2016 

Dose: MMED prescribed 
(mg/day) 

aOR/OR 1.49-4.96 (1.19-
3.24, 2.12-7.61) 

Bohnert 2016; Liang 
2016; Zedler 2015, 
Zedler 2018 

Long-acting/extended-release 
opioid prescription 

aOR/OR 1.73-4.41 (1.51-
3.93, 1.99-4.94) 

Geissert 2018; 
Zedler 2015, Zedler 
2018; Glanz 2018 

Methadone prescription 
OR 2.42-2.80 (1.61-2.22, 
3.51-3.66) 

Zedler 2015, Zedler 
2018 

Benzo/sedative prescription or 
days’ supply 

OR/aOR 1.49-2.75 (1.22-
2.23, 1.83-3.64) 

Geissert 2018; Liang 
2016; Zedler 2015, 
Zedler 2018 

Utilization 

All-cause utilization ≥1 day of 
hospitalization 

OR 1.12-2.20 (1.02-1.76, 
1.23-2.76) 

Zedler 2015, Zedler 
2018 

All-cause utilization ≥1 ER visit 
OR 1.52-2.88 (1.41-2.34, 
1.65-3.54) 

Zedler 2015, Zedler 
2018 

Abbreviations: MH/BH=Mental Health/Behavioral Health; MMED=Maximum Morphine Equivalent 
Dose; Benzo=benzodiazepine; ER=Emergency Room, OR=odds ratio, aOR=adjusted odds ratio 
Bold indicates statistical significance. 
a The definition of substance use disorder may differ between studies; results have been consolidated for 
simplification purposes 
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Cross-Dataset Patient Matching Techniques 

The method of matching patient-level datasets together can influence the ability to achieve a 

comprehensive picture of risk for an individual. Of the five studies that utilized two or more 

disparate datasets, only three described the patient matching approach. Two studies used 

deterministic matching, which relies upon exact matching of some combination of the 

names, dates of birth, sex, zip, and social security number.13,15 Glanz et al. (2017) used the 

social security number, date of birth, and partial or whole name to perform the matching, 

while Bohnert et al. (2016) established two definitions using various combinations of patient 

demographic information. Geissert et al. (2018) used probabilistic software (Link King v7.1) 

to match patients in three disparate PDMP, EHR, and death datasets based on name, date of 

birth, and zip.29 Probabilistic matching applies a weighted score to each portion of 

demographics compared to determine an overall match “score” that will combine the data 

together at the person-level if a pre-defined threshold is met.30 Boscarino et al. (2016) linked 

EHR and death data, but did not describe how the connections were established.14 

Model Development, Validation, and Performance 

Two studies internally validated a newly developed risk model16,20 and two studies performed 

external validation.15,18 Liang et al. (2016) used the split half technique,20 which randomly 

selects half of the sample for model derivation and half for model validation.31 Liang et al. 

(2016) developed multiple sex-specific models, of which the final reduced model performed 

modestly well for both women and men in the derivation and validation cohorts (AUC of 

0.79 or 0.80). Geissert et al. (2018) took a different approach of developing the model on 

2013 data (AUC: 0.82) and validating on 2012 data (AUC: 0.82).  
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Of the studies performing external validation, Glanz et al. (2018) developed and internally 

validated (AUC: 0.75) the model using Harrell bootstrap resampling on data from an 

integrated health system and externally validated (AUC: 0.75) the model on a separate cohort 

served by a safety-net health system within the same state. Zedler et al. (2015) developed a 

model (AUC: 0.88), which was later externally validated in two phases.18 The first phase 

applied the model developed on the VHA population to a commercially insured population 

(AUC: 0.85), then adjusted the VHA model to improve the performance within the 

commercially insured population (AUC: 0.90).18 The remaining two studies developed, but 

did not validate, the risk model and had modestly performing models (AUC: 0.7113,14).  

Only four studies included other model performance indicators, such as sensitivity (ability to 

identify individuals truly at risk), specificity (ability to identify individuals truly not at risk) 

and positive predictive value (PPV; probability the patient is at risk of the outcome when the 

model classifies the patient as at risk).32 Only Glanz et al. (2018) and Geissert et al. (2018) 

reported the sensitivity, specificity, and PPV for the validated model. Geissert et al. (2018) 

had a very low PPV of 0.006 and Glanz et al. (2018) also had a low PPV of 0.018. Bohnert et 

al. (2016) reported sensitivity and specificity according to the prescribed morphine 

equivalent milligrams (ranging from 10-200 milligrams).  

Discussion 

Identifying individuals at risk of opioid overdose using a predictive model has the potential 

to be an important tool for addressing the opioid crisis. Applying a predictive model to the 

population can serve as resource to public health when making programmatic, policy, and 

budget decisions to create the infrastructure needed in a comprehensive response. Predictive 

models can also be useful in broader harm reduction efforts, such as prioritized naloxone 
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distribution, or fine-tuned for resource-intensive interventions such as treatment or 

specialized care coordination.33 However, based on the literature reviewed in this study, 

many considerations must be taken into account with the practical application of a predictive 

model. Models should be adapted based on the population of interest, available data sources 

and variables, and desired outcome.   

Most studies leveraged payer-specific datasets because of easy access to electronic payer-

based data for analyses. However, using a payer-based data source raises concerns about the 

generalizability of the models to other populations, as they will likely not have a complete 

picture of a patient’s medical or prescription history. For example, self-pay (when patients 

purchase medications fully out-of-pocket) and out-of-network care will not be represented in 

the data. To increase generalizability of a model built on a specific population, validating the 

model on an external dataset can aid in understanding whether the model can be used in 

other settings. Only two studies externally validated the model to quantify the ability for the 

model to be applied to a population in a different setting. Zedler et al. (2015) developed a 

model on a VHA population that was subsequently externally validated against a 

commercially insured population after adjusting the model variables to account for 

differences in the populations, drug formularies, and clinical practice.18 Alternatively, the 

model Glanz et al. (2018) externally validated resulted in poorer calibration, citing the 

differences in the cohort as a limitation.15 These findings suggest that published models have 

the potential to be applied to different populations; however, models require modifications 

to accommodate differences in the applied population.18 More studies need to leverage all-

payer, statewide, or national datasets, externally validate published models while adjusting for 

any underlying population demographics and availability of predictors, and provide more 

performance analyses that can be used to better deploy the risk model in an applied setting. 
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While the specific variables used in the risk models varied across the studies, a handful 

surfaced as the strongest candidates for the practical application of a predictive model, 

whether customizing from the literature or developing de novo. The predictors included in a 

risk model will need to be adapted depending on what data are available, however, the 

variables described represent risk factors that are either readily available in datasets (age, sex), 

most commonly used in models in the literature (prescription dose, formulation), or have the 

highest effect size in the model. Generally, predictors used in the models were simple, such 

as a binary variable indicating the presence of a type of drug (i.e. benzodiazepine 

prescription). Complex variables that require multiple calculations and dependencies on 

other variables in the data were generally avoided in final models. An example of this is 

overlapping prescriptions, which require calculating the duration of the prescription using 

the date dispensed and days’ supply compared against other prescriptions in the patient’s 

history, occasionally across multiple drug classes. Geissert et al. (2018) originally included 

variables for several versions of overlapping prescriptions, but specifically chose to replace 

the variables with a simple indicator of certain types of drug fills, citing simple indicators will 

ease the implementation of the model in an applied setting. Complex variables should 

therefore be carefully considered as to whether it should be included in a model, especially if 

simple alternative variables exist. 

Finally, nearly all models used different, but similar, outcome definitions. Some definitions 

were based on studies conducted in part or wholly from nearly a decade prior, despite 

multiple published definitions from the Centers for Disease Control (CDC), Substance 

Abuse and Mental Health Services Administration (SAMHSA), and Safe States Alliance 

Injury Prevention Workgroups (ISW) in the same time period of the study. Because coding 

practices by medical examiners can vary between states, any program or organization 
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deciding to implement a validated risk model should pay close attention to the outcome 

definition. Having multiple definitions of fatal opioid overdose in play in a given region can 

cause confusion for public health officials examining the results of the model, or clinicians 

viewing a risk score for an individual. Modifications may need to be made to the model to 

establish consistency with fatal opioid overdose definitions already in play in a region or 

state. As future studies evaluate predictive models for overdose, attempts should be made to 

incorporate the currently published national guidelines on overdose coding, as well as state-

level definitions that consider local coding anomalies and circumstances.  

Conclusion 

As the need for more comprehensive and scalable approaches to identifying individuals at 

risk increases, predictive models that can be applied in a practical setting will become more 

relevant. Several key considerations for real-world application emerged in the literature, 

however. Most models were developed using payer-specific cohorts, which have implications 

on selection of variables, performance, and generalizability. Using all-payer, statewide 

databases should be prioritized when applying a predictive model, as it gives a more 

complete picture of risk. However, based on the literature, generalizability across 

populations may be possible with proper modifications to the model to fit the population 

and available data variables. Caution should be paid to the outcome the model is predicting, 

as many definitions exist in the literature or are available in the data. Future research should 

be performed on adjusting and validating the existing models within the relevant population. 

In addition to referencing prior studies, using the most up-to-date national overdose coding 

definitions should be explored to ensure the model is targeting individuals at risk of the 

outcome of highest interest.  
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Paper 2: Comparing the Performance of a Predictive Risk Model with Prescription-

Based Thresholds in Identifying Patients at Risk of Fatal Opioid Overdose 

 

 

 

Abstract 

Background: Nearly every U.S. state and territory have laws establishing Prescription Drug 

Monitoring Programs (PDMPs) that collect dispensed controlled substance prescriptions to 

identify patients with patterns indicative of potential misuse and abuse. Many PDMPs use 

“unsolicited reporting” to notify prescribers and pharmacists when patients have exceeded 

numerical thresholds. However, the degree to which these thresholds are identifying patients 

at highest risk of fatal opioid overdose has not been compared with one another or with a 

multi-factor predictive risk model.  

Objective: To compare multiple methods of identifying individuals at risk of fatal opioid 

overdose, including common unsolicited reporting algorithms and a multivariate predictive 

model, using PDMP data. 

Methods: The study population included individuals with one prescription opioid fill between 

April-June 2015 present in the Maryland PDMP data. The performance of a multivariable 

logistic regression predictive model and three simple PDMP thresholds were evaluated: (1) 

multiple provider episodes; (2) high daily average morphine milligram equivalents; and (3) 

overlapping opioid and benzodiazepine prescriptions. An overlap analysis of individuals 

identified by at least one risk identification method and prevalence of death among the high-

risk populations were compared.   
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Results: Approximately 30% (n=50,501) of the validation cohort (n=170,438) was identified 

by one or more risk identification methods, of which, 73.0% (n=178) of the total deaths 

(n=244) were captured. Across nearly all comparative analyses, the comprehensive 

multivariate predictive risk models performed equal to or better than the PDMP thresholds 

in identifying individuals at risk of a fatal opioid overdose. Analysis showed the risk model in 

combination with other PDMP thresholds were also effective in certain circumstances.  

Conclusions: PDMP programs have the opportunity to leverage an improved method of 

identifying individuals at risk of fatal opioid overdose as compared with the PDMP 

thresholds commonly used for unsolicited reporting today. Consideration should be made as 

to the balance between sensitivity and specificity and the intended use of the model in a 

resource-constrained environment.
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Introduction 

In an effort to combat the epidemic, states are increasingly utilizing statewide Prescription 

Drug Monitoring Programs (PDMPs), which collect data on controlled dangerous 

substances (CDS) prescriptions as part of state-mandated program.1 Commonly collected 

data includes the patient’s basic demographic information (i.e. name and date of birth), 

medication characteristics, and identifiers for prescribers and dispensers of the prescription. 

PDMPs in some form have existed as early as 1918 and were historically established as a law 

enforcement or regulatory tool.2 Over time, PDMPs have been recognized as a powerful 

public health and clinical tool that could be leveraged to combat opioid use disorder and 

other adverse outcomes.2 States have established laws defining who is authorized to use the 

PDMP information, including prescribers, pharmacists, law enforcement, public health 

agencies, licensing boards, and others.3 These users may solicit information (i.e., proactively 

query) on a patient being treated or investigated as authorized by law, or the users may 

receive an “unsolicited” (i.e., reactive) report from the State PDMP program for particular 

high-risk prescription patterns or thresholds.4 Scope of state PDMP unsolicited reporting is 

generally defined by statute and may focus on identifying patients with inappropriate 

prescription patterns or a prescriber or dispenser that falls outside their respective standard 

of practice to reduce opioid use disorder, overdoses, diversion, and fatalities.2 The thresholds 

utilized by state PDMP programs to identify high-risk patients (“PDMP thresholds”) have 

been shared across the country and similar practices have been adopted by the PDMP 

community. The PDMP thresholds are often simple and target a smaller subset of the 

highest risk individuals to accommodate a resource-constrained environment.  

While the PDMP thresholds are the most commonly used approach to identify high-risk 

patients in practice, other risk identification techniques may yield better results. A handful of 
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studies have developed more comprehensive multivariate predictive models as a method to 

identify patients at future risk of negative outcomes related to opioid prescriptions.5-11 

Predictive models are typically developed and validated within real patient populations to 

assess their predictive ability in finding individuals at risk of a future outcome. By 

considering multiple factors present within the patient’s prescription history and being 

trained to a particular outcome, predictive models are likely to identify different populations 

of high-risk individuals compared with PDMP thresholds. Predictive models also have 

flexibility with the risk score cutoff point of who is considered “high-risk” since all 

individuals are assigned a risk score on a spectrum, rather than a binary indication, as is the 

case with PDMP thresholds. Although these various risk identification approaches are either 

in operation or emerging in the literature, to date, no study has compared the different 

methods. The objective of this study is to compare the populations and performance of 

common unsolicited reporting PDMP thresholds and a predictive model in identifying 

individuals at risk of opioid overdose using prescription drug monitoring program data. 

Background 

Unsolicited reporting is an established best practice among state PDMPs. As of 2015, 44 

states and the District of Columbia have legislation enacted that authorizes the PDMP to 

engage in unsolicited reporting, of which 40 states allow the unsolicited reports to be sent to 

prescribers directly.2 The method of unsolicited reporting delivery varies by state; they can be 

delivered electronically or via paper-based methods, such as mailed letters.3 Typically, the 

unsolicited report directed toward a prescriber or dispenser indicates that the patient has met 

the program’s criteria for inappropriate prescription patterns and provides supporting 

information.  
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Each state may employ different criteria and thresholds of risk. Examples of unsolicited 

reporting criteria include identifying patients with high average daily morphine milligram 

equivalents (MME) or overlapping opioids and other controlled substances, such as 

benzodiazepines or stimulants. One of the most common criteria used by state PDMPs is 

multiple provider episodes (MPEs), in which patients have prescriptions from a certain 

number of unique prescribers and unique dispensers within a defined time period 

determined by the PDMP program. Based on a recent questionnaire sent to all state and U.S. 

territory PDMP programs by the PDMP Training and Technical Assistance Center (TTAC) 

at Brandeis University, 20 states of the 34 respondents indicated sending unsolicited reports 

for MPEs, five states for high MME, and eight states for some form of overlapping or 

combinations of prescriptions.2  

Ideally, state PDMP programs would notify providers of all patients meeting a high-risk 

criterion. However, if manual or paper processes are in place, the threshold may be 

determined based on the operational capacity of the program to notify providers. As a result, 

a more limited process may be selected, in which a higher threshold is chosen to ensure a 

small number of high-risk individuals, resulting in a smaller volume of letters needing to be 

produced to inform the relevant prescribers and dispensers. These thresholds may be 

adjusted over time as the outliers are addressed. For example, as the patients with the highest 

number of multiple provider episodes are addressed through raising awareness to the 

prescribers and dispensers interacting with the high-risk patient, the threshold may be 

adjusted to a smaller number of multiple providers, although it is generally accepted by 

PDMP programs that a minimum of four or five unique providers is considered to be 

beyond reasonable clinical circumstances.12-15 The PDMP TTAC questionnaire results 

indicated that the lookback period, or timeframe/amount of data used to identify the high-
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risk pattern, varied across PDMP programs, ranging from one month to six months of data.2 

From a practical standpoint, shorter lookback periods are generally preferred so that 

providers may intervene sooner, with more PDMP programs attempting to use the most 

recent one month of data for unsolicited reporting practices.2  

Multiple states have evaluated the impact of unsolicited reporting on the prescriptions 

dispensed to patients, such as the number of prescriptions per patient, number of 

prescribers, pharmacies, average dosage units, and days’ supply.16-19 A study performed in 

Massachusetts found that patients about whom prescribers were sent an unsolicited report 

resulted in a statistically significant decrease in the number of opioid prescriptions, dosage 

units, average daily and total MME, total days’ supply, and number of prescribers and 

pharmacies used.19 Similar to a PDMP, a New York Managed Care Organization sent 

unsolicited reports to providers for patients who had three or more unique opioid 

prescribers and three or more unique opioid dispensers in the prior three months and 

demonstrated a statistically significant decrease in the average number of opioid prescribers 

and dispensers over time.16 One study found Nevada providers who received an unsolicited 

report about patients receiving prescriptions from 4+ unique prescribers and 4+ unique 

dispensers in the prior six months were more likely to discontinue future prescribing to 

identified patients, although patients often were able to replace the prescribers and 

dispensers.20 Importantly, all of these studies focus on the patients’ prescriptions, but not on 

the downstream impact on overdose fatality or other adverse outcome.  

Despite evidence that proactively informing providers of patients with high risk patterns 

results in prescribing changes, to date, no known literature has been published examining the 

performance of unsolicited reporting related to fatal opioid overdose as an outcome. There 



 

32 
 

is also no known literature on a PDMP program implementing a predictive model that 

incorporates multiple factors to identify patients at risk. Thus, there is a lack understanding 

of who is identified by each risk identification method, the overlap between them, and how 

well each approach identified individuals at risk of fatal opioid overdose.  

Methods 

Study Design, Population, and Data Sources 

A retrospective analysis was performed using PDMP data for Maryland residents aged 18 to 

80 years with an opioid fill during 2015. The Maryland PDMP collects controlled dangerous 

substance, Schedule II-V prescriptions dispensed to Maryland residents from all Maryland 

pharmacies, dispensing prescribers, and mail-order pharmacies. Facilities performing direct 

administration of controlled substances in an inpatient setting, pharmacies dispensing 

exclusively to assisted living facilities, and opioid treatment programs protected under the 

Federal rule 42 CFR Part 2 are exempted from reporting controlled substance prescription 

fills.21 The outcome of interest was fatal opioid overdose originating from the Office of the 

Chief Medical Examiner (OCME) database, which contains all investigated deaths in 

Maryland.22 The OCME and PDMP data were matched at a person-level by processing 

demographic data, including name, date of birth, gender, full address, phone number, and 

social security number, using a probabilistic algorithm before removing patient identifiers for 

the purposes of this study. The matching was performed by Maryland’s State-designated 

health information exchange, CRISP, which links data from multiple sources that do not 

share a common identifier. 

One predictive model and three unsolicited reporting thresholds were compared: (1) 

multiple provider episodes; (2) high morphine milligram equivalents (MME); and (3) 
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overlapping opioid and benzodiazepine prescriptions. This study used three months of data 

for the primary analysis, with individuals having at least one opioid fill between April-June 

2015, to effectively simulate a PDMP program deciding to send unsolicited reports out on 

July 1, 2015. The study was approved by the Johns Hopkins University Institutional Review 

Board (IRB) and the Maryland Department of Health (MDH) IRB Committee. 

Variables 

The target outcome was fatal opioid overdose occurring between July 1, 2015 and December 

31, 2016. Fatal opioid overdoses included any patients determined to have a cause of death 

involving any type of licit or illicit opioid, including prescription opioids, heroin, 

hydrocodone, hydromorphone, methadone, morphine, oxycodone, oxymorphone, tramadol, 

or fentanyl. Unintentional, undetermined and intentional deaths were not distinguished in 

the data analysis.   

All independent risk factor variables were derived from the PDMP dataset. The model 

predictors were selected based on a literature review, availability in the PDMP database, and 

expert consensus.5-8,11,23,24 Predictors included: sex, age group, prescription method of 

payment, numbers of opioid prescribers, opioid dispensers, methadone fills, long-acting 

opioid fills, opioid use disorder fills (buprenorphine indicated for opioid use disorder); short-

acting schedule II opioid fills, short-acting schedule III/IV opioid fills, opioid supply ≥90 

days, overlapping opioids and benzodiazepines, benzodiazepine fills, muscle relaxant fills, 

and stimulant fills. Model predictors were purposefully kept simple to ensure that PDMP 

users would be able to readily interpret and act upon them.7  

PDMP threshold variables (Table 2.1) were constructed to represent the unsolicited 

reporting criteria commonly used by PDMP programs and the most recently published 
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Centers for Disease Control and Prevention (CDC) guidelines for prescribing opioids.25 

MPEs was defined as patients with five unique prescribers and five unique dispensers within 

the three-month period. Individuals were flagged as having a high daily average MME if the 

patient met ≥90 mg/day MME and had ≥60 days’ supply of opioids within the three-month 

time period (additional detail available in Appendix 2.1).26 Overlapping opioid and 

benzodiazepines was defined as prescriptions that overlapped 25% or more of the days 

prescribed, with the initial dispensed prescription having five days’ supply or longer27 and 

only for patients with ≥60 days’ supply of opioids within the three-month period.26  

 

Table 2.1: Summary of PDMP Risk Identification Methods.  

Risk Identification Method Definition/Detail 

Predictive Risk Model (PRM) Full model: 26 variables 

Multiple Provider Episode 
(MPE) 

Five unique prescribers, five unique dispensers in three months.  

High average Morphine 
Milligram Equivalents (MME) 
daily dose  

≥90 mg/day average daily dose for patients with ≥60 days’ 
supply opioids within three-months. 

Overlapping opioid and 
benzodiazepine prescriptions 

Opioid and benzodiazepine prescriptions overlapping by 25% or 
more of the days’ supply (for days’ supply>5 days) based on 
month the prescription was dispensed and if patient has ≥60 
days’ supply opioids within three-months. 

 

Statistical Analysis  

An adaptation of a logistic regression predictive model that was previously developed and 

validated to forecast fatal opioid overdoses was run against the 2015 data using split half 

technique (60% development, 40% validation using random selection).28,29 The predictive 

model’s odds ratios and model discrimination in the form of the Area Under the Curve 

(AUC) were calculated and the predictive risk score was generated for the validation cohort. 

Using the validation cohort, individuals meeting the PDMP thresholds were identified and 
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assigned a binary indication. Therefore, all analyses were performed on the validation cohort 

as identified by the predictive model’s random selection.  

Two types of analyses were performed to compare performance. First, the populations 

identified by each risk identification method (risk model, MPEs, high MMEs, overlapping 

opioid and benzodiazepine prescriptions) were compared with each other using the model’s 

risk score cutoff that maximized sensitivity and specificity. Comparisons included a 

descriptive analysis and an overlap analysis of individuals identified by each risk 

identification method (broken into mutually exclusive groups). Those who experienced 

fatalities within each high-risk group were captured as well, and a logistic regression for fatal 

opioid overdose was performed on the mutually exclusive groups to determine the odds 

ratio and 95% CI’s. Further, the PDMP thresholds were then compared with the predictive 

model as a binary indication at three different risk score cutoff points using several 

performance indicators such as odds ratios and 95% confidence intervals (CI’s), area under 

the curve, sensitivity (ability of the risk identification method to identify individuals truly at 

risk of the outcome), and specificity (ability of the risk identification method to identify 

individuals truly not at risk of the outcome).  

Second, each individual PDMP threshold was compared directly against the risk model. The 

model’s risk score cutoff was modified to identify an “equivalently sized” population of 

high-risk individuals as each PDMP threshold. The “equivalently sized” population was 

accomplished by sorting the risk score from highest to lowest and assigning a binary 

indicator of being “at risk” to an equal number of individuals that each PDMP threshold 

identified. The result was three populations identified by the PDMP thresholds (MPE, high 

MME, overlapping opioids/benzodiazepines) and three populations identified by the risk 
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model (one the same size as the MPE, one the same size as high MME, and one the same 

size as overlapping opioids/benzodiazepines). The risk model binary indicator was applied 

to the highest risk individuals, regardless of whether the patient also met the PDMP 

threshold. An overlap analysis was conducted between the PDMP threshold and 

corresponding risk model populations of equivalent size for each mutually exclusive group: 

individuals only identified by the PDMP threshold, individuals only identified by the risk 

model, and individuals identified by both. Chi-square tests were performed to test the 

probability of independence of each unique group. Logistic regression for fatal opioid 

overdose was performed to determine the odds ratio and 95% CI’s and deaths per 1,000 

high risk individuals were calculated.  

Results 

Study Population  

Descriptive statistics for the full validation, risk model, and PDMP threshold cohorts, are 

summarized in Table 2.2. The validation cohort had 170,438 Maryland residents aged 18-80 

years with at least one opioid fill, of which, 244 experienced a fatal opioid overdose. Among 

those, a total of 50,501 (30%) individuals were identified by at least one risk identification 

method, of which a total of 178 (73% of all decedents) experienced a fatal opioid overdose. 

A summary of the full risk model performance can be found in Table 2.3. The risk model 

cutoff point that maximized sensitivity and specificity, was found to be 0.0015 (Appendix 

2.2). This resulted in the largest number of individuals being classified as high-risk, with 

39,220 total individuals. The overlapping opioid/benzodiazepine prescription population 

was next in size with 17,440 total individuals, followed by the high MME population of 

14,675. The MPE threshold identified the fewest individuals as high risk (398 total). 
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Characteristics of the populations identified by a single threshold only were also analyzed 

and compared and can be found in Appendices 2.3 and 2.4.  

Risk Population Overlap 

There was a fair amount of population overlap between the risk model, high MME 

threshold, and overlapping opioid/benzodiazepine threshold. Figure 2.1 is a graphical 

representation of the overlap of high-risk individuals and high-risk individuals who died 

across the different risk identification methods. The predictive model had 23,588 (60%) 

individuals identified by the risk model alone, with 15,632 (40%) individuals identified by at 

least one of the other PDMP thresholds. The MPE had the highest degree of overlap with 

368 (92.5%) individuals being identified by another risk identification method while only 30 

(7.5%) individuals were identified by the MPE threshold alone.  

The number of high-risk individuals and deaths among each mutually exclusive group is 

represented in Table 2.4/Figure 2.2. The risk model alone or in combination with other 

PDMP thresholds identified the most deaths among high-risk individuals. The two highest 

death rates were for individuals who met all risk identification methods (24.7 deaths per 

1,000) and individuals who were identified by the risk model and MPE threshold (17.2 

deaths per 1,000), although that was due to two deaths being captured within a very small 

number of high-risk individuals. Interestingly, the other combinations in which MPE was 

involved and MPE alone did not capture any deaths. The risk model in combination with 

high MME and/or overlapping opioid/benzodiazepines resulted in the next highest deaths 

rates and odds of death (PRM + high MME + opioid/benzo: 8.0 deaths per 1,000, OR 14.6 

[9.6-22.3]; PRM + opioid/benzo: 6.0 deaths per 1,000, OR 11.0 [7.1-16.2]; PRM + high 

MME: 4.1 deaths per 1,000, OR 7.4 [4.4-12.5]). Individuals identified by the risk model alone 
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captured highest number of deaths (72 deaths; 29.5% of total deaths) but the death rate of 

3.1 deaths per 1,000 was average due to the large number of high-risk individuals 

(n=23,588). The PDMP thresholds that captured deaths without the risk model were high 

MME and overlapping opioid/benzodiazepine (2.4 deaths per 1,000, OR 4.4 [1.4-13.9]), high 

MME only (1.0 deaths per 1,000) and overlapping opioid/benzodiazepine prescriptions only 

(0.6 deaths per 1,000), although the odds of death for the latter two were not statistically 

significant.  

Risk Identification Method Performance  

Results from the comparative analysis between the PDMP thresholds and the risk model as a 

binary indicator at several cutoff points are represented in Table 2.5. The cutoff point that 

maximized sensitivity plus specificity was 0.0015 and resulted in the highest sensitivity 

(68.4%) and specificity (77.1%) compared with any PDMP thresholds. It captured 68.4% of 

the total deaths and although it also identified the largest number of high-risk individuals 

(n=39,220), the death rate (4.26 per 1,000 high-risk) was comparable to that of the 

overlapping opioid/benzodiazepine prescriptions (4.64 per 1,000 high-risk) and high MME 

(4.09 per 1,000 high-risk) thresholds. When the risk model cutoff is modified to be 0.0030 to 

identify a more comparable number of high-risk individuals (n=15,881) to that of the 

overlapping opioid/benzodiazepine prescriptions (n=17,440) and high MME (n=14,675) 

thresholds, the risk model still captures far more deaths (n=113; 46.3% of total deaths) and 

has a higher death rate (7.12 per 1,000 high-risk) than the thresholds (overlapping 

opioid/benzodiazepine: 81 deaths, 33.2% of total deaths; high MME: 60 deaths, 24.6% of 

total deaths). The risk model also had a higher sensitivity (46.3%) than the overlapping 

opioid/benzodiazepine prescriptions (33.2%) and high MME (24.6%) with comparable 

specificity (risk model: 90.7%; overlapping opioid/benzodiazepine: 89.8%; high MME: 
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91.4%). The MPE threshold had a high death rate (10.1 per 1,000) but captured only four 

deaths (1.6% of total deaths) due to a low number of high-risk individuals (n=398) and had 

extremely low sensitivity (1.64%) and high specificity (99.8%). 

Equivalently Sized Population Comparative Analysis 

Results from the comparative analysis that examined the degree of overlap in the individuals 

identified by both the risk model and PDMP threshold of equivalent size are represented in 

Table 2.6 (characteristics of the equivalent sized populations can be found in Appendix 2.5). 

While varied, the individuals identified by the PDMP threshold and/or risk model 

represented only a modest degree of overlap. Overlapping opioid and benzodiazepines had 

the highest degree of overlap (45.0% overlap; n=17,440), high MME had the second highest 

degree of overlap (32.3% overlap; n=14,675) and MPE had the smallest overlap (9.6% 

overlap; n=398). Similar to some of the mutually exclusive population comparisons, 

individuals identified by both the risk model and threshold had the highest rate of deaths per 

1,000 high-risk individuals (Figure 2.3). For high MMEs, the risk model captured a higher 

percentage of total deaths (27.9%; n=39) as compared to individuals identified by the 

threshold only (8.6%; n=21) and individuals identified by both (16.0%; n=68). For 

overlapping opioid and benzodiazepines, the highest proportion of deaths was the 

population identified by both the PDMP threshold and the risk model (25.8%; n=63) 

compared with the population identified by the threshold only (7.4%; n=18) or identified by 

the risk model only (20.9%; n=51).  

Discussion 

To date, this study is the first to evaluate the extent to which individuals are identified by 

one or more risk identification methods and how well each approach captured fatal overdose 
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deaths. There are several key findings to note. First, the overlap analysis demonstrates that 

while there are groups of people that fall into multiple high-risk definitions, there are some 

differences in the populations that should be explored. Second, the risk models did a better 

job of identifying individuals at risk of fatal opioid-overdose. Finally, combining the risk 

model with other PDMP thresholds can be successful in identifying individuals at risk of 

fatal opioid overdose, although a large enough pool of high-risk individuals must be 

maintained to ensure enough individuals at high-risk of death are being properly captured.  

As seen with the overlap analysis, there are variations in the population being captured by 

each of the risk identification methods, even if ignoring the risk model results. With the wide 

range of thresholds used in practice, there may be populations affected by the opioid crisis 

that are not being captured if one methodology is being used but not another. 

Understanding who is being captured by each respective risk identification approach can 

help understand the impact of identifying one population over another and which high-risk 

individuals remain unidentified if the risk identification approach is not being utilized. 

Perhaps some interventions, such as a concerted effort of deprescribing, are better suited 

toward a particular risk identification method. This concept should be explored further in 

future research.  

The comparative analysis of the risk model at several cutoff points and the equivalently sized 

population allowed for a direct comparison of the predictive risk model and the thresholds. 

Across nearly all comparisons, the comprehensive multivariate predictive risk models 

performed equal to or better than the PDMP thresholds in identifying individuals at risk of a 

fatal opioid overdose. Should a PDMP program decide to use a predictive model, a challenge 

facing administrators will be selecting a risk score cutoff to determine who is considered 
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“high-risk.” Selecting a cutoff involves weighing sensitivity versus specificity, or tolerance of 

false positives (identifying an individual as high risk when they are not) and false negatives 

(identifying an individual as not at risk when they are). Setting the risk score to a cutoff point 

that maximizes sensitivity and specificity may be acceptable for more broadly applied harm 

reduction programs, such as naloxone kit distribution, but if the intervention needs to target 

a smaller, higher-risk group, the risk score cutoff can be adjusted. For example, if attempting 

to identify the highest risk individuals for enrollment into intensive one-on-one care 

management, the risk score cutoff could be adjusted to maximize specificity to reduce the 

chance of false positives, which inherently reduces the number of high-risk individuals 

identified. 

Another interesting result from the overlap analyses for both the mutually exclusive and 

equivalent size populations is that risk models could be used in conjunction with other risk 

identification methods effectively. Rather than selecting only one approach, the PDMP 

thresholds and risk models could be combined in certain circumstances to identify a high 

risk population (such as individuals with high MMEs) and then narrow the pool to the 

highest risk individuals using the predictive model to capture those at highest risk of deaths. 

While there should be some caution to not narrow the number of high-risk individuals too 

much, as seen with individuals that met all four risk identification methods or when the risk 

model was combined with the small number of high-risk individuals identified by the MPEs, 

the risk model in combination with PDMP thresholds that identified a larger pool of high-

risk individuals was successful at identifying individuals at risk of fatal opioid overdose, as 

seen with high MME and/or overlapping opioid/benzodiazepine prescription. In fact, 

although the risk model captured the highest number of deaths among the high-risk 

population, it was at the expense of including a very large number of high-risk individuals. 
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By combining the risk model with high MME, overlapping opioid/benzodiazepine, or both 

thresholds, the proportion of deaths among the high-risk individuals increased. This analysis 

highlights how single or multiple risk identification approaches can be better tailored to 

circumstance where resources must be distributed or deployed in a manner that will have the 

highest impact. 

Limitations and Additional Considerations 

Several study limitations should be noted. The analyses were based on a denominator of 

patients that had an opioid fill in the PDMP. Therefore, it does not include individuals 

outside this cohort, including more than half of all opioid overdose decedents in Maryland 

during that period available in the death dataset. The PDMP data used in this study only 

contains controlled substances dispensed within or into Maryland. If a Maryland patient 

were to fill a controlled substance in another state, that would not be represented in the 

Maryland PDMP, resulting in an incomplete prescription history. Although access to other 

state data was not available for this analysis, as reference, there were 145,131 (7.66%) non-

Maryland residents who filled 434,135 prescriptions (4.62%) in the 2015 Maryland PDMP 

data. Additionally, only one outcome was analyzed. The individuals identified by the PDMP 

threshold and risk model that did not experience a fatal opioid overdose may be 

experiencing other negative outcomes related to opioids not being captured in this analysis, 

such as non-fatal overdoses or substance use disorder.  

This study only examined a standard logistic model, which may not be optimal for predicting 

fatal opioid overdose. More advanced logistic regression models may result in even more 

accurate results.30 This analysis also does not take into consideration natural changes in high-

risk behaviors over time (i.e., regression to the mean)31 or in response to program policies 



 

43 
 

(e.g., unsolicited reporting). Finally, these data represent a relatively narrow period and does 

not capture long-term risk patterns and related outcomes. Future research should be 

conducted to understand whether individuals are consistently meeting the threshold over 

long periods of time versus a single point in time and whether risk differences exist for those 

populations. 

Conclusion 

This study is the first to compare the population overlap and ability to capture fatal opioid 

overdose events between multiple risk identification methods, including common unsolicited 

reporting PDMP thresholds and a comprehensive, multivariate risk model for identifying 

individuals at risk of fatal opioid overdose within a large patient population. The risk model 

captured a larger number of individuals at risk of fatal opioid overdose as compared with the 

PDMP thresholds, demonstrating the possibility for improved methods of identifying 

individuals at risk by PDMP programs. In certain circumstances, the risk model could be 

combined with one or more PDMP thresholds, provided the number of high-risk individuals 

was not too restrictive. Working within a naturally resource-constrained circumstance of 

addressing an epidemic of large proportion, methods to better target individuals at risk for 

negative outcomes, such as fatal overdoses, are extremely valuable. Understanding the 

different characteristics of populations identified through various risk identification 

approaches, the impact of combining multiple together, and the appropriate targeted 

intervention will assist with refining existing approaches to proactively identify individuals at 

risk.   
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Tables and Figures 

Table 2.2: Characteristics of study population based on various risk identification 

methods. * 

 Full Cohort 
Risk Model 

Cohort 
MPE 

Cohort 
High MME 

Cohort 
Op/Ben 

Overlap Cohort 

# individuals 170,438 39,220 398 14,675 17,440 

Sex – Male, n (%) 69,580 (40.8) 25,527 (65.1) 145 (36.4) 6,772 (46.2) 5,657 (32.4) 

Age 18-34 years 32,619 (19.1) 8,819 (22.5) 117 (29.4) 1,093 (7.5) 1,273 (7.3) 

Age 35-49 years 41,699 (24.5) 16,179 (41.3) 166 (41.7) 4,027 (27.4) 4,121 (23.6) 

Age 50-64 years 60,697 (35.6) 13,965 (35.6) 96 (24.1) 7,092 (48.3) 7,924 (45.4) 

Age 65-80 years 35,423 (20.8) 257 (0.7) 19 (4.8) 2,463 (16.8) 4,122 (23.6) 

Region of Patient Residence, n (%)          

  Baltimore City 22,301 (13.1) 5,830 (14.9) 70 (17.6) 12 (0.1) 1,693 (9.7) 

  Capital 46,539 (27.3) 8,834 (22.5) 105 (26.4) 1,643 (11.2) 3,492 (20.0) 

  Central 63,601 (37.3) 15,004 (38.3) 158 (39.7) 2,696 (18.4) 7,265 (41.7) 

  Eastern 15,637 (9.2) 3,468 (8.8) 19 (4.8) 6,476 (44.1) 1,902 (10.9) 

  Southern 12,182 (7.2) 3,205 (8.2) 32 (8.0) 1,464 (10.0) 1,387 (8.0) 

  Western 10,014 (5.9) 2,857 (7.3) 14 (3.5) 1,435 (9.8) 1,693 (9.7) 

  Unknown 164 (0.1) 22 (0.1) 0 (0) 949 (6.5) 8 (0.1) 

Method of Payment, n (%)          

  Private Pay 19,114 (11.2) 5,798 (14.8) 23 (5.8) 742 (5.1) 916 (5.3) 

  Medicaid 26,023 (15.3) 12,877 (32.8) 148 (37.2) 1,912 (13.0) 3,096 (17.8) 

  Medicare 19,430 (11.4) 4,208 (10.7) 44 (11.1) 2,506 (17.1) 3,181 (18.2) 

  Commercial Insurance 
101,813 

(59.7) 
15,086 (38.5) 182 (45.7) 9,013 (61.4) 9,771 (56.0) 

  Military/VA 1,661 (1.0) 793 (2.0) 0 (0) 176 (1.2) 177 (1.0) 

  Indian 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

  Other/Unknown 2,397 (1.4) 458 (1.2) 1 (0.3) 326 (2.2) 299 (1.7) 

# prescribers, mean (SD) 1.5 (0.9) 2.1 (1.3) 7.0 (2.8) 2.1 (1.3) 2.4 (1.3) 

# dispensers, mean (SD) 1.3 (0.7) 1.7 (1.0) 6.2 (1.9) 1.8 (1.1) 1.8 (1.1) 

# deaths, n (%) 244 (0.1) 167 (68.4) 4 (1.6) 60 (24.6) 81 (33.2) 

Abbreviations: PDMP=Prescription Drug Monitoring Program; PRM=predictive risk model; 
MPE=Multiple Provider Episodes (5 unique prescriber and 5 unique dispensers); MME=morphine 
milligram equivalents; Op/Ben=opioid/benzodiazepine, VA=Veterans Affairs; SD=standard deviation. 
* Maryland residents 18-80 years with at least one opioid fill for full populations and individuals identified by 
a single risk identification method only within the validation population using 3 months of data (April-June 
2015). 
Note: Cohorts have overlapping individuals represented.  

 

  



 

47 
 

Table 2.3: Multivariate risk model for individuals at risk of fatal opioid overdose. * 

Predictor 
Odds Ratio (95% 

Confidence Interval) 
p-value 

Male 2.45 (1.96-3.06) 0.000 

Age 35-49 years 1.11 (0.83-1.49) 0.497 

Age 50-64 years 0.64 (0.47-0.87) 0.004 

Age 65-80 years 0.11 (0.06-0.22) 0.000 

Method of Payment: Self-pay 1.64 (1.13-2.38) 0.009 

Method of Payment: Medicaid 2.35 (1.82-3.03) 0.000 

Method of Payment: Medicare 2.12 (1.47-3.06) 0.000 

Method of Payment: Military/Veteran’s Affairs (VA) 2.83 (1.24-6.47) 0.014 

Method of Payment: Other/unknown payer 1.16 (0.43-3.14) 0.772 

Opioid prescribers 2 1.59 (1.19-2.13) 0.002 

Opioid prescribers ≥3 1.47 (0.99-2.19) 0.057 

Opioid dispensers 2 1.44 (1.07-1.93) 0.015 

Opioid dispensers ≥3 1.60 (1.06-2.42) 0.026 

Methadone fills ≥1 1.52 (0.90-2.57) 0.114 

Opioid long acting fills ≥1 0.91 (0.66-1.26) 0.572 

Opioid use disorder (OUD) fills ≥1 2.29 (1.23-4.24) 0.009 

Opioid short acting, schedule II fills 1 0.86 (0.55-1.34) 0.498 

Opioid short acting, schedule II fills 2-3 0.93 (0.57-1.52) 0.764 

Opioid short acting, schedule II fills ≥4 1.16 (0.66-2.06) 0.603 

Opioid other short acting, schedule III-IV fills ≥1 0.72 (0.50-1.03) 0.076 

Opioid supply ≥91 days 1.68 (1.23-2.30) 0.001 

Overlapping opioid/benzodiazepine prescriptions 0.92 (0.60-1.40) 0.692 

Benzodiazepine fills 1 1.66 (1.09-2.55) 0.020 

Benzodiazepine fills ≥2 3.11 (2.06-4.70) 0.000 

Muscle relaxant fills ≥1 0.99 (0.55-1.79) 0.983 

Sedative fills ≥1 1.04 (0.72-1.52) 0.823 

Note: bolded values indicate statistical significance (p<0.05). The cutoff point that maximized sensitivity and 
specificity for the 3-month risk model was 0.0015. Reference categories include: female sex, age 18-34, 
commercial insurance (modal), 1 opioid prescriber, 1 opioid dispenser, 0-90 days' supply, no concomitant 
opioid/benzodiazepines, and no other controlled substance fills. Model performance: derivation 
AUC=0.814; validation AUC=0.798. 
* Maryland residents 18-80 years with at least one opioid fill using 3 months of data (April-June 2015). 
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Figure 2.1: Overlap analysis of individuals identified by a risk identification method.*  
 

Figure 2.1.1: Number of individuals identified as 
high-risk 

(n=50,501; 30.0%) 
 

Figure 2.1.2: Number of deaths among high-
risk individuals 
(n=178; 73.0%) 

 

 
 

 

 
Abbreviations: PRM=predictive risk model; MME=morphine milligram equivalents; 
MPE=multiple provider episodes (5 unique prescribers and 5 unique dispensers); 
op/ben=opioid/benzodiazepine. 
*Maryland residents 18-80 years with at least one opioid fill for full populations and individuals 
identified by a single risk identification method only within the validation population using 3 
months of data (April-June 2015). Total validation cohort is 170,438 individuals with a total of 244 
deaths. Total validation cohort size is 170,438 individuals with a total of 244 deaths (2015-2016). 
PRM cohort=39,220 individuals; High MME cohort=14,675 individuals; Op/Ben overlap=17,440 
individuals; MPE=398 individuals.   
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Table 2.4: Mutually exclusive populations of high-risk individuals. * 

Risk Populations 
# High-Risk 
Individuals 

# 
Deaths 

Deaths 
per 1,000 

% Total 
Deaths 

Odds Ratio 
(95% CI) 

All  81 2 24.7 0.8% 46.0 (11.1-191.0) 

PRM + MPE  116 2 17.2 0.8% 31.9 (7.7-131.7) 

PRM + High MME + 
Op/Ben Overlap  

4,012 32 8.0 13.1% 14.6 (9.6-22.3) 

PRM + Op/Ben Overlap 6,826 41 6.0 16.8% 11.0 (7.4-16.2) 

PRM + High MME  4,442 18 4.1 7.4% 7.4 (4.4-12.5) 

PRM Only  23,588 72 3.1 29.5% 5.6 (4.0-7.8) 

High MME + Op/Ben 
Overlap  

1,252 3 2.4 1.2% 4.4 (1.4-13.9) 

High MME Only  4,821 5 1.0 2.0% 1.9 (0.8-4.7) 

Op/Ben Overlap Only  5,162 3 0.6 1.2% 1.1 (0.3-3.4) 

MPE + Op/Ben Overlap  3 0 0.0 0.0% - 

MPE + High MME + 
Op/Ben Overlap  

3 0 0.0 0.0% - 

MPE + High MME  10 0 0.0 0.0% - 

MPE Only  30 0 0.0 0.0% - 

PRM + MPE + High MME  54 0 0.0 0.0% - 

PRM + MPE + Op/Ben 
Overlap  

101 0 0.0 0.0% - 

Abbreviations: MPE=multiple provider episodes (5 unique prescribers and 5 unique dispensers); 
PRM=predictive risk model; MME=morphine milligram equivalents; 
Op/Ben=opioid/benzodiazepine; CI=confidence interval 
* Maryland residents 18-80 years with at least one opioid fill for full populations and individuals 
identified by a single risk identification method only within the validation population using 3 months of 
data (April-June 2015). 
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Figure 2.2: Death data analysis for mutually exclusive populations of high-risk 

individuals. *  

 
* Maryland residents 18-80 years with at least one opioid fill for full populations and individuals 

identified by a single risk identification method only within the validation population using 3 months 

of data (April-June 2015). Total validation cohort is 170,438 individuals with a total of 244 deaths. 

Table 2.5: Performance of each PDMP threshold and the risk model at three different 

cutoff points.  

Performance 
Indicator 

PRM  
(0.0015 
cutoff) 

Opioid/ 
Benzo 
overlap 

PRM  
(0.0030 
cutoff) 

High 
MME  

PRM  
(0.0085 
cutoff) 

MPE 

No. of High Risk 39,220 17,440 15,881 14,675 3,102 398 

% of total 
population 

23.0 10.2 9.3 8.6 1.8 0.2 

No. of Deaths 167 81 113 60 35 4 

% of Total deaths 68.4 33.2 46.3 24.6 14.3 1.6 

Deaths per 1,000 
high risk  

4.26 4.64 7.12 4.09 11.28 10.05 

Chi square 284.7 140.3 395.8 78.3 214.5 20.73 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 

Odds Ratio (95% 
CI) 

7.28 (5.56, 
9.54) 

4.38 (3.35, 
5.71) 

8.45 (6.57-
10.87) 

3.47 (2.59, 
4.65) 

9.13 (6.37, 
13.08) 

7.18 (2.66, 
19.39) 

AUC 0.728 0.615 0.685 0.580 0.563 0.507 

Sensitivity (%) 68.44 33.20 46.31 24.59 14.34 1.64 

Specificity (%) 77.05 89.80 90.67 91.41 98.20 99.77 

PPV (%) 0.43 0.46 0.71 0.41 0.88 1.01 

NPV (%) 99.94 99.89 99.92 99.88 99.89 99.86 

Abbreviations: PRM=predictive risk model; Benzo=Benzodiazepine; MME=morphine milligram 
equivalents (≥90 mg/day); MPE=multiple provider episode (5 unique prescribers and 5 unique 
dispensers); CI=confidence interval; AUC=area under the curve; PPV=positive predictive value; 
NPV=negative predictive value 
Total number of high-risk individuals was 170,438 and total deaths was 244 in the validation sample.  
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Table 2.6: Overlap analysis of PDMP threshold and equivalent size risk model 

populations. * 

  MPE vs. Risk Model 
High MME vs. Risk 

Model 
Opioid/Benzo Overlap 

vs. Risk Model 

Variable, n (%) 
MPE 
Only 

Both 
PRM 
Only 

High 
MME 
Only 

Both 
PRM 
Only 

Op/Be
nzo 

Only 
Both 

PRM 
Only 

Total high-risk 
patients 

398 (0.2) 14,675 (8.6) 17,440 (10.2) 

Total high-risk 
patient deaths 

7 (1.8) 128 (0.9) 132 (0.8) 

High risk patients 
360 

(90.5) 
38 (9.6) 

360 
(90.5) 

9,937 
(67.7) 

4,738 
(32.3) 

9,937 
(67.7) 

9,586 
(55.0) 

7,854 
(45.0) 

9,586 
(55.0) 

Deaths among 
high-risk 

3 
(42.9) 

1 (14.3) 
3 

(42.9) 
21 (16.4) 

39 
(30.5) 

68 
(53.1) 

18 
(13.6) 

63 
(47.7) 

51 
(38.6) 

# deaths per 
1,000 high risk 
patients 

8.3 26.3 8.3 2.1 8.2 6.8 1.9 8.0 5.3 

% of total deaths 1.2 0.4 1.2 8.6 16 27.9 7.4 25.8 20.9 

Risk of death, 
OR (95% CI) 

6.0 
(1.9, 
18.9) 

19.3 
(2.6, 

141.4) 

6.0 
(1.9, 
18.9) 

2.6 (1.7, 
4.2) 

10.4 
(7.2, 
15.0) 

8.7 
(6.4, 
11.7) 

2.4 (1.5, 
4.0) 

10.4 
(7.6, 
14.1) 

6.8 
(4.9, 
9.5) 

Abbreviations: MPE=multiple provider episodes (5 unique prescribers and 5 unique dispensers); 
PRM=predictive risk model; MME=morphine milligram equivalents; op/benzo=opioid/benzodiazepine 
* Maryland residents 18-80 years with at least one opioid fill for full populations and individuals identified by 
a single risk identification method only within the validation population using 3 months of data (April-June 
2015). 

 

Figure 2.3: Death analysis of PDMP threshold and equivalent size risk model 

populations. 
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Paper 3: Assessing the Impact of Algorithms for Matching Persons Across State 

Datasets to Identify Risk of Fatal Opioid Overdose  

 

Abstract  

Background: The opioid epidemic in the United States has precipitated a need for public 

health agencies to better understand risk factors associated with fatal overdoses. Matching 

person-level information stored in public health, medical, and human services datasets can 

enhance the understanding of opioid overdose risk factors and interventions. A major 

impediment to using datasets from separate agencies has been the lack of a cross-

organization unique identifier. Although different matching techniques that leverage patient 

demographic information can be used, the impact of using a particular matching approach is 

not well understood.  

Objective: This study compares the impact of using probabilistic versus deterministic matching 

algorithms to link disparate person-level datasets together for identifying persons at the 

highest risk of a future fatal opioid overdose.   

Methods: This study used person-level data from three agencies in Maryland: Prescription 

Drug Monitoring Program data, arrest data, and death data. Individuals with at least one 

controlled substance filled during 2015 were linked with drug- or property-related arrests 

(2013-2015) and opioid-related overdose death data (2015-2016) using a probabilistic 

matching algorithm and two deterministic matching algorithms. Impact of the person-level 

matching was assessed by comparing the prevalence of key risk indicators, the outcome, and 

the performance of a multivariate logistic regression for fatal opioid overdose using the 

combined datasets.  



 

53 
 

Results: The probabilistically matched population resulted in the fewest unique identities 

(n=1,859,445) as compared with the deterministic-basic algorithm (n=1,910,741) and the 

deterministic+zip algorithm (n=2,065,019) and had the highest degree of matching with 

arrest and death data. Model area under the curve performance was comparable across the 

three algorithms (probabilistic: 0.847; deterministic-basic: 0.854; and deterministic+zip: 

0.826), however, the optimal model cutoff points differed, resulting in tradeoffs between 

sensitivity and specificity.  

Conclusions: The probabilistic algorithm enabled a more comprehensive understanding of risk 

prevalence for fatal opioid overdose among all individuals within and across disparate 

datasets. However, model performance based on area under the curve indicates the 

deterministic-basic matching could be a suitable option for understanding high-level risk. 

Consideration must be made as to the intent of matching the datasets together, as 

probabilistic algorithms can be more resource-intensive and costly to maintain compared 

with the deterministic algorithms.  
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Introduction 

Individuals at risk of adverse opioid-related outcomes often interact with multiple human 

service sectors, including health care, public health, social and human service agencies. As 

individuals interact with each sector, information about their complex needs, characteristics 

and service provisions are recorded in electronic databases. If these databases were linked, 

thoughtful analysis of an integrated database encompassing relevant cross-sector factors 

could improve the understanding and identification of individuals at risk for adverse 

outcomes related to opioid use. Although the ease of collecting and matching electronic data 

has improved for single datasets, matching person-level data across distinct agencies remains 

a major impediment.1 Most human service datasets remain siloed without a common 

identifier to efficiently match separate person-level datasets in a way that supports a more 

comprehensive understanding of an individual’s risk.2 Social security numbers are usually not 

collected by electronic systems and in the health care realm, the United States Congress 

overruled the mandate for a unique patient identifier in the Health Insurance Portability and 

Accountability Act (HIPAA) of 1996, citing privacy concerns.3  

Absent a nationwide unique identifier for patients, alternative analytic techniques are often 

used to match person-level data from different sources together using personal 

demographics and identifiers. Most often, either “deterministic” and/or “probabilistic” 

matching algorithms are utilized. Deterministic matching relies on exact matches of 

combinations of direct and indirect identifiers to determine a match, while probabilistic 

matching uses a weighted analytic algorithm applied to key demographic (e.g., age, gender) 

and personal information (e.g., name, address) to derive a score that determines whether a 

certain match threshold was reached.4  
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Within the health care industry, probabilistic matching is a fairly common applied technique, 

particularly within Health Information Exchanges (HIEs) and large multi-system health 

organizations.5 The performance of probabilistic algorithms have been found to have a 

higher degree of matching accuracy than deterministic algorithms6 and a strong potential to 

link individuals across datasets in the absence of a common identifier available for exact 

matching.7 A handful of studies examining opioid overdose outcomes have used 

probabilistic algorithms to link cross-domain datasets (e.g., electronic health records [EHRs], 

Prescription Drug Monitoring Program [PDMP] and death) together with public domain 

software applying both deterministic and probabilistic algorithms.8,9  

Despite the improved performance, access to a probabilistic matching is not always available 

and exact matching must be used. A handful of studies have linked death data with 

prison/corrections data to examine fatal overdose events,10-14 the majority of which have 

applied deterministic algorithms techniques to link datasets together.15-19 Exact match on the 

individual’s name and date of birth are most commonly used, with some studies also using 

sex, county of residence, and social security number as additional matching criteria.15-19 The 

largest scale example of combining data from multiple agencies was a statewide opioid 

overdose analysis performed by Massachusetts state government that linked fifteen datasets 

together using a series of deterministic algorithms.20 

As matching person-level data across sectors to understand risks related to opioids becomes 

more common, additional research needs to be done to understand the impact of data 

matching techniques. A recent analyses examined the impact of a deterministic matching 

algorithm against a proprietary probabilistic algorithm on the prevalence of key high-risk 

indicators within PDMP data, and demonstrated  that the degree of the impact varied based 
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on the measure.21 This study, using statewide Maryland data, builds on these concepts by 

comparing two deterministic record matching algorithms with probabilistic matching 

(operational standard) to quantify the effect the record linkage approaches on patient risk 

measures using PDMP, criminal justice, and death data.     

Methods 

Study Design  

A retrospective cohort analysis was performed using 2015 PDMP data as the anchor 

database. Individuals with one or more controlled substance prescription fills were included. 

The Maryland PDMP collects schedule II-V controlled substances (i.e. opioids, sedatives, 

stimulants, and other drugs for medicinal use with potential for abuse) dispensed to 

Maryland residents by pharmacists, dispensing prescribers, and mail-order pharmacies. The 

data collected by PDMP includes: (1) patient identifying information; (2) prescription 

number, date written, date filled, refill information, payment method, National Drug Code 

(NDC) of the drug dispensed, quantity dispensed, and days’ supply; (3) the prescriber’s Drug 

Enforcement Agency (DEA) number and last name; and, (4) the dispenser’s DEA number.22 

The PDMP data is collected by a vendor’s software that has its own native matching 

algorithm to determine unique identities (totaling 3,304,446 in 2015) prior to being 

processed by the probabilistic or deterministic algorithms. The matching algorithms were 

applied to the PDMP dataset starting with the vendor-defined identities such that individuals 

were matched within the dataset before being matched with external datasets. After applying 

the matching algorithms to each row within the PDMP database, matching was performed 

across the other datasets. This resulted in a newly created unique identifier being assigned to 

each identity included in the study specific to the matching algorithm. The final limited 

dataset for research contained only the unique identifiers and IRB-approved variables for 
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analysis. See Appendix 3.1 for graphical and numerical representations of the dataset 

overlap.   

Population & Data Sources  

Arrest and death data were layered onto the PDMP anchor dataset and were only included if 

matched with an individual with a controlled substance dispensed in 2015. Individuals with 

property- or drug-related arrests with Maryland’s criminal justice system occurring between 

2013-2016 from the Department of Public Health Safety and Correctional Services (DPSCS) 

were matched with the individuals in the PDMP data, however; only arrest events for 2013-

2015 that matched with an individual in the PDMP dataset were included in the analysis. 

Arrests prior to 2015 were included because historical arrests were relevant to future fatal 

opioid-related outcomes and ensured a large enough sample size. Arrests from 2016 were 

omitted to align with the PDMP anchor dataset timeframe. DPSCS contains administrative 

data for individuals arrested for drug or property crimes (except for pre-trial) and uses a 

State Identification Number to positively identify unique individuals within their Offender 

Case Management System using the arrestee’s fingerprints. The DPSCS data consisted of 

38,004 unique identities from 2013-2016.  

Death data were provided by the Office of the Chief Medical Examiner (OCME) and 

contained case investigation data for all drug and alcohol overdose deaths in Maryland. Data 

included, but was not limited to, identifying information for the decedent, date of death, and 

cause of death. Deaths across all dates (2012-2016) were matched with the PDMP data (all-

cause: n=22,829; opioid-related overdose deaths: n=4,551), but only the outcome-of-interest 

of opioid-related overdose deaths occurring in 2015-2016 that were matched with an 

individual in the PDMP dataset were included in the analysis. The OCME data was 
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inherently based on a final biological event and therefore each individual is represented only 

once and did not require within-dataset matching.  

IRB approval was obtained from the Johns Hopkins Bloomberg School of Public Health 

(IRB #00007542) and the Maryland Department of Health. Strict guidelines were followed 

to maintain data security and confidentiality. All personal identifiers were maintained 

separately from the risk information, and the risk information was in a database only with 

anonymous unique identifiers specific to this study to ensure no re-identification of the 

records could occur. See Appendix 3.2 for the data linking process using identifiable data 

prior to delivering the research dataset.  

Variables 

The target outcome of interest was fatal opioid overdose. Fatal opioid overdose was defined 

as having a cause-of-death indicator in the OCME database involving illicit or licit opioids, 

including any of the following substances: prescription opioids, hydrocodone, 

hydromorphone, methadone, morphine, oxycodone, oxymorphone, tramadol, heroin, or 

fentanyl. Intentional, unintentional, and undetermined intent were not distinguished in the 

data analysis.  

Independent/predictive variables for the risk model were derived from the PDMP data and 

were based on common risk indicators found in the literature8,16,23,24 or established as national 

clinical quality improvement outcome measures.25 The model variables included sex, age 

group, method of payment for prescriptions (modal), number of unique opioid prescribers 

and dispensers, and number of prescriptions for methadone, long-acting opioids, 

buprenorphine opioids, shorting-acting schedule II opioids, short-acting schedule III and IV 

opioids, benzodiazepines, other non-benzodiazepine sedatives, and muscle relaxants.  
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Prevalence of several more complex variables were also analyzed independently and/or were 

included in the model based on thresholds commonly used by PDMP programs to identify 

individuals at risk:26 (1) multiple provider episodes (MPEs), defined as five unique 

prescribers and five unique dispensers for all controlled substances within a rolling three-

month window for the duration of the study period; (2) high daily average morphine 

milligram equivalents (MMEs), defined as ≥90 mg/day average daily dose for patients with 

≥60 days’ supply opioids within a rolling three-month window for the duration of the study 

period; and (3) overlapping opioid and benzodiazepine prescriptions, where overlap occurs 

for 25 percent or more of the days’ supply (for days’ supply>5 days) based on month the 

prescription was dispensed and if patient had ≥60 days’ supply opioids within a rolling three-

month window for the duration of the study period. A variable was also constructed for any 

individual with at least one arrest in the DPSCS dataset.27  

Person-level Matching Techniques 

Prior to removing personal identifiers from the research database, the data files were linked 

together using a probabilistic matching algorithm and two different deterministic matching 

algorithms. The matching algorithms relied on a set of core identifiable personal and 

demographic data available for use, including first name, last name, DOB (date of birth), sex, 

street address, city, zip code, phone number, and SSN (social security number), if available.  

Probabilistic linkage: The probabilistic matching algorithm served as the operational 

standard in this study and has been functioning in Maryland to deliver information to 

clinicians at the point of care and support statewide analytic initiatives for a decade. The 

probabilistic matching services were executed by Maryland’s state-designated, non-profit 

health information exchange (HIE), CRISP (Chesapeake Regional Information System for 
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our Patients), using master patient index (MPI) technology (IBM InfoSphere®, v10.1; IBM, 

Armonk, North Castle, NY). The CRISP MPI supports HIE technology in Maryland, West 

Virginia, and the District of Columbia and contains approximately 19 million unique master 

identities. The MPI is pinged by user queries ~2.16 million times per day (multiple calls per 

patient search possible) and processes ~1.7 million new clinical data elements per day from 

HIE participants.28  

By adopting conservative scoring methodologies and thresholds, the CRISP MPI algorithm 

was designed to reduce the risk of false positives (i.e., matching records of separate persons 

incorrectly together) to a near-zero level; while at the same time ensuring limited false 

negatives (i.e., not matching the same person’s records together if the identifier information 

is slightly different on each record). The estimated false positive rate is 0.9 percent, as 

measured by a comparative analysis performed in 2019 with a subset of a major 

stakeholder’s data.28 As a high-level summary, the probabilistic matching algorithm reaches a 

final matching score using the demographic inputs by bucketing the data values together for 

fast comparison after basic standardization steps. The standardization functions include 

removing special characters, applying truncations, converting name to all upper-case, and 

applying two address standardization arguments for postal codes and unit information. The 

bucketing processes included name (first name + last name), name phonetic + DOB, name 

phonetic + zip code, SSN, phone, zip code, MRN (master record number), plus some 

special attributes specific to MD data providers (e.g., hospitals). The comparison step applies 

a score based on whether the bucketed information matched exactly (full score) or had 

minor discrepancies (partial score), such as misspellings, nicknames, and transposed 

numbers, or risk of a false positive. The final score is tallied and if it passes the CRISP-

defined threshold for a match (≥13.1), the records are considered part of the same master 
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patient identity and are linked together. Any records that did not meet the threshold remain 

as separate records. Matching improves over time as more sources of data provide the MPI 

with more comprehensive and updated patient information. Past phone numbers, addresses, 

and names (including maiden names) are factored into the matching, increasing the 

likelihood that data from different sources are appropriately associated with a single identity. 

See Appendix 3.3 for further detail on the probabilistic algorithm functions and 

configurations.  

Deterministic linkage: Two levels of deterministic matching algorithms were applied to the 

data based on availability of the demographic elements and common approaches taken in 

previously published literature.17,20 The first deterministic algorithm (“deterministic-basic”) 

linked patients using an exact match on first name, last name, gender, and DOB. The second 

deterministic algorithm (“deterministic+zip”) took a more stringent approach to matching 

and linked patients using an exact match on the same elements as the first algorithm (name, 

gender, date of birth), plus zip code. Gender was normalized to Male, Female, or Unknown. 

Minor adjustments to first name were also made to ensure there were no middle initials or 

middle names included in the first name field. No close-match, near-match, or phonetic 

matching logic was applied to remain conservative. 

Processing the data using the deterministic algorithms began with an empty master patient 

list. The PDMP dataset was processed first by comparing each identity within the dataset 

with the master patient list. If a new identity was found in the dataset that did not exist in the 

master patient list, it was added to the master patient list with a new deterministic identifier 

(ID). If an exact match occurred between the master patient list and an identity in the 

dataset, the identity in the dataset with assigned the deterministic ID in the master list. Next, 



 

62 
 

the DPSCS and OCME files were processed in the same manner, comparing the identities in 

the dataset with the master patient list. Because the master patient list was for all unique 

individuals, if there were multiple records with matching demographics within a single 

database, the deterministic ID would be applied across all records, therefore matching 

records within a single database (not just across). For transaction-level databases (PDMP and 

DPSCS), identities with the same dataset-defined patient identifier within a single database 

was checked to ensure the same deterministic ID was applied. This process was repeated for 

both deterministic algorithms, resulting in two separate sets of master deterministic IDs. See 

Appendix 3.4 for a detailed description of the deterministic matching steps.  

Statistical Analysis 

Each matching algorithm requires the demographic data to be at a high enough quality level 

to facilitate sufficient matching. Prior to data linkage, the demographic variables used for 

matching in each dataset were assessed for data completeness. Completeness was calculated 

by computing the number of occurrences of missing data values for each data field per 

dataset.29 Post data linkage, the characteristics of the population linked by the different 

matching algorithms were described. A multivariate logistic regression analysis for risk of 

fatal opioid overdose was performed on the population as defined by each matching 

algorithm to assess the impact of data matching on predicting patient-level risk. Model 

performance was measured using sensitivity, specificity, and area under the receiver 

operating characteristic curve (AUC), measuring the ability of the model to discriminate 

between individuals truly at risk (sensitivity) from individuals truly not at risk (specificity), 

ranging from 0 to 1. Percentage bias was calculated for each model variable by taking the 

difference in the coefficients (log odds) of each predictor for the deterministically linked 
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population (comparison) against the coefficients of the model from the probabilistically 

linked population (reference) serving as the operational standard using the formula:30  

[(logitreference - logitcomparison / logitreference)]*100  

Finally, the number of unique individuals with a high-risk indicator identified by a single 

matching algorithm only (i.e. not identified by other matching algorithms) and death rates 

per 1,000 for individuals with a predictor or high-risk indicator were also calculated for the 

population matched by each algorithm.  

Results 

Quality of Matching Fields 

All datasets (PDMP, DPSCS, and OCME) contained the common matching fields (i.e., 

name, date of birth, sex, address, city, state and zip) with high completeness rates varying 

between 93.8% and 100% (Table 3.1). The PDMP and OCME files had no SSN’s available 

for matching and DPSCS file had only 61.0% completeness for SSN. Thus, SSN was 

excluded from the study’s deterministic algorithms, but was used by the probabilistic 

algorithm when furnished. The address was not standardized in any dataset, limiting the 

potential for exact matches, and was therefore not leveraged for the deterministic matching. 

However, the address fields were well-populated (completeness ranging from 95.9% to 

100%), which could be leveraged by the probabilistic algorithm.  

Study Population 

Using the probabilistic algorithm, a total of 1,859,445 unique individuals were identified 

within the PDMP dataset. Of the probabilistically linked records across all three data 

sources, 1,318 (0.07%) individuals experienced a fatal opioid overdose and 8,712 (0.47%) 

had an arrest record. The deterministic-basic algorithm resulted in a total of 1,910,741 
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unique individuals (2.8% more identities than probabilistic matching), of which, 1,167 

(0.06%) experienced a fatal opioid overdose and 8,589 (0.45%) had an arrest record. The 

deterministic+zip algorithm resulted in a total of 2,065,019 unique individuals (11.1% more 

identities than probabilistic matching), of which, 605 (0.03%) experienced a fatal opioid 

overdose and 3,839 (0.19%) had an arrest record (Table 3.2). 

Population Characteristics  

The characteristics of probabilistically-linked population were consistent with the two 

deterministically-linked populations for the full cohort; however, some differences were 

more pronounced in the death cohorts given the lower number of deaths linked to the 

PDMP data and higher number of unique individuals deterministically identified in the 

PDMP dataset (Table 3.2): the number of individuals who were male was 2.98% higher and 

who used Medicaid as a method of payment was 2.42% higher in the population linked by 

the deterministic-basic algorithm than the probabilistically linked population. For the 

deterministic+zip algorithm, the number of individuals in the 50-64 age group was 3.58% 

higher and the method of payment of self-pay (modal) was 3.31% higher than the 

probabilistically linked population. The percentage of individuals in the death cohort with a 

high number of opioid prescribers and dispensers was one of the most distinguishable 

differences between the deterministic and probabilistic algorithms. For the population linked 

by the deterministic-basic algorithm, the number of individuals with ≥3 opioid prescribers 

and ≥3 opioid dispensers decreased by 2.81% and 2.54%, respectively, as compared with the 

probabilistically linked population. Similarly, for the population linked with the 

deterministic+zip algorithm, individuals with ≥3 opioid prescribers and ≥3 opioid 

dispensers decreased by 7.57% and 7.93%, respectively.   
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Statistical Analysis 

The statistically significant predictors in the risk model were relatively consistent between the 

probabilistic algorithm and the deterministic algorithms, with a few exceptions (Table 3.3). 

Self-pay was found to be a predictor of fatal opioid overdose for the model applied to the 

population linked with the deterministic-basic (Odds Ratio [OR] 1.39, 95% Confidence 

Interval [CI] 1.08-1.78) and the deterministic+zip (OR 1.64, 95% CI 1.19-2.27) algorithms 

but was not a predictor for the probabilistically linked population. The risk model found 

high MME to be a statistically significant predictor when run on the population that was 

probabilistically matched (OR 1.36, 95% CI 1.02-1.80) or matched using the 

deterministic+zip algorithm (OR 1.75, 95% CI 1.15-2.68), but not the deterministic-basic 

algorithm. Finally, the population linked using the deterministic algorithm-basic did not find 

the ≥3 opioid prescribers or ≥1 methadone fill variables to be statistically significant 

predictors, despite being a predictor for the population linked using the probabilistic 

algorithm and deterministic-basic algorithm. Nearly all statistically significant predictors in 

the model run on the population matched using the deterministic-basic algorithm displayed 

some level of bias as compared with population linked probabilistically, other than the male 

(bias: 0.0), ≥1 methadone fills (bias: 0.0), and any arrest (bias: -0.1) variables. The degree of 

bias varied for the other statistically significant variables, with one of the largest calculated 

bias being ≥1 muscle relaxant fills (deterministic-basic bias: -79.5; deterministic+zip bias: -

121.6).  

The performance of the predictive model in the form of AUC was comparable across the 

three matching algorithms at different cutoff points where sensitivity and specificity were 

maximized (Table 3.4). The deterministic-basic algorithm (derivation AUC: 0.860, validation 

AUC: 0.854) slightly outperformed the probabilistic algorithm (derivation AUC: 0.858, 
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validation AUC: 0.847), which slightly outperformed deterministic+zip algorithm (derivation 

AUC: 0.837, validation AUC: 0.826). The cutoff point for the probabilistic algorithm was 

0.0010, resulting in a total of 104,293 individuals being flagged as high risk, of which, 362 

died from a fatal opioid overdose (3.47 deaths per 1,000 high risk individuals). This is in 

comparison with the deterministic-basic algorithm’s cutoff point of 0.0005, resulting in 

229,646 individuals flagged as high risk with 384 deaths (1.67 deaths per 1,000 high risk 

individuals), and the deterministic+zip algorithm, which had an optimal cutoff point of 

0.00025, resulting in 275,352 individuals flagged as high risk with 195 deaths (0.71 deaths per 

1,000 high risk individuals). The probabilistic algorithm had a lower sensitivity (67.54%) and 

higher specificity (84.29%) relative to the deterministic-basic algorithm (sensitivity: 87.47%, 

specificity: 66.26%) and deterministic+zip algorithm (sensitivity: 85.53%, specificity: 

62.17%), demonstrating that the probabilistic algorithm is tuned to minimize the potential 

for false positives, although at the expense of potential false negatives. See Appendix 3.5 for 

classification tables of the model run on the population linked by the three matching 

methods. 

Risk Indicator and Death Rate Statistics 

Examining the quantity of individuals with certain high-risk indicators that were identified by 

only one of the matching algorithms further demonstrates the impact the matching can have 

on understanding patient-level risk (Table 3.5). The probabilistic algorithm uniformly yielded 

the highest number of individuals identified as having a high-risk indicator that were not 

otherwise identified by one of the deterministic algorithms. This was consistent for the 

PDMP-based risk indicators as well as the indicators that relied upon cross-sector variables 

from the DPSCS and OCME files. The most pronounced differences included multiple 

provider episodes (probabilistic: n=963 [19.68%]; deterministic-basic: n=420 [9.45%]; 
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deterministic+zip: n=3 [0.12%]); and opioid overdose deaths (probabilistic: n=327 [24.81%]; 

deterministic-basic: n=153 [13.11%]; deterministic+zip: 0 [0.00%]). The deterministic+zip 

algorithm identified an almost negligible number of individuals (MPE: 3 [0.02%], High 

MME: 2 [0.00%], overlapping opioid/benzodiazepines: 205 [0.23%], arrest: 11 [0.29%], 

opioid overdose death: 0 [0.00%]) with high risk indicators as compared with the 

probabilistic and deterministic-basic algorithms. 

Finally, death rate per 100,000 in the denominator was calculated for each of the variables 

included in the multivariable model (Table 3.6 & Figure 3.1). The population linked using 

the probabilistic algorithm universally resulted in capturing the highest death rates per 

predictor as compared with the deterministic algorithms. The highest death rates per 100,000 

involved individuals who had any arrest (probabilistic: 1 per 1,309; deterministic-basic 

algorithm: 1 per 1,246; deterministic+zip algorithm: 1 per 703) or any arrest and opioid 

prescription (probabilistic: 1 per 1,247; deterministic-basic algorithm: 1 per 1,170; 

deterministic+zip algorithm: 1 per 718). Individuals with multiple provider episodes 

(probabilistic: 1,074; deterministic-basic algorithm: 1,058, deterministic+zip algorithm: 431) 

had a death rate similar in scale to the population with an arrest. All predictors had a higher 

death rate than the Maryland average death rate (49 per 100,000) for the population linked 

via the probabilistic and deterministic-basic algorithms. The deterministic+zip algorithm had 

two predictors that were lower than the Maryland average, including ≥1 schedule III or IV 

opioid prescriptions (30 per 100,000) and ≥1 schedule II opioid prescriptions (41 per 

100,000).  
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Discussion 

Patient matching, both within and across datasets, is critical to constructing a complete 

picture of risk. Absent a common identifier that can be used to stitch together the electronic 

data captured in fragmented human service datasets, other methods to match person-level 

data together must be utilized. Understanding how the matching method impacts the results 

of subsequent risk analyses is important when making decisions related to how to respond to 

the opioid crisis.  

The greatest impact on matching is the quality of the patient’s demographic data inputs for 

the algorithms. Given the nature of the datasets included in this study, the data completeness 

was not a barrier to matching. The PDMP program requires basic patient information be 

supplied per state regulations and the nature of arrest and death data inherently ensures 

accurate patient information is captured as a matter of the law. The high degree of data 

completeness of the patient demographics used in this study nearly eliminates matching 

errors due to missing data, leaving only the potential for more nuanced matching errors (e.g. 

minor typos such as “Jhon” versus “John,” causing two records for the same person to not 

match if using exact matching, or more common names, such as John Smith with the same 

date of birth, may be incorrectly matched together), and providing a solid foundation for the 

multivariate predictive model, risk indicator, and death rate analyses.  

Model performance, defined in this study as how accurately the model was able to predict 

fatal opioid overdose, did not vary greatly across the three matching algorithms with regards 

to the AUC at the optimal risk model cutoff. However, the sensitivity and specificity of the 

model were inversed when run on the probabilistically matched dataset versus the 

deterministically matched dataset. The risk model for the probabilistically matched dataset 
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had a lower sensitivity and higher specificity, consequently capturing fewer than half of the 

population identified as high risk as the model run on the deterministically linked population. 

Balancing sensitivity versus specificity is common practice with risk modeling and has 

practical implications for applied use of the model. When resources are scarce, such as the 

number of treatment beds, emphasis may want to be made on a higher specificity, where 

there is a lower likelihood of capturing individuals at high-risk when they are not, therefore 

reserving beds for individuals at highest risk for future fatal opioid overdose. However, if the 

intervention allows for more latitude with who receives a service or resource, such as 

naloxone distribution, a higher sensitivity may be desired to cast a wider net, even if some 

individuals were incorrectly classified as high risk.  

As the results of this study suggests, using probabilistic versus deterministic matching within 

and across datasets may consequently predetermine the suitability of the applied uses of a 

risk model. If using deterministic matching, risk models may best be used for low-cost, 

broad interventions based on the higher sensitivity at the optimal cutoff. It may also support 

the model serving as an analytic tool to understand risk factors and their effect sizes at a 

population-level, with the understanding that bias may exist with some of the statistically 

significant predictors as compared to the operational standard. Alternatively, the higher 

specificity of the probabilistic model demonstrated aptness toward correctly classifying 

individuals at high risk for fatal opioid overdose, with the tradeoff that some individuals will 

be incorrectly classified as not at high-risk. However, if scarce resources are being 

distributed, the model being run on a probabilistically matched dataset outperformed the 

model being run on the deterministically matched dataset.  
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Beyond the multivariate analysis, the probabilistic algorithm was the most successful in 

matching individuals in the PDMP dataset with the arrest and death data. The 

probabilistically matched dataset also uniformly identified the highest number of individuals 

with a high-risk indicator (other than high MMEs) and individuals with high-risk indicators 

not identified by one of the other matching methods, demonstrating the benefits of a 

probabilistic model both within a primary dataset and across disparate datasets. The death 

rate analysis reflects these concepts, particularly when comparing the probabilistic matching 

with the deterministic+zip matching algorithm. As fewer individuals were found to have a 

particular characteristic and fewer arrests and deaths were linked, the death rates per 100,000 

high-risk individuals are drastically deflated when using the deterministic+zip algorithm as 

compared with the probabilistic algorithm. If using the deterministic+zip algorithm alone to 

match individuals across datasets, the results of the analysis will fairly drastically 

underestimate prevalence of risk for the population. The deterministic-basic algorithm is 

closer to the death rates demonstrated by the probabilistically linked population; however, it 

underestimates prevalence of risk indicators as well.  

While the results of the analysis points toward the benefits of using a probabilistic algorithm 

in many cases, consideration must be made on the cost and complexity of establishing and 

maintaining a probabilistic algorithm versus a deterministic algorithm. The benefit of the 

deterministic matching is in its simplicity; no real long-term maintenance and quick to 

implement.4 Probabilistic algorithms can be very complex and take in a larger number of 

data elements, which leaves a higher opportunity for missing data to impact matching. Some 

publicly available probabilistic software exist, including Link Plus and The Link King,6 and 

several software companies sell probabilistic matching master data management solutions. 

Organizations that choose to leverage probabilistic MPIs for operational purposes often 
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have dedicated staff that monitor the quality of the data processed through the MPI, 

perform clean up steps to continuously improve the matching rate, resolve issues, and assess 

the weighting rules for continuous improvement. Because of this, probabilistic MPIs are 

often used for ongoing clinical or analytic purposes that require continuous use. If the 

matching is only needed periodically, it may not make financial sense to invest in a robust 

probabilistic matching solution.  

Strengths and Limitations 

Most of the existing literature that has evaluated alternative matching and data linkage 

approaches performed “manual” reviews of the matches where a human assessed how often 

the algorithm to correctly or incorrectly classify two individuals as a match or non-

match.7,31,32 Although the data were linked together in an identifiable manner, this study only 

used de-identified linked records for analysis. Using the probabilistic algorithm as the 

operational standard for comparison against the deterministic matching was logical given it 

contains a robust collection of demographics for Maryland residents over a long period of 

time, which was this study’s target population. While using a robust operational MPI is 

strength, it is also a limitation for generalizability. One of the benefits of the MPI is that it 

links records using historical addresses and names in addition to the most recently processed 

information. The degree to which the MPI contains historical data from individuals for 

improved matching must be factored in if replicating this process elsewhere since robust 

historical data expectedly improves the rate of matching for the study that would not have 

been achieved with an empty MPI.  

While the PDMP data from 2015 were able to be both probabilistically and deterministically 

matched together for this study, the timing of when the data was extracted for the 
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probabilistic matching versus deterministic matching was different. This resulted in a slight 

difference in total number of prescriptions in one data extract from another. The number of 

prescriptions was normalized between the two extracts prior to person-level analysis. 

Additionally, although the individuals within the PDMP data were matched using both 

probabilistic and deterministic algorithms, the arrest data was probabilistically linked within 

the dataset, then the deterministic identifiers were applied as a one-to-one swap. This was 

because the de-identified DPSCS arrest data was linked using the probabilistic algorithm and 

was delivered for analysis prior to this study. Deterministic matching was therefore only 

applied when matching the DPSCS dataset with the PDMP and OCME datasets. The 

OCME data was also a one-to-one swap, but was inconsequential to the study given it is a 

person-level dataset and not transactional, as the other two datasets were. Finally, only two 

deterministic algorithms were analyzed, despite many other algorithm options, such as using 

partial name matches (i.e. first several digits of the first and last name).33 The demographic 

elements used for the matching was largely influenced by the data availability in the datasets 

used for this study. Other datasets may have fields that are very helpful with exact matching, 

such as SSN. 

Conclusion 

Combining PDMP and criminal justice data can lead to an improved understanding of risk 

of fatal opioid overdose among vulnerable populations, increased pathways for cross-

discipline partnerships, and more targeted program delivery. With the lack of a common 

identifier, linking multiple datasets from different domains need to rely upon matching 

algorithms applied to patient demographic data. The probabilistic algorithm enabled a more 

comprehensive understanding of risk indicator prevalence within and across datasets and 

may be best suited for costly, resource-limited interventions. Based on the intended applied 
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use of the model and operational simplicity, however, the risk model performed well on the 

population linked using the deterministic-basic algorithm (exact match on name, date of 

birth, and gender) and may be a suitable matching method for low-cost, broad interventions 

and generally understanding risk factors at a population-level, although some bias is 

introduced compared to the probabilistic matching approach.  

Moving forward, the frequency with which cross-sector datasets will be used to gain a 

comprehensive understanding of an individual’s risk of negative outcomes related to opioid 

use will only increase. Similar approaches will, and should, also be used to address other 

public health challenges. Advanced methods for matching person-level datasets from across 

organizations and programs, such as those explored in this study, will provide essential tools 

for facilitating the use of multiple datasets to better identify individuals at high risk and 

design public health programs and interventions that benefit the community.   
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Tables and Figures 

Table 3.1: Data completeness of identifiable demographic data elements. a 

Dataset 

# 
Native 
Dataset 

IDs 

First 
Name 

Last 
Name 

Sex DOB Address City Zip SSN 

PDMP b 3,304,446 
3,304,440 

(100) 
3,304,363 

(100) 
3,304,000 

(100) 
3,303,391 

(100) 
3,303,546 

(100) 
3,304,171 

(100) 
3,303,515 

(100) 
0 (0.0) 

DPSCS  
Arrest c 

118,218 
118,218 

(100) 
118,218 

(100) 
118,218 

(100) 
118,218 

(100) 
114,311 
(96.7) 

114,087 
(96.5) 

113,806 
(96.3) 

72,093 
(61.0) 

OCME d 22,829 
22,828 
(100) 

22,827 
(100) 

22,791 
(99.8) 

22,704 
(99.8) 

21,888 
(95.9) 

21,747 
(95.3) 

21,404 
(93.8) 

0 (0.0) 

Abbreviations: IDs=identities, PDMP=Prescription Drug Monitoring Program, DPSCS=Department of 
Public Health Safety and Correctional Services, OCME=Office of Chief Medical Examiner, DOB=Date of 
Birth, SSN=Social Security Number.  
a Demographic data were used by the health information exchange to match identities within and across 
datasets prior to removing patient identifiers from final analytic dataset. This table reflects the completeness 
of the demographic data (based on missing values) used for matching. All demographic fields were utilized 
for the probabilistic matching. Deterministic matching only relied upon first name, last name, sex, date of 
birth, and zip. 
b PDMP data consists of all controlled substance prescriptions dispensed in 2015.  
c DPSCS data consists of drug and property arrests from 2013-2016 (narrowed to arrests in 2013-2015 for 
analyses).  
d OCME data consists of outcome of all investigated deaths from 2012-2016 (narrowed to opioid-related 
overdose deaths in 2015-2016 for analyses).  
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Table 3.2: Characteristics of study population for each matching algorithm.a 

  Probabilistic  Deterministic-basicb Deterministic+zipb 

Characteristic, n (%)  
Full 

(n=1,859,445) 
Deaths 

(n=1,318) 
Full 

(n=1,910,741) 
Deaths 

(n=1,167) 
Full 

(n=2,065,019) 
Deaths 
(n=605) 

Demographic Variables 

Male 775,716 (41.72) 
849 

(64.37) 
794,564 (41.61) 

788 
(67.35) 

856,100 (41.47) 
393 

(64.96) 

Age ≤18 years  140,648 (7.56) 0 (0) 142,288 (7.45) 0 (0) 152,207 (7.37) 0 (0) 

Age 18-34 years 410,834 (22.09) 
378 

(28.68) 
418,770 (21.93) 

338 
(28.89) 

461,323 (22.35) 
165 

(27.27) 

Age 35-49 years 427,737 (23.00) 
488 

(37.03) 
440,897 (23.09) 

437 
(37.35) 

485,742 (23.53) 
212 

(35.04) 

Age 50-64 years 520,899 (28.01) 
419 

(31.79) 
537,772 (28.16) 

370 
(31.62) 

579,104 (28.05) 
214 

(35.37) 

Age 65-80 years 294,854 (15.86) 33 (2.50) 303,760 (15.91) 25 (2.14) 317,083 (15.36) 14 (2.31) 

Age ≥80 years 64,473 (3.47) 0 (0) 66,096 (3.46) 0 (0) 68,959 (3.34) 0 (0) 

Prescription Variables  

MP: Self-Pay 291,474 (15.68) 
135 

(10.24) 
302,575 (15.85) 

125 
(10.68) 

320,322 (15.52) 82 (13.55) 

MP: Medicaid 268,537 (14.44) 
475 

(36.04) 
271,363 (14.21) 

450 
(38.46) 

311,520 (15.09) 
213 

(35.21) 

MP: Medicare 150,139 (8.07) 123 (9.26) 154,659 (8.10) 99 (8.46) 165,832 (8.03) 59 (9.75) 

MP: Commercial 
1,103,135 

(59.33) 
559 

(42.41) 
1,131,679 

(59.26) 
484 

(41.37) 
1,213,700 

(58.79) 
246 

(40.66) 

MP: Military/VA 10,673 (0.57) 18 (1.37) 11,599 (0.61) 4 (0.34) 12,392 (0.60) 2 (0.33) 

MP: Workers Comp  9,383 (0.50) 2 (0.15) 10,443 (0.55) 3 (0.26) 11,232 (0.54) 3 (0.50) 

MP: Unknown/Other 26,104 (1.40) 7 (0.53) 27,265 (1.43) 5 (0.43) 29,420 (1.43) 0 (0) 

Opioid prescribers ≥3 172,105 (9.26) 
420 

(31.87) 
171,963 (9.00) 

340 
(29.06) 

164,913 (7.99) 
147 

(24.30) 

Opioid dispensers ≥3 78,961 (4.25) 
305 

(23.14) 
74,073 (3.88) 

241 
(20.60) 

58,138 (2.82) 92 (15.21) 

Methadone fills ≥1 10,194 (0.55) 57 (4.32) 10,606 (0.56) 46 (3.93) 12,069 (0.58) 24 (3.97) 

Opioid LA fills ≥1 70,589 (3.80) 
190 

(14.42) 
73,696 (3.86) 

158 
(13.50) 

80,657 (3.91) 83 (13.72) 

Opioid OUD fills ≥1 28,339 (1.52) 
200 

(15.17) 
28,453 (1.49) 

181 
(15.47) 

34,326 (1.66) 78 (12.89) 

Opioid SA-2 fills ≥4 885,205 (47.61) 
877 

(66.46) 
908,770 (47.56) 

772 
(65.98) 

968,287 (46.89) 
396 

(65.45) 

Opioid other SA-3,4 fills 
≥1 

458,851 (24.68) 
376 

(28.53) 
465,086 (24.34) 

315 
(26.92) 

479,594 (23.22) 
143 

(23.64) 

Benzodiazepine fills ≥2 463,008 (24.90) 
639 

(48.48) 
471,180 (24.66) 

551 
(47.09) 

500,000 (24.21) 
285 

(47.11) 

Muscle relaxant fills ≥1 19,300 (1.04) 65 (4.93) 19,789 (1.04) 57 (4.87) 21,295 (1.03) 31 (5.12) 

Sedative fills ≥1 138,643 (7.46) 
187 

(14.19) 
141,174 (7.39) 

150 
(12.82) 

148,940 (7.21) 79 (13.06) 

High MME (≥90 
mg/day) 

57,314 (3.08) 
226 

(17.15) 
59,423 (3.11) 

178 
(15.21) 

63,454 (3.07) 95 (15.70) 

Overlapping 
Opioid/Benzo 

87,805 (4.72) 
311 

(23.60) 
88,373 (4.63) 

244 
(20.85) 

90,476 (4.38) 
126 

(20.83) 

Criminal Justice Variable 

  Has any arrest 8,825 (0.47) 113 (8.57) 8,589 (0.45) 107 (9.15) 3,839 (0.19) 27 (4.46) 

Abbreviations: MME=Morphine Milligram Equivalent, OUD=opioid use disorder (buprenorphine), 
SA=short-acting, LA=long-acting 
a Population consists of drug and property arrests from 2013-2015, PDMP data from 2015, and an outcome 
of fatal opioid overdose in 2015 or 2016.  
b Deterministic-basic algorithm matched first name, last name, date of birth. Deterministic+zip algorithm 
matched first name, last name, date of birth, zip code.  
c % difference is the probabilistic algorithm minus the deterministic algorithm percentage for the full and 
death cohorts.  
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Table 3.3: Odds Ratios and bias for populations matched by each matching algorithm. a 

 

Probabilistic 
(N=1,859,445) 

Deterministic-basicb 
(N=1,910,753) 

Deterministic+zipb 
(N=2,065,023) 

n 
OR (95% 

CI) 
n 

OR (95% 
CI) 

biasc n 
OR (95% 

CI) 
biasc 

Demographic Variables 

Male 
774,868 
(41.70) 

2.86 (2.45-
3.32) 

794,564 
(41.61) 

2.85 (2.44-
3.34) 

0.0 
856,100 
(41.47) 

2.90 (2.34-
3.60) 

-1.4 

Age ≤18 years  
140,648 
(7.57) 

- 
142,288 
(7.45) 

-   
152,207 
(7.37) 

-   

Age 18-34 years 
410,456 
(24.83) 

reference 
418,770 
(21.93) 

reference   
461,323 
(22.35) 

reference   

Age 35-49 years 
427,249 
(25.85) 

1.01 (0.85-
1.21) 

440,897 
(23.09) 

1.04 (0.87-
1.25) 

-289.6 
485,742 
(23.53) 

1.02 (0.79-
1.32) 

-64.2 

Age 50-64 years 
520,480 
(31.49) 

0.69 (0.58-
0.84) 

537,772 
(28.16) 

0.77 (0.63-
0.93) 

26.0 
579,104 
(28.05) 

0.82 (0.63-
1.07) 

45.8 

Age 65-80 years 
294,821 
(17.84) 

0.09 (0.06-
0.16) 

303,760 
(15.91) 

0.07 (0.04-
0.13) 

-12.0 
317,083 
(15.36) 

0.06 (0.02-
0.14) 

-22.7 

Age ≥80 years 
64,473 
(3.47) 

- 
66,096 
(3.46) 

-   
68,959 
(3.34) 

-   

Prescription Variables  

MP: Self-Pay 
291,339 
(15.68) 

1.23 (0.96-
1.57) 

302,575 
(15.85) 

1.39 (1.08-
1.78) 

-60.6 
320,322 
(15.52) 

1.64 (1.19-
2.27) 

-144.9 

MP: Medicaid 
268,062 
(14.43) 

2.55 (2.15-
3.01) 

271,363 
(14.21) 

2.99 (2.51-
3.54) 

-17.1 
311,520 
(15.09) 

2.68 (2.11-
3.41) 

-5.7 

MP: Medicare 
150,017 
(8.07) 

2.46 (1.87-
3.23) 

154,659 
(8.10) 

2.70 (2.03-
3.58) 

-10.2 
165,832 
(8.03) 

2.92 (2.01-
4.24) 

-19.1 

MP: Commercial 
1,102,57

6 
(59.34) 

reference 
1,131,679 

(59.26) 
reference 0.0 

1,213,700 
(58.79) 

reference   

MP: Military/VA 
10,655 
(0.57) 

3.25 (1.81-
5.81) 

11,599 
(0.61) 

0.66 (0.17-
2.68) 

193.6 
12,392 
(0.60) 

0.60 (0.08-
4.27) 

144.0 

MP: Workers 
Comp  

9,381 
(0.50) 

0.28 (0.04-
2.01) 

10,443 
(0.55) 

0.59 (0.15-
2.39) 

58.7 
11,232 
(0.54) 

1.01 (0.25-
4.11) 

101.1 

MP: 
Unknown/Other 

26,097 
(1.40) 

0.28 (0.07-
1.13) 

27,265 
(1.43) 

0.45 (0.14-
1.41) 

37.4 
29,420 
(1.43) 

- 100.0 

Opioid prescribers 
≥3 

171,685 
(9.24) 

1.53 (1.23-
1.91) 

171,963 
(9.00) 

1.47 (1.17-
1.85) 

10.0 
164,913 
(7.99) 

1.31 (0.95-
1.81) 

36.2 

Opioid dispensers 
≥3 

78,656 
(4.23) 

1.83 (1.45-
2.30) 

74,073 
(3.88) 

1.57 (1.24-
2.00) 

24.9 
58,138 
(2.82) 

1.56 (1.09-
2.23) 

26.4 

Methadone fills 
≥1 

10,137 
(0.55) 

2.05 (1.40-
3.00) 

10,606 
(0.56) 

2.04 (1.36-
3.08) 

0.0 
12,069 
(0.58) 

1.57 (0.86-
2.89) 

36.6 

Opioid Long-
Acting fills ≥1 

70,399 
(3.79) 

1.06 (0.80-
1.39) 

73,696 
(3.86) 

1.36 (0.94-
1.68) 

-333.1 
80,657 
(3.91) 

1.27 (0.85-
1.90) 

-343.4 

Opioid OUD fills 
≥1 

28,139 
(1.51) 

4.88 (3.93-
6.04) 

28,453 
(1.49) 

5.10 (4.09-
6.37) 

-2.1 
34,326 
(1.66) 

5.58 (4.07-
7.65) 

-8.5 

Opioid SA-2 fills 
≥4 

884,329 
(47.59) 

1.38 (1.16-
1.65) 

908,770 
(47.56) 

1.63 (1.36-
1.96) 

-52.2 
968,287 
(46.89) 

1.59 (1.24-
2.04) 

-43.2 

Opioid other SA-
3,4 fills ≥1 

458,475 
(24.67) 

1.03 (0.87-
1.23) 

465,086 
(24.34) 

1.05 (0.88-
1.26) 

-61.4 
479,594 
(23.22) 

1.16 (0.90-
1.50) 

-344.5 

Benzodiazepine 
fills ≥2 

462,369 
(24.88) 

2.08 (1.74-
2.48) 

471,180 
(24.660 

2.34 (1.96-
2.80) 

-16.7 
500,000 
(24.21) 

2.24 (1.74-
2.88) 

-10.3 

Muscle relaxant 
fills ≥1 

19,235 
(1.04) 

1.49 (1.04-
2.14) 

19,789 
(1.04) 

2.05 (1.46-
2.89) 

-79.5 
21,295 
(1.03) 

2.43 (1.55-
3.81) 

-121.6 

Sedative fills ≥1 
138,456 
(7.45) 

1.69 (1.38-
2.08) 

141,174 
(7.39) 

1.59 (1.27-
1.97) 

12.3 
148,940 
(7.21) 

1.57 (1.15-
2.14) 

15.0 

High MME (≥90 
mg/day) 

57,088 
(3.07) 

1.36 (1.02-
1.80) 

59,423 
(3.11) 

1.22 (0.90-
1.66) 

33.3 
63,454 
(3.07) 

1.75 (1.15-
2.68) 

-84.5 

Overlapping 
Opioid/Benzo 

87,494 
(4.71) 

1.57 (1.23-
2.01) 

88,373 
(4.63) 

1.21 (0.94-
1.56) 

58.2 
90,476 
(4.38) 

1.15 (0.79-
1.67) 

69.5 

Criminal Justice Variable 



 

79 
 

Has any arrest 
8,712 
(0.47) 

4.59 (3.52-
6.00) 

8,589 
(0.45) 

4.58 (3.46-
6.06) 

-0.1 
3,839 
(0.19) 

5.01 (2.86-
8.76) 

-5.6 

Abbreviations: MME=Morphine Milligram Equivalent, Benzo=Benzodiazepine, VA=Veteran’s Affairs, OUD=opioid 
use disorder (buprenorphine), SA=short-acting, OR=odds ratio, CI=confidence interval 
a Population consists of drug and property arrests from 2013-2015, PDMP data from 2015, and an outcome of fatal 
opioid overdose in 2015 or 2016.  
b Deterministic-basic algorithm matched first name, last name, date of birth. Deterministic+zip algorithm matched first 
name, last name, date of birth, zip code.  
c Bias refers to the difference in log odds coefficients in each multivariable model, compared to the reference 
(probabilistic) standard model using the equation: [(logitreference – logitcomparison / logitreference)]*100.  

 

Table 3.4: Model performance for opioid overdose death for populations matched by each 
algorithm. a 

Model Performance 
Probabilistic 
(Operational 

standard) 

Deterministic-
basic Algorithm b 

Deterministic+zip 
Algorithm b 

Optimal Cutoff point 0.0010 0.0005 0.00025 

Derivation AUC 0.858 0.860 0.837 

Validation AUC 0.847 0.854 0.826 

Sensitivity 67.54 87.47 60.96 

Specificity 84.29 66.26 42.54 

# of high-risk patients 104,293 229,646 275,352 

% of validation cohort 15.8 33.78 37.85 

# of deaths among high risk patients 362 385 195 

Deaths per 1,000 high risk patients 3.47 1.67 0.71 

Abbreviations: AUC – area under the curve 
a Population consists of drug and property arrests from 2013-2015, PDMP data from 2015, and an outcome 
of fatal opioid overdose in 2015 or 2016.  
b Deterministic-basic algorithm matched first name, last name, date of birth. Deterministic+zip algorithm 
matched first name, last name, date of birth, zip code.  

 

Table 3.5: Risk indicator comparison for each matching algorithm cohort and those 
identified only by a single algorithm. a 

  

Identified by 
Probabilistic Algorithm 

Identified by 
Deterministic-basic 

Algorithm a 

Identified by 
Deterministic+zip 

Algorithm a 

High Risk 
Indicators 

Full 
Cohort 

Not identified 
by other 
matching 
methods 

Full 
Cohort 

Not identified 
by other 
matching 
methods 

Full 
Cohort 

Not identified 
by other 
matching 
methods 

Multiple Provider 
Episode 

4,893 
(100) 

963 (19.68) 
4,443 
(100) 420 (9.45) 

2,552 
(100) 3 (0.12) 

High MME (≥90 
mg/day) 

57,314 
(100) 

664 (1.16) 
59,422 
(100) 274 (0.46) 

63,453 
(100) 2 (0.00) 

Overlapping 
Opioid/Benzo 

87,805 
(100) 

2,252 (2.56) 
88,371 
(100) 738 (0.84) 

90,474 
(100) 205 (0.23) 

Has any arrest 
8,825 
(100) 

1,682 (19.06) 
8,584 
(100) 1,279 (14.90) 

3,839 
(100) 205 (0.23) 

Opioid overdose 
death 

1,318 
(100) 

327 (24.81) 
1,167 
(100) 153 (13.11) 605 (100) 0 (0.00) 

Note: All chi2 tests were significant at the p<0.001 level  
Abbreviations: MME=morphine milligram equivalents, Benzo=benzodiazepine 
a Deterministic-basic algorithm matched first name, last name, date of birth. Deterministic+zip algorithm 
matched first name, last name, date of birth, zip code. 
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Table 3.6: Opioid overdose death comparison for populations linked by each algorithm. a 

Variables 

Probabilistic  
Death Rate (per 

100,000) 

Deterministic-basic 
Algorithm b 

Death Rate (per 
100,000) 

Deterministic+zip 
Algorithm b  

Death Rate (per 
100,000) 

Maryland average 49 49 49 

Opioid other SA-3,4 fills ≥1 82 68 30 

Has any opioid 84 73 35 

Opioid SA-2 fills ≥4 99 85 41 

Sedative fills ≥1 135 106 53 

Benzodiazepine fills ≥2 138 117 57 

Opioid prescribers ≥3 245 198 89 

Opioid LA fills ≥1 270 214 103 

Muscle relaxant fills ≥1 338 288 146 

Overlapping Opioid/Benzo 355 276 139 

Opioid dispensers ≥3 389 325 158 

High MME (≥90 mg/day) 396 300 150 

Methadone fills ≥1 562 434 199 

Opioid OUD fills ≥1 711 636 227 

Multiple Provider Episode  1,074 1,058 431 

Any Opioid + Arrest 1,247 1,170 718 

Has any arrest 1,309 1,246 703 

Abbreviations: MME=Morphine Milligram Equivalent, Benzo=Benzodiazepine, OUD=opioid use disorder 
(buprenorphine), LA=long-acting, SA=short-acting 
Maryland average death rate was estimated by dividing the number of any opioid-related fatal overdose in 
2015 and 2016 by the estimated Maryland Census population.  
a Population consists of drug and property arrests from 2013-2015, PDMP data from 2015, and an outcome 
of fatal opioid overdose in 2015 or 2016.  
b Deterministic-basic algorithm matched first name, last name, date of birth. Deterministic+zip algorithm 
matched first name, last name, date of birth, zip code. 
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Figure 3.1: Death rate comparison for populations matched by alternate algorithms.  

 
 

Abbreviations: MPE=multiple provider episodes, OUD=opioid use disorder (buprenorphine), 

MME=morphine milligram equivalents, mg/day=milligram per day, Benzo=Benzodiazepine, 

LA=long-acting, SA-2=short-acting, schedule II, SA-3,4=short-acting, schedule III or I
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Benzodiazepine fills ≥2

Opioid prescribers ≥3

Opioid LA fills ≥1

Muscle relaxant fills ≥1

Overlapping Opioid/Benzo

Opioid dispensers ≥3

High MME (≥90 mg/day)

Methadone fills ≥1

Opioid OUD fills ≥1

MPE

Any Opioid + Arrest

Has any arrest

Death Rates (per 1,000) for Probablistic and Deterministic Algorithms 
among Subpopulations

Deterministic Algorithm 2 Death Rate
(per 1,000)

Deterministic Algorithm 1 Death Rate
(per 1,000)

Probabilistic Death Rate
(per 1,000)
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Implications for Public Health Practice and Policy 
 

Central to this analysis is the pursuit of understanding risk within a statewide PDMP dataset 

and across datasets from other sectors. There is increasing interest in public health practice 

to utilize risk scores to identify individuals at highest risk and provide the appropriate 

intervention based on the specific patient’s needs and wants. As public health practice looks 

to such solutions, understanding how to explore available data based on prior literature and 

the data available for operational use will be vital to the process. The first paper’s systematic 

review provides foundational knowledge around which risk factors have been explored, 

nuances around the variable and outcome definitions, and range of model performance. 

Public health practitioners can adapt an existing model in the literature or choose to create a 

model unique to their population and data sources. This analysis could drive policy changes 

to require certain fields of interest as a variable or outcome to be submitted by dispensers 

required to report to the PDMP through legislative or regulatory changes.  

Another core implication to public health practice covered by these analyses is how 

predictive risk models can be applied in practice, particularly in context of existing PDMP 

program risk identification processes many states already execute. The practical implications 

outlined in the second paper are compelling. The risk model did a better job of identifying 

individuals at risk of fatal opioid overdose than the PDMP thresholds commonly used by 

PDMP programs today. Combining the risk model with other common PDMP thresholds 

may also improve the identification of individuals at risk of fatal opioid overdose. Predictive 

models are specifically designed to identify high-risk individuals for a specific outcome, in 

this case fatal opioid overdose, based on a multitude of factors. As part of that process, 

however, the models often identify a larger denominator of individuals than simple PDMP 
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thresholds. Thus, the predictive model must be applied thoughtfully and in a way that allows 

for ease of operational use. Based on the intervention intended for those identified as high-

risk, additional tailoring or partnering with other risk identification techniques may be 

beneficial to ensure individuals are not being identified for a resource that cannot meet the 

resulting demand. This paper also covered key considerations that must be followed if 

pursuing the application of a risk model in conjunction with a PDMP threshold. As more 

criteria are added, the denominator will narrow and should be considered to ensure enough 

of a denominator of high-risk individuals are captured. Additionally, finding the optimal 

cutoff point for a risk model that strikes the appropriate balance of sensitivity and specificity 

in alignment with the intended intervention should be determined by the public health 

agency. Ultimately, risk models are a promising option for public health practitioners, such 

as PDMP programs, in fine-tuning intervention and program decisions in a resource-

constrained environment while maintaining or improving ability to identify those at risk for 

fatal opioid overdose. Risk models in conjunction with other risk identification methods or 

standalone can drive policy and programmatic changes based on the populations identified, 

perhaps by forming a new intervention for a specific high-risk population or geographic 

region, or partnerships with other disciplines aimed at improving patient outcomes for 

individuals with an opioid addiction.  

Finally, in the context of an increasing need for cross-disciplinary collaboration and data-

driven solutions, the third paper addressed some of the impacts of how data from multiple 

disparate dataset comes together absent a unique identifier. The method to which person-

level data are matched within and across datasets impacts the risk indicators for individuals 

and general understanding of risk. This includes the use of common PDMP thresholds or 

risk models. Using the probabilistic matching operational standard in Maryland led to 
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improved matching within the PDMP dataset and with external arrest and death datasets, 

which consequently resulted in a higher prevalence for fatal opioid overdose and arrests 

among the PDMP patients in the study. Despite the probabilistic algorithm performing 

better than deterministic algorithms, the nature of the analysis must be considered prior to 

pursing a probabilistic matching algorithm. In Maryland, the resources involved in 

maintaining the probabilistic algorithm is extensive, however, it is being used daily and 

therefore warrants that level of investment as it directly impacts patient safety and care. If 

the analysis being performed involving matched datasets is infrequent and is for a higher-

level understanding of risk, the risk model run on the population matched using the basic 

deterministic matching algorithm (based on name, DOB, and gender) was fairly comparable 

to the probabilistic algorithm. Deterministic matching is a straightforward, simple way to 

bring variables from disparate datasets together. Caution should be made that there may be 

some variation in the risk factors and their effect sizes, as seen with the percent bias, 

however, as long as the intervention is not needed on a daily basis, such as for displaying a 

risk score to clinicians at the point of care, using the deterministic algorithm can be a viable 

option. If there is an increasing need to link multiple datasets together that do not have a 

common identifier, policy changes to ensure the completeness of all relevant demographic 

elements and/or standardization of certain fields may be necessary to improve patient-level 

matching. Operationalizing the cross-domain datasets in an applied setting must also be 

analyzed for potential policy changes, depending on the audience or manner in which the 

cross-domain data are used. There are often clear pathways for cross-domain analysis for 

research purposes, but an applied setting with identifiable data requires an in-depth legal 

review and discussion.  
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Appendix 

 

I. Additional information for Paper 1: Using Electronic Pharmacy and Health Care 
Data to Identify Persons at Risk of Opioid-Related Overdose – A Review of the 
Predictive Modeling Literature  

Appendix 1.1: Database Search Strategies 

Database: PubMed 
Search performed: 7/29/2018 
Results: 1291 articles 
Filters: published in the last 10 years (2008-2018); English language 

# Search Terms [type] 

1 (opioid*[tw]) OR (analgesics, opioid[MeSH Terms]) OR (controlled substance*[tw]) OR 

(analgesics, narcotic[MeSH Terms]) OR (narcotic*[tw]) OR (control, narcotic[MeSH Terms]) 

OR (prescription drug&[tw]) OR (drug prescription[MeSH Terms]) OR (opioid 

prescription*[tw]) 

2 (overdose[tw]) OR (overdose[MeSH Terms]) OR (respiratory depression[MeSH Terms]) OR 

(respiratory depression[tw]) 

3 (risk factor*[tw]) OR (risk factor[MeSH Terms]) OR (risk[tw]) OR (prediction model[tw]) OR 

(predictive modeling[tw]) OR (logistic models[MeSH Terms]) OR (logistic model[MeSH 

Terms]) OR (risk assessment[MeSH Terms])  

4 1 AND 2 AND 3 

Database: PsychINFO 
Search performed: 7/29/2018 
Results: 626 articles 
Filters: published in the last 10 years (2008-2018); English language; academic journals 

# Search Terms [type] 

1 opioid OR analgesics, opioid OR controlled substances OR narcotics OR prescription OR 

prescription drugs OR prescription opioids 

2 overdose OR overdose death OR ( overdose or poisoning ) OR respiratory depression OR ( 

respiratory depression and opioids )  

3 risk OR risk factors OR risk assessment OR prediction OR predictive analytics OR predict 

OR predictive OR prediction model OR predictive model OR predictive modeling  

4 1 AND 2 AND 3 

Database: Embase 

Search performed: 7/29/2018 
Results: 889 articles 
Filters: published in the last 10 years (2008-2018); publication type=article 

# Search Terms [type] 

1 'opiate agonist':ti,ab,kw OR 'opiate':ti,ab,kw OR 'analgesic agent':ti,ab,kw OR 'controlled 

substance':ti,ab,kw OR 'narcotic analgesic agent':ti,ab,kw OR 'narcotic agent':ti,ab,kw 

OR 'prescription':ti,ab,kw OR 'prescription drug':ti,ab,kw 

2 'intoxication':ti,ab,kw OR 'drug overdose':ti,ab,kw OR 'respiration depression':ti,ab,kw 

OR 'death':ti,ab,kw 

3 'risk':ti,ab,kw OR 'risk factor':ti,ab,kw OR ('prediction':ti,ab,kw AND 'forecasting':ti,ab,kw) 

OR 'predictive value':ti,ab,kw OR 'predictor variable':ti,ab,kw OR 'predictive validity':ti,ab,kw 

4 1 AND 2 AND 3 
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Appendix 1.2: Risk factors and effect sizes for models in literature. 

Appendix B.1: Risk factors found to be statistically significant in predicting adverse outcomes 

Category Risk Factor Effect Size Author 

Demographics 
Geographic region: Midwest or 
West 

OR 1.20-1.56 (1.08-1.23, 1.33-2.2) 
Zedler 2015; 
Zedler 2018 

Demographics 
Marital status: Never Married or 
Widowed 

OR 1.48-2.12 (1.11-1.46, 1.97-3.08) Zedler 2015 

Demographics 
Race: Non-Hispanic White or 
Othera 

OR 1.56-1.71 (1.1-1.27, 2.2-2.31) Zedler 2015 

Dx-clinical Chronic pulmonary disease 
OR 1.57-1.72 (1.27-1.56, 1.89-
1.94) 

Zedler 2015; 
Zedler 2018 

Dx-clinical Heart failure OR 2.06 (1.74, 2.44) Zedler 2018 

Dx-clinical Liver disease (mild) OR 2.42 (1.39, 4.19) Zedler 2015 

Dx-clinical Non-malignant pancreatic disease 
OR 2.07-2.13 (1.06-1.56, 2.75-
4.25) 

Zedler 2015; 
Zedler 2018 

Dx-clinical 
Renal disease or renal disease 
with renal impairment 

OR 1.59-2.17 (1.17-1.83, 2.17-
2.57) 

Zedler 2015; 
Zedler 2018 

Dx-clinical 
Serious autoimmune 
rheumatologic disease 

OR 1.47 (1.23, 1.77) Zedler 2018 

Dx-clinical Skin (pressure) ulcers OR 1.50-2.31 (1.18-1.48, 1.90-3.61) 
Zedler 2015; 
Zedler 2018 

Dx-clinical Sleep apnea OR 1.33-1.34 (1.03-1.15, 1.52-1.75) 
Zedler 2015; 
Zedler 2018 

Dx-MH/BH Bipolar disorder/schizophrenia 
OR 1.95-2.85 (1.43-2.44, 2.67-
3.32) 

Zedler 2015; 
Zedler 2018 

Dx-MH/BH Depression or psychotic disorder 
aOR 3.04-3.23 (2.27-2.41, 3.82-
4.54) 

Liang 2016 
(men & 
women) 

Dx-MH/BH Mental health diagnosis aHR 3.39 (2.32, 4.96) Glanz 2018 

Dx-MH/BH Opioid dependence OR 4.54 (3.12, 6.63) Zedler 2015 

Dx-MH/BH 
Alcohol or substance use 
disorder or dependenceb 

aHR 3.47-12.74 (2.25-11.46, 5.36-
14.16) 

Glanz 2018; 
Liang 2016; 
Zedler 2018 

Dx-MH/BH 
Tobacco use or tobacco 
abuse/dependence diagnosis 

aHR 1.53 (1.03, 2.28) Glanz 2018 

Dx-pain Traumatic Injury OR 1.48-1.53 (1.18-1.41, 1.65-1.87) 
Zedler 2015; 
Zedler 2018 

Other Length of follow-up (years) 
aOR 1.38-1.57 (1.2-1.42, 1.58-
1.74) 

Liang 2016 
(men & 
women) 

Prescription 
Days’ supply: Antidepressant 
days 1-60; 61-180 

aOR 1.98 (1.32, 2.9) (men); aOR 
1.41 (1.11, 1.8) (women) 

Liang 2016 

Prescription 
Days’ Supply: Benzodiazepine 
days 1-30; 31-90 

aOR 2.75 (2.07, 3.64) (men); 
aOR 2.35 (1.88, 2.93) (women) 

Liang 2016 

Prescription 
Days’ Supply: Zolpidem days 91-
180 

aOR 1.74 (1.26, 2.35) (women) Liang 2016 

Prescription 
Dose: MMED (mg/day) 
prescribed 20-49; 50-99; ≥100 

OR 1.59 (1.19, 2.12); OR/aOR 
1.96-2.51 (1.29-1.73, 2.66-3.63); 
OR/aOR 1.79-4.96 (1.35-3.24, 
2.24-7.61) 

Liang 2016; 
Zedler 2015; 
Zedler 2018 

Prescription 
Number of unique pharmacies or 
unique prescribersc 

aOR 1.11-1.15 (1.06-1.12, 1.16-
1.18) 

Geissert 2018 

Prescription Anticonvulsant prescription OR 1.96 (1.23, 3.14) Boscarino 2016 

Prescription Antidepressant prescription 
OR 1.98-2.19 (1.63-2.03, 2.36-
2.41) 

Zedler 2015; 
Zedler 2018 
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Prescription 
Benzodiazepine/sedative 
prescription 

OR/aOR 1.49-2.50 (1.22-2.23, 
1.83-2.79) 

Zedler 2015; 
Zedler 2018; 
Geissert 2018 

Prescription Buprenorphine prescription OR 12.30 (5.92, 25.53) Boscarino 2016 

Prescription Carisoprodol prescription aOR 1.63 (1.25, 2.13) Geissert 2018 

Prescription Methadone prescription 
OR 2.42-2.80 (1.61-2.22, 3.51-
3.66) 

Zedler 2015; 
Zedler 2018 

Prescription Oxycodone prescription OR 1.32 (1.03-1.19, 1.45-1.69) 
Zedler 2015; 
Zedler 2018 

Prescription Route: oral prescription OR 1.90 (1.54, 2.34) Zedler 2018 

Utilization 
All-cause utilization ≥1 day of 
hospitalization 

OR 1.12-2.20 (1.02-1.76, 1.23-
2.76) 

Zedler 2015; 
Zedler 2018 

Utilization All-cause utilization ≥1 ER visit 
OR 1.52-2.88 (1.41-2.34, 1.65-
3.54) 

Zedler 2015; 
Zedler 2018 

Abbreviations: Dx=diagnosis MH/BH=Mental Health/Behavioral Health; MMED=Maximum Morphine 
Equivalent Dose; ER=Emergency Room, OR=Odds Ratio, aOR=adjusted Odds Ratio 
a Other race is defined as races other than non-Hispanic black, non-Hispanic white, or Hispanic.  
b The definition of substance use disorder may differ between studies; results have been consolidated for 
simplification purposes 
c Number of unique prescribers and number of unique dispensers were considered separate variables 
 

        

Appendix B.2: Protective factors found to be statistically significant in predicting adverse outcomes  

Category Risk Factor Effect Size Author 

Demographics Age, per year increase 
aOR/aHR 0.93-0.98 (0.89-
0.98, 0.98-0.99) 

Glanz 2018; Liang 
2016 

Prescription 
Prescription: migraine 
prescriptions 

OR 0.46 (0.28, 0.75) Boscarino 2016 

Utilization 
All-cause healthcare 
utilization ≥1 prescription 
fill 

OR 0.48 (0.28, 0.85) Zedler 2015 

        

Appendix B.3: Risk factors found to not be statistically significant in predicting adverse outcomes  

Category Risk Factor Effect Size Author 

Demographics 
Geographic region: North 
Central, South, Other* 

OR 0.63-1.29 (0.36-0.99, 1.11-
1.84) 

Zedler 2015; Zedler 
2018 

Demographics Male sex 
OR 1.03 (0.95, 1.11); OR 1.40 
(p=0.136) 

Zedler 2018; 
Boscarino 2016 

Demographics 
Marital status: 
separated/divorced 

OR 1.16 (0.94, 1.44) Zedler 2015 

Demographics Race: Hispanic OR 1.53 (0.9, 2.59) Zedler 2015 

Dx-clinical 
Any malignancy, including 
leukemia and lymphoma 

OR 1.09-1.28 (0.93-0.95, 1.29-
1.72) 

Zedler 2015; Zedler 
2018 

Dx-clinical Chronic hepatitis/cirrhosis OR 1.39 (0.96, 2.00) Zedler 2018 

Dx-clinical Congestive heart failure OR 1.05 (0.64, 1.72) Zedler 2015 

Dx-clinical Peripheral vascular disorder 
OR 0.91-1.14 (0.72-0.78, 1.14-
1.67) 

Zedler 2015; Zedler 
2018 

Prescription 
Route: parenteral or 
transdermal 

OR 3.08 (0.58, 16.48) Zedler 2015 

Prescription 
Formulation: proportion of 
opioids ER/LA 

OR 0.65 (0.28, 1.54) Zedler 2015 

Abbreviations: Dx=diagnosis, ER/LA=extended release/long-acting, OR=Odds Ratio, aOR=adjusted OR 

*Other defined as not the Northeast, North Central, South, or West geographic region of the United States.  
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Appendix B.4: Risk factors with mixed results for statistical significance and/or increased risk versus 
protective effects in predicting adverse outcomes  

Category Risk Factor Effect Size Author 

Demographics 

Age 35-44y; 45-54y; 55-
64y; 65-74y; 75y+ 
 
Age 35-44y; 45-54y; 55y+ 
Age 35-54y; 55y+ 
Age (years) 

aOR 1.47 (1.15, 1.88); 1.95 (1.57, 
2.44); 2.82 (2.29, 3.48); 3.68 (2.97, 
4.57); 4.99 (4.02, 6.19) 
OR 1.24 (0.65, 2.35); 1.97 (1.15, 3.37); 
2.57 (1.55, 4.26) 
OR 1.05 (0.95, 1.15); 1.16 (1.04, 1.29) 
OR 1.00 (p=0.230) 

Geissert 2018 
 
Zedler 2015 
Zedler 2018 
Boscarino 2016 

Dx-clinical Cardiovascular disease 
OR 1.2 (0.77, 1.88); OR 0.98 (0.81, 
1.20); OR 0.28 (0.12, 0.69) 

Zedler 2015; 
Zedler 2018; 
Boscarino 2016 

Dx-clinical  Cerebrovascular disease 
OR 0.66 (0.41, 1.06); OR 2.52 (2.18, 
2.92) 

Zedler 2015; 
Zedler 2018 

Dx-clinical Metastatic solid tumor 
OR 1.88 (1.04, 3.41); OR 0.95 (0.73, 
1.23) 

Zedler 2015; 
Zedler 2018 

Dx-clinical 
Rheumatologic disease 
(serious autoimmune) 

OR 0.32 (0.12, 0.89); OR 1.47 (1.23, 
1.77) 

Zedler 2015; 
Zedler 2018 

Dx-clinical Skin infections/abscesses 
OR 0.46 (0.28, 0.76); OR 1.14 (1.00, 
1.30) 

Zedler 2015; 
Zedler 2018 

Dx-clinical Warfarin treatment 
OR 1.27 (0.91, 1.79); OR 0.79 (0.55, 
0.95) 

Zedler 2015; 
Zedler 2018 

Dx-clinical Headache/migraine 
OR 1.25 (0.9, 1.74); OR 1.73 (1.57, 
1.90) 

Zedler 2015; 
Zedler 2018 

Prescription 
Formulation: long-acting 
or extended-release opioid 

aOR 4.41 (3.93, 4.94); OR 2.48 (1.27, 
4.88); OR 1.73 (1.51, 1.99); aHR 1.99 
(1.00, 3.93) 

Geissert 2018; 
Zedler 2015; 
Zedler 2018; 
Glanz 2018 

Prescription Fentanyl prescription 
OR 0.63 (0.11, 3.76); OR 3.72 (3.10, 
4.46) 

Zedler 2015; 
Zedler 2018 

Prescription 
Hydrocodone 
prescription 

OR 0.87 (0.7, 1.08); OR 1.30 (1.20, 
1.41) 

Zedler 2015; 
Zedler 2018 

Prescription 
Hydromorphone 
prescription 

OR 1.85 (0.96, 3.58); OR 1.50 (1.38, 
1.64) 

Zedler 2015; 
Zedler 2018 

Prescription Morphine prescription 
OR 1.28 (0.77, 2.14); OR 2.93 (2.49, 
3.43) 

Zedler 2015; 
Zedler 2018 

Prescription Tramadol prescription 
OR 0.69 (0.52, 0.92); OR 1.19 (1.08, 
1.31) 

Zedler 2015; 
Zedler 2018 

Abbreviations: Dx=diagnosis, OR=Odds Ratio, aOR=adjusted Odds Ratio. Note: Bold indicates statistical 
significance 
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Appendix B.5: Risk factors evaluated but not included in the final multivariable model.  

Category Risk Factor Effect Size Author 

Demographics Geographic Region-Rural aOR 0.94 (0.84-1.04) Geissert 2018 

Dx-clinical Chronic pain 
aOR 1.33 (0.93, 1.85) (women); 
aOR 1.7 (1.07, 2.61) (men) 

Liang 2016 

Dx-clinical Hepatitis C diagnosis HR 2.82 (1.04, 7.63) Glanz 2018 

Dx-MH/BH 
Anxiety or post-traumatic stress 
disorder 

aOR 1.02-1.26 (0.67-0.97, 1.48-
1.61)  

Liang 2016 

Dx-pain Back pain 
aOR 1.35 (0.09, 1.68) (women); 
aOR 1.4 (1.05, 1.86) (men) 

Liang 2016 

Dx-pain Musculoskeletal conditions aOR 0.75-0.87 (0.7-0.75, 1-1.08) Liang 2016 

Dx-pain Neuropathy 
aOR 1.8 (0.53, 4.55) (women);  
aOR 4.04 (1.36, 9.52) (men) 

Liang 2016 

Prescription 
Dose: Daily opioid dose (per 10 
mg MMED) 

HR 1.01 (0.99, 1.03) Glanz 2018 

Prescription Dose: MMED daily ≥ 90 mg aOR 1.52 (1.25-1.83) Geissert 2018 

Prescription Number of prescriptions aOR 0.99 (0.98, 0.99) Geissert 2018 

Prescription 
Overlapping long acting/short 
acting opioids 

aOR 2.70 (2.16, 2.86) Geissert 2018 

Prescription 
Overlapping opioid-
benzodiazepine/sedative  

aOR 2.13 (1.89, 2.39) Geissert 2018 

Prescription 
Overlapping opioid-
benzodiazepine-carisoprodol 

aOR 1.59 (1.08, 2.32) Geissert 2018 

Prescription Overlapping opioid-opioid  aOR 2.48 (2.16, 2.86) Geissert 2018 

Prescription 
Prescription: opioid prescriptions 
in the year prior to initiating 
chronic opioid therapy 

HR 1.43 (1.00, 2.05) Glanz 2018 

Prescription Psychotropic prescription HR 2.82 (1.88, 4.25) Glanz 2018 

Abbreviations: Dx=diagnosis; MMED=Maximum Morphine Equivalent Dose, OR=Odds Ratio, 
aOR=adjusted Odds Ratio. Note: Bolded indicates statistical significance 
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II. Additional information for Paper 2: Comparing the Performance of a Predictive 

Risk Model with Prescription-Based Thresholds in Identifying Patients at Risk 

of Fatal Opioid Overdose 

Appendix 2.1: Average daily morphine milligram equivalents (MME) calculation 

Average daily MME was calculated for each month by:  

(1) calculating how many days’ supply of a prescription were in each month based on the 
date written, quantity dispensed, days’ supply, and days in the given month;  

(2) calculating the total MME for each opioid prescription in the month by multiplying the 
strength per unit for the drug by the CDC MME conversion factor and the number of days 
the prescription was active in a given calendar month; and,  

(3) adding up all MME calculations for a given month and taking the average based on the 
number of days in the given calendar month. Buprenorphine prescriptions indicated for 
opioid use disorder were omitted from the calculation.  

 

Appendix 2.2: Classification table for fatal opioid overdose predictive model. * 

Model 
Risk 
Score 
Cut-off 

Sens. Spec. 
Sens. 
+ 
Spec. 

PPV NPV Acc. 
# high-
risk 

% of 
Total 

# 
Deaths 
among 
high-risk 

Deaths 
per 
1,000 
high-
risk  

0.0005 91.08 40.09 131.17 0.22 99.97 40.16 102,192 57.44 224 2.19 

0.0010 78.69 64.66 143.35 0.32 99.95 64.68 60,346 33.92 192 3.18 

0.0015 68.44 77.05 145.49 0.43 99.94 77.04 39,220 22.05 167 4.26 

0.0020 59.43 84.23 143.66 0.54 99.93 84.19 26,991 15.17 145 5.37 

0.0025 50.41 87.94 138.35 0.60 99.92 87.89 20,643 11.60 123 5.96 

0.0030 46.31 90.74 0.63 0.71 99.92 90.67 15,881 8.93 113 7.12 

0.0035 40.16 92.53 132.69 0.77 99.91 92.46 12,806 7.20 98 7.65 

0.0040 36.07 93.76 129.83 0.82 99.90 93.67 10,713 6.02 88 8.21 

0.0045 31.56 94.75 126.31 0.85 99.90 94.64 9,042 5.08 77 8.52 

0.0050 27.87 95.39 123.26 0.88 99.89 95.39 7,750 4.36 68 8.77 

0.0055 24.18 96.19 120.37 0.90 99.89 96.08 6,550 3.68 59 9.01 

0.0060 22.15 96.70 118.85 0.95 99.88 96.60 5,667 3.19 54 9.53 

0.0065 20.49 97.13 117.62 1.01 99.89 97.02 4,930 2.77 50 10.14 

0.0070 18.85 97.45 116.30 1.05 99.88 97.34 4,383 2.46 46 10.50 

0.0075 16.80 97.73 114.53 1.05 99.88 97.62 3,896 2.19 41 10.52 

0.0080 15.16 97.98 113.14 1.07 99.88 97.86 3,471 1.95 37 10.66 

0.0085 14.34 98.20 112.54 1.13 99.88 98.09 3,102 1.74 35 11.28 

Abbr.: Acc.=accuracy, NPV=negative predictive value, PPV=positive predictive value, 
Sens.=sensitivity, Spec.=specificity  
Bold indicates risk model cutoff that maximizes sensitivity plus specificity. 
* Maryland residents 18-80 years with at least one opioid fill for full populations and individuals 
identified by a single risk identification method only within the validation population using 3 
months of data (April-June 2015).    
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Appendix 2.3: Characteristics of individuals identified by a single risk identification 
method. * 

 Risk Model 
Only 

MPE Only 
High MME 

Only 
Op/Ben 

Overlap Only 

# individuals 23,588 30 4,821 5,162 

Sex – Male, n (%) 17,722 (75.1) 4 (13.3) 1,461 (30.3) 933 (18.1) 

Age, mean (SD) 41.79 (11.8) 48.8 (15.0) 58.57 (11.1) 64.80 (10.0) 

18-34 7,020 (29.8) 8 (26.7) 162 (3.4) 67 (1.3) 

35-49 10,358 (43.9) 5 (16.7) 632 (13.1)  236 (4.6) 

50-64 6,185 (26.2) 10 (33.3) 2,431 (50.4) 1,735 (33.6) 

65-80 25 (0.1) 7 (23.3) 1,596 (33.1) 3,124 (60.5) 

Region of Patient Residence, n (%)  

Baltimore City 4,036 (17.1) 8 (26.7) 558 (11.6) 430 (8.3) 

Capital 5,919 (25.1) 4 (13.3) 895 (18.6) 1,159 (22.5) 

Central 8,419 (35.7) 12 (40.0) 2,122 (44.0) 2,047 (39.7) 

Eastern 1,934 (8.2) 3 (10.0) 535 (11.1) 625 (12.1) 

Southern 1,751 (7.4) 3 (10.0) 423 (8.8) 358 (6.9) 

Western 1,518 (6.4) 0 (0) 285 (5.9) 540 (10.5) 

Unknown 11 (0.1) 0 (0) 3 (0.1) 3 (0.1) 

Method of Payment, n (%) 

Private Pay 4,889 (20.7) 2 (6.7) 169 (3.5) 320 (6.2) 

Medicaid 8,952 (38.0) 1 (3.3) 142 (3.0) 181 (3.5) 

Medicare 1,860 (7.9) 3 (10.0) 779 (16.2) 1,254 (24.3) 

Commercial Insurance 7,151 (30.3) 24 (80.0) 3,578 (74.2) 3,285 (63.6) 

Military/VA 572 (2.4) 0 (0) 47 (1.0) 41 (0.8) 

Indian 0 (0) 0 (0) 0 (0) 0 (0) 

Other/Unknown 164 (0.7) 0 (0) 106 (2.2) 81 (1.6) 

# prescribers, mean (SD) 1.9 (1.0) 6.1 (1.9) 1.6 (0.9) 1.9 (1.0) 

# dispensers, mean (SD) 1.5 (0.8) 5.5 (1.0) 1.4 (0.7) 1.3 (0.6) 

# deaths, n (%) 72 (0.3) 0 (0) 5 (0.1) 3 (0.1) 

Abbreviations: PDMP=Prescription Drug Monitoring Program; PRM=predictive risk model; MPE=Multiple 
Provider Episodes (5 unique prescriber and 5 unique dispensers); MME=morphine milligram equivalents; 
Op/Ben=opioid/benzodiazepine, VA=Veterans Affairs; SD=standard deviation. 
* Maryland residents 18-80 years with at least one opioid fill for full populations and identified by a single risk 
identification method only within the validation population using 3 months of data (April-June 2015). 
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Appendix 2.4: Key characteristics of individuals identified by single risk 
identification method. * 
 

 
 
* Maryland residents 18-80 years with at least one opioid fill for full populations and individuals 

identified by a single risk identification method only within the validation population using 3 months 

of data (April-June 2015) 

Abbreviations: PRM=predictive risk model; MPE=multiple provider episodes (5 unique prescribers 

and 5 unique dispensers), MME=Morphine Milligram Equivalents, Op/Ben=opioid/benzodiazepine 
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Appendix 2.5: Characteristics of study populations of equivalent size. * 

 Full 
Cohort** 

Equivalent 
Populations - MPE 

Equivalent 
Populations - High 

MME 

Equivalent 
Populations - 

Opioid/Benzo Overlap 

Threshold PRM Threshold PRM Threshold PRM 

# individuals 170,438 398 398 14,675 14,675 17,440 17,440 

Male sex, n 
(%) 

69,580 
(40.8) 

145 (36.4) 
376 

(94.5) 
6,772 (46.2) 

9,552 
(65.1) 

5,657 (32.4) 
11,165 
(64.0) 

Age 18-34 
years 

32,619 
(19.1) 

117 (29.4) 
89 

(22.4) 
1,093 (7.5) 

2,594 
(17.7) 

1,273 (7.3) 
3,012 
(17.3) 

Age 35-49 
years 

41,699 
(24.5) 

166 (41.7) 
238 

(59.8) 
4,027 (27.4) 

6,691 
(45.6) 

4,121 (23.6) 
7,862 
(45.1) 

Age 50-64 
years 

60,697 
(35.6) 

96 (24.1) 
71 

(17.8) 
7,092 (48.3) 

5,352 
(36.5) 

7,924 (45.4) 
6,518 
(37.4) 

Age 65-80 
years 

35,423 
(20.8) 

19 (4.8) 0 (0) 2,463 (16.8) 38 (0.3) 4,122 (23.6) 48 (0.3) 

Private Pay 
19,114 
(11.2) 

23 (5.8) 
19 

(4.8) 
742 (5.1) 

1,131 
(7.7) 

916 (5.3) 
1,488 
(8.5) 

Medicaid 
26,023 
(15.3) 

148 (37.2) 
283 

(71.1) 
1,912 (13.0) 

5,999 
(40.9) 

3,096 (17.8) 
6,749 
(38.7) 

Medicare 
19,430 
(11.4) 

44 (11.1) 
71 

(17.8) 
2,506 (17.1) 

2,210 
(15.1) 

3,181 (18.2) 
2,492 
(14.3) 

Commercial 
Insurance 

101,813 
(59.7) 

182 (45.7) 
15 

(3.8) 
9,013 (61.4) 

4,865 
(33.2) 

9,771 (56.0) 
6,120 
(35.1) 

Military/VA 1,661 (1.0) 0 (0) 
10 

(2.5) 
176 (1.2) 

289 
(2.0) 

177 (1.0) 390 (2.2) 

Indian 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Other/ 
Unknown 

2,397 (1.4) 1 (0.3) 0 (0) 326 (2.2) 
181 

(1.2) 
299 (1.7) 201 (1.2) 

MPE 398 (0.2) 398 (100) 
38 

(9.6) 
148 (1.0) 

298 
(2.0) 

188 (1.1) 303 (1.7) 

High MME 
14,675 

(8.6) 
148 (37.2) 

186 
(46.7) 

14,675 (100) 
4,738 
(32.3) 

5,348 (30.7) 
5,415 
(31.1) 

Op/benzo 
overlap 

17,440 
(10.2) 

188 (47.2) 
347 

(87.2) 
5,348 (36.4) 

7,045 
(48.0) 

17,440 (100) 
7,854 
(45.0) 

Any 1 high 
risk pattern 

26,913 
(15.8) 

398 (100) 
359 

(90.2) 
14,675 (100) 

9,016 
(61.4) 

17,440 (100) 
10,249 
(58.78) 

Any 2 high 
risk patterns 

5,516 (3.2) 252 (63.3) 
202 

(50.8) 
5,412 (36.9) 

2,989 
(20.4) 

5,452 (31.3) 
3,246 
(18.6) 

All 3 high risk 
patterns 

84 (0.1) 84 (21.1) 
10 

(2.5) 
84 (0.6) 76 (0.5) 84 (0.5) 77 (0.4) 

* Maryland residents 18-80 years with at least one opioid fill using 3 months of data (April-June 2015). 
**“Full Cohort” indicates the full validation cohort 
Abbreviations: SD=standard deviation; VA=Veteran's Affairs; MPE=multiple provider episodes (5 unique 
dispensers and 5 unique prescribers); MME=morphine milligram equivalents; LA=long-acting; SA=short-
acting; PRM=predictive risk model; Benzo=benzodiazepine.  
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III. Additional information for Paper 3: Assessing the Impact of Algorithms for 

Matching Persons Across State Datasets to Identify Risk of Fatal Opioid 

Overdose 

Appendix 3.1: Graphical and Numerical Results of the Dataset Overlap Analysis.  
 

Probabilistic Matching Overlap Analysis: Deterministic-basic Matching Overlap 

Analysis:  

                    
Deterministic+zip Matching Overlap Analysis:  Analytic Dataset:         

                        

Within Dataset Matching* 
Probabilistic  

Deterministic-
basic 

Deterministic+
zip 

PDMP Dataset (No. native identities: 3,304,446) 1,859,445 1,910,741 2,065,019 

Arrest Dataset (No. native identities: 38,004) 37,903 41,637 46,730 

OCME Dataset (No. native identities: 22,829) 22,829 22,829 22,829 

Across Dataset Matching**       

PDMP Only 1,849,415 1,901,096 2,060,604 

Arrests Only 23,567 23,784 28,588 

Opioid Overdose Deaths Only 1,528 1,661 2,276 

PDMP + Arrests 8,712 8,478 3,812 

PDMP + Opioid Overdose Deaths 1,205 1,061 576 

Arrests + Opioid Overdose Deaths 85 100 49 

PDMP + Arrests + Opioid Overdose Deaths 113 106 27 

Bold indicates the population used for this study's analysis.  
*Within dataset matching timeframes and scope: PDMP=2015, Any property or drug arrest=2013-2016, 
Any investigated death=2012-2016.  
**Across dataset matching timeframes and scope: PDMP=2015, Any property or drug arrest=2013-2015, 
opioid-related overdose deaths=2015-2016 
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Appendix 3.2: Identifiable and Limited Dataset Management Process Flow 

An explicit process for handling the OCME and DPSCS datasets was established where the 

grant administrator, the Maryland Department of Health (MDH), served as the broker 

between the parties involved in the study. The agency would provide the full dataset to the 

grant administrator, including patient-identifiable demographic information. To link the 

datasets, the grant administrator securely transferred only the demographic data from each 

of the datasets to CRISP to process and assign a master identifier to each identity, which was 

then encrypted. The encrypted identifier was appended to the agency’s patient-identifiable 

demographic file and was provided back to the grant administrator. The grant administrator 

would append the encrypted identifier to the dataset, remove all identifiable data not 

approved by the IRB, and supply the de-identified dataset with the encrypted identifier to 

the researchers. 

 

Using the grant administrator (MDH) as a data broker facilitated three key functions. It 

eased the burden on the data stewards from having to perform any de-identification steps 

post processing through the MPI by allowing the data steward the option to pass along the 
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fully identifiable dataset to a fellow state agency to manage. It allowed for a control step that 

ensured only identifiers were passed to the HIE and only identifiable data approved by the 

IRB would be shared with researchers. Finally, it removed the potential for unintended legal 

consequences resulting from matching identities recorded as separate individuals within the 

criminal justice datasets.  

The HSCRC and PDMP dataset were already processed through the Master Patient Index as 

part of CRISP’s operational responsibilities. CRISP supplied the final HSCRC limited dataset 

for 2012-2016 hospital visits with the encrypted identifier applied. CRISP supplied the 

crosswalk of PDMP ID to the encrypted identifier used for the study to the PDMP 

program. The PDMP program then supplied the PDMP limited dataset to the researchers. 

CRISP processed the OCME, DPSCS, and other relevant dataset demographic data, applied 

the encrypted identifier, and supplied it to grant administrators. The grant administrators 

married the encrypted identifier with the full dataset then supplied the limited datasets to 

researchers. The new datasets were processed after going through basic data cleaning to 

separate full names into separate First Name and Last Name fields. The OCME, DPSCS, 

and other relevant datasets followed the external dataset process depicted below:  
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Appendix 3.3: MPI Probabilistic Matching Algorithm Functions and Configuration 

The probabilistic matching algorithm can be broken into five basic functions:   

 

Data Input: The MPI algorithm uses demographic data elements normalized into different 

“attributes”. The algorithm attributes used to link individuals included name, date of birth, 

gender, address, phone number, and social security number. Each unique attribute was used 

to create a match score to represent the degree of certainty for an exact match. 

Standardization: Standardization represents the conversion of the data into its simplest form 

to allow for easy comparison. The standardization steps used included removing false or 

anonymous values, such as phone numbers entered as (000) 000-0000, removing any special 

characters and applying truncations, such as (123) 456-7890 to 4567890, and converting the 

name to all upper case.34 Two types of address standardization arguments were employed: 1) 

postal codes patterning, and 2) type of words or characters used for unit information (floor, 

suite, unit, etc.).34  

Bucketing: Bucketing organizes common data values together using single or multiple 

attributes to create unique combinations that are more easily recalled during searching and 

matching. Theoretically, each identity needs to be compared with every previously processed 

identity, which would be far too consuming without a mechanism to limit it only logical 

comparisons.35 The bucketing processes employed by the MPI used in this study included 

Name (First Name + Last Name), Name Phonetic + DOB, Name Phonetic + Zip Code, 

SSN, Phone, Zip Code, MRN, plus some special attributes specific to Maryland 

stakeholders.  

Comparison:  The individuals sharing buckets together are then compared and scored using 

predefined probabilistically generated weights. Each comparison function for the different 

attributes generates a score that can be positive or negative. Full points were awarded for 

exact matches and partial points were given for common but minor data discrepancies, such 

as the use of nicknames, misspellings, and transposed dates, names, and numbers. The 

comparison function incorporates various approaches to processing information that 

inherently have data quality challenges:  

• Initials and full word comparison: match on initials or full word are assessed and 

scored. 

• Enhanced soundex: words with similar phonetic sounds receive a higher score 

• Frequency indexing: common words and names yield lower scores; uncommon 

words and names yield higher scores. 
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• Nickname tables: tables that equate formal and informal names and cross-compare 

the exact and phonetic names.  

• Edit distance calculations: the number of changes needed for two values to be 

equivalent, the lower the number of changes the more likely the records are a match. 

Prefix and compound comparisons are also employed where matches may be missed 

by the edit-distance calculation, for example, Belair and Bel Air would be compared. 

• Acronym comparison: for example, D.C. would be compared with District of 

Columbia.  

• Attribute weights: for example, phone number receives a higher weight than gender. 

• Historical values in matching: the use of previous addresses or names (maiden 

names) as part of the matching technology improves the matching capability.  

• False positive filter: applies deterministic logic to specific false positive matches and 

uses the result to apply a penalty score. 

Score: The final score is a sum of scores from the comparison functions in the algorithm and 

reflects the degree of match certainty between the two individuals being compared. The 

patient was a “match” if above the CRISP-defined threshold (score≥13.1), “potential match” 

if the individuals are close but not strong enough to be linked together (score between 13.1 

and 10.2), or “not matched” (score≥10.1). The attributes configured for comparison and 

MPI weight distributions include:  

Attribute Max Weight Min Weight 

Name/ Previous Name (1 attribute) 4.08 (max 7.00) 
Invalid Names: -

2.35; Other: -
1.45 

Date of Birth (1 attribute) 4.75 -3.92 

Gender (1 attribute) 
M: 0.23; F: 

0.38; Other: 
0.23 

-2.03 

SSN – Full (1 attribute) 3.66 -5.37 

SSN - Last four (1 attribute) 1.85 -1.00 

Patient Address and Phone Combinations (2 attributes)     

Patient Address - Missing & Phone - Missing 0 N/A 

Patient Address - Match & Phone - Missing 5.01 N/A 

Patient Address - Missing & Phone - Match 4.79 N/A 

Patient Address - Match & Phone - Match 5.24 N/A 

Patient Address - Non-Match & Phone - Missing 4.03 -2.83 

Patient Address - Missing & Phone - Non-Match 4.75 -3.61 

Patient Address - Non-Match & Phone - Non-Match 4.95 -2.19 

False Positive filter (4 attributes)     

Name: matching, Gender: missing, DOB: apart >15 years, SSN: missing   -3.00 

Name: matching, Gender: missing, DOB: apart >15 years, SSN: not 
missing  

  -5.00 

Name: partial matching, Gender: missing, DOB: apart >15 years, SSN: 
missing 

  -3.00 

Name: partial matching, Gender: missing, DOB: apart >15 years, SSN: 
not missing  

  -5.00 

Name: not matching, Gender: missing, DOB: matching   -5.00 

Name: not matching, Gender: missing, DOB: apart >15 years   -5.00 
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Name: matching, Gender: matching, DOB: apart >15 years, SSN: 
missing 

  -3.00 

Name: matching, Gender: matching, DOB: apart >15 years, SSN: not 
missing 

  -5.00 

Name: partial matching, Gender: matching, DOB: matching, SSN: 
missing 

  -2.00 

Name: partial matching, Gender: matching, DOB: matching, SSN: 
matching 

  -2.00 

Name: partial matching, Gender: matching, DOB: matching, SSN: edit 
distance 

-2.50 -5.00 

Name: partial matching, Gender: matching, DOB: apart >15 years, 
SSN: missing 

  -3.00 

Name: partial matching, Gender: matching, DOB: apart >15 years, 
SSN: not missing 

  -5.00 

Name: not matching, Gender: matching, DOB: matching, SSN: missing   -4.00 

Name: not matching, Gender: matching, DOB: matching, SSN: 
matching 

  -3.50 

Name: not matching, Gender: matching, DOB: matching, SSN: edit 
distance 

-4.00 -5.00 

Name: not matching, Gender: matching, DOB: apart >15 years   -5.00 

Name: matching, Gender: not matching, DOB: apart >15 years, SSN: 
missing 

  -3.00 

Name: matching, Gender: not matching, DOB: apart >15 years, SSN: 
not missing 

  -5.00 

Name: partial matching, Gender: not matching, DOB: matching, SSN: 
missing or not matching 

  -2.50 

Name: partial matching, Gender: not matching, DOB: apart >15 years, 
SSN: missing 

  -3.00 

Name: partial matching, Gender: not matching, DOB: apart >15 years, 
SSN: not missing 

  -5.00 

Name: not matching, Gender: not matching, DOB: matching   -5.00 

Name: not matching, Gender: not matching, DOB: apart >15 years   -5.00 

 
An example scoring of two individual’s test demographics (fake patient) processed through 
the operational MPI’s probabilistic algorithm is represented below:  

Comparison Grape, Gilbert, PDMP:9900991 Gilbert, Grape, DPSCS: 55324343 Weight 

XNM GRAPE|GILBERT| GILBERT|GRAPE| 6.84 

Date of Birth 19840101 19840101 4.75 

Gender F F 0.23 

Address 4145|EARL|C|ADKINS| 
DR|RIVER|WV|26000 

4145|EARL|C|ADKINS|DR 
|RIVER|WV|26000 5.01 

Phone 301-222-2999  

SSN X16326289 X214024632 -2.66 

False Positive Filter 19840101 19840101 0 

Total Match Score 14.17 
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Appendix 3.4: Deterministic algorithm matching 

Two deterministic, exact-match algorithms were applied to each dataset, starting with PDMP 

data. 

The matching process consisted of the following steps:  

1. Start with an empty master patient list.  

2. Begin processing the identities in each file using the defined algorithm (i.e. first 

name, last name, gender, date of birth), comparing each identity in the database to 

the identities in the master patient list.  

a. If any exact matches occurred between the master list of the unique identities 

and the dataset, the identity in the dataset was assigned the deterministic ID 

in the master list. 

b. If no match exists, the identity is added to the master patient list and assigned 

its own unique deterministic ID (note: this applies to the very first identity 

processed – the identity was added since there was no exact match to be 

made with an empty list.) 

3. Steps 2a and 2b were repeated for the remaining datasets, one dataset at a time. 

Note: The steps outlined above were repeated for each dataset. Because the master list of 

identities was for all unique individuals, if there were multiple records within a single 

database with matching demographics, the deterministic ID would be applied across all 

records, therefore matching records within a single database as well (not just across). For 

transaction-level databases (PDMP and DPSCS), identities that had the same dataset-defined 

patient identifier within a single database was checked to ensure the same deterministic ID 

was applied. Any identities in the dataset that did not have an assigned database-level unique 

patient identifier were removed before the processing began.  
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Appendix 3.5: Predictive model classification tables for each matching algorithm.  

Appendix Table 3.5.1: Probabilistic Algorithm - validation cohort (N=661,451)   

Model 
Risk 
Score 
Cutoff 

Sens.  Spec. 
Sens. 

+ 
Spec. 

PPV NPV Acc. 
# high-

risk 
patients 

% of 
validation 

cohort 

# 
Deaths 
among 

high-risk 

Deaths 
per 1,000 
high-risk 

0.00025 95.51 38.15 133.66 0.12 99.99 28.19  409782 62.0% 511 1.25  

0.0005 87.87 61.37 149.24 0.18 99.98 61.40 256,047 38.7% 471 1.84 

0.0010 67.54 84.29 151.83 0.35 99.97 84.28 104,293 15.8% 362 3.47 

0.0015 56.16 90.78 146.94 0.49 99.96 90.76 61,286 9.3% 301 4.91 

0.0020 48.88 93.79 142.67 0.63 99.96 93.76 41,325 6.2% 262 6.34 

0.0025 44.59 95.11 139.70 0.73 99.95 95.07 32,564 4.9% 239 7.34 

0.0030 36.75 96.45 133.20 0.83 99.95 96.40 23,695 3.6% 197 8.31 

0.0035 33.21 96.99 130.20 0.88 99.94 96.93 20,122 3.0% 178 8.85 

0.0040 29.29 97.53 126.82 0.95 99.94 97.47 16,506 2.5% 157 9.51 

0.0045 25.75 97.86 123.61 0.96 99.94 97.80 14,304 2.2% 138 9.65 

0.0050 24.44 98.07 122.51 1.02 99.94 98.01 12,897 1.9% 131 10.16 

0.0055 22.39 98.32 120.71 1.07 99.94 98.25 11,263 1.7% 120 10.65 

0.0060 19.96 98.52 118.48 1.08 99.93 98.46 9,886 1.5% 107 10.82 

0.0065 16.98 98.85 115.83 1.18 99.93 98.78 7,721 1.2% 91 11.79 

0.0070 16.04 98.94 114.98 1.22 99.93 98.88 7,072 1.1% 86 12.16 

0.0075 15.30 99.02 114.32 1.25 99.93 98.96 6,541 1.0% 82 12.54 

0.0080 14.37 99.08 113.45 1.26 99.93 99.02 6,133 0.9% 77 12.56 

0.0085 12.87 99.18 112.05 1.25 99.93 99.11 5,518 0.8% 69 12.50 

0.0090 11.75 99.26 111.01 1.27 99.93 99.19 4,971 0.8% 63 12.67 

0.0095 11.01 99.32 110.33 1.29 99.93 99.25 4,570 0.7% 59 12.91 

Abbreviations: Acc.=accuracy, NPV=negative predictive value, PPV=positive predictive value, 
Sens.=sensitivity, Spec.=specificity, pts=patients 
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Appendix Table 3.5.2: Deterministic-basic Algorithm - validation cohort (N=679,925)  

Model 
Risk 
Score 
Cutoff 

Sens. Spec. 
Sens. 

+ 
Spec. 

PPV NPV Acc. 
# high-

risk 

% of 
validati

on 
cohort 

# Deaths 
among 

high-risk  

Deaths 
per 

1,000 
high-risk 

0.00025 94.97 45.54 140.51 0.11 99.99 44.58 377229 55.48 415 1.10 

0.0005 87.47 66.26 153.73 0.17 99.99 66.27 229,646 33.78 384 1.67 

0.0010 66.74 85.99 152.73 0.31 99.98 85.98 95,460 14.04 293 3.07 

0.0015 57.63 91.03 148.66 0.41 99.97 91.01 61,202 9.00 253 4.13 

0.0020 47.15 94.30 141.45 0.53 99.96 94.27 38,923 5.72 207 5.32 

0.0025 39.18 95.79 134.97 0.60 99.96 95.75 28,805 4.24 172 5.97 

0.0030 35.99 96.77 132.76 0.71 99.96 96.73 22,120 3.25 158 7.14 

0.0035 33.03 97.37 130.40 0.80 99.96 97.32 18,042 2.65 145 8.04 

0.0040 31.44 97.70 129.14 0.88 99.95 97.66 15,759 2.32 138 8.76 

0.0045 26.88 98.00 124.88 0.86 99.95 97.96 13,680 2.01 118 8.63 

0.0050 23.69 98.44 122.13 0.97 99.95 98.39 10,684 1.57 104 9.73 

0.0055 22.32 98.60 120.92 1.02 99.95 98.55 9,600 1.41 98 10.21 

0.0060 19.13 98.80 117.93 1.02 99.95 98.75 8,241 1.21 84 10.19 

0.0065 15.95 98.96 114.91 0.98 99.95 98.90 7,164 1.05 70 9.77 

0.0070 15.26 99.06 114.32 1.04 99.94 99.01 6,427 0.95 67 10.42 

0.0075 13.67 99.17 112.84 1.06 99.94 99.12 5,676 0.83 60 10.57 

0.0080 13.21 99.24 112.45 1.12 99.94 99.19 5,199 0.76 58 11.16 

0.0085 12.76 99.30 112.06 1.17 99.94 99.25 4,788 0.70 56 11.70 

0.0090 12.30 99.36 111.66 1.22 99.94 99.30 4,416 0.65 54 12.23 

0.0095 12.07 99.41 111.48 1.31 99.94 99.36 4,051 0.60 53 13.08 

Abbreviations: Acc.=accuracy, NPV=negative predictive value, PPV=positive predictive value, 
Sens.=sensitivity, Spec.=specificity, pts=patients 

 

Appendix Table 3.5.3: Deterministic+zip Algorithm - validation cohort (N=727,565) 

Model 
Risk 
Score 
Cutoff 

Sens.  Spec. 
Sens. + 
Spec. 

PPV NPV Acc. 
# high-

risk 

% of 
validation 

cohort 

# 
Deaths 
among 

high-risk 

Deaths 
per 

1,000 
high-risk 

0.00025 85.53 62.17 147.70 0.07 99.99 62.18 275,352 37.85 195 0.71 

0.0005 60.96 84.37 145.33 0.12 99.99 84.37 113,791 15.64 139 1.22 

0.0010 42.54 94.30 136.84 0.23 99.98 94.29 41,531 5.71 97 2.34 

0.0015 34.21 96.98 131.19 0.35 99.98 96.96 22,074 3.03 78 3.53 

0.0020 26.32 98.00 124.32 0.41 99.98 97.97 14,629 2.01 60 4.10 

0.0025 22.37 98.55 120.92 0.48 99.98 98.53 10,580 1.45 51 4.82 

0.0030 17.98 98.94 116.92 0.53 99.97 99.92 7,727 1.06 41 5.31 

0.0035 14.91 99.22 114.13 0.60 99.97 99.19 5,713 0.79 34 5.95 

0.0040 10.53 99.38 109.91 0.53 99.97 99.35 4,515 0.62 24 5.32 

0.0045 9.21 99.49 108.70 0.56 99.97 99.46 3,761 0.52 21 5.58 

0.0050 8.77 99.58 108.35 0.65 99.97 99.55 3,075 0.42 20 6.50 

0.0055 7.46 99.63 107.09 0.63 99.97 99.60 2,686 0.37 17 6.33 

0.0060 7.46 99.69 107.15 0.31 99.97 99.66 2,301 0.32 17 7.39 

0.0065 6.14 99.72 105.86 0.69 99.97 99.69 2,041 0.28 14 6.86 

0.0070 5.26 99.77 105.03 0.73 99.97 99.74 1,654 0.23 12 7.26 

0.0075 3.95 99.80 103.75 0.61 99.97 99.77 1,483 0.20 9 6.07 

0.0080 3.95 99.81 103.76 0.66 99.97 99.78 1,358 0.19 9 6.63 

0.0085 3.51 99.83 103.34 0.65 99.97 99.80 1,225 0.17 8 6.53 

0.0090 3.51 99.85 103.36 0.74 99.97 99.82 1,082 0.15 8 7.39 

0.0095 3.07 99.86 102.93 0.70 99.97 99.83 993 0.14 7 7.05 

Abbreviations: Acc.=accuracy, NPV=negative predictive value, PPV=positive predictive value, 
Sens.=sensitivity, Spec.=specificity, pts=patients 
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PERSONAL DATA: 
  Lindsey Ferris, MPH 
  lferris1@jhsph.edu  
  Lindsey.ferris@gmail.com 
  608-332-3659 
  Place of Birth: Bloomfield Hills, Michigan 
  Year of Birth: 1983 
 
EDUCATION: 
 
2013-2019 Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 

Doctor of Public Health Candidate, Healthcare Management & Leadership, Informatics Track 
 

2010-2011 Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 
Master of Public Health 

 
2001-2005  Carnegie Mellon University, Pittsburgh, PA 

Bachelor of Science in Chemistry 
Minor in Business Administration; Graduated with Research Honors in Chemistry 

 
WORK EXPERIENCE:      
 
Chesapeake Regional Information System for our Patients (CRISP), Program Director, HIE Projects, 
Columbia, MD, June 2012-Current 
Audacious Inquiry, Senior Director, Catonsville, MD, June 2012-Current 
 
Contracted full time in a senior leadership role overseeing all public health and other new HIE-related projects 
at CRISP, the Health Information Exchange (HIE) serving Maryland, DC and partnered with WV. Manage a 
team of  seven project/program management personnel, contribute to company strategy, staffing plans, policy-
based discussions, and goal setting. Responsibilities include:  
 

• Prescription Drug Monitoring Program (PDMP): oversaw original implementation in 2013 as the 
program manager for Maryland’s statewide PDMP in partnership with Maryland Department of Health. 
Manage the budget, relationship with the state, and oversee the management and operation of the PDMP, 
including through the mandated registration and use laws.  
 

• Medicaid APD Manager & Public Health Lead: manage the reporting, budgeting, invoicing, and 
resource allocation for CRISP HIE services funded by the Centers for Medicare & Medicaid Services (CMS) 
to Maryland Medicaid. The grant is for $31 million over two years for a range of projects/services.  
 

• Opioid and Behavioral Health-related Efforts: manage team working to capture suspected overdoses 
occurring within hospital Emergency Departments for viewing while providers consult the PDMP and 
Emergency Medical Services (EMS) data to capture overdose events occurring outside the hospital setting. 
Oversee the work to expand CRISP services to the behavioral health community and understand the 42 
CFR Part 2 federal rule about patient consent for sharing substance use disorder treatment data. 

 

• Harold Rogers PDMP Grant: collaborate on efforts between CRISP, MDH, and the Johns Hopkins 
Center for Population Health Information Technology (CPHIT). Oversaw the data linking efforts at CRISP 
related to the Grant for a Practitioner/Researcher partnership to create a predictive risk model opioid 
overdose.  
 

mailto:lferris1@jhsph.edu
mailto:Lindsey.ferris@gmail.com


   

104 
 

CodeRyte/3M, Client Engagement Executive, Bethesda, MD, June 2011-June 2012 

• Coordinated between multiple divisions (technical team, coding analysts, sales) at CodeRyte and the client.  

• Brought 5 clients live with the Natural Language Processing-driven computer assisted coding software. 

• Designed a critical comparison report that reflected CodeRyte/Coder results with Practitioner-selected 
codes to determine financial impact of software at a major healthcare system.  

• Worked with additional 10 existing CodeRyte clients on optimization of the coding software to maximize 
Return on Investment (ROI) and managed overall relationships.  

• Worked with Sales team members on expanding the product suite to additional specialties at existing client 
sites, and managed enhancement requests.  

• Analyzed and presented the impact of industry-driven events, such as meaningful use, accountable care 
organizations, and ICD-10 on CodeRyte and its clients.  
 

Epic Systems Corporation, Project Manager, Madison, WI, July 2005 – June 2010 

• Installed pharmacy and oncology portions of Epic’s electronic medical record (EMR) software for seven 
projects across six clients and managed six Epic employees.  

• For each project, collected organization-specific information, translated client information into the software, 
demonstrated workflows for stakeholder validation, tailored documentation supplied to clients, assisted in 
testing and training, and managed project timelines, budgets, scope, and outcomes.  

• Completed evaluation of over 10 customer systems post go-live to determine user efficiency, satisfaction 
and potential improvements/optimization. 

• Continually volunteered to support users during point of software induction for Epic teams outside of my 
customers, allowing familiarization of workflows and policies for over 20 health systems in the US and one 
in Holland. Customers, projects, and dates of engagement include:  

 
Cleveland Clinic Health System, Pharmacy, July 2005 – July 2008 
Cleveland Clinic Health System, Oncology, September 2006 – June 2010 
Dartmouth Hitchcock Medical Center, Pharmacy, March 2009 – June 2010 
Northwestern Medical Faculty Foundation, Oncology, July 2009 – June 2010 
Aurora Advanced Healthcare, Oncology, October 2009 – June 2010 
Nemours - Alfred I. duPont Hospital for Children, Pharmacy, June 2007 – May 2009 
Buffalo Medical Group, Oncology, May 2008 – December 2008 

 
OTHER EXPERIENCE: 
 
Project Management Professional, Baltimore, MD October 2013-Current 

Passed the Project Management Professional exam in October of 2013, which is a globally recognized test 
to demonstrate my experience, education and competency to lead and direct projects. 

 
Certified in Public Health, Baltimore, MD May 2011-Current 

Passed the National Board of Public Health Examiners’ (NBPHE) Certified in Public Health exam in May 
of 2011, which is a test to demonstrate my mastering the foundational competencies in public health learned 
from a CEPH-accredited school.  
 

Certificate in Public Health Informatics, Baltimore, MD, June 2010-June 2011 
Graduated with a certificate in public health informatics offered at Johns Hopkins after completing the 
required 21 course credits, informatics related capstone, and practicum experience.  

 
Teaching Assistant, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 2011-2017 

Lead Teaching Assistant for Dr. Weiner’s Population Health Informatics online course. Mentored students, 
graded midterms and finals, created quiz questions, assisted in Live Talks, managed online course content.  

 
Crew Chief of Race Across America (RAAM), Oceanside, CA to Annapolis, MD 2016 

Served as crew chief for my brother’s solo RAAM challenge, which is a 3,089-mile bike race from Oceanside, 
CA to Annapolis, MD. Orchestrated a 12-person team and made all critical decisions to support his race, 
seeing him across the finish line in 10 days, 21 hours, and 43 minutes.  


